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Abstract

In analogy to the theory of classical Jacobi forms which has proven to have
various important applications ranging from number theory to physics, we
develop in this thesis a theory of Jacobi forms over arbitrary totally real
number fields. For this end we need to develop, first of all, a theory of finite
quadratic modules over number fields and their associated Weil representa-
tions. As a main application of our theory, we are able to describe explicitly
all singular Jacobi forms over arbitrary totally real number fields whose in-
dices have rank 1. We expect that these singular Jacobi forms play a similar
important role in this new founded theory of Jacobi forms over number fields
as the Weierstrass sigma function does in the classical theory of Jacobi forms.

Zusammenfassung

In Analogie zur klassischen Theorie der Jacobiformen, die viele wichtige An-
wendungen in der Zahlentheorie bis hin zur Physik hat, entwickeln wir in
der vorliegenden Arbeit eine Theorie der Jacobiformen über total reellen
Zahlkörpern. Hierzu müssen wir zunächst eine Theorie endlich quadratischer
Moduln über Zahlkörpern und ihrer zugehörigen Weil-Darstellungen entwick-
eln. Als eine Hauptanwendung der hier entwickelten Theorie sind wir in der
Lage, alle singulären Jacobiformen über beliebigen total reellen Zahlkörpern,
deren Indizes Gitter vom Rang 1 sind, explizit zu beschreiben. Wir gehen
davon aus, dass diese singulären Jacobiformen eine ähnlich wichtige Rolle
in der hier begründeten Theorie der Jacobiformen über Zahlkörpern spie-
len werden wie es von der Weierstaßschen sigma-Funktion in der klassischen
Theorie der Jacobiformen her bekannt ist.
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Introduction

A Jacobi form of weight k and index m (both half integral) on the full
modular group SL(2,Z) is a holomorphic function φ(τ, z) on the product
H × C of the complex upper half plane H with C such that ψ(τ, x, y) :=
φ(τ, xτ + y) e2πimx2τ satisfies the following properties:

(i) The function ψ(τ, x, y) is quasi-periodic in the real variables x and y
with period 1.

(ii) For fixed rational x, y, the map τ 7→ ψ(τ, x, y) defines an elliptic mod-
ular form of weight k (possibly with character) on the principal con-
gruence subgroup Γ(a) of SL(2,Z), where a denotes the square of the
least common multiple of the denominators of x and y.

The first property implies that, for fixed τ , the map z 7→ φ(τ, z) defines
a theta function (a holomorphic section of a line bundle) on the elliptic
curve C

/(
Zτ + Z

)
. If we study n-dimensional abelian varieties whose endo-

morphism ring contains the ring of integers O of a totally real number field K
of degree n over Q, then we find naturally analogs of Jacobi forms. We will
call them Jacobi forms over the number field K. A careful analysis shows,
however, that we have to replace the index m by a totally positive definite
integral O-lattice of rank 1. Such a lattice can always be represented by a
pair (c, ω), where c is a fractional O-ideal and ω a totally positive element
in K such that c2ω is contained in the inverse different of K (see Proposi-
tion 3.10). If K is the field of rational numbers andO is the ring of integers Z,
then such a lattice can always be represented by a pair (Z, 2m), i.e. by the
Z-module Z equipped with the Z-bilinear form (x, y) 7→ 2mxy, where m is
a positive integer. The main difference here is that, for a number field K of
class number greater than 1, a finitely generated, torsion free O-module is
not in general isomorphic to O, but only to a fractional O-ideal, whose ideal
class might be not trivial.

A Jacobi form over K of half integral weight k and index L = (c, ω) is a
holomorphic function φ(τ, z) on Hn×Cn such that the function ψ(τ, x, y) :=

φ(τ, xτ + y) e2πi tr( 1
2
M(ω)x2τ) satisfies:

1



2 Introduction

(i) The function ψ(τ, x, y) is quasi-periodic in the variables x and y in Rn

with respect to the O-sublattice M(c).

(ii) For fixed x and y in M(K), the map τ 7→ ψ(τ, x, y) defines a Hilbert
modular form of weight k (possibly with character) on the principal
congruence subgroup Γ(a) of SL(2,O), where a is the square of the
least common multiple of the denominators of ac−1 and of bc−1 with
x = M(a) and y = M(b).

Here M denotes the Minkowski embedding of K into Rn, which maps a
to the vector whose j-th component equals σj(a), where we use a fixed enu-
meration σ1, . . . , σn of the embeddings of K into R. Moreover, when writing
xτ + y or M(ω)x2τ , we view Cn as a ring with respect to component-wise
multiplication. Finally, tr(z), for z in Cn, denotes the sum of the components
of z.

Note that the first property expresses the fact that, for fixed τ , the map
z 7→ φ(τ, z) defines a theta function (a holomorphic section in a line bundle)
on the abelian variety Cn

/(
M(O)τ + M(O)

)
. For a precise definition of

Jacobi forms over number fields we refer to Definition 3.45. A justification
of the informal description given here can be found in Section 3.8. Later,
it will also be more convenient to use C ⊗Q K instead of Cn since the first
object carries naturally several algebraic structures which we shall make use
of, and it allows for coordinate independent calculations.

One of the first steps into an interesting theory of Jacobi forms is, of
course, to exhibit explicit examples. As it turns out, for number fields dif-
ferent from Q, it is in fact already not trivial and challenging to construct
examples. In this thesis, after developing a sufficiently general theory of
Jacobi forms over number fields, we determine explicitly all singular Jacobi
forms over number fields, i.e. all Jacobi forms over number fields whose weight
equals 1/2 (see Definition 3.47 and Proposition 4.1).

The singular Jacobi forms over Q have been determined by Skoruppa
in [Sko85, p. 27]. Namely, for τ ∈ H and z ∈ C, set

ϑ(τ, z) :=
∑
s∈Z

(
−4

s

)
qs

2/8ζs/2
(
qn(τ) := e2πinτ , ζn(z) := e2πisz

)
.

(Here
(−4
s

)
denotes the nontrivial Dirichlet character modulo 4). The func-

tion ϑ is a Jacobi form over Q on the full modular group of weight 1/2 and
index 1/2. In particular, ϑ is a singular Jacobi form. Skoruppa [Sko85, p. 27]
showed that ϑ(τ, dz) and ϑ∗(τ, dz), where

ϑ∗(τ, z) :=
ϑ(τ, 2z)

ϑ(τ, z)
η(z) =

∑
s∈Z

(
12

s

)
qs

2/24ζs/2,
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and where d is a positive integer, are the only singular Jacobi forms over Q
on the full modular group.

What makes the singular Jacobi forms interesting is that they occur in
various important areas of mathematics. First of all, ϑ(τ, z) is, up to nor-
malization, the Weierstrass’ sigma-function σ(τ, z) associated to the elliptic
curve C

/(
Zτ + Z

)
. Namely, we have

ϑ(τ, z) = η(τ)3ez
2q d
dq

log η(τ)σ(τ, z),

where η(τ) = q1/24
∏

n≥1(1 − qn) is the Dedekind’s eta function. As such
ϑ(τ, z) is the basic functions out of which can be constructed all theta func-
tions on elliptic curves. In the arithmetic theory of elliptic curves, it shows up
as the Green’s function for the elliptic curve C

/(
Zτ + Z

)
. Moreover, ϑ(τ, z)

and ϑ∗(τ, z) show up in the theory of Kac-Moody algebras via the famous
triple and quintuple identity, respectively. E.g. the Jacobi triple product
identity

ϑ(τ, z) = q1/8(ζ1/2 − ζ−1/2)
∏
n≥1

(1− qn)(1− qnζ)(1− qnζ−1)

can be interpreted as the Weyl-Kac denominator identity for a certain affine
Kac-Moody algebra.

In view of the indicated importance of the function ϑ(τ, z) it is natural to
ask whether such functions exist also for the abelian varieties Cn

/(
M(O)τ +

M(O)
)

mentioned above. It is then also natural to expect that they are also
singular Jacobi forms, which explains our interest in determining all singular
Jacobi forms over number fields.

We explain our main results concerning singular Jacobi forms (see Theo-
rems 4.2 and 4.3 for more precise statements).

Theorem. There exist nonzero singular Jacobi forms over K if and only if 2
splits completely in K and the principal genus of K contains an ideal of the
form gd−1, where g is a (possibly empty) product of pairwise different prime
ideals of degree 1 over 3, and where d denotes the different of K.

Recall that the principal genus of K is the set of fractional O-ideals a
which represent a square in the narrow ideal class group Cl+(K) of K, i.e. for
which there exists a fractional O-ideal c and a totally positive ω in K such
that a = c2ω. A theorem of Hecke [Hec81, Thm. 177] states that the dif-
ferent d is a square in the ideal class group of K. However, it needs not
necessarily to be a square in the narrow ideal class group. A counterexample
is provided by the number field Q(

√
47). Note that 2 splits completely in

this number field.
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Theorem. Suppose 2 splits completely in K. If c is a fractional O-ideal
and ω is a totally positive element in K such that g := c2ωd is a (possibly
empty) product of pairwise different prime ideals of degree 1 over 3, then

ϑ(c,ω)(τ, z) :=
∑
s∈cg−1

χ4g(s
′)e2πi tr

(
1
8
M(ωs2)τ

)
e2πi tr

(
1
2
M(ωs)z

)
defines a Jacobi form over K of singular weight 1/2 and index (c, ω). Here
s′ ∈ O is such that s ≡ s′γ mod 4c, where γ + 4c is a generator for cg−1/4c.
By χ4g, we denote the totally odd Dirichlet character modulo 4g (see Defini-
tion 2.44). Vice versa, every nonzero singular Jacobi form over K is (up to
multiplication by a constant) of this form.

If (c, ω) is an index as in the theorem then (a−1c, a2ω), for any nonzero a
in K, is also such an index. Two indices are isomorphic if and only if one
can be obtained from the other in this way, i.e. by multiplying with a suit-
able a (see Proposition 3.9). Note that the singular Jacobi forms associ-
ated to isomorphic lattices differ only in a trivial way. Namely, we have
ϑ(a−1c,a2ω)(τ, z) = ϑ(c,ω)(τ,M(a)z). We shall see (Proposition 4.7) that the
number of indices modulo isomorphism which admit a nonzero singular Ja-
cobi form equals |F(K)| · |Cl+(K)[2]|, where F(K) is the subset of the princi-
pal genus consisting of ideals of the form gd−1 with g as in the last theorem,
and where Cl+(K)[2] is the kernel of the squaring map of the narrow ideal
class group. For the field of rational numbers this number equals 2. The two
classes of indices admitting a nonzero Jacobi form are represented by (Z, 1)
and (Z, 3) and, indeed, we rediscover the forms from Skoruppa’s theorem:
ϑ(Z,1) = ϑ and ϑ(Z,3) = ϑ∗.

We explain the other main themes of the thesis. In Chapter 3 we shall
develop a general theory of Jacobi forms over number fields whose indices are
arbitrary O-lattices. In Chapter 4, we shall see that singular Jacobi forms
correspond to one-dimensional submodules of certain (projective) SL(2,O)-
modules of theta functions (see Proposition 4.1) which turn out to be isomor-
phic to Weil representations associated to certain finite quadratic modules
over number fields. A theory of finite quadratic modules over number fields
and a theory of Weil representations associated to finite quadratic modules
over number fields has not yet been worked out in the literature. Therefore
we shall develop these theories in Chapters 1 and 2, respectively. In Chap-
ter 2, we decompose, in particular, the spaces of cyclic Weil representations
into irreducible subrepresentations (see Theorem 2.4). This will give us the
clue for determining explicitly all singular Jacobi forms whose indices are
O-lattices of rank 1, since these correspond to the one-dimensional subrep-
resentations of cyclic Weil representations (see Theorem 2.5). Translating
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these results back to the language of Jacobi forms, we can then determine in
Chapter 4 explicitly all singular Jacobi forms whose indices are O-lattices of
rank 1. Finally, in Chapter 5, we present tables concerning the first number
fields which admit nonzero singular Jacobi forms.

The main interest for constructing a theory for Jacobi forms over number
fields arose from the fact that we expect several results from the theory of
elliptic modular forms and Jacobi forms over Q to hold true for the number
field case too. In particular, we expect liftings from Jacobi forms over number
fields to Hilbert modular forms. Moreover, the Fourier coefficients of Jacobi
forms over number fields should encode the vanishing at the critical point of
twisted L-functions associated to Hilbert modular forms, which is, in partic-
ular, interesting in the context of a generalized Birch and Swinnerton-Dyer
conjecture for elliptic curves over number fields.

Jacobi forms over number fields were partly studied by Hayashida, Bring-
mann [BH09], by Richter [RS04] and also by Skogman [Sko01] and [Sko99].
However, no systematic theory of Jacobi forms over number fields seems to
have been attempted so far. Currently, there is various work in progress.
Boylan and Skoruppa [BS11a] present and extend the theory of Jacobi forms
over number fields developed in this thesis, and they give explicit examples of
liftings from Jacobi forms over number fields to Hilbert modular forms. Boy-
lan, Hayashida and Skoruppa [BHS11] determine the structure of the ring of
Jacobi forms over Q[

√
5] as module over the ring of Hilbert modular forms.

Boylan, Ensenbach and Skoruppa [BES11] develop a Hecke theory for Hilbert
modular forms. Skoruppa and Strömberg [SS11] calculate the dimension of
the spaces of vector-valued Hilbert modular forms with special emphasis on
deriving explicit formulas for the dimensions of spaces of Jacobi forms over
number fields of weight greater than 2.
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Notations

We list in roughly alphabetical order the notations which are used throughout
the thesis without further explanation.

Miscellaneous

(a, b) the greatest common divisor of the integral OK-ideals a
and b

C∞(V ) the space of functions which are differentiable for all degrees
of differentiation defined on a C-vector space V

dK the different of the number field K
dR the principal ideal generated by the element d of the ring R
dimK V the dimension of the K-vector space V over the field K. If

K = C, we shortly write dimV
e {c} the value exp

(
2πi tr(c)

)
, where c is an element of C⊗QK

1

(K a number field)
GL(V ) the group of all automorphisms of a C-vector space V
H the upper half plane
I the element (1,−1) in the metaplectic cover of SL(2,O)
Hol(V ) the space of holomorphic functions of a C-vector space V
Im(φ) the image of the map φ
Ker(φ) the kernel of the map φ
µ the Möbius µ-function, i.e. the multiplicative function µ on

the semi-group of integral OK-ideals which for prime ideal
power pn assumes the values 1, −1 and 0 accordingly as
n = 0 or n = 1 or n ≥ 2

µl the group of l-th roots of unity
µ∞ the group of all roots of unity
NK/Q(a) the norm of an element a in the number field K
N(a) the norm of the ideal a

1For the definition of the trace of an element in C⊗Q K, we refer to Section 3.2.

7



8 Notations

OK the ring of integers of the number field K
qt the function on H 2 defined by e {tτ}
R∗ the invertible elements of the ring R under multiplication
Rn the R-module of column vectors of length n over the ring R
S the matrix ( 0 −1

1 0 )
SL(n,R) the subgroup of elements of GL(n,R) which have determi-

nant 1, where R is a ring
S1 the group of all complex numbers whose absolute value

equals one
σ0(a) the number of ideals dividing the integral OK-ideal a
Tb the matrix ( 1 b

0 1 ), where b is an element of the ring R
trK/Q(a) the trace of an element a in the number field K√
z the root of z ∈ C∗ whose argument lies in the interval (−π

2
π
2
]

Preliminaries

In general, if the number field K is clear from the context, we often drop
the subscript K, i.e. we write O, d, tr(a), N(a) etc. for OK , dK , trK/Q(a)
and NK/Q(a).

Let K be number field with ring of integers O. A Dirichlet character
modulo an integral O-ideal a is a map χ from O to C∗ defined by

χ(r) =

{
χ′(r + a) if (r, a) = 1

0 otherwise,

where χ′ is a group homomorphism from (O/a)∗ to C∗.
An exact divisor b of an integral O-ideal a is the ideal which satisfies

b + ab−1 = O.
Let a be a fractional O-ideal and p be a prime ideal of the number field K.

We use vp(a) for the valuation of a at p, i.e. for the exponent of the exact
power of p occurring in the prime ideal factorization of a. Note that vp(a)
can be negative for some a. If a is integral, we have vp(a) ≥ 0, for all p.

In expressions like
∑

b|a · · · , where a is an integral O-ideal, it is always
understood, if not otherwise stated, that b runs through the integral O-ideals
dividing a. Similarly, in expressions like

∏
p|a · · · or

∏
pa‖a · · · it is understood

that p runs through the prime ideals or exact prime ideal powers pa dividing a.
For a finite set M , the symbol C[M ] stands for the C-vector space of

all functions from M into C. A basis for this vector space is the set of all
functions ex (x ∈M) such that ex(y) equals 1 or 0 accordingly x = y or not.

2Here H is a certain subring of C ⊗Q K (K a number field) as will be defined in
Section 3.2.
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LetH be a subgroup of finite index in the groupG, and let φ be a complex-
valued function on G which takes the same value on each coset of G/H.
We use

∑
g∈G/H φ(g) as a short-hand notation for

∑
g∈R φ(g), where R is a

complete set of representatives for G/H.
In the sequel theorems are numbered independently, whereas the number-

ing of lemmas, propositions, examples and corollaries share the same num-
bering sequence.
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Chapter 1

Finite Quadratic Modules

Let K be a number field of degree n over Q. We shall use O, and d for the
ring of integers and for the different of K, respectively.

In the present chapter we shall develop a theory of finite quadratic mod-
ules over number fields, i.e. a theory of finite O-modules equipped with a
quadratic form O → K/d−1. A special emphasis is on cyclic finite quadratic
modules. The main results of this chapter are Theorem 1.1 and Theorem 1.2
which give normal forms for cyclic finite quadratic modules and describe ex-
plicitly their isotropic submodules and the corresponding quotients. These
results will be used in the next chapter when we decompose the spaces of
cyclic Weil representations. In Section 1.1, we shall give the definition of finite
quadratic O-modules, and we discuss their basic properties. In Section 1.2,
we shall specialize to cyclic O-modules, we shall prove the two mentioned
theorems and we study the orthogonal groups of cyclic finite quadratic mod-
ules which will be very crucial for the splittings of the spaces of cyclic Weil
representations. Finally, in Section 1.3, we shall provide some lemmas con-
cerning the quotient rings O/a of O modulo an integral O-ideal a which we
shall need in Section 2.6 of Chapter 2.

1.1 Finite quadratic O-modules

In this section we shall develop a basic theory of finite quadratic O-modules.
We shall follow closely [Sko10, § 1.1], where such a theory was developed
for K = Q.

Definition 1.1. A finite quadratic O-module, in short O-FQM, is a pair
(M,Q), where M is a finite O-module, and where Q is a non-degenerate
quadratic form on M , i.e. where Q : M → K/d−1 is a map which satisfies
the following properties:

11



12 CHAPTER 1. FINITE QUADRATIC MODULES

(i) For all a ∈ O and x ∈M one has Q(ax) = a2Q(x).

(ii) The map B : M×M → K/d−1 defined by B(x, y) := Q(x+y)−Q(x)−
Q(y) is O-bilinear and symmetric.

(iii) B is non-degenerate, i.e. B(x,M) = {0} if and only if x = 0.

Let M = (M,Q) and N = (N,R) be O-FQM. We say that there is
an isomorphism between M and N , in symbols M ' N , if there exists
an O-module isomorphism ϕ : M → N such that R ◦ ϕ = Q. Two O-
FQM are called isomorphic if there is an isomorphism between them. The
automorphisms of a finite quadratic module, i.e. the isomorphisms M →M ,
form a group with respect to the composition of maps, which we denote
by O(M) and which we call the orthogonal group of M .

In the sequel, when we write x ∈ M , we mean that x is an element
of M , and we write U ⊆ M if U is a subset of M . Moreover, we refer to an
O-submodule U of M simply as a submodule of M .

Example 1.2. Let L = (L, β) be an even O-lattice, i.e. let L be a finitely
generated torsion-free O-module and let β be a symmetric non-degenerate
O-bilinear form on L taking values in d−1 such that β(x, x) ∈ 2d−1 for all
x ∈ L (see Section 3.1 for a short resumé of the notion of O-lattices). The
discriminant module of L is the O-FQM

DL =

(
L#/L, x+ L 7→ 1

2
β(x, x) + d−1

)
.

Here L# stands for the dual lattice of L, i.e. the set of all y ∈ K ⊗O L such
that β(y, L) ⊆ d−1.

We have a map Tr : K/d−1 → Q/Z, a + d−1 7→ tr
(
a
)

+ Z. It is easy to
see that this map is well-defined. Indeed, if b ∈ a + d−1, say, b = a + t for
some t ∈ d−1, then Tr(t) is in Z, hence, we have tr(a) ≡ tr(b) mod Z.

Proposition 1.3. Let M = (M,Q) be an O-FQM. The tuple Tr(M) :=
(M,Tr ◦Q) defines a finite quadratic Z-module.

Proof. The form Tr ◦Q is obviously a quadratic form on M , viewed as a Z-
module. We need to show that it is non-degenerate. Suppose Tr

(
B(x,M)

)
=

{0} for some x ∈ M . Since, for all a ∈ O, we have aM ⊆ M , we then have
Tr
(
aB(x,M)

)
= {0} for all a. It is easy to see from the very definition of the

different that this implies that B(x,M) = {0}. Since M is a non-degenerate
O-FQM, we conclude x = 0.
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Definition 1.4. Let M = (M,Q) be an O-FQM. We call

Level(M) := {a ∈ O : aQ = 0}
Ann(M) := {a ∈ O : aM = 0}

the level and the annihilator of M , respectively.

Note that Level(M) and Ann(M) are integral O-ideals of K. An O-
FQM M which is annihilated by a power of a prime ideal p is called, by
abuse of language, a p-module. If K equals the field of rational numbers, we
also call the positive integer generating Level(M) the level of M . Moreover,
in this case the positive integer generating the annihilator of M is the usual
exponent of the abelian group M .

Proposition 1.5. Let M = (M,Q) be an O-FQM. The following holds true:

Level(M) ⊆ Ann(M) ⊆ 1/2 Level(M).

Proof. Let B be associated bilinear form of M . We prove the first inclu-
sion. Let u ∈ Level(M). So, we have uQ = 0. This implies that uB = 0,
i.e B(ux, y) = 0 for all x, y ∈M . From the non-degeneracy of M we conclude
that ux = 0. Hence, u ∈ Ann(M). Therefore, Level(M) ⊆ Ann(M).

We prove the second inclusion. Let a ∈ Ann(M). Since B is O-bilinear,
we have B(aM, y) = {0}. In particular, aB(x, x) = 0 holds true for all x
in M , hence 2aQ(x) = 0. So 2a ∈ Level(M). Therefore, Ann(M) ⊆
1/2 Level(M).

There are three operations which we can perform in the category of O-
FQM: twisting, taking direct sums and quotients. Twisting is the operation
which maps M = (M,Q) to Ma := (M,aQ), where a ∈ O and a - Level(M).
The latter ensures that Ma is still non-degenerate. Let (M,Q) and (N,R)
be O-FQM with associated bilinear forms B and B′, respectively. We define
their direct sum as

M +N := (M ⊕N, (x, y) 7→ Q(x) +R(y)) ,

where M ⊕ N is the direct sum of the abelian groups M and N . It is clear
that the map x⊕ y 7→ Q(x) +R(y) defines a non-degenerate quadratic form,
so that M +N is indeed an O-FQM. Note that the bilinear form associated
to M +N is given by the map (k ⊕ l, x⊕ y) 7→ B(k, x) +B′(l, y). Similarly,
we can define the direct sum of an arbitrary finite number of O-FQM.

An important application of taking direct sums is the decomposition of a
O-FQM into local parts. For explaining this let M = (M,Q) be a O-FQM
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with associated bilinear form B. We use M(p) for the O-submodule of M
which contains all elements of M that are annihilated by a power of a prime
ideal p. The O-FQM M(p) :=

(
M(p), Q|M(p)

)
is called the p-part of M .

Note that it is a p-module. The non-degeneracy of the quadratic from Q|M(p)

follows from the following proposition.

Proposition 1.6. Let M = (M,Q) be an O-FQM. The quadratic form
Q|M(p) is non-degenerate for every prime ideal p. Moreover, we have

M '
∐

p|Ann(M)

M(p).

Proof. We define

ϕ :
∐

p|Ann(M)

M(p)→M, {xp}p|Ann(M) 7→
∑

p|Ann(M)

xp.

We show first of all that ϕ is surjective. Set Ip :=
∏

qn‖Ann(M), q6=p q
n. Note

that the ideals Ip (p|Ann(M)) are relatively prime, i.e. there exists numbers
αp in Ip such that

∑
p|Ann(M) αp = 1. Let x ∈ M be arbitrary. Then, αpx is

an element of M(p) and we have ϕ
(
{αpx}p

)
=
∑

p αpx = (
∑

p αp)x = x.
We show that the quadratic form Q|M(p) on M(p) is non-degenerate, for

any prime ideal p dividing Ann(M). First we need to show that B(x, y) = 0,
for any x ∈ M(p) and y ∈ M(q), where the p and the q are different prime
ideals. Fix pn‖Ann(M) and qm‖Ann(M). Since p 6= q, we have pn+qm = O,
i.e. there exists a ∈ pn, b ∈ qm such that a + b = 1. If x ∈ M(p) and
y ∈ M(q). we have ax = by = 0. Hence, B(x, y) = (a + b)B(x, y) =
B(ax, y) + B(x, by) = 0. Suppose B(x,M(p)) = {0}. Using the above fact,

we have B
(
x,
∐

q|Ann(M) M(q)
)

= B(x,M) = {0}. So x = 0, since the

quadratic form Q is non-degenerate. Therefore the proposition follows.

For explaining the third operation, namely, taking quotients, we need
some preparations. Let M = (M,Q) be an O-FQM with associated bilinear
form B and U be an O-submodule of M . The dual group of U is defined as:

U# := {y ∈M : B(U, y) = 0}. (1.1)

Note that U# is also an O-submodule of M .

Proposition 1.7. Let M = (M,Q) be an O-FQM with associated bilinear
form B and U be an O-submodule of M . The application x 7→ B(x, ·) defines
an exact sequence of O-modules:

0→ U# →M → Hom(U,K/d−1)→ 0.
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Here Hom(U,K/d−1) denotes the group of O-module homomorphisms of U
into K/d−1. In particular, one has |U | · |U#| = |M | and (U#)# = U .

Proof. The sequence is exact at M , since U# is by definition the kernel of
the map M → Hom(U,K/d−1), x 7→ B(x, ·). The surjectivity of this map
can be seen as follows: every element in Hom(U,K/d−1) can be extended to
an element of Hom(M,K/d−1) [Ser73, Ch. VI,§ 1, Prop. 1]. The latter group
has order |M | [Ser73, Ch. VI,§ 1, Prop. 2], and it is injective (since non-
degenerate) the map x 7→ B(x, ·) from M into Hom(M,K/d−1) is therefore
also surjective. The exactness of the sequence implies that Hom(U,K/d−1) '
M/U#. Because the groups are finite and |Hom(U,K/d−1)| = |U |, we obtain
|U | · |U#| = |M |. We have trivially U ⊆ (U#)#. Applying the equality for
group orders to U# instead of U , we obtain |U ||U#| = |M | = |U#||(U#)#|,
hence U = (U#)#.

If U is contained in U#, then B induces a well-defined bilinear form
on U#/U as follows:

B : U#/U × U#/U → K/d−1, (x+ U, y + U) 7→ B(x, y).

The bilinear form B is non-degenerate. Indeed, let x + U ∈ U#/U and
suppose B(x+U, y +U) = 0 for all y ∈ U#, i.e. x ∈ (U#)#. Proposition 1.7
implies then x ∈ U . Although the application (x+U, y+U) 7→ B(x, y) defines
a bilinear form on U#/U , the application x + U 7→ Q(x) is not well-defined
unless Q vanishes on U . We call an element x of the O-FQM M isotropic, if
Q(x) = 0. An O-submodule U of M is called isotropic, if Q vanishes on U .
If U is isotropic then U is contained in U# and the considerations above show
that the application Q : x+ U 7→ Q(x), which is now well-defined, defines a

non-degenerate quadratic form on U#/U . We set

M/U :=
(
U#/U,Q

)
and call M/U the quotient of M by the isotropic submodule U .

Definition 1.8. Let M = (M,Q) be an O-FQM. We define

σ(M) :=
1√
|M |

∑
x∈M

e {−Q(x)} .

This value is called the σ-invariant of M .

Remark. Let M and N be O-FQM. It is easy to see directly from the defini-
tion that σ(M +N) = σ(M)σ(N) and σ(M−1) = σ(M).
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Proposition 1.9. Let M = (M,Q) be an O-FQM and U be an isotropic
submodule of M . Then we have

σ(M) = σ(M/U).

Proof. Let B be associated bilinear form of M . Let R denote a system of
representatives for the cosets in M/U . We write

σ(M) =
∑
x∈R

∑
y∈U

e {−Q(x+ y)} .

Since U is isotropic we have Q(x + y) = Q(x) + B(x, y). The inner sum
becomes 0 unless x ∈ U#, when it equals |U |. The result is now obvious.

Proposition 1.10. Let M = (M,Q) be an O-FQM. Then σ(M) has absolute
value 1.

Proof. Let B be associated bilinear form on M . We write

|σ(M)|2 =
1

|M |
∑
x,y∈M

e {−Q(x) +Q(y)} .

After doing the substitution y 7→ y + x in the above sum, we obtain

|σ(M)|2 =
1

|M |
∑
y∈M

e {Q(y)}
∑
x∈M

e {B(x, y)} .

But the inner sum equals 0, unless y = 0, when it equals |M | (see the
subsequent proposition). Hence, |σ(M)|2 = 1 as we claimed.

Proposition 1.11. Let M = (M,Q) be an O-FQM with associated bilinear
form B. For y ∈M , the following holds true:

Sy :=
∑
z∈M

e {B(z, y)} =

{
|M | if y = 0

0 otherwise.

Proof. If y equals 0, the formula is obvious. Otherwise, there exist an y0

such that B(y0, y) 6= 0, since B is non-degenerate. Substituting z 7→ z + y0

we obtain Sy = e {B(y0, y)}Sy. Hence, Sy = 0.
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1.2 Cyclic finite quadratic O-modules

In this section we shall give a full classification of cyclic finite quadratic
O-modules, their isotropic submodule, their quotients, and their orthogonal
groups.

Definition 1.12. A finite quadratic O-module (M,Q) is called a cyclic finite
quadratic O-module, if the O-module M is cyclic, i.e. there exists an x ∈M
such that M = Ox. Henceforth, a cyclic finite quadratic O-module is called
O-CM.

Proposition 1.13. Let M = (M,Q) be an O-CM with level l. Then (2, l)2

divides l. In particular, vp(l) > vp(2O) for every even prime ideal dividing l.
For the annihilator of M we have the formula

Ann(M) = l (2, l)−1.

Remark. In the following we shall often tacitly use that, for integral ideals l
and a = l(2, l)−1, the statement (2, l)2|l is equivalent to l|a2.

For the proof of the proposition we need a lemma.

Lemma 1.14. Let a be a fractional O-ideal. The ideal b :=
∑

a∈aOa2

equals a2.

Proof. Multiplying by a suitable integer we can assume without loss of gen-
erality that a is an integral O-ideal. Let a ∈ a. We have a2 ∈ a2 and
hence a2|b. Vice versa, let n = vp(b) for a prime ideal p dividing b. (Recall
that vp(b) denotes the valuation of b at p, see the section Notations.) There
exists a ∈ a such that n = vp(a

2). Then n = 2k for some integer k. Hence
pk‖a. We also have that p2k|a2 for all a ∈ a. Hence pk|a for all a ∈ a. We
therefore obtain pk|a, thus, pn|a2. This proves the lemma.

Proof of Proposition 1.13. Let B denote the bilinear form of M . Write M =
Oγ. We put Q(γ) = ω + d−1. Then we have Q(aγ) = a2ω + d−1 for all
a ∈ O. First of all, we show that l equals the denominator of ωd. The level
of M is by definition the largest O-ideal l such that lQ = 0. i.e. la2ω ∈ d−1,
or, equivalently, such that lωd is an integral O-ideal. Hence l equals the
denominator of ωd.

Next we prove a := Ann(M) = l (2, l)−1. By the non-degeneracy of B,
the annihilator of M consists of all a ∈ O such that B(aγ, a′γ) = 0 for all
a′ ∈ O. But B(aγ, a′γ) = 2aa′ω + d−1. Hence the annihilator of M consists
of all a ∈ O such that 2aωd is integral, which is equivalent to l(2, l)−1|a. This
proves the claim.
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By the remark it remains to show that l|a2. If a ∈ a, then 0 = Q(aγ) =
a2ω+d−1. This implies that a2ω ∈ d−1, i.e. the ideal a2ωd is integral. Since l
is the denominator of ωd, we have that l|a2 for all a ∈ a. Since a2 equals
the ideal generated by the squares of elements in a (see Lemma 1.14) we
conclude l|a2.

Finally, let pl be the exact power of an even prime dividing l. If pl di-
vided 2, then l(2, l)−1 would not be divisible by p, in contradiction to (2, l)2|l.

By the proposition the ideal l(2, l)−2, where l is the level of an O-CM, is
integral. Since it will show up in many subsequent formulas we introduce a
name for this quantity.

Definition 1.15. Let M be an O-CM with level l. We call

Mod(M) := l(2, l)−2

the modified level of M .

Theorem 1.1. (i) Let ω ∈ K∗ and let l be the denominator of ωd. Assume
(2, l)2|l. Then the pair

M(ω) :=
(
O/a, x+ a 7→ ωx2 + d−1

)
,

where a = l(2, l)−1, defines an O-FQM with annihilator a and level l.
In fact, M(ω) is an O-CM with generator 1 + a.

(ii) Every O-CM is isomorphic to a finite quadratic O-module of the
form M(ω).

(iii) Two O-CM M(ω1) and M(ω2) are isomorphic if and only if there exists
an a in O, relatively prime to l, such that ω1 ≡ ω2a

2 mod d−1. Here l
stands for the denominator of ω2d.

Proof. First we prove (i). Note that the assumption (2, l)2|l is equivalent
to the statement l|a2. We show that the map Q : x + a 7→ ωx2 + d−1 is
well-defined and that it is non-degenerate. First note that ωda2 is integral
(by the assumption l|a2). For the well-definedness, we need to have that
if y ∈ x + a, then ωx2 − ωy2 ∈ d−1. Write y = x + k (k ∈ a). Then
ωx2 − ωy2 = −2ωxk − ωk2 ∈ ω(2a + a2) lies in d−1, since l divides 2a by
definition of a and since l divides a2 by assumption. For the non-degeneracy
of the quadratic form Q, we need to have that 2ωxO ⊆ d−1 (x ∈ O) if and
only if x ∈ a. Indeed, 2ωxd is integral if and only if the denominator l of ωd
divides 2x, i.e. if and only if a = l(2, l)−1 divides x. It is obvious from the
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construction that M(ω) has annihilator a and level l. The O-FQM M(ω) is
an O-CM, since it is generated by the multiplicative neutral element 1 + a
of the ring O/a.

Secondly we prove (ii). Let M = (M,Q) be a cyclic finite quadratic
O-module with annihilator a. Write M = Oγ, set ω = Q(γ) and let l
denote the denominator of ωd. Then l equals the level of M . Indeed, since
M = Oγ the ideal generated by the Q(x) (x ∈ M) equals Q(γ)O. By
Proposition 1.13 we have then (2, l)2|l and a = l(2, l)−1. Hence M

(
Q(γ)

)
=

(O/a, x+ a 7→ Q(γ)x2 + d−1). It is obvious that the map x+a 7→ xγ defines
an isomorphism M

(
Q(γ)

)
→M .

Lastly, we prove (iii). Assume that there exist an isomorphism ϕ :
M(ω1)→M(ω2). Then the levels of both modules coincide, hence are equal
to l. The annihilator of both O-FQM is a := l(2, l)−1. Since 1+a is a genera-
tor of the O-module O/a there exist an a in O such that ϕ(1+a) = a(1+a).
Since ϕ is an isomorphism there exist also an a′ such that ϕ−1(1 + a) =
a′(1 + a). We conclude that a′a ≡ 1 mod a, i.e. that a is relatively prime
to a. Since, a and l have the same prime divisors (see Proposition 1.13), we
see that a is also relatively prime to l. Finally, since ϕ(1 + a) = a + a and
since ϕ preserves the quadratic forms, we find ω2a

2 ≡ ω1 mod d−1.
If, vice versa, ω2a

2 ≡ ω1 mod d−1 for some a, relatively prime to the
denominator l of ω2d, then ω1d has also denominator l. Indeed, write ω2a

2 =
ω1+t with t in d−1. Then ω2a

2d ⊆ ω1d+O, and therefore l1ω2a
2d ⊆ ω1dl1+l1,

where l1 denotes the denominator of ω1d, from which we deduce that l1ω2a
2d

is integral. Hence l divides l1a
2, and since a and l are coprime, we find l|l1.

