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X Abstract 

Abstract 

The global trends in the construction of complex structures e.g. high buildings, wind turbines 

or airplanes’ tend to make the structures more intelligent by integrating sensing units together 

with evaluation algorithms which allow the check of structure integrity permanently. This 

process of structural integrity characterization strategy referred to as Structural Health 

Monitoring (SHM). Special SHM parameters like material properties and load characteristics 

are essential when assessment of fatigue life of a structure and its components is done. 

Therefore, the time history of an external load is an important quantity in the forecast of the 

remaining lifetime. Furthermore, the load localization problem becomes an important issue, 

especially in the case of impacts, since the aircraft industry started to use new composite 

materials more extensively where the impacts cause delaminations which are not detectable 

by visual inspections. In many practical applications, however, the measurement of external 

loads is limited or not possible due to sensor limitations or the unknown nature of the external 

forces. Therefore, indirect load history estimation is a subject of extensive studies in the last 

two decades. The estimation procedure leads to a so called inverse problem which is ‘ill-

posed’ in the mathematical sense so that the existence, uniqueness or stability of solution is 

violated. 

First of all, this work provides a closer investigation to a variety of existing algorithms of 

force history reconstruction and location estimation which have been established by mechani-

cal engineers. Secondly, research is carried out for possible candidate methods among the 

other engineering disciplines. The main focus of the thesis is concentrated on comprehensive 

design analysis and further development of the qualified algorithms. In particular, model 

based robust observers are considered as candidates for the online loads and states reconstruc-

tion. The aspects of proper model building that allow releasing the sensor placement proce-

dure (from collocated to non-collocated), while simultaneously reducing the model complexi-

ty are introduced for the observer design. An innovative model free passive technique for 

automatic impact location detection is elaborated and extended by incorporation of a fast 

robust load estimation method. In addition, a novel approach of rank deficiency compensation 

is proposed for the direct time deconvolution procedure in the non-collocated case.  

Selected algorithms are grouped according to their ability to fulfill the load reconstruction 

requirements and tested either in simulation environment or on laboratory structures. The 

results are systemized in a form of strong and weak sides for every particular algorithm which 

might serve for the on-field application and future research in this area. 



1 1 Introduction 

1 INTRODUCTION 

Although this may seem a paradox, 

all exact science is dominated by the idea of approximation. 

-Bertrand Russell 

Equation Chapter 1 Section 1 

1.1 LITERATURE REVIEW AND MOTIVATION  

Buildings, wind turbines, airplanes or stadiums (during concerts or football matches) are some 

of the examples where the dynamics of a structure should be taken into consideration for 

reliable construction. In particular, both, material properties and load characteristics, are 

essential parameters when assessing the fatigue life of a structure or its components. There-

fore, the time history of external forces is an important quantity in the forecast of the remain-

ing lifetime [JOHANNESSON 1999]. In many practical applications, however, the measurement 

of external loads is limited or not possible due to sensor limitations or the unknown nature of 

the external load, see Figure 1.1(a). Even when load measurement transducers are available, 

they may still alter the properties of the system (electronic circuits), intrude in the load path 

(contacts and joint).  

 

Figure 1.1: Offshore wind energy plant (a) and block diagram of the load reconstruction 

problem (b) 

Furthermore, the load localization problem becomes an important issue, especially in the case 

of impacts, since the aircraft industry started to use new composite materials more extensive-

ly. Impacts cause delaminations in composite materials which might not be found by visual 
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inspection, thereby leading to structural failure. Accordingly, the process of estimating loads 

can be partitioned into the following subparts: 1) reconstructing load time history assuming 

that the location of a load is known a priori; and 2) determining the locations of applied 

forces. 

Load history identification has been the subject of extensive studies in the course of the last 

two decades. Generally, all force reconstruction methods that have been put forth by engi-

neers can be summarized in three main groups [UHL 2007]: 

1. Deterministic methods (based on the structural model and measured signals)  

2. Stochastic methods (statistical models)  

3. Artificial intelligence-based methods (neural networks) 

Deterministic approaches are based on the system model, and therefore yield results which are 

strongly dependent upon the accuracy of identified or analytically developed models. A 

further classification within this group can be carried out on the basis of the signal analysis 

procedure applied for load estimation; such procedures include frequency-domain methods 

[ADAMS and DOYLE 2002] and [HILLARY and EWINS 1984] or time-domain methods 

[GENARO and RADE 1998] and [JANKOWSKI 2009]. 

Time-domain approaches are mainly based on the deconvolution of the (Duhamel-Integral) 

0

( ) ( ) ( )

t

t t d   y H F , (1.1) 

where ( )tF represents external excitation forces, ( )ty are the system responses and ( )tH rep-

resents the structure impulse response function. Accordingly, the force reconstruction 

problem is posed as follows: given some measurements ( )ty  and known system response 

functions ( ),tH  determine the loads ( )tF . It should be noted that either ( )ty , ( )tH or both 

may not be known with perfect precision. 

In the frequency domain, information regarding the Frequency Response Function (FRF) 

( )H of the investigated structure and the spectrum of measured responses ( )Y are both 

required. On the basis of this information, the deconvolution of Equation (1.1) is carried out 

by means of a simpler algebraic equation 

1ˆ ( ) ( ) ( )  F H Y , (1.2) 

where ˆ ( )F is estimated force spectra. Finally, force histories in the time domain are 

obtained by the inverse Fourier transformation.  
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Stochastic methods are attempts at establishing statistical correlations between the output and 

input. In order to establish such correlations, it is necessary to conduct measurements of the 

inputs and outputs while the structure is being operated. The most useful statistical model for 

load identification is the regression model. Remarks regarding the applicability of the 

regression model to load identification can be found in [Trujillo and Busby 1997]. A dedicat-

ed procedure for regression model inversion is presented in [UHL 2007].  

Techniques based on artificial intelligence can be realized using Neural Networks (NN) 

algorithms [UHL and PETKO 2006] and [UHL 2002], fuzzy algorithms [GÓRAL et al. 2002] or 

evolutionary algorithms [UHL and PIECZARA 2003]. These methods require a learning process 

in order to find the relation between the inputs and outputs. It is necessary for the learning 

process to conduct direct measurements of loads and system responses. In some cases this 

might be impossible, but numerical simulations of the system behavior can be applied for the 

learning process of intelligent system [UHL 2002].  

The force reconstruction problem is mainly solved by using indirect measurement techniques, 

which include the transformations of related measured quantities such as acceleration, 

velocity, position or strain, see Figure 1.1(b). These transformations generally lead to a so-

called inverse problem or deconvolution problem, where the system properties H(t) and 

responses y(t) are known while the excitations F(t) are unknown, see Equation (1.1). It is well 

known that inverse problems are ‘ill-posed’ in the mathematical sense, that is one of 1) the 

existence, 2) the uniqueness, or 3) the stability of solution is violated [HANSEN et al. 1999; 

JACQUELIN et al. 2003]. If this inversion can be done, the system itself becomes its own force 

sensor, i.e. a “virtual force sensor” which would solve the problem of the load history 

estimation. A variety of methods were elaborated to overcome the above mentioned difficul-

ties. Stevens [STEVENS 1987] gave an excellent overview of this topic, which includes some 

earlier studies on inverse analysis of external forces, and Inoue et al. [INOUE et al. 2001] made 

a good summary for impact force estimation techniques. Some of these methods are based on 

the frequency or impulse response functions or use regularization and dynamic programming 

in the time domain, as proposed by Trujillo and Busby [TRUJILLO and BUSBY 1997] and 

applied by Doyle [DOYLE 1989; ADAMS and DOYLE 2002] and Nordtröm [NORDSTRÖM 

2005]. Others use an integration of measured acceleration signals [ELLIOTT et al. 2005] and 

[CARNE et al. 1992] or can only determine the sum of all forces and moments applied to the 

centre of mass (Sum of Weighted Acceleration Technique SWAT) [GENARO and RADE 1998]. 

Most of the authors assume the prior knowledge of the force location and require first to 

record the system responses and then do the force history reconstruction. The regularization 
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techniques or a time shift of the collected measurement data in non-collocated case 

[STELTZNER and KAMMER March 1999] and [KAMMER and STELTZNER 2001] (sensors and 

loads positions are not collocated) are used to overcome the ill-posedness of the inverse 

problem. Other researchers have treated the same problem from the control engineering point 

of view [SÖFFKER and KRAJCIN 2003], [CORLESS and TU 1998] by using observer properties 

that are able to estimate the states and unknown inputs or external disturbances. 

Applicable to the Structural Health Monitoring (SHM) algorithms which are able to estimate 

the external forces and their locations online or quasi-online, and also capable to do it for 

nonlinear or time variant mechanical systems, are of special interest. Among them are [DOYLE 

and KANNAL 1997; DOYLE 1999], [GOPALAKRISHNAN and DOYLE 1994], [DOYLE and 

MARTIN 1996] who have treated the two following problems: 1) the impact force history 

reconstruction and 2) the impact force location estimation primarily from the point of wave 

propagation theory. For the former, several model based approaches which perform deconvo-

lution of the Equation (1.1) in a frequency/wavelet domain, where it is equivalent to division 

as in Equation (1.2), were applied. In order to achieve this, the knowledge of the wave 

propagation and the model (spectral element model or finite element model) was always 

required. Doyle has shown that for the finite beam type of structures, such as that in Figure 

1.2, the measured signals (accelerations, strains or displacements) must undergo a prepro-

cessing procedure where all effects of wave reflections (which always occur in finite struc-

tures and, in the case of impact load types, represent the redundant information) and signal 

trend (especially for accelerometers) must be removed from the acquired data and only then 

transformed into a frequency domain. 

 

Figure 1.2: Schematic beam excited by unit force with sensors placed on positions 1 and 2 

Additional difficulties which Doyle had to deal with were 1) loss of information (zeros or no 

information available at some frequencies) and 2) inherited oversensitivity (sharp spectral 

peaks) in the ( )H  function, see Figure 1.3. These either make division in Equation (1.2) 

problematic or make ˆ ( )F (at these frequencies) diverge from real force ( )F due to 

mismatch between ( )Y and ( )H . To overcome the above problems, Doyle used more than 
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one sensor simultaneously together with the addition of small noise which has a regularization 

property, so that the Equation (1.2) was modified in the following form: 

1 1 2 2
2 2
1 2

( ) ( ) ( ) ( )ˆ ( )
( ) ( ) ( )

   


  

  
  

  

H Y H Y
F

H H R
, (1.3) 

where an asterisk indicates a complex conjugate and ( )R is a small amount of random 

noise. 

Addition of noise to the denominator does not replace the loss of information but rather 

removes potential singularity at those frequencies where ( )H  tend to be zero. 

 

Figure 1.3: Frequency response functions for the modeled hinged beam 

Calculated force spectra were then mapped into the time domain by inverse Fourier transform. 

For the problem of force localization [DOYLE and KANNAL 1997] the advantages of the 

techniques proposed by [WHISTON 1984] were extended by applying a Genetic Algorithm 

(GA) for global search in complex frame structure. Here again the model (spectral element 

model or finite element model) and at least two sensors have been used to estimate the force 

location. The essence of this approach is the usage of estimated forces from recorded meas-

urements and modeled frequency response function H() for different positions of applied 

impact. When the guessed position in H() is nearly correct then the force reconstructions 

from both sensors is very similar. As a consequence Doyle used a correlation or difference of 

these forces as an objective function for GA.  

[SEYDEL and CHANG 1994; SEYDEL and CHIU 2001] considered the identification of the 

impact location and impact load history for a stiffened composite plate by using a smart 
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sensor layer (a distributed array of sensors glued to the plate) as illustrated in Figure 1.4. For 

the force history reconstruction, first the position on the plate where the force is applied was 

found. This information is very important because the authors used a mathematical model 

(bending equations for an orthotropic plate) for impact history reconstruction which is built 

with the assumptions that the force location is known in advance. In contrast to [DOYLE and 

KANNAL 1997], Seydel and Chang worked in time domain and used the information acquired 

from the area of search (only 4 sensors in the vicinity of impact were used, as shown by the 

red square of the nearest sensors in Figure 1.4 ) for impact location identification. As the 

impact time was not exactly known, the authors utilized only differences between calculated 

Times Of Arrival (TOA) for these sensors and then tried to minimize the cost function of the 

following form: 

2

4
( ) ( ) ( ) ( )

1
( )

2
   measured
 differencies estimated differencies

E E E E
min ( ) ( )

( ) ( )
J

x,y si x,y s1toa toa
i

x,y
p i p 1i

t t
c c 

  
        
  
   

  

 , (1.4) 

where
toa
it is the calculated time of arrival for the i

th
 sensor. Estimation of 

toa
it from the 

recorded time signals was done with the help of the double peak technique which is a 

selection of the minimum before a global maximum. ( )E x,y is the estimated impact location on 

the plate, ( )E si is the actual location of the i
th

 sensor. Sensor 1 was always defined as the 

sensor with the smallest 1
toat . The phase velocity ( )p ic  for the orthotropic plate and given 

direction   is found analytically as in [DOYLE 1997]:  

2
4( )p i

D
c

h

 


= , (1.5) 

here D is a composite bending stiffness in direction  for a specific material and  is the 

wave frequency (the frequency that has the maximum response) which in its turn was 

obtained for each sensor individually with the help of Fast Fourier Transform (FFT), and h

are the plate density and thickness respectively. After the impact location was found iterative-

ly by minimization of the cost function in Equation (1.4), the model based optimization 

technique was applied for final time history estimation. Figure 1.4 shows the principle block 

diagram of force location estimation and force history reconstruction. The optimization 
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problem was solved by a smoother filter algorithm developed by [TRACY and CHANG 1998a; 

TRACY and CHANG 1998b]. 

 

Figure 1.4: Overview of the model-based impact identification scheme [SEYDEL and CHANG 

1994] 

[STELTZNER and KAMMER 1999; KAMMER and STELTZNER 2001] have proposed a non-causal 

Inverse Structural Filter (ISF) which takes the structural response data ky as an input and 

returns the estimate of the input forces ku as an output. They considered a discrete-time 

invariant system in state space domain 

1k D k D k

k D k D k

  

 

x A x B u

y C x D u
, (1.6) 

where the subscript “D” is used for discrete time system and k represents the time instant. 

Thus, based on homogenous initial conditions, Equation (1.6) was stepped forward and the 

output/input relationship was established as: 

0

k

k i k i

i





y H u , (1.7) 

where the Markov parameters Hi (i.e.
1

0 , ( )i
D i D D D

 H D H C A B ) were obtained either 

analytically or during the standard vibration test. Equation (1.6) was manipulated to inter-

change the input and output, leading to an inverse structural system 
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1
ˆ ˆ

ˆ ˆ

k D k D k

k D k D k

  

 

x A x B y

u C x D y
 (1.8) 

with 

ˆ ˆ                D D D D D D D D
    

 
A A B D C B B D  (1.9) 

1 ˆˆ ( )T T
D D D D D D D D

     D D D D D C D C  (1.10) 

so that the impulse response sequence was written for Equation (1.8) in analogy to the 

forward system as in Equation (1.7) 

0

k

k i k i

i





u R y , (1.11) 

where,
1

0
ˆ ˆˆ ˆ, ( )i

D i D D D
 R D R C A B are the inverse Markov parameters which are used for 

construction of causal ISF. Steltzner and Kammer have faced several difficulties including: 

(a) the Moore-Penrose pseudo-inverse requires that the number of sensors be greater than the 

number of reconstructed forces; moreover the matrix DD (which requires acceleration 

measurements) should have a full column rank to ensure the existence of D


D ; (b) the inverse 

matrix ˆ
DA can be unstable for structural systems with sensors at different locations than 

applied forces, that is a “non-collocated” sensors scenario, which can lead to divergence of 

Equation (1.11). These problems were addressed by considering the complete absence of 

matrix D (all sensors considered as non-collocated), in such a way that the system in Equation 

(1.6) was stepped forward before the inversion could take place 

1

1

k D k D k

k D D k D D k





 

 

x A x B u

y C A x C B u
 (1.12) 

so, that non-causal Equation (1.12) was used as a basis for the construction of ISF with “l-

lead”: 

1

0

RN

k i k l i

i



 



 u R y . (1.13) 

The “l step forward” is a non-causal lead integer accounting for the finite wave propagation 

time, from source to sensor, and the number NR-1 specifies the order of the ISF. Calculation of 

the inverse filter coefficients which are combined in matrix R  is done with the help of 

Markov parameters that were cast into a matrix H and accounting the l-lead 
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  R 0 0 I 0 H . (1.14) 

Here, the deconvolution of Equation (1.1) is done in discrete time domain and normally 

requires a pseudo-inverse of the matrix built out of the Markov parameters. The beauty of this 

method is that the pseudo-inverse needs to be done only once. This approach enables an 

almost online load reconstruction for time invariant systems as well as load estimation in the 

case when the sensors and excitation positions are not the same (non-collocated). An individ-

ual sensor lead was proposed [NORDSTRÖM 2005] as an extension of this method. Disad-

vantages associated with the method include difficulties in choosing a proper non-causal lead 

l and high sensitivity to the measurement noise.  

[NORDSTRÖM 2005] has extended the Dynamic Programming (DP) method proposed by 

[TRUJILLO and BUSBY 1997] for input estimation on linear time-variant systems (generally, 

the moving load and environmental changes are assumed) with measurements contaminated 

by noise. The starting point for the input reconstruction was a discrete time variant state space 

system as in Equation (1.6) with a slight modification in the state vector which combined the 

states and inputs, as follows: 

1

1

k kD D

k k k





      
              

x x 0A B

u u u0 I
. (1.15) 

Next, the search of a ku sequence that minimizes the weighted least square error between 

measured ky  and estimated ˆ
ky responses with Tikhonov regularization is carried out with the 

help of DP [NORDSTRÖM 2005]: 

   
1

ˆ ˆmin ( )
N

T T
k k w k k k r k

k




    
u

J y y W y y u W u  (1.16) 

here, the matrices wW and rW are considered to be symmetric and positive definite, contain-

ing weighting and regularization coefficients respectively. The DP is the recurrence algorithm 

that may be used to solve large least square problems and is appropriate for minimizing 

quadratic functions, and comprises two main steps: a backward and a forward sweep. The 

backward sweep heuristically establishes the input/output relationships at each discrete time 

step, whereas the forward sweep constitutes the calculation of the optimal inputs and states for 

the given initial conditions and relations that where established during the backward sweep. 

Recently an extended DP algorithm has been applied for identification of dynamic loads 

[LOURENS et al. 2008; LOURENS et al. 2009 ]. 
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[WOJCIECHOWSKI 1978] introduced for the first time the Proportional Integral Observer (PIO) 

which was an extension of the classical proportional Luenberger observer [LUENBERGER 

1971]. In contrast to the Luenberger approach, a second loop with two gain matrices and an 

integrator is also used. [SÖFFKER et al. 1995] have studied the PIO in more detail and applied 

it to estimate nonlinearities, unmodelled dynamics or unknown inputs/disturbances for control 

purposes Figure 1.5(a). Initially, the PIO technique suffered from the disadvantage of 

amplifying measurement noise which was due to the usage of high gains in a manner analo-

gous to a Luenberger observer.  

 

Figure 1.5: Input reconstruction principles with observer techniques (a) proportional integral 

observer (PIO) and (b) simultaneously state and input estimator (SS&IE) 

This problem was solved by [KRISHNA and POUSGA 2001] and the method was then adopted 

by [SÖFFKER and KRAJCIN 2003] for contact force estimation as well as for crack detection in 

rotating machines. The modified PIO (MPIO) is equipped with an additional integrator which 

enables the attenuation of measurement noise. The gain matrices can be found by any 

conventional pole placement procedure. Nevertheless, the locations of nonlineari-

ties/disturbances should be known prior to the observer design. 

[HA et al. 2004; HA and TRINH 2004] established a new technique for Simultaneous State and 

Input Estimation (SS&IE), Figure 1.5(b), for a class of nonlinear systems for control purpos-

es. In their work, the system nonlinearity is assumed to consist of known and unknown parts. 

To calculate the system observer, a general state space representation of the system is 

transformed in such way that the states are combined together with inputs. Then, the observer 

structure which includes only known nonlinearity is designed with the help of a Linear Matrix 

Inequality (LMI) algorithm. There are still two prerequisite conditions to be fulfilled in order 

to assure that such an observer exists. Among them is the continuity of the known nonlinear 

field (the known nonlinear function considered to be Lipschitz in its first argument) and that 
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the number of sensors should be at least equal to or greater than the number of unknown 

inputs plus the number of nonlinear terms that do not satisfy the Lipschitz conditions. 

Numerous attempts have been made by the researchers to employ the Kalman filter theory for 

simultaneous input and state estimation. Among them [LIU et al. 2000; MA and LIN 2000; MA 

et al. 2003; MA and HO 2004] have adopted the earlier work of [TUAN et al. 1996], who used 

the Kalman filter together with a recursive least squares algorithm, for the load estimation in 

both linear and nonlinear systems. The Kalman filter has been used initially to generate the 

residual innovation sequence by observation vector. Then a recursive least-squares algorithm 

computes the onset time histories of the excitation forces by utilizing the residual innovation 

sequence. [DENG and HEH 2006] used the same approach for reconstruction of the loads 

distributed along the beam structure. In the recent work [PAN et al. 2010] has proposed to use 

the Kalman Filter with Unknown Inputs (KF-UI) for the estimation of the joint inputs and 

states. For this purpose Pan first combined the states and unknown inputs into an extended 

state vector. Then the weighted least squares problem has been solved for the extended state 

vector recursively. In comparison to other authors, who used always either displacement or 

velocity as measurement quantities, Pan’s approach utilizes the more general measurement 

equation, which allows the usage of accelerometer sensors in estimation procedure. 

1.2 THESIS OBJECTIVES AND OUTLINE 

First of all, this work provides a closer investigation of a variety of existing algorithms of 

force history reconstruction and location estimation which have been established by mechani-

cal engineers, a determination of their respective advantages and merits in solving the inverse 

problem by comparing simulated and experimental results. Secondly, research is carried out 

for possible candidate methods among the other engineering disciplines that could be applied 

to overcome the ill-posedness of force history estimation and allow online load reconstruc-

tion. The main focus of the thesis is concentrated on comprehensive design analysis and 

further development of the qualified algorithms. In particular, model based robust observers 

are considered as candidates for the online loads and states reconstruction. The aspects of 

proper model building that allow releasing the sensor placement procedure (from collocated 

to non-collocated), while simultaneously reducing the model complexity are introduced for 

the observer design. An innovative model free passive technique for automatic impact 

location detection is elaborated and extended by incorporation of a fast robust load estimation 

method. In addition, a novel approach of rank deficiency compensation is proposed for the 

direct time deconvolution procedure in the non-collocated case.  
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In most of the cases the load reconstruction algorithms consider the mechanical system as 

known beforehand. Therefore, Chapter 2 starts with essential fundamentals of linear time 

invariant model representations. In particular mechanical systems are shortly presented in 

nodal and modal coordinates either in continuous or discrete time as well as transfer functions 

or as state space models. Model construction issues are completed by system identification 

and modal analysis approaches that are possible alternatives for the model building. Some 

aspects of nonlinear systems such as stability and linearization are also considered. To cover 

the knowledge of the observer construction which is used later for the online load reconstruc-

tion, the estimation theory is presented. Inverse problems together with associated solving 

recipes are concluding Chapter 2. 

For the sake of clarity the load classification is done in Chapter 3, where the general possible 

loads are divided into three main categories:  

1. impact loads 

2. time continuous loads 

3. spatially distributed loads. 

The estimation of the impact loads is then considered in a very detailed way in Chapter 4. The 

general estimation procedure is broken down into two parts. The first one deals solely with 

impact detection and impact location computation based on the wave propagation theory. 

Automatic picking algorithms which are able to extract the time of signal arrival are revealed 

together with necessary signal processing tools like continuous wavelet transformation and 

signal windowing. After the localization procedure, a second step of impact load history 

reconstruction is presented. Here two possible candidates are taken under closer look. In 

particular, the direct time deconvolution method and the tracking filter algorithm are present-

ed in a detailed way. 

Chapter 5 deals solely with the observer based algorithms, especially the SS&IE is treated in a 

very comprehensive way. Special aspects of the SS&IE matrices calculation are shown in 

section 5.1. In addition, gained knowledge from Chapter 2, of system transformation from 

nodal to modal coordinates which allowed releasing collocation condition is discussed. In 

sections 5.2 and 5.3 the MPIO and KF-UI are examined for the load history estimation task. 

Finally, conclusions are drawn with respect to the strong and weak sides of the above 

algorithms in section 5.4. 

Numerical studies and application examples are carried out in Chapter 6. Beginning with the 

impact load estimation on the aluminum plate in section 6.1, where the direct time deconvolu-
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tion method is compared with a tracking algorithm. It continues with a simple two storey test 

rig in section 6.2. The two storey test rig serves as a basis for the continuous time load 

estimation performance evaluation of SS&IE, MPIO and KF-UI. In section 6.3 a scrupulous 

numeric analysis of the SS&IE is done with respect to the system variation and the noise 

robustness with the help of continuously distributed structures. In addition the non-collocation 

of the sensor and load position is investigated in a systematic way. Numerical studies are 

concluded by load estimation on real structures like a simply supported beam, tripod laborato-

ry tower and the wind energy plant M-5000. Afterwards the SS&IE ability of load estimation 

on nonlinear system is attested in section 6.5. 

The thesis results are combined in the summary and discussion in Chapter 7. Here the nuances 

of every specific load estimation algorithm are signified in a form of their strong and weak 

sides together with the necessary conditions which should be hold to enable the specific 

algorithm to fulfill its work. Finally a short outlook gives a potential direction for future 

researches in the field of load estimation in the SHM and structural design. 
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2 THEORETICAL FOUNDATIONS 

The best model of a cat is another, or  

preferably the same, cat. 

-Arturo Rosenblueth with Norbert Wiener 

Equation Chapter (Next) Section 1 

2.1 MODELING OF MECHANICAL SYSTEMS 

The modeling of real world structures is an essential step towards a better understanding of 

their physical properties. In most instances, mechanical structures are considered as dynam-

ical systems which can be described with the help of analytical models based on either 

physical laws, such as Newton’s motion law, Lagrange’s equations of motion, or 

D’Alembert’s principle [GAWRONSKI 2004]; from Finite-Element Models (FEM); or from test 

data using System Identification (SI) methods. Such models are represented either in the time 

domain (differential or difference equations), or in the frequency domain in terms of Transfer 

Functions (TF). For the purpose of estimating external loads, the existence of an appropriate 

model is a mandatory condition. Therefore, different model types are considered in the 

following subsections. 

2.1.1 General Linear Time Invariant Systems  

NODAL MODELS 

A linear system follows the superposition principle, which states that a linear combination of 

inputs produces an output that is the linear combination of the outputs if the outputs of each 

input term were applied separately. Linear structural models are represented in time domain, 

in the form of second-order differential equations or in the form of first-order differential 

equations (as a state space representation). In the former case, the degrees of freedom of a 

structure that are usually associated to the discrete masses or nodes are typically used to 

describe the structural dynamics as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n n o

oa ov oq

t t t t

t t t t

  

  

M q D q K q B u

y C q C q C q
. (2.1) 

The above equation represents a nodal structural model (with first dynamic and second output 

equations) which is derived in nodal coordinates in terms of displacement ( )tq , velocity ( )tq

and acceleration ( )tq vectors in real space dn
R and characterized by the mass matrix Mn, 
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stiffness matrix Kn and damping matrix Dn of dimensions d dn n ; ( ) mt Ru is an input vector 

together with the input placement matrix Bo of dimensions ( )dn m ; ( ) rt Ry is an output 

vector and the output displacement Coq, velocity Cov and acceleration Coa are matrices of size

dr n . 

