
Coordination and Learning in Global

Software Development

Articulation Work in Distributed Cooperation of Small

Companies

Dissertation

von

Alexander Boden

zur Erlangung des Doktorgrades Dr. rer. pol.

an der Fakultät III:
Wirtschaftswissenschaften,

Wirtschaftsinformatik und Wirtschaftsrecht

der Universität Siegen

Abstract

Software offshoring has been established as an important business strategy over the last
decade. While research on such forms of Global Software Development (GSD) has mainly
focused on the situation of large enterprises, small enterprises are increasingly engaging
in offshoring, too. Representing the biggest share of the German software industry, small
companies are known to be important innovators and market pioneers. They often regard
their flexibility and customer-orientation as core competetive advantages. Unlike large
corporations, their small size allows them to adopt software development approaches that
are characterized by a high agility and flat hierachies. At the same time, their distinct
strategies make it unlikely that they can simply adopt management strategies that were
developed for larger companies.

Flexible development approaches like the ones preferred by small corporations have
proven to be problematic in the context of offshoring, as their strong dependency on
constant communication is strongly affected by the various barriers of international co-
operation between companies. Cooperating closely over companies’ borders in different
time zones and in culturally diverse teams poses complex obstacles for flexible manage-
ment approaches. It is still a matter of discussion in fields like Software Engineering
and Computer Supported Cooperative Work how these obstacles can be tackled and how
they affect companies in the long term. Hence, it is agreed that we need a more detailed
understanding of distributed software development practices in order to come to feasable
technological and organizational solutions.

This dissertation presents results from two ethnographically-informed case studies of
software offshoring in small German enterprises. By adopting Anselm Strauss’ concept of
articulation work, we want to deepen the understanding of managing distributed software
development in flexible, customer-oriented organizations. In doing so, we show how
practices of coordinating inter-organizational software development are closely related
to aspects of organizational learning in small enterprises. By means of interviews with
developers and project managers from both parties of the cooperation, we do not only

2

take into account the multiple perspectives of the cooperation, but also include the socio-
cultural background of international software devlopment projects into our analysis.

Based on an analysis of the management practices we found in the field, we present
theoretical as well as practical implications for the management of software offshoring in
small companies. Furthermore, we contribute implications for the design of supportive
technology, and discuss the methodological issues that we encountered while doing field
research in the field of distributed software development.

3

Acknowledgements

I am deeply grateful to my thesis advisor Volker Wulf for guiding my research activities
at the intersection between Software Engineering and Computer Supported Cooperative
Work. As a cultural anthropologist doing my PhD in the field of Information Systems,
his support and advice was especially important and valuable for me.

Also, I cannot thank Bernhard Nett enough for his tutorage. Many of the ideas and
insights of my research are based on the interesting discussions we had during the time
I worked on my thesis.

Special thanks goes also to my former advisor Gunther Hirschfelder, who helped me in
finding my way into the field of Information Systems. Without his support, I would
hardly have taken this step.

I am especially grateful to Sebastian Draxler and Gunnar Stevens for their valuable
feedback and input especially during the finishing phase of my study, as well as to Claudia
Müller for her advice and co-authorship. I would also like to thank my other colleagues
from the University of Siegen and Fraunhofer FIT who gave me feedback and inspiration
in uncountable discussions.

Furthermore, I thank Gabriela Avram from the University of Limerick for the fruitful
cooperation on various papers and other research activities. Thanks a million!

I also thank all the participants of my study, who welcomed me at their workplaces
and allwed me to conduct interviews and observations, and who have chosen to remain
anonymous in this dissertation.

Last but not least, I also feel deep gratitude towards my family and especially to my
fiancée, who have always supported me morally through the years that it took to write
this book; without their support, patience and encouragement, this dissertation would
not have been possible.

4

Contents

1. Introduction 11

I. Concept 14

2. Related Work 15

2.1. Global Software Development . 15
2.1.1. Background . 16
2.1.2. Offshoring of Information Systems 17
2.1.3. Software Offshoring in SMEs . 19
2.1.4. Flexibility and Learning as Core Competencies of software devel-

oping SMEs . 21
2.2. Computer Supported Cooperative Work 22

2.2.1. Articulation Work . 22
2.2.2. Articulation Work in Distributed Software Projects 24

3. Study Outline 28

3.1. Perspective . 28
3.2. Methodology . 30
3.3. Case Studies . 33

3.3.1. Company Alpha . 34
3.3.2. Company Beta . 35

II. Findings 37

4. Conducting Business Ethnography 38

4.1. Introduction . 39
4.2. Related Work . 40

4.2.1. Qualitative Research in Software Engineering 40

5

Contents

4.2.2. The Concept of Business Ethnography 42
4.3. Research Project: Articulation Work in Offshoring of small to medium-

sized Software Companies . 43
4.3.1. Aims and Research Design . 44
4.3.2. Analysis of our Research Methodology 47
4.3.3. Case Study: Company Alpha . 47

4.4. Conducting a Business Ethnography in our Project 48
4.5. Challenges of GSD Research . 51

4.5.1. Studying Global Work Practices through a Local Lens 51
4.5.2. Adapting to Changing Interests of the Company 53
4.5.3. Dealing with Micro-Political Conflicts between the Sites 55

4.6. Discussion . 56
4.7. Conclusion . 60

5. Coordination Practices 62

5.1. Introduction . 62
5.2. Global Software Development in SME . 63

5.2.1. Theoretical Perspectives on Offshoring 63
5.2.2. Agility as a Core Competency . 64

5.3. Articulation Work . 65
5.3.1. Articulation Work and Software Development 65
5.3.2. Articulation Work in Distributed Work Environments 66

5.4. Research Method . 67
5.4.1. Interviews . 68
5.4.2. Participant Observation . 68
5.4.3. Grounded Theory Analysis . 69
5.4.4. The Cases . 69

5.5. Results . 71
5.5.1. Bug fixing . 71
5.5.2. Specification of Features . 72
5.5.3. Communication . 74

5.6. Discussion . 75
5.7. Conclusion . 77

6. Operational and Strategic Learning 79

6.1. Introduction . 79
6.2. Single- and Double-Loop Learning . 80

6

Contents

6.3. Research Methods . 83
6.4. The Case Studies . 84

6.4.1. Company Alpha . 84
6.4.2. Company Beta . 84

6.5. Different Work-Organization Models . 85
6.5.1. Model 1: Division of Labor for Alpha’s Standard Software Solution 87
6.5.2. Model 2: Division of Labor for Alpha’s Customer-Specific Projects 87
6.5.3. Model 3: Initial Division of Labor for Beta 89
6.5.4. Model 4: Division of Labor for Beta after Reorganization 89

6.6. Discussion . 91
6.7. Conclusion . 93

7. Trust and Social Capital 94

7.1. Introduction . 94
7.2. Offshore Cooperation in the Literature . 96
7.3. Methodology . 97
7.4. The Case Study . 100

7.4.1. Changes to the Division of Labor 101
7.4.2. Attempts of Standardization . 103
7.4.3. Selling the Offshore Organization 104
7.4.4. Salaries and Infrastructure . 106
7.4.5. The Termination of the Cooperation 108

7.5. Analysis of Articulation Work and Social Capital 109
7.6. Conclusion . 111

8. Knowledge Sharing Practices 114

8.1. Introduction . 115
8.2. Related Work . 116

8.2.1. Knowledge in (Global) Software Engineering 116
8.2.2. Cross-Cultural Aspects of Global Software Engineering 117

8.3. Cases . 119
8.3.1. Company A Overview: Germany (Bonn)—Russia (Tomsk) 119
8.3.2. Company B Overview: Ireland (Dublin)—Romania (Bucharest) . . 120

8.4. Methodology . 121
8.4.1. Case Study A: Research Methods 121
8.4.2. Case Study B: Research Methods 121
8.4.3. Data Analysis for the Current Study 122

7

Contents

8.5. Research Findings . 122
8.5.1. Status Meetings and Maintaining Awareness 123
8.5.2. Collaborative Use of Shared Artifacts and Repositories 124
8.5.3. Spending Time at the Other Site 125
8.5.4. Human “Bridges”: Mediating between People and Cultures 126

8.6. Discussion . 128
8.7. Conclusion . 131

III. Conclusions 133

9. Analysis 134

9.1. Summary of Findings . 134
9.1.1. Articulation Work in Software Offshoring of SMEs 135
9.1.2. Articulation Work and Organizational Learning 141
9.1.3. Articulation Work and its Socio-Cultural Embedding 144

9.2. Implications . 148
9.2.1. Methodological Implications for Research 148
9.2.2. Theoretical Implications for the Scientific Discussion 149
9.2.3. Practical Implications for Companies 153
9.2.4. Implications for Design . 156

9.3. Outlook . 162

Appendix I: List of Publications 188

8

List of Figures

2.1. The Concept of Single- and Double-Loop Learning 22

3.1. The Two Case Studies Alpha (Bonn-Tomsk) and Beta (Berlin-Saint Pe-
tersburg). 33

4.1. Business Ethnography Circle . 49

6.1. Alpha’s Offshoring Model . 86
6.2. Beta’s Offshoring Model . 86

8.1. The Locations of the Teams. 119
8.2. Lessons Learned . 131

9.1. The Concept of Articulation Spaces . 159

9

List of Tables

3.1. Overview on the Research Activities . 32
3.2. Overview on the Two Case Studies . 34

4.1. Details on the Two Case Studies in our Research Project 44
4.2. Details of Company Alpha . 48

6.3. Different Kinds of Learning and Articulation Work 92

7.1. Tools Provided for Cooperation . 101

10

1. Introduction

Software is more and more developed in distributed teams, be it in the context of out-
sourcing, offshoring, or forms of open source software development—a transition which
has been labelled as Distributed Software Development or Global Software Development
(GSD). While the former term highlights the distributed character of the cooperation
between developers and teams working at different places for example in the context of
outsourcing, the latter focuses on internationally distributed cooperation. Software off-
shoring is one of the various forms of Global Software Development. It describes business
strategies of sourcing software development tasks to teams in foreign countries, usually
for saving development costs, getting access to new markets, or streamlining business
processes [113]. Even though it is hard to estimate the exact economic impact of soft-
ware offshoring due to limited statistic data and varying definitions of the phenomenon
in different studies [115, 152], it is commonly agreed that Global Software Development
has been of growing importance for the software branch since the late 1990s [10, 164].

Software offshoring comes with high risks, due to the temporal, geographical, organi-
zational and cultural barriers which have to be bridged for successful distributed team
coordination. The discussion on the value of offshoring as a business strategy is con-
troversial. On the one hand, there are many reports about failed projects of software
offshoring in the industry (including dramatic examples such as an estimated 100 million
dollar loss at AT&T due to a failed upgrade of an offshored CRM system [129]). Apart
from operational risks, there are ethical and ecologic considerations, for example low
working standards and a high need for travelling, which make it doubtful that offshoring
of software development can be a sustainable and expedient business strategy for western
firms [195]. On the other hand, offshoring is often discussed as being without alternative
in times of global economic competition. At the same time, there are many reports about
successful projects, indicating that it is possible to successfully deal with the challenges
of distributed software development. As a result, the question that is discussed exten-
sively is how such distributed projects can be successfully planned, organized, and upheld
despite the numeruous obstacles and risks of globally distributed cooperation.

11

1. Introduction

Global Software Development has emerged as a sub-discipline of Software Engineer-
ing that strives to understand and leverage the implications of developing software in
distributed contexts. Early research in the field of GSD focused on supporting for-
mal software development models in distributed settings, usually regarding offshoring
as a “make-or-buy” decision to be taken by the management in the context of business-
economic reasoning [126]. Today, GSD is increasingly understood as a dynamic process
with complex implications for software development work due to the related organiza-
tional, temporal, spatial and cultural barriers of international cooperation (just to name
a few). Research questions are centered on how practitioners organize and perform their
work in distributed teams, how cooperation arrangements can be re-adjusted to emerging
necessities, and how software developers can be supported in dealing with the challenges
and problems of international cooperation.

Small and medium-sized enterprises (SMEs) have proven to be of high, albeit hetero-
geneous economic relevance for the German software industry. They constitute a large
share of the enterprises in the software branch and are known to be important product
innovators and market pioneers (see for example [13]). Software SMEs usually employ
only a small number of developers; thus, it would be more precise to refer to them only
as small companies. Research into small companies has shown that these often stick to
self-composed mixtures of practices instead of straightforwardly adapting software en-
gineering approaches [7]. At the same time, small companies often have only limited
resources, which narrow their business opportunities considerably. As small companies
are known to follow quite different software development approaches as compared to
larger enterprises [78], it is questionable whether they can simply adapt approaches that
have been identified in studies that are focused on large corporations [179, 40]. Hence,
it is important to learn more about how small companies deal with the challenges of
distributed software development in practice, what implications such strategies have for
their economic success, and how strategies that have been developed for local teams or
for larger forms of distributed software development can be adjusted to fit the needs of
small enterprises [104, 205].

In order to answer these questions, it is agreed that more case studies into the work
practices of software developers in distributed teams are needed [126]. As we do not know
much about the practices of small companies for dealing with the challenges of offshoring,
this dissertation wants to shed light on the question as to how these companies organize
their work in the specific context of distributed software development, as well as how these
practices are mediated and can be supported. In doing so, we will adopt the concept of

12

1. Introduction

articulation work [219], which provides a fine grained view on coordination practices and
has proven to be of high value in the field of Computer Supported Cooperative Work
[200] (see chapter 2.2).

The dissertation is organized as follows: We will first develop a conceptional view on
software offshoring in SMEs and present our methodology and case studies in the follow-
ing part I of this book. Part II will then present our findings with regard to the research
questions which will be developed in the next sections (see chapter 3 for an outline of
the study). Part III concludes the dissertation with a summary as well as an analysis of
our findings with regard to their implications for theory and practice, and for the design
of supportive technologies.

Parts of this dissertation have already been published as conference or journal papers.
See appendix I for an overview.

13

Part I.

Concept

14

2. Related Work

Offshore outsourcing (short: offshoring) of software development is an option of strategic
business management which has been intensively discussed over the last years [134, 114,
34, 126, 10]. Offshoring is associated with high risks that are related to the temporal,
spatial, organizational, and cultural barriers of such forms of international cooperation
[171]. While many projects are known to have failed, risks have often been described
as being manageable if the proposed offshoring models are followed—usually formal,
waterfall-based models with a clear focus on documentation, architecture, and plans
[59].

Outsourcing is a coinage of “outside”, “resource”, and “using” and basically denotes the
delegation of formerly internal functions and structures to external service providers. The
term subsumes a broad field of different sourcing strategies which are sometimes hard to
discern from other forms of business relationships such as for example joint ventures [34].

Offshoring, on the other hand, is a term which highlights the location of the service
provider. Offshoring basically means that the outsourcing provider is located in a diff-
erent country “offshore”—usually in a low-wage country. Offshoring is sometimes distin-
guished from nearshoring and onshoring implying different levels of distance (and wage
differences) between employer and provider. From a European perspective, India and
Asia are usually seen as offshoring regions while Eastern Europe and Russia are regarded
as nearshore locations [41]. As nearshoring has very similar qualities, the term is often
subsumed under the broader term offshoring [194].

2.1. Global Software Development

This section provides an overview of the literature on offshoring in general, with a focus on
software offshoring in SMEs. After a broad introduction into the history and background
of offshoring in the industry, we will cover the perspective of Information Systems on the
topic and then focus on the Software Engineering literature with regard to managing

15

2. Related Work

distributed software development in the context of SMEs that have offshored parts of
their software development.

2.1.1. Background

The recent and current interest in software offshoring is related to general trends of
the economy, especially branches like the textile or automotive sectors, which became
apparent in the second half of the 20th century. For example, the in-house production
depth of automotive companies is usually less than 25% today; most of the parts and
systems are built and assembled by external suppliers [246].

Offshoring as a significant part of a global economic strategy has been discussed since
the 1960s, for example by Stopford and Wells [217]. The increasing impact of offshoring
is mainly based on a change of business strategies towards a concentration on core com-
petencies. The underlying assumption is that the depletion of international trade re-
strictions in combination with cheap means of international travelling, transport and
communication offers access to new markets and makes it possible for companies to im-
plement offshoring projects in almost all parts of their value chains [236]. In contrast
to such economical arguments, there are also references to ethical and macroeconomic
accounts in the discussion which question the sustainability (and validity) of offshoring
strategies as short-sighted instruments to cut costs, leading to losses of jobs and compe-
tencies on a national level [195]. In the long term, it has been argued that the competition
of companies would spread offshoring strategies further until the rising wages in offshore
regions would deplete the benefits of offshoring [247].

The trend of software outsourcing (as a predecessor of offshoring) has been around since
the 1990s. The reason for this relatively late development is that there were few spe-
cialized providers in the early days of computing, and companies began to set up their
own departments. One of the earliest deals known was the outsourcing of the IT of the
Blue Cross in Pennsylvania to the company Electronic Data Systems (EDS) in 1963.
However, the symbolic breakthrough of IT outsourcing was the 1 billion dollar deal
between IBM and Kodak in 1989. For the first time, a renowned company outsourced
a whole business division (including 300 employees), an incident which some researchers
see as the beginning of an era of “outsourcing mega-deals”, as it raised the trust in the
feasibility of large outsourcing projects, legitimized such strategies and encouraged other
companies to follow. This has been labelled as the “Kodak effect” [190], the ignition
spark of today’s software outsourcing and offshoring strategies.

16

2. Related Work

There are two reasons why IT departments and functions are increasingly in the focus
of offshoring strategies today. On the one hand, software is increasingly understood as
a service that can be provided from anywhere in the world due to negligible transfer
costs (transaction cost view). On the other hand, IT is often seen as a pure cost-factor
with very limited strategic relevance (resource-based view) [59]. The main driver for the
increasing impact of IT offshoring, however, is the expectation to save costs. Although a
shortage of skills on the domestic labor market as well as the chance for accessing foreign
markets are often cited as the reasons for offshoring, cost savings are clearly dominating
related surveys amongst companies [10]. Larry Ellison, CEO of Oracle, summarized the
IT offshoring philosophy as follows: “Why should every automaker, publisher, or doctor’s
office have to be a tech company too, employing high-paid staff who spend all of their
time fiddling around with computers?” (citation taken from [55]).

While IT offshoring includes a broad variety of different forms and arrangements (for ex-
ample including models like “software as a service”), this dissertation focuses on a special
form: the offshoring of parts of the software development work (that has formerly been
done in-house) to a partner company in a low-wage country, resulting in a distributed
form of two teams in different locations developing software together.

2.1.2. Offshoring of Information Systems

In Information Systems research, software offshoring is seen as a special form of Infor-
mation Systems offshoring [136, 55, 114]. IS offshoring has been discussed from many
perspectives in relation to economic, strategic, and cultural factors (just to name a few)
[58]. The main focus of research has often been the identification of concepts and best
practices for successful management of offshoring projects [135, 50], especially with re-
gard to the multitude of different barriers of offshoring cooperation. For example, spatial
and temporal distance is known to reduce the frequency of communication, while social
and organizational distance can lead to misunderstandings and a lack of trust between
the cooperating companies, thus leading to delays and requiring adequate management
of offshoring cooperation [239].

The theoretic foundation of the discussion can be divided into three categories [58]:

1. Economic approaches like the transaction cost theory offer criteria for the plan-
ning and coordination of outsourcing/offshoring projects according to the relation
of transaction and production costs [241, 240]. The main focus is the legal ar-
rangement of offshoring contracts as part of the transaction costs. With regard to

17

2. Related Work

software development, this is problematic as technical requirements can not always
be fully anticipated, and as the time and effort of development and maintenance
can hardly be estimated beforehand. This leads to problems regarding the le-
gal organization of outsourcing/offshoring arrangements, since companies have to
take into account hardly detectable opportunistic behavior on behalf of the service
provider (principal-agent problem) [125], while at the same time avoiding an over-
specification of the contract in order to leave room for unforeseen innovations [148].
For software offshoring arrangements, related considerations indicate the need to
organize offshoring not in the form of mere service providing but rather in the
form of a close cooperation like in a joint venture or intra-organizational form of
cooperation, thus indicating the need to overcome the related barriers between the
teams.

2. Strategic approaches like the resource-based theory focus on providing instructions
for company development according to specific, non-imitable competencies of enter-
prises such as knowledge about processes or patents [49]. The main focus is placed
on questions such as how to identify resources in companies that are suited for out-
sourcing/offshoring [4]. The theory suggests that companies should outsource parts
that are either strategically unimportant (and keep the core resources in-house),
or use outsourcing for freeing resources that can be used for innovation in more
important areas [188]. With regard to software offshoring, the problems discussed
include the questions as to how to distinguish strategically important parts from
unimportant ones, and whether software development should be seen as an strate-
gic asset, or a common service with little strategic importance in this regard. From
this view, software offshoring only makes sense when software development work
is seen as being distributable between different specialized roles: software archi-
tects and requirements engineers, who do the actual development work, and mere
“coders”, who “just” carry out the plans derived by these specialists (who would
thus be easily interchangeable).

3. Social/organizational approaches like the power theory focus on relationships and
dependencies between actors apart from economic reasoning. Such approaches
take into account the influences of different interests, conflicts, and distribution of
power in companies [156, 136]. The basic assumption is that stakeholders like an
IT department continuously try to secure their power. As a loss of employees due
to software offshoring could possibly decrease the influence of such a department,
actors are expected to oppose related plans of the management in some cases. On

18

2. Related Work

the other hand, powerful actors of small departments could see offshoring as a way
to increase their influence in the company [60].

Other common approaches include the focus on reducing the risks of offshoring by de-
veloping adequate sourcing strategies, or on supporting offshoring decisions by providing
different perspectives in relation to multiple theories at the same time [3, 61]. In general,
it can be summarized that the approaches in the IS literature are very heterogeneous. At
the same time, the focus is usually on problems of planning and organizing offshoring-
related decisions of the management [58], for example by providing suggestions regarding
the selection of business functions for selective offshoring [137].

Recently, the focus of the research has been shifted more towards seeing outsourcing
and offshoring as a process, focusing on the (often unanticipated) changes that can be
necessary in offshoring projects. As software markets are volatile and offshoring partners
can not be changed arbitrarily, it is necessary to take into account long-term effects
of sourcing strategies [140, 189], especially as these often involve a restructuring of the
organization. In this regard, offshoring should not be seen as a mere “make-or-buy”
decision but has to be considered as a dynamic process, which needs to be continuously
re-adapted to emerging demands. This is especially important for software development,
which on the one hand is hard to manage and plan ahead, and on the other hand
can be regarded as an strategic “resource” in many cases [62]. For the situation of
small companies, these aspects seem to be especially important, as the next sections will
illustrate.

2.1.3. Software Offshoring in SMEs

The German software sector is dominated by small companies that offer not only software
development but also services for its customization and appropriation support for their
customers [205, 68, 78]. SMEs often attempt to compete on the market by addressing in-
dividual needs of particular customers, instead of making products for mass markets (as
large companies often do). As a consequence, their business models include many differ-
ent elements such as technology consultancy, help desk support, maintenance services etc.
Thus, the seemingly trivial provision of custom-built solutions may involve very different
and complex forms: SMEs may provide individual products by individualizing generic
adaptable software to individual demands (tailoring, mass customizing, re-engineering,
etc. [161]), but they may also develop or assemble modules for specific demands (similar
to bricolage in Cultural Studies [103])

19

2. Related Work

While large companies often are seen as the entrepreneurs of offshoring strategies and
have been in the focus of scientific research so far, the pressure to adapt offshoring
is growing for small and medium-sized enterprises, too [87, 104]. Due to their often
limited financial possibilities, problems of planning and conducting offshoring projects
are especially relevant for SMEs. Even for small projects, choosing the wrong partner can
have severe consequences, as cancelling an offshoring contract (backsourcing) or changing
the service provider can lead to high transaction costs.

In order to reduce such risks, the GSD literature often advocates careful planning and
standardizing product development processes as is suggested for example by the CMM
[187, 60, 126]. In this regard, development processes that divide labor into single, pre-
determined steps are meant to make software development predictable, transparent, and
traceable while improving performance and productivity at the same time. However,
predefining of and sticking to workflows is not always possible in dynamic, innovative
environments [163]. Hence, SMEs usually do not attempt to certify their development
processes [37, 78]. Instead, they stick to their own, self composed practices (which
are often neither stable nor documented). Working in small groups allows for a very
flexible handling of coordination mechanisms, division of labour, and hierarchies. The
possibilities to quickly adapt to changing market demands, implement innovations in an
ad-hoc way, and flexibly react to new wishes of the customer are counted amongst the
most important competitive advantages of SMEs compared to larger competitors. Hence,
such strategies seem to be promising for SMEs that focus on flexible adaptation, and not
on highly formalized decision processes [237, 72]—thus implying a far greater proximity
to agile methodologies than plan-based models of software development.

Furthermore, SMEs often do not follow one particular school but make use of practices
which may belong to different software development methods that are adapted in such a
manner that they fit into the specific domain of the company (if such methodologies are
followed at all) [7]. From a Software Engineering point of view, such a mix of approaches
is seen as problematic when SMEs adjust or only partially implement such methodologies
in their daily practices [2]. On the other hand, if SMEs attempt to formalize their software
development practices, the question arises how this affects their ability to adapt flexibly
to emerging demands of their business, and how small companies can remain agile while
engaging in offshoring [192, 193, 175]. Software development practice is facing severe
challenges in this regard, as agile methods with their strong dependency on intensive
communication and local teamwork are especially vulnerable to the disadvantages of
distributed work [2, 165].

20

2. Related Work

2.1.4. Flexibility and Learning as Core Competencies of software
developing SMEs

If flexibility can be regarded a strategic resource of SMEs in the sense of the resource-
based theory, then this flexibility has to be secured when such companies engage in
offshoring projects [69]. Apart from the ability to coordinate software development ef-
ficiently across organizational borders, this implies that companies need to be able to
continuously adjust their cooperation to emerging demands. When complex products
have to be tailored to the individual needs of particular customers, companies need a
high level of reactivity in order to dynamically adjust to emerging requirements.

Especially in innovative, context-sensitive fields like the software branch, such require-
ments become apparent only in the process of the development [182, 77, 248]. The reason
is that software development can be seen as knowledge work, which is firm-specific and
highly related to tacit knowledge [172, 121]. From such a view, knowledge can be shared
only in the process of negotiating experiences amongst individuals or groups in the course
of a common practice [229]. Successful examples of knowledge exchange like for example
in the context of communities of practice are highly interwoven with practices of social
interaction [238, 139], which should be taken into account for offshoring projects. Hence,
SMEs do not just need efficient means of communication, but also trust and possibilities
to continuously monitor and review their performance [140].

From this perspective, SMEs require ongoing learning and knowledge exchange in order
to flexibly adapt their cooperation to the emerging technical and organizational neces-
sities of their projects [177]. With regard to offshoring, it has to be stressed that this
cooperation does not only include the (local) development teams but also the (foreign)
partner company as well as the customer and other possible stakeholders of the project
at hand.

Argyris et al. [9] have introduced the concept of double-loop learning in this context.
According to this view, the ability for self-organized work does not only require an ongoing
reflection of the performance (single-loop learning), but also a reflection of the underlying
aims and assumptions (double-loop learning, see figure 2.1).

As actors have only a limited picture of the existing relations of their field of work,
organizational learning and dynamic self-organization require ample knowledge exchange
and a continuous reorganization of coordination mechanisms [1, 74]. In this regard, it
seems to be important to learn more about how these aspects of software development
work are affected by the circumstances of offshoring in practice.

21

2. Related Work

Figure 2.1.: Argyris et al.’s concept of single- and double-loop learning.

A deep understanding of the particular practices of SMEs is even more important as
recent studies have shown that the needs of global software teams are fundamentally
different from the ones of local teams in many aspects, and that research findings can
not be transferred arbitrarily from local to trans-local contexts [54, 110].

2.2. Computer Supported Cooperative Work

In order to obtain a detailed understanding of the practices of software development
in the context of offshoring in SMEs, this dissertation will adopt approaches from the
field of Computer Supported Cooperative Work. With regard to our research agenda,
CSCW offers a diversity of instruments and concepts that are useful for understanding
software development as a complex, creative, and knowledge-intense practice—such as
the notion of articulation work and coordination mechanisms, which will be introduced
in the following sections.

2.2.1. Articulation Work

The concept of articulation work has been of high importance in the field of Computer
Supported Cooperative Work. It has been initially introduced by the sociologist Anselm
Strauss, also co-developer of the methodological approach of Grounded Theory, in the late
1980s [220, 219, 221]. Strauss contributed considerably to the school of Chicago sociology,
and his work has been well received by organizational studies as well as technology
research [222, 224]. His work on the role of perspectivity and process-oriented nature of
sociality has offered important insights for the analysis of complex social systems.

Strauss developed his concept of articulation work in the context of medical work. Based
on a long-term study on work in a hospital, Strauss identified different kinds of work, for

22

2. Related Work

example comfort work (i.e. comforting patients), technical work (i.e. operating technical
medical devices) and articulation work as a kind of meta- or supra-work that is needed
to coordinate the different tasks and responsibilites of cooperating actors (i.e. nurses,
doctors, technicians, relatives) in the course of treating patients (so called trajectories, or
arcs of work) [219]. Articulation work was further developed by Strauss in several follow-
up articles [220, 221], and also picked up as a fruitful perspective for understanding the
intricacies of cooperative work arrangements in the foundation of the field of CSCW in
the early 1990s [200].

According to the articulation work concept, cooperative work is inherently distributed
in the sense that arrangements (like for example offshoring projects) contain arcs of
work (like for example software projects) that include a division of labor with regard to
both tasks and actors [201]. These interdependencies—including task-to-task, task-to-
person, and person-to-person dependencies—constitute cooperative work, as they form
the context in which (semi-autonomous) actors follow individual strategies, heuristics,
perspectives, aims, and motives while interacting with their co-workers [196]. As these
observations are centered at a highly granular understanding of work, its forms of dis-
tribution are analyzed on a much more basic level as compared to the higher levels of
temporal and spatial isolation of globally cooperating teams.

Strauss has introduced articulation work as a form of meta- or supra-work that is needed
to handle these inherent aspects of cooperative work. He characterizes articulation work
as “the coordination of lines of work. This is accomplished by means of the interactional
processes of working out and carrying through of work-related arrangements. Articula-
tion varies in degree and duration, depending upon the degree to which arrangements
are in place and operative” [222]. Articulation is needed mainly to coordinate the distri-
bution of tasks amongst the actors: who does what, when, how, where, in which quality,
until when etc. However, articulation work is more than just “coordination” in the sense
that it also includes the negotiation of the inherent distribution of work. Apart from
a top-down allocation of resources and responsibilities, articulation work includes the
mediation of the different, individual activities with regard to their related arcs of work,
for example corresponding individual interpretations and perspectives on work [201].

Articulation work has been developed further in the context of CSCW research towards
the conceptions of coordination mechanisms [201], and recently the notion of ordering
systems [202]. A coordination mechanism is defined as a

“specific organizational construct, consisting of a coordinative protocol im-
printed upon a distinct artifact, which, in the context of a certain cooperative

23

2. Related Work

work arrangement, stipulates and mediates the articulation of cooperative
work so as to reduce the complexity of articulation work of that arrange-
ment” [201].

Coordination mechanisms thus are at the core of an artifact-centered view on coordina-
tive protocols, focusing on questions as to how to support articulation work by providing
actors with adequate (computational) coordination mechanisms. As a means to design
such systems, Schmidt and Simone have developed ARIADNE as a generic, semantic no-
tation for building malleable and interoperational coordination mechanisms [206]. With
regard to software development work, an example is discussed in form of a bug tracking
tool that can be used to classify and describe bugs, then assigning them to developers
with specific deadlines and priority levels. While such coordination mechanisms are usu-
ally thought to work on the level of the cooperation of a particular team (which can
nonetheless be distributed), ordering systems take a step back and focus on coordinative
work happening outside of a team. By taking into account boundary objects between dif-
ferent cooperating communities, ordering systems shift the attention towards more open,
evolving artifacts in the flow of complex work trajectories in distributed, fragmented
fields of work [202].

With regard to software offshoring in SMEs, articulation work and the related concepts
like coordination mechanisms can be seen as analytic lens for understanding the work that
is needed to coordinate—or rather: articulate—software development projects against the
background of the specific needs of SMEs. The broad understanding of cooperative work
in this regard makes it possible to analyze the role of informal re-adjustments of projects,
which are likely to occur often in software SMEs due to their flexible approaches towards
product development for specific market niches (see above). In this regard, we will
also look at the role of articulation work for organizational learning, i.e. how single- and
double loop learning is realized in small firms, and how the related practices of learning are
articulated. This is especially important as software projects need to be continuously re-
adjusted to emerging demands, and as articulation work is very likely to occur intensively
when unexpected occurrences lead to unforeseen problems and contingencies that have
to be solved in order to proceed with the project (thus offering important relations to
organizational learning).

2.2.2. Articulation Work in Distributed Software Projects

In local projects with low complexity, coordination can often be upheld without much
efforts in the course of the daily social interaction [165, 108]. An important concept in this

24

2. Related Work

regard is awareness [102], which describes an implicit form of coordination based on “an
understanding of the activities of others, which provides a context” for their own activities
[67]. Awareness is often divided into different categories like informal awareness, social
awareness or workplace awareness [98], and can reduce the need for explicit articulation
work, as actors monitor each others work progress sub-consciously and react to changing
states of the project without the need for explicit discussions. Furthermore, many issues
can be handled informally, as upcoming questions can be worked out in ad-hoc discussions
and plans can be readjusted easily. However, if projects are getting more complex, for
example because new developers are involved that are working at an offshore site in a
different country, these implicit forms of coordination may not be sufficient anymore.
With growing distance, articulation work can become more complex as communication
frequency and awareness are likely to decrease, thus creating barriers between the teams
which can lead to delays, misunderstandings or even project breakdowns [97, 106, 251].