Changing the role of l and l1 in the preceding argument we find also l1|l.
It is then clear that the map x + a 7→ ax + a defines an isomorphism of
M(ω1)→M(ω2).

Corollary 1.16. The number of isomorphism classes of O-CM with a given
level l equals the number of elements in (O/l)∗[2], where (O/l)∗[2] denotes
the kernel of the squaring map of (O/l)∗.

Remark. Applying the Chinese remainder theorem [Neu99, I. 3, Thm. (3.6)]
our theorem can be restated in the form that the number of isomorphism
classes of O-CM with a given level l equals therefore

∏
pn‖l a(pn), where a(pn)

is the number of solutions of x2 = 1 in (O/pn)∗. For odd p, there are exactly
two solutions of x2 = 1 in (O/pn)∗, i.e. a(pn) = 2. In general, a(pn) = 2e,
where e denotes the number of even elementary divisors of (O/pn)∗. For
even p, the number of solutions depends very much on the arithmetic of the
number field.

Proof. If l is given, then we can always form an O-CM. Indeed, let b be an
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integral O-ideal which lie in the inverse ideal class of ld which satisfies b+ l =
O. Then there exists some ω in K such that b(ld)−1 = Oω. Denote a :=
l(2, l)−1. Hence, (O/a, x+ a 7→ ωx2) defines an O-CM (see Theorem 1.1 (i)).

Let M be a cyclic O-module of level l. By Theorem 1.1 M is isomorphic
to some M(ω) where lωd is an integral O-ideal relatively prime to l, and, vice
versa, for every such ω, the O-FQM M(ω) has level l. Moreover, M(ω) de-
pends obviously only on ω modulo d−1. We shall prove in a moment that lωd
is an integral O-ideal relatively prime to l if and only if ω+d−1 generates the
O-module l−1d−1/d−1. Thus if we use Il for the set of isomorphism classes of
cyclic O-modules of level l, the application ω 7→ M(ω) induces a surjective
map from the set G of the generators l−1d−1/d−1 onto Il. By Theorem 1.1 (iii)
this map induces a bijection

G
/(

(O/l)∗
)2 → Il.

It is easy to see that there is anO-module isomorphismO/l→ l−1d−1/d−1

(see Lemma 1.17). So, the number that we are looking for equals the number
of elements in (O/l)∗

/
((O/l)∗)2. Since we have an exact sequence

1→ Ker(Sq)→ (O/l)∗ Sq−→ ((O/l)∗)2 → 1,

where Sq is the squaring map, we conclude that the number of elements in
(O/l)∗

/
((O/l)∗)2 equals the number of elements in the kernel of Sq. This

proves the corollary.
It remains to determine the ω such that lωd is an integral ideal relatively

prime to l. Write such an ω in the form ωd = bl−1 with an integral b coprime
to l. Then ω = bl−1d−1 ⊆ Ol−1d−1 = l−1d−1. Hence, ω ∈ l−1d−1, and, by
the assumption on ω, it is so that ωdl + l = O, i.e. so that O(ω + d−1) =
l−1d−1/d−1. It is easy to see that these reasoning can be reversed.

Our next goal is a description of all isotropic submodules of a given O-CM
and its quotients. For this we need a lemma.

Lemma 1.17. Let a and b be fractional O-ideals such that a ⊆ b. The
quotient b/a is O-CM. Its generators are the elements γ+ a, where γ is in b
such that b = Oγ + a.

Proof. Multiplying by a suitable integer, we can assume without loss of gen-
erality that a and b are integral O-ideals. Let c be a fractional O-ideal in
the ideal class of b−1 which is relatively prime to the (integral) O-ideal ab−1.
We thus have c + ab−1 = O and bc = γO, for some γ ∈ b. Consequently,
we have γO + a = b. This implies b/a = O(γ + a). Indeed, let b + a ∈ b/a.
Hence, b = dγ + c, for some d ∈ O, c ∈ a. Then b + a = dγ + a = d(γ + a).
This proves the lemma.
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Theorem 1.2. Let M = (M,Q) be an O-CM with level l, modified level
m = l (2, l)−2 and annihilator a (recall from Theorem 1.1 that a = m (2, l)).

(i) The isotropic submodules of M are of the form ab−1M , where b is
an integral O-ideal such that b2|m. In particular, the sum of any two
isotropic submodules is again isotropic.

(ii) If M = M(ω), and ab−1
/
a is an isotropic submodule of M(ω) (so that

b2|m), then the quotient module M(ω)
/

(ab−1/a) is isomorphic to the
O-FQM

M(ωγ2) =
(
O/ab−2, x+ ab−2 7→ ωγ2x2 + d−1

)
,

where γ ∈ b is such that b = Oγ + ab−1 (see Lemma 1.17).

(iii) In particular, the class of O-CM is closed under taking quotients.

Remark. If the set of isotropic submodules of an O-FQM is closed under
taking sums then it possesses only one maximal isotropic submodule, namely
the sum of all isotropic submodules. Vice versa, if it possesses only one
maximal isotropic submodule then the sum of any two isotropic submodules
is contained in the unique maximal one, and hence also isotropic. Thus, by
part (i), an O-CM possesses only one maximal isotropic submodule.

Example 1.18. Note that there are also O-FQM which have this property,
but are not cyclic. The O-FQM (Z/4Z× Z/4Z, Q) with Q(x+4Z, y+4Z) =
(x2 + xy+ y2)/4 +Z is is such an example (for K = Q). It possesses exactly
five isotropic submodules, namely, the submodules 0, 〈(0, [2])〉, 〈([2], [2])〉,
〈([2], 0)〉 and 〈(0, [2])〉 ⊕ 〈([2], 0)〉, where the last one is the unique maximal
one. (Here we use [x] = x+ 4Z.)

Proof of Theorem 1.2. First we prove (i). We have that M is isomorphic
to an O-FQM M(ω) for some nonzero ω ∈ K as given in Theorem 1.1.
Clearly, any O-submodule of M(ω) is of the form c/a for some integral O-
ideal c such that a ⊆ c. Let c/a be an isotropic submodule of M(ω). For all
x ∈ c, we have ωx2 ∈ d−1 i.e. the ideal ωdc2 is integral (see Lemma 1.14).
Hence, l divides c2. Therefore, any isotropic submodule of M(ω) is of the
form c/a with some integral O-ideal c such that l|c2|a2. It is then clear that
the isotropic submodules of M are of the form cM , where c runs through
the set of integral O-ideals which satisfy l|c2|a2. However, it is easily checked
that the following map is an isomorphism:

{c ⊆ O : l|c2|a2} → {b ⊆ O : b2|m}, c 7→ ac−1 =: b.
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Hence, the first statement of (i) is proved.

Let U and V be two isotropic submodules of M , say, U = ab−1
1 M and

V = ab−1
2 M . Then

U + V = ab−1
1 M + ab−1

2 M =
(
ab−1

1 + ab−1
2

)
M = a(b1, b2)b−1

1 b−1
2 M,

and since b2
1 and b2

2 divide m it is clear that the square of the least common
multiple b1b2(b1, b2)−1 also divides m, i.e. that U + V is isotropic.

We prove the statement (ii). Let ab−1/a be an isotropic submodule
of M(ω). To determine the quotient module M(ω)

/
(ab−1/a), we need to

determine the dual module (ab−1/a)#. Using the definition (1.1), we obtain

(ab−1/a)# = {x+ a ∈ O/a : 2ωxab−1 ⊆ d−1}
= {x+ a ∈ O/a : b|x} = b/a.

For the second equality we write ωd = b′l−1, where b′ in an integral O-ideal
such that (b′, l) = 1. Let x + a ∈ O/a. Then we have that 2ωdxab−1 is
integral if and only if b|x. Indeed, since a = l(2, l)−1 (see Proposition 1.13),
we have 2ωdxab−1 = 2(2, l)−1b′b−1x. But b is relatively prime to 2(2, l)−1b′,
since b is a divisor of l(2, l)−1. Therefore, we have

(ab−1/a)#
/

(ab−1/a) = (b/a)
/

(ab−1/a) ' b/ab−1,

and hence

M(ω)
/

(ab−1/a) '
(
b/ab−1, x+ ab−1 7→ ωx2 + d−1

)
=: N.

Note that the annihilator of the O-module b/ab−1 equals the ideal ab−2

(which is integral, since b2 divides m and m divides a). By Lemma 1.17 we
know that b/ab−1 is anO-CM, i.e. there exists γ ∈ b such that b = Oγ+ab−1.
The application x+ ab−2 7→ xγ + ab−1 defines therefore an isomorphism(

O/ab−2, x+ ab−2 7→ ωγ2x2 + d−1
) '−→ N,

which proves (ii).

Lastly, the statement (iii) is an immediate consequence of (i) and (ii).

Corollary 1.19. Let M = (M,Q) an O-CM, and let a, l, m denote its
annihilator, level and modified level. Then the annihilator, the level and the
modified level of the quotient module M/ab−1M equals ab−2, lb−2 and mb−2,
respectively.
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Proof. Set U = ab−1M . By Theorem 1.2 (ii), M/U is isomorphic to some
O-FQM M(ωγ2) with b = Oγ + ab−1 (γ ∈ b). Clearly, the latter has anni-
hilator ab−2. It is enough to show that the O-FQM M(ωγ2) has level lb−2.
Because, then, it is clear that the modified level of M/U equals mb−2. Write
Oγ = bb0 with some integral O-ideal b0. The level of M(ωγ2) equals the
denominator of ωdγ2. To show that M(ωγ2) has level lb−2, it is enough to
show that lb−2 is relatively prime to b0, since the denominator of ωd equals l.
The identity b = Oγ+ ab−1 implies that (b0, ab

−2) = 1. Since b2|m, we have
that (2, l)|ab−2. Here we used the fact that a = m(2, l) (see Proposition 1.13).
Hence, (2, l) is also relatively prime to b0. Since we have lb−2 = ab−2(2, l),
obviously b0 is relatively prime to lb−2. This proves the corollary.

We finally describe the orthogonal groups of O-CM. It will turn out
that O(M) is isomorphic to a certain subgroup of

(
O
/
a
)∗

, for which we
introduce a special name.

Definition 1.20. Let M = (M,Q) be an O-CM with level l and annihila-
tor a. We define:

E(M) := {ε+ a ∈
(
O
/
a
)∗

: ε2 ≡ 1 mod l}.

Remark. Note that E(M) is well-defined. Namely, assume ε ≡ ε′ mod a.
Since (2, l)2|l = a(2, l) (Proposition 1.13) we deduce (2, l)|a, hence ε ≡ ε′ mod
(2, l), and then a(2, l)|(ε− ε′)(ε + ε′), i.e. ε2 ≡ ε′2 mod l. In fact, E(M) is a
subgroup of

(
O
/
a
)∗

.

Proposition 1.21. Let M = (M,Q) be an O-CM. The application g 7→ mg,
where mg denotes multiplication by g, defines an isomorphism of groups

E(M)
'−→ O(M).

Proof. For the well-definedness we need to show that multiplication by an
element g = ε+ a ∈ E(M) defines an orthogonal transformation of M . Since
ε2 ≡ 1 mod l for any x ∈M , we have Q(εx)−Q(x) = Q(x)(ε2 − 1) = 0, i.e.
we have Q(εx) = Q(x).

The injectivity is obvious. For the surjectivity we need to show that any
α ∈ O(M) is given by α(x) = gx for some g ∈ E(M). Write M = Oγ for
some γ ∈ M and α(γ) = εγ for some ε ∈ O and ε /∈ a. Write x = aγ with
a ∈ O and a /∈ a. Since α is an O-module homomorphism, we have

α(x) = aα(γ) = aεγ = aγε = xε.

This proves the proposition.
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Proposition 1.22. Let M be an O-CM with annihilator a and modified
level m. Then the map ε + a 7→ {ε+ pa}p defines an isomorphism of groups
E(M) '

∐
pa‖a E(M(p)). Via this isomorphism the factor E(M(p)) corre-

sponds to the subgroup 〈εp + a〉 of E(M), where εp denotes an integer in O
such that εp ≡ −1 mod pa and εp ≡ +1 mod ap−a.

If p - m, then E(M(p)) is the trivial subgroup of E(M), otherwise E(M(p))
has order 2. (Recall by Proposition 1.13 that m divides a.)

Proof. The isomorphism follows from the Chinese remainder theorem (see for
example [Neu99, I. 3, Thm. (3.6)]). It is obvious that the subgroup 〈εp + a〉
contains at most two elements.

If p - m, then pa‖(2, l), where l is the level of M . Here note by Proposi-
tion 1.13 that a = m(2, l). But this implies that +1 and −1 are equivalent
modulo pa, i.e. εp ≡ +1 mod a. Hence, E(M(p)) is the trivial subgroup
of E(M).

If p|m, then vp(2, l) ≤ a− 1. But Proposition 1.13 implies that vp(2, l) =
vp(2O). Hence, pa - 2, i.e. +1 and −1 are inequivalent modulo pa, and
thus they are inequivalent modulo a, which implies finally that E(M(p)) has
order 2.

Proposition 1.23. Let M be an O-CM with level l, modified level m and
annihilator a. The linear characters of E(M) are parameterized by the square-
free divisors of m. More precisely, the linear characters of E(M) are of the
form:

ψf : E(M)→ {±1}, ψf(ε+ a) = µ
(
f, (ε+ 1)(2, l)−1

)
,

where f runs through the square-free divisors of m. (Here µ is the Möbius
µ-function of K (see section Notations) and it is applied to the ideal

(
f, p).)

Remark. Let pa‖a and p|m. If ε = εp, where εp is as in Proposition 1.22, then
we have ψf(εp + a) = µ(f, p). Indeed, since a = m(2, l) (see Proposition 1.13)
and p|m, we have vp(2, l) ≤ a − 1. But εp + 1 is divisible by pa. Hence, p
divides (ε+ 1)(2, l)−1.

Proof of Proposition 1.23. To begin with, we show that ψf is well-defined.
First note that the ideal (ε+ 1)(2, l)−1 is integral. Indeed, suppose that p is
an even prime ideal dividing l. Set l = vp(l) and u = vp(2O). By Proposi-
tion 1.13, we have u < l, and hence vp(2, l) = u. This implies that pu divides
(ε− 1)(ε+ 1). Assume for contradiction that pu does not divide ε+ 1. Then,
say, ps divide ε+1 (s < u). Since pl divides (ε−1)(ε+1), we have that ε−1
is divisible by pl−s. But l − s > u, since l − s > l − u and l − u ≥ u (this is
an easy consequence of Proposition 1.13). Hence, pu divides ε− 1. This is a
contradiction, since ε− 1 ≡ ε+ 1 mod pu.
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Next we show that the map ψf depends only on the residue class of ε
modulo a. Suppose x ∈ ε + a. We write x = ε + a, for some a ∈ a. Hence,
we have (x + 1)(2, l)−1 = (ε + 1)(2, l)−1 + a(2, l)−1 ⊆ (ε + 1)(2, l)−1 + m
which proves well-definedness. Here we use the fact that a = m(2, l) (see
Proposition 1.13).

Next we show that ψf defines a group homomorphism from E(M) to {±1}.
Let ε + a, ε′ + a ∈ E(M) and p be a prime ideal divisor of m. We need to
prove the following statements.

(i) If p|(ε+ 1)(2, l)−1 and p|(ε′ + 1)(2, l)−1, then p - (εε′ + 1)(2, l)−1

(ii) If p|(ε+ 1)(2, l)−1 and p - (ε′ + 1)(2, l)−1, then p|(εε′ + 1)(2, l)−1

(iii) If p - (ε+ 1)(2, l)−1 and p - (ε′ + 1)(2, l)−1, then p - (εε′ + 1)(2, l)−1.

We can write

εε′ + 1

(2, l)
=

(ε+ 1)(ε′ − 1)

(2, l)
+
ε+ 1

(2, l)
− ε′ − 1

(2, l)
(1.2)

=
(ε− 1)(ε′ + 1)

(2, l)
+
ε′ + 1

(2, l)
− ε− 1

(2, l)
. (1.3)

First we prove that p|(ε + 1)(2, l)−1 if and only if p - (ε − 1)(2, l)−1. If p
is odd, then this statement is obvious. If p were even and the contrary
held true, then p would divide 2(2, l)−1. But this is a contradiction, since
vp(2O) = vp(2, l) (see above). Now using this fact it is easy to deduce (i), (ii)
(using (1.2)) and (iii) (using (1.3)).

It remains to show that every homomorphism χ from E(M) to {±1} is of
this form, i.e. there exists a square-free divisor f of m such that χ(ε + a) =
ψf(ε + a) for any ε + a ∈ E(M). Let p be a prime dividing m and let εp be
as in Proposition 1.22. By setting

f =
∏
p|m

χ(εp+a)=−1

p,

we recognize the claimed statement.

1.3 Some lemmas concerning quotients O/a
In this section a stands for a nonzero integral ideal ofO. Moreover, R denotes
the ring O/a and π : O → R stands for the canonical projection.
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In the present section we shall analyze the structure of the ring R and we
shall provide some lemmas which will be needed in the next chapter.

Recall the well-known fact that the integral ideals of O containing a are
in one to one correspondence with the ideals of R via the map b 7→ π(b).

Lemma 1.24. If b is an arbitrary integral ideal in O, then one has π(b) =
π(b + a).

Proof. It is clear that π(b) ⊆ π(b + a). Vice versa, let ξ ∈ π(b + a). Then
ξ = π(y + x) (y ∈ b, x ∈ a). Hence, ξ = (y + x) + a = y + a = π(y) ⊆ π(b).
Therefore, the claimed identity holds true.

Lemma 1.25. The ring R is a principal ideal ring.

Proof. By the Chinese remainder theorem (see for example [Neu99, I. 3,
Thm. (3.6)]), it suffices to consider a = pn, where p is a prime ideal of O. We
claim first of all that the ideals of O/pn are π(1), π(p), . . . , π(pn). Let I be
an ideal of O/pn. Then I = π(π−1(I)) = π(π−1(I) + pn) = π(pm) for some
0 ≤ m ≤ n, i.e. the claim holds true. Note that the second equality follows
from Lemma 1.24. For the third equality we used the fact that π−1(I) + pn

is an ideal of O containing pn.
Next we prove that every ideal of O/pn is principal. Fix an m such that

0 ≤ m ≤ n. It suffices to prove that the ideal π(pm) is principal. Let c ∈ p
and c /∈ p2. Then pm = cmO + pn, since the greatest common divisor of cm

and pn is pm. Hence, π(pm) = π(cmO + pn) = π(cmO) = π(cm)R, where we
used Lemma 1.24. This proves the lemma.

Remark. Let p be a prime ideal of O. The proof of Lemma 1.25 implies that
the ideals of O/pn are of the form π(cm)/pn (0 ≤ m ≤ n), where c ∈ p and
c /∈ p2, i.e. there are in total n + 1 ideals of O/pn. From this we conclude
that O/pn is a principal local ring whose unique maximal ideal is π(c)/pn.

Lemma 1.26. We have αR = βR if and only if there exists some ε ∈ R∗
such that α = εβ.

Proof. The statement would be trivial if R possessed no zero divisors, which,
however does not hold true unless a is prime. By the Chinese remainder
theorem [Neu99, I. 3, Thm. (3.6)], it is enough to consider a = pn, where p
is a prime ideal of O. Let I stand for the set of ideals of O/pn. We need to
show that the following map

(O/pn)∗\(O/pn)→ I, [α] 7→ αR

is an injection. For that it suffices to show that (O/pn)∗\(O/pn) has n +
1 elements, since I has n + 1 elements (see Lemma 1.25 and the remark
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afterwards). (Here we use [α] for the orbit of α under left multiplication by
elements of (O/pn)∗.)

Let c ∈ p and c /∈ p2. It remains to prove the following identity

n∑
m=0

|[cm + pn]| = N (pn), (1.4)

since then we can take the elements cm + pn (0 ≤ m ≤ n) as representatives
for the orbit space, i.e. the orbit space has n+ 1 elements as we claimed. We
calculate the number of elements in each orbit, i.e. the number |[cm + pn]|
for all 0 ≤ m ≤ n . By the so-called Orbit-Stabilizer theorem, we have
|[cm + pn]| = ϕ(pn)/| Stab(cm + pn)|, where ϕ is the Euler’s totient function,
i.e. ϕ(a) = |(O/a)∗| for an integral O-ideal a. But we have

Stab(cm + pn) = {x+ pn ∈ (O/pn)∗ : xcm ≡ cm mod pn}
= {x+ pn ∈ (O/pn)∗ : x ≡ 1 mod pn−m}.

The above identity implies that Stab(cm + pn) equals the kernel of the
reduction map (O/pn)∗ → (O/pn−m)∗. From the first isomorphism the-
orem for groups, we have | Stab(cm + pn)| = ϕ(pn)/ϕ(pn−m). Therefore,
|[cm + pn]| = ϕ(pn−m). Hence, to obtain (1.4), it is enough to show ϕ(pn) =
N(pn)−N(pn−1). But from Lemma 1.25 and the remark afterwards we have
that O/pn is a local principal ideal ring with the maximal ideal π(c)/pn,
where c ∈ p and c /∈ p2. Since π(c)/pn has N(pn−1)-many elements, i.e. the
non-units in O/pn are N(pn−1) in total, the last assertion holds true.

Remark. Let p be a prime ideal of O. From the proof of Lemma 1.26 we have
that the elements cm + pn (0 ≤ m ≤ n), where c is an element in p but not
in p2, can be taken as representatives for the orbit space of the left action of
the group (O/pn)∗ on (O/pn).

Lemma 1.27. If O = xO + yO + a, then there exists x′, y′ ∈ O such that
x′ ≡ x mod a and y′ ≡ y mod a with O = x′O + y′O.

Proof. The statement is obvious if x = y = 0. Without loss of generality we
assume y 6= 0. Let g := xO + yO. We set

y1 :=
∏
pt‖yO
p|g

pt, y2 := (yO)y−1
1 .

Obviously, y1 and y2 are relatively prime. Let t be an integral O-ideal in the
inverse ideal class of y2a which is relatively prime to xya. Then there exists
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a ∈ O such that aO = y2at. Set x′ = x+ a, y′ = y. It remains to show that
h := x′O + yO equals O.

Assume for contradiction that there exists a prime ideal p dividing h.
Then p divides either y1 or y2. If p divides y1, then by the very definition
of y1, the ideal p divides g, and hence it divides x. But since p also divides x′,
the ideal p divides aO = y2at. But by the choice of t, the ideals p and t are
relatively prime, hence p divides a which contradicts with the assumption.

If p divides y2, then p divides aO, and hence it divides xO. But this
implies that p divides g, and hence it divides y1 which contradicts with the
fact that y1 and y2 are relatively prime. This proves the lemma.

Lemma 1.28. If R = αR+βR, then there exists x ∈ α and y ∈ β such that
O = xO + yO.

Proof. Since π is a surjection, we have π(O) = π(x)π(O) + π(y)π(O), where
α = π(x) and β = π(y) with x, y ∈ O. Then we have π(O) = π(xO + yO),
i.e. O = xO + yO + a. Lemma 1.27 implies now the result.

Lemma 1.29. The map π : SL(2,O) → SL(2, R), ( a bc d ) 7→
(
π(a) π(b)
π(c) π(d)

)
de-

fines an epimorphism.

Proof. We write Γ and ΓR for SL(2,O) and SL(2, R), respectively. It is clear

that the map π is a group homomorphism. Let B :=
(
π(a) π(b)
π(c) π(d)

)
∈ ΓR with

a, b, c, d ∈ O. Here note that since π is a surjection, every element of ΓR is
of this form. To prove the lemma we need to find an element A in Γ such
that π(A) = B.

Since B ∈ ΓR, we have π(c)R + π(d)R = R. From Lemma 1.28, there
exists x ∈ π(c) and y ∈ π(d) such that xO + yO = O. Since π(x) = π(c)
and π(y) = π(d), we have π(ad − bc) = π(ay − bx). Hence, we can write
ay−bx = 1+k(x−y) for some k ∈ a. Hence, (a+k)y−(b+k)x = 1. Therefore,
the matrix

(
a+k b+k
x y

)
is an element of Γ and, obviously, it is mapped to B

by π. This proves the lemma.

Lemma 1.30. Given α, β ∈ R. There exists γ ∈ R and A ∈ SL(2, R) such
that (0, γ)A = (α, β). Here multiplication of a row vector with a matrix is
done in the usual way.

Proof. By the Chinese remainder theorem [Neu99, I. 3, Thm. (3.6)] it is
enough to consider a = pn. Let a ∈ α and b ∈ β. From the remark after
Lemma 1.26, we can write a ≡ cm1e1 mod pn and b ≡ cm2e2 mod pn (0 ≤
m1,m2 ≤ n), where e1, e1 ∈ (O/pn)∗.
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If m1 ≤ m2, we have

(0, cm1)
(

0 −e−1
1

e1 cm2−m1e2

)
= (cm1e1, c

m2e2) ≡ (a, b) mod pn.

By taking γ = π(cm) and A =
(

0 −π(e1)−1

π(e1) π(cm2−m1e2)

)
we see that the statement

of the lemma holds true.
If m2 ≤ m1, then using the above argument, we find A ∈ SL(2,O/pn)

and γ ∈ O/pn such that (0, γ)A = (β,−α). Since (β,−α) = (α, β)S, where
S = ( 0 −1

1 0 ), we obtain (0, γ)AS−1 = (α, β). This proves the lemma.
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Chapter 2

Weil Representations of Finite
Quadratic Modules

We carry over the notations of the previous chapter. As before, K denotes
a number field of degree n over Q, and we use O, d for the ring of inte-
gers and the different of K, respectively. Moreover, we shall use Γ for the
group SL(2,O) and Γ̃ for a certain central extension of Γ (see Section 2.2 for
the definition of Γ̃). Occasionally, we shall denote by ΓR for a ring R, the
group SL(2, R).

In this chapter we shall associate Weil representations to finite quadratic
O-modules (O-FQM) and develop a basic theory of these representations.
The main result of this chapter will be Theorem 2.4, which describes the
complete decomposition of cyclic Weil representations, i.e of Weil repre-
sentations associated to cyclic O-FQM, and Theorem 2.5, which gives the
explicit description of all one-dimensional subrepresentations of cyclic Weil
representations. The latter theorem will play an important role when we de-
termine explicitly all singular Jacobi forms of certain indices, since in Chap-
ter 4, we shall see that the singular Jacobi forms will correspond to the
one-dimensional subrepresentations of certain cyclic Weil representations.

In Section 2.1, we shall briefly recall notations and facts concerning repre-
sentations of groups which will be used in the sequel. In Section 2.2, we shall
define the Weil representations of Γ̃ associated to O-FQM. In fact, though we
shall use throughout the term representations we view the Weil representa-
tions rather as modules over Γ̃. In Section 2.3, we shall study decompositions
of Weil representations. For arbitrary finite quadratic modules, our decom-
positions of the associated Weil representations are in general not complete,
i.e. they are neither splittings into direct sums nor the subrepresentations
which occur in the given decompositions are irreducible. However, as we
shall see in Section 2.4, for cyclic Weil representations, these decompositions

31
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are in fact complete. The proof of this completeness relies on Theorem 2.6
of Section 2.6, which provides an upper bound for the number of irreducible
Γ̃-submodules of an arbitrary Weil representation. Using the dimension for-
mulas for the irreducible Γ̃-submodules of a cyclic Weil representation, we
shall be able to determine in Section 2.5, the one-dimensional submodules of
cyclic Weil representations.

In Section 2.6, for deriving our estimate for the number of irreducible
Γ̃-submodules of cyclic Weil representations, we have to develop a machinery
which is also interesting for its own sake since it gives a explicit description
of the Weil representations as projective representations of Γ = SL(2,O).

2.1 Review of representations of groups

To fix the language, we shall briefly recall those basic notions and facts from
the general theory of representations of groups which we shall need in the
sequel. In particular, we shall introduce and discuss the notion of a projective
action of a group on a vector space. This notion will be useful for us in later
sections.

In the following, G denotes a multiplicative group with identity element 1.
For the convenience of the reader we shall give proofs of some basic proposi-
tions for which we could not find suitable references.

Definition 2.1. Let G be a group acting from left on a set X. We use G\X
for the set of orbits of the G-action. For an element v ∈ X, we use Stab(v) for
the subset of elements of G which are fixed under the G-action, i.e. Stab(v) =
{g ∈ G : gv = v}. (In fact, the set Stab(v) is a subgroup of G.) If G acts
from right on X, the set of orbits of the G-action is denoted by X/G.

Unless otherwise stated when we speak of a group action, we suppose
that the group acts from the left.

Proposition 2.2. Suppose there exits a group homomorphism π from G
onto H. If H acts on a set X, then G also acts on X, via gv := π(g)v.
If π is surjective then the number of elements of G\X equals the number of
elements of H\X.

Proof. The proof is obvious.

Definition 2.3. Let f be a group homomorphism from G to G′ and π
be a surjective group homomorphism from G onto H. We say that f fac-
tors through π (or sometimes, if π is clear from the context, that f factors
through H), if there exits a group homomorphism f from H to G′ such that
f ◦ π = f .
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Proposition 2.4. Let G, G′, H, π and f be as in Definition 2.3. Then f
factors through π if and only if Ker(π) ⊆ Ker(f).

Proof. This is a standard proposition from basic algebra. If f exists such
that f ◦ π = f then obviously Ker(π) ⊆ Ker(f).

Assume vice versa Ker(π) ⊆ Ker(f). Let h ∈ H be given. Since π is a
surjection, there exists g ∈ G such that π(g) = h. We define f : H → G′ by
f(h) = f(g). By the assumption this map is well-defined, i.e. does not depend
on the particular choice of the preimage g of h. By definition f(π(g)) = f(g).
Finally it is obvious that f is a group homomorphism.

Definition 2.5. A G-module is a vector space V together with an operation
G×V → V of G on V such that, for each g in G, the map v 7→ gv is linear. If
the action is clear from the context then we simply say that V is a G-module.
The group homomorphism

ρ : G→ GL(V ), ρ(g)(v) = gv

is called the representation afforded by V . If G acts from the right on V , then
we say that V is a right G-module. (In this case ρ satisfies ρ(gh) = ρ(h)ρ(g)
for all g, h in G.)

Remark. If there exists a representation of G on V , i.e. a group homo-
morphism ρ : G → GL(V ), then V becomes a G-module via the action
(g, v) 7→ gv := ρ(g)(v) and ρ is the representation afforded by this V -module.

Definition 2.6. Let V be a G-module and ρ be the representation afforded
by V . Suppose that there exists a surjective group homomorphism π from G
onto H. If ρ factors through π, then we say that the representation of G
factors through a representation of H and that the G-action on V factors
through an action of H.

Definition 2.7. Let V be a finite dimensional complex Hilbert space with
inner product 〈 , 〉. We call a representation ρ : G→ GL(V ) unitary if ρ(g)
is unitary for every g in G (i.e. if 〈ρ(g)v, ρ(g)w〉 = 〈v, w〉 for all v, w in V ).
We say that G acts unitarily on V , if the afforded representation is unitary.

Definition 2.8. Let V be G-module and ρ be the representation afforded
by V . A subspace W of V is called a G-invariant subspace of V or a G-
submodule of V , if gW ⊆ W (g ∈ G). The G-module V or the representa-
tion ρ is called irreducible, if there is no proper nonzero G-invariant subspace
of V .
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Definition 2.9. Let V be a G-module and ρ be the representation afforded
by V . For g ∈ G, we use tr(g, V ) for the trace of the matrix determined by the
automorphism ρ(g) of V . The map χV : G→ C defined by χV (g) = tr(g, V )
is called the character of the G-module V and the character or trace of ρ.

An irreducible character of G is a character of an irreducible G-module.
A linear character of G is a character of a one-dimensional G-module.

Remark. Every linear character of a finite group G gives rise to a group
homomorphism from G to S1, and vice versa.

Proposition 2.10. If V =
⊕n

i=1 Vi is a decomposition of V into G-invariant
subspaces, then the character of V equals the sum of the characters of Vi,
i.e. we have:

χV (g) =
n∑
i=1

χVi(g) (g ∈ G).

Proof. We proceed by induction on n. For n = 1, the result is immediate.
We prove the result for n = 2. Write V = A

⊕
B, where A and B are G-

invariant subspaces of V . Let {a1, . . . , as} be a basis for A and {b1, . . . , bt}
be a basis for B, and let g in G. Since A and B are G-submodules of V ,
we have gai ∈ A and gbj ∈ B, and therefore gai =

∑s
k=1 ckiaj and gbj =∑t

l=1 dljbl with cki, dlj ∈ C. But then tr(g, A) =
∑

k ckk, tr(g,B) =
∑

l dll
and tr(g, V ) =

∑
k ckk+

∑
l dll, which is the claimed formula. Suppose n ≥ 2.

Using the previous result, we have tr(g, V ) = tr(g, Vn) + tr
(
g,
⊕n−1

i=1 Vi
)
. By

induction hypothesis, we have tr
(
g,
⊕n−1

i=1 Vi
)

=
⊕n−1

i=1 tr(g, Vi). This proves
the proposition.

Definition 2.11. Let V and W be G-modules. A C-linear map ϕ : V → W
is called G-linear, if ϕ(gv) = gϕ(v) (g ∈ G, v ∈ V ).

Definition 2.12. Let V and W be G-modules. Let ρ and σ stand for the
representations afforded by V and W , respectively. We say that V and W
are isomorphic as G-modules, and that ρ and σ are equivalent, if there exists
a G-linear isomorphism τ : V → W (or, equivalently, if there exists an
isomorphism of vector spaces τ : V → W such that τ ◦ ρ(g) = σ(g) ◦ τ for all
g ∈ G).

Proposition 2.13 ([FH91, Cor. 2.13, Cor. 2.14]). Let G be a finite group.
The set of irreducible characters of G is finite. Two G-modules are isomor-
phic as G-modules if their characters coincide.

Definition 2.14. For a G-module V we use V G for the subspace of G-
invariants of V , i.e. the subspace of all v in V such tat gv = v for all g
in G.
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Proposition 2.15. Let G be a finite group. If V is a G-module, then the
application v 7→ 1

|G|
∑

g∈G gv defines a surjective map ϕ : V → V G.

Proof. It is clear that the map is well defined, i.e. ϕ(V ) ⊆ V G. Suppose
v ∈ V G. Then we have gv = v for all g. Hence ϕ(v) = v, which implies that
the map is surjective.

Proposition 2.16. Let V be a G-module. Suppose V =
⊕r

i=1 Vi with irre-
ducible G-submodules Vi. If W is a nonzero irreducible G-submodule of V ,
then W is G-linearly isomorphic to Vi for some i.

Proof. Let Pi denote the projection of V onto Vi. Then
∑r

i=1 Pi = 1. Since
W 6= 0, there exists some i such that Pi(W ) 6= 0. Since Pi(W ) is a G-
submodule of Vi, and Vi is irreducible, we have Pi(W ) = Vi. So, the map Pi|W
is surjective. But the kernel of Pi|W is a G-submodule of W , so it must be
zero, since W is irreducible and Pi|W 6= 0. This proves the proposition.

Proposition 2.17 ([FH91, Prop. 1.8]). Let G be finite, let Ĝ denote the set

of irreducible characters of G. For χ in Ĝ, let V χ denote the sum of those
G-submodules of V which afford the character χ. Then V χ is the largest
G-submodule of V whose character is a multiple of χ. Moreover, one has

V =
⊕
χ∈Ĝ

V χ. (2.1)

If V =
⊕m

j=1Wj is a decomposition of V into G-submodules Wj such that
the character of Wj is a multiple of an irreducible character χj and such that
χj 6= χk for j 6= k, then Wj = V χj , and the splitting V =

⊕
Wj coincides

with the decomposition (2.1) (after deleting zero spaces up to permutation of
the summands).

Definition 2.18. The decomposition (2.1) is called the canonical decompo-
sition of the G-module V .

Remark. If G is abelian, then Ĝ is a group with respect to the usual mul-
tiplication of functions. Namely, Ĝ coincides with the group of linear char-
acters of G, called the dual group of G. In this case, for χ ∈ Ĝ, we have
V χ =

∑
v Cv, where the sum is over all v ∈ V which satisfy gv = χ(g)v for

all g ∈ G. In other words, we have

V χ = {v ∈ V : gv = χ(g)v,∀g ∈ G}.
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Proposition 2.19. We carry over the notations of Proposition 2.17. Let Vi
be an irreducible G-submodule of V χ. Then,

dimV χ =
dimVi
|G|

∑
g∈G

χVi(g)χV (g).