MODAL MODELS 

The nodal model representation may become impractical for dynamic analysis of complex 

structures (with many degrees of freedom) which are obtained from FEM or an SI procedure, 

while the modal representation is a natural outcome of the SI test or Modal Analysis (MA) 

technique. For these cases the modal models are often used to reduce the order of the system 

under consideration and to make use of the modes independence properties. The modal 

models can be obtained from the nodal models by a coordinate transformation as follows 

[GAWRONSKI 2004]: 

( ) ( )mt tq Φq , (2.2) 

here, Φ is a transformation matrix with appropriate dimensions. The role of the transfor-

mation matrix in this case is a projection from nodal to modal coordinates which is done with 

the help of the mode shape matrix Φ and mn
m Rq , where usually m dn n . In its turn Φ is 

calculated by solving the eigenvalue problem for the first part of Equation (2.1) by assuming 

free vibration ( ) 0t u  and setting 0n D : 

2( ) 0n n  K M  (2.3) 

this is a set of homogeneous equations with variable  which have a nontrivial solution if: 

2det( ) 0n n K M . (2.4) 

The above equation is satisfied for the number nd of circular frequencies with 1, ...,i di n  . 

By substituting i into Equation (2.3) the corresponding mode vector iφ is calculated. These 

results are combined into a matrix of natural circular frequencies Ω and modal matrix ,Φ  as 

follows: 

1

1

0 0

0 0 ,

0 0
d

d

n

n





 
 

     
 
 

Ω Φ   . (2.5) 
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Inserting the modal coordinates from Equation (2.2) into Equation (2.1) and left-multiplying 

by T
Φ leads to a new form: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T
n m n m n m o

oa m ov m oq m

t t t t

t t t t

  

  

Φ M Φq Φ D Φq Φ K Φq Φ B u

y C Φq C Φq C Φq
. (2.6) 

Pre and post multiplication by modal matrix diagonalizes the nodal mass, damping (damping 

is assumed to be proportional) and stiffness matrices so that the new modal matrices are:  

, and  T T T
m n m n m n  M Φ M Φ D Φ D Φ K Φ K Φ . (2.7) 

Substituting the modal matrices into Equation (2.6) and dividing by Mm lead to a final modal 

model representation: 

2( ) 2 ( ) ( ) ( )

( ) ( ) ( ) ( )

m m m m

ma m mv m mq m

t t t t

t t t t

  

  

q ZΩq Ω q B u

y C q C q C q
 (2.8) 

where,
2 1

m m
Ω M K is a diagonal matrix of circular natural frequencies as before,  is a 

diagonal matrix of modal damping ratio
1 10.5 m m
 Z M D Ω and

1 T
m m o

B M Φ B is the 

modal input matrix. Output matrices are combined into more compact forms

, andma mv mqC C C that represent modal accelerations, velocities and displacement output 

matrices, respectively. 

The most important result from modal transformation is a complexity reduction of the initial 

system by proper dimensioning of the modal matrix. In this step only the modes that are of 

interest are taken for the modal model building. 

2.1.2 State Space Representation of Continuous-Time Systems 

Beyond the second order differential equations that describe mechanical systems and tradi-

tionally used by structural engineers, other representations such as state space or transfer 

functions are available. State space notation has its origin in the area of control engineering 

and is extremely useful for several reasons, including the reduction of n
th

 order linear 

Ordinary Differential Equations (ODEs) to n first-order ODEs. Matrix analysis tools can 

easily be used and provide a conventional representation for Multi-Input-Multi-Output 

(MIMO) systems. The state space form represents the mechanical structure as a system of first 

order differential equations which are combined into special general form: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n

n

t t t t

t t t t

  

  

x Ax Bu E w

y Cx Du F v
, (2.9) 

where, ( ) , ( ) and ( )n m rt R t R t R  x u y are state, input and output vectors, respectively. 

Matrices A, B, C, D, En and Fn (also known as a realization when associated to a particular 

system) are real, constant, and of appropriate dimensions. Vectors ( ) and ( )t tw v represent 

process and measurement noise. Equation (2.9) can be obtained directly from Equations (2.1) 

or (2.8) by letting  ( )
T

t x q q and rearranging the matrices as follows: 

2
,

2 m

   
    

    

0 I 0
A B

BΩ ZΩ
. (2.10) 

The output matrix C and direct feed-through matrix D are constructed to satisfy the output 

equation in Equation (2.9) according to the measurements that are acquired. An important 

aspect of the state space realization is that it is not unique to a specific structure and can be 

changed into a different realization by the transformation technique. 

2.1.3 Transfer Function Representation of Continuous-Time Systems 

The system in Equation (2.9) can also be represented in TF form by taking its Laplace 

transformation [LEPAGE 1961], assuming the absence of process and measurement noise 

together with zero initial conditions: 

(s) (s) (s)

( ) (s) (s)

s

s

 

 

X AX BU

Y CX DU
, (2.11) 

here s is the Laplace variable. Solving the dynamic equation for X(s) and substituting the 

resulting expression into the output equation yields the input-output relation in the frequency 

domain: 

 
1

( ) ( ) ( ) with   ( )s s s s s


   Y H U H C I A B D . (2.12) 

The TF H(s) defines the dynamical behavior of the structure and is a very useful representa-

tion. It establishes the direct inter-dependencies among the physical properties of mechanical 

structures when it is obtained directly from the second order system of Equation (2.8) with

s j  (where 2 1j   ): 

  
1

2 2 2( ) 2mq mv ma mj j    


    H C C C Ω ZΩ I B . (2.13) 
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Since the matrices andZ Ω  are diagonal, the above expression can be decoupled for the i
th

 

mode: 

 
 

2

2 2
( )

2

mqi mvi mai mi

mi

i i i

c j c c b

j

 


   

 


 
H , (2.14) 

where, ( )mi H  is a mode specific transfer function, i together with i represents the 

damping ratio and the circular natural frequency for the i
th

 mode, and , andmqi mvi maic c c are 

the i
th

 rows of the position, velocity and acceleration matrices respectively. So that the overall 

structural TF is established as a sum of individual n modes TF accordingly: 

 
 

2

2 2
=1 =1

( )= ( )
2

n n
mqi mvi mai mi

mi

i i i i i

c j c c b

j

 
 

   

 


 
 H H . (2.15) 

At the i
th

 resonant frequency the structural TF in Equation (2.15) is approximately equal to the 

i
th

 modal TF at that frequency: 

 2

2
( ) ( )

2

mqi i mvi i mai mi

i mi i

i i

jc c j c b 
 

 

  
 H H . (2.16) 

The poles of the TF are the roots of the denominator of Equation (2.13) which is referred to as 

characteristic equation. For each resonant frequency with a small damping which is normally 

the case for typical mechanical structures, the poles appear as complex conjugate pairs: 

2
(1/2) 1i i i i ij        . (2.17) 

The same results can be obtained by solving the characteristic Equation (2.12). Figure 2.1 

represents the relation of the poles locations to natural frequencies and damping ratio.  
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Figure 2.1: Pole location of the i
th

 mode of a lightly damped structure. The radius is equal to 

the i
th

 natural frequency; the real part is proportional to the i
th

 modal damping and the 

imaginary part is equal to the damped natural frequency [GAWRONSKI 2004] 

2.1.4 Solution for Forced Linear Dynamical Systems 

For the calculation of the system responses in the time or frequency domain, a general 

solution of linear state equations (2.9) or (2.11) is necessary. The general solution of inhomo-

geneous first order linear vector equations is found by multiplying equations (2.9) with teA

and simultaneously neglecting the process and measurement noise [CRASSIDIS and JUNKINS 

2004]: 

   ( ) ( ) ( ) ( )t t td
e t t e t e t

dt

    A A A
x Ax x Bu  (2.18) 

integrating both sides over the time interval [t0, t]: 

0

0
0( ) ( ) ( )

ttt

t
e t e t e d     

AA A
x x Bu  (2.19) 

and solving it finally for x(t) leads to the final form: 

0

0

( ) ( - )
0

( )

( ) ( ) ( )

T

tt t t

t
t

t e t e d  
  

A A

Φ

x x Bu . (2.20) 

The first part of the solution in the Equation (2.20) is the solution of the homogenous part 

which “maps” the initial states into the current states with the help of the transition matrix

0( )
( )

t t
T t e




A
Φ , whereas the second part is a particular solution of the inhomogeneous ODE. 

The solution for the noise free output y(t) in Equation (2.9) is obtained by substitution of 
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Equation (2.20) and taking into account zero initial conditions x(t0)=0 (making use of the 

Dirac-Impulse function ( )t for integral transformation): 

0 0

( - ) ( - )( ) ( ) ( ) ( - ) ( )
t tt t

t t
t e d e t d           

  
A A

y C Bu Du C B D u . (2.21) 

The constant matrices in the Equation (2.21) are combined into impulse response function 

H(t-): 

( )( ) ( )tt e t     A
H C B D , (2.22) 

so that Equation (2.21) has a form analog to the convolution integral in Equation (1.1)  

0

( ) ( ) ( )
t

t
t t d   y H u . (2.23) 

The convolution integral in Equation (2.23) is known as the Volterra integral equation of the 

first kind which is commonly used for input-output description of dynamical systems.  

2.1.5 Discrete-Time Systems 

Discrete-time systems became standards in most dynamical applications with the advent of 

digital computers which are used to process sampled-data systems for estimation and control. 

The discretization procedure takes place in the analog to digital converter (A/D) where 

different discretization schemes can be applied. The most common mathematical model for 

A/D conversion is the “zero-order-hold” model. This model describes the effect of converting 

a continuous-time signal to a discrete-time one by holding each sample value for one sample 

interval, see Figure 2.2. 

 

Figure 2.2: Continuous signal and sampled zero-order-hold signal 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=discretization&trestr=0x2001
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By using the zero-order-hold model, Equation (2.20) is transformed into a discrete dynamical 

system for the first sample interval [CRASSIDIS and JUNKINS 2004] as: 

( - )

0
( ) (0) (0)

tt tt e e d
     

  
A A

x x Bu . (2.24) 

Defining a new variable t    transforms the integral on the right-hand side to: 

0( - )

0 0

t tt

t
e d e d e d

    


      

A A A . (2.25) 

Therefore, Equation (2.24) becomes: 

( ) (0) (0)D Dt  x A x B u , (2.26) 

where subscript ( )D denotes discrete matrices AD and BD, which are computed accordingly 

[CRASSIDIS and JUNKINS 2004]: 

0
and  

tt t
D De e dt

   
  

A A
A B B . (2.27) 

Expansion in time for k+1 samples yields: 

(( 1) ) ( ) ( )D Dk t k t k t    x A x B u , (2.28) 

which is rewritten in a more common way, by dropping the t out and joining the discrete 

output equation: 

1k D k D k

k D k D k

  

 

x A x B u

y C x D u
. (2.29) 

The matrices andD D C C D D  in the output equation are unaffected by the conversion to 

discrete-time domain. Analytical computation of the AD and BD might be a difficult process 

for a system of large order. Fortunately a numerical approach which involves series expansion 

can be used to get these matrices in accurate manner [CRASSIDIS and JUNKINS 2004]: 

1

0 1

and   
! !

k k k k

D D

k k

t B t

k k

  

 

  
A

A B . (2.30) 

The main difference in the analysis of a discrete-time versus continuous-time systems rests in 

the sampling interval. Its influence can also be noticed on the poles locations of the AD (see 

Figure 2.3) which are different from the continuous-time system. The sampling interval can 

affect the system response as well as its stability as can be observed in Figure 2.3. 
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Figure 2.3: Pole location of the i
th

 mode of a lightly damped structure in discrete time 

[GAWRONSKI 2004] 

For a stable system the poles should be inside the unit circle, therefore the Nyquist criterion is 

often used to ensure proper choice of the sampling time. According to the Nyquist-Shannon 

sampling theorem the i
th

 natural frequency is recovered if the sampling rate is at least twice 

the natural frequency in Hz ( / 2 )i if   , i.e. if 

1
2 or, ifi

i

f t
t




 
  . (2.31) 

Corollary, for all modes considered it should satisfy following condition: 

max( )i
i

t





 . (2.32) 

2.1.6 System Identification or Model Construction 

System Identification (SI) is the art and science of building mathematical models of dynamic 

systems from observed input-output or solely output data. Several methodologies and 

nomenclatures have been developed in different application areas. The SI term originated in 

the control engineering field, but similar techniques are found in structural engineering, 

statistics, econometrics, time series analysis, machine learning, data mining, artificial neural 

networks and fitting of ODE’s coefficients [LJUNG 2008]. In general, the SI procedure can be 

organized into a block diagram as in Figure 2.4. 



2 Theoretical Foundations 23 

 

Figure 2.4: The system identification loop[LJUNG 1999] 

In structural engineering SI methods that have been tested in practical applications are used. 

Among them are the Stochastic Subspace Identification (SSI) method [VAN OVERSCHEE and 

DE MOOR 1996; PEETERS and DE ROECK 1999; PEETERS and DE ROECK 2001]; Eigensystem 

Realization Algorithm (ERA) [JUANG and PAPPA 1985]; and output only system identification 

SSI based or with Vector-Autoregressive (VAR) models [KRAEMER and FRITZEN 2010]. All 

of these techniques attempt to identify the minimum system realization (

ˆ ˆˆ ˆ,  , andD D D DA B C D ) of discrete systems in Equation (2.29). Both SSI and ERA are based 

on the construction of the block Hankel matrices 0H and 1H which, are constructed from the 

Markov parameters Hi: 

1
0

0

with ,
k

i
k i k i D i D D D

i






  y H u H D H C A B . (2.33) 

Thus, 

1 2 2 3 1

2 3 1 3 4 2
0 1

1 2 1 1 2 2

and

k k

k k

k k k k k k



 

   

   
   
    
   
   
      

H H H H H H

H H H H H H
H H

H H H H H H

. (2.34) 
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Conversely, if the number of samples is greater than the system order i.e. k n , then the 

above matrices can be obtained as products of the controllability kC and observability kO ma-

trices as follows: 

0 1and        k k k D k H O C H O A C , (2.35) 

where: 

1 1( ) and   
T

T T T T k T k
k D D D D D k D D D D D

     
   

O C A C A C C B A B A B . (2.36) 

Identification can then be carried out with the help of the decomposition of Hankel matrix 

0H so that it has an appearance similar to that of Equation (2.35). This is done with the help 

of Singular Value Decompositions (SVD): 

2
0 ,TH VΓ U  (2.37) 

where ˆ
k O VΓ and ˆ T

k C ΓU are the estimated observability and controllability matrices. 

The matrix  consists of the Singular Values (SV) and can be used for order determination by 

the truncation of the small SV’s and appropriate dimensioning of matrices V and U. Next, a 

realization ( ˆ
DA , ˆ

DB , ˆ
DC ) can be calculated from Equation (2.35) and (2.37): 

1 1
1 1

ˆ ˆ ˆ T
D k k

    A O H C Γ V H UΓ , (2.38) 

here ‘+’ represents the pseudo inverse i.e.: 
1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) and ( )T T T T

k k k k k k k k
    O O O O C C C C . The 

matrices ˆ
DB  and ˆ

DC  are easily found as the first m columns of ˆ
kC  and the first r rows of 

ˆ
kO : 

 

 

ˆˆ ,       where       0

ˆ ˆ ,       where       0

T

D k m m m

TT
D r k r r

 

 

B C E E I

C E O E I
 (2.39) 

The main difference between SSI and ERA lays in the construction of the block Hankel 

matrices. For the ERA algorithm both the input and output data are needed to extract the 

(k+1) Markov parameters which are collected into a Markov matrix as follows: 

1k
Markov D D D D D D D D D

 
 

H D C B C A B C A B , (2.40) 

for the construction of the Hankel matrix. The input and output are combined into respective 

input measurement and output measurement matrices: 
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0 1 2

0 1 1 1

0 1 2 0 2 2

0

0

and 0 0

0 0 0

k q

k q

q k q

q k

 

 



 
 
 
      
 
 
  

u u u u u

u u u u

Y y y y y U u u u

u u

 (2.41) 

where, q k  so that the input output relationship in Equation (2.33) is represented as

MarkovY H U . The Markov parameters are calculated by least squares approximation if the 

input measurement matrix U has full column rank. For noisy measurements the Markov 

parameters are determined by using the averaging procedure thus, 

1 1

1 1ˆ with and
N N

T T
Markov yu uu yu i i uu i i

i iN N



 

   H R R R Y U R U U  (2.42) 

where Ryu and Ruu are the correlation and autocorrelation matrices between input/output, and 

input/input which are divided into N segments i=1,2,…N; the andi iU Y  are the i
th

 segments 

of the data records matrices U and Y respectively The estimated matrix ˆ
MarkovH contains all 

the necessary Markov parameters for SI by ERA, Equation (2.34) to (2.39). In addition the 

ERA allows estimating the direct feed through matrix ˆ
DD as the first m columns of ˆ

MarkovH  

matrix.  

For the SSI method the input is considered to be white noise thus the Hankel matrices are 

composed from the outputs correlations only: 

1 1

1 2
1, ,

1

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ 1ˆ, with
1

ˆ ˆ

t

i i i

n i
i i i T

i i k i k
t k

i i

n i




 

  

  


  

 



    

 
 
 

    
 
 
 



R R R

R R R
H R y y

R R

 (2.43) 

here, nt is the number of data points from one sensor that are recorded in one measurement 

period; and  ,   define the number of time shifts in the block Hankel matrix.  

The VAR method attempts to build the auto regressive models for the recorded measurements 

as for r-variate time series [KRAEMER and FRITZEN 2010]: 

1

p

k l k l k

l





  y w A y ε . (2.44) 
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The model error matrix ε  consists of r averaged vectors (Gaussian data), with the covariance 

matrix  ˆ T
AR C E ε ε . The matrices 1, , pA A  are the coefficient matrices of the AR model 

with order p and the vector w (dimension r×1) allows consideration of non-zero mean values 

of the time series. Proper arrangement of the AR coefficients can be used for the construction 

of ( ˆ
DA and ˆ

DC ): 

 

1 2 1

ˆ ˆand   

p p

D D

 
 
  
 
 
  

A A A A

I 0 0 0
A C I 0 0 0

0 0 I 0

. (2.45) 

If the dynamic properties of structures under vibrational excitation are needed then the 

eigensolution is found for the realized state space matrix ˆ
DA : 

 ˆ
D i i A I ψ 0 , (2.46) 

with the complex eigenvalues i that are combined into a matrix 1 2( , ,..., )ndiag   Δ and 

the eigenvectors iψ which are combined into matrix  1 2, ,..., nΨ ψ ψ ψ where n defines the 

identified system dimensions. The physical frequencies ˆ
i and damping ratios ˆ

i are identi-

fied by transformation into continuous time domain: 

 2

ˆ

lnˆ ˆ ˆˆ ˆ 1

Di

i
i i i i ij

t



    


     . (2.47) 

Thus, 

ˆ ˆˆ Im( ) Re( )ˆ ˆand
ˆ2 2

iD i i
i i

i

f
  


  


   . (2.48) 

Similarly, the matrix ˆˆ
DΦ C Ψ  is combining the mode shapes for the measurement locations. 

2.1.7 Nonlinear Systems, Linearization and Stability 

GENERAL NONLINEAR SYSTEM 

Many real world structures exhibit a nonlinear behavior that makes their analysis very 

complicated. Among them are mechanical systems such as [MOON 1998]: 

 Buckled structures under vibration 
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 Gear transition elements with backlash 

 Systems with sliding dry friction 

 Multilink systems, such as robots 

 Fluid-structure or contact dynamics 

A general nonlinear first order system has the following form: 

( , , )

( , , )

t

t





x f x u

y h x u
, (2.49) 

where x, u and y are state, input and output vectors, respectively. Some nonlinear systems can 

be solved for an exact analytical solution. Unfortunately, there are no standardized methods 

existing for finding exact solutions and the search for an exact analytical solution requires 

elaborate mathematics. On the other hand, linearized models of non-linear structures serve 

well for specific applications especially when the reference motion may be known.  

LINEARIZATION 

The transformation from non-linear to linear system is done by a linearization procedure 

either by choosing a proper nominal trajectory or equilibrium point about which the lineariza-

tion is carried out. The linearization procedure then starts by assuming that the actual 

quantities , andx y u in Equation (2.49) can be splitted into a reference or nominal

, andN N Nx y u and small perturbations , and  x y u of states, inputs and outputs, 

respectively, as follows [CRASSIDIS and JUNKINS 2004]: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

N

N

N

t t t

t t t

t t t







 

 

 

x x x

u u u

y y y

. (2.50) 

The linearized dynamical model around a desired trajectory is then obtained by application of 

a Taylor series which is truncated after the linear part: 

( , , ) ( , , ) ( , , ) ( , , )N N N N N N N Nt t t t       x uf x x u u f x u f x u x f x u u , (2.51) 

where,   is the Jacobian operator so that the dynamic linear system for perturbations is: 

( ) ( , , ) ( , , )

( ) ( , , ) ( , , )

N N N N

N N N N

t t t

t t t

  

  

 

 

x u

x u

x f x u x f x u u

y h x u x h x u u
. (2.52) 
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It is very essential to choose suitable nominal trajectories or equilibrium points for the 

linearization procedure and to analyze the effects of errors introduced by the linearization 

procedure.  

STABILITY 

Estimating the stability of the reconstruction process is a stringent requirement so that the 

estimated quantities remain in the bounded interval. Therefore stability analysis is an im-

portant matter to both linear and nonlinear systems, and can be commonly checked by Routh-

Hurwitz stability criteria that are applicable to Linear Time Invariant systems (LTI’s) or by 

Lyapunov’s direct method, which in turn can be applied to both linear and nonlinear systems. 

Here only Lyapunov’s direct or second method is considered due to its generality (it does not 

require the solution of differential equations, in contrast to Lyapunov’s first method) [OGATA 

1970]. This method yields a globally sufficient condition for asymptotic stability. Lyapunov’s 

model is closely related to the energy of a system, which is a scalar function; the energy must 

be in general continuous and should have continuous derivatives with respect to all states. 

Lyapunov has shown that if the total energy of a system is dissipated, then its state is confined 

to a volume bounded by a surface of a constant energy, so that the system should eventually 

settle to an equilibrium point [CRASSIDIS and JUNKINS 2004]. The equilibrium state for the 

system:  

( , )tx f x  (2.53) 

is defined as ( , ) 0e t f x  for all t. Representing the solution for Equation (2.53) as 0 0( ; , )t tx

where the x=x0 at t=t0 and t is the observed time, one obtains, 

0 0 0( ; , )t t x x . (2.54) 

Then the stability in the sense of Lyapunov is denoted with the help of the spherical regions 

( )S  and ( )S  about the equilibrium state xe as represented for the two dimensional case in 

Figure 2.5. The spherical regions consist of all points within the following distances from the 

equilibrium point, wherein the distances are expressed in the Euclidean metric: 

0

0 0 0

, ( )

( ; , ) , ( ), for all

e

e

S

t t S t t

  

   

   

    

x x

x x
. (2.55) 
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The equilibrium state is then said to be asymptotically stable if every solution starting at x0 

within the region ( )S  converges to xe without leaving ( )S   as t grows to infinity, where 

and   are small values. 

 

Figure 2.5: (a) Stable equilibrium state and respective trajectory; (b) asymptotically stable 

equilibrium state and respective trajectory; (c) unstable equilibrium state and respective 

trajectory [OGATA 1970] 

This concept of Lyapunov stability is formulated mathematically for continuous systems as in 

Equation (2.53) with the help of a scalar Lyapunov function V(x) for which the following 

conditions are held: 

1. ( ) 0

2. ( ) 0 for 0

3. ( ) 0.



 



V 0

V x x

V x

 (2.56) 

If the conditions in Equation (2.56) are satisfied then the dynamical system under considera-

tion is said to be asymptotically stable. The simplest and most commonly used Lyapunov 

function is the quadratic form function which is constructed as: 

( ) T
LV x x P x , (2.57) 

where PL is a positive definite symmetric matrix. Applying the quadratic Lyapunov function 

to the LTI system of form: 

x Ax , (2.58) 

leads to the following time derivative of V(x): 

( ) ( )T T T T
L L L L   V x x P x x P x x A P P A x . (2.59) 

The stability of the system can now be found by solving a new equation of the form: 

L

T
L L  A P P A Q . (2.60) 
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Hence if matrices QL and PL are positive definite then the system will converge to its equilib-

rium state. In practice instead of first specifying a positive definite matrix PL and examining 

whether or not QL is positive definite, it is convenient to specify matrix QL initially and then 

examine if an appropriate PL can be found to satisfy Equation (2.60) [OGATA 1970]. In the 

case of a discrete system 1 ( , )k k t x f x the conditions for V(x) in Equation (2.56) are 

modified as: 

1

1. ( ) 0

2. ( ) 0 for 0

3. ( ) ( ) ( ) 0

k k

k k k 



 

  

V 0

V x x

V x V x V x

. (2.61) 

Then the matrix Lyapunov Equation (2.60) for a discrete system 1k D k x A x is of the form: 

T
D L D L L  A P A P Q . (2.62) 

For the analysis of nonlinear systems the modified techniques that are based on Lyapunov’s 

second method are used. Such techniques include Krasovskii’s method for testing sufficient 

conditions for asymptotic stability, Schultz-Gibson’s variable gradient method for generating 

Lyapunov functions [OGATA 1967]. 

2.2 OBSERVER THEORY 

In the beginning of 60th David G. Luenberger initiated the theory of observers for the state 

reconstruction of linear dynamical systems. Since then, owing to its utility and intimate 

connection to fundamental system concepts, observer theory continued to be a fruitful area of 

research and has been substantially developed in many different directions [O'REILLY 1983]. 

The most important area of application is control engineering where observer theory has had 

its greatest impact among state-space control methods, such as pole-shifting, deadbeat control, 

and optimal linear regulator design. The problem of state observation centers on the construc-

tion of an auxiliary dynamic system, known as a state reconstructor/estimator or observer, 

driven by the available system inputs and outputs. A block diagram of the open loop system 

together with the state reconstruction process is presented in Figure 2.6. The observer is 

constructed on the basis of a mathematical model which mimics the real system. 



2 Theoretical Foundations 31 

 

Figure 2.6: Open-loop system state reconstruction 

A primary assumption for state reconstruction based on past measurements is the observabil-

ity of the system otherwise it is not possible to construct an observer for the system. 