At the same time, articulation work can be a kind of “invisible work” in the sense that
actors are sometimes not aware of the articulation work they are performing, or at least
often do not regard it as being part of their work [211]. Hence, if SMEs decide to
engage in offshoring, they can sometimes be surprised by the enormous complexity that
is introduced by the change, which can exceed the need to talk in a foreign language
and deal with time differences considerably [88]—especially if the company previously
has followed a very ad-hoc, informal way to organize software development. Hence,
companies need to find organizational and often also technical means for dealing with
the challenge of coordinating their work in distributed contexts [95, 47, 128].

A common approach for reducing the need for articulation work is optimizing the divi-
sion of labor and the corresponding workflows. A huge part of the research on GSD is
centered on developing corresponding management strategies, development models, or
software tools [109, 180]. From an articulation work perspective, formal constructs like
plans or workflow models can be seen as coordination mechanisms that are meant to re-
duce complexity and make articulation work easier. While they can reduce the need for
constant coordination, one characteristic of articulation work is that it can never be fully
substituted. “The important thing about articulation work is, that it is invisible to ratio-
nalized models of work” [209]. As it is not possible to anticipate all possible eventualities
and contingencies, formal constructs can never be complete. Hence, their use in practice
always requires articulation work itself [89]. Even when deterministic plans reach a rela-
tively high level of accuracy, the necessity remains to synchronize the different fragments
of the divided labor [170, 177]—a problem which can not be solved by plans. Hence, while

25

2. Related Work

plans can be seen as resources for cooperative work, they can never predefine it fully and
will always require articulation work in practice—an understanding which Lucy Suchman
has labelled as “situated action” [226]. Schmidt recently has pointed out that plans still
play an important role for cooperative work [199]. Suchman’s account of situated action
was meant as criticism against cognitive science (which basically assumed that rational
action would be determined by plans). However, while some action is definately ad-hoc
in the sense that it is spontaneous and improvised, other action is planned in the sense
that there is an obligation to follow certain predefined steps in a particular sequence,
at certain times etc. At the same time, plans do play an important role for action in
the sense of normative constructs providing guidelines for what is correct, and what is
not. Of course, action is still situated in so far that plans and rules have to be applied,
and that actors can choose to alter, abandon or ignore them in certain situations—thus
indicating a need for articulation work that has to be supported.

With regard to supporting coordination mechanisms in distributed software teams, re-
search has shown that the requirements for coordinating software development can be
volatile and exceed the borders of teams [44]—especially in the case of small companies
with their flexible approaches towards software development. This narrows the possi-
bilites of adopting formal development models and indicates a need for flexible coordina-
tion mechanisms that can be easily adapted to emerging necessities (see chapter 2.1.3).
Related approaches are often based on agile methodologies which are increasingly tested
in the context of distributed software projects [228, 14]. While they seem to be generally
well suited for the needs of SMEs, their application requires ample articulation work
and thus can be problematic in distributed contexts. Hence, the literature has suggested
approaches to support the necessary articulation work of distributed actors by providing
adequate means of communication media, often embedding them into the development
tools [90, 54, 167]. At the same time, attempts of using such concepts in the context
of offshoring often attempt to formalize the related articulation work in order to make
them more predictable and less dependent on frequent communication [194]. As this
focus on planning seems to contradict the basic assumptions on which agile methodolo-
gies are based [17], it is interesting to investigate the possible outcome of such strategies
[175, 168]. This is especially important as a detailed understanding of the organizational
issues of distributed software development is important for guiding the design of practi-
cable solutions for companies that engage in this type of international cooperation [95].
Right now, we know too little about the needs and practices of SMEs in order to assess
the applicability of existing approaches in this context (like for example the conception

26

2. Related Work

of Continuous Coordination that tries to bring together formal and informal aspects of
coordination [177]).

In addition to such approaches, there are also attempts to develop novel assistant systems
for software development teams, for example for raising awareness of possible breakdowns
by means of statistical analysis of the development IS. Projects in this area are often
based on data mining or network analysis methods to investigate information flows in
companies. These findings are then compared for example with technical dependencies
in the source code [177] in order to make predictions about possible information barriers.
Possible issues can then be vizualized for the team members to raise awareness and
prevent breakdowns before they occur [191]. While such approaches are able to support
the (implicit) coordination of software teams [150], their application domain is usually
rather narrow. The problem is, that they are usually centered on a couple of indicators
that are strongly dependent on the available data from the development IS (like for
example up-to-date bug tracking system or an actively used mailing list). However,
recent research has shown that Information Systems often do not represent the current
state of affairs in software teams very well [8]. Hence, such tools have to be applied
carefully in order to be successful. At the same time, they cannot simply be deployed
in software companies but need to be tailored to the specific practices of the teams they
are supposed to support.

For our study, it will thus be important to learn how coordination mechanisms and
plans are used by the practitioners in terms of how they are developed, negotiated,
implemented, and modified in practice (also in the sense of organizational learning)—and
also how distributed software development teams in small companies can be supported
in this endeavor.

27

3. Study Outline

In the following section, we will present our research questions and put them into per-
spective. Then, we will describe the methodology of our study as well as the case studies
that we have conducted.

3.1. Perspective

This dissertation aims at providing a detailed perspective on software offshoring in small
software companies with regard to the related challenges of distributed work, and the
strategies that small enterprises have developed for dealing with them. As agility and cus-
tomer orientation have been identified as the main competetive advantages of small soft-
ware enterprises, it is especially important to focus on the question as to how such small
and volatile teams deal with the challenges of flexibly coordinating work in distributed
cooperation. Furthermore, it is important to understand how small companies learn in
the context of offshore software development in terms of quickly reacting to changing
customer demands (operational learning) and developing the cooperation with regard
to the emerging necessities of distributed firm cooperation (strategic learning). Both
aspects (coordination and learning) are closely interrelated, but their connection and
interdependencies have hardly been studied so far in the context of offshoring [126, 22].
We have identified the conception of articulation work as a promising framework for the
analysis of these aspects, especially with regard to the question how distributed software
teams use (and develop) coordination mechanisms in practice to deal with the challenges
of their distributed cooperation.

Researching articulation work requires a sound analysis of the socio-political and cultural
contexts of the practices to be investigated [227]. Hence, we will not only center on the
normative side of offshoring (i.e. on the question as to how teams should organize their
work in order to be successful from a management perspective), but also on the practical
side of managing and doing distributed software development on the shop floor. In this
regard, routinized actions have to be distinguished from situated ones, and contextual

28

3. Study Outline

norms have to be identified without violating them [200]. We will also have to take into
account the particular social and cultural context of offshoring cooperations with regard
to the roles of aspects like trust, social capital, and culture [52]. In this respect, culture
has to be seen as an interpretive concept that includes socially embedded sensemak-
ing and negotiation processes in different layers [85]. In order to address these aspects
appropriately, we will take an ethnographically-informed approach in our study.

A close investigation of the articulation work in the context of software offshoring in
SMEs will allow us to contribute to the discussion on coordination and learning in the
context of offshoring (with regard to the applicability of management conceptions like
Continuous Coordination [177] or agile development methods [228] for small companies)
as well as to the discussion on the role and nature of articulation work and coordination
mechanisms in this context [199]. Furthermore, a detailed understanding of the practices
of managing distributed software development will allow us to provide recommendations
for practitioners [155], as well as to derive implications for the design of technologies that
support and mediate the articulation work of small software teams in practice (especially
with regard to the different approaches that we identified in section 2.2.2).

In the following sections, we will first provide details on the methodology of our study
as well as on the two cases of software offshoring to Russia which were at its focus: the
companies Alpha and Beta.

Part II of the dissertation will then center on answering the questions outlined above. The
five chapters of part II have already been published and resemble the accepted versions
of the related journal or conference papers (see appendix I).

• Chapter 4 will provide a methodological reflection of our work. Conducting re-
search in the field of distributed software development turned out to be subject to
challenges similar to the ones the software developers had to face. Hence, we will
discuss how we tried to meet those challenges in our study.

The two subsequent chapters will then provide a comparative analysis of the coordination
and learning practices we found in the two case studies:

• Chapter 5 will focus on the actual practices of coordinating distributed software
development in the two companies. It will be centered on the question as to how
the actors in the two cases organized their software development work, and how the
companies tried to warrant their operative agility in the context of their offshoring
projects.

29

3. Study Outline

• Chapter 6 will discuss how the different approaches chosen by the companies af-
fected their ability of organizational learning in the long term. For doing so, we will
investigate the relation between single- and double-loop learning and articulation
work in the two cases with regard to how the companies were able to strategically
adapt their cooperation to emerging demands.

The last two chapters of part II will analyze the socio-cultural context of the practices
of distributed coordination and learning that we have found in the field:

• Chapter 7 will focus on the roles that social capital and trust played for the decline
of the cooperation in one case (Beta). By revisiting an offshorig failure story,
the chapter will highlight how the organization of the cooperation co-evolved with
social capital and trust during its different stages.

• Chapter 8 will then center on the impact of cultural aspects on the cooperation
of company Alpha. By examining the constant re-negotiation of the socio-cultural
context of coordination and learning in distributed teams, we will highlight the
complexity of the conception of culture and draw conclusions for related manage-
ment approaches.

Part III will bring the different perspectives together and analyze them with regard to
their theoretical and practical implications (see chapter 9).

3.2. Methodology

Our study on offshoring in SMEs started in early 2006 and consisted of several stages.

First, we conducted an interview study with 15 managers and developers from 10 SMEs of
the German software branch in order to get a general overview on the different attitudes
towards offshoring, i.e. the related assumptions, experiences, and strategies. In addition,
we also conducted expert interviews with a division manager from a large company, with
a manager from an Eastern European offshoring provider, and with a consultant from a
business association in order to get a professional assessment of the phenomenon we were
interested in. Most interviews were held at the respective companies (in some cases by
phone), and most of them followed the same interview guide-line (which evolved during
the study as we learned more about the subject). All interviews were recorded and
transcribed, except for one case where we had to rely on handwritten notes because the
interview partner did not allow us to record the interview.

30

3. Study Outline

Based on this sample, we chose two cases which displayed very different attitudes to-
wards the organization of their distributed development for a comparative study (the
two companies will be described in greater detail below). Both companies were visited
for ethnographically oriented on-site observations over a period of three weeks each. Dur-
ing the visits, we stayed at the companies during their usual working hours and observed
how the developers were working, especially with regard to the cooperation with the
offshore teams. When something interesting happened, we took fieldnotes and also con-
ducted ethnographic interviews (see for example [91]) with most of the employees about
their views and experiences, asking them to explain what they were doing with regard
to the cooperation with their offshore partners, how they organized the cooperation, and
why they took a particular decision. Observations and interviews were documented in
the form of field notes which were taken directly or soon after, on the same day. We
also asked for access to the development IS, chatlogs, and to artifacts like specification
documents, and included them in our analysis.

In order to get a better view on the perspective of the offshore team, we also visited the
Russian partner company of one of the two companies for one week. We were able to
accompany the visit of two German project managers to the team in Tomsk, Siberia.
At the offshore site, we followed a similar methodology as at the German companies.
During our stay, we were also able to conduct interviews with managers of three other
companies in the Tomsk region regarding their experiences with offshoring cooperations.
We also planned to visit the partner company of the other company, but unfortunately
this was not possible due to an unexpected termination of the whole cooperation. In
order to compensate, we arranged an interview with the manager of the Russian partner
company (see chapter 7 for details).

All in all, we conducted 33 semi-structured interviews and 38 days of on-site observations
(supplemented by ethnographic interviews). See table 3.1 for an overview.

For the analysis, we oriented on Strauss’ and Corbins Grounded Theory approach [223].
Material was coded in an iterative process that was conducted directly after each field
contact (e.g. after the transcription) and involved several steps. First, we tagged the
transcripts with regard to different codes that we identified in relation to the aspects we
were interested in. For example, we used codes like “Asking for help”, “Customer contact”,
and “Knowledge exchange” to mark positions in the material that covered these aspects.
Then, these codes were refined and assembled into categories (like “coordination” and
“learning”), and we tried to connect them to each other in order to build a theory of

31

3. Study Outline

Period Method Field

02/2006 -
01/2007

Semi-structured
interviews

15 developers and managers, 1 Eastern
European offshoring provider, 1 consultant,
1 large company

07/2006,
5 days

On-site observation,
ethnographic
interviews

Company Alpha, Bonn

12/2006,
2 days

On-site observation,
ethnographic
interviews

Company Alpha, Bonn

01/2007,
5 days

On-site observation,
ethnographic
interviews

Company Beta, Berlin

02/2007,
5 days

On-site observation,
ethnographic
interviews

Parter company of Alpha as well as three
offshoring providers in Tomsk, Siberia

07/2007,
5 days

On-site observation,
ethnographic
interviews

Company Beta, Berlin

07/2007 Semi-structured
interview

Partner company of Beta, Saint Petersburg
(telephone interview)

01/2008,
2 days

On-site observation,
ethnographic
interviews

Company Alpha, Bonn

03/2008,
2 days

On-site observation,
ethnographic
interviews

Company Beta, Berlin

10/2008 Kick-off meeting Company Alpha, Bonn
11/2008-
02/2009,
11 days

Semi-structured
interviews, on-site
observations

11 employees of Alpha in Berlin and Tomsk

06/2009 Workshop Company Alpha, Bonn
07/2009,
1 day

On-site observation,
ethnographic
interviews

Company Alpha, Bonn

Table 3.1.: Overview on the research activities.

32

3. Study Outline

Figure 3.1.: The two case studies Alpha (Bonn-Tomsk, black) and Beta (Berlin-Saint
Petersburg, white). The numbers indicate the team sizes during our research
(worldmap by I.K. Sankakukei, http://english.freemap.jp, distributed under
a CC-BY 3.0 license).

offshoring expecations from the material. During the following research steps, we further
developed and refined our concepts on the basis of the new material.

In 2008, we changed our methodological focus from explorative ethnography towards a
more design-oriented action research approach of Business Ethnography [214, 159]. This
involved conducting exhaustive semi-structured interviews with most of the employees
of company Alpha as well as further on-site observations. After the analysis of the
material with regard to the multi-perspectivity of the actors, we discussed our results
with the employees with regard to possible implications for their organizational practice
in the context of a shared workshop. Details on this part of our study and the related
methodologcial implications will be discussed in the chapter 4 below.

3.3. Case Studies

In the next sections, we will provide an overview on the two case studies that formed the
basis of our research: the companies Alpha and Beta (see figure 3.1 and table 3.2 for an
overview).

33

3. Study Outline

Company Alpha Company Beta

Field Statistics and documentation
products and services for
archives and museums

Business Process Modeling
tools and services

Headquarters Bonn Bonn (development team in
Berlin)

Size of development
team (Germany)

20 7

Size of offshore team 4-8 4-15 (varied during research)
Offshoring experience ca. 1998 - 2002 - 2008

Table 3.2.: Overview on the two case studies.

3.3.1. Company Alpha

Company Alpha offers products and services in the field of statistics and documentation.
Customers of the company are mainly public institutions like archives and museums.
Generally, the company is interested in long-term cooperations with their customers,
aiming rather at negotiating service and consultancy contracts than selling software prod-
ucts. As the working procedures of German archives and museums have a distinct (and
complex) tradition and can be quite different between institutions in Germany, customers
usually need a high level of tailoring to fit the desired software solutions into their working
domains. The company maintains two core products (one for archives, and one for mu-
seums), which are each in the responsibility of project managers who sometimes branch
the code in case of bigger projects. The company also has several small projects which
are usually in the responsibility of the German developers. The headquarters is in Bonn,
where 20 employees work.

The company has been cooperating with developers in Russia since the mid-1990s. Basis
for the cooperation was the internship of a talented Russian developer from Tomsk,
Siberia, in the German company. As Alpha wanted to hire developers in this period
but was unable to pay the high wages demanded by the German job market at that
time, the project manager saw a potential and hired him. He then asked him to find
further Russian developers, and established a branch in Tomsk with the help of another
German company led by a former manager of a large automotive enterprise. The reason
was that the German manager feared the legal liabilities of founding a Russian company.
Getting help from the experienced manager allowed him to run his branch simply as a
cost center. Later, this set-up was changed in order to reduce costs but the former intern

34

3. Study Outline

still works for the company and has (temporarily) migrated to Germany in the meantime
(see chapter 8 for details).

The first project was an update of an older software product of the company with adapta-
tions to new frameworks in C++. Despite some initial problems with this project, which
took much longer than initially planned, the cooperation was extended also to smaller
projects which are usually led by German project managers. The only exception to this
rule is the case of the product which was initially re-engineered. This project is now led
by a Russian project manager, who reports directly to the German manager and owner
of the company. The size of the Russian team varied during our research between 4 and
8 developers.

3.3.2. Company Beta

Company Beta develops a standard software product for Business Process Modeling
(BPM). This product is used and advertised by a group of business consultants, who are
in close contact with the company and use to send bug reports and feature requests. The
company follows a static development cycle, with fixed release dates for new versions
every year. There are also a number of smaller projects for customers who need features
which are not suitable for the main branch and which are implemented in form of Visual
Basic plugins by the German company. The headquarters of the company is in Bonn,
but the development team is situated in Berlin and has 7 employees. Beta is part of a
holding that is based in Düsseldorf.

The actual development of the standard software product is performed by a Russian
team which has been cooperating with the German company since 2002. Basis for this
cooperation were the high development costs of the German company at that time.
This motivated the German manager to look for possible saving potentials by means of
outsourcing parts of the software development work to low wage countries. Based on
personal contacts the company hired a Russian developer and instructed him to look for
colleagues in his home region in Saint Petersburg. After hiring a team of four Russian
developers, the company invited them over to Germany for a couple of months, in order
to make them them familiar with the codebase.

Afterwards, the Russian team took over the software development from the German
company (apart from the smaller projects decribed above, which are still carried out
by the German team). Later, the Russian team size was increased up to about 20
developers, then reduced again to about 4 due to financial and organizational problems

35

3. Study Outline

with the coordination of the large offshore team. In early 2008, the company terminated
the cooperation with the Russian team. This decision was based on the high development
costs and rising wages in Saint Petersburg, but also based on the fact that the holding was
not satisfied with the performance of the cooperation. The exact reasons and implications
of this offshoring failure story are described in chapter 7.

36

Part II.

Findings

37

4. Conducting Business Ethnography in

Global Software Development

Projects of Small German Enterprises
1

Context: Studying work practices in the context of Global Software Development (GSD)
projects entails multiple opportunities and challenges for the researchers. Understanding
and tackling these challenges requires a careful and rigor application of research methods.

Objective: We want to contribute to the understanding of the challenges of studying GSD
by reflecting on several obstacles we had to deal with when conducting ethnographically-
informed research on offshoring in German small to medium-sized enterprises.

Method: The material for this paper is based on reflections and field notes from two re-
search projects: an exploratory ethnographic field study, and a study that was framed as a
Business Ethnography. For the analysis, we took a Grounded Theory-oriented coding and
analysis approach in order to identify issues and challenges documented in our research
notes.

Results: We introduce the concept of Business Ethnography and discuss our experiences
of adapting and implementing this action research concept for our study. We identify and
discuss three primary issues: understanding complex global work practices from a local
perspective, adapting to changing interests of the participants, and dealing with micro-
political frictions between the cooperating sites.

Conclusions: We identify common interests between the researcher and the companies as
a challenge and chance for studies on offshoring. Building on our experiences from the
field, we argue for an active conceptualization of struggles and conflicts in the field as
well as for extending the role of the ethnographer to that of a learning mediator.

1
This chapter has been published as an article in the Journal on Information and Software Technology

2011 [28]. Reprinted from Information and Software Technology, 53/9, Alexander Boden, Claudia

Müller, Bernhard Nett, Conducting a Business Ethnography in Global Software Development projects

of small German enterprises, pp. 1012-1021, Copyright (2011), with permission from Elsevier. See

appendix I.

38

4. Conducting Business Ethnography

4.1. Introduction

Globalization has led to an increasing spread of geographically distributed software de-
velopment teams [105]. Cooperating over barriers of different organizations, nations, lan-
guages, time-zones and cultures is a multifaceted field of partially inter-related problems,
including communication, knowledge exchange, and the coordination of international
work groups [126].

Studies in the field of Global Software Development (GSD) face a variety of methodolog-
ical problems, as researchers entering this complex field face similar challenges to those
faced by the practitioners themselves. Understanding and tackling the challenges of re-
searching in distributed software development work requires novel research approaches
as well as a careful application of data-gathering and analysis methods. Thus, reflecting
on alternative methodological approaches and their applicability to a distributed context
is an important topic for the growing GSD community.

In this paper, we discuss several challenges we had to deal with while conducting research
in the context of offshoring in small to medium-sized enterprises (SMEs) of the German
software industry. Our work is based on the methodological experiences we gained from
a research project that used two different research designs to address various problems
within the context of offshored software development work in SMEs [26, 29, 31, 32].
The first part of the project was an exploratory, ethnographically-informed field study
on coordination practices in offshore software development in SMEs. The second part
was conceptualized as a Business Ethnography2 [214] and aimed at supporting flexible
coordination practices and organizational learning in distributed software teams. This
second study is going to be the focus of our paper, while we are also providing a brief
discussion of the first study in order to draw some comparisons. It has to be noted that we
applied the Business Ethnography research cycle only partially in our project. However,
our analysis showed that even our incomplete implementation had relevant impact on
the field site we were conducting our research in. By analyzing the related challenges and
opportunities, we argue for actively conceptualizing struggles and conflicts in the field,
as well as for extending the role of the researcher to that of a learning process mediator.

The paper is organized as follows: Section 4.2 gives an overview over related work with
respect to literature on research methodology and introduces the conception of Business
Ethnography. Section 4.3 describes the aims of our study and the methods we applied in
relation to our research agenda. Section 4.4 describes how we implremented our Business

2
See http://www.business-ethnography.org.

39

4. Conducting Business Ethnography

Ethnography in practice, while section 4.5 identifies challenges that we encountered dur-
ing our research, which are then analyzed with regard to the related literature in section
4.6. Section 4.7 concludes the paper.

4.2. Related Work

4.2.1. Qualitative Research in Software Engineering

Over the last decades, qualitative methods focusing on understanding work practices have
received much attention in Software Engineering. Practices in relation to the use of soft-
ware applications are still a major research area, as are the development of software and
the deployment of related methods by development teams. Research focusing on software
development teams has revealed that quantitative methods have their own limitations as
the development work is mostly framed by specific situational and organizational contin-
gencies [63]. In this regard, qualitative methods are employed for gaining highly detailed
insights into the contexts in which software development work takes place, which would
not be accessible, for example, by applying quantitative data mining approaches [8].

The adoption of qualitative methods in Software Engineering has been largely influenced
by related disciplines such as Human Computer Interaction (HCI), Computer Supported
Cooperative Work (CSCW), and Participatory Design (PD). Using qualitative methods
often involves following an ethnographic research methodology, entailing (participant)
observation and ethnographic interviews with the aim of understanding what activities
mean to the people who do them [185]. In this context, some researchers opted for eth-
nomethodological approaches, as well as for sociological accounts of ethnography aiming
at understanding social structures in the workplace [204].

Software Engineering research based on (or informed by) ethnography and ethnomethod-
ology has the potential to offer an understanding of software development practices “from
within”. Such research is interested in how project team members order their work using
their own methods, “that is, their mundane processes of interaction and action” [184].
However, understanding development practices is only one of the aims of qualitative re-
search in Software Engineering. This is complemented by efforts to actually improve
poor or ineffective practices, for example by designing and introducing new information
technology systems into an organization [33]. Qualitative research can be used in this
respect for informing design with regard to the organizational context as well as gaining
knowledge about the users’ work practices that are to be supported by the system [176].

40

4. Conducting Business Ethnography

However, the aim to support organizations (instead of “just” studying them) has many
implications for the choice of the research approach, as well as the application of re-
search methods [65]. As traditional ethnographic research usually wants to avoid having
any influence on the practices to be investigated, technology development projects are
often deploying action research approaches that aim explicitly to construct a coopera-
tive workspace encompassing the researchers and the development team. The underlying
rationale is that one can understand social processes best by introducing changes and
observing the effects of these changes [15]. While the descriptive nature of ethnography
has been criticized for stressing the status quo instead of leading to new ideas in this
regard, findings from the Participatory Design community have shown that the deep
understanding that comes from ethnographically informed action research can also help
to find and develop innovative tools [185].

Using ethnographic methods in organizational contexts entails many challenges, like ne-
gotiating access and getting immersed in the field under study, which are inherently
linked to the relationship between the researchers and the development and management
teams [63]. When conducting ethnographic research in the context of Global Software
Engineering, additional research challenges exist, which are related to the temporal, spa-
tial, cultural and organizational barriers between the cooperating sites [97]. Dealing with
such barriers while conducting research is everything but trivial, and the researchers can
be subjected to similar challenges as the practitioners themselves. Known problems of
conducting research on GSD teams include getting access to the research field in the
first place [5] as well as dealing with constraints such as organizational hierarchies and
conflicting interests that may hinder a deeper immersion of the researchers in the environ-
ment [245]. With regard to action research approaches in GSD, further considerations
have to be given to the implementation of changes across organizational borders (i.e.
in both of the cooperating companies), or even in the same company across different
projects [184]. This issue is extremely complex, as the success or failure of recommended
changes does not only rely on the validity of the research findings, but also on the framing
socio-political factors at work in the respective organizations [64].

As the implications and challenges of studying GSD projects have hardly been discussed
in Software Engineering literature so far [184], we want to present our experiences with
conducting research in this field in our paper. In doing so, we will focus on our experiences
with conducting ethnographically-informed action research in the context of software
offshoring in a German SME. Our research project was oriented on the conception of
Business Ethnography, which will be introduced in the next subsection.

41

4. Conducting Business Ethnography

4.2.2. The Concept of Business Ethnography

Business Ethnography is based on the Intergrated Organization and Technology Devel-
opment (OTD) approach that was introduced by Wulf and Rohde in the 1990s [249].
On a theoretical level, Business Ethnography is based on conceptions of American Prag-
matism, especially on the work of the logician Peirce [169], which implies that what
appears to be fully consistent from one perspective can look very different from another
[203]. For instance, the way a software developer understands a requirement may not
necessarily be identical with how a user or stakeholder understands it [74]. In a similar
fashion, the way a project manager understands a task or aim may not match the views
of his colleagues, especially in the case of GSD projects where team members are work-
ing in different cultural and organizational contexts. Business Ethnography (BE) tries
to overcome such problems by supporting reflexivity in making project decisions [158].
As aspects of organizational development are also at the center of the related reflections,
Business Ethnography is also applicable to GSD studies that are not aimed at develop-
ing new technologies, but at analyzing and improving practices of distributed software
development work.

In practice, Business Ethnography follows a typical Action Research cycle, consisting of
the following stages: research, analysis, and feedback workshops (see figure 4.1). For-
mally, Business Ethnography involves the initiation by the researchers of a joint project
with the practitioners, and a related anticipation of the mutual aims. For example, a
shared project could be a development activity of a software company, whereas the an-
ticipation would be that of the software to be developed. Or, as in our case, the project
could be focused on learning to improve the GSD cooperation of a company, with the
aim of finding better ways of cooperating across temporal, spatial and organizational
barriers (this case will be described in greater detail later).

During the research phase, the researchers attempt to identify the different perspectives
of the project participants on the aims of the joint project by applying a focused form
of ethnography [127] to the related sense making processes, deconstructing them into
the multiple individual contributions. By conducting interviews with all participants,
the researchers attempt to capture and illustrate the practical implications (i.e. antic-
ipations, expectations, fears, etc.) of the shared intentional frame, which may impact
the joint project. In order to get a complete picture, the researchers deploying Business
Ethnography rely on intensive, individual interviews with all participants involved in the
project. Other ethnographic methods like on-site observation can be used to complement

42

4. Conducting Business Ethnography

the interviews, helping the researchers to get a rich understanding of the project context
that is related to the different perspectives, intentions and expectations of the actors.

In the analysis phase of Business Ethnography, the researchers actively look for a plu-
rality of views and analyze their meanings and implications for the joint project. The
desired result of the analysis phase is a refined, multi-faceted description of the field,
including the different perspectives (including hopes, concerns etc.) of the participants.
Since intentions are expressions of self-determination and need to be respected, Business
Ethnography is not trying to evaluate the intentions of the participants from some ab-
solute perspective; instead, it studies the complex inter-relation between the intentions
and expectations of the project participants in order to allow for better informed decision
making. In this regard, the researchers also have to take into account their own roles in
the project, and constantly reflect on them during the research.

In the feedback phase, the results of the analysis are shared in a common workshop,
confronting practitioners with “their” own perceptions (as well as with the related syner-
gies and conflicts) from a distanced, alienated (“verfremdet”) point of view [214]. Taking
this presentation as basis for decision making, the partners may re-appropriate their
project as a more concrete and situated relation between the different intentions and
expectations, unveiling implicit contradictions and differing perspectives on the project
procedures, as well as the interpretations and assumptions of the participants. Thus,
project actors are enabled to reflect upon their own decisions from a wider perspective
[77]. By doing so, Business Ethnography, as an action research process [9], supports the
ability for self-organization and enriches the expertise of the project participants. The
results of the workshop, as well as the agreed actions can become the subject of another
Business Ethnography cycle, in order to validate and to further improve the practical
findings.

4.3. Research Project: Articulation Work in Offshoring of

small to medium-sized Software Companies

This section provides an overview of the research design approaches used in the two
studies we conducted for this research project. It also describes our methodology for
comparing the two research approaches (section 4.3.2), as well as the organization we
focused on in our research project: company Alpha (section 4.3.3). A detailed discussion
of how the Business Ethnography was conducted in practice will be presented in section
4.4.

43

4. Conducting Business Ethnography

First Study Second Study

Aims Understanding coordination
practices in the context of
offshore software
development in SME

Supporting coordination and
organizational learning in
distributed teams

Research Design Ethnographically-informed
field studies

Business Ethnography

Methodology - 15 semi-structured
interviews in ten German
SMEs
- 5 weeks of on-site
observations in 2 German
SMEs, as well as one
Russian partner company in
Tomsk, Siberia.
- Grounded Theory analysis

- 11 open interviews with
almost all employees of
company Alpha.
- 2 weeks of on-site
observations at the company
- Grounded Theory-oriented
analysis
- 1-day workshop at the
company

Table 4.1.: Details on the two studies in our research project.

4.3.1. Aims and Research Design

Our research project included of two studies following different research designs on dif-
ferent problems within the context of software offshoring in German SMEs. The first
one was an exploratory ethnographically-informed field-study in several German SMEs.
The second study aimed at studying and supporting articulation work and organizational
learning in distributed software development teams, and was conducted in the form of a
Business Ethnography in company “Alpha”, a German software SME (see table 4.1 for
a brief overview). The focus of this paper will be on the second study. However, we will
briefly discuss the first study, which formed the basis of our Business Ethnography, in
order to draw comparisons between our experiences with the two approaches.

In both studies, the first author (who has a background in Cultural Anthropology) was
invoved in field research (observations, interviews). The data analysis, as well as the
preparation and execution of the workshop were undertaken collaboratively be all au-
thors, with the support of other members of the research group and the involvement of
a number of student volunteers.

The initial aim of our research project was to understand coordination practices in SMEs
belonging to the German software sector, in the context of offshore software development.
As we wanted to learn how SMEs try to secure their agility in Global Software Develop-
ment, we decided to conduct an exploratory ethnographically-informed field study.

44

4. Conducting Business Ethnography

First, we conducted semi-structured interviews with fifteen managers and developers of
ten different German SMEs. From the sample, two companies were chosen as sites for
a deeper analysis of the work practices; in these, we conducted on-site observation. We
spent two weeks in each of the two German SMEs. A third on-site observation period was
conducted over one week at the Russian partner company of company Alpha in Tomsk,
Siberia.

Our analysis showed that the SMEs of our sample used a broad variety of different
coordination tools and artifacts in order to coordinate their distributed work. While
formal tools (like bug-tracking applications and project plans) played an important role
for the development work, it became clear that their use happened in the context of
complex articulation work practices [219], which required time-consuming chat sessions
and expensive personal visits. The related limitations (in combination with social and
cultural issues) led to frequent misunderstandings and limited the ability of the companies
to adjust their working arrangements in case of emerging problems [29].

Our first study was conducted in the context of a bigger research project funded by the
Federal Ministry of Education and Research (BMBF), the VSEK project [116]. When
VSEK reached its conclusion in 2007, study one was still in an early stage. At that
point, we had already gained some interesting insights into the practices and challenges
of distributed development work in German SMEs. However, as a design oriented group
we were interested in actually deriving practical recommendations and tangible ideas
for support tools from our exploratory material. Hence, we needed to collect more fine-
grained data in order to identify solutions grounded in practice, and thus we reconsidered
the opportunities for further research. Being in contact with two SMEs involved in
offshoring was a natural point to start, having been granted access before both companies.
However, as we contacted them again it quickly became clear that the gatekeepers, i.e. the
managers of the companies, both regarded their role in the study as fulfilled. Even though
they both agreed to grant us a couple more days of access for participant observation
and interviews in their companies (an offer we gladly accepted), they made it very clear
that their willingness to grant further access was limited. As we intendet to study their
work practices in much greater detail, this hesitance to give us further access created
problems for us.

In search for external funding, we submitted several new project applications that also
included funding for the two companies as project partners. In this phase, it became clear
that the manager of one of the companies (“Alpha”) was especially interested in getting
involved in academic research projects. At the same time, the offshoring project of the

45

4. Conducting Business Ethnography

other company was terminated, thus making further research on this topic impossible
(although we managed to conduct interviews with several participants on the reasons
and outcomes of this decision).

In 2008, we successfully acquired funding for the ARTOS3 project from the German
Research Foundation (DFG). Framed as an exploratory study on the practices of coor-
dinating distributed software development work in SMEs, ARTOS was also meant to
support practitioners by identifying useful practices, as well as means for tool support.
Methodologically, we had decided to use a particular action research design that had
already proven to work well in several of our research projects: Business Ethnography
[159]. Following the Business Ethnography concept, we needed to establish a joint project
together with a company practicing offshoring as a basis for our research activities, study
the multiple facets of the situation in the field by means of ethnographic methods, analyze
them and mirror the related findings back to the participants.