Proof. From [FH91, eq (2.32)], we know that π : dimVi/|G|
∑

g∈G χVi(g)g
defines a projection from V onto V χ. Let v1, . . . , vm be a basis for V χ and
vm+1, . . . , vn be a basis for the kernel of π. Hence, v1, . . . , vn becomes a basis
for V . We then have π(vi) = vi for 1 ≤ i ≤ m and π(vi) = 0 otherwise. Hence
dimV χ equals the trace of the map π. This proves the proposition.

Corollary 2.20. Let G be a finite group and V be a G-module. We have

dimV G =
1

|G|
∑
g∈G

χV (g).

Proof. This follows immediately from Proposition 2.19 in the case of χ being
the trivial character.

Let V and W be G-modules. The spaces V ⊕W and V ⊗W are also
G-modules via

(g, v ⊕ w) 7→ (gv ⊕ gw), (g, v ⊗ w) 7→ (gv ⊗ gw), (2.2)

respectively. The space of all C-linear maps from V to W is denoted by
Hom(V,W ). In particular, we set V ∗ := Hom(V,C). Moreover, the space of
all G-linear maps from V to W is denoted by HomG(V,W ). In particular, the
space HomG(V, V ) is called the intertwining algebra of V . It is not difficult
to see that Hom(V,W ) is a G-module via the following G-action

(g, λ) 7→ gλ, gλ(v) := gλ(g−1v). (2.3)

In fact, (2.3) defines also a G-module structure on Hom(V,W ) if V = W
and if V is not a G-module but only a projective G-module (see Defini-
tion 2.23 below), provided the projective representation ρ afforded by V
satisfies ρ(g−1)ρ(g) = 1.

We denote by V • the G-module whose underlying vector space is the dual
space V ∗ of V and where the G-action is given by:

(g, λ) 7→ gλ where gλ(v) = λ(g−1v). (2.4)

The spaces V • ⊗W and Hom(V,W ) can be identified via the following
G-module isomorphism

V • ⊗W → Hom(V,W ), λ⊗ ω 7→ “v 7→ λ(v)ω”. (2.5)
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Proposition 2.21. Let V , W be G-modules. The following holds true:

HomG(V,W ) = Hom
(
V,W )G.

Proof. From (2.3), for any g ∈ G and any v ∈ V , we have gλ(v) = gλ(g−1v).
So, if λ is G-linear (i.e. λ ∈ HomG(V,W )), then clearly gλ = λ (i.e. λ ∈
Hom

(
V,W )G). On the other hand, if gλ = λ, then clearly g−1λ(v) = λ(g−1v)

which implies that λ is G-linear. This proves the proposition.

Proposition 2.22. Let G be a finite group, and V be a G-module. The num-
ber of irreducible G-submodules of V is less than or equal to the dimension
of the space HomG(V, V ).

Proof. Let χj (j = 1 . . . ,m) be the characters of the distinct irreducible
G-submodules of V (see Proposition 2.13 for finiteness of the number of
irreducible characters). Let V = ⊕mj=1V

χj be the canonical decomposition
of V (see Proposition 2.17), where V χj is the sum of those G-submodules
of V which have character χj. It is enough to prove

HomG(V, V ) ' ⊕mj=1 HomG(V χj , V χj). (2.6)

Namely, let V χj =
⊕dj

k=1 Vj,k be a decomposition into irreducible submodules.
Then, from the fact dim HomG(V χj , V χj) = d2

j which we shall prove in a
moment, we obtain dim HomG(V, V ) ≥ m (since d2

j ≥ 1 for all j).
First we prove dim HomG(V χj , V χj) = d2

j . From Proposition 2.21, we
have HomG(V χj , V χj) = Hom(V χj , V χj)G. Using Corollary 2.20, we then
have

dim HomG(V χj , V χj) =
1

|G|
∑
g∈G

χHom(V χj ,V χj )(g).

But via the identification in (2.5) and [FH91, Prop. 2.1], we have

χHom(V χj ,V χj ) = χV χjχV χj = d2
jχjχj.

Using [FH91, eq. (2.10)], we now recognize the claimed identity.
Finally, we prove (2.6). Let L ∈ HomG(V, V ). If we can show that for each

j, L(V χj) is a subset of V χj , then obviously the map L 7→ (L|V χj )j defines an

isomorphism. Since L is a linear map, we can write L(V χj) =
∑dj

k=1 L(Vj,k).
The kernel of L|Vj,k is either 0 or Vj,k, since Vj,k is an irreducible G-module.
If the kernel of L|Vj,k is Vj,k, there is nothing to prove. Suppose the kernel of
L|Vj,k is 0. Then L(Vj,k) ' Vj,k, and hence L(Vj,k) ⊆ V χj . But this implies
that L(V χj) ⊆ V χj .
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Definition 2.23. A projective action of G on a vector space V is a map
G × V → V , (g, v) 7→ gv such that, for all g, h ∈ G, there exists a constant
λ(g, h) ∈ C∗ such that

(i) g(hv) = λ(g, h)(gh)v (v ∈ V, g, h ∈ G),

(ii) 1v = v (v ∈ V ) .

The space V is then called a projective G-module. The map ρ : G→ GL(V ),
ρ(g) = gv is called the projective representation afforded by the projective
G-module V . The map λ : G×G→ C∗ is called the multiplier system of the
projective G-module V .

Remark. Note that the projective representation afforded by the G-module V
satisfies ρ(g)ρ(h) = λ(g, h)ρ(gh) for all g, h in G. If vice versa ρ is a projective
representation of G, i.e. if ρ is a map ρ : G→ GL(V ) such that for all g, h ∈ G
there exists a constant λ(g, h) ∈ C∗ which satisfies

ρ(g)ρ(h) = λ(g, h)ρ(gh) (g, h ∈ G),

then the map (g, v) 7→ ρ(g)(v) defines a projective G-module structure on V
and ρ is the projective representation afforded by V .

Remark. Note that the multiplier system of a projective G-module satisfies

λ(1, g) = λ(g, 1) = 1 (2.7)

λ(g′, g′′)λ(g, g′g′′) = λ(g, g′)λ(gg′, g′′), (2.8)

as follows immediately from the axioms (i) and (ii). Indeed, for proving (2.8),
we write, for v ∈ V

g
(
g′(g′′v)

)
= λ(g′, g′′)g

(
(g′g′′)v

)
= λ(g′, g′′)λ(g, g′g′′)(gg′g′′)v

g
(
g′(g′′v)

)
= λ(g, g′)(gg′)(g′′v) = λ(g, g′)λ(gg′, g′′)(gg′g′′)v,

and comparing yields the claimed cocycle relation.

Definition 2.24. Let V be a projective G-module with multiplier system λ.
We define GV to be the set

GV = {(g, ξ) : g ∈ G, ξ ∈ C},

where C is the subgroup of C∗ generated by the λ(g, h) (g, h ∈ G) together
with the multiplication

(g, ξ) · (g′, ξ′) :=
(
gg′, ξξ′λ(g, g′)

)
. (2.9)
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Proposition 2.25. The multiplication (2.9) defines the structure of a group
on GV . The sequence

1→ C
ι−→ GV

π−→ G→ 1,

where ι(ξ) = (1, ξ) and π(g, ξ) = g, and the subgroup ι(C) lies in the center
of GV . In short, GV is a central extension of G by the abelian group C.

Proof. First we show that GV becomes a group with the operation given
in (2.9). The neutral element of GV is (1, 1) as follows from (2.7). The
inverse of an arbitrary element (g, ξ) is

(
g−1, ξ−1λ(g, g−1)−1

)
.

It remains to prove the associativity of the multiplication, i.e. we need to
prove

(g, ξ) ·
(
(g′, ξ′) · (g′′, ξ′′)

)
=
(
(g, ξ) · (g′, ξ′)

)
· (g′′, ξ′′).

On the left we have (
gg′g′′, ξξ′ξ′′λ(g′, g′′)λ(g, g′g′′)

)
.

On the right we have (
gg′g′′, ξξ′ξ′′λ(g, g′)λ(gg′, g′′)

)
.

Applying (2.8) shows that both sides coincide.
The exactness of the given sequence is obvious. That ι(C) lies in the

center of GV follows again from (2.7).

Proposition 2.26. Let V be a projective G-module. The space V becomes a
GV -module via the following GV -action:(

(g, ξ), v
)
7→ (g, ξ)v := ξ(gv).

Proof. Clearly (1, 1) acts as identity. Let (g, ξ), (g′, ξ′) ∈ GV . For checking
the second axiom for a G-action we calculate(

(g, ξ) · (g′, ξ′)
)
v =

(
gg′, ξξ′λ(g, g′)

)
v = ξξ′λ(g, g′)gg′v

= ξξ′
(
g(g′v)

)
= ξ
(
g(ξ′g′v)

)
= (g, ξ)

(
(g′, ξ′)v

)
.

This proves the proposition.

2.2 The Weil representation W (M)

Theorem 2.1. The group Γ = SL(2,O) is generated by S = ( 0 −1
1 0 ) and

Tb = ( 1 b
0 1 ) (b ∈ O).
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Proof. A theorem of Vaserstein [Vas72, First Thm.] states that Γ is generated
by the matrices T c := ( 1 0

c 1 ) and Tb (b, c ∈ O). However, we have the following
easily deduced identity:

T−b = STbS
−1.

Let M = (M,Q) be an O-FQM with associated bilinear form B. We
use C[M ] for the complex vector space of maps M → C. Recall from the
section Notations that the functions ex (x ∈M) form a basis of C[M ]. To the
generators of Γ from Theorem 2.1 we assign linear operators U(S) and U(Tb)
on C[M ] by setting for the basis elements ex:

U(Tb)ex = e {bQ(x)} ex (b ∈ O)

U(S)ex = σ(M)
1√
|M |

∑
y∈M

e {−B(y, x)} ey. (2.10)

Recall from Definition 1.8 that we have σ(M) = 1√
|M |

∑
x∈M e {−Q(x)}.

As it will turn out later we can extend the map A 7→ U(A) (A one of
our generators) to a projective representation of Γ (Theorem 2.7). Hence
we can find a central extension ΓM of Γ which acts on C[M ] such that the
action of suitable preimages of S and Tb in the extension is given by the
operators U(S) and U(Tb) (see Proposition 2.26). However, this extension
would a priori depend on the particular underlying O-FQM. Since, on the
one hand side, we need such an extension (not necessarily central) which does
not depend on the underlying O-FQM, and since we do not want to analyze
these extensions ΓM more closely here, we adopt the following strategy.

For the rest of this chapter we fix once and for all a group Γ̃ such that
the following four conditions are satisfied:

(i) Γ̃ acts on W (M) for all O-FQM M

(ii) There exists T ∗b (b ∈ O), S∗ ∈ Γ̃ such that, for every O-FQM M , we
have, for all x ∈M , the identities

T ∗b ex = U(Tb)ex, S∗ex = U(S)ex, (2.11)

where U(Tb) and U(S) are given by (2.10).

(iii) Γ̃ is generated by S∗ and T ∗b (b ∈ O).

(iv) There is an epimorphism from Γ̃ to Γ which maps S∗ to S and T ∗b to Tb
for b in O.
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In fact, such a group exists. For example, we can take the free group
generated by elements S∗ and T ∗b (b ∈ O), or if K is totally real and if we
restrict our theory to O-FQM which are discriminant modules of a totally
positive definite even O-lattice (see Definition 3.3), then by Theorem 3.4 we
can take for Γ̃ the metaplectic cover of SL(2,O) defined in the next chapter
in Section 3.3. In fact, we expect that we can always take Γ̃ to be the
metaplectic cover of SL(2,O) 1, however, an analysis of this seems to be
quite subtle and since not needed here, we do not pursue it further.

Definition 2.27. Let M be an O-FQM. We write W (M) for the Γ̃-module
C[M ] with the Γ̃-action (2.11). By slight abuse of language, we shall refer
to W (M) as the Weil representation associated to M . The Weil representa-
tion associated to an O-CM is called a cyclic Weil representation.

The particular choice of Γ̃ is not important for us because of the following
proposition, whose proof is obvious.

Proposition 2.28. Suppose Γ̃1 is a group satisfying (i), (ii), (iii) and (iv)
(with Γ replaced by Γ̃1). If W (M) =

⊕
jMj, where the Mj are Γ̃-submodules,

then the Mj are also Γ̃1-submodules. If Mj ⊆ W (M) is irreducible with
respect to Γ̃, then it is also irreducible with respect to Γ̃1.

By
〈
· | ·

〉
, we denote the Hermitian scalar product on W (M) which is

anti-linear in the second argument and which satisfies:

〈
ex | ey

〉
=

{
1 if x = y

0 otherwise.
(2.12)

Proposition 2.29. Let M = (M,Q) be an O-FQM. The operators U(Tb)
(b ∈ O)and U(S) are unitary with respect to the scalar product in (2.12). In
particular, the action of Γ̃ is unitary with respect to this scalar product.

Proof. It suffices to show that the operators U(Tb) and U(S) are unitary. For
the former ones this is obvious. For proving that U(S) is unitary let B be
the bilinear form of M and let v, v′ ∈ W (M), so that v =

∑
x∈M v(x)ex and

v′ =
∑

x′∈M v′(x′)ex′ . By (2.10) we have

U(S)v =
σ(M)√
|M |

∑
x∈M

v(x)
∑
y∈M

e {−B(y, x)} ey,

1We thank Prof. Jens Funke for the hint that a positive answer might be possible
by studying the infinite dimensional Weil representations of the metaplectic cover of the
group SL(2,R)n (n the degree of K over Q).
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and similarly for v′. Hence we have〈
U(S)v|U(S)v′

〉
=
|σ(M)|2

|M |
∑

x,x′∈M

v(x)v′(x′)
∑
y∈M

e {B(y,−x+ x′)} .

The inner sum equals zero if x′ 6= x (see Proposition 1.11), and otherwise
it equals |M |. From Proposition 1.10, we know |σ(M)| = 1. It follows
that U(S) is unitary.

2.3 Decomposition of Weil representations

The purpose of this section will be to determine subrepresentations of the
Γ̃-modules W (M), which were introduced in the preceding section. We shall
not derive a complete decomposition in general. However our results will
suffice to give a complete decomposition of W (M) in the important case of
a cyclic M . The main results are Theorems 2.2 and 2.3.

For our language concerning representations of groups the reader is re-
ferred to Section 2.1. For the notions concerning finite quadratic O-modules
that we use in the sequel, e.g. orthogonal groups, isotropic modules an so on,
we refer to reader to Section 1.1.

We shall first explain the main results of this section and state three
auxiliary propositions which are needed for the understanding of the main
results. The rest of this section is dedicated to the proofs of these auxiliary
propositions (Propositions 2.30, 2.34, and 2.35) and the proofs of the main
results.

The decomposition of the Γ̃-modules is based on two principles. The first
one is that the Weil representation of a quotient of an O-FQM M embeds
naturally into W (M) as Γ̃-submodule.

Proposition 2.30. Let M = (M,Q) be an O-FQM and U be an isotropic
submodule of M . The linear map

ιU : W (M/U) ↪→ W (M), eX 7→
∑
y∈X

ey

defines a Γ̃-linear embedding (i.e. an injective Γ̃-module homomorphism).

Definition 2.31. Let M = (M,Q) be an O-FQM. We define the new part
W (M)new of W (M) as the orthogonal complement of the subspace∑

U⊆M
U isotropic
U 6=0

ιUW (M/U)
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with respect to the scalar product in (2.12). Here the sum is over all isotropic
submodules U 6= 0 of M .

Remark. By Proposition 2.30 the spaces ιUW (M/U) are Γ̃-invariant, and
hence their sum is so too. Since Γ̃ acts unitarily (see Proposition 2.29) the
space W (M)new is in fact a Γ̃-submodule of W (M).

Theorem 2.2. Let M = (M,Q) be an O-FQM. We have the following de-
composition of W (M) into Γ̃-submodules:

W (M) = W (M)new ⊕
∑
U⊆M

U isotropic
U 6=0

ιUW (M/U)new. (2.13)

If M contains only one maximal isotropic submodule, then the second sum
in (2.13) is an orthogonal sum with respect to the scalar product (2.12).

Remark. Note that the decomposition (2.13) is a direct sum decomposition
for O-CM, since a cyclic M contains only one maximal isotropic submodule
(see the remark after Theorem 1.2). Recall also that there exist also O-
FQM which are not cyclic but contain only one maximal maximal isotropic
submodule. The condition that there exists only one maximal isotropic sub-
module is not necessary for the decomposition in (2.13) to be direct as the
subsequent Example 2.32 shows. However, this condition is also not super-
fluous as we shall show in the Example 2.33 below.

Example 2.32. We show that the sum (2.13) applied to the finite quadratic
Z-module N := (Z/2Z× Z/2Z, Q), where Q(x + 2Z, y + 2Z) = xy/2 + Z,
is direct. The nonzero isotropic submodules of N are U1 = 〈([0], [1])〉,
U2 = 〈([1], [0])〉. (Here we use [x] = x + 2Z.) Since |U#

i | · |Ui| = 4 (Propo-
sition 1.7) the quotient modules N/Ui are trivial, in particular, W (N/Ui) =
W (N/Ui)

new. They are spanned by the vectors e([0],[0]) + e([0],[1]) and e([0],[0]) +
e([1],[0]), respectively, which are obviously linearly independent. We thus have
W (N) = W (N)new ⊕ ιU1W (N/U1)new ⊕ ιU2W (N/U2)new.

Example 2.33. Let N ′ := (Z/2Z× Z/2Z, Q′), where Q′ denotes the qua-
dratic form Q′(x + 2Z, y + 2Z) = (x2 + xy + y2)/2 + Z. We show that the
sum (2.13) applied to M := N ′⊕N , where N is as in Example 2.32, is not di-
rect. The nonzero isotropic submodules of M are U1 =

〈
([0], [0])⊕ ([0], [1])

〉
,

U2 =
〈
([0], [0]) ⊕ ([1], [0])

〉
, U3 =

〈
([1], [1]) ⊕ ([1], [1])

〉
, U4 =

〈
([0], [1]) ⊕

([1], [1])
〉

and U5 =
〈
([1], [0])⊕ ([1], [1])

〉
. Note that, for all i, Ui is maximal.

The order of M/Ui equals 4 (Proposition 1.7). Since the Ui are maximal,
the Z-FQM M/Ui are anisotropic, i.e have no nonzero isotropic submodules.
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(In fact, one can show that M/Ui is isomorphic to N ′.) Hence we have
ιUiW (M/Ui) = ιUiW (M/Ui)

new. Since W (M) has dimension 16 the sum of
the five four-dimensional spaces ιUiW (M/Ui)

new cannot be direct.

The second principle for decomposing a Weil representation W (M) is
the natural action of the orthogonal group O(M) on W (M) coming from the
permutation representations given by its action on M . The main observation
is that this action intertwines with the action of Γ̃.

Proposition 2.34. The group O(M) acts on the space W (M) via linear
continuation of the map: (

ϕ, ex
)
7→ ϕ ex := eϕ(x). (2.14)

This action is unitary with respect to the scalar product 2.12. The action
of O(M) and the action of Γ̃ on W (M) commute.

In fact, the action of the orthogonal groups enables us to further decom-
pose the spaces W (M))new into Γ̃-submodules as is explained by the next
proposition.

Proposition 2.35. Let M = (M,Q) be an O-FQM. The space W (M)new is
O(M)-invariant.

Theorem 2.3. Let M = (M,Q) be an O-FQM. For each irreducible char-
acter of O(M), the sum W (M)new,χ of those O(M)-submodules of W (M)new

which afford the character χ, is invariant under Γ̃. In particular, we have
the decomposition of W (M)new into Γ̃-submodules

W (M)new =
⊕

χ∈Ô(M)

W (M)new,χ. (2.15)

(Recall Ô(M) denotes the set of irreducible characters of the orthogonal
group O(M).)

Remark. Note that the components of the decomposition (2.15) are in general
not irreducible Γ̃-modules. However, for O-CM, they turn out be irreducible
(see Section 2.4).

Proof of Proposition 2.30. Let B stand for the bilinear form associated of M .
It is enough to prove the result for the elements T ∗b (b ∈ O), S∗. Let b ∈ O.
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Using the T ∗b -action in (2.11), the result holds true for T ∗b , since we have the
following identity for any x ∈ U#:

ιU(T ∗b ex+U) = e {bQ(x)} ιU(ex+U) = e {bQ(x)}
∑
y∈x+U

ey =
∑
y∈x+U

e {bQ(y)} ey

=
∑
y∈x+U

T ∗b ey = T ∗b ιU(ex+U).

The third identity follows from the very definition of isotropic submodules.
We set CM/U := σ(M/U) 1√

|U#/U |
and CM := σ(M) 1√

|M |
. To prove

the claimed identity for S∗, first we determine ιU(S∗ex+U). Later we shall
compare this with S∗ιU(ex+U). For any x ∈ U#, using the S∗-action in (2.11),
we have

ιU(S∗ex+U) = CM/U

∑
y+U∈M/U

e {−B(y + U, x+ U)} ιUey+U

= CM/U

∑
y+U∈M/U

e {−B(y + U, x+ U)}
∑

y′∈y+U

ey′

= CM/U

∑
y+U∈M/U

∑
y′∈y+U

e {−B(y + U, x+ U)} ey′

= CM/U

∑
y∈U#

e {−B(y, x)} ey.

On the other hand, again from the S∗-action in (2.11), we have

S∗ιU(ex+U) =
∑

y′∈x+U

S∗ey′ = CM
∑

y′∈x+U

∑
y∈M

e {−B(y, y′)} ey

= CM
∑
y∈M

ey
∑

y′∈x+U

e {−B(y′, y)}

= CM
∑
y∈M

e {−B(y, x} ey
∑
u∈U

e {−B(y, u)}

= |U |CM
∑
y∈U#

e {−B(y, x)} ey.

For the last identity we used the fact that the inner sum in the previous
sum is zero unless y ∈ U#, when it equals |U |. To obtain the claimed
identity for S∗, it remains to prove the identity |U |CM = CM/U . But from
Proposition 1.9, we have σ(M) = σ(M/U) and from Proposition 1.7, we have√
|M | = |U |

√
|U#/U |.
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Remark. For every isotropic submodule U of M , the orthogonal projection
of W (M) onto ιUW (M/U) is given by the formula:

PM
U (v) =

1√
|U |

∑
X∈M/U

(∑
x∈X

v(x)

)∑
x∈X

ex.

This follows from the fact that the vectors 1√
|U |

∑
x∈X ex (X ∈ M/U) form

an orthonormal basis of the space ιUW (M/U). Note that v is in W (M)new

if and only if PM
U (v) = 0 for all U 6= 0.

For the proof of Theorem 2.2, we need two lemmas.

Lemma 2.36. Let M be an O-FQM and U ⊆ V be isotropic submodules
of M . The following diagram is commutative

W
(
M/U

/
V/U

) ϕ−−−→ W (M/V )

ιV/U

y yιV
W (M/U)

ιU−−−→ W (M),

where ϕ is induced by the canonical isomorphism (x+ U) + V/U 7→ x+ V .

Proof. First note that V ⊆ U#, since V isotropic (i.e. V ⊆ V #) and V # ⊆
U# (see the assumption). Note also that V/U is an isotropic submodule
of M/U and (V/U)# = V #/U . This shows that the map ϕ is well-defined.

The following identity proves the lemma:

ιV ◦ ϕ(e(x+U)+V/U) = ιV (ex+V ) =
∑
y∈x+V

ey =
∑

y+U∈(x+U)+V/U

∑
y′∈y+U

ey′

=
∑

y+U∈(x+U)+V/U

ιU(ey+U) = ιU ◦ ιV/U(e(x+U)+V/U).

Lemma 2.37. Let U , V be isotropic submodules of the O-FQM M such that
U + V is isotropic. Then we have

PM
U ιV =

√
|U ∩ V |ιV PM/V

(U+V )/V . (2.16)

Proof. By the remark after Theorem 2.2, we have

PM
U (ez) =

1√
|U |

∑
y∈U#

y≡z mod U

ey (z ∈M).
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First we evaluate the left hand side of (2.16) at ex0+V (x0 ∈ V #). We have

PM
U ιV (ex0+V ) =

1√
|U |

∑
y∈x0+V

∑
z∈U#

z≡y mod U

ez =
1√
|U |

∑
v∈V

∑
z∈U#

z≡x0+v mod U

ez

=
1√
|U |

∑
v∈V

∑
u∈U

x0+v+u∈U#

ex0+v+u.

The map

{(u, v) ∈ U + V : x0 + v + u ∈ U#} ϕ−→ {z ∈ U# ∩ V # : z ≡ x0 mod U + V }

given by ϕ(u, v) = x0 + v + u is obviously a surjective map. The well-
definedness of ϕ follows from the fact that U ⊆ V # and V ⊆ U#, since U+V
is isotropic. We claim that each fiber has |U ∩ V |-many elements. Let z be
an element of the right hand side. Since ϕ is surjective, there exist (u, v)
such that ϕ(u, v) = z. The number of elements in the fiber of z equals the
number of elements in {(u, v) ∈ U + V : u+ v ≡ 0 mod U + V }. But this set
has clearly |U ∩ V |-many elements. Therefore, we have

PM
U ιV (ex0+V ) = |U ∩ V | 1√

|U |

∑
z∈U#∩V #

z≡x0 mod U+V

ez. (2.17)

Since
(
(U + V )/V

)#
=
(
U# ∩ V #

)
/V , we have

ιV P
M/V
(U+V )/V (ex0+V ) =

1√
|
(
U + V

)
/V |

∑
Y ∈(U#∩V #)/V

Y≡x0+V mod (U+V )/V

ιV eY

=
1√

|
(
U + V

)
/V |

∑
Y ∈(U#∩V #)/V

Y≡x0+V mod (U+V )/V

∑
y∈Y

ey.

By doing the substitution Y 7→ π(y) (where Y = y+V and π is the canonical
projection from U# ∩ V # onto

(
U# ∩ V #

)
/V ), we obtain

ιV P
M/V
(U+V )/V (ex0+V ) =

1

|V |
1√

|
(
U + V

)
/V |

∑
y∈U#∩V #

y≡x0 mod U+V

∑
y′≡y mod V

ey′ .

Now we study the map ϕ′ from {(y, y′) ∈ (U#∩V #)2 : y ≡ x0 mod U+V, y′ ≡
y mod V } to {z ∈ U#∩V # : z ≡ x0 mod U+V } which is defined by (y, y′) 7→
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y′. The map ϕ′ is surjective. Indeed, let z be an element of the latter set.
Then clearly ϕ′(z, z) = z. We claim that each fiber has |V |-many elements.
The fiber of z equals {y ∈ U# ∩V # : y ≡ x0 mod U +V, y ≡ z mod V }. But
since y − z ∈ V implies that y − x0 mod U + V , we observe that the fiber
of z has |V |-many elements. Therefore, we have

ιV P
M/V
(U+V )/V (ex0+V ) =

1√
|
(
U + V

)
/V |

∑
z∈U#∩V #

z≡x0 mod U+V

ez. (2.18)

In view of the identities (2.17) and (2.18), to show that (2.16) holds true, it
remains to prove the following identity:

|U ∩ V | 1√
|U |

=
√
|U ∩ V | 1√

|
(
U + V

)
/V |

.

But the second isomorphism theorem for modules implies that
(
U +V

)
/V '

U/
(
U ∩ V

)
, and hence the claimed identity holds true.

Proof of Theorem 2.2. We proceed by induction on the order of M . If M
does not possess isotropic submodules, then there is nothing to prove. Oth-
erwise, by the definition of W (M)new, we have

W (M) = W (M)new ⊕
∑
U⊆M

U is isotropic
U 6=0

ιUW (M/U).

By induction hypothesis for U 6= 0, we can write

W (M/U) =
∑

V/U⊆M/U
V/U isotropic

ιV/UW
(
(M/U)/(V/U)

)new
.

Inserting this into the first identity, we obtain

W (M) = W (M)new ⊕
∑
U⊆M

U is isotropic
U 6=0

∑
V/U⊆M/U
V/U isotropic

ιU ιV/UW
(
(M/U)/(V/U)

)new
.

The claimed decomposition follows now by the identity

ιU ιV/UW
(
(M/U)/(V/U)

)new
= ιVW (M/V )new

which is obvious from Lemma 2.36.
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For proving the second statement of the theorem, assume that there is
only one maximal isotropic submodule in M , or, equivalently, that the set of
isotropic submodules of M is closed under addition. Let U and V be isotropic
submodules, U 6= V . It suffices to show that ιVW (M/V )new is orthogonal
to ιUW (M/U). By Lemma 2.37, we have

PM
U ιVW (M/V )new =

√
|U ∩ V |ιV PM/V

(U+V )/VW (M/V )new.

Since U 6= V , we have
(
U + V

)
/V 6= 0. Hence the right hand side of

the last identity is zero (see the second remark after the proof of Proposi-
tion 2.30). But this means ιVW (M/V )new is in the kernel of the orthog-
onal projection PM

U , hence it is perpendicular to the image of PM
U , which

equals ιUW (M/U). This proves the theorem.

Proof of Proposition 2.34. It is clear that the map in the statement of the
proposition defines indeed an action. The action is unitary with respect
to (2.12), since the elements of the orthogonal group are in fact automor-
phisms on M .

We show in the following that the actions of O(M) and W (M) commute.
Let B be associated bilinear form of M . Let ϕ ∈ O(M) and b ∈ O, x ∈ M .
The action of T ∗b (see (2.11)) and O(M) commute, since:

ϕT ∗b ex = e {bQ(x)}ϕex = e {bQ(x)} eϕ(x) = e {bQ(ϕ(x))} eϕ(x)

= T ∗b eϕ(x) = T ∗b ϕex.

Similarly, the action of S∗ (see (2.11)) and O(M) commute, since we have:

ϕS∗ex =
σ(M)√
|M |

∑
y∈M

e {−B(y, x)}ϕey =
σ(M)√
|M |

∑
y∈M

e {−B(y, x)} eϕ(y)

=
σ(M)√
|M |

∑
y∈M

e
{
−B(ϕ−1(y), x)

}
ey =

σ(M)√
|M |

∑
y∈M

e {−B(y, ϕ(x))} ey

= S∗eϕ(x) = S∗ϕex.

To obtain the third identity, we did the substitution ϕ(y) 7→ y in the previous
sum. The forth identity holds true by the very definition of the orthogonal
group.

For the proof of Proposition 2.35 we need a lemma.

Lemma 2.38. Let M = (M,Q) be an O-FQM and U be an isotropic sub-
module of M . If U is fixed by O(M), then for ϕ ∈ O(M), we have

ϕ ιU = ιUφU(ϕ), (2.19)

where φU : O(M)→ O(M/U) is defined by φU(ϕ)(x+ U) = ϕ(x) + U .
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Proof. Let B be associated bilinear form on M . We need to show first of all
that the map φU is well-defined. Let ϕ ∈ O(M). First we show that for any
x ∈ U#, ϕ(x) is an element of U#, i.e. B(ϕ(x), U) = 0. But this follows from
the very definition of the orthogonal group. By the same reasoning, we also
have φU(ϕ) ∈ O(M/U). For the well-definedness it remains to show that φU
does not depend on the choice of the representatives of U#/U . Let x′ ∈ x+U .
Write x′ = x + u (u ∈ U). But we have ϕ(x′) − ϕ(x) = ϕ(x + u) − ϕ(x) =
ϕ(u) ∈ U . The last identity follows from the assumption that ϕ(U) = U .

The statement of the lemma holds true, since we have:

ϕ ιU(ex+U) =
∑
y∈x+U

ϕey =
∑
y∈x+U

eϕ(y) =
∑

ϕ−1(y)∈x+U

ey

=
∑

y∈ϕ(x)+U

ey = ιU(eϕ(x)+U) = ιU(φU(ϕ)ex+U).

For the third identity we did the substitution ϕ(y) 7→ y in the previous sum.
To obtain the forth identity we used the assumption ϕ(U) = U .

Proof of Proposition 2.35. This follows immediately from Proposition 2.34
and Lemma 2.38.

For the proof of Theorem 2.3, we need a lemma.

Lemma 2.39. Let M be an O-FQM. The space W (M)new,χ (χ ∈ Ô(M)) is
a Γ̃-submodule of W (M)new.

Proof. Write W (M)new,χ =
∑

i∈IWi, where {Wi}i∈I is the set of all O(M)-
submodules of W (M)new affording the character χ. It suffices to show that
the spaces αWi for α ∈ Γ̃, is again an O(M)-submodule of W (M)new affording
the character χ. But this follows immediately from the fact that x 7→ αx
defines an O(M)-module isomorphism of Wi and αWi since the actions of Γ̃
and of O(M) commute as Proposition 2.34 shows.

Proof of Theorem 2.3. Proposition 2.35 implies that the space W (M)new is
O(M)-invariant. Hence, by Proposition 2.17, we have the decomposition as
stated in the theorem. Finally by Lemma 2.39, we know that the components
of the decomposition are Γ̃-submodules of W (M)new.

2.4 Complete decomposition of cyclic repre-

sentations

In this section we shall show that, for a cyclic O-module M , the decompo-
sition of W (M) resulting from the combination of Theorems 2.2 and 2.3 is
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complete, i.e. the components occurring in the decomposition are all irre-
ducible. In addition, we shall derive dimension formulas for these irreducible
components.

Recall from Section 1.2 that for an O-FQM M = (M,Q) the level l,
the modified level m and the annihilator a satisfy m = l(2, l)−2 and a =
l(2, l)−1. Recall also, that, for cyclic M , the isotropic submodules are all of
the form ab−1M , where b runs through the square divisors of m. Finally
recall, that, for a cyclic M , the elements of the orthogonal group O(M) are
given by multiplication by the elements g in the subgroup E(M) ⊆ (O/a)∗ of
all ε+a such that ε2 ≡ 1 mod l (see Proposition 1.21). Via this identification
of O(M) with E(M) we shall henceforth consider W (M) as an E(M)-module
via the action (g, v) 7→ gv, where (gv)(x) = v(εx) if g = ε+ a.

In the following we consider W (M) as an E(M)-module.

Definition 2.40. Let M = (M,Q) be an O-CM with level l and modified
level m. For a square-free divisor f of m, we set

W (M)f := {v ∈ W (M) : v(gx) = ψf(g) v(x)for all g ∈ E(M), x ∈M}.

Here ψf denotes the linear character ψf(ε+ a) = µ
(
f, (ε+ 1)(2, l)−1

)
of E(M)

(see Proposition 1.23). Moreover, we define

W (M)new,f := W (M)new ∩W (M)f.

Remark. Note that for an O-CM M , the spaces W (M)new,f coincide with
the spaces W (M)new,ψ′f occurring in Theorem 2.3, where ψ′f is the charac-
ter of O(M) corresponding to ψf under the isomorphism E(M) ' O(M) of
Proposition 1.21.

Theorem 2.4. Let M = (M,Q) be an O-CM with level l, modified level m
and annihilator a.

(i) We have the following decomposition of W (M) into Γ̃-submodules:

W (M) =
⊕
b2|m

ιab−1MW (M
/
ab−1M)new. (2.20)

Here the sum is over all integral O-ideals b whose square divides m.

(ii) For W (M)new we have the decomposition

W (M)new =
⊕
f|m

f square−free

W (M)new,f (2.21)

into Γ̃-submodules. The W (M)new,f are irreducible Γ̃-submodules.
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(iii) For any square-free divisor f of m, we have

dimW (M)new,f = N(a)
∏
p‖m

1

2

(
1 +

µ(f, p)

N(p)

)∏
p2|m

1

2

(
1− 1

N(p2)

)
.

(2.22)

We subdivide the proof of the theorem into three parts.

Proof of Theorem 2.4 (i). The decomposition given in (i) is the decomposi-
tion of Theorem 2.2 specialized here to the case of cyclic finite quadratic O-
modules. The directness of the sum comes from the fact that a cyclic O-FQM
fulfills the assumption stated in Theorem 2.2, namely that it possesses only
one maximal isotropic submodule (see the remark after Theorem 1.2).

Next we shall prove (iii). For that we need a lemma.

Lemma 2.41. Suppose M = (M,Q) be an O-CM with annihilator a and
modified level m. The character χW (M)new of the E(M)-module W (M)new

satisfies

χW (M)new(ε+ a) =
∑
b2|m

µ(b) N
(
ε− 1, ab−2

)
.