2.2.1 System Observability 

Taking a noise free linear state-space system of Chapter 2.1.2 into consideration: 

0( ) ( ) ( ) ( ) ( ), ( )0t t t t t t  x A x B u x x  (2.63) 

( ) ( ) ( )t t ty C x , (2.64) 

where ( ) nt Rx  is the system state, 0( ) nt Rx  is the state at initial time t0, ( ) mt Ru is the 

external input, and the output ( ) rt Ry represents linear combinations of the state ( )tx availa-

ble for measurement, the matrices ( )tA , ( )tB and ( )tC are assumed to have compatible 

dimensions and to be continuous and bounded. The above system is said to be observable if 

the following theorems are valid [O'REILLY 1983]: 

Theorem 2.1 The linear system (2.63), (2.64) or the pair ( ( ), ( )t tA C ) is uniformly completely 

observable (uniformly completely state reconstructible) if and only if for some 0   there 

exist positive constants , 1,2i i  such that: 

1 20 ( )o        I W I , (2.65) 

holds for all  . The Wo matrix is the observability Gramian, defined as: 

( , ) ( , ) ( ) ( ) ( , )

t
T T

o T Tt d



        W Φ C C Φ , (2.66) 

where the ( , )T  Φ is the transition matrix defined as in Chapter 2.1.4. As a corollary it is 

implied that the Gramian matrix Wo should be positive definite. 

If the dynamical system (2.63), (2.64) is time invariant the observability can be easily checked 

by the following criteria [O'REILLY 1983]: 
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Theorem 2.2 The linear time-invariant system (2.63), (2.64) or a pair ( ,A C ) is completely 

observable if and only if: 

   
2 1

 ( ) ( ) ( )

T
n

T T T T T T Trank rank n
  

      

O C A C A C A C  (2.67) 

The system in Equations (2.63), (2.64) does not take into consideration measurement noise 

and model uncertainty. The usage of observability Gramian is preferable in case when the 

systems are of higher orders e.g. n=100, due to its computational efficiency [GAWRONSKI 

2004]. 

2.2.2 Classical Luenberger Observer 

The Luenberger observer is often known as a full-order observer or estimator. It constructs the 

auxiliary observer system on the basis of a known model, with the assumption that the pair 

(A, C) of original realization (A, B and C) in Equations (2.63) and (2.64) is observable. The 

observer is mathematically formulated for the time-invariant original system as: 

 ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )obst t t t t   x Ax Bu K y Cx  (2.68) 

and coupled to the original system through the available inputs and outputs. The last term 

represents the mismatch between estimated and measured outputs. Constructing the state 

reconstruction error as: 

ˆ( ) ( ) ( )t t t e x x , (2.69) 

implies that the error will converge asymptotically to zero accordingly 

 ( ) ( )obst t e A K C e . (2.70) 

The matrix Kobs stabilizes the error dynamics by shifting the poles of ( )obsA K C to the left-

hand complex plane. 

2.2.3  Minimal Order Observer 

It often makes sense to estimate only states that cannot be measured or in other words to 

design the minimal-order observer having a lower order (lower complexity) than the original 

system. Keeping in mind that the main objective is to reconstruct the system states ( ) nt Rx , 

on the basis of r available outputs ( ) rt Ry , which represent r linear combinations of the 
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states, it is advisable to construct a minimal-order observer where the dimension of the 

observer states is n-r.  

Thus, given r linear state combinations in the outputs ( )ty , the remaining n-r states combina-

tions require to be reconstructed [O'REILLY 1983]: 

-( ) ( ) ( ),   ( ) n rt t t t R z T x z . (2.71) 

Combining equations (2.64) and (2.71):  

 
1

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t t t t t
t t t t

t t t t t


         

            
         

y C C y y
x x V P

z T T z z
 (2.72) 

where T(t) is chosen so that it is invertible, and V(t) and P(t) are respective inverses of C(t) 

and T(t). In the case that the z(t) exists, the original states can be directly reconstructed. 

However, ( ) ( )t tT x cannot be measured directly, so it should be estimated by means of the 

secondary dynamical system of order n r  

( ) ( ) ( )+ ( ) ( )+ ( ) ( )t t t t t t tz L z E y G u  (2.73) 

ˆ( ) ( ) ( )+ ( ) ( )t t t t tx P z V y  (2.74) 

here, Equation (2.73) represents the auxiliary dynamical system whereas Equation (2.74) is 

obtained from the Equation (2.72) simply combines the measured and estimated states to form 

a compete n dimensional state vector. The observer reconstruction error is 

( ) ( ) ( ) ( )t t t t  z T x . (2.75) 

Taking the derivative of Equation (2.75) with respect to time and using Equations (2.63), 

(2.64) and (2.73) the error dynamics of the observer is 

 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t t t t t t t t t t

t t t t

     

 

L L T T A E C T x

G T B u
, (2.76) 

which can be reduced to a homogeneous equation  

( ) ( ) ( )t t t  L . (2.77) 

Providing that the following conditions are hold 

a. ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t  L T T A T E C  (2.78) 

b. ( ) ( ) ( )t t tG T B  (2.79) 
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c.  
1

( )
( ) ( ) or ( ) ( ) ( ) ( )

( )
n

t
t t t t t t

t


 

   
 

C
V P V C P T I

T
. (2.80) 

Conditions (2.78), (2.79) and (2.80) are known as Luenberger observer constraint equations 

with parameter matrices ( ), ( ), ( ), ( ), ( )t t t t tT L E T G and ( )tV . If such constraints are held, the 

observer error dynamics will diminish exponentially if the observer matrix ( )tL is chosen to 

be asymptotically stable. Finally, denoting the actual state reconstruction error by 

ˆ( ) ( ) ( )t t t e x x  (2.81) 

and making use of Equations (2.74), (2.64) and (2.75) the state reconstruction error is turned 

into 

 ( ) ( ) ( ) ( ) ( )+ ( ) ( ) ( )nt t t t t t t t  e P ε P T V C I x  (2.82) 

by invoking condition constraint Equation (2.80) the above equation is reduced to  

( ) ( ) ( )t t te P ε . (2.83) 

Thus, the accuracy of the state reconstruction is a linear function of the observer states ( )tz . 

In addition, referring to Equation and (2.80), the observer design parameters can be reduced 

by using 

  m

n-m

0( ) ( ) ( ) ( ) ( )
( ) ( )

0( ) ( ) ( ) ( ) ( )

t t t t t
t t

t t t t t

    
      

     

IC C V C P
V P

IT T V T P
. (2.84) 

Post multiplying Equation (2.78) by ( )tP produces 

( ) ( ) ( ) ( ) ( ) ( )t t t t t t L T A P T P  (2.85) 

while post multiplication of Equation (2.78) by ( )tV yields 

( ) ( ) ( ) ( ) ( ) ( )t t t t t t E T A V T V . (2.86) 

Equations (2.79), (2.85), (2.86) and the proper choice of the matrix T(t) conclude the calcula-

tion of the observer design (i.e., the calculation of matrices ( ), ( ), ( ), ( )t t t tL E T P and ( )tV ) 

for the given dynamical system ( ), ( ) and ( )t t tA B C . 

Both, the full-order and the minimal-order observers suffer from measurement noise, which is 

incorporated into the measured quantities. It can be easily shown that the noise is present in 

the error dynamics and amplified by the observer gain matrix (i.e. for a full-order observer 
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and noisy outputs ( ) ( ) ( )t t t y Cx ν  the error dynamics is: ( ) ( ) ( ) ( )obs obst t t  e A K C e K ν ). 

This drawback gave an impulse to search for alternatives. An outcome of this search was a 

new type of estimators: Recursive Least Square Estimator (RLSE) and the Kalman-Bucy filter 

with the inherited immunity against the noise corrupted signals [KALMAN and BUCY 1961]. 

2.2.4 Linear Sequential Estimator and Kalman-Bucy Filter 

LINEAR SEQUENTIAL ESTIMATOR 

The Linear Sequential Estimator (LSE) is a modification of Gauss’s principle least squares 

algorithm which solves the traditional problem of parameter estimation ˆ nRx  of the given 

equation [CRASSIDIS and JUNKINS 2004]: 

ˆ
Sy H x , (2.87) 

where rRy  represents the measured values and
r n

S R H  is a combination of the basis 

functions or a mathematical model of the process. Gauss proposed a choice of unknown 

parameters x̂ that minimize the weighted sum of the squared residual errors ˆ
S e y H x , 

given by  

1 1
ˆ ˆ ˆ( 2 )

2 2

T T T T T
S S S   J e We y Wy y WH x x H WH x  (2.88) 

where W is a symmetric positive definite weight matrix. Using matrix calculus the global 

minimum of the quadratic function J has to fulfill the following conditions: 

necessary condition:  

ˆ ˆ 0T T
S S   x J H WH x H W y  (2.89) 

sufficient condition: 

2
ˆ 0 must bepositivedefiniteT

S S  x J H WH . (2.90) 

If the sufficient conditions are satisfied, HS is required to have full column rank i.e.

( )Srank nH , and the explicit solution is obtained from the necessary condition (2.89): 

1ˆ ( )T T
S S S

x H WH H W y . (2.91) 

In its turn, the LSE attempts to use the knowledge of the previous estimations ˆ
kx to estimate 

the current state 1
ˆ

kx , which has a close relation to the general observer. If the current state is 
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estimated according to Equation (2.91) with the addition of the k letter to all involving 

matrices, then the current state estimated from both data sets is as follows: 

1

1
1 1 1 1 1 1

0 0
ˆ

0 0

T T

Sk k Sk Sk k k
k

Sk k Sk Sk k k




     

            
                          

H W H H W y
x

H W H H W y
. (2.92) 

Since the W is a block diagonal this expression can be represented in the form: 

1
1 1 1 1 1 1 1

ˆ ( ) ( )T T T T
k Sk k Sk Sk k Sk Sk k k Sk k k


        x H W H H W H H W y H W y . (2.93) 

Defining new variables 

1 1

1 1 1
1 1 1 1 1 1 1 1

1. ( )                                   =  

2. ( )     

T T
k Sk k Sk k Sk k Sk

T T T
k Sk k Sk Sk k Sk k k Sk k Sk

 

  
       

 

    

P H W H P H W H

P H W H H W H P P H W H
 (2.94) 

and incorporating them into the Equations (2.93) and (2.91) the results are 

1 1 1 1 1
ˆ ˆ1. and  2.  ( )T T T

k k Sk k k k k Sk k k Sk k k      x P H W y x P H W y H W y . (2.95) 

Pre-multiplying the first Equation in (2.95) by
1

k


P and using the relation:  

1 1
1 1 1 1

T
k k Sk k Sk
 

    P P H W H  (2.96) 

which can be obtained by manipulating the second Equation (2.94), yielding 

1
1 1 1 1

ˆ( )H W y P H W H x
T T
Sk k k k Sk k Sk k


     . (2.97) 

Substituting Equation (2.97) into the second Equation in (2.95) leads to 

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

ˆ ˆ ˆ  

ˆ ˆ( )

ˆ ˆ( )

T T
k k k Sk k k k Sk k Sk k

T
k k Sk k k Sk k

k k k Sk k

        

    

  

  

  

  

x x P H W y P H W H x

x P H W y H x

x K y H x

 (2.98) 

with: 

1 1 1 1
T

k k Sk k   K P H W  (2.99) 

which is known as a Kalman gain matrix. The final form of Equation (2.98) which modifies 

the previous best correction by an additional correction is known as a Kalman update 

equation [KALMAN and BUCY 1961]. The inverse of
1
1k


P which is defined in Equation (2.94) 

is needed (the specific form of 1
P is known as information matrix recursion) for the 
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calculation of the Kalman gain can be done more efficiently using the Sherman-Morrison-

Woodbury matrix inversion lemma [GOLUB and VAN LOAN 1996]: 

1 1 1 1 1 1 1( ) ( )          F A BCD A A B DA B C DA . (2.100) 

so that the information recursion now becomes 

1 1
1 1 1 1 1 1 ( )T T

k k k Sk Sk k Sk k Sk k
 

       P P P H H P H W H P . (2.101) 

Inserting this into the Kalman gain matrix expression (2.99) and performing necessary 

mathematical rearrangements a new covariance recursion form is obtained: 

1 1 1 1
ˆ ˆ ˆ( )k k k k Sk k     x x K y H x  (2.102) 

1 1
1 1 1 1 1 1( )T T

k k Sk Sk k Sk k
 

      K P H H P H W  (2.103) 

1 1 1( )k k Sk k   P I K H P . (2.104) 

The covariance form is the most commonly used in practice. The estimation process can be 

initialized by an a priori estimate 1x̂  and covariance estimate P1. If they are unavailable the a 

priori estimate and covariance can be initialized according to following expressions 

[CRASSIDIS and JUNKINS 2004]: 

1

1 1 1 12

1 T
S S




 

  
 

P I H W H  (2.105) 

1 1 1 1 12

1
ˆ T

S


 
  

 
x P β H W y , (2.106) 

where  is a very “large” number and  is a vector of very “small” numbers. 

KALMAN-BUCY FILTER 

In fact the covariance recursion form of LSE is a Kalman Filter (KF) if the weight matrix W 

is chosen to minimize the variance between the estimated x̂ and the real x  sates which is 

defined as: 

 2ˆ( )i iE x x  (2.107) 

in the presence of measurement noise ˆ
S y H x v . It has been proven that the optimum can 

be found with Equations (2.102), (2.103) and (2.104) if  1 cov( ) TE   W R v vv . The 
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Kalman filter attempts to estimate the states of the “original” discrete time invariant system 

(2.29) with DD=0 and extended by process wk and measurement vk noise as: 

1k D k D k k k

k D k k

   

 

x A x B u w

y C x v


. (2.108) 

In addition the wk and vk are assumed to be zero-mean Gaussian white noise processes, which 

means that they are not correlated forward and backward in time: 

   
0 0

and      T T
k j k j

k k

k j k j
E E

k j k j

  
  

  
v v w w

R Q
, (2.109) 

furthermore, the process and measurement noise are assumed to be uncorrelated 

{ } 0T
k jE v w  for all k. The estimator uses the model realization ( ,  and D D DA B C ) as basis 

for estimation and the correction term based on the measured ky and estimated ˆ
k


y outputs: 

1
ˆ ˆ ˆ( )

ˆ ˆ

k D k D k k k k

k D k

  


 

   



x A x B u K y y

y C x
. (2.110) 

In the literature, the KF in (2.110) can be found in the other form, see for example [CRASSIDIS 

and JUNKINS 2004]. Since the main interest is the estimation of the state, the KF is represented 

as: 

1
ˆ ˆ

k D k D k
 
  x A x B u  (2.111) 

ˆ ˆ ˆ( )k k k k D k
    x x K y C x  (2.112) 

where Equation (2.111) is called a propagation equation which propagates into a future with 

the help of the estimated (a posteriori) ˆ
k


x  states and the dynamical model. Equation (2.112) 

is an update equation which modifies the previous best correlation ˆ
k


x (a priori estimate from 

all previous measurements without the current one ky ). By using the minimum variance 

approach of Equation (2.107) it can be shown that the discrete KF can be modified similarly 

to SLE with the optimal Kalman gain [WELCH and BISHOP 2001]. These equations are 

summarized below: 

1.  Initialization 

 
0 0

0 0 0

ˆ ˆa. ( )

ˆb. ( ) ( ) , with       T

t

E t t



  

x x

P x x x x x
 (2.113) 
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2. Gain 

1( )T T
k k D D k D k

   K P C C P C R  (2.114) 

3. Update 

ˆ ˆ ˆa. ( )

b. ( )

k k k k D k

k k D k

  

 

  

 

x x K y C x

P I K C P
 (2.115) 

4. Propagation 

1

1

ˆ ˆa.   

b.   

k D k D k

T T
k D k D k k k

 


 


 

 

x A x B u

P A P A Q 
 (2.116) 

The propagation stage is as follows: if the measurements are available at the initial time then 

the states and covariance are updated using Equations (2.114) and (2.115) with 0 0
ˆ ˆ x x and

0 0
 P P , as the covariance and the states are propagated according to Equations (2.116); if 

the measurements are unavailable at the initial time then the estimate and covariance are 

propagated first to the next available measurement point with 0 0
ˆ ˆ x x  and 0 0

 P P . The 

process is then repeated sequentially. Many modifications of the KF are created for specific 

problems which include: nonlinear systems, correlated process and measurement noise and 

colored noise which leads to biased estimation. Improvements are achieved in computational 

methods of matrix inversions with the help of matrix factorization, see [WELCH and BISHOP 

2001]. As has been stated above, the KF takes into account the measurement and process 

noise; although the precise knowledge of these quantities is not required, still an accurate 

knowledge of their respective covariance is necessary. In some applications, the R and Q can 

be estimated online [CRASSIDIS and JUNKINS 2004]; in this case the KF is called an adaptive 

filter. Lastly, several statistical tests can be applied to check the consistency of the KF from 

the desired characteristics of the measurement residuals, especially in the KF tuning phase. 

Among them are: the Normalized Error Square (NES) test, the autocorrelation test and the 

Normalized Mean Error (NME) test [BAR-SHALOM et al. 2001].  

2.3 INVERSE PROBLEMS IN MECHANICS 

In earlier works, the reconstruction of the external loads was considered a solution of the 

integral Equation (1.1) which can be written as an integral Fredholm equation of the first kind 

[HANSEN 1998]: 
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1

0
( , ) ( ) ( ), 0 1s t t dt s s   K f g , (2.117) 

where the right-hand side g and the kernel K are known functions, at least in principle, while f 

is the unknown, sought solution. This type of problem is known as inverse problem and can 

be formulated as follows: determining the unknown inputs that give rise to the measured 

output signals (input reconstruction); or determining the internal structure of a physical 

system from the system’s measured behavior given input (system identification). It is well 

known that inverse problems are ‘ill-posed’ in the mathematical sense, that is, one of 1) the 

existence, 2) the uniqueness, or 3) the stability of solution is violated [HANSEN et al. 1999; 

JACQUELIN et al. 2003]. Simply put, one cannot trust the solution unless additional treatment 

is applied. 

2.3.1 Ill-conditioned and Rank Deficient Inverse Problems 

The main source for the ill-posedness lies in the kernel operator K. The analysis of K com-

bines the extensive treatment of the general Fredholm integral equations of the first kind. 

Therefore, for the purpose of clarity, the main features such as ill-conditioning and rank 

deficiency are shown relative to the force reconstruction problem. 

Starting with the convolution integral in Equation (1.1) which can be modified for the 

structure where the responses ( , )M ty  are acquired at points M and the loads ( , )I tF  are 

exerted at the locations I so that a new direct formulation is 

0

( , ) ( , , ) ( , )

t

M t I M t I d   y H F , (2.118) 

here ( , , )I M t H  represents the impulse response function between points M and I. In the 

discrete time domain Equation (2.118) has the form: 

( , ) ( , , ) ( , )M t I M t I t  y H F , (2.119) 

where the discrete impulse response matrix ( , , )I M tH  for n–samples, is constructed as: 

1

2 1

1 1

( , , )

( , , ) ( , , )
( , , )

( , , ) ( , , ) ( , , )

H 0 0

H H 0
H

H H Hn n

I M t

I M t I M t
I M t

I M t I M t I M t



 


  

 
 
 
 
 
  

. (2.120) 
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The inversion of ( , , )I M tH is required for the solution of ( , )I tF from the Equation 

(2.119). Practice has shown that in most of the cases the direct inversion is not possible due to 

the bad conditioning of the impulse response matrix. Ill-conditioning is a property of a 

coefficient matrix ( , , )I M tH that can be qualified with the help of the condition number 

C(H) which is defined as product of the matrix norm || ||H and the norm of the inverse matrix

1|| ||
H [HENSEL 1991]: 

1( ) || || || ||C  H H H . (2.121) 

If the condition number is less than or equal one, then the matrix is said to be well condi-

tioned, otherwise it is ill-conditioned. Another interpretation of condition number ( ) C  is as a 

measure of the error amplification in the solution vector ( , )I tF of Equation (2.119) if the 

error (noise) is present in ( , )M ty , which is always the case if real measurements are taken. 

The size of the matrix H has a direct connection to its condition number ( ) C  , with the 

corollary that inversion can be done only for short signals. Moreover, the matrix H can be 

rank-deficient which implies that some of the equations are numerically dependent or filled 

with zeros. Physically, this means that a time delay occurs between the applied load and the 

captured measurements, which is natural for complex/distributed structures. 

A useful tool in the analysis of ill-conditioned and rank-deficient matrices is SVD. The SVD 

of ( ),m n m n  real matrix H is defined as: 

1

n
T T

i i i

i




 H UΣV u v , (2.122) 

where U is the unitary matrix of left singular vectors, V is the unitary matrix of right singular 

vectors and  is the diagonal matrix with SV placed in decaying order. Taking the SVD of H 

into account the solution for the Equation (2.119) is formulated in a new way: 

1

( , )ˆ ( , )
n

T
i i

ii

M t
I t







y

F u v . (2.123) 

The ability to solve the above equation depends on the Singular Values SV and vectors of a 

matrix H. In order that the sum in Equation (2.123) converges, the Picard conditions [ENGL et 

al. 2000] should be satisfied: 



42 2 Theoretical Foundations 

2
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( )Tn
i

ii 

 
   

 


u y
. (2.124) 

The Picard condition of stability states that the absolute value of the coefficients ( )T
iu y must 

decay faster than the corresponding SV i in order that a square integrable solution exists. 

This requires that y be in the column space of H, otherwise the sum is diverging. Unfortu-

nately, in practical situations the measurements y are always contaminated by noise ( )tν  

which leads to violation of the Picard condition regardless of how small the measurement 

noise is. As a result, a naive approach to solve the Equation (2.123) would fail or lead to the 

completely wrong solution with an extremely large norm ˆ|| || as n F . From that 

point onwards, the decay rate of the SV can yield important properties which can describe the 

fundamental behavior of ill-posed problems. In addition, the condition number C(H) in terms 

of  can be calculated as 1 ( )( ) rankC   HH . Hofmann [HOFMANN 1986] gives the 

following definition for the degree of ill-posedness: if there exists a positive number  such 

that: 

( ) moderately ill-posed 

( ) severely ill-posed

i

i
i

i

e





 

 





 

 
, (2.125) 

were   is the Landau order operator. Likewise, for the matrix H to be valid 

1. The SV steadily decay to zero. The problem is then said to be solely ill-posed. The in-

crease in dimensions of H will increase the number of small i . 

2. The SV decay gradually to zero and there is a well determined gap between large and 

small SV. The problem is then said to be ill-posed and rank deficient. The occurrence of 

the gap indicates the pseudo-rank of the investigated system. 

These two characteristics are illustrated in Figure 2.7 for 19 SV of the ill-conditioned impulse 

response matrix H. 
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Figure 2.7: Singular values for ill-posed and rank deficient matrix H 

Summing up the drawbacks of working with the inverse problems one can conclude that the 

additional treatment is needed because the direct solution would produce unsatisfactory 

results. 

2.3.2 Conventional Solutions and Regularization Techniques 

The literature combines a long list of algorithms that convert ill-posed problems into well-

posed ones [HANSEN 1998]. This conversion of ill-posed problems is known as regularization. 

Among the most used regularization methods the following six direct techniques are to be 

emphasized [HANSEN 1998]: 

1. Tikhonov regularization 

2. The Truncated SVD (TSVD) 

3. Rutishauser’s method 

4. The method of O’Brien and Holt 

5. Maximum entropy regularization 

6. The Truncated Total Least Square T-TLS method 

O’Brien’s and Rutishauser’s algorithms are the derivatives of Tikhonov regularization, 

whereas T-TLS bears a strong similarity to TSVD. Since Tikhonov regularization and TSVD 

have found broad application in the field of engineering due to their relative simplicity, only 

such methods will be illustrated in more details. 

TIKHONOV REGULARIZATION 

Tikhonov regularization includes the additional information to the initial problem. Such 

information attempts to compromise the residual norm of the discrete convolution as in 

Equation (2.119) and a smoothness condition on the solution, i.e. the bounded norm of the 

reconstructed force or its derivatives. Mathematically, Tikhonov regularization for the 
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deconvolution of Equation (2.119) (by leaving time and location variables) is formulated as 

follows: 

 2 ˆmin || || || || 
F

HF y LF , (2.126) 

where the additional term 2 ˆ|| || LF is a smoothing norm with  as a regularization parameter 

defining the smoothness and L is a regularization matrix. L is often taken as the identity 

matrix or as the derivative operator of first or second order, i.e. L
1
 or L

2
 to enforce smooth-

ness if the underlying vector is believed to be mostly continuous. Setting L=I the estimation 

of F can be found from Equation (2.126) as: 

1ˆ ( )T T  F H H I H y . (2.127) 

The term I in Equation (2.127) transforms the initial ill-posed problem into a well-posed one 

by adding some terms to the singular values of H. The regularization can become more 

obvious if the SVD from Equation (2.122) is used: 

2 2
1

ˆ
q

T i
i i

i i



 





y

F u v . (2.128) 

The upper limit q of the sum defines the effective rank of matrix H.  

TRUNCATED SVD 

The technique comprises eliminating small singular values that spoil the convergence of 

Equation (2.123) up to the rank  . The  in this case is a regularization parameter and has a 

similar functionality to  in Tikhonov algorithm. In addition to a “bad” SV it should also 

“knock out” the oscillating singular vectors. The solution of Equation (2.123) is of a form: 

1

ˆ T
i i

ii






y

F u v , (2.129) 

where only “good” singular values are left. As a result of truncation the norm of ˆ|| ||F is 

reduced, which leads to a smother solution, but simultaneously it enlarges the residual norm

ˆ|| ||HF y  which implies a larger distance from the true solution.  

In both regularizations the choice of the stabilizing parameter  or  is an important issue. 

Unfortunately, there is no universal method for such parameters that produces an optimal 

result. The most used are the L-curve [TIKHONOV and ARSENIN 1977] and the Generalized 

Cross Validation (GCV) methods [HANSEN and O’LEARY 1993]. 
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The L-curve is a graphical tool for the analysis of parameters  and  , which is obtained as 

an L-shaped plot of discrete smoothing norm of the regularized solution ˆ|| ||LF versus the 

corresponding residual norm ˆ|| ||log HF y  for all valid regularization parameters on the log-

log scale, see Figure 2.8(a) for . The distinct corner of the L-curve is taken as an optimal 

tradeoff between the degree of smoothness and residual error. 

The GCV criterion is based on the fact that a good parameter  or  has to predict the 

missing data well. Mathematically it is formulated as a minimization of the predictive mean-

square error 

ˆ|| ||
GCV

|| ||






HF y

I HH
. (2.130) 

Figure 2.8(b) is the typical graph of the GCV versus the regularization parameter. The 

optimality is found as the minimum point of this function. Both the L-curve and GCV have 

some ambiguity (the L-curve may have more than one corner, the GCV might be flat near the 

minimum) in real applications. Therefore, it is beneficial to use them both and to compare the 

results. 

.  

Figure 2.8: The generic form of the Tikhonov L-curve (a) and GCV curve (b) 
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3 EXTERNAL LOAD CLASSIFICATION 

All the effects of nature are only the mathematical consequences 

 of a small number of immutable laws. 

-Pierre-Simon Laplace 

Equation Chapter (Next) Section 1 

Before the actual reconstruction of the external loads is shown, a classification of possible 

load scenarios is performed in this chapter. Experience in the field of load estimation has 

proven that load reconstruction algorithms dramatically differ from each other depending on 

the load type and the structure under consideration. In principle, external loads can be 

categorized according to: their excitation duration in time (short or long excitation) and their 

location along the structure (concentrated or spatially distributed). 