As the ARTOS project did not include funding for enterprises, we needed other argments
to convince possible project partners to join in. As we knew that the manager of Alpha
was still interested in further cooperation, we contacted him and informed him about our
new research project, asking if he was willing to participate. In this discussion, we pre-
sented the intention to support the company in organizing their inter-team cooperation
and learning. This proposition was based on our experiences from study one, which had
revealed that the theme “learning in distributed organizations” was an important issue
for the company (see above). For example, in the first study, some developers in company
Alpha had reported to be unhappy about parts of the company‘s working arrangements,
finding it difficult to maintain an overview of what was going on in the company. At
the same time, it was difficult for them to improve the situation, as the company lacked
resources and procedures for systematically discussing and implementing changes [32].
Hence, we offered to support Alpha’s capabilities of self-organization by giving them
the opportunity to conjointly address specific practical problems of inter-team coordina-
tion and knowledge exchange if they decided to participate in our study. In line with
the Business Ethnography approach, we explained that what we were offering was not
consultancy, but rather an attempt to initiate mutual learning processes between the
company and us as researchers by stipulating a tentative and exemplary implementation
of organizational learning procedures. The manager of Alpha gladly agreed to our idea,
although his interests in our study turned out to be a little bit different from ours in the
course of the project (more about this issue later).

3
See http://www.artos.uni-siegen.de.

46

4. Conducting Business Ethnography

Details on how we conducted our second study will be presented in section 4.4.

4.3.2. Analysis of our Research Methodology

The material for this paper is based on our methodological reflections and notes from
the field that we had accumulated. For the analysis, we followed the approach outlined
in section 4, using Grounded Theory-oriented coding and analysis in order to identify
issues and challenges documented in our research notes.

As we had constantly deliberated on our choice of methods, as well as on the appro-
priateness of their application, we had a rich basis for a systematic reflection on the
two different phases of our study. While the notes concerning our research reflected the
research rationale of our project, we complemented the analysis with a systematic reflec-
tion on our own role in the field (as required by Business Ethnography). For doing so,
we scrutinized our documentation (field notes and interview transcripts) concentrating
on how our application of methods and our research focus affected our perspective on
the practices, as well as the conclusions we were able to draw. We also cross-searched
the interview transcripts and field notes for related evidence.

4.3.3. Case Study: Company Alpha

Alpha, the company at the center of our Business Ethnography, provides data processing
software and services for statistics and documentation. Most of the approximately 20
employees of the company are software developers who work in several teams on different
projects (see table 4.1 for details). The products include databases, documentation and
presentation systems used by cultural institutions, like archives or museums. The services
that are offered are concerned with the use and adaptation of these products. Since
the mid-1990s, the company has employed a project manager as well as three to seven
software developers in Tomsk, Siberia. At the origin of this decision was an internship
spent by a Russian developer at the German company. Due to the positive experiences
they had working with him, the German manager decided to expand the cooperation.

The first offshoring project aimed at re-engineering an existing software product and was
led independently by an offshore project leader, who directly reported to the German
manager. The offshore project leader was also responsible for the communication with
the German customers, providing support and investigating bug reports. Despite unex-
pected delays in the development of that first project, offshoring was expanded to several

47

4. Conducting Business Ethnography

German Site: Bonn Offshore Site: Tomsk

- 1 CEO
- 3-4 project managers
- ca. 8 developers

- 1 project manager
- 3-7 developers

Table 4.2.: Details of company Alpha (as our research spanned several years, the numbers
of developers employed varied).

other projects, which involved a closer cooperation between German project leaders and
offshore developers.

4.4. Conducting a Business Ethnography in our Project

After our idea of conducting a Business Ethnography in company Alpha had been ap-
proved by the German manager, our research started with a 1-h kick-off workshop at
the German company where we presented our ideas and our approach to the employees
in order to facilitate the emergence of mutual aims. After the manager of Alpha had
introduced us to his employees (most of which already knew us from the first study) and
had stated his support for our project, we gave a talk explaining the research topic and
our expectations, as well as the foreseeable benefits for the company. In doing so, we
briefly presented some findings regarding possible problems and challenges from the first
study, and explained how the company could benefit from collaborating in our study.
We also stated that we, the researchers, would take the initiative and undertake most of
the work, while the employees would be expected to grant us some time for conducting
interviews, as well as to allow us to engage in participant observation. The main aim
of this shared endeavor was described as the initiation of an organizational development
process, during which the company would have the opportunity to address identified
problems and improve their organizational practices (if they found our findings to be
relevant). In order to inspire confidence, we were very open about the limitations of our
study, and stressed out that we did not intend to do any evaluation of individual work; we
also emphasized that all the results of the research would be anonymized and that data
collected will be kept in strict confidence and will not be shared with the management.
We ensured that the Russian team was informed about our endeavor through the Russian
team manager. He was sent a set of slides in English and we had a phone conversation
with him to explain our intentions for the study.

48

4. Conducting Business Ethnography

Figure 4.1.: Business Ethnography circle (future steps are grey).

In order to understand the perspectives of all involved actors, we conducted semi-
structured interviews with the majority of employees (developers, testers, secretaries,
project leaders) of both the German and the Russian team. Each interview lasted be-
tween 45 and 120 min., depending on the role and involvement of the interviewee in the
cooperation between Bonn and Tomsk. During the interviews, we focused on discussing
issues we had unveiled during our previous study with the company, and on aspects that
were related to our research question: how to support the inter-team coordination and
knowledge exchange practices. During a second round, we conducted telephone inter-
views with the Russian team manager as well as with his developers in Tomsk.

In addition to the interviews, we conducted additional on-site observation at the German
company. Over a period of three months, we visited the company on a regular basis
(1-2 days/week). We did not actively take part in the work, but we were allowed to
accompany the developers during their working days. In this phase, we also got access to
some internal documents which were relevant at that point of time (for example to project
plans, customer agreements , and requirements documents, as well as to chat-logs—as far
as they were relevant for our research topic). Thus, we had many opportunities to observe
local and distributed articulation work practices in the context of meetings, individual
work situations and cooperative tasks. Again, our fieldwork was documented by taking
field notes and pictures, as well as by collecting artifacts.

49

4. Conducting Business Ethnography

For the analysis part, we chose a Grounded Theory-oriented approach for investigating
the different perspectives, perceptions, and views of the participants on the cooperation
with the other team [223]. After each research step (e.g. after each interview or period of
on-site observation), the transcripts of the material (field notes, chat-logs, specification
documents or interview data) were coded in an open process using the Qualitative Data
Analysis (QDA) software Atlas.ti. In doing so, we analyzed the coordination and knowl-
edge exchange practices we had documented with regard to the problems (and ideas for
improvements) that the interviewees reported during the interviews. Three main cate-
gories emerged which were focused during the subsequent analysis: social, organizational,
and technical aspects of the onshore-offshore cooperation. On this basis, we prepared a
workshop for company Alpha, in which we presented the results of our research to the
participants in Bonn for discussion. The aim was to develop a set of specific measures, in
order to improve inter-team coordination and knowledge exchange within the company.
The workshop was organized as a half-day event and consisted of two parts.

The first part began with a presentation of our findings. It ended with some explicit
suggestions for improvement, divided into three main areas that needed improvement:
technology, organization, and social aspects. While we drew on scientific concepts like
articulation work [219] to explain our findings on a theoretical level, we attempted to be
as specific and comprehensible as possible in describing the practices in the context of
different perceptions, needs and concerns of the participants. In doing so, we took care
to anonymize the presentation as much as possible. Subsequent to the presentation, we
discussed our findings with the practitioners, asking for feedback and clarifications. Our
aim was to come to an agreement with regard to possible improvements of the onshore-
offshore cooperation. During this part, the German manager offered to leave the room at
some point, giving us some time to get feedback from the employees only. This unplanned
opportunity led to a critical and interesting discussion, which continued even after the
manager had returned to the room after about 20 min.

The second part of the workshop aimed at a specific topic the company had a particular
interest in: opportunities for expanding into the Russian market. As this issue had not
been targeted by our research, the German manager chaired this part, explaining his
interest and aims as well as comparing and assessing possible strategies and dangers.
The practitioners and researchers in the room then discussed this topic. The workshop
ended with a final round of feedback, every participant being asked to summarize the
key points from his perspective.

50

4. Conducting Business Ethnography

The researchers then summarized the results of the workshop in minutes—including
action items—, which were sent to all the participants. For example, at the organizational
level, the results were centered on changing the form of the weekly meetings the company
held in order to support better the knowledge exchange between employees. During the
interviews, these meetings had been described as often being too time consuming and
unfocused. At the same time, many developers found the occasion useful to get hooks
for later discussions, for example in the kitchen during coffee breaks. After discussing
these aspects at the workshop, the participants agreed to limit the time allocated to each
speaker and shift the focus towards brief overviews about current projects and problems,
while deferring the details for later project team discussions. On the technical level, one
of the action items stipulated the use of instant messaging (which was not used by all
members of the German team despite the many benefits its users reported), and another
was the installation of a digital board to serve as an extension for the minutes of the
weekly meetings. Last, but not least, the social level action items were centered on the
role of „bridges”, i.e. the capacity of human mediators to support mutual understanding
and communication between the teams, to be realized by exchanging knowledgeable team
members for longer periods of time.

4.5. Challenges of GSD Research

This section describes several challenges we had to deal with as we conducted our research
project. While we focus on both our experiences with the second study and the adopted
Business Ethnography approach, we also look at general issues we have found while
conducting our first study.

4.5.1. Studying Global Work Practices through a Local Lens

A general challenge we had to deal with during both studies was that our observation of
inter-organizational work practices was only possible through a local lens. Since it was
not possible in our project to deploy several researchers to observe the work practices
synchronously at the two different sites, cooperation processes could only be observed
from the perspective of one team at a time. This sometimes resulted in lacking awareness
of what was going on at the remote site, which was hard to maintain during our on-
site observations in Bonn. Since we were dependent on the same media and tools for
communication as the software developers and the managers in Bonn were, our research

51

4. Conducting Business Ethnography

was subject to the same difficulties the software developers located in Bonn had to face
for conducting distributed development work. The limitations of the communication
technology also made it hard for us to conduct interviews with the remote team members,
as the VoIP connection to Russia was slow and not always stable. The following excerpt
from our field notes gives an idea about how this could lead to problems:

“[During the interview] there was some sort of misunderstanding, as sud-
denly [the interview partner] went offline and did not sign in again over the
rest of the day. I wrote several emails to him and hoped that he would soon
return. (...)

[After the weekend] it turned out that [the interview partner] had left the
office at 4 pm to pick up his kids from the kindergarden (...). Apparently, he
had told me so but I did not understand it due to the bad connection.”

Despite such technical problems (which also made the transcription of the recorded in-
terviews more cumbersome in some cases), it was also very difficult to even get an idea of
the physical layout, not to mention the local unwritten rules, local practices and cultural
differences of the remote site (Tomsk) we were interested in. Even though it helped
that we were able to refer to our experiences from the first study, during which we had
visited the remote site, it was hard to obtain clear information concerning some hard
facts such as the actual size of the remote team during the interviews. Since no one from
the local team had regular contact with every team member abroad and since the size
and structure of the offshore team had changed several times during the year prior to the
study, the local perception of the remote team differed. As one of the German developers
explained:

“Well, I am not quite sure about the exact number of colleagues (in Tomsk).
That’s a clear sign that I probably don’t know everyone yet. And, yes, so
far I know the three who have been here in Germany (. . .). But the others,
I don’t know them.”

Also, there was no clear evidence available of the exact reasons and dates of changes in
the cooperation. Even here, the explanations of team members differed considerably. For
example, our inquiry ignited a dispute at the company between a senior developer and
the manager on the question of when the whole cooperation had started.

Another challenge was related to the high complexity of the articulation work prac-
tices in the GSD projects. This involved the simultaneous use of several inter-related
synchronous and asynchronous media (Skype, email, ICQ, etc.), tools (bug-tracking-
systems, etc.), and artifacts (specification documents). This turned out to be a problem

52

4. Conducting Business Ethnography

for the developers, too: “(...) one notices again and again that information is there, but
is distributed in a way that makes collating it cumbersome. . . “. As it was hardly pos-
sible to understand the complex interrelationships by referring solely to interviews, our
research required monitoring a broad set of media and artifacts, as well as their complex
inter-relations. This turned out to be quite difficult, as the time frames for observing
the inter-site cooperation were limited. Even when trans-local work had to be done, the
actors often omitted to involve us when they contacted the remote team, as they did not
always plan for such incidents, and as these occasions were usually related to emerging
problems that required their attention more than paying attention to the interests of the
researcher. As a result, we were sometimes involved too late or not at all, so that we had
to conduct interviews in order to reconstruct the missing events. In addition, document-
ing the context of the collected data and linking different kinds of information (artifacts,
field notes, pictures etc.) with each other required great efforts from us, especially since
we were usually not granted full access to log-files and databases.

In particular, documenting complex work practices was challenging, requiring extensive
and accurate field notes on the role of several inter-related media and artifacts. As the
observed work trajectories were complex and hard to predict, it turned out to be difficult
to relate the various sources of data to each other during the analysis. Basically, the
problems were related to the high granularity of data that was needed to reconstruct the
complex interactions of the developers and teams, and our limited resources in terms of
research time and the limited access to data posed complex obstacles that we had to deal
with.

4.5.2. Adapting to Changing Interests of the Company

Despite the initial presentation of our research interests at the beginning of our study,
the aims and even the schedule of the shared project we agreed with the company on
turned out to be not considered important by several of the participants. For example,
developers who were not involved in the management of software projects were willing to
give interviews, but during the negotiation of possible dates for interviews they often said
they would not redeem themselves as being important and stated they did not or only
hardly remember the aims of the research project. For example, during the interviews we
often got answers like “I will be happy to help you with this”, indicating that they ignored
the intention of the joint Business Ethnography project. An excerpt from our field notes,
taken after an interview with a Russian developer in Germany, further illustrates this
issue:

53

4. Conducting Business Ethnography

“Again I had the impression that the Business Ethnography aspect of my
research was not really appreciated by the company. [The Russian developer]
told me much about his attempts to improve the cooperation between Tomsk
and Germany, without referring to the planned workshop. He didn’t seem to
regard the interview as an opportunity for him to impact the cooperation.”

This became even more apparent when the interview phase finished, since it was hard
for us to remain in constant contact with the field site during the analysis phase.

As the company struggled to deal with the consequences of the financial crisis during this
period, and as our own scientific work life imposed other engagements to be prioritized
(like writing papers or attending conferences), the shared commitment deteriorated more
or less and we had to make additional efforts to get back in touch with everyone again,
and even to negotiate the aims and scope of the shared workshop again. It took us two
months to transcribe all the interviews and to analyze the transcripts with regard to the
focus of our research project. Then, finding a possible date for the workshop turned out
to be difficult due to conflicting commitments, for instance the company had to finish a
product and the researchers were writing papers. As a result, we had to postpone the
workshop for another month.

During this 3-month period, we visited the company on a regular basis in order to keep
in touch. However, our involvement in the company declined during this phase, fact
that became apparent when we finally came to plan and prepare the workshop. As we
approached the German manager in order to set the date, he suggested to change the
topic of the workshop into “Expansion to the Russian market”, which had not been at
the focus of our work. In order to satisfy his interests, we decided to divide the workshop
into two parts, as described in section 4.4. However, we found it quite hard to deal with
this question not having much interview material on this aspect, as we had focused on a
totally different topic.

But even with regard to our core topic, improving the cooperation between the sites, the
workshop revealed that the company had already begun to change several aspects of the
cooperation. The following excerpt of our field notes from the workshop illustrates this
issue:

“Interestingly, [Alpha] has already begun to implement some of the changes
we have suggested during the workshop [...]. Hence, there are change and
learning processes in place which might have been triggered by the inter-
views. On the one hand, this is an encouraging result, but it implies that

54

4. Conducting Business Ethnography

we might have been too slow with our analysis or that we did not succeed to
communicate our own role in the learning processes well enough (or both).”

As described above, the weekly meetings of the company had often been described as
being not very useful, as many employees considered them too long and too formal. When
we suggested changing the organization of the meetings to a more focused and efficient
modus operandi, it turned out that the company had already decided to abolish the
unpopular meetings. Even if our suggestions suggested a discussion about reintroducing
the meetings in a different form, we had not been aware of these changes (which also
affected other aspects of the cooperation we wanted to discuss).

4.5.3. Dealing with Micro-Political Conflicts between the Sites

Another important challenge we had to deal with while conducting our Business Ethnog-
raphy was getting access to the field. As we were already in contact with company Alpha,
due to our first study, this turned out to be less difficult for the German site.

However, it turned out to be very challenging for us to get involved in the Russian team.
As it turned out, the relationship between the sites was constrained by ongoing conflicts
regarding duties and responsibilities, as well as by social aspects of the cooperation.
Russian and German developers reported different estimations concerning reasons for the
failure of a shared project. As teams blamed each other it was very interesting to analyze
the different views that revealed different perceptions of what constitutes “good software
development”, influencing the cooperation practices. However, the different perspectives
also led to problems. In this regard, a Russian developer who lived in Germany at the
time of our research and who was acting as some kind of a bridge between the teams
told us that most of the communication of his German colleagues with the Russian team
would consist of criticism, and positive developments were not acknowledged properly.
As the Russians usually were in a sort of inferior position when it came to conflicts, they
were sometimes very sensitive to criticism. He pointed this out with an example:

“I think it was the day before yesterday, when we (. . .) requested to our
Tomsk colleagues to temporarily take down the Tomsk website. We explained
that the website content should be more strictly controlled (. . .). Our col-
leagues in Tomsk interpreted it as an authoritarian command, and found it
very rude. They asked us in a quite emotional way: why you are starting war
on this?” Due to the asymmetric power relationship, developers from both
sides took care to avoid discussing problems too directly. As a German em-

55

4. Conducting Business Ethnography

ployee explained: “When dealing with Tomsk, you have to take care to find
the right words (. . .)”.

This also had consequences for our research, as the Russians were rather reluctant to
talk openly about the problems with the homepage in their interviews. Asked about
general problems of the cooperation, they avoided talking about problems and stated
that everything was running quite well (in contrast to the German developers who openly
reported problems between the teams [26]), for example: “So for me, everything is ok.”
When explicitly asking the Russians about some of the problems with the homepage,
the answers were usually elusive, like “there had been a set of bad steps” that had led
to some “minor problems and misunderstandings”. The following statement describes an
experience we described in our field notes:

“[When interviewing Russian team members,] one has to act very carefully.
It happens that the interviewee seems to feel cornered if one interprets vague
suggestions about changes as an indication for lower-level problems.”

It was challenging for us to convince the Russians that like in our first study we still had a
more or less neutral role, and that they could use the intended workshop to influence the
offshore-onshore cooperation arrangement and to address problems that were relevant for
them (and not necessarily for the German team). This problem was probably aggravated
by the geographical distribution between the researchers and the offshore site, as well as
by cultural and language related issues. For example, some of the new developers from
Russia had problems to answer our questions in English during the interview, which
prevented us having an open discussion on change opportunities.

Visiting the remote team before the workshop might have helped in this regard, but
organizational issues and funding limitations prevented us from organizing more than
one visit to Tomsk. Similarly, these issues prevented the Russians from participating in
the workshop, somewhat limiting its scope to the perspective of the German team.

4.6. Discussion

The presentation of the challenges illustrates the complexity of doing research on work
practices in the context of GSD projects. The following discussion aims at analyzing
our experiences in order to develop a strategy for dealing with these challenges. As
pointed out in section 4.5, we encountered several challenges while conducting our Busi-
ness Ethnography. These were related to the local view on global work practices (4.5.1),

56

4. Conducting Business Ethnography

the changing interests of the participants (4.5.2) as well as possible frictions in the field
(4.5.3).

Dealing with challenges, such as observing the global through a local lens or tackling
the high complexity of practices involving the simultaneous use of several media are es-
sential concerns and are probably inherent for most studies looking at Global Software
Development practices. Methodologically, these challenges hold a clear danger to acquire
a biased view on the cooperative work arrangement. The many obstacles in such fields
makes it desirable to spend as much time as necessary at the field site in order to observe
the given situation long enough to understand it (even though such observations are
necessarily biased towards the local perspective). In order to deal with the complexity
of distributed development work, we expected that referring to a single source of infor-
mation (like observations or interviews only) would not be sufficient [8]. Hence, apart of
conducting interviews and observations, we also wanted to access artifacts and media,
including server and communication log-files, email repositories and bug-databases (just
to name a few). In practice, observations and interviews turned out to be our main
source of information, while artifacts and media played a subordinate role and were only
accessed when the actors themselves referred to them. This might be related to the back-
ground of the first author in cultural anthropology, whose perspective on ethnography is
centered in understanding the perspectives and interpretations of the practitioners (and
not so much focuses on revealing the underlying social patterns or using ethno-methods
as a means and an end of ethnography) [91]. However, this ethnographic view provided a
valuable basis for the analysis of the multiple perspectives which nonetheless required the
interpretation of field material with a great deal of sensitivity for the context in which
it was created. This was especially related to the intricate inter-relations of practices
on the backgrounds of a dynamic development approach as well as to the cultural and
language-related barriers in international teams. This is especially the case when dealing
with the virtuality of the inter-team cooperation, where the geographical deparation of
the researchers from the field may result in a lack of common and mutual perception. It
is well known that voice connections can be bad and communication is usally subjected
to language problems and to a general lack of common ground. Sometimes, researchers
even have to use text-based communication as an alternative, which has implications for
the perceived authenticity as well as for the underlying textuality, narrowing down the
form of interaction to written words and a couple of emoticons [112].

In practice, the degree of access is very much dependent on the good-will and coopera-
tion of the participating companies, which often limits the possibilities for research to be

57

4. Conducting Business Ethnography

undertaken in terms of research time and levels of access. This became apparent in our
first study at the two German SMEs. Because our partners saw no benefit from their
participation in our study, they limited our access to artifacts, which they considered as
confidential, even when the artifacts were extremely relevant for our research. Further-
more, after allowing us to interview their employees and granting us access for a number
of days of on-site observation, companies usually signaled that they regarded their role
as having come to an end. In this regard, following an action research approach helped
us to (re-)negotiate access, as it allowed us to offer something to the companies. Since
the related research questions were recognized by the participants as being important
and relevant for themselves, we were able to raise awareness about the scope of our study
at the company by offering some feedback with regard to possible improvements and
joint learning processes (even though the motivation of Alpha’s manager to participate
in our study might also been affected by his abovementioned interest in cooperation
in academic research projects). At the same time, the workshop turned out to be an
interesting instrument for us in order to discuss the validity of our findings with the
participants in the study. As Dittrich [63] pointed out, simply spending time on-site is
often not sufficient for understanding the implicit aspects of the daily communication
and cooperation of software development teams. In distributed settings, this seems to be
even more the case due to the particular conditions of globalized software projects [184].
In this regard, it turned out to be very valuable for us that we had already spent time at
the company during the first study, and also visited the remote team in Tomsk. Being
able to refer to these experiences during our Business Ethnography was very valuable for
us in conducting the interviews, especially since we already knew many of the employees
and also had some insights into the situation at the cooperating site in Tomsk right from
the beginning of our second study.

Compared to our first study, becoming immersed deeper into the field by contributing to a
shared intention as researchers certainly helped us to get a more profound understanding
of what was going on in the second study. However, adjusting to the second issue,
the shifting interests of the participants, turned out to be very difficult. From our
perspective, the problem we had managing our role in the joint project was related
to the conditions of our research. As it had been us who suggested a shared project
with the company in order to improve our collaboration, it was our duty to keep the
participants from company Alpha motivated and interested in our joint project. Even
though the practitioners were aware of the general problems in their existing cooperation
arrangement, solving them was not a priority because of the daily problems they had to
deal with in their development work. As we participated in the project as researchers,

58

4. Conducting Business Ethnography

and not as software developers, it turned out that the rationale of our research focus
collided with the company’s rationale—the development of software. As a result, we had
to adapt to this shift in interest when the German manager suggested a new topic for
the joint workshop. In this regard, it would probably have been beneficial to at least
follow a much more iterative research approach, in order to allow us adapting quicker to
this change of focus.

The third issue we had to deal with was perhaps the most challenging, as it was connected
to the particular conditions of the company where we did our field study: the micro-
political conflicts between the sites. Since we were regarded as colleagues to some extent
(at least by the German developers), and not so much as outside observers, we lost our
neutral status and we had to take a position with regard to operational and strategic
questions of the offshore-onshore cooperation. While our role as scientists, as well as the
perspective of the joint workshop helped us to channel the expectations toward the time
after the analysis, we were no longer in the position of outside observers. While we made
no claim about becoming yet other members of the German team and rather wanted to
act as learning mediators, it turned out to be difficult for us to make this role obvious
to other project members— especially to the Russian team. As the project participants
based in Russia were hesitant to talk openly about problems, and as we had difficulties
innegotiating our aims with them, our access to their views and expectations was clearly
limited. A possibility would have been to establish a steering committee, as Rönkkö
[184] suggests, for making our role more transparent as well as to include Russian team
members in the related decision processes. However, the described conditions made this
approach very difficult and limited our access to the Russian team.

In general, it has been very advantageous for us to employ Business Ethnography as a
research concept, especially for making our role explicit in the context of the research
activities and for negotiating access, by having something to offer to the participating
companies [245]. This is a benefit most action research approaches have in common.
Although applying our approach to a distributed software team went along with addi-
tional challenges, the relatively deeper immersion helped us obtain a much more detailed
understanding of the articulation work practices we were interested in. Hence, Business
Ethnography allowed us to leverage many of the known challenges of studying distributed
teams [5]. Even though Business Ethnography as a method is not very specific in how
research methods actually have to be applied, the theoretic lens it offers helped us in
dealing with the conflicts we found in the field, as it does not only require the researcher
to remain aware of his political role in the field, but actively and explicitly considers

59

4. Conducting Business Ethnography

this role as a subject matter for the research itself. Hence, even though we were forced
to concentrate on the perspective of the German side of the cooperation, we think that
the awareness and transparency implied enabled us to understand the related conflicts
between the sites in a much more detailed way, compared to our first study. On the other
hand, it has to be stressed that we also benefited substantially from being able to refer
to our experiences as well as to the trust we had gained by conducting our first study;
benefits, which can not be attributed to the Business Ethnography approach.

4.7. Conclusion

The geographical distribution of distributed software development projects imposes new
challenges to researchers in the field of GSD. In this paper, we have introduced Business
Ethnography as an action research approach and discussed our experiences with applying
this method in practice in the context of software offshoring in a German SME. Even
though we did not fully implement the concept in our project, we have identified several
impact factors that influenced the challenges we had to deal with during our research.
A possible solution that we found is based on addressing the role of the researchers
in the field, in relation to the experiences of the actors that take part in the research.
While this kind of studies may not be well suited for measuring success (an aspect which
is mostly interesting for many companies from our experience), the broad picture they
provide can offer opportunities for unveiling possible improvements and chances for inter-
organizational learning. Thus engaging in a shared process with the practitioners may
offer several advantages for both parties and allows to leverage many of the known chal-
lenges of studying distributed software teams. The additional chances of such approaches
include being able to learn about strategies for fostering flexibility in offshoring projects,
as well using the findings for further technology development. We also found interesting
ideas about situated learning processes coming from the practitioners that may have been
triggered by our research.

Acting as learning mediators resulted in both benefits and challenges for our research.
On one hand, defining organizational learning as a meta-project was a challenge, and
encouraged the practitioners to remain interested in the long term. As our feedback
cycle apparently was too time consuming for the practitioners, it could be worth con-
sidering approaches that offer shorter and more rapid feedback loops in order to keep
the practitioners interested, exploiting informal and situated learning processes for the
purpose of the research as well. On the other hand, keeping a research stand allowed

60

4. Conducting Business Ethnography

us to leverage expectations and keep a more or less neutral status in the micro-political
struggles between the teams, even though this required ongoing negotiation of our role
especially with the Russian team.

Institutionalizing results still remains an important challenge for action research in dis-
tributed teams. As Dittrich pointed out, successful process and practice improvements
are not only dependent on valid findings, but also on social relationships in the field [64].
When the researchers get involved in conflicts on-site and between the sites, transparent
and legitimate forms of involvement of the researcher in conflicting issues have to be
found. While we have no final answer on how this can be achieved, we believe that one
advantage of Business Ethnography is that it actively conceptualizes these struggles and
attempts, in order to make them transparent for the scientific community, as well as for
the participants.

61

5. Coordination Practices in Distributed

Software Development of Small

Enterprises
1

Global software development has become an important issue for small and medium enter-
prises. However, the distinct requirements of SME are still not so well understood. In
order to contribute to the discussion we present case studies in two small German soft-
ware companies that engage in offshoring of software development to Eastern Europe. By
applying Strauss’ articulation work framework we show to what extent SME rely upon sit-
uated coordination practices in order to warrant their agility. These practices are applied
during discussions in which the actors reflexively evolve problems and solutions from their
distinct perspectives and work practices. Thereby they are closely related to formal and
informal communication, which takes place both locally and between the different teams.
Our findings further suggest that specialized tools for the support of situated coordination
practices in terms of articulation work are not so common in practice.

5.1. Introduction

Software development in distributed teams has become an important issue for software
companies. A lot of companies expect to reduce their costs and get access to specialized
knowledge by concentrating on their core competencies and outsourcing certain aspects
of their software development to foreign service providers. It is commonly agreed that
offshoring consulting is a growing market and will be of increased importance in the future
[164]. At the same time, more and more small and medium enterprises (SME), which
form the vast majority among the German software companies, engage in offshoring [247].

1
This chapter has been published as a full paper in the proceedings of the IEEE 2nd International
Conference on Global Software Engineering in Munich 2007 [29]. © 2007 IEEE. Reprinted, with

permission, from Alexander Boden, Bernhard Nett, Volker Wulf, Coordination Practices in Dis-

tributed Software Development of Small Enterprises, Proceedings of the Second IEEE International

Conference on Global Software Engineering (ICGSE), 2007. See appendix I.

62

5. Coordination Practices

The trend towards global software development has led to a discussion concerning the
organizational means of distributed software development [2, 53, 16, 154]. However,
empirical evidence seems to be still sparse, especially in case of SME, which often follow
different business strategies from those of large companies and center their offshoring
efforts on Eastern Europe instead of Asia or India [60]. There is still need for further
empirical studies as well as theoretical approaches concerning strategies of organizing
and managing globally distributed software engineering [53]. This endeavor is even more
important as recent research indicated that the needs of distributed teams differ from
local workgroups and results concerning the latter can not always be transferred in an
unaligned way [54, 110].

We want to contribute to the discussion on global software development by presenting
case studies in two small German software companies. In our research, we have fo-
cused on the role of informal coordination mechanisms by addressing articulation work
in long-term offshoring partnerships as factor for warranting agility in distributed soft-
ware development. After discussing the importance of articulation work for offshoring in
SME (section 2 and 3) we describe our research method (section 4). The presentation of
our findings (section 5) is followed by a discussion (section 6) that compares our findings
to related work of the literature and leads to our conclusion (section 7).

5.2. Global Software Development in SME

5.2.1. Theoretical Perspectives on Offshoring

Decision-Making Many studies address offshoring from the perspective of the related
decision process. A great deal of the literature focuses on the adoption of transaction-
cost theory or resource-based theory for the deriving of decision criteria [58].

Approaches based on transaction costs concentrate on costs as the main decision criterion.
According to these approaches, offshoring is of benefit if the reduction of production costs
is larger than additionally incurring transaction costs [240]. What is addressed as major
problem in this respect is the negotiation of a contract. Due to the fact that technological
change can not be fully anticipated, insecurities regarding the contractual arrangements
(principal–agent problem) arise because opportunistic behavior on part of the service
provider must be taken into account [125]. This risk appears to be even more relevant
to SME because of their financial possibilities that are usually lower [60]. Relying on an

63

5. Coordination Practices

unsuitable partner thus can lead to severe repercussions as backsourcing or changing the
service provider will cause high transactions costs in most cases.

In contrast, the resource-based theory addresses competitive advantages of companies on
the basis of unique, non-imitable resources and corporate competencies such as process
knowledge and patents [49]. According to this theory, offshoring is profitable if the off-
shored parts are strategically unimportant, if previously neglected technology can quickly
be adjusted due to the offshoring, or if resources are released for innovation in other areas
[188].

Although different models and taxonomies are proposed [157], offshoring is often reduced
to binary “make or buy” decisions. The focus seems to be mainly on the decision-making
processes of the management and on early stages. There are still gaps in understanding
the offshoring process as a whole, which often is a complex long-term relationship that
is not equally suitable for all companies in all situations. Thus, offshoring has to be
studied in a differentiating manner according to the specific needs and objectives of
the offshoring company [212]. Since research into offshoring is often centered on large
companies, providing case studies with focus on special needs of SME appears to be of
importance.

5.2.2. Agility as a Core Competency

Achieving a more detailed understanding concerning the different mechanisms of dis-
tributed software development is even more important as SME may have requirements
to offshoring that differ from the needs of large companies. For example, SME can often
not be tied down to critical success factors frequently used in literature like the uniform
quality standards of the software process (CMM etc.) [160]. While this proposed formal-
ization is useful in redundant parts of the development process, it may not be adequate
in fluid, innovative environments where necessities often evolve dynamically during the
development process. If development projects need a great deal of flexibility, for example
to react quickly to changing customer demands, more formalization may be no adequate
solution [162] and reduce the agility of companies.

This seems to be of great importance for SME because they often are described as
especially reliant on their flexibility in reacting to changing customer and market demands
[72]. Working in small teams allows for more agile methods of dealing with coordination
mechanisms, division of labor and hierarchies. If the resulting agility is supposed to
be the core competency of many SME of the software industry, this agility has to be

64

5. Coordination Practices

warranted continuously during the offshoring relationship. Recent research has already
addressed possibilities of using agile methods in globally distributed environments that
differ significantly from the traditional plan-based approaches [175, 142]. However, it
seems to be still unclear how those methods can be adapted efficiently in practice [168,
140].

The increasing offshoring of software development by SME leads to several questions:

• Which effects does the shift from local to distributed teams have on their ability
to react quickly to changing market demands?

• Which strategies are deployed by SME in order to warrant their agility on global
software development?