Proof. Since the space W (M) is O(M)-invariant (see (2.14)), using the de-
composition in part (i) of Theorem 2.4 and also Proposition 2.10, we have

tr
(
ε+ a,W (M)

)
=
∑
b2|m

tr
(
ε+ ab−2,W (M

/
ab−1M)new

)
. (2.23)

Here we also used the identity

tr
(
ε+ a, ιab−1MW (M

/
ab−1M)new

)
= tr

(
ε+ ab−2,W (M

/
ab−1M)new

)
which is a consequence of Lemma 2.38 (when we apply this lemma we used
Corollary 1.19, which says that the annihilator of M

/
ab−1M equals ab−2).

If we can show that the following identity holds true

tr
(
ε+ a,W (M)new

)
=
∑
b2|m

µ(b) tr
(
ε+ ab−2,W (M

/
ab−1M))

)
, (2.24)

then the claimed formula in the statement of the lemma holds true. In-
deed, since W (M) is a permutation representation with respect to the action
of O(M) (see (2.14)), we then obviously have

tr
(
ε+ ab−2,W (M

/
ab−1M)

)
= N

(
ε− 1, ab−2

)
.
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Now we prove (2.24). First we calculate the right hand side of (2.24).
By inserting the value in (2.23) specialized to tr

(
ε+ ab−2,W (M

/
ab−1M))

)
and using Corollary 1.19 (which says that the annihilator and the modified
level of M

/
ab−1M equal ab−2 and mb−2, respectively), we obtain∑

b2|m

µ(b)
∑

b′2|mb−2

tr
(
ε+ ab−2b′−2,W (M ′)new

)
=
∑
b′′2|m

tr
(
ε+ ab′′−2,W (M ′)new

)∑
b|b′′

µ(b).

Here M ′ = M/ab−1M
/

(ab−2b′−1(ab−1M)#/ab−1M). For the above identity
we used the fact that the underlying module of M ′ is isomorphic to O/ab′′−2

(which follows from Theorem 1.1 (ii) and Theorem 1.2 (ii)).
But the inner sum in the second identity equals zero unless b′′ = O.

Therefore, the above identity equals tr
(
ε+ a,W (M)new

)
, i.e. (2.24) holds

true.

Proof of Theorem 2.4 (iii). By Proposition 2.19, the dimension of the E(M)-
module W (M)new,f is given by

dimW (M)new,f =
1

|E(M)|
∑

g∈E(M)

ψf(g)χW (M)new(g),

where we used that ψf(g), which is explained in Proposition 1.23, is real. We
write the formula for χW (M)new(g) from Lemma 2.41 in the form

χW (M)new(ε+ a) =
∏
p|m

I(ε, p),

I(ε, p) =

{
N(ε− 1, pa) if p‖m
N(ε− 1, pa)− N(ε− 1, pa−2) if p2|m,

where pa is the exact power of p dividing a. Inserting this quantity into the
dimension formula we obtain

dimW (M)new,f =
1

|E(M)|
∑

ε+a∈E(M)

ψf(ε+ a)
∏
p|m

I(ε, p).

Using the decomposition of E(M) into p-parts as given in Proposition 1.22
we can write

dimW (M)new,f =
∏
p|m

1

2

∑
ε+a∈〈εp+a〉

ψf(ε+ a) I(ε, p),
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where εp ≡ −1 mod pa, εp ≡ +1 mod ap−a. (We used here that I(ε, p) de-
pends only on ε modulo pa, and that the order of E(M) equals 2r, where r
is the number of different prime factors of m.) We denote the factor corre-
sponding to p by S(p). Recall that ψf(εp +a) = −1 if p|f and ψf(εp +a) = +1
otherwise (see Proposition 1.23 and the remark afterwards). In other words,
ψf(εp + a) = µ(f, p). Inserting this and the formulas for I(ε, p) into the
sum S(p) we obtain

S(p) =
1

2

{
N(pa) + µ(f, p) N(2, pa) if p‖m
N(pa)− N(pa−2) + µ(f, p)

(
N(2, pa)− N(2, pa−2)

)
if p2|m.

It remains to prove that N(2, pa) = N(pa−1) if p‖m, and N(2, pa) =
N(2, pa−2) if p2|m. This is obvious if p is odd.

If p is even and p‖m, then pa‖a = m(2, l) implies pa−1‖(2, l); but by
Proposition 1.13 we have vp(2, l) = vp(2). Similarly, if p is even and p2|m,
then pa‖a = m(2, l) implies that a − 2 ≥ vp(2, l), hence a − 2 ≥ vp(2). This
proves the claimed formula.

For the proof of the remaining part (ii) we need a lemma.

Lemma 2.42. Let m be an integral O-ideal. The number of pairs (b, f) of
integral O-ideals such that b2|m and f is a square-free divisor of mb−2 equals
equals σ0(m), i.e. the number of integral O-ideal divisors of m.

Proof. Denote the number of pairs (b, f) in question by I(m). It is easy to
see that the function I from the set of integral O-ideals into N is multiplica-
tive, i.e. it satisfies I(gh) = I(g)I(h) for O-ideals g and h with (g, h) = 1.
Hence, we have I(m) =

∏
pn‖m I(pn). Since σ0(m) is also multiplicative, it

suffices to show that, for each prime ideal power pn, we have I(pn) = σ0(pn).
Indeed, I(pn) equals the number of pairs (pk,O) with 0 ≤ 2k ≤ n plus the
number of pairs (pk, p) with 0 ≤ 2k < n. Hence

I(pn) =

{
2(1 + bn

2
c) if n is odd

1 + 2bn
2
c if n is even.

We observe that in any case I(pn) = n + 1, for each p, which equals σ0(pn).
This proves the lemma.

Proof of Theorem 2.4 (ii). The decomposition (2.21) given in (ii) is the de-
composition of Theorem 2.3, which we specialize here to cyclic finite qua-
dratic O-modules. Note that by the remark after Definition 2.40, the com-
ponents in (ii) coincide with the ones given in Theorem 2.3.
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It remains to prove that the components in (2.21) are irreducible. We shall
prove in the next section (see Corollary 2.47) that the number of irreducible
Γ̃-submodules ofW (M) is less than or equal to the number σ0(m). If we insert
the decompositions (2.21) for M/ab−1M with b running through the square
divisors of m into the decomposition (2.20), we have split W (M) into as many
Γ̃-submodules as there are pairs of integral O-ideals (b, f) with b2|m and f a
square-free divisor of mb−2. By Lemma 2.42 these are exactly σ0(m)-many Γ̃-
submodules in the decomposition of W (M), i.e. as many as our upper bound
for irreducible submodules in W (M). From the dimension formulas (2.22)
it is clear that none of the components in this splitting W (M) can be zero.
Therefore the Γ̃-submodules in this splitting cannot split further and must
hence be irreducible. This proves the theorem.

2.5 The one dimensional subrepresentations

In the present section, we shall prove that, for a cyclic M , the space W (M)
contains one-dimensional Γ̃-submodules if and only if the level of M is a
character ideal (see the subsequent definition) times a square dividing the
modified level of M . Moreover, we shall also determine basis elements for
the one-dimensional submodules of cyclic Weil representations.

Recall that if M is an O-FQM with level l, the modified level of M
equals l(2, l)−2, and the annihilator of M equals l(2, l)−1.

Definition 2.43. A character ideal c is an integral O-ideal of the form c =∏s
i=1 pi

∏t
j=1 q

3
j , where the pi are pairwise different prime ideals of degree one

dividing 3, and where the qj are pairwise different prime ideals of degree and
ramification index one dividing 2.

Remark. Note that s or t might be equal to zero. If t = 0, then c is called an
odd character ideal.

Definition 2.44. For a prime ideal p of degree one over 3, we use χp for
the nontrivial Dirichlet character modulo p. For a prime ideal q of degree
one over 2, we use χq2 for the nontrivial Dirichlet character modulo q2. For
square-free products g and h of prime ideals of degree one over 3 and 2,
respectively, we set

χgh2 :=
∏
p|g

χp

∏
q|h

χq2 , (2.25)

and call χgh2 the totally odd character modulo gh2.



56 CHAPTER 2. WEIL REPRESENTATIONS

Remark. Note that, for primes p and q as in the definition, the groups of
units (O/p)∗ and (O/q2)∗ have both order 2, so that there is indeed for each
group a unique nontrivial character.

We state the main result of this section.

Theorem 2.5. Let M = (M,Q) be an O-CM with level l, annihilator a and
modified level m.

(i) The space W (M) contains one-dimensional Γ̃-submodules if and only
if l is a character ideal times a square dividing the modified level of M .

(ii) The space W (M) contains at most one one-dimensional Γ̃-submodule.

(iii) Suppose that W (M) contains a one-dimensional Γ̃-submodule. If we
write l = gh3b2, where gh3 is the character ideal dividing l and b2

a divisor of the modified level of M , then we have a = gh2b2 and
m = ghb2. The one-dimensional Γ̃-submodule equals ιUW (M/U)new,gh,
where U = ab−1M = gh2bM . It is spanned by

ιU
∑

s∈O/gh2
χgh2(s) egs =

∑
x∈M,s∈O/gh2
x≡sγ mod U

χgh2(s) ex. (2.26)

Here g = γ + U is a generator of M/U , and χgh2 denotes the totally
odd Dirichlet character modulo gh2.

The rest of this section is devoted to the proof of the theorem. For this it
is convenient to introduce a name for the prime ideals occurring in character
ideals.

Definition 2.45. A prime ideal of degree 1 and ramification index 1 above 2
is called a (2, 1, 1)-ideal. A prime ideal of degree 1 above 3 is called a (3, 1)-
ideal.

Thus, a character ideal c is a product of different (3, 1)-ideals and cubes
of different (2, 1, 1)-ideals. For proving the theorem we first consider the new
parts of the spaces W (M).

Lemma 2.46. Let M be an O-CM with level l. The space W (M)new contains
one-dimensional Γ̃-submodules if and only if l is a character ideal. If l is
a character ideal, say, l = gh3, then W (M)new contains exactly one one-
dimensional Γ̃-submodule, namely W (M)new,gh.
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Proof. First suppose that l is a character ideal such that l = gh3. Then
the modified level of M equals gh. Hence, by Theorem 2.4 (iii) we have
that W (M)new,gh is one dimensional, i.e. W (M) contains one-dimensional
Γ̃-submodules.

Next suppose that W (M)new contains one-dimensional Γ̃-submodules.
Let m be the modified level of M . By Theorem 2.4 (ii) (and by Proposi-
tion 2.16) there exists a square-free divisor f of m such that W (M)new,f is
one dimensional. If we can show that l = gh3 and f = gh for a product g
of different (3, 1)-ideals and a product h of different (2, 1, 1)-ideals, then this
proves the lemma.

We write dimW (M)new,f = P1P2, where P1 and P2 are the contribu-
tions from odd and even prime ideals, respectively. By the assumption
that W (M)new,f is one dimensional, we have P1 = 1 and P2 = 1 (see also
Proposition 1.6). Using (2.22) and also the fact that a = m(2, l), we can
write

1 = P1 = N(m1)
∏
p‖m1

N(p)−1
∏
p‖m1

(
N(p) + µ(f, p)

2

)
×

∏
p2|m1

N(p)−2
∏
p2|m1

(
N(p)2 − 1

2

)
, (2.27)

where m1 stands for the odd part of m. Since the second and the forth
products and also N(m1) times the first and the third products in (2.27)
are all integers, obviously we need to have first of all that m is square-free.
Moreover, for all p‖m1, we need to have

N(p) + µ(f, p)

2
= 1.

But this implies that N (p) = 3 and µ(f, p) = −1 for each p‖m1. Therefore,
we have that m1 = g, and the odd part of f equals g, where g is a product of
different (3, 1)-ideals.

Now we consider the even part. Using (2.22), we have

1 = P2 = 2−s N
(
m2(2, l)

) ∏
p‖m2

N(p)−1
∏
p‖m2

(
N(p) + µ(f, p)

)
×

∏
p2|m2

N(p)−2
∏
p2|m2

(
N(p)2 − 1

)
, (2.28)

where m2 denotes the even part of m, and s denotes the number of distinct
prime ideal divisors of m2. First note that the second and the forth products
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in (2.28) are integers. Also 2−s N(m2(2, l)) times the first and the third
products in (2.28) are integers. Indeed, this follows from the fact that every
prime ideal dividing m2 occurs in the prime ideal decomposition of (2, l), since
m = l(2, l)−2. Therefore, we need to have first of all that m2 is square-free.
Furthermore, we need to have

N(2, l) = 2s, N(p) + µ(f, p) = 1

for all p‖m2. But the first identity implies that m2 = (2, l) = h, where h is a
product of different (2, 1, 1)-ideals. The second identity implies that N(p) = 2
and µ(f, p) = −1 for each p‖m2. Therefore, we have that m2 = h and that
the even part of f equals h.

As a consequence, we obtain m = m1m2 = gh, f = gh, and hence l =
m(2, l)2 = ghh2 = gh3, which proves the lemma.

Remark. Note that if M is anisotropic, i.e. M does not contain isotropic sub-
modules, then W (M), which equals W (M)new, contains one-dimensional Γ̃-
submodules if and only if the level of M is a character ideal (see Lemma 2.46).

Proof of Theorem 2.5.

Proof of part (i). Suppose that the spaceW (M) contains one-dimensional
Γ̃-submodules. By Theorem 2.4 (and Proposition 2.16), there exists an in-
tegral O-ideal b with b2|m such that the space W (M

/
ab−1M)new,f is one

dimensional. Lemma 2.46 implies that the level of M/ab−1M is a character
ideal. But the level of M/ab−1M equals lb−2 (Corollary 1.19). Hence l is of
the claimed form.

Suppose that l is as given in the statement of the theorem, i.e l = cb2,
where b2|m and c is a character ideal. Set U := ab−1M . Since the level
of M/U equals lb−2 = c (see Corollary 1.19), which is a character ideal, we
deduce from Lemma 2.46 that the space W (M/U)new, and hence the space
ιUW (M/U)new ⊆ W (M) contains a one-dimensional Γ̃-submodules.

Proof of part (ii). First we show that amongst the Γ̃-submodules in the
decomposition of W (M) obtained on combining (2.20) and (2.21), there is
at most one one-dimensional Γ̃-submodule. Suppose W (M) contains two
one-dimensional Γ̃-submodules in the decomposition, say W (M/ab−1

i M)new,fi

(i = 1, 2). Then, by Lemma 2.46, the level li of M/ab−1
i M is equal to a

character ideal, say gih
3
i , and fi = gihi. From Corollary 1.19, we know that

li = lb−2
i . Hence, l = gih

3
i b

2
i . But this implies that g1 = g2, h1 = h2

and b1 = b2 (use that g1h1 = g2h2 is the square-free part of the unique
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factorization of l into a product of a square-free ideal and a square), i.e. the
claimed result holds true.

Now suppose that W is a one-dimensional Γ̃-submodule of W (M). Then
by Proposition 2.16, we have W ' W (M/ab−1M)new,f, for some b and f as in
equations (2.20) and (2.21). If W (M) does not contain any one-dimensional
Γ̃-submodule in the decomposition, there is nothing to prove. If there is a
one-dimensional Γ̃-submodule in the decomposition of W (M), it is unique by
the above argument. We call it W (M/ab−1

1 M)new,f1 . Hence, all the other Γ̃-
submodules W (M/ab−1M)new,f with b 6= b1 or f 6= f1 have dimension bigger
than one. Our aim is to show that W = W (M/ab−1

1 M)new,f1 . We denote
by Pb,f the projection from W onto the space W (M/ab−1)new,f. It suffices to
prove that for all w ∈ W , we have Pb1,f1(w) = w. The identity

∑
b,f Pb,f = 1

implies that w =
∑

b,f Pb,f(w). But Pb,f(w) = 0 for all (b, f) 6= (b1, f1).
Indeed, the kernel of the map Pb,f|W must be equal to W , since otherwise the
map Pb,f|W would be a Γ̃-linear isomorphism from W onto a one-dimensional
Γ̃-submodule of W (M/ab−1M)new,f, whereas the latter is irreducible and has
dimension bigger than one. Hence, we have w = Pb1,f1(w), which proves (ii).

Proof of part (iii). Suppose W (M) contains a one-dimensional Γ̃-sub-
module, say W . As we saw in the proof of part (ii), we then have l = gh3b2

with b2|m, and W = ιUW (M/U)new,gh, where U = ab−1M .
For proving the claimed identities for a and m it suffices to show that

h = (2, l) (since, for any O-CM, we have a = l(2, l)−1 and m = l(2, l)−2). For
this write m = b2t. Since m = l(2, l)−2 we have (2, l)2 = gh3t−1, and since g
and h are square-free and relatively prime, therefore (2, l)|h. But h divides 2
and it divides l, hence (2, l) = h.

Finally, let I :=
∑

s∈O/gh2 χgh2(s) egs where g = γ + U is a generator

of the O-CM M ′ = M/U ' O/gh2. Since I is clearly different from 0, it
remains to show that I is in W (M ′)new,gh. First of all, note that W (M ′)new =
W (M ′) sinceM ′ has modified level gh, and hence has no isotropic submodules
different from zero (see Theorem 1.2). In other words, we only have to show
that hI = ψgh(h)I for all h in E(M ′). But this follows immediately from the
fact that E(M ′) = (O/gh2)∗ and ψgh = χgh2 . This proves the theorem.

2.6 The number of irreducible components

In the present section we shall find an estimate for the number of irreducible
subrepresentations of Weil representations. For cyclic Weil representations
this number can be made even more explicit. Namely, we have:
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Theorem 2.6. Let M = (M,Q) be an O-FQM with level l. The number
of irreducible Γ̃-submodules of W (M) is less than or equal to the number of
elements of

(
M ×M

)′/
ΓO/l. Here

(
M ×M

)′
is the set of all v in M ×M

such that χv is trivial (for χv, we refer to Lemma 2.58 below).

Corollary 2.47. Let M = (M,Q) be an O-CM with modified level m. The
number of irreducible Γ̃-submodules of W (M) is less than or equal to the
number of integral O-ideal divisors of m, i.e. σ0(m).

We prove the above theorem with two different methods. This section
is divided accordingly into two subsections. Both approaches calculate the
dimensions of the intertwining algebras of Weil representations. In fact, the
number of irreducible G-submodules of a G-module V is bounded by the
dimension of the intertwining algebra of V (see Proposition 2.22).

As a side result of our second approach we also obtain the following
theorem:

Theorem 2.7. Let M = (M,Q) be an O-FQM with level l and associated bi-
linear form B. There exists a projective representation ρ of Γ which satisfies,
for any z ∈M , the following formulas

(i) ρ(Tb)ez = e {bQ(z)} ez (b ∈ O)

(ii) ρ(S)ez = σ(M) 1√
|M |

∑
z′∈M e {−B(z′, z)} ez′ .

The first approach

Before we can give the proofs of Theorem 2.6 and Corollary 2.47, we need
several lemmas.

Lemma 2.48. Let M = (M,Q) be an O-FQM. The bilinear map

[, ] : W (M−1)×W (M)→ C,
[∑
x∈M

v(x)ex,
∑
x′∈M

v′(x′)ex′

]
:=
∑
x∈M

v(x)v′(x)

is Γ̃-invariant.

Proof. Let B be the bilinear form of M . It is enough to prove the lemma
for the standard generators T ∗b (b ∈ O) and S∗. We shall prove only the
invariance under S∗, since the invariance under T ∗b is obvious. Write v =∑

x∈M v(x)ex and v′ =
∑

x′∈M v′(x′)ex′ . From the S∗-action in (2.11), we
have

S∗v =
σ(M−1)√
|M |

∑
x∈M

v(x)
∑
y∈M

e {B(y, x)} ey
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and

S∗v′ =
σ(M)√
|M |

∑
x′∈M

v′(x)
∑
y′∈M

e {−B(y′, x′)} ey′ .

Hence, we have

[S∗v, S∗v′] =
σ(M−1)σ(M)

|M |
∑

x,x′∈M

v(x)v′(x′)
∑
y∈M

e {B(y, x− x′)} .

From Proposition 1.11, the inner sum is zero unless x = x′, otherwise it
equals |M |. We now recognize [S∗v, S∗v′] = [v, v′], since Proposition 1.10
implies that sigma-invariant σ(M) has absolute value one.

Lemma 2.49. Let M = (M,Q) be an O-FQM. Then the linear map

W (M−1)→ W (M)•, v 7→ “v′ 7→ [v, v′]”

defines a Γ̃-module isomorphism.

Proof. We denote the above map by ϕ. First we show that ϕ is Γ̃-linear.
For that, using (2.4), it is enough to show that for any v ∈ W (M−1), v′ ∈
W (M)• and α ∈ Γ̃, the identity [α−1v, v′] = [v, αv′] holds true. But if do the
substitution v 7→ αv, Lemma 2.48 implies the result.

To show that ϕ is an isomorphism, it suffices to show that ϕ is an injection,
since the spaces have the same dimension. Let v be an element of the kernel
of ϕ, i.e. [v, v′] = 0 for all v′ ∈ W (M)•. We write v =

∑
x∈M v(x)ex and

v′ =
∑

x′∈M v′(x′)ex′ . Then we have

[v, v′] =
∑
x∈M

v(x)v′(x) = 0.

If we take v′ = ex0 for some x0 ∈ M , then the above identity implies that
v(x0) = 0. Repeating the same argument by choosing other elements of M ,
we observe that v = 0, i.e. ϕ is an injection.

Lemma 2.50. Let M = (M,Q), N = (N,R) be O-FQM. Then the linear
map

W (M +N)→ W (M)⊗W (N), ex⊕y 7→ ex ⊗ ey
defines a Γ̃-module isomorphism.

Proof. We denote the map in the lemma by ϕ. Clearly ϕ is an isomorphism
of vector spaces C[M⊕N ] and C[M ]⊗C[N ]. Hence it remains to show that ϕ
is Γ̃-linear. It is enough to prove this fact for T ∗b (b ∈ O) and S∗. Let QR
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denote the quadratic form on M +N . Recall that QR(x⊕y) = Q(x) +R(y).
Let b ∈ O, x ∈ M and y ∈ N . The T ∗b -action in (2.11) and ϕ commute,
since:

ϕ(T ∗b ex⊕y) = e {bQR(x⊕ y)} ex ⊗ ey = e {b(Q(x) +R(y))} ex ⊗ ey
= e {bQ(x)} ex ⊗ e {bR(y)} ey = T ∗b ex ⊗ T ∗b ey = T ∗b (ex ⊗ ey)
= T ∗b ϕ(ex⊕y).

Let B, C and BC stand for associated bilinear forms of M , N and M+N ,
respectively. Recall BC(x′ ⊕ y′, x ⊕ y) = B(x′, x) + C(y′, y). Similarly, the
identity

ϕ(S∗ex⊕y) =
σ(M +N)

|M +N |
∑

x′⊕y′∈M⊕N

e {−BC(x′ ⊕ y′, x⊕ y)} ex ⊗ ey

=
σ(M +N)

|M +N |
∑
x′∈M

e {−B(x′, x)} ex ⊗
∑
y′∈N

e {−C(y′, y)} ey

= S∗ϕ(ex⊕y)

proves that the S∗-action in (2.11) and ϕ commute. For the last identity
we used the remark after Definition 1.8, which states that σ(M + N) =
σ(M)σ(N), and we also used |M +N | = |M ||N |.

Lemma 2.51. Let M = (M,Q) be an O-FQM. Then

HomΓ̃

(
W (M),W (M)

)
' W

(
M−1 +M

)Γ̃
.

Proof. From the map given in (2.5), it is easy to see that W (M)•⊗W (M) and
Hom

(
W (M),W (M)

)
are isomorphic as Γ̃-modules. From Lemma 2.49, the

spaces W (M)• and W (M−1) are Γ̃-module isomorphic. From Lemma 2.50 we
have that W (M−1)⊗W (M) is Γ̃-module isomorphic to W

(
M−1+M

)
. Hence,

Hom
(
W (M),W (M)

)
is Γ̃-module isomorphic to W

(
M−1 + M

)
. Therefore

Proposition 2.21 implies the result.

Lemma 2.52. Let M = (M,Q) be an O-FQM with annihilator a. The
group ΓO/a acts on the right of M ×M via:(

(x, y), A =
(
a+a b+a
c+a d+a

) )
7→ (x, y)A, (x, y)A := (ax+ cy, bx+ dy).

Proof. First we show that the above multiplication is well-defined. Let a′ ∈
a + a. We have a′ = a + t for some t ∈ a. But a′x = (a + t)x = ax, since
tx = 0. Let v = (x, y) ∈ M ×M and A, B ∈ ΓO/a. Write A =

(
a+a b+a
c+a d+a

)
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and B =
(
a′+a b′+a
c′+a d′+a

)
. Since it is obvious that v1 = v, the following identity

proves the lemma:

B(vA) =
(
a′ax+ a′cy + c′bx+ c′dy, b′ax+ b′cy + d′bx+ d′dy

)
= ABv.

Remark. Let M = (M,Q) be an O-FQM with level l and annihilator a. By
Proposition 1.5, we have that l ⊆ a, so there is a reduction map from O/l
onto O/a. Hence, using Proposition 2.2 and Lemma 2.52, we obtain that ΓO/l
also acts on M ×M .

Lemma 2.53. Let M = (M,Q) be an O-FQM with level l. For fixed A =(
a+l b+l
c+l d+l

)
∈ ΓO/l, the map

fA : M ×M → C∗, (x, y) 7→ e
{
−
(
abQ(x) + bcB(x, y) + cdQ(y)

)}
satisfies the following identity

fAB(v) = fA(v)fB(vA).

Here (v,A) 7→ vA is the action in Lemma 2.52 (see also the remark after-
wards).

Proof. First note that fA(v) depends only on the coset of a. Let a′ ∈ a + l.
We have a′ = a+ l for some l ∈ l. But a′Q(x) = (a+ l)Q(x) = aQ(x) for any
x ∈ M . Let B =

(
a′+l b′+l
c′+l d′+l

)
be in ΓO/l and v = (x, y) be in M ×M . Let B

stand for associated bilinear form of M . The following proves the claimed
identity:

fA(v)fB(vA) = e
{
−
(
abQ(x) + bcB(x, y) + cdQ(y)

)}
×

× e
{
−
(
a′b′Q(ax+ cy) + b′c′B(ax+ cy, bx+ dy) + c′d′Q(bx+ dy)

)}
= e

{
−
(
ab+ a2ab′ + 2aba′c′ + c′d′b2

)
Q(x)

}
×

× e
{
−
(
cd+ a′b′c2 + 2a′c′cd+ c′d′d2

)
Q(y)

}
×

× e
{
−
(
bc+ a′b′ac+ a′c′(ad+ bc) + c′d′bd

)
B(x, y)

}
= e {−(aa′ + bc′)(ab′ + bd′)Q(x)}×
× e {−(ab′ + bd′)(ca′ + dc′)B(x, y)} e {−(ca′ + dc′)(cb′ + dd′)Q(y)}

= fAB(v).

For the third identity we used a′d′−b′c′ ≡ 1 mod l and that ad−bc ≡ 1 mod l,
moreover we also used the fact that lQ(x) = 0 for any x ∈M , l ∈ l.
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Lemma 2.54. Let M = (M,Q) be an O-FQM with level l. The group ΓO/l
acts on C[M ×M ] via:

(A, ev) 7→ Aev, Aev := fA−1(v)evA−1 ,

where fA is as in Lemma 2.53.

Proof. Let A, B be in ΓO/l and v be in M ×M . Since it is obvious that
1ev = ev, the following identity proves the lemma:

A(Bev) = fB−1(v)fA−1(vB−1)evB−1A−1 = f(AB)−1(v)ev(AB)−1 = ABev.

For the second identity we used Lemma 2.53.

Definition 2.55. Let M = (M,Q) be an O-FQM level l. In the following
the ΓO/l-module C[M ×M ] described in Lemma 2.54 is denoted by P (M).

Remark. Let a be a nonzero integralO-ideal. There is an epimorphism from Γ̃
onto ΓO/a which maps T ∗b (b ∈ O) and S∗ to Tb and S∗ reduced modulo a,
respectively. This epimorphism obtained by composing the epimorphism
from Γ̃ onto Γ (see Section 2.2) and the epimorphism from Γ onto ΓO/a (see
Lemma 1.29).

Remark. The above remark and Proposition 2.2 imply that P (M) can be
viewed as a Γ̃-module.

Lemma 2.56. Let M = (M,Q) be an O-FQM with bilinear form B and
level l. The linear map

W (M−1 +M)→ P (M), κ : ex⊕y 7→
∑
z∈M

e {B(z, y)} e(y−x,z)

defines a Γ̃-module isomorphism.

Proof. First note by the second remark after Definition 2.55 that P (M) is a
Γ̃-module. It is clear that the map κ is an isomorphism. It remains to show
that κ is Γ̃-linear, i.e. καex⊕y = π(α)κex⊕y for α = T ∗b (b ∈ O) or S∗. Here π
stands for the epimorphism from Γ̃ onto ΓO/l explained in the first remark
after Definition 2.55. Let b ∈ O. For T ∗b the claimed identity holds true,
since for any x, y ∈M , we have

π(T ∗b )κex⊕y =
∑
z∈M

e {B(z, y)} fπ(T ∗b )−1(y − x, z)e(y−x,z)π(T ∗b )−1

= e {−bQ(y − x)}
∑
z∈M

e {B(z, y)} e(y−x,b(x−y)+z)

= e {−bQ(y − x) + bB(y, y − x)}
∑
z∈M

e {B(z, y)} e(y−x,z)

= e
{
b
(
Q(y)−Q(x)

)}∑
z∈M

e {B(z, y)} e(y−x,z) = κT ∗b ex⊕y.
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To obtain the third identity we did the substitution z 7→ z − b(y − x) in the
previous sum. We refer to the T ∗b -action in (2.11) to see that the last identity
holds true.

We have

π(S∗)κex⊕y =
∑
z∈M

e {B(z, y)} fπ(S∗)−1(y − x, z)e(y−x,z)π(S∗)−1

=
∑
z∈M

e {B(z, y)} e {−B(y − x, z)} e(−z,y−x)

=
∑
z∈M

e {B(z, x)} e(−z,y−x) =
∑
z∈M

e {B(−z, x)} e(z,y−x).

To obtain the last identity we did the substitution z 7→ −z in the previous
sum.

Now we apply the S∗-action in (2.11). The claimed identity holds true
for S∗ also, since for any x, y ∈M , similarly we have

κS∗ex⊕y =
σ(M−1 +M)

|M |
∑

z,y′∈M

e {B(y′, z − y)}
∑
x′∈M

e {B(x′, x)} e(y′−x′,z)

=
1

|M |
∑
x′∈M

e {B(−x′, x)} e(x′,z)

∑
z∈M

∑
y′∈M

e {B(y′, z − y + x)}

=
∑
x′∈M

e {B(−x′, x)} e(x′,y−x).

To obtain the second identity above we did the substitution x′ 7→ y′ − x′

and changed the order of summation in the previous sum. Moreover, we also
used the fact that σ(M−1 + M) = 1 which follows from the remark after
Definition 1.8 (which says that σ(M−1 +M) = σ(M−1)σ(M) = σ(M)σ(M))
and Proposition 1.10 (which says that σ(M) has absolute value one). The
last identity follows from the fact that the inner sum in the previous identity
is 0 unless z = y − x, when it equals |M | (see Proposition 1.11).

Lemma 2.57. Let M be an O-FQM. Then we have

HomΓ̃

(
W (M),W (M)

)
' P (M)Γ̃.

Proof. This is immediate from Lemma 2.51 and Lemma 2.56.

Lemma 2.58. Let M = (M,Q) be an O-FQM. For fixed v ∈ M ×M , the
map χv : Stab(v)→ µ∞, A 7→ fA(v) defines a group homomorphism.

Proof. This is immediate from Lemma 2.53.
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Proof of Theorem 2.6. The number of irreducible Γ̃-submodules of W (M) is
bounded by the dimension of the space HomΓ̃

(
W (M),W (M)

)
(see Propo-

sition 2.22), which equals by Lemma 2.57 the dimension of P (M)Γ̃. But

we have P (M)Γ̃ = P (M)ΓO/l (see the first remark after Definition 2.55 and
Proposition 2.2). It enough to show that the dimension of the space P (M)ΓO/l

equals the upper bound given in the statement of the theorem.
Let vi (1 ≤ i ≤ m) be a set of representatives for

(
M ×M

)/
ΓO/l. We

claim that the space P (M)ΓO/l has as basis the elements

Li :=
1

|ΓO/l|
∑

A∈ΓO/l

fA−1(vi)eviA−1 (1 ≤ i ≤ m)

unless they are zero. The space P (M)ΓO/l is spanned by the operators Li
(see Proposition 2.15), and obviously these elements are linearly independent
whenever they are nonzero.

First we show that whenever vi and vj lie in the same orbit, Li and Lj
differ by a constant. Write vj = viB

−1 for some B ∈ ΓO/l. But the claim
holds true, since we have

Lj =
1

|ΓO/l|
∑

A∈ΓO/l

fA−1(viB−1)e(viB−1)A−1

=
1

fB−1(vi)|ΓO/l|

∑
A∈ΓO/l

f(AB)−1(vi)evi(AB)−1 =
1

fB−1(vi)
Li.

For the second identity we used Lemma 2.53, and for the last identity we did
the substitution A 7→ AB−1 in the previous sum.

Next we determine when the operators Li are equal to zero. We write

Li =
1

|ΓO/l|
∑

A Stab(vi)∈ΓO/l/ Stab(vi)

∑
B∈Stab(vi)

f(AB)−1(vi)evi(AB)−1

=
1

|ΓO/l|
∑

A Stab(vi)∈ΓO/l/ Stab(vi)

eviA−1

∑
B∈Stab(vi)

f(AB)−1(vi).

For the second identity we used viB
−1 = vi which follows from the fact that B

is an element of Stab(vi). Since the elements eviA−1 (A ∈ ΓO/l) are linearly
independent, the operators Li are equal to zero if for all A ∈ ΓO/l, we have∑

B∈Stab(vi)

f(AB)−1(vi) = 0.
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But from Lemma 2.53, and the fact that viB
−1 = vi, we have f(AB)−1(vi) =

fB−1(vi)fA−1(vi). Since fA−1(vi) being a root of unity can never be zero,
hence we have ∑

B∈Stab(vi)

fB−1(vi) = 0.

But if Li = 0, then χvi must be nontrivial (see Lemma 2.58 for χvi).
As a consequence, we obtain that the space P (M)ΓO/l has basis the oper-

ators Li for which the characters χvi are trivial. Therefore, the dimension of
the space P (M)ΓO/l equals the number of elements of

(
M ×M

)′/
ΓO/l.

For the proof of Corollary 2.47 we need a lemma. Recall that the an-
nihilator and the modified level of an O-CM M of level l equals l(2, l)−1

and l(2, l)−2, respectively.

Lemma 2.59. Let a be a nonzero integral O-ideal, let R := O/a and let I
stand for the set of integral ideals of R. We define

I :
(
R×R

)/
ΓR → I, [α, β] 7→ αR + βR.

Here ΓR acts on R × R via formal multiplication of row vectors in R × R
with matrices in ΓR. Moreover, [α, β] stands for the orbit of (α, β) of under
this action. Then the map I defines a bijection.

Proof. First we show that I is well-defined. Let v = (α, β) and w = (α′, β′)
in R × R. We need to show that if v, w lie in the same orbit, then I([v]) =
I([w]). Suppose v and w lie in the same orbit i.e. w = vA for some A =(
η ξ
γ δ

)
∈ ΓR. Then we have

I([w]) = I([vA]) = (αη + βγ)R + (αξ + βδ)R = (η + ξ)αR + (γ + δ)βR.

Hence, I([w]) ⊆ I([v]). On the other hand, we have

I([v]) = I([wA−1]) = (α′δ−β′γ)R+(−α′ξ+β′η)R = (δ−ξ)α′R+(η−γ)β′R.