3.1 CONCENTRATED LOAD 

3.1.1 Impact Load 

An impact load f(t,q) is characterized by its short duration in time t and concentrated location 

in space q(x,y,z). As used herein, “short duration” means that the load action is very fast 

relative to the overall system dynamics. It can ideally be represented in the form of Dirac’s 

delta function as: 

, 0
( ) , but  ( ) 1

0, 0

t
t t dt

t
 





 
 


  (3.1) 

which is in its turn a derivative of the Heaviside function 

0, 0
( )

1, 0

t
H t

t



 


. (3.2) 

The ideal Dirac’s delta function is shown in Figure 3.1 (a), nevertheless in practice there is no 

such thing as a load with infinite amplitude. Therefore, an approximation is often used as 

illustrated in Figure 3.1 (b). The finite impact load f(t) is mathematically formulated as 

follows: 

, 0
( ) , with      ( )

0,

F
t

t t dt F

elsewhere









 

 



f f . (3.3) 



3 External Load Classification 47 

 

Figure 3.1: Dirac delta function (a), normalized delta function of finite duration (b) 

As an assumption, the impact is always considered to be acting in a relatively small area, i.e. 

as a load applied only at one DOF for FEM. In the case of analytical models, the load location 

is incorporated into the model mathematically. The Dirac function can be used again for the 

concentrated allocation in space for the analytical models, so that the impact force for the two 

dimensional space q(x(t),y(t)), shown in Figure 3.2 is formulated as: 

space allocation 

, 0
( ( ), ( ), ) ( ( )) ( ( ))

0,
a a a a

F t
x t y t t x x t y y t

else


 

  
   


q

f , (3.4) 

where F is the amplitude of the impact,  is the time duration of the impact, and the two  

functions are used to position the applied impact force. It is worth to mention that localization 

of the impact (identification of ( ) and ( )a ax t y t ) is always required prior to its amplitude 

estimation. 

 

Figure 3.2: Clamped-Free-Free-Free (C-F-F-F) plate under the impact force 

This feature renders the concept of impact reconstruction completely unlike the other 

algorithms. Special requirements are also applied to the measurement equipment. In particu-

lar, data sets should be recorded with a high resolution; as a consequence a high sampling rate 

is mandatory. Moreover, assuming only one impact acting in a given time, a distributed 
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sensor array is required to fulfill the localization procedure. All these aspects will be treated in 

more detail in Chapter 4. 

3.1.2 Time Continuous Load  

In contrast to impacts continuous loads last longer in time. They can be categorized into the 

following classes: deterministic (harmonic, periodic or non-periodic); stochastic (or random). In 

most of the cases these loads are generated by external forces/moments or appear as the interac-

tion between machine parts (i.e. contact problems). The location of the load is assumed to be 

known and fixed in time, so establishing the load history is the only objective of the reconstruc-

tion procedure, see Figure 3.3. In addition, the dynamic characteristic of the load is assumed to be 

known in advance (e.g. the wind load would be expected to bear a correlation to the wind speed) 

in order that suitable data acquisition equipment can be chosen for the specific task at hand. 

 

Figure 3.3: Clamped-Free-Free-Free (C-F-F-F) plate under continuous force 

 

3.2 DISTRIBUTED LOAD  

Distributed loads, which are shown in Figure 3.4, may be the most difficult case in all 

possible scenarios for the load reconstruction routine. They can last longer in time or exhibit 

an impact type behavior (e.g. wind gusts). The main characteristic of distributed loads is their 

spatiality; as a result, complex modeling as well as elaborated equipment is required. In some 

cases, they can be represented with the help of Fourier coefficients which are defined at the 

specific locations, if a prior knowledge about spatial distribution is at hand (e.g. the wind load 

along the Wind Energy Plant (WEP) can be assumed to increase gradually with the altitude of 

the WEP). Then, the estimation problem is reduced to the time history reconstruction of these 

coefficients. This type of loads will not be considered in this contribution, nevertheless some 

preliminary work can be found in [NIU et al. 2010]. 
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Figure 3.4: Clamped-Free-Free-Free (C-F-F-F) plate under distributed load 
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4 IMPACT RECONSTRUCTION 

It is the theory which decides 

what we can observe 

-Albert Einstein 

Equation Chapter (Next) Section 1 

The reconstruction of an impact consists of two phases, as detailed in Chapter 3.1.1. The first 

phase includes the localization of the impact, which adopts many well established techniques 

from the Acoustic Emission (AE) testing. The key procedure at this step is the analysis of the 

acquired signals which allows extraction of the essential information from the excitation 

waves in terms of contained frequencies and their times of arrival. The extracted frequencies 

in their turn serve as basis for the estimation of the wave propagation velocities which are 

usually frequency dependent (in dispersive media). Based on the extracted time and estimated 

velocity information, the optimization procedure attempts to localize the impact position 

[DZHAFEROV 2009]. In the second phase the identified location is used for the model con-

struction and the estimation of the impact history. Both tasks are fulfilled by analysis of the 

acquired data in cooperation with the model of the dynamical system. Therefore, signal 

preprocessing is an important issue and should be presented prior to the actual algorithms for 

the localization and history estimation phases. 

4.1 SIGNAL PROCESSING 

Signal processing contributes major aspects to the accuracy of the localization phase and 

together with the fidelity of the model implicitly influences the time history estimation phase. 

In general, the purpose of signal processing is the extraction of information from a signal, 

especially when it is difficult to obtain from direct observation. The methodology of extract-

ing information from a signal has three key stages:  

 acquisition (signal acquisition is concerned with instrumentation) 

 processing 

 interpretation 

The signal acquisition is assumed to be well designed to properly resolve the high velocity 

impact in time. The acquisition scheme for the impact load is represented in Figure 4.1 with 

one input and multiple outputs which are contaminated by noise. The responses are recorded 

in volts and then normally transformed into physical quantities (strains, accelerations). 
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Figure 4.1: Data acquisition scheme 

Recorded time histories of signals can be classified as: deterministic or non-deterministic 

signals. The analysis algorithms are considerably different depending on the „type” of signal. 

Generally, signals are mixed, so the classification which is given in [SHIN and HAMMOND 

2008] may not be easily applicable, and thus the choice of analysis methods may not be 

apparent. A typical response to the impact load is represented in Figure 4.2, which can be 

categorized accordingly as a deterministic non-stationary signal [SHIN and HAMMOND 2008]. 

The recorded response includes an initial wave package in the very initial phase and the 

multiples of reflections together with the wave’s interferences in the later time history. 

Among a vast set of techniques, Wavelet Transformation can be used to modify the acquired 

non-stationary raw signals, such as those in Figure 4.2 and to transform them into a new form 

of information that is more useful for the interpretation procedure [SHIN and HAMMOND 

2008]. 

 

Figure 4.2: Typical impact response signal recorded by PZT sensor after impact excitation on 

aluminum plate 

4.1.1 Wavelet Transformations 

The Wavelet Transformation WT is a good alternative to fast Fourier transformation with a 

definitive advantage in terms of variable resolution in time and frequency. The Continuous 
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Wavelet Transform (CWT) of an arbitrary function f(t) is defined [STRANG and NGUYEN 

1996] as: 

( , )

1
( , ) ( ) ,m

a b

t b
a b t dt

aa



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 
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  

 
Ψ Ψ  (4.2) 

is the wavelet function, with a and b being scaling and translation parameters, respectively. 

The scaling parameter a is the primary characteristic of the WT which bears a direct relation 

to the frequency 0 / a  with 0 being a positive number. The mother wavelet function

( )m tΨ may be considered as a window function both in the time and frequency domain. The 

size of the time window is controlled by the translation parameter b, while the length of the 

frequency band is controlled by the scaling parameter a [GAUL and HURLEBAUS 1998]. It is 

possible to change the window size either in the time or in the frequency domain by control-

ling the dilation and translation. This property of the WT is called multi-resolution [WU and 

DU 1996]. The class of the mother wavelets functions is very broad, nevertheless the most 

appropriated function for the analysis of the impact responses, as reported by [KISHIMOTO et 

al. 1995], is the Gabor function, which provides a small window in the time and in the 

frequency domain. The Gabor function is defined by: 

2
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( / )1
( ) exp
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g t t i t
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

 
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 
Ψ , (4.3) 

where  and 0 are positive constants and set according to [KISHIMOTO et al. 1995] to be 

2 / ln 2  and 0 2  . The Gabor function can be physically considered as a complex 

sinusoidal function with a Gaussian window, as shown Figure 4.3 (a). Whereas in frequency 

domain the Gabor function ˆ ( )m
g Ψ  is real, see Figure 4.3 (b), centered at 0 2   and 

expressed as: 
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04
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  
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

 
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 
Ψ . (4.4) 

The CWT in Equation (4.1) carries out a transformation of the one dimensional signal f(t) into 

two dimensional time-scale plane (a-b). Moreover, the reciprocal of scale parameter a is related 

to frequency and the translation parameter b is associated with time, as mentioned above. 
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Figure 4.3: Gabor function in time (a) and frequency (b) domains 

In order to obtain the physical frequency and time information from the coefficients of CWT, the 

quantitative relations from time-scale (a-b domain) to time-frequency ( ˆt f domain) has to be 

established. This can be done by following equalities [WANG 2004]: 

ˆ and     sff t b
a

  , (4.5) 

where fs is the sampling rate of the f(t). In addition, it is important to have knowledge of the 

relationship between the wave propagation and the wavelet analysis in order to determine the 

arrival times of the flexural waves. A wave propagating in a plane can be specified by the 

wavelength  and the angle between the x1 axis and the propagation direction . Hence, one 

can obtain the apparent wavelengths in the x1 and x2 directions as defined by 1 / cos( )    

and 2 / cos( )   , respectively, see Figure 4.4. By considering two waves traveling in a 

plane with the same amplitude and the frequencies 1 and 2 which are formulated mathe-

matically [GAUL and HURLEBAUS 1998]: 

   1 2 1 11 1 12 2 2 21 1 22 2( , , ) exp ( ) exp ( )x x t i t k x k x i t k x k x      f , (4.6) 

where kij are the wave numbers corresponding to the i
th

 frequency i and to the coordinate xi.  

The wave number is defined as 2 /k   so that 1 cosj jk k  and 2 sinj jk k  and 

therefore Equation (4.6) can be reformulated as: 
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f
 (4.7) 
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Figure 4.4: Wave propagation in plane 

Using Parseval’s theorem [STRANG and NGUYEN 1996] which states that the WT of f(t) can be 

obtained as: 
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where ˆ m
gΨ represents the complex conjugate of the Gabor function in frequency domain and 

( )f is the Fourier transform of the ( )tf . The wave propagation in (4.7) can be transformed 

into the time-scale plane by WT [GAUL and HURLEBAUS 1998]: 
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Multiplying Equation (4.9) by its complex conjugate it is possible to obtain the magnitude of 

the WT under the assumption that ˆ m
gΨ is real: 
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 (4.10) 

with 1 2( ) / 2    and 1 2( ) / 2k k k    respectively. If two waves traveling in the plane 

are only slightly different so that k is small, then 1 2  and 1 2k k and 

1 2
ˆ ˆ ˆ( ) ( ) ( )g

m m m
g ga a a   Ψ Ψ Ψ , the magnitude of the WT will be [GAUL and HURLEBAUS 

1998]:  
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 
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which reaches its maximum if the cosine function is equal to one and 0 /a   . This is the 

case when:  
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Equation(4.11) implies that the peak of the WT represents the arrival time of the flexural 

wave with group velocity cg. The peak frequency can be used for the extraction of the wave 

velocity of the incoming signal with the help of dispersion diagrams, which are obtained for 

the specimen either analytically or experimentally. In most of the cases the lateral impact 

causes only the asymmetric waves spreading in media. As a consequence, only the zero 

asymmetric mode curve might be sufficient for the extraction of cg. An example of CWT for 

the impact response in Figure 4.2 is shown in Figure 4.5 which combines both the raw signal 

and its CWT. 

 

Figure 4.5: CWT off the impact response 

The observation can be made from Figure 4.5 that the maximum of CWT lies in the reflection 

region, which is separated from the incident wave. This contradicts with the statements above 

with respect to the maximum of WT. Nevertheless, in the interferences and reflection region 

the assumption of two close waves is not valid anymore. As a result, only the first part of the 

acquired signal (up to 2000 samples) should be used for the frequency content estimation of 

the incoming wave. This could be achieved by either proper truncation or windowing. 
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4.1.2 Windowing and Filtering 

The truncation mentioned above leads to leakage during the WT, which in turn can lead to the 

wrong frequency estimation. Windowing is thus more preferable. This difference is exempli-

fied in Figure 4.6(a) and (b) where the impulse response is shown. 

 

Figure 4.6: CWT of the (a) truncated impact response; (b) truncated and windowed impact 

response 

Plain truncation in Figure 4.6(a) leads to a wrongly identified frequency having a maximum 

approximately at 1600 sample (mostly in the low frequency region which takes reflections 

into account), whereas, as illustrated in Figure 4.6(b), the incident wave frequency is deter-

mined properly at 1000 sample and the reflection part is suppressed by the application of the 

Hanning window. The same result can also be achieved by straight truncation but this would 

require permanent signal monitoring which would be impractical for an automated impact 

detection algorithm. In this example the Hanning window is well aligned in time to emphasize 

only the incoming wave package and its size is set to obtain the best estimation results. For 

optimized alignment an extracted time of arrival for the wave package is required. This is a 

task on its own and is discussed in the following chapter. 

4.2 IMPACT DETECTION AND LOCALIZATION 

Firstly, it should be mentioned that impact reconstruction is based on passive sensor technol-

ogy. This implies that all the data recording equipment is in the listening state. After the 

impact event has taken place, a procedure should be started that is able to extract only the data 

that belong to the impact. This procedure is called impact detection and involves trigger 

setting for starting the data acquisition process, analysis of the recorded data and extraction of 

the Time Of Arrival (TOA). The TOA (also referred to in certain references as onset time) 
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represents an initial time for every sensor and a very important quantity in the impact 

localization step which is based on calculated distances. For clarity, the responses in Figure 

4.7 which are recorded after the impact event has taken place on the rectangular plate are 

shown, with four sensors distributed along the structure. The recording is started after the 

threshold is exceeded by one of the sensor signals see Figure 4.7 and is continuous for a pre-

defined amount of time. One can directly see that a pre-trigger window is required to catch the 

dynamic response completely. Especially in the case of noisy measurements, the threshold is 

set to avoid false triggers, thereby naturally leading to a delayed start of the recording. 

Usually, the statistical algorithms are taken to set the threshold, for example, at three times the 

standard deviation of the noise which assures that 99.73% of the noise will be within the 

confidence interval bounded by the threshold lines. 

 

Figure 4.7: Typical responses after the impact load 

4.2.1 Time of Arrival Extraction 

After the signals are recorded the procedure of determination of the TOA is started. In Figure 

4.7 (marked by yellow areas) obvious differences are to be noticed between signals from 

sensors (1 and 4) and (2 and 3), which are due to the time delay for the last sensors that are 
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positioned further from the impact location. Moreover, there is no clear starting point for each 

sensor. Therefore, an automatic picking algorithm to extract the TOA would be beneficial. 

Many such techniques are already available from AE testing (automatic onset time picking) 

[GROSSE and OHTSU 2008] or [HEROLD et al. 2007]. The most reliable among them are the 

Energy Criterion (EC) and Akaike Information Criterion (AIC).  

ENERGY CRITERION PICKER 

The EC algorithm is based on the assumption that the arrival of a wavelet corresponds to a 

change in energy function 
'S  with negative trend which is defined as: 

' 2

0

with, [ ... ]
i

N
i k

k

S
S y i i 0 N

N

 
   

 
 , (4.13) 

where ky is the measured signal at the k
th

 time instant and the second part of the equation 

represents the negative trend with respect to the total energy SN for the whole signal length N. 

Parameter  is used to reduce the delaying effect of negative trend. This is a tuning parameter 

which should be set properly to avoid incorrect TOA estimation. Its influence is shown in 

Figure 4.8 in a more evident manner for the impact response signal.  

 

Figure 4.8: Energy Criterion (EC) for different  parameters (=1, 5, 20, 100) and respec-

tive time of arrivals 

The tuning is certainly a disadvantage associated with this picking method. For the signal 

shown in Figure 4.8, an increase of  higher than 100 does not affect the TOA estimation 

anymore. 
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AKAIKE INFORMATION CRITERION PICKER 

The AIC is an autoregressive (AR) time picking algorithm capable of detecting arrival times 

of signals developed by [KURZ et al. 2005]. Also used in partial discharge location and 

seismology [HEROLD et al. 2007], AIC divides the sampled data into two stationary parts 

which are each modeled by an AR process. Changes in the value or order of the AR coeffi-

cients before and after a pulse occurrence indicate the onset by a global minimum. The AIC is 

calculated according [GROSSE and OHTSU 2008]: 

       2 2

10 1 10 1( ) log log , with 1k N
k N k kk t t t 1E E k N     AIC y y  (4.14) 

where  2E y is the expectation operator which represents a variance of the signal y. The 

interpretation of Equation (4.14) is fairly straightforward for every time tk, the signal yk is 

broken into two parts; that leading up to tk, 1
k

y  and after tk, 1
N
ky . The AIC describes the 

similarity in information-entropy (which measures the amount of uncertainty) between the 

two parts of the signal when tk becomes aligned with the onset of the signal, the portion of the 

record before tk is composed of high-entropy uncorrelated noise, while the portion after tk 

contains the low-entropy waveform showing marked correlation [HENSMAN et al. 2010]. The 

global minimum from all values of this criterion corresponds to a point of the arrival time, see 

Figure 4.9.  

 

Figure 4.9: Akaike Information Criterion (AIC) together with Energy Criterion (EC) for 

automatic picker technique 
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The AIC picker showed better performance in TOA estimation and is really independent from 

any tuning parameters which renders it a more preferable choice for future applications. At 

this stage the TOA for every sensor together with its frequency content is known. As a next, 

step these quantities are utilized for the impact localization procedure. 

4.2.2 Location Searching Strategies 

The impact location procedure is based on the technique which utilizes a relation between the 

wave propagation group velocity cg, the time of flight information t
tof

, and the travelling 

distance d inside the isotropic medium (i.e. a medium wherein waves travel at the same speed 

in all directions):  

tof
gd t c . (4.15) 

In case of an anisotropic medium the fact that velocity is direction-dependent should be taken 

into account. For an isotropic material the simple relation in Equation (4.15) can be used for 

the distributed sensors array as illustrated in Figure 4.10. 

 

Figure 4.10: Principle: Isotropic plate with the distributed sensor array and their responses 

to the impact load 
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The time of flight information is calculated as a difference between impact time impactt and the 

TOA
toa
it  at the i

th
 sensor: 

tof toa impact
i it t t  . (4.16) 

In the case of passive sensor technology, however, the initial impact time is not known, 

therefore the differences in TOA’s are employed together with the distance differences. The 

localization of the impact is forged to the minimization of the objective function J in Equation 

(4.17) with respect to E to find the impact position: 

,
( , ) ,

|| || || ||
min( )

ji
dd

i jtoa
i j

E x y gi j

E S E S
t

c


  
 J  (4.17) 

where the gc is a group wave velocity. The global minimum of the scalar function of the 

Equation (4.17) can be found numerically by means of available optimization algorithms, e.g. 

the conjugate gradient method or the simplex method. 

4.3 IMPACT HISTORY ESTIMATION 

After the impact location is identified the impact time history can be reconstructed with the 

help of a dynamic model, which incorporates the identified impact location within itself. The 

model of the structure can be of any of the types described in Chapter 2.1 and can be adapted 

into a specific form for every force reconstruction algorithm by means of simple algebraic 

transformations.  

4.3.1 Direct Deconvolution in Time Domain 

For impact-type loading it is possible to use a direct deconvolution in a continuous time 

domain or an inversion in a discrete time domain. The problem of load reconstruction is 

addressed with the Inverse Structural Filter (ISF) as modified by [NORDSTRÖM 2005]. The 

algorithm is constructed on the basis of the ISF which takes into account the MIMO discrete 

state-space representation of the structure with zero initial conditions x0=0 at k=0, as in 

Chapter 2.1.5, in the form of Markov parameters Hi: 

1
0

1

, with: , ( ) and
k

i r m
k i k i i D D i

i

R R




    y H u H D H C A B H , (4.18) 
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where r and m are the number of sensors and of input forces, respectively, as set forth in the 

previous chapters. Formulating the relationship of (4.18) for each discrete time k=0, …, N 

yields a block matrix form: 

0 1

0 1 1 1

0 0 0

0

0 0

N N N

N N N  

     
     
     
     
     
          

H

H H H u y

H H u y

H u y

. (4.19) 

The unique solution for the impact sequence  
0

N

k k
u  requires the upper triangular block 

Toeplitz matrix to have a full column rank. This requirement is met if the r m block 

diagonal element matrix H0 has a full column rank (which is always valid if r m , that is if 

number of outputs is greater than the number of inputs). In addition, matrix H should be well-

conditioned, which occurs if the length of recorded signals is short enough. All the above 

conditions are met for the impact reconstruction, but there is still one hurdle to overcome. 

Specifically, the non-collocation of the impact and sensors positions results in a number of 

zero rows in the H0 matrix, thereby rendering it rank-deficient. From a physical standpoint, 

this is due to the fact that the impulse of some of the input components has not yet reached 

any of the sensors by the end of the measured sequence. To solve this, a sensor-specific l-step 

time delay, is applied as first taught by [NORDSTRÖM 2005]. Furthermore, the use of previous 

knowledge regarding the TOA for each sensor in order to overcome the difficulty in choosing 

an optimal time delay l (a problem also faced by [NORDSTRÖM 2005]), is proposed in this 

thesis. Taking into account the specific sensor delay 1, , rl l the impact estimation (4.18) is 

reformulated for each individual sensor 1 , , rs s s : 

, , , ,

s

k

k s i s k i s

i l

y k l N



 h u  (4.20) 

where ,k sy is the s
th

 component of yk and i,s is the s
th

 row of Hi. It is clear from Equation (4.20) 

that only the input sequence  
max( )

0

sN l

k k




u will be obtained since the input with a longest 

signal transfer time max(ls) cannot be determined from the output sequences at hand  
0

N

k k
y . 

Introducing a new end time max( )l sN N l   the final form of deconvolution problem in 

Equation (4.19) can be written as: 
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0 1

10 1 1

0
0 0

0

0 0

l ll

ll l

TD

TD TD TD TD
N NN

TD TD TD
NN N
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 

    
    
    

    
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H

H H H yu

uH H y

uH y

, (4.21) 

where  

1 2

1 2

( ),1 ( ),2 ( ),

( ),1 ( ),2 ( ),

r

r

TTD
k k l k l k l r

TTD
k k l k l k l r

h h h

y y y

  

  

   

   

H

y

. (4.22) 

Thus, both Markov parameters and measurements have been shifted in time. An appropriate 

automatic individual shift is found with the help of a TOA calculated in the impact localiza-

tion phase. This is set forth below in the application chapter together with comments on the 

complexity of models complexity for impact reconstruction. 

4.3.2 Linear Quadratic Tracking Problem (LQTP) 

This reconstruction method originating in control engineering attempts to solve the optimal 

tracking problem by finding an optimal control input. This approach is formulated as follows 

[LEWIS 1986]: “Construct an optimal control scheme that makes the system follow (or track) a 

desired trajectory over the entire time interval”. For the force reconstruction procedure, the 

desired trajectories are the measured system responses which are used to find an optimal 

forcing function with the help of a dynamical model. Starting with a linear discrete system as 

in Chapter 2.1.5: 

1 ( , )k D k D k k k

k D k

f   



x A x B u x u

y C x
, (4.23) 

and bringing into focus the main goal of the study, which is: to make a certain linear combina-

tion of the states follow a desired known reference signal rk over a time interval [0,…,N]. The 

cost function (performance index) that should be minimized is of the following form: 

1

0

( , )
( , )

1 1
( ) ( ) ( ) ( )

2 2

N k
k k

N
T T T

D N N D N N D k k D k k k k

k i

N
L

J







       
 

x
x u

C x r P C x r C x r Q C x r u Ru (4.24) 
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where 0, 0 and 0  P Q R  are positive definite and symmetric weighting matrices and the 

actual value xN is not constrained; [i,…,N] is the time interval over the region of interest;

( , )NN x is the function of the final time N and the states at the final time, and ( , )k
k kL x u is 

an in-general time varying function of the states and control input at each intermediate time k 

in [i, …, N-1]. To find the optimal uk which is related to the value of force at time k the cost 

function in Equation (4.24) together with the system Equations (4.23) which can also be 

considered as a constraint equation, are adjoined into the Hamiltonian function: 

0 ( , )T
h k kH J f  λ x u  (4.25) 

where T
λ are Lagrange multipliers. The minimal point of the performance index J0 that 

satisfies the constraint equation ( , ) 0k kf x u is guaranteed by the necessary conditions: 

State equation: 

10h
k D k D k

H
f 


    


x A x B u

λ
. (4.26) 

Costate equation: 

10T T T Th
k D k D D k D k

H
J f 


      


x x λ λ A λ C QC x C Qr

x
. (4.27) 

Stationary conditions: 

10 0T Th
D k k

H
J f 


     


u u λ B λ Ru

u
, (4.28) 

where
( )

( ) j
j

 
 


is the gradient (column vector) with respect to the j

th
 variable. These three 

equations allow determining x, and u in that respective order. State and costate equations 

can be joined into a nonhomogeneous Hamiltonian system: 

1
1

1

T
k kD D D

kTT T
k k DD D D






      
       

       

0x xA B R B
r

λ λ C QC QC A
, (4.29) 

where rk represents the measurement at instance k so that the optimal input is found from the 

stationary condition 

1
1

T
k D k


 u R B λ . (4.30) 
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Equations (1.31) and (1.32) cannot be practically implemented since the development occurs 

part forward and part backward in time. Nevertheless, by performing some algebraic opera-

tions and taking into account boundary conditions the optimal input can be found by the 

following scheme [LEWIS 1986]: 

1. Initialization: 

0 0

T
N D D

T
N D N







x

S C PC

v C Pr

 (4.33) 

2. Backward sweep: 

1
1 1( )LQTP T T

D k D D k Dk


  K B S B R B S A  (4.34) 

1( )T LQTP T
k D k D D D Dk  S A S A B K C QC  (4.35) 

1( )LQTP T T
k D D k D kk   v A B K v C Qr  (4.36) 

1
1( )v T T

k D k D D


 K B S B R B  (4.37) 

3. Forward sweep: 

1
LQTP v

k k k kk   u K x K v  (4.38) 

1k D k D k  x A x B u . (4.39) 

At this point an optimal “control” input is found which would force the system to follow the 

desired trajectory. It is worth mentioning that the weighting matrices P, Q and R play an 

important role in the solution quality together with the complexity of the mathematical model. 

Their influence on the aluminum plate will be shown in the application example section 6.1 of 

this dissertation. 
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5 CONTINUOUS TIME LOAD RECONSTRUCTION 

Far better an approximate answer to the right question, 

which is often vague, than an exact answer to the wrong question,  

which can always be made precise. 

-John W. Tukey 

Equation Chapter (Next) Section 1 

In contrast to impact force reconstruction, which demands a location estimation followed by 

an impact history computation that should be done possibly fast, the continuous load case 

requires a permanent reconstruction at a normally predefined load position. On the one hand, 

this approach simplifies the estimation strategy as no localization procedure is necessary and 

implies the usage of a more complex observer theory to guarantee a permanent online 

estimation on the other. In this section, three possible candidate methods are considered that 

are capable to ensure a permanent load reconstruction. Their estimation capabilities and 

limitations will be presented together with the necessary requirements with respect to model 

quality and measurements quantities. 