• Which implications do the specific demands of SME have for the development of
software and the design of tools that support distributed teams in their work?

In order to add to the discussion we introduce two case studies of small software com-
panies. In our research we address agility as subject of dynamic self-organization and
adaptability by applying Anselm Strauss’s articulation work framework [222] to our case
studies. Articulation work is of great importance when plans have to be adjusted to
unexpected occurrences or changed requirements [200]. Thus, being able to articulate
work efficiently should be an important factor for successful software development and
will be addressed in our research. Therefore, we expect to contribute firstly by testing
the relevance of the articulation work approach on global software development in small
companies and secondly by adding to the understanding of offshoring as business strategy
of SME.

5.3. Articulation Work

Articulation work has been a core concept of CSCW studies since the definition of this
research area by Schmidt and Bannon 1992 [200]. Strauss’ framework aims at a better un-
derstanding of the interrelatedness of interdependent actions of cooperating actors [222]
and has been of great benefit as a framework for ethnographic research into collaborative
work environments [95, 47].

5.3.1. Articulation Work and Software Development

Work arrangements like distributed software development projects comprise a course
of actions that include division of labor both in terms of actors and actions. Due to

65

5. Coordination Practices

the complex interdependencies between tasks and actors, small changes may lead to
unwanted consequences for the system as a whole. Cooperative work has to be coordi-
nated, not only in terms of manpower but also relating to task-to-task, task-to-person
and person-to-person dependencies [220]. As work is constituted strongly by these mu-
tual interdependencies, Schmidt and Simone [201] suggested inherent distribution as a
core concept of cooperative work. From this point of view, it is not necessarily just
space or time zones which matter, but the ways in which the different actors act semi-
autonomously within their respect situations, relying on individual strategies, heuristics,
perspectives, goals and motives [200]. It is because of this mutual interdependence that
actors need to engage in articulation processes which Strauss described as articulation
work. “This is accomplished by means of the interactional processes of working out and
carrying through work-related arrangements. Articulation varies in degree and duration,
depending upon the degree to which arrangements are in place and operative” [222].

Articulation work, above all, regulates the distribution of tasks: who does what, when,
where, how, with which quality, until when etc. Yet, articulation work is more than
just coordination by means of the distribution of resources [76]: it is rather some kind
of detailed supra-work that mediates cooperative work arrangements. This comprises,
among others, the continuous and situated renegotiation of different actions regarding
their allocation, assignment, schedule, reconcilement and interdependency but also con-
cerning individual interpretations, perspectives and accepted meanings of work [201], in
short: all necessary endeavors to manage the distributed nature of cooperative work.

5.3.2. Articulation Work in Distributed Work Environments

As tasks are increasingly distributed in time and space, as structures become more com-
plicated, as specialization grows and as market dynamic increases, articulation work is
likely to become more and more complex [200]. In small collocated teams, articulation
work can often be accomplished through everyday social interactions. This articulation
sometimes works quite efficiently and adds to the covert nature of articulation work that
remains “invisible” and is often not even approved as part of the work itself [211]. How-
ever, when complexity of the projects increases in distributed work environments, usual
social interactions may no longer be sufficient. Thus, the need for efficient articulation
evolves as additional challenge for the actors involved and companies are confronted with
a new and sometimes unexpected complexity.

In this regard, formal organization structures, plans and work processes can be perceived
as mechanisms of interaction that are proposed in order to reduce the complexity of artic-

66

5. Coordination Practices

ulation work in an objective and deterministic manner [201] and supplement other forms
of social interaction such as e-mail or chat communication. However, one important
characteristic of articulation work is that it seems to elude formalization. Necessities
regarding coordination of software development projects can be volatile and complex,
crossing the borders of established work units. As work environments can be perceived
as being dynamic, it is not possible to anticipate every eventuality and coincidence ade-
quately. Thus, formal descriptions can not be complete and their use and interpretation
in practice always require articulation processes themselves [89]. As a result, a stronger
focus on formalization is no solution for the arising problems of articulation work.

In order to be able to articulate the interdependent tasks of distributed project work,
actors rather need access to appropriate means of communication. Being able to engage
in informal communication in this respect thereby seems to be a key success factor of
distributed software development [108]. With geographic distance, vital informal commu-
nication becomes less frequent and poses obstacles for efficient articulation work. Grinter
et al. have shown how geographic distance may lead to ambiguity and misunderstandings
which slow down the development process [106]. Proposed solutions usually center on
two different strategies: reducing the need for frequent informal communication or easing
the informal communication by technical means, for example by supporting concepts like
awareness [208], or by a targeted combination of various communication channels [54].
Usually this is to be accomplished by using specialized tools like groupware applications,
which are proposed for the support of articulation work in distributed work environments
[95, 47]. Following these considerations, it is important for our research to obtain more
detailed insights into the meaning of articulation processes for global software devel-
opment of SME and into how these processes are taken into account during offshoring
projects.

5.4. Research Method

To address articulation work as informal and situated practice [226], organizational pat-
terns have to be addressed in two directions: espoused theories are those that actors
claim to follow, while the theories-in-use often have to be inferred from actual work prac-
tices [9]. Our research is strongly oriented on ethnographic methods, which offer many
advantages for the analysis of differentiated relations in complex environments [231, 227].

67

5. Coordination Practices

5.4.1. Interviews

The first stage of our research was an exhaustive analysis of the literature on offshoring,
covering discourses of various communities of practitioners and scientists. Based on our
findings, an interview guide was created. The guide aimed at articulation work in form
of coordination and communication in SME as well as at general assumptions concerning
software development and offshoring. As a second stage we conducted twelve interviews
with managers, project leaders and developers of small and medium software companies,
who were actually involved in offshoring projects or had experience with offshoring in
the past. The interviews were held at the respective companies, and recorded. After
transcription of the material, a first analysis of the findings followed, which resulted in
a comparison of espoused differences of perceptions and strategies concerning offshoring
and software development in general. We identified two companies in our sample which
seemed to differ strongly in their software development approach and in their organi-
zation of the offshoring relationship to their partner firms. Their espoused different
perceptions of successful offshoring organization as well as of formalization made them
interesting cases concerning articulation work practices in SME related to formal and
informal organization structures.

5.4.2. Participant Observation

The third stage consisted of two field studies in form of participant observations that
were conducted at the two companies. In order to come to a better understanding of
the multiple perspectives and theories- in-use in complex work environments, a third
participant observation was conducted at the Russian partner company of one of our
sample companies. The respective companies were visited over a period of five to seven
working days each. We had the opportunity to observe local and distributed articulation
processes during meetings, individual work situations and cooperative tasks. Informal
interviews were conducted and we were allowed to analyze artifacts such as e-mails, chat
protocols, internal work papers and white board sketches. The findings were documented
by means of field notes and photos which were taken during the research. Apart from
expected differences, we also found many similarities between the ways both companies
organized their distributed software development.

68

5. Coordination Practices

5.4.3. Grounded Theory Analysis

For the analysis of the collected data, we drew on Glaser’s and Strauss’ Grounded Theory
[223]. After each research step, the transcripts of the material, both field notes and inter-
view data, were studied. This procedure was repeated after each participant observation.
Our aim was to identify articulation processes in context of the work trajectories and to
recognize their meaning for the actors. Relating to the Grounded Theory, we wanted to
“let the material speak for itself” as much as possible. Data was coded during a process
that consisted of several stages. At first, we composed categories based on the findings
in the collected data. Then these categories were related to each other and developed
during the further research. Our findings then were related to the literature with a focus
on articulation processes during software development. Thus we concentrated on rela-
tions between formal work organization and the actual work processes, which were not
considered as mechanical “performance” of formal specifications but as creative reaction
to situated work contexts [226]. This focus on informal and unplanned aspects of soft-
ware development in distributed teams led to significant results concerning the immanent
logic of development processes, the hidden nature of articulation work and discrepancies
between the formal organization of software development projects and the actual work
practices, which will be presented in our paper.

5.4.4. The Cases

Alpha

Alpha is a company providing data processing products and services in the field of statis-
tic and documentation. Most of the approximately 20 employees of the company are
software developers who work in several teams on different projects. The products com-
prise databases, documentation and presentation systems used by cultural establishments
like archives or museums, the services are offered around the use and adaptation of these
products. Since the mid-1990s, the company has been employing four software developers
in Tomsk, Siberia. The basis for this decision was an internship of a competent Russian
developer, who still works for the company. Based on this positive experience, the deci-
sion to engage in offshoring was taken and the offshore team was expanded. In formal
terms, the cooperation is carried out in form of a cost center operated by another German
company which is formally the employer of the Russian team members and responsible
for the communication with the authorities. However, the deadline control as well as
the distribution of tasks and requirements is completely carried out by Alpha. Project

69

5. Coordination Practices

leaders are situated in Germany and assign tasks to the Russian colleagues. In case of
one project, the team leader of the Russian developers is also the responsible project
leader, who communicates directly with the German manager. Since the products of the
company are often specialized versions dependent on a common code base there is also
much communication to a German project leader who is responsible for an adjunctive
product. During the interview in the first phase of our study, the German manager un-
derlined the reliance on flat hierarchies and flexible self-dependent work. Formalization
and the use of development models will be considered if the customer wants this but
from the perspective of the company this is not necessary:

“Development models are fashions, and subdued to personal initiatives.
(. . .) For example the federal state North Rhine-Westphalia wanted [us to
use] the V-Model. But in the end all what was left in practice were just some
acceptance checklists, which could have been provided by any other product
management system.”

Beta

Beta is a company that offers a standard software solution for process modeling and
services in the field of process management. The management is situated in Bonn,
while the software development is carried out in an office in Berlin by seven employees.
The company also engages approximately 140 freelancers who work as consultants in
customer companies and offer assistance in the field of process management. In 2002, a
branch office in Saint Petersburg was founded in order to reduce the developing costs.
According to the manager the decision for a partner was based on personal relationships to
several foreign developers but was taken admittedly mainly on the basis of the wage level.
Approximately eleven software developers in two project teams now work on product
development of the regular versions in Saint Petersburg, Russia. However, there is also
some software development done in Berlin. The project management of the software
development is based in Germany, there are five employees concerned for the greater
part of their working with managing the software developers in Russia and providing
support for customers. In contrast to Alpha, the manager of Beta perceived successful
offshoring of software development as closely connected to consequent formalization of
development processes.

“After all, everything works fine, but only because we have documented
our processes with our tool. Our development and service process is close to
CMM, with templates for documentation. If we did not have this, it would

70

5. Coordination Practices

be much harder, also to incorporate new developers. We track every bug and
every feature, there are alarms if deadlines are not fulfilled and so on.”

5.5. Results

Despite the differing perceptions concerning the organizational needs for successful off-
shoring of software development, in practice similarities became apparent. Both compa-
nies in our field reported that their project leaders are usually situated in Germany, while
the foreign teams act as extended team members and are directed and controlled by the
German company. Thus, German project leaders were said to serve as a connection to the
German customers, translating their needs into specifications. Then, these specifications
should be classified and assigned to certain developers, who can be situated in Germany
or abroad. In case of the latter, a team leader at the foreign company is responsible
for the assignment of tasks to his developers and the timely delivery of the results. The
results then are incorporated and tested in Germany. The only exception was a project
of company Alpha that is managed by a Russian project leader, who answers directly to
the German manager. Concerning to the German developers this constellation is only
possible because the respect project is a standard software solution and thus requires
much less communication with customers.

5.5.1. Bug fixing

Other differences apply mainly regarding the formal handling of documentation and
specifications. The formal organization of task distribution is accomplished with several
tools. Bug tracking systems serve in both companies for the cataloguing and assignment
of bugs. Alpha uses the open source system Mantis, while Beta relies on the tool SQA. In
contrast to Alpha the documentation of bugs is clearly formalized in company Beta. If a
developer finds a bug, he has to follow the same procedure as a customer and report this
bug to the hotline of the quality assurance. The QA then will try to reproduce the bug
and write a standardized bug description. The company does not want the developers
to write bug descriptions themselves, and it is not allowed to simply fix the bug when it
occurs. Interestingly, in both companies the German team members had learned to write
proper bug descriptions from the Russians. One of the German developers of company
Beta pointed out: “Prior to the offshoring, all work happened locally and there would
have been no need for ample descriptions because one would have been able to simply

71

5. Coordination Practices

ask a colleague” (Field notes, 26th January 2007). Since this is not possible anymore,
the developers had to reduce ambiguities and write much more precise documentation.

5.5.2. Specification of Features

Specifications for new features are handled in different ways: Beta relies on Lotus Notes
and maintains a central product database and a development database where features and
templates are stored. The documentation language is English. Company Alpha handles
the storage of specifications with several word documents, which are in the responsibility
of the respect project leaders. A first version is written by the German project leader
and acts as a basis for the negotiation with the customer as rough project plan. The
specifications are translated into English and supplemented with notes for the Russian
developers, who will then in turn do the programming. Beta follows the same formal
division of labor with the Germans writing specifications, the Russians implementing
them and the Germans controlling the outcome. But as the participant observation
showed, this process does not always work in practice because the five German team
members of Beta do not manage to write specifications quickly enough to keep eleven (or
in the past even more) developers in Russia busy. Thus, despite the formal organization
of Beta, the Russian team members sometimes have to write their own specifications for
features, which will be controlled by the German project leader, and the Russian team
leader may delegate tasks to German developers, too. This was also acknowledged by
the manager of Beta:

“In special cases there will be verbal communication with the Russians,
who in turn write their own requirements in English. These requirements
will then be compared in Bonn with the requirements of the customer.”

Beta uses SQA to track the progress of the work in the partner company. The German
project leader can see which developer is working on which bug and how far the work
has progressed. However, the databases are not always up to date because the Russian
developers have to track them for themselves and sometimes forget to change the status
of their tasks. Then, informal communication takes place in form of chat requests,
for example when the status of important bugs is not changed for a longer period of
time. This is also the case when the project leader assigns a critical bug to a certain
developer. He will communicate the importance of the task via chat and inform the
Russian developer personally and in addition to the assignment in SQA. This practice
is also usual when time estimates are made. Often, the project leader asks the assigned

72

5. Coordination Practices

developers how long the fixing will take. Then he documents the time estimates in SQA.
Both companies rely on personal face-to-face meetings for the planning of new releases or
new products when possible. We observed one of these occasions during the participant
observation in company Alpha, Tomsk. Background of the visit by the German project
leader was the kick-off of a new project. The company had a new customer who needed
a customized version of a similar product of Alpha. The German project leader had
communicated with the customer and wanted to specify the new product together with
the Russian developer, who was to become responsible for the implementation, and the
Russian team leader. In several meetings, the project leader explained the customers
need based on a word document he had prepared in German language, and which had
been discussed with the customer. He used a white board for detailed sketches of data
models and interfaces.

“The project leader stands at a whiteboard and draws a data model. The
Russian team leader and the assigned developer listen to his explanations.
The developer sits on a chair and writes down notes into a diary. The team
leader stands and listens without taking notes. The project leader explains
the differences between the basis software and the new version to be devel-
oped, which at this point mainly concern the data model.” (Field notes, 29th
January 2007).

After a while the Russian developer and team leader began to interrupt the explanations
with questions, and the developer copied the white board sketches into a diary and
took notes concerning the meaning. One of the meetings was even recorded with a
digital voice recorder. During a next step, the Russian team leader took the notes of
the developer (or in one case the recording) and wrote a detailed documentation of the
discussed specifications, time estimates and whiteboard sketches, using Microsoft Word.
The project leader then read this documentation and corrected it, wrote comments or
additions. In the meantime, the project leader used this information to write a detailed
project plan with Microsoft Excel for the customer, merely as a representation because
he had already told the customer his time estimation. Now he felt obliged to fulfill his
estimates by tuning the project plan to the promised deadline. In doing so, he sometimes
asked the accounted developer about technical details in order to get a better idea of how
much time would be needed for the implementation of new functionality.

73

5. Coordination Practices

5.5.3. Communication

Everyday communication is handled mostly by chatting with instant messenger tools. Al-
pha reported: “These chats often go on for one hour and are centered on problems which
occur during the processing. Personnel management is usually handled by telephone.”
In case of Beta, communication takes place mainly in form of chats, too. Beta relies on
Sametime, integrated in Lotus Notes, offering communication functionality of an instant
messenger with some special features like desktop sharing. Despite the focus on chats,
the project leader of Beta perceives his relationship to the Russian colleagues as a very
personal one. In the beginning, there were much more telephone calls, but chats are pre-
ferred as a flexible form of communication with quick reaction times and the possibility
to chat with several persons at the same time. In doing so, the instant messengers are
usually used asynchronously, with shorter periods of intense communication. As answers
are often not needed instantly, it is usual to send a question to somebody and continue
working until an answer arrives. This may take some time. Thus, as written communica-
tion is preferred, articulation processes may take longer than for example telephone calls,
especially when complex matters have to be discussed. However, developers reported it
would be easier for them to communicate by instant messengers. One reason is that
many of the Russian developers are not good in English. It is easier for them to use chat
because they have more time to think about formulations this way. One of the German
developers explained:

“During a desktop-sharing session I observed some of the Russians using
a translating tool while chatting. They wrote the answer in Russian, used
the tool to transform their answer into English, and then pasted it into the
chat and checked for errors. This is why sometimes chatting takes quite some
amount of time” (Field notes 26th January 2007).

If time is critical, this is stated in the initial question. However, as we noticed, this
strategy does not always work instantly. The German project leader of company Beta
had an urgent request to a Russian developer concerning a recently discovered bug that
threatened a timely release.

“As the Russian developer does not answer the project leader sends a re-
quest to another Russian colleague, asking whether the developer in question
is at his place. The colleague writes that the developer would now be back at
his desk, and shortly after he responds himself” (Field notes, 25th January
2007).

74

5. Coordination Practices

Obviously, the problem in this case was that the tool indicated the online status but not
whether the colleague was actually at his workplace. According to our interviews, the
next step of the project leader would have been to make phone calls or use a Sametime
feature that allows initiating an instant desktop sharing connection. Desktop sharing
is used mainly to show functionality directly in the developed tool. Thus, the project
leader can take control of the mouse of the Russian developer and show him what is to
be implemented, describing the expected behavior in the chat. This practice is also usual
when the German project leader wants a status report concerning the implementation of
new features. The German project leader needs two or three hours a day to communicate
with the Russian developers. His strategy is to start with simple tasks and communicate
them via chat, while keeping the complicated things in mind. To address the complicated
tasks, he uses regular personal visits to Saint Petersburg, for example, when beginning
work on a new version. A similar practice was observed in company Alpha, when a new
version of the tool was planned, which is developed by the Russian project leader. In
order to accomplish the planning, he visited Germany together with one of his Russian
developers. There he held several meetings with some of his German colleagues in a
similar fashion as during the visit of the German project leader to Tomsk. However, in
this case the manager of Alpha had defined the strategy and gave some broad terms of
reference, which the developers then discussed during their meetings. After two days
of planning, the results were informally presented to the German manager who in turn
commented the results and gave further directions.

5.6. Discussion

The case studies illustrate articulation work as continuous efforts of renegotiating the
allocation of tasks on distributed software development projects of SME. In this respect,
Articulation work thereby can make certain scopes for remote developers necessary like
in case of company Beta:

“Many people make the mistake to think, if I have a great specification,
500 pages of paper, and I can give this to someone, I shall have a product in
the end. But this is not possible.”

He stated further:

“Initially, we expected to be able to educate them [cooperation partners
the foreign team] in such a way that, after one year, we could tell them

75

5. Coordination Practices

which feature we want and they would implement it. We have strayed off
this utopia. This is not possible.”

The companies in our sample had to adapt to these necessities of the development process
by changing their processes during the offshoring relationship. This involves practices
of documenting bugs as well as the delegation of writing specifications to Russian team
members. This result is also compliant with findings of the literature concerning the
tensions between flexibility and discipline [140].

Articulation work clearly becomes more time consuming, as specifications and bug de-
scriptions need to be defined more precisely and as written communication in a foreign
language is a common part of everyday work. This orientation towards more formal
methods may have positive effects on the local development processes in each case, as
ambiguity is reduced and development is documented more precisely [175]. However,
the participant observation revealed some interesting practices concerning the relation
of formal and informal communication processes. The use of a central bug database in
company Beta for example turned out to be as much dependent on informal articulation
processes as in case of company Alpha, as deadlines, estimates and classifications of bugs
and feature specifications are subject to informal communication with involved develop-
ers among both teams. This is also the case for the work on shared databases, which
should provide awareness but are not always up to date.

Thus, plans do not accurately describe the real work practices [226]. The processes may
be documented in form of a cascading model like in company Beta. However, during the
observation it became clear that not every step of the workflow will be followed strictly
as the description implies: thus a proposed “meeting” may simply be a three-minute
talk between project leader and a developer. The project leader of Beta acknowledged
that this would be normal for SME and processes in small teams could be handled
more flexible. There would be no need for fixed meetings because, in small teams, one
would simply know what the others are doing. However, even larger companies that rely
strongly on formal development procedures may run into similar problems in adapting to
global software development if they do not consider the necessity for informal articulation
work.

According to the expected relevance of informal communication [108] developers reported
during interviews that they would prefer to work in local teams if possible. This is sup-
ported by the observation that both companies rely on face-to-face communication in
case of complex negotiation processes like kicking off a new project. The need for per-
sonal visits can delay development processes and is likely to reduce agility [106] in terms

76

5. Coordination Practices

of delaying important articulation processes but offers many advantages for the actual
articulation of remote project work. The project leader of Alpha stated that his strategy
of coordinating a new project would be very comfortable. This way he does not have to
specify everything in advance but can evolve the specifications together with his develop-
ers who can assist him in making time estimates and point to certain technical details he
would sometimes not have considered beforehand. General ideas of the project together
with the project leader’s knowledge of the customers needs, the domain knowledge about
the customers sphere (in this case archives) and the technical detailed knowledge of the
Russian developers are thus evolved collaboratively and iteratively into a more and more
detailed project specification.

According to the theory, tools would be useful that raise awareness among the actors.
However, the companies in our sample did not use specialized CSCW tools for supporting
articulation work during their everyday activities. For everyday communication, tools are
preferred that are flexible and easy to use. Different communication channels like chats or
telephone calls are chosen and switched, as actors consider it to be appropriate. Complex
tasks that require a great deal of articulation work are often delayed and solved during
face-to-face meetings. Although Sametime offers additional functionality, this seems to
play no significant role in practice. Developers of Alpha stressed their preference of
the Instant Messenger ICQ because they like to communicate with friends and family
members while they are working. Even though desktop sharing and videoconferencing
are available to all developers of both companies, these communication channels play
no significant role during development processes. The project leader of Beta was the
only person in our sample who used desktop-sharing on a regular basis but still relies on
face-to-face meetings for the negotiation of complex tasks.

5.7. Conclusion

The focus on articulation work led to important insights into the needs of SME that
engage in globally distributed software development and the effects of offshoring. Our
findings suggest that the evolving complexity of articulation work in the context of dis-
tributed projects was partly unexpected by the actors beforehand. Articulation work ob-
viously plays an important role for the management of the described offshoring projects:
articulation is applied during discussions in which the actors reflexively evolve problems
and solutions from their distinct perspectives and work practices. These are then collabo-

77

5. Coordination Practices

ratively distilled into specifications and filed into certain databases or shared documents,
the application of which in turn is a matter of articulation work.

The flexibility of SME thus seems to rely intensively upon these articulation practices
that are embedded in informal communication, both locally and between the different
teams. Thereby, personal meetings in form of regular visits play an important role, as
they provide a personal relationship among the actors as well as a shared understanding
that may ease written communication processes in later stages of the project. This should
be taken into account if companies plan to offshore software development. However, as
personal meetings are not always possible and may reduce agility by delaying complex
articulation processes, there appears to be still need for a better technical support of
articulation work.

Our findings suggest that specialized tools for the support of articulation work are not
so common in practice. In our case studies, informal communication through flexible
communication channels was used to articulate arising questions like time estimates or
important bugs and complementing information stored in formal documents of databases
or simple word documents. Our interviews suggest that specialized tools are often per-
ceived as too complex for everyday use. Probably a good strategy for further design
would be to build upon the actor’s usual tools, integrating plug-ins with enhanced func-
tionality that predefine work practices as little as possible. The growing importance of
plug-in based Integrated Development Environments like Eclipse could make this ap-
proach feasible.

As expected, actual work practices sometimes differ from the perceptions that man-
agers have about software development strategies in their companies. The ethnographic
research of articulation work offers a complementing perspective and shows how the im-
manent logic of software development processes requires certain adjustments. If this is
not considered by researchers, results concerning offshoring can be strongly dominated by
a “how things ought to be”-approach instead of centering on actual work practices. The
question remains as to how articulation work could be supported more appropriately.
Thus, achieving a better understanding of the needs of developers by further field studies
seems necessary.

78

6. Operational and Strategic Learning in

Global Software Development
1

Small to medium enterprises (SMEs) increasingly participate in offshore software develop-
ment. Key competitive SME abilities include detecting market niches and deploying highly
flexible software development approaches. Therefore, learning how offshoring affects such
capabilities, which are closely related to organizational learning, is crucial. This article
presents case studies from two German companies that engage in offshoring of software
development. The authors highlight the different structures these companies have cho-
sen for their development work and discuss how they enact those structures. They also
discuss how related practices affect strategic and operational aspects of single- and double-
loop learning. The case studies show that organizational learning may be a challenge for
SMEs engaged in offshoring software development. Moreover, the inability to perform
double-loop learning can even lead to failures during organizational restructuring.

6.1. Introduction

With increasing globalization, distributed software teams have become fairly common.
Usually, companies that offshore their software development expect a reduction of costs
and access to new markets. However, distributed teams often face problems related to
globally distributed work’s spatial, temporal, and cultural barriers.

For a long time, studies have mainly treated offshoring as a make-or-buy decision of large
companies, offering recommendations and discussing best practices. Although offshoring
today is increasingly understood as a dynamic process, few studies address its related
long-term implications for key organizational capabilities, especially regarding small to
medium enterprises (SMEs), which comprise 98 percent of the German software industry

1
This chapter has been published as an article in the Journal IEEE Software 2010 [32]. © 2010 IEEE.

Reprinted, with permission, from Alexander Boden, Bernhard Nett, Volker Wulf, Operational and

Strategic Learning in Global Software Development – Implications from two Offshoring Case Studies

in Small Enterprises, IEEE Software 27(6), 2010. See appendix I.

79

6. Operational and Strategic Learning

[23]. SMEs consider offering highly customized software solutions and adapting quickly to
changing customer demands to be among their most important competitive capabilities
[78]. Hence, offshoring must be organized in a way that lets SMEs flexibly adapt to
changing demands, requiring ongoing operational and strategic learning.

In this article, we contribute to the understanding of learning in the context of offshoring
by presenting an ethnographic field study of two small German software enterprises en-
gaging in software offshoring in Russia. This comparison illustrates some of the challenges
in organizational learning that SMEs engaged in offshore software development may face.

6.2. Single- and Double-Loop Learning

In this article, we explore how SMEs of the German software industry enact organiza-
tional learning. Our work complements that of Wanda Orlikowski on studying “useful
practices” of self-organization for organizational development in the context of distributed
teams (see the “Related Work on Organizational Learning” box) [166].

In order to conceptualize organizational development, we refer to Chris Argyris and
his colleagues’ framework [9], which states that it’s possible to identify learning when
comparing the consequences of actions with the expectations that guided the planning
of those actions. In their view, learning entails two different layers that must be covered.
Single-loop learning refers to the operational level (Are we doing things right?). Double-
loop learning comprises learning at the strategic level (Are we doing the right things?).
Thus, enterprises can derive learning from decisions dedicated to operational or strategic
aspects of cooperative work.

In the case of offshore partners, reflecting on operational and strategic decisions can
be particularly challenging. Although learning in local teams often occurs implicitly,
distributed actors might have to adopt explicit strategies to organize their knowledge
exchange. This is especially important for SMEs for which flexibility is essential. Because
SMEs often highly depend on agile development methods, exhaustive communication and
flexible interaction, implementing organizational learning can be difficult for them in the
context of offshoring [175].

In this context, Pamela Hinds and Cathleen McGrath have highlighted the role of emerg-
ing informal hierarchies for smooth coordination of distributed teams [110]. However,
offshoring projects do not per se lead to efficient informal hierarchies and smoothly coor-
dinated cooperation. So, the question remains as to what offshore partners can actively

80

6. Operational and Strategic Learning

Related Work on Organizational Learning

Recent studies have increasingly focused on operational aspects of distributed
cooperation [144], but there are still few studies that address long-term consequences
on key organizational capabilities [126]—not to mention the learning necessary to
secure them, for example, in small to medium enterprises (SMEs).

Software engineers have discussed learning as a major issue for software development
in the context of knowledge management. In the early years of these discussions,
researchers believed technology-intensive systems could accumulate and automatically
provide knowledge on demand. Learning was reduced to input/output processing, and
knowledge was conceptualized merely in its explicit form [22].

However, although it’s possible to represent knowledge in the form of explicit content,
such content can actually become knowledge only when it’s contextualized.
Furthermore, in practice, knowledge must be framed to contribute to the expertise
needed [226]. Learning, therefore, can’t be reduced to data storing in the brain, but
requires understanding in a much broader sense—for example, opportunities to
develop practical competences and expertise [172]. Hence, learners shouldn’t be
considered as mere consumers, but as decisive actors who develop cooperative
activities of their own [56]—a transition that some researchers have called the “second
wave of knowledge management” [120].

Based on this new understanding of learning, researchers have elaborated the
paradigm of self-organization as a means and an end in computer-mediated education,
and also in relation to organizational development of software companies. In this
context, Wanda Orlikowski has hinted at “knowing in practice” as an important
element for organizational operation [166]. She illustrates how a distributed
organization enacted and (re-)constituted knowledge through several practices (such
as sharing identity, interacting face to face, aligning efforts, learning by doing, and
supporting participation). She then argues that, rather than hypothetically
constructing formal, decontextualized “best practice” models, research should
empirically identify “useful practices.” Our work complements Orlikowski’s work by
focusing on how SMEs in the German software industry enact organizational learning.

81

6. Operational and Strategic Learning

Articulation Work

Sociologist Anselm Strauss introduced the concept of articulation work to analyze the
interdependent actions of cooperating actors. Articulation work is necessary for
regulating the division of labor: who does what, when, where, how, with which
quality, and so forth. Yet, articulation work is a broader, more holistic concept than
coordination. Whereas the latter governs only the planned distribution of labor (in
the sense of distributing responsibilities), articulation work also manages unexpected
preconditions and consquences that emerge because of not fully controllable
circumstances.

Hence, articulation work comprises important aspects of self-organization and its
integration into the formal distribution of work, thus enabling a broad understanding
of cooperative work in complex environments such as offshoring projects.

For further reading on articulation work, see the following:

K. Schmidt and L. Bannon, “Taking CSCW Seriously: Supporting Articulation
Work,” Computer Supported Cooperative Work (CSCW): An Int’l J., vol. 1, no. 1,
1992, pp. 7–40.

A.L. Strauss, “The Articulation of Project Work: An Organizational Process,” The
Sociological Quarterly, vol. 29, no. 2, 1988, pp. 163–178.

82

6. Operational and Strategic Learning

do to secure their software development’s agility, and if there is any opportunity to use
organizational learning for this purpose. As a related conceptual framework, we can
use the prescriptive model of Argyris and his colleagues as a descriptive one, trying to
identify opportunities for related “useful practices” (as suggested by Orlikowski [166]).

For doing so, we adopted Anselm Strauss’s conception of articulation work (see the
“Articulation Work” box) [219]. Such work can contribute to learning at the operational
level because it underpins formal divisions of labor by informal, flexible adjustments.
However, it can also contribute to learning at the strategic level when collaborative
actors reflect on their articulation work, relating it to shared experiences and discussing
possible solutions [29].

Hence, by analyzing articulation work’s role within offshore software development of
SMEs, we can better understand the impact of offshoring on these companies’ learning
opportunities and practices. Our goal is to understand the opportunities that offshoring
presents for different types of learning, including organizational learning, which not only
requires learning but also affords the possibility of institutionalizing its results.

6.3. Research Methods

We’ve conducted our study in several phases since 2006. After an initial literature study,
we conducted semistructured interviews with 13 managers and developers of German
SMEs: two interviews with representatives of an IT industry association and a large
German company, and four interviews with Eastern-European offshoring vendors. We
used the interviews’ preliminary results to identify offshoring challenges and the strategies
that German SMEs use to deal with those challenges. From this sample, we chose two
companies for further analysis, which we will call Alpha and Beta.

For the next data collection phase, we drew on a triangulation of ethnographic research
methods comprising interviews, on-site observation, and artifact analysis. We conducted
the on-site observation by visiting each German SME for a period of 12 business days. In
addition, we visited the Russian partner company Alpha for one week. To understand the
perspective of Beta’s partner company, we also conducted an interview with the Russian
manager in Saint Petersburg. Since the end of 2008, we’ve continued our study through
an action research approach at Alpha.

Our data analysis was based on Anselm Strauss’ Grounded Theory [223]. After each step,
we scrutinized and coded the material’s transcripts. At first, we composed categories

83

6. Operational and Strategic Learning

(such as knowledge exchange, informal coordination, and formal workflow) on the basis
of the collected data. Then, we related those categories to one another, and evolved them
during our further research.

6.4. The Case Studies

We chose two companies that expressed very different perceptions concerning strate-
gies for successful offshore software development. Both companies had several years of
experience with offshore development in Russia.

6.4.1. Company Alpha

Alpha provides data-processing products and services in the field of statistics and docu-
mentation. Most of the company’s approximately 20 employees are software developers.
The product line comprises databases, documentation, and presentation systems used by
archives and museums.