Similarly, we have I([v]) ⊆ I([w]) which proves the well-definedness.
The surjectivity of I follows from Lemma 1.25. Next we prove the in-

jectivity. Suppose I
(
[v]
)

= I
(
[w]
)
. From Lemma 1.30 we have that every

orbit contains an element whose first entry equals zero. Suppose (0, γ1) is
contained in [v], and (0, γ2) is contained in [w]. Hence, we have γ1R = γ2R
(by the assumption). By applying Lemma 1.26, we obtain γ1 = εγ2 for some
ε ∈ R∗. Hence, (0, γ1) = (0, γ2)

(
ε−1 0

0 ε

)
, i.e [v] = [w], which proves that I is

an injection.
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Proof of Corollary 2.47. Let l and a be the level and annihilator of M , re-
spectively. We set R := O/a. From Theorem 2.6 we know that the number
of irreducible Γ̃-submodules of W (M) is less than or equal to the number of
elements of

(
R×R

)′
/ΓO/l. But we have

(
R×R

)′/
ΓO/l =

(
R×R

)′
/ΓR =: U

(see Proposition 2.2 and the first remark after Definition 2.55). It is enough
to prove the identity |U | = σ0(m). Let I be the bijection in Lemma 2.59,
and let I be the set of integral O-ideals of R. If can show that

I(U) = {(x+ a)R ⊆ I : (2, l)|x}, (2.29)

then the claimed identity holds true. Indeed, since (x + a)R being an ideal
of R must contain a, i.e. we have x|a, and since a(2, l)−1 = m. By Theo-
rem 2.6 we have

U = {[v] ∈
(
R×R

)/
ΓR : χv = 1},

where χv is as in Lemma 2.58. Let [v] ∈ U . From Lemma 1.30 we know
that [v] contains an element of the form (0, x + a) for some x ∈ O. Then,
since χv = 1, we have fA(0, x+a) = 1, for all A ∈ Stab(0, x+a). By a direct
computation, we obtain

Stab(0, x+ a) =
{ (

a+a b+a
c+a d+a

)
∈ ΓR : a|cx, a|dx− x

}
and fA(0, x + a) = e {−cdωx2}. To prove (2.29), we need to show that the
following holds true:

∀A =
(
a+a b+a
c+a d+a

)
∈ Stab(0, x+ a), l|cdx2 if and only if (2, l)|x. (2.30)

First suppose that (2, l)|x holds true and A =
(
a+a b+a
c+a d+a

)
is an element

of Stab(0, x + a). Hence, we have a|cdx. Therefore, l = a(2, l)|cdx2. (Recall
here that a = l(2, l)−1.)

Suppose now that the left hand side of (2.30) holds true. Let c be an
integral O-ideal which lies in the inverse ideal class of a which is relatively
prime to l. Then ηO = ca for some η ∈ K. We take c = x−1η, d = 1 + x−1η.
Then we have cdx2 = x−1η(1+x−1η)x2 = η2 +ηx. By the assumption l|cdx2,
we have that l divides c2a2 + cax, i.e. la−1 divides c2a + cx. But c is chosen
so that it is relatively prime to l, hence la−1 divides ca + x. But this implies
that la−1, which equals (2, l), divides x, since (2, l) also divides ca. Therefore
the identity (2.30) holds true, which proves finally the corollary.

The second approach

Let M be an O-FQM with level l. In this subsection we use some tools which
we already introduced in the previous subsection. Namely, we use the action
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of ΓO/l on M ×M (as given in Lemma 2.52) and the remark afterwards, and
we also use the function fA(v) (v ∈M×M) attached to an element A of ΓO/l
(as given in Lemma 2.53).

In this subsection we give another proof of Theorem 2.6, and we shall
prove Theorem 2.7. For the proofs of these theorems we need again several
lemmas.

Lemma 2.60. Let M = (M,Q) be an O-FQM with bilinear form B. The
space C[M ] is a projective M ×M-module via:(

(x, y), ez
)
7→ (x, y)ez := e {−B(z, y)} ex+z.

More precisely, one has v(wez) = λ(v, w)(v + w)ez, where

λ(v, w) = e {−B(x′, y)}
(
v = (x, y), w = (x′, y′)

)
. (2.31)

Proof. Let v = (x, y) and w = (x′, y′) be in M ×M and z ∈ M . Then we
have

v(wez) = e {−B(z, y′)} e {−B(x′ + z, y)} ex+x′+z = λ(v, w)(v + w)ez,

where λ(v, w) = e {−B(x′, y)}.

Definition 2.61. Let M = (M,Q) be an O-FQM with associated bilinear
form B. Let l be the level of the finite quadratic Z-module Tr(M) (see
Proposition 1.3). We define

H(M) := {(v, ξ) : v ∈M ×M, ξ ∈ µl}

with the operation

(v, ξ) · (w, ξ′) =
(
v + w, ξξ′λ(v, w)

)
,

where λ(v, w) denotes the cocycle (2.31). This group is called the Heisenberg
group associated to M . In the sequel, we write (x, y, ξ) instead of ((x, y), ξ)
for the elements of H(M).

Remark. From Lemma 2.60 and Proposition 2.25 we see that H(M) is indeed
a group, more precisely, a central extension of M ×M by µl.

Lemma 2.62. Let M = (M,Q) be an O-FQM. The space C[M ] is an H(M)-
module via: (

(v, ξ), ez
)
7→ (v, ξ)ez := ξ · vez.

For the action of M ×M on C[M ], we refer the reader to Lemma 2.60.



70 CHAPTER 2. WEIL REPRESENTATIONS

Proof. By Proposition 2.26 and Lemma 2.60, it follows that C[M ] is an
H(M)-module.

Lemma 2.63. Let M = (M,Q) be an O-FQM. The character χC[M ] of the
H(M)-module C[M ] satisfies

χC[M ](v, ξ) =

{
0 if v 6= 0

ξ|M | otherwise.

Proof. From Lemma 2.62, C[M ] is an H(M)-module. Let B be the bilinear
form of M and

(
v = (x, y), ξ

)
∈ H(M). The following identity proves the

claimed identity

tr
(
(v, ξ),C[M ]

)
=

{
0 if x 6= 0

ξ
∑

z∈M e {−B(z, y)} otherwise,

since the sum above is zero unless y = 0, when it equals |M | (see Proposi-
tion 1.11).

Lemma 2.64. Let M = (M,Q) be an O-FQM. The space C[M ] is an irre-
ducible H(M)-module.

Proof. Using Lemma 2.63, we have

1

H(M)

∑
(v,ξ)∈H(M)

|χC[M ](v, ξ)|2 =
1

l|M |2
∑
ξ∈µl

|M |2|ξ|2 =
1

l|M |2
|M |2l = 1

which proves the lemma (using [FH91, Cor. 2.15]).

Lemma 2.65. Let M = (M,Q) be an O-FQM with level l. The group ΓO/l
acts from the right on H(M) via(

(v, ξ), A
)
7→ (v, ξ)A :=

(
vA, ξfA(v)

)
,

where fA(v) is as in Lemma 2.53.

Remark. Note that the above map commutes with the embedding ι and the
canonical projection π given in the following exact sequence

1→ µl
ι−→ H(M)

π−→M ×M → 1.
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Proof of Lemma 2.65. It is enough to show that for fixed A ∈ ΓO/l, the map
h 7→ hA defines a group homomorphism of H(M), since Lemma 2.53 and the
remark after Lemma 2.52 ensure the fact that the map in the statement of
the lemma satisfies the axioms of an action.

Let A =
(
a+l b+l
c+l d+l

)
be in ΓO/l and let h = (v, ξ) and h′ = (w, ξ′) be

in H(M). We have

hA · h′A =
(
vA+ wA, ξξ′fA(v)fA(w)λ(vA,wA)

)
.

On the other hand, we have

(h · h′)A =
(
vA+ wA, ξξ′λ(v, w)fA(v + w)

)
.

Hence, it remains to show that the following identity holds true

λ(v, w)fA(v + w) = λ(vA,wA)fA(v)fA(w).

Calculating both sides separately and inserting the following values

λ(vA,wA) = e {−B(ax′ + cy′, bx+ dy)} , λ(v, w) = e {−B(x′, y)} ,

we see that the following identity proves the assertion:

λ(vA,wA)fA(v)fA(w)

= e {−B(ax′ + cy′, bx+ dy)} e
{
−
(
abQ(x) + bcB(x, y) + cdQ(y)

)}
×

× e
{
−
(
abQ(x′) + bcB(x′, y′) + cdQ(y′)

)}
= e

{
−
(
abQ(x+ x′) + cdQ(y + y′)

)}
×

× e
{
−
(
bcB(x, y + y′) + bcB(x′, y + y′) +B(x′, y)

)}
= e

{
−
(
abQ(x+ x′) + bcB(x+ x′, y + y′) + cdQ(y + y′)

)}
×

× e {−B(x′, y)} = λ(v, w)fA(v + w).

For the third identity we used ad − bc ≡ 1 mod l, and the fact that lB = 0
for any l ∈ l.

Definition 2.66. Let M be an O-FQM with level l. Using the action of ΓO/l
on H(M) from Lemma 2.65, we define

J(M) := ΓO/l nH(M).

We call J(M) as the Jacobi group associated to M .
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Remark. The group operation in J(M) is given by

(A, h) · (B, h′) := (AB, hB · h′).

The fact that J(M) becomes a group with this operation is a well-known
fact in basic algebra.

More explicitly, for h = (v, ξ) and h′ = (w, ξ′), the above operation is
given by(

A, (v, ξ)
)
·
(
B, (w, ξ′)

)
=
(
AB, (vB + w, ξξ′fB(v)λ(vB,w))

)
.

Remark. Henceforth, for the elements of J(M), we use (A, v, ξ) instead
of (A, (v, ξ)). We view ΓO/l (where l is the level ofM) andH(M) as subgroups
of J(M) via the maps A 7→ (A, 1) and h 7→ (1, h), respectively. Moreover, via
the map α 7→ (π(α), 1), the group Γ̃ can be viewed as a subgroup of J(M),
where π is the epimorphism from Γ̃ onto ΓO/l explained in the first remark
after Definition 2.55.

Lemma 2.67. Let M = (M,Q) be an O-FQM with level l. For h = (v, ξ) ∈
H(M) and A ∈ ΓO/l, we have

AhA−1 =
(
1, vA−1, ξfA−1(v)

)
.

Proof. The following identity proves the claimed identity:

AhA−1 = (A, 0, 1)(1, v, ξ)(A−1, 0, 1) = (A, 0, 1)
(
A−1, vA−1, ξfA−1(v)

)
=
(
1, vA−1, ξfA−1(v)

)
.

Lemma 2.68. Let M = (M,Q) be an O-FQM with level l. For fixed A ∈
ΓO/l, we define

σA : H(M)→ H(M), σA(h) = AhA−1.

If σ stands for the representation afforded by the H(M)-module C[M ] (see
Lemma 2.62), then the representations σ and σ ◦σA of H(M) are equivalent.

Proof. First note from Lemma 2.67 that AhA−1 lies in H(M) for any h
in H(M). It is easy to see that σ ◦ σA defines a representation of H(M).
Using Proposition 2.13, it suffices to show that the traces of σ and σ ◦ σA
are equal. Let B be the bilinear form of M . Write A =

(
a+l b+l
c+l d+l

)
and let

h =
(
v = (x, y), ξ

)
be in H(M). The trace of σ ◦ σA becomes

tr
(
AhA−1,C[M ]

)
=

{
0 if dx− cy 6= 0

ξfA−1(v)
∑

z∈M e {−B(z,−bx+ ay)} otherwise.
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Here we used Lemma 2.67 and the action in Lemma 2.62, also the identity
vA−1 = (dx− cy,−bx+ ay) (see Lemma 2.52 and the remark afterwards).

We use Proposition 1.11 to evaluate the above sum. We obtain that it is
zero unless ay = bx, when it equals |M |. Therefore, we recognize that this
value coincides with the trace of σ in Lemma 2.63.

Lemma 2.69. Let M = (M,Q) be an O-FQM with level l and σ be the
representation afforded by the H(M)-module C[M ] (see Lemma 2.62). For
each A ∈ ΓO/l, there exists an (up to multiplication by a constant) unique
δ(A) ∈ GL(C[M ]) such that the following holds true:

δ(A)σ(h)δ(A)−1 = σ(AhA−1) (h ∈ H(M)). (2.32)

Proof. Let A ∈ ΓO/l. By Lemma 2.68 we know that σ ◦ σA and σ are
equivalent to each other. Hence, there exists an element δ(A) of GL(C[M ])
such that (2.32) holds true. It remains to show that δ(A) is unique up to
multiplication by a constant. Assume there exists γ(A) ∈ GL(C[M ]) which
satisfies also (2.32). Let h ∈ H(M). We then have

γ−1δ(A)σ(h)(γ−1δ)−1(A) = σ(h).

We denote γ−1(A)δ(A) by ϕ(A). Using the above identity we obviously have
ϕ(A)(hv) = hϕ(A)(v) for any v ∈ C[M ]. But this implies that ϕ(A) defines
an H(M)-linear map on C[M ]. Since from Lemma 2.64 we know that C[M ]
is an irreducible H(M)-module, the result follows from Schur’s Lemma (see
e.g [FH91, Lem. 1.7]).

Lemma 2.70. Let M = (M,Q) be an O-FQM with level l. For A an element
of SL(2,O), let δ(A) be an element of GL(C[M ]) satisfying (2.32). The map
A 7→ δ(A) defines a projective representation of ΓO/l.

Proof. Let A and B be in ΓO/l. By assumption, δ(AB) satisfies (2.32). It is
enough to show that δ(A)δ(B) also satisfies the same identity, since then by
proceeding as in the proof of Lemma 2.69, the statement of the lemma holds
true. But we have

δ(A)δ(B)σ(h)(δ(A)δ(B))−1 = δ(A)σ
(
BhB−1

)
δ(A)−1 = σ

(
ABhB−1A−1

)
= σ(ABh(AB)−1).

Here we used the assumption that δ(A) and δ(B) satisfy (2.32).

Proof of Theorem 2.7. For z ∈M and b ∈ O, we define

L(Tb)ez := e {bQ(z)} ez.
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Let π be the epimorphism in Lemma 1.29 from Γ onto ΓO/l. If we can
show that the operators L(Tb) and δ(π(Tb)) differ by a constant, then mul-
tiplying δ(π(Tb)) with a suitable constant so that it satisfies (i) and using
Lemma 2.70, we see that part (i) of theorem holds true. To show that these
operators differ by a constant it is enough to show that L(Tb) also satis-
fies (2.32) (see the proof of Lemma 2.69). But for any h = (x, y, ξ) ∈ H(M),
we have

L(Tb)σ(h)L(Tb)
−1ez = ξe {bQ(x) +B(z, bx− y)} ez+x

= ξfT−1
b

(v)e {−B(−bx+ y, z)} ez+x
= σ

(
π(Tb)hπ(Tb)

−1
)
ez.

To obtain the first identity we used L(Tb)
−1ez = e {−bQ(z)} ez and the

action in Lemma 2.62. For the second identity we used Lemma 2.67 and
Lemma 2.62.

For z ∈M , we set

L(S)ez := σ(M)
1√
|M |

∑
z′∈M

e {−B(z′, z)} ez′ .

We show that the operators L(S) and δ(π(S)) differ by a constant. Then,
proceeding as in the previous case, we obtain that part (ii) of theorem also
holds true. But for any h = (x, y, ξ) ∈ H(M), we have

L(S)σ(h)L(S)−1ez = ξ
1

|M |
∑
z′′∈M

e {−B(x, z′′)} ez′′×

×
∑
z′∈M

e {−B(z′, y − z + z′′)}

= ξe {B(x, y − z)} ez−y = ξfS−1(v)e {−B(z, x)} ez−y
= σ(π(S)hπ(S)−1)ez.

For the first identity we used L(S)−1ez = σ(M) 1√
|M |

∑
z′∈M e {B(z′, z)} ez′

and the action in Lemma 2.62. Moreover, we also used the fact that σ(M)
has absolute value one (see Proposition 1.10). The second identity follows
from the fact that the sum in the previous identity is zero unless z′′ = y− z,
when it equals |M | (see Proposition 1.11). For the third identity we used
Lemma 2.67 and Lemma 2.62. This proves the theorem.

Remark. Let M = (M,Q) be an O-FQM with level l. By (2.3) and also
Lemma 2.70 we have that ΓO/l acts on Hom(C[M ],C[M ]) via:

(A, λ)→ Aλ, Aλ(v) = δ(A)λ
(
δ(A)−1(v)

)
.
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Here δ(A) is any element of GL(C[M ]) which satisfies (2.32). Using the first
remark after Definition 2.55 and Proposition 2.2 we have that Γ̃ also acts on
the space Hom(C[M ],C[M ]).

On the other hand, since W (M) is a Γ̃-module (see Section 2.2), the
group Γ̃ acts on Hom(W (M),W (M)) via (see (2.3))

(α, λ)→ αλ, αλ(v) = ρ(α)λ
(
ρ(α)−1(v)

)
,

where ρ is the representation afforded by Γ̃-module W (M). But from Theo-
rem 2.7 we know that ρ and δ differ only by a constant. Therefore, the action
of Γ̃ on the spaces Hom(C[M ],C[M ]) and Hom(W (M),W (M)) coincide.

We can now give the second proof of Theorem 2.6.

Proof of Theorem 2.6. From Proposition 2.22 we know that the number of
irreducible Γ̃-submodules of W (M) is bounded by the dimension of the

space HomΓ̃

(
W (M),W (M)

)
, which in fact equals Hom

(
W (M),W (M)

)Γ̃

(see Proposition 2.21). From the previous remark the latter space equals

Hom
(
C[M ],C[M ]

)ΓO/l . It is enough to show that the dimension of this lat-
ter space equals the upper bound given in the statement of the theorem.

Since C[M ] is an irreducible H(M)-module (see Lemma 2.64), the ele-
ments σ(v, 1) (v ∈ M ×M) form a basis for the space Hom

(
C[M ],C[M ]

)
(see [Ser77, Prop. 10]). Here σ is the representation afforded by the H(M)-
module C[M ]. By Proposition 2.15 and the action given in the previous

remark we have that Hom
(
C[M ],C[M ]

)ΓO/l is spanned by the operators

L(v) :=
1

|ΓO/l|
∑

A∈ΓO/l

δ(A)σ(v, 1)δ(A)−1 (v ∈M ×M).

We claim that the nonzero L(v), where the v are representatives for
(
M ×

M
)/

ΓO/l, form a basis for the space Hom
(
C[M ],C[M ]

)ΓO/l . For that first
we need to show that if v and w lie in the same orbit (see Lemma 2.52 and
the remark afterwards), then L(v) and L(w) differ by a constant. We write
v = wB−1 for some B ∈ ΓO/l. Then we have

L(v) =
1

|ΓO/l|
∑

A∈ΓO/l

δ(A)σ(wB−1, 1)δ(A)−1.

Since δ(A) satisfies (2.32), we have

δ(A)σ(wB−1, 1)δ(A)−1 = σ
(
A(wB−1, 1)A−1

)
.
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Inserting the identities A(wB−1, 1)A−1 =
(
1, wB−1A−1, fA−1(wB−1)

)
(see

Lemma 2.67) and fA−1(wB−1) = f(AB)−1(w)/fB−1(w) (see Lemma 2.53) to
the above identity we obtain

δ(A)σ(wB−1, 1)δ(A)−1 =
1

fB−1(w)
δ(AB)σ(w, 1)δ(AB)−1.

Inserting this quantity to the last sum and doing the substitution A 7→ AB−1

proves the assertion.
Next we determine when L(v) = 0. We write

L(v) =
1

|ΓO/l|
∑

B Stab(v)∈ΓO/l/ Stab(v)

∑
A∈Stab(v)

δ(AB)σ(v, 1)δ(AB)−1.

We have the following identity

δ(AB)σ(v, 1)δ(AB)−1 = σ
(
AB(v, 1)(AB)−1

)
= σ

(
1, vB, fA(v)fB(v)

)
= σ(vB)fB(v)fA(v).

The first identity follows since δ(AB) satisfies (2.32). The second identity
follows from Lemma 2.67, Lemma 2.53 and the fact that A ∈ Stab(v). The
last identity is implied by the action in Lemma 2.62. Therefore, we obtain

L(v) =
1

|ΓO/l|
∑

B Stab(v)∈ΓO/l/Stab(v)

σ(vB)fB(v)
∑

A∈Stab(v)

fA(v).

Clearly, L(v) = 0 if and only if the inner sum equals zero. But the inner sum
equals zero if and only if χv is nontrivial (see Lemma 2.58 for χv).

Consequently, the space Hom
(
C[M ],C[M ]

)ΓO/l has as basis the oper-
ators L(v) for which the characters χv are trivial. Therefore the dimen-

sion of the space Hom
(
C[M ],C[M ]

)ΓO/l equals the number of elements in(
M ×M

)′/
ΓO/l.



Chapter 3

Jacobi Forms over Totally Real
Number Fields

From this chapter on, the number field K is assumed to be totally real.
This restriction is necessary for guaranteeing the holomorphicity of Jacobi
forms. As before, we shall simply write O, d for the ring of integers and
different of K, respectively. Furthermore, we shall use Γ = SL(2,O), and we
shall write Γ̃ for the metaplectic cover of SL(2,O) which will be defined in
Section 3.3. In addition, for a subring R of K, we shall denote by ΓR the
group SL(2, R) and by Γ̃R the metaplectic cover of ΓR.

In the present chapter we shall develop a theory for Jacobi forms over
number fields. In particular, we shall see that there is a one-to-one correspon-
dence between the spaces of Jacobi forms and certain spaces of vector-valued
Hilbert modular forms (see Theorem 3.5). As an immediate corollary, we
shall deduce that the spaces of Jacobi forms are finite dimensional (see Corol-
lary 3.53). Certain spaces of functions, the Jacobi theta functions which can
be viewed as modules over Γ̃ (see Theorem 3.1), will play an important role
in this context. In the next chapter, we shall define a Γ̃-module isomorphism
between the spaces of Weil representations associated to certain discriminant
modules and the spaces of these theta functions. This will be a key step for
the explicit description of the singular Jacobi forms whose index is a rank
one O-lattice. We shall also calculate the matrix coefficients of the action
of Γ̃ on the spaces of Jacobi theta functions (see Theorem 3.1).

In Section 3.1, we shall recall or develop those basic facts about integral
lattices over number fields (the O-lattices) which are crucial for the definition
of Jacobi forms. In Section 3.2, we shall introduce some basic notations
which will help to avoid clumsy notations when dealing with Jacobi forms
and Hilbert modular forms. In Section 3.3, we shall define the metaplectic
cover of SL(2,O), which will be necessary to include Jacobi forms of half

77
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integral weight. In Section 3.4, we shall introduce the notions of Heisenberg
groups and the Jacobi groups associated to O-lattices, and we list several
results concerning the actions of these groups on the spaces of holomorphic
functions, which will be helpful for defining Jacobi forms. In Section 3.5, we
shall introduce the spaces of Jacobi theta functions associated to O-lattices.
Later in the same section, we shall study the spaces of Jacobi theta functions
as Γ̃-modules, and moreover we shall determine the matrix coefficients of
the Γ̃-action. In Section 3.6, we shall finally define Jacobi forms, and we
study their Fourier developments and theta expansions. In Section 3.7, we
shall show that the spaces of Jacobi forms are isomorphic to spaces of vector-
valued Hilbert modular forms. In particular, we shall be able to prove that a
Köcher principle holds true for Jacobi forms and that the spaces of Jacobi
forms are finite dimensional.

3.1 O-lattices

Definition 3.1. An integral lattice over O is a pair L = (L, β), where L
denotes a finitely generated torsion-free O-module, and where β : L × L →
d−1 is a map which satisfies the following properties:

(i) The map β is O-bilinear and symmetric.

(ii) The map β is non-degenerate (i.e. β(x, L) = {0} if and only if x = 0).

For simplicity, the integral lattices over O will be named O-lattices. We
sometimes write shortly x ∈ L for x ∈ L.

Proposition 3.2. Let L = (L, β) be an O-lattice. Then the tuple Tr(L) :=(
L, trK/Q ◦β

)
defines a Z-lattice.

Proof. The bilinear form trK/Q ◦β is non-degenerate, since the Q-bilinear
map

(
a, b
)
7→ trK/Q(a, b) is non-degenerate (a, b ∈ K). Clearly, trK/Q ◦β is

Z-bilinear and symmetric, which proves the proposition.

Let L = (L, β) be an O-lattice. The O-lattice L′ = (L′, β′) is called an
O-sublattice of L, if L′ is an O-submodule of L, and β′ is the restriction of β
to L′ × L′.

For x ∈ L#, here and in the following, we set β(x) := 1
2
β(x, x). If

β(x) ∈ d−1, then L is called an even O-lattice, otherwise it is called an odd
O-lattice. Every odd O-lattice contains an even O-sublattice. Indeed, the
map x 7→ β(x, x) + 2d−1 defines a group homomorphism from L to d−1/2d−1.
If L is even, then it is the trivial homomorphism. If L is odd, then the kernel
of this homomorphism is an even O-sublattice of L.



3.1. O-LATTICES 79

For 1 ≤ j ≤ n = [K : Q], let σj be the embeddings of K into R. If
σj ◦ β(x, x) > 0 for all j and all nonzero x ∈ L, then L is called totally
positive definite. Note that the notion of totally positive definite O-lattices
is a generalization to number fields of positive and integral Z-lattices.

We say that there is a homomorphism from L to L′, if there is an O-
module homomorphism ϕ : L → L′ which is isometric, i.e. such that
β′(ϕ(x), ϕ(y)) = β(x, y) (x, y ∈ L). Note that every homomorphism ϕ be-
tween totally positive definite O-lattices is injective (indeed, if ϕ(x) = 0,
then 0 = β′

(
ϕ(x), ϕ(y)

)
= β(x, y) for all y, which implies x = 0 since β

is non-degenerate). The O-lattices L and L′ are called isomorphic, and we
write L ' L′, if there is an isomorphism between them.

Recall that every torsion-free finitely generated O-module L is isomorphic
as an O-module to an O-module of the form Or−1 ⊕ a for some positive
integer r and a fractional O-ideal a [FT93, § II.4, Thm. 13(b)]. Moreover,
the integer r and the ideal class of a are uniquely determined by L [FT93,
§ II.4, Thm 13(c)]. The integer r is called the rank of L. The ideal class of a
is called the Steinitz-invariant of L Clearly, r equals the dimension of the
K-vector space K ⊗O L, i.e. r = dimK K ⊗O L.

If A is a ring extension of O, we denote the A-bilinear extension of β,
namely the bilinear map A⊗O L× A⊗O L → A⊗O d−1, also by β, and we
use β(x) = 1

2
β(x, x) if 2 is invertible in A ⊗O d−1. If d−1 is contained in A,

we identify the A-module A ⊗O d−1 with A (via the O-linear map induced
from the O-bilinear map (a, d) 7→ ad). The dual of L is defined as

L# := {x ∈ K ⊗O L : β(x, L) ∈ d−1}.

Note that L# is again a finitely generated torsion-free O-module, and that

(L#)
#

= L [O’M00, §82F] (loc. cit. the dual of a lattice is defined slightly
differently than ours, but it is easy to modify the arguments given loc. cit. so
that they extend also to our situation).

Definition 3.3. Let L = (L, β) be an even O-lattice. We define the dis-
criminant module of L as the O-FQM:

DL :=
(
L#/L, x+ L 7→ β(x) + d−1

)
.

Remark. Note that, for the well-definedness of the quadratic form Q : x+L 7→
β(x)+d−1 of DL the evenness of L is crucial. The non-degeneracy of Q comes

from the fact that (L#)
#

= L.

From [Ebe02, § 1.1] we know that L#/L is finite. By the level and the
annihilator of an O-lattice L we mean the level and the annihilator of the
O-FQM DL. The reader is referred to Section 1.1 for basic notions about
finite quadratic O-modules.
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Definition 3.4. Let L = (L, β) be an even O-lattice. For an isotropic sub-
module U of L#/L, we define L/U := (π−1(U), β), where π is the canonical
projection from L# onto L#/L.

Remark. Note that L/U is again an even O-lattice (the non-degeneracy of β
on π−1(U) × π−1(U) follows from the easily proven fact that x 7→ β(x, ·)
defines an isomorphism of the K-vector space K⊗O L with its dual and that
π−1(U) contains a basis of this vector space.)

Proposition 3.5. Let L = (L, β) be an even O-lattice and π be the canonical
projection from L# to L#/L. The map x + π−1(U) 7→ π(x) + U defines an
isomorphism from DL/U to DL/U .

Proof. The statement is an obvious consequence of the very definition of L/U .

The remaining statements of this section concern O-lattices of rank 1 and
will not be used before the next chapter.

Definition 3.6. Let c be a nonzero fractional O-ideal, and ω be a nonzero
element of K∗ such that ω � 0 and ωc2 ⊆ d−1. We set

(c, ω) := (c, (x, y) 7→ ωxy) . (3.1)

Note that, (c, ω) defines a totally positive definite O-lattice of rank 1.

Proposition 3.7. Let (c, ω) be as in the above definition. Then the discrim-
inant module of (c, ω) is an O-CM. Moreover, the annihilator, level and the
modified level of (c, ω) equal c2ωd, 2c2ωd and c2ωd, respectively. If (c, ω) is
even, then the annihilator and the level of L is divisible by 2 and 4, respec-
tively.

Proof. Let L = (L, β) = (c, ω). Since L# = {y ∈ K : ωyc ⊆ d−1} = (cωd)−1,
we have

DL =
(
(cωd)−1/c, x+ c 7→ ωx2/2 + d−1

)
.

Here note that c ⊆ (cωd)−1, since the O-lattice (c, ω) is integral. Lemma 1.17
implies then that DL is an O-CM. It is easy to see that the annihilator, level
and the modified level of L are of the claimed form. If L is even, then ωdc2

is divisible by 2. Therefore, the last statement also holds true.

Proposition 3.8. Every homomorphism between O-lattices of the form (3.1)
is given by a multiplication of some nonzero element in K.
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Proof. Let (c, ω) and (c′, ω′) be as in Definition 3.6. Let ϕ : (c, ω)→ (c′, ω′) be
a homomorphism. We can find a positive integer N such that Nc is integral.
Since ϕ is an O-module homomorphism, we have Nϕ(x) = ϕ(Nx) = Nxϕ(1)
for all x ∈ c. Hence, ϕ(x) = xϕ(1) for all x ∈ c. In addition, since ϕ is
isometric, we have ωxy = ω′ϕ(x)ϕ(y) = ω′xyϕ(1)2 for all x, y ∈ c. This
implies that for nonzero x and y, we have ω = ω′ϕ(1)2. Since, ω and ω′ are
nonzero elements of K, we obtain that ϕ(1) 6= 0, i.e. ϕ is injective.

Proposition 3.9. Let (c, ω) and (c′, ω′) be as in Definition 3.6. Then the
lattices (c, ω) and (c′, ω′) are isomorphic if and only if ω′ = a2ω and c′ = a−1c
for some a ∈ K∗.

Proof. Suppose that ϕ is an isomorphism from (c, ω) to (c′, ω′). From Propo-
sition 3.8, we have ϕ(x) = xa (x ∈ c) for some nonzero a ∈ K. Since ϕ
is a surjection, we have c′ = ca. Moreover, since ϕ is isometric, we have
ωxy = ω′ϕ(x)ϕ(y) = ω′xya2 for all x, y ∈ c. Then, by taking nonzero x
and y, we have ω′ = a2ω. The other inclusion is obvious.

Proposition 3.10. Let L = (L, β) be a totally positive definite O-lattice
of rank 1. Then L is isomorphic to an O-lattice of the form (c, ω) as in
Definition 3.6.

Proof. Since L has rank 1, using [FT93, § II.4, Thm. 13(b)], we obtain that L
is isomorphic to a fractional O-ideal, say c. Let ϕ be an isomorphism from c
onto L. Note that there exists a positive integer N ′ such that N ′c is integral.
Then for any x ∈ c, we have N ′ϕ(x) = ϕ(N ′x) = N ′xϕ(1), i.e. ϕ(x) = xϕ(1).
Note that since ϕ is an isomorphism, a := ϕ(1) 6= 0. Let c ∈ c such that
β(ca, ca) 6= 0, and let x, y ∈ c. We can find a positive integer N such that
Nx,Ny,Nc ∈ O. Then we have

Nc2β(ϕ(x), ϕ(y)) = Nc2β(ax, ay) = cβ(Ncax, ay) = Nxcβ(ca, ay)

= xβ(ca,Ncay) = Nxyβ(ca, ca).

We set ω := β(ca, ca)/c2. Hence, ϕ defines an isomorphism from the lattice L
onto (c, ω). The fact that ωc2 lies in d−1 follows from the integrality of the
O-lattice L, and that ω � 0 follows from the totally positive definiteness of
the O-lattice L.

3.2 Algebraic prerequisites

We set
C := C⊗Q K, R := R⊗Q K.
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We view C as a ring with respect to the multiplication induced from the map
(z⊗a, z′⊗a′) 7→ (zz′)⊗(aa′) (z, z′ ∈ C, a, a′ ∈ K), and as algebra over C and
overK via the maps satisfying (z, z′⊗a) 7→ (zz′)⊗a and (a, z⊗a′) 7→ z⊗(aa′),
respectively. In particular, we identify C and K with their images in C under
the embeddings z 7→ z ⊗ 1 and a 7→ 1 ⊗ a. Similar conventions are made
for R, which we view as a subring of C. In particular, the group O can be
identified with its image in C under the embedding b 7→ 1⊗ b (b ∈ O). Hence
the group Γ becomes a subgroup of SL(2, C) of 2×2-matrices over the ring C
with determinant 1.

We use N and tr for the norm and trace of the C-algebra C. Thus, if c is an
element of C and f(x) is the characteristic polynomial of the endomorphism
of C given by multiplication by c, then f(x) = xm − tr

(
c
)
xm−1 + · · · +

(−1)m N(c). Likewise, if c is in C, then

N(c) =
∏
σ∈E

σ(c), tr
(
c
)

=
∑
σ∈E

σ(c).

Here E is the set of the C-linear continuations of all embeddings σ : K ↪→ C
to C-linear maps σ : C → C (we use the same letter for the embedding and its
linear continuation). Thus σ(z⊗a) = zσ(a). The maps σ ∈ E are coordinate

functions of the ring isomorphism
∏

σ∈E σ : C '−→ Cn (n = [K : Q]), where we
take coordinate wise multiplication as multiplication on Cn. In particular, an
element c of C is invertible (i.e. multiplication by c is an isomorphism of C)
if and only if N(c) is different from 0. The Q-bilinear map (z, a) 7→ z ⊗ a
induces a Q-linear involution on C which we also indicate by placing a bar
over the argument. We set

H := {z ∈ C : =
(
σ(z)

)
> 0, for all σ ∈ E}.

Note that H is an open subset of C.

Proposition 3.11. The group ΓR acts on H via:

(A, τ) 7→ Aτ := (aτ + b)(cτ + d)−1. (3.2)

Proof. First of all, for c and d in R and τ in H the element cτ+d is invertible
and Aτ is in H. For proving this we use the easily proved identity

(Aτ − Aτ)(cτ + d)(cτ + d) = τ − τ .

The left hand side under σ (σ ∈ E) has hence strictly positive imaginary
part. This shows that N(cτ + d) 6= 0, hence that cτ + d is invertible. So, we
have =

(
σ(Aτ)

)
= =

(
σ(τ)

)
/σ
(
(cτ + d)(cτ + d)

)
> 0 (σ ∈ E).
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Next, it obviously holds true that 1τ = τ . Let A = ( a bc d ), B =
(
a′ b′

c′ d′

)
be

in ΓR and τ ∈ H. Then we have

B(Aτ) =
a′ aτ+b
cτ+d

+ b′

c′ aτ+b
cτ+d

+ d′
=

(a′a+ b′c)τ + a′b+ db′

(c′a+ cd′)τ + c′b+ dd′
= (BA)τ.

This proves the proposition.

Under the identification of C with Cn from above the setH corresponds to
the subset of vectors w in Cn whose components have all positive imaginary
part, and the trace and the norm of w become the sum and the product of
its components, respectively. For w ∈ C, we use

√
w for the element in C

which corresponds to the element
(√

w1, . . . ,
√
wn
)

in Cn under the above
isomorphism which sends w to

(
w1, . . . , wn

)
. For the choice of the square

root of a complex number, we refer to the section Notations.
For an O-lattice L = (L, β) of rank r, the O-module LC := C ⊗O L

(similarly, LR := R⊗O L) becomes a C-module via C-linear continuation of
the following map

(w′, w ⊗ x) 7→ w′w ⊗ x (w,w′ ∈ C, x ∈ L),

which contains L and K as O-submodules via the identifications x 7→ 1⊗ x
and a 7→ (1 ⊗ a) ⊗ 1 (x ∈ L, a ∈ K), respectively. Moreover, LC becomes a
C-vector space of dimension nr via linear continuation of the following map

(z, w ⊗ x) 7→ zw ⊗ x (z ∈ C, w ∈ C, x ∈ L).

3.3 The metaplectic cover Γ̃R of ΓR

Definition 3.12. The metaplectic cover of ΓR(resp. Γ) is the set of tuples(
A = ( a bc d ) , w

)
, where A ∈ ΓR (resp. A ∈ Γ) and w : H → C a holomorphic

function satisfying w2(τ) = N(cτ + d), with the following operation:

(A,w) · (B, v) :=
(
AB,w(Bτ)v(τ)

)
.