5.1 SIMULTANEOUS STATE AND INPUT ESTIMATOR 

The Simultaneous State and Input Estimation (SS&IE) method is based on the observer 

principle shown in Figure 5.1, proposed by [HA and TRINH 2004], and has been originally 

used in the field of control engineering. This approach is robust to noisy measurements and 

applicable for both linear and nonlinear systems. Generally, it can be categorized among 

deterministic algorithms, which use a mathematical model as a basis for observer calculation. 

 

Figure 5.1: Simultaneous State and Input Estimator (SS&IE) for a class of nonlinear systems 
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5.1.1 Initial Model Definition 

The problem of observer construction can be stated as follows. Consider a dynamic system as 

in Chapter 2.1.1 with nq degrees of freedom, described by the second order differential 

equation of motion as: 

 ( ) ( ) ( ) ( ), ( ), ( ) ( )n n n ot t t t t t t   q D q K q g q q u B uM , (5.1) 

here, ( )
nqt Rq , ( ) mt Ru are generalized coordinates (in this case nodal) and inputs 

accordingly. Mn, Dn, Kn and Bo are the mass, damping, stiffness and force allocation matrices 

of appropriate dimensions. ( ( ), ( ), ( ))t t tg q q u is added to take into account nonlinear depend-

encies of the displacement, velocities and inputs.  

Equation (5.1) can be transformed into state space notation with the following structure: 

  ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

t t t t , t , t

t t t

  

 

x Ax Bu f x u y

y Cx Du
, (5.2) 

where, ( )
n

t Rx (with 2 qn n ), ( ) mt Ru and ( ) rt Ry are the states, unknown inputs and 

measured outputs, respectively. , ,n n n m r n  A B C and r mD are real constants of appropriate 

dimensions. ( )f is a real nonlinear vector function on 
nR (in the case of a nonlinear system) 

which combines two portions as follows: 

        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )L Ut , t , t t , t , t t , t , t f x u y f x u y Wf x u y , (5.3) 

where ( )
n

L R f and ( ) d
U R f are known Lipschitz and unknown nonlinear vectors, 

respectively. The matrix n dW is real and assumed to have full column rank d. 

The objective is to design an asymptotic observer to estimate the unknown states ( )tx and 

unknown inputs ( )tu from the measured output signals ( )ty . Therefore, a new state variable 

is introduced: 

( )

( )
( ) , ( ) n mt

t
t t R 

 

 
 

x
ξ ξ

u
 (5.4) 

and matrices E,  and H to combine the previous state space matrices: 

     ( ) ( ) ( ), ,n n mn n m n n m r n m       E I 0 A B H C DM . (5.5) 

Using the new state variable, system (5.2) is transformed into algebraic differential equation: 
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   ( ) ( ) ( ) ( ) ( ) ( )L U, ,t t t t t t  Eξ Mξ f ξ y Wf ξ y  (5.6) 

( ) ( )t ty Hξ . (5.7) 

The problem of the state and input estimator design for system (5.2) is now transformed into 

designing the observer for the generalized system in Equations (5.6) and (5.7), such that 

estimates ˆ( )tξ converges asymptotically to the true states ( )tξ . For this purpose, a general 

minimal order observer structure, such as that in Chapter 2.2.3, is used with an additional 

nonlinear term: 

 ˆ( ) ( ) ( ) ( ) ( )L ,t t t t t  ω Nω Ly Tf ξ y  (5.8) 

ˆ( ) ( ) ( )t t t ξ ω Qy , (5.9) 

where ˆ( )tξ represents the state estimation of ( )tξ , ( ) n mt R ω  is the observer states vector, 

and matrices N, L, T and Q are of appropriate dimension. As input the observer uses meas-

ured signals from the original system (5.7) and the known nonlinear function in its dynamic 

equation. In addition, measurements ( )ty are incorporated into the output observer Equation 

(5.9) as a correction term. 

OBSERVER DESIGN PROCEDURE 

The observer matrices N, L, T and Q need to be determined. To this end, a state estimation 

error is constructed first:  

ˆ( ) ( ) ( )t t t e ξ ξ . (5.10) 

Using Equations (5.9) and (5.7), the error becomes 

( ) ( ) ( ) ( )n mt t t  e ω QH I ξ , (5.11) 

introducing the following relation 

n mTE + QH = I  (5.12) 

the state error is transformed into 

( ) ( ) ( )t t t e ω TEξ . (5.13) 

Taking the first derivative with respect to time and substituting expressions from (5.6) and 

(5.8) for ( )tEξ and ( )tω respectively, the error dynamic is obtained as: 



5 Continuous Time Load Reconstruction 69 

 
   

ˆ( ) ( ) ( ) ( ), ( )

( ) ( ), ( ) ( ), ( ) .

L

L U

t t t t t

t t t t t

  
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e Nω Ly Tf ξ y

T Mξ f ξ y Wf ξ y

 (5.14) 

Inserting ( ) ( )t ty Hξ and ( ) ( ) ( )t t t ω e TEξ from Equations (5.7) and (5.13) respectively 

the error dynamic finally appears as: 

   

 
ˆ( )

( ) ( ) ( ) ( ), ( )

( ) ( ) , ( ) ( ), ( )

U

L L

t

t t t t t

t t t t t

    

  
    
  

    ξ

e Ne NTE LH TM ξ TWf ξ y

T f e ξ y f ξ y
. (5.15) 

According to Equation (5.15) the time dependant error would converge asymptotically to zero 

if the following conditions are held: 

n mTE + QH = I  (5.16) 

TW 0  (5.17) 

  NTE LH TM 0  (5.18) 

Thus upon the satisfaction of conditions (5.16)-(5.18) the error dynamic expression (5.15) is 

reduced to: 

   ˆ( ) ( ) ( ), ( ) ( ), ( )L Lt t t t t t   
 

e Ne T f ξ y f ξ y , (5.19) 

which would be asymptotically stable if the matrix N is Hurwitz (the real part of the eigenval-

ues must be negative) and the following assumption holds: 

Assumption 1. ( )L f is assumed to satisfy the Lipschitz condition with a Lipschitz constant

 so that: 

   ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) , ( )L L, ,t t t t t t t   f ξ y f ξ y ξ ξ y , (5.20) 

where, || || represents the norm and  is a positive scalar referred later as Lipschitz constant. 

Combining the Equations (5.16) and (5.17) into a general one leads to: 

Condition 1: 
n m




TE + QH = I

TW 0
 (5.21) 

In addition Equation (5.18) can be partitioned into two parts by n m TE I QH : 
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    N L NQ H TM 0 . (5.22) 

Introducing a new matrix  F L NQ , expression (5.22) can be written in terms of the 

general condition: 

Condition 2: 
 


 

N TM FH

F L NQ
 (5.23) 

5.1.2 Computation of the Observer Matrices T and Q 

Condition 1 also can be written in a more compact form: 

   
( )

( ) ( )
( )

, where
n n m n d

n m n r n m d
r n m r d

  

    
  

 
   

  

E W
T Q S I 0 S

H 0
, (5.24) 

which can be directly used for calculation of the observer matrices T and Q. The matrix 

dimensions are added as subscripts for clarity. It is easy to show that the transpose of Equa-

tion (5.24): 

T
n mT

T


   

   
   

T I
S

0Q
 (5.25) 

is equivalent to the normal linear system of the form AX B , where X is an unknown 

variable matrix and A and B are known matrices. The only condition for the solution exist-

ence is that the system in Equation (5.25) should be a consistent system
1
, i.e. 

    rank rankA A B or, equivalently: 

( ) .
n mT Trank rank
  

   
  

I
S S

0
 (5.26) 

Using the rank property: ( ) ( )Trank rankA A equality (5.26) is rewritten as: 

( ) .
n m

rank rank


  
   

  

S
S

I 0
 (5.27) 

The rank of the right hand side of Equation (5.27) is easily determined by taking into account 

the components of S matrix 

                                                 

1
 If the system has at least one solution it is called a consistent system 
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( )
n m

n m

rank rank n m rank n m d




 
    

          
    

 

E W
S

H 0 W
I 0

I 0

 (5.28) 

if W has full column matrix. The rank of S is evaluated as: 

( )
n n m n d

r n r m r d

rank rank rank
 

  

     
       

      

I 0 WE W
S

C D 0H 0
 (5.29) 

performing the simple row operation by multiplying Equation (5.29) from the left 

( )
n n r n n m n d

r n r r n r m r d

n n m n d

r n r m r n n d

rank rank

rank

  

   

 

   

    
     

    

  
   

  

I 0 I 0 W
S

C I C D 0

I 0 W

0 D C W

. (5.30) 

Expression (5.30) can be finally written as: 

  ( ) r m r n n drank n rank     S D C W . (5.31) 

Taking into account the definition of consistency (i.e. a solution for T and Q) together with 

Equations (5.28) requires that the rank of matrix S be equal to n+m+d. This is only true for 

Equation (5.31) if the following assumption is held: 

Assumption 2. Matrix  D CW  has full column rank. 

  ( )
rank

r m d
m d

 
 D CW  (5.32) 

Corollary, this assumption requires that the number of outputs should be at least equal to the 

number of unknown inputs plus the size of nonlinear terms Uf which do not satisfy the 

Lipschitz condition: ( ( )) min( , )rank r m d r m d r m d       . In addition, the D matrix 

should not be zero or empty to fulfil this condition. That makes the usage of acceleration 

sensors obligatory in this method.  

If the equality in Equation (5.27) is not held then the system is inconsistent (i.e. the measure-

ments are not independent). However, it is still possible to find 
S , a generalized inverse of S, 

and use it for the computation of the general solution of matrices T and Q. The solution for 

the consistent system is only a part of the overall class of general solutions which can be 

obtained according to [RAO C. R. and MITRA S. K. 1971] for AX B as: 

( )   X A B I A A Z  (5.33) 
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or, analogically: 

    ( )n m n r
 

   T Q I 0 S Z I SS , (5.34) 

where 
S  is a generalized inverse of matrix S and Z is an arbitrary symmetric matrix of real 

numbers. If S is a full column rank square matrix, the second part of the general solution is 

equal to zero, because   S S SS I . In the other case the generalized solution attempts to 

compute the closest solution that is either in the row or column space of matrix S. Therefore 

the general solution is used as basis for the calculation of matrices T and Q, which are 

obtained as follows: 

   n n
n m n r

 
 

   
     

   

I I
T I 0 S Z I SS

0 0
 (5.35) 

   n m n r
r r

 
 

   
     

   

0 0
Q I 0 S Z I SS

I I
 (5.36) 

Combining some parts of Equations (5.35) and (5.36) into new matrices: 

 ( ) ( )( ) ,n n
n r n n r n m n n m

 
       

   
   
   

I I
G I SS J I 0 S

0 0
 (5.37) 

 ( ) ( )( ) ,n r r n r n m r n m
r r

 
       

   
   
   

0 0
K I SS V 0 S

I I
I , (5.38) 

thus Equations (5.35) and (5.36) are now: 

 T J ZG  (5.39) 

 Q V ZK . (5.40) 

5.1.3 Computation of Observer Matrices N and L 

The part of the observer is now calculated and can be used for the computation of the 

remaining observer matrices N and L, where two methods can be applied. The first one 

assumes general nonlinear systems and uses an LMI algorithm [BOYD et al. 1994] to assure 

the asymptotic stability of the error dynamic system via a Lyapunov function. The second 

approach considers solely linear systems and uses the standard pole placement procedure [NIU 

et al. 2010]. 
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N AND L COMPUTATION VIA LMI ALGORITHM 

Recalling the error dynamic Equation (5.19) and substituting solution (5.39) for matrix T into 

the first part of condition 2, Equation (5.23) of the error dynamics is: 

 ( ) ( ) ( ) ( ) ( ( ) ( ), ( )) ( ( ), ( ))L Lt t t t t t t      e Φ ZΨ FH e J ZG f e ξ y f ξ y  (5.41) 

where, N has been substituted by: 

       N TM FH JM ZGM FH Φ ZΨ FH . (5.42) 

Matrices Φ JM and Ψ JM  are introduced for the sake of simplicity. The error dynamics, 

Equation (5.41), incorporates the nonlinear terms; therefore, one way to ensure its asymptotic 

convergence to zero is to use the Lyapunov stability method. To this end a Lyapunov 

candidate summarizing function is introduced: 

( ( )) ( ) ( )Tt t tV e e Pe , (5.43) 

where P is a symmetric positive definite matrix. Considering Equations (2.56) to (2.59), if the 

first derivative of V is smaller than zero for all time, then the nonlinear error function in 

Equation (5.41) is stable and converges to zero. Taking a derivative of V with respect to time 

and substituting Equation (5.41) for ( )te leads to the following expression: 

 

    

( ) ( ) ( )

           ( ) ( )

T T T T T T

T T T T T
L L

t t

t t

     

   

V e e PΦ PZΨ PFH Φ P Ψ Z P H F P e

e PJ PZG f f J P G Z P e
 (5.44) 

where, ( ( ) ( ), ( )) ( ( ), ( ))L Lt t t t t f e ξ y f ξ y is referred to as Lf  for simplicity. Using the 

Yong’s matrix inequality
1T T T T


  ZY YZ YY ZZ  [ZHAN 2002], where  is a positive 

scalar, the second part of Equation (5.44) is modified as: 

    

1 2
1 2

( ) ( )

1 1
( ) ( ) ( ) ( ) .

T T T T T
L L

T T T T T T T
L L L L

t t

t t t t 
 

  

   

e PJ PZG f f J P G Z P e

e PJJ Pe f f e PZGG Z Pe f f
 (5.45) 

Substitution of Equation (5.45) into (5.44) subject to Assumption 1 gives [HA and TRINH 

2004]: 

 2
1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )V e e R e f f e R I e

T T T
LMI L L LMIt t t t           (5.46) 
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where 

1 2

1 1

T T T T T
LMI

T T T

 

     

 

R PΦ Φ P PZΨ Ψ Z P PFH H F P

PJJ P PZGG Z P
, (5.47) 

and  is a Lipschitz constant from Assumption 1. Therefore, the estimation error ( ) 0t e  as 

the time t  if the derivative of Lyapunov function ( ) 0V e .  

Hence, 

 2
1 2( ) 0LMI     R I  (5.48) 

must hold. Equation (5.48) is a Riccati inequality which should be solved in a computational-

ly efficient manner. For the sake of simplicity new variables that combine constant matrices 

are introduced: 

, X PF Y PZ . (5.49) 

Riccati inequality (5.48) thus becomes: 

2
1 2

1 2

1 1
( ) 0.T T T T T T T T   

 
         PΦ Φ P YΨ Ψ Y XH H X PJJ P YGG Y I

 (5.50) 

Using the Schur complement [ZHANG 2005] (5.50) can be transformed into a more compact 

form of LMI: 

2
( )

0

T T T T T
1 2

T
1

T T
2

γ  





      





 
 

 
 
  

Φ P Ψ Y H X PΦ YΨ XH I PJ YG

J P I 0

G Y 0 I

 (5.51) 

and solved numerically by the interior-point polynomial algorithm [BOYD et al. 1994]. The 

estimation error ˆ( ) ( ) ( )t t t e ξ ξ will converge to zero if the matrices , T
P P 0  X, Y and 

positive scalars 1  and 2  exist such the LMI (5.51) is satisfied. Finally the observer matrices 

N and L can be calculated according to the following algorithm: 

1. Provide a mathematical model in state space representation (either by analytical model-

ling or by an identification procedure). 

2. Solve the LMI problem (5.51) (e.g. using the Matlab LMI toolbox) [NESTEROV and 

NEMIROVSKI 1994]. 
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3. If P, X, Y, 1  and 2  satisfying the LMI (5.51) are found then go to step 4, otherwise 

choose a smaller value of  . 

4. Obtain the matrices 1
Z P Y and 1

F P X . The observer matrices N and L are then 

given as in Equations (5.42) and (5.23): 

  N Φ ZΨ FH  (5.52) 

 L F NQ  (5.53) 

If the matrix S in Equation (5.37) and (5.38) is square of a full rank, the matrices G and K 

which represent the error after generalized inverse are equal to zero. Hence Ψ 0  and one 

can choose Z and Y equal to zero. In this case the LMI (5.51) is reduced to: 

2T T T
1

T
1

γ 



   



 
 

  

Φ P H X PΦ XH I PJ

J P I
0 . (5.54) 

The procedure of N and L computation stays the same as before except for minor modifica-

tions in Equation (5.52) where ZΨ  is equal to zero. 

N AND L COMPUTATION VIA POLE PLACEMENT 

To ensure the stable dynamics of the error function in (5.19) subject to Assumption 1 (5.20) 

the matrix N should be Hurwitz or in other words, have all eigenvalues in the negative region 

of the phase plane. On closer observation, Equation (5.42) can be reformulated as: 

T T
T T T T T T

T T

   
         

      p A
B

K

Z Z
N Φ Ψ H Φ Λ

F F
 (5.55) 

where, matrices ,Φ H and Ψ are known matrices and
T T T  

 
Λ Ψ H , opening the 

similarity to a general closed loop state space system with a state feedback input as: 

( ) ( ) ( ),  with: ( ) ( ) ( ) ( ) ( )t t t t t t t      x Ax Bu u Kx x A BK x  (5.56) 

with a desired closed loop dynamics ( )A BK characterized by predefined closed loop poles 

p which can be achieved by proper choice of a feedback gain matrix K (e.g. by means of 

Ackermann's formula [KAILATH 1980]). Therefore, another possible way to compute observer 

matrices N and L is to use the standard pole placement procedure [NIU et al. 2010], in 

particular by assigning predefined negative eigenvalues to matrix N and successive calcula-

tion of matrices Z and F by means of a pole placement procedure [KAUTSKY et al. 1985] if 
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the matrix pair ( , )T T
Φ Λ is controllable (e.g. the matrix pair ( , )Λ Φ is observable). The 

observer matrix L is then computed as before with the help of Equation (5.53). 

5.1.4 Effect of the Process and Measurement Noise  

It is valid to mention that in the observer design the absence of measurement and process 

noise has been assumed. Nevertheless, the measurement and model uncertainties are always 

present in real world applications. Adding both process noise ( )tw  and measurement errors

( )tv to the system in Equations (5.6) and (5.7) leads to: 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )L U, ,t t t t t t t   Eξ Mξ f ξ y Wf ξ y w  (5.57) 

( ) ( ) ( )t t t y Hξ v . (5.58) 

Employing the previously defined observer model as in Equations (5.8) and (5.9), the error 

dynamic Equation (5.19) under satisfaction of conditions 1 and 2 is of the following form: 

 

 

( ) ( ) ( ( ) ( ), ( )) ( ( ), ( ))

( ) ( ) ( )

L Lt t t t t t t

t t t

   

   

e Ne T f e ξ y f ξ y

L NQ v Qv Tw
. (5.59) 

Examination of the error dynamic equation shows that both inaccuracies are amplified by the 

observer matrices. Consequently, they will appear as a reconstruction error in the estimated 

variables or even lead to complete observer failure if the model and measurement noise are 

prevailing. This effect will be apparent when shown in the examples section. 

5.2 PROPORTIONAL INTEGRAL OBSERVER 

5.2.1 Initial Formulation 

The Proportional Integral Observer (PIO) originally appeared in the work of 

[WOJCIECHOWSKI 1978], as an extension of the classical proportional Luenberger observer 

[LUENBERGER 1971]. The PIO scheme, shown in Figure 5.2(a), was utilized by [SÖFFKER et 

al. 1995; KRAJCIN and SÖFFKER 2005], and has been used for reconstruction and compensa-

tion of the unknown disturbances/nonlinearities which were assumed to be piecewise constant 

functions. The original system in Figure 5.2(a) is written in a general state space form: 

( ) ( ) ( ) ( ( ), ( ), )

( ) ( ) ( )

t t t t t t

t t t

  

 

x Ax Bu Nn x u

y Cx v
 (5.60) 
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where ( ) , ( )  and  ( )n m rt R t R t R  x u y are similar to Equation (5.2), 2( , , )
n

t Rn x u is a 

vector function which describes nonlinearities, unknown inputs and unmodelled dynamics of 

the plant, and ( ) rt Rv represents the measurement noise. 

 

Figure 5.2: The original system and (a) – proportional integral observer (PIO); (b) – 

modified proportional integral observer (MPIO) 

Matrix N is a corresponding nonlinearity distribution matrix which is assumed to be known. 

The PIO in Figure 5.2(a) is of the following form: 

1

2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ) ( )), ( ) ( )

ˆ ˆ( ) ( ( ) ( ))

t t t t t t t t

t t t

     

 

x Ax Nn Bu L y y y Cx

n L y y
, (5.61) 

or, in extended form:  

1 1

2 2

ˆ ˆ( ) ( )
( ) ( )

ˆ( )ˆ( )

t t
t t

tt

        
                   

A L C N Lx x B
u y

L C 0 Ln 0n
 (5.62) 

where ˆ( )tx and ˆ( )tn are the estimates of ( )tx and ( )tn respectively, and matrices L1 and L2 are 

to-be-designed PIO gain matrices. Defining the state estimation error ˆ( ) ( ) ( )t t t e x x  and 

input estimation error ˆ( ) ( ) ( )t t t n n n , then the error dynamic equation of PIO becomes: 

 
( ) ( )

( ) ( )
( ) ( )

e PIO e e PIO

t t
t t

t t

   
      

   

e e
A L C F n L v

n n
, (5.63) 

where e

 
  
 

A N
A

0 0
,

1

2
PIO

 
  
 

L
L

L
,  e C C 0  and e

 
  
 

0
F

I
 are the matrices of the 

extended system. Apparently, the error Equation (5.63) is strongly influenced by the dynam-

ics of the unknown and measurement disturbances ( ) and ( )t tn v respectively. If the disturb-
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ance n(t) is slowly-changing ( ( ) 0t n ) and the measurement noise v(t) is bounded by small 

scalar  i.e. || || 1, v  then it is possible to force the error in Equation (5.63) to be 

asymptotically stable as the time evolves, by shifting the poles in Equation (5.63) at the 

arbitrary negative locations with the help of the observer gain matrix PIOL  if the matrix pair 

(Ae, Ce) is observable. The observability condition implies that the number of independent 

measurements should be equal to or greater than the number of states and unknown disturb-

ances i.e. 2r n n  . Computation of the PIO gain matrix can be done either by an eigenstruc-

ture assignment strategy [DUAN et al. 2001] or by using a Loop Transfer Recovery (LTR) 

design method [SHAFAI et al. 1996]. By using the second algorithm the gain matrix PIOL can 

be obtained by solving the following algebraic Riccati equation: 

1 1T T T
e e LTR e LTR e PIO e

      A P PA Q PC R C P 0 L PC R , (5.64) 

where, QPIO is a weighting matrix of an extended system and RPIO is a weighting matrix of 

measurement, constructed as: 

2 2 2 2( ) ( ) ( ) ( )
T

LTR n n n n LTR e n n n n e

LTR r r

     



 



Q I q F I F

R I
 (5.65) 

and P is a positive definite symmetric matrix. The qLTR is an LTR design parameter which has 

to be chosen very large to achieve satisfactory results [DOYLE and STEIN 1979]. This choice 

leads to large values in LPIO gain, and as a result the PIO observer is also known as a high 

gain observer. The high observer gains do not only serve for the fast observer convergence 

but simultaneously magnify measurement noise v(t) which leads to inacceptable performance. 

To attenuate the influence of the measurement noise, a modified formulation of the PIO 

(MPIO), as in Figure 5.2(b), has been proposed by [KRISHNA and POUSGA 2001], where 

additional integration of the measured output has been added: 

0 00
( ) ( ) , ( ) ( )

t
t d t t   x y y x , (5.66) 

so that the original system is of the following form: 

0 0 0 01

0 01

( ) ( ) ( ) ( ( ), ( ), ) ( )

( ) ( )

Tt t t t t t t

t t

   



z A z B u N n x u C v

y C z
 (5.67) 

where,  0( ) ( ) ( )
T

t t tz x x is the augmented state variable ( ) n rt R z , and 
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0

 
  
 

0 C
A

0 A
, 0

 
  
 

0
B

B
, 0

 
  
 

0
N

N
and  01 C I 0  are the augmented matrices of 

appropriate dimensions. The PIO structure in Equation (5.62) is modified accordingly: 

0 01 01 0 010
0

2 01 2

ˆ ˆ( ) ( )
( ) ( )

ˆ( )ˆ( )

t t
t t

tt

        
                   

A L C N Lz z B
u y

L C 0 Ln 0n
 (5.68) 

Letting the state estimation error ˆ( ) ( ) ( )t t t e z z  and input estimation error ˆ( ) ( ) ( )t t t n n n

be as before, the error dynamic equation of the MPIO appears to be: 

 
( ) ( )

( ) ( )
( ) ( )

T
me MPIO me me me
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extended system. From Equation (5.69) one can clearly see that the disturbance v(t) is not any 

more affected by the high observer gains. Therefore if the matrix pair (Ame, Cme) is observable 

then it is possible to compute the MPIO gain LMPIO such that stabilizing terms prevail over the 

perturbation term ( )T
me tC v , for the slowly changing disturbance/nonlinearity ( ( ) 0t n ). The 

computation can be done in a similar manner as for classical PIO structure. 

5.2.2 Load Reconstruction Formulation 

In the case when the MPIO is used for the reconstruction of external loads, the original block 

diagram in Figure 5.2(b) needs to be customized. The modification is done by leaving out the 

input line and by assigning ( ) ( )t tn u simultaneously setting the placement matrix N B . 

This is schematically shown in Figure 5.3.  

A new mathematical model of the extended system is similar to Equation (5.67): 
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as well as a customized MPIO model analogous to Equation (5.68): 
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Figure 5.3: Customized MPIO for load reconstruction 

The error dynamic Equation (5.69) has not been changed by the above manipulations. In the 

error dynamic equation, either for PIO (5.63) or MPIO (5.69), a major assumption has been 

made with respect to the rate of change of the unknown input/disturbance ( ) 0t n  which 

would guarantee the required observer performance. As a result, the rapidly changing 

unknown inputs will cause a high level of divergence between estimated and real inputs, 

which would be exemplified in Chapter 6. 

5.3 KALMAN FILTER WITH UNKNOWN INPUTS 

Numerous attempts have been made to employ the Kalman filter theory for simultaneous 

input and state estimation. In recent work, [PAN et al. 2010] has proposed to use the Kalman 

filter with unknown inputs (KF-UI) for the jointed estimation of the inputs and states. For this 

purpose Pan first combined the states and unknown inputs into an extended state vector. The 

weighted least square problem similar to Equation (2.88) was then solved for the extended 

state vector recursively as in Equations (2.91) - (2.104). This led to the KF-UI which is 

designed for the original invariant discrete-time system as in Equation (2.108) with added 

direct feed through matrix DD to the output equation: 

1k D k D k k

k D k D k k

   

  

x A x B u w

y C x D u v
, (5.72) 

where , andn r m
k k kR R R  x y u . The process wk noise and measurement noise vk 

respectively, are assumed to be mutually uncorrelated zero-mean Gaussian signals with 
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known covariance matrices      andT T
k k k k k kE E Q w w R v v . If for the system in 

Equation (5.72) the following conditions are satisfied: 

1. the number of outputs is greater than the number of unknown inputs: r m  

2. matrix pair (AD, CD) is observable, 

 i.e. 
,0 ,0 ,1 ,0 ,1 , 1 ,

T
T T T T T T T

D D D D D D k D k
  C , A C , , A A A C has full column rank ( 1k  ) 

3. the matrix 
1( )D D D D
D C A B  has full column rank, i.e.