Since the late 1990s, the company has employed four software developers in Tomsk,
Siberia. The business relationship began with an internship of a Russian developer who
still works for the company. Because of the positive experiences with him, the Ger-
man manager decided to expand this business relationship. The first project aimed at
reengineering an existing standard software product. Despite unexpected delays in de-
velopment, offshoring was expanded to several smaller customer-specific projects, which
involved closer cooperation between German project managers and offshore developers.
During the interview in the first phase of our study, the German owner underlined the
company’s reliance on flat hierarchies and flexible self-organized work. The company
would consider formal work processes and development models if the customer insisted
on them, but, from the company’s perspective, they aren’t necessary. Instead, Alpha
emphasizes informal and flexible work practices, allowing project managers to run their
projects with great levels of autonomy. For handling specifications, the company relies
on plain-text documents, which it sends to developers by email or, in some cases, through
a defect-tracking system.

6.4.2. Company Beta

Beta offers a standard software solution (developed in two different branches) for process
modeling and related services in the field of process management. The management

84

6. Operational and Strategic Learning

is located in Bonn, Germany. Four offshore developers in Saint Petersburg carry out
the software development under the supervision of a German project manager in Berlin.
Another seven employees at the Berlin office provide testing and support.

According to the German manager, the main reason for the offshoring decision was
development cost reduction. Through personal contacts with a Russian developer, the
company founded a branch office in Saint Petersburg in 2002. The kick-off took place in
Germany, where the new Russian employees stayed for a few months. After their return,
they took over software development. Since then, the Russian team has grown to 15
developers, which has required certain adjustments in the formal division of labor.

In contrast to Alpha, Beta’s CEO perceived successful offshoring of software development
as closely connected to a high maturity of the company’s development processes on the
basis of the Capability Maturity Model (CMM). Hence, Beta relies on clearly defined
business processes with explicit responsibilities and standardized development routines.
This was also reflected in Beta’s use of a central-development database with standard-
ized descriptions of features to be developed, which Beta updated regularly during the
development process. Recently, Beta terminated its business relationship with the Rus-
sian company because of increasing development costs and ongoing problems with this
relationship.

6.5. Different Work-Organization Models

The four models in Figures 6.1 and 6.2 provide an overview over the different approaches
chosen by Alpha and Beta to organize their offshore software development. The models
in Figures 6.1a and 6.1b describe the patterns of cooperation implemented by Alpha.
The models in Figures 6.2a and 6.2b represent the adaptation Beta had to conduct to
address the emerging necessities of their offshoring project.

The models represent different divisions of labor, resulting workflows, and interrelation-
ships between the cooperating teams. They involve the exchange of artifacts such as
plans, specification documents, bug descriptions, and source code or prototypes. The
arrows in the models indicate the artifacts’ transfer direction and are usually embedded
in articulation work. The two-pointed arrows indicate exchange processes in close co-
operation; the dashed lines represent the barriers between the local and remote teams.
Regarding our analysis, the models can serve as hints to the necessities of learning in
practice. On the one hand, these practices relate to the different tasks the teams must

85

6. Operational and Strategic Learning

Figure 6.1.: Offshoring model representing the division of labor for company Alpha’s (a)
standard software solution and (b) customer-specific projects. Both mod-
els attempt to keep the core of the software development work integrated,
allowing for agile, iterative proceedings on each site.

Figure 6.2.: Offshoring model representing company Beta’s (a) initial division of labor
and (b) division of labor after its reorganization. Both models are based
on a high specialization of the cooperating teams, dividing the activities of
planning/controlling and the actual development between the sites.

86

6. Operational and Strategic Learning

accomplish during their development work—for example, in learning about a new prod-
uct that is to be developed in operational terms (single-loop learning) or about how
experiences with product development can be implemented in the organization of the
development work in strategic terms (double-loop learning). On the other hand, we were
especially interested in offshoring-specific learning challenges. Hence, arrows crossing the
dashed lines in Figures 6.1 and 6.2 are the focus of our analysis.

6.5.1. Model 1: Division of Labor for Alpha’s Standard Software Solution

Alpha’s offshoring began as a reengineering of an outdated legacy product. The cor-
responding model (Figure 6.1a) is rather simple, entailing intersite connections mainly
concerning the project plan being transferred to the Russian team, which in turn was to
deliver the reengineered product back to Germany.

Regarding coordination and learning, the model shows a clear distinction between the
teams, almost resembling a customer-vendor relationship. One of the main challenges of
software projects—developing and understanding the specifications—was rather easy to
handle in this case because the existing product was only to be reengineered. This could
easily occur fully offshore, avoiding most of the need for intersite cooperation. How-
ever, this also required communication between the German company’s customers and
the Russian developers in cases of bug reports or feature requests. Because the Russian
team had ample opportunities for self-organization (as long as it kept up with dead-
lines and requirements), it was able to bring in their own expertise to make operational
decisions—for example, concerning the choice of development tools, the documentation
of the development, and the distribution of tasks.

Although there was related space for single-loop learning, the company’s strategic project
planning and formal coordination (double-loop learning) relied on regular personal visits
of the German manager at the offshore site in Tomsk, as well as visits of the Russian
team to Germany for strategic workshops (centering on topics like which technology to
choose for the next version, developing a rough project roadmap, and so on).

6.5.2. Model 2: Division of Labor for Alpha’s Customer-Specific Projects

In light of the positive experiences, the business relationship was expanded to several
smaller customer-specific projects. These were mainly led by German project managers,
who directly cooperated with Russian developers, with the help of the Russian senior

87

6. Operational and Strategic Learning

developer. Thus, the corresponding model in Figure 6.1b contains many interrelation-
ships between the sites, relating to the cooperative handling of specifications and code
development. Regarding articulation work and learning, these projects had a rather in-
formal structure. The project work’s initial articulation mainly took place in the course
of personal meetings between the staff of the different sites, during which the developers
conjointly developed specifications and discussed the project plans for the development
work in both operational and strategic terms. It was apparent that the German team
members valued the Russian team members’ technical knowledge, and they involved
them in the specification of products. Because of the direct contact between the Russian
teams and the customers (see Figure 6.1a), the Russian team learned about the German
user domains. This eased the handling of complex model projects (see Figure 6.1b) in-
volving project planning, development, and testing being performed in close cooperation
between the geographically dispersed sites. At the same time, the flat hierarchies allowed
the Russian team to influence the project work’s trajectories and introduce its own ideas.

Alpha’s Offshoring Approach

Based on the different models of work organization in Alpha, it’s apparent that both
models in Figure 6.1 attempt to keep the core of software production integrated, and thus
not separate the responsibilities according to phases such as specification, development,
and testing. On the contrary, these three elements are held together, allowing for agile,
iterative proceedings.

Alpha’s strategy of offshoring was thus aimed at a replication of its own organizational
structure (adhocracy) at the offshore site. Hence, in-house activities of everyday software
development, such as features specification, code development, and testing, involved close
cooperation between the sites.

Ongoing articulation work played a pivotal role for the accomplishment of everyday
work because the division of tasks was always negotiated in an ad hoc way between the
teams. Alpha exploited the potential benefits of specialization, but at a very low rate.
Learning depended on considerable articulation work, which mainly remained focused on
limited, situated problems at single- and double-loop learning. Therefore, Alpha couldn’t
institutionalize organizational learning because the company didn’t even consider making
structural changes to the established adhocracy.

88

6. Operational and Strategic Learning

6.5.3. Model 3: Initial Division of Labor for Beta

The development of the standard software solution of Beta followed a fixed release cycle
of six months. Initially, Beta introduced the formal offshoring model shown in Figure
6.2a, which aimed at offshoring the development work to Russia, while keeping all other
tasks (such as the definition of new features and the description and classification of
bugs) in Germany. Hence, the interdependency between the two teams merely involved
the exchange of specifications to be written by the German team and the software code
to be implemented by the Russian team, which in turn was to be tested in Germany.

Regarding coordination and control, Beta tried to apply a far more single-sided approach.
The key for this practice was the preparation of exhaustive specification documents for
the Russian team, which included ample information concerning the interrelations with
other software modules, the interface design, expected behavior, and so on. The Russian
team, in turn, documented its progress in monthly reports and reviewed its code on a
regular basis for quality assurance. In addition, the German project manager visited the
offshore team on a regular basis, usually shortly before new releases. During these visits,
the German project manager mainly helped in the handling of bugs (usually discovered
at the last minute) and—if time allowed—discussed the features of the following release
with the Russian team. Strategic questions (related to double-loop learning) were mainly
discussed in Germany.

From the German team’s perspective, the main challenge involved writing the exhaustive
specification documents for the Russian developers. As the Russian team grew, this task
became harder and harder because, according to the German team manager, “one day of
development required one day of writing specifications.” As it became increasingly more
difficult to specify new features quickly enough to keep the growing offshore team busy,
German management decided to change the formal division of labor (see Figure 6.2b).

6.5.4. Model 4: Division of Labor for Beta after Reorganization

After the restructuring, the interconnections between the teams became far more com-
plex than initially intended. Because the Russian developers now had to write most of
the specifications themselves, the German team was able to reduce its work overhead sig-
nificantly. On the other hand, writing specifications demanded the exchange of necessary
context knowledge and thus more articulation work between the teams.

In practice, the articulation work turned out to be difficult. Because the Russian develop-
ers lacked most of the necessary context information about practical usage (for instance,

89

6. Operational and Strategic Learning

the customer demands) and the product’s technical background (such as interdependen-
cies with certain modules), they found writing proper specifications difficult. This led
to frustration on both sides. The German team members were discontented with the
Russian specification documents’ quality and had to assist and correct their work, re-
quiring considerable time for articulation work. Meanwhile, the Russian team members
felt overstrained and fulfilled their new tasks only reluctantly.

In an attempt to improve the specifications and reduce the need for ample articulation
work, Beta introduced an even higher standardization level. By providing standardized
examples and checklists, which were intended to help the Russian developers with their
tasks, the company expected to reduce articulation work (visible in the amount of com-
munication) and ensure the produced documentation’s quality. However, because the
underlying problem of lacking knowledge couldn’t be solved easily, most of the problems
prevailed and led to increasing difficulties with the Russian developers, who started to
neglect inconvenient tasks (such as writing specifications) whenever possible. The ongo-
ing problems contributed to the decision to terminate the business relationship in 2008
(although it must be stressed that several reasons contributed to this decision, including
rapidly rising wages in Saint Petersburg).

Beta’s Offshoring Approach

Based on Beta’s work organization models, it’s apparent that it followed a fundamentally
different approach than Alpha. Rather than replicating its adhocracy at the offshore
site, the company aimed at an ambitious division of labor that resembled specialization
between the two sites. Hence, the German site concentrated on planning and controlling
activities, while the offshore site, with its lower wages, exclusively performed the actual
development work.

Because the mode of operation turned out to be problematic due to the high amount
of necessary articulation work (exceeding the benefits of specialization), the company
decided to introduce another (in a way, even higher) formalization level to reduce the
demands of articulation work. In contrast to Alpha, Beta accepted neither more frequent
meetings nor more intense communication between the sites.

Thus, Beta didn’t relinquish its demand to exploit specialization’s benefits. Instead, it
tried to reorganize specialization in a formal, top-down manner. When the amount of
necessary articulation work exceeded its ambitious expectations, management reacted
with structural changes of its specialization model. Because innovative product finding

90

6. Operational and Strategic Learning

wasn’t among the measures taken into account in this regard, the changes would resemble
single-loop learning—if there would have been any organizational learning at all. In fact,
the company valued only the manager’s learning; feedback from the Russian team wasn’t
considered.

6.6. Discussion

Our case studies show that articulation work was demanding for both companies. The
practices we found in the field were similar to the ones Orlikowski described in her study
[166]. For example, intense face-to-face contacts, broad participation in meetings, and
alignment of efforts were all important factors for the two teams (see Table 6.3). However,
there were also differences related to the companies’ attempts to deal with those practices
and to the different types of products the companies were developing.

Whereas Alpha accepted its small customer-oriented projects’ related articulation work
by intensifying the personal visits and introducing workshops between the sites, Beta tried
to reduce this work by increasing formalization and specialization of these tasks in the
development of its standardized product. Beta’s strategy turned out to be problematic
because it didn’t account for the necessary mutual learning regarding important context
information and domain knowledge or the necessary contact with the customer.

In the case of Alpha, it became apparent that the discussions covered aspects such as the
formulation of specifications (What does the customer need?), possible technical solutions
(How can we build that?), and some strategic questions (Can we reuse something we
already have?). In general, the focus was on operational aspects of cooperation, but
basic questions such as the organization of work were barely covered, if at all. Because
the company didn’t change its adhocracy for dealing with the offshore situation, but
rather replicated it, there was no need to broach the issue of the formal structure. In so
far as double-loop learning remained limited, it didn’t allow for restructuring—a major
domain for organizational learning [9].

Beta, on the other hand, did engage in restructuring, but it was reduced to a single-sided
top-down decision by the German management, and it included neither the expertise
of the Russian side nor that of the developers. Both companies’ inability to implement
structural changes may be related to the particular work practices of small software en-
terprises [78]. The practices of articulation work, as well as the models of cooperation
we observed, seem to be highly specific for small software companies. SMEs often work

91

6. Operational and Strategic Learning

Model Operational

decisions

Strategic decisions Example of articulation

work between sites

Figure 6.1a Taken by the offshore

developers (task

assignment,

development tools, and

so on).

Taken by the Russian

team manager in

cooperation with the

German manager

(system framework,

deadlines, and so on).

Russian developers visit Germany

to discuss strategic questions

(which technology to choose,

rough project roadmap, and so

on) with German developers

under the supervision of the

German manager. Offshore team

mainly operates on its own

afterward.

Figure 6.1b Negotiated between the

German project

managers and the

offshore developers

(task assignment,

development tools, and

so on).

Taken by the German

project managers, in

consultation with the

offshore developers

(system framework,

deadlines, and so on).

German project manager visits

the team in Tomsk, Siberia, to

explain his vision for a new

project. Requirements and

project plan are specified

cooperatively during several

meetings. Ongoing chats, and

sometimes even prolonged visits,

continue when necessary to

coordinate subsequent

development.

Figure 6.2a Taken by the Russian

team manager (for

instance, task

assignment) and by the

German developers (for

instance, bug

assignment).

Taken by the German

project manager

(deadlines,

specifications, and so

on)

German project manager writes

specifications. Russian team

manager assigns them as tasks to

the Russian developers, and

German team tests the results.

German project manager visits

regularly before new versions are

finished.

Figure 6.2b Taken by the Russian

team manager (for

instance, task

assignment) and by the

German developers (for

instance, bug

assignment).

Taken by the German

project manager, but

partially worked out by

the Russian developers

under supervision of

the German team

(specifications).

German project manager explains

development aims to Russian

developers during his personal

visits. Offshore developers must

write specifications, which the

German project manager in turn

checks. This requires much

supervision because Russian

developers lack the knowledge to

write proper specifications. Forms

are introduced for this purpose.

Table 6.3.: Different kinds of learning and articulation work for the models shown in
Figures 6.1 and 6.2.

92

6. Operational and Strategic Learning

in flexible ways and usually can’t afford to engage in excessive specialization or institu-
tionalized self-reflection [29]—with the possible consequences we found in our study.

6.7. Conclusion

According to the framework of Argyris and his colleagues, double-loop learning should be
a pivotal competency for organizations, especially in volatile and dynamic environments
like the software market. However, our case studies show the difficulties that small enter-
prises may face in developing their organizational structure when engaging in offshoring.
The comparison of these two case studies also makes it apparent that restructuring the
offshore relation in an inappropriate way (as in case of Beta) can be worse than sticking
to pure adhocracy. Under the given circumstances, Beta’s attempt to reach a high-level
specialization on the basis of process maturity turned out to be less successful compared
to the less ambitious approach of Alpha, which didn’t even try to change its structure.
From our perspective, this is an interesting finding, because researchers often discuss
offshoring strategies in relation to the benefits of restructuring an organization.

Our case studies show that organizational learning can be challenging for offshore business
relationships. As with Alpha, decisions can be based on distributed, situated experiences
such as in organizational learning when sticking to adhocracy and thus avoiding structural
change—a major potential of organizational learning. When, in contrast, a company
(such as Beta) makes decisions without fully taking into account the expertise of the
offshore partners, there is a high risk of failure. In both cases, offshoring can endanger a
company’s agility. This shows that further research on opportunities for organizational
learning that fit the demands of SMEs remains an important task.

93

7. Trust and Social Capital: Revisiting

an Offshoring Failure Story of a Small

German Software Company
1

While work organization and social capital are known to be important factors for off-
shoring success, there is little empirical evidence on how these aspects evolve in the course
of offshoring projects. In the literature, trust has been discussed as a personal disposition
to abstain from control in a given situation, and was found to remain surprisingly stable
in some cases. By analyzing the relation between control and trust in the course of a failed
offshoring project, we want to add to the discussion on social capital as a factor for suc-
cessful offshoring. The results of our long-term ethnographic study are somewhat paradox:
in our case, ongoing conflicts motivated attempts to strengthen control, although personal
trust and social capital remained strong. Despite the fact that the confidence of the part-
ners in their offshoring project was weakened over time, the trust among the partners
prevailed. However, social capital was not only unable to save the offshoring project—it
also seemed to hinder the conflict resolution in some regards. Therefore, we argue that
while social capital is an important factor, it should not be regarded as a context-free
asset, but rather (in Bourdieu’s perspective) as a risky investment.

7.1. Introduction

With ongoing globalization, offshore software development has become quite common.
For instance, consulting agencies promote Global Software Engineering (GSE) as a means
to reduce costs and as a driver for process improvements in case activities are reengineered

1
This chapter has been published as full paper in the proceedings of the Eleventh Europaean Confer-
ence on Computer Supported Cooperative Work in Vienna 2010 [31]. Proceedings of the Eleventh

Europaean Conference on Computer Supported Cooperative Work (ECSCW), 2009, pp. 123-142,

Trust and Social Capital: Revisiting an Offshoring Failure Story of a Small German Software Com-

pany, Alexander Boden, Bernhard Nett, Volker Wulf, Springer London 2009, with kind permission

of Springer Science and Business Media. See appendix I.

94

7. Trust and Social Capital

and streamlined as part of the move. However, while wage differences may offer options to
reduce costs, the spatial, temporal and cultural issues in globally distributed cooperative
work are still challenges and need to be better understood [44, 99, 107].

Tackling these issues, it is often argued that GSE needs formalization of processes and
a high level of social capital to be successful [144]. Features such as formalization and
social capital accumulation may—to a certain degree—be influenced when establishing
the offshore cooperation. However, there has been little empirical evidence on this topic
for later stages of offshore cooperation [126]. This is even more astonishing as these
factors are likely to affect flexibility which is regarded as a major demand for software
development in general (and especially for small enterprises). Therefore, we need to learn
more about how the relationship among clients and vendors evolves within offshoring
projects and which factors contribute to or oppose efficient cooperation [75].

CSCW has a long tradition of researching problems of distributed cooperation. For ex-
ample, CSCW studies have expounded the importance of awareness, tool appropriation,
self-organization, behavior, interaction and communication in different kinds of work
groups by means of ethnographic studies. However, there are very few in-depth studies
which look at the particularities of cooperative work in off-shored software projects—
specifically when small companies are involved.

In order to add to the understanding of offshoring, we conducted a long-term and in-depth
ethnographic case study in a small German company between 2006 and 2008. During this
time, the company developed software in an international team of German and Russian
developers. In the end, the cooperation was terminated due to ongoing problems. By
revisiting this failure case and the related conflicts over a longer period of time, we offer
a complementary view compared to studies on best-practices. We investigate whether
trust and social capital changed or remained stable over time in the offshoring project,
and how these factors affected the offshoring relationship between the involved teams.
In order to provide a detailed analysis, we investigated articulation work [221] conducted
in the offshoring project.

The paper starts with a discussion of offshoring literature (section 7.2) before it describes
the research method applied in the ethnographic study (section 7.3). The description
of the case (section 7.4) is followed by a discussion under the perspective of articulation
work (7.5). It turns out that trust and social capital indeed share some similarities, but
are no guarantee for successful offshoring. Related findings are explained in the final
chapter (section 7.6).

95

7. Trust and Social Capital

7.2. Offshore Cooperation in the Literature

Apart from challenges which are typical for any software development, GSE projects
have to be conducted under particular organizational, cultural, spatial, temporal and
legal conditions which can pose complex obstacles [108, 175]. For example, temporal
differences can lead to bottlenecks in regard to time for collaboration and coordination,
while cultural differences can lead to mutual misunderstandings. As spatial distribution
can harden or even constrain possibilities for control considerably, it often affects the
necessary level of loyalty and trust among collaborators.

Hence, trust and social capital have been pointed out to be key factors for tackling
challenges of distributed team cooperation [110, 144, 186]. Trust has been characterized
as a complex, multi-layered concept, which is—amongst others—related to expectations,
experiences, and knowledge (e.g. is the trustee competent? Is his behavior predictable?
Is he good-willing? Is he opportunistic?) [122]. For our case, trust can be interpreted
as a psychological state which allows for greater levels of self-organization, and for an
abandoning of (available) control mechanisms [253]. In a similar fashion, social capital
refers to network ties of “goodwill, mutual support, shared language, shared norms, social
trust and a sense of mutual obligation that people can derive value from” [120]. As “social
glue” holding together communities, social capital is expected to promote cooperative
behavior in communities and organizations [174, 45].

According to this optimist view, organizations (or teams/communities within organiza-
tions) with high levels of social capital will have a higher motivation to cooperate [119].
However, with regard to offshoring, social capital can be difficult to be fostered [110, 48]:
as teams are distributed spatially, face-to-face contacts are usually reduced to few limited
timeframes. At the same time, relying on ICT for cooperation implies a higher risk of
misunderstandings [165, 21], especially in cross-cultural teams. For the same reasons,
conflicts can be very difficult to handle, if they occur [111].

As a consequence, recent studies have stressed the importance of initial perceptions of
trustworthiness for long-term relationships of international teams [141]. Inter-personal
trust, once established, was found to remain more or less stable in the course of distributed
projects, at least in case of cross-functional teams [253]. However, it is still not clear if the
same rule applies to homogeneous fields with uni-functional dyads, such as in software-
offshoring projects, where developers usually should be able to assess the development
work done by the other team more easily as compared to cross-functional teams.

96

7. Trust and Social Capital

By revisiting the failure case story of a small German software company, we want to
analyze if social capital shares the detected self-preserving effects of inter-personal trust
relation, or if it may at least benefit from them. As trust can only be understood within
a particular context [253], it is necessary to take a situated perspective in analyzing the
actual work practices, the distribution of labor as well as the related formal regulations
and conflicts in offshore relations. In this context, the case of a failure story can be
interesting if it allows for the differentiation between continuities and discontinuities.

However, continuities within formal regulations neither guarantee their factual continuity,
nor does changing regulations guarantee factual discontinuity, as in reality established
patterns may prevail under new labels, or formal regulations may fail. Hence, it is the
practical organization of collaboration, not merely the mental models of its organizers,
which has to be taken into account. As we were interested in long-term dynamics of
offshoring software development, a methodological focus was needed that covers all above-
mentioned aspects. This made us adopt the concept of articulation work, as we will point
out in the following section.

7.3. Methodology

The concept of articulation work was introduced by the sociologist Anselm Strauss for the
analysis of interdependent actions of cooperating actors [221]. Articulation work, similar
to coordination, is needed to regulate the division of labor: it centers on decision-making
regarding who is supposed to do what, when, where, how, with which quality, etc.? To
a certain degree, everybody involved in collaborative work has to reflect not only about
his/her work, but also about its organization. In this regard, articulation work is also
related to trust and social capital, as it entails issues of trading formal control versus
flexible self-organization [30].

Generally, coordination is seen as the organization of collaborative work. However, not
everything which is necessary for collaboration is explicitly discussed and regulated as
coordination, and often the organization of work is more complex than perceived by many
actors. For instance, collaboration may need meetings or discussions between developers,
the management, and the customers, but it may also include the administration of a
program for a certain task (setting up a related infrastructure), fixing a broken server, or
implementing a communication infrastructure for collective work organization—aspects
which are seldom interpreted as coordination.

97

7. Trust and Social Capital

In this regard, the concept of articulation work aims at including all necessary (meta-
)work to make work work. Hence, it offers a more holistic understanding of cooperative
work than concepts of coordination: while the latter usually govern the distribution of
tasks and responsibilities, articulation work includes formal and informal coordination
mechanisms [201] as well as related meta-work, which the actors themselves are sometimes
not even aware of [211].

As a consequence, it might not always be clear what should be regarded as meta-work
or coordination when it comes to particular efforts. What one actor sees as necessary
in this regard does not need to be the same as the perception of another. The same
is true for scientific observers, who are influenced by their perception of the case. In
this regard, coordination may be understood as the explicit model resulting from self-
organization, and meta-work as the related practical conclusions, both of them being
dependent on cognition and practical interpretation. In contrast, articulation work is
the amount of all related contributions, strategies and conflicts; it is the distributed
agency of collaboration, not its result.

Articulation work takes the individual perceptions about coordination neither as per se
correct descriptions of the distribution of labor, nor as pure illusions; instead, they are
understood as necessary points of departures for related analyses. Explicit (coordination)
and practical premises (meta-work) of collaboration are regarded as important challenges
for the individual positioning of actors within an anticipated field of opportunities. By
contrasting conceptions of collaborators with each other and by analyzing empirical evi-
dence on collaboration practices and their outcomes, articulation work studies attempt to
take the interests of the collaborators seriously by discussing them retrospectively against
the background of all accessible knowledge about the collaboration and its impacts.

This kind of analysis allows the address of the differences between the lived (factual)
and the planned, explicit organization [9]. The latter is generally more “logical” (at
least at first glance) than the lived organization, which in contrast generally responds to
situated particularities in a more complex way. This duality of formalized and informal
organization has been discussed within the CSCW community [226] for a long time
and led to a much broader understanding of cooperative work in this community when
compared to hierarchical models of coordination [200, 71].

In order to study articulation work, we did not only have to look at efforts of coordina-
tion and meta-work, but also had to analyze them by contrasting the anticipated logic
of the process with what we observed as the factual one. Revisiting the history of a
cooperative project over several years with our theoretic stances is difficult, and requires

98

7. Trust and Social Capital

careful examination. Unfortunately, our access to the company was limited to particular
timeframes, and we had to reconstruct (and interpret) parts of the case study by rely-
ing to narrative interviews with the involved actors. However, we tried to overcome the
limitations of our approach by a triangulation of several ethnographic research methods,
comprising semi-structured and narrative interviews, participant observation as well as
artifact analysis.

In order to understand the logic of offshoring strategies, we started by collecting related
conceptions in the literature. Furthermore, we conducted a semi-structured interview
with the German manager of the company in 2006 that centered on his general perception
of offshoring, as well as on his particular offshoring strategy.

For the investigation of articulation work practices, we drew on participant observations
which were conducted by visiting the German SME several times during 2007 and early
2008. The first two observations lasted one week each and focused on local and dis-
tributed software development practices in individual and collaborative work situations
and tasks. We were also allowed to analyze artifacts such as emails, chat protocols, inter-
nal work papers and whiteboard sketches, and we conducted many informal interviews
with developers and the German project manager during our stay. The findings were
documented by means of field notes and photos, which were taken during the research.

Our analysis of the collected data was based on Strauss’ and Corbin’s Grounded Theory
[223]. After each step, the transcripts of the material, both field notes as well as interview
data, were scrutinized. Data was coded during a process that consisted of several stages.
At first, we composed categories based on the findings in the collected data. Then these
categories were related to each other and evolved during the further research. These
categories were analyzed under the presented articulation-work perspective. First, we
attempted to differentiate between formal work organization (taken from the interviews)
and the factual work practices we had observed. Then, we tried to identify converging and
different perceptions of the offshoring project, as well as reconstructing related interests
on the basis of a careful examination of our data.

As a further step, we refined the results of our analysis by conducting extensive narrative
interviews with the German project manager during a third on-site visit, as well as a
Skype interview with the Russian team manager.

99

7. Trust and Social Capital

7.4. The Case Study

The offshore software development project we researched was conducted by a German
SME. The company offers a standard software solution for process modeling as well as
services in the field of business process management. Being part of a holding, the manage-
ment and sales of the company were handled by an office in Bonn with seven employees.
The holding had several other offices, for example in Hamburg (data processing) and
Düsseldorf (holding-management). Additionally, about 200 business consultants worked
as freelancers in close cooperation with the company.

The software development we studied was carried out by an office in Berlin with seven
employees. Apart from the development, the team in Berlin was accountable for the
customer support as well as the management of the offshore cooperation with the Russian
partner company. This cooperation had been started in 2002, when the German software
office (at that time not yet integrated into the holding) had decided to found an offshore
branch office in Saint Petersburg in order to reduce development costs.

The decision to locate the branch to Russia was based on a personal friendship of the
German entrepreneur with a Russian developer who, according to the German manager,
was trusted to be a competent and loyal team manager. This developer had been em-
ployed and ordered to hire three further developers in Saint Petersburg. The whole team
was invited to Germany in order to become acquainted with the code base of the com-
pany. The team was able to take on the leading role of software development after a
couple of months.

The German team manager described how the development of a formal model of work
distribution marked the beginning of the cooperation. This model defined different roles
and tasks for the teams. It included the role of the (German) project manager, the
(Russian) team manager, the (Russian) software developers and the (German) testers.
Thus, the German project manager wanted to oversee the development of the offshore
team directly. In disciplinary or legal matters, the local team manager could be involved.

The German team concentrated on quality assurance, which involved the helpdesk for
customers, the testing of the developed code and the strategic planning of upcoming
versions. Thus, the definition of new features in terms of specifications and the description
and classification of newly discovered bugs were under the responsibility of the German
project manager and his team, while the offshore branch was responsible for the execution
of the development. In the daily work, the results of the tests, descriptions of new features
customers had asked for or bugs that were encountered by the helpdesk team and similar

100

7. Trust and Social Capital

Tool Type Used for

SourceSafe Version Control System Managing source-code
Product database Lotus Notes database Administrating

specifications and releases;
tracking progress of work

Development
database

Lotus Notes database Sharing templates for
specifications, bug reports
and formal work conventions

Sametime Lotus Notes plug-in Communicating via Instant
Messages; sharing screens

SQA Bug tracking system Administrating and tracking
bugs

Borland / Eclipse IDE Working on code

Table 7.1.: Tools provided for cooperation.

information would be communicated to the offshore branch for investigation. This usually
involved personal visits of the German project manager to the offshore site shortly before
new releases. During these visits, the German project manager helped handle the bugs
(usually discovered in the last minute) and discussed the features of the following release
with the Russians. The Russians in turn were to document their progresses in terms of
monthly reports and review their code on a regular basis for quality assurance.

In the cooperation, members of both teams relied on several tools, which included
a shared code repository (SourceSafe, situated in Germany) and IDEs/compilers (for
C/C++, Java and Visual Basic), a bug tracking system as well as a product and devel-
opment database based on Lotus Notes. For daily communication, a Lotus Notes plug-in
called “Sametime” provided instant-messaging and screen-sharing functionality. Same-
time allowed for the integration into the Lotus Notes environment and for encrypted
communication and recording of screen-sharing sessions for later reviews (see table 7.1).

7.4.1. Changes to the Division of Labor

According to the German team manager, the quick growth of the offshore team soon
required certain adjustments of the formal division of labor. As he explained, it had
become increasingly difficult to specify new features quickly enough to keep the growing
offshore team busy—especially, when the number of Russian developers had exceeded
the size of the German team. As the German project manager put it: “One day of
development required one day of writing specifications” (Field notes, March 11, 2008).

101

7. Trust and Social Capital

As it became harder and harder for the German team to keep up with their work,
the decision was made to change the formal division of labor. The Russian developers
were now to write the specifications themselves, which were then in turn checked by
the German team. According to a German team member, this decision was also based
on the high competency of the Russian developers, who were trusted to have a deep
understanding of the technical feasibility since they were in charge of the development.
This change allowed the German team to reduce its work significantly and to enable the
further growth of the offshore team which soon reached a size of up to 15 developers, as
the German project manager reported.

However, delegating the requirement-engineering tasks to the offshore team led to signif-
icant problems, as the Russians lacked the necessary context knowledge: “The required
information is very detailed: what does the user interface look like, what conflicts may
prevail with other features and what are special cases etc.” (Field notes, March 11, 2008).
As the project manager pointed out:

“Knowledge concerning the practical usage and the technical background
has to be combined in a creative way in order to find a solution. There is
a difference between requirements specifications [considering the context-of-
use] and design specifications, [being limited to the technical background].
The Russians tended to produce the latter” (Field notes, March 12, 2008).

According to the project manager, the problem was exacerbated by the Russian team’s
poor English skills. While only rudimentary English skills would be needed for the
coordination and control of already defined tasks, the definition of new features or the
transfer of context information would be much more complex, thus sometimes exceeding
the skills of the Russian colleagues. The German project manager explained: “The chats
took much time and it was very difficult to transfer the related knowledge. It is easy to
assign tasks or take over results, but it is hard to explain what needs to be done” (Field
notes, March 11, 2008).

On the other hand, the Russians also reported problems concerning this way of cooper-
ation:

“People [from the German team] (. . .) had no time to review them [the
specifications], so the developers started to work without acceptance of speci-
fications. (. . .) [So the] specifications did not follow the real implementation,
or it took too much time for writing specifications” (Interview, May 28, 2008).

102

7. Trust and Social Capital

7.4.2. Attempts of Standardization

Faced with severe problems of communication and knowledge transfer, the company
introduced a higher level of standardization to their documentation. Thus, standardized
forms for documents, conventions for bug descriptions, source code comments and specific
languages were developed. By providing examples and checklists, seen as help for the
Russian developers with their tasks, the company expected to reduce the amount of
communication and to ensure the quality of the produced documentation. The related
documents were stored in the development database.

However, the complexity of writing specifications in combination with the missing back-
ground knowledge still made the tasks difficult and inconvenient for the Russian team, as
the German project manager explained: “[The Russians] lacked the understanding of the
program and the context of its use and the work is very unattractive, as it is very chal-
lenging and not well supported by tools” (Field notes, March 12, 2008). In addition, the
German team reported increasing difficulties with the offshore developers, who started to
ignore tasks that were recognized by both teams as being unpleasant and annoying. This
mainly included the writing of documentation and specifications as well as the tracking
of the work with log-files.