(Here Bτ denotes the group action (3.2).) In the following we denote the
metaplectic cover of ΓR (resp. Γ) by Γ̃R (resp. Γ̃).

Remark. Note that ΓR (resp. Γ) is in fact a group.

The group Γ̃R is a central extension of ΓR

1→ 〈(1,−1)〉 → Γ̃R
π−→ ΓR → 1, (3.3)
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where π is the map (A,w) 7→ A and the second arrow is the inclusion. In
the following, for A = ( a bc d ) ∈ ΓR, we write A∗ :=

(
A,N

(√
cτ + d

) )
. Note

that the map A 7→ A∗ from ΓR to Γ̃R does not in general define a group
homomorphism.

We know from Section 3.2 that Γ can be embedded into ΓR. Hence, the
group Γ̃ can also be viewed as a subgroup of ΓR. For later use we determine
a set of generators for Γ̃.

Proposition 3.13. The group Γ̃ is generated by T ∗b = (Tb, 1) (b ∈ O),
S∗ =

(
S,N (

√
τ)
)

and I := (1,−1). If the degree n of K over Q is odd,

then Γ̃ is already generated by T ∗b and S∗.

Proof. Let A = ( a bc d ) ∈ Γ and π be the projection in (3.3). We know from
Theorem 2.1 that A = π(A∗) can be written as a word in S = π(S∗) and
Tb = π(T ∗b ) (b ∈ O). Hence, A∗ can be written as a word in (Tb)

∗, S∗ and an
element lying in the kernel of π, which equals (1,±1). Since every element
of Γ̃ is either of the form A∗, or A∗I, the first statement holds true. If n is
odd, then I = (S∗)4, i.e. the second statement holds true.

3.4 The Jacobi group of an O-lattice

In the present section, we shall define the Heisenberg group and the Jacobi
group associated to an O-lattice. Moreover, we shall study various actions
of these groups which are important in the sequel.

As explained in the section Notations, we shall use e {c} for exp(2πi tr(c)),
where c ∈ C.

Definition 3.14. Let L = (L, β) be an O-lattice. The Heisenberg group
associated to L is

H(LR) := {(x, y, ξ) : x, y ∈ LR, ξ ∈ C∗}

together with the operation

(x, y, ξ) · (x′, y′, ξ′) =
(
x+ x′, y + y′, ξξ′e

{(
β(x, y′)− β(x′, y)

)
/2
} )
. (3.4)

Moreover, we use H(L#) and H(L) for the subgroups

H(L#) =
{

(x, y, ξ) : x, y ∈ L#, ξ ∈ µ2l

}
H(L) =

{
(x, y, e {β(x, y)/2}) : x, y ∈ L

}
.

Here l is the exponent of the abelian group L#/L.
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Remark. The exact sequence

0→ C∗ →H(LR)→ LR × LR → 0

ξ 7→(x, y, ξ) 7→ (x, y)

shows that H(LR) is a central extension of LR × LR by C∗.
Note that the elements (x, 0, 1) and (0, y, 1) (x, y ∈ L) generate H(L).

Note also that H(L) is a normal subgroup of H(L#).

Proposition 3.15. The operation (3.4) defines indeed a group structure
on H(LR).

Proof. The neutral element is (0, 0, 1). For an element (x, y, ξ) of H(LR),
the inverse element equals (−x,−y, ξ−1). The associativity follows from the
following identity:

(x, y, ξ) ·
(
(x′, y′, ξ′) · (x′′, y′′, ξ′′)

)
=
(
x+ x′ + x′′, y + y′ + y′′, ξξ′ξ′′e

{(
β(x′, y′′)− β(x′′, y′)

)
/2
}
×

× e
{(
β(x, y′ + y′′)− β(x′ + x′′, y)

)
/2
} )

=
(
x+ x′ + x′′, y + y′ + y′′, ξξ′ξ′′×
× e

{(
β(x+ x′, y′′) + β(x, y′)− β(x′′, y + y′)− β(x′, y)

)
/2
} )

=
(
x+ x′, y + y′, ξξ′e

{(
β(x, y′)− β(x′, y)

)
/2
} )
· (x′′, y′′, ξ′′)

=
(
(x, y, ξ) · (x′, y′, ξ′)

)
· (x′′, y′′, ξ′′).

For later use we note the following

Proposition 3.16. Let L = (L, β) be an O-lattice and let l be the exponent
of L#/L. Then H(L#)/H(L) is a central extension of L#/L by µ2l. More
precisely the applications ξ 7→ (0, ξ)H(L) and (x, ξ)H(L) 7→ x+ L define an
exact sequence

1 −→ µ2l −→ H(L#)/H(L) −→ L#/L −→ 1.

The order of H(L#)/H(L) equals, in particular, 2l|L#/L|2.

Remark. It is not hard to show that, for even L, the group H(L#)/H(L)
is also a central extension of the Heisenberg group H(DL) associated to the
O-FQM DL (see Definition 2.61).

Proof of Proposition 3.16. The proposition follows easily by a straightfor-
ward calculation.
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Proposition 3.17. Let L = (L, β) be an O-lattice. The group ΓR acts on
the group H(LR) from the right via:(

(x, y, ξ), A
)
→ (x, y, ξ)A :=

(
(x, y)A, ξ

)
.

Here, (x, y)A stands for the formal multiplication of the row vector (x, y) and
the matrix A. More precisely, for A = ( a bc d ), we use (x, y)A = (ax+ cy, bx+
dy).

Proof. To prove the proposition we need to show that the axioms of a group
action are satisfied, and that, for fixed A ∈ ΓR, the map h 7→ hA defines
a group homomorphism of H(LR). Let A,B ∈ ΓR and h ∈ H(LR). Write
A = ( a bc d ), B =

(
a′ b′

c′ d′

)
and h = (x, y, ξ). It is obvious that h1 = h, and,

since we have the following identity, the first part holds true:

((x, y)A)B = ((xa+ yc)a′ + (xb+ yd)c′, (xa+ yc)b′ + (xb+ yd)d′)

= ((aa′ + bc′)x+ (ca′ + dc′)y, (ab′ + bd′)x+ (cb′ + dd′)y)

= (x, y)AB.

Next we need to show hA · h′A = (h · h′)A (h′ ∈ H(LR)). Write h′ =
(x′, y′, ξ′). The following identity clearly proves the second part:

e
{(
β(ax+ cy, bx′ + dy′ − β(ax′ + cy′, bx+ dy)

)
/2
}

= e
{(
β(x, y′)− β(x′, y)

)
/2
}
.

Definition 3.18. Let L = (L, β) be an O-lattice. We use J(LR) for the
semi-direct product of ΓR and H(LR) with respect to the action in Proposi-
tion 3.17, in short

J(LR) = ΓR nH(LR).

Similarly, we use J(L#) := ΓnH(L#) and, if L is even J(L) := ΓnH(L).

Remark. Recall from the general definition of semi-direct products that the
group J(LR) consists of all pairs (A, h) of elements A in ΓR and h in H(LR)
together with the operation

(A, h) · (B, h′) = (AB, hB · h′).

More explicitly, the operation can be written as(
A, (x, y, ξ)

)
·
(
B, (x′, y′, ξ′)

)
=
(
AB, ax+ cy + x′, bx+ dy + y′,

ξξ′e
{(
β(ax+ cy, y′)− β(x′, bx+ dy)

)
/2
} )
.
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For the definition of J(L#) and J(L) to make sense, we need that H(L#)
and H(L) are invariant under the action of Γ on the Heisenberg group.
For H(L#) this is always true, whereas for H(L) this holds true only if L
is even. Indeed, if h = (x, y, e {β(x, y)/2}) is in H(L), then, for A in Γ, we
have hA ∈ H(L) (0, e {abβ(x) + cdβ(y)}). But e {abβ(x) + cdβ(y)} equals 1
for all A in Γ and all x and y in L if and only if L is even.

Note that J(L#) and J(L) are subgroups of J(LR). We view ΓR and
H(LR) as subgroups of J(LR) via the maps A 7→

(
A, 1

)
and h 7→

(
1, h
)
,

respectively. So, when we write Ah, we mean the element (A, 1) · (1, h).

Lemma 3.19. The map γ : ΓR ×H → H, defined by

γ(A, τ) := cτ + d (A = ( a bc d ))

satisfies the following identity (cocycle identity):

γ(A,Bτ)γ(B, τ) = γ(AB, τ). (3.5)

Proof. Let A = ( a bc d ), B =
(
a′ b′

c′ d′

)
be elements of ΓR. The identity (3.5)

holds true, since we have:

γ(A,Bτ)γ(B, τ) = (cBτ + d)(c′τ + d′)

= ca′τ + cb′ + dc′τ + dd′ = (ca′ + dc′)τ + cb′ + dd′

= γ(AB, τ).

Proposition 3.20. Let L = (L, β) be an O-lattice. The group ΓR acts on
H× LC via: (

A, (τ, z)
)
7→ A(τ, z) :=

(
Aτ,

z

γ(A, τ)

)
.

Moreover, H(LR) also acts on H× LC via:(
(x, y, ξ), (τ, z)

)
7→ (x, y, ξ)(τ, z) := (τ, z + xτ + y).

Proof. Let A = ( a bc d ), B =
(
a′ b′

c′ d′

)
be elements of ΓR and (τ, z) ∈ H × LC.

Since obviously we have 1(τ, z) = (τ, z), the following identity proves the
first statement:

B(A(τ, z)) =

(
B(Aτ),

z
γ(A,τ)

γ(B,Aτ)

)
=

(
BAτ,

z

γ(BA, τ)

)
= BA(τ, z).

For the second identity we used (3.5).
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For proving the second statement, let h = (x, y, ξ) and h′ = (x′, y′, ξ′) be
elements of H(LR). Obviously, we have 1(τ, z) = (τ, z). Furthermore, we
calculate

h′
(
h(τ, z)

)
= (x′, y′, ξ′)

(
(x, y, ξ)(τ, z)

)
=
(
τ, z + (x+ x′)τ + (y + y′)

)
=
(
x′ + x, y′ + y, ξ′ξe

{(
β(x′, y)− β(x, y′)

)
/2
} )

(τ, z)

= (h′ · h)(τ, z).

This proves the proposition.

Lemma 3.21. Let L = (L, β) be an O-lattice. For any y ∈ H × LC, h ∈
H(LR) and A ∈ ΓR, we have

h(Ay) = A(hAy).

Proof. Write y = (τ, z), h = (x, y, ξ) and A = ( a bc d ). The claimed identity
holds true, since we have:

h(Ay) =

(
Aτ,

z

γ(A, τ)
+ x(Aτ) + y

)
=

(
Aτ,

z + (ax+ cy)τ + bx+ dy

γ(A, τ)

)
= A(τ, z + (ax+ cy)τ + bx+ dy) = A(hAy).

Proposition 3.22. Let L = (L, β) be an O-lattice. The group J(LR) acts
on H× LC via: (

(A, h), (τ, z)
)
7→ (A, h)(τ, z) := A(h(τ, z)).

Proof. Let (A, h), (B, h′) be in J(LR) and u ∈ H × LC. Since obviously we
have

(
1, 1
)
u = u, the following identity proves the proposition:

(B, h′)
(
(A, h)u

)
= (B, h′)

(
A(hu)

)
= B

(
h′
(
A(hu)

))
,

= B(A(h′A(hu))) = (BA)((h′A · h)(u))

= (BA, h′A · h)(u) =
(
(B, h′) · (A, h)

)
(u).

Here we used Lemma 3.21 to obtain the third identity, and for the forth
identity we used the second part of Proposition 3.20.

Proposition 3.23. Let k ∈ Z. The group ΓR acts from the right on the
space Hol(H) via:

(φ,A) 7→
(
φ|kA

)
(τ) := N

(
γ(A, τ)

)−k
φ(Aτ).

(See (3.19) for the function γ(A, τ)).



3.4. THE JACOBI GROUP OF AN O-LATTICE 89

Proof. Let A,B ∈ ΓR, φ ∈ Hol(H) and τ ∈ Hol(H). The following identity
proves the proposition, since we obviously have φ|k1 = φ:((

φ|kA
)
|kB
)

(τ) = N
(
γ(B, τ)

)−k
N
(
γ(A,Bτ)

)−k
φ(A(Bτ))

= N
(
γ(AB, τ)

)−k
φ(ABτ) =

(
φ|kAB

)
(τ).

The second identity follows from (3.5) and Proposition 3.11.

Proposition 3.24. Let k ∈ Z and L = (L, β) be an O-lattice. The group ΓR
acts from the right on Hol(H× LC) via

(φ,A) 7→
(
φ|k,LA

)
(τ, z) := N

(
γ(A, τ)

)−k
e

{
−cβ(z)

γ(A, τ)

}
φ

(
Aτ,

z

γ(A, τ)

)
,

where A = ( a bc d ). (Recall that β(z) = 1
2
β(z, z).)

Proof. Let φ ∈ Hol(H× LC) and B ∈ ΓR. Write B =
(
a′ b′

c′ d′

)
. Since we have

φ|k1 = φ, the following identity proves the proposition:((
φ|k,LA

)
|k,LB

)
(τ, z)

= N
(
γ(B, τ)

)−k
N
(
γ(A,Bτ)

)−k
e

{
−cβ(z)

γ(B, τ)2γ(A,Bτ)

}
e

{
−c′β(z)

γ(B, τ)

}
× φ

(
ABτ,

z

γ(AB, τ)

)
= N(γ(AB, τ))−ke

{
−(ca′ + dc′)β(z)

γ(AB, τ)

}
φ
(
ABτ,

z

γ(AB, τ)

)
=
(
φ|k,LAB

)
(τ, z).

To obtain the second identity we used (3.5) and Proposition 3.11, also the
identity

ca′ + dc′

γ(AB, τ)
=

c′

γ(B, τ)
+

c

γ(A,Bτ)γ(B, τ)2
,

where we used a′d′ − b′c′ = 1 and (3.5).

Proposition 3.25. Let k ∈ Z and let L = (L, β) be an O-lattice. The
group H(LR) acts from the right on Hol(H× LC) via:(

φ, (x, y, ξ)
)
7→
(
φ|k,L(x, y, ξ)

)
(τ, z)

:= ξe {τβ(x) + β(x, z) + 1/2β(x, y)}φ(τ, z + xτ + y).
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Proof. Let φ ∈ Hol(H× LC) and h, h′ ∈ H(LR). Write h = (x, y, ξ) and
h′ = (x′, y′, ξ′). Since we obviously have φ|k,L1 = φ, the following identity
proves that we have indeed an action:((
φ|k,Lh

)
|k,Lh′

)
(τ, z) = ξξ′e {τβ(x+ x′) + β(x+ x′, z) + β(x, y′)}×

× e {β(x′, y′)/2 + β(x, y)/2}×
× φ(τ, z + (x+ x′)τ + y + y′)

= ξξ′e
{(
β(x, y′)− β(x′, y)

)
/2
}
×

× e {τβ(x+ x′) + β(x+ x′, z) + β(x+ x′, y + y′)/2}
× φ(τ, z + (x+ x′)τ + y + y′)

=
(
φ|k,L(h · h′)

)
(τ, z).

Lemma 3.26. Let k ∈ Z and let L = (L, β) be an O-lattice. For any
φ ∈ Hol(H× LC), A ∈ ΓR, h ∈ H(LR), we have

(
φ|k,Lh

)
|k,LA =

(
φ|k,LA

)
|k,LhA.

Proof. Let y ∈ H × LC. Write y = (τ, z), h = (x, y, ξ) and A = ( a bc d ). We
have on the left

((
φ|k,Lh

)
|k,LA

)
(τ, z) = ξN

(
γ(A, τ)

)−k
e

{
−cβ(z)

γ(A, τ)

}
×

e

{
Aτβ(x) + β

(
x,

z

γ(A, τ)

)
+ β(x, y)/2

}
φ

(
Aτ,

z

γ(A, τ)
+ xAτ + y

)
.

Since hA = (xa+ yc, xb+ yd, ξ), on the right we have

((
φ|k,LA

)
|k,LhA

)
(τ, z)

= ξe {τβ(xa+ yc) + β(xa+ yc, z) + β(xa+ yc, xb+ yd)/2}×

N
(
γ(A, τ)

)−k
e

{
−cβ(z + (xa+ yc)τ + xb+ yd)

γ(A, τ)

}
×

× φ
(
Aτ,

z + (xa+ yc)τ + xb+ yd

γ(A, τ)

)
.
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The claimed identity follows now from the following identities:

z

γ(A, τ)
+ xAτ + y =

z + (xa+ yc)τ + xb+ yd

γ(A, τ)
,

−cβ(z + (xa+ yc)τ + xb+ yd) + +τ(cτ + d)β(xa+ yc)+

(cτ + d)β(xa+ yc, z) +
cτ + d

2
β(xa+ yc, xb+ yd)

= −cβ(z) + (aτ + b)β(x) + β(x, z) +
cτ + d

2
β(x, y).

The first one is obvious. The second one follows using ad− bc = 1.

Proposition 3.27. Let k ∈ Z and let L = (L, β) be an O-lattice. The
group J(LR) acts from the right on Hol(H× LC) via:(

φ, (A, h)
)
7→ φ|k,L(A, h) :=

(
φ|k,LA

)
|k,Lh.

Proof. Let φ ∈ Hol(H× LC), (B, h′) ∈ J(LR). From Propositions 3.24
and 3.25, we have φ|k,L(1, 1) = φ. Moreover, we have (writing | for |k,L)(

φ|(A, h)
)
|(B, h′) =

(((
φ|A

)
|h
)
|B
)
|h′ =

(((
φ|A

)
|B
)
|hB
)
|h′

=
(
φ|AB

)
|(hBh′) = φ|(AB, hBh′) = φ|

(
(A, h)(B, h′)

)
.

The first and fourth identities follow from the very definition of the J(LR)-
action. For the second identity we used Lemma 3.26, for the third identity
we used Propositions 3.24 and 3.25.

If we replace the integer k in Proposition 3.23 with a half integer, then
the action does not anymore define an action because of the ambiguity of
the square root of N(cτ + d). To solve the problem of this square root,
we have to pass to the metaplectic cover Γ̃R of ΓR (recall Section 3.3 for
its definition). For a number k in 1

2
Z, we define the action

(
(A,w), φ

)
7→

φ|k((A,w) of Γ̃R on Hol(H) and Hol(H× LC) as in the Propositions 3.23

and 3.24, respectively, but with the factor N
(
cτ + d

)−k
replaced by w(τ)−2k.

It is clear that this defines indeed an action. Thus we can state

Proposition 3.28. Let L = (L, β) be an O-lattice and k ∈ 1
2
Z. The

group Γ̃R acts on the right of the space Hol(H× LC) via:(
φ, (A,w)

)
7→ φ|k,L(A,w)(τ, z)

:= w(τ)−2ke

{
−cβ(z)

γ(A, τ)

}
φ

(
Aτ,

z

γ(A, τ)

)
. (3.6)
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Definition 3.29. Let L = (L, β) be an O-lattice. The semi-direct product
of Γ̃R and H(LR) with respect to the action(

(x, y, ξ), (A,w)
)
→ (x, y, ξ)(A,w) :=

(
(x, y)A, ξ

)
(3.7)

is denoted by J̃(LR), and is called the Jacobi group associated to L. We set
also J̃(L#) := Γ̃ nH(L#) and, if L is even, J̃(L) := Γ̃ nH(L).

Remark. We view Γ̃R and H(LR) as subgroups of J̃(LR) via the maps α 7→(
α, 1
)

and h 7→ (1, h), respectively. So, when we write αh, we mean the
element (α, h).

Remark. If we combine the action in (3.6) with the action of H(LR) on the
space Hol(H× LC) (see Proposition 3.25), we obtain a right action of J̃(LR)
on Hol(H× LC).

We shall now define certain differential operators on the space of smooth
complex valued functions C∞(H×LC). For this end let E denote the set of all
C-linear extensions of the embeddings from K into R to C-linear maps from C
into C (as already introduced in Section 3.2). Note that tr ◦β : LC×LC → C
is the C-bilinear continuation of the non-degenerate Z-linear form (x, y) 7→
tr ◦β(x, y) from L × L → Z (see Proposition 3.2) we conclude that tr ◦β is
non-degenerate on LC × LC. It is then easy to prove that there is a basis of
the C-vector space LC with coordinate functions zσ,j (j = 1, . . . , r, σ ∈ E)
such that, for any σ in E and all z1 and z2 in LC, we have

σ ◦ β(z1, z2) =
r∑
j=1

zσ,j(z1)zσ,j(z2). (3.8)

We view zσ,j also as functions on H× LC by setting zσ,j(τ, z) = zσ,j(z) for τ
in H and z ∈ LC. Furthermore, we use τσ for the function on H × LC such
that τσ(τ, z) = σ(τ). Note that{

τσ
}
σ∈E ×

{
zσ,j
}
σ∈E,1≤j≤r : H× LC → Hn × Cnr

defines a biholomorphic map. Here H denotes the usual upper half plane
in C and r and n are the rank of L and the degree of K over Q, respectively.
For σ in E we set

∆σ :=
∂2

∂z2
σ,1

+ . . .+
∂2

∂z2
σ,r

, (3.9)

Hσ :=
∂

∂τσ
− 1

4πi
∆σ, (3.10)

and call these operators the σ-Laplace operator and σ-Heat operator on H×
LC, respectively.
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Lemma 3.30. For σ ∈ E, τ ∈ H and s in LC, we have the following formulas:

Hσ e {τβ(s) + β(s, z)} = 0 (3.11)

Hσ e {−β(z)/τ} =
r

2τσ
e {−β(z)/τ} . (3.12)

Here the expressions on the left after the differential operators are considered
as functions in (τ, z) on H× LC.

Proof. As immediate consequences of (3.8) and the identity tr
(
β(z)/τ

)
=∑

σ∈E
1

2τσ

∑r
j=1 z

2
σ,j one obtains

∆σ e {β(s, z)} = 2(2πi)2 σ
(
β(s)

)
e {β(s, z)} ,

∂

∂τσ
e {τβ(s)} = 2πi σ

(
β(s)

)
e {τβ(s)} ,

∆σ e {−β(z)/τ} = −2πi

τσ

(
r − 4πi σβ(z)

τσ

)
e {−β(z)/τ} ,

∂

∂τσ
e {−β(z)/τ} =

2πi σβ(z)

τ 2
σ

e {−β(z)/τ} .

The claimed identities of the lemma are now obvious.

Proposition 3.31. Let L = (L, β) be an O-lattice of rank r, and let σ in E.
Then for any φ ∈ Hol(H× LC), and α = (A,w) ∈ Γ̃, we have

Hσ

(
φ|r/2,Lα

)
= σ

(
γ(A, τ)

)−2(
Hσφ

)
|r/2,Lα.

Proof. It suffices to prove the claimed identity for the standard generators
T ∗b (b ∈ O), I and S∗ of Γ̃. Except for S∗ the claimed identity is then obvious.
For proving the identity for S∗ we write first of all(

φ|r/2,LS∗
)
(τ, z) = φ(−1/τ, z/τ) e {−β(z)/τ} N

(√
τ
)−r

.

Thus φ|r/2,LS∗ is a product of three functions, which we denote by f1, f2

and f3, respectively. Applying now the heat operator Hσ, yields accordingly

Hσ

(
φ|k,LS∗

)
(τ, z)

= (Hσf1) f2 f3 + f1 (Hσf2) f3 −
1

2πi
(∇σf1) · (∇σf2) f3 + f1f2

∂

∂τσ
f3, (3.13)
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where ∇σ =
{

∂
∂zσ,j

}
j
. A short calculation, using Eσ =

∑
j zσ ,j

∂
∂zσ,j

, shows

Hσf1 = τ−2
σ

(
Hσφ

)
(−1/τ, z/τ) + τ−2

σ

(
Eσφ

)
(−1/τ, z/τ),

Hσf2 =
r

2τσ
f2,

− 1

2πi
(∇σf1) · (∇σf2) =

−1

τ 2
σ

(Eσφ)(−1/τ, z/τ)f2,

∂

∂τσ
f3 = − r

2τσ
f3.

Here, the second identity is identical with (3.12). We observe that the second
and fourth term in (3.13) cancel. Moreover, the third term and the second
term in the formula for Hσf1 multiplied by f2f3 cancel. Finally, the remaining
first term of Hσf1 multiplied by f2f3 equals τ−2

σ

(
Hσφ

)
|r/2,LS∗. This proves

the proposition.

3.5 The Jacobi theta functions

In this section we introduce and study certain spaces of Jacobi theta func-
tions which will be important in all remaining chapters. We shall show that
these spaces of Jacobi theta functions are Γ̃-modules (see Theorem 3.1), and
we shall calculate explicitly the matrix coefficients of the associated repre-
sentations.

For t ∈ C, we shall use qt for the function on H such that

qt(τ) = e {tτ} .

Definition 3.32. Let L = (L, β) be a totally positive definite even O-lattice.
For x ∈ L#/L, we set

ϑL,x(τ, z) :=
∑
s∈L#

s≡x mod L

qβ(s)e {β(s, z)} (τ ∈ H, z ∈ LC). (3.14)

We refer to these functions as the Jacobi theta functions associated to L.
Moreover, we set

ΘL := spanC
{
ϑL,x : x ∈ L#/L

}
.

Remark. It is easily verified that the series defining ϑL,x are absolutely con-
vergent and that the ϑL,x are holomorphic (here one needs that L is totally
positive definite). Note also that ϑL,x depends only on the residue class of x
modulo L.
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Proposition 3.33. For fixed τ , the functions z 7→ ϑL,x(τ, z) (x ∈ L#/L)
defined in (3.14) are linearly independent. In particular, the dimension of
the C-vector space ΘL equals |L#/L|.

Proof. Fix τ in H, and let φx (x ∈ L#/L) be complex numbers. Set
φ(z) :=

∑
x∈L#L/L φxϑL,x(τ, z). It is immediate from the definition of ϑL,x

that, for y ∈ L#, we have ϑL,x(τ, z + y) = ϑL,x(τ, z)e {β(y, x)}. For each
x0 ∈ L#, we therefore have∑
y∈L#/L

φ(z + y)e {−β(y, x0)} =
∑

y∈L#/L

∑
x∈L#/L

φxϑL,x(τ, z + y)e {−β(y, x0}

=
∑

y∈L#/L

∑
x∈L#/L

φxϑL,x(τ, z)e {β(y, x− x0}

= φx0|L#/L|ϑL,x0(τ, z).

For the last identity we used Proposition 1.11. Hence, if φ(z) vanishes iden-
tically, then φx0 = 0 unless ϑL,x0(τ, z) vanishes for all z. But the latter is
impossible since ϑL,x0(τ, z), considered as a Fourier development in z, would
vanish identically only if all coefficients qβ(r) were identically zero.

The main results of this section is the following theorem.

Theorem 3.1. Let L = (L, β) be a totally positive definite even O-lattice of
rank r. The space ΘL is a Γ̃-module. More precisely, for x in L# and α in

Γ̃, say, α =
(

( a bc d ) , εN
(√

cτ + d
))

, we have

ϑL,x|r/2,Lα = cLzα(α)
∑

y∈L#/L

e
{(
β(ax+ cy, bx+ dy)− β(x, y)

)
/2
}
×

× e {β(bx+ dy, zα)}ϑL,zα+ax+cy,

where

cLzα(α) =
e {−bdβ(zα)}
|Sc/L|

lim
t→∞

(
ϑL,−dzα |α

)
(it⊗ 1, 0).

For zα and Sc, we refer to Lemma 3.41 below.

Before we give the proof of this theorem at the end of the section we
deduce various consequences.

Corollary 3.34. Let n = [K : Q]. We have

(i) ϑL,x|r/2,LT ∗b = e {bβ(x)}ϑL,x (b ∈ O)

(ii) ϑL,x|r/2,LS∗ = 1√
|L#/L|

i−nr/2
∑

y∈L#/L e {−β(y, x)}ϑL,y
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(iii) ϑL,x|r/2,LI = (−1)rϑL,x .

Proof. The formulas in (i), (iii) are immediate consequence of Theorem 3.1.
For (ii), note that the element zα can be taken to be zero (since here Sc = L;
see Lemma 3.41). Comparing the formula of the theorem for α = S∗ and (ii)
shows that it remains to prove

lim
t
ϑL,0|r/2,LS∗(it⊗ 1, 0) =

1√
|L#/L|

i−nr/2.

But this is an immediate consequence of the transformation formula [Ebe02,
Prop. 5.7].

Corollary 3.35. We carry over the notations of Theorem 3.1. Let l denote
the level of L, and let Γ̃0(l) be the inverse image of Γ0(l) := (O Ol O )∩SL(2,O)
in Γ̃.

(i) There exists a linear character ε of Γ0(l) such that

ϑL,x|r/2,Lα = ε(α)e {abβ(x)}ϑL,ax

for all α in Γ̃0(l).

(ii) There exists a quadratic Dirichlet character χ modulo l such that, for
α = (( a bc d ) , w), one has ε(α)q = χ(d), where q = 2 if the rank r of L
is odd, and q = 1 otherwise.

(iii) Set
ΓL =

{
α =

(
A,w

)
∈ Γ̃ : A ∈ Γ(l), ε(α) = 1

}
.

The projection of ΓL on Γ(l) is surjective. The group ΓL acts trivially
on ΘL.

Remark. Note that ΓL is normal. Indeed, ΓL equals the group of all α is the

inverse image of Γ(l) in Γ̃ which fix ΘL point wise.

Proof. Since c is in L we can choose zα = 0. Using that, for all y in L#, we
have cy in L and cβ(y) in d−1 (since c is in l), the transformation formula of
the theorem simplifies to ϑL,x|r/2,Lα = ε(α)( e {abβ(x)}ϑL,ax, where ε(α) =

cL0 (α)|L#/L|. It is clear that ε(α) is a linear character of Γ0(l).
By [Ebe02, Prop. 5.10] we know that ε(α)q = χ(d) for a quadratic Dirich-

let character modulo l (for deducing this from Prop. 5.10 in [Ebe02] let
L2 := (L⊕ L, β2), where β2(x, y) = β(x) + β(y), if r is odd, and let L2 = L
otherwise, and choose loc.cit. V = K ⊗ (L ⊕ L) and Γ = L ⊕ L; note
that [Ebe02] only treats lattices of even rank which holds true for L2).
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For proving (iii) we note that ε is trivial on the inverse image Γ̃(l) of Γ(l)
if r is even. Otherwise ε is quadratic on Γ̃(l), and ε(I) = −1. But then, for A
in Γ(l) we have ε(A∗) = 1 or ε(A∗I) = 1. This proves the corollary.

For the proof of Theorem 3.1 we shall need some preparations. One of
the main tools is the action of the Heisenberg group H(L#) on ΘL, which
we shall now explain.

Proposition 3.36. The application
(
ϑ, (x, y, ξ)

)
7→ ϑ|r/2,L(x, y, ξ) (where r

is the rank of L) defines a right H(L#)-module structure on the space ΘL.
More precisely, we have

ϑL,x′|r/2,L(x, y, ξ) = ξe {β(x, y)/2 + β(x′, y)}ϑL,x′+x. (3.15)

The group H(L) acts, in particular, trivially on ΘL.

Remark. The space ΘL can thus be viewed as an H(L#)/H(L)-module. Re-
call that H(L#)/H(L) is a finite group of order 2l|L#/L|2 where l is the
exponent of L#/L (see Proposition 3.16) .

Proof of Proposition 3.36. Using the very definition of the |r/2,L-action of the
Heisenberg group (see Proposition 3.25) we find

ϑL,x′ |r/2,L(x, y, ξ)(τ, z)

= ξe {τβ(x) + β(x, z) + β(x, y)/2}
∑
s∈L#

s≡x′ mod L

qβ(s)e {β(s, z + xτ + y)}

= ξe {β(x, y)/2}
∑
s∈L#

s≡x′ mod L

qβ(s+x)e {β(s+ x, z)} e {β(s, y)}

= ξe {β(x, y)/2} e {β(x′, y)}ϑL,x+x′(τ, z).

The last identity follows on noting that, for s ≡ x′ mod L, we have that
e {β(s, y)} = e {β(x′, y)}, and by substituting s − x for s in the sum. This
proves the formula for the action of H(L#).

Recall that H(L) is generated by the elements
(
x, y, e

{
1
2
β(x, y)

} )
(x, y ∈

L). But for these elements h and by the just proved formulas we obviously
have ϑL,x′|r/2,Lh = ϑL,x′ . This proves the second statement.

Proposition 3.37. The character χH(L#) of the H(L#)-module ΘL satisfies

χH(L#)(x, y, ξ) =

{
ξ |L#/L| e {β(x, y)/2} if x, y ∈ L
0 otherwise.

In particular, ΘL is an irreducible H(L#)-right module.
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Remark. Note that the formula for χH(L#) implies that, for any α in Γ̃ and h
in H(L#), we have χH(L#)(α

−1hα) = χH(L#)(h).

Proof of Proposition 3.37. By the formula (3.15) for the action of H(L#) we
have

tr
(
(x, y, ξ),ΘL

)
=

{
ξe {β(x, y)/2}

∑
x′∈L#/L e {β(x′, y)} if x ∈ L

0 otherwise.

But the sum in the above identity is zero unless y ∈ L (see Proposition 1.11)
which proves the first statement.

For the second statement it suffices to prove that ΘL, viewed as module
over the finite group H(L#)/H(L) is irreducible. Indeed, we have

1

|H(L#)/H(L)|
∑

h∈H(L#)/H(L)

|tr
(
h,ΘL

)
|2 =

|L#/L|2

|H(L#)/H(L)|
∑
ξ∈µ2l

1 = 1,

which implies the irreducibility [FH91, Cor. 2.15].

Lemma 3.38. Let U denote the subgroup 0 × L# × 1 of H(L#). For any
α in Γ̃, the space Θα−1Uα

L of functions in ΘL which are invariant under the

subgroup α−1Uα of H(L#) is one dimensional.

Proof. As already in the proof of the preceding proposition we view ΘL as
module over the finite group G := H(L#)/H(L). Let π be the canonical

projection from H(L#) onto G. We then have ΘV
L = Θ

π(V )
L , where V =

α−1π(U)α. But then, by standard representation theory (see Corollary 2.20),
we have

dim Θ
π(V )
L =

1

|π(U)|
∑

v∈π(V )

tr
(
v,ΘL

)
=

1

|π(U)|
∑

u∈π(U)

tr
(
u,ΘL

)
.

The second identity is an immediate consequence of the invariance under
conjugation with α of the character of H(L#) as explained in the remark
after Proposition 3.37. But by the same proposition tr

(
u,ΘL

)
= |π(U)| if u

is the neutral element of G, and tr
(
u,ΘL

)
= 1 otherwise. The lemma is now

obvious.

Recall from the previous section that E denotes the set of the C-linear
extensions to C = C⊗QK of the (Q-linear) embeddings of K into the field of
real numbers. Recall also that, for each σ in E we have associated the Heat
operator Hσ (see (3.10)).
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Lemma 3.39. For any σ ∈ E, and for any ϑ in ΘL, we have

Hσϑ = 0.

Proof. Since every ϑ in ΘL has a Fourier development in terms of the func-
tions e {τβ(s) + β(s, z)} (s ∈ L#), and these functions are annihilated by Hσ

(see Lemma 3.30) the lemma is obvious.

Proposition 3.40. Let φ be a holomorphic function on H × LC. Then fol-
lowing statements are equivalent:

(i) φ ∈ ΘL

(ii) There is a half integral k such that φ|k,Lh = φ for all h ∈ H(L), and
Hσφ = 0 for all σ ∈ E.

Proof. Recall that ΘL has basis ϑL,x (x ∈ L#/L).

(i) =⇒ (ii): The invariance property follows from Proposition 3.36, which
states that H(L) acts trivially on ΘL with k = r/2. The second property is
the preceding lemma.

(ii) =⇒ (i): Since φ is fixed under the action of H(L), we have, in
particular, φ(τ, z) = φ|k,L(0, y, 1)(τ, z) = φ(τ, z + y) for any y ∈ L. Hence,
we can write

φ(τ, z) =
∑
s∈L#

φs(τ)qβ(s)e {β(s, z)}

for suitable functions φs(τ) on H. By the same assumption again, for any
x ∈ L, we have φ(τ, z) = φ|k,L(x, 0, 1)(τ, z) = φ(τ, z+xτ)e {τβ(x) + β(x, z)}.
But this implies

φ(τ, z) =
∑
s∈L#

φs(τ)qβ(s)e {β(s, z + xτ)} e {τβ(x) + β(x, z)}

=
∑
s∈L#

φs(τ)qβ(s+x)e {β(s+ x, z)} .

