
Unique Identification of

Elements in Evolving Models:

Towards Fine-Grained Traceability in Model-Driven Engineering

Vom Fachbereich Elektrotechnik und Informatik der
Universität Siegen

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

von

Dipl.-Inform. Sven Wenzel

Siegen, November 2010

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

Als Dissertation genehmigt vom

Fachbereich Elektrotechnik und Informatik

Universität Siegen

Einreichung 3. November 2010

Mündl. Prüfung 4. März 2011

Dekan Prof. Dr. M. Pacas, Universität Siegen

1. Gutachter Prof. Dr. U. Kelter, Universität Siegen

2. Gutachter Prof. T. Systä, PhD, Techn. Universität Tampere, Finnland

3. Gutachter Prof. Dr. J. Ebert, Universität Koblenz

Vorsitzender Prof. Dr. V. Blanz, Universität Siegen

i

Abstract
Model-driven engineering (MDE) is a widely accepted methodology in software en-

gineering. At the same time, the ability to retrace the engineering process is an

important success factor for software projects. In MDE, however, such traceabil-

ity is often impeded by the inadequate management of model evolution. Although

models have a very fine-grained structure, their different revisions and variants

are prevalently managed as monoliths in a file-based software configuration man-

agement (SCM). This causes the identification problem: if the fine-grained ele-

ments are not assigned with globally unique identifiers, we cannot identify them

over time. If such identifiers would be given, they can be misleading. As a con-

sequence, we cannot comprehend the evolution of elements and traceability rela-

tionships among the elements cannot be managed sufficiently.

This thesis presents a novel solution to the identification problem. It establishes

a representation to describe the history of a model and its fine-grained elements

inside. The key feature of the representation is a new kind of traceability rela-

tionship, called identification links. They allow us to identify elements of a given

revision in other revisions or variants of the model. The identification is even ap-

plicable to anonymous elements and model fragments. It provides us with a broad

spectrum of opportunities: e.g. management of fine-grained traceability links, evo-

lution analysis, merging of development branches. Due to the expression of model

evolution in the history representation, we are further able to capture the changes

that have been applied to the traced elements. This thesis further presents an

algorithm to infer the identification links automatically. The approach does not

rely on persistent identifiers, but it utilizes a similarity-based model comparison

technique to locate the model elements in other revisions.

The algorithm and the history representation have been implemented in a proto-

type. It is metamodel and tool independent and can work with an arbitrary SCM.

Existing modeling environments do not have to be modified. Traceability informa-

tion and evolution information is accessible through a service interface and can

thus be integrated in arbitrary tools. The evaluation of our approach by means

of controlled experiments with data from real models attested excellent precision

and recall values for the identification of model elements over time. Furthermore,

different evolution analysis tools have already been built on our approach, which

documents the practical applicability of our solution.

ii

iii

Kurzfassung
Die modellgetriebene Entwicklung ist eine weit verbreitete Methode zur Softwa-

reentwicklung. Die ungeeignete Versionierung von Modellen verhindert jedoch oft-

mals die Nachverfolgbarkeit des Entwicklungsprozesses. Trotz ihrer feinkörnigen

Struktur werden Modelle oft monolithisch auf Basis dateibasierter Konfigurations-

managementsysteme verwaltet. Modellelemente können in diesem Fall nicht über

die Zeit hinweg identifiziert werden, weil globale Identifizierer entweder fehlen oder

irreführend sein können. Aufgrund dieses Identifikationsproblems können Än-

derungen an Modellelementen nur sehr schwer nachvollzogen werden. Außerdem

können Referenzen zur Nachverfolgbarkeit zwischen Elementen verschiedener Re-

visionen nicht sinnvoll verwaltet werden.

Diese Dissertation löst das Identifikationsproblem. Sie führt eine Repräsenta-

tion ein, mit der die Historie von Modellen und deren feinkörnigen Elementen

abgebildet werden kann. Ein zentraler Bestandteil dieser Repräsentation sind

Identifizierungslinks, die es ermöglichen ein gegebenes Element in anderen Revi-

sionen oder Varianten des Modells wiederzufinden. Der Ansatz unterstützt auch

anonyme Elemente und komplette Modellfragmente. Diese neuartige Identifizie-

rung ermöglicht z.B. die Verwaltung von feinkörniger Nachverfolgbarkeitsinforma-

tion, die Analyse von Modellevolution oder das Mischen von Entwicklungszweigen.

Da die Repräsentation auch die Evolution eines Modells abbilden kann, können

die Veränderungen identifizierter Elemente besser erfasst werden. Zudem wird in

dieser Dissertation ein Algorithmus entwickelt, mit dem Identifizierungslinks zwi-

schen Modellelementen verschiedener Revisionen inferiert werden. Dieser stützt

sich nicht auf persistente Identifizierer, sondern nutzt einen ähnlichkeitsbasierten

Differenzalgorithmus, um Elemente in anderen Revisionen wiederzufinden.

Der Algorithmus und die Historienrepräsentation wurden in einem modelltyp-

und werkzeugunabhängigen Prototyp implementiert, der mit beliebigen Konfigura-

tionsmanagementsystemen zusammenarbeitet, ohne dass diese angepasst werden

müssen. Die Informationen zur Nachverfolgbarkeit und Evolution von Modellele-

menten sind über eine Programmierschnittstelle abfragbar, die sich in beliebigen

Werkzeugen nutzen lässt. Der beschriebene Ansatz wurde mit kontrollierten Ex-

perimenten auf Basis realer Modellhistorien erfolgreich evaluiert. Darüber hinaus

wurde seine praktische Anwendbarkeit durch verschiedene darauf aufbauende

Werkzeuge zur Evolutionsanalyse belegt.

iv

v

Acknowledgements

I would like to thank my supervisor Professor Udo Kelter for his scientific support

and the endless discussions we had. I am also very grateful to my co-supervisors

Professor Tarja Systä and Professor Jürgen Ebert who encouraged and supported

me during the whole process of writing. They gave a lot of useful feedback and

inspiration that improved my thesis.

In addition, I would like to thank my (former) colleagues, Timo Kehrer, Maik

Schmidt, Pit Pietsch, Stefan Berlik, Christoph Treude, Jörg Niere, Christian

Köhler, Hamed Shariat Yazdi, Dhiah El Dhien Abou-Tair, and Maryam Nasiri, for

the discussions, for listening to my ideas, for co-authoring papers, and for proof

reading. Special thanks go to Roswitha Eifler and Frank Schuh for their orga-

nizational and technical support. They all provided me with a pleasant working

atmosphere including memorable coffee breaks with tons of cookies.

For the technical realization, I would like to thank all contributors of the SiDiff

project as well as the students Dennis Koch, Hermann Hutter, and Jens Falk

for their endurance while listening to my nebulous ideas and implementing them

in different prototypes. Furthermore, I would like to thank all students who have

supported me directly or indirectly with their diploma theses, their project groups,

or their work as student assistants.

I would further like to thank all of my friends and relatives for reminding me

of the other important things in life. I am especially grateful to my mother (who

died much too early), my father, and my brother for always supporting me and

inspiring me to bring out the best in myself.

Last but not least, I wish to express my deepest gratitute to my beloved wife for

her endless love, her patient care, and her unconditional support, and to my dear

children for filling me with joy and happiness. Thank you!

vi

vii

There is no branch of detective science

which is so important and so much neglected

as the art of tracing footsteps.

— Sherlock Holmes

in “A Study in Scarlet” by Sir Arthur Conan Doyle

viii

Contents ix

Contents

I Overview 1

1 Introduction 3

1.1 Model-Driven Engineering . 3

1.2 Model Evolution . 4

1.3 Traceability . 6

1.4 Traceability in MDE: A Challenge . 7

1.4.1 Lower Significance of Identifiers 8

1.4.2 Representation of Models . 8

1.4.3 Management of Model Evolution 9

1.5 Thesis Objective: The Identification Problem 10

1.5.1 Typical Scenarios . 11

1.5.2 Traceability-Related Questions in Daily Practice 12

1.6 Thesis Contributions . 13

1.7 Thesis Structure . 14

2 State-of-the-Art 15

2.1 Avoidance of the Identification Problem 15

2.1.1 Persistent Identifiers . 16

2.1.2 Model Repositories . 17

2.1.2.1 Stand-Alone Repositories 17

2.1.2.2 Repositories with Tool Integration 18

2.1.2.3 Other Repositories . 19

2.1.3 Middleware Solutions . 19

2.2 Related Approaches in Code-Driven Development 19

2.2.1 Origin Analysis . 20

2.2.2 Evolution Analysis . 20

2.3 Approaches to Other Kinds of Traceability 21

2.3.1 Traceability Links for Evolution 21

2.3.2 Obtaining Traceability Links by Model Transformations 22

2.3.3 Maintaining Traceability Links 22

2.3.4 Recovering Traceability Links with Information Retrieval . . . 24

x Contents

3 The Approach in a Nutshell 27

3.1 Requirements . 27

3.2 Our Approach by Example . 29

II Background & Definitions 35

4 Model Comparison 37

4.1 Model Matching and Model Differencing 37

4.2 Excursus: Approaches to Model Matching 39

4.2.1 Signature-Based Approaches . 40

4.2.2 Similarity-Based Approaches . 40

4.2.3 Rule-Based Approaches . 43

4.3 The SiDiff Approach . 44

4.3.1 Overview . 45

4.3.2 Similarity Computation in Detail 48

4.3.3 The Iterative Matching Algorithm in Detail 48

5 Graph Representation of Models 51

5.1 Graph Definition for Models . 51

5.2 Mapping Models onto Graphs . 53

5.3 Querying Related Vertices . 57

III Fine-grained Traceability 59

6 Modeling the History 61

6.1 Overview . 61

6.2 Representation of Revision Information 64

6.3 Representation of Traceability Information 66

6.4 Representation of Evolution Information 70

7 Computation of Identification Links 73

7.1 Computation through Pairwise Comparison 73

7.1.1 Merging Identities . 77

7.2 Handling of Breaks and Gaps . 78

7.2.1 Breaks in the Identification Paths 80

7.2.2 Deleted and Reinserted Elements 81

7.2.3 Extension of the Analysis Procedure 82

7.3 Alternative Approaches . 89

Contents xi

7.3.1 Non-Incremental Computation 89

7.3.2 Manual Creation . 90

7.3.3 Derivation from Identifiers . 90

8 Reliability and Modification of Identification Links 91

8.1 Reliability of Identification Links . 91

8.1.1 Modification of the Model Comparison 92

8.1.2 Reliability of Hash Matches . 92

8.1.3 Reliability of Iterative Matches 95

8.2 Manual Editing of Identification Links 99

8.2.1 Removing a Versioned Element from an Identity 99

8.2.2 Removing an Identification Link 100

8.2.3 Creating an Identification Link 101

8.2.4 Changing Reliabilities . 103

9 Computing Evolution Information 105

9.1 Software Metrics . 105

9.2 Inference of Changes . 106

9.3 Difference Metrics: Measuring the Changes 107

9.3.1 Generic Metrics . 109

9.3.2 Significance Metrics . 110

9.3.3 Similarity Metric . 112

9.3.4 Aggregation of Metrics . 112

9.4 Recomputation of Difference Metrics and Changes 112

10 Querying the History to Trace Elements 115

10.1Tracing an Element . 115

10.1.1Assessment of the Traceability 119

10.1.2Assessment of the Evolution . 121

10.2Tracing Model Fragments . 122

10.2.1Selection of the Fragment to be Traced 124

10.2.2Checking the Existence of Fragments 128

10.2.3Assessment of the Tracing . 129

10.3Application Scenarios . 131

10.3.1Typical Scenarios . 132

10.3.2Answering Typical Questions . 133

xii Contents

IV Evaluation 135

11 Prototype Implementation 137

11.1Implementation of the Tracing Service 137

11.1.1Architectural Overview . 138

11.1.2Model Representation with EMF 139

11.1.3The History Data Model . 140

11.1.4The Service Interface . 142

11.1.5Computation of Difference Metrics 147

11.2Usage of the SiDiff Toolbox . 148

11.2.1Modification and Extension of SiDiff 149

11.2.2Compatibility to Other Model Comparison Approaches 152

11.3Implementation of a Tracing Tool . 153

12 Case Studies 157

12.1Validation of the Approach . 157

12.1.1Study Design . 157

12.1.2Study Results . 161

12.2Study of Applicability . 163

12.3Example Applications . 167

V Epilogue 171

13 Conclusions and Outlook 173

13.1Discussion . 173

13.2Limitations . 175

13.3Outlook . 178

Bibliography 183

A Changes Applied to the Models Used in the Experiments 197

B Detailed Results of the Precision-Recall Analysis 201

Part I

Overview

3

Chapter 1

Introduction

The IEEE Standard Glossary of Software Engineering Terminology defines soft-

ware engineering as

the application of a systematic, disciplined, quantifiable approach to

the development, operation, and maintenance of software; that is, the

application of engineering to software. [63]

Modeling is a well-established methodology in the field of engineering. In soft-

ware engineering, modeling is used, too. In model-driven engineering the pro-

cesses are characterized by the ubiquitous application of modeling. Depending on

the application domain, engineering disciplines often require the ability to retrace

the complete engineering process; e.g. the ISO standard 26262 [65] regulates the

traceability between requirements and tests in automotive engineering. However,

traceability is still an unsolved problem if it concerns the fine-grained elements

contained in the models.

1.1 Model-Driven Engineering

Models have an inherent position in software engineering. A model is the abstract

representation of a more complex original. It can be used in a descriptive way to

mirror an original, or in a prescriptive way to specify something to be created [85].

Descriptive models are mainly used to explain a problem, to document it, and to

build a basis for communication and analysis. Prescriptive models are not limited

to specification, but they even support the generation of software systems. The

generative usage of models leads to model-driven (software) engineering1 (MDE).

Recently, model-driven engineering has become a widely accepted methodology

in software development. It is especially applied in safety-critical domains such as

1 It is also called model-driven development. In contrast, the term model-based often describes a

software development, in which models are intensively used for different tasks except for generation,

e.g. documentation or testing. However, there is not a clear differentiation between both terms.

4 Chapter 1. Introduction

automotive and aerospace. Developers work mainly or only with models. Models

are no longer only the documentation or specification of the system. They are the

system. Models have been proved to provide good support for precise definition

of the planned software system, which even enables an automation of the soft-

ware development process. Initial specification models describe the requirements,

and they prescribe subsequent models and other documents of the development

process. They are refined step-wise towards certain domains and platforms. Fi-

nally, they are transformed into executable code or they can even be interpreted

directly. Developers can thus work on a level which is independent from any target

platform. The adaptation onto specific environments can be done by generators.

Reuse of models is achieved.

An example is the model-driven architecture (MDA) initiative of the OMG [104].

It defines a high degree of automation throughout the software development pro-

cess. Based on a computation independent model that describes the requirements

of the software to be developed, the developers can create platform-independent

models (PIM) that describe the functional aspects of the software without describ-

ing how the underlying platform is used. Transformations are used to translate

the PIM into platform-specific models (PSM) that describe the functioning on dif-

ferent platforms [110]. The term platform has to be seen in an abstract way as it

does not necessarily relate to an execution environment. A PSM can rather be a

PIM for other transformations. MDA always presumes an object-oriented view on

the software. However, in this thesis we focus on model-driven engineering in gen-

eral, which has a wider scope than MDA. It focuses on the complete engineering

process including different paradigms, languages, and tools [71].

1.2 Model Evolution

Engineering of software is a long and complex task. Even in MDE, software passes

various stages of development. Similarly to software evolution, which is widely

understood as the change of software over time [16, 80], we can define model

evolution as the change of models over time. Software evolution often only refers

to the stage in the system’s life cycle that takes place after initial development

[14]. In MDE, however, the first model is already the software system, even if it is

very abstract. Hence, the term model evolution includes initial development, too.

We can distinguish two kinds of model evolution. On the one hand we have

model transformations that transform models to a more specific level of abstrac-

tion or enrich them with additional data. Transformations describe well-defined

changes that are applied to models and they allow us to automate many parts of

the development process. On the other hand there is still a significant amount

Chapter 1. Introduction 5

Figure 1.1: The MDE process with manual editing

of manual editing applied to models. The initial models are rarely designed in

one step, but rather many iterations are required; especially in agile development

processes [21]. Furthermore, intermediate results of the different transformations

may require manual corrections, e.g. if a transformation engine does not support

a particular target platform. As a consequence, models evolve continuously.

Figure 1.1 illustrates an MDE process that includes manual editing. A model

can thus be changed in two directions. In vertical direction we see evolution that

originates from model transformations. The horizontal direction indicates manu-

ally applied changes. Although the illustration seems to imply that all transforma-

tions are vertical, transformations can also be horizontal (i.e. they change a model

within one level of abstraction). If we imagine a time line going horizontally from

left to right, we can understand manual editing as a process that is applied over

time, while transformations are applied instantly. The transformations can be

seen as controlled evolution. Each transformation is well-defined and its purpose

is often described in detail. Often we can even define the inverse that reverses the

changes of the original transformation.

In contrast to transformations, manual editing is to some extent arbitrary and

undetermined. It leads to uncontrolled evolution, since there is usually no detailed

description of the changes. In the best case, we have vague, natural language

information about the intention of the change, i.e. an associated change request

or a commit message in a configuration management system. As a consequence,

it is difficult to comprehend the changes applied to a model and to retrace the

development of a software system. In the remainder of this thesis we only deal

with model evolution that is caused by manual editing.

6 Chapter 1. Introduction

1.3 Traceability

Traceability is very important in software engineering. It allows us to keep track

of relationships among different documents involved in the engineering process.

These relationships are utilized for comprehension, estimation of change impact,

testing, monitoring progress, reuse, and many other interests [8]. The IEEE Stan-

dard Glossary of Software Engineering Terminology defines traceability as:

The degree to which a relationship can be established between two

or more products of the development process, especially products hav-

ing a predecessor-successor or master-subordinate relationship to one

another. [63]

Traceability is often mentioned in conjunction with requirements. In this case,

requirements of a software are linked backwards to the stakeholder’s rationale and

forward to software artifacts implementing them [54]. This provides information

that can be used to understand why the software has been implemented in a

specific way or how a feature has to be tested.

However, traceability is not limited to requirements. It rather covers many dif-

ferent types of relationships (also called traceability links) that can be established

between documents or between software elements inside these documents. An-

other example is logical coupling. It provides information about entities that are

often changed together [156]. Further examples of traceability links are the rela-

tionships between design decisions and the rationale behind them [131, 150], and

dependencies between software artifacts [38].

Some types of traceability links, such as logical coupling, can be inferred from

software documents directly. Most relationships can only be established with

external knowledge, e.g. if requirements are traced through the complete develop-

ment process or if the rationale behind design decisions is captured. Capturing

this knowledge is often a long-lasting and expensive task. Hence, the traceability

links need to be managed in a sufficient way, e.g. in separate documents or ded-

icated tools/databases. The links have then references that point to the linked

documents or entities by using names, path expressions, or other identifiers.

Traceability is often given implicitly by names or abbreviations that are used

in different documents. It is assumed that equal names refer to the same entity

inside given namespaces. This assumption is often made unconsciously and most

people use this kind of traceability thoroughly, although they rarely entitle it. This

concept heavily relies on the conventions of a software project and can easily lead

to ambiguities, misunderstandings, and even worse problems.

Chapter 1. Introduction 7

A wide overview on the different types of traceability, their application, and

approaches to capture and manage traceability links is given in the surveys of

Spanoudakis and Zisman [134], von Knethen and Paech [143], and Winkler and

von Pilgrim [149].

1.4 Traceability in MDE: A Challenge

A lot of research has been invested in traceability in model-driven engineering [1,

2]. Most traceability approaches known from traditional, code-driven development

can easily be adopted to MDE. The relationships between model documents do not

differ from relationships between other artifacts of the development process. Their

management is well handled, since model documents have already been part of

the early phases of software development processes for a long time.

Traceability links between model elements, however, have to be managed differ-

ently. In some cases, links between elements of one model can be expressed by the

modeling language directly, e.g. dependencies, which are specific model elements

in the UML. In other cases, such as relationships between elements of different

models, the links have to be stored separately. We can differentiate between in-

ternal and external link storage. Since internal storage requires the extension of

metamodels with new link elements and original models get enlarged by mixing

user data with traceability information, traceability links are prevalently stored

externally in separate models or designated tools/databases. The information can

be merged into the models on demand [73].

With respect to model evolution caused by manual editing, however, the en-

forcement of traceability support in MDE becomes a challenge. External storage

and links between different models require the ability to uniquely identify entities

inside the models [27]. Thereby, we get into a quandary. Tracing entities over

time is basically very similar to tracing them across different documents. It is just

a special case where the different documents have a predecessor-successor rela-

tionship, i.e. they are different revisions of the same document. Hence, we need

traceability in order to identify entities at different times. But on the other side,

we need to be able to identify entities at different times in order to support trace-

ability in general. The tracing of entities inside evolving documents is thus a very

crucial factor if we want to be able to retrace the complete engineering process.

This kind of traceability is often equated with identification.

Definition 1.1: Given a model element e, identification is the process

of locating this element in other revisions of the model; i.e. recognizing

model elements in other revisions of that model to be e at different times.

8 Chapter 1. Introduction

If model evolution is caused by transformations, the transformations can be

used to generate appropriate information for identification. In case of manual

editing, information for identification is missing. Existing traceability approaches

for textual documents cannot be adapted to evolving models. The particularities

of models compared to source code are in conflict with the assumption of existing

traceability approaches, that we can directly identify model elements at different

times. The identification is hampered by different factors that have their origin in

the differences between models and textual documents. We discuss these prob-

lems in what follows.

1.4.1 Lower Significance of Identifiers

As said before, traceability links are often based on the identifiers of software

entities, i.e. they are used to point to the linked entities. In models, however,

identifiers have a lower significance than in source code. Source code strongly

uses names to express references between software elements, e.g. a statement

refers to the methods it calls by showing their names, and parameters are given by

names of variables which store the parameters. Hence, names play an important

role in source code. A large amount of names is even required to be unique in

particular contexts, otherwise the identification of elements would not work.

Models can express references and relationships by designated elements. An

example is an association in UML [108]: it connects two classes in order to ex-

press that one class knows the other. Names play a subordinate role and they

are not always required to be unique. The “DataElement” objects in ASCET [40],

for example, have names only for documentation purposes; the values are mean-

ingless from a technical point of view. In many cases model elements can even

be anonymous, i.e. they do not have any attribute for identification; they are just

identifiable by their neighborhood. Identifiers are only necessary if model elements

refer to elements of other models e.g. if a large (maybe virtual) model is separated

into multiple small models that are stored in different files. Then the identifiers

refer to elements of other models.

While we can assume that identifiers within source code are rarely changed [7]

and that they can thus be used to address entities in different revisions, the iden-

tifiers of model elements often change arbitrarily from one revision of the model to

another, so that they are not sufficient for addressing the elements over time.

1.4.2 Representation of Models

If identifiers are not present, one could think about identification based on point-

ers into file representations, e.g. “the element represented by line 42 in the file

Chapter 1. Introduction 9

‘model.xmi”’. This approach might be sufficient for source code, but it is not for

models. Although source code is only a low-level representation of a software,

this representation is fairly consistent with syntax trees, because large parts of

programs are sequences of statements. Modifications of the programs map rea-

sonably well (although not perfectly) onto changes in the textual representations.

The changes are mostly local, so that other parts of the source code are not af-

fected. In most cases, the files keep their structure, and entities remain at the

same relative position to other elements.

Things are quite different in the case of models, which exist in many different,

mostly graphical languages. Independent of any particular language, models can

conceptually be seen as graphs. In most file representations of graphs, such as

XML serializations2, we rarely find structures with a linear order similar to se-

quences of statements in code. There are rather elements (vertices) which are

connected by different relations (edges). The mapping of models onto textual file

representations is arbitrary and differs for each particular modeling language.

Especially with respect to evolution, the file representation of models can lead to

problems. Single modifications applied to models often result in many changes

at widespread positions within the file representation. Hence, the evolution of a

model cannot be mapped onto the file representation exactly. Furthermore, the

semantics of a model element are often determined by the context of the element,

i.e. its neighborhood. If we look at the plain file representation without inter-

preting of the data, however, elements that are neighbored in the model are not

necessarily neighbored in the file representation. A model element might have

evolved although the particular section in the file representation has not changed

at all. Hence, we cannot enable traceability by pointers into files, because the

position in files is arbitrary and can change from one revision to another. Fur-

thermore, due to the broad spectrum of modeling languages, we would have to

implement a new approach for each file format.

1.4.3 Management of Model Evolution

In software engineering, evolution is mainly managed with software configuration

management systems (SCM) [9]. A key feature of SCMs is the management of

successor-relationships between system versions and archiving of different revi-

sions of files. While most SCMs, e.g. [44, 82, 119, 137], focus on management

of textual documents such as source code or binary files, special configuration

management systems for models exist, too (see Section 2.1.2). In daily practice,

however, these systems hardly find acceptance. In most development departments

2Obviously, models can also be stored in binary formats. However, we expect any readable format.

10 Chapter 1. Introduction

traditional SCMs are already existent due to code-driven development, which is

still the dominant portion of software development. Even if code-driven develop-

ment is replaced by model-driven development, this is not done instantly. Hence,

configuration management for both, source code and models, is needed in parallel.

Model configuration management systems are specialized for models and do not

support source code. However, most traditional SCMs support the management of

arbitrary files. As a consequence, models are prevalently managed with traditional

SCMs. Therefore, the models are exported from modeling tools into XMI files

[106], or proprietary serialization formats are used to represent the models as files.

These files are then put under version control of a SCM. It should be mentioned

that the SCM has no information about the content of a file it manages. Thus, the

models are seen as monoliths; information about elements or artifacts inside the

models is not present. As a consequence, the evolution of the content of models

is not visible. We can hardly comprehend what has changed in a model from

one revision to another, as we only recognize a change of the model as a whole.

Concerning traceability, we cannot even say whether a particular model element

is still existent in the newer revision of a model.

1.5 Thesis Objective: The Identification Problem

The previously discussed differences between models and source code and the fact

that models are managed in file-based SCMs impedes the identification of model

elements (cf. Definition 1.1).

Definition 1.2: The problem that we cannot trustworthily iden-

tify model elements across multiple revisions of a model is called the

identification problem.

Since names play a subordinate role and are not necessarily unique, they are not

sufficiently eligible for identification, and they obviously fail at the identification of

anonymous elements. Identification with positions inside the file representation

similar to line numbers in source code does not work either. The file represen-

tation of a graph is arbitrary with respect to its structure. Positions of elements

inside diagrams are also useless, because they rarely have a semantic meaning

and might arbitrarily change from one revision to another.

Aizenbud-Reshef et al. discussed the state-of-the-art of traceability in model-

driven development [3]. In their discussion, they define identification as a major

problem: “artifacts may not always have a unique identifier, especially if their gran-

ularity is smaller than physically stored artifacts”. They furthermore state that “the

most challenging aspects of traceability is how to maintain the [...] relationships

Chapter 1. Introduction 11

while the artifacts continue to change and evolve”. They claim a solution to the

identification problem in order to make traceability applicable in MDE: [An] “issue

that needs to be addressed is the ability to uniquely identify artifacts across space

and time. Tools typically do not do this, but future tools will need to” [3].

1.5.1 Typical Scenarios

The identification problem arises in different scenarios. We briefly sketch some of

these in what follows.

External Links. A typical scenario is that some model elements are linked by exter-

nal tools, e.g. elements are linked with a requirement stored in some requirements

engineering tool. After the links have initially been set, the model is continuously

changed, variants are built, and mostly different developers with different tools

work on that model using some configuration management system to share the

model. Then, at some later point of time, someone wants to access the elements,

which have earlier been linked with the requirement, in the current revision of

the model. Due to the fact that the model has evolved and many elements in-

cluding those implementing the requirement have been changed, it is difficult to

trustworthily identify the elements that have been assigned by the external tool

before.

Obviously, this case is not limited to requirements, but it arises with all kinds of

external knowledge and with links between different models, e.g. originating from

model integration or weaving.

Evolution Analysis. Analyzing the evolution of a software system is an important

task in software maintenance and in re-engineering [16, 61, 62, 64]. If the system

has been developed model-driven, this requires an analysis of the models. It is

necessary to identify each single element within the whole history of the models

of the system, i.e. to trace the elements from their creation to the current model

revision or to the model revision in which they have been removed. If such an

identification is given, we can for instance compute metrics for the same element

at different times.

Metamodel Evolution. Metamodels evolve, too [43]. The UML, for instance, exists

since more than a decade and reached version 2.3 already. Although different ver-

sions of a metamodel have a predecessor-successor relationship, the metamodels

differ significantly. They lead to new model types and require new modeling tools.

The activity diagrams of UML versions 1.x and 2.x, for example, share basically

the names of some elements, but the semantics have changed. In other cases,

the different versions of a metamodel can be compatible. The UML class models,

for example, have basically only been extended in the newer versions. However,

12 Chapter 1. Introduction

even the extension requires new modeling tools which in turn lead to a break in

the evolution of models. For a thorough evolution analysis this gap needs to be

closed, too.

Model Merging. It is common practice that software is developed collaboratively

in distributed teams. One of the key problems of collaborative work on shared

documents is the merging of parallel changes or different development branches

[13, 92, 126]. In order to merge variants sufficiently, it is essential to identify

the elements that exist in the variants and the base revision.3 If many revisions

exist between the base revision and the variants to be merged, it is in addition

necessary to check if the elements are really the same. Furthermore, if models are

managed in file-based configuration management systems, which are not model-

aware, traceability is required to map trustworthily between the elements of the

base revision and the elements of the variants.

Bug Tracing. Errors occur in model-driven engineering, too. Hence, if an error

(e.g. elements affected by a bug) has been found, it is important to discover its

origin and the reason of the occurrence. Therefore, one needs to know the model

revision in which the error existed the first time. If the model exists in variants,

it is also necessary to know if the other variants (e.g. in software product lines)

contain the error, too. Only if all occurrences of the error can be identified, the

error can be fixed faithfully.

1.5.2 Traceability-Related Questions in Daily Practice

Obviously, the identification of model elements is an important issue for the design

and the implementation of modeling environments and tools that are meant to be

used in model-driven engineering. The identification problem also affects many

(even simple) questions of developers working with evolving models. Examples of

traceability-related questions in model-driven engineering are:

• How old is the given element? Since when does it exist?

• In which revisions and/or variants of the model does the given element exist?

• How much/often has the given element been changed from a certain point in

the past until now?

• Are the given element of the given model revision and the equally named

element in another model revision the same?

Obviously, developers are not only interested in the tracing of single elements.

Often, groups of elements build a conceptual unit and thus they should be seen

3We assume a three-way merging, which is the prevalent case if branches are merged.

Chapter 1. Introduction 13

together. Hence, in all questions mentioned above we can replace the term “ele-

ment” by “group of elements”. Furthermore, we can extend the questions related

to existence:

• Since when does the group exists? Did it appear in one step or has it “grown”?

• Has the group disappeared totally or have just some elements “left” the

group?

• Have the elements of the group changed their connections among each other?

It should be mentioned that a group is not necessarily a coherent model fragment

such as a set of states connected by transitions. It is rather possible that devel-

opers want to trace sets of elements that are slices of a model and not explicitly

connected, e.g. if they look for the origin of logical coupling.

1.6 Thesis Contributions

This thesis presents a new solution to the identification problem that we dis-

cussed above. The solution enables the unique identification of single (possibly

anonymous) elements or fragments in evolving models, even if they are managed

in file-based software configuration management systems.4

• As part of the solution we establish a novel data model to describe the his-

tory of a model. The description enables the representation of fine-grained

model elements and their evolution. It is independent from particular mod-

eling languages.

• We also present identification links as a new type of traceability links.

They express the ancestor-descendant relationships between single (possi-

bly anonymous) model elements. Identification links are stored inside the

history data model and allow us to trace model elements and fragments from

one revision of a model to other revisions and variants.

• Another part of our solution is a newly developed algorithm that automat-

ically computes identification links between model elements being the

same entity at different times, i.e. the elements are corresponding. The al-

gorithm is configurable to all types of models that can conceptually be seen

as graphs. It does not rely on persistent identifiers, but rather utilizes a

similarity-based model comparison technique to reveal the correspondences

between elements.
4Although the contributions are subsequently described by using 1st person plural, all contributions

originate solely from the author of this thesis.

14 Chapter 1. Introduction

• Since the underlying model comparison technique is based on heuristics,

we define a new reliability measure to capture the quality of the reported

correspondences. It allows us to assess the reliability of identification links.

• We also define difference metrics to express model evolution in numbers.

The metrics allow us to measure the amount of change that has been applied

to model elements over time.

We have implemented our approach as an information system that holds the

history of a model. The core component is an OSGi-based service that (a) enables

the import of model revisions from different origins, (b) computes identification

links and evolution information, and (c) provides an interface to access the data,

e.g. to identify a given element in another revision or to query the changes that

have been applied to a model fragment over time. We further have developed an

interactive Eclipse-based tool as a graphical user interface to access the data.

We have evaluated the computation of identification links in different controlled

experiments. The quantitative and qualitative analysis of our links included a

comparison to alternative traceability information and revealed precision and re-

call values of 98%, and 99% respectively, or better. Additional case studies have

attested the practical applicability of our solution in different analysis tools.

1.7 Thesis Structure

In the next chapter we introduce the state-of-the-art of the identification of ele-

ments in evolving models. We further analyze different traceability approaches

whether they can be adapted to solve the identification problem. In Chapter 3 we

capture the requirements of a sufficient solution to the identification problem and

we show the core principles of our approach by means of an example history.

We introduce model matching in Chapter 4. It builds the basis of our approach.

The generic representation of models as graphs is described in Chapter 5.

The core of our approach (i.e. the representation of history information) is pre-

sented in Chapter 6. The algorithms for computing the traceability information are

described in Chapter 7. Chapter 8 discusses how the reliability of the computed

information can be assessed and how the computed data can be manipulated.

The computation of evolution information is presented in Chapter 9. Afterwards,

in Chapter 10 we show how the computed information is used to identify model

elements or artifacts over time and how their evolution can be assessed.

The implementation of our solution is introduced in Chapter 11. Chapter 12

presents the results of the evaluation. Finally, in Chapter 13 we conclude with an

overview on our work and we discuss starting points for future work.

15

Chapter 2

State-of-the-Art

The identification of model elements across multiple revisions of a model is so far

an unsolved problem (i.e. the identification problem). In practice, two strategies

to avoid the problem exist: living with the limitation of persistent identifiers or

using dedicated model repositories. We discuss these strategies and show their

limitations in Section 2.1.

In fact, a real solution of the identification problem is – to the best of our knowl-

edge – not existent. However, two related approaches in code-driven development

exist that deal with the problem of tracing source code entities across evolution.

They are closely related to the identification problem in MDE. We discuss them in

Section 2.2.

Although no approach exists that provides identification of model elements over

time, e.g. by computing traceability links between different revisions of evolving

models, it is worth taking a look at other approaches that deal with other kinds

of traceability in model-driven engineering and approaches to recover or main-

tain traceability links in code-driven development. We discuss some of these ap-

proaches in Section 2.3 in order to analyze their applicability to the identification

problem.

Further vaguely related work is given by approaches to model comparison. How-

ever, we do not present a new approach to model comparison, but we only utilize

an existing approach. As a consequence, we do not discuss model comparison

approaches here. An excursus to existing model comparison approaches is later

given in Section 4.2.

2.1 Avoidance of the Identification Problem

The identification problem can be avoided if persistent identifiers are used, or if

the models are managed in dedicated model repositories. We subsequently discuss

these approaches.

16 Chapter 2. State-of-the-Art

2.1.1 Persistent Identifiers

It is often argued that the problem of identification is just caused by using the

wrong tools. It would not arise if we exclusively use tools that preserve persistent

identifiers.

In this case, each element within the model is tagged with a unique identifier.

The tools that are used to manipulate the models are required to preserve these

identifiers. Many modeling tools such as the IBM Rational Software Architect [60]

support identifiers that are persistent with the storage of a model. Whenever a

model element is created, it is enriched with a new identifier. The identifier re-

mains the same even if the model is loaded, manipulated, and saved in different

tool sessions. Different revisions of a model can be managed with file-based ver-

sioning systems such as CVS or Subversion. The models are simply managed by

putting their serialization files (e.g. in XMI format) under revision control.

Although it seems that we can avoid the identification problem with the usage

of persistent identifiers and the respective tools, this strategy brings along some

problems.

Heterogeneous tool landscapes are hardly supported, because each tool must be

able to use the identifiers stored in the serialization file, and – even more impor-

tantly – to preserve it when writing the model back into a file. As a consequence,

the models can hardly be edited with different tools. Regarding configuration

management systems, at check-in time all elements of a model must have the

same identifier as during check-out. Furthermore, the required homogeneity of

tools can even contradict the development process. Using the same tools might

be acceptable for single departments, but in global software engineering it is un-

realistic to assume such a homogeneity. Improvement of development processes

is also contradicted, because the exchange of tools may destroy traceability.

In turn, the feature of preserving identifiers can be negative, too. If an element

is changed in order to play another role with different semantics within a model,

the preservation of the identifier will lead to useless or even incorrect traceability

information. An example is a UML class that is totally changed (i.e. its name, at-

tributes, and operations are replaced completely by others): due to its unchanged

identifier, it will remain the same class, although from the semantic point of view

no developer would consider that to be the same class at all.

In collaborative work concurrent changes of different developers occur very of-

ten. That is also the case if the development contains branching and merging e.g.

to develop features in a sandbox and to later integrate them into the trunk. Given

the case that two developers create the same element, e.g. an association with

identical attributes, each of the model elements would be assigned with different

Chapter 2. State-of-the-Art 17

identifiers. Later, e.g. in the course of merging both changes, the identifier-based

tools would work with two different elements (i.e. they have different identifiers),

although they are in fact the same element; hence, the merged revision would

contain duplicates.

A similar problem occurs if an element is (maybe accidentally) deleted and later

recreated with exactly the same properties. In this case, the element cannot be

traced, because the recreated element got a new, different identifier. Hence, when

looking at the model from an identifier-based point of view, one element has been

deleted and another one has been inserted.

A naive solution would be to generate identifiers from the properties of elements,

which is done for instance in MATLAB/SimulinkTM[136]. Identifiers are actually

given by the element’s names or by other local properties of the elements. Renam-

ing or changing other properties of an element would result in new identifiers,

so that all advantages of persistent identifiers fail. The approach also fails with

model elements that do not contain local properties, such as generalization edges

or pseudo states in case of the UML.

In summary, we can say that persistent identifiers come with risks. Although

some developers argue that the problems mentioned above do not matter in their

work, we cannot neglect them. With the application of model-driven engineering in

safety-critical systems, e.g. braking-systems for cars, and the increasing amount

of distributed development, we have to look for better alternatives.

2.1.2 Model Repositories

Another approach to avoid the identification problem is the use of dedicated model

repositories that support distributed development. Recently different identifier-

preserving configuration management systems for models have been proposed.

Although they share most of the drawbacks of persistent identifiers and have a

limited acceptance in industrial practice [13], we briefly want to introduce the

state-of-the-art of model repositories.

2.1.2.1 Stand-Alone Repositories

Oliveira et al. have introduced a version control system for UML models called

Odyssey-VCS [116]. The system serves as a repository for model files. The models

can be edited with various CASE tools and saved in XMI. Internally, Odyssey-VCS

transforms the XMI files, which are just used for transport, into an object net-

work. The CASE tools used for modification have to preserve the identifiers given

in the XMI files and they are expected to use the same XMI serialization schema.

If we extend this approach by using filters to transform different types of model

18 Chapter 2. State-of-the-Art

serialization files into the same internal object representation, we can afford het-

erogeneous development environments as different modeling tools may be used.

However, the tools still have to preserve the identifiers used in the transport files.

Murta et al. proposed an improved version of Odyssey-VCS in [96]. The ability

to preserve identifiers has been enriched by using UML profiles. A new stereotype

allows us to store the identifiers beside the model elements. They are lifted from

serialization data to user data. This is similar to internal traceability link storage

and comes with the drawback of polluting the models. The approach is not appli-

cable to other modeling languages than UML, as stereotyping or other annotation

mechanisms are required.