“The Germans introduced forms to the product database in which the Rus-
sians should have entered their tasks with the expected beginning and end.
They did this, but only at the beginning of the planning stage. As everything
is very complex and unexpected dependencies occur, it is impossible to antic-
ipate everything. Thus data needs to be updated regularly, but the Russians
did not do so” (Field notes, April 12, 2008).

The following excerpt of a conversation illustrates this problem. The dialogue was taken
from the chat-log of an online meeting between the German project manager and one
of the Russian developers. The initiator of the online-meeting was the project manager
who wanted an overview of the developer’s tasks. Using Sametime, the project manager
was able to take control of the mouse and screen of the Russian developer and test the
newly implemented features in this way. The inspection was accompanied by a chat
discussion and took nearly three hours. The subjects of the discussion were the tasks
(mainly feature specifications) in the product database, which were worked off feature
by feature:

103

7. Trust and Social Capital

“Project manager: I know we spoke MANY times about it... (...) it is
impossible for me to follow progress if you don’t write comments! so please
don’t let me repeat it again :-((...)

Developer: I don’t understand what should I write here, the implementa-
tion is fulfilled in 100 %

Project manager: let me show you how i do it in my tasks.

On the shared screen, he [the German project manager] shows Dmitry
some comments he has written. He opens one of his tasks, where he has
already noted his progress like in a diary. The comments hint at problems
he encountered, and at discussions with the developers. Then, he opens the
product database and starts to comment on another task:

- started implementation
- bss [abbrev. name of another developer] send me new idea, so i stopped

implementation. see info above.

Project manager: you can decide the details in the comments. you should
however add info that may be useful to you and to other people. this may
help you keep notes on tasks (instead of using paper :-)) or for example when
you stop a task or need to restart it after some time.... you can use this to
remember what you have to do. in any case whenever you update STATUS,
PROGRESS or DATES.... then you should add a comment regarding the
reasons of the update.

Developer: o.k.” (Field notes, July 11, 2007).2

Similar discussions concerned the conduction of internal code reviews of the offshore team
as well as other examples of missing documentation.

7.4.3. Selling the Offshore Organization

According to the project manager, the problems with motivation were exacerbated when
the decision was taken to sell the branch office to the Russian team manager in 2004.
This decision was related to ongoing problems with the cooperation, as the Russian team
manager reported:

“When we started [we were] four people (...). [In] 2004, all of these four de-
velopers left the company, because they were not satisfied with the situation.

2
Spelling and accentuation are taken from the original chatlog.

104

7. Trust and Social Capital

And from my side I wasn’t able to do anything, to keep them (...). Because
I had always to discuss any small question with Berlin” (Interview, May 29,
2008).

Furthermore, the decision was related to the challenges of handling the complex legal and
organizational requirements of running an offshore branch. The communication with the
local authorities turned out to be a serious and permanent challenge for the small German
company, having no previous experience with Russian law. Hence, by changing the status
of the Russian partner to that of an independent company, the German entrepreneur
hoped to avoid many of the legal problems of managing an international company.

Thus, in 2004 the decision was made to continue the work by means of a contract between
the SME and a now legally independent Russian company. As the Russian team manager
explained, the Russians were quite happy with this change: “After we started to work as
an independent company it got much easier for me to take decisions (. . .). And before,
it took long discussions with Germany about why it was required” (Interview, May 29,
2008).

However, according to the German project manager, this change had dramatic conse-
quences for the international cooperation. The Russian team manager, now being the
proprietor instead of the employee, started to expand his company and look for new
customers in order to reduce his dependence on the German SME.

In the interview, the German team manager described this strategy as expectable and
even understandable. However, there were also unforeseen consequences, as it became
much more difficult to continue the cooperation when the Russian team manager in-
creasingly reduced his commitment to the cooperation. As finding new business partners
became the main goal of the Russian partner, the German developers again were unable
to control the Russian developers, who (from the perspective of the Germans) lacked
discipline.

Even worse for them, according to the German project manager, the Russian team man-
ager had been the most experienced and trusted team member abroad (especially since
so many others had left the company), and his change of interest led to severe prob-
lems, as the other Russian developers were unable to perform his duties with the same
professional standard:

“[The German project manager] was unhappy that [the Russian team man-
ager] was not available as a developer anymore from one day to another. As he
was the manager instead of the developer now, the relationship had changed:

105

7. Trust and Social Capital

instead of giving orders, everything was subject to negotiation” (Field notes,
April 12, 2008).

In this regard, the dependency on the Russian developers made it difficult for the German
team to enforce a reasonable accomplishment of tasks (especially of inconvenient ones)
by the Russian team. “[The Russian developer] agreed to change his behavior, but he
did not do it. And the Germans apparently were unable to convince him” (Field notes,
April 12, 2008).

7.4.4. Salaries and Infrastructure

The problems with the offshore developers hit the company at a disadvantageous point
of time. In 2006, the German company had been taken over by a holding. At the same
time, according to the German project manager, the development costs had almost tripled
compared to the situation in 2002. As both sides reported, the level of the salaries was
an ongoing field of conflicts between the sides. As the Russian team manager explained:

“Finally they realized that they paid much more than they expected. (...)
Salaries grew up too much in Saint Petersburg, and (...) I think, currently
it makes not big sense to outsource from Germany to (...) Saint Petersburg.
Because prices are comparable. (...) [And I told them] I was not ready to
continue our contract on these terms” (Interview, May 28, 2008).

Because of the poor performance in combination with the rising development costs, the
holding decided to reduce the size of the offshore team to eight—a decision, which further
increased the frustration of the offshore team, as the German project manager reported.

According to him, the reduction in the number of employees belonging to the offshore
team made it easier to coordinate the shared development, but the financial problems
prevailed. He explained that this was due to the growing importance of Saint Petersburg
as a software region. Western companies were in search for offshore developers, and
the job market was growing rapidly. The lack of social security (sometimes seen as
an argument for the attractiveness of a country) made income the only security for
employees, and thus contributed to increased salaries. Policies of the German SME to
keep salaries low were a constant field of conflict in the offshoring cooperation. At the
same time, the small team size made the company especially vulnerable to fluctuation
of team members, while the low level of specialization required extensive training of new
developers.

106

7. Trust and Social Capital

In this context, the German team reported that the Russians tried to use their influence
on the development. Conflicts started about the distribution of (inconvenient) tasks and
the technical infrastructure. For example, instead of using Sametime for their commu-
nication, the Russians started using Google Talk, and instead of using the company’s
Lotus Notes Database for shared documents, the Russians switched to Google Docs for
their daily work.

Furthermore, the Russian team decided to stop using the shared bug-database SQA in
favor of a self-developed database in 2007:

“The management of the company wants to get monthly reports concerning
the ratio of feature development against the fixing of bugs. The tools [SQA
and the product database] distinguish between both kinds, but it is not pos-
sible to (...) create an automated report, which the Russians find annoying.
Therefore, they plan to administrate features and bugs in a shared database
and have begun to develop their own, web based solution” (Field notes, July
10, 2007).

As a result, the teams had to track bugs in two parallel systems, because the German
company was reluctant to change their established infrastructure. On the other hand,
the German team manager did not want to antagonize the Russian team:

“Basically, [the German project manager] likes the idea [of a shared system],
but the report feature is not necessary because they only need rough estimates
for the taxes. But to avoid decreasing the motivation of the Russians they let
them do as they like, as long it does not involve more work for the company”
(Field notes, July 10, 2007).

Therefore, he did not intervene, but his acceptance was based on the condition that the
Russians took on the necessary overhead work of maintaining two systems. In addition,
the Russians planned to develop an import/export filter for the automatic synchroniza-
tion of the two databases.

The other changes of development tools, i.e. using Google Talk instead of Sametime and
Google Docs instead of Lotus Notes, were justified mainly with the available resources of
the developers’ computers. Since Sametime, according to the developers, needed much
processor time and memory, it was annoying for the Russians to do their everyday work.
Using the web-based Google Talk would be much more convenient for them. From the
perspective of the German project manager, the decision had another reason. According

107

7. Trust and Social Capital

to him, the Russians wanted to keep up to date with the tools they used. Thus Sametime
and Lotus Notes would not be as trendy as the newer Google tools.

7.4.5. The Termination of the Cooperation

In 2007, the size of the offshore team was further reduced to four. Finally, in early 2008
the German holding decided to stop the cooperation completely, first by reducing the
team size to two, and then by suddenly stopping the offshoring by the end of the month.
The decision itself had neither been unexpected nor was it unwelcome by the German
partners:

“All in all, everyone was unsatisfied with the state of affairs. The Russians,
because the holding paid unpunctually, the developers in Berlin, because bad
work was delivered, and the holding, because everything was considered as
being too expensive, and the prices were increasing further” (Field notes,
March 12, 2008).

Accordingly, both teams had considered the possibility of terminating the cooperation,
and the German project manager had made up a plan together with the Russian team
manager which was meant to arrange this termination to be as smooth and easy as pos-
sible for both teams. According to the project manager, this was not only due to his own
team’s interests, but also due to the personal friendship with the Russian team manager.
In this regard, both teams said they would have liked to continue the cooperation un-
der different circumstances, and they blamed the holding management as being the one
responsible for the failing of the project.

Hence, in the end, only the abruptness of the decision caught both teams by surprise.
As the Russian team manager explained:

“In the middle of December, [the German holding] said, o.k., please keep
these four developers until end of May (...). So we will have five months to
move the development from Saint Petersburg to Germany. (...) But [then]
they said that they had changed their decision and needed only two people
until the end of February. This was unexpected (...) and I had to pay salaries
for them and even (...) fire one developer“ (Interview, May 29, 2008).

108

7. Trust and Social Capital

7.5. Analysis of Articulation Work and Social Capital

While the last chapter recapitulated the course of events from the perspective of the
practitioners, we will now revisit the offshoring story from an articulation work and
social capital perspective.

As we were told, the initial phase of the cooperation was supported by a high level
of trust between the teams, which was based on the friendship between the German
entrepreneur and the Russian team manager. Furthermore, the visit of the whole Russian
team to Germany had helped to form social ties between the developers, too. However,
despite this high level of social capital, the German team wanted to stay in control of the
development as much as possible, as software development was still deemed as the core
competency of the company. The Russians, on the other hand, accepted this distribution
of tasks, as it allowed them to concentrate on the technical side of the development only.

However, in order to do so they were dependent on exhaustive specifications of features
which the Germans found increasingly difficult to afford. As the initial distribution of
labor turned out to be problematic, the German company had to learn that writing com-
plete specifications (even for the standard software product) can be as time-consuming as
the development itself (or even more). Instead of being self-explanatory and efficient, the
disjunction of requirements-engineering and coding led to severe coordination problems
which were caused by the necessary knowledge transfer and articulation work between
the teams.

As the workload of the German team increased, the decision was taken to change the
distribution of work while ensuring that control remained with the German team. The
Russians accepted this change unwillingly. Despite their good technical knowledge, the
Russians had difficulties with the task of writing specifications. As they lacked the nec-
essary context knowledge, the effort of writing adequate documentation was very high,
even more as they could not draw upon shared business experience with the customer.
As a result, the Russians felt overstrained, and the amount of necessary requests, clari-
fications, and corrections increased—classical aspects of articulation work. At the same
time, the dependency on ICT for articulation work created bottlenecks, which were fur-
ther aggravated due to language issues between the teams. While the trust between
the teams was still high, the German team attempted to improve the documentation by
introducing standardized forms for specifications and bug descriptions. However, this
attempt to support the Russian team in writing specifications did not work, as the nec-
essary knowledge exchange was still insufficient. In contrast: the efforts to formalize the

109

7. Trust and Social Capital

development turned out to be only new forms for informal articulation work, and for
related uncertainties in the development process.

Despite the related increase of informal communication—which has been found to sup-
port knowledge exchange and even conflict resolution in distributed teams [111]—the
company could not benefit from the change, because the Russians lacked the necessary
context information which was paramount to successfully accomplish the task of writ-
ing proper specifications. After all, communication needs to support the underlying
work structures of a team [110]. Instead of supporting the necessary communication
work, the management of the holding—bound by the necessity to coordinate two orga-
nizations—reacted by intensifying control and formalization. This in turn was seen as
an escalation and systematization of attempts to blame the Russians for the prevailing
problems. The social capital which had formed the basis of the commitment of the Rus-
sian colleagues started to become eroded—despite the initial high level of trust between
the sites, which rested on the personal relationship between the German project manager
and the Russian team manager.

The Russians, unable to meet the expectations of the German team, began to neglect
certain tasks which were regarded as being annoying and unnecessary, like tracking the
progress of their work. The German company had to realize that it was dependent on the
commitment of the Russian team and that formal methods of control cannot guarantee
personal obligations—or even damage them [122]. Even worse, the German team was
unable to solve this problem. In this phase of the cooperation, the still high level of
social capital apparently hindered an open argument between the teams. The German
management avoided blaming the Russians outrightly for not fulfilling their tasks, while
the Russians avoided arguments with the German side by simply ignoring inconvenient
tasks. In this regard, social capital apparently became a trap: the German manager
understood the anger of the Russian team, but regarded the current division of labor as
necessary. The Russians, on the other hand, accepted the decisions of the Germans, but
felt unable to work under these conditions.

As more and more of the Russian developers left the company, the decision was taken
to sell the offshore organization to the Russian team manager. While this decision was
approved by both sides, it became the origin of further emerging conflicts, as the coop-
eration with the now legally independent Russian enterprise made it impossible for the
Germans to use hierarchy in order to maintain their idea to substitute informal demands
of articulation work by means of intensified formalization. The loss of competent develop-
ers was a significant drawback for the company, not only in terms of knowledge, but also

110

7. Trust and Social Capital

in terms of social capital. While the initial cooperation had rested on the personal ties
which were formed during the extended personal visit of the Russian team to Germany,
the newly hired developers could not benefit from such relations. Instead, the social
ties between the teams were mainly focused on the Russian team manager, who shifted
his focus to acquire new customers instead of concentrating on the existing cooperation.
As a result, the problems with the motivation of the Russian developers aggravated, as
social capital as a means for motivating cooperation between the German team and the
new Russian developers was weak.

The German team—discontent with the development of the cooperation with Russia—felt
trapped: since none of the teams was able to work efficiently without the other team, but
every team had the possibility to jam shared projects (by ignoring or by misinterpreting
cooperation demands), successful cooperation became unlikely. Collaborative demands
on articulation work—considered to be substitutable by formalization and control by the
holding management—emerged again on each level of conflict resolution and turned out
additional strategic options for constraining the cooperation afterwards.

In this regard, the company also suffered from hard-to-anticipate indirect effects, as, for
example, the rising salaries in the region of Saint Petersburg, which were partly connected
to the boom of investments in the area and contributed to cost the inefficiency of the
cooperation and its termination. Moreover, the change of infrastructure on behalf of the
Russians was hard to foresee. The German team accepted these changes within certain
limits because they feared to further discourage the offshore team members.

Apparently, the management of the holding overestimated the possibilities of formal
control, and neglected conflict dynamics and social capital issues. As a result, conflicts
manifested when coordination necessities emerged on the basis of inter-dependencies in
the work constellation which could not be settled by controlling and formalizing the soft-
ware development. When people tried to solve the problems by means of formalizing
articulation work, the situation did not improve, but deteriorated—and was further ag-
gravated by the structural circumstances like rising costs, decreasing social capital and
the organizational consequences of the divestment of the branch office.

7.6. Conclusion

Our case study illustrates the endeavors of a small German enterprise to keep its off-
shoring project running. Looking at the related failure story from a long-term perspec-
tive, complex and inter-related conflicts within the field of articulation work become

111

7. Trust and Social Capital

visible. The German management, for instance, tried to take advantage of the relatively
low wage levels of the Russian partners whom they sought to control by determining
their work (by means of the division of labor and tool usages).

The Russian partners turned this claim around by showing that, if control was that im-
portant, there was a lack of it in the whole collaboration. How could the Russians work
well if the requirement delivered to them were not controlled (for instance, if they com-
plied with international standards)? The counter-reaction of the German management
was, again, a turn-around: if the requirements were that difficult to handle, the Russians
should write them themselves.

This shows that decisions were taken to shift responsibilities between the offshoring
partners. Therefore, articulation work obviously was not only a contingent dimension of
decision making, but (in the given case) even attributed to a history of its own in regard
of work regulations. The related ping-pong effect of control-based arguments shows that
both partners shared related convictions or, at least, did not want to question them.
Hence, the changes to the work arrangements were partly the result of continued shared
convictions about the necessities of control and formalization. But those were not the
only continuities.

While it became apparent that any new regulation led to new areas of conflict, it has to be
noted that this did not diminish the mutual appreciation among the actors. Their mutual
trust remained through all these conflicts. But what about social capital? It was defined
before as “network ties of goodwill, mutual support, shared language, shared norms,
social trust, and a sense of mutual obligation that people can derive value from” [120].
Have these ties declined throughout the diverse conflicts? The astonishing fact is that
partners from both sides still would have liked to collaborate even after the termination
of the offshoring project which was seen as a salvation on both sides.

Obviously the actors differentiated between the personality of their partners and the off-
shoring situation as a whole [122]. This implies that the management partly understood
the strategies of the Russians to take advantage of higher salaries, or at least did not see
it as personally insulting. In contrast, the Russians obviously understood the role of the
holding as a limiting factor for the German project manager. Insofar, the trust—with
regard to mutual goodwill—among the actors prevailed even through disappointing col-
laborative experiences regarding opportunistic and sometimes unpredictable behavior.
The same was true for social capital in the mentioned sense as an accumulative value.

However, the social capital, which contributed to motivation at the start of the offshoring
project, also turned out to be a hindrance at its end, as the assumed knowledge about

112

7. Trust and Social Capital

the personalities of the partners made it easier to detect structural limitations of the
situation, and as it apparently hindered an open argument about the prevailing conflicts.
This means that social capital can really be an asset in the sense that collaboration would
not be possible without it. Nevertheless, it can become dysfunctional, a mis-investment
in terms of the capital metaphor. Social capital is not only about cognition, inter-action,
and shared perceptions: it also relates to fallible investment of efforts.

This fallible characteristic of social capital is not covered in the necessary detail by Put-
nam’s tradition of social capital as “goodwill, mutual support, shared language, shared
norms, social trust, and a sense of mutual obligation“. Hence, it seems to be fruitful to
expand the given understanding of social capital by referring to Bourdieu’s [36] notion of
social capital as a means to reconstruct the risky decisions of individuals when attempt-
ing to establish profitable value chains, which can explain why social capital apparently
can change from an asset to a hindrance.

In relation to offshoring, it was found that there seems to be something like a tendency
of trust to prevail [253]. We came to similar results for social capital, but our results
also question the concept of social capital as a merely positive factor for global software
engineering. Like for trust, it seems we need a much more differentiated understanding
of social capital in the context of GSE. Without social capital, GSE as a complex form of
distributed collaboration will hardly be possible. On the other hand, formalization and
social capital are no guarantee for successful performance. As we have seen, impacts of
the international environment and contingencies of articulation work make it very likely
in GSE that a given arrangement changes quickly. Therefore, it seems to be a major
challenge for GSE to develop forms of making articulation work reflexive and operative,
for example, through globally distributed organizational learning.

113

8. Knowledge sharing practices and the

impact of cultural factors: reflections

on two case studies of offshoring in

SME
1

The impact of culture on knowledge management in international teams is an important
topic which is still not well understood. We contribute to the discussion by presenting
two case studies of small software teams involved in distributed software development.
In doing so, we illustrate how cultural and social issues influence the way knowledge
exchange is performed by analyzing four knowledge sharing practices: status meetings
and maintaining awareness, the collaborative use of shared artifacts and repositories,
spending time at the other site and human “bridges” that mediate between people and
cultures. Our findings suggest that organizational culture is permanently re-negotiated
and adjusted to fit the distributed collaboration, as the teams learn how to deal with each
other. Socialization plays a significant role in this learning process, and people are more
likely to draw on national stereotypes when breakdowns occur. The influences of national
culture and site-specific organizational culture are subtle and not easy to separate from
other factors. Based on our experience, we argue that in order to achieve an accurate
understanding of knowledge sharing practices in globally distributed software teams, these
need to be studied in context, longitudinally, and from both the onshore and offshore
perspectives.

1
This chapter has been published as an article in the Journal Software Maintenance and Evolution:
Research and Practice in 2010 [26]. Reprinted, with permission, from Alexander Boden, Gabriela

Avram, Liam Bannon and Volker Wulf, Knowledge Sharing Practices and the Impact of Cultural

Factors: Lessons from Two Case Studies of Offshoring in SME, Software Maintenance and Evolution:

Research and Practice, 2010, Copyright © 2010 John Wiley & Sons, Ltd. See appendix I.

114

8. Knowledge Sharing Practices

8.1. Introduction

The ongoing economic incentives and pressures of globalization have led to the growth
of distributed international organizations that attempt to take advantage of time differ-
ences, varia- tions in labor availability and cost in order to improve competitiveness. The
software industry is one of a number of fields that has been influenced by this increase
in globalization, leading to a variety of business strategies that attempt to harness the
possibilities of, for example, offshoring certain activities to lower-cost sites, developing
globally distributed software teams that can work on projects 24/7, etc. As software
and source code can be transferred easily between globally distributed sites, offshoring of
software development has been widely seen as a means for cost reduction and efficiency
gains. However, international teams have to cope with a multiplicity of organizational,
temporal, spatial, legal, national and cultural barriers, which can affect the devel- opment
pace and the quality of the software. A growing literature base exists on the delineation
of these problems, and attempts to resolve them, in the context of the emerging sub-field
of software engineering known as global software engineering (GSE). Problems of com-
munication, coordina- tion and collaboration in the software domain are also studied in
such fields as information systems (IS), computer supported cooperative work (CSCW)
and knowledge management (KM). However, there are still many unresolved issues con-
cerning the management of such globally distributed development efforts.

In this paper, we provide a contribution to this research field through documenting and
analyzing some of the knowledge-sharing practices and communications of distributed
international teams of software developers. We make a number of observations concerning
the problems encountered. Our approach is one that focuses on the work practices
of the different software teams, and the many and varied ways in which they manage
to accomplish their work, despite the difficulties of communicating across languages,
cultures, time and distance. Along the way, we critique certain GSE approaches to
the study of these distributed groups that overly rely on what we believe to be limited
conceptions of such key concepts as culture and knowledge.

With regard to knowledge, there has been a focus on KM approaches for understanding
the organization and behavior of distributed teams by referring to “canonical” concepts
of knowledge as a product—suggesting that most knowledge can be de-contextualized
and shared explicitly amongst teams relying on databases and ICT [22]. However, this
“knowledge as a product” view is questionable. Practice-based approaches and theories
of social learning (cf. [232]) suggest that while ICT may be well suited for dealing with
explicit knowledge, implicit knowledge cannot be shared out of context. Hence, these

115

8. Knowledge Sharing Practices

alternative approaches focus on understanding how knowledge is embedded in social
relationships and how actors actually share and put their knowledge into practice [1, 163].

One important issue with international teams is the impact of culture—under multiple
aspects: national, organizational and professional. While the topic of “culture” is one
that has captured the interest of the SE community for some time [118] most of this
work has tended to focus on attempts to apply, for instance, Hofstede’s [117] work on
dimensions of national cultures in what we believe to be problematic ways. There seem
to be very few studies dealing with the issue of culture in regard to knowledge sharing
work practices in GSE. We contribute to the discussion by presenting two case studies
of small-size software teams involved in distributed software development in the context
of offshoring. In doing so, we want to illustrate how companies deal with knowledge
exchange in practice, and how cultural influences (in a broad sense) affect KM practices,
in the particular case of small enterprises.

The paper is organized as follows: after a discussion of the related literature (Section
8.2) we introduce our cases (Section 8.3) as well as our methodology (Section 7.3). Then,
we present our findings (Section 8.5) and discuss the data in relation to our research
question, as well as the existing literature on this topic (Section 8.6) before concluding
(Section 7.6).

8.2. Related Work

In our study, we focus on work practices—with an emphasis on knowledge sharing
activities—and we attempt to provide a better understanding of the impact of the so-
cial and cultural factors on these activities. As a basis for our discussion, the following
sections are meant to provide an overview on our perspective of these concepts.

8.2.1. Knowledge in (Global) Software Engineering

The research literature offers different conceptualizations of the role that knowledge plays
in software engineering. While studies in the field of GSE are adopting both technocratic
and behavioral approaches, technocratic approaches are clearly dominating the scene
[22]. This focus on rather traditional KM concepts is problematic, as it supports a view
that considers knowledge as being an object that can be de-contextualized, captured and
disseminated “on demand”, without any loss of meaning, through information systems.

116

8. Knowledge Sharing Practices

In contrast, behavioral approaches stress that although information can be represented
in the form of explicit content, it needs to be contextualized in order to become knowl-
edge again. Furthermore, knowledge needs to be framed in order to contribute to the
expertise needed in practice [226]. Knowledge sharing, therefore, should not be consid-
ered as mere consumption of information, but as a complex and reflexive practice of
cooperating actors [1]. This is reflected in a broad set of theories claiming that action
is situated [226] and deeply connected to tacit knowledge [119], which cannot be made
entirely explicit. Huysman and de Wit have labeled this shift of focus toward tacit and
emergent aspects of knowledge as the “second wave” of KM [119]. In this socio-technical
understanding of KM, the focus moved from setting up canonic knowledge databases to
supporting informal knowledge sharing in communities with tools grounded in the prac-
tices of the particular fields [120]. Hence, knowledge is rather thought of as being socially
embedded, and appropriate strategies take into consideration the practice-related aspects
of KM. Orlikowski [166] has hinted at knowing-in-practice as an important element for
organizational operation by illustrating how knowledge was enacted and (re-) consti-
tuted through several practices in a distributed organization (such as sharing identity,
interacting face-to-face, aligning efforts, learning by doing and supporting participation).

While these analytical concepts are concentrated on the various ways of handling knowl-
edge in practice, other perspectives focus on the social structure supporting knowledge
sharing. These approaches are interested in how social relationships shape the way in
which knowledge is shared in practice. For example, Granovetter [93] has emphasized
the role of social connections for the functioning of organizations. Also Marczak et al.
[149] have shown the importance of social networks in fostering relationships, trust and
KM. Building on these concepts we want to analyze the role of culture for KM practices
in international teams.

8.2.2. Cross-Cultural Aspects of Global Software Engineering

Cultural compatibility is often described as an important factor (among others) in de-
termining the success of collaboration in international software development teams [42].
The impact of culture on software development—be it national, organizational or pro-
fessional culture—is a topic with a long tradition in IS research. The recent spread of
global development teams has spurred interest in this topic and led to a broad variety of
studies investigating the impact of cultural issues on ICT adoption, use and development
[83, 92]—and also to a discussion on the impact of culture on KM practices in GSE [57].

117

8. Knowledge Sharing Practices

The cultural terms used in the GSE literature often focus on the national aspects of
intercultural work [146, 244]. These approaches usually treat culture as being equivalent
to national identity, referring to Hofstede’s framework of cultural dimensions [117]. Thus,
one sees survey studies done on the differences in the communication style between
North American engineers and Indian engineers for example, which seem to assume that
one can work with such generic categories based on the geographic location or national
identity. Usually, such studies attempt to compare national cultures by operationalizing
variables such as “power distance”, “individualism” or “uncertainty avoidance” which are
expected to represent characteristic attitudes shared amongst the citizens of a nation
(and/or members of an organization). Within the organizational studies field, Hofstede’s
formulations have been the subject of extensive conceptual and methodological critique
(see, for example [151]). Criticisms of this approach include: (1) Culture is seen as a never
changing, monolithic concept; (2) cultural groups are seen as homogeneous, whereas the
possibility of diverging subcultures is ignored; and (3) actors are allocated to one culture
at a time, whereas different cultures are seen as being mutually exclusive. Without
wishing to be drawn into this controversy here, we do urge caution in the use of such
self-report survey instruments to investigate globally distributed software teams. The
wholesale adoption of this approach by certain software engineering researchers probably
has more to do with the relatively straightforward way in which these concepts can be
operationalized and data “captured” using easy-to-apply survey instruments, than to any
real engagement with the underlying organizational “theory”.

Other researchers have developed more nuanced interpretations of the culture concept
itself— moving from a focus on the concept as denoting a set of pre-programmed stereo-
typical behavioral responses, to an understanding of the dynamics of interaction within
and across professional, organizational and national boundaries [133, 163, 131]. In accord
with such interpretivist approaches, we propose a much broader understanding of culture:
we see culture as a shared web of meanings that shapes roles and interpretations, and
is dynamically (re)negotiated by the actors in the course of their daily work. Hence, we
are more interested in the actors” interpretations and related processes of sense making,
than in the definition of cultural particularities [86].

This broad understanding of culture entails many different layers referring to national,
professional or religious aspects, which are seen as being intertwined in a complex, non-
hierarchic way, and which can hardly be studied in isolation [83]. It also includes many
invisible aspects which cannot be studied directly, such as values, beliefs and attitudes.
However, it is possible to study culture by referring to its manifestations in the form of

118

8. Knowledge Sharing Practices

Figure 8.1.: The locations of the teams. Numbers indicate the team sizes. (worldmap by
I.K. Sankakukei, http://english.freemap.jp, distributed under a CC-BY 3.0
license).

artifacts, practices and routines (as well as the related interpretations and connotations),
which will be at the center of our attention in this paper.

In the following, we adopt this more nuanced interpretive approach to examine two case
studies of globally distributed software development. Our aim is to look at what we
can learn from practice, with a view to developing our understanding of what kinds of
software tools and organizational support mechanisms might be required.

8.3. Cases

In this section we will provide a short overview of the two case studies we have conducted
(see figure 8.1).

8.3.1. Company A Overview: Germany (Bonn)—Russia (Tomsk)

Company A is a small German software enterprise engaged in the field of statistics and
documen- tation located in Bonn. The customers are mainly German archives and muse-
ums. The company was established in 1980 and had approximately 20 employees in 2009.
In the mid-1990s, the company found it increasingly difficult to hire German developers,
as wages had increased considerably and the labor market had shrunken. Hence, based

119

8. Knowledge Sharing Practices

on a positive experience with a very talented Russian developer who did an internship
with the company, the owner of Company A decided to expand his company to Russia
and founded a branch in Tomsk, Siberia. Since then, a number of four to eight employees
have been working for Company A in Tomsk, The first project aimed at reengineering
an existing product, which had to be rebuilt in C++. Hence, despite considerable delays
in the development, offshoring enabled the company to redesign their existing products
shifting toward a modern architecture. This created a competitive advantage for the
company, which would have been impossible to acquire otherwise, as competent C++
programmers were far too expensive in Germany at that time. As a result, the coop-
eration with the offshore site was expanded to several small size projects, employing
Russian developers—working in close cooperation with a German project manager—for
customizing software products to the specific needs of particular customers. The long
lasting cooperation (more than 10 years) made Company A an interesting case for our
study.

8.3.2. Company B Overview: Ireland (Dublin)—Romania (Bucharest)

Company B was established in January 2006 in Dublin, Ireland. The two owners had
worked together before in a company providing software applications for telecoms and
media companies for four years. During that period, one of them had been a project
manager and the other (originally from Romania) had been working on his team as a se-
nior developer. In January 2006, following changes in the management of their employer,
they decided to leave their employment and set up their own company. They hired four
developers in Ireland to work on their first project, and they took on project manage-
ment positions. In an attempt to acquire other customers and expand the company,
they tried to recruit more developers in Ireland, but failed due to the harsh competition.
Therefore, the Romanian project manager identified a small company with five employees
in Bucharest, Romania, which they consequently acquired. The Romanian company is
legally independent and incorporated in Romania, but the same two managers (Irish and
Romanian) have equal shares in it. In December 2007, there were 19 people working in the
company’s offices in Romania, and another project manager (besides the Irish founder) in
Dublin, with the Romanian manager traveling between Dublin and Bucharest frequently.
In January 2009, the number of employees had grown to 26, of which 7 were based in
Dublin (including four Romanian developers). Besides managing specific projects, the
two managers are actively involved in acquiring new projects internationally. Being an
Irish-based company makes them attractive on the international arena: in doing busi-

120

8. Knowledge Sharing Practices

ness, Irish companies have the reputation of being stable and reliable, and the fact that
they have their development division in Romania is a signal for potential customers that
the company can offer quality work at a lower price than other competitors.

8.4. Methodology

The two case studies presented in this paper were investigated using similar approaches,
relying on ethnographically informed methods and based on an interpretivist paradigm.

8.4.1. Case Study A: Research Methods

The first case study (Company A) started in 2006 and has been conducted in several
phases. It aimed at understanding coordination and organizational learning in small-
sized, distributed software teams [29, 32]. The contact with the company was initiated
during a first phase when interviews with 13 managers and developers of German SMEs,
as well as four interviews with people from Eastern-European offshore companies were
held. The interviews lasted roughly 1 hour each and were used for identifying the chal-
lenges of offshoring for German SMEs, as well as some general strategies used by these
companies to deal with them.

The second phase of data collection was performed using ethnographic research methods,
comprising interviews, on-site observations and artifact analysis at Company A. The on-
site observation involved spending two and a half weeks at the company’s headquarters
in Germany. In addition, we spent 1 week on the site of the Russian offshore partner.
We also conducted 13 extensive interviews with members of the German and Russian
teams, including developers, as well as people from the management. The interviews
lasted between 1 and 2 h each and were used to analyze the different perspectives on the
work practices we identified during our observations. In order to check our findings, we
discussed the results of our research with the practitioners during a workshop.

8.4.2. Case Study B: Research Methods

The second case study (Company B) was based on the findings of an exploratory study
conducted in 2006 [11]. The 2006 study surveyed six small Romanian software devel-
opment companies and three freelancers who were involved in outsourcing relationships

121

8. Knowledge Sharing Practices

as vendors. A number of categories were identified after data coding, and these cate-
gories guided our next study. One of the conclusions regarding methodology was that
an outsourcing relationship needed to be studied from both ends, in order to get a more
objective picture.

A new study was conducted in 2007, after identifying an Irish company with a develop-
ment unit in Romania-Company B in the current study. This case study focused on the
challenges encountered by SMEs involved in outsourcing, with an emphasis on the role
of cultural mediators in distributed software development [179]. The methods employed
were ethnographically-informed: two visits and observations on both the onshore and
the offshore sites, four interviews (with each one of the two managers and two of the Ro-
manian developers), examination of artifacts. A new round of interviews was conducted
in January 2009, for getting an update on the company’s situation and practices, as well
as for validating the analysis and interpretation of the data collected in 2007 from a new
angle.

8.4.3. Data Analysis for the Current Study

The frame for this study was a result of a discussion between the authors on their ongoing
research at the time, revealing the similarities and differences between the two cases. The
data were then analyzed jointly, by taking different aspects of KM from the literature and
discussing their manifestation in each of the cases. Based on the discussions, we identified
several practices of KM which were relevant to our cases. They will be presented in the
following section, followed by a discussion of the cultural aspects entwined with KM
practices in these distributed software teams. For describing each practice, we relied
on our own observations, on what our informants said during the interviews and on the
analysis of artifacts that were made available to us (meeting minutes, chat archives, email
exchanges, requirements documentation).

8.5. Research Findings

In this section, we will connect our findings from the two cases, presenting a number of
work practices used by the two companies for facilitating knowledge exchange. In line
with our own understanding of culture, we will focus on three relevant aspects:

• Practices: How do practitioners share knowledge?

• Interpretations: What is their own perspective on how they are doing it?

122

8. Knowledge Sharing Practices

• Artifacts: What is the role of the related documents, tools and media in this regard?

Our analysis of the settings is organized around a number of topics which have been
shown to be of crucial importance in helping the distributed teams in our two cases
to coordinate their work and ensure that the work was accomplished. The challenges
introduced by having to work across cultures are also addressed.

8.5.1. Status Meetings and Maintaining Awareness

An important practice we encountered in both cases was that of regular meetings (co-
located or distributed) and status information exchanges between sites.

Company A had regular weekly meetings at its German headquarters, in order to give
people an overview on what was going on in the company, discuss current developments
and problems and share information on new technologies and tools that might be useful
for the team as a whole. The offshore team in Tomsk was holding a similar weekly
meeting. Starting with 2008, the team members in Tomsk were required to write brief
minutes of their weekly meetings (in English) and share them with the German team. As
both developers and project managers reported, information shared during the meetings
(and in form of the minutes) was not sufficient for keeping up-to-date: “(...) if all I know
(...) is that a developer has worked on this or that... this is somehow sparse information”.
Hence, the developers and project managers explained that they would rather stay aware
of what was going on by going around and talking to people—a practice mainly possible
in collocated environments. Furthermore, the short references to what was going on in
Tomsk were sometimes used as props for direct requests and communication by some of
the German developers, but the minutes were not considered as a medium for exchanging
knowledge directly.

Company B had a different approach: the two managers started every day with a status
review of all their ongoing projects over Skype. They coordinated their activities for
the day and divided the tasks. During the workday, they permanently maintained an
open communication channel. This practice was probably a result of their long-term
collaboration. Mirroring this practice, the Romanian developers working jointly with
customer development team members also maintained open channels with their remote
counterparts throughout the day. It was also customary for the managers to have regular
conversations via instant messenger with each developer in order to get updates on the
status of specific tasks.

123

8. Knowledge Sharing Practices

Status meetings are common practice in GSE; in these two particular cases, the particular
organizational cultures and power structures have led to different practices that best suit
the two companies.

8.5.2. Collaborative Use of Shared Artifacts and Repositories

For software development, be it local or distributed, knowledge related to the applica-
tion domain and the aims of the development play a very important role for successful
collaboration of devel- opers. Usually, companies use artifacts such as project plans and
specification documents as boundary objects for supporting the necessary knowledge
exchange and coordination between the customer, the manager and the (in this case
distributed) developers [29].

In the case of Company A, specifications were handled in the form of text files, compiled
by the German project managers based on the contract with the customer. Before they
were sent to the remote site, the assignments in the contract were translated into English
and commented on by the German project manager. However, these documents were
only used as rough project guidelines during the later development, and were not always
maintained up-to-date. Generally, we found very little documentation available about
the technologies deployed in both companies. As a Russian developer of Company A
explained: “(...) some specifications of features exist in the documentation (...). But
documentation—for obvious reasons—never goes into details on how things are imple-
mented. The internal architecture is not documented yet (...).”

Keeping documentation to a minimum is also one of the strategies of Company B, and like
in Company A there is a strong reliance on informal communication and direct requests
in case of problems. After reaching an initial agreement, the project manager and the
developer assigned to the task discuss the requirements with the customer (usually via call
conferences) and the developer is asked to write brief specifications in English (double
checked afterwards by the project manager and the customer) to be attached to the
contract.

In general, our informants reported that the information is fragmented across various
databases, e-mails or chat-logs and can be hard to find: “(...) one notices again and
again that information is there, but is distributed in a way that makes collating it cum-
bersome...” (Developer, Company A). Hence, in many circumstances, rather than looking
for information in the documentation, people prefer to simply ask local or remote col-
leagues. The prevailing reliance on communication in the absence of documentation can

124

8. Knowledge Sharing Practices

lead to breakdown situations when one team needed information from the other site and
could not get a prompt answer—as several interviewees from Company A told us. How-
ever, the reasons for the coordination breakdowns were assessed quite differently by the
different teams.

According to German project managers and developers, the Tomsk developers simply
did not like to write documentation. Instead, they preferred to write code considered
by them “self explanatory”, and not linger with documentation which “would be anyway
outdated most of the time”. This focus on programming as opposed to other aspects
of software engineering work was accompanied by the temptation to redesign existing
technical frameworks instead of focusing on the requested features. As a German project
manager put it: “All developers are architects-to-be, too. (...) You want to have a car
door repainted, and instead you get a new vehicle.” This situation seems to be more the
result of specialization and division of tasks between project managers, architects and
developers than an effect of the geographical distance.

The Russian developers we interviewed had a different perspective on the documentation
issue. The Tomsk team leader found that his developers wrote much more documen-
tation than their counterparts in Bonn, who often ignored these tasks. The case of a
German project manager who “forgot” to update the specifications with change requests
from the customer, making the Russian team work for several weeks on features that had
been dropped, was mentioned. Again, this appears to be due to the lack of coordina-
tion between the two professional groups rather than due to differences in the national
cultures.

8.5.3. Spending Time at the Other Site

Interviews in both companies have revealed that personal face-to-face contact plays a very
important role in knowledge exchange, confirming what the previous research on GSE
had already shown [165]. Besides building trust and getting a realistic perspective on
the skills of remote team members, personal meetings have a significant role in learning
how to approach a person from the other site. The face-to-face meetings constitute
an important basis for building social ties that can be reinforced later by exchanging
informally personal information online (about family events, kids going to college, health
issues, etc.—as mentioned by the Irish manager of Company B).

In order to deal with the prevailing communication issues between the teams, Company
A supported regular visits of their staff to the Tomsk site and also tried to invite Russian

125

8. Knowledge Sharing Practices

developers over to Germany for longer periods of time. The motivation for this practice
was three-fold: to support mutual enculturation, to support knowledge exchange between
sites and to serve as an incentive in preventing Russian developers from leaving the
company.

In Company B, brief visits of Romanian developers to customer sites, perceived as direct
contact opportunities and marking important phases in the project were systematically
organized. During these visits, developers got the chance to gain a better understanding
of the environment that their counterparts are working in, to see them at work and learn
from their practice. The Irish manager paid regular visits to the Romanian site, while
project managers and developers from the customer side also spent time in Bucharest
working with the Romanian developers. Several informants told us that once back to
their desks from visiting customer sites, they were pro-actively sharing what they had
seen and learned with their colleagues.

Generally, these mutual visits were highly appreciated by the developers on both sides.
One of the German developers of Company A explained: “I myself have realized that the
contact became much better after (some of the Russian developers) have been on site, I
would say. Often, especially with regard to technical details or to the design of a user
interface, the communication over the Internet was rather slow. And then, when we sat
together face to face, and I made a few gestures, and showed what I wanted, the un-
derstanding came much quicker (...)”. Furthermore, the visits endorse personal contacts
between teams, as formal work visits are usually complemented by social activities. For
example, one of the German project managers reported that he followed the personal
invitation of one of the Russian developers to spend a weekend skiing when he was in
Tomsk. Furthermore, during the on-site observation in Tomsk, the German guests were
invited to a bowling center during the lunch break by a Russian developer celebrating
his birthday. These events played a significant role in socialization, as both teams liked
to show their guests around during their stays.

8.5.4. Human “Bridges”: Mediating between People and Cultures

both companies, we found people bridging the two cultures who also have notable tech-
nical and domain knowledge. They were very important for managing and mediating the
communication between the teams, by working with both sides and keeping in constant
touch with the other team.

126

8. Knowledge Sharing Practices

In Company A, several Russian developers living in Germany acted as mediators between
the sites. “I am frequently getting requests from (the German manager) or from (the
Russian team manager) to improve communication. So, then, what am I doing? I am
moving around, asking people about the status of different things, the difficulties in
communication, the points where people feel dissatisfied with the other party’s work.
And then I try to create a kind of neutral technical description of the situation. It
worked so far”. In regard to his role in the company, he further explained: “I think I
became part of the German team—for sure, because my normal working routine involves
working here in Bonn with my German colleagues. I have a cultural connection and
some psychological connections with the Russian team, of course. It saves a lot of time,
effort and emotions that I understand the language, that I can hear their complaints
(laughter)”. Knowledge exchange between the teams not only required the translation of
documents, but also being aware of sensitive issues and personal preferences—requiring
excellent social skills. This is a very important task, as a Russian developer (living in
Germany at that time for a year already) explained. As an example, he reported about
an incident where the Russian team had set up a homepage in a rush, following the
request of a potential Russian customer, without consulting the German team. The new
homepage included, besides internal technical information (for example IP addresses of
internal services like the CVS), copyrighted images “borrowed” from the Internet. The
German team demanded the immediate removal of the homepage, but the Russian team
seemed to lack any understanding of the legal problems their action could entail. They
reacted by asking: “Why are you starting a war on this?” According to the Russian
developer living in Germany, this had to do with the prevailing “culture of blame” in
Company A (as labeled by our informant), which affected the interpretations of the
event in a negative way—and he had many difficulties in moderating the conflicts arising
from this incident.

In Company B, the Romanian manager played a key role in running the company; her 7
years spent in Ireland working closely with her Irish counterpart gave her the chance to
acquire valuable domain knowledge and business skills, and also have been the basis of the
shared understanding they developed. Whether spending time on the Romanian site or
traveling to acquire new customers, she had permanently an open channel with the other
manager and with the Romanian developers. During the interview, the Irish manager
spoke about how collaboration with Romania would have probably been a totally alien
idea to him 10 years ago, but having the Romanian manager on his team for 4 years before
starting the current company had given him confidence in her skills and commitment,
and consequently, in the people she recruited in Romania.

127

8. Knowledge Sharing Practices

8.6. Discussion

In the following, we will examine the role played by culture in the KM practices described
in the previous section. For each, we will examine the impact of culture as reflected in
practices, artifacts and routines. As mentioned previously, culture is an elusive concept
that can only be studied by referring to its manifestations.

Regarding the first category of practices, Status meetings and maintaining awareness, our
observations reveal how onshore organizational culture can be extended to the offshore
location. In Company A, both sites have their own weekly status meetings, but only
the Tomsk site has to write minutes in English and send them to Bonn, the team in
Bonn not having to reciprocate. In Company B, the joint practice of the two managers
of having status meetings every morning is complemented by the maintenance of open
Skype channels throughout the work day between managers, managers and developers,
developers and customers. Regarding knowledge exchange, the primary role of meetings
and supporting artifacts (meeting minutes) is maintaining awareness.

However, these meetings are also an opportunity for people to get to know each other, as
they are used as props for requests and communication between the teams. Thus, they
also allow differences to become apparent.

Collaborative use of shared artifacts and repositories: The role of artifacts and reposi-
tories is to support collaboration. But team members from onshore and offshore might
have conflicting understandings of the role of specific artifacts, the importance to keep
them up-to-date, who should contribute, who benefits. The daily exchanges of technical
knowledge between onshore and offshore observed were more or less unstructured, highly
situated and bound to the emerging work trajectories, for example when unexpected
problems occurred, or if changes in one part of the code base affected other modules.
The onshore and offshore teams used shared repositories and communication channels,
but as Krishna et al. showed [133], this cannot guarantee the success of collaboration in
any way.

Regarding specification documents, the practices are quite different in the two companies,
reflecting the differences in the organizational cultures regarding customer relationships
management. While in Company A, the relationships with the customers are handled
exclusively by the German employees, in Company B this responsibility is delegated to
the Romanian developers themselves. One interesting detail about this is that the com-
munication between the German and Russian site happens in English—none of the teams
actually using English for intra-team communication, whereas in the case of Company

128

8. Knowledge Sharing Practices

B, the usage of English is prevailing, with developers having to work directly with their
international customers. As far as Company A is concerned, the practice has clear con-
sequences for the teams, who have to deal with translations and/or communicate in a
foreign language in large parts of their daily work. This also had impact on the orga-
nizational culture, concerning the routines of handling specification documents and the
mediation of the contact between the Russian developers and the German customers.

Although the case of the Russian team working on obsolete features is an extreme ex-
ample, it illustrates how particular organizational practices look from each side’s per-
spective. When problems occur, the differences tend to be attributed to the national
culture (“Germans are like this, Romanians are like that!”), although many might be due
to the specific division of tasks (e.g., business analysts vs developers). As the Russian
developers of Company A had no direct contact with the customer, they needed clear
and detailed instructions. Their German counterparts, on the other hand, worked under
totally different circumstances, and needed to keep a close connection with the customer.
Hence, they preferred to work in an agile way, with requirements being subject to on-
going negotiation and change. Existing studies have shown that most developers prefer
to write code and not documentation [162, 143], as was also confirmed by the project
manager of Company A In a similar fashion, the tendency toward innovation and adding
state-of-the-art details as opposed to working on the features stipulated in their con-
tract is the object of another well-documented dispute between developers and project
managers, irrespective of nationality [179].

Referring to the practice of Spending time at the other site, in Company A, where the vis-
its of Russian developers in Bonn are relatively long term, the purpose is clearly defined:
enculturation, knowledge exchange, transfer of particular technical skills to German team
members. In Company B, the visits are relatively short, and are meant to give employ-
ees the opportunity to see the environment and the people they are collaborating with,
getting a direct experience of what it is like to work from there. On the other side, these
visits are also useful for perceiving and understanding the differences between sites. The
existence of social ties has been shown to improve knowledge transfer and communication
in general [131].

The practices of creating and maintaining social ties were closely related to the visits
to the other site, but also to private initiatives of developers who befriended colleagues
from the other team. These personal ties helped in bridging the distance and resolving
problems attributed by our interviewees to the cultural differences.

129

8. Knowledge Sharing Practices

In connection with the practice we named Mediating between people and cultures, we
found that social connections and human “bridges” between the teams played a very
important role for knowledge exchange (our findings being pretty similar to those of
Milewski et al. [153], Cataldo et al. [43], Marczak et al. [149], Krishna et al. [133]). It
became apparent that companies in both our cases rely heavily on some key people (called
“liaisons”, “bridgeheads” “straddlers”, “cultural mediators” by different sources), who act
naturally as information brokers and conflict medi- ators. The “bridging” roles were
mostly informal and taken on voluntarily, with these people understanding the different
perspectives of both teams and doing their best to fill in the gaps. Hence, they contributed
to the creation of shared understandings. These “bridges” were also very important for the
continuous reorganization of the shared practices, and they contributed to the mediation
of “team knowledge”, found to be very important for efficient teamwork in distributed
software development by other studies [70]. More specifically, the knowledge exchange
between teams was heavily reliant on the relationships between particular developers
who possessed excel- lent social networks in both teams. In order to develop software
in distributed teams, compa- nies need to establish shared practices and ways of dealing
with the everyday work or what Krishna et al. [133] name a “compromise work culture”,
that is permanently re-negotiated and adapted.

The practices we described were based mostly on direct or mediated communication
between people, and less on tools, repositories and artifacts. Instead of pursuing stan-
dardized and formal KM approaches, knowledge exchange amongst practitioners was
informally performed, based on triggers found in weekly meeting minutes or develop-
ment databases—which also served as props for initiating context-related coffee/lunch
discussions. This also applied to the knowledge exchange between the teams, where our
field studies showed an almost complete absence of traditional KM strategies, and a high
reliance on informal communication via instant messenger or face-to-face meetings.

In this regard, it was interesting to see that the practitioners in our study mostly re-
ferred to the national differences in breakdown situations, and that the use of cultural
stereotypes interpretations was often connected to negative interpretations and mutual
criticism. Our observations coincide with the findings of Damian and Zowghi [52], who
found that national culture was sometimes used as a “scapegoat” to explain ineffective
management practices at various levels. More specifically, in our case studies, national
interpretations were often used in terms of (over-simplified) stereotypes from an external
point-of-view, when the behavior of the other team was considered to be inappropriate
or unprofessional. The actors used stereotypical references to national culture in situa-

130

8. Knowledge Sharing Practices

Figure 8.2.: Lessons learned.

tions where professional or organizational explanations did not seem to work anymore,
i.e., in conflict situations, emphasizing the “us vs them” delineation between teams. In
this regard, cultural interpretations were used to label the others when the collaborating
teams lacked shared understandings, generating affirmations such as: “This is how the
Russians (or Germans) are like!”

8.7. Conclusion

Our stated aim for this study was to examine what we can learn from these two cases,
considered by our informants as successful and long lasting collaborations, despite the
occasional misunder- standings and frustrations (see figure 8.2 for an overview).

From what we have seen in our two cases, the organizational culture is permanently
re-negotiated and adjusted to fit the distributed collaboration; the influences of national
culture and site-specific organizational culture are subtle and not easy to separate from
other factors. Socialization and travel between sites, although they come at a cost,
have led to good results and the two companies in our study believed that they were
important elements of their collaboration. One important conclusion is that like any
other collaboration, distributed collaboration is a continuous learning process: teams
and people learn, becoming aware of the cultural differences and adapt.

The cases presented in this paper cannot be, by any means, considered representative, and
our aim was rather to illustrate the intricacies of knowledge work in a distributed software
development setting than to attempt any large-scale generalizations. However, we do
wish to point out how a recourse to explanations based on national cultural differences
are often, on closer examination, shown to have other rationales which do not draw on
such a simple conceptual framework. We have shown how incidents usually attributed to

131

8. Knowledge Sharing Practices

national culture are mostly due to the incapacity to explain the other party’s behavior
within one’s own reasoning frameworks (Nicholson and Sahay [163] have reported similar
findings with regard to knowledge embeddedness).

From a methodological point of view, we insist on the importance of looking at the prac-
tices in context, paying attention to the correlated and embedded motivations, maintain-
ing a dynamic perspective. Taking into account both the onshore and offshore perspective
is vital for gaining a real understanding of complex situations (as we have seen that the
perspectives can significantly differ between the cooperating teams). Our argument here
can be stated as follows: in studying distributed software development practices, the con-
cept of culture needs to be addressed, not simply in terms of national stereotypes, but
through the examination of diverse aspects of professional and organizational, as well as
local cultures. Investigating such issues is a difficult process, and requires an assessment
of the strengths and weaknesses of different methodological approaches. What we have
attempted to illustrate here is one way of getting into the field to study such issues.
No single approach will provide all the answers. However, we believe that the predom-
inance of GSE studies that apply survey-type instruments utilizing forms of Hofstede’s
dimensions of cultural variation is problematic for the field, as it tends to over shadow
the value of other, more interpretive approaches to understanding the myriad ways in
which communication and coordination across globally distributed software teams is af-
fected by local, organizational and professional “cultures”. It is also worth emphasizing
that the application of specific research methods and techniques is not separable from an
understanding of the conceptual frameworks within which such instruments have been
constructed. One cannot simply take instruments developed within a particular frame-
work and apply them without a solid grounding in that particular approach. There is a
danger, within the software engineering field of applying various forms of social science
methods and analyzing the “results” without such a grounding (this holds true across-
the-board, and not only for studies using Hofstede’s framework). This issue requires
more extensive deliberation and discussion within the SE research community itself, but
it obviously also affects the SE practice, where the interpretation of many research stud-
ies in this area needs to be treated with a certain amount of caution, in terms of the
generalizability of the findings, and their applicability to particular settings.

132

Part III.

Conclusions

133

9. Analysis

Part II has offered a broad view on the role of articulation work in the specific context
of distributed software development in two small- to medium-sized German companies.
This included the related articulation work practices in the field (chapter 5), the inter-
relation of articulation work and learning (chapter 6), and the socio-cultural embedding
of articulation work in terms of its relation to soft aspects like social capital (chapter 7)
or culture (chapter 8).

This chapter will discuss these different aspects from a unified perspective on the roles
and forms of articulation in the specific context of software offshoring in SMEs. The
discussion in the first section is divided into three parts (based on our perspective outlined
in chapter 3):

• Articulation work in software offshoring of SMEs;

• Articulation work and organizational learning; and

• Articulation work and its socio-cultural embedding.

In the second section, we will then discuss our findings with regard to their :

• Methodological implications for research;

• Theoretical implications for the scientific discussion;

• Practical implications for companies; and their

• Implications for the design of supportive software tools for distributed software
development in SMEs.

The chapter closes with a section on open questions and topics for further research.

9.1. Summary of Findings

This dissertation aimed at understanding management practices in distributed software
development of two small German companies. In order to understand the management

134

9. Analysis

practices of software development in the context of the daily cooperative work between
the distributed software developers, we relied on interviews with the team members
that were involved in the inter-site cooperation in both cases (even team members that
were only indirectly involved, like secretaries), as well as on on-site observations in the
companies. We also tried to involve the perspectives of the offshore developers into our
study by conducting interviews with the Russian colleagues and on-site observations in
case of Alpha in order to overcome the local perspective which we necessarily had to take
during our research (see chapter 4 for a detailed discussion of the challenges we had to
tackle in this regard).

9.1.1. Articulation Work in Software Offshoring of SMEs

In general, our research supported the view that software development is a highly situa-
ted, creative, and knowledge-intensive activity [225]. During our stay in the companies,
there were ample opportunities for us to observe articulation work practices which were
necessary for the constant (re-)negotiation of the distributed software development ac-
tivities in the field [29]. This included personal meetings for the cooperative planning
of new projects as well as ad-hoc discussions in case of breakdown situations, but also
discussions with regard to recently implemented features. Although the managers of the
two companies we chose for our observation—Alpha and Beta—made very different state-
ments during our initial interviews regarding the role of formal coordination protocols
(like specification databases and bug-tracking systems) for the successful organization
of their offshoring cooperation, we found during our participant observations that sit-
uated, informal articulation work was of high importance for the daily conduct of the
local and trans-local software development work [30]. For example, in company Alpha
project plans were usually handled in form of customer contracts that were stored as
Microsoft Word documents. These plans were very specific about the estimated costs
and deadlines, but far less specific with regard to the technical details about the imple-
mentation. Technical details were usually worked out in the course of personal meetings
between the project manager and the involved developers, during which the actors tried
to bring their different perspectives together (“What does the customer need?”—“How
can we build that?”) in order to reflexively discuss aims and problems and evolve related
solutions. The results then were written down in form of annotations to the contract
document or as personal notes, but they were not stored in any centralized, “official”
manner. Afterwards, the created documents were used by the developers as guidelines
for their work (in terms of what to develop and when). Reference to them during the

135

9. Analysis

later development by the project leaders was also possible in order to assess the state
and status of the project work, or to remind the developers of overdue features. Hence,
the documents more or less represented a rough outline of the agreed upon basis for the
projects, but their specifics usually were so vague that their fullfillment required regular
discussions and re-negotiations during the development phase, especially with regard to
the technical design of the product (see chapter 5 for details).

In company Beta, specification documents played a much more important role, as the
company tried to maintain exhaustive documentation and provided very elaborated spec-
ifications to their Russian colleagues during the first years of the cooperation. While this
practice was reported to work well for the developers, the project managers soon found
it hard to write detailed specifications quickly enough to keep the growing offshore team
busy. Given the time and effort that was necessary for working out (at least almost)
complete specifications with all the needed information like possible cross-dependencies,
GUI design and so on, the project manager soon recognized that in principle he could
also develop the software himself—especially as the Russians still had constant requests
on aspects that were ambiguous in the specifications, and articulation work was still
needed for example in case of conflicts, customer requests, or technical breakdowns (see
chapter 7 for details).

In general, it became apparent that informal articulation work played a very important
role for the practices we investigated, as the formal specifications, development models
and plans that the actors had worked out to guide the development always needed to
be interpreted in order to put them into practice [84]. While this did not mean that
everything was negotiated in an ad-hoc fashion, it forced the actors to remain in con-
stant contact and re-negotiate plans in case of apparent gaps or emerging problems (see
above). In the specific cases of software offshoring we observed, the different contexts
the cooperating teams were working in could lead to problems in this regard as the
distribution sometimes caused misunderstandings and deviating interpretations of the
tasks (and plans) ahead. These misunderstanding often were difficult to re-adjust or
even identify due to the limited inter-team awareness as well as the socio-cultural and
practice-related barriers between the teams. For example, in case of company Beta, the
Russian colleagues lacked the necessary background knowledge to anticipate the needs
of the users. While it was possible to communicate the function of the software by the
written documentation, the forms of interaction with the software were much harder to
specify. As the Russians lacked the necessary knowledge about how the software was
used by the customers, they found it very hard for example to design usable interfaces.

136

9. Analysis

Hence, it turned out to be problematic in both cases to come to a shared understanding
regarding priorities and tangible implementations of development tasks.

With regard to the business models of the companies we investigated, their high service
orientation further aggravated this effect because it made the software development even
more case-specific and dynamic, as frequent change requests and highly specific user
domains called for constant re-adjustments and re-negotiations of aims and even of basic
conditions of software development work [32] (see chapter 6). As the company aimed to
establish long-term relationships with their customers, developers had to be very open
towards change and feature requests. These were often handled in the context of service
contracts, which also included support for appropriation and tailoring of the software
products the company developed. This demand for flexibility was further aggravated as
the company followed a kind of unstructured approach towards software development,
shifting developers between projects and changing priorities in a very flexible manner.
Hence, project work had to be constantly re-articulated as plans and responsibilities
were shifting all the time, leading to changes and conflicts (see chapter 5 for details and
a comparison of the different approaches the companies followed).

In the case of Alpha, for example, the specific domain of the company demanded a high
level of domain knowledge in order to develop solutions that fitted the work practices of
their customers: archivists and curators of museums (which both practice specific, highly
specialized and historically grown working cultures in Germany). It was very interest-
ing to see that despite the cooperation was performed in English during the personal
meetings, the Russian developers used archivist’s terms like “Verzeichnungseinheit” or
“Bestand” during the discussions with the German project mananger (and also in their
notes). As they used these terms without further explanation, it can be concluded that
they understood what these term were referrring to, and that the Russians had obtained
a general understanding on how a German archive works.

In order to develop innovative and specialized software, the cooperating teams in Ger-
many and Russia had to bridge the distance between the two companies, bringing to-
gether their different competencies and perspectives. In this regard, the distribution of
responsibilities (German “project managers” vs. Russian “expert technicians”) also re-
sulted in a distribution of competencies which required a constant and highly complex
knowledge exchange between the teams with regard to finding a match between the usage
context of the software to be developed (the domain of the German side) and possible
technical solutions (the domain of the Russian side). In order to accomplish a shared
understanding, both companies preferred personal visits [29]. For example, in case of

137

9. Analysis

company Alpha the German project managers visited the Russian company two times
during our study, while the Russians also visited the German company twice. Further-
more, the German manager visited the offshore site at least once a year, much like in
company Beta where the German project manager had a similar schedule (always before
a new version of their product was to be released). However, these occasions still were
constrained by financial and legal limitations as well as by conflicts with other duties
(fixing bugs in the last minute) and personal aspects like the unwillingness to travel on
part of some employees.

The daily articulation work of software development that was necessary to re-adjust
project plans and to deal with the necessary coordination of tasks and unforeseen contin-
gencies like new found bugs was mainly performed in a written manner, usually relying
on Instant Messengers or emails (the latter of which were mainly used for more formal
matters and when time differences did not allow for synchronous communication). In
this regard, the actors reported a preference for written communication over phone calls
because writing in a foreign language was easier for them than speaking, as they said.
Being able to use dictionaries and translation tools for looking up unknown terms was re-
ported as a major advantage of written communication. One developer of company Beta
even reported that he had once observed a Russian developer writing Instant Messages
in Russian, then copying his text into a translation tool, and copying the English result
back into the Instant Messenger, finally checking for errors before he sent his answer—
a fairly complicated and cumbersome practice in his eyes, but it allowed the Russian
who apparently felt not very secure in English communication to discuss his work with
the German project manager. In this context, practitioners said they liked that Instant
Messages were rather informal compared to emails, and that they granted enough time
to come up with formulations and to correct errors before sending the message, thus
avoiding unintentional and awkward communication breakdowns. Further advantages
were the possibility to archive discussions in personal chatlogs and email repositories,
as well as allowing to share links, code snippets, and specifications (just to name a few
examples) easily by copy and paste. Last but not least, the developers liked the low
level of intrusiveness of Instant Messengers and emails, which would allow the recipient
to finish a task at hand before answering the message; this was especially preferred by
developers who reported a high level of immersion when working on code or thinking
about complex development problems [25] (see chapter 8).

For the organization of the development work, centralized repositories and databases also
played a significant role in both cases. For example, company Alpha used the centralized

138

9. Analysis

version control system Subversion (SVN) for managing their codebase, as well as the bug
tracker Mantis for managing bugs and feature requests. As the code development of the
larger projects was mainly carried out by the Russian colleagues, the SVN was operated
in Tomsk for performance reasons. The SVN was commonly used by all projects of the
company that involved code development. The use of Mantis, on the other hand, differed
between the various projects of company Alpha, depending on the project managers who
sometimes preferred more lightweight solutions in case of smaller, local projects (see
chapter 5). We also observed different assessments of tool usage in case of company
Beta, where the Russian developers wanted to deploy other tools than the Germans,
even though the company had clear guidelines about the tool infrastructure (see chapter
7 for details on this argument between the teams).

During our on-site visits, we observed again and again that the use of formal coordi-
nation tools like bug tracking or version control systems was highly embedded in infor-
mal communication that preceded and followed the interaction with these coordination
mechanisms. For example, project managers and developers used to discuss questions
like “What is the status of bug number X”, “What should I do first: this or that task”,
or “Can you help me with this task please, I need help!”. The information stored in the
formal databases was thus used by the actors to refer to current tasks and breakdowns
(in case of bugs), but the context of the information needed to be discussed before the
related work could actually be performed.

The reason was that unexpected contingencies like new found bugs made it necessary to
re-articulate projects and plans in a fashion very similar to the one described above. As
project managers (responsible for the communication with the customer and the planning
of the project) often were not able to assess the severity and technical background of
a breakdown situation, they needed feedback from the Russian developers in order to
decide how to deal with it. The Russians, on the other hand, often lacked knowledge
about the business background (such as priorities, context of the customer relations etc.)
in order to assess which task had the highest priority, why a technically interesting idea
had sometimes to be dropped in favor of a far less stable one, and how much time and
resources would be available for them to finish the project (an aspect which could change
all the time due to conflicts with other projects etc.). Information like this ususally was
not stored in the coordination tools because it was regarded as the (necessary) context
of the task but not as part of the task itself. Nevertheless, it was of utmost importance
to know about these issues in order to articulate the development work.

139

9. Analysis

Furthermore, our study showed that the information stored in the systems often was
out of date because the developers did not update the status of their tasks frequently
(especially in critical situations like when a project was close to finish and a lot of bugs,
often found in the last minute, had to be fixed). This was especially the case in company
Beta, which saw the coordinative tools not only as a manner for coordination, but also as
a tool for controlling the progress of the development work. However, as this aspect was
only important for the German project management, Russian developers were reluctant
to maintain this control function by constantly updating their tasks in the systems, thus
making it necessary for the German project manager to constantly request their status
as he could not trust the state that was represented by the task overview in the bug
tracking system [31] (see chapter 7, see also [84]). We will come back to these socio-
cultural aspects in section 9.1.3.

The formal systems thus often served as a means to document the result of informal
articulation work, like for example the outcome of the discussion of a new bug (including
deadline for fixing and results of the attempts to reproduce it) or the request for a status
update. Practitioners often simply copied and pasted sections of their chatlogs to the
systems, thus storing the personal logs for later retrieval by themselves or other team
members. In general, individual tasks were rather articulated in an informal, direct
manner, while the formal systems were mainly used to document agreements, trace the
(rough) trajectory of the project, or represent the current state. While these coordination
mechanisms still had a very important role in serving as maps or scripts for team members
[197], they were not self-sufficient and highly related to the informal coordination work
that was going on “invisibly” between individual team members in order to negotiate the
context specific information that had to be discussed in order to take a decision or to
come up with a plan. In this regard, the necessary articulation work for making use of the
formal coordination mechanisms was related to many aspects of learning and knowledge
exchange between the teams, as the organization of their work required knowledge of the
particular background of a situation in order to find a practicable solution for a problem.
Related discussions circled on questions about the current situation of the company,
available competencies of team members, the needs and expectations of the customer,
the potentials of the technical frameworks that were used, possible conflicts with other
projects, available funds, and legal backgrounds (just to name a few). For instance,
in company Alpha a project leader said during the interviews that it would sometimes
be hard to keep the Russians on track. Due to their technical focus, they would often
like to rebuild existing software in order to create a technically sound solution, but
without taking into consideration whether the company could afford this extra work or

140

9. Analysis

the customer would be willing to pay for that. This often caused discussions about what
was possible in the context of a project, and what was not—mediating between technical
and business aspects of the cooperation (as it would sometimes make sense to re-engineer
a piece of software even though the company would not earn money by it directly, for
example in case that it would benefit possible other projects that relied on the same code
base, but often made no sense from the short-term perspective of the daily operation
of the company). Articulation work thus stood in a dialectic relationship to learning
and knowledge exchange, which on the one hand was necessary for the articulation of
software development tasks (for example for planning a project) but on the other hand
was stimulated by the articulation work going on in the project (for example with regard
to possible synergies or new project ideas).