Since this implies that the functions φs depend only on s modulo L, we then
have

φ(τ, z) =
∑

s∈L#/L

φs(τ)ϑL,s(τ, z).
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The functions φs are holomorphic functions on H. Indeed, φ(τ, z) is holo-
morphic and we have, for any s ∈ L#/L,

φs(τ) =

∑
y∈L#/L φ(τ, z + y)e {−β(y, s)}

|L#/L|ϑL,s(τ, z)

(see the proof of Proposition 3.33). Now by the second assumption and
Lemma 3.39, we obtain

0 = Hσφ(τ, z) =
∑

s∈L#/L

(
∂

∂τσ
φs(τ)

)
ϑL,s(τ, z).

Since the ϑL,s(τ, z), for fixed τ as functions of z, are linearly independent
(Proposition 3.33), we deduce that the φs are constants, and hence that φ
lies in ΘL.

The characterization of ΘL as given in the preceding proposition enables

us to prove now that ΘL is invariant under Γ̃.

Proof of Theorem 3.1. We show that ΘL is invariant under the |r/2,L action

of Γ̃. Let ϑ in ΘL and α ∈ Γ̃, and set φ := ϑ|r/2,Lα. We have to show that φ is
an element of ΘL. By Proposition 3.40, it suffices to show that φ is invariant
under the action of H(L), and that, for any σ in E , we have Hσφ = 0. Let
h ∈ H(L). The first claim holds true, since we have (writing | for |r/2,L)

φ|h =
(
ϑ|α
)
|h =

(
ϑ|αhα−1

)
|α = ϑ|α = φ.

The third identity follows from the fact that Γ̃ leaves H(L) invariant un-
der conjugation, and the fact that H(L) acts trivially on ΘL (see Proposi-
tion 3.36).

The second claim also holds true, since we have

Hσ(φ) = Hσ

(
ϑ|α
)

= σ
(
γ(A, τ)

)−2
(Hσϑ)|α = 0.

Here the second identity follows from Proposition 3.31, and the last one
follows from Lemma 3.39. This proves the first part of the theorem. For
deducing the explicit formulas for the action of Γ̃ we need some further
preparations.

Lemma 3.41. For every α =
(

( a bc d ) , w
)
, there exists a zα ∈ L# such that

tr
(
cdβ(y)

)
≡ tr

(
dβ(y, zα)

)
mod Z for all y in Sc := {y ∈ L# : cy ∈ L}.
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Proof. The map ϕ : Sc/L → 1
2
Z/Z, y + L 7→ tr

(
cdβ(y)

)
+ Z is a group

homomorphism. Indeed, for y, y′ ∈ Sc, we have

ϕ(y + y′ + L) = tr
(
cdβ(y) + cdβ(y′) + cdβ(y, y′)

)
+ Z,

and cy ∈ L implies then cβ(y, y′) ∈ d−1.
We can continue ϕ to a group homomorphism ϕ̃ : L#/L → Q/Z [Ser73,

Ch. VI,§ 1, Prop. 1]. Since the tr
(
DL

)
is non-degenerate (see Proposition 3.2)

the map L#/L→ Hom(L#/L,Q/Z), y+L 7→ β(y, ·)+Z is injective. Since a
finite abelian group and its dual have the same order (see [Ser73, Ch. VI,§ 1,
Prop. 2]), this map is an isomorphism. Hence there exists a z in L# such that
ϕ̃(y) = β(y, z) + Z. Set zα = az. Then, for y in Sc, we have tr

(
β(y, z)

)
≡

tr
(
dβ(y, zα)

)
mod Z since ad ≡ 1 mod c.

Proof of Theorem 3.1 (cont.). It remains to calculate the matrix coefficients
of the Γ̃-action on ΘL. We prove first of all, that

ϑL,0|α = cLzα(α)
∑

y∈L#/L

ϑL,zα|α−1(0, y, 1)α, (3.16)

where cLzα(α) is a constant, and zα is as in Lemma 3.41. Here and in the
following we write | for |r/2,L.

For the proof denote the sum on the right hand side by S. Note that each
term depends indeed only on the coset of y in L#/L as follows easily from
the invariance of ϑL,zα under H(L).

The claimed identity follows from the fact that both sides are invariant un-
der the subgroup α−1

(
0×L#×1

)
α of H(L#), and that the space of functions

in ΘL invariant under this subgroup is one dimensional (cf. Lemma 3.38). The
invariance of the left hand side follows from the fact that ϑL,0 is invariant
under 0 × L# × 1 (as follows from Proposition 3.36). The invariance of the
right hand side follows from Proposition 2.15.

For concluding the proof of the formula we still have to show that S is
different from zero. Writing α−1(0, y, 1)α = (cy, dy, 1), we obtain

S =
∑

y∈L#/L

ϑL,zα |(cy, dy, 1) =
∑

y∈L#/L

e {β(cy, dy)/2} e {β(dy, zα)}ϑL,zα+cy

=
∑

x∈L#/L

ϑL,x
∑

y∈L#/L
zα+cy≡x mod L

e {cdβ(y) + dβ(y, zα)} .

From this we see that S 6= 0 since the ϑL,x are linearly independent, and
since the inner sum is different from zero for x = zα. Indeed, in this
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case the inner sum runs over a complete set of representatives for Sc/L,
and then, by the very definition of zα, the terms are all equal to 1 (since
tr
(
cdβ(y) + dβ(y, zα)

)
≡ tr

(
2cdβ(y)

)
≡ 0 mod Z).

Next, note that, for any x ∈ L#, one has ϑL,x = ϑL,0|(x, 0, 1). Using this
identity and (3.16), we obtain

ϑL,x|α = ϑL,0|α|
(
α−1(x, 0, 1)α

)
= cLzα(α)

∑
y∈L#/L

ϑL,zα |
(
α−1(0, y, 1)α

)
|
(
α−1(x, 0, 1)α

)
= cLzα(α)

∑
y∈L#/L

ϑL,zα |
(
ax+ cy, bx+ dy, e {−β(x, y)/2}

)
.

Applying again the formulas (3.15) for the H(L#)-action on ΘL we obtain
thus

ϑL,x|α = cLzα(α)
∑

y∈L#/L

e {β(bx+ dy, zα)}×

e
{(
β(ax+ cy, bx+ dy)− β(x, y)

)
/2
}
ϑL,zα+ax+cy, (3.17)

which is the formula stated in the theorem. It remains to calculate the
constant cLzα(α).

For obtaining a formula for cLzα(α) we set x = −dzα in (3.17), evaluate
the resulting identity at z = 0 and τ = it ⊗ 1 with real t, and let t tend to
infinity. For calculating the limit of the right hand side of (3.17) we note
that ϑL,zα−adzα+cy = ϑL,c(−bzα+y), and that

lim
t7→∞

ϑL,c(−bzα+y)(it⊗ 1, 0)

= lim
t7→∞

∑
s≡c(−bzα+y) mod L

e−2πt tr
(
β(s)
)

=

{
1 if c(−bzα + y) ∈ L
0 otherwise.

But c(−bzα+y) ∈ L if and only if y ∈ bzα+Sc. Note that (ax+cy, bx+dy) =
(−zα + ct, dt) for (x, y) = (−dzα, bzα + t). Thus, the limit of the right hand
side of (3.17) (specialized to (τ, z) = (it⊗ 1, 0) and x = −dzα) becomes

cLzα(α)
∑

t∈L#/L,ct∈L

e {β(dt, zα)} e
{(
β(−zα + ct, dt)− β(−dzα, bzα + t)

)
/2
}

= cLzα(α)e {bdβ(zα)} |Sc/L|.

Summarizing we have found

cLzα(α) =
e {−bdβ(zα)}
|Sc/L|

lim
t→∞

(
ϑL,−dzα |α

)
(it⊗ 1, 0),
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which completes the proof of the theorem.

We conclude this section by some propositions which we shall need in the
last section of this chapter when we shall discuss the relation of Jacobi forms
and vector-valued Hilbert modular forms.

Proposition 3.42. The application(
ϑL,x, (α, h)

)
7→ ϑL,x|r/2,L(α, h) :=

(
ϑL,x|r/2,Lα

)
|r/2,Lh

defines a right J̃(L#)-module structure on ΘL.

Proof. This can be verified by a straightforward calculation similar to the
one in the proof of Proposition 3.27 on using the Proposition 3.36 and the
Theorem 3.1.

Definition 3.43. By 〈·, ·〉 we denote the Hermitian scalar product on ΘL

which is anti-linear in the second argument, and which satisfies:

〈ϑL,x, ϑL,y〉 =

{
1 if x = y

0 otherwise.
(3.18)

Proposition 3.44. The J̃(L#)-action on ΘL is unitary with respect to the
scalar product in (3.18).

Proof. For proving the invariance of the scalar product under the action of Γ̃
it suffice to prove the invariance under the generators T ∗b , I and S∗ of Γ̃. For
the generators T ∗b and I the invariance is obvious. For proving the invariance
under S∗, let ϑ and ϑ′ be elements of ΘL, say, ϑ =

∑
x∈L#/L c(x)ϑL,x and ϑ =∑

x′∈L#/L c(x
′)ϑL,x′ . Using the formula for the S∗-action from Corollary 3.34,

we have

ϑ|r/2,LS∗ =
i−nr/2√
|L#/L|

∑
x∈L#/L

c(x)
∑

y∈L#/L

e {−β(y, x)}ϑL,y,

and similarly for ϑ′. Using these formulas we can write〈
ϑ|r/2,LS∗, ϑ′|r/2,LS∗

〉
= |L#/L|−1

∑
x,x′∈L#/L

c(x)c(x′)
∑

y∈L#/L

e {β(y, x′ − x)} .

By Proposition 1.11, the inner sum equals zero unless x′ = x, when it
equals |L#/L|. The right hand side becomes thus

∑
x,∈L#/L c(x)c(x), which

equals indeed 〈ϑ, ϑ′〉. The invariance under H(L#) can be easily deduced
using the formulas for the action on ΘL from Proposition 3.36.
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3.6 Basic properties of Jacobi forms

In the present section we give finally the definition of Jacobi forms over
totally real number fields, and we shall discuss their Fourier developments
and theta expansions.

Definition 3.45. Let L = (L, β) be a totally positive definite even O-lattice
and let k ∈ 1

2
Z. Moreover, let ∆ be a subgroup of finite index in Γ̃, and let χ

be a linear character of ∆ whose kernel is of finite index in Γ̃. A Jacobi form
over K of weight k, index L and character χ on ∆ is a holomorphic function
φ : H× LC → C satisfying

(i)
(
φ|k,Lα

)
(τ, z) = χ(α)φ(τ, z) (α ∈ ∆)

(ii)
(
φ|k,Lh

)
(τ, z) = φ(τ, z) (h ∈ H(L)) .

If K = Q, we assume furthermore that the function φ is holomorphic at all
cusps (see [EZ85]).

The C-vector space of all Jacobi forms over K is denoted by JKk,L(∆, χ).

(For the notion of O-lattices we refer to Section 3.1, and for the space LC
we refer to Section 3.2. Moreover, for the actions of Γ̃ and H(L) on the space
Hol(H× LC) we refer the reader to Proposition 3.28 and Proposition 3.25,
respectively.)

If ∆ = Γ̃, we simply write JKk,L(χ) for JKk,L(∆, χ), and call this space the
space of Jacobi forms over K of weight k, index L and character χ. In the
following we shall mainly concentrate on the spaces JKk,L(χ). If the number
field in question is clear from the context, we refer to the Jacobi forms over K
simply as Jacobi forms, and we write Jk,L(∆, χ) instead of JKk,L(∆, χ).

Remark. Applying the transformation law (i) to α = (1,−1), we obtain,
for φ in Jk,L(χ), that χ(α)φ = φ|k,Lα = (−1)2kφ. Hence Jk,L(χ) is trivial
unless χ

(
(1,−1)) = (−1)2k. If k is integral and χ

(
(1,−1)) = (−1)2k(= +1),

then χ factors through a linear character χ of Γ. In this case we can rewrite
the transformation law (i) as φ|k,LA = χ(A)φ (A ∈ Γ), and we shall also

write Jk,L(χ) for Jk,L(χ). If k is not integral and χ
(
(1,−1)) = (−1)2k(= −1),

then χ does not factor through a linear character of Γ (see Proposition 2.4).

Proposition 3.46. Every Jacobi form φ in Jk,L(χ) possesses a Fourier de-
velopment of the form

φ(τ, z) =
∑
s∈L#

t∈h+d−1

c(t, s) qte {β(s, z)} . (3.19)

Here h is an element of K such that χ(Tb) = e {hb} for all b ∈ O.
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Proof. Set ψ(τ, z) = e {−hτ}φ(τ, z). From the transformation laws in Def-
inition 3.45, we have that ψ(τ, z) is periodic in τ and z with respect to O
and L, respectively. Since ψ(τ, z) is holomorphic, it can be written as infinite
sum of the functions e {tτ + β(z, s)}, where t and s run through d−1 and L#,
respectively.

Theorem 3.2 (Köcher principle for Jacobi forms). In the Fourier expan-
sion (3.19) one has c(t, s) = 0 unless t− β(s)� 0 or t = β(s) for K 6= Q.

The proof of this theorem will be given in the next section, since it requires
some extra tools which we have to develop first.

Remark. For K = Q, the statement c(t, s) = 0 unless t−β(s)� 0 or t = β(s)
is a part of the definition.

Definition 3.47. Let φ be an element of Jk,L(χ). If φ satisfies the following
stronger condition

c(t, s) = 0 unless t− β(s)� 0,

then φ is called a Jacobi cusp form. If φ satisfies

c(t, s) = 0 unless t = β(s),

then φ is called a singular Jacobi form.

Example 3.48. Let L be a totally positive definite even O-lattice of rank r.
For all x ∈ L#/L, the Jacobi theta functions ϑL,x associated to L as defined

in (3.14) are singular Jacobi forms on the subgroup ΓL of Γ̃ (see Corol-

lary 3.35) of weight r/2. The invariance under the Γ̃-action follows from
Corollary 3.35. The fact that they are singular and of weight r/2 is immedi-
ate from their very definition.

Theorem 3.3. Let L be a totally positive definite even O-lattice and φ
in Jk,L(χ). Then φ can be written in the form

φ(τ, z) =
∑

x∈L#/L

hx(τ)ϑL,x(τ, z), (3.20)

where
hx(τ) =

∑
d∈β(x)−h+d−1

c
(
β(x)− d, x

)
q−d.

In the following we call the expansion (3.20) the theta expansion of φ.
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Proof of Theorem 3.3. Writing d = β(s)− t and setting C(d, s) := c
(
β(s)−

d, s
)
, we can write the Fourier development (3.19) in the form

φ(τ, z) =
∑
s∈L#

d∈β(s)−h+d−1

C(d, s) qβ(s)−de {β(s, z)}

=
∑

x∈L#/L

∑
s∈L#

s≡x mod L

qβ(s)e {β(s, z)}
∑

d∈β(s)−h+d−1

C(d, s) q−d.
(3.21)

Using the second transformation law in Definition 3.45 for elements (x, 0, 1)
(x ∈ L), we obtain

e {τβ(x) + β(x, z)}φ(τ, z + xτ) = φ(τ, z).

Inserting the Fourier development of φ into the left hand side, we obtain

e {τβ(x) + β(x, z)}
∑
s∈L#

d∈β(s)−h+d−1

C(d, s) qβ(s)−de {β(s, z + xτ)}

=
∑
s∈L#

d∈β(s)−h+d−1

C(d, s) qβ(s+x)−de {β(s+ x, z)} .

Replacing s by s− x and comparing the Fourier coefficients we obtain

C(d, s) = C(d, s− x) (x ∈ L).

In other words, C(d, s) depends only on s mod L. Thus the inner sum
in (3.21) depends only on s mod L and equals hence hx. But then (3.21)
reads

φ(τ, z) =
∑

x∈L#/L

hx(τ)
∑
s∈L#

s≡x mod L

qβ(s)e {β(s, z)} .

This proves the theorem.

3.7 Jacobi forms as vector-valued Hilbert

modular forms

In the present section our main aim will be to set up an isomorphism between
spaces of Jacobi forms and spaces of vector-valued Hilbert modular forms.
In particular, this will imply the Köcher principle for Jacobi forms and that
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the spaces of Jacobi forms are finite dimensional. For explicit formulas for
the dimensions of the spaces of Jacobi forms, the reader is referred to [SS11].

In the sequel we shall make use of various facts and notions concerning
representations of groups which were recalled in Section 2.1.

Recall from Theorem 3.1 that the space ΘL spanned by the functions ϑL,x
is invariant under Γ̃ with respect to the |r/2,L-action. Thus, for any α in Γ̃,
there are numbers ωx,y(α) such that

ϑL,x|r/2,Lα =
∑

y∈L#/L

ω(α)x,yϑL,y (x ∈ L#/L). (3.22)

Note that the coefficients ωx,y(α) are unique since the ϑL,y are linearly inde-
pendent.

Theorem 3.4. Let L = (L, β) be a totally positive definite even O-lattice of
rank r with level l.

(i) The map

ω : Γ̃→ GL(C[L#/L]), ω(α)(ex) :=
∑

y∈L#/L

ω(α)y,xey

(where ωy,x(α) denote the coefficients in (3.22)) defines a representation
of Γ̃.

(ii) The representation ω is unitary with respect to the scalar product (2.12).
It factors through a representation of the finite group Γ̃/ΓL, where ΓL
is the normal subgroup of Γ̃ defined in Corollary 3.35.

(iii) One has

ω(T ∗b )ex = e {bβ(x)} ex (b ∈ O),

ω(S∗)ex = σ(DL)
1√
|L#/L|

∑
y∈L#/L

e {−β(y, x)} ey,

ω(I)ex = (−1)rex.

Proof. First of all, we show that for all α, α′ ∈ Γ̃, one has

ω(αα′) = ω(α)ω(α′).

To prove this identity, it is in fact enough to show

ω(αα′)y,x =
∑

y′∈L#/L

ω(α)y,y′ω(α′)y′,x.
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But since |r/2,L defines an action on ΘL (see Theorem 3.1), we easily recognize
the above identity. This proves (i).

The fact that ω is unitary follows immediately from Proposition 3.44.
This proves the first statement of (ii). The second part of (ii) is immediate
by the very definition of ΓL.

Since we have that σ(DL) equals i−nr/2 (see Milgram’s formula [MH73,
p. 127]), part (iii) is immediate by Corollary 3.34.

Definition 3.49. Let Let L = (L, β) be a totally positive definite even O-
lattice. Let ρ : Γ̃→ GL(V ) be a finite dimensional representation of Γ̃ whose
kernel has finite index in Γ̃. Let k ∈ 1

2
Z. A holomorphic function F : H → V

satisfying

F |kα = ρ(α)F (α ∈ Γ̃)

is called a vector-valued Hilbert modular form. Here ρ(α)F denotes that
function on H which at τ in H takes on the value ρ(α)

(
F (τ)

)
. If K = Q

we require F (τ) in addition to be bounded on each subset of H of the form
=(τ) ≥ r > 0. The C-vector space of all such functions is denoted by Mk(ρ).

Let U := {b ∈ O : ρ(T ∗b ) = 1} and Ũ be the dual of U with respect to
trace. Then, for any F ∈Mk(ρ), we have F (τ + b) = F |kT ∗b = F , and hence
we have a Fourier expansion

F (τ) =
∑
t∈Ũ

cF (t) qt (3.23)

for suitable cF (t) ∈ V . Note that, for K = Q, we have cF (t) = 0 unless
t ≥ 0, as follows from the boundedness condition.

Lemma 3.50 (Köcher Principle for vector-valued Hilbert modular forms).
Suppose K 6= Q and F ∈ Mk(ρ). The coefficients cF (t) in (3.23) are equal
to zero unless t� 0 or t = 0.

Proof. If ej (1 ≤ j ≤ d) is a basis for the space V , we can write

F (τ) =
d∑
j=1

Fj(τ) ej.

Here the Fj are holomorphic functions for all j. If α lies in the kernel of ρ,
then F = F |kα =

∑
j Fj|kα ej, i.e. for all j, we have Fj = Fj|kα. In

other words, Fj is a Hilbert modular form of weight k on the kernel of ρ.
By [Fre90, Prop. 4.9] the Fj satisfy the Köcher principle (loc. cit. even weight
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automorphic forms are considered, but it is easy to modify the proof in
loc. cit so that it also covers our case). Therefore, we have

Fj(τ) =
∑
t∈Ũ

t� 0 or t = 0

cFj(t) q
t,

and hence

F (τ) =
∑
t∈Ũ

t� 0 or t = 0

(∑
j

cFj(t)ej

)
qt.

Since cF (t) =
∑

j cFj(t)ej, the lemma follows.

Before we prove the main result of this section, we need a lemma.

Lemma 3.51. Let V be a finite dimensional G-module, and let ρ be the
representation afforded by this G-module. Let vi (i = 1, . . . , n) denote a basis
for V and define a map ρ∗ : G→ GL(V ) by

ρ∗(α)vi =
n∑
j=1

ρ(α)ji vj.

Then ρ∗ is a representation of G.

Proof. The lemma follows by a straightforward calculation.

Theorem 3.5. Let L = (L, β) be a totally positive definite even O-lattice of
rank r, and let ω be the representation (3.22). The application

φ =
∑

x∈L#/L

hxϑL,x 7→ “τ 7→ F (τ) :=
∑

x∈L#/L

hx(τ)ex”

defines an isomorphism ν : Jk,L(χ) → Mk− r
2
(χω∗). Here ω∗ denotes the

representation associated to ω with respect to the basis ex (x ∈ L#/L) as in
Lemma 3.51.

Proof. Let φ ∈ Jk,L(χ). We need to show, first of all, that ν(φ) ∈Mk− r
2
(χω∗).

If α is in Γ̃, then we have

χ(α)φ = φ|k,Lα =
∑

x∈L#/L

hx|k−r/2α ϑL,x|r/2,Lα

=
∑

y∈L#/L

ϑL,y
∑

x∈L#/L

hx|k−r/2α ω(α)x,y.
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Since, for fixed τ , the functions z 7→ ϑL,x(τ, z) are linearly independent (see
Proposition 3.33), we have

hy = χ(α−1)
∑

x∈L#/L

hx|k−r/2α ω(α)x,y

for y ∈ L#/L. Applying α−1 to both sides and then writing α for α−1 in the
resulting identities, we obtain

hy|α = χ(α)
∑

x∈L#/L

hx|k−r/2 ω(α−1)x,y.

Using these identities we find

F |k−r/2α =
∑

x∈L#/L

hx|k−r/2α ex = χ(α)
∑

y∈L#/L

hy
∑

x∈L#/L

ω(α−1)y,xex.

Since ω is unitary (see Theorem 3.4) and the ex form an orthonormal basis,
we have ω(α−1)y,x = ω(α)x,y for all x and y in L#/L. Hence, we have

F |k− 1
2
α = χ(α)

∑
y∈L#/L

hy ω
∗(α) ey =

(
χω∗

)
(α)F,

which was to be proven.
The injectivity of ν follows from the fact that ex (x ∈ L#/L) form a basis

for the space C[L#/L].
Next we prove the surjectivity of ν. Suppose F ∈ Mk− r

2
(χω∗). We need

to find some φ ∈ Jk,L(χ) such that F = ν(φ). For each τ ∈ H, we have
F (τ) ∈ C[L#/L]. So, we can write F (τ) =

∑
x∈L#/L cx(τ)ex. Since F is

holomorphic, the functions cx are holomorphic functions on H for all x ∈
L#/L. We set φ :=

∑
x∈L#/L cxϑL,x. We obviously have F = ν(φ). It

remains to show that φ is an element of the space Jk,L(χ). The invariance
under H(L) is obvious from Proposition 3.36, since H(L) acts trivially on ΘL.

The invariance under Γ̃ follows on reversing the arguments of the first part
of the proof. We leave the details to the reader.

For a subgroup ∆ of finite index in Γ̃, we use Mk(∆, χ) for the space of
Hilbert modular forms of weight k ∈ 1

2
Z and character χ on ∆. If χ is trivial,

we shortly write Mk(∆) for Mk(∆, 1).

Corollary 3.52. We continue with the notations of Theorem 3.5. For any
x ∈ L#/L, the function hx lies in Mk− r

2

(
Ker(χω∗)

)
.
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Proof. From Theorem 3.5, we have F (τ) =
∑

x∈L#/L hx(τ) ex ∈ Mk− r
2
(χω∗).

Hence, for any α ∈ Γ̃, the following holds true(
χω∗

)
(α)F = F |k−r/2α =

∑
x∈L#/L

hx|k−r/2 ex.

But this obviously implies that for any α ∈ Ker(χω∗), we have hx|k− r
2
α = hx

which proves the corollary.

Corollary 3.53. The space of Jacobi forms is finite dimensional.

Proof. By Theorem 3.5, we have Jk,L(χ) ' Mk− r
2
(χω∗). By Corollary 3.52

the application

F =
∑

x∈L#/L

hxex 7→ (hx)x∈L#/L

defines an embedding Mk− r
2
(χω∗)→

⊕
x∈L#/LMk− r

2

(
Ker(χω∗)

)
. The corol-

lary is now immediate from the subsequent Lemma 3.54.

Lemma 3.54. For a subgroup ∆ of Γ̃ of finite index in Γ̃ the dimension of
the space of Hilbert modular forms Mk(∆) is finite.

Proof. By [Fre90, Thm. 6.1] the space of Hilbert modular forms of even
weight is finite. If k is not even, then let ϑ be a Hilbert modular form on
some congruence subgroup, say ∆1, of Γ̃ of weight 1/2, and consider the
embedding

Mk(∆)→Mk+3/2(∆ ∩∆1), f 7→ fϑ3 if k ∈ 1/2 + 2Z,
Mk(∆)→Mk+1/2(∆ ∩∆1), f 7→ fϑ if k ∈ 3/2 + 2Z,
Mk(∆)→Mk+1(∆ ∩∆1), f 7→ fϑ2 if k is odd,

which in each case implies again that Mk(∆) is finite dimensional.
As function ϑ one can take (see Example 3.48) ϑL,0(τ, 0) for any even L of

rank 1 and, which defines a Hilbert modular form on ΓL (see Corollary 3.35
for ΓL).

Proof of Theorem 3.2. We write φ =
∑

x∈L#/L hxϑL,x, where, for each x, we

have hx =
∑

d∈β(x)−h+d−1 C(d, x)q−d, where h is an element of K such that

χ(Tb) = e {hb} for b ∈ O, and where C(d, x) = c(β(x) − d, x) (see Theo-
rem 3.3). From Corollary 3.52, the functions hx are vector-valued Hilbert
modular forms. Hence, by Lemma 3.50 we have that C(d, x) = 0 unless
d � 0 or d = 0, i.e. that c(t, x) = 0 unless t − β(x) � 0 or t = β(x). This
proves the claimed statement.
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3.8 Appendix: Jacobi forms of odd index

In this appendix we discuss briefly the notion of Jacobi forms whose index
is a not necessarily even O-lattice. Moreover, we shall prove a proposition
which links Jacobi forms over number fields with Hilbert modular forms, and
which justifies the informal description of Jacobi forms which is given in the
introduction.

Let L = (L, β) denote a (totally positive definite) O-lattice. Assume that
L is odd, i.e. as all lattices considered in this thesis β takes on values in d−1,
but there exist x in L such that β(x) = 1

2
β(x, x) is not in d−1. Note that for

such x there exist a in O such that e {aβ(x)} = −1.
Let k be a half integer and let χ be a linear character of Γ̃. If L = (L, β)

is odd, then there is no nonzero function φ which satisfies

φ|k,Lα = χ(α)φ (α ∈ Γ̃) (3.24)

φ|k,Lh = φ (h ∈ H(L)). (3.25)

Indeed, in this case H(L) is not normalized by Γ̃. Namely, for h ∈ L,
we have α−1hα ∈ H(L)

(
0, fA(x, y)

)
, where fA(x, y) = e {abβ(x) + cdβ(y)}

and (x, y) is the first component of h and A = ( a bc d ) is the first component
of α. Hence, if φ satisfies (3.24) and (3.25), then applying α−1, h and α
successively to φ yields φ|(α−1hα) = φ (where we used | for |k,L). On the
other hand, if we write α−1hα = h′

(
0, fA(x, y)

)
, then h′ is in H(L) and

hence φ|(α−1hα) = fA(x, y)φ, so that, since φ is different from zero, we have
fA(x, y) = 1. But since L is odd we can find A and x and y such that
fA(x, y) = −1, a contradiction.

Instead we can ask for functions satisfying (3.24) and φ|h = γ(x, y)φ
(h ∈ H(L)) for a linear character γ of H(L) ' L × L. If such a character
and nonzero φ exist then, by a similar reasoning as before, we conclude that

γ(x, y) = γ
(
(x, y)A

)
e {abβ(x) + cdβ(y)} (x, y ∈ L, A ∈ Γ). (3.26)

It is not hard to show that the character γ is uniquely determined by these
identities, namely, one finds γ(x, y) = e {β(x) + β(y)} (see [BS11a]). This
function defines a character of H(L), but it does not necessarily satisfy (3.26).
It is not obvious when γ(x, y) = e {β(x) + β(y)} satisfies (3.26); it does it for
instance, if a2 + ab + b2 ≡ 1 mod 2 for all relatively prime elements a and b
in O (which depends on the splitting and ramification of 2 in K). We call a
lattice L weakly-odd if γ(x, y) = e {β(x) + β(y)} satisfies the identity (3.26).
An even lattice is, of course, weakly-odd.
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Definition 3.55. For a totally positive definite, not necessarily even O-
lattice we let Jk,L(χ) denote the space of holomorphic functions φ on H×LC
which satisfy (3.24) and

φ|k,Lh = e {β(x) + β(y)}φ for all h = (x, y, e {β(x, y)/2}) ∈ H(L). (3.27)

Remark. Note that, for even O-lattices, this definition coincides with the one
given in Section 3.6. The discussion above shows that Jk,L(χ) = 0 unless L is
weakly odd. Examples of Jacobi forms with weakly-odd index can be found
in the next chapter.

We conclude this appendix by a proposition which shows that a Jacobi
form φ(τ, z) specialized in the z-variable to division points of Lτ + L yields
Hilbert modular forms. More precisely, we have:

Proposition 3.56. Let φ be in Jk,L(χ), where L denotes a not necessarily
even O-lattice. We set ψ(τ, x, y) := φ(τ, xτ + y) e {τβ(x)}. Then we have:

(i) The function ψ(τ, x, y) is quasi-periodic in the variables x and y in R
with respect to the O-module L. More precisely, for any λ, µ in L, we
have ψ(τ, x+ λ, y + µ) = e {−β(λ, y) + β(λ+ µ)} ψ(τ, x, y).

(ii) For fixed x and y in K, the map τ 7→ ψ(τ, x, y) defines a Hilbert modu-
lar form of weight k and character χδx,y on the inverse image of Γ(a2)
in Γ̃, where a denotes the ideal of all a in O such that ax and ay are
in L, and where δx,y is trivial if L is even, and trivial or quadratic
otherwise.

Remark. Note that, for L = (c, ω), a is the least common multiple of the
denominators of xc−1 and yc−1.

Proof of Proposition 3.56. We use L = (L, β) for the O-lattice (c, ω). It is
easy to see using Proposition 3.25 that

ψ(τ, x, y) =
(
φ|k,L(x, y, e {−β(x, y)/2})

)
(τ, 0).

We prove (i). Using the multiplication law in the Heisenberg group
(see (3.4)) and the invariance of φ under H(L), we find (writing | for |k,L)

ψ(τ, x+ λ, y + µ)

=
(
φ|(x+ λ, y + µ, e {−β(x+ λ, y + µ)/2})

)
(τ, 0)

= e {−β(λ, y)}
(
φ|(λ, µ, β(λ, µ)/2)(x, y, e {−β(x, y)/2})

)
(τ, 0)

= e {−β(λ, y) + β(λ+ µ)}
(
φ|(x, y, e {−β(x, y)/2})

)
(τ, 0)

= e {−β(λ, y) + β(λ+ µ)}ψ(τ, x, y).
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Next we prove (ii). Let α be in Γ̃, and let A denote the first component
of α. Using the multiplication in the Jacobi group and that φ|α = χ(α)φ,
we have

ψ(τ, x, y)|kα =
(
φ|(x, y, e {−β(x, y)/2})α

)
(τ, 0)

=
(
φ|α
(
(x, y)A, e {−β(x, y)/2}

))
(τ, 0)

= e
{

[β
(
(x, y)A

)
− β(x, y)]/2

}
χ(α)ψ

(
τ, (x, y)A

)
.

Now, suppose that x and y are in K. Assume, first of all, that L is even.
Then by part (i) we see that ψ(τ, x, y) is periodic with respect to aL × L.
Assume that A is in Γ(a2). We then have (x, y)A ≡ (x, y) mod aL × L.
Moreover, β

(
(x, y)A

)
/2− β(x, y)/2 = abβ(x) + bcβ(x, y) + cdβ(y). But each

of the three terms on the right is in d−1. Indeed, to prove, e.g., that bβ(x) is
in d−1, we write b =

∑
bja

2
j with numbers bj in O and aj in a (Lemma 1.14),

so that bβ(x) =
∑
bjβ(ajx), which is in d−1 since ajx is in L and L is even.

It follows that ψ(τ, x, y)|α = χ(α)ψ(τ, x, y) as claimed.
If L is odd, then φ2 is a Jacobi form of even index L(2) = (L, 2β).

By what we have already proved we conclude that ψ(τ, x, y)2 is then in

M2k

(
Γ̃(a2), χ2

)
, where Γ̃(a2) denotes the inverse image of Γ(a2) in Γ̃. It

follows that ψ(τ, x, y) is in Mk

(
Γ̃(a2), χ′

)
, where χ′ is a character of Γ(a2)

whose square equals χ2.



Chapter 4

Singular Jacobi Forms

As in the previous chapter, K will denote a totally real number field. Sim-
ilarly, O, d will denote the ring of integers and different of K, respectively.
Moreover, we shall use Γ = SL(2,O) and Γ̃ for the metaplectic cover of Γ.

In the present chapter we shall study singular Jacobi forms over number
fields. The main result of this chapter will be the explicit description of
all singular Jacobi forms whose indices are totally positive definite rank 1
O-lattices (see Theorems 4.2 and Theorem 4.3). In Section 4.1, we shall
observe that singular Jacobi forms are in one to correspondence with the
one-dimensional Γ̃-submodules of the spaces of Jacobi theta functions. In
Section 4.2, we shall present that the spaces of Jacobi theta functions are
isomorphic to the Weil representations associated to certain discriminant
modules. Using the results of Sections 2.4 and 2.5, we shall finally be able to
describe explicitly all singular Jacobi forms whose indices are totally positive
definite rank 1 O-lattices. This will be carried out in Section 4.4.

4.1 Characterization of singular Jacobi forms

In this section, we shall characterize the singular Jacobi forms as the one
dimensional Γ̃-submodules of Weil representations.

Let L = (L, β) be a totally positive definite even O-lattice of rank r and
φ ∈ Jk,L(χ). (We refer Definition 3.45 for the space Jk,L(χ).) Recall from
Definition 3.47 that φ is a singular Jacobi form if and only if c(t, s) = 0
unless t = β(s). Here the c(t, s) are the Fourier coefficients of φ as given in
Theorem 3.2.

For a linear character χ of Γ̃, we define

ΘΓ̃,χ
L := {ϑ ∈ ΘL : ϑ|r/2,Lα = χ(α)ϑ for all α ∈ Γ̃}.

115
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Clearly, the space ΘΓ̃,χ
L is a Γ̃-submodule of ΘL.

Proposition 4.1. Let L = (L, β) be a totally positive definite even O-lattice
of rank r and φ ∈ Jk,L(χ). The following statements are equivalent:

(i) φ is a singular Jacobi form

(ii) k = r/2

(iii) φ ∈ ΘL

(iv) φ ∈ ΘΓ̃,χ
L .

Proof. Recall from Theorem 3.3 that we have the following expansion

φ(τ, z) =
∑

x∈L#/L

hx(τ)ϑL,x(τ, z) (4.1)

with
hx(τ) =

∑
d∈β(x)−h+d−1

C(d, x)qd, (4.2)

where C(d, x) = c(β(x)−d, x) and the c(t, x) are the Fourier coefficients of φ,
and where h ∈ K is such that χ(Tb) = e {hb} (b ∈ O).