1
, , , ,( )  with ( 0,1,2, , 1 and 1)D i D i D i D irank m i k k    D C A B   

4. matrix DD has full column rank i.e. rank(DD) = m 

then a minimum variance unbiased (MVU) Kalman estimator exists [PAN et al. 2010]. The 

KF-UI is computed in the following recursive steps: 

1.  Initialization 
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2. Gains 
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3. Update 
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4. Propagation 
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The evolution of the algorithm is as follows: if the measurements are available at the initial 

time then the states x, the inputs u and covariance P are updated using Equations (5.74) and 

(5.75) with 0 0
ˆ ˆ x x and 0 0

 P P , as the covariance and the states are propagated according 

to Equations (5.76); If the measurements are unavailable at the initial time then the estimate 
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and covariance are propagated first to the next available measurement point with 0 0
ˆ ˆ x x and 

0 0
 P P . The process is then repeated sequentially (steps 2 to 4). This estimation process 

will be used in the example section, where all the candidate algorithms will be tested on the 

same structure.  

5.4 ALGORITHMS SUMMARY 

All the algorithms mentioned in sections 5.1, 5.2 and 5.3 have their strong and weak sides 

which are explicit outcomes of the method assumptions or generalizations. To reveal them all 

they are summarized in a more compact form below. 

5.4.1 Necessary Conditions and Assumptions 

NUMBER AND TYPE OF MEASUREMENTS REQUIRED 

All of three algorithms (MPIO, SS&IE and KF-UI) require that the system under considera-

tion possesses the observability, i.e. observability matrix O in Equation (2.67) has full column 

rank. As a result the number of sensors should be equal to or greater than the number of 

unknown functions (inputs/nonlinearities). In addition, the SS&IE and KF-UI require the full 

column rank of the direct feed through matrix D, thus the sensors that would generate this 

matrix into output equation are necessary, e.g. accelerometers. On the other hand the MPIO 

algorithm deals with a simplified output equation that considers solely the linear combination 

of the states in the acquired measurements, see Equation (5.67); as a consequence, displace-

ment, velocity or strain gauges need to be utilized. 

ALGORITHMS SENSITIVITY 

Both MPIO and KF-UI work for linear systems and are tolerant to measurement noise, 

whereas the SS&IE can handle both linear and nonlinear systems but is more sensitive to 

measurement disturbances, see Equation (5.59). Therefore, if the SS&IE method is utilized 

special prerequisites should be taken for the noise attenuation. Moreover, the KF-UI has 

certain inherent advantages over the others due to its capability to minimize the error caused 

by the model uncertainties and also due to its potential to handle time variant systems (i.e. the 

realization AD, BD, CD, and DD in Equations (5.72)-(5.76) can be replaced with time varying 

matrices respectively). In addition, the usage of the MPIO algorithm will lead to a higher error 

if the unknown input function is of a fast dynamical nature (e.g. impact load), see Equation 

(5.69). 
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5.4.2 Sensors Allocation and Model Type 

In the light of the above observations, and in particular of the conditions applied to matrix D 

for SS&IE and KF-UI algorithms, it is important to mention that the full column rank holds 

only for the case when the unknown inputs are collocated with specific sensors, e.g. accel-

erometers. Nevertheless, this requirement can be released if the system realization (A, B, C, 

D) is obtained from the model in modal coordinates, see for details Chapter 2.1.1. In this case 

the full column rank condition of the matrix D holds if the sensor is placed in the vicinity of 

the original input location. 

All the above issues are exemplified in section 6.2, where all three candidates are tested on 

the similar test rig. 
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6 NUMERICAL STUDIES AND APPLICATION EXAMPLES 

In theory, there is no difference between theory and practice; 

 In practice, there is. 

-Chuck Reid 

Equation Chapter (Next) Section 1 

In this section, the load estimation approaches which are mentioned in Chapters 4 and 5 are 

applied to different test structures. This Chapter provides an overview of the strong and weak 

sides of every particular algorithm, starting with an impact type load reconstruction on an 

aluminum plate in section 6.1. It then covers the continuous time online load estimation for 

lamped mass in section 6.2 and spatial distributed structures in sections 6.3 and 6.4. Lastly, a 

force estimation procedure for a nonlinear test rig is considered in section 6.5. 

6.1 IMPACT LOAD RECONSTRUCTION ON ALUMINUM PLATE 

An aluminum plate, shown in Figure 6.1, was used for the impact type load reconstruction. It 

is 3mm thick (x=0.5m, y=0.4m) and simply supported from all sides, see Figure 6.1(right), 

instrumented with 8 “HBM” strain gauges (4 for each direction: x and y). All relevant 

specifications together with the analytical plate model which has been used for the impact 

history reconstruction can be found in Appendix C. The impact has been applied by an 

impulse hammer fitted with a piezo force cell at its tip. The impact load has been exerted in 

different locations which are marked on the plate as a grid, see Figure 6.1. Measured signals 

have been recorded simultaneously and evaluated off-line. 

6.1.1 Impact Localization 

The impact reconstruction was carried out according to the impact estimation strategy 

described in Chapter 4.2 and 4.3. As a first step, the impact location was estimated. 

 

Figure 6.1: A hinged aluminum plate equipped with 8 strain gauges and its side view 
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For the location detection the entire set of 8 strain measurements were used together with the 

material properties. First, the TOA’s for every specific sensor were determined from the 

acquired strain signals. Next, a frequency content of the first wave front was extracted with 

the help of the CWT technique and used together with an analytical dispersion curve to obtain 

the wave group velocity. Finally, the search procedure was initiated by inserting all related 

information into Equation (4.17). The results of the location search procedure for four 

different impact positions are shown in Figure 6.2. The estimation error was bounded in all 

the instances by 10% in both the x and y directions relative to the plate dimensions.  

 

Figure 6.2: Impact location estimation examples 

6.1.2 Impact History Reconstruction 

After the locations of the impacts were found, the impact history was estimated by means of 

the LQTP and direct time domain deconvolution algorithms described in Chapter 4.3. Both 

used an analytical model of a simply supported plate which incorporated estimated impact 
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location (the detailed model can be found in Appendix C). The estimation results of the LQTP 

algorithm for the estimated location (a) in Figure 6.2 are shown in Figure 6.3. Several 

important issues which should be taken into account when following the LQTP approach are 

emphasized in Figure 6.3(a) through (d). 

(a) – It is recommended that the model complexity be kept as low as possible in order to reach 

satisfactory estimation results, because it severely influences the computational time of the 

algorithm (i.e. a 5, 10, 15 modes model requires 0.14, 3.027 and 30.8 seconds, respectively, 

on a Pentium 4, 2.8GHz machine), but only yields a slight improvement in the estimation 

quality. Consequently, the frequency content analysis of acquired signals is needed prior to 

impact estimation, since its result can be used for the model complexity guess. As a rule, the 

model should include at least all frequencies exited by the impact load (i.e. observed in the 

sensors responses). 

(b) – The data length of the measurement signals which are used for the time history recon-

struction should be as short as possible. Ideally, it should cover only the impulse duration, 

since the LQTP tends to optimize input to the overall measure interval at the cost of neglect-

ing (reducing) the most important part of the initial impact. 

(c) – The increase in the values of the residual weighting matrix Q compels the estimated 

force to approach the magnitude of the real force, but at the same time this can lead to 

instability (i.e. higher oscillations) in the solution, as is apparent by comparing the black line 

Q=100I to others. 

 (d) – It is important that the input weighting matrix R (which is a scalar in the case of a single 

impact force) be kept as small as possible but larger than zero, since an increase in its values 

restricts the input variation and simultaneously smoothes the reconstructed impact. The value 

of matrix P does not influence the quality of the reconstruction of the impact, therefore it has 

been kept equal to zero for all results. 

To gauge the influence of inaccuracies in the estimation of the location on the quality of 

impact reconstruction, the estimated impact location (a) and (d) in Figure 6.1 has been 

compared with the impact estimation for the case when the impact position was identified 

perfectly with similar QLTP parameters (Q=10I, R=1e
-13

, P=0). This comparison is shown in 

Figure 6.4, where one can readily notice that the reconstruction error decreases as the 

estimation of the location approaches the real impact position; see Figure 6.4(a) for compari-

son. In contrast to Figure 6.4(a), Figure 6.4(b) does not show a significant improvement, 
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which leads to the conclusion that the QLTP is tolerant to some inaccuracy in the estimation 

of the location.  

 

Figure 6.3: Impact load estimation by LQTP algorithm: (a)- model complexity variation with 

constant Q=20I, R=1e
-12

, P=0; (b)-variation of data length with constant Q=20I, R=1e
-12

, 

P=0; (c)- variation of residual weighting matrix Q with constant R=1e
-12

, P=0; (d)- variation 

of input weighting matrix R with constant Q=10I, P=0 

 

Figure 6.4: Impact load estimation by LQTP algorithm: (a)- for estimated impact location in 

Figure 6.2(d); (b)- for estimated impact location in Figure 6.2(a) 
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The same impact locations have been taken for impact history reconstruction by direct time 

deconvolution algorithm. In addition to the theory described in Chapter 4.3.1, a specific 

sensor delay is taken from the previously estimated TOA’s. The results are set forth in similar 

form as for the QLTP approach, in Figure 6.5 and Figure 6.6, respectively. 

An analysis of Figure 6.5(a) and (b) leads to several outcomes with respect to the model 

complexity and the length of the data set used for the load estimation: 

(a) – The model complexity should be kept sufficiently small, since doing so improves the 

reconstruction curve (it smoothes the estimation result by reducing the condition number of 

the Toeplitz matrix, see Chapter 4.3.1) by means of a more complex model on the one hand 

and simultaneously increases the computational time on the other hand (i.e. a 5, 10, 15 modes 

models require 4.6, 29.5 and 283.8 seconds, respectively, on a Pentium 4, 2.8 GHz machine). 

As a result, the same strategy as for LQTP algorithm can be used for model order choice. 

(b) – The data length influences the solution, as mentioned in Chapter 4.3.1. In the worst case, 

a wrong choice of the time interval would lead to unstable solution. This trend can be 

observed in Figure 6.5(b), where the solution diverges at the final sample for each data set. 

Additionally, longer data sets require longer computational times which can be a knock-out 

criterion if the quasi online impact estimation is required.  

 

Figure 6.5: Impact load estimation by direct deconvolution in time domain: (a)- model 

complexity variation for 100 samples and TOA sensor delay; (b)- variation of data set length 

for 10 modes model and TOA sensor delay 

For the reasons stated in Chapter 4.3.1, a solution for the direct deconvolution method does 

not exist if the time delay is not introduced; therefore, a proper selection of time delay is 

needed. The TOA of every sensor can be an optimal candidate for this task. The influence on 
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the impact reconstruction by TOA variation within 20% for every sensor delay is set forth in 

Figure 6.6. Obviously, if the time delay is smaller or bigger than the actual time of arrival, 

then the estimation quality decreases, see green and black lines in Figure 6.6, especially in the 

beginning and end phases. 

 

Figure 6.6: Impact load estimation by direct deconvolution in time domain with different 

sensor specific delays for a 10 modes model and 75 samples data set 

For the purpose of assessing the sensitivity of the direct deconvolution algorithm to the error 

in location estimation, both locations (a) and (d) in Figure 6.2 were compared with the impact 

estimation for the case when the impact position was identified perfectly. This comparison is 

shown in Figure 6.7, where the reconstruction error decreases as the estimation location 

approaches the real impact position (black curves in Figure 6.7), see Figure 6.4(b) for 

comparison.  

 

Figure 6.7: Impact load estimation by direct deconvolution in time domain: (a)- for estimated 

impact location in Figure 6.2(a); (b)- for estimated impact location in Figure 6.2(d) 
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For Figure 6.4(a) no significant improvement is noticeable in the peak of the impact curve; 

nevertheless, the initial part of the estimated signal has been smoothed by the correction in 

impact location. Summarizing all the issues which should be taken into consideration for both 

the impact reconstruction methods presented in this section, and taking into account the 

quality of the estimated impact signal, a fair decision can be made by giving more benefits to 

the LQTP algorithm. However, direct time deconvolution can be used if no elaborated model 

of the system is at hand and certain precautions are taken in order to keep the solution within 

stable boundaries. 

6.2 TIME CONTINUOUS LOAD RECONSTRUCTION ON LUMPED MASS STRUCTURE 

A two storey laboratory structure, shown in Figure 6.8(a) and (b), was used for the experi-

mental validation of SS&IE, MPIO and KF-UI force reconstruction algorithms mentioned in 

Chapter 5. Each load estimation method has been constructed on the basis of a simplified 

mathematical model, as illustrated in Figure 6.8(b), with the assumption that the system 

exhibited only planar motion (in the z-x plane). The detailed modeling procedure can be found 

in Appendix A together with all relevant information (e.g. physical/geometrical features and 

positions of the sensors). 

 

Figure 6.8: A two storey lumped mass linear structure with shaker (a) and its model (b) 

The data for the observers has been acquired with the help of two “PCB” accelerometers 

model M353B15 which operate in the frequency range of 1Hz to 10kHz  , and two 

“HBM” strain gauges of type 0.6/120LY11 in the half-bridge configuration in order to 
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eliminate temperature effects. Recorded sensor signals were first passed to the operational 

amplifiers: accelerations - to a “Kistler“ coupler model 5134A (i.e. a 4 channel piezoelectric 

sensor power supply and signal conditioner), where the signals were primarily filtered by 

means of an integrated low-pass filter with the cut-off frequency set at 10 kHz; strains - to the 

carrier-frequency measuring PICAS amplifier from “PEEKEL Instruments”. Finally, the 

measured data were collected and fed online to the observers with the help of a “dSpace” 

DS1104 R&D controller board. 

For the system excitation two main sources were used. The first one was a Type 9722 

“Kistler” quartz impulse hammer which is able to capture the impact force up to 2 kN and 

excite the structure until 450Hz in frequency range with a grey tip extension. In addition, the 

impact position (lower or upper mass) was changed during the experiment. A shaker from 

“TIRA GmbH” type TIRAvib S504, with a rated peak force of 18 N and a frequency range of 

2 Hz to 11 kHz was used as a second load source for the test rig, see Figure 6.8(a). To validate 

the load applied by the shaker, an “ME” load cell of type KD24S with a nominal maximum 

load of 20 N was installed in the path between the shaker and the upper mass m2, see Figure 

6.8(a). 

The mathematical model for the observer computation which was derived with the help of the 

MA procedure based on ARV method, was obtained for the structure without being connect-

ing to the shaker (the shaker was considered as an external load). Nevertheless, the attachment 

of the shaker to the structure modified the overall dynamics of the system. Therefore, models 

with and without the shaker being connected to the structure were validated prior to beginning 

the actual force reconstruction test. For this purpose, an impact force was applied to the upper 

mass m2 of the structure with and without shaker. Then, the acceleration responses were 

recorded and used for the MA procedure which delivered the essential quantities for the 

model construction, see Table 6.1.  

Table 6.1: Modal analysis results for lumped mass structure 

Structure without shaker 

Mode [Hz]dampedf      

1 5.95 0.0029 [0.5253 0.8508]
T 

2 15.94 0.0011 [0.8365 -0.548]
T
 

3 278.4 0.0031 [0.1926 0.9757]
T
 

Structure with shaker 

1 8.2 0.0707 [0.6241 0.7688]
T
 

2 16.4 0.0206 [0.7881 -0.6338]
T
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Typical stabilization diagrams are shown in Figure 6.9 for the structure with (a) and without 

shaker (b). An obvious difference between identified parameters can be noticed from both 

Figure 6.9 and Table 6.1. First of all, the system with a disconnected shaker is characterized 

by apparently three natural frequencies, so that the simplified model in Appendix A, which 

accounts for only two degrees of freedom structure (first two modes of vibration), will serve 

as a sufficient basis for the observer construction only if the structure will be excited within 

the third natural frequency. Consequently, all observers will have higher errors if the external 

load is able to excite the structure in the vicinity of or higher than 278.4Hz. 

 

Figure 6.9: Stabilization diagrams for excitation on the upper mass (a)-disconnected shaker; 

(b)-connected shaker 

By the same token, the diversity between the system with and without shaker is very high, 

especially for the first frequency 40% , as well as the difference in the damping ratios for 

the first two modes. The magnitude plots of the system transfer functions, for the inputs to the 

first strain 1 and the inputs to first acceleration sensor a1, as illustrated in Figure 6.10, give a 

better representation of the difference between the systems with and without shaker in the 

frequency domain. Both acceleration and strain transfer functions in Figure 6.10 show 

similarity in the regions before and after natural frequencies, i.e. the red and blue lines are 

coincident. By contrast, in the vicinity of the natural frequencies the difference in both 

amplitude and shift of transfer function peaks experiences an increase. Therefore, the load 

reconstruction error is expected to increase for observers that are based on the structure 

without shaker if the structure is excited by a periodic load in the neighborhood of these 

peaks. Bearing in mind all expected sources of estimation error (i.e. neglected third natural 

mode and the difference between the structure with and without shaker), the estimation 

procedure was carried out for the structure that was first excited by the impact load at the 
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lower and upper mass, respectively. A sinusoidal load with different frequencies was then 

applied to the upper mass. 

 

Figure 6.10: Transfer functions magnitudes from both inputs to the lower accelerometer a1 

and lower strain gauge 1 

6.2.1 Estimation of Impact Forces 

The results of the impact estimation by all observers are shown in Figure 6.11 to Figure 6.13 

for the impact applied on the lower mass. 

 

Figure 6.11: Estimated forces using SS&IE, impact on lower mass 
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Figure 6.12: Estimated forces using KF-UI, impact on lower mass 

 

Figure 6.13: Estimated forces using MPIO, impact on lower mass. 
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An observation of Figure 6.11 and Figure 6.12 reveals that both SS&EI and KF-UI are 

capable of estimating the impact load as well as the shaker resistance load with minor errors. 

The main sources of error are the measurement noise and model uncertainties which can be 

observed before and after impact, respectively. The noise dependant error level can be easily 

attenuated with the help of a low-pass filter, whereas for the reduction of the model error a 

model update procedure might be necessary. MPIO in its turn is not able to follow the highly 

dynamical impact force in amplitude, as shown in Figure 6.13, and as expected from Equation 

(5.69). Nevertheless, it registers the occurring impact with some phase shift and attempts to 

reconstruct a slower force applied by the shaker connection. Similar results are obtained if the 

impact load is applied to the upper mass, see Figure 6.14 to Figure 6.16. Here, the SS&IE 

together with KF-UI again show a good performance and great similarity in the estimated 

forces which in this case are a combination of the impact and shaker resistance for the upper 

mass. Both of them incorrectly estimate the force on the lower mass with the similar range of 

error. The MPIO once more cannot follow the impact but attempts to follow the load intro-

duced throughout the load cell by the shaker resistance, see Figure 6.16. 

 

Figure 6.14: Estimated force using SS&IE, impact on the upper mass 
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Figure 6.15: Estimated force using KF-UI, impact on the upper mass 

 

Figure 6.16: Estimated force using MPIO, impact on the upper mass 
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6.2.2 Estimation of Sinusoidal Forces 

To validate the estimation performance at different frequency ranges, a sinusoidal force has 

been applied to the upper mass. The excitation frequencies were intentionally set as:

2Hz,7Hz,16Hz, 50Hz .exf   Two such frequencies, i.e. 7 and 16 Hz are located in the 

vicinity of the model discrepancy, see Figure 6.10, so that the estimation error was expected 

to be high for those frequencies. The results for every observer type are presented in Figure 

6.17 to Figure 6.19.  

A closer reading of these figures validates the above prognostication with respect to frequen-

cies 7Hz and 16Hz. If the periodic excitation is in the other frequency ranges, i.e. 2Hz or 

50Hz, both SS&IE and KF-UI provide a good estimate of the exerted load which is applied to 

the upper mass. Simultaneously, the SS&IE together with KF-UI produce a similar false 

estimate of the load on the lower mass where no force has been applied. The falsely estimated 

lower load reaches up to 100% of the applied load on the upper mass for frequencies 7Hz and 

16Hz and lies within 25% for frequencies 2Hz and 50Hz. In light of these observations, a 

direct connection of the estimation error to the model quality can be made, in particular by 

observing the results of load estimation at 2Hz and 50Hz in Figure 6.17 or Figure 6.18 and in 

parallel to the model quality in Figure 6.10. The transfer function curves in Figure 6.10 are 

almost identical starting from 20Hz which serves for good load reconstruction (having an 

error less than 10% at lower mass) at the frequency of 50Hz.  

The MPIO was not able to track load with fast dynamics, see Figure 6.19 for 50Hz. However 

it was quite successful in the 2Hz region, although it was using only the strain signals. For the 

excitation at 7Hz, the MPIO was able to estimate the load at the upper mass but produced a 

false estimation at the lower mass, as in the case of the other observers. 

On the basis of all the above findings, the following can be concluded: 

(a) Both SS&IE and KF-UI are able to estimate a vast range of load types with almost the 

same reconstruction quality. 

(b) Usage of MPIO algorithm would be preferable for slowly changing forces as it re-

quires only the strain sensors, which requires less computational costs than in the case 

of SS&IE and KF-UI.  

(c) All observers strongly depend on the model accuracy. Therefore, an a priori verifica-

tion of the utilized model is needed in order to obtain a good estimation quality, or the 

frequencies that are excited by the external load should be covered by the simplified 

(e.g. uncertain) model well. 
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Figure 6.17: Periodic load estimation using SS&IE, 2Hz,7Hz,16Hz, 50Hz exf   
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Figure 6.18: Periodic load estimation using KF-UI, 2Hz,7Hz,16Hz, 50Hz exf 
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Figure 6.19: Periodic load estimation using MPIO, 2Hz,7Hz,16Hz, 50Hz exf   
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6.3 TIME CONTINUOUS LOAD RECONSTRUCTION ON CONTINUOUS SYSTEMS 

This chapter consists of three subsections where load estimation is validated on continuous 

structures. In the first section, an analytical model of a simply supported aluminum beam is 

used, and SS&IE is tested in the case where the load and the acceleration sensor are not 

collocated. In the second section a FEM of a tripod tower structure is used to validate the 

observer robustness to measurement and model uncertainties for both collocated and non-

collocated scenarios. Finally, the results of completed laboratory tests for a quasi-static load 

on the beam and a wind load on the tripod structure are presented in the last subsection. 

6.3.1 Simply Supported Beam 

In this section, the SS&IE observer was attested on a model of simply-supported beam, as 

shown in Figure 6.20. The SS&IE algorithm was chosen as superior to KF-UI and MPIO due 

to its similar performance with KF-UI in the case of linear systems and its inherent ability to 

work with nonlinear systems. The main objective was to test the SS&IE algorithm constructed 

from the modal model which was able to release a sensors-load collocation condition in 

Equation (5.32) for the direct feed through matrix D. 

To this end, the sensors denoted by s1, a2, a3 and representing strain gauge and two accelera-

tion sensors, respectively, were positioned along the beam, see Figure 6.20.  

 

Figure 6.20: Simply supported beam model 

The combination of only two sensors (one strain s1 and one of two accelerometers a2 or a3) 

was used for every simulation run. In both instances, white noise was added to simulated 

outputs with a similar Signal to Noise Ratio (SNR) defined as the Root Mean Square (RMS) 

ratio of noise free signal S to noise signal N: 

SNR ( ) / ( )RMS S RMS N  (6.1) 

which was set as equal to 10. The simulation was performed with the SIMULINK/MATLAB
®

 

software package. The reduced analytical Euler-Bernoulli beam model containing four modes 

was used for calculating the observer. The number four was chosen arbitrarily; in general, the 
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complexity of the modal observer (i.e. the number of modes included in the model) depends 

on the application requirements, e.g. the frequency band excited by the external load. To keep 

the error function free from modeling errors the original system was assumed to have the 

same number of modes in the simulation procedure. The simulation results are plotted in 

Figure 6.21. Panel (a) in Figure 6.21 shows the force reconstruction with satisfactory accuracy 

(influenced by the sensor noise only) for the sensor couple s1 and a3, which were placed at 

0.3L and 0.5L, respectively. 

 

Figure 6.21: Force estimation, simulation results: (a) – sensors combination s1 and a3; (b) – 

sensors combination s1 and a2; (c) – filtered estimated signal for sensor combination s1 and a2 

Panel (b) in Figure 6.21 illustrates load estimation for the s1 and a2 sensors combination, 

where a2 is positioned at 0.4L along the beam. The calculated observers led to a good result, 

although the non-collocated case, plot (b) in Figure 6.21, is more sensitive to the noisy data. 

This drawback of high frequency pollution of the reconstructed force can be minimized by a 

low pass filtering of the identified force. The filtered reconstructed force signal is illustrated 

in Figure 6.21, panel (c); here a simple fifth order Butterworth low pass zero phase filter with 

100Hz edge frequency was applied. The results of estimation results led to the logical 
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question as to what was the maximum possible sensor to load location offset determination 

under which the load estimation was still possible. To answer this question, simulation tests 

for a similar test configuration with one strain sensor and different accelerometer positions 

relative to the load position was carried out. For the validation of load estimation quality a 

relative error was used, which was defined as: 

 
2

exact estimated

2
exact

error 100 [%]
F F

F


 




= . (6.2) 

The results of the test are shown in Figure 6.22, where the same load was applied at 

F(x=0.5L). 

 

Figure 6.22: The load estimation error for the relative force F(x=0.5L) to accelerometer a3(x) 

position 

In Figure 6.22 the SS&IE observer was able to deliver the stable estimation results only for a 

maximum relative to offset of 0.4 in either direction. The minimum estimation error observed 

was at the collocated position, as expected. In addition, the error function was not symmetric 

relative the collocation position a(x)/F(x)=1 which was due to the strain and accelerometer 

sensor coupling (a(x)/F(x)=0.6 is equal to the 0.3L, where the strain sensor was positioned). 

6.3.2 Scaled Tripod Tower of the Wind Energy Plant  

For the sake of complete study of SS&IE, several numerical tests were performed to validate 

its robustness to model variation and noise level changes in both instances, i.e. collocated and 

non-collocated accelerometer and load positions. To this end, the SS&IE observer which was 

based on the FEM of the scaled tripod WEP tower represented in Figure 6.23 was tested in the 
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SIMULINK/MATLAB
®
 environment under different conditions. The simulations were run to 

address the following questions: 

1. How does the complexity of the calculated observer (i.e. the number of modes which 

are included in the state space model) influence the reconstruction of an external 

force? 

2. To which extent does the noise level of each sensor change the observer performance? 

3. Does shifting the acceleration sensor location from the point where the force was ap-

plied still preserve the stable load reconstruction if the measurement is corrupted by 

noise? 

4. To which extent does the observer and model divergence influence the estimation 

quality? 