9.1.2. Articulation Work and Organizational Learning

With regard to the relationship between articulation work and learning discussed above,
our analysis of the two cases showed that articulation work was not only important
for the operational aspects of single-loop learning (“Are we doing things right?”), but
also for the strategic level of double-loop learning (“Are we doing the right things?”)
[9]. For the specific context of software offshoring in SMEs, our research showed that
the modularization of software development work in terms of dividing responsibilities
between German project managers and Russian programmers could lead to problems
in practice. As planning and coding were handled locally as far as possible, this form
of distribution required less inter-team articulation work, thus limiting the awareness
between the teams (and thus the indirect learning possibilities at the inter-team level
in terms of over-the-shoulder learning, see [234]). Furthermore, as informal articulation
work was mainly performed on a personal level which often was “invisible” even for the
local team, the situated forms of knowledge exchange between the teams were reduced
further [32] (see chapter 6).

Generally, both cases showed that situated, spontaneous learning often was initiated in a
proactive fashion by developers who showed an interest in what was going on in the com-
pany, or in the course of overhearing something that was discussed in the coffee kitchen
or at an adjacent desk. As both companies only consisted of two or three office rooms for
three to five developers as well as smaller rooms the doors of which remained open most
of the time, these incidents were common in the local offices. While explicitly organized
occasions for learning like weekly meetings or project related workshops were reported as
being useful for getting an overview, practitioners reported that their benefit for learn-

141

9. Analysis

ing was limited as they were often too constrained for useful discussions or focused on
details that were not relevant for all participants [26] (see chapter 8). Especially the
German developers of Alpha who were not involved in project management criticised the
meetings as more or less irrelevant for their work. This was reported also with regard to
the product and development databases that company Beta had introduced (see chapter
7). According to the practitioners, information provided there often was too detailed
or too generic to be useful with regard to specific problems or challenges the individual
team members had to face in their daily work. This also related to the necessity to get
an overview of the overall situation in the companies, which was hard to get by relying
simply on the formal occasions and tools, as was discussed earlier [24]. Hence, instead
of relying on the fragmented and often outdated information in the information systems,
practitioners usually asked colleagues directly or walked around the company to get an
overview about what was going on, often meeting in the coffee kitchen which turned
out to be an important place for knowledge exchange (and was also equipped with a
whiteboard in case of company Alpha). Information picked up during the meetings or
in the information systems was used for discovering new topics in the company or find-
ing out who could be asked regarding certain problems, but the meetings did not serve
as opportunity for the knowledge exchange itself (see chapter 8)—instead, knowledge
exchange was organized in a fashion similar to the formal and informal aspects of artic-
ulation work discussed above, with practitioners asking colleagues directly for advice in
a situated fashion.

As these practices mainly worked locally, knowledge exchange and learning between the
cooperating teams was limited to the aforementioned chats as well as the personal mee-
tings between the sites [25]. The latter turned out to be highly important for the inter-
team learning both at the operational and at the strategic level. Apart from planning
new projects, creating a shared understanding (which also made the later interaction via
chats easier) and establishing a technical basis for the cooperation, we were also able to
observe incidental knowledge exchange with regard to the appropriation of software tools,
technologies and development practices [27]. For example, in case of company Alpha we
were able to attend a two day meeting between German and Russian developers. The
aim of this meeting was to discuss the benefits and possible risks of migrating a product
developed by the company from C++ to Java—a transition which had been suggested
by the German manager as a strategic direction, because the customers often requested
platform independent tools. As the transition had strong implications not only with
regard to the possibilities of the two programming languages, but also for the deployed
development tools (switching to the IDE Eclipse), the developers spent several hours

142

9. Analysis

discussing possible strategies, advantages and disadvantages, as well as possible problems
which were mainly related to the high efforts of re-engineering the whole platform. This
meeting was assessed as being very valuable and important by the participants, as it
allowed them to spent much time in discussions and exchange knowledge that was highly
relevant for their current (and future) work. At the same time, such occasions also were
reported to be important for the practitioners who saw them as a good opportuinity to
learn from each other, benefiting from the experience of senior team members or getting
an overview regarding the state of other projects in the company (see chapter 8 for a
detailed discussion of this practice; see also [27]).

However, such meetings were relatively sparse as travelling is expensive and usually
limited to one or two developers or project managers. This limited the possibilities of
knowledge exchange between the teams considerably and turned out to be problematic
especially with regard to the strategic learning capabilities of the companies. As outlined
above, both companies felt that they needed to exchange more business related knowledge
with the Russian colleagues, but had problems to achieve this in their daily practice.
At the same time, in technical issues both companies felt dependent on their Russian
partners to some extent, as the Russians were responsible for the main part of the code
development. This was further aggravated by the flexible work contracts in Russia, which
reduced the stability of the Russian team. Hence, in company Alpha the surprising
resignation of one of the Russian developers (who had been offered a more lucrative job
by a large Russian corporation) was perceived as a great loss of competency, although this
developer had only worked for the company for one year. In order to prevent a slow but
steady loss of competencies (also in view of a possible debacle like the loss of the Russian
senior developer which was perceived as a major threat to the company), the manager of
Alpha established the practice of inviting capable Russian developers together with their
families to Germany for longer periods of time, in this case for two years. On the one
hand, the possibility to be invited was meant as an incentive for the Russian developers
to stay with the company and work hard; on the other hand, the manager hoped to be
able to initiate an exchange of knowledge from the Russian technology experts to the
local team members, who often had not worked with the code in their function as project
managers for long periods or were new employees that needed an introduction to the
frameworks and code base of the company [26] (see chapter 8). During our research, the
company also thought about sending a German project manager to the offshore site for a
similar period of time in order to exchange business-related knowledge with the Russian
colleagues; due to the financial crisis in 2010 as well as personal reasons, this exchange
has not been initiated so far.

143

9. Analysis

Apart from such attempts to intensify personal contacts between the teams, we were not
able to observe any systematic form of organizational learning in the companies [32] (see
chapter 6). The dependency on written communication constrained the possibilities for
learning between the teams considerably, limiting it to concrete operational problems and
basic articulation of individual tasks that remained more or less invisible at a team level.
While the practitioners were aware that their inter-team cooperation was lacking such
aspects to some extent, for example with regard to limitations of their formal coordination
tools, and even though they had some ideas as to what the reasons for these problems
were and how they could be solved, they lacked a way for systematically working on such
problems and, more importantly, implement the related solutions [28] (see chapter 4).
This limited the possibilities for organizational development of the two companies in our
study considerably; while company Alpha sticked to their form of adhocracy with all the
related problems and the high overhead of articulation work, company Beta encountered
a drawback due to their failed attempt to restructure the organization towards a closer
cooperation between the sites (see chapter 7.3 for a detailed discussion of these incidents).
This situation was partially related to the necessities of the daily work which offered not
much room for strategic considerations as prevailing operational problems often had
priority and called for pragmatic solutions; on the other hand, the socio-cultural aspects
of the cooperation made it hard even to broach these issues across team borders or to
implement solutions in the distributed cooperation due to the limited possibilities to deal
with the necessary articulation work.

9.1.3. Articulation Work and its Socio-Cultural Embedding

During our research, we found that articulation work practices often were affected by
the socio-cultural relations in the field, which turned out to be a dominating factor for
the cases of inter-organizational cooperation we investigated [25]. In this regard, trust
and social capital turned out to be important (and necessary) assets for the companies,
especially with regard to the dependency on the expertise of the Russian developers in
case Beta (see chapter 7 for a detailed discussion of the role of trust and social capital
for case Beta). The practitioners considered this aspect as very important, as both coop-
erations where based on personal contacts to offshore developers before the cooperation
was started. This finding is in line with the results of the initial survey amongst German
SMEs, where most of the companies preferred similar strategies. Furthermore, most com-
panies said that they would have actively looked for nearshore locations as opposed to

144

9. Analysis

offshore countries like India or Asia because of the perceived greater cultural adjacency
between Germany and Russia (see chapter 5 for a discussion of this aspect).

Culture also turned out to be an important factor in the two case studies which affected
the cooperation in terms of how the members of the cooperating teams dealt with each
other. However, related conflicts were not so much based on the assumed different “na-
tional” cultures between Germany and Russia but more on the different perspectives that
were outlined above as well as the asymmetric power relationships in the field. These
often led to misunderstandings and micro-political struggles that made it hard for the
actors to articulate projects and learn across the borders of companies [26] (see chapter
8 for a discussion of the role of culture in case Alpha). Different assessments on what
constituted “good” software development practices, the use of “appropriate” tools [27], as
well as language problems which made it hard to plainly discuss delicate topics due to the
limitations of written communication [165] played important roles in these struggles. For
example, in case of company Alpha the Russian project manager (who was responsible
for one of the projects) and the German project managers (who cooperated with Russian
developers in the context of other projects) expressed very different assessments of “good”
practices for software development. While the German project managers stated that the
Russian developers would be hesitant to document their work because they would think
that good code was self-explanatory, the Russian project manager explained that the
Russian team would maintain a very detailed documentation of their work (in contrast
to the Germans, who would not be interested in rigor documentation). During the ob-
servations, these different assessments could be related to the fact that documentation
in both teams often was kept in form of private notes, which only sometimes were stored
on a shared FTP server (usually when the German project manager requested it). Even
where public information was present, actors doubted that it would be up-to-date and
thus preferred to ask colleagues directly for assistance instead of relying on the documen-
tation (as outlined above). Due to the private character of documentation, no member
of the teams had an overview over the state of the documentation; at the same time, the
private character made developers hesitant to publish it in some sort of central reposi-
tory because it required some effort to bring it into a format that was self-explanatory
or even understandable for colleagues. Similar issues were observed in case of company
Beta with regard to the use of their centralized development and product databases (see
chapter 7).

Regular personal visits as well as the attempts to initiate a long-term exchange of em-
ployees were very important practices for dealing with these problems, as they allowed

145

9. Analysis

practitioners to obtain a better understanding of the work context and perspective of
the remote team during their visits. Especially in the case of company Alpha, a Russian
developer who visited the German headquarters for two years, functioned as a “bridge”
between the two cooperating companies [153], not only enabling the trans-organizational
knowledge exchange but also mediating micro-political conflicts that prevailed between
the two teams [24]. As the senior Russian developer, he had a deep understanding of
many of the projects that had been handled by the Russian colleagues. Thus he was
asked to introduce German developers to the different products of the company, sharing
his knowledge with his colleagues to bring back important technical knowledge to the
German team (as was explained above). At the same time, he often was asked to me-
diate in case of conflicts with the Russian team, because the German colleagues where
often hesitant to talk plainly to the Russians about such controverse issues. An example
for such an incident was the conflict about the homepage of the Russian company (see
chapter 8 for an analysis).

Generally, the social relations between the teams were important factors for articulation
work [31]. As the Russian team members as contractors were constantly in a weaker
position when it came to conflicts with their German colleagues, formal coordination
mechanisms were sometimes regarded as “annoying” duties or single-sided means of con-
trol without much practical benefits for the work of the Russian developers. For example
in the case of company Beta, the German project manager wanted to control the progress
of the development work by checking the status of tasks in the bug tracking system, and
thus requested status updates in case of delays. As discussed above, these control mecha-
nisms were not only considered to be annoying by the Russian developers, but also turned
out to be deceptive. As the Russian developers were reluctant to maintain their tasks
in these systems despite regular admonishments from the German project manager, the
systems often were not up-to-date, and constant informal communication was necessary
to get an overview of the project status. This example illustrates a constant, underlying
conflict of interests: the German companies wanted to keep an overview of the progress of
the work in the remote team in order to identify possible problems and prevent the mis-
use of resources at an early stage. At the same time, the Germans feared to demotivate
their Russian developers by enforcing duties and directions that were perceived as being
annoying. As they were not able to enforce their preferred coordination mechanisms
without putting the whole cooperation at risk (which depended on the motiviation of
the Russian developers), the German project management needed to trust their Russian
employees to some extent. The Russian developers could easily sidestep the available
control mechanisms by simply ignoring them, thus, the German management had to ap-

146

9. Analysis

peal to the Russian colleague’s willingness to cooperate. As a consequence, the offshore
cooperation stood in a field of tension between the need to control and the need to trust
the remote team members, thus making social capital an important asset for the coop-
eration. At the same time, as we have shown in case of Beta, the social capital was not
able to save the cooperation although it remained strong despite the prevailing problems
(see chapter 7 for a detailed analysis of the role of social capital in the offshoring failure
story of company Beta).

For similar reasons as outlined above, practitioners often avoided discussing prevailing
problems in the cooperation. On the one hand, such discussions often led to very emo-
tional arguments between the sites (due to the limited possibilities to communicate, see
above). As such arguments were regarded as threats to the conduct of the daily work,
the German clients tended to avoid such discussions, fearing to demotivate their Russian
contractors. On the other hand, different perspectives and assessments were often related
to “cultural” differences between the teams, for instance regarding different assessments
about what characterizes “good” software development practice or how to deal with crit-
icism (see chapter 8). Our analysis showed that these references to a perceived national
culture often were used as a self-recursive, stereotypical pattern of explaining breakdown
situations which could not easily be solved by referring to “rational” arguments [26]. “Na-
tional culture” thus was used as an universal argument for explaining prevailing problems
that the actors found difficult to solve, thus interpreting such struggles as external limi-
tation of the cooperation that could be mediated, but not be eliminated—and needed to
be accepted as given. For example, employees of Alpha explained that Russians would
always react very sensible to straightforward criticism, while German developers would
be much more open in that regard. On the other hand, Russians told us that they
would get criticized all the time, and that they would hardly get any positive feedback
when something went well. In combination with the asymmetric power relations and
the different perspectives outlined above, this indicates that the perceived sensitivity of
the Russian colleagues was not a matter of any “national” culture (as some of the Ger-
man colleagues assumed), but rather a matter of the context of such situations and the
weaker position of the Russian colleagues in case of conflicts (see chapter 8 for a detailed
discussion of this aspect of Alpha’s cooperation).

147

9. Analysis

9.2. Implications

9.2.1. Methodological Implications for Research

Apart from findings regarding coordination and learning in distributed teams, our study
revealed implications with regard to the methodological aspects of researching into dis-
tributed software teams. As we have pointed out above, conducting research in the
context of Global Software Development can be subject to similar difficulties as the de-
velopers have, for example with regard to the limited awareness of the remote site. The
highly political context of distributed development work as well as the challenge of get-
ting access to the field in the first place are further challenges in such fields. These issues
are not new for ethnographers as they apply for other fields like virtual organizations
or communities in general, too [112, 245], but they have hardly been discussed in the
context of software engineering research so far [173, 28].

As we have shown in our analysis of the research methodology, the role of the researcher
in the field can be an important pivotal point for the whole research project. In our
project, taking the role of a learning mediator allowed us to get a better access to the
company, but at the same time it exposed us to the micro-political quarrels between
the sites. At the same time, we received very positive feedback during the workshop in
company Alpha. This reassured us that the general aim and scope of our project was
valuable for the practitioners, even though the differences between the academic world
and the software company made it hard to align our research to the always changing
interests of the practitioners (see chapter 4 for a discussion of this aspect). In a way, the
researcher can be seen as a bridge between the cooperating teams as well as between the
management of the company and the developers. Due to the high impact of social issues
that we have encountered in our study, we conclude that doing qualitative research in
GSD is not only a methodological problem but also a socio-cultural issue between the
role of the researcher and practitioners in distributed cooperations—an aspect, which is
important to keep in mind when doing research in this field (as it is easily overlooked).

While the inherent problems of doing research in GSD can probably not be solved gen-
erally, our experiences hint towards several implications for entering distributed fields:
first of all, it is important to spend enough time in the field to fully understand the
phenomenon to be investigated. As we have seen, the practices of managing distributed
software projects can be quite complex and volatile, and they include the use of various
interrelated software tools and communication channels that can be hard to grasp. At
the same time, as German team members concentrated on the management side of the

148

9. Analysis

software development work, our case studies were affected by a clear “abundance of code”,
which often was referred to, but seldom touched by the actors during our presence in the
field. We thus needed much time and careful analysis in order to understand what was
going on in the projects, especially as the actors themselves often had problems to keep
an overview (see chapter 8) and broach these issues during interviews [225].

While the time problem seems to be a trivial point that is well known in the literature
(see for example [176]), distributed fields often further reduce the possibilities for research
because multiple sites have to be covered [245]. While it would be possible to concen-
trate on one site only, such an approach would usually be biased due to the different
assessments and perspectives that we have outlined in the previous sections. As we have
seen with regard to how practitioners presented to stereotypical cultural explanations for
seemingly unexplainable organizational problems (see chapter 8 for a discussion of this
finding), it turned out that it was very important to look at these issues from different
perspectives in order to fully understand them. Hence, we conclude that in order to
get an analytic understanding of distributed software development even in such small
teams, it is not enough to only focus on one team [26]; one should always also try to
understand the perspective of the cooperating team(s). As our example showed, even
though getting access to remote teams can be quite hard, there is much to be gained
because many assumptions on the particularities of international cooperation turn out
as far more complex when they are analyzed from multiple perspectives. Furthermore,
practices need to be studied in context, and should not be reduced to oversimplified “best
practice” examples [166]. At the same time, complex concepts like “culture”, “trust” or
even “coordination” need to be carefully applied in order to avoid falling for stereotypes
and biased views on the practices unders study.

9.2.2. Theoretical Implications for the Scientific Discussion

In his article “The articulation of project work” from 1988, Anselm Strauss introduced
a generic framework of project dimensions for analyzing articulation work [221]. It is
not surprising with regard to this framework that the software development we found in
the field needs to be interpreted as consisting of complex trajectories that involve many
non-routine tasks. The specific situation of the small to medium sized companies we
investigated in terms of their highly distinct market niches and service orientation made
it necessary to keep up a high amount of flexibility [160, 78]. This made the projects
also very complex as this demand required ample articulation work for constantly dealing
with unforeseen change requests as well as overlapping responsibilities and contingencies

149

9. Analysis

between different projects. Despite the fact that the involved teams only consisted of
up to about 20 developers, practitioners found it hard to implement a stable division of
labor and clear-cut responsibilities (even in the case of company Beta which struggled
to implement a more formal way to deal with their software development, and failed in
the end). Instead, as the projects at hand were constantly changing and highly volatile,
informal ways of dealing with software development with a very low amount of rou-
tinized procedures and formal divisions of tasks and responsibilities were upheld by the
companies [29].

It was especially the very vision of the product to be developed with its plethora of
(often contradictory) interpretations, implications and dependencies that made it hard
for the practitioners to treat software development as a standard routine. Even though
many procedures of software development could be seen as routine tasks—such as filing
a bug in the system or committing changesets to a source code repository—the higher-
level project visions that were changing all the time in combination with the always
prevailing contingencies (related for example to the business strategy) required a con-
stant re-negotiation of the cooperation arrangements and made it hard to come up with
standardized strategies for dealing with the daily work [7]. Hence, as the interpretation
of what was sought to be the shared vision of the product was far from being stable and
hardly documented, articulation work was needed for constantly (re-)creating common
ground between the actors and making the whole cooperation possible. While this is in
line with the literature on the general use (and related limitations) of formal coordinative
tools for software development [94], our findings revealed particular aspects of the use of
such systems in the context of small enterprises which have hardly been discussed in this
regard: especially in company Alpha, shared specifications turned out to be less technical,
but more conceptional in the given case. This means that the level of detail was adjusted
more to the perspective of the customer than to the perspective of the developers that
had to implement the given features at a technical level. This finding extends current
findings with regard to the evolution of “inofficial” tools around the use of “formal” IS
in the context of large software engineering projects [101]. While general aspects like
which technology to use and what features to implement at the functional level were
documented, the technical aspects of the implementation (user interface design, branch-
ing or re-use of existing code, algorithms etc.) were documented only in the context of
written notes, and very roughly at the beginning of a project—while the particularities
were negotiated later in the course of the project (orienting on the general agreement
with the customer about the schedule and development aims). The stability of the plans
was upheld only towards the customer who wanted a clear agreement on what was to be

150

9. Analysis

developed—but apart from that, specifications were neither documented nor stable, and
could change according to emerging events and ideas of the developers and the project
leaders in the course of projects. This finding opens an interesting perspective on the
design of central repositories for managing project artifacts as suggested by the literature
[51]. At least such repositories should offer the possibility to add personal notes to the
artifacts and take into account the different levels of detail required (see chapter 9.2.4
for a discussion of the design implications of our study).

In both cases, the specific context of offshoring introduced new challenges to the prac-
tices of articulating software projects. These were related to the communication barriers
and the limited awareness between the teams [70] but also to the socio-cultural differ-
ences that we found in the field [26]. Even in company Beta, which followed a much more
plan-based approach as compared to Alpha, the premise that software development could
be organized by pre-defined plans turned out to be deceptive [10]. The development (in
terms of programming) could not be isolated from the planning (in terms of requirements
specifications), because the plans and specification documents always required interpre-
tation with regard to particular aspects as outlined above. While this is in line with
the literature on plans and situated action ([226, 199]), the specific case of offshoring in-
troduced new challenges to this general problem: articulation was needed in this regard
to mediate the different perspectives and contexts that the teams were working in (as
a kind of agency), in order to realign interpretations of plans and deal with emerging
contingencies. New rules and tools only introduced new possibilities for interpretations
in this regard, as the example of company Beta showed, without solving the underlying
problems of the distributed cooperation [31]. For the same reason, the standardized co-
ordination mechanisms that the companies used were only partially suited for dealing
with such problems as they mainly focused on the managing task-to-task and task-to-
person dependencies but did not cover the context-related aspects of articulation work
[220]: the person-to-person dependencies and the organizational setting of the interac-
tion, the privileges and prejudices involved, possibilities of regulating conflicts of interest,
as well as impacts of the function of the enterprise in the socio-economic system at large
[12]. Especially for software development work, these aspects turned out to be of utmost
importance as they represented the necessary “common ground” for interpreting the infor-
mation stored in the coordinative artifacts in order to establish patterns of collaboration
that did not require intensive explicit communication. As the literature suggests, core
developers played a very important role in this regard as the drivers of productivity and
as “bridges” between the teams at the same time [43]. In this regard, our findings support
the view that such roles can not be established formally but that informal mechanisms

151

9. Analysis

like trust and social capital played a much higher role in this regard. The implications
of these findings for supporting bridges in practice will be discussed below (see chapter
9.2.3).

Our findings also provide insights into the relations between articulation work and learn-
ing in the context of software offshoring in SMEs. As we have found, formal approaches
for supporting articulation work (for example bug trackers and version control) played
an important role for the coordination of software development in the cases we have
investigated. Hence, it can be concluded that such focused approaches (like for example
ARIADNE [206]) are feasible also in case of software offshoring, as they provide impor-
tant functionality for the actors in terms of providing lists of tasks and guidelines (for the
software developers) as well as an overview of the current project state (for the project
managers). At the same time, it became apparent that the context of the tasks that
were to be coordinated by these systems were rather negotiated in an informal, situ-
ated manner as outlined above—indicating that such tools either need a higher level of
tailorability, or a closer integration with informal communication media like Instant Mes-
sengers [96]. The information in the formal coordination tools turned out to be important
points of reference for discussions about how to deal with the related tasks in practice.
Emergent roles like that of knowledge brokers and bridges are important aspects in this
regard, as are ad-hoc processes of situated articulation work. Especially with regard to
the grown, heterogeneous tool infrastructures with the dynamic practices that we found
in the companies of our study, it is unlikely that one solution can be designed that fits
all needs [138]; rather, our findings suggest that it will be important to think of ways
how different tools and services can be integrated with each other, and how practitioners
can be supported not only in tailoring the coordinative artifacts (the plans and specifica-
tions) but also the related coordination mechanisms in terms of the practices that evolve
around the use of these tools. As tools and organizations are known to interact with
each other in the long term, it is important to support such interactions [95]. Hence, we
conclude that management conceptions that take into account the relationship between
formal and informal coordination (like continuous coordination [177]) can be very useful
in the context of offshoring, but only if they are fine-grained enough to account for the
flexible and complex interactions outlined above, also with regard to the different work
contexts the teams are operating in (i.e. their different perspectives).

In the particular case of distributed software development, we have seen that such prac-
tices often happen in the context of personal meetings, where actors try to bring their
different perspectives and needs together, conjointly creating (and altering) practices and

152

9. Analysis

plans to the emerging necessities of the cooperation. This common ground then serves as
a basis for the later cooperation, which is often subject to emergent changes and adap-
tations (because the plans, as pointed out, only provide a rough guideline, but do not
prescribe every detail of the joint project). Software development of SMEs, especially
in distributed teams, is not mere office work; the interpretations of the tasks that are
negotiated are far from being stable and can change from project to project. At the
same time, strategic aspects have to be considered that can stretch from one project to
another. As a result, such fields require coordination mechanims that are more flexible
and have to be understood from two sides: as the foundation of articulation work, but
also as its result—not just in the sense of plans serving as maps and scripts [226, 197],
but also in their dialectical relation to learning and knowledge exchange at the opera-
tional and strategic levels. Especially in the case of software offshoring in SMEs, such
approaches also have to consider the specific socio-cultural embedding, in so far as ar-
ticulation work and related protocols do not only serve as coordination mechanisms but
also as “interaction mechanisms” which mediate the socio-cultural interaction between
the teams. In such a perspective, it is important not only to support modeling coordina-
tion mechanisms, but also to support bridging the different perspectives on such models
(the “social” side of rules) that are in place in complex work environments like GSD
projects [198]. Hence, such aspects have to be taken into account if we want to make
articulation work reflective and operative in distributed teams, covering both aspects of
single- and double-loop learning (as both are closely interconnected for the practice of
distributed software development) [32]. Our research offers several insights with regard
to how this can be achieved in practice, as will be discussed in the following sections on
organizational and technological implications.

9.2.3. Practical Implications for Companies

At a practical level, our findings stress the role of inter-organizational learning for dis-
tributed software teams in German SMEs. Our theoretically substantiated findings allow
to draw several conclusions for organizing distributed software development projects:

First, software SMEs that work highly customer- and service-oriented in very specific
domains benefit substantially from the direct interaction of developers across compa-
nies’ borders. Hence, such strategies should be successful which orient on (knowledge)
management concepts that do not include too much specialization and segmentation.
Orienting on agile development methods like Scrum [228] or Extreme Programming [17]
seems to be promising in this regard. Formalizing development work may seem as a

153

9. Analysis

possibility for reducing the need of ample articulation work, but such strategies have the
disadvantage of reducing the necessary flexibility of SMEs (see chapter 6). Hence, our
findings suggest that companies should avoid over-formalizing such approaches by intro-
ducing specialized roles and formal documentation, contrary to what literature on agile
offshoring often suggests [194, 14]. Instead, our findings imply that companies should
rather stick to informal concepts like “bridges” to leverage the difficulties of distributed
cooperation [153]. Actors serving as bridges or knowledge brokers have turned out to
play an important role for knowledge exchange [147] and mediate in conflict situations
[244]. As we have shown, such roles can best be fostered by initiating close personal con-
tacts between the sites, for example by inviting colleagues from the offshore teams over
to the German site for longer periods, or vice-versa. At the same time, we have shown
that learning on the strategic level remains a challenge for agile software teams that so
far is not well supported by existing models (agile methodologies are rather interested in
operational aspects of learning, often ignoring such challenges [235]). As a result, related
management practices are hardly established, especially in the case of offshoring with
all the related limitations. Possible improvements in this regard could be derived from
action research approaches for organizational learning like Business Ethnography as we
have outlined above [214].

Second, on a technical level there is a high availability of tools for the formal articula-
tion of local and distributed software development projects. Freely available and highly
adaptable bug-tracking systems and version control systems are common and very useful
coordination mechanisms, especially for distributed software development. The informal
aspects of articulation work in software offshoring are far less supported right now, and
mainly handled by sticking to emails and light-weight Instant Messaging tools. While
these tools clearly have limitations, they apparently worked for the practitioners in our
study, helping them to stay aware of what was going on in the cooperating team, and
performing the necessary articulation work for using the formal development IS [6, 100].
However, our findings revealed also limitations that were related to the dependence on
such tools [123]. First of all, the communication needed the common ground that still
depended on personal meetings in large parts. While operational questions could then be
handled rather easily in the later course of the projects, strategic aspects were only hardly
covered and limited the strategic learning capabilities of the companies. Furthermore,
such tools mainly work on a personal level, and the articulation work that is done in such
chats remains more or less invisible to the team. In this regard, there should be a high po-
tential in using micro-blogging tools as lightweight coordination tools inside companies.
As such tools have features similar to the used Instant Messengers—being lightweight,

154

9. Analysis

rather informal, non-intrusive—they could well complement the informal tools used for
articulation work. At the same time, micro-blogging has advantages with regard to the
visibility and traceability of the exchanged information, which could have a high potential
for supporting learning processes within and between the teams [35, 181, 252]. However,
it is important to take into account that tools can be adopted differently in different
companies [145], and that appropriation support thus is a pivotal aspect of introducing
new tools, especially in the field of GSD [138].

Third, with regard to the socio-cultural embedding of articulation work in offshoring
projects, our results show that concepts and tools can only be successful if acceptance
can be achieved on an inter-team level. Here, our findings suggest that trust and social
capital can be two-edged swords and that bridges can be very successful for dealing
with problems related to socio-political struggles that result from this field of tension.
At the same time, there is also the danger that important topics are not broached in
order to avoid offending the distributed colleagues—one of the possible negative side
effects of social capital (see chapter 7). Companies should not forget the benefits and
dangers of such close contacts, even when they benefit from a high level of social capital
with their offshore partners, as we have pointed out above. For the practice of small
software teams, we further see a high potential in adopting social media for software
offshoring projects, as such informal tools could probably leverage the limitations of
distributed cooperation [218, 19]. In general, our analysis showed that practitioners
benefited considerably from personal contacts between the sites, which played a pivotal
role for dealing with underlying conflicts and misunderstandings between the teams. As
personal meetings are costly and limited, practitioners need substitutions which should
also be addressed by information systems; social media can serve as informal and flexible
extension to the more formal information systems of software companies [124, 230].

All in all, our findings suggest that it can be very risky for SMEs like the ones in our
sample to engage in offshoring. The disadvantages and challenges are not easily to be
dealt with, and even if companies succeed in implementing practices and tools that help
to mediate the distribution of the cooperation, the related management overhead makes
it likely that they will not achieve the same efficiency as compared to local teams. Even
from an economic perspective, the companies in our sample found it hard to assess
whether they had an overall benefit from the offshoring cooperation in place (see chapter
4). This also related to the often promised possibility to address new markets by en-
ganging in offshoring [243], an aim that both companies in our sample failed to achieve.
Based on the cases in our study, it seems that international cooperation in software de-

155

9. Analysis

velopment is dependent on having talented and motivated developers at both locations.
Hence, remote partners should not be seen as more or less exchangeable helpers but as
partners in an inter-organizational learning process. If companies manage to learn from
external partners, instead of teaching them how to do things, companies can benefit from
international cooperation. This seems to be congruent with the phenomenon of Open
Source Software development, where communities often evolve around a stable core of
developers, be it in the context of a company or an individual developer or a group of
technology experts (or hybrid forms of such arrangements) [39]. At the same time, it
contradicts one of the basic premises that is often present in the discussion and literature
on offshoring (even with regard to agile methodologies): the assumption that software
development is a task that can be easily performed by external programmers if only the
plans (architecture, specifications) are worked out well enough [225]—a premise that did
not work out for the companies in our sample, as the case of company Beta illustrates.
As a result, we conclude that small companies need to take into account the complex
socio-cultural context of international cooperation and include the perspectives of the
offshore developers instead of single-sidedly attempting to formalize their development
practices [104].

9.2.4. Implications for Design

Our findings revealed complex interrelations between formal and informal aspects of
articulation work with forms of organizational learning. This complexity can lead to
problems in distributed teamwork, with negative consequences for team coordination
and related learning processes. From a design perspective, it is thus promising to aim at
supporting these aspects, taking into account the theoretical and practical implications
of our work.

Existing approaches for supporting distibuted software development often are based on
attempts of minimizing the need for articulation work by optimizing the division of labor
or formalizing communication [109, 180], or on supporting articulation work by offering
further or richer comunication media [90] (see chapter 2.2.2). Our findings hint at addi-
tional implications for design with regard to improving the visibility of articulation work
with a view to the shared work context in distributed teams, for example by identifying
and filtering individual articulation work events in the existing communication media
and development IS and presenting them on a shared semi-public display or a similar
device. An adequate visualization in form of “articulation spaces” would solve the prob-
lem that articulation is often invisible for the team as it is often performed individually.

156

9. Analysis

At the same time, such an approach would improve the traceability of articulation work,
which often is hard to reconstruct by referring to the formal coordination tools and ar-
tifacts (like bug trackers or project plans), and thus could support double-loop learning
in distributed teams.

Conceptionally, related designs could refer to prior work from the field of Media Spaces
and Public Displays, as well as to the literature on supporting awareness for seamless
team coordination. Like in the conception of the awareness pipeline [80], an articulation
pipeline could be designed to aggregate and filter information about articulation work
events from the various tools, media and artifacts that are used for articulation work
in distributed software development (see figure 9.1). In contrast to existing “dashboard”
approaches [20] that focus more on presenting formal aspects of the cooperation for the
team, such an approach would have to take into account the aspects of privacy and
information overload that has been discussed in the context of awareness [132, 82, 79],
but also the socio-cultural background of international software teams, for example by
including social, informal media into the conception [124]. Due to the highly private
context of such media, such information could probably only be accessible by offering
assistants for the actors, and not by automated retrieval [218, 19]. It would be especially
promising in this regard if team members who act as bridges and knowledge brokers could
be motivated to use the system actively. Furthermore, such an approach would also allow
to include other important technologies like appropriation support [215], community-
based help systems [216], expertise recommender systems [178], or awareness mechanisms
that have been developed in the context of coordinating software development work
[20, 177].

For the visualization side, public displays have hardly been discussed in the context of
supporting software offshoring so far. Instead, existing tools usually center on desktop
workplaces as interface for the supporting Information Systems [233, 207]. While such