(i) =⇒ (ii), (iii): Suppose φ is a singular Jacobi form. Fix x ∈ L#/L.
Since φ is a singular Jacobi form, from (4.2) we have that hx(τ) = C(0, x),
i.e. hx is a constant. Hence φ is in ΘL and has, in particular, weight r/2.

(ii) =⇒ (i): Suppose k = r/2. Fix x ∈ L#/L. From Corollary 3.52, we
have that hx is a Hilbert modular form of weight k − r/2 = 0. From [Fre90,
Prop. 4.7], we have that hx is a constant. From Example 3.48, we have that
ϑL,x is a singular Jacobi form (for some subgroup of Γ̃). Hence φ, being
a linear combination of singular Jacobi forms (see (4.1)), is also a singular
Jacobi form.

(iii) =⇒ (ii): Suppose φ ∈ ΘL. Hence φ is a linear combination of forms
of weight r/2, hence has weight r/2.

(iii) =⇒ (iv): Suppose φ ∈ ΘL. Since φ is in Jk,L(χ) we have φ|k,Lα =

χ(α)φ (α ∈ Γ̃). Hence, φ ∈ ΘΓ̃,χ
L .

(iv) =⇒ (iii): This is obvious.
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4.2 Theta functions and Weil representations

The main purpose of this section will be to set up natural isomorphisms
between Weil representations associated to certain discriminant modules and
the Γ̃-modules ΘL of Jacobi theta functions. Moreover, as preparation for
the complete decomposition of the ΘL in the next section, we shall translate
via these isomorphisms the essential ingredients of the representation theory
of the Weil representations to the Γ̃-modules ΘL.

Let L = (L, β) be a totally positive definite even O-lattice of rank r.
From Theorem 3.1, we know that ΘL is a right Γ̃-module. So, the space ΘL

equipped with the following Γ̃-action

(α, ϑ) 7→ ϑ|r/2,Lα−1 (α ∈ Γ̃)

becomes a left Γ̃-module. This space will be denoted in the following by Θ♦L .
For the definition of the |r/2,L-action, the reader is referred to Proposi-
tion 3.28.

Proposition 4.2. Let L = (L, β) be a totally positive definite even O-lattice.
The linear continuation of the map

φL : W
(
D−1
L

)
→ Θ♦L , ex+L 7→ ϑL,x

defines a Γ̃-linear isomorphism.

Proof. Clearly, φL is a well-defined linear map. From Proposition 3.33 we
know that for fixed τ , the functions z 7→ ϑL,x(τ, z) (x ∈ L#/L) are linearly
independent. Hence, φL is injective. Since the space Θ♦L is spanned by the

functions ϑL,x (x ∈ L#/L), the map φL is also surjective.

It remains to show that φL is Γ̃-linear. Since the group Γ̃ is generated
by T ∗b (b ∈ O), S∗ and I (see Proposition 3.13), it is enough to prove for
those types of elements α, the following identity:

φL
(
αex+L

)
= ϑL,x|r/2,Lα−1.

Applying Theorem 3.1 to the element (T ∗b )−1, we see that the claimed identity
holds true for (T ∗b )−1, since we have

ϑL,x|r/2,L(T ∗b )−1 = e {−bβ(x)}ϑL,x = φL
(
T ∗b ex+L

)
.

Proceeding as in the proof of Corollary 3.34 (ii), we can easily obtain

ϑL,x|r/2,L(S∗)−1 = (−i)−nr/2 1√
|L#/L|

∑
y∈L#/L

e {β(y, x)}ϑL,y,
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where r stands for the rank of L. To prove the claimed identity for (S∗)−1, it
remains to show that σ(D−1

L ) = (−i)−nr/2. But this follows from Milgram’s
formula [MH73, p. 127]. The claimed identity obviously holds true for the
element I.

As preparation for the next section we append here two lemmas.

Lemma 4.3. Let L = (L, β) be a totally positive definite even O-lattice,
let U be an isotropic submodule of the discriminant module DL and let

L/U = (π−1(U), β) (see Definition 3.4). Then the following diagram of Γ̃-
homomorphisms is commutative:

W
(
D−1
L/U

) '−−−→
ϕ

W
(
(D−1

L /U)
) φL/U◦ϕ−1

−−−−−−→ Θ♦L/U

ιU

y yjU
W
(
D−1
L

) φL−−−→ Θ♦L .

Here ιU is the embedding defined in Section 2.3, φL and φL/U are the isomor-
phisms from Proposition 4.2, and jU is the inclusion map. Moreover, ϕ de-
notes the isomorphism induced from the isomorphism ϕ from Proposition 3.5.

Proof. We set L1 := π−1(U). The map ϕ is defined by ex+L1 7→ eπ(x)+U ,

where π : L# → L#/L is the canonical projection (see Proposition 3.5). To
show that the diagram commutes, we need to prove the following identity of
maps:

jU ◦ φL/U = φL ◦ ιU ◦ ϕ.

On the left we have

jU ◦ φL/U(ex+L1) = jU(ϑL/U,x) = ϑL/U,x =
∑

y∈L#
1 /L

y≡x mod L1

ϑL,y.

For the last identity we used

ϑL/U,x =
∑
r∈L#

1
r≡x mod L1

qβ(r)e {β(r, z)} =
1

|L1|
∑

y∈L#
1 /L

y≡x mod L1

∑
r∈L#

1
r≡y mod L

qβ(r)e {β(r, z)}

=
1

|L1|
∑

y∈L#
1 /L

y≡x mod L1

ϑL,y.
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On the right we have

φL ◦ ιU ◦ ϕ(ex+L1) = φL ◦ ιU(eπ(x)+U) =
∑

Y ∈U#/U
Y≡π(x) mod U

φL(eY )

=
1

|L1|
∑
y∈U#

y≡x mod L1

ϑL,y.

For the last identity we did the substitution Y 7→ π(y), where Y = y + U .
But since U# = L#

1 /L, the diagram commutes.
The map ιU is Γ̃-linear (see Proposition 2.30) and also the maps φL and

φL/U ◦ ϕ−1 are Γ̃-linear (see Proposition 4.2).

4.3 Decomposition of the Γ̃-modules ΘL

In the present section, we shall decompose the spaces of Jacobi theta func-
tions ΘL into irreducible Γ̃-submodules, where L is a totally positive definite
even O-lattice of rank 1.

Our main observation is that the discriminant modules DL (see Defini-
tion 3.3) of such lattices are cyclic finite quadratic O-modules (which follows
from Propositions 3.10 and 3.7). The same propositions also imply that if
the level of the lattice L (the level of DL) is l, then the modified level and
the annihilator of L equals l/4 and l/2, respectively.

Definition 4.4. We define the new part Θnew
L of ΘL as the orthogonal com-

plement of
∑

U 6=0 ΘL/U with respect to the scalar product (3.18), where U
runs through the nonzero isotropic submodules of DL.

Let l and a denote the level and annihilator of L, respectively. Recall
that E(DL) consists of all ε + a ∈ (O/a)∗ such that ε ≡ −1 mod h and
ε ≡ +1 mod ah−1 for some exact divisor h of a. The group E(DL) acts
on ΘL via linear continuation of the map (g, ϑL,x) 7→ gϑL,x := ϑL,gx. Since it
acts obviously unitarily and leaves the subspaces ΘL/U invariant (since L/U
has as the underlying O-module π−1(U), where π is the canonical projection
from L# → L#/L, and π is O-linear), it leaves also Θnew

L invariant. For a
square-free divisor f of m, we define

Θnew,f
L = {ϑ ∈ Θnew

L : gϑ = ψf(g)ϑ for all g ∈ E(M)}.

Here ψf denotes the linear character of E(M) such that ψf(ε + a) = (−1)t,
where t is the number of primes in (h, f) and h is as above (see Proposi-
tion 1.23).
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Theorem 4.1. Let L = (L, β) be a totally positive definite even O-lattice of
rank 1 with annihilator a, level l and modified level m.

(i) For every square-free divisor f of m, the space Θnew,f
L is Γ̃-invariant and

irreducible.

(ii) One has the following decompositions

ΘL =
⊕
b2|m

Θnew
ab−1L#+L (4.3)

Θnew
L =

⊕
f|m

f square-free

Θnew,f
L . (4.4)

For the proof, which will be a consequence of the decomposition of W (DL)
given in Section 2.4, we need a lemma.

Lemma 4.5. Let L be a totally positive definite even O-lattice of rank 1
whose modified level is m. Let φL be the Γ̃-module isomorphism in Proposi-
tion 4.2. For a square-free divisor f of m, one has

φL
(
W (D−1

L )new
)

= (Θ♦L)new, φL
(
W (D−1

L )new,f
)

= (Θ♦L)new,f.

Proof. Firstly, let v ∈ W (D−1
L )new. We need to show 〈φL(v),

∑
U 6=0 Θ♦L/U〉 =

0, where U runs through isotropic submodules of D−1
L . Using the fact

that the scalar product (2.12) on W (D−1
L ) satisfies for all v, v′ ∈ W (D−1

L ),
〈φL(v), φL(v′)〉 = 〈v, v′〉 (since φL is an isomorphism), it is enough then to
show 〈v,

∑
U 6=0 φ

−1
L Θ♦L/U〉 = 0. But since Θ♦L/U = φL/U ◦ ϕ−1(W (D−1

L /U)),

and φ−1
L ◦ φL/U ◦ ϕ−1 = ιU (see Lemma 4.3), the claimed identity holds true,

since v lies in the new part of W (D−1
L ).

Secondly, let v ∈ (Θ♦L)new. Then we have 〈v,
∑

U 6=0 Θ♦L/U〉 = 0. But then

applying φ−1
L (it leaves the scalar product invariant) to this identity and using

the two identities in the previous paragraph (which follows from Lemma 4.3),
we see that φ−1

L (v) must lie in the space W (D−1
L )new, which proves the first

identity in the statement of the lemma.

Since φL is obviously an E(M)-module isomorphism, using the first iden-
tity in the statement of the lemma, the second identity holds true.

Proof of Theorem 4.1.
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Proof of part (ii). First we prove the identity (4.3). We decompose
the space W (D−1

L ) into Γ̃-submodules using Theorem 2.4 (i). Applying the
isomorphism φL (which is given in Proposition 4.2) to the decomposition
of W (D−1

L ) and using Lemma 4.5, we obtain a decomposition of Θ♦L into

Γ̃-submodules as the one in (4.3). But the underlying spaces of ΘL and Θ♦L
are equal. Hence, the claimed identity holds true.

Next we prove (4.4). We decompose the space W (D−1
L )new using Theo-

rem 2.4 (ii) into irreducible Γ̃-submodules. Again by applying the isomor-
phism φL to the decomposition of W (D−1

L )new and using Lemma 4.5, we

obtain a decomposition of Θ♦L as of the kind in (4.4). But the underlying

spaces of ΘL and Θ♦L are the same, hence the claimed identity holds true.

Proof of part (i). Part (i) is an immediate consequence of Lemma 4.5.
The fact that the spaces Θnew,f

L are irreducible follows from the proof of (4.4).

4.4 The singular Jacobi forms of rank 1 index

In this section we shall describe explicitly all singular Jacobi forms whose
indices are totally positive definite rank 1 O-lattices.

Recall that, for even L, the discriminant modules DL (see Definition 3.3)
of such lattices are cyclic finite quadratic O-modules (see Propositions 3.10
and 3.7). Recall also from the same propositions that if the level of the
lattice L (the level of DL) is l, then the modified level and the annihilator
of L equals l/4 and l/2, respectively.

From Proposition 3.13, we know that the group Γ̃ is generated by the
elements T ∗b (b ∈ O), S∗ and I. Hence, the abelianized group Γ̃ab = Γ̃/C
of Γ̃ is generated by the elements T ∗b C (b ∈ O), S∗C and IC. Here C
denotes the commutator subgroup of Γ̃. But since (S∗T ∗)3 = (S∗)2, and the
group Γ̃ab is abelian, we have that (S∗)3C(T ∗)3C = (S∗)2C. This implies
that S∗C = (T ∗)−3C, i.e. Γ̃ is in fact has a smaller set of generators, namely
the elements T ∗b C (b ∈ O) and IC. Therefore, any character χ of Γ̃ is
uniquely determined by the value of χ at Tb (b ∈ O) and at I, since any
homomorphism of Γ̃ factors through a homomorphism of Γ̃ab.

Recall that an odd character ideal is an integral O-ideal which is a (pos-
sibly empty) product of pairwise different prime ideals of degree one over 3.

Definition 4.6. Let (c, ω) be as defined in Definition 3.6. Suppose 2 splits
completely in K, and let g be an odd character ideal such that c2ωd = g.
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We define that character ε(c,ω) of Γ̃ such that ε(c,ω)(T
∗
b ) = e {bωγ2/8} and

ε(c,ω)(I) = −1, where γ + 4c is a generator for cg−1/4c.

Remark. The fact that ε(c,ω) defines indeed a character of Γ̃ is a consequence
of Theorem 4.2.

Secondly note that the character ε(c,ω) does not factor through a char-

acter of Γ. For a complete classification of linear characters of Γ̃, we refer
to [BS11b].

Consequently, if g is not an empty product, then the order of ε(c,ω) is 24,
and if g = 1, then it has order 8. Because 3ωdγ2 ⊆ 3ωdc2g−2 = 3g−1 ⊆ O.
If g is an empty product, then obviously ε(c,ω) has order 8.

We state the three main results of this section.

Theorem 4.2. Let c be a fractional O-ideal and ω a totally positive element
in K such that c2ωd = g for an odd character ideal g. Suppose 2 splits
completely in K. Set

ϑ(c,ω)(τ, z) :=
∑
s∈cg−1

χ4g(s
′)q

1
8
ωs2e {ωsz/2} . (4.5)

Here s′ ∈ O is so that s ≡ s′γ mod 4c, where γ+4c is a generator for cg−1/4c
and χ4g is the totally odd Dirichlet character modulo 4g (see Definition 2.44).
Then ϑ(c,ω) is a Jacobi form on the full modular group of weight 1/2, in-
dex (c, ω) with character ε(c,ω).

Note that ϑ(c,ω) depends also on the generator γ. However, a different gen-
erator changes ϑ(c,ω) only by a sign. Therefore, we suppress the dependency
on the choice of γ in the notation.

Theorem 4.3. Let L = (L, β) be a totally positive definite (not necessarily
even) O-lattice of rank 1. The space J1/2,L(χ) is trivial unless 2 splits com-
pletely in K, there is a homomorphism from L into a lattice (c, ω) of the kind
which occurs in Theorem 4.2, and χ = ε(c,ω). If 2 splits completely in K, if
the map ϕ : L → (c, ω) is a homomorphism into a lattice (c, ω) as in The-
orem 4.2, and if χ = ε(c,ω), then J1/2,L(χ) = C · ϑ(c,ω)

(
τ, ϕ(z)

)
. (Here ϕ(z)

denotes the value at z of the C-linear extension of ϕ to LC.)

Proposition 4.7. The number of indices modulo isomorphism which admit
a nonzero singular Jacobi form equals |F(K)| · |Cl+(K)[2]|, where F(K) is
the subset of the principal genus consisting of ideals of the form gd−1 with g
an odd character ideal, and where Cl+(K)[2] is the kernel of the squaring
map of the narrow class group.
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Proof. Let J denote the group of fractional O-ideals, and P+ denote the
subgroup of principal O-ideals which have totally positive generators. It is
easy to see that the following sequence

1→ Ker(ϕ)→ {(c, ω) : ω � 0}
/
{
(
a−1, a2

)
: a ∈ K∗} ϕ−→ J2P+ → 1,

where ϕ : (c, ω) {(a−1, a2) : a ∈ K∗} 7→ c2ω, is exact. Using Theorems 4.2
and 4.3, the number of indices modulo isomorphism which admit a nonzero
singular Jacobi form equals |F(K)| · |Ker(ϕ)|. Now we calculate the number
of elements in Ker(ϕ). The following sequence is also exact

1→ Ker(φ)→ Ker(ϕ)
φ−→ Ker

(
ψ : Cl(K)→ Cl+(K)

)
→ 1,

where φ is the map which maps (c, ω) {(a−1, a2) : a ∈ K∗} to the ideal class
of c. Hence, |Ker(ϕ)| = |Ker(φ)| · |Ker(ψ)|. By direct calculation, we find
that the number of elements in Ker(φ) equals [(O∗)+ : (O∗)2], where (O∗)+

denotes the group of totally positive units in K. Therefore, the number that
we are looking for is |F(K)| · [(O∗)+ : (O∗)2] · |Ker(ψ)|. However, by [vdG91,
I. 4], we have that the number [(O∗)+ : (O∗)2] · |Ker(ψ)| equals |Cl+(K)[2]|.
This proves the proposition.

The rest of this section is devoted to the proofs of the previously stated
theorems.

Proof of Theorem 4.2. The sum in (4.5) can be rewritten in the following
way:

ϑ(c,ω)(τ, z) =
∑

s∈ 1
2
cg−1/2c

χ4g(s
′)

∑
y∈ 1

2
cg−1

y≡s mod 2c

q
1
2
ωy2e {ωyz}

=
∑

x∈ 1
2
cg−1/2c

χ4g(s
′) ϑ(2c,ω),x.

But the last identity shows that ϑ(c,ω) is the image of the vector which spans

the one-dimensional Γ̃-subspace of W (D(2c,ω)) (see Theorem 2.5, (iii)) under

the Γ̃-module isomorphism φ(2c,ω) (which is given in Proposition 4.2). Hence,
by Proposition 4.1, we have that ϑ(c,ω) is a singular Jacobi form.

Since ϑ(c,ω) is a singular Jacobi form, it transforms under the Γ̃-action
with a suitable character. Next we show that this character is in fact ε(c,ω).

According to the observation about the abelianized group of Γ̃ which is ex-
plained in the beginning of the present section, it suffices to prove for any
b ∈ O, the following identity

ϑ(c,ω)|1/2,(c,ω)T
∗
b = e

{
bωγ2/8

}
ϑ(c,ω) (b ∈ O), (4.6)
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since we obviously have ϑ(c,ω)|1/2,(c,ω)I = −ϑ(c,ω) (see the action given in
Proposition 3.28). On the left of (4.6), we have

ϑ(c,ω)(τ + b, z) =
∑
s∈cg−1

χ4g(s
′)q

1
8
ωs2e

{
bωs2/8

}
e {ωsz/2} .

If we can show that for every b ∈ O and every s ∈ cg−1 with (s′, 4g) = 1,
we have e {bωs2/8} = e {bωγ2/8}, then (4.6) obviously holds true. Write
s = s′γ + 4c for c ∈ c. Then we have

ωs2/8−ωγ2/8 = ω(s′γ+ 4c)2/8−ωγ2/8 = ωs′2γ2/8 +ωs′γc+ 2ωc2−ωγ2/8.

Note that we have ωs′γc ⊆ ωcg−1c = d−1, and also 2ωc2 ⊆ 2ωc2 = 2gd−1,
since c2ωd = g (by the assumption of the theorem). Hence it remains to
show that ωdγ2(s′2 − 1)/8 is integral. Since γ ∈ cg−1, it is enough to show
that ωd(cg−1)2(s′2 − 1)/8 is integral. But since c2ωd = g, it suffices to show
that 8g divides s′2 − 1. Let q be a prime divisor of 2. Since q has degree
one, we have O/q3 ' Z/8Z, and hence the group (O/q3)∗ has exponent 2.
Therefore, by the assumption (s′, 4g) = 1, we have s′2 ≡ 1 mod q. If g = 1,
there is nothing left to prove. Suppose g 6= 1. Let p be a prime divisor
of g. Since p has degree one, we have O/p ' Z/3Z, and hence the group
(O/p)∗ has order 2. Again by the same assumption, we have s′2 ≡ 1 mod p.
Therefore, the claimed identity holds true, and thus (4.6) holds true.

To prove that ϑ(c,ω) is of index (c, ω), we show that ϑ(c,ω) transforms under
the H(c)-action via

ϑ(c,ω)|1/2,(c,ω)h = e
{
ω(x+ y)2/2

}
ϑ(c,ω), (4.7)

where h =
(
x, y, e {ωxy/2}

)
with x and y in c. Recall that H(c) is generated

by the elements
(
x, y, e

{
1
2
ωxy

} )
(x, y ∈ c). By applying the action of the

Heisenberg group to ϑ(c,ω), we have

ϑ(c,ω)|1/2,(c,ω)h = e
{
τωx2/2 + ωxz

}
ϑ(c,ω)(τ, z + xτ + y).

By evaluating ϑ(c,ω) at (τ, z + xτ + y), we obtain

ϑ(c,ω)(τ, z + xτ + y) =
∑
s∈cg−1

χ4g(s
′)q

1
8
ωs2+ 1

2
ωsxe {ωsy/2} e {ωsz/2} .

First we show that for every b ∈ O and every s ∈ cg−1 with (s′, 4g) = 1, we
have e {ωsy/2} = e {ωy2/2}. We have

ωsy/2− ωy2/2 = ω(s′γ + 4c)y/2− ωy2/2 = ωs′γy/2 + 2ωcy − ωy2/2.
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Since 2ωcy ⊆ 2ωc2 = 2gd−1 (see the assumption of the theorem, i.e. c2ωd =
g), it is enough to show that the ideal

(
ωds′cg−1c−ωdc2

)
/2 is integral. From

the assumption of the theorem (i.e. from c2ωd = g) again, it suffices to show
that s′−g is divisible by 2. Let q be a prime divisor of 2. By the assumption
(s′, 4g) = 1, we have that q does not divide s′. Obviously, q does not divide g
either. But since q has degree one over 2, we have O/q ' Z/2Z, and hence
q|s′ − g. Thus, the claimed identity holds true.

Therefore, we have

ϑ(c,ω)(τ, z + xτ + y) = e
{
ωy2/2

}
e
{
−τωx2/2

}
×

×
∑
s∈cg−1

χ4g(s
′)q

1
8
ω(s+2x)2e {ωsz/2}

= e
{
ωy2/2

}
e
{
−ωx2/2

}
e {−ωxz}×

×
∑
s∈cg−1

χ4g(s
′′)q

1
8
ωs2e {ωsz/2} ,

where s− 2x ≡ s′′γ mod 4c. But then we have

e
{
τωx2/2 + ωxz

}
ϑ(c,ω)(τ, z + xτ + y) = e

{
ωy2/2

}
×∑

s∈cg−1

χ4g(s
′′)q

1
8
ωs2e {ωsz/2} . (4.8)

First note that if x and y in 2c, then we have s′′ ≡ s′ mod 4g. Indeed, mul-
tiplying the congruence s′′γ ≡ s′γ mod 4c with c−1g and noting that γc−1g is
integral and relatively prime to 4g (recall cg−1 = Oγ + 4c), we see that the
claimed statement holds true. Then the identity (4.8) becomes

ϑ(c,ω)|1/2,(c,ω)h = ϑ(c,ω),

which proves (4.7).
Next suppose that x and y are not in 2c. If we show that χg(s

′′) =
χg(s

′) and χ4(s′′) = χ4(s′ − 2), then using also the easily deduced identity
χ4(s′ − 2) = χ4(s′)e {ωx2/2}, the identity (4.8) becomes

ϑ(c,ω)|1/2,(c,ω)h = e
{

(x+ y)2/2
}
ϑ(c,ω),

which proves (4.7), and hence the theorem.
It remains to prove s′′ ≡ s′ mod g and s′′ ≡ s′−2 mod 4. Multiplying the

congruence s′′γ − s′γ ≡ −2x mod 4c similarly as above with c−1g, we obtain
s′′ − s′ ≡ −2gxc−1(γc−1g)−1 mod 4g. Here note that xc−1 and (γc−1g)−1 are
odd. Therefore, the claimed statement holds true.
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For the proof of Theorem 4.3, we need a lemma and a proposition.

Lemma 4.8. Let L = (L, β) be a totally positive definite even O-lattice of
rank 1 with level l. The space Θnew

L contains one-dimensional Γ̃-submodules
if and only if 2 splits completely in K and l = 8g, where g is an odd character
ideal. If 2 splits completely in K and l = 8g, then Θnew

L contains exactly one

one-dimensional Γ̃-submodule, namely Θnew,2g
L .

Proof. Suppose 2 splits completely inK and l = 8g. By applying Lemma 2.46
to the O-CM D−1

L , we observe that the space W (D−1
L )new,2g is the unique one-

dimensional Γ̃-submodule of Θnew
L . Hence, by Lemma 4.5, the space Θnew,2g

L

is the unique one-dimensional Γ̃-submodule of Θnew
L .

Suppose on the other hand that the space Θnew
L contains one-dimensional

Γ̃-submodules. From Lemma 4.5, W (D−1
L )new also contains one-dimensional

Γ̃-submodules. Hence, by Lemma 2.46, l must be a character ideal, i.e.
l = gh3, where g is an odd character ideal and h is a (possibly empty) product
of pairwise different prime ideals above 2 of degree one and ramification index
one. From Propositions 3.10 and 3.7, we know that l is divisible by 4, i.e. we
have h = 2O. But this implies that 2 splits completely in K and l = 8g.

Proposition 4.9. Let L = (L, β) be a totally positive definite even O-lattice
of rank 1 with level l and modified level m. The following statements hold
true.

(i) The space ΘL contains one-dimensional Γ̃-submodules if and only if 2
splits completely in K, and l = 8gb2, where g is an odd character ideal,
and b is an integral O-ideal such that b2|m.

(ii) The space ΘL contains at most one one-dimensional Γ̃-submodule. As
a consequence, the space of singular Jacobi forms with index L is at
most one dimensional.

Proof.

Proof of part (i). Suppose 2 splits completely in K and l = 8gb2. In
the following we denote by a, the annihilator of L. By Lemma 4.8, the
space Θnew

ab−1L#+L
contains one-dimensional Γ̃-submodules, since the level of

the lattice ab−1L# + L equals 8g. Indeed, the level of ab−1L# + L equals
the level of the O-FQM D−1

L

/
(ab−1L#/L) (see Proposition 3.5) which has

level lb−2 = 8g by Corollary 1.19. Hence, by (4.3), the space ΘL contains

one-dimensional Γ̃-submodules.
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Now suppose that the space ΘL contains a one-dimensional Γ̃-submodule,
say W . By combining the identities (4.3) and (4.4), we obtain a decompo-
sition of ΘL into irreducible Γ̃-submodules. From Proposition 2.16, we have

W ' Θnew,f
ab−1L#+L

for some square-free divisor f of m, and an integral O-ideal b

such that b2 divides m. But by Lemma 4.8, we have that 2 must split com-
pletely in K, and that the level of ab−1L# + L which equals lb−2 (see the
above paragraph) must be equal to 8g, which proves (i).

Proof of part (ii). By Theorem 2.5 we have that the space W (D−1
L ) con-

tains at most one one-dimensional Γ̃-submodule. Hence, by Proposition 4.2,
the space ΘL contains at most one one-dimensional Γ̃-submodule.

Proposition 4.1 implies that the space of singular Jacobi forms are in
one-to-one correspondence with the one-dimensional Γ̃-submodules of ΘL.
Therefore, the space of singular Jacobi forms of index L is at most one
dimensional.

Proof of Theorem 4.3. By Proposition 3.10 we have that L is isomorphic
to an O-lattice of the form (c′, ω′), where c′2ω′d is integral and ω′ � 0.
Suppose J1/2,L(χ) 6= 0. We set L(2) := (2c′, ω′). Hence, by Proposition 4.1

we have that the space ΘL(2) contains one-dimensional Γ̃-submodules (since
J1/2,L(χ) can be identified with a subspace of J1/2,L(2)(χ)). Proposition 4.9 (i)
implies then that 2 splits completely in K and that the level of L(2) (which
is 8c′2ω′d) must be equal to 8gb2 for some integral O-ideal b whose square
divides the modified level of the O-lattice L(2). Hence, we have the identity
(c′b−1)2ω′d = g. But this implies that (c′b−1, ω′) is of the kind which occurs in
Theorem 4.2. Since (c′, ω′) obviously embeds into (c′b−1, ω′), the O-lattice L
also embeds into (c′b−1, ω′).

Now we prove that χ = ε(c′b−1,ω′). By Theorem 4.2 we have ϑ(c′b−1,ω′) ∈
J1/2,(c′b−1,ω′)(ε(c′b−1,ω′)). Proposition 4.9 (ii) implies that ϑ(c′b−1,ω′) spans the
space J1/2,(c′b−1,ω′)(ε(c′b−1,ω′)). But this space can be viewed as a subspace of
J1/2,L(χ), since L can be embedded into (c′b−1, ω′), i.e. we have the claimed
identity.

Assume χ = ε(c,ω), 2 splits completely in K, and ϕ denotes a homomor-
phism from L to (c, ω), where (c, ω) is of the kind which occurs in Theo-
rem 4.2. From Theorem 4.2 we know that ϑ(c,ω) is a singular Jacobi form
of index (c, ω), and from Proposition 4.9 (ii) we know that the space of Ja-
cobi forms of a given index is at most one-dimensional, hence J1/2,(c,ω)(χ) =
C · ϑ(c,ω). But by J1/2,(c,ω)(χ) ⊆ J1/2,ϕ(L)(χ), we have J1/2,ϕ(L)(χ) = C · ϑ(c,ω)

(see also Proposition 4.9 (ii)). Since ϕ is injective (from Section 3.1 we know
that every homomorphism between totally positive definite O-lattices is in-
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jective), the map φ(τ, z) 7→ φ(τ, ϕ(z)) defines an isomorphism from J1/2,L(χ)
to J1/2,ϕ(L)(χ) which finally proves the theorem.



Chapter 5

Tables

This chapter contains tables which list the first number fields (ordered by
increasing discriminant) of degrees 2, 3 and 4 which admit nonzero singular
Jacobi forms. More precisely, we searched all of the Bordeaux number field
tables of the PARI group [Bor95] for totally real number fields fulfilling the
conditions for admitting nonzero singular Jacobi forms.

For number fields K of degree 2 and 3 over Q we list the first 30 number
fields where we find nonzero singular Jacobi forms. The percentage of num-
ber fields of degree 2 and 3 admitting nonzero singular Jacobi forms among
all fields of these degrees in the Bordeaux tables is %17.87 and %4.75, re-
spectively. For number fields K of degree 4 over Q we list all number fields
of the Bordeaux tables admitting nonzero singular Jacobi forms. The corre-
sponding percentage is in this case %0, 25. We searched the Bordeaux tables
also for number fields of degrees n = 5, 6, 7 which admit nonzero singular
forms. However, in the available range we could not find any such fields.

The columns of the tables display from left to right the discriminant DK

ofK, the number s of nonzero singular Jacobi forms modulo isomorphism, the
minimal polynomial f of K, whether the different dK of K is a square in the
narrow ideal class group or not, the number of g satisfying the assumption of
Theorem 4.2, the number of prime ideals p of degree one above 3, respectively.
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Table 5.1: Number fields K with [K : Q] = 2

DK s f ∂K g p

17 1 x2 − x− 4 X 1 0
41 1 x2 − x− 10 X 1 0
57 2 x2 − x− 14 1 1
65 2 x2 − x− 16 X 1 0
73 4 x2 − x− 18 X 4 2
89 1 x2 − x− 22 X 1 0
97 4 x2 − x− 24 X 4 2
113 1 x2 − x− 28 X 1 0
129 2 x2 − x− 32 1 1
137 1 x2 − x− 34 X 1 0
145 4 x2 − x− 36 X 2 2
185 2 x2 − x− 46 X 1 0
193 4 x2 − x− 48 X 4 2
201 2 x2 − x− 50 1 1
217 4 x2 − x− 54 2 2
233 1 x2 − x− 58 X 1 0
241 4 x2 − x− 60 X 4 2
257 1 x2 − x− 64 X 1 0
265 4 x2 − x− 66 X 2 2
273 4 x2 − x− 68 1 1
281 1 x2 − x− 70 X 1 0
305 2 x2 − x− 76 X 1 0
313 4 x2 − x− 78 X 4 2
337 4 x2 − x− 84 X 4 2
353 1 x2 − x− 88 X 1 0
377 2 x2 − x− 94 X 1 0
401 1 x2 − x− 100 X 1 0
409 4 x2 − x− 102 X 4 2
417 2 x2 − x− 104 1 1
433 4 x2 − x− 108 X 4 2
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Table 5.2: Number fields K with [K : Q] = 3

DK s f ∂K g p

961 1 x3 − x2 − 10x+ 8 X 1 0
1849 1 x3 − x2 − 14x− 8 X 1 0
3969 2 x3 − 21x− 28 X 2 1
4481 2 x3 − 17x− 8 1 1
7057 1 x3 − x2 − 22x+ 32 X 1 0
7441 1 x3 − x2 − 22x− 16 X 1 0
8281 1 x3 − x2 − 30x+ 64 X 1 0
8289 2 x3 − 21x− 12 X 2 1
8713 1 x3 − 25x− 32 X 1 0
9153 2 x3 − 21x− 4 X 2 1
10641 4 x3 − x2 − 22x+ 16 X 4 2
11137 1 x3 − x2 − 22x+ 8 X 1 0
11665 1 x3 − x2 − 26x+ 40 X 1 0
11881 1 x3 − x2 − 36x+ 4 X 1 0
13689 2 x3 − 39x− 26 X 2 1
14129 2 x3 − x2 − 26x− 16 1 1
14609 2 x3 − x2 − 26x+ 32 1 1
15641 2 x3 − 29x− 36 X 2 1
15961 1 x3 − x2 − 30x− 32 X 1 0
16129 1 x3 − x2 − 42x− 80 X 1 0
16369 1 x3 − x2 − 26x− 8 X 1 0
16649 2 x3 − x2 − 34x− 48 X 2 1
16689 4 x3 − x2 − 26x+ 24 X 4 2
17689 1 x3 − x2 − 44x+ 64 X 1 0
18201 4 x3 − x2 − 30x+ 48 X 4 2
19441 1 x3 − 37x− 68 X 1 0
20073 4 x3 − x2 − 30x− 24 X 4 2
20385 2 x3 − 33x− 48 X 2 1
21281 2 x3 − x2 − 42x+ 104 X 2 1
23321 2 x3 − x2 − 30x− 16 1 1
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Table 5.3: Number fields K with [K : Q] = 4

DK s f ∂K g p

122825 2 x4 − x3 − 23x2 + x+ 86 X 1 0
164441 1 x4 − 2x3 − 13x2 + 14x+ 32 X 1 0
171377 1 x4 − 2x3 − 19x2 + 20x+ 32 X 1 0
274625 2 x4 − x3 − 24x2 + 4x+ 16 X 1 0
282353 1 x4 − x3 − 35x2 + 41x+ 202 X 1 0
310985 2 x4 − 2x3 − 13x2 + 14x+ 8 X 1 0
314721 2 x4 − 25x2 + 16 X 1 0
317033 1 x4 − 2x3 − 17x2 + 18x+ 64 X 1 0
340857 2 x4 − 2x3 − 13x2 + 14x+ 16 X 1 0
356337 2 x4 − x3 − 37x2 + 25x+ 268 X 1 0
379457 2 x4 − 2x3 − 23x2 + 24x+ 76 X 1 0
389017 1 x4 − x3 − 27x2 + 41x+ 2 X 1 0
393129 2 x4 − x3 − 37x2 + 97x+ 4 X 1 0
393329 1 x4 − x3 − 39x2 + 9x+ 302 X 1 0
471537 2 x4 − x3 − 25x2 + 25x+ 64 X 1 0
485809 1 x4 − 29x2 + 36 X 1 0
500033 1 x4 − 2x3 − 21x2 − 18x+ 8 X 1 0
506617 1 x4 − 2x3 − 21x2 + 22x+ 104 X 1 0
532521 4 x4 − x3 − 27x2 − 7x+ 82 1 1
624529 1 x4 − 2x3 − 27x2 + 28x+ 128 X 1 0
626441 1 x4 − 21x2 − 8x+ 20 X 1 0
663833 1 x4 − x3 − 51x2 + 49x+ 514 X 1 0
668457 2 x4 − 2x3 − 33x2 + 34x+ 136 X 1 0
674057 1 x4 − 23x2 − 2x+ 88 X 1 0
704969 1 x4 − x3 − 33x2 − 39x+ 8 X 1 0
751409 1 x4 − 23x2 − 6x+ 80 X 1 0
754769 1 x4 − x3 − 26x2 + 8x+ 64 X 1 0
756313 1 x4 − x3 − 53x2 + 33x+ 596 X 1 0
768713 1 x4 − 21x2 − 4x+ 32 X 1 0
830297 4 x4 − x3 − 57x2 + x+ 664 X 1 0
860353 2 x4 − 2x3 − 55x2 + 56x+ 172 X 1 0
906593 1 x4 − 2x3 − 31x2 + 32x+ 188 X 1 0
996761 1 x4 − 2x3 − 29x2 + 30x+ 208 X 1 0
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