 

Figure 6.23: FE model for the numerical study (a) – collocated accelerometer and force; (b) 

– non-collocated accelerometer and force 

For the simulations, the original system as in Figure 6.23 was built from the FE model 

consisting of a first 30 mode shapes. The set of observers with 8, 10, 12 and 14 modes in 

which only the bending modes were included in both (x and y) directions, were calculated, 

whereas the force was applied only in the x direction. Each of these observers was then tested 

for increasing noise levels on one of the sensors, i.e. either the strain gauge or the accelerome-

ter, while the noise on the other sensor was kept constant and equal to 2% or SNR=50. In 

Figure 6.24 the relative error behavior between the 30 modes system (assumed to be an 

original system) and the reconstructed force from the observers with a different number of 

modes is shown. Here, the acceleration sensor was collocated with the position of the applied 

force as in Figure 6.23(a). The relative and the noise level were measured by the relative 

discrepancyD  
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The load for all simulations was a unit force that was applied for three seconds at a single 

node (see Figure 6.23) in one direction and is described using MATLAB
®
 functions as: 

1 2 3( ) 200sin (2 ) 20square(2 ) 10sawtooth (2 )F t f t f t f t      (6.4) 

here, t is a time interval equal to (0,…,3) seconds and, 1 2 32, 30 and 220f f f    represent 

the excitation frequencies in Hz respectively. The same pattern of excitation as well as the 

noise variation was applied for the case when the accelerometer was shifted by one node (0.13 

meter) down from the force location as in Figure 6.23(b). The observer performance for this 

case is presented in Figure 6.25. 

 

Figure 6.24: Relative simulated error of estimated force for different number of modes and 

(a) – relative noise level of strain gauge (b) – relative noise level of the collocated accelerom-

eter and force 

 

Figure 6.25: Relative simulated error of estimated force for different number of modes and 

(a) – relative noise level of strain gauge (b) – relative noise level of the non-collocated 

accelerometer and force 



106 6 Numerical Studies and Application Examples 

Both figures show that the presence of noise and respectively its increase, especially in the 

strain gauge, leads to a higher deviation between the estimated and real force. On the other 

hand, the noise contamination of the acceleration signals does not lead to a strong force 

perturbation. There is an important difference between collocated and non-collocated observer 

behavior that can be noticed from Figure 6.24 and Figure 6.25. The performance of the 

collocated observer slightly improves as the observer size increases (higher number of modes 

included), whereas in the non-collocated case the opposite tendency is seen. This behavior can 

be due to weaker measured signals (either strain or acceleration) so that the overall noise to 

signal ratio increases, especially for higher modes of vibration which leads to stronger 

oscillations of the estimated force. 

A change in the original system dynamics (e.g. a shift of the eigenfrequencies) due to 

environmental conditions (e.g. temperature variations, marine growth), was considered by 

another simulation test. Here, the global Young’s modulus was changed from the origin by 

2.5%, 5% and 7.5%, which led to changes of the natural frequencies that are shown in Table 

6.2 for x directional bending modes. 

Table 6.2: Natural frequencies for different Young’s modulus (E) of the tripod structure 

  E(100%) E(97.5%) E(95%) E(92.5%) 

f1x[Hz] 6.28 6.20 6.12 6.04 

f2x[Hz] 47.38 46.79 46.19 45.58 

f3x[Hz] 141.89 140.12 138.34 136.53 

f4x[Hz] 198.30 195.83 193.33 190.80 

f5x[Hz] 203.12 200.58 198 195.39 

f6x[Hz] 233.86 230.95 228 225.01 

f7x[Hz] 258 255.03 252.01 248.94 

f8x[Hz] 288.48 284.88 281.22 277.52 

 

The performance of the observer with SNR=50 for both sensors is presented in Figure 6.26 

for both collocated and non-collocated instances. The results clearly show that an increase in 

observer complexity does not necessarily improve the force estimation. The reason for this is 

the test load with a highest frequency of 200Hz which was covered by the simplest tipod 

tower model of 4 modes. Another issue which can be noticed from Figure 6.26 is that the non-

collocated observer is less sensitive to changes in original system complexity. 

The above numerical studies on both test structures prove that the SS&IE algorithm is able to 

reconstruct an external input in a robust way under model and measurement uncertainties for 

both collocated and non-collocated accelerometer and load positions. Furthermore, the 
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complexity of a model depends only on the frequency range of the excitation. In non-

collocated cases the SS&IE can also deliver acceptable load estimation even if the original 

system is not observable and special signal processing is carried out to attenuate the noise 

content of the responses. 

 

Figure 6.26: Relative simulated error of the estimated force for different number of modes 

and relative change of the global Young’s modulus E; (a) – collocated force and accelerome-

ter (b) – non-collocated force and accelerometer 

6.3.3 Laboratory Tests 

SIMPLY SUPPORTED BEAM UNDER QUASI STATIC LOAD 

The results of the simulations lead to the conclusion that the observer is capable to reconstruct 

the non-collocated load with acceptable accuracy if additional signal filtering is introduced. 

To validate this capability on the experimental laboratory structure a simply supported I beam 

with the same physical and geometrical properties as in the model before, as shown in Figure 

6.27, was utilized. 

 

Figure 6.27: Simply supported steel beam (laboratory structure) 
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The beam was fitted with two “HBM” strain gauges of type 0.6/120LY1 which were fixed 

along the beam at 0.3L and 0.4L, respectively, and one movable “PCB” accelerometer of type 

M353B15. A four modes analytical model of the beam with one strain gauge at 0.3L and one 

accelerometer at 0.4L were used for constructing the observer. It should be borne in mind that 

the presence of strain gauges is only necessary if static or quasi static loads need to be 

estimated. In other instances, the SS&IE may rely only on acceleration measurements 

provided that assumption (5.32) is held. The typical acquired system responses to quasi-static 

load which was applied by human weight and respective up-down motion are demonstrated in 

Figure 6.28(a) and (b), where one can see a significant contribution of strain measurements 

for quasi-static load estimations. 

 

Figure 6.28: Measured strain (a) and acceleration (b) used for the load estimation; (c) quasi-

static load reconstruction 

The exemplary result of quasi-static load estimation by the SS&IE algorithm applied at 0.5L 

which was measured by means of a force sensor is represented in Figure 6.28. Based on the 

quality of estimation in Figure 6.28 one can conclude that a simple beam model which 

includes only 4 modes is absolutely sufficient for the purpose of constructing SS&IE. 

TRIPOD LABORATORY TOWER UNDER WIND LOAD 

Finally, a collocated SS&IE observer based on the FE model which combines the first eight 

modes (4 in x and 4 in y directions) has been tested on the real laboratory structure shown in 
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Figure 6.29. The tripod made of steel pipes with the diameters (37.2 mm and 21.3 mm that are 

welded together) and fixed to the concrete foundation with four bolts at each leg.  

 

Figure 6.29: Scaled tripod laboratory structure 

The load was applied to the tower with the help of a wind fan blowing onto an aluminum 

plate. Between the plate and the supporting beam, which in turn was rigidly connected to the 

tower, a “ME” load cell of type KD24S with a nominal maximum load of 20N was located for 

later validation of the estimated force. Two types of sensors were used for data acquisition, a 

“PCB” three axis accelerometer of type SN23231 was positioned at the tower top and two 

“HBM” strain gauges of type 0.6/120LY11 in the half-bridge configuration in order to 

eliminate the temperature effects which were located near the tripod junction, see Figure 6.29 

for details. The acquired measurement data was directly fed into the observer, as shown in 

Figure 6.30(a) and (b). 

One can see that the noise level of the strain gauge is very high. This leads to a strong 

perturbation of the reconstructed force in the steady state (up to 2.5 seconds) that is over-

lapped with the measured force in Figure 6.30(c). Nevertheless the real force was estimated 

well after the fan was switched on (see Figure 6.30(c) magnification). The relative error 

between the estimated and measured external force was 11.5%, where the error was calculated 

according to Equation (6.2). Signal preprocessing was necessary, especially in order to 

remove the offsets from the acceleration and strain signals which are always present even if 

the structure is in a steady state. 
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Figure 6.30: Wind load estimation on tripod structure by the SS&IE algorithm 

6.4 THE WIND ENERGY PLANT M5000-2 

The SS&IE algorithm was tested on the on field structure. For the purpose of the test 167 

sensors were installed on the M5000-2 onshore WEP in Bremerhaven. The M5000-2 is a 5 

MW wind turbine [AREVA 2010] with a tripod tower structure as shown in Figure 6.31(a). 

The equipment installation and data collection were carried out by the Federal Institute for 

Material Research and Testing, Germany. 

The external load reconstruction was performed offline as a sub-part of the overall SHM 

package for future offshore WEPs. For the observer design, an updated FE model was used 

and two sensor types (two 2-D accelerometers and two strain gauges) were needed. Load 

estimation was then carried out for the section where the nacelle is connected to the tower. 

This section was chosen intentionally and included all possible forces that the tower should 

subtend (external wind forces, static nacelle orientation, blades dynamics, mass unbalance, 

etc.). In Figure 6.31(c-e), one of the working states of the WEP M5000-2, together with the 

operational conditions (wind velocity, pitch angle, etc.), is illustrated. 

In Figure 6.31(b), the WEP is shown from the top, with the green thick line representing the 

nacelle with the rotor. Strain sensors are fixed to the tower at 330° and have their own 

orientation in space which is displayed on the same subplot by the black lines, one line per 

sensor, respectively. The acceleration sensor is located in the nacelle which is always 

changing its orientation in space. This causes difficulties for calculation of the observer as it is 
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based on the modal state space model which has fixed orientation. Therefore, measurements 

transformation was performed to overcome this problem. 

 

Figure 6.31: Operational state WEA M5000-2 in Bremerhaven: (a) overall structure with 

schematic sensor positions; (b) and (c) nacelle orientation with respect to the wind together 

with strain gauges coordinates; (d) and (e) wind velocity and pitch of the rotor blades 

The above operational conditions are very close to the ideal ones for the WEP M5000-2, see 

data sheet [AREVA 2010]: a) the wind direction is almost orthogonal to the rotor area, with a 

nearly constant wind speed of approximately 12 m/s; b) the blades have a relatively small 

pitch angle. Such conditions allow using the Betz theory to validate the estimated load. 

According to Betz, the wind load applied to the rotor area can be calculated as [GASCH and 

TWELE 2007]: 

21

2
Betz windF c V A  (6.5) 

where, c is an aerodynamic thrust coefficient Vwind the wind speed,  the air density and A the 

rotor area. The wind is assumed to blow orthogonal to the rotor area. The estimated and Betz 

forces are depicted in Figure 6.32(c) together with recorded measurements in Figure 6.32(a-b) 

for a time duration of 25 minutes and the above mentioned operational conditions.  
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Figure 6.32(c) shows a certain difference between estimated and Betz force especially in the 

region where the wind velocity is increasing. This is due to the Betz theory as in Equation 

(6.5), where the Betz force follows the wind velocity behavior for a fixed coefficient cair with 

no accounting for pitch angles (see for a comparison the wind velocity in Figure 6.31(d) for 

the time interval 0-1500 seconds; the wind velocity increases and decreases as time evolves). 

 

Figure 6.32: Estimated external force for M5000-2 

As a result, the Betz force alone cannot be used for the validation; instead, one also needs to 

take the pitch angle of the rotor blades in consideration. A closer reading of Figure 6.32(c) 

shows that the estimated force is very close to the Betz force in the regions where the pitch is 

close to zero (~100 and ~1300 seconds) and decreases as the rotor blades are pitched (see 

pitch and wind velocity in Figure 6.31(d-e) for the time interval 0-1500 seconds). 

A magnification of Figure 6.32(c) demonstrates that the estimated force has slower dynamics 

similar to the Betz force, but also includes higher frequencies which are obviously the 

components of all interaction forces between the tower, nacelle and rotor blades. Observations 

of the estimated load spectrum in Figure 6.33(a) show that the external load lies in a low 
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frequency range of up to 25 Hz. Moreover, a closer reading of the spectrum in Figure 6.33(b) 

demonstrates that the stall-effect (blade passage) and its multiples play a very important role 

in the dynamic excitation of the WEP. 

The blade passage frequencies are plotted with orange lines on both plots. The green lines 

represent the first and the second natural frequencies of the tower which are also present in 

the estimated load spectra. 

 

Figure 6.33: Estimated load spectrum [0 - 15] Hz range (left); [0 - 3.5] Hz range (right) 

Moreover the spectrum of the wind velocity has a typical logarithmic decay and shown in 

Figure 6.34. A comparison of the plots in Figure 6.33 and Figure 6.34 reveals the important 

fact that the load withstood by the WEP tower does not consist solely of the wind load but 

rather includes loads/forces that result from interactions of other components of the WEP. 

 

Figure 6.34: Wind velocity spectrum 

By means of the estimated force it is possible to calculate shear forces at any location of 

interest. As an example, the shear forces at the connection of the nacelle and tower for the 

same operational conditions as in Figure 6.31(c-e) and a time interval of 1500 seconds are 
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shown in Figure 6.35. An additional important issue associated with the force estimation is its 

usage in future structural designs. 

At the present moment, the most important components of the WEP are designed with the 

help of commercially available software packages which allow for calculating the wind load 

and factors in different parameters such as: transients in wind speed, wind direction, and 

various turbulence spectra. In Figure 6.36, both shear forces at the nacelle tower connection 

from the Commercial Software Package (CSP) are plotted together with the calculated Betz 

force for 12.2 m/s wind speed and 19.79% turbulence intensity. 

 

Figure 6.35: Estimated shear forces at the nacelle-tower cross section for 11.8 m/s wind 

speed and 20.76% turbulence intensity  

A comparison of Figure 6.35 and Figure 6.36 shows that the shear forces from CSP are much 

higher for almost the same operational conditions and do not include all interaction forces of 

the WEP. The main disagreement between estimated and modeled forces is noticeable in the 

Y directional shear force; this is due to the different angle of attack of the wind itself, see 

Figure 6.31(c) and the nacelle orientations. 

In the CSP, the nacelle is positioned in the main wind direction which is 240°. This means 

that the shear force in the X-direction reaches its maximum as shown in Figure 6.31(c), 

whereas in the case of force estimation the nacelle had only 224.5°. Modeling results might be 

sufficient for the present design strategy, but this generally leads to structure over sizing at 

least in the case of the wind load resistance. This might be improved in the future by the 

records of the estimated dynamic forces from a real, on-field structure. Of course, further 

reliable usage will still require a validation of the reconstructed forces by means of real, 

measured shear forces. 
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Figure 6.36: Shear forces at the nacelle-tower cross section by GH Bladed at 12.2 m/s wind 

speed and turbulence intensity of 19.79% 

Further investigations of the observer properties should be made together with a validation of 

the obtained result. Additionally, external moments that play a central role in the life expec-

tancy and fatigue prediction of the tower structure should be estimated and validated in the 

same way as the external forces. Observations of the estimated load led to a conclusion that 

the WEP is experiencing a complete bench of forces that are arising throughout the WEP 

operation and need to be considered for a life expectancy prognosis. Among them are loads 

from pitching, yaw control, stalling and starting of the rotor. 

6.5 NONLINEAR LABORATORY STRUCTURE 

A two storey laboratory structure with a non-linear behavior, shown in Figure 6.37(a) and (b) 

was used to validate the SS&IE performance. The structure in Figure 6.37(a) and (b) is similar 

to the structure in section 6.2 with a minor modification which makes the overall structure 

behavior nonlinear. In particular, a stopper element constraining the movement of the lower 

mass in the positive x direction was added to the supporting frame, as shown in Figure 6.37. 

The stopper tip was fitted with a “Kistler“ quartz load cell of type 9211 to register impacts in 

order to validate estimated nonlinearity. The nonlinearity was controlled by the distance b 

between the quartz sensor tip and m1. The load estimation method was constructed on the 

basis of the simplified linear mathematical model described in Appendix A. The nonlinear 

impact effect was taken into the model as an unknown external force which should be 

estimated together with the load applied from the shaker by the SS&IE algorithm. The data 

for the observer was acquired in a similar manner as in section 6.2 where the measurements 

from two accelerometers and two strain gauges were used as inputs to the observer. For 

structure excitation, a periodic load was generated by means of a shaker in the frequency 
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range where the difference between the original structure which was connected to the shaker 

and the mathematical model which was used for the observer design was not large. More 

details can be found in Chapter 6.2. 

 

Figure 6.37: (a) A two storey lumped mass nonlinear structure, and (b) side view of same  

Figure 6.38 represents an exemplary result of the load reconstruction for a 7 Hz square wave 

excitation applied to the upper mass m2. The distance b was held at 2 mm so that the lower 

mass impacted the holder as it was moving in the positive x direction. Both upper and lower 

forces were reconstructed with a certain error; see zoomed panels of Figure 6.38. The analysis 

of the frequency content in the error signal led to the error source, specifically a model 

simplification which did not take into account the third natural frequency, i.e. the longitudinal 

vibration of the beam legs. The above error occurs only if the impact duration is fast enough 

to excite the structure up to this frequency range and can be removed easily by the use of a 

more complete model for the observer design. Figure 6.39 shows SS&IE performance for the 

impact load type which was applied to the lower mass m1. The hammer impact was oriented 

in the positive x direction so that the structure experienced a second impact from the stopper 

side immediately following the fist impact, see zoomed section in Figure 6.39 for the lower 

mass where both impacts were captured and estimated well by the SS&IE. The coupling of 

the shaker introduced a resistive force on the upper mass m2 which was also estimated by the 

observer. In contrast to the periodic load which was in the vicinity of first natural frequency 

(8.2Hz), in the case of the impact an almost complete attenuation of the excited longitudinal 

beam vibration modes was allowed. As a result, the model error was not as significant as in 

the case of the periodic load. 
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Figure 6.38: Load reconstruction on nonlinear system, square excitation fex=7Hz on m2 

 

Figure 6.39: Load reconstruction on nonlinear system impact load on m1 
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7 SUMMARY, DISCUSSION AND OUTLOOK 

It is simplicity that makes the uneducated more effective 

 than the educated when addressing popular audiences. 

-Aristotle, Rhetoric 

 

Indirect load reconstruction has been the subject of research for more than three decades. 

Structural engineers have devoted a great deal of effort to solve this in an efficient way, and 

the force reconstruction problem is usually solved by using indirect measurement techniques. 

These techniques include the transformations of related measured quantities such as accelera-

tion, velocity, position or strain. However, these transformations generally lead to the so-

called “inverse problem”, also known as “deconvolution problem”, which is not trivial due to 

its inherent ill-posedness. Although a number of load estimation methods already exist, most 

methods are only suited to offline load reconstruction, where the load is reconstructed by 

means of the recursive optimization procedure with a special treatment of ill-posedness. 

Therefore, it is the opinion of the present author that they are not applicable for on-field 

structures where the loads need to be monitored on a permanent basis. 

In addition, earlier research efforts attempted to use the estimation methods in an universal 

fashion without paying attention to the load type, e.g. impact time and/or continuous load, 

which has led to broad palettes of estimation methods. Alternatively, several algorithms can 

be found in the area of control engineering whereby unknown inputs are estimated with the 

help of observer-based techniques in order to improve controller performances. 

Therefore, the initial goal of the present thesis was first to study and systemize existing 

algorithms devised by mechanical engineers for the reconstruction of force history and 

location. The second goal was to determine their respective advantages and merits in solving 

the inverse problem by comparing simulated and experimental results. Finally possible 

candidate methods among the other engineering disciplines where identified, that could be 

applied to overcome the ill-posedness of force history estimation and allow online load 

reconstruction. The author attempted to incorporate the knowledge of both structural and 

control disciplines for the purpose of improving the selected algorithms so that transferring 

the load reconstruction procedure from the laboratory setting to real world applications would 

be faster. 
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For this purpose, several modeling possibilities for mechanical structures are presented in 

Chapter 2. Special attention is paid to the modal model which allows for releasing the sensor 

placement procedure (from collocated to non-collocated), while simultaneously reducing the 

model complexity associated with the inverse problem of load estimation. As the analytical 

modeling of the on-field structure is a tedious procedure, system identification algorithms are 

considered as an alternative. Since the observers have been adopted by the author from the 

control engineering field for the purpose of online load estimation, the fundamentals of 

estimation theory together with those of observer design are presented. 

Before qualified estimation methods are presented, an important classification of loads is 

carried out in Chapter 3. In particular, external loads are classified into three main categories: 

1) impact loads; 2) time continuous loads; 3) spatially distributed loads. The classification of 

loads was an important step because each load type applies special requirements on the load 

estimation algorithm. For example, an impact load lasts only a short duration of time but can 

vary in its location, amplitude and duration so that a load estimation procedure has to deal 

with both location and load history estimation. Conversely, the location of a continuous time 

load is fixed while its time interval is indefinite. 

In Chapter 4 a detailed impact reconstruction procedure is considered. The procedure is 

divided into two parts: impulse location computation and impulse history reconstruction. To 

estimate the impulse location a passive sensor technology is used i.e. all sensors in the sensor 

net are in the listening mode and the impact triggers the acquisition of signals. The sensor 

signals that are recorded following the impact event are used for the information extraction. In 

particular, the frequency content of the solid wave is extracted with the help of the CWT 

technique and is used for the estimation of the wave group velocity from the dispersion curve 

of a specimen. To facilitate the extraction of only the initial wave frequency by the CWT 

algorithm, acquired signals are truncated and windowed to avoid leakage. Additionally, a 

reliable automatic onset time picking technique based on the Akaike information criterion 

(AIC) is used for estimation of the time of arrival. The localization phase is then completed by 

the location search algorithm which utilizes the extracted wave group velocity and the 

difference between the wave’s arrival times at every specific sensor. A candidate search 

strategy for the isotropic material is presented in section 4.2.2. This strategy is applicable to a 

variety of plate type geometries and needs to be modified for anisotropic materials by taking 

into account the wave velocity profile. 
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Two most appropriate discrete time methods are suggested by the author for the purpose of 

impact history reconstruction. The first method is a direct time domain decomposition which 

was extended by [NORDSTRÖM 2005] by means of a specific sensor time delay to compensate 

for the rank deficiency which always occurs when the sensors are removed from the impact 

location. This method works well if certain caveats are taken in consideration. It is important 

to keep the dimensions of the block Toeplitz matrix to be inverted as small as possible, which 

in turn implies that recorded signals must optimally capture the impact duration. In addition, a 

sensor-specific time delay should be chosen in order to guarantee a stable deconvolution. The 

choice proposed by [NORDSTRÖM 2005] is not connected to any physical quantities and 

involves a trial and error approach. In the present work, a new sensor specific time delay is 

introduced which is based on the previous estimated times of arrival. Using the proposed 

delay ensures a proper rank for the Toeplitz matrix in Equation (4.21) and has a direct 

connection to wave propagation within the medium. 

The second algorithm estimates the impact history by solving the optimal tracking problem, 

or, more specifically, by finding an optimal control input (impact load) which allows for the 

tracking of captured measurements. Drawing its origins in control engineering, it is an 

iterative process having two main loops: a forward loop and a backward loop. The backward 

loop performs a sequential estimation of appropriate gains which are subsequently used with 

the model description in the forward loop for the state and input estimation. The estimation 

quality and speed is controlled by the weighting matrices P, Q and R which play an important 

role together with the complexity of the mathematical model. 

The impact reconstruction procedure is presented for an aluminum plate in Chapter 6.1. 

Beginning with the estimation of several locations in section 6.1.1, it then continued with the 

detailed analysis of both impact histories estimation algorithms in section 6.1.2. The impact 

location was estimated in most of the cases with a maximum error of 10% and with a speed 

sufficient for online applications (e.g. within several seconds). For the purpose of location 

estimation, a local search algorithm which minimized the error cost function was used for the 

search procedure that required several runs in order to avoid a local minimum. Therefore, a 

certain improvement in terms of computation time might be achieved by the utilization of a 

global minimization algorithm. In addition, the algorithm could not deliver a reasonable 

location estimation for some impact locations. These areas were labeled as the “insensitive 

zones” of the sensor configuration set that was used. To avoid such situations in real-world 

applications, special precautions should be taken beforehand with regard to sensor locations. 
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In particular, an initial model would be helpful for the purpose of an optimal sensor placement 

strategy. 

The impact history estimation methods are then tested for chosen estimated locations. To 

ensure a satisfactory impact history estimation by both optimal tracing and direct time 

deconvolution methods, certain issues should be taken into account. Experimental results 

show that the length of measured signals that are used for the load estimation should be kept 

as short as possible in both approaches. Moreover, a proper impact location determination 

leads to a better estimation of the impact history. Among other factors for obtaining the 

optimal tracking algorithm, it is recommended to keep the values of weighting matrix R 

(which is a scalar for the single impact force) in Equations (4.34) - (4.37) as small as possible 

but larger than zero, as an increase in its values restricts the input variation and simultaneous-

ly smoothes the reconstructed impact. Additionally, higher values in weighting matrix Q in 

Equations (4.34) - (4.37) yield a better estimation but can also lead to instability. Therefore, a 

trade-off between the estimation closure to a real impact and the solution stability needs to be 

found by assigning the Q matrix. Direct time deconvolution is not worked if the specific 

sensor delay was applied. The proposed usage of TOAs for sensor delay delivered always 

stable and consistent impact history estimations. Nevertheless, the direct time deconvolution 

required a longer time for the impact estimation in comparison with an optimal tracking filter 

which required only 0.14 seconds. Therefore, the optimal tracking filter is rather recommend-

ed if the impact estimation is to be done near online time mode. An important advantage of 

the optimal tracking filter is the parallel estimation of state variables which can be used for 

either control or SHM purposes. Finally, it is important to mention that the model quality and 

complexity influence impact history estimation. The results of the experiment described in 

Chapter 6.1 clearly show that the higher model complexity dramatically increases the 

computational time on the one hand, but a simple model leads to poor load estimation on the 

other. Therefore, the model should be as simple as possible and should simultaneously cover 

the highest frequency that the impact can excite. 

Continuous time load estimation methods are presented in Chapter 5. At first, the simultane-

ous state and input estimator (SS&IE) is treated in a very detailed fashion as it has a potential 

to estimate inputs also in the case of nonlinear systems that can incorporate Lipschitz type
1
 

and unknown nonlinearity. In particular, a computation of the observer matrices is presented 

for both linear and nonlinear systems. The SS&IE design implies several conditions to be 

                                                 

1
 nonlinear function which satisfy Lipschitz continuity condition 
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fulfilled. First of all, if both states and inputs need to be estimated, the system under consider-

ation should be observable. This condition can be released to detectable if only inputs are to 

be estimated. If Condition 1 in subsection 5.1.2 leads to a construction of extended matrix S 

such that it is of full column rank, then a simple inversion procedure might be used for the 

computation of observer matrices T and Q. The full column rank condition also imposes that 

the number of measurements must be at least equal or greater than the sum of inputs and 

unknown nonlinear functions. This in its turn makes it obligatory to use sensors that contrib-

ute independently to the direct feed trough matrix D such that D has a full column rank, e.g. 

independent acceleration measurements. Consequently, in the case of nodal coordinates the 

sensors should be collocated with the applied load positions, which is impractical for some 

real life applications. Therefore, it is preferable to use a modal model for the observer 

construction since it can release the above collocation condition and assure a stable observer 

for some load sensor distances. A computation of the observer matrices L and N depends on 

the systems type. For linear systems a simple pole placement procedure can be used as in 

[NIU et al. 2010], whereas for nonlinear systems a more general LMI approach needs to be 

applied. Moreover, in the cases of certain linear systems it is possible to improve the load 

estimation quality by inserting a nonexistent nonlinearity matrix W into the observer design 

so that a pure numerical improvement of the matrix S will lead to a more robust observer 

behavior. As shown in section 5.1.4, the SS&IE performance strongly depends on the model 

and measurement quality; therefore these issues should be dealt carefully if a good estimation 

is desired.  