A similar approach has been proposed by De Lucia et al.. They have devel-

oped a management system for different kinds of software artifacts, called ADAMS

[23]. The system has an extension named COMOVER [12, 25] that allows con-

current model versioning by transforming model files, namely XMI serializations,

into fine-grained artifacts manageable by the system. Again persistent identifiers

are used to identify each single artifact or model element. However, ADAMS is

more than a pure versioning system since it supports the definition of dependency

links in order to support traceability in context-aware change management; e.g.

when changing an artifact with dependents, the user is asked to change or at least

check the dependent artifacts, too.

2.1.2.2 Repositories with Tool Integration

The repositories mentioned above are often referred to as being state-based, be-

cause they only manage the revisions of models (i.e. their different states). In

contrast, operation-based repositories do not store the revisions, but they store

the edit operations that have been applied to models. They are thus more fine-

grained, however, they require the integration into modeling tools.

Schneider et al. have developed a library for concurrent object replication, called

CoObRA [127, 128]. Integrated in the UML modeling tool FUJABA [47] it provides

the ability to manage models in a model repository that stores the models as

an internal object network. Model files are not exchanged between different tool

instances, but the changes that are made within the editor are recorded and stored

in an edit script, i.e. an ordered list of the edit operations applied by the user. The

edit scripts can be exchanged between different tool instances and the repository,

and changes are applied to the internal object representations.

A similar approach is proposed by the Sysiphus project [15, 72]. It comes with a

configuration management system that supports the versioning of a unified soft-

ware model which integrates different UML model types as well as requirements

Chapter 2. State-of-the-Art 19

and rationale [150]. As in the case of CoObRA, the edit operations made within

the tool are recorded.

Both the Sysiphus and the CoObRA approach are tailored for specific model

types. Adaptation to other model types requires the ability to hook into modeling

tools in order to capture the edit operations applied to models. Both approaches

require persistent identifiers. They are used as pointers in edit scripts in order to

correctly describe the changes applied to a model.

2.1.2.3 Other Repositories

Further approaches providing model repositories can be found in [19, 33, 103,

112, 124]. From conceptual point of view we can summarizingly say that a model

repository can be compared to an object-oriented DBMS, in which model elements

are stored as first class citizens and the storage address of objects in the OO-

DBMS serves as persistent identifier. The drawbacks of persistent identifiers have

been discussed before.

2.1.3 Middleware Solutions

The OPHELIA project [132, 57] is not a model repository but aims at the integration

of heterogeneous tools in distributed software engineering. It provides a middle-

ware for unified representation of different software artifacts and another layer

for managing relations among them, i.e. traceability links. However, the approach

requires modeling tools and environments to implement certain interfaces, which

cannot be expected from commercial tools. Furthermore, the unified artifact rep-

resentation is founded on CORBA objects [109], which in turn is similar to the

usage of persistent identifiers.

2.2 Related Approaches in Code-Driven Development

Subsequently we want to discuss two related approaches that are resident in code-

driven development. The first one is very related to our problem as it deals with

the identification of renamed entities in evolving source code. The second one

deals with the analysis of structural software evolution in general. Although both

approaches do not explicitly focus on traceability, they basically deal with the

identification problem in code-driven development.

20 Chapter 2. State-of-the-Art

2.2.1 Origin Analysis

Godfrey and Tu [51] deal with the problem of tracing source code entities over

time. The main objective of the so-called origin analysis is the structural evolution

of a software system and dissociation from identifiers. It deals with renaming or

moving of code entities, which often lead to the assumption that one element has

been deleted and another one has been created. Entities that exist in one revision r

but do not exist in the ancestor revision are compared to those entities that exist

in the ancestor revision but not in revision r. A clone detection technique based

on software product metrics is used to analyze whether two suspect entities could

actually be the same entity.

Although their approach resides in the domain of source code evolution, parts

of the concepts can be transferred to model-driven engineering; their focus on

structural evolution is related to typical evolution in model-driven development.

However, it has yet not been investigated whether that approach can be applied

to models. Furthermore, software product metrics might be sufficient for iden-

tification of similar or equal code entities, but they are not solely sufficient for

identification of model elements. We can very precisely describe a class in object-

oriented code by its complexity and the number of other classes referenced or

used by its statements. For a UML class, we cannot compute such metrics, and

simple metrics that count model elements, e.g. the number of attributes or oper-

ations of a class, lead to ambiguity. They can be used only to reduce the number

of candidates [138]. Especially for an automated solution, the ambiguity of the

metrics-based detection contradicts a trustworthy identification.

In [52], Godfrey and Zou improved the origin analysis as they considered the

merge and split of code entities. Thereby their approach becomes more fine-

grained and content of entities is considered. For instance, it can be recognized

that an operation replaces two other operations by merging their functionality.

However, applicability to model-driven engineering is still not given.

2.2.2 Evolution Analysis

Xing and Stroulia presented an approach to analyze the evolution of object-oriented

systems [154]. They apply a pairwise comparison of subsequent reverse-engineered

design models from repository snapshots of Java software. The result is a set of

change trees describing the changes from one revision to another. They implicitly

identify single elements of one revision in another, because the change trees con-

tain information about corresponding elements in the different models. However,

the approach only deals with reverse-engineered class models. The evolution of

source code is translated into models. The models mainly contain the structural

Chapter 2. State-of-the-Art 21

design of the Java systems, which is rather stable, i.e. the number of changes

between the models stays at a moderate level. This particular evolution is not

comparable to the evolution of models in model-driven engineering. Furthermore,

the approach does not make the traceability information explicit, and neither is

the information assessed in any way. Hence, the approach does not provide in-

formation on the reliability of the identification of single elements. Groups of

elements (e.g. model fragments) cannot be traced at all.

The comparison engine that is used for the evolution analysis has also been

published as a separate tool. We discuss it together with other model comparison

approaches in more detail in Section 4.2.

2.3 Approaches to Other Kinds of Traceability

The identification problem can neither be sufficiently avoided in daily practice nor

has it been solved for model-driven engineering. To the best of our knowledge

no such approach exists, but many approaches exist that deal with traceability

in general. Hence, we introduce some representative approaches and discuss

whether they can be adapted to the identification problem.1

2.3.1 Traceability Links for Evolution

First approaches towards traceability links for evolution have been presented by

Pohl, who introduced evolutionary links [120], and by Ramamoorthy et al., who in-

troduced history links [122]. These links establish relationships between different

revisions of a document and allow us to identify the same document at different

times. The links are basically predecessor-successor relationships in the revision

graph of a document. The proposed traceability approaches and tools utilize con-

figuration management systems in order to manage this information [121, 122].

The approaches have a coarse-grained view on the evolution, because the config-

uration management systems see the documents as a whole and do not focus on

entities inside the evolving documents. As a consequence, the tracing of entities

is mostly done implicitly. It strongly relies on the names of the entities, and it

makes the assumption that names do not change from one revision of a docu-

ment to another. Hence, none of the approaches is applicable to the identification

problem.

1For a thorough overview on traceability approaches we refer the reader to the surveys of Spanoudakis

and Zisman [134], von Knethen and Paech [143], and Winkler and von Pilgrim [149].

22 Chapter 2. State-of-the-Art

2.3.2 Obtaining Traceability Links by Model Transformations

Model-driven engineering heavily uses model transformations. With a transfor-

mation one or more models are changed according to certain rule(s), e.g. the cre-

ation of get and set operations for an attribute. Transformations are often applied

(semi-)automatically. The fact that a transformation applies some well-defined

changes on a given input can be used to obtain traceability.

In some cases one can let the transformation create traceability information

as a by-product. Jouault [66] enriches transformation rules with the creation of

traceability links in the ATLAS transformation language [67]. Whenever such a

transformation rule is applied, a traceability link that points from the input of the

transformation to the output is created, too. A similar approach is proposed by

Amar et al. [5], who work with EMF models [31].

A different approach has been proposed by Vanhooff et al. [140, 141]. They do

not create one traceability link for each transformation rule, but they enable the

creation of several fine-grained links for the different steps of a transformation.

Other approaches that obtain traceability from transformations can be found in

[11, 41, 50, 77, 115, 129, 144].

Model transformations are mostly used to transform instances of one meta-

model into instances of another one; e.g. from a PIM to a PSM in MDA. Evolution-

ary changes, however, are mostly applied manually to the models (cf. Section 1.2).

Obviously, some changes such as creation of get and set operations can easily

be automated, but elementary changes such as the renaming of elements require

human interaction and cannot be done by means of automated transformation.

Kehrer and Ihler try to solve the problem as they propose a framework that al-

lows us to express every possible edit operation that can be applied to a model

with transformation rules [68]. With these refinement patterns each evolution-

ary change is done by transformation and thus traceability links capturing the

evolution can be created. As a consequence, the identification over time becomes

feasible as one can follow the links. If we extrapolate the idea of expressing each

edit operation as a transformation, we finally apply recording, which we already

discussed in the context of model repositories with tool integration (cf. Section

2.1.2.2). Recording, however, requires the development of new tools and prohibits

heterogeneous tool environments. Furthermore, it becomes an exhaustive work if

different modeling languages should be supported.

2.3.3 Maintaining Traceability Links

Since capturing of traceability links is a long-lasting and expensive task, ap-

proaches exist to maintain existing links. Maintenance means a proactive re-

Chapter 2. State-of-the-Art 23

sponse if any of the linked artifacts is changed. The link is then marked as suspect

and it can be checked and corrected (mostly manually) by the user if necessary.

This analysis is also referred to as consistency check or conformance analysis

[101].

Maletic et al. have proposed an approach for maintaining traceability links be-

tween XML documents [88]. They focus on links between class models given in

XML and source code which has been translated into XML. Links are given as

external information using XPath expressions [152] to address elements within

the documents. Whenever one of the XML documents is changed, a text-based

difference algorithm is used to identify the elements (i.e. text lines in the XML file)

that are affected by the change. All traceability links that point to the affected ele-

ments are marked as suspect and need to be reevaluated. The approach is generic

in a way that it is applicable to nearly each kind of XML document. However, the

application to models represented in XML is not trivial, because XML documents

have a block-oriented structure that differs from the graph structure of models

(see Section 1.4.1). Furthermore, their approach only informs about traceability

links that become suspect due to changes; support for tracing evolving elements

(i.e. identification) or correction of links is missing.

Similar capabilities for observing the consistency of traceability links have been

presented by Munson and Nguyen with their Software Concordance framework

[95, 102]. It provides versioning of software documents in XML representation.

Traceability links are realized as hyperlinks, which can be versioned in the same

manner as documents. Based on modification time stamps of versioned docu-

ments, they compute a conformance rating that indicates if the traceability links

are potentially inconsistent. The user can then be informed about the confor-

mance in order to maintain the links. Identification of artifacts is however based

on persistent identifiers.

Murta et al. have proposed ArchTrace [97]. It deals with traceability links that

express the implementation relation between elements of architectural models and

source code. The approach focuses on the independent evolution of models and

code. It supports continuous updating of links to sustain consistency whenever

the model or code changes. Therefore, the approach uses custom connectors that

capture changes applied in modeling tools or committed to configuration manage-

ment systems. The user can define different policies of when and how links should

be automatically updated. Custom connectors are used to access and change link

information, which is stored either in models or in code. The level of granularity

is determined by the unit of versioning of the configuration management system.

Although the approach deals with model-to-code traceability, it could be adapted

to model-to-model traceability. However, a major drawback is the identification of

24 Chapter 2. State-of-the-Art

single elements within evolving models: ArchTrace assumes the elements to have

persistent identifiers.

The RT-MDD framework described by Costa and Da Silva [22] provides similar

capabilities to react on changes applied to models. Their framework is based on

QVT [110], but requires to hook into different tools in order to retrieve information

on changes. Such hooks can hardly be applied in development environments with

established tools. Similar approaches that react on events generated by editors

have been proposed in [17, 18, 142].

Mäder et al. presented a rule-based approach to maintain traceability links

within evolving models [86, 87]. Their tool, traceMaintainer, is able to capture

change events that describe changes applied to models. Rules are used to infer

development activities that have been carried out by elementary changes (i.e. pat-

terns of changes). If end points of traceability links were affected by a change, the

links can be updated automatically according to the given rules. The approach

also requires to hook into tools, and it relies on persistent identifiers to identify

model elements. The concept of recognizing development activities is a first step

to describe the evolution that is applied to the models.

2.3.4 Recovering Traceability Links with Information Retrieval

Many valuable approaches towards recovering traceability links use information

retrieval (IR) techniques [10] based on textual analysis. They have so far mainly

been applied to textual documents such as specification documents or source

code. We discuss their applicability to models and analyze whether they can be

used to recover identification.

Antoniol et al. have carried out two case studies and applied probabilistic and

vector space information retrieval to recover traceability links between source code

and textual documents such as manuals and functional requirement specifica-

tions [6]. The IR algorithms were fed with normalized versions of the text docu-

ments and identifiers extracted from the source code. Since source code identifiers

share a lot of vocabulary with documentation and requirement documents, the

application of IR techniques has been advantageous. Marcus et al. have applied

latent semantic indexing (LSI) as a third IR technique to the same case studies

[89]. It has shown that LSI is in some cases even better than probabilistic or

vector space models.

The ADAMS tool [23], which we already discussed in Section 2.1.2, supports

the recovery of traceability links between artifacts [24]. It is based on LSI. In

their case studies the recovery has not been applied to textual documents only,

but to requirement documents, use cases, module descriptions, code classes, and

Chapter 2. State-of-the-Art 25

complete diagrams. However, the recovery is still a textual analysis, because the

words of the documents and the labels in the diagrams have been used as input

for the LSI.

Other IR-based approaches to recover traceability links can be found in [58, 84,

99, 157]. All approaches based on IR techniques work fine for textual documents.

Also complete diagrams emerge as valid input as shown by means of the ADAMS

tool. The diagrams are taken as a whole and the bulk of labels provides enough

input for information retrieval. However, in case of tracing single model elements

these approaches are doomed to fail, as many elements provide only few or even

no text at all.

26 Chapter 2. State-of-the-Art

27

Chapter 3

The Approach in a Nutshell

In this chapter we sketch a brief summary of our approach to solve the identi-

fication problem. First we collect the requirements that are to be fulfilled by a

sufficient solution. They are described in Section 3.1. Afterwards in Section 3.2

we describe the core principles of our solution by means of an example history.

We also show how our approach fulfills the requirements.

3.1 Requirements

A sufficient identification approach should allow us to trace a given model element

to different revisions or variants of the model. Different scenarios that require

identification have been discussed in Section 1.5.1. Furthermore we have col-

lected a set of questions regarding evolving models in Section 1.5.2. The analysis

of these scenarios and questions yields the following requirements:

R1 – Suspect Selection: We must be able to select single fine-grained elements in

one revision of a model, i.e. the elements to be traced across evolution. We

call such an element a suspect. Suspects might be anonymous elements

such as pseudo states or generalizations. The model revision in which we

select a suspect is called the source revision.

R2 – Identification: For a given revision of the model (i.e. the target revision), we

must be able to identify the element that corresponds to the suspect of the

source revision at a different time. In other words, we trace the suspect from

the source revision to the target revision. In the case that a suspect has been

copied during evolution, the trace has to lead to all copies of that element.

We call the corresponding elements in the target revision occurrences.

R3 – Reliability Assessment: We need to assess the reliability of an identification.

In other words, we need to express how certain we can identify the suspect

in the target revision. The reliability can be influenced, for instance, by the

28 Chapter 3. The Approach in a Nutshell

ambiguity of selecting the right candidate and by the distance between the

source revision and the target revision (i.e. the number of revisions between

them).

R4 – Evolution Assessment: Besides mere identification of a suspect in other revi-

sions, it is an important information whether the suspect has been changed

in the course of time, and if so, to what extent. Hence, we require to deter-

mine the degree of evolution to which the traced element has been changed.

R5 – Occurrence Analysis: In some scenarios it is not sufficient to only identify the

element that corresponds to the suspect, but additional constraints have to

be fulfilled in order to consider an occurrence to be the other element at a

different time. In the case of bug tracing, for example, we want to identify

each potential occurrence unless it has been changed. The analysis must be

configurable to different scenarios.

R6 – Support of Groups: Often a group of model elements builds a conceptual unit,

e.g. a set of classes and their inheritance relationships. Hence, we must be

able to identify groups of elements across evolution, too. This requirement is

basically the extension of the above listed requirements from single suspects

to groups of elements. We must also consider the case, that a group might be

divided into smaller groups that evolve independently, e.g. if an inheritance

relationship is removed.

R7 – Configurability: Engineering projects are unique. Each project comes with its

own guidelines to modeling, and the motivation for identification can differ.

Hence, the identification approach should be configurable to different sce-

narios, which in turn requires different measures for reliability assessment

or evolution assessment.

With regard to the applicability of a tracing approach in practice, we can capture

some further requirements:

R8 – Metamodel Independence: The spectrum of modeling languages ranges from

generic languages, e.g. the Unified Modeling Language (UML) [107, 108], to

domain-specific modeling languages (DSML), which are tailored for very par-

ticular domains [56, 93]. Examples are MATLAB/SimulinkTM[136] and AS-

CETTM[40]. Furthermore, tools for the definition of arbitrary DSMLs exist

[76, 79, 94]. Hence, our approach should be applicable to different types of

models.

Chapter 3. The Approach in a Nutshell 29

R9 – Tool Independence: We want to support collaborative work in which models

are edited by distributed developers in parallel [13, 92, 126]. Hence, the

approach should be independent from particular modeling tools or environ-

ments.

R10– Mineability: The need for traceability often arises in ongoing projects. Hence,

our approach cannot be to record the traceability information in a modeling

tool, but we should be able to mine it from histories of models that already ex-

ist, e.g. in a (file-based) configuration management system (cf. Section 1.4.3).

R11 – Extendability: The stored traceability information should be extendable if the

model continuously evolves (i.e. new revisions or variants of a model are

created, see Section 1.2). We should be able to incrementally compute the

information for each newly added revision.

The requirement R1 is mostly fulfilled due to the identifiers used in the serialized

model files, e.g. IDREFs in case of XMI [106]. If such identifiers do not exist,

one can easily generate some, e.g. based on XPath expressions [152] referring to

the XML element. In case of a single suspect, the identifier is just a string; for

groups of elements (requirement R6), the identifier is a set of strings. We assume

identifiers to be unique in the context of one model revision. In different model

revisions the same identifier can of course point to different elements; otherwise

we would have persistent identifiers and would not run into the identification

problem (cf. Section 2.1.1). Supporting the remaining requirements for evolving

models is not a trivial problem. We sketch our approach subsequently.

3.2 Our Approach by Example

We want to introduce our approach by means of the example of an evolved UML

state chart model for the control of traffic lights. Figure 3.1 illustrates (a) an exam-

ple version history of the model1 and (b) depicts three revisions of it. Differences

between model elements in the revisions are marked. State On has been renamed

to Active, Yellow to Yellow1; the remaining elements correspond by their names.

Smaller changes are encircled.

In a first step we create a representation of the version history of the model

(called the history). It describes the different revisions of the model and their

ancestor-descendant relationships (cf. Figure 3.1 (a)). The history is very fine-

grained. Each model element of each revision is represented by a separate object

that allows us to attach further information. The history is created by reading

1The numbering of the revisions is according to the numbering schema used in CVS [44].

30 Chapter 3. The Approach in a Nutshell

a) b)

Figure 3.1: Example version history of a model

the different revisions of the model from a file-based configuration management

system such as CVS or from a set of files on the local disk. During the import,

we transform each model revision into an internal graph representation. The

representation abstracts from concrete serialization formats and makes our ap-

proach independent from particular modeling tools (requirement R9). The concept

of representing models as graphs is introduced in Chapter 5. The data model for

histories is defined in Chapter 6.

We analyze the evolution of the model based on the beforehand created history

and the graph representations of the revisions. The analysis yields traceability in-

formation and evolution information. All information is stored in the history (see

Chapter 6). The core of the analysis is a pairwise comparison of the revisions ac-

cording to their ancestor-descendant relationships. In simple terms, we compare

each revision of the model with each successive revision of the model, either in the

same branch or in parallel branches. The successors are in turn compared with

Chapter 3. The Approach in a Nutshell 31

all of their successors. In the traffic lights example we compare revision 1.1 with

revision 1.2, which in turn is compared to revision 1.3, and so on; revision 1.2 is

also compared with revision 1.2.2.1, and so on. The comparison is executed by a

flexible, similarity-based difference algorithm, called SiDiff [70, 138], that reveals

correspondences between the elements of the model revisions. It does not rely

on persistent identifiers and it can be configured for arbitrary graph-based model

types. This makes our approach independent from particular types of models (re-

quirement R8). The configuration further allows us to use different measures for

similarity computation, thus leading to different measures for the assessment of

reliability and evolution (requirement R7). Backgrounds on model comparison,

the SiDiff approach, and the similarity computation are given in Chapter 4.

Based on the results of the model comparison, we create identification links

that express the correspondence between elements of different revisions. They are

a novel kind of traceability links that encode the ancestor-descendant relation-

ship between fine-grained model elements. The identification links are the core

information that is used to identify an element in another revision. Figure 3.2

shows examples of identification links in the traffic lights example. The state On

in revision 1.1, for instance, corresponds to state Active in revision 1.2, which

in turn corresponds to the equally named state in revision 1.3, and so on. The

state Yellow in revision 1.2, however, does not correspond to the equally named

state in revision 1.3, but to Yellow1. The identification links form a graph, as

they connect all elements that represent the same element in different revisions

including branches. An element may correspond to more than one element in the

neighbored model revisions. The computation of identification links is shown in

Chapter 7.

The model comparison algorithm is based on similarity heuristics. Thereby it

can reveal correspondences even if the elements have changed. Since heuristics

may lead to incorrect results, we need a measure to assess the reliability of the

returned information. Hence, we compute a reliability value for each correspon-

dence. It is based on the similarity of the paired elements, and the correspon-

dences among neighbored elements. The value is assigned to the identification

link, so that we can later assess the reliability of an identification (requirement

R3). In the given example, we can identify the state Off very precisely, because it

has not been changed at all and there are no ambiguities. In contrast, the state

Yellow in revision 1.2 is identified in revision 1.3 with a lower reliability; there is

a state with the same name and two states with similar names (i.e. suffixes at-

tached). However, due to the incoming and outgoing transitions, which describe

the semantics of a state, we can identify Yellow1 to be the suspect state from

revision 1.2. The computation of reliability values is described in Chapter 8.

32 Chapter 3. The Approach in a Nutshell

Figure 3.2: Example identification links for the traffic lights model

We are also able to determine the degree of evolution (requirement R4). The

model comparison provides us with the difference between each pair of consec-

utive model revisions. In the traffic lights example, state Yellow has been re-

named to Yellow1. The state On evolved extensively; besides renaming to Active,

new states and transitions have been inserted. We attach the information about

changes to the identification links. For a more expressive description of the evolu-

tion we also classify the changes into categories such as critical or trivial changes,

and compute difference metrics that count the different types of changes. The

metrics are also stored in the history. They can be aggregated over time to express

the evolution in a compact set of numbers. Software product metrics that are

given from outside can also be managed. Details on the types of changes and the

metrics that are managed are presented in Chapter 9.

The history serves as a data warehouse. It can be queried to identify a model

element over time (requirement R2). The queries essentially traverse the before-

hand computed identification links to locate occurrences of the suspect in a target

revision. The reporting of occurrences can be controlled by additional constraints

that are validated on the elements, the identification links, or the evolution data in

the history (requirement R5). Result of the queries are traces that point from the

suspect to its occurrence in the target revision. The traces provide the user with

information about the reliability of the identification. They further grant access

to the changes and metrics, so that the evolution becomes more comprehensible.

The identification of groups (requirement R6) is supported by separately identify-

ing the members of a group first and analyzing the occurrences of the relationships

among them afterwards. Again the reliability of a trace and the degree of evolution

can be determined. We explain the possible queries on the history in Chapter 10.

Our approach is applicable to ongoing projects (requirement R10), because we

import existing model revisions from a SCM or other sources. Nonetheless, we are

able to continuously extend the history if a new revision is created (requirement

Chapter 3. The Approach in a Nutshell 33

R11). We transform it into the internal graph representation and compare it to its

predecessors. Again, we compute identification links and capture the evolution of

the models elements. Therefore, we just perform the analysis as described before

and add the newly computed information to the existing history.

34 Chapter 3. The Approach in a Nutshell

Part II

Background & Definitions

37

Chapter 4

Model Comparison

In this chapter we introduce the field of model comparison. It builds the basis

of our approach, since we utilize the SiDiff algorithm to compute matchings be-

tween the elements of different model revisions and to deduce the changes applied

to them. We discuss the problems of model matching and model differencing in

Section 4.1. An overview on existing matching algorithms is given as an excur-

sus in Section 4.2. The excursus discusses the different types of algorithms and

constitutes why we utilize the SiDiff algorithm. The SiDiff algorithm is introduced

separately and in more detail in Section 4.3.

4.1 Model Matching and Model Differencing

The problem of tracing model elements over time in evolving models is very similar

to the problem of model differencing. Difference computation is an important task

in software configuration management. It allows us to infer the changes that have

been applied to a software document [20].

In general, difference computation takes two documents as input. It is as-

sumed that the input documents relate to each other. This relation is usually

a predecessor-successor relationship in terms of versioning. In case of models we

can assume the input documents to be revisions of one model.

Definition 4.1: A model revision is a model at a particular time. It is

usually represented by a revision in a version management system or

by a file. If a model evolves, we have one revision for each different state

of this model.

Definition 4.2: If we compare a model revision A to another model

revision B, the (asymmetric) difference is a description of the changes

that have to be applied to revision A in order to yield revision B.

38 Chapter 4. Model Comparison

Also a symmetric difference can be defined [69]. It denotes a set of unchanged

elements and two inserting transformations. However, in this thesis we only use

the asymmetric definition and refer to it as difference.

Differences are not unique. A valid difference is always “all elements existent

in revision A have been deleted, and all elements existent in revision B have been

created”. We are interested in a difference that better accords with the user’s

perception. Elements that exist in both revisions are obviously not deleted and

re-inserted. They should rather be excluded from the difference, because they

represent the unchanged part of a model. Hence, difference computation has

to identify all elements that exist in both revisions. This task is referred to as

matching.

In case of source code, matching is rather simple. Textual documents have

a simple data type: chains of letters form a line, and if the chain of letters is

changed, it forms another line (e.g. “Max is a client.” vs. “Max is a customer.”).

Documents are sequences of lines. We can compare them by identifying the lines

that exist in both revisions, e.g. by computing the longest common subsequence

(LCS) [98]. The LCS algorithm compares two documents line by line. The lines

of the one document are tried to be matched to the lines of the other document

so that the sequence of common lines becomes maximal. Lines that differ are

not matched. They are regarded as either inserted or deleted, depending on the

document revision in which they exist. GNU diff [46] is probably the most known

and used difference tool that works this way.

With respect to models, however, difference computation is more complex. Mod-

els may contain instances of arbitrary complex metaclasses that have attributes.

If the attribute values are changed, the model element can still be the same (e.g. a

class renamed from “Client” to “Customer”). It is not sufficient to differentiate only

between inserted, deleted, and unchanged elements. We must also support the

changing of elements, such as renaming or changing of other properties. Hence,

the matching must not be limited to inferring equal elements. It rather has to infer

corresponding elements, i.e. those which are the same element at different times.

Definition 4.3: Two elements are called corresponding if they repre-

sent the same entity in different model revisions, i.e. the elements are

representatives of the same original element at different times. Cor-

responding elements are not necessarily equal; they might have been

changed from one revision to another.

Definition 4.4: The set of correspondences between two model revi-

sions is called a matching.

Chapter 4. Model Comparison 39

Given the matching between two model revisions, we can deduce a difference

between these revisions. Corresponding elements that have different attributes in

the different revisions lead to element changes. Corresponding elements without

changes build the common subset of both model revisions, i.e. the unchanged

part of the model. Elements without any correspondence are regarded as created

or deleted elements.1

For the purpose of tracing model elements over time, we can use the matching

to identify the elements of one model revision in another model revision. The

computed difference information can be used to understand the evolution applied

to the traced model elements.

4.2 Excursus: Approaches to Model Matching

In this section, we want to show how the matching problem can be solved. Readers

who are not interested in this excursus can proceed with reading Section 4.3.

Obviously, the matching becomes trivial if we have persistent identifiers. Ap-

proaches that utilize identifiers to compare model revisions are presented in [4,

42, 90, 113]. Due to the identification problem addressed in this thesis, we do not

focus on identifier-based approaches.

Although models are conceptually graphs (cf. Section 1.4.2), it is not wise to

apply generic graph algorithms. Comparison of arbitrary graphs is basically the

subgraph isomorphism problem, which is NP-complete [139]. Due to the tree-

structure of most model types, subtree isomorphism [48] would be applicable to

model matching, but it is not sufficiently efficient, either. Handling models as arbi-

trary graphs or trees does not take the model’s syntax and semantics into account

[81, 114]. The comparison on the level of textual representations, e.g. XMI files

[106], is also not appropriate. The mapping of graph structures onto sequences of

lines is arbitrary and changes of lines cannot be uniquely transferred to changes

in the graph (cf. Section 1.4.2). It is necessary that model revisions are compared

on the basis of a conceptual representation [70]. Hence, dedicated model matching

approaches are required to infer correspondences. We can roughly differentiate

between two classes of model matching approaches:

1. Algorithms that are adapted to specific model types. Examples are the ap-

proach by Girschick focusing on class and sequence diagrams [49] and the

approach by Nejati et al. for matching of hierarchical state charts [100].

1The difference is also determined by the edit data type, i.e. the edit operations that can be executed

on a model. In this example, the edit data type consists of the following operations: insert element,

delete element, and change attribute. Other edit data types can be defined, too.

40 Chapter 4. Model Comparison

2. Generic algorithms that are possibly parameterized by configuration data.

Due to the fact that we do not want to restrict our tracing approach to one specific

model type (see R8, page 28), we address only the second class of algorithms. It

should be mentioned that the algorithms, which we subsequently discuss, are not

limited to the comparison of revisions of the same model, but even independent

models can be compared. Hence, in the subsequent discussion the term model

can implicitly refer to a model revision.

4.2.1 Signature-Based Approaches

Signature-based approaches such as the approach of Reddy et al. [123] match

model elements if they have the same signature. A signature is a label computed

from the properties of a model element. The signature computation is determinis-

tic so that equal elements always lead to the same signature. However, elements

are not required to be equal for a matching, because only a subset of properties is

encoded in a signature.

Lin et al. [81] use signatures in their difference tool DSMDiff for domain-specific

models. Models are seen as hierarchical graphs. Signatures encode the type and

the name of a node, whereby the type is divided into domain-independent type

information and role information for a certain domain. Edges are assigned with

similar signatures that also contain the signatures of the nodes they connect.

Both models are traversed from the root to the leaves. On each level the nodes

with equal signatures are matched. In case of ambiguous candidates, the signa-

tures of edges and adjacent nodes are compared and the node with the highest

number of equal edge signatures is taken. If there are still ambiguities, an arbi-

trary candidate is selected for the matching.

A major problem of signature-based approaches is that signatures often encode

the names of elements, which prohibits the matching of renamed elements. The

DSMDiff approach has furthermore the problem of top-down traversing. Models

are seen as trees and they are traversed from the root to the leaves. If two el-

ements cannot be matched, all elements belonging to the subtrees below these

unmatched elements cannot match, either. Structural properties of models are

only considered partially.

4.2.2 Similarity-Based Approaches

Similarity-based approaches compute similarity values for pairs of elements. The

similarity values are defined by heuristics. The matching is based on the similar-

ities, e.g. elements with the highest similarity are matched, or they are matched if

Chapter 4. Model Comparison 41

the similarity value exceeds a pre-defined threshold.

UMLDiff

The UMLDiff approach by Xing and Stroulia uses heuristics that are applica-

ble to structural models [155]. The authors designed the approach to compare

reverse-engineered, object-oriented designs of Java software systems. The reverse-

engineered software model is therefore transformed into a directed, attributed,

and typed graph. Containment relations between elements lead to edges that span

a tree. Correspondences are inferred based on a pairwise similarity computation

between all equally-typed elements of both models. It includes a name comparison

and a structural analysis of the element. The similarity of names is given by the

number of common pairs of adjacent characters. The structural similarity is given

by the number of common elements in the sets of adjacent elements of the two

compared elements (i.e. their intersection). Elements belong to the intersection if

their names are equal or if the elements have been declared to be corresponding

in an earlier iteration. Starting from the root elements of both trees, the algorithm

iteratively compares all elements that are on the same logical level within the tree

(i.e. they have the same distance to the root element).

Although the tool’s name, UMLDiff, suggests support for the complete UML, the

approach uses heuristics that are significantly tailored for OO-design. They can

be applied to other structural model types, however, the application is limited.

Local similarity is only given by names; other attributes cannot be considered.

The computation of structural similarity weights all relations between elements

equally; differentiation between different types of relations is not given. Due to

the top-down traversing, the approach furthermore assumes that most changes

are located in the lower levels of the tree; significant changes close to the root lead

to a failed comparison.

EMFCompare

EMFCompare [30] is a recent Eclipse project, which deals with the comparison

of arbitrary models built with the Eclipse Modeling Framework (EMF) [135]. It is

basically a new implementation of the UMLDiff approach of Xing and Stroulia, but

it overcomes some of UMLDiff’s limitations. Local similarity is not given by names

only, but three different similarity measures are considered: type similarity, name

similarity, and value similarity. The type similarity measure analyzes the meta-

model class of an element. As a consequence, EMFCompare can even compare

elements of different types, however, this obviously raises the number of com-

parisons. The name similarity measure analyzes the name attribute of elements

42 Chapter 4. Model Comparison

similar to the UMLDiff approach. Therefore, EMFCompare searches the attribute

that represents the name. The comparison is done as in UMLDiff by counting

common adjacent character pairs. The value similarity measure includes all other

local attributes of an element into the comparison. However, types of attributes

are not considered; all attributes are handled as strings. The structural similarity

measure is equal to the one of UMLDiff.

EMFCompare shares most drawbacks with UMLDiff. Although different model

types are supported, it strongly focuses on structural models; behavioral models

are not supported. The similarity computation is improved as it includes all at-

tributes, however, handling them as strings is error-prone; e.g. counting common

adjacent digit pairs in numbers is meaningless. The top-down traversing is still a

problem if changes apply to the upper levels of the tree.

Similarity Flooding

Melnik et al. presented a graph matching algorithm, which is based on the idea

that the similarity between a pair of vertices is determined by the similarity be-

tween its neighbors [91]. The algorithm takes two directed labeled graphs as input

and creates an initial mapping between all vertices of the first graph and all ver-

tices of the second graph. The mapping is based on a string comparison, which

looks for equal prefixes and suffixes of the labels, and a similarity value is as-

signed to each pair of vertices. A connectivity graph is created. Vertices of the

connectivity graph are the pairs of the initial mapping; they are connected by two

opposing edges if the vertices of a pair share an edge in the original graphs. The

final matching is computed on the connectivity graph: a flooding algorithm itera-

tively propagates the similarity values of the vertices (i.e. the similarity of mapped

pairs) to their adjacent vertices. The similarities are equally divided onto the out-

going edges. The propagation terminates if the similarities of all vertices stabilize.

Pairs with the highest similarities are selected for a match if the similarity exceeds

a given threshold.

Although the approach is applicable to arbitrary directed labeled graphs, it is

not well-suited for model differencing, because the graphs are seen without any

semantics. Vertices have only one textual label; detailed attribution is not sup-

ported. There is no differentiation between different types of edges either. Similari-

ties are propagated to all adjacent vertices equally. The complexity of the approach

depends on the similarities of the given graphs. If the similarities do not stabilize,

the termination of the propagation can only be ensured by a maximal number of

iterations, which does not necessarily lead to a sufficient match result. However,

in contrast to the approaches mentioned before, similarity flooding does not rely

Chapter 4. Model Comparison 43

on the tree structure of models. The sensitivity for changes to model elements of

the upper levels is not given; there is no pre-defined traversal order as the algo-

rithm works on a separate connectivity graph and similarities are flooded into all

directions.

4.2.3 Rule-Based Approaches

Rule-based approaches match elements based on pre-defined rules. The rules

lead to a decision whether two elements are matched or not.

The Epsilon Comparison Language

Kolovos et al. [74] have presented the Epsilon Comparison Language (ECL), which

is part of the Eclipse Epsilon project [39]. ECL has its origin in model transforma-

tion and model merging. It enables the definition of rules that support the com-

parison of models of arbitrary languages. Each rule consists of two parameters

that describe the types of the left element (i.e. an element of the first model) and

the right element (i.e. an element of the second model) which are to be matched. A

rule furthermore defines a guard, a compare part, and a conform part. The guard

is a precondition that has to be fulfilled before comparison; it reduces the number

of elements to be compared. The compare part does the actual comparison and

results in a boolean value whether to match the elements or not. The conform part

allows the definition of further checks to classify the matched elements into the

classes of conforming elements (i.e. they are equal regarding certain properties)

and non-conforming elements (i.e. they are changed). Within the rules, queries

are expressed in the Epsilon Object Language, i.e. an extension of the Object Con-

straint Language (OCL). It allows the navigation and the querying on the models.

For comparison, all rules are evaluated for each pair of elements of both models

according to the types defined as rule parameters.

As rules are independent, the evaluation order of rules does not affect the com-

parison result. However, it is possible that one element matches to several other

elements. In case of model differencing, multiple matches lead to ambivalent re-

sults. Furthermore, the rules decide binary and do not provide information to

what extend the elements match.

The Approach by Selonen and Kettunen

Selonen and Kettunen derive structural comparison rules from a given metamodel

[130]. Similar to the approach of Xing and Stroulia, their inference of correspon-

dences relies on the name and the context of elements. The context consists of

44 Chapter 4. Model Comparison

the parent element, the mandatory neighbors (i.e. connected by a link that instan-

tiates a metaassociation having the lower bounds of the multiplicity greater than

zero), the mandatory children and grandchildren, and the mandatory neighbors

of the children and grandchildren. The context is defined by the metamodel of the

compared models, so that the approach can derive matching rules for arbitrary

models if a respective metamodel is given. Based on these rules, each element

of the first model is compared to each element of the second model. If two ele-

ments uniquely correspond (i.e. their name, type, and context are equal without

any ambiguities), they are matched.

Due to the generation of metamodel based rules, the approach of Selonen and

Kettunen is applicable to arbitrary types of models. It is based on equality of

name and context, and a notion of similarity is not present. However, support

for declaring similar elements as corresponding is necessary due to the aspect of

evolution.

GenericDiff

In his most recent work, Xing proposed a new matching approach that is based on

a stable-marriage algorithm and even applicable to different modeling languages

[153]. Pairs of elements can be matched if so-called feasibility predicates are

fulfilled. However, the publication does not provide details on the predicates. The

author also writes that the current prototype implementation is very limited and

that it has precision and recall values of 76% and 63%. Since these values are not

sufficient for solving the identification problem, and due to the fact that a detailed

description of the algorithm is not given, we do not further discuss this approach.

4.3 The SiDiff Approach

SiDiff is another approach to model matching and model differencing [70, 138].

According to the categories introduced above, the SiDiff approach is primary a

similarity-based approach. However, it covers signature-based and rule-based

aspects as well.

SiDiff is not a closed model differencing tool but rather an open framework and

a set of libraries for building tools related to model comparison [125]. The kernel of

SiDiff is a highly configurable matching algorithm based on similarities. SiDiff is

applicable to all graph-based modeling languages and does not rely on persistent

identifiers or unique element names.

Due to these properties, we have chosen SiDiff as the basis for the tracing of

model elements over time. The computation of similarities allows us to reveal

Chapter 4. Model Comparison 45

Transformation
(e.g. XSLT) SiDiff

doc1.*

doc2.*

model_doc1.xml

model_doc2.xml

unified.xml

config.xml

Visualization

Other
applications

Figure 4.1: The SiDiff pipeline (from [138])

correspondences even between changed elements, and the high configurability of

the similarity computation decouples our tracing approach from concrete mod-

eling languages. Furthermore, the open architecture enables the extension and

modification of single components to better integrate SiDiff into our approach.

4.3.1 Overview

Figure 4.1 illustrates the computation pipeline of SiDiff. SiDiff takes two graph-

based models as input and transforms them into an internal format, e.g. by using

XSLT transformations in case of XML files. Alternatively, the internal models can

be created through an API or by implementing pre-defined interfaces if SiDiff is

tightly integrated into another software. The internal models are then compared

using the SiDiff kernel. Finally, the difference information (i.e. the computation

result denoted as unified.xml in Figure 4.1) can be visualized or used by other

applications.

The SiDiff framework has a component architecture that is based on the OSGi

platform [118]2. SiDiff can be divided into several components that provide differ-

ent services. Figure 4.2 shows the major components of the SiDiff kernel. SiDiff

supports different strategies to compute correspondences. For our tracing ap-

proach we focus on the hash matcher, which uses signatures, and the iterative

matcher, which uses similarities. Matchers that implement different algorithms or

strategies, such as identifier-based matching, exist as well, however, we skip their

introduction as they will not be used for our tracing approach.

In order to match those parts of the models that have not changed, SiDiff re-

veals correspondences with the HashMatcher component, which implements an

algorithm similar to the one of Wang et al. [145]. It computes a signature for each

2Here, we refer to a version of SiDiff that is newer than one introduced in the most recent publication

[125].

46 Chapter 4. Model Comparison

Figure 4.2: The architecture of the SiDiff kernel

element of the first model. The signature consists of a hash value that encodes the

local attributes and nested elements and optionally a path referring to the model

element. All signatures are collected in a directory. The second model is processed

in a similar way. The signatures computed for the elements of the second model

are compared to those stored in the directory. If two elements have unique iden-

tical signatures, they form a corresponding pair and they are matched. The hash

matcher has a runtime complexity of O(n · log2(n)), with n being the number of

elements of one model3, so that the unchanged parts of a model can be inferred

very efficiently.

All correspondences are stored in the CorrespondenceTable. This component is

basically a table that contains one column for each model. The columns contain

model elements that have a corresponding element in the other model. Corre-

spondences are represented by rows; a row contains the model elements that are

corresponding.

Those parts of the models that have changed are compared with the Iterative-

Matcher component. The iterative matcher runs a pairwise comparison of all

model elements of both models that have not been matched with the hash matcher

3It can be assumed that models to be compared are of the same order of magnitude.

Chapter 4. Model Comparison 47

earlier. The iterative matcher uses the SimilarityCalculator that computes similar-

ity values for each element pair. The value is the criterion for deciding whether a

pair of model elements is corresponding. The similarities are stored in the Simi-

larityTable, which is similar to the correspondence table; it contains a column for

each model and an additional column for the similarity value. Each row stores the

similarity of one element pair. An element is usually a member of several pairs.

Element pairs that are decided to be corresponding are stored in the correspon-

dence table again. The computation of similarities and the matching algorithm

can be parameterized. They are described in detail in Sections 4.3.2 and 4.3.3.

In order to avoid a comparison of apples and oranges, the CandidateManager

provides a pre-selection of elements that can be compared with each other, i.e. the

set of candidates for each element. Basically, two model elements are candidates

for comparison if they have the same element type and neither of them has a

corresponding element yet. In addition, further constraints can be defined in

order to restrict the matching. If all constraints are fulfilled, a similarity value can

be computed.

Based on the correspondences, the DifferenceEngine finally produces the differ-

ence, which is the output of the SiDiff kernel. The difference consists of a list of

corresponding element pairs and detailed information about changes. Changes

are classified as follows:

• An attribute change indicates that two corresponding elements differ in their

attributes’ values, e.g. a UML state that has been renamed, or the visibility

of a class has been changed.

• A reference change indicates that the references of two corresponding ele-

ments point to different targets, e.g. an operation refers to a different return

type.

• Elements that appear to change their parent elements are called moves. They

are annotated with a reference to the other parent element, e.g. a UML class

that has been moved to another package.

• Elements that have no entry in the correspondence table are considered to

be structurally different, i.e. they have either been inserted or deleted.

Due to fact that all components of SiDiff have been realized as bundles upon the

OSGi platform, we are able to reuse the components within the implementation of

our tracing approach. For technical details we refer the reader to Chapter 11.

48 Chapter 4. Model Comparison

4.3.2 Similarity Computation in Detail

The similarity computation is one of the key features of SiDiff. Different than

other approaches, SiDiff supports the definition of arbitrary similarity heuristics

to determine whether two model elements correspond or not. The heuristics are

given by configuration files that define comparison rules for each type of element.

A comparison rule defines the element properties that are relevant for the sim-

ilarity of two elements of the same type. The properties are either local attributes

(e.g. names) or other elements in the neighborhood. The attributes are referenced

by their name, elements in the neighborhood are referenced by XPath-like ex-

pressions [152]. The comparison rules further assign a compare function to each

property considered for the similarity. SiDiff provides several compare functions to

analyze two equally typed properties that belong to different elements. Examples

of compare functions are the comparison of attributes for equality, the compari-

son of strings for similarity (e.g. using the LCS algorithm [98]), the comparison of

attribute values of a referenced element, and the comparison of sets of referenced

elements. Each compare function returns a value between 0 and 1; a value of 0

stands for no similarity between the properties, a value of 1 expresses equality. In

addition, the comparison rules assign each property with a weight indicating the

relevance of the property for the similarity of two elements. The weights are chosen

according to the semantics of the model type and according to what users consider

a significant change. They may further depend on the application context.

The similarity between two elements is defined as the weighted arithmetic mean

of the similarities of the similarity-relevant properties.

sime1,e2 =
∑
p∈P

wp · comparep(e1, e2),

where e1 and e2 are the elements to be compared, P is the set of similarity-relevant

properties, wp gives the weight of property p and comparep is the compare function

for property p.

Besides the similarity-relevant properties and the compare functions applied

to them, the comparison rules specify for each element type a threshold, i.e. a

minimum similarity for two elements of this type to be eligible as corresponding

elements. Table 4.1 shows a small excerpt of a SiDiff comparison rule for classes

in UML models.

4.3.3 The Iterative Matching Algorithm in Detail

The matching algorithm processes the models in alternating bottom-up/top-down

order, according to their tree-like structure. The algorithm starts from the leaves

Chapter 4. Model Comparison 49

node type = Class threshold = 0.5

Criterion Weight

Similar value for attribute name 0.35

Equal value for attribute visibility 0.05

Equal value for attribute isAbstract 0.05

Similar set of subelements of type attribute 0.20

Similar set of subelements of type operations 0.20

Similar elements following incoming generalizations 0.05

Similar elements following outgoing generalizations 0.05

Matched parent element 0.05

Table 4.1: Comparison rule for classes (from [138])

of the models and compares all elements of the same type in bottom-up direction.

The similarities of all element pairs are computed as described before. Two ele-

ments are considered corresponding if their similarity exceeds the given threshold.

They are matched immediately if they are not similar to any other elements. Ele-

ments that are similar to several other elements are not matched immediately be-

cause the similarities might change when further elements are compared. When

all leaves have been processed, the algorithm continues with their parent ele-

ments, i.e. the bottom-up run. Each match causes the algorithm to interrupt the

bottom-up run and to switch over to a top-down phase that propagates the new

correspondence downwards to the children which are compared again. The initial

similarities originating from the bottom-up phase can be improved since container

elements or referenced elements can have been matched meanwhile. The informa-

tion about matched containers enables the decision of correspondences between

elements that are not allowed to be moved.4 If their containers correspond, the

element has not been moved and it can be matched. Consequently, other corre-

spondences can be found, which are propagated top-down further on. If no further

matches are found, the algorithm continues with the bottom-up phase.

If the root elements of the models are reached, the algorithm iterates over the

models again starting from the leaves. Now, in the second iteration and all further

iterations, similarities are recomputed and elements are matched with their most

similar other element. Different than in the first iteration, it is no longer required

that elements are similar to exactly one other element. The algorithm iterates as

4Some model elements are not allowed to be moved, i.e. they can only correspond if their containers

correspond, too. An example are parameter of operations in UML model: one would only regard

them as corresponding if the operations correspond. A parameter is not the same just because its

name and type are equal.

50 Chapter 4. Model Comparison

long as new correspondences can be inferred. The number of iterations depends

on the structure of the models.

Most models do not have a real tree structure; they contain cross references

between elements, which lead to cycles. Such cycles are handled by the itera-

tions. The similarities between elements are thus propagated through the graphs.

This approach is similar to the similarity flooding algorithm [91]. It allows SiDiff

to compare documents such as Petri nets, which are not tree-structured and in

which the similarity of elements depends mainly on their neighborhood, and not

on their compositional structure. Models that have a primary tree structure with

additional cross references usually require less than 5 iterations.

Due to the pairwise comparison, the iterative matching algorithm has a runtime

complexity of O(n2), where n is the number of model elements to be compared. In

practice this number is limited as usually only small parts of models are changed

from one revision to another. The correspondences between the unchanged model

elements are efficiently inferred with the hash matcher which is executed before

the iterative matching algorithm. Besides runtime reduction, the hash matcher

provides a valuable set of fix points for the similarity-based comparison, i.e. if the

neighborhood of elements is considered for the similarity computation.

51

Chapter 5

Graph Representation of Models

Model-driven engineering is not bound to particular types of models, but arbitrary

modeling languages can be used. Although the different types of models vary

significantly in their details, all models can conceptually be seen as graphs. We

utilize this graph nature in order to keep our tracing approach independent from

particular modeling languages. Furthermore, the transformation of models into a

generic graph representation uncouples our approach from the technical storage

formats used by different modeling tools. In Section 5.1 we introduce our defi-

nition of graphs. The transformation of models into such graphs is discussed in

Section 5.2. In Section 5.3 we briefly introduce a function to query related vertices

of a given vertex.

5.1 Graph Definition for Models

For a conceptual view onto models we represent models as typed, attributed, or-

dered, directed graphs. The graph representation is similar to TGraphs introduced

by Ebert et al. [28, 29].

We define a model as a graph

G = (V,E, TV , TE),

where V = {v1, . . . , vn} is a set of typed vertices representing the model elements,

and E = {e1, . . . , em} ⊆ V × V × TE is a set of typed edges that express the relation-

ships among model elements. TV is the set of all possible types of vertices, and

TE is the set of all possible types of edges. The term model elements refers to the

entities of a model the user is actively working with. If a diagram representation

of a model exists, these elements are usually represented as visual objects. Rela-

tionships are not necessarily visible in the diagram representation. An example is

the type reference between a UML attribute and the class that is the type of that

attribute. Edges are directed, i.e. e1 = (v1, v2, t) and e2 = (v2, v1, t) represent two

52 Chapter 5. Graph Representation of Models

different relations. The adjacency function

adj : V → E∗

returns the outgoing edges of a vertex as an ordered sequence. The edges are

ordered according to the order of the represented relationships in the original

model, if existent. The function

src : E → V with src(e) = v such that v ∈ V ∧ e = (v, w, t) ∈ E

returns the source of an edge, and

tgt : E → V with tgt(e) = w such that w ∈ V ∧ e = (v, w, t) ∈ E

returns the target of an edge.

It should be mentioned that model elements that are represented by edges in

graphical notations (e.g. associations or transitions) are normally also represented

by vertices in the graph. These elements are actively edited by the user.

As models usually consist of various types of elements and many different types

of relations among them, type functions return a type for each vertex, and for each

edge respectively:

typeV : V → TV and typeE : E → TE ,

where TV denotes the set of vertex types and TE denotes the set of edge types.

Both sets of types are disjoint.

TV ∩ TE = Ø.

Besides their structural representation, model elements are described by several

properties such as names, visibility modifiers, and others. They lead to attribution

of vertices. The set of all attributes is A. The attribute function returns the set of

attributes of a given vertex type, and the value function returns the value of an

attribute of a certain vertex.

attr : TV → P(A)

val : (V ×A)→ Z

It is not necessary to introduce attributes for edges, because an edge is only a

reference pointing from one model element to another.

Compositional structure. Since model elements may contain other model elements,

e.g. UML classes consist of attributes and operations, it is reasonable to clas-

sify some edge types as containment edge types TC . Containment edges are di-

rected from the vertex representing a container element to the vertex representing

a nested element. They further lead to a tree-like structure of the graph. Given a

Chapter 5. Graph Representation of Models 53

root element representing the model1, all containment edges span a tree. Edges

that are not containment edges, are reference edges TR. The sets of containment

edges and reference edges are disjoint:

TE = TC ∪ TR and TC ∩ TR = Ø.

Based on the set of containment edge types TC , we can define a container func-

tion that returns the container of an element:

cont : V → V with cont(v) =

{
Ø if v is the root element,

w ∈ V | (w, v, t) ∈ E , t ∈ TC otherwise.

Due to the fact that containment edges span a tree, each model element except

the root is contained by exactly one container. The container function returns

Ø for the root element. We also define a nesting function that returns all nested

elements of a container:

nest : V → P(V) with nest(v) = {w ∈ V | (v, w, t) ∈ E , t ∈ TC}.

According to that representation there are two ways of how to look at model

elements. Simple elements, which are not containers, are represented by a single

vertex. Elements that may contain other elements are represented by a subtree

or by a vertex, depending on whether they actually do contain nested elements or

not. In order to access container elements with their content, we define a subtree

function that returns all vertices of the subtree of an element:

subtree : V → P(V) with subtree(v) =

{
{v} if nest(v) = Ø,

{v} ∪ subtree(n) : n ∈ nest(v) if nest(v) 6= Ø.

Hence, model elements that are containers can be represented by a set of vertices.

For a uniform handling, we enable simple model elements to be represented by a

set of vertices, however, this set has a cardinality of 1. Furthermore, we enable

that simple and complex elements are both represented by a single vertex; nested

elements, if existent, are then implicitly addressed together with their container

element.

5.2 Mapping Models onto Graphs

As shown before, the graph representation of a model consists basically of a vertex

for each model element and an edge for each relation. Figure 5.1 shows a snippet

of a UML class model, and Figure 5.2 depicts the respective graph representation.

1Either a model has one distinguished root element or an artificial root can easily be created by

inserting a new vertex with containment edges pointing to all elements that do not have a container.

54 Chapter 5. Graph Representation of Models

Figure 5.1: A simple UML class model

Figure 5.2: Graph representation of the UML class model in Figure 5.1

Vertices are represented by circles and edges by arrows. The edge type is given by

labels, containment edges are shown as bold arrows. We numbered the vertices,

to better refer to the figure in the following text. In general, the graph is just a dif-

ferent representation of a model, comparable to an abstract syntax graph. Hence,

we denote the transformation of models from an external representation into our

internal graph representation as mapping. In the figure, the representation of

packages and primitive types have been omitted for clarity.

A model can be mapped onto a graph in many different ways. The schema of

such a graph describes the different types of vertices and edges, and defines which

vertices are connected by which edges. The schema can basically be deduced

from the metamodel of the given model. Metaclasses become vertex types and

metaassociations become edge types in the graph representation. Attributes are

derived from the attributes of the metaclasses.

Metamodels are often designed only for a runtime representation of models in

particular tools or for serialization. This leads to problems when it comes to com-

putation and interpretation of differences [69]. An example is the metamodel of

UML state charts, in which different kinds of pseudo states are represented by the

same metaclass, and the kind of state is encoded in an attribute. In model com-

parison the replacement of a pseudo state would be reported as a simple attribute

change, which is qualitatively equal to the renaming of a simple state. Another

Chapter 5. Graph Representation of Models 55

alternative would be to define separate metaclasses for each pseudo state type,

which leads to reporting the pseudo state replacement as a type change.

We recommend to create the schema with respect to the purpose of tracing. The

set of element types should be built in a way that each type can be distinguished

by a model developer; i.e. an element type differs from others in its graphical

representation (in diagrams) or in its semantics. Only if the conversion between

element types makes sense, it is useful to represent several kinds of elements

by one vertex type that has an attribute expressing the kind. This leads to the

separation of type-related and instance-related data. In UML state charts, for

instance, forks and final states should have different types, while shallow history

and deep history states can be represented by one vertex type “history” that has

an attribute about the depth semantics.

As said before, edges in the graph representation are references between model

elements, i.e. associations in the metamodel. Good examples for edges in UML

class models are the reference from an operation to its return type or from a pack-

age to the classes within this package. Although some model elements express

relations and are graphically represented as edges, e.g. generalizations, we advise

to not represent them as edges in the graph. They are better represented as ver-

tices, which are the first class citizens in our representation; especially if they may

have attributes or subelements, e.g. UML associations, which contain separate el-

ements representing the association ends. Elements that represent relationships

have in turn edges pointing to those vertices whose relation they express. The

set of edge types should be chosen in a way that we can differentiate between

the different types of relationships among elements. In the external representa-

tion, the relationships to other model elements might be expressed indirectly by

attribute values that contain the local identifier of another element, e.g. the IDREF

attributes in XMI [106]. In this case, we recommend to express the relationship

by an edge in our internal representation; the attribute is then not in the list of

attributes of that type of model element.

The mapping of a model into graph representation has to be unambiguous and

reproducible, so that the mapping of one model always results in the same graph.

However, the mapping has not to be complete. We can skip model data that does

not affect the semantics of a model. For example, we do not have to map attributes

that contain graphical layout information such as the position of an object in a di-

agram if the layout is free of semantics. Another requirement for graph mappings

is that they allow the translation between elements in the external model repre-

sentation and vertices in the graph and vice versa. Hence, the vertices should

have an attribute that serves as identifier. If the external model representation

contains identifiers, we recommend to fill this attribute with the same identifier

56 Chapter 5. Graph Representation of Models

Figure 5.3: Schema of the graph in Figure 5.2

values. If no identifiers exists in the external model representation, we propose to

use path expressions that can address the model elements.

Figure 5.3 shows an excerpt of the schema of graphs representing UML class

models (cf. Figures 5.1 and 5.2). The class diagram notation of a schema is similar

to the UML-based metamodeling approach of the Meta Object Facility (MOF) [105].

Vertex types are represented by classes, edge types by associations. Containment

edge types are shown as composite associations. The multiplicity of associations

defines the number of outgoing or incoming edges for a vertex of the respective

type. All associations are navigable from source to target. The navigability, how-

ever, only describes the direction of edges of that type; our graph representation

allows navigation even along incoming edges. The list of possible attributes of a

vertex of a certain type is defined by the attributes of the class. Edges cannot be

attributed. Inheritance can be used as short cut within a schema: Vertex types

inherit all attributes and edges from their super types.

The mapping of models onto graphs makes our tracing approach applicable to all

graph-based model types. Neither the concrete graph schema nor the mapping of

model elements onto vertices influence the applicability of our approach. However,

the mapping should follow the point of view of model developers, who will later use

the traceability information, so that the changes reported by model comparison

correspond with the perception of the user who modified the models.

Chapter 5. Graph Representation of Models 57

5.3 Querying Related Vertices

In order to analyze model elements it is often necessary to capture their neigh-

borhood or to look for model elements that stand in a particular relationship to

a given element. An example is the evaluation of a compare function that checks

whether related elements (e.g. the super classes) are considered corresponding

(see Section 4.3.2). Hence, we must be able to evaluate queries on the graph.

A query is an ordered sequence of edge types q = (t1, . . . , tn) ∈ Q, with ti ∈ TE,

i = 1, . . . , n. It can be evaluated for an arbitrary vertex v ∈ V with the evaluation

function

eval : (Q× V)→ P(P).

The function returns a set of paths. A path is an alternating sequence of vertices

and edges such that the edges and the vertices connected by them form a weakly

connected graph. The edges are further typed according to the query, so that the

i-th edge of the path is of the i-th type of the query. The first vertex of a path is

the vertex on which the query was evaluated.

eval(q, v) = { (v0, e1, v1, . . . , en, vn) | v0 = v

∧ ∀ i = 1, . . . , n : ei =(vi−1, vi, ti) ∨ ei =(vi, vi−1, ti) }

We further provide two modified evaluation functions. evalB returns only paths

where consecutive edges are always different edges, i.e. we do not traverse an edge

that we traversed directly before. The function evalC returns only paths that do

not contain vertices twice, i.e. the paths are cycle-free. The function query : P → Q

returns the query that was used to compute a given path. It is also referred to as

the type of a path.

The first vertex of a path (i.e. the vertex on which the query expression has been

evaluated) is called the source vertex. It is returned by the function

srcp : P → V .

The last vertex of a path is called the target vertex. It is returned by the function

tgtp : P → V .

All vertices of a given path are returned by the function

verticesp : P → P(V) .

The queries allow us to request model elements that stand in a particular re-

lationship to a given model element, and they enable navigation in the models.

In UML models we can for example navigate to the super class of a class or to

58 Chapter 5. Graph Representation of Models

all subclasses. According to the mapping used in Figure 5.2, the queries are

qsuperclass = (sub, super), and qsubclasses = (super, sub) respectively. If the eval func-

tion is called with vertex v4 representing the class Car and the query qsuperclass,

it returns one path that consists of the vertices v4, v3, and v2 and the edges

e1 = (v3, v4, sub) and e2 = (v3, v2, super) in between. The target of the path is the

super class of Car, which is Vehicle. Calling the verticesp function, we can also

query the elements that form relationships, i.e. the vertex v3 representing the gen-

eralization in the given example.

Part III

Fine-grained Traceability

61

Chapter 6

Modeling the History

In order to enable traceability of model elements over time we have to be aware

of the evolution of the model whose elements are traced. Hence, as a core of our

approach we create a history representation that describes the evolution of the

model. It covers three aspects: history information, traceability information, and

evolution information.

We give an overview on the history representation in Section 6.1. Subsequently

we discuss the different aspects that are covered: In Section 6.2 we discuss the

description of revision information. In Section 6.3 we introduce identification links

that allow us to identify model elements in different revisions and thus build the

basis for traceability. Finally in Section 6.4 we describe how information about

evolution is stored in the history.

6.1 Overview

We assume that a model evolves over time. As a consequence, different model

revisions exist. All revisions taken together form the history of a model.

Definition 6.1: A history is the all-embracing description of the evo-

lution of a model. It describes all stages of development that the model

has run through.

Figure 6.1 illustrates an exemplary history. It consists of six model revisions.

One revision is the root revision, i.e. the initial model. The revisions contain

model elements, and they stand in an ancestor-descendant relationship, which

is expressed by the gray arrows connecting the revisions. The first revision has

two descendants which leads to the creation of a branch. The last revision of the

exemplary history has two ancestors, which is called a merger of branches.

The history of a model can be stored in many different ways. In the most cases,

the model is managed in a configuration management system, e.g. Subversion or

62 Chapter 6. Modeling the History

Figure 6.1: An example history of a model

CVS. The system stores all revisions of the model. It is also possible that the

revisions are managed manually, e.g. in the file system by having one file for each

revision. In the following we call the source of a history the repository. Since

we assume file-based repositories, the stored information is very coarse-grained.

We have only the model revisions given; information about the contained model

elements and their evolution is not explicitly described (see Section 1.4.3).

In order to make this information explicit we create a more-detailed representa-

tion of a history. It contains information about the different revisions, their con-

tent, the evolution, and traceability information. Figure 6.2 illustrates the process

of creating the history representation. We extract information about the revisions

and their ancestor-descendant relationships (i.e. the revision information) from

the repository. We also create a graph representation of each model revision, so

that each model element that can potentially be traced is mapped onto a vertex.

Different graph schemas exist for the different types of models. As described in

Section 5.2, the mapping has to be unambiguous and reproducible. Based on

the graph representation we can extend the revision information with information

Chapter 6. Modeling the History 63

Figure 6.2: Overview on the creation of a history

about elements inside the revisions (i.e. the versioned elements).

Definition 6.2: A versioned element is the representation of a model

element at a particular time.

We create one versioned element for each vertex in the graph representation.

They act as proxies for the original model elements. They do not contain the

attribute data of the model elements. References to other elements (i.e. the edges

in the graph representation) are not represented either. The versioned elements

thus do not replace the original model elements that are stored in the repository.

After the revision information has been stored in the history representation, we

add traceability information and evolution information to them. It is not required

to change the data in the repository. The created representation of the history

contains all information that is required to trace elements over time and to com-

prehend their evolution. The history is thus decoupled from concrete repository

implementations. However, it does not mirror the original model revisions and can

thus not replace the repository.

Mapping between repository and history. If the history is queried in order to

trace elements over time or to comprehend their evolution, the queries are usually

defined for the elements of the original model revisions (e.g. if the information is

used in a software engineering tool). As a consequence, we have to translate be-

tween original model elements in the repository and their respective counterparts,

i.e. versioned elements in the history. This translation is done by assigning an

identifier to each versioned element. The identifier has to be chosen in a way that

it allows us to uniquely identify the original element inside the respective model

revision stored in the repository. In an ideal case, the model elements have local

64 Chapter 6. Modeling the History

identifiers that can be reused as identifiers for the versioned elements. If a model

element does not have dedicated attributes for identification, we can compute a

unique signature or an XPath-like expression that points to the model element and

use it as identifier. Alternatively, a dictionary of internal identifiers can be created

during the transformation into the graph representation. The dictionary is then

the basis for mapping between original model elements and versioned elements.

Completeness of the history. It is not necessary to represent each model revision

that is stored in a repository in the history. We would also be able to represent

only the set of subsequent revisions that we are interested in, e.g. a single branch.

However, we recommend to always create a history for the complete repository,

since one cannot predict future analysis tasks. A completely represented repos-

itory further allows us to extend the history if new model revisions are added to

the repository.

6.2 Representation of Revision Information

In this section we show how the revision information is stored in the history. Fig-

ure 6.3 depicts the core data model of the history. A history consists of revisions,

and at least one revision is particularly denoted as the first revision or the root of a

history. These revisions are the initial versions of the model. Usually, exactly one

root revision exists. However, we accept many roots in order to support the case

that a model has its origin in separately developed submodels. This can happen,

for example, if different analysis models are created from different view points and

these models are later merged to one global analysis model [53].

Each history is assigned with a document type. The document type defines the

type of the model whose history is represented. It indirectly assigns the graph

schema that is used to map the model revisions onto graph representations. Ad-

ditionally, the history is assigned with a name and a description. The name is

used to identify a history; it can be set to the name of the model whose evolution

is represented. The description is optional and can be used for documentation.

A revision represents one particular model revision (see Definition 4.1). Revi-

sions have a revision number that enables the unique identification of the revision

inside the history. Again, a description can be used to document the revision. If

the history of the model is managed in a configuration management system, such

as CVS or Subversion, the description can be set to the commit message that has

been used for creating this revision.

Chapter 6. Modeling the History 65

Figure 6.3: Core data model of the history

The ancestor-descendant relationships between single revisions are expressed

by revision links1. They connect a revision with all its descendants and vice versa.

Each revision can have one or more descendants and one or more ancestors.

Definition 6.3: A revision link rl(Ra, Rd) expresses the directed

ancestor-descendant relationship between two revisions Ra and Rd,

such that Ra is the direct ancestor of Rd.

Each revision can have several incoming revision links that connect the

direct ancestors, and several outgoing revision links that point to direct

descendant revisions.

The revisions of a history that do not have ancestors (i.e. R1 in the example of

Figure 6.1) are called the roots. Multiple descendants are given if branches are

created. Multiple ancestors are given if branches are merged. For the purpose of

tracing it is not necessary to distinguish between the particularities of different

branches, i.e. the names, purpose, etc.; we just require the information about the

different paths within the history.

1In the analysis model of the history the relationship could be represented by a simple association,

because it has no additional attributes. However, it has been modeled as a class in order to make

this relationship more explicit (see Figure 6.3).

66 Chapter 6. Modeling the History

Definition 6.4: A revision path p(R1, Rn) is an sequence of revisions

(R1, . . . , Rn) that are connected by revision links so that

∀ Ri, i = 1, . . . , n− 1 : ∃ rl(Ri, Ri+1).

{Ri+1, . . . , Rn} are called descendants of Ri, while {R1, . . . , Ri−1} are

called ancestors of Ri. A revision can belong to many revision paths.

The example of Figure 6.1 contains two maximal revision paths: p1(R1, R6) =

(R1, R2, R3, R6) and p2(R1, R6) = (R1, R4, R5, R6). Shorter paths, i.e. all subpaths

of p1 and p2, are valid paths, too.

As a model revision contains many elements, each revision object holds a set

of versioned elements. Each versioned element has an identifier that allows us

to unambiguously locate this element inside the model revision. Conversely, we

must be able to unambiguously locate the versioned element that represents a

given model element. However, the identifier does not need to be unique across

different revisions. A description can also be assigned to each versioned element.

We also suggest to assign the type and, if available, the name of the versioned

element in order to provide a human-readable identification of the elements. This

eases the comprehension of all data that we will compute later.2

As said before, versioned elements act as proxies for the original elements that

are actually traced. They are used to assign traceability information and evolution

information to model elements without modifying the original model revisions.

6.3 Representation of Traceability Information

Once we have expressed the revisions of a model in terms of the history mentioned

above, we can extend it with traceability information. Traceability can be seen

from different view points:

1. We want to be able to identify a model element across its evolution. Thus, we

have one identifier that uniquely identifies the element in each model revision

if the element exists in that revision.

2. We want to be able to follow an element of a model revision to the corre-

sponding element in the ancestor revision, and in the descendant revision

respectively, if the element exists in that revision of the model.

Both ways lead to the same result. With a closer look we see that the existence

of a globally unique identifier allows us the locate an element in the ancestor or

2The data is not only meant for further processing by tools, but it can also be accessed by users

directly.

Chapter 6. Modeling the History 67

descendant revision, and being able to follow an element from one revision to

another we can identify the element within the complete history by traversing the

revision paths. However, we need the differentiation between global identification

and following elements from one revision to another. The former is necessary to

quickly identify elements across evolution. The latter is necessary to understand

the identification and to assess how trustworthy it is. We call the existence of a

globally unique identifier the identity and call the connection to follow an element

to the ancestor or descendant revision an identification link.

Definition 6.5: An identification link il(v1, v2) is the connection be-

tween two corresponding versioned elements v1 and v2 where v1 ∈ R1

and v2 ∈ R2 with R1 6= R2 and a revision path p(R1, R2) exists.

Identification links are directed from the element of the ancestor revi-

sion to the element of the descendant revision.

An element can have multiple identification links if branches are created or

merged, or if the element has more than one corresponding elements in the other

revision.3 In accordance with Definition 4.3 the identification link does not im-

ply the equality of versioned elements. The model element can rather have been

changed from one revision to another.

It is worth noting that model revisions that contain elements connected by an

identification link need not be connected by a revision link. This means that

the revisions are not necessarily direct ancestor and descendant of each other,

however, it is important that they are ancestor and descendant, which is expressed

by the required revision path. Usually, model elements that exist in two revisions

Ra and Rb do also exist in all revisions on a revision path p(Ra, Rb). However, it

can be that a model element is deleted in one revision and reinserted later, i.e. the

deletion was revoked. In this case, revisions might exist in which the element does

not exist. We call this situation a gap. We do not represent gaps explicitly; they

are implicitly represented by identification links that connect versioned elements

of revisions that do not have a direct ancestor-descendant relationship. A more

precise definition of gaps and a description of how they are found will be given in

Section 7.2.2.

3This can be the case if a model element has been copied so that the descendant revision contains

duplicates.

68 Chapter 6. Modeling the History

Definition 6.6: An identification path ip(v1, vn) is the set of identi-

fication links {l1 = il(v1, v2), l2 = il(v2, v3), . . . , ln�1 = il(vn�1, vn)} such that

the versioned elements v1, . . . , vn and the links l1, . . . , ln�1 form a weakly

connected graph.

Multiple identification paths can exist between two corresponding elements if

branches are created and merged between the revisions that contain the elements

connected by the identification paths.

Definition 6.7: For one original model element, we define the identity

as the set of all versioned elements representing that model element at

different times and all identification links connecting them.

If two versioned elements va and vb are connected by at least one iden-

tification path ip(va, vb), we say that va and vb can be traced. They have

the same identity.

Figure 6.4: Illustration of identification links, identity, and identification paths

Figure 6.4 depicts an example of an identity on the left hand side. The bold

circles are versioned elements that represent the same model element at different

times. They are connected by identification links that are drawn as gray bold lines.

On the right hand side of the figure we illustrate three examples of identification

paths by the red (darker) lines.

Extension of the data model. In order to represent the traceability information,

we extend our data model of Figure 6.3 by identification links and identities. The

extended model is shown in Figure 6.5.

Chapter 6. Modeling the History 69

Figure 6.5: The data model extended with traceability information

A history contains a set of identity objects representing the identities. Each iden-

tity object aggregates all corresponding versioned elements of one model element.

It is assigned with the surrogate id that acts as the globally unique identifier of

that model element. The identity also contains the set of identification links that

constitute the identity.

An identification link expresses the correspondence relation between two ver-

sioned elements. It is basically described by the versioned elements it connects,

i.e. the element in the ancestor revision (ancestor for short) and the element in

the descendant revision (descendant for short). It does not need additional identi-

fiers, as the identification link between two versioned elements is always unique.

Besides the pure correspondence information, the identification link object addi-

tionally stores quality-describing attributes, namely, the origin and the reliability.

These attributes allow us to assess the identification links. The origin expresses

where the identification link originates from. For example, the link can be de-

clared manually by an expert or it can be computed by a heuristic or algorithm

as we will discuss later. The reliability is a value that allows us to express how

trustworthy the expressed correspondence is. Although the correspondence itself

is binary such that two versioned elements do either correspond or not, another

measure exists that expresses to what extent we trust in this information. Iden-

tification paths are not represented in the data model; they are derived from the

identification links on demand.

70 Chapter 6. Modeling the History

6.4 Representation of Evolution Information

Since model elements can change from one revision to another, we enrich the

history with information about evolution. This information allows us to better

comprehend the evolution of a traced model element and it enriches the traceabil-

ity information provided by the links. Therefore, we extend the data model with

changes, difference metrics, software metrics, and similarity values. The result is

shown in Figure 6.6.

Figure 6.6: The data model extended with evolution information

The changes that have been applied to a model element from one revision to

another are stored as Change objects. Each change object is assigned to an iden-

tification link. It expresses one change that has been applied to the model element

represented by the source of the link (i.e. the ancestor). Different types of changes

exist depending on the model type and the kind of operations that can be applied

to models of that type (i.e. the edit operations). Depending on the type of change,

the object holds different information that describes the change. We will discuss

the types of changes in more detail in Chapter 9. All changes that are assigned

to an identification link describe the evolution of the respective model element

from the ancestor revision to the descendant revision. The changes are local, i.e.

Chapter 6. Modeling the History 71

they only apply to the element of the identification link they are assigned to. The

changes of contained elements are assigned to their identification links. If a UML

class has been renamed from one revision to another, the change is assigned to

the identification link between the versioned elements of that class. If an opera-

tion of that class has been renamed, the change is assigned to the identification

link of the versioned elements of that operation.

Due to the fact that a containment represents a part-of relationship, one could

argue that the change of an element affects the container, too. For example, a

UML class evolves if its operations are changed. In order to express such evo-

lution we additionally assign DifferenceMetric objects to the identification links.

A difference metric quantitatively describes the changes that have been applied

to the contained elements. Each metric has a name that describes changes that

are measured by the metric. An example is the difference metric “Number of re-

named operations = 5”. It can be assigned to the class that contains the renamed

operations. If it is assigned to a package, this metric expresses the number of

all renamed operations of all classes inside the package. The number of differ-

ence metrics depends on the type of the model and the edit operations that can

be applied to the model. The metrics are automatically derived. We discuss the

difference metrics and their computation in more detail in Chapter 9.

In addition to changes and difference metrics, we can assign SoftwareMetric

objects to versioned elements. Each object represents a software product metric

that quantitatively describes some characteristic of a model element at a particular

time. It has a name that describes the characteristic that is measured by the met-

ric. An example is the software metric “Depth in inheritance tree = 2” for classes;

it describes the position of a class in the inheritance tree. Hence, evolution is not

only described by changes to model elements, but it can also be described by the

changes to assigned software metrics. For example, the “Depth in inheritance tree”

could have changed from 2 to 3, which means the another class has been inserted

in the inheritance tree. The set of software metrics is not fixed, but arbitrary met-

rics can be defined and assigned to versioned elements. More details can be found

in Chapter 9.

Finally, we extend the identification link with a similarity attribute. If the iden-

tification links are computed on the basis of a similarity-based model comparison

approach, this attribute can be filled with the similarity value computed by the

model comparison. It expresses the similarity of the two elements that are linked

(cf. Section 4.3.2).

72 Chapter 6. Modeling the History

73

Chapter 7

Computation of Identification Links

The computation of identification links can be broken down to a pairwise com-

parison of subsequent model revisions. Given the exemplary history depicted in

Figure 6.1, we can compute the traceability information by comparing revision

R1 with R2, which in turn is compared with R3, and so on. Revision R1 is also

compared with R4, and so on.

We process the computation incrementally whenever a new revision is added

to the history. Hence, we analyze the revisions in the order of their creation,

which is important because we can assume that the ancestors of each analyzed

revision have been analyzed earlier. The incremental analysis allows us to apply

the approach even on an actively used repository; the traceability information can

thus be used in an active development environment and it can be extended easily,

if a new model revision is created. The incremental behavior does thereby not

impede the analysis of a complete history; we just have to ensure that we process

the revisions in an order that ensures that ancestors are always analyzed before

their descendants are analyzed.

The rest of this chapter is structured as follows. Section 7.1 describes the in-

cremental computation of traceability information. In Section 7.2 we show how

temporarily deleted elements are handled and we discuss the case that a corre-

spondence cannot be found. Finally, in Section 7.3, we briefly sketch alternative

approaches to retrieve the traceability information.

7.1 Computation through Pairwise Comparison

Traceability information can be computed incrementally. Whenever a new revision

of a model is created, i.e. the history model is extended with a new revision object,

we can compute identification links and derive further information. We assume

that all ancestors of the new revision have been analyzed earlier, since we process

the revisions in the order of their creation.

74 Chapter 7. Computation of Identification Links

The new revision is compared with its direct ancestor by performing the model

comparison of the SiDiff algorithm (see Section 4.3). The model comparison re-

veals the correspondences between the elements of the new revision and the ele-

ments of the ancestor revision. The correspondences lead to identification links

between the elements. An exception is given by the root revisions, which do not

have any ancestor. They are not analyzed directly.

Listing 7.1 shows the analysis procedure. Basically, we compare the new re-

vision with its ancestors, and for each revealed correspondence an identification

link is created. We add the link to the identity of the linked elements or create

a new identity. The correspondence computation is delegated to SiDiff (line 3).

The computation itself is part of the model comparison algorithm and for plain

identification it can be seen as a black box, since we only need the correspon-

dence information (lines 4–7). However, in order to enable an assessment of the

identification links that we create, we also take a further look into the results and

extract information how the elements have been matched. We can deduce if the

elements have been matched because of their identical hash value or by the itera-

tive matching algorithm. The origin of the links is set accordingly (lines 8–12). Due

to the similarity heuristics of SiDiff we can also query the similarity value that is

computed by SiDiff (line 13). The similarity is not necessary for the identification

link and the constituted identity, but it is an indicator for the evolution of the

linked element. We also store a reliability value (line 14). Gaining information on

reliability requires some modifications to SiDiff. We will explain it in Section 8.1.

An identification link connects a versioned element of the new revision (i.e. the

new element) and the corresponding element in the ancestor revision (i.e. called

the ancestor element). Since we iterate over all direct ancestors, a versioned ele-

ment can have multiple links (i.e. in the case of mergers). The links are added to

the identity of the respective versioned elements (lines 15–32). By adding an iden-

tification link to an identity, the versioned elements are added implicitly. We can

differentiate between five cases where an identification link is created and added

to an identity. Figure 7.1 shows different snippets of an example history; each

snippet illustrates one case.

1. If both elements have not been assigned to an identity yet, a new identity

is created and the link is added to this identity (lines 17–20). This case

applies to the elements that have been created in the ancestor revision. While

comparing the ancestor with the new revision, it is the first time we handle

these elements. All elements of the root revisions are handled this way, i.e.

when the direct descendants of the root revisions are analyzed.

2. If the ancestor element has already an identity and the new element has not

Chapter 7. Computation of Identification Links 75

1 function analyzeRevision(Revision r) {

2 for each Revision a of r.getAncestors() {

3 ModelComparison m = compare(a,r);

4 for each Correspondence c in m {

5 VersionedElement e1 = c.getElementInRevision(a);

6 VersionedElement e2 = c.getElementInRevision(r);

7 IdentificationLink l = new IdentificationLink(e1,e2);

8 if (c.isHashMatch()) {

9 l.setOrigin("HASH");

10 } else {

11 l.setOrigin("ITERATIVE");

12 }

13 l.setSimilarity(m.getSimilarity(e1,e2));

14 l.setReliability(m.getReliability(e1,e2));

15 Identity i1 = e1.getIdentity(); // ident i ty of the ancestor element

16 Identity i2 = e2.getIdentity(); // ident i ty of the new element

17 if (i1 == null && i2 == null) { // i . e . Case 1

18 Identity i = new Identity();

19 history.add(i);

20 i.add(l); // adding a link adds the linked elements impl i c i t l y

21 } else if (i1 != null && i2 == null) { // i . e . Case 2

22 i1.add(l);

23 } else if (i1 == null && i2 != null) { // i . e . Case 3

24 i2.add(l);

25 } else if (i1 == i2) { // i . e . Case 4

26 i1.add(l);

27 } else { // i . e . Case 5

28 Identity i = mergeIdentities(r, i1, i2);

29 if (i != null) {

30 i.add(l);

31 }

32 }

33 } // for each match

34 for each element e in a {

35 if (e.getIdentity()==null) { // ancestor element has no ident i ty yet

36 Identity i = new Identity();

37 i.add(e);

38 history.add(i);

39 }

40 }

41 } // for each ancestor

42 ...

Listing 7.1: Analysis of a revision

76 Chapter 7. Computation of Identification Links

Figure 7.1: Different cases of creating identification links

been assigned to an identity yet, the identification link is added to the identity

of the ancestor element (lines 21–22). This is the standard case: the element

has been traced from its creation up to the ancestor revision, and now it can

be traced further to the new revision. By adding the link to the identity of the

ancestor element, the new element is implicitly assigned to the identity. The

ancestor element and the new element have the same identity now.

3. If the ancestor element is not assigned to an identity yet, but the new element

has already an identity, the identification link is added to the identity of

the new element (lines 23–24). This case occurs if the new revision has

multiple direct ancestors and the new element has been linked to an element

of another ancestor revision already, i.e. in a previous iteration of the outer

loop (line 2).

4. If both elements have the same identity, the identification link is simply

added to this identity (lines 25–26). This case occurs if two branches are

merged and the elements already existed before the creation of the branch.

Chapter 7. Computation of Identification Links 77

5. If both elements have already been assigned to an identity but they have dif-

ferent identities, we try to merge the identities to a single identity. Therefore,

we start a further analysis in order to check whether the identities can be

merged or if they are in conflict to each other (see Section 7.1.1). If they can

be merged, we do so and add the identification link to the merged identity

(lines 27–32).

After processing all correspondences we create an identity for each element of

the ancestor revision that has so far not been linked (lines 34–40). Thereby, we

ensure that each versioned element will be assigned with an identity. However,

these identities contain only one versioned element that has no correspondences

in other revisions.

7.1.1 Merging Identities

In the case that the new element and the ancestor element are already assigned

to identities, we have to check whether the identities can be seen to be the same

identity, i.e. they can be merged. This case can only occur while merging two

branches in which the same elements have been created (i.e. Case 5 in Figure

7.1). The elements did not exist before the creation of the branch, but they are

similar enough to be regarded as corresponding. Hence, the identities that are

to be merged have to span over two disjoint sets of revisions. If the versioned

elements represent the same original model element that existed already before

the branch was created, they would be assigned to the same trace (see Case 4).

If the identities span over a shared subset of revisions, i.e. both identities con-

tain elements of a revision before the creation of the branch, we call this situation

an identity conflict. As illustrated in Figure 7.2, merging both identities would

lead to a forbidden situation; the two linked elements of revision R1 represent two

different model elements. Accepting both identities would mean that at a differ-

ent time these two model elements are represented by a single versioned element

(i.e. the linked element of revision R6). However, according to our data model of a

history, each model element is represented by a separate versioned element. As

a consequence, identities that are in conflict are not merged. The new element is

even removed from all identities by deleting the existing identification links. In the

example of Figure 7.2, the existing link between the elements of revision R3 and

revision R6 will be deleted. Finally, we have two remaining identities: one spans

over the revisions {R1, R2, R3} and the other spans over the revisions {R1, R4, R5}.
The element of R6 is not assigned to any identity. It stays without identity until the

descendant of its revision is analyzed. There it can be linked with a descendant

element.

78 Chapter 7. Computation of Identification Links

Figure 7.2: Example of an identity conflict

Listing 7.2 shows the analysis and merging procedure that is called if an element

would become a member of two different identities. It is checked if the identities

are in conflict, because they share at least one revision (lines 3–13). If they are in

conflict, we remove the identification links that link to the new element (lines 14–

19). If the identities are not in conflict, they are merged. Therefore, we reassign all

identification links from one identity to the other. The versioned elements of the

reassigned identification links are implicitly reassigned, too. The identity whose

links we have reassigned is no longer needed and is deleted. The other identity is

returned as the result of the merger (lines 20–28).

7.2 Handling of Breaks and Gaps

The analysis procedure described above has a significant limitation: it requires

that the traced elements exist continuously and that the traced elements can

continuously be connected with identification links. In other words, if the element

exists in two revisions Ra and Rb, it has to exist in all revisions on the revision

path p(Ra, Rb) and all occurrences are connected by identification links.

This requirement can be infringed by two situations: (a) although an element

exists in two subsequent revisions, we are not able to reveal a correspondence

between the versioned elements, and (b) the element is deleted in one revision

and re-inserted again in some later revision. Both situations are handled by an

extension of our analysis procedure.

Subsequently, we discuss the two problems in more detail (Section 7.2.1 and

Section 7.2.2). Afterwards, in Section 7.2.3 we describe the extension of the anal-

ysis procedure.

Chapter 7. Computation of Identification Links 79

1 function mergeIdentities(Revision r, Identity i1, Identity i2) {

2 // check i f there is a conf l i c t

3 boolean conflict = false;

4 Set s = new Set();

5 for each VersionedElement e in i1 {

6 s.add(e.getRevision());

7 }

8 for each VersionedElement e in i2 {

9 if (s.contains(e.getRevision())) {

10 conflict = true;

11 break;

12 }

13 }

14 if (conflict == true) {

15 // i tera te over the elements of the analyzed revision that are part of an ident i ty

16 for each VersionedElement e in ((i1∪i2)∩r) {

17 remove e.getAncestors(); // delete the ident i f i ca t ion links of e

18 }

19 return null;

20 } else if (conflict == false) {

21 // copy a l l l inks of i2 into i1 and delete i2 afterwards

22 for each IdentificationLink l in i2 {

23 i1.add(l);

24 }

25 history.remove(i2);

26 return i1;

27 }

28 }

Listing 7.2: Merging traces

80 Chapter 7. Computation of Identification Links

7.2.1 Breaks in the Identification Paths

Due to the heuristics of the model comparison, which builds the basis of our

approach, it can happen that an element exists continuously in all subsequent

revisions but we cannot connect all occurrences with identification links. We call

such a situation a break.

Definition 7.1: Given are two revisions Ri and Ri+1 and a model el-

ement x that exists in all revisions of the revision path p(Ri�n, Ri+m).

If the versioned elements representing x can be connected by identifi-

cation links along the revision path p(Ri�n, Ri) and along the revision

path p(Ri+1, Ri+m), but not between the revisions Ri and Ri+1, we call

the absence of the identification link between the versioned elements of

Ri and Ri+1 a break.

Figure 7.3: Example of a break

Figure 7.3 (a) illustrates a potential break. We can trace the left element of

revision R1 to revision R2, but not to revision R3 (i.e. the analysis of revision R3

does not reveal an identification link). Furthermore, the element can be traced

from revision R3 further to revision R4. Hence, the elements existing in revisions

R1 and R2 and the element existing in revisions R3 and R4 have different identities.

If the versioned elements represent different model elements, this situation is

correct. However, it might be that the versioned elements represent the same

element, but we are not able to reveal the correspondence between R2 and R3.

In the latter case we say that a break arised. It is caused by the heuristic of

the underlying SiDiff approach, which we use to reveal correspondences. If the

similarity between two elements exceeds the predefined threshold, the elements

Chapter 7. Computation of Identification Links 81

are matched. The similarity computation can be configured very fine-grained and

for models of arbitrary types. Although evaluations have attested a very low error

rate for SiDiff [70], it might happen that a correspondence cannot be found. This is

caused by a similarity value that does not reach the threshold (cf. Section 4.3.3).

The missing correspondence leads to the break. In this case it is desirable to close

the break by inserting an identification link between the versioned element of R2

and the versioned element of R3 as depicted in part (b) of Figure 7.3.

7.2.2 Deleted and Reinserted Elements

Even with the modification that handles breaks, the analysis procedure described

above has still the limitation that the traced elements have to exist continuously.

In other words, if the element exists in two revisions Ra and Rb, it has to exist in

all revisions on the revision path p(Ra, Rb). It can however happen that a model

element is deleted in one revision, and in a later revision an element with the

same properties is created. In this case we can argue that the deleted element and

the created element are either different elements, or they are corresponding which

means that this is the same element but it was not represented in the revisions

between the deletion and the (re-)creation. This situation can be compared the

undo function in most tools. The only difference is that the undo was performed

in a later revision. The revisions between the deletion and the (re-)creation are

called a gap.

Definition 7.2: A gap is the revision path p(Ri, Rj) in which a model

element x does temporarily not exist.

A gap requires that the model element exists in at least one direct ances-

tor of the source of the gap’s revision path and in at least one direct de-

scendant of the target of the gap’s revision path. Hence, a revision path

p(Ra, Rb) ⊃ p(Ri, Rj) exists so that x ∈ Ra, . . . , Ri−1 and x ∈ Rj+1, . . . , Rb,

but x /∈ Ri, . . . , Rj.

Figure 7.4 depicts an example. The left model element exists in the revisions

R1, R2, R4, and R5; it does not exist in revision R3. The analysis procedure as

described in Section 7.1 leads to the final situation shown in part (a) of the figure;

the element of R1 is traced to R2, and the element of R4 is traced to R5. Hence, we

would have two independent identities although the element of R1 corresponds to

the elements in R4 and R5, too.

It is desirable to create an identification link between the element of R2 and the

element of R4 as shown in part (b) of Figure 7.4. Hence, when analyzing a revision

we must be able to create an identification link that points to an element of an

82 Chapter 7. Computation of Identification Links

Figure 7.4: Example of a gap

ancestor revision that is not necessarily a direct ancestor. During the analysis

of R4 of our example, the element of R4 can be assigned to the identity of the

elements of R1 and R2. When analyzing revision R5 the identification link between

the elements of R4 and R5 can be created normally, however, not a new identity is

created but the existing identity is extended. We finally get one identity containing

the respective elements of R1, R2, R4, and R5; the identity contains a gap in

revision R3.

7.2.3 Extension of the Analysis Procedure

We extend our analysis procedure by a comparison of the new revision with older

ancestors. The extension is shown in Listing 7.3. It allows us to close breaks and

to create links that span over gaps. The new code is inserted after the comparison

with the direct ancestors (i.e. at line 42 in Listing 7.1).

First we compute all ancestor paths up to a predefined length (i.e. maxSteps + 1)

(line 42). An ancestor path is a revision path p(A,R) from an ancestor revision

A to the new revision R. The parameter maxSteps defines how many revisions we

maximally step back.1 We iterate over the revisions of each ancestor path from the

new revision into the past and do basically the same analysis as we have done for

direct ancestors. We compare the revisions and for each revealed correspondence

an identification link is created. The direct ancestors, which are also part of each

1maxSteps is a global parameter to configure the maximum distance of ancestors that are analyzed

to find gaps or breaks. We recommend to set it to 2, because accidental deletion is usually revoked

very soon. It can be chosen higher in order to create identification links even over larger gaps.

Chapter 7. Computation of Identification Links 83

41 ...

42 for each RevisionPath p of computeAncestorPaths(r, maxSteps) {

43 for each Revision a in p {

44 if (a == r || a is direct ancestor of r)

45 continue; // skip this i terat ion of the loop and take next revision

46 Set s = new Set();

47 Set u1 = getElementsWithoutDescendantsOnPath(a, p);

48 Set u2 = getElementsWithoutAncestorsOnPath(r, p);

49 Set b1 = getNonContinuousDescendantsOnPath(a, p, r);

50 Set b2 = getNonContinuousAncestorsOnPath(r, p, a);

51 ModelComparison m = compareDistantRevisions(a,r,u1∪b1,u2∪b2);
52 for each Correspondence c in m {

53 VersionedElement e1 = c.getElementInRevision(a);

54 VersionedElement e2 = c.getElementInRevision(r);

55 if (e1 in u1 && e2 in u2) { // elements are so far unlinked

56 ... // create the links , i . e . is the same as in List ing 7.1 , except

57 // sett ing the origin in order to mark links that span over a gap

58 if (c.isHashMatch())

59 l.setOrigin("GAP_HASH");

60 else

61 l.setOrigin("GAP_ITERATIVE");

62 ...

63 s.add(l);

64 } else { // at least one element has already ancestor or descendant

65 VersionedElement f1 = e1;

66 while (f1.hasDescendantOnPath(p))

67 f1 = f1.getDescendantOnPath(p);

68 VersionedElement f2 = e2;

69 while (f2.hasAncestorOnPath(p))

70 f2 = f2.getAncestorOnPath(p);

71 IdentificationLink l = new IdentificationLink(f1,f2);

72 l.setOrigin("TEMPORARY");

73 s.add(l);

74 }

75 } // for each correspondence

76 for each IdentificationLink l in s {

77 connectIfPossible(l,p);

78 }

79 } // for each ancestor revision

80 } // for each revision path

81 } // end of the analysis function

Listing 7.3: Extension of the analysis procedure

84 Chapter 7. Computation of Identification Links

ancestor path, are skipped (line 44), since they have already been analyzed (i.e. in

Listing 7.1).

The comparison of the new revision with an older ancestor requires some impor-

tant modification: We are only interested in correspondences between versioned

elements that are either not linked at all or that are not linked to an element in

the other revision. Hence, we filter the elements that are not linked yet (lines

47–48), and we filter the elements that are not continuously linked from the one

revision to the other (lines 49–50). These elements build the candidate sets. Then

we call a modified comparison procedure (line 51) and create identification links

according to the correspondences that have been revealed between the elements

of the candidate sets. We differentiate between two cases.

If a found correspondence is between two elements that have not been linked at

all yet, the creation of identification links remains the same as for correspondences

between elements of subsequent revisions, however, the origin is assigned with a

prefix in order to mark that the link originates from the gap analysis and that it

thus spans over a gap (lines 55–62). We remember the link for further analyses

(line 63).

If a found correspondence covers at least one element that is already linked with

an ancestor or a descendant, we found a potential break or a potential gap. In this

case we traverse along the existing links and locate the youngest descendant of

the ancestor element and the oldest ancestor of the new element. Thereby we find

the versioned element without descendant (f1) and the versioned element without

ancestor (f2). We create a temporary identification link between them. We mark

it with the origin “TEMPORARY”, and we remember it for further analyses (lines

64–73).

After all correspondences have been processed we trigger a further analysis on

the found links (lines 76–78).

Computation of candidate sets. We do not perform a complete comparison be-

tween the revision and its older ancestor, but we are only interested in computing

correspondences between subsets of their elements. These sets are called the

candidate sets. They are computed in lines 47–50 of Listing 7.3.

The function getElementsWithoutDescendantsOnPath returns those elements of

the given revision (first parameter) that do not have identification links point-

ing to a descendant revision of the given path (second parameter), and the func-

tion getElementsWithoutAncestorsOnPath returns elements without identification

links to ancestors revisions, respectively. The function getNonContinuousDescen-

dantsOnPath returns elements of the given revision (first parameter) that have

identification links to elements of descendant revisions on the given path (second

Chapter 7. Computation of Identification Links 85

parameter), however, an identification path to elements of the other given revision

(third parameter) must not exist. The function getNonContinuousAncestorsOnPath

is the analog function that returns elements with identification links to ancestor

revisions.

Figure 7.5 shows an example. The left branch represents the current ancestor

path; R is the new revision being compared with the older ancestor A. In revision

A the elements W and Z are not linked with any element of a descendant revision

of the path. They are returned by the function getElementsWithoutDescendants-

OnPath (i.e. u1 = {WA, ZA}). Element X of revision A has a descendant, however,

there is no identification path to an element of revision R. Hence, it is returned

by the function getNonContinuousDescendantsOnPath (i.e. b1 = {XA}). In revision

R the element X has not been linked at all. Z has been linked, however, it is

not linked to an element of a revision on the ancestor path. Hence, the function

getElementsWithoutAncestorsOnPath returns the set u2 = {XR, ZR}. Element W of

revision R has an ancestor on the path, but no identification path to an element

of revision A. Hence, it is returned by the function getNonContinuousAncestorsOn-

Path (i.e. b2 = {WR}). We call the modified comparison procedure with the sets

u1 ∪ b1 = {WA, XA, ZA} and u2 ∪ b2 = {WR, XR, ZR}.

Figure 7.5: Examples of unlinked elements

Modified comparison procedure. In order to find correspondences only between

the elements that are not linked yet or not continuously linked, we use a modi-

86 Chapter 7. Computation of Identification Links

fied comparison procedure. It behaves similarly to the normal comparison proce-

dure, however, it is provided with two candidate sets so that it only reveals corre-

spondences between elements of the given sets. Furthermore we create an initial

matching before we run the SiDiff algorithm. Therefore we create correspondences

based on the beforehand computed identities. The existing correspondences fa-

cilitate the comparison of neighbored elements if not only local properties are

analyzed to find correspondences but also information about the correspondences

between neighbored elements is used (cf. Section 4.3.2).

Further analysis of found links. During the comparison of the new revision with

older ancestors we might have found identification links that span over a gap and

identification links that are marked to be temporary. Both kinds of links have to

be analyzed in more detail.

For each identification link that spans over a gap (i.e. it does not link between

elements of directly neighbored revisions) we have to check whether the element

represented by the connected versioned elements has really been deleted and rein-

serted again. Due to similarity heuristics, which are used to reveal the correspon-

dences, it might have happened that the correspondence was not found, because

the similarity threshold has not been reached. In this case, the missing corre-

spondence would have led to a gap that cannot be differentiated from a gap that is

caused by an undone deletion. In order to avoid this kind of gaps, we try to elim-

inate them by inserting identification links between the elements that the model

comparison has not regarded to be corresponding.

The temporary identification links can span over a break or a gap. Technically,

there is no difference between these cases. They differ only in the distance between

the linked elements, so that we handle them similar to the identification links that

span over gaps. However, if the later analysis discovers that a temporary link does

neither span over a gap nor over a break, it is deleted.

The analysis procedure for links spanning over a gap and temporary links is

shown in Listing 7.4. We perform a pairwise comparison of the revisions on the

path between the linked elements. This time we are not interested in the revealed

correspondences but only in the similarities between the elements. We start with

the ancestor element of the analyzed identification link and take the element with

the highest similarity in the direct descendant revision (lines 2, 7 and 8). For

this element in turn, we take the element with the highest similarity in its direct

descendant revision, and so on (i.e. the loop, lines 5–17). We cancel the iteration

and stop the analysis function if the element does not have a similar element

in the descendant revision, or if the similarity is below a given threshold, or if

additional constraints are not fulfilled (lines 9–10). The gap or the break cannot

Chapter 7. Computation of Identification Links 87

1 function connectIfPossible(IdentificationLink l, RevisionPath p) {

2 VersionedElement e = l.getAncestor();

3 List s = new List();

4 Revision r1 = p.first();

5 for each Revision r2 in p\{r1} {

6 s.add(e);

7 ModelComparison m = computeSimilarities(r1,r2);

8 f = m.getMostSimilarPartnerOf(e);

9 if (f == null || m.getSimilarity(e,f) < threshold

10 || checkConstraints(e,f) == false) {

11 if (l.getOrigin() == "TEMPORARY") {

12 remove l; // remove temporary links i f their elements

13 } // cannot be connected by another link .

14 return;

15 }

16 e = f;

17 }

18 if (e == l.getDescendant()) {

19 VersionedElement v1 = s.first();

20 for each VersionedElement v2 in s\{v1} {

21 IdentificationLink n = new IdentificationLink(v1,v2);

22 n.setSimilarity(...);

23 n.setReliability(...);

24 if (l.getDistance()>=2)

25 n.setOrigin("GAP_CLOSING");

26 else

27 n.setOrigin("BREAK_CLOSING");

28 l.getIdentity().add(n);

29 v1 = v2;

30 }

31 remove l;

32 }

33 }

Listing 7.4: Procedure to check potential breaks

88 Chapter 7. Computation of Identification Links

be closed. If the analyzed link was temporary, we remove that link (lines 11–13).

The constraints that we check have to be defined specifically for each type of model

element. They can analyze properties on the found element or on its neighborhood.

For example, they can check whether the container elements were linked, e.g. in

UML models to prevent the linking of parameters without their operations being

linked.

If the iteration was not canceled, we have found a similar element in the revision

of the descendant element of the analyzed link. If this element is the descendant

element of the link (line 18), we have found a chain of similar elements that can

close the gap or the break. Hence, we create links between the elements of this

chain (lines 19–30). We set the similarity value to the similarity between the newly

linked elements and the reliability is set to r = s2

o , where s is the similarity between

the linked elements and o is the sum of the similarity values between the linked

elements and all their candidates. Thus, r is a low value which expresses that this

link does not provide very reliable traceability information. The origin of the new

links is set to “GAP CLOSING”, unless the analyzed link was a temporary link that

spanned over a break (i.e. the distance of the linked elements is 1). In the latter

case we set the origin to “BREAK CLOSING”. Finally we remove the analyzed link

(line 31).

The threshold used in this function is not the same as the one used by the

SiDiff algorithm. Otherwise, if that threshold would be reached, we would have

created a link during the normal analysis. The gap or the break would not exist.

We recommend to select the threshold approximately 5–10% below the threshold

of SiDiff. Thereby we can find elements that are not found by the SiDiff heuristic,

but we also prohibit the matching of elements that have nothing in common.

Quality of break closing and gap closing links. It should be mentioned that the

links that close gaps or breaks have to be regarded with suspicion, because they

declare versioned elements to be corresponding although the heuristics of the

model comparison do not. However, we advance the view that it is better to iden-

tify an element incorrectly than to state the absence of that element although it

exists. An incorrectly reported identity can better be checked than an incorrectly

reported absence. Thus, we assign the links with a very low reliability value and

we mark them with particular origin designators. Hence, they are conspicuous if

they are later used to trace a model element from one revision to another, and the

traceability information can be rechecked by the user if necessary.

Chapter 7. Computation of Identification Links 89

7.3 Alternative Approaches

Subsequently we briefly discuss alternatives to the computation procedure that

we have presented above. The alternatives do not conflict with the computation

procedure, but they can rather be seen as additional options that we have realized.

7.3.1 Non-Incremental Computation

We proposed the incremental computation of traceability information so that it can

be used in an active development project. However, it is often the case that trace-

ability information has to be computed for an existing history; either for analysis

of older projects or because traceability becomes necessary in an ongoing project.

The computation of identification links and identities does not differ in such

cases. If the existing repository provides a service to traverse through the revi-

sions in the order of their creation, the realization is exactly the same as above.

Otherwise, we completely import all revisions into our history before we start the

computation with the analysis of the root revisions. We continue the computa-

tion with the analysis of the descendants of the previously analyzed revisions. If

a descendant revision has further ancestors that have not been analyzed yet, we

postpone this revision and continue with another descendant.

In the implementation we can profit from the initial import of the complete his-

tory. Since the revisions are analyzed directly after each other and not in separate

processes, they can be kept in memory and database access can be optimized.

The algorithms, however, are not optimized in this case. On a first view one could

think about optimization such as multidimensional search trees for comparing

all revisions at once. Such an approach has been used in [138] to provide an

optimization for the similarity computation in SiDiff. Model elements of both doc-

uments are stored in a search tree and according to some predefined metrics the

similar elements can be requested by a range query in logarithmic runtime. Ap-

plied to a history, we could insert all elements of all revisions into a search tree,

run a range query for a suspect element, and get all corresponding elements as

a result of that query. However, on a more detailed view we can see that the ap-

proach cannot be applied to our identification problem. Multidimensional search

trees are designed to work in the main memory and although today’s computers

have a large memory they can rarely manage a complete model repository. It is

furthermore a very simplifying heuristic if we reduce the complete correspondence

computation to distance measures on a set of metric values.

In practice it is not necessary to reduce quality in order to improve runtime. The

computation of traceability information for a complete model history is neither a

90 Chapter 7. Computation of Identification Links

task that is executed repeatedly nor does it require user interaction. It can be

performed in a nightly batch job without any problems.

7.3.2 Manual Creation

The correspondences between versioned elements of different revisions can also

be created manually. The manual creation requires the expert knowledge of a user

who knows the history of the analyzed model. The user can define the elements

that do correspond. We enable the manual creation of identification links in order

to correct the results of the automatized computation if necessary (see Section

8.2.3). It can also be used to create all traceability information. However, we

cannot recommend the manual creation of all identification links of a history.

Obviously, this task is very tedious, and we have revealed in one of our case

studies that the manual traceability information is most likely error-prone (see

Section 12.2).

7.3.3 Derivation from Identifiers

Although it is contrary to our motivation, the identification links could be derived

from globally unique identifiers. The derivation is in practice not really applicable,

because such identifiers come with imminent risks and they cannot be assumed in

practice (see Section 2.1.1). However, if identifiers are given and if they are trust-

worthy, we can of course fill the history by creating respective identification links.

This can be done, for example, if the model was designed by a single user with

an identifier-preserving tool and the further development should be performed by

several designers with different tools.

In order to derive identification links from globally unique identifiers, we have to

configure the model comparison to use only the identification attribute to reveal

correspondences. The model comparison and our analysis procedure presented

above remains the same in order to derive the other traceability information and

evolution information.

91

Chapter 8

Reliability and Modification of

Identification Links

In the previous chapter we have shown how to compute identification links. Thus

we can easily navigate from the representation of a model element in one revision

to its representation in another revision. So we can identify this element within

the complete history of the model. However, it is not clear whether we can trust

in this information. The SiDiff algorithm, which is used to reveal correspondences

between the elements of subsequent revisions, is based on heuristics. We cannot

guarantee that the computed information is correct. In Section 8.1 we provide a

measure that allows us to assess the reliability of the computed information. In

Section 8.2 we show how the computed traceability information can be corrected

by a user.

8.1 Reliability of Identification Links

Without external expert knowledge, i.e. feedback from a software engineer, we

cannot decide whether a correspondence is correct or not, because we compare

the model revisions on a syntactical level. Neither is it appropriate to let the user

decide each single identification link. Already for the history of 10 revisions of

a small class diagram with 10 classes, the user would have to make more than

1000 decisions.1 As a consequence, we keep the computation of identification

links automatized, but we enrich it with information about the reliability of a

computed link. Based on that reliability information the user can be informed if

the tracing results should be reviewed.

1If we assume that each class has 5 attributes and 5 operations in average and is connected by at

least one association, we already have more than 130 model elements per revision.

92 Chapter 8. Reliability and Modification of Identification Links

Definition 8.1: The reliability of an identification link is a value be-

tween 0 and 1. The hypothetical value 0 expresses that we cannot

assume the link to be correct, the value 1 indicates that we can trust in

the information.

Obviously, a link with an assigned reliability of 0 requires manual inspection,

because in this case the link should not have been created. In the other cases we

use the reliability value to express how confident we were able to reveal the cor-

respondence, i.e. if the matching given by the model comparison is clear without

ambiguities. When tracing a model element from one revision to another we can

assess the reliability based on the reliability of the identification links connecting

the versioned elements.

8.1.1 Modification of the Model Comparison

In order to assess the reliability of a correspondence we have to know how the cor-

respondence was computed, i.e. we need to know the circumstances that have led

to the decision. Due to the similarity-based computation of SiDiff, which we use

for model comparison, the similarity is at least one factor that influences the reli-

ability. A correspondence between two very similar elements is with a high prob-

ability correct, whereas a correspondence between two very dissimilar elements

should be regarded with suspicion. But there are also other criteria that influence

reliability, e.g. how many elements have been a candidate of the suspicious ele-

ment; matching one element out of hundreds is obviously more error-prone than

matching rare elements such as the initial states of state machines.

We extended the model comparison of SiDiff to provide a reliability value for

each correspondence computed by the algorithm. Therefore we extended the cor-

respondence table to store additional information. Hence, it does not only store

mappings from one element to another, but each mapping can also be assigned

with a reliability value. We also extended the computation of correspondences

by the computation of reliability values. We differentiate between the correspon-

dences found by the hash matcher (i.e. the matched elements are identical in their

local properties) and those found by the iterative matcher (i.e. the matchings are

based on similarities, or on correspondences between other elements).

8.1.2 Reliability of Hash Matches

The hash matcher of SiDiff declares elements to be corresponding if they are equal

with regard to their local properties. This heuristic is based on the assumption

that large parts of a model do not change from one revision to another. Most

Chapter 8. Reliability and Modification of Identification Links 93

likely only 10% or less of a model are changed. The unchanged elements can

thus be matched immediately. As described in Section 4.3, SiDiff computes a

hash value for each model element, and elements with equal hash values are

matched. However, it is not absolutely clear if elements with identical properties

are the same model element at different times. An example is a UML attribute

called “name” that can be found very often in class diagrams describing enterprise

scenarios.

We calculate the reliability of a hash-based correspondence between two ele-

ments e1 and e2 as follows:

rh(e1, e2) = base

+ a1 · path(e1, e2)

+ a2 · container(e1, e2)

+ a3 · (uc(e1, e2)− dc(e1, e2)) .

The constant base defines a minimum reliability that we assign to elements if they

have the same hash value, because the hash value is a good indicator that the

elements are the same. An equal hash value does not imply that the hashed

elements have the same position inside the model.2 Hence, we also include the

position of the elements in the model. The function path expresses whether the

elements have the same path (path = 1) or not (path = 0). The function container

expresses whether the container elements of the matched elements have the same

hash value (container = 1), i.e. the matched elements are part of an unchanged

subtree in the model. Obviously, a hash-based correspondence is more reliable

if the neighborhood of the elements (i.e. the context) is corresponding, too. Thus,

the last term expresses the equality of the context. We give points for neighbored

elements that are unchanged (uc), i.e. they have an equal hash value, and we

subtract points for elements that have differences (dc). The term is positive if we

have more unchanged than changed elements in the neighborhood; it is negative

if most of the neighbored elements has been changed. The definition of the context

can be parameterized. For each element type, we define queries that select a type-

specific context. In a UML model, for example, we define that the context of a class

is given by its super classes and the classes that are connected by associations.

The context of a state is given by its predecessors and successors.

It should be mentioned that the difference in the last term returns an absolute

value, not a ratio. As a consequence, the reliability value returned by the formula

can exceed 1. In this case it is set to 1 as the reliability must range from 0 to 1.

Respectively, it is set to 0 if a negative value is calculated.
2The computation of hash values in SiDiff is configurable. The path to an element can be included

to make the hash-based matchings more precise, however, it is usually excluded to detect model

elements that have been moved.

94 Chapter 8. Reliability and Modification of Identification Links

Selection of the coefficients. The base constant and the coefficients a1, a2 and a3

can be adjusted to weight the influencing factors differently. They are defined

separately for each type of element. If we match classes, for example, the pack-

age containing the classes is not as important as the container of states when

matching states. Furthermore, we define for each type of element what the con-

text of such an element is. It is not limited to the direct neighborhood, but it

can be extended to other referenced elements. For the matching of states, for in-

stance, we are interested in the equality of states that are connected by incoming

or outgoing transitions; we are not only interested in the transitions, which are

the neighbored elements in the model. The adjustment requires expert knowledge

about the model type and the hash computation. The base constant expresses the

trustworthiness of the hash value. It should be set according to the precision and

the ambiguity of the hash value. If an element type has many local properties or if

it is a container for other elements with many properties, the hash value is most

likely very precise and ambiguities rarely occur.3 Accordingly, the base constant

can be set to 0.5 or higher, i.e. we are by 50% sure that the equal hash value leads

to a correct correspondence. If only a few properties or no contained elements are

available, such as for generalizations, the base reliability should be lower; the con-

text is more important in this case. The base constant can be higher for elements

that have the character of constants, e.g. enumeration literals. They are rarely

changed. The adjustment of a1 and a2 depends on the moveability of elements.

The example is an UML attribute. The local properties are good indicators for a

reliable hash, but many ambiguities can exist. If the element is still are the same

position inside the document or if even the respective container elements can be

matched based on their hash values, the match is more trustworthy. Coefficient

a3 should be chosen with respect to the importance and the typical size of the con-

text. The context of a UML generalization (i.e. the super class and the subclass) is

obviously very important to decide whether two generalizations correspond. Since

the difference in the last term of the reliability formula does not return a ratio but

an absolute value, the coefficient a3 is not set to the portion of reliability given by

context elements, but this portion is divided by the estimated typical number of

context elements.

Table 8.1 shows an example definition of the reliability of hash-based correspon-

dences between classes in UML. Since classes have many local properties such as

an expressive name, we assign the hash-based correspondence with a basic relia-

bility of 0.5. If the class has not been moved, we are 10% more sure. If even the

complete package containing the class is unchanged, we are very sure (90%) that

3SiDiff uses all non-derived, local properties and all contained elements for the computation of the

hash value.

Chapter 8. Reliability and Modification of Identification Links 95

Variable Value

base 0.5

a1 0.1

a2 0.3

a3 0.033

context classes connected by associations or generalization edges

Table 8.1: Definition of the reliability of hash-based correspondences between

classes

the class is the same. For each equal class in the context (e.g. associated classes)

we add another 3.3% to the reliability. Hence, if three or more associated classes

are also unchanged and no associated class has been changed, we are 100% sure

that the correspondence is correct. However, if the class has been moved and is

connected to several other classes that have been changed, we are not sure at all.

The reliability is then even below the basic reliability base.

In summary, a hash-based correspondence is more reliable if the neighborhood

contains further hash-based correspondences. If the contexts of the elements are

different, the confidence of the correctness of the hash-based correspondence is

very low. Although this is another heuristic, it allows us to very precisely estimate

whether a hash-based correspondence is reliable.

8.1.3 Reliability of Iterative Matches

All model elements that have been changed from one revision to another cannot

be matched by the hash matcher; they are matched by the iterative algorithm of

SiDiff. In particular the similarity heuristics used in the iterative matching algo-

rithm require further investigation regarding their reliability. The iterative match-

ing algorithm of SiDiff computes the similarities between each pair of elements of

equal type. All pairs that exceed a pre-defined similarity threshold are seen as

candidates for correspondences. For the candidate with the highest similarity a

correspondence is created. Four potential sources of errors exist.

1. There is always the possibility to choose the wrong element, e.g. because

the correct correspondence partner has been changed significantly or it does

even not exist (i.e. it has been removed from the model revision).

2. We have chosen the wrong candidate for creating the correspondence. For

example, we have three candidates for an element; they have the similarities

0.9, 0.89, and 0.5. We would take the first candidate because it has the high-

96 Chapter 8. Reliability and Modification of Identification Links

est similarity, however, the second candidate has a marginal lower similarity

and could be the correct correspondence. The third candidate is much more

different; it is very unlikely that this is the correct correspondence.

3. The similarities that we have computed are incorrect. As mentioned in Sec-

tion 4.3.2, the similarity is computed by evaluating several comparison rules

that compare different properties of the model elements. Some rules com-

pare local properties such as names of the compared model elements; their

evaluation is very reliable. Other comparison rules, however, rely on the cor-

respondences between other elements, e.g. to check whether the target of an

association or transition is the same, it is checked if the targeted elements

correspond. Obviously, the incorrect correspondences between referenced

elements influence the reliability of the similarity of the compared elements.

4. The correspondence of the container element is wrong. Elements that are not

allowed to be moved can only be matched if their containers correspond (see

Section 4.3.3). The wrong correspondence of the container can thus lead to

a wrong decision about the nested elements.

These sources of errors lead to the following formula to calculate the reliability

of correspondences computed by the iterative matcher:

ri(e1, e2) = a1 · 1/log√2(n)

+ a2 · dac(e1, e2)

+ a3 · cs(e1, e2)

+ a4 · rcontainer(e1, e2) .

The first term expresses the general probability to find the correct correspondence

partner. The second term deals with the selection of the partner out of the set

of similar elements (i.e. out of the candidates). The third term adjusts the simi-

larity value between the matched elements if the calculation was based on other

(possibly unreliable) correspondences. The fourth term refers to the reliability

of correspondences between the containers of the matched elements. Again, the

terms can be weighted differently by adjusting the coefficients a1, a2, a3, and a4.

As said before, the iterative matching compares all elements of a type with each

other. Hence, the number of elements of one type influences the reliability. The

more elements we have in the model revision the lower is the probability that we

find the right element as matching partner. This yields in a general matching

probability which is 1/n with n being the number of elements of equal type. Since

1/n converges to 0 very fast, the first term would be 0 in nearly all cases. We use

1/log√2(n) instead. The logarithm to base
√

2 behaves similar to 1/n for small n,

but it converges slower for higher n.

Chapter 8. Reliability and Modification of Identification Links 97

The function dac describes the selection of the right candidate. It measures the

distance between the similarity of the matched elements and the similarity to the

best alternative candidate, and it considers the number of candidates. It can be

broken down to the formula

dac(e1, e2) = 0.7 · (sim(e1, e2)− sim(e1, e
′
2))

+ 0.3 · 1/log√2(m) ,

where sim describes the similarity between two elements. e1 and e2 are the corre-

sponding elements, e2 is the most similar candidate of e1. e′2 is the element with

the second highest similarity. m is the number of candidates (i.e. the elements

that have any similarity to e1). The formula expresses the reliability of picking one

of the similar candidates. We consider only the element with the second highest

similarity and the number of candidates. This weakens the influence of the low

similarities of wrong candidates. For example, we assume to have a large set of

candidates such as all block elements of a subsystem in a MATLAB/SimulinkTM

model. All candidates except one have a similarity value of 0.3 and one candidate

C has a similarity value 0.99. C is most-probably the correct candidate. However,

if we consider all similarities, e.g. by computing the ratio between the candidates

similarity and the sum of all similarities, the similarity of C would not stand out

any more.

In order to tackle the problem that the computed similarities can be based on

unreliable correspondences, we compute a cleaned similarity value cs. The part

of the similarity that is based on other correspondences is therefore reduced ac-

cording to the reliability of these correspondences. Figure 8.1 illustrates this ad-

justment. For each comparison rule that is evaluated to compute the similarity

(cf. Section 4.3.2) we check whether it is based on other correspondences. If this

is the case, we multiply the result of the comparison rule with the reliability of

the correspondences used for the evaluation. Table 8.2 gives an example of the

similarity adjustment of a UML class. We assume that the class is compared to

another class according to the exemplary similarity configuration that was given

in Table 4.1. In this example the name of the other class is slightly different, the

attributes and operations are already matched with the attributes and operations

of the other class, super and subclasses do not share similarities, and the con-

taining package has not been matched, yet. The reliability of the correspondences

between the attributes is in average 85%, the reliability of the correspondences

between the operations is in average 95%. Due to the reliabilities of the referred

correspondences we adjust the original similarity of 0.8 to the new value 0.76.

The similarity distance, dac, and the cleaned similarity, cs, are normalized to

the range of possible similarities. Similarity values can range between 0 and 1,

however, the real similarity values range only between x and 1, where 0 < x ≤ 1,

98 Chapter 8. Reliability and Modification of Identification Links

Figure 8.1: Adjustment of the similarity

Criterion (W)eight (R)esult W*R Relia(b)ility W*R*b

name 0.35 0.85 0.30 1.001 0.30

visibility 0.05 1.00 0.05 1.001 0.05

isAbstract 0.05 1.00 0.05 1.001 0.05

attributes 0.20 1.00 0.20 0.85 0.17

operations 0.20 1.00 0.20 0.95 0.19

subclasses 0.05 0.00 0.00 0.00 0.00

super classes 0.05 0.00 0.00 0.00 0.00

package 0.05 0.00 0.00 0.00 0.00

similarity: 0.80 cleaned similarity: 0.76
1 This criterion does not rely on other correspondences.

Table 8.2: Detailed exemplary of a similarity adjustment

due to the threshold used for deciding correspondences. For the calculation of dac

and cs we normalize the values so that x becomes 0.01 and the value of 1 remains

1. This normalization enables an equal behavior for the different types of model

elements that might have different thresholds defined in the SiDiff configuration.

Finally, with the fourth term we include the reliability of the correspondence

between the containers into our calculation. For example, the correspondence

between two operations is more reliable if also the classes (i.e. their containers)

correspond.

Selection of the coefficients. The coefficients a1, a2, a3, and a4 are used to weight

the different terms individually. Again, they are set differently for each type of

model element. The selection of the coefficients requires expert knowledge about

the model type and the similarity calculation of SiDiff. The sum of the coefficients

Chapter 8. Reliability and Modification of Identification Links 99

has to be 1. Otherwise, the resulting reliability would not range between 0 and 1.

The general match probability can usually be weighted very low, i.e. a1 ≤ 0.1. It

can be raised if we usually expect only a low number of elements of a given type

and the element type does not have local attributes, e.g. pseudo state of kind “ini-

tial”. The selection of the right candidate and the cleaned similarity are usually

the most influencing factors. The setting of a2 and a3 should consider the simi-

larity configuration. The more expressive the similarity is, the higher can a2 be

set. However, if the similarity is significantly based on other correspondences, e.g.

if no local attributes are defined, the cleaned similarity should get more weight

(i.e. a high coefficient a3). Coefficient a4 should be set according to the order of

comparison. If it is assured by the comparison configuration that the element is

only matched in top-down analysis (cf. Section 4.3.3), i.e. the container is always

matched before the element, the reliability of the container element can be con-

sidered. This is usually the case if the element is not allowed to be moved (i.e. the

container has to remain the same). If the container is not necessarily matched

before the element, we recommend to set a4 = 0.

The reliability values enable an assessment of the trustworthiness of the identi-

fication links that are derived from the correspondences of the model comparison

algorithm. Whenever we trace a model element, we can appraise the quality of the

information we are provided with.

8.2 Manual Editing of Identification Links

Although our approach provides very reliable results (see evaluation in Section

12.1), the user might be caused to change the computed traceability information.

For instance, if the reliability value is very low for an identification link, the user

can review this link, and adjust the reliability or remove the link. Furthermore, the

user is enabled to create links manually if elements do not correspond although

they should. Subsequently, we describe the different scenarios that can occur,

and we show how they are handled.

8.2.1 Removing a Versioned Element from an Identity

A scenario that can be fixed very easily is that an element has been identified in-

correctly, i.e. it does not correspond to the other elements of that identity. This

can happen, for instance, if our approach has closed a gap by creating correspon-

dences that do not exceed the similarity threshold. In order to fix this incorrect

identity, the element has to be removed from the identity. Therefore the incom-

100 Chapter 8. Reliability and Modification of Identification Links

ing and outgoing identification links of that particular element are removed and

new identification links between the ancestors and the descendants are created. If

multiple ancestors or descendants exist (i.e. due to branching and merging), new

links are created between each possible pair of an ancestor and a descendant. The

removed element is assigned to a new identity. Figure 8.2 depicts this situation.

The similarity value of the new identification link has to be computed be com-

paring the ancestor element with the descendant element. The reliability value is

set to the minimum of the reliabilities of the removed links. The origin is set to

“RELINKED”.

Figure 8.2: Removing an element from an identity

8.2.2 Removing an Identification Link

Besides removing a versioned element from an identity, the user might not agree

with single identification links. This is the case if only the ancestor or the descen-

dant of an element should not correspond. Hence, the identification link should

be removed. In contrast to the previous case where an element has been removed

from the identity while its ancestors and descendants keep their identity, the iden-

tity has now to be split into two identities. Figure 8.3 depicts this situation. The

ancestor element of the removed link as well as all further ancestors keep their

identity. The descendant element and also all of its descendants will be assigned

to a new identity.

When removing an identification link, the ancestor element and the descendant

element of that link might additionally be connected via another path of identifica-

tion links. This is the case if links of a branch are to be removed (see Figure 8.4).

Here, the link is simply removed without splitting the identity. As a consequence,

the ancestor element and the descendant element can still be traced to each other,

however, the reliability is usually much lower.

The manual removing of identification links has to be performed very carefully.

It can be used to split identities in a way that the elements of a branch will be

Chapter 8. Reliability and Modification of Identification Links 101

Figure 8.3: Removing an identification link

Figure 8.4: Removing an identification link without splitting the identity

assigned to a new identity. Therefore, the identification links along the merging

revision link (if existent) should always be removed before the identification links

that are along the revision link creating the branch.

8.2.3 Creating an Identification Link

It is also possible to manually extend the computed traceability information with

new identification links. The user can create an identification link between two

elements on one revision path if they are not yet connected to each other by an-

other identification link. The elements are either of subsequent revisions or there

is a gap in between, because the newly linked element has been been deleted and

102 Chapter 8. Reliability and Modification of Identification Links

Figure 8.5: Different cases of creating identification links manually

re-inserted. We differentiate four different cases (see Figure 8.5).

In the simplest case (Case 1) the elements are not linked to other elements.

Here, we can create the link and reassign the descendant element of the new link

to the identity of the ancestor element. If one of the elements to be linked (either

the ancestor or the descendant) has already a link (Case 2), we create the new

link and reassign the element, which was not previously linked, to the identity

of the element that had already a link. If both elements are linked already, we

have to check whether the elements have different identities. In such case (Case

3) we create the new identification link and merge the identities. All elements

of the identity of the descendant element will then be reassigned to the identity

of the ancestor element. This is equal to the merging of identities described in

Section 7.1.1. The identities of the ancestor and the descendant must not conflict.

If both elements that are to be linked have already the same identity (Case 4), we

Chapter 8. Reliability and Modification of Identification Links 103

only have to create the additional identification link.

In all cases the newly created link is assigned with a similarity value that is

computed by comparing the linked elements. The user is asked to provide the

reliability value, because he can best describe how sure he is with his interaction.

The origin of the created identification link is set to “MANUAL”.

8.2.4 Changing Reliabilities

Besides removing or creating additional identification links, the user can also im-

prove the traceability information by changing the reliability of a link. If the user

has reviewed a link, he can attest that the correspondence expressed by the link

is correct. Thus, the reliability can be set to 1 according to the belief of the user.

The origin of the link is set to “MANUAL”. Hence, in later analysis we can be sure,

that the link is correct. The user can also set the reliability to a smaller value. He

can thus express that he is not totally sure with his decision.

104 Chapter 8. Reliability and Modification of Identification Links

105

Chapter 9

Computing Evolution Information

Besides the pure traceability information, we are also interested in the evolution

of the analyzed model. In other words, it is not enough to know only the identity

of an element, but the knowledge about its evolution is important, too. Hence, the

user should be provided with the changes that have been applied to the model el-

ements over time. Therefore, our history representation contains also information

about the evolution of model elements. In this chapter we describe how this infor-

mation is computed. Section 9.1 discusses the computation of software metrics.

The inference of changes is described in Section 9.2. In Section 9.3 we introduce

difference metrics that are a new concept to express differences in numbers. Fi-

nally, in Section 9.4 we briefly sketch the recomputation of difference metrics and

changes if identification links are modified.

9.1 Software Metrics

As shown in Section 6.4, we can assign versioned elements with software metrics.

A software metric quantitatively describes some characteristic of a model element

in a revision (i.e. at a particular time). Each metric is stored as a tuple that

consists of a name or description of the metric, and a value.

Many software metrics basically count specific elements in a model revision,

i.e. counting metrics. For example, in UML the metric “Number of classes” counts

all classes either in the model or in the package depending on the context of the

metric. The term context refers to the element to which the metric is attached.

Counting metrics can easily be computed on the internal graph representation of

the model revision, e.g. by traversing over the tree that is spanned by the contain-

ment edges. Some counting metrics take even certain properties of the elements

into account. The metric “Number of public attributes”, for example, counts only

those attributes contained by a UML class that have their visibility set to public.

It is not required that metrics count only elements that are reachable via contain-

106 Chapter 9. Computing Evolution Information

ment edges. Other edge types or even paths can be traversed, too, e.g. in order to

compute the number of subclasses of a given class.

Other metrics could do a further analysis of the model elements or if the model

elements represent some real entities, they can be derived from there. An example

is a reverse-engineered class model of a program: we could enrich the model

elements with metrics such as the McCabe metric or the Halstead metric, which

express the complexity of the code that has been reverse-engineered [83].

Our history representation can handle arbitrary software metrics regardless

their origin. The computation of software metrics itself is not part of our trace-

ability approach. We assume the software metrics to be given from outside, e.g.

by triggering an extra tool that returns the metrics. Furthermore, our approach

is even applicable if no software metrics are defined. The metrics are only used to

assist the user in the comprehension of the evolution of traced model elements.

They are optional.

9.2 Inference of Changes

Since we compute identification links with the help of a model comparison ap-

proach, we can easily deduce the changes that have been applied to a model

element from one revision to another. The knowledge about the changes helps the

developer to comprehend the identification if the suspect is different in the target

revision. The available types of changes do strongly rely on the type of the ana-

lyzed model and the edit operations assigned to that type (i.e. the operations that

can be applied to models of that type). Due to our internal graph representation,

the model comparison provides us with four types of changes (see Section 4.3): An

attribute change denotes the change of the value of an attribute of an element, e.g.

if the name or the visibility of a UML class has been changed. Reference changes

indicate that a reference of an element (i.e. an edge in the internal graph repre-

sentation) points to a different target element (vertex) than before, e.g. the edge

expressing the return type of an operation points now to a different class. Moves

express that an element has been moved from one container to another, i.e. the

containment reference has changed. Structural changes mark the elements that

have been inserted or deleted, i.e. the elements do not exist in the other revision.

We store the changes of an element as objects assigned to the identification link

that represents the correspondence of the changed element (see Section 6.4). We

do not store information about structural changes. That information is implicitly

given by the absence of identification links. If an element has been inserted it has

no incoming identification link. A deleted element has no outgoing link respec-

tively. The other types of changes are represented by objects of the types depicted

Chapter 9. Computing Evolution Information 107

Figure 9.1: Different types of changes that can be assigned to an identification link

in Figure 9.1. We create an AttributeChange object for each concrete change of

an attribute value. It holds the name of the attribute that has been changed. For

each reference that points to another target now, we create a ReferenceChange

object. The name of the reference (i.e. declaring its type) is assigned to the change

object. An identification link can be assigned with several AttributeChange and

ReferenceChange objects if more than one property of the linked element has been

changed. An object of type ContainerChange expresses a move and contains point-

ers to the old and the new container of the moved element. Since an element has

only one container, there is one ContainerChange object at maximum.

It is furthermore possible that additional types of changes are defined for a

certain model type. Technically, these changes are then subclasses of the abstract

class “Change” so that they can be handled by our approach in equal manner.

9.3 Difference Metrics: Measuring the Changes

Many model elements are containers for other model elements. We can argue

in UML state machines for example that the change of a simple state leads also

to a change of the composite state that contains the simple state. If we assign

all changes to an identification link that do somehow change the model element

represented by the link, the user will drown in a plethora of information. As a

consequence, we differentiate between different levels of changes. Furthermore,

if we later trace a model element from one revision to another, the user should

be provided with all changes that have been applied to the traced element. The

number of changes can explode then and the user is neither able to get an overview

nor to capture the relevant changes.

In order to tackle that problem we define difference metrics that map changes of

model elements onto numerical values. These metrics enable us to count, aggre-

gate, or classify changes according to their relevance. The metrics map all changes

onto a data set that is much smaller and better comprehensible than the complete

108 Chapter 9. Computing Evolution Information

list of single changes. The set of available difference metrics is determined by the

type of the analyzed model and the available types of changes. Difference metrics

are assigned to the identification links. Each identification link does not contain

only a list of changes that have been directly applied to the model element whose

evolution is expressed by the link, but also a list of difference metrics that count

these changes and all changes that have been applied to the contained elements.

We should mention that our approach differs from the approach of Demeyer et

al. [26]. They have introduced the term change metrics in context of detecting

software refactorings. However, they compute object-oriented metrics of parts of

two versions of a software system and inspect the differences between the pro-

duced values subsequently. This combination of metrics and software changes is

significantly different from our work, as they measure changes of software met-

rics resulting from software changes. We do not compute the difference between

metrics, but we compute metrics on differences.

Requirements. The computation of difference metrics is independent from any

traceability scenario. It is based on the tree-like graph representation of two

model revisions. It requires a correspondence table that denotes pairs of cor-

responding model elements and a description of the difference between the two

revisions. The correspondence table may contain information about similarities

between corresponding elements, and the difference description should provide

information about changed attributes, changed references, moved elements, and

structural changes (i.e. elements that exist only in one revision). We compute

the difference metrics during the computation of identification links, because it

already includes a model comparison that provides us with a correspondence ta-

ble, similarities, and the difference. The computation is thus based on the types of

changes that are returned by SiDiff; it is not based on the change objects assigned

to identification links.

Types of difference metrics. In terms of computation of metrics we can differ-

entiate between two groups of metrics. The first group can be seen as generic

metrics. All metrics of that group are derived directly from the list of types in the

graph schema, i.e. the metamodel. The second group, so-called significance met-

rics, take model semantics into account. They require additional information that

exceeds standard metamodel information based on knowledge of the application

domain of the analyzed model.

Chapter 9. Computing Evolution Information 109

9.3.1 Generic Metrics

Metrics that count changed elements. Obviously, we can count for each element

the different types of changes that have been applied to that element. We call the

resulting metrics atomic. Atomic metrics can be computed for each element and

for each type of change. An example in UML is the number of attribute changes of

an element of type operation; other examples are the number of reference changes

of an element of type transition, or the number of structural changes of an element

of type activity. These metrics usually return rather small values. Frequently, the

value can only be 0 or 1 depending on whether the element was changed or not.

Due to the small values it is reasonable to accumulate atomic metrics in the

corresponding container elements, e.g. to retrieve the number of changed opera-

tions contained in a given class. On this basis we define four kinds of accumulated

metrics:

Changed children. This metric counts all nested elements that are assigned with

any difference of the type Attribute change or Reference change, e.g. the num-

ber of operations changed in a class.

Inserted children. For a given element (i.e. the current element), this metric counts

all nested elements that have been inserted into the current element. I.e. the

nested elements that are assigned with a Structural change and that exist

only in the newer model revision, as well as the nested elements assigned

with a Move if the new container is the current element. Examples are the

number of parameters added to an operation or the number of classes that

have been moved to a package.

Removed children. In contrast to inserted children, this metric counts all nested

elements that have been removed from the current element. I.e. the nested

elements that are assigned with a Structural change and that exist only in

the older model revision, as well as all nested elements assigned with a Move

if the old container was the current element. Examples are the number of

parameters removed from an operation or the number of classes that have

been moved out of a package.

Unchanged children. This is the number of nested elements that are not marked

with any change, e.g. the number of parameters of an operation that have

remained unchanged.

The values computed on nested elements can be summed up in the container

element and any further ancestor element in the composition hierarchy. For ex-

ample, we can calculate the number of operations inserted in a package.

110 Chapter 9. Computing Evolution Information

Differentiation between attribute and reference changes. So far, we can count in-

serted, removed, changed, and unchanged elements inside a container element. In

order to better differentiate the changed elements we additionally compute more

fine-grained metrics that count the changes on the level of attributes and refer-

ences. The set of computable metrics is given by the set of attribute types and

reference types defined for the respective element type. For each attribute or

reference type we can easily count the number of changes and the number of un-

changed instances. If an element type, X, defines two attribute types, Y and Z, we

can compute four metrics: number of elements of type X whose attribute Y has

been (un-)changed, and number of elements of type X whose attribute Z has been

(un-) changed.

For one model element exactly one attribute for each attribute type exists, e.g.

an element has one name. At the same time, the model element can have many

references of the same type pointing to different elements, e.g. references from

UML states to outgoing transitions. However, the number of references stays

usually rather low. Hence, the metrics counting attribute and reference changes

are often either 1 or 0, which indicates whether there is a change of an attribute

or reference of that particular type or not. Again we accumulate the computed

values in the ancestor elements in the composition hierarchy.

For example, we can count how many visibilities of classes in a package have

been changed, or we can count the number of transitions that point to a new

target (i.e. the target reference has been changed).

9.3.2 Significance Metrics

The metrics presented so far are structural in the sense that they are solely based

on the graph structure of the models (most notably containment relationships),

and the structure of a difference. Metrics defined on this basis can be called syn-

tactical because they do not consider the importance of changes, which depends

on the semantics of a model type. For example, the following changes are both

simple attribute updates: a) the change of the name of a parameter of a UML oper-

ation, b) the change of the visibility of the operation. Obviously, the latter change

can have much more significant consequences. A designer who wants to get an

overview of how a model has been changed from one revision to the next, is mainly

interested in the significant changes.

The significance of a change depends on the semantics of a model type and

cannot be deduced from metamodels. These metamodels define only the syntacti-

cal structure of models. Information about the significance of changes has to be

specified separately.

Chapter 9. Computing Evolution Information 111

1 <Nodetype name="operation"

2 insert="noncritical" delete="critical" move="medium">

3 <Attribute name="name" change="medium"/>

4 <Attribute name="isAbstract" change="critical"/>

5 <Attribute name="ownerScope" change="medium"/>

6 <OrderedAttribute name="visibility"

7 values="private,package,protected,public"

8 increase="noncritical" decrease="critical"/>

9 <Reference name="returnType" change="critical"/>

10 </Nodetype>

Listing 9.1: Part of the specification of the significance of changes

Specification of the significance of changes. We propose to classify changes ac-

cording to the following categories: critical, medium, and noncritical. An example is

given in Listing 9.1; we have used an XML representation of the specification here

that is also used in our prototype implementation (see Section 11.1). Other rep-

resentations are possible, too. We support individual classification of changes for

each attribute type of each model element; the same applies to reference changes.

Metaattributes can have ordered domains, e.g. the visibility attribute has the

ordered domain {private < protected < package < public}. In such cases the sig-

nificance of a change can depend on the direction of the change, i.e. whether the

value is increased or decreased. We propose to define the significance of attribute

changes separately for the increase and decrease. An example is also given in

Listing 9.1.

Similarly we can classify insertion, deletion, and move of subelements. Different

classifications can be defined for each element type. For example, the insertion

and deletion of operations in classes can be weighted different.

Counting changes of different significance. Given a classification we can easily

declare a change to be critical, medium, or noncritical. For each model element

we sum up the number of changes of a certain class. Furthermore, we differenti-

ate between the types of changes. We produce metrics such as number of critical

updates or number of noncritical insertions. We also divide by the types of model

elements. Once again the values are accumulated in container elements and fur-

ther ancestors. For example, we can calculate for each class in a package how

many of its operations have been changed critically.

112 Chapter 9. Computing Evolution Information

9.3.3 Similarity Metric

We assume that the differencing algorithm provides us with the similarity sim(e1, e2)

of each pair of corresponding elements. A similarity value of 0 expresses that the

elements are not similar at all, the value 1 indicates identical properties. Since

high values of all other metrics express dissimilarity, we transform this value into

the degree of change (DoC) as follows:

DoC(n) = 1− sim(e1, e2).

9.3.4 Aggregation of Metrics

In addition to accumulation of values by summation, it is possible to define more

specific metrics in grandparent elements and their ancestors using other aggrega-

tion functions. In particular, one can compute for each element the maximum,

minimum and average number of changed, inserted, deleted, and unchanged

grandchildren. The elements can again be filtered by their type and other met-

rics can be aggregated similarly.

An example is the maximum number of changed parameters in the operations

of one class. Another example is the average number of removed attributes in all

classes of one package. These aggregated metrics enable a better assessment of

differences.

Aggregation of the degree of change metric is especially interesting. The average

degree of change and the maximal degree of change of direct children or grand-

children can give useful hints at the character of changes: e.g. similar average

and maximum values indicate uniform changes, whereas high maximum and low

average values indicate changes to specific subelements. Furthermore, the simi-

larity of two elements, which is computed during difference computation, can be

defined arbitrarily and may aggregate the similarities of all their subelements. For

example, the similarity of two classes could be defined by their local properties,

the similarities of their attributes, and the similarities of their operations. In con-

trast, the aggregated degree of change can focus on one particular element type,

e.g. the average DoC of operations of a class.

9.4 Recomputation of Difference Metrics and Changes

Changes and difference metrics strongly rely on the correspondences between two

model revisions. If, for instance, two classes with different names correspond, an

update of the name is reported. If the classes do not correspond, two structural

changes are reported: one deletion and one insertion.

Chapter 9. Computing Evolution Information 113

Due to the fact that we allow the supplementary creation of identification links

and their deletion (see Section 8.2), the correspondences between two subsequent

revisions may change at any time. In such cases we have to deduce the changes

and the difference metrics again. The procedures do not really differ from those

presented before. The only difference is that the correspondence table is not com-

puted by the model comparison. It is rather created based on the identification

links, and the model comparison is forced to only deduce the difference.

The software metrics focus on the model elements at a particular time and are

not dependent from the corresponding elements in other revisions. Thus, they do

not need to be recomputed.

114 Chapter 9. Computing Evolution Information

115

Chapter 10

Querying the History to Trace Elements

Once the identification links and identities have been computed, we can easily

trace model elements from one revision to another. While the previous chapters

(7, 8, and 9) described the computation of identification links and evolution infor-

mation, we will now show how this information is used to identify model elements

across evolution. Section 10.1 describes the tracing of single model elements. The

tracing of model fragments is explained in Section 10.2. In Section 10.3 we finally

discuss some exemplary use cases of how the tracing can be applied in practice.

10.1 Tracing an Element

Definition 10.1: The task of selecting a model element (i.e. the sus-

pect) in one revision (i.e. the source revision) and locating the corre-

sponding model elements in other revisions (i.e. the target revisions) is

called tracing query.

Depending on the model type, one suspect can have several corresponding ele-

ments in a target revision due to the ability of copying or duplicating model ele-

ments. The elements in the target revision are called occurrences.

If we can trace an element from one revision to another, at least one identifica-

tion path going from the suspect to an occurrence exists. Such a path is the basis

of the result of a tracing query. It is called a trace.

Definition 10.2: A trace is the result of a tracing query. It aggregates

all identification links along one identification path between the suspect

and the occurrence. It expresses the evolution of the traced element and

allows an assessment of the reliability of the expressed correspondence

to the found occurrence.

If multiple identification paths between the suspect and the occurrence exist, we

provide the user with one trace for each path. In the same manner we return

116 Chapter 10. Querying the History to Trace Elements

multiple traces if the suspect can be traced to multiple occurrences in one revision

(i.e. if a model element has been copied so that the descendant revision contains

duplicates).

Figure 10.1: Traces in the context of the history model

Figure 10.1 shows how a trace relates to the information of the history. The

trace connects the suspect and the occurrence (i.e. the target) and aggregates the

links that build the identification path between them. The identification links

are ordered from the suspect to the occurence. Furthermore, the trace refers to

the changes applied to the traced elements. The difference metrics express all

changes applied to the element and its nested elements along the identification

path. It should be mentioned that a trace is a transient information that is not

part of the history and thus not stored in the data model.

We can differentiate three types of tracing queries. They are called identification,

occurrence analysis, and tracking.

Definition 10.3: The identification is a tracing query that is executed

with two input parameters: the suspect to be traced, and the target re-

vision in which the element is to be identified. The identification returns

traces that point to the corresponding elements in the target revision if

existent.

Chapter 10. Querying the History to Trace Elements 117

If we perform an identification on all revisions of a history, we know in which

revisions the particular model element exists, when it has been created, and in

which revision it has been deleted. Thus, we can identify the element across its

evolution. The identification can be performed with the identities stored in the

history (see Section 6.3). They are sufficient to query the occurrences of a given

suspect.

It is usually not sufficient to solely identify a model element in another revision,

but we expect it to fulfill certain constraints.

Definition 10.4: The occurrence analysis is an identification that

additionally evaluates constraints on the identified elements.

The constraints are path-independent, i.e. for their evaluation we only

analyze the occurrences and, if necessary, the suspect; the concrete

identification path is not considered.

The occurrence analysis is qualitatively on a different level than identification,

since not only the existence, but even the characteristics of a model element are

checked. For example, we can check if a UML association exists in another re-

vision and if it is a composition, or we can check whether an operation exists in

other revisions and if it has the same number of parameters. Occurrence analyses

can be performed on all revisions of a history in order to gather, in which revisions

an element fulfills the constraints. The existence is then implicitly given. An ex-

ample is an analysis that queries all occurrences of a certain UML class where

it has been abstract. Due to some types of constraints, the occurrence analysis

may require the actual model revisions in order to evaluate the constraints; the

revision objects in the history are not sufficient.

Besides pure existence we are likely interested in the evolution of a model ele-

ment. Hence, we want to track it subsequently from one revision to another and

we want to analyze the changes of the element over time.

Definition 10.5: Tracking denotes the step-wise occurrence analysis

of a model element along an identification path. The constraints can

therefore also consider the identification links that connect the traced

element from one revision to another, or even the complete identification

path between suspect and occurrence.

The tracking of a model element is particularly an analysis of subsequent revi-

sions. It is based on the identification links stored in the history, and it is directed.

Forward tracking means that we traverse along outgoing identification links, i.e.

we track an element of an older revision to the newest revisions. Backward track-

ing follows incoming identification links and searches the oldest revisions in which

118 Chapter 10. Querying the History to Trace Elements

the element exists. Here we can evaluate path-dependent constraints on the links

we traverse, and we can evaluate path-independent constraints on the versioned

elements we reach over the links. If all constraints are fulfilled, we recursively tra-

verse over the identification links of the versioned elements that we reached just

before. The traversed links form a trace. It lasts from the suspect to the ultimate

element that fulfills the constraints, and the last link that fulfills the constraints

respectively. We say that the trace breaks off at the first identification link that

does not fulfill the constraints or whose opposite elements do not fulfill the con-

straints. The lastly reached revision is then called the target revision. Examples

of constraints are that the model element must not be changed along the identi-

fication path, or that the similarity should not fall below a certain threshold, or

that an OCL constraint has to be fulfilled in the respective model revision.

Constraints. The constraints that can be defined for occurrence analysis or track-

ing depend on the purpose of the analysis. The constraints of an occurrence

analysis are path-independent. We distinguish constraints that consider only the

occurrences (i.e. target constraints) and constraints that take also the suspect or

the trace into account (i.e. comparative constraints). The tracking can use path-

independent and path-dependent constraints.

Most target constraints can be defined in OCL [111] or as a query on the soft-

ware metrics; they require the occurrence to have a certain characteristic. Our

approach supports the evaluation of such constraints. However, the constraints

may differ entirely for different application scenarios and for different model types.

As a consequence and due to its independence from any traceability aspects, we

do not integrate the evaluation of target constraints into our approach, but we

delegate it to the application or tool that uses our approach. Our approach pro-

vides the information about occurrence of elements in different revisions. The

tools based on our approach can provide the further analysis. Examples will be

shown in Sections 11.3 and 12.3.

The comparative constraints and the path-dependent constraints require trace-

ability information and cannot by delegated to external constraint checkers. The

comparative constraints basically compare the potential occurrence with the sus-

pect. It is only reported as an occurrence if all constraints are fulfilled. The

path-dependent constraints include even the identification path into the analysis.

We provide the following set of constraints that can be evaluated in both ways,

comparatively and path-dependently.

Equality. The equality constraint requires the traced element to be unchanged. If

this constraint is used comparatively, the suspect and the occurrence must

Chapter 10. Querying the History to Trace Elements 119

not differ. If it is evaluated path-dependent, even the corresponding elements

in all revisions on the identification path must not differ.

Similarity. The similarity constraint checks whether the similarity value exceeds

a pre-defined threshold. The threshold is a parameter of that constraint.

Again, we can use it comparatively if we just consider the direct similarity

between suspect and occurrence. If we use it path-dependently, each identi-

fication link on the path has to exceed the threshold.

Unchanged property. The unchanged property constraint requires that a certain

property of the traced element remains unchanged. For example, the traced

element is not allowed to be renamed. Hence the links on the identification

path must not be assigned with a change (update, reference change, or move)

that is given as a parameter of the constraint. The constraint is fulfilled in

spite of a change if the constraint is comparatively used in an occurrence

analysis and the change of the property has later been revoked. I.e. the

identification path contains also another change of the same property that

restores the original value.

If all links on an identification path originate from hash-based correspondences,

the constraints “equality”, “similarity”, and “unchanged property” are always ful-

filled. We further provide the following path-dependent constraints.

Difference metric. The difference metric constraint evaluates a query on the dif-

ference metrics that are assigned to the identification links on the path to be

true, e.g. “Number of critical changes < 3” or “Number of inserted parameters

= 0”. It considers all changes that have been applied over time. The query is

given as a parameter of that constraint.

Reliability. The reliability constraint checks whether the reliability of the identifi-

cation links exceeds a pre-defined threshold. The threshold is a parameter

of that constraint.

10.1.1 Assessment of the Traceability

Whenever an element is traced, it is very important to assess the reliability of

the result. The user must be able to appreciate the traceability information he is

provided with. The information required to assess the reliability can be derived

from a trace.

As shown before, each identification link has been enriched with a reliability

value that expresses how trustworthy the found correspondence is. It is derived

120 Chapter 10. Querying the History to Trace Elements

Figure 10.2: Example of identification paths that are equal regarding average and

minimum reliability

from the algorithm that computes the correspondences. We use that information

to assess the reliability of the trace.

It is not sufficient to compute one single value that expresses the overall reli-

ability of a trace. Taking values such as the average or the minimum does not

reflect the thorough reliability. An example is given in Figure 10.2 that plots the

reliabilities of the identification links of two traces. Although the trace represented

by the green (solid) line contains more unreliable links than the trace represented

by the red (dotted) line, the averages over all reliabilities of each trace do not differ.

The minimum is also the same in both cases.

Multiplication of all reliability values is also not sufficient. Since the reliability

of a single link ranges from 0 to 1, the result of the multiplication is almost 0 for

nearly all cases. An assessment is only possible if it includes each single reliability

value on a path. As a consequence we propose to plot the reliabilities and to allow

the assessment on a visual basis. The user can quickly capture how reliable a

trace is. He can furthermore see the identification links that are suspicious and

subject them to a more detailed review. Obviously, the visual assessment of the

reliability of a trace can only be utilized in semi-automatic applications so that a

user interprets the visualization. For fully automated scenarios, we recommend

to use statistical methods for the interpretation of the reliabilities.

The similarity of two elements connected by an identification link is another in-

dicator that enables an assessment of the reliability. Seen over time the similarity

gives a first impression of how frequently the traced element has been changed,

and a high similarity underpins the probability that the found element is the cor-

rect element. We propose to visualize the similarities together with the reliability

values. Further indicators that can be considered are the distance between the

suspect and the occurrence (i.e. the number of identification links in between),

and the origins of the identification links.

Chapter 10. Querying the History to Trace Elements 121

10.1.2 Assessment of the Evolution

As said before, we are not only interested in the pure identification or tracking

of an element, but also in its evolution. We are most likely interested in the

difference between the suspect and the occurrences. In addition it is reasonable

to comprehend how the element has evolved, i.e. the changes that have been

applied in the intermediate revisions.

The difference can easily be deduced by aggregating the changes that are as-

signed to the identification links of a trace. Therefore we have to eliminate over-

lapping changes; if two changes focus on the same property, we ignore the older

change, i.e. the one that has been applied before the other change.

The evolution can be captured by the aggregation of the difference metrics that

we have computed for each identification link. An advantage of the metrics is that

they even include the changes that have been applied to the nested elements of

the traced elements.

Aggregation over time. If the length of a trace (i.e. the distance between the

source revision and the target revision) is large, there are many intermediate re-

visions and each may contain several changes. We can aggregate the difference

metrics along the trace, so that they compactly express all changes that have been

applied to the traced element.

It is absurd to confront the user with each single change that has been applied

to the model elements; the changes let the user drown in a plethora of information

and he will not be able to get an overview and to capture the relevant changes. In-

stead of listing each single change, we can better aggregate the difference metrics

along the trace.

An example is a short history of a UML class model; it contains a class called

“book” that was renamed to “booklet”, later to “manuscript” and finally to “docu-

ment”. If the user selects this class in the first revision as suspect and the last

revision is the target revision, the user is not confronted with each single renam-

ing, but he only sees that the class “book” is now called “document” and that it

has been renamed three times. The old and the new name are obviously impor-

tant to know; intermediate names can be neglected. The information that the

class has been renamed more than once, however, informs the user about the

high dynamics in the elements’ evolution. Considered together with the number

of intermediate revisions, it indicates a probability for further evolution. If we as-

sume only three or four intermediate revisions in our example, we could assume

that the class will again be renamed in the next revision that will be created.

122 Chapter 10. Querying the History to Trace Elements

Aggregation over the neighborhood. Besides assessing the changes applied to

the traced element over time, we are often interested in the context of the element,

i.e. its neighborhood, as we can rarely see a model element decoupled from its

context. An example is a state of a UML state machine. Although the state might

be unchanged regarding its local properties compared to the ancestor revision, it

might be that the transitions do now connect this state with other states than

before. In this case the state probably has other semantics despite being locally

unchanged. Sometimes the context is not only given by the direct neighborhood,

but more distant elements or even the whole model has to be considered as the

context.

A listing of each single change of the neighborhood or the whole model might

become very large and cannot be overviewed due to the large amount of elements

that might have changed. It is again profitable to use difference metrics, which

can be aggregated. The user can capture the amount of change applied to the

context. Due to the significance metrics, he is further able to point out important

changes more quickly.

It is furthermore possible to aggregate the metrics of the neighborhood over time.

For each intermediate revision we can take the aggregated values that express the

differences of the neighborhood, and we can then aggregate these values over

time. Hence we are able to assess the evolution of the traced elements and their

neighborhood or even the whole model with a concise set of numbers.

10.2 Tracing Model Fragments

Very often the user is not interested in tracing single model elements over time,

but model fragments. Informally we can say that a model fragment is a subset of

a model.1 More precisely, it is a arbitrary set of model elements that can stand in

some relation to each other.

The user is able to select not only a single element as suspect, but a set of

elements. These elements are called members. It is not necessary, that the mem-

bers stand in a certain relation, such as they have to be neighbored. The user

can rather select an arbitrary set of elements, whose interrelations are probably

not obvious at a first glance. The relationships between the selected elements

are analyzed by our tracing approach in order to understand the elements as a

fragment.

The occurrence analysis of a model fragment is actually an occurrence analysis

of each member of a fragment. If we have identified all members in the target

1Note that here the term model fragment has a different meaning than in the UML specification, which

uses the term to denote different files that contain parts of a model.

Chapter 10. Querying the History to Trace Elements 123

Figure 10.3: Example of tracing a model fragment

revision, we check whether the relationships captured beforehand also exist in

the target revision. One could say that it is an occurrence analysis of multiple

elements and the constraint evaluated by the occurrence analysis is that the ele-

ments bear the same relations as in the source revision. Figure 10.3 depicts an

example. In the upper revision two elements have been selected. Each element is

traced separately by following its identification link to the lower revision. Then it

is checked whether the relationship (i.e. the edge in the internal graph represen-

tation) that existed between the members of the fragment in the source revision

(denoted by the small line connecting them) can also be found in the target revi-

sion.

It should be mentioned that it is not possible to trace the relationships directly.

The tracing approach deals with model elements represented by vertices in our

graph representation of the model (see Section 5.1). The elements are usually

visible to the user as graphical shapes in the diagram representation of the model.

In contrast, the relationships between model elements are represented as edges

in our graph representation. They are not first class citizens, because the user is

usually not able to capture them as discrete objects. They are rather logical, as

they can be encoded by attribute values in the external model representation (i.e.

an attribute that contains the local identifier of another model element).

The tracking of a model fragment is performed similarly. We follow the identi-

fication links of each member and check if the previously analyzed relationships

also exist between the newly reached elements. Hence, the tracking of model frag-

ments requires the fragments to exist in all intermediate revisions between the

source revision and the target revision. The trace breaks off if the relationships

between the members disappear.

124 Chapter 10. Querying the History to Trace Elements

10.2.1 Selection of the Fragment to be Traced

Since the user is not able to select relationships explicitly, he just selects the

elements that are to be traced together. This selection is carried out by defining

a set of suspects (i.e. the members) in the source revision. Subsequently, the

set is analyzed for direct relationships and transitive relationships between the

members.

Explicit selection of contained elements. If we trace a model element that is a

container for other model elements, we are not necessarily interested in tracing

the contained elements. An implicit inclusion of contained elements prohibits

the tracking or the occurrence analysis of the container if any contained element

cannot be traced. Hence we do not include nested elements in a fragment by

default. We rather allow, for example, to trace a class regardless of its operations.

Nested elements that are to be traced together with their container have to ex-

plicitly be selected as suspects. The containment relationship is detected by the

analysis procedure presented next. An example is the snippet of a UML model

depicted in Figure 10.4. The user explicitly selects the class “A” and its attribute

“b”; the containment relationship between “A” and “b” is selected by our analysis

of direct relationships (denoted by the symbol Rd).

Figure 10.4: Example of the selection of containment relationships

Analysis of direct relationships. In order to reveal direct relationships we check

for each element v of the set of members M whether it refers to another element

w of the set, i.e. there is a edge pointing from v to w. We can define a set Rd that

contains all edges representing such relationships between the members of the

traced fragment.

Rd = {e ∈ E | src(e) = v ∈M ∧ tgt(e) = w ∈M ∧ v 6= w},

where E is the set of edges in the graph representation, and M is a subset of the

vertices in the graph (M ⊆ V).

Chapter 10. Querying the History to Trace Elements 125

Hence, the fragment now consists of the elements selected by the user and the

direct relationships Rd revealed by our analysis. The elements are no longer a

plain set, but a fragment of the model. However, it is still possible that the set of

members contains model elements that do not share any relationship.

Figure 10.5: Example of the selection of connected model elements

Figure 10.5 shows a snippet of a UML model (left) and the internal graph rep-

resentation (right). In this example, the user has selected the classes “A” and

“B” and the generalization between them (dashed rectangle). Although the user is

not able to explicitly select the relationships between the generalization and the

classes “A” and “B”, it is part of the internal selection as it is contained in Rd.

Analysis of transitive relationships. Often a fragment is not just defined by a set

of model elements with direct relationships in between. An example are UML

classes that are connected by associations. We can see two different levels of

relationships.

1. The model elements are not connected directly, but with an extra connec-

tion element in between. For example, we assume that the UML metamodel

does not contain a direct relationship between the association and its source

and target classes, but elements of type association end express the relation-

ships.2 Figure 10.6 depicts this situation. The user can select the classes “A”

and “C” and the association “b” in the external representation of the model

(at top of the figure). The internal representation (bottom) also shows the

association ends, which are illustrated by the vertex with the diamond and

the vertex with the arrow; they need to be included in the model fragment.

2Actually, the UML metamodel defines properties that correspond to our association end elements,

however, they are either contained by the association or the classes depending on the navigability.

126 Chapter 10. Querying the History to Trace Elements

Figure 10.6: Example of the selection of a model fragment

Figure 10.7: Example of another selection of a model fragment

2. Model elements can also stand in relation to each other if they are connected

by a set or a path of other model elements. An example is shown in Figure

10.7. Here the user depicts only the classes, however, the association ex-

presses a relationship between the classes. Hence, the association and the

association ends could be included in the identification.

We can see that it is not sufficient to consider only direct relationships, but the

elements forming a relationship need to be revealed, too. We create another set of

relationships Rt. We therefore use the ability to query paths on our internal graph

representation. For each element v of the set of members M we check whether

a path p according to a query q ∈ TP exists that points to another element w of

the set. We populate Rt with the edges of the path and we define a set CE that

contains the elements included in that path except its source and target, which

have already been selected as members (i.e. the connection elements).

Rt = {e ∈ E | e ∈ p ∧ srcp(p) = v ∈M ∧ tgtp(p) = w ∈M ∧ query(p) = q ∈ TP } and

Chapter 10. Querying the History to Trace Elements 127

CE = {x ∈ V | x ∈ verticesp(p) ∧ x 6= srcp(p) ∧ x 6= tgtp(p)

∧ srcp(p) = v ∈M ∧ tgtp(p) = w ∈M ∧ query(p) = q ∈ TP } ,

where E is the set of edges and V is the set of vertices in the graph representation,

M is a subset of the vertices in the graph (M ⊆ V), and TP is the set of path

types (queries) that are to be evaluated on the members. The edges of direct and

transitive relationships can be unified in the set RM that represents all edges

contained in a fragment:

RM = Rd ∪Rt

For the example in Figure 10.7, we have defined a path expression that starts

from a class. It goes over the incoming target reference to an association end and

from there over the container reference to the association. From there it navigates

further over the nesting reference to the other association end. It finally follows the

target reference to another class (i.e. the class connected by the association). The

different types of paths TP are defined separately for each type of model element

and metamodel. Arbitrary many types of paths can be defined for a model element

type. A class in UML, for instance, has further paths that point to other classes,

e.g. the path over a generalization edge or the path over the type references of the

classes’ attributes. We recommend that the user selects the paths that are queried

in order to reveal the relationships, since the user is probably not interested in

all possible relationships. The paths are usually queried with the function evalC

that does not reveal paths that contain cycles (see Section 5.3). We can also

define queries to be evaluated with the function eval. They allow us to select

elements that are neighbored to a fragment, e.g. if the user selects a generalization

element, we can automatically select the super class and the subclass connected

by the generalization. We should mention, that the querying of paths can only

be performed on the graph representation of a model; it cannot be performed

on the versioned elements in the history, since they do not reflect the structural

relationships.

Figure 10.8 illustrates a data structure that can be used to represent the model

fragment to be traced. A fragment object represents the selected fragment. It acts

as container for all information that is required to define the fragment. The aggre-

gation members refers to the members of the fragment. The direct relationships

between the members are represented by objects of type DirectRelationship. The

transitive relationships are represented by objects of type TransitiveRelationship,

which in turn refer to the connection elements and the relationships between

them. It should be mentioned that this is a temporary data structure; it is not

part of the history.

128 Chapter 10. Querying the History to Trace Elements

Figure 10.8: Representation of a model fragment

10.2.2 Checking the Existence of Fragments

As described before, we first trace the members of a fragment and then we check

whether the relationships revealed from the source revision also exist in the target

revision. Hence the existence of the traced fragment in another revision requires

that all members can be identified in the target revision. If this condition is not

fulfilled and the fragment does not exist in the target revision, an occurrence

analysis would report no occurrence, and the tracking would stop.

If all members can be traced successfully, we check whether the elements still

form the same model fragment, i.e. the relationships between the elements are

still existent. In the same manner as we have computed the sets of relationships

in the source revision (i.e. RM and CE) we can compute the respective sets of

relationships in the target revision, Rt
M and Ct

E. The connection elements of CE

can also be traced individually. Their identification in the target revision is the

second requirement for the model fragment to be traced, i.e. an identification path

(cf. Definition 6.6 on page 68) in between exists.

∀ v ∈ CE : ∃ v′ ∈ Ct
E : ∃ ip(v, v′)

Finally we have to check whether each relationship in RM has a corresponding

relationship in Rt
M :

∀ e ∈ RM : ∃ c′ ∈ Rt
M | src(c) can be traced to src(c′)

and tgt(c) can be traced to tgt(c′) .

If all of these requirements are fulfilled, we have successfully traced the model

fragment to another revision.

Chapter 10. Querying the History to Trace Elements 129

Depending on the use case it is not always required that all relationships of

a model fragment exist in the target revision. The user is usually interested in

the elements corresponding to the member of the fragment and the additional

information whether these elements still form the same fragment as in the source

revision due to their relationships. The single relationships and the connection

elements play a subordinate role for the user. They only become interesting for

the assessment of the tracing. We further allow that some of the members are

optional, i.e. they are not required in order to trace the fragment, e.g. if we trace a

UML class with all its subclasses, we are also interested in the occurrence of the

classes if the inheritance is missing, i.e. the generalization elements can be set to

be optional.

Checking further constraints. For the occurrence analysis and the tracking of

single model elements we have introduced the ability to check constraints on the

found elements. The same mechanism is provided for traced model fragments. As

for single elements, we support the evaluation of comparative and path-dependent

constraints. The evaluation of path-independent constraints should be performed

by the tool that uses the tracing approach. Especially for model fragments the

additional constraints can be arbitrarily complex and use case specific.

10.2.3 Assessment of the Tracing

The tracing of a model fragment returns a set of traces, so that each member and

each connection element of the fragment is assigned with a separate trace. If we

performed an occurrence analysis, we would get a second instance of the fragment

data structure as presented before (see Figure 10.8). This fragment represents the

occurrence of the fragment in the target revision. If we tracked the fragment, we

would get an instance of that structure for each revision along the traces. The

traces and the fragment instances are aggregated in a fragment trace. Figure 10.9

depicts the respective data structure.

In order to assess the found occurrences of a traced model fragment we should

first assess the completeness of the occurrences. Hence we calculate the ratio

between found and traced members, and the respective ratios for direct and tran-

sitive relationships.

The reliability can again be derived from the reliabilities of the single identifi-

cation links of the traces. Since we now trace multiple elements at a time, it is

even less sufficient to compute a single value expressing the reliability. Again, we

propose an assessment based on a visualization. If we plot the reliability values

of all traces, the visualization becomes very crowded and we cannot capture the

130 Chapter 10. Querying the History to Trace Elements

Figure 10.9: Structure of a fragment trace

Figure 10.10: Example of a plot of all reliability values of a traced fragment

reliabilities of each single member we traced. However, it gives an overview of the

reliabilities of all members at a time. An example is given in Figure 10.10. Al-

ready, for four traces the plot does not enable the reliability assessment of each

member, but we can see that all traces have a low reliability at the same step. It

is recommended to review that particular step in more detail.

While the plot of all reliabilities enables an overall assessment of the traces of

the fragment, we support the analysis of the reliabilities of each member by the

means of box plots. Box plots are easy to comprehend. Each box illustrates the

reliability of the identification links of one trace. The boxes show the range of the

reliability values. The box vertically starts at the 1st quartile and ends at the third

quartile. The median is shown by a bold line inside the box. The whiskers show

minimum and maximum values if they stay within 1.5 standard derivations above

or below the median. Values outside this range are called outliers and marked by

small circles. We can display several box plots at a time, so that the user can get

an overview of the reliabilities inside a trace. Figure 10.11 gives examples. The

trace of element “A” has a very good reliability. The majority of the identification

Chapter 10. Querying the History to Trace Elements 131

Figure 10.11: Examples of the box plots showing the reliabilities of traces of members

links of the trace have a reliability of 1. The exceptions have still high reliabilities.

Hence we can trust in the trace of element “A”. The trace of element “B” has more

identification links with a lower reliability, however, they are still very good, so

that we can trust in that trace, too. For element “C” an identification link with

a rather low reliability exists. We should inspect that trace in more detail. This

can be done by plotting the reliabilities of that single trace in the same manner as

for tracing single elements. Element “D” in our example can only be traced over

several identification links with low reliability values. We better should not trust

in that trace. A manual inspection is required.

Again, the similarities can be regarded for the assessment of the traces. We

recommend to visualize the similarities as box plots, too. Hence we get pairs of

box plots for each member of the traced model fragment. The interpretation of the

box plots remains the same.

The evolution of the traced model fragment can be captured by aggregating the

difference metrics that are assigned to the identification links of the traces of the

members. Since the metrics express the differences in numbers, we can easily

accumulate the values of the metrics of all members, so that we can assess the

evolution.

10.3 Application Scenarios

In order to get an understanding of the different tracing tasks we briefly want to

introduce typical use cases in which the tracing is applied. Therefore we pick up

the scenarios and questions we have described in Section 1.5.1 and Section 1.5.2.

132 Chapter 10. Querying the History to Trace Elements

10.3.1 Typical Scenarios

External Links: A very regular use case for tracing model elements is the linking

by external tools, i.e. an external tool points to the elements inside a model

revision. An example is a requirement engineering tool that assigns each

model element to one or more requirements. The link between requirements

and model elements are mostly realized in a way that the local identifiers

of the model elements are stored within the requirements engineering tool.

In order to recover the links for a newer revision of the model, it is mostly

sufficient to perform an identification. However, the evolution data computed

by our approach is very important information, since the user is enabled to

check whether the linked model element has been changed that extensively

that it cannot any longer be assigned with the requirement.

External links also occur if several models are linked to each other so that

elements may refer to elements from other models. A model that contains

references to elements in another model is from the technical point of view

the same as a tool. However, in order to weave linked models, it is often

necessary that linked model elements have to fulfill certain constraints, e.g.

classes are linked if they have a common super class. The linking itself can

then be assigned with OCL constraints or the like. If newer revisions of the

models are to be weaved, we can perform an occurrence analysis that checks

that the additional constraints are fulfilled. If they are not fulfilled anymore,

the weaving can be prohibited in order to avoid incorrect models.

Evolution Analysis: Evolution analysis deals with the inspection of a model over

time. Usually it measures certain metrics for the model or for certain ele-

ments inside the model. For example, we want to measure how the model

or certain elements have grown over time. For this purpose we recommend

tracking. It usually starts at the creation of the inspected element and ends

with its deletion regardless the number of changes applied meanwhile, be-

cause the user is most probably interested in the complete lifetime of the

suspect. Thus, constraints do not have to be defined. A lot of evolution in-

formation can already be queried from the traces that are returned by the

tracking. Information about changes is given by the change objects and dif-

ference metrics. Furthermore, the software metrics that are stored in the

history can be queried for each revision in which the element(s) exist. They

can be analyzed as part of the evolution analysis that uses our approach.

It is not necessary to limit the evolution analysis to the data stored in the

history. It is also possible to query only the identification information and to

run separate analyzes such as logical coupling analysis.

Chapter 10. Querying the History to Trace Elements 133

Metamodel Evolution: If a metamodel evolves, it is often wanted to migrate the

existing instances of that metamodel to the newer version. Therefore, it is

necessary to uniquely identify the metaobjects of the old version in the newer

one. If the newer metaobjects are identified, one can create transformation

rules to automatically migrate the instances. The rules usually have to be

created with a lot of expert knowledge. If they are created one after another,

identification can be used to assist the developer in finding that metaob-

ject in the newer metamodel that corresponds to the metaobject of the older

metamodel. However, the task is still very tedious. Sometimes an occurrence

analysis can be performed with additional constraints that a metaobject has

to fulfill.

Model Merging: In collaborative and distributed development the different vari-

ants of a model are often developed in parallel. If variants are managed as

different branches in the software configuration management system, we can

support the merging of models. Occurrence analysis can be used to check

whether the elements of one variant also exist in the other variant or in the

base revision. A simple three-way-merging approach compares the variants

to each other and to the base revision. In contrast, occurrence analysis con-

siders also the revisions between the base revision and the variants. Hence,

it is more precise and ensures that the merged elements have the same iden-

tity. Furthermore, the definition of constraints can be used to prohibit incor-

rect merging. The evolution information assigned to the traces can be used

for the analysis of merge conflicts.

Bug Tracing: A use case that strongly utilizes constraints in an occurrence anal-

ysis is bug tracing. In this case, we have a suspect or a set of suspects that

are involved in a bug, and we want to locate occurrences of that bug in other

revisions. We assume that the bug is only present in another revision (and

should be fixed there) if the set of elements involved in the bug occurs as

a whole and with only very small changes in the other revision. Therefore,

similarities of the elements in different revisions must exceed an additional

threshold and the number of critical and medium changes has to be zero to

consider the elements as a repetition of the bug.

10.3.2 Answering Typical Questions

Besides using traceability information for the scenarios presented above, it can

be used to answer even very concrete questions. Subsequently, we list different

questions and describe how they can be answered.

134 Chapter 10. Querying the History to Trace Elements

• How old is the given element? / In which revision has the given element been

deleted?

Track the element backwards / forward.

• In which revisions and/or variants of the model does the given element(s)

exist?

For an element: Query the identity of the versioned element and check all other

versioned elements that are contained in that identity.

For a set of elements: Create a fragment and perform an occurrence analysis

on all revisions in which you are interested.

• How much/often has the given element been changed from a certain point in

the past until now?

Track the element and perform a query of the change objects or the difference

metrics that are assigned to the returned trace.

• Are the given element of the given model revision and the equally named

element in another model revision the same?

Check if both versioned elements are assigned to the same identity.

• When was the given element renamed the last time?

Track the element backwards with a constraint that prohibits an update on the

attribute “name” or a difference metric constraint saying “Number of changed

attributes of type ‘name’ = 0”.

• Since when does the given group of elements exists? Did it appear in one

step or has it “grown”?

Create a fragment with all elements being optional members. Then track the

fragment backwards.

• Have the elements of the group changed their connections among each other?

Trace the fragment and analyze the relationships and connection elements in

the found occurrence.

• Did elements of the given fragment disappear or are they just no longer con-

nected?

Create a fragment so that the probably unconnected elements are optional

members. Then perform an occurrence analysis in the respective revisions.

We see that the history can be easily queried to answer a broad spectrum of

questions. However, the list of questions, as well as the application scenarios we

discussed previously, are not limited to those mentioned here. They should rather

give an impression of the possibilities.

Part IV

Evaluation

137

Chapter 11

Prototype Implementation

For a proof of concept, we have implemented our tracing approach in a prototype.

We developed a tracing service that can be integrated into different applications.

It includes the history representation, the computation of identification links and

evolution information, and functions to trace model elements and fragments over

time. The implementation of the service is described in Section 11.1. The role

of the underlying differencing approach SiDiff and the necessary modifications

to it are discussed in Section 11.2. In addition we present the prototype of an

interactive tracing tool with a graphical user interface in Section 11.3. It is based

on the implementation of our tracing service and verifies its applicability.

11.1 Implementation of the Tracing Service

We have implemented our tracing approach as a service based on the OSGi plat-

form [118]. The OSGi platform is a framework that allows the realization of

component-based software systems. Each component (i.e. called a bundle in

OSGi) can provide several services. A service is basically a plain Java object that

can be used to fulfill a certain task. The OSGi platform provides a central registry

and routines for registration, binding, and execution of services. OSGi is widely

accepted for Java systems and builds the basis for the integrated development

environment Eclipse [35]. Thus, the implementation of our approach is ready to

use in Eclipse and Eclipse-based applications.

The usage of OSGi allows us to smoothly integrate the SiDiff engine into our

approach, because it has also been realized on basis of the OSGi platform (see

Section 4.3). The kernel of SiDiff is thereby divided into several components that

provide different services each. This enables a sufficient reusability, because a

single bundle can be reused at different locations in the realized software. We

can thus reuse a lot of functionality that is offered by SiDiff, e.g. for evaluating

expressions or reading XML-based configuration files.

138 Chapter 11. Prototype Implementation

Figure 11.1: The architecture of the tracing service

It is a common design pattern in OSGi-based applications to pack the defini-

tion of a service and its implementation in separate bundles. This provides a high

flexibility, because components have only references to the interface bundles that

define the services. The implementation can be exchanged anytime by replacing

the implementation bundles with others. We are thus able to realize our imple-

mentation of the tracing approach on the basis of the interface bundles of SiDiff

without being dependent from the concrete implementation.

11.1.1 Architectural Overview

Figure 11.1 illustrates the architecture of our tracing service. The main compo-

nent tracing service contains the core routines of the tracing approach, such as

traversing the revisions of a history, computing identification links, etc. It also

defines the OSGi service TracingService that acts as an interface of our approach.

The tracing service uses the history data model as presented in Chapter 6. The

model is an object-oriented interface to all traceability and evolution information

that is computed by our approach. Due to the large amount of data, we have im-

plemented the model as an object-relational wrapper (i.e. a transient data struc-

ture), so that all information is stored in a relational database. The access to the

database is encapsulated in the database access component in order to keep our

implementation independent from particular database management systems. For

our prototype we have used the MySQL database system [117].

The model revisions are managed in a component called model storage. While

the history data model stores only references to revisions and versioned elements

Chapter 11. Prototype Implementation 139

(i.e. in the database), the model revisions are given by the original serialization

files of the respective modeling tool (i.e. in the file system). The model storage

manages the files in the file system and maps the revision objects of the history

onto them. It handles the deserialization and transformation of model revisions

into the internal graph representation. It further provides a cache to keep the

revisions to be compared in the memory, so that we do not have to reload them

if a revision is compared to an older ancestor that has been analyzed earlier. The

model storage is partly based on SiDiff, which already comes with routines for

loading, transforming, and managing models. However, SiDiff is not required

from the conceptual point of view, but it was reused for convenience.

In order to keep our implementation independent from particular metamodels,

we realized a component called model type registry. This component manages the

different types of models that are supported by our tracing service. Each model

type is described by a type specification component. The type specification holds

the metamodel, the transformation rules to map models onto our internal graph

representation, and all configuration parameters in order to run our tracing ap-

proach on a history of models of that type. Examples of configuration parameters

are the configuration files for SiDiff and the coefficients for the reliability calcula-

tion.

The difference and matching calculator encapsulates the computation of corre-

spondences and differences with SiDiff. It configures and executes SiDiff accord-

ing to the configuration parameters of the type specification for the current type of

model. We are thus able to compute this information for different types of models.

It is based on the interfaces of the different services and bundles of SiDiff, so that

the implementation can be exchanged.

The metrics calculator computes the difference metrics used for assessing the

evolution of traced elements. It is also based on the SiDiff kernel, although other

difference engines could also be used. The metrics computation is also parameter-

ized by a type specification so that differences of model revisions of arbitrary types

can be measured. Furthermore, the metrics calculator can compute a broad num-

ber of software metrics that can be realized by counting operations on the model

revisions. We realized the metrics calculator as a separate component, because

we think that especially the computation of difference metrics can also be applied

to other use cases that are independent from our tracing approach.

11.1.2 Model Representation with EMF

The internal graph representation of model revisions that keeps our approach

independent from particular types of models has been realized with the Eclipse

140 Chapter 11. Prototype Implementation

Modeling Framework (EMF) [31]. EMF is compatible with the internal graph rep-

resentation presented before. The EObjects in EMF represent elements and are

thus the vertices of our graph; the edges of our graph are given by the refer-

ences between EObjects. The types of vertices and edges are given by EClass and

EReference objects in EMF. The attributes of an element type are defined by the

EAttributes. All information inside a model revision can be accessed through the

reflective interface functions given by the EMF framework.

In addition, the Eclipse Modeling Framework allows us to define the graph

schema explicitly. It is basically the metamodel and can be extended with metain-

formation, such as type-specific configuration data, and we can technically ensure

that all revisions of a history conform to the same metamodel.

With EMF we can represent models of arbitrary type. EMF realizations of differ-

ent metamodels already exist, e.g. the UML2 implementation [36], and new meta-

models can easily be created with EMF. Many modeling tools use EMF as basis for

their internal model representation, and they use EMF serialization schemas to

store their models in files. Hence, with the usage of EMF we ease the application

of our tracing approach in existing modeling environments. Another advantage is

that the current version of the SiDiff engine natively supports EMF-based models.

We can apply the SiDiff comparison to the histories, which we analyze, without

expensive transformation steps.

However, we even support external model representations that are not based

on the Eclipse Modeling Framework. If the serialized model revisions are given

in an XML format we can transform them with XSLT [151] into an internal rep-

resentation. In case of non-XML formats, such as the *.mdl format of MATLAB/-

SimulinkTM, we have to implement a parser that reads the proprietary files. Due

to the fact that SiDiff uses the same format, however, we are able to reuse all

transformation and parser components of SiDiff.

We cache the internal graph representations in the file system by means of

the (de-)serialization mechanism of EMF. The original model revisions have to

be transformed into the internal graph representations just once. Whenever the

graph representation is needed again, e.g. if constraints are evaluated during an

occurrence analysis, it can be loaded from the file-system without performing the

transformation again.

11.1.3 The History Data Model

All traceability and evolution information can be accessed through the history that

we presented in Chapter 6. In general, the data model has been implemented as

defined before. Figure 11.2 depicts the design. It has been extended by conve-

Chapter 11. Prototype Implementation 141

nience operations for better access to the stored information.

The History contains an operation getRevision that returns the revision identi-

fied by the revision number given as a parameter. It is not necessary to traverse

of the whole history in order to get a particular revision. Similarly, the revision

contains an operation getElement that returns the versioned element represent-

ing the model element with the given identifier. The operation translates between

elements of the external representation of the model revision and the respective

versioned elements if the same identifiers are used.

The Identity has been enriched by the operation getElements that returns all

versioned elements assigned to the identity in a particular revision that is given

as a parameter. This allows us to easily identify an element of one revision in

another. The Java statement would be:

suspect.getIdentity().getElements(targetRevision),

where suspect is the versioned element representing the element to be traced and

targetRevision represents the revision in which we want to identify the correspond-

ing element of the suspect.

The IdentificationLink has got three additional operations. The operation get-

Distance returns the distance between the ancestor and the descendant of the

link. Usually it is 1, but for gaps it provides information about the gap size. The

operation getChanges returns a list of changes that have been applied to the ele-

ment along that link. A single difference metric can be queried with the operation

getDifferenceMetricValue.

The VersionedElement has also been enriched by a convenience operation, get-

SoftwareMetricValue, that allows us to query single metric values.

The Trace has got many additional operations. The distance between the sus-

pect and the target can be queried with the getDistance operation. getChanges

aggregates all changes that have been applied to the traced element along the

trace. A single difference metric can be queried with the operation getDifference-

MetricValue; the metric aggregates all changes along the trace. The operations

getAllReliabilities and getAllSimilarities return map objects that store for each re-

vision the reliability and the similarity that are assigned to the link pointing to

that revision. Furthermore, we inserted operations for querying the minimum and

the average reliability and similarity of all identification links of a trace. The op-

eration getDirectSimilarity performs a direct comparison of the suspect and the

occurrence and returns their similarity. With getRatioOfOrigins we can query the

ratio of identification links with the given type of origin to all identification links

of the trace. Finally, the trace object provides access to the metrics of the traced

elements. Software metrics and difference metrics can be queried as maps that

142 Chapter 11. Prototype Implementation

store for each revision the value of the given software metric and the difference

metric that is assigned to the link pointing to that revision.

Due to the limitation of the heap space in Java virtual machines and the large

size of history information, we have implemented the history data model as an

object-relational wrapper. It allows us to load only the relevant parts of a history

into the memory. We always create an object representation of the history and the

revisions, because there is only one history object and the number of revisions

is also rather low. The number of Java objects representing versioned elements,

identification links and identities, however, can explode with the size of the model

and the number of revisions. As a consequence, we only create Java objects if

needed. Each time a versioned element, identification link or identity is requested,

a new object is returned to avoid cross references that contradict Java’s garbage

collection. Trace objects are not persisted in the database. They are rather tem-

porary objects that are created if model elements are traced. This implementation

enables a scalability in size of models and in the number of revisions a history can

have.

We encapsulated the data behind a set of interfaces that only provide reading

access to the stored information. From outside the history can be used to query

traceability and evolution information, but it neither allows the creation or manip-

ulation of histories nor the computation of identification links and evolution data.

This functionality is accessible through a service interface.

11.1.4 The Service Interface

The tracing approach can be used through a single interface given by the class

TracingService as depicted in Figure 11.3. It provides operations to create and

extend histories, to access existing histories from the database, and to trace ele-

ments or fragments.

New histories can be created with the createHistory operation. It is parameter-

ized with the name, the type, and a description of the history. The name is used

to identify the history within the service as it supports the management for arbi-

trary many histories. The type defines the type of the model whose history is to

be analyzed. The type information is checked whenever a new revision is added to

the history, so that we do not compare apples with oranges. The description is for

describing the history; it can be left empty. All values are used to create an object

of the type History of our data model. This object is returned and can be used to

access traceability and evolution information later.

Chapter 11. Prototype Implementation 143

Figure 11.2: The implemented data model for histories

144 Chapter 11. Prototype Implementation

Figure 11.3: Interface of the tracing service

Existing histories can be requested by their name. It is given to the getHistory

operation, and the respective history object is returned. This allows to access the

tracing information from histories that have been analyzed earlier.

Once a history has been created or loaded from the tracing service, we can add

new revisions to that history by calling the addRevision operation. It requires

the history, a revision number and the resource as parameters. Optionally, one or

more ancestor revisions can be given. The revision number is the unique identifier

of the revision within the history. The resource is an EMF representation of the

model revision. The operation returns an object of type Revision of our history data

model. It represents the revision and can be used as parameter for further calls

of the addRevision operation in order to declare this revision to be the ancestor

of another revision. If no ancestor revisions are given as parameter, the added

revision is a root revision of the history. Whenever a new revision is added to

the history, all traceability and evolution information is computed as described in

Chapter 7. This requires that revisions are added in their chronological order. We

do not provide a function for inserting a revision in the middle of the history.

Interface for tracing model elements. The tracing service provides two operations

to trace model elements. An occurrence analysis can be performed with the op-

eration locateOccurrence. It requires a suspect element, a target revision, and an

optional set of constraints as parameters. If the suspect can be traced to the target

revision, the operation returns the respective traces otherwise it returns an empty

set.1 The tracking of an element can be triggered with the trackElement operation.

It requires the element to be tracked, a direction (i.e. forward or backward), and

an optional set of constraints that have to be fulfilled while tracking the element.

1Our approach supports that an element can be traced to multiple elements inside one revision if the

element has been copied. However, the current implementation of the underlying SiDiff approach

does not report such cases.

Chapter 11. Prototype Implementation 145

The operation also returns trace objects for each occurrence in the target revision

(i.e. the farest revision to which the element has been tracked).

In order to trace model fragments, the tracing service offers the operation cre-

ateFragment that enables the definition of a fragment. It is called with a set of

members and a set of optional members. It furthermore requires a set of path

types in order to reveal the transitive relationships between the elements. The

fragment definition is returned as an object of the type Fragment. It contains

the members as well as their relationships. The tracing can be triggered with

the operations locateOccurrence and trackFragment. They have to be used in the

same manner as the operations for single model elements, however, they expect

a fragment instead of a versioned element, and they return objects of the type

FragmentTrace.

Figure 11.4 shows the design of fragments and fragment traces. It implements

the data structure presented in Section 10.2. Fragment acts as container for all

information that is required to define the fragment. We differentiate between mem-

bers and optional members, which both are versioned elements. We represent the

direct relationships by objects of type DirectRelationship. The transitive relation-

ships are represented by objects of type TransitiveRelationship, which in turn refer

to the connection elements and the relationships between them. Furthermore, the

fragment offers operations that return the numbers of the different types of ob-

jects. Occurrences of the traced fragment in other revisions are represented by

FragmentOccurence objects. In contrast to the former model in Section 10.2 (Fig-

ure 10.9), we have now realized them as subclasses of the fragment. The class

FragmentOccurence provides an operation to compute the ratio of members in

the found fragment to the number of members in the traced fragment (getMem-

berCompleteness). Similar operations are provided to compute the ratio of found

relationships. The operation getTraceOfMember returns the trace of a particular

member of a found fragment. All occurrences of a traced fragment are aggregated

in a FragmentTrace object. It is returned by the trace operation locateOccurrence

and trackFragment of the tracing service. It provides an operation to query the

occurrences of the traced fragments in a particular revision.

Configuration and re-computation. The operation recomputeHistory can be used

to recompute all traceability and evolution information of the given history. Thus,

the user is able to reconfigure the tracing approach, e.g. by manipulating the

comparison configuration of SiDiff. All information can then be recomputed with-

out recreating the history, i.e. we do not have to add all model revisions again.

The recomputeHistory operation can also be used to compute the information at a

stretch if we switch off the behavior to analyze revisions immediately when they

146 Chapter 11. Prototype Implementation

Figure 11.4: The design of fragments and fragment traces

are added to the history.

Furthermore, the tracing service provides several configuration operations that

allow us to set global parameters for the tracing approach, indicated by the config-

ure operation in Figure 11.3.2 We can set all information needed to connect to the

2For each parameter exists a get operation and a set operation, however, in Figure 11.3 we indicated

them by one single operation in order to save space.

Chapter 11. Prototype Implementation 147

relational database that stores the history (i.e. IP and port of the database server,

database name, user and password). We can further define technical properties,

namely the folder where the original model files are stored in the file system and

the size of the cache for holding the model revisions to be compared in memory.

And we can configure the functioning of our implementation by setting the max-

imum size of gaps (i.e. to how many ancestors revisions a revision is compared)

and whether tracing information is computed immediately when a new revision is

added or only on explicit request.

Manipulation of traceability information. In order to manipulate the traceability

information computed by our approach, the tracing service provides one opera-

tion for each correction task as described in Section 8.2. The operations have

not been realized as operations of the classes of the history data model to strictly

separate between reading and editing of traceability information. The operation

removeElementFromIdentity removes the versioned element given as a parameter

from its identity. The element is automatically assigned with a new identity. A

single identification link can be removed with the operation removeIdentification-

Link; it takes the link to be removed as a parameter. New links can be created by

calling the createManualIdentificationLink operation. Besides the elements to be

linked, it requires the reliability value that expresses the belief of the user. With

resetReliability the user can assign a new reliability value to an identification link.

11.1.5 Computation of Difference Metrics

The computation of difference metrics is independent from any traceability sce-

nario, hence we have realized it as a self-contained module. It requires a tree-like

graph representation of the model revisions, a correspondence table that denotes

pairs of model elements that correspond, and a difference computation engine

that provides us with the following types of changes:

• changed attributes,

• changed references,

• structural changes (elements that exist only in one revision), and

• moved elements (i.e. the reference to the container has changed)

Optionally, the correspondence table may contain information about similarities

between each corresponding pair of elements. However, from the point of view of

difference metrics the similarity is just a numerical value between 0 and 1; its

computation is concern of the differencing engine.

148 Chapter 11. Prototype Implementation

In our case we already have a tree-like graph representation of the analyzed

model revisions (see Section 5.1). The correspondence table is filled with the in-

formation given by identification links; they provide the correspondences and sim-

ilarity values. We use SiDiff as difference computation engine, since it is already

used by the tracing approach. Thus, no additional engine would be required.

11.2 Usage of the SiDiff Toolbox

The core problem that was to be solved in our tracing approach is the computation

of correspondences between the elements of different model revisions. We utilized

the differencing tool SiDiff to reveal the matching. In order to decouple the im-

plementation of our approach from SiDiff, we encapsulated the SiDiff algorithm

behind a facade class. The facade provides four methods:

compare() runs a normal comparison of two model revisions. It computes the

similarities, reveals correspondences, and computes the difference. It is used

when two subsequent revisions are compared (see Listing 7.1).

compareDistantRevisions() is similar to compare(), however, it narrows the compu-

tation down to a given set of model elements. Hence, SiDiff does not compare

the revisions completely, but only some parts. Since this method is used to

compare two revisions that do not stand in direct ancestor-descendant rela-

tionship, the correspondences between the elements that are not compared

are set according to the existing identification paths in between (see Listing

7.3 and Listing 11.1).

computeSimilarities() computes the similarities between all elements of two revi-

sions that do not stand in ancestor-descendant relationship. The correspon-

dences are therefore set according to the identification paths connecting the

elements, and the similarity computation is performed. This method is used

to compute the similarities if gaps are closed (Listing 7.4) and if the getDirect-

Similarity() operation of a trace is called (see Section 11.1.3).

computeDifferences() is similar to computeSimilarities(), however, it computes the

difference. It is used for the recomputation of differences and difference

metrics whenever identification links are manually created or deleted.

Each method can be parameterized to write the computed data into the database

before it is returned to the caller. If the method is called for the same revisions

again, the data from the database can be returned.

As exchange format for the computed data, such as correspondence information

or similarity tables, we used the data structures that are provided to us by SiDiff.

Chapter 11. Prototype Implementation 149

Hence we can work with the data without converting it beforehand. However,

our implementation does not refer to any concrete implementation but only refers

to the interfaces defined by SiDiff. All SiDiff services except some general utilities

(e.g. for filtering sets, managing files, etc.) are loosely coupled by the configuration

of the OSGi platform that defines which concrete implementations are bound to

the interfaces.

11.2.1 Modification and Extension of SiDiff

Besides the use of existing services of SiDiff we had to apply some modifications

and extensions. The compareDistantRevisions() operation performs a comparison

of just a part of the model. In order to do so, we configure SiDiff to use a spe-

cial candidates service, and we create an initial matching based on the identities

before we run the SiDiff algorithm. Listing 11.1 shows the modifications. SiDiff

uses a candidates service to check which elements of two revisions are candidates

for each other, i.e. whether they can correspond or not. While the standard can-

didates service of SiDiff just checks for the elements to be matched if they are of

the same type and if they are not matched yet, the newly implemented candidates

service (i.e. the TracingCandidatesService) enables the explicit setting of candidate

pairs.

We create an instance of this service (line 3) and create pairs of candidates

so that each candidate element of the first revision can be matched only with

an equally-typed candidate element of the second revision (lines 4–10). SiDiff is

configured to use this candidates service (line 11), so that it can only produce cor-

respondences between the elements of the beforehand computed candidate sets.

As shown in Section 4.3.2, the SiDiff algorithm does not only analyze local prop-

erties to find correspondences, but it also uses information about neighbored ele-

ments (e.g. if they have been matched already). In order to reveal correspondences

between the candidate elements, we have to inject the correspondence informa-

tion about the elements that we have traced already. We iterate over all elements

of the first revision that are not in the candidate set (line 13). If the element

can be traced to the second revision, we create a correspondence (lines 14–17).

After the correspondences have been created, we can call SiDiff and return the

result (line 18). Due to our special candidates service, SiDiff can only reveal

correspondences between the candidate elements of the compared revisions (i.e.

the elements which are not linked yet). The similarity computation within SiDiff,

however, can work without any modification as the information about correspon-

dences between neighbored elements has been injected as initial matching.

150 Chapter 11. Prototype Implementation

1 function compareDistantRevisions(Revision r1, Revision r2,

2 Set c1, Set c2) {

3 CandidatesService ca = new TracingCandidatesService();

4 for each Element e1 in c1 {

5 for each Element e2 in c2 {

6 if (e1.getType() == e2.getType()) {

7 ca.addCandidatePair(e1,e2);

8 }

9 }

10 }

11 SiDiff.setCandidatesService(ca);

12 CorrespondencesService co = SiDiff.getCorrespondencesService();

13 for each Element e1 in r1\c1 {

14 Element e2 = e1.getIdentity().getElements(r2);

15 if (e2 != null) {

16 co.addCorrespondence(e1,e2);

17 }

18 }

19 return SiDiff.compare(r1,r2);

20 }

Listing 11.1: Modified SiDiff variant to compare parts of a model

The computeSimilarities() operation computes the similarities between two mod-

els. Usually, the similarities are computed by the SiDiff algorithm, which itera-

tively computes the similarities and the correspondences as long as new corre-

spondences can be found. The similarities are thereby distributed over the whole

model similar to the similarity flooding algorithm (see Section 4.3.3). Here, we set

the correspondences directly and run the similarities calculator afterwards. We

repeat the similarity computation three times, which is the average number of it-

erations of the unmodified SiDiff algorithm. Therefore, we enriched SiDiff with an

external interface to the similarity calculator and to the similarities table.

While our approach deals with objects of the types Revision and VersionedEle-

ment, SiDiff requires EMF Resource objects that contain the model elements as ob-

jects of type EObject. Therefore, we realized the above-mentioned operations com-

pare(), compareDistantRevisions(), computeSimilarities(), and computeDifference() in

a way that they perform an implicit translation of all objects.

Reliability computation. In order to compute reliability values for found corre-

spondences we implemented a new service called ReliabilityCalculator that calcu-

lates the values as described in Section 8.1. Since we wanted to keep the changes

Chapter 11. Prototype Implementation 151

to SiDiff components as small as possible and we did not want to manipulate

the SiDiff algorithm directly, we realized the reliability calculator as a passive

component that observes the SiDiff algorithm. Therefore, we extended the SiDiff

components that they fire events whenever

1. the similarities computation of a pair of elements starts or ends,

2. a new comparison rule is evaluated,

3. an existing correspondence was used by a comparison rule, and

4. a new correspondence is found.

With the first three types of events we are able to capture the similarities that

depend on other correspondences in order to compute the cleaned similarity (see

Section 8.1.3). The fourth type of event allows us to capture the state of the

comparison if a correspondence is found. We can query the similarities, the other

candidates, the number of elements that are still unmatched, and so on.3 In

order to store the reliability information with the respective correspondence, we

adapted the correspondence service of SiDiff. The adaptation allows us to attach

any additional information to a correspondence.

The coefficients that are used while calculating the reliability values are stored

in an XML-based file as depicted in Listing 11.2.

1 <Class name="Class"

2 minimalHashReliability="0.8" // base

3 equalPathWeight="0.1" // a1 for hash−based correspondences

4 equalParentWeight="0.05" // a2 ”

5 hashContextWeight="0.02" // a3 ”

6 probabilityWeight="0.1" // a1 for i t e ra t i v e correspondences

7 similarityDistanceWeight="0.5" // a2 ”

8 cleanedSimilarityWeight="0.4" // a3 ”

9 parentReliabilityWeight="0.0" // a4 ”

10 similarityThreshold="0.5" // the threshold used by SiDi f f

11 moveAllowed="true" // the element is allowed to be moved

12 />

Listing 11.2: Example of a setting of reliability coefficients

Listing 11.3 depicts an example of the specification of the context of model ele-

ments. It is used while computing the reliability of hash-based correspondences.

3The reliability of a hash-based correspondence can be computed by analyzing all correspondences

found by the hash-based matcher at once. It is not necessary to monitor the process of computing

the hash-based correspondences.

152 Chapter 11. Prototype Implementation

1 <Class name="Class">

2 <Context name="HashReliabilityContext">

3 <Path expr="generalizations/generalElement" />

4 <PathC expr="assocEnds/association/assocEnds/target" />

5 </Context>

6 </Class>

Listing 11.3: Example of a context definition

Here, we see the context of classes in UML. It consists of the super classes and the

classes referred to by associations. The element <Path> denotes the evaluation of

path expression on the model. <PathC> evaluates the query without cycling (i.e.

vertices are not visited twice).

Persistence of manual corrections. The manual correction of traceability infor-

mation is often a tedious task. The user has to manually inspect the links in order

to prove their correctness. In case of newly created links the task is even more

complex, since the user has to manually reveal the correspondence information

that was not found by the heuristics. As a consequence the decisions made by the

user have to be made persistent. Of course, the changes applied to the history are

stored, but if the identification links will be recomputed, the user decisions would

get lost.

We serialize the decisions of the user. We store created links as tuples of two

versioned elements and a reliability value. Removed links are stored as tuples of

two versioned elements. The tuples are stored in XML files so that one file exists

for each pair of revisions. Listing 11.4 depicts a snippet of such a file.

Whenever we compare two revisions during the recomputation of the traceability

information, we load the file that contains the manual decisions for that pair

of revisions. Before we perform the model comparison with SiDiff, we create a

correspondence for each Correspondence defined in the file. The similarity of the

corresponding elements it currently set to 1, as it is done for hash-based matches.

For NotACandidate tuples in the file we remove the denoted elements from the list

of candidates.

11.2.2 Compatibility to Other Model Comparison Approaches

The correspondence computation needed by our tracing approach can also be

performed by other algorithms or tools than SiDiff. However, there is a set of

requirements that have to be fulfilled by alternative approaches:

Chapter 11. Prototype Implementation 153

1 <ManualCorrespondenceDecisions>

2 <Correspondence idA="_s034b17" idB="_r083c98" rel="1.0" />

3 <Correspondence idA="_s172b87" idB="_r293c01" rel="0.9" />

4 <NotACandidate idA="_s683b24" idB="_r527c63" />

5 </ManualCorrespondenceDecisions>

Listing 11.4: Example of persisted user decisions

• The computation has to be based on similarities, so that even elements with-

out persistent identifiers can be matched if they have changed.

• The alternative approach should be generic or configurable to support differ-

ent types of models. Otherwise we would have to adapt different approaches

for different types of models.

• The correspondences and similarities computed by the approach have to be

accessible.

• We must be able to set the correspondences in order to only compute simi-

larities.

• We must be able to narrow the computation down to parts of the models.

From a technical point of view, we would have to implement adapters for the

data structures of the alternative approach, so that the data is compatible to the

interfaces of SiDiff that we refer to in our implementation of the tracing approach.

11.3 Implementation of a Tracing Tool

In addition to the tracing service that can be embedded in various modeling tools

or environments, we have implemented a generic tool that allows us to directly

trace model elements within a given history of a model. The tool has been imple-

mented based on the Eclipse Rich Client Platform (RCP) [34]. The history view has

been realized with the Graphical Editing Framework (GEF) [32], which is a frame-

work for creating graphical editors and views. The revisions view and the details

view have been realized with the Standard Widget Toolkit (SWT) [37] for creating

graphical user interfaces. The tool does not compute any data itself, but it uses

the tracing service that we have presented before.

Figure 11.5 shows a screenshot of the tool. The screen of the tool can be divided

into three areas: a history view on the left side, one or more revision views on the

upper right side, and a details view on the lower right side.

154 Chapter 11. Prototype Implementation

Figure 11.5: Screenshot of the tracing tool

The history view shows the history as a graph. Each revision is represented

by a rectangle. The rectangles are connected by arrows that point from ancestor

revisions to descendant revisions. The view enables the selection of revisions. If

a revision is selected, details about that revision are displayed in the details view.

Furthermore, if elements are traced, the details view can provide tracing informa-

tion for each revision, and the revisions in the history view can be colored and

labeled individually (e.g. if the traced elements occur in the particular revision).

The user can select revisions to be opened. They are then shown in a revision

view on the upper right side. The revision view shows a textual tree representation

of the model revision. Model elements are represented by the value of their name

attribute (if existent), their type, and their local identifier. Model elements that

are contained by other elements are indented below their container. It is possible

to open multiple revisions at a time. Their content is shown in separate revision

views that are shown as different tabs, which can be arranged side-by-side. The

revision view allows the user to inspect a revision of the model. Elements can

be selected, and information about the selected elements is shown in the details

Chapter 11. Prototype Implementation 155

view. It provides a list of key-value pairs of the elements’ attributes, and it dis-

plays traceability information such as the corresponding elements in the ancestor

revision and in the descendant revision.

Besides information about the currently selected revision or elements of that

revision, the details view is used to provide information if the user traces single

elements or model fragments.

Tracing. In the revision view the user can select the elements to be traced. The

ancestors and descendants are always shown in the details view. It is also pos-

sible to directly navigate to them. A context menu enables the user to perform

an occurrence analysis and a tracking of the selected elements. The occurrence

analysis is performed on the complete history, i.e. for all revisions. The user can

define the constraints to be checked in an extra dialog.

If a single element was selected, the tool queries the tracing service. All revisions

in which the traced element can be identified are highlighted in the history view.

The user can immediately overview the revisions in which the element occurs. If

a highlighted revision is opened in the revision view, the corresponding elements

are marked, and the details view shows further information, such as the reliability

of the identification, the similarity between the suspect and the found elements,

and the changes that have been applied. Furthermore, we provide a visualization

of the reliability and similarity values of the trace in a line chart.

If more than one element was selected, we treat the selected elements as a model

fragment. The tracing service is used to create an object representation of the

fragment that is subsequently traced. The user has to define which of the selected

elements are optional in the fragment and he can select the relationships to be

evaluated in an extra dialog. In another dialog the user can define the constraints

to be checked. Again the occurrences are highlighted in the history view. Here,

we also denote, to which extend the fragment has been found. If a revision is

opened, the found members are again highlighted and further tracing information

is shown in the details view. The reliability and similarity values of the traces can

be visualized as box plots as proposed in Section 10.2.3.

Since the occurrence analysis has short execution runtime, we do not require

that the user defines a target revision explicitly. We rather highlight all revisions

in which the element or the model fragment can be identified. The user can im-

mediately see whether the actual target revision contains a correspondence. In

addition, the coloring of the history view reveals the lifetime of the suspect. The

user can see since when the element or the fragment exists (i.e. the revision in

which it occurred the first time), and when it has been deleted. Revisions in which

the suspect was temporarily removed (i.e. gaps) can immediately be revealed, too.

156 Chapter 11. Prototype Implementation

Analysis functions. The tool also provides functions to analyze the tracing infor-

mation. It can highlight all versioned elements of a history that are assigned to

a single identity (i.e. the elements exist only in one revision). The revisions that

contain such untraceable elements are colored in the history view and the number

of elements is denoted in the revisions label. If revisions are opened in the revision

view, the untraceable elements are highlighted. The user can immediately locate

the untraceable elements. Similarly, the tool can highlight the beginnings and the

ends of identities, i.e. the elements that miss an identification link to either an

ancestor or a descendant.

If an element misses an identification link, the tool can analyze whether the

ancestor revision, and the descendant revision respectively, contain an element

with equal identifier, equal name, or equal path, that also misses an identification

link. These elements should be further inspected if they could correspond.

In addition, the tool can be used to locate the elements whose identification links

have an insufficient reliability value. Therefore, the user can define a threshold

and all elements that have an identification link whose reliability value does not

exceed the threshold are highlighted.

In order to review suspicious elements (i.e. elements that are untraceable, miss

an identification link, or have an unreliable identification link), the tool can dis-

play the difference between two revisions. Therefore, it triggers the difference com-

putation and presents the changes in a list and a parallel representation of the

compared revisions. The representation is technically based on the user interface

of the Eclipse plugin EMFCompare [30].

Manipulation. For the case that the review of suspicious elements reveals errors

in the traces, the tool provides functions for manipulating the traceability infor-

mation of elements according to Section 8.2. After switching into an editing mode,

the user is provided with context menus to remove elements from an identity, to

remove single identification links, and to create new identification links. All tasks

are delegated to the corresponding operation in the tracing service.

157

Chapter 12

Case Studies

Based on the prototype implementation of our approach (see Chapter 11) we per-

formed different case studies in order to evaluate our tracing approach. In one

empirical study we performed controlled experiments with the histories of differ-

ent models. The experiments and their results are described in Section 12.1. In

another empirical study with an earlier prototype of our approach we let test per-

sons assess the applicability of our approach to real analysis scenarios. The study

is described in Section 12.2. In Section 12.3 we briefly introduce other analysis

tools in which our approach has successfully been used.

12.1 Validation of the Approach

We have performed controlled experiments to validate the traceability information

computed by our approach. We subsequently describe the experiments and the

data we use. Afterwards, in Section 12.1.2 we discuss the results of the experi-

ments.

12.1.1 Study Design

The best way to validate the traceability information computed by our approach,

namely the identification links, is comparing them with alternative traceability in-

formation. However, an alternative approach to compute traceability information

does not exist. Thus, alternative traceability information must either be captured

manually or persistent identifiers have to be used. We were not able to get test

data that has manually captured traceability information, but we have test data

that is either enriched by persistent identifiers or identifiers can be generated from

the data.

Hence, we validate the identification links computed by our approach against

the information given by persistent identifiers or identifiers generated from the

158 Chapter 12. Case Studies

properties of model elements. Due to the fact that persistent or generated identi-

fiers are not very reliable (see Section 2.1.1), our validation also includes a manual

inspection of the results. Whenever the information computed by our approach

differs from the correspondences implied by the identifiers, we manually check

which information is correct.

Test procedure. For each model we create a history with the tracing service pre-

sented in Section 11.1. All revisions are subsequently added to the history and

the traceability information is computed. Afterwards, we compare the identifica-

tion links computed by our approach to the traceability information implied by

the persistent or generated identifiers.

We perform a precision-recall analysis which is often used to evaluate the qual-

ity of information retrieval approaches [10]. The analysis compares the sets of

relevant and irrelevant data with the data that has been reported by an informa-

tion retrieval algorithm. Precision measures the exactness of the results; recall

measures completeness. Since the computation of identification links can also be

classified as an information retrieval problem, this test is adequate to evaluate our

approach.

We perform the precision-recall analysis for each pair of subsequent revisions

of a history separately. First, we compute the sets of relevant and irrelevant data.

We check for each element of a revision, whether its identifier also exists in the

ancestor revision. If the identifier was found in the ancestor revision, we assume

that the element also exists in the ancestor revision. Otherwise we assume, that

the element is new. Elements that exist in the ancestor revision should be found

by our approach, i.e. they should be connected by an identification link. Hence,

we assign them to the set of relevant data. New elements, however, should not be

connected by an identification link, and are thus assigned to the set of irrelevant

data.

In the next step, we analyze the data retrieved by our approach, namely, the

computed identification links. According to the precision-recall terminology, the

elements that have an identification link that points to the ancestor revision are

called positives. Elements without an identification link pointing to the ancestor

revision are called negatives.

We check whether the computed data is correct and classify the positives and

negatives to be either correct (i.e. called true in precision-recall terminology) or

incorrect (i.e. called false). If the link points to an element that has an equal

identifier, the element is called a true positive (i.e. it is in the set of relevant data

and has been found). If the link points to an element that has a different iden-

tifier, we have to inspect the data manually. We differentiate between two cases.

Chapter 12. Case Studies 159

The element is not linked to an ancestor and no element
⇒

true

with the same identifier exist in the ancestor revision. negative

The element is linked to an ancestor and
⇒

true

the ancestor has the same identifier. positive

The element is linked to an ancestor but
⇒

false

the ancestor represents a different model element. positive

The element is not linked to an ancestor but
⇒

false

the element existed already in the ancestor revision. negative

Table 12.1: Classification of the computed tracing data

(1) The linked elements are indeed different elements and do not correspond. The

link computed by our approach is thus incorrect and we mark it to be a false

positive. (2) Although the elements have different identifiers, it can be that they

are the same element at different times. In this case, the information implied

by the identifiers is incorrect. We reassign the element from the set of irrelevant

data to the set of relevant data and we mark the identification link as a true posi-

tive. Elements without incoming identification links are called true negatives if the

ancestor revision does not contain any element with equal identifier. If such an

element exists but it was not found by our approach, we have to inspect the data

manually again. If the information implied by the identifier is correct, we mark the

identification link to be a false negative. However, if the identifier is misleading,

we mark the identification link to be a true negative and element is reassigned

from the set of relevant data to the set of irrelevant data. Table 12.1 summarizes

the classification of the computed tracing data.

Test data. We analyze different types of models, namely UML class models created

with the Rational Software Architect [60], Ecore models created with the Ecore

editor of the Eclipse Modeling Framework [31], and Simulink models created with

MATLAB/SimulinkTM [136].

The UML class models have identifiers assigned to the model elements. The

identifiers are persistent and can be used as alternative tracing data, because the

Rational Software Architect retains them during deserialization and serialization.

For the Ecore models we are able to generate identifiers from the properties of

model elements. Therefore, we take the value of the name attribute of the ele-

ments and compute a qualified name by concatenating the names of all container

elements. E.g. the operation doSomething of class Bar in package foo is assigned

with the identifier foo/Bar/doSomething. If a model element is without name at-

160 Chapter 12. Case Studies

No. Type No. of Revisions No. of Elements

(min/max/avg)

A UML class model 19 2/138/99

B UML class model 10 103/130/118

C Ecore model 31 96/178/129

D Ecore model 73 8017/11828/8776

E Simulink model 4 6500/6803/6617

Table 12.2: Histories used for controlled experiments

tribute, we compute the name with an individual rule, e.g. for a generalization, we

take the names of the connected classes. The generated identifiers can be used

as alternative tracing data. However, we have to review each identifier change

manually, because the surrogates might change if the model is changed.

MATLAB/SimulinkTM creates identifiers on the basis of element names similar

to the identifiers we generate for Ecore models, hence, an alternative traceability

information for Simulink models is given.

Table 12.2 gives an overview of the models we have used for the controlled

experiments. It lists the models, their type, the size of their history (in number of

revisions), and their minimal, maximal, and average size per revision (in number

of elements).

History A contains a UML model that describes different entities of an airport.

It has particularly been created for demos and for testing purposes. It provokes

some special cases such as gaps in the traces. The model given by History B is the

data model of an evolution analysis tool. The UML model describes basically the

database schema that is used to represent the data stored in repositories, namely

files, revisions, check-in comments, etc. History C contains an Ecore description

of one schema available in SiDiff to serialize difference information. History D is

a copy of the UML2 project hosted on the CVS server of Eclipse. It contains the

Ecore implementation of the UML metamodel [36]. Four snapshots of a Simulink

model of a speed control have been used to create History E. They have been

provided to us by an industrial partner, however, we were not able to access the

complete repository. The revisions are not consecutive; in the repository are up to

ten other revisions between the given revisions.

An overview of the kinds of changes that have been applied to the models is

given in Appendix A. For each model we created a figure that shows a histogram

chart with the number of changes for each revision.

Chapter 12. Case Studies 161

History Precision Recall min. Precision min. Recall

A 0.9989 1 0.9855 1

B 1 1 1 1

C 0.9997 1 0.9936 1

D 0.9999 1 0.9960 1

E 0.9997 0.9998 0.9994 0.9994

Table 12.3: Results of the PR analysis summarized for each history

History False Pos. False Neg. max. Rel. max. Sim. avg. Rel. avg. Sim.

A 2 (0.1%) 0 0.4250 0.8500 0.3462 0.8500

B 0 0 – – – –

C 1 (0.02%) 0 0.3093 0.7625 0.3093 0.7625

D 64 (0.01%) 0 0.9000 0.9300 0.5172 0.9250

E 5 4 0.4700 0.4950 0.4200 0.4600

Table 12.4: Overview of false results

12.1.2 Study Results

We calculated the precision-recall values for each revision of each history. They

can be found in Appendix B. In Table 12.3 we only show summarized values for

each history. For each history we list the precision and recall values calculated

over all identification links and we list the minimum of the precision and recall

values that we calculated for each revision of the respective history. The values

attest our approach to be very precise and mostly correct.

In Table 12.4 we give an insight into the false results of our approach. It shows

the number of false positives and false negatives per history. Furthermore, in

case of false positives we even provide the reliability and the similarity of the

incorrect link with the best values and the average over all incorrectly computed

links. We can see that both, the reliability and the similarity values, are very low

for the incorrectly computed identification links. An exception is the Ecore model

of History D; here, the best false positive has very good reliability and similarity

values and even the average of similarity values of all false positives it significantly

high. However, a detailed view into the links reveals that there is indeed one

false identification link with a high reliability. The reliability values of the other

false links is much lower. The high average of similarity values result from the

links between elements of type EAnnotation or EGenericType. Both element types

have nearly no local attributes and they are not allowed to be moved. Hence,

162 Chapter 12. Case Studies

History No. of links (grouped by their origin) in % of all elements

HASH ITERATIVE other

A 5 5 0 0.5

B 0 8 0 0.7

C 0 68 0 1.7

D 0 211 0 0.03

E 0 280 0 1.4

Table 12.5: Number of identification links with reliability < 0.5 and similarity < 0.85

their similarity is always high, however, the reliability is low. Due to the best

reliabilities and similarities of false identification links we recommend, that the

user should inspect the links that have a reliability value below a threshold of

0.5, and a similarity value below a threshold of 0.85 respectively. Table 12.5

lists the number of identification links whose reliability and similarity values are

below these thresholds. This is the number of links the user would have to review

manually. However, it is not necessary that all links are inspected directly. It is

sufficient if the user inspects these links when they are used in traces that are

returned as the result of a concrete occurrence analysis or tracking task. The

false negatives that occurred in the analysis of History E are Simulink elements of

the type Bendpoint and ScalarProperty. The bend points belong to the lines that

connect blocks. Although they contain only layout information they are modeled

as separate elements, since the user can individually handle them in the graphical

view. Under traceability aspects, however, these elements could be ignored. In

the same manner we could handle the ScalarProperty elements. They contain the

values of the attributes of blocks, since they are not directly accessible by the user

they could have been ignored for tracing. For this experiment we used a mapping

for the internal graph representation that was already used by SiDiff, and we did

not remove unnecessary elements from the internal graph representation.

Quality of the alternative traceability information. As described before, we com-

pared the identification links computed by our approach to the traceability infor-

mation that is implied by the identifiers in the test data. For each case where the

traceability information differed, we manually inspected the result and decided if

either the computed link or the identifier was incorrect. The comparison of the

sets of false positives and false negatives before and after the manual inspection

reveals the quality of the traceability information given by identifiers. Table 12.6

lists the resulting precision and recall values for that kind of traceability. The

columns Precision and Recall refer again to the values calculated for all corre-

Chapter 12. Case Studies 163

History Precision Recall min. Precision min. Recall

A 0.9962 1 0.9067 1

B 1 0.9972 1 0.9817

C 1 0.9527 1 0.0420

D 1 0.9996 1 0.9851

E 1 0.0021 1 0.0005

Table 12.6: Precision and Recall of the traceability information implied by identifiers

spondences in the history, and the columns min. Precision and min. Recall refer

to the worst values measured for a single revision within the history. We can see,

that the traceability information implied by identifiers is mostly correct, but not

in all cases. We also see that the recall value for identifier-based traceability is

much lower than for our traceability approach. Hence identifiers are not sufficient

to reveal all correspondences. It fails even totally for the histories C and E, which

contain derived identifiers.

12.2 Study of Applicability

We performed another case study to evaluate the applicability of our approach. We

tested whether the approach can be used to solve typical analysis tasks regarding

evolving models. Therefore, we have build an analysis tool upon our approach

[59, 147]. The tool provides a visualization of the history of a model (see Figure

12.1) and offers functionality to trace single model elements. Traces are visualized

in an abstract representation that is independent of any model type. Rectangles

represent different revisions of the given model, inside a rectangle each model

element is represented by a small colored circle. The color gives additional infor-

mation depending on the current analysis task. On the right hand side an outline

view shows a list of all revisions and their elements inside. Both the graphical rep-

resentation and the outline view allow developers to select model elements. Tool

tips show further information about the elements. Filters can reduce the set of

displayed elements. The panel on the lower part offers different analysis tasks to

choose from.

The tool enables four kinds of analyses: the identification of elements across all

revisions, the tracing of bugs, logical coupling analysis, and day fly analysis. The

tracing of bugs has been realized as a occurrence analysis with the constraint that

the similarity of the elements has to exceed a user-defined threshold. The logical

coupling analysis checks how often model elements are changed together with

164 Chapter 12. Case Studies

Figure 12.1: Screenshot of the analysis tool used for the study of applicability

other elements. It is basically the approach described in [156] applied to models.

Day fly analysis reports the elements which exist only in one revision, since they

are an indicator for the quality of the development process.

For each kind of the analyses mentioned above, we evaluated whether exemplary

analysis tasks can be solved faster and more reliable if the prototype was used.

The case study involved 30 developers with different levels of experience, mainly

students and university researchers. It turned out that the evaluation results did

not differ significantly among the developer types; hence, we did not differentiate

between these groups. Nevertheless, detailed results can be found in [59].

The attendees got a short introduction into the analysis tool before each test

started. During the test they had to analyze model histories; first manually and

afterwards with the help of the tool. In order to manually analyze the model

histories, test persons were provided with standardized XMI files which could be

opened in a modeling tool of the test persons’ choice and with JPEG files show-

ing the graphical representation of the models. In both phases they had to fill

in a questionnaire that asked for time exposure, experiences, preferences, and

problems.

Chapter 12. Case Studies 165

a) time reduction for tracing single elements b) time reduction for tracing a bug

c) time reduction for dependency analysis d) time reduction of day fly analysis

Figure 12.2: Performance enhancement

Application to an unknown history. All test persons had to analyze a history of an

unknown UML class model. This is a typical task for reverse engineers. The class

models represented the data model of the analyzed prototype at different develop-

ment stages. The size of the single model documents ranged between 25 and 30

classes. Although that size is rather small for analysis tasks in daily practice, the

different results between manual and tool-assisted analysis are significant.

For each feature of our tool implementation two specific analysis problems were

given to the test persons. First point of interest has been the performance compar-

ison of tool-based analysis vs. manual work. Figure 12.2 depicts the enhancement

of performance. As shown in part (a) of the figure the time needed to trace single

elements was already reduced by at least 50% for 83% of the test persons. The

tracing of bugs, i.e. tracing of several elements at a time regarding the degree of

changes, was reduced by at least 75% or more in almost 75% of the cases (see

part (b)). In dependency analysis (part (c)) the needed time was halved for 95%

of the test persons. Day flies were nearly impossible to be determined by the test

persons manually as the performance enhancement states in part (d) of the figure.

Besides time reduction, the tool-based analysis produced all results correctly,

whereas the test persons produced erroneous results during their manual anal-

ysis. Although the correctness was not considered interesting and has not been

recorded, we estimate an error rate of 30% for the manual approach.

Summarized over the four scenarios the developers preferred significantly the

166 Chapter 12. Case Studies

Figure 12.3: Analysis of well-known histories

tool solution with 108 votes. Only one vote was given to the manual approach,

while there were 11 abstentions. These preferences have been explained by several

reasons; e.g. performance was mentioned 59 times, 31 test persons commended

simplicity. Only one participant of the study believed more in his own experience

than in any tool.

Application to a well-known history. Half of the test persons also analyzed a his-

tory of UML class models that has been developed by them. The models contained

around 20 classes and described the design of an auction and trading system

that has been developed in groups of 4–6 persons during a one term software

development course. Three student teams attended the case study.

Despite the joint development of the models and the fairly good knowledge of

their history, 86% of the test persons preferred the tool-assisted analysis of the

model history. Already models with 20 classes are too large to keep an overview of

all elements. Figure 12.3 shows the performance advantages of the tool solution

against the manual approach. While the manual approach benefits from knowl-

edge and experiences of developers, the technical solution was superior with per-

formance and correctness on the one side and overview, visualization, and user

assistance on the other side.

Besides the normal experiments, the latter group of test persons offered the op-

portunity to verify the information computed by our analysis tool. The knowledge

about the real history of the models allowed a thorough examination of the results

computed by our tracing approach. Taken together 100% of the provided infor-

mation has been judged to be correct. That result coincides with the results of the

controlled experiments presented in Section 12.1.2.

Chapter 12. Case Studies 167

12.3 Example Applications

Our approach has further been used in two other analysis tools (i.e. in addition

to the prototypes presented before). The tools deal with evolution analysis. In

addition, we integrated the difference metrics approach in a separate tool that

enables the visualization of differences between very large models.

Scalable difference visualization. The difference metrics allow us to represent

even very large differences in compact numbers. We have developed an scalable

difference visualization [146]. The tool computes the difference between two re-

visions or different models and displays the result as polymetric views [78]. The

computation of the difference is carried out by SiDiff. The metrics are computed

by the metrics component of our tracing prototype. As said earlier in Section

9.3, the computation of difference metrics is independent from any traceability

scenario. Hence we were able to use the metrics component as a separate com-

ponent. Thereby, the difference visualization tool does not rely on the tracing

approach. The visualization of the difference as a polymetric view represents el-

ements and their relationships as a graph of rectangles connected by lines. Up

to five metrics can be encoded to each element. They determine the position (x

and y coordinate), the height, the width, and the color of an element’s rectangle.

We extended the visualization so that the border color can encode a sixth metric

of an element. The visualization allows us to comprehend the changes between

large model revisions. We can clearly point out the location of changes in a model,

we can measure the amount of change, and we can distinguish the relevance of

changes. The tools has been realized as a plugin for the Eclipse IDE. A screenshot

is shown in Figure 12.4.

Fine-grained analysis of model evolution. The FAME tool focuses on the analysis

of evolving models [148]. It provides different visualizations of the history of a

model and can measure software metrics and difference metrics. It is basically a

combination of the tracing tool used in our case study for applicability (see Section

12.2) and the difference visualization tool presented above. Model elements, even

anonymous elements, can be traced along their history, and their evolution can be

measured and visualized. The tool provides all analysis functions that have been

implemented in the tracing tool. Furthermore, it enables the analysis of metrics

over time. Again polymetric views are used. We draw the revisions tree of a history

as polymetric view and we encode different metrics onto the revisions. Hence, the

tool allows us to capture the evolution of a model.

Technically, the FAME tool has been realized upon an early prototype imple-

168 Chapter 12. Case Studies

Figure 12.4: Screenshot of the PV4E tool

mentation of our tracing approach that was not as sophisticated as the version

presented in Section 11.1. The history representation only contained identities,

i.e. identification links were seen as temporary data only and quality attributes

such as the reliability did not exist. Information about evolution was assigned to

the versioned elements directly and thus more difficult to access. Tracing was en-

abled by directly querying the underlying database. In equal manner we were able

to access the information about evolution. Nonetheless the tracing aspects of the

FAME tool enhanced the analysis of model evolution. It attested the applicability

of our tracing approach, which has later been encapsulated in a service interface

to enable its usage in arbitrary tools.

The Software Evolution Toolkit. The Software Evolution Toolkit (SEV) is a frame-

work for visual analysis of software evolution. It is a completely new analysis tool

based on Eclipse. It can compute many different software metrics that can be

visualized in different views (see Figure 12.5). The views can be combined in order

to visually analyze correlations between entities based on their metrics. Particu-

larly the analysis of metrics over time is supported. The tool uses the most recent

OSGi-based service implementation of our approach (see Section 11.1) to trace the

elements whose metrics are analyzed. The SEV toolkit is not limited to histories of

models. It is rather generic and it has successfully been used to analyze the evo-

Chapter 12. Case Studies 169

Figure 12.5: Screenshot of the SEV tool

lution of Java software. Thus, the tool attests the usability of our tracing service

as separate component in a given environment. Furthermore, it shows that our

approach is not necessarily limited to models, but it can be applied even to source

code.

The examples mentioned above show that our approach was successfully used

to realize analysis tools that require the traceability over time. Without the trust-

worthy identification of fine-grained elements the tools would not be able to com-

pute the needed evolution data. The tool for scalable difference visualization does

further show the applicability of difference metrics in other scenarios.

170 Chapter 12. Case Studies

Part V

Epilogue

173

Chapter 13

Conclusions and Outlook

Model-driven engineering is a widely accepted methodology in software engineer-

ing. The portion of model-driven developed software systems is increasing rapidly.

At the same time, traceability (i.e. the ability to retrace the complete engineering

process) is a very important success factor for many software projects, which is

sometimes even mandated by standards or norms. So far, however, the ability

to trace model elements over time has often been neglected. As a consequence,

traceability in model-driven engineering is often impeded as we cannot identify

model elements across evolution. This problem is called the identification prob-

lem. This thesis has presented an approach to solve the identification problem.

We summarize the most important characteristics of our solution in Section 13.1.

In Section 13.2 we discuss the limitations of our approach, and we present ideas

for improvements and future work in Section 13.3.

13.1 Discussion

Traceability in model-driven engineering is often hampered by the tracing across

evolution, because we are not able to trustworthily identify model elements across

the different revisions of a model. Most modeling languages, and the serialization

formats of most models respectively, offer local identifiers for addressing model

elements. An identifier is either an artificially generated value assigned to the

element or it is a value that can be derived from the local properties of the element.

These identifiers are rarely persistent, so that each revision of a model is assigned

with a new set of identifiers. Existing approaches to make identifiers persistent

are not sufficient in daily practice. They narrow the designers in their choice of

modeling tools and they are tied to imminent risks so that parallel collaborative

work is not recommendable.

In order to solve the problem of identifying model elements across different revi-

sions, we established a representation for describing the history and the evolution

of an analyzed model (i.e. the history). It represents all revisions of the analyzed

174 Chapter 13. Conclusions and Outlook

model and does further contain representatives for each model element of each re-

vision. Besides describing the content of a history, it can hold information about

the correspondences between the elements of subsequent model revisions and

about their evolution. Such a correspondence is called an identification link and

expresses that the connected model elements are representations of the same el-

ement at different times. Identification links that connect representations of the

same element form in turn the identity of a model element. The identity can be

seen as a globally unique identifier that allows us to identify an arbitrary model

element within the whole history. Furthermore, the identification links contain

information about the changes that have been applied to a model element from

one revision to another. In summary, they describe the evolution of the model over

time.

The identification links are computed on the basis of a model comparison algo-

rithm. Model comparison deals with the computation of differences between two

model revisions. The key problem is the computation of a matching that maps

the elements of one revision to the elements of the other revision. Each pair of

elements represents the same element at different times, and the changes applied

to this element can be deduced. We use such a matching algorithm to compute

a matching between two subsequent revisions of the analyzed model. If the com-

putation is applied to all pairs of subsequent revisions, we get identification links

along the complete history, i.e. the identities.

We use the similarity-based comparison algorithm SiDiff that can be configured

to arbitrary types of models. Our approach is thus not limited to particular mod-

eling languages. We are also able to use other similarity-based approaches for the

computation of traceability information. We extended the comparison approach

so that we are able to assess the reliability of the found correspondences which in

turn enables the assessment of the reliability of the derived traceability informa-

tion. Our approach can be applied to existing model histories that are for instance

managed in a configuration management system, but the computed information

can always be extended if new revisions of a model are created.

The traceability information computed by our approach can be used to locate

the occurrences of a given model element in other revisions. Besides occurrence

analysis, we enable the tracking of model elements over time. We can follow a

model element along its evolution backward to the creation of the model element as

well as forward up to the deletion of a model element. we can even follow elements

that have temporary been deleted. The occurrence analysis and the tracking can

further be enriched with the definition of constraints that the traced elements

have to fulfill. Besides tracing of single elements, we can even trace fragments

of a model. Therefore, we trace each element of that fragment individually and

Chapter 13. Conclusions and Outlook 175

check whether the relationships between the elements of the source revision do

also exist in the target revision.

The change information that is assigned to identification links allows the user

to capture the evolution that has been applied to the traced elements. Since the

description of evolution as a long list of single changes is not concise and the user

would drown in a plethora of information, we developed difference metrics that

allows us to express the amount of changes in numbers. We can count different

types of changes for the different types of model elements. The computation is

independent from concrete model types. Besides that, we enable the computation

of more specific metrics by parameterization. We can take model type specific

aspects into account and can, for instance, classify the changes according to their

relevance. The result is a set of metric values that is easier to overview than the

set of concrete changes, and coherency or outliers can be detected much faster.

In order to validate our approach we have prototypically implemented it as a ser-

vice for the OSGi platform. All traceability information, the results of the model

comparison, and the computed metrics are stored in a relational database and

they can be accessed through an object-oriented Java interface. Both technologies

enable the integration of our approach into other tools. We have also implemented

an interactive tracing tool as another prototype. The tool uses the service imple-

mentation of our approach and provides a graphical user interface to trace model

elements and fragments and to query the history and the evolution data. We fur-

ther integrated the approach into two evolution analysis tools. This integration

attested us the applicability of our approach.

In addition, we evaluated the correctness of the computed identification links

by means of controlled experiments. We analyzed the histories of different models

and compared the results with alternative traceability information. The exper-

iments revealed very good results that certify the quality of our approach. The

precision of our approach was 98.5% in the worst case. The recall was 99.9%

or better. The results of our tracing approach are thus better than traceability

information expressed by persistent identifiers. The high quality of our approach

enables the application in industrial practice.

13.2 Limitations

Despite the correctness and the applicability of our approach, two cases exist

that cannot be handled sufficiently. Some changes applied to the analyzed model

cannot be traced, because the model comparison that is the basis of our approach

does not detect them reasonably.

176 Chapter 13. Conclusions and Outlook

Copies of elements. Some modeling tools provide the ability to copy a model

element or a set of model elements. In a UML model, for example, we can copy a

class with all its attributes and operations; we just have to provide a new name or

a new namespace for the copy. As a consequence duplicates can exist. If we trace

the first version of the class to the revision that contains the class and its copy,

we could argue that there should be two identification links. They express that

both classes have their origin in the class that was copied. So far, we just support

the tracing along identities, i.e. we create the link between the class in the first

revision and the same class in the second revision. In the strict sense, the copy of

the class is a new class. An argument for this behavior is the fact that the copy is

minimally changed, since it has been renamed. For the attributes and operations

of that class we cannot argue likewise. The attributes and operations are exact

copies of the originals. Again, we would just create one identification link for each

attribute and operation, i.e. the one expressing the identity. The copies are not

traced to previous revisions, because they are new. However, in practice it would

be useful if we could also trace the copies to the original elements.

For this case, we recommend creating an additional identification link between

the element that has been copied and the copy. The identification link points

from the revision without the copy to the revision with the copy; it is not within a

single revision. The origin attribute of this link should be set to copy detection to

distinguish the link from actual identification links. Subsequently, we call such a

link a copy link.

The current model comparison approaches (including SiDiff) do not support the

detection of copy operations yet. Hence, we have to infer this information from the

comparison result. One possible approach for locating copied elements could be

the analysis of the model elements that were reported by the model comparison

to be structurally new. Such an element could be a copy of another element if the

following rules are fulfilled:

• The type of the element has to be configured so that it can be copied or the

container element is already assigned with a copy link. Thereby, we can

prevent the creation of copy links between primitive elements. For example,

the parameters of operations are not seen as copies of each other, although

they are named and typed equally. They are only understood as copied if the

operation has been copied.

• There is a model element in the ancestor revision that has an equal hash

value or a similarity exceeding a predefined threshold. In the latter case all

contained elements must in turn have the same hash values or adequate

Chapter 13. Conclusions and Outlook 177

similarities compared to the elements contained by the potential copy.1 If

such an element exists, it could be the original element that has been copied.

The thresholds can be configured differently for each type of model element.

• The original element has to exist in the revision without the copy and in the

revision with the copy. Both representations have to correspond.

The rules mentioned above define the necessary condition for an element to be

the copy of another element. However, it is not a sufficient condition, since many

other arbitrary constraints might exist. For example, it is not possible in UML

models to copy an association unless it is copied together with the classes that

are connected by the association. Hence, the detection of copy operations is still

an unsolved problem.

Refactorings. A problem that is closely related to the copy problem mentioned

above is the detection of refactorings or other complex operations. A complex

operation is a single edit operation provided in the modeling tool that leads to

many changes in the model. An example is the create subsystem operation in

MATLAB/SimulinkTM. It allows the user to select a set of blocks and automatically

creates a new subsystem by moving all selected blocks into that subsystem. A

refactoring is similar to a complex operation, however, it often leads to even more

changes in the model than a complex operation. Furthermore, the changes of a

complex operation are often regional, whereas refactorings may affect the whole

model.

Some complex operations and refactorings do not affect the result of our tracing

approach. In case of the create subsystem operation for example, we can trace all

the moved blocks. The only problem is the comprehensibility by the user. In many

cases the user is not aware of the single changes applied by a complex operation.

The assessment of the evolution might be misleading. The user performed one edit

operation on the model, but the difference metrics would report many changes.

However, there are refactorings and also some complex operations that hamper

our tracing approach. An example the refactoring “extract superclass” [45]. It

creates a new superclass for classes that share many attributes or operations,

and the common attributes and operations are moved to it. Here we have the

problem, that multiple elements of one revision have to correspond to a single

element in the other revision. That requires n-ary correspondences that are not

supported by the current model comparison approaches. Furthermore, it is a

problem that the classes from which the superclass has been extracted cannot be

found as corresponding if the bigger part of a class was moved to the superclass.

1In case of an equal hash value all contained elements are equal per definition.

178 Chapter 13. Conclusions and Outlook

The old and the new version of that class would be too different to exceed the

similarity threshold.

Although the n-ary correspondences are not yet reported by the model compar-

ison, they are supported by our approach. The creation of identification links is

independent from the number of correspondences found for an element, since we

create one identification link for each correspondence. Our history data model

allows us to store multiple identification links for a versioned element. It has

not to be changed if future versions of the model comparison will report n-ary

correspondences.

13.3 Outlook

In the previous section we have discussed two problems of the model comparison

which lead to a limited applicability of our approach to histories that contain

particular types of changes. Nonetheless, our tracing approach grants access to

solutions of a broad range of research problems.

Supported research. Our approach enables a thorough traceability in model-

driven engineering processes. Besides traceability along transformations (see Sec-

tion 2.3.2), we can now even trace along manual changes. This allows us to solve

other research problems such as incremental transformations. So far, a manual

change to the input model of a transformation chain required the re-execution of

the complete chain. The tracing along manual edits will allow us to perform in-

cremental transformations, so that only parts of the transformation chain have to

be re-executed. There are still unsolved problems such as the sufficient patching

of partial modifications onto the later results of a transformation chain [75], how-

ever, the traceability and the capturing of the evolution was obviously a significant

problem that we have smoothed out.

Due to the trustworthy identification of model elements over time, we are for

the first time able to thoroughly analyze the evolution of models in repositories.

The FAME tool (see Section 12.3) is the first step into that direction, however,

compared to the research applied to evolution of code bases of software systems

[133] there are still many opportunities. With the ability to research the evolution

of models comes the opportunity that modeling tools and repositories can better

be adapted to the needs of users. Especially the configuration management tools

for models (i.e. diff and merge) could be improved if we can capture “the typical”

model evolution. Furthermore, the approaches to model repositories presented

so far required certain modeling tools or they constrained the set of supported

models (see Section 2.1.2.2). Thus the applicability of model-driven approaches

Chapter 13. Conclusions and Outlook 179

was often seen suspiciously by practitioners. The identification over time can be

used to close this gap.

Transfer to other domains. In this thesis we have extensively referred to model-

driven engineering, i.e. the models are used to develop the software system. How-

ever, models are also used for other purposes. In reverse-engineering, for example,

they are inferred from an existing software system to better comprehend it. Similar

is the field of software evolution analysis. Especially if the software is not given as

source-code, but has to be decompiled from machine code, expressive identifiers

are often missing. The application of our tracing approach could help to identify

the fine-grained entities of one revision in another. The SEV Toolkit, which uses

our solution, is a good example for applying our traceability approach to source

code. However, the application to reverse-engineered models should be investi-

gated in more detail. It would especially be interesting to quantitatively analyze

to what extent the temporal distance between the reverse-engineered snapshots

influences the quality of the identification.

Furthermore, models are used in completely different domains such as bioinfor-

matics. The models can for instance represent the metabolism of cells. The atoms

and molecules, which are modeled here, do not have an identity. Our approach

could be applied to enable the identification of such elements over time. The appli-

cability of our solution to another domain obviously depends on the applicability

of SiDiff to that domain or the existence of an alternative comparison approach

for models of that domain. A first attempt to apply SiDiff to the comparison of

molecular graphs can be found in [55]. However, it is not clear whether our trace-

ability approach can be applied to such domains without changes. The additional

requirements that are implied by the different domains would have to be explored.

Improvements. The limitations discussed before are obviously a starting point for

future improvements of our approach.

The ideas of detecting copy links should definitively be evaluated in more detail.

We have already tried to evaluate the above-mentioned rules to detect copied ele-

ments, however, formulating the domain-specific constraints is not trivial. There

are many aspects to be considered if we want to prohibit the case that each ele-

ment is considered to be the copy of another element.

The support for complex operations and refactorings is also not a trivial problem.

Each modeling language comes with its own definitions of such operations. This

is a separate research problem that must be solved. If there will be a solution

to that problem, our approach can still be applied without significant changes.

The procedure of creating identification links has not to be changed, however, the

180 Chapter 13. Conclusions and Outlook

computation of the difference metrics requires some adjustments, since new types

of changes will be reported by the model comparison.

Besides the improvements in model comparison, which allow us to compute

tracing information even if the models have been refactored, we can also improve

the quality of the computed traceability information by so-called shortcut links.

Therefore, we also compare every x-th revision directly, so that we get additional

links connecting the elements that are otherwise connected by x identification

links spanning over the intermediate revisions.2 These links build shortcuts. The

identification of elements between distant revisions can thereby become more re-

liable, because they would be connected with shorter paths of identification links.

However, it is not clear whether the reliability is increased by shortcut links, be-

cause neither the reliability nor the similarity fulfill the triangle inequality. The

similarity values that result from the direct comparison of two distant revisions

can be higher than the similarity values resulting from the comparison of the in-

termediate revisions if changes of an early revision have been made undone in

a later revision. The reliability values are calculated from many factors, e.g. the

similarity or the correspondences of the neighborhood, the triangle inequality is

thereby unfulfilled due to the used similarity values, but also the neighborhood

can change arbitrarily. It is thus not clear if a shortcut link leads to better results

in the identification. In future work, we should aim for a further investigation of

that problem.

In addition, the computation of reliability values can probably be improved by

integrating it into the model comparison algorithms. So far, we attached the com-

putation from outside to the matching algorithm. The computation might become

more efficient and more reliable if we directly integrate it into the algorithm. In

SiDiff, for instance, the similarity would no longer be the only criterion for match-

ing elements. If it is based on the correspondences of other elements, the reliability

of these correspondences could be considered for the match decision. If we further

consider, that correspondences could depend on each other, we could research if

the explicit management of these dependencies leads to better results, especially

if the user manually revokes decisions of the algorithm.

It would further be interesting to apply statistical methods to analyze reliabil-

ities, so that we do not need to inspect the values manually by visualization. In

combination with a study of typical evolution profiles (as enabled by the reposi-

tory mining we mentioned before) we could better assess the quality of traceability

information.

The prototype implementation can also be improved. As described before, the

data model that we use to describe the history and to store all tracing informa-

2x is a configurable parameter.

Chapter 13. Conclusions and Outlook 181

tion has been realized as an object-relational wrapper, since all data is physically

stored in a relational database. The high number of database accesses is a bottle

neck in the performance of creating the identification links and traces. However,

keeping all data in memory is also not sufficient due to heap limitations. Although

the performance is not a critical factor for our approach, because the traceability

information is only computed once and can be performed overnight, it is feasible

to investigate the bottle necks in more detail and to eliminate them.

182 Chapter 13. Conclusions and Outlook

183

Bibliography

[1] European Conference on Model-Driven Architecture - Traceability Workshop

Series (ECMDA-TW), 2005-2009.

[2] Special Issue on Traceability in Model-Driven Engineering. Software and

Systems Modeling, 9(4), 2010.

[3] Netta Aizenbud-Reshef, Brian T. Nolan, Julia Rubin, and Yael Shaham-

Gafni. Model Traceability. IBM Systems Journal, 45(3):515–525, 2006.

[4] Marcus Alanen and Ivan Porres. Difference and Union of Models. In LNCS

vol. 2863, UML 2003 - The Unified Modeling Language, pages 2–17. Springer,

October 2003.

[5] Bastien Amar, Herve Leblanc, and Bernard Coulettee. A Traceability Engine

Dedicated to Model Transformation for Software Engineering. In Proc. of the

ECMDA Traceability Workshop (ECMDA-TW), 2008.

[6] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia,

and Ettore Merlo. Recovering Traceability Links between Code and Doc-

umentation. IEEE Transactions on Software Engineering, 28(10):970–983,

October 2002.

[7] Giuliano Antoniol, Yann-Gaël Guéhéneuc, Ettore Merlo, and Paolo Tonella.

Mining the Lexicon Used by Programmers during Sofware Evolution. In Proc.

of the 23rd International Conference on Software Maintenance (ICSM’07),

pages 14–23, October 2007.

[8] Paul Arkley and Steve Riddle. Overcoming the Traceability Benefit Problem.

In Proc. of the 13th International Conference on Requirements Engineering

(RE’05), pages 385–389, 2005.

[9] Wayne A. Babich. Software Configuration Management: Coordination for

Team Productivity. Addison-Wesley, 1986.

[10] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-

trieval. Addison-Wesley, 1999.

184 Bibliography

[11] Mikael Barbero, Marcos Didonet Del Fabro, and Jean Bézivin. Traceability

and Provenance Issues in Global Model Management. In Proc. of the ECMDA

Traceability Workshop (ECMDA-TW), pages 47–55, 2007.

[12] Ivo Barone, Andrea De Lucia, Fausto Fasano, Esterino Rullo, Giuseppe

Scanniello, and Genoveffa Tortora. COMEOVER: Concurrent Model Ver-

sioning. In Proc. of the International Conference on Software Maintenance

(ICSM’08), 2008.

[13] Lars Bendix and Pär Emanuelsson. Diff and Merge Support for Model Based

Development. In Proc. of the 2008 International Workshop on Comparison

and Versioning of Software Models (CVSM’08), pages 31–34, May 2008.

[14] Keith H. Bennett and Vaclav T. Rajlich. Software Maintenance and Evolu-

tion: a Roadmap. In The Future of Software Engineering, pages 75–87. ACM

Press, 2000.

[15] Bernd Bruegge, Allan H. Dutoit, and Timo Wolf. Sysiphus: Enabling In-

formal Collaboration in Global Software Development. In Proc. of the First

International Conference on Global Software Engineering (ICGSE’06), October

2006.

[16] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter

Kniesel. Towards a Taxonomy of Software Change. Journal of Software

Maintenance and Evolution: Research and Practice, 17(5):309–322, Septem-

ber 2005.

[17] Jason Jen-Yen Chen and Shih-Chien Chou. Consistency Management in a

Process Environment. Journal of Systems and Software, 47(2-3):105–110,

July 1999.

[18] Jane Cleland-Huang, Carl K. Chang, and Mark Christensen. Event-Based

Traceability for Managing Evolutionary Change. IEEE Transactions on Soft-

ware Engineering, 29(9):796–810, 2003.

[19] Pietro Colombo, Vieri Del Bianco, and Luigi Lavazza. Fine-Grained Inte-

grated Management of Software Configurations and Traceability Relations.

In Proc. of the 3rd International Conference on Software and Data Technolo-

gies (ICSOFT’08), pages 159–164. INSTICC Press, 2008.

[20] Reidar Conradi and Bernhard Westfechtel. Version Models for Software Con-

figuration Management. ACM Computing Surveys, 30(2):232–282, 1998.

[21] Alistair Cookburn. Agile Software Development. Addison-Wesley, 2001.

Bibliography 185

[22] Marco Costa and Alberto R. Da Silva. RT-MDD Framework – A Practical

Approach. In Proc. of the ECMDA Traceability Workshop (ECMDA-TW), pages

17–26, 2007.

[23] Andrea De Lucia, Fausto Fasano, Rita Francese, and Genoveffa Tortora.

ADAMS: an Artefact-Based Process Support System. In Proc. of 16th In-

ternational Conference on Software Engineering and Knowledge Engineering

(SEKE’04), pages 31–36, 2004.

[24] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora.

ADAMS Re-Trace: a Traceability Recovery Tool. In Proc. of 9th European

Conference on Software Maintenance and Reengineering (CSMR’05), pages

32–41, 2005.

[25] Andrea De Lucia, Fausto Fasano, Giuseppe Scanniello, and Genoveffa Tor-

tora. Concurrent Fine-grained Versioning of UML Models. In Proc. of 13th Eu-

ropean Conference on Software Maintenance and Reengineering (CSMR’09).

IEEE Computer Society Press, March 2009.

[26] Serge Demeyer, Stephane Ducasse, and Oscar Nierstrasz. Finding Refactor-

ings Via Change Metrics. In Proc. of the 15th ACM SIGPLAN Conference on

Object Oriented Programming, Systems, Languages and Applications (OOP-

SLA’00), October 2000.

[27] Nicholas Drivalos, Richard F. Paige, Kiran J. Fernandes, and Dimitrios S.

Kolovos. Towards Rigorously Defined Model-to-Model Traceability. In Proc.

of the ECMDA Traceability Workshop (ECMDA-TW), 2008.

[28] Jürgen Ebert and Angelika Franzke. A Declarative Approach to Graph Based

Modeling. In LNCS vol. 903, Proc. of the 20th Intl. Workshop on Graph-

Theoretic Concepts in Computer Science, pages 38–50. Springer, 1994.

[29] Jürgen Ebert, Volker Riediger, and Andreas Winter. Graph Technology in

Reverse Engineering: The TGraph Approach. In LNCS vol. 126, Workshop

Software Reengineering, pages 67–81. GI, 2008.

[30] Eclipse Foundation. EMF Compare. http://wiki.eclipse.org/index.

php/EMF_Compare, 2009.

[31] Eclipse Foundation. The Eclipse Modeling Framework. http://www.

eclipse.org/modeling/emf/, 2009.

[32] Eclipse Foundation. Eclipse Graphical Editing Framework. http://www.

eclipse.org/gef/, 2010.

186 Bibliography

[33] Eclipse Foundation. EMF Connected Data Objects (CDO). http://wiki.

eclipse.org/index.php/CDO, 2010.

[34] Eclipse Foundation. Rich Client Platform. http://www.eclipse.org/rcp/,

2010.

[35] Eclipse Foundation. The Eclipse Project. http://www.eclipse.org/

eclipse/, 2010.

[36] Eclipse Foundation. The MDT/UML2 Project. http://www.eclipse.org/

uml2/, 2010.

[37] Eclipse Foundation. The Standard Widget Toolkit. http://www.eclipse.

org/swt/, 2010.

[38] Alexander Egyed. A Scenario-Driven Approach to Trace Dependency Anal-

ysis. IEEE Transactions on Software Engineering, 29(2):116–132, February

2003.

[39] Epsilon Community. The Epsilon Model Management Platform. http://

www.eclipse.org/gmt/epsilon/, 2008.

[40] ETAS. ASCET Software Products. http://www.etas.com/en/products/

ascet_software_products.php, March 2009.

[41] Jean-Rémy Falleri, Marianne Huchard, and Clémentine Nebut. Towards a

Traceability Framework for Model Transformations in Kermeta. In Proc. of

the ECMDA Traceability Workshop (ECMDA-TW), 2006.

[42] Patrick Farail, Pierre Gaufillet, Agusti Canals, Christophe Le Camus, David

Sciamma, Pierre Michel, Xavier Cregut, and Marc Pantel. The TOPCASED

Project: a Toolkit in Open Source for Critical Aeronautic Systems Design. In

Proc. of the 3rd Embedded Real Time Software Conference (ERTS’06), Jan-

uary 2006.

[43] Jean-Marie Favre. Languages Evolve Too! Changing the Software Time

Scale. In Proc. of the 8th International Workshop on Principles of Software

Evolution (IWPSE’05), pages 33–44. IEEE Computer Society, September

2005.

[44] Karl Fogel and Moshe Bar. Open Source Development with CVS. Paraglyph

Press, June 2003.

[45] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 1999.

Bibliography 187

[46] Free Software Foundation. GNU Diffutils. http://www.gnu.org/

software/diffutils/, 2009.

[47] Fujaba. Project Homepage. http://www.fujaba.de, December 2008.

[48] Phillip B. Gibbons, Richard M. Karp, Gary L. Miller, and Danny Soroker.

Subtree Isomorphism is in Random NC. In LNCS vol. 319, VLSI Algorithms

and Architectures: 3rd Aegean Workshop on Computing, (AWOC’88), pages

43–52, New York, June/July 1988. Springer-Verlag.

[49] Martin Girschick. UMLDiff: Erkennung und Analyse von Unterschieden in

Klassendiagrammen und Sequenzdiagrammen. Diploma Thesis (German),

Technical University of Darmstadt, 2002.

[50] Flori Glitia, Anne Etien, and Cedric Domoulin. Traceability for an MDE Ap-

proach of Embedded System Conception. In Proc. of the ECMDA Traceability

Workshop (ECMDA-TW), pages 27–37, 2008.

[51] Michael W. Godfrey and Qiang Tu. Tracking Structural Evolution Using Ori-

gin Analysis. In Proc. of the International Workshop on Principles of Software

Evolution (IWPSE’02), May 2002.

[52] Michael W. Godfrey and Lijie Zou. Using Origin Analysis to Detect Merg-

ing and Splitting of Source Code Entities. IEEE Transactions on Software

Engineering, 31(2), February 2005.

[53] Guy-Dominic Gorek. Untersuchungen zum Abgleich vager Modelle in der

Systemanalyse. Diploma Thesis (German), University of Siegen, 2010.

[54] Orlena C. Z. Gotel and Anthony C. W. Finkelstein. An Analysis of the Re-

quirements Traceability Problem. In Proc. of the First International Confer-

ence on Requirements Engineering, pages 94–101, 1994.

[55] Oliver Grassow. Vergleich molekularer Graphen mit Hilfe des SiDiff-

Algorithmus. Diploma Thesis (German), University of Siegen, 2009.

[56] Jeff Gray, Juha-Pekka Tolvanen, Steven Kelly, Aniruddha Gokhale, Sandeep

Neema, and Jonathan Sprinkle. Domain-Specific Modeling. In Paul A. Fish-

wick, editor, Handbook of Dynamic System Modeling. Chapman & Hall, May

2007.

[57] Maciej Hapke, Andrzej Jaszkiewicz, Krzysztof Kowalczykiewicz, Dawid

Weiss, and Piotr Zielniewicz. OPHELIA - Open Platform for Distributed

Software Development. In Open Source for an Information and Knowlegde

Society: Proc. of the Open Source International Conference, 2004.

188 Bibliography

[58] Jane Huffman Hayes, Alex Dekhtyar, and James Osborne. Improving Re-

quirements Tracing via Information Retrieval. In Proc. 11th International Re-

quirements Engineering Conference (RE’03), pages 151–161. IEEE Computer

Society, 2003.

[59] Hermann Hutter. Nachverfolgbarkeit von Modellelementen in Versionshis-

torien. Diploma Thesis (German), University of Siegen, 2007.

[60] IBM Corporation. Rational Software Architect. http://www-01.ibm.com/

software/rational/products/swarchitect/, 2010.

[61] IEEE Computer Society. International Conference of Program Comprehen-

sion. http://www.program-comprehension.org/.

[62] IEEE Computer Society. International Conference of Software Maintenance.

http://conferences.computer.org/icsm/.

[63] IEEE Computer Society. Software Engineering Terminology – Standard

610.12, 1990.

[64] IEEE Computer Society and The Reengineering Forum. Working Conference

on Reverse Engineering. http://reengineer.org/.

[65] International Organization for Standardization. Draft International Stan-

dard ISO/DIS 26262-1 (Road Vehicles –Functional Safety–), December

2009.

[66] Frederic Jouault. Loosely Coupled Traceability for ATL. In Proc. of the

ECMDA Traceability Workshop (ECMDA-TW), pages 29–37, 2005.

[67] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Proc. of

the Model Transformations in Practice Workshop at MoDELS, October 2005.

[68] Timo Kehrer and Edmund Ihler. Process-Integrated Refinement Patterns in

UML. In Proc. of the 21st International Conference on Software & Systems

Engineering and their Applications (ICSSEA’08), 2008.

[69] Udo Kelter and Maik Schmidt. Comparing State Machines. In Proc. of the

2008 International Workshop on Comparison and Versioning of Software Mod-

els (CVSM’08), May 2008.

[70] Udo Kelter, Jürgen Wehren, and Jörg Niere. A Generic Difference Algorithm

for UML Models. In Proc. of Software Engineering, pages 105–116, March

2005.

Bibliography 189

[71] Stuart Kent. Model Driven Engineering. In Proc. of the 3rd International

Conference on Integrated Formal Methods, pages 286–298, 2002.

[72] Maximilian Kögel. Towards Software Configuration Management for Unified

Models. In Proc. of the 2008 International Workshop on Comparison and

Versioning of Software Models (CVSM’08), 2008.

[73] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. On-Demand

Merging of Traceability Links with Models. In Proc. of the 2nd ECMDA Trace-

ability Workshop (ECMDA-TW), 2006.

[74] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Model Com-

parison: a Foundation for Model Composition and Model Transformation

Testing. In Proc. of the First International Workshop on Global Integrated

Model Management co-located with ICSE (GAMMA’06), May 2006.

[75] Patrick Könemann. Model-Independent Differences. In Proc. 2nd Workshop

on Comparison and Versioning of Software Models (CVSM’09), pages 37–42.

IEEE Press, May 2009.

[76] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. Model-

Based DSL Frameworks. In Companion to the 21th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications (OOPSLA’06), pages 602–616, October 2006.

[77] Ivan Kurtev, Matthijs Dee, Arda Goknil, and Klaas van den Berg.

Traceability-Based Change Management in Operational Mappings. In Proc.

of the ECMDA Traceability Workshop (ECMDA-TW) 2007, pages 57–67, 2007.

[78] Michele Lanza and Stephane Ducasse. Polymetric Views - a Lightweight

Visual Approach to Reverse Engineering. IEEE Transactions on Software

Engineering, 29(9):782–795, 2003.

[79] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Péter Völgyesi, Greg Nordstrom,

Jonathan Sprinkle, and Gabor Karsai. Composing Domain-Specific Design

Environments. IEEE Computer, 34(11):44–51, 2001.

[80] M.M. Lehman. Programs, Life Cycles, and Laws of Software Evolution.

Proc. of the IEEE - Special Issue on Software Engineering, 68(9):1060–1076,

September 1980.

[81] Yuehua Lin, Jeff Gray, and Frederic Jouault. DSMDiff: A Differentiation

Tool for Domain-Specific Models. European Journal of Information Systems,

16(4):349–361, August 2007.

190 Bibliography

[82] Jon Loelinger. Version Control with Git: Powerful Tools and Techniques for

Collaborative Software Development. O’Reilly, May 2009.

[83] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics. Prentice Hall,

1994.

[84] Marco Lormans and Arie van Deursen. Reconstructing Requirements Cov-

erage Views from Design and Test Using Traceability Recovery via LSI. In

Proc. of the 3rd International Workshop on Traceability in Emerging Forms of

Software Engineering (TEFSE’05), pages 37–42. ACM, 2005.

[85] Jochen Ludewig. Models in Software Engineering – An Introduction. Soft-

ware and Systems Modeling, 2(1):5–14, March 2003.

[86] Patrick Mäder, Orlena C. Z. Gotel, and Ilka Philippow. Enabling Automated

Traceability Maintenance by Recognizing Development Activities Applied to

Models. In Proc. 23rd International Conference on Automated Software Engi-

neering (ASE’08), September 2008.

[87] Patrick Mäder, Orlena C. Z. Gotel, and Ilka Philippow. Rule-Based Main-

tenance of Post-Requirements Traceability Relations. In Proc. 16th Interna-

tional Requirements Engineering Conference (RE’08), pages 23–32, Septem-

ber 2008.

[88] Jonathan I. Maletic, Michael L. Collard, and Bonita Simoes. An XML Based

Approach to Support the Evolution of Model-to-Model Traceability Links.

In Proc. of the 3rd ACM International Workshop on Traceability in Emerging

Forms of Software Engineering (TEFSE’05), November 2005.

[89] Adrian Marcus and Jonathan I. Maletic. Recovering Documentation-to-

Source-Code Traceability Links using Latent Semantic Indexing. In Proc. of

the 27th International Conference on Software Engineering (ICSE’05), pages

125–135, 2005.

[90] Akhil Mehra, John C. Grundy, and John G. Hosking. A Generic Approach to

Supporting Diagram Differencing and Merging for Collaborative Design. In

Proc. of the 20th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2005), pages 204–213. ACM, November 2005.

[91] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity Flood-

ing: A Versatile Graph Matching Algorithm and its Application to Schema

Matching. In Proc. of the 18th Intl. Conf. on Data Engineering (ICDE), 2002.

[92] Tom Mens. A State-of-the-Art Survey on Software Merging. IEEE Transac-

tions on Software Engineering, 28(5):449–462, May 2002.

Bibliography 191

[93] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to

Develop Domain-Specific Languages. ACM Computing Surveys, 37(4):316–

344, 2005.

[94] MetaCase. MetaEdit+. http://www.metacase.com/, March 2009.

[95] Ethan V. Munson and Tien N. Nguyen. Concordance, Conformance, Ver-

sions, and Traceability. In Proc. of the 3rd ACM International Workshop on

Traceability in Emerging Forms of Software Engineering (TEFSE’05), Novem-

ber 2005.

[96] Leonardo G. P. Murta, Correa Chessman, Joao G. Prudencio, and Cláudia

M. L. Werner. Towards Odyssey-VCS 2: Improvements Over A UML-Based

Version Control System. In Proc. of the 2008 International Workshop on Com-

parison and Versioning of Software Models (CVSM’08), May 2008.

[97] Leonardo G. P. Murta, Andre van der Hoek, and Cláudia M. L. Werner. Con-

tinuous and Automated Evolution of Architecture-to-Implementation Trace-

ability Links. Automated Software Engineering, 15(1):75–107, 2008.

[98] Eugene W. Myers. An O(ND) Difference Algorithm and its Variations. Algo-

rithmica, 1(2):251–266, 1986.

[99] Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemper, and Bjorn Reg-

nell. A Linguistic-Engineering Approach to Large-Scale Requirements Man-

agement. IEEE Software, 22(1):32–39, 2005.

[100] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook,

and Pamela Zave. Matching and Merging of Statecharts Specifications. In

Proc. of the 29th International Conference on Software Engineering (ICSE’07),

pages 54–64. IEEE Computer Society, 2007.

[101] Tien N. Nguyen and Ethan V. Munson. A Model for Conformance Analysis of

Software Documents. In Proc. of the 6th International Workshop on Principles

of Software Evolution (IWPSE’03), page 24. IEEE Computer Society, 2003.

[102] Tien N. Nguyen, Ethan V. Munson, and John T. Boyland. An Infrastructure

for Development of Multi-Level, Object-Oriented Configuration Management

Services. In Proc. of the 27th International Conference on Software Engineer-

ing (ICSE’05), 2005.

[103] Tien N. Nguyen and Ethan V. Munson. The Software Concordance: A New

Software Document Management Environment. In Proc. of the 21st An-

nual International Conference on Documentation (SIGDOC’03), pages 198–

205. ACM, October 2003.

192 Bibliography

[104] Object Management Group. The official MDA guide, v.1.0.1 (formal 03-06-

01). http://www.omg.org/cgi-bin/doc?omg/03-06-01, June 2003.

[105] Object Management Group. Meta Object Facility Core Specification (MOF)

2.0 (formal 06-01-01). http://www.omg.org/docs/formal/02-04-03.

pdf, January 2006.

[106] Object Management Group. The MOF2.0/XMI mapping, v.2.1.1 (formal

2007-12-01). http://www.omg.org/spec/XMI/2.1.1/, 2007.

[107] Object Management Group. The UML Infrastructure Specification, v.2.1.2

(formal 2007-11-04). http://www.omg.org/spec/UML/2.1.2/, 2007.

[108] Object Management Group. The UML Superstructure Specification, v.2.1.2

(formal 2007-11-02). http://www.omg.org/spec/UML/2.1.2/, 2007.

[109] Object Management Group. Common Object Request Broker Architec-

ture (CORBA/IIOP) Specification, version 3.1. http://www.omg.org/spec/

CORBA/3.1/, January 2008.

[110] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/-

Transformation Specification Version 1.0. http://www.omg.org/spec/

QVT/1.0/, April 2008.

[111] Object Management Group. http://www.omg.org/spec/OCL/2.2/, 2010.

[112] Dirk Ohst and Udo Kelter. A Fine-Grained Version and Configuration Model

in Analysis and Design. In Proc. of the International Conference on Software

Maintenance (ICSM’02), pages 521–527, October 2002.

[113] Dirk Ohst, Michael Welle, and Udo Kelter. Difference Tools for Analysis and

Design Documents. In Proc. of the 19th International Conference on Software

Maintenance (ICSM 2003), pages 13–22. IEEE Computer Society, September

2003.

[114] Dirk Ohst, Michael Welle, and Udo Kelter. Differences Between Versions of

UML Diagrams. In Proc. of the Joint Meeting of ESEC/FSE’03, September

2003.

[115] Jon Oldevik and Tor Neple. Traceability in Model to Text Transformations.

In Proc. of the ECMDA Traceability Workshop (ECMDA-TW), 2006.

[116] Hamilton L. R. Oliveira, Leonardo G. P. Murta, and Cláudia M. L. Werner.

Odyssey-VCS: a Flexible Version Control System for UML Model Elements.

In Proc. of the 12th International Workshop on Software Configuration Man-

agement (SCM’05), pages 1–16, September 2005.

Bibliography 193

[117] Oracle Corporation. MySQL Database Management System. http://www.

mysql.com/, 2010.

[118] OSGi Alliance. OSGi Service Platform Release 4 Version 4.1. http://www.

osgi.org/Specifications/HomePage, May 2007.

[119] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version

Control with Subversion. O’Reilly, September 2008.

[120] Klaus Pohl. Process-Centered Requirements Engineering. Advances Software

Development. John Wiley & Sons Ltd., 1996.

[121] Klaus Pohl. PRO-ART: A Process Centered Requirements Engineering Envi-

ronment. In M. Jarke, C. Rolland, and A. Sutcliffe, editors, The NATURE of

Requiremtents Engineering. Shaker Verlag, 1999.

[122] C. V. Ramamoorthy, Yutaka Usuda, Atul Prakash, and W. T. Tsai. The

Evolution Support Environment System. IEEE Transactions on Software

Engineering, 16(11):1225–1234, 1990.

[123] Raghu Reddy, Robert France, Sudipto Ghosh, Franck Fleurey, and Benoit

Baudry. Model Composition – a Signature-Based Approach. In Proc. of As-

pect Oriented Modeling (AOM) Workshop associated to MoDELS’05, October

2005.

[124] Jungkyu Rho and Chisu Wu. An Efficient Version Model of Software Di-

agrams. In Proc. of the Fifth Asia Pacific Software Engineering Conference

(APSEC’98), pages 236–243, December 1998.

[125] Maik Schmidt and Tilman Gloetzner. Constructing Difference Tools for Mod-

els Using the SiDiff Framework. In Proc. of the 30th International Conference

on Software Engineering (ICSE’08), page 947f., May 2008.

[126] Maik Schmidt, Sven Wenzel, Timo Kehrer, and Udo Kelter. History-Based

Merging of Models. In Proc. of the 2009 International Workshop on Compari-

son and Versioning of Software Models (CVSM’09), May 2009.

[127] Christian Schneider. CoObRA: Eine Plattform zur Verteilung und Replikation

komplexer Objektstrukturen mit optimistischen Sperrkonzepten. PhD thesis,

(in German). University of Kassel, Germany, December 2007.

[128] Christian Schneider, Albert Zündorf, and Jörg Niere. CoObRA - a Small

Step for Development Tools to Collaborative Environments. In Proc. of the

Workshop on Directions in Software Engineering Environments (WoDiSEE’04),

2004.

194 Bibliography

[129] Hannes Schwarz, Jürgen Ebert, and Andreas Winter. Graph-Based Trace-

ability: A Comprehensive Approach. Software and Systems Modeling,

9(4):473–492, 2010.

[130] Petri Selonen and Markus Kettunen. Metamodel-Based Inference of Inter-

Model Correspondence. In Proc. of 11th European Conference on Software

Maintenance and Reengineering (CSMR’07), pages 71–80, March 2007.

[131] Mika Siikarla and Tarja Systä. Decision Reuse in an Interactive Model

Transformation. In Proc. of the European Conference on Software Mainte-

nance and Reengineering (CSMR) 2008. IEEE Computer Society, April 2008.

[132] Mike Smith, Dawid Weiss, Pauline Wilcox, and Rick Dewar. The Ophelia

Traceability Layer. In Cooperative Methods and Tools for Distributed Soft-

ware Processes, 2nd Workshop on Cooperative Supports for Distributed Soft-

ware Engineering Processes, pages 150–161, 2003.

[133] IEEE Computer Society. Mining Software Repositories – Working-

Conference Series. http://msrconf.org.

[134] George Spanoudakis and Andrea Zisman. Software Traceability: a

Roadmap. In Handbook of Software Engineering and Knowledge Engineer-

ing, vol. 3 – Recent Advances, pages 395–428. World Scientific, 2005.

[135] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:

Eclipse Modeling Framework. Addison-Wesley, 2nd edition, 2009.

[136] The MathWorks. MATLAB/Simulink R©. http://www.mathworks.com/

products/simulink/, 2008.

[137] Walter F. Tichy. RCS - A System for Version Control. Software - Practice and

Experience, 15(7):637–654, July 1985.

[138] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. Difference

Computation of Large Models. In Proc. of 6th Joint Meeting of ESEC/FSE

2007, pages 295–304, September 2007.

[139] Julian R. Ullmann. An Algorithm for Subgraph Isomorphism. Journal of the

ACM, 23(1):31–42, 1976.

[140] Bert Vanhooff and Yolande Berbers. Supporting Modular Transformation

Units with Precise Transformation Traceability Metadata. In Proc. of the

ECMDA Traceability Workshop (ECMDA-TW), pages 15–27, November 2005.

Bibliography 195

[141] Bert Vanhooff, Stefan van Baelen, Wouter Joosen, and Yolande Berbers.

Traceability as Input for Model Transformations. In Proc. of the ECMDA

Traceability Workshop (ECMDA-TW), pages 37–46, 2007.

[142] Antje von Knethen. Change-Oriented Requirements Traceability: Support

for Evolution of Embedded Systems. In Proc. of the International Conference

on Software Maintenance (ICSM’02), pages 482–485, 2002.

[143] Antje von Knethen and Barbara Paech. A Survey on Tracing Approaches in

Practice and Research. Technical Report Research Report 095.01/E, Fraun-

hofer IESE, Kaiserslautern, Germany, January 2002.

[144] Jens von Pilgrim, Bert Vanhooff, Immo Schulz-Gerlach, and Yolande

Berbers. Constructing and Visualizing Transformation Chains. In Proc. of

the European Conference on Model Driven Architecture (ECMDA), pages 17–

32. Springer, 2008.

[145] Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: An Effective Change

Detection Algorithm for XML Documents. In Proc. of the 19th International

Conference on Data Engineering, March 2003.

[146] Sven Wenzel. Scalable Visualization of Model Differences. In Proc. of the

2008 International Workshop on Comparison and Versioning of Software Mod-

els (CVSM’08), pages 41–46, May 2008.

[147] Sven Wenzel, Hermann Hutter, and Udo Kelter. Tracing Model Elements.

In Proc. of the 23rd International Conference on Software Maintenance

(ICSM’07), pages 104–113. IEEE Computer Society, October 2007.

[148] Sven Wenzel and Udo Kelter. Analyzing Model Evolution. In Proc. of the 30th

International Conference on Software Engineering (ICSE’08), pages 831–834,

2008.

[149] Stefan Winkler and Jens von Pilgrim. A Survey of Traceability in Require-

ments Engineering and Model Driven Development. Software and Systems

Modeling, 9(4):529–565, 2010.

[150] Timo Wolf. Rationale-Based Unified Software Engineering Model. PhD thesis,

Technische Universität München, Germany, July 2007.

[151] World Wide Web Consortium (W3C). XSL Transformations (XSLT) Version

1.0. http://www.w3.org/TR/xslt, 1999.

[152] World Wide Web Consortium (W3C). XML Path Language (XPath) 2.0. http:

//www.w3.org/TR/xpath20/, 2007.

196 Bibliography

[153] Zhenchang Xing. Model Comparison with GenericDiff. In Proc. of the

25th IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE’10), pages 135–138. ACM Press, September 2010.

[154] Zhenchang Xing and Eleni Stroulia. Analyzing the Evolutionary History of

the Logical Design of Object-Oriented Software. IEEE Transactions on Soft-

ware Engineering, 31(10):850–868, October 2005.

[155] Zhenchang Xing and Eleni Stroulia. UMLDiff: an Algorithm for Object-

Oriented Design Differencing. In Proc. of the 20th IEEE/ACM International

Conference on Automated Software Engineering (ASE’05), pages 54–65. ACM

Press, November 2005.

[156] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stefan Diehl.

Mining Version Histories to Guide Software Changes. In Proc. of the 26th

International Conference on Software Engineering (ICSE ’05), pages 563–572,

May 2005.

[157] Xuchang Zou, Raffaella Settimi, and Jane Cleland-Huang. Phrasing in Dy-

namic Requirements Trace Retrieval. In Proc. of the 30th Annual Interna-

tional Computer Software and Applications Conference (COMPSAC’06), pages

265–272, 2006.

197

Appendix A

Changes Applied to the Models Used in

the Experiments

This appendix given an overview of the kinds of changes that have been applied to

the models of the different histories that we used for the controlled experiments

in Section 12.1. Each figure shows a histogram chart that visualizes the number

changes that have been applied to the models. Each bar represents the changes

that have been applied in order to get to the revision of that bar. We differentiate

between updates (i.e. changes to attribute values), reference changes, structural

changes (i.e. insertions and deletions), and moves. The histograms do also show

the size of each revision.

Figure A.1: Changes applied to the model of history A

198 Appendix A. Changes Applied to the Models Used in the Experiments

Figure A.2: Changes applied to the model of history B

Figure A.3: Changes applied to the model of history C

Appendix A. Changes Applied to the Models Used in the Experiments 199

Figure A.4: Changes applied to the model of history D

Figure A.5: Changes applied to the model of history E

200 Appendix A. Changes Applied to the Models Used in the Experiments

201

Appendix B

Detailed Results of the Precision-Recall

Analysis

The subsequent tables show the results of the precision-recall analyses described

in Section 12.1. Each table shows the calculated values for precision and recall

for each revision in relation to its successor.

Revision Precision Recall

r6 1 1

r7 1 1

r8 1 1

r9 1 1

r10 1 1

r11 1 1

r13 1 1

r18 0.9855 1

r14 1 1

r23 0.9917 1

r15 1 1

r16 1 1

r20 1 1

r17 1 1

r21 1 1

r22 1 1

r24 1 1

r25 1 1

Table B.1: Results of the PR analysis of history A

202 Appendix B. Detailed Results of the Precision-Recall Analysis

Revision Precision Recall

r14 1 1

r44 1 1

r69 1 1

r112 1 1

r228 1 1

r239 1 1

r266 1 1

r275 1 1

r367 1 1

Table B.2: Results of the PR analysis of history B

Appendix B. Detailed Results of the Precision-Recall Analysis 203

Revision Precision Recall

r1478 1 1

r1480 1 1

r1481 1 1

r1527 1 1

r1560 1 1

r1561 1 1

r1563 1 1

r1564 1 1

r1565 1 1

r1566 1 1

r1634 1 1

r1636 1 1

r1696 1 1

r1702 1 1

r2407 0.9936 1

r2420 1 1

r2425 1 1

r2435 1 1

r2438 1 1

r2471 1 1

r2562 1 1

r2564 1 1

r2576 1 1

r2610 1 1

r2616 1 1

r2695 1 1

r2696 1 1

r2706 1 1

r2740 1 1

r2984 1 1

Table B.3: Results of the PR analysis of history C

204 Appendix B. Detailed Results of the Precision-Recall Analysis

Revision Precision Recall

r2 1 1

r3 0.996 1

r4 1 1

r5 1 1

r6 1 1

r7 1 1

r8 1 1

r9 1 1

r10 1 1

r11 1 1

r12 1 1

r13 1 1

r14 0.9993 1

r15 0.998 1

r16 1 1

r17 1 1

r18 1 1

r19 1 1

r20 0.9988 1

r21 1 1

r22 1 1

r23 1 1

r24 1 1

r25 1 1

r26 1 1

r27 1 1

r28 1 1

r29 1 1

r30 1 1

r31 1 1

r32 1 1

r33 1 1

r34 1 1

r35 1 1

r36 1 1

r37 1 1

Revision Precision Recall

r38 1 1

r39 1 1

r40 1 1

r41 1 1

r42 1 1

r43 1 1

r44 1 1

r45 1 1

r46 1 1

r47 1 1

r48 1 1

r49 1 1

r50 1 1

r51 1 1

r52 1 1

r53 1 1

r54 1 1

r55 1 1

r56 1 1

r57 1 1

r58 1 1

r59 1 1

r60 1 1

r61 1 1

r62 1 1

r63 1 1

r64 1 1

r65 1 1

r66 1 1

r67 1 1

r68 1 1

r69 1 1

r70 1 1

r71 1 1

r72 1 1

r73 1 1

Table B.4: Results of the PR analysis of history D

Appendix B. Detailed Results of the Precision-Recall Analysis 205

Revision Precision Recall

2 0.9998 1

3 1 1

4 0.9994 0.9994

Table B.5: Results of the PR analysis of history E

	Front page
	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	I Overview
	1 Introduction
	1.1 Model-Driven Engineering
	1.2 Model Evolution
	1.3 Traceability
	1.4 Traceability in MDE: A Challenge
	1.4.1 Lower Significance of Identifiers
	1.4.2 Representation of Models
	1.4.3 Management of Model Evolution

	1.5 Thesis Objective: The Identification Problem
	1.5.1 Typical Scenarios
	1.5.2 Traceability-Related Questions in Daily Practice

	1.6 Thesis Contributions
	1.7 Thesis Structure

	2 State-of-the-Art
	2.1 Avoidance of the Identification Problem
	2.1.1 Persistent Identifiers
	2.1.2 Model Repositories
	2.1.2.1 Stand-Alone Repositories
	2.1.2.2 Repositories with Tool Integration
	2.1.2.3 Other Repositories

	2.1.3 Middleware Solutions

	2.2 Related Approaches in Code-Driven Development
	2.2.1 Origin Analysis
	2.2.2 Evolution Analysis

	2.3 Approaches to Other Kinds of Traceability
	2.3.1 Traceability Links for Evolution
	2.3.2 Obtaining Traceability Links by Model Transformations
	2.3.3 Maintaining Traceability Links
	2.3.4 Recovering Traceability Links with Information Retrieval

	3 The Approach in a Nutshell
	3.1 Requirements
	3.2 Our Approach by Example

	II Background & Definitions
	4 Model Comparison
	4.1 Model Matching and Model Differencing
	4.2 Excursus: Approaches to Model Matching
	4.2.1 Signature-Based Approaches
	4.2.2 Similarity-Based Approaches
	4.2.3 Rule-Based Approaches

	4.3 The SiDiff Approach
	4.3.1 Overview
	4.3.2 Similarity Computation in Detail
	4.3.3 The Iterative Matching Algorithm in Detail

	5 Graph Representation of Models
	5.1 Graph Definition for Models
	5.2 Mapping Models onto Graphs
	5.3 Querying Related Vertices

	III Fine-grained Traceability
	6 Modeling the History
	6.1 Overview
	6.2 Representation of Revision Information
	6.3 Representation of Traceability Information
	6.4 Representation of Evolution Information

	7 Computation of Identification Links
	7.1 Computation through Pairwise Comparison
	7.1.1 Merging Identities

	7.2 Handling of Breaks and Gaps
	7.2.2 Deleted and Reinserted Elements

	7.3 Alternative Approaches
	7.3.1 Non-Incremental Computation
	7.3.2 Manual Creation
	7.3.3 Derivation from Identifiers

	8 Reliability and Modification of Identification Links
	8.1 Reliability of Identification Links
	8.1.1 Modification of the Model Comparison
	8.1.2 Reliability of Hash Matches
	8.1.3 Reliability of Iterative Matches

	8.2 Manual Editing of Identification Links
	8.2.1 Removing a Versioned Element from an Identity
	8.2.4 Changing Reliabilities

	9 Computing Evolution Information
	9.1 Software Metrics
	9.2 Inference of Changes
	9.3 Difference Metrics: Measuring the Changes
	9.3.1 Generic Metrics
	9.3.2 Significance Metrics
	9.3.3 Similarity Metric
	9.3.4 Aggregation of Metrics

	9.4 Recomputation of Difference Metrics and Changes

	10 Querying the History to Trace Elements
	10.1 Tracing an Element
	10.1.1 Assessment of the Traceability
	10.1.2 Assessment of the Evolution

	10.2 Tracing Model Fragments
	10.2.2 Checking the Existence of Fragments
	10.2.3 Assessment of the Tracing

	10.3 Application Scenarios
	10.3.1 Typical Scenarios
	10.3.2 Answering Typical Questions

	IV Evaluation
	11 Prototype Implementation
	11.1 Implementation of the Tracing Service
	11.1.2 Model Representation with EMF
	11.1.3 The History Data Model
	11.1.4 The Service Interface
	11.1.5 Computation of Difference Metrics

	11.2 Usage of the SiDiff Toolbox
	11.2.1 Modification and Extension of SiDiff
	11.2.2 Compatibility to Other Model Comparison Approaches

	11.3 Implementation of a Tracing Tool

	12 Case Studies
	12.1 Validation of the Approach
	12.1.1 Study Design
	12.1.2 Study Results

	12.2 Study of Applicability
	12.3 Example Applications

	V Epilogue
	13 Conclusions and Outlook
	13.1 Discussion
	13.2 Limitations
	13.3 Outlook

	Bibliography
	A Changes Applied to the Models Used in the Experiments
	B Detailed Results of the Precision-Recall Analysis