In sections 5.2 and 5.3, the modified proportional integral observer (MPIO) and Kalman filter 

with unknown inputs (KF-UI) are presented as additional candidates for continuous load 

reconstruction in the case of linear systems. Both, of the above demand the system under 

consideration to be observable. The MPIO is capable of attenuating the measurement noise 

but still significantly depends on the model quality. Furthermore, as shown in Chapter 5.2.1, 

the MPIO would fail for the fast changing load, due to its internal structure where the 

unknown disturbance is assumed to be a piece-wise constant, so that a derivative of unknown 

forces is present in the error equation. The KF-UI has an immunity to both model and 

measurement uncertainties. Similarly to SS&IE, the KF-UI requires that a full column rank 

condition of the direct feed through matrix D is held and the covariance matrices of process 

and measurement noise are given as a priori.  

A simple two storey test rig was used in Chapter 6.2 as a benchmark for the SS&IE, the KF-

UI and the MPIO. To validate their performance, different load functions were used. In 
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particular, the impact loads generated by the impulse hammer and the periodic load generated 

by the shaker, as well as their combination, were applied on either the upper or the lower 

mass. All the observers were based on the simplified 2DOF model which considered only a 

planar motion. In addition, the mathematical model was constructed for the free structure 

without a connection to the shaker. This simplification led to a divergence between model and 

real structure in the vicinity of resonant frequencies. The load estimation results have given 

evidence regarding the expected observer’s behavior. Above all, the MPIO was not able to 

estimate the load with high dynamics e.g. impulse or high frequency sinusoidal loads; 

nevertheless, it was capable of delivering a good reconstruction of slowly changing forces. 

The performance of the SS&IE and the KF-UI was very similar for almost every load type. 

No particular advantage to the KF-UI as opposed to the SS&IE was noticed for regions of 

higher order system and model divergence where all three algorithms showed poor estimation 

quality. Moreover, attempts to increase the immunity of the KF-UI to model uncertainty by 

means of an increase in process covariance matrix Qk led to estimator instability. Based on 

overall results, the SS&IE algorithm was chosen for further analysis as superior to KF-UI and 

MPIO due to its similar performance to KF-UI in the case of linear systems and its inherent 

ability to work with nonlinear systems. 

A detailed analysis of the SS&IE algorithm was carried out in Chapter 6.3. Here, the continu-

ous distributed models of the structures firstly served as test rigs for numerical simula-

tions.The main objectives of the analysis were: 

1. To test the SS&IE algorithm constructed from the modal model which was able to 

release sensors-load collocation conditions in Equation (5.32) for the direct feed 

through matrix D. For this purpose, an analytical model of a simply supported alumi-

num beam was used, where the SS&IE was tested for the case when the load and the 

acceleration sensor were not collocated; 

2. To validate the robustness of the algorithm to model variation and noise level changes 

in both cases i.e. collocated and non-collocated accelerometer and force positions. To 

this end, the SS&IE observer which was based on the FE model of the scaled tripod 

tower of WEP was tested for different measurement and model uncertainties. 

The results of the numerical studies on both test structures proved that the SS&IE algorithm 

was able to reconstruct an external input in a robust way under model and measurement 

uncertainties in both the collocated and non-collocated accelerometer and load position 

instances. Furthermore, the model complexity was dependent only on the range of frequencies 

that were excited by an external load. In non-collocated cases, the SS&IE could also deliver 
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acceptable load estimation even if the original system was not observable and special signal 

filtering was carried out in order to attenuate the noise content of the responses. Finally, the 

SS&IE algorithm was tested on similar laboratory structures for the quasi-static and wind load 

reconstruction. The estimation results are presented in subsection 6.3.3, where in both 

instances the estimated and the measured are very close. 

In Chapter 6.4, the SS&IE algorithm was applied on the on-field WEP M5000-2. An updated 

FE model was used for designing the observer, and two sensor types (two 2-D accelerometers 

and two strain gauges) were needed. Load estimation was then carried out for the section 

where the nacelle is connected to the tower. This section was chosen intentionally and 

includes all possible forces that the tower should subtend (external wind forces, static nacelle 

orientation, blades dynamics; mass unbalance, etc.). The estimated load was validated with 

the help of the Betz theory which allowed for computing the wind load applied by the wind 

on the rotor area of the WEP. The average estimated force was very close to the Betz load as 

long as the pitch angle was close to zero, but contained higher frequencies which obviously 

were the components of all interaction forces between the tower, nacelle and rotor blades. A 

comparison of the estimated load spectra with computed shear forces led to the conclusion 

that existing commercial software package calculates loads that either exaggerate or do not 

include overall load dynamics. 

At the end of the examples section, a two storey nonlinear system was used as a test rig to 

assess the ability of the SS&IE algorithm in estimating the load driven by nonlinear effects. 

For this purpose, the observer was designed on the basis of a simplified linear model, as in 

Chapter 6.2, and the force produced by the nonlinearity effect (i.e. the stopper at lower mass) 

was considered as an external load. Initially, the structure was excited by a shaker with 

periodic load. Both upper (shaker) and lower (nonlinearity effect) forces were reconstructed 

with a certain error. The analysis of the frequency content in the error signal led to the error 

source, namely a model simplification which did not consider the third natural frequency. i.e. 

the longitudinal vibration of the beam legs. The error occurred only if the impact duration was 

fast enough to excite the structure up to this frequency range and could be removed easily by 

the use of a more complete model for observer design. Secondly, the impact load was applied 

to the lower mass. The hammer impact was followed by a second impact from the stopper 

side immediately after the first impact. Both impacts were well captured and estimated by the 

SS&IE. The coupling of the shaker introduced a resistive force on the upper mass which was 

also estimated by the observer. In contrast to the periodic load which was in the vicinity of the 

first natural frequency, in the case of the impact an almost complete attenuation of excited 
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beams flexural modes was allowed. As a result, the model error is not as significant as in the 

case of the periodic load. 

Within the framework of future developments of the load estimation algorithms for on-field 

applications, the load reconstruction methods presented in this work can be improved upon in 

several ways. In particular, the impact location search procedure can be optimized and freed 

of any additional structural knowledge such as dispersion curves. Attempts to increase the 

immunity to measured and model uncertainty of the SS&IE algorithm could be made in a 

similar manner as in MPIO by introducing additional integration into an output equation. 

Additionally, the MPIO could be adjusted for the impact load estimation by a modification of 

the observer design for the system which included the direct feed through matrix. Finally, the 

nonlinearity detection ability of SS&IE could be successfully used in SHM for damage 

detection. 
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APPENDICES 
As far as the laws of mathematics refer to reality,  

they are not certain; and as far as they are certain,  

they do not refer to reality. 

-Albert Einstein 

 

In the following annex all relevant information with regard to test structures and their 

mathematical models which were used in this thesis are provided. 

Equation Chapter 1 Section 1 

APPENDIX A: TWO STOREY LABORATORY STRUCTURE PARAMETERS, GEOMETRY AND 

MODEL  

In this section an analytical model for the simplified structure of a two storey laboratory test 

rig, as shown in Figure A.1, is derived. The test rig was fitted with two kinds of sensors: two 

accelerometer sensors, and two strain sensors. Accelerometer sensors are mounted on the 

masses and called accordingly a1 and a2, they are used to measure acceleration along the x 

direction (see Figure A.1). Strain sensors are mounted on one beam, close to the first mass m1 

and denoted by 1 and 2. Both strain sensors have a half bridge structure in order to compen-

sate for temperature changes and are used to measure strain in the beam. The center positions 

of these two sensors are given by z1 and z2. All geometrical and physical parameters are 

summarized in Table A.1. 

 

Figure A.1: Original two storey structure with geometrical abbreviation and sensors loca-

tions (ai-accelerometers; i-strain gauges) 
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Excitations were applied only in the x direction, as shown in Figure A.1, which allowed for 

using the simplified 2 DOF’s structure shown in Figure A.2 for the model construction. 

 

Figure A.2: Simplified 2-DOF’s system 

In the simplified model (Figure A.2), the plate masses m1 and m2 are considered as point 

masses and the four beams are combined into one beam with stiffness multiplied by a factor 

of four, and given by the following equations: 

1 3
1

2 3
2

4 12 13108[ / ]

4 12 11422[ / ]

EI
k N m

l

EI
k N m

l

  

  

, (A.1) 

with the assumption that all beams have the same Young’s modulus E, area moment of inertia 

I, and cross section A. It is considered that the beams are subject to the bending only (no 

longitudinal deformation: AE  ). The model has two degrees of freedom q1(t) and q2(t) 

along the x axes. 

Table A.1: Two storey structure parameters. 

L1 0.213 [m] z1 0.2027 [m] 

L2 0.223 [m] z2 0.0112 [m] 

a 0.3 [m] m1 2.1861 [kg] 

b 0.2 [m] m2 2.1317 [kg] 

dplate 0.02 [m] E 210 [GPa] 

d 0.004 [m] 4 / 64I d  1.257e
11

 [m
4
] 

 

Using Lagrange’s formalism: 
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,k nc
k k

d L L
Q

dt q q

  
  

  
 (A.2) 

where, L is the Lagrangian function which is constructed as:  

   2 2 2 2
1 1 2 2 1 1 2 2 1

Kinetic Energy Potential Energy

1 1
( )

2 2
L m q m q k q k q q     . (A.3) 

An equation of motion for the system in Figure A.2 can be constructed analytically with the 

assumption of proportional nodal damping n n n  C M K  

( ) ( ) ( ) ( )n n n n n n ot t t t  M q C q K q B u  (A.4) 

where n, Kn and Bo are the nodal mass, nodal stiffness and the load location (normally filled 

with ones and zeros) matrices, respectively. The 1 2( ) [ ]Tt F Fu  incorporates two independ-

ent external forces and qn(t) is the nodal generalized coordinates which combines both 

generalized coordinates as: 1 2[ ]Tn q qq . Expression (A.4) can be transformed into modal 

coordinates similarly to Equation (2.8) in Chapter 2.1.1 and then into a state space notation 

according to Equation (2.10) so that the state space representation for the system in modal 

coordinates is: 

2
( ) ( ) ( )

2 m

t t t
   

    
    

BA

0 I 0
x x u

BΩ ZΩ
. (A.5) 

With the help of a modal analysis procedure, it is possible to obtain circular natural frequen-

cies Ω , modal damping Z and the mode shape Φ  matrices with a high degree of precision. 

Consequently, that the states transition matrix A is filled directly in and the lower part of the 

input matrix B is calculated as: 

1( )T T
m n o

B Φ M Φ Φ B . (A.6) 

An output equation which accounts for acceleration is formulated directly from Equation 

(A.5) 

2( ) ( ) ( ) 2 ( ) ( )

a
a

a n m mt t t t t      
 

D
C

y q Φq Φ Ω ZΩ x ΦB u . (A.7) 
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The strain sensors need to be modeled with the help of simple beam theory, which implies the 

following relation: 

2

2

( , )
( , )

2

d x z t
z t

z



 


, (A.8) 

where x(z,t) represents deflection in the x direction at location z, where the strain sensor is 

positioned. Taking into consideration only the lower part of the specimen, as in Figure A.3(a), 

which is also representing its free body diagram, see Figure A.3(b), an overall deflection x(z) 

of the beam for the boundary conditions as in Figure A.3(b), is calculated as: 

 2 3 2( , ) 3
6 2

F M
x z t lz z z

EI EI
    (A.9) 

where, F and M represent the force and moment at the boundary, E is the Young’s modulus of 

elasticity and I is the area moment of inertia. 

 

Figure A.3: Beam deflection for the clamped-clamped boundary conditions 

In addition, the clamped boundary condition implies 

2( , )
0

2z l

x z t F M
l l

z EI EI


  


, (A.10) 

so that the relation between F and M is: 

2

Fl
M  . (A.11) 

Inserting this into Equation (A.9) and taking the second derivative leads to: 

 
2

2

( , )
2

2

x z t F
l z

EIz


 


. (A.12) 
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As a consequence, strain in (A.8) is expressed as follows: 

 ( , ) 2
4

d F
z t l z

EI
    . (A.13) 

There is still a reaction force F in Equation (A.13) which can be related to the generalized 

displacement x at z l by inserting (A.11) into Equation (A.9), which in turn produces 

3(12 / ) ( )F EI l x l , so that Equation (A.13) would be of following form: 

 
3

3 2
( , ) ( )

d z l
z t x l

l



 . (A.14) 

Taking into account the relations in Figure A.4 it is possible to summarize both strain 

measurements into the following output equation: 

 

   

1 1

3
11 1 1

2 2 22 2 2 2

3 3( ) ( )
2 2

3 2
0

( , ) ( )

( , ) ( )3 2 3 2

t t

d z l

lz t q t

z t q td z l d z l

l l







 
 

            
 
  

y x

C

. (A.15) 

Equation (A.15) together with Equation (A.7) are combined into overall output equation as: 

( ) 0
( ) ( ) ( )

( )a a a

t
t t t

t

      
       
     

y C
y x u

y C D
 (1.16) 

Accordingly, Equations (1.16) and (A.5) conclude the state space model of the two storey test 

rig. 

 

Figure A.4: Connection of generalized coordinates q(t) with beam deflections x(z) 
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APPENDIX B: SIMPLY SUPPORTED BEAM PARAMETERS, GEOMETRY AND MODEL 

Equation Chapter (Next) Section 1 

In this section, the analytical model for the beam represented in Figure B.1 is derived and 

transformed into a state space notation. In addition, the output equations for specific sensors 

are also formulated. 

 

Figure B.1: Uniform hinge-hinge beam 

The general Euler-Bernoulli beam theory, which is a simplification of the linear isotropic 

theory of elasticity, can be used for the modeling of load-carrying beams as in Figure B.1 (up 

to a certain frequency range). The main governing formulation for the flexural vibration with 

constant flexural rigidity ( EI const ) is of the following form [MEIROVITCH 1967]: 

2 2 2

2 2 2

( , ) ( , )
( , )

y x t y x t
EI A F x t

x x t


   
      

, (B.1) 

where ( , )y x t is a transverse displacement, ( , )F x t is a transverse force, , , andA E I are the 

density, cross section area, Young’s modulus of elasticity and area moment of inertia 

respectively. Collecting the constant parameters into: 

2 EI

A



 , (B.2) 

and assuming that the bending displacement is separated in space and time 

( , ) ( ) ( )y x t W x t . (B.3) 

Equation (B.1) is transformed into more compact form: 

2

1 ( , )
( ) ( ) ( ) ( )IV F x t

W x t W x t
EI

 


  , (B.4) 

where ( )IVW x represents the fourth derivative with respect to spatial orientation x and ( )t

represents the second derivative with respect to time t. 
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Setting free vibration ( , ) 0F x t  , expression (B.4) can be split into the two following 

characteristic equations: 

4( ) ( ) 0IVW x k W x  , (B.5) 

with

2
4

2
k




 and 

2( ) ( ) 0t t    . (B.6) 

Equation (B.5) has a general solution of form: 

1 2 3 4( ) sin cos sinh coshW x C kx C kx C kx C kx    , (B.7) 

where C1, C2, C3 and C4 are the constants of integration. Solution (B.7) is subject to the 

boundary conditions of a specific beam structure which describes the way of the beam ends 

support. For the hinge-hinge beam in Figure B.1 the boundary conditions are defined as: 

(0) (0) ( ) ( ) 0II IIW W W L W L    , (B.8) 

so that the general solution (B.7) is reduced to the following expression: 

1( ) sinW x C kL , (B.9) 

where the solution of the characteristic equation (B.5) is nk L n  for 1,2,n  , with the 

natural frequency at the n
th 

mode 

2

4
( )n

EI
n

mL
  . (B.10) 

Finally, expression (B.3) for the simply supported beam is presented as follows: 

1

1 1

( , ) ( ) ( ) sin ( )n n n

n n

n
y x t W x t C x t

l


 

 

 

 
   

 
  . (B.11) 

Equation (B.11) and (B.1) serve as a basis for the state-space model, as in Chapter 2.1.2: 

( ) ( ) ( )t t t x Ax Bu . (B.12) 

By inserting Equation (B.11) into (B.1) and making use of (B.2) a new form is obtained: 

 2

1

( , )
( ) ( ) ( ) ( )IV

n n n n

n

F x t
t W x t W x

A
  







  . (B.13) 
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Using the relation in Equation (B.5) 
4( ) ( )IV

n n nW x k W x and 2 4 2k  Equation (B.13) is 

rearranged as follows: 

 2

1

( , )
( ) ( ) ( )n n n n

n

F x t
t t W x

A
  







  , (B.14) 

multiplying Equation (B.14) by Wm(x) and integrating along beam length L  

 2

0 0
1

( , )
( ) ( ) ( ) ( ) ( )

L L

n n n n m m

n

F x t
t t W x W x dx W x dx

A
  







   , (B.15) 

using the orthogonal conditions
0

( ) ( ) 0, for
L

n mW x W x dx n m   and adding proportional 

modal damping 2 ( )n n n t    the above Equation is transformed into 

2

0
1

1
( ) 2 ( ) ( ) ( , ) ( )

L

n n n n n n n
An

t t t F x t W x dx
AN

     






   
   , (B.16) 

where 2

0
( )

L

A nN W x dx  . The equation of motion presented in (B.16) can be written in state 

space form for 1,2 ,n k number of modes 

 
11

2 1

11

1

0
1

( )
( )

2 ( )

( )

1
( ) ( )

( )

kk k k kk
k

k k k k kk

k m

L

n i
A mk m m

t
t

t

Q t

W x Q x dx
AN Q t

 


  



 

    
      

       

   
   
               



ζ0 Iζ
x

Ω ZΩ ζζ

0  (B.17) 

where Ω and 2ZΩ  are matrices which combine the natural frequencies and modal damping 

for k number of modes. The external force function ( , )F x t is separated in time and space

( , ) ( ) ( )i i iF x t Q x Q t . In addition the space allocation ( )iQ x is carried out with the help of 

Dirac’s delta function as in Equation (3.4) 

( ) ( )i i iQ x F x a  , (B.18) 

where 1,2, ,i m  is the number of inputs. Using the property of Dirac’s delta function

( ) ( ) ( )f x x a dx f a



  it is possible to simplify the input matrix B in Equation (B.17), i.e. 

for the hinge-hinge beam 
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   1 10 0
( ) ( ) sin( ) ( ) sin( )

L L

n i n i i i n iW x Q x dx C k x F x a dx C F k a    , (B.19) 

which is a constant value for a certain force location and certain mode shape. Construction of 

the output equation 

( ) ( ) ( )t t t y Cx Du  (B.20) 

depends on the measurement type. 

The output equations for acceleration and strain measurements are constructed as follows: 

ACCELERATION MEASUREMENT 

The acceleration can be expressed with the help of the Equation (B.3) as second derivative of 

the bending displacement 

1

( , ) ( ) ( )
k

n n

n

y x t W x t


 . (B.21) 

So that Equation (B.16) with ( , ) ( ) ( )i i iF x t Q x Q t  can be transformed for the n
th

 mode 

 2

0

1
( ) ( ) 2 ( ) ( ) ( ) ( )

in

L

n n n n n i n i

A

q

t t t Q x W x dx Q t
AN

     


 
 

     
 
  

 . (B.22) 

Substituting (B.22) into expression (B.21) leads to output equations for r sensors of a form: 

2 2
1 1 1 1 1 1 1

2 2
1 1

1 1 1 1 1 1

1 1 1

( , ) ( ) ( ) ( )

( , ) ( )( ) ( )

2 ( ) 2 ( ) ( )

2 ( ) 2 ( ) ( )

r r k k r

r rr krr k k rr

r k k k r

rr k k k rr k

y x t W x W x t

y x t tW x W x

W x W x t

W x W x t

  

 

    

    

     
    

     
          

  
 
 
    

11 1 1 1 1 1

1 1

( ) ( ) ( )

,

( ) ( ) ( )

r k k r

m rr km k rr m

q W x q W x Q t

q W x q W x Q t








   
   
   
      

 (B.23) 

where xri represents the i
th

 location along the beam and qij symbolizes the input influence for 

the j
th

 particular allocated input on the i
th

 mode shape. The two first elements on the right 

hand side of Equation (B.23) can be combined into a C matrix while the last one is associated 

with the D matrix. 
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STRAIN MEASUREMENT 

The strain along the beam can be calculated according to: 

2

2

( , )
( , )

2

d y x t
x t

x



 

  (B.24) 

with d being the thickness along the y axis, see Figure B.1. Similarly to the acceleration in 

Equation (B.3), the strain is represented as: 

2

2
1

( , )
( , ) ( ) ( )

2 2

k
II

n n

n

d y x t d
x t W x t

x
 




   


 , (B.25) 

where II

nW  is the second partial derivative of the n
th

 mode with respect to x, so the output 

equation for the r strains along the beam has the following form: 

1 1 1 1 1

1

( , ) ( ) ( ) ( )

2
( , ) ( )( ) ( )

xx

II II
r r k r

II II
rr krr k rr

x t W x W x t
d

x t tW x W x

 

 

    
    

      
        

W

. (B.26) 

Finally, expression (B.26) is transformed into state space output equation 

( )
( ) [ 0]

( )
xx

t
t

t

 
  

 

ζ
y W

ζ
, (B.27) 

where ( )tζ and ( )tζ combine the model displacements and modal velocities respectively. 
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APPENDIX C: ALUMINUM PLATE STRUCTURE PARAMETERS, GEOMETRY AND MODEL 

Equation Chapter (Next) Section 1 

In this section, a mathematical model of a thin, rectangular, simply supported from all sides 

aluminum plate measuring 0.5m by 0.4m with the following parameters: h = 3mm, E = 

72GPa, = 2800kg/m
3
 and the Poisson ratio  = 0.3, is provided, see Figure C.1. The plate 

has been instrumented with 8 strain gauges s1 to s8 located as in Figure C.1 and excited with 

impact-type load F(x, y, t) which can change its position along the plate structure. 

 

Figure C.1: Aluminum plate simply supported from all sides and fitted with 8 strain sensors 

An elementary plate theory provided a basis for model derivation. Extending the Euler-

Bernoulli beam expression in two dimensions, the classical differential equation of motion for 

the transverse displacement w(x, y, t) of a plate with uniform thickness is obtained as follows 

[LEISSA 1969]:  

2
4

2

( , , )
( , , )( , , )

w x y t
w F x y tD x y t h

t



  


, (C.1) 

where D represents the flexural rigidity of the plate and is defined as: 

3

212(1 )

Eh
D





. (C.2) 

In Equations (C.1) and (C.2) E, h,  and  are the Young’s modulus of elasticity, plate 

thickness, Poisson’s ratio, mass density per unit area of the plate and time, respectively. The
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4 2 2   where 4 is the Laplace operator in the rectangular coordinates of the second 

power, also known as biharmonic operator: 

2
2 2

4

2 2x y

  
   

  
 (C.3) 

and F(x, y, t) represents the external load per a unit area. Applying an approach of variable 

separation, as in Appendix B, for two spatial variables x and y and one time variable t the 

general solution of the transverse displacement w(x, y, t) for the free vibration is expressed in 

the following form: 

( , , ) ( , ) ( )w x y t W x y t , (C.4) 

where ( ) cost t  is similar to the Euler-Bernoulli beam and W(x, y) is only a function of 

the position coordinates. Inserting expression (C.4) into Equation (C.1) yields 

4 4( ) ( , ) 0k W x y   , (C.5) 

where k is a parameter of convenience defined as: 

2
4 h

k
D

 
 . (C.6) 

The general solution of transverse displacement ( , )W x y of the rectangular plate is obtained 

by assuming Fourier series in one of the variables, for example x 

1 0

( , ) ( )sin ( )cosm m

m m

W x y Y y x Y y x 
 



 

   , (C.7) 

and substituting it into Equation (C.5) [LEISSA 1969]:  







2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2

m=1

m=1
m

sin cos sinh

( , )

cosh sin

sin cos sinh

cosh cos

m m m

m

m m m

A k k k

k

A k k k

k

y B y C y

W x y

D y x

y B y C y

D y x

  



  









  




      
 

  
  
 

      
 
 
  
 





 (C.8) 

where , , ,m m m mA B C D  and , , ,m m m mA B C D   
 are arbitrary coefficients determining the mode 

shape that are obtained from the boundary conditions. For the plate simply supported from all 

edges, which is the simplest case for rectangular plates, the boundary conditions are 
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2 2

2 2

2 2

2 2

( , ) ( , )
( , ) 0 and 0 (for 0, )

( , ) ( , )
( , ) 0 and 0 (for 0, )

x

y

w x y w x y
w x y M D x a

x y

w x y w x y
w x y M D y b

y x





  
         

  
         

, (C.9) 

applying such conditions to a general expression (C.8) leads to solution:  

( , ) sin sinmn mn

m x m y
W x y A

a b

    
    

   
, (C.10) 

where Amn is an amplitude coefficient that depends on the initial conditions of the problem 

1,2, ,m k and 1,2, ,n k are integers. The frequencies are then obtained by substituting 

Equation (C.10) into Equation (C.5) 

2 2
D m n

h a b

 




    
          

. (C.11) 

Finally, the expression (C.4) can be represented as follows 

,

( , , ) sin sin ( )
k

mn

m n

m x m y
w x y t A t

a b

 


    
     

    
 . (C.12) 

The external force function ( , , )F x y t is separated in time and space ( , ) ( , ) ( )F x t Q x y Q t . In 

addition, for the concentrated force at location (x0, y0) the space allocation 0 0( , )Q x y  is 

carried out with the help of Dirac’s delta function as in Equation (3.4) 

0 0( , ) ( ) ( )Q x y x x y y    . (C.13) 

Using orthogonal conditions and proceeding in a similar manner as in Appendix B, initial 

Equation (C.1) with external forces can be represented as a combination of uncoupled single 

degree of freedom oscillators: 

2 0 04 1
( ) ( ) ( ) sin sinmn mn mn

m x m y
t t Q t

ab h a b

 
  



   
     

   
. (C.14) 

Adding proportional damping Equation (C.14) can be used directly for the state space system 

assembly as in Appendix B, Equation (B.17).  

Finally, for the construction of the output equation for the strain measurements the following 

equations are valid: 
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2 2

2 2

( , , ) ( , , )
( , , , ) ( , , , )xx yy

w x y t w x y t
x y z t z x y z t z

x y
 

 
   

 
. (C.15) 

Using again the variable separation principle (C.4) in (C.15) the output equation for the r 

strain sensors in x direction would be: 

1 1 1 1 1

1

( , ) ( ) ( ) ( )

2
( , ) ( )( ) ( )

xx

II II
r x r k r

II II
rrx krr k rr

x t W x W x t
h

x t tW x W x

 

 

    
    

      
        

W

, (C.16) 

the output equation in the y direction is obtained by replacing x with y in Equation (C.16). 

Finally, expression (C.16) is transformed into a state space output equation for both x and y 

( )
( )

( )

xx

yy

t
t

t

  
   
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ζW 0
y

W 0 ζ
, (C.17) 

where ( )tζ and ( )tζ combine the modal displacements and modal velocities, respectively. 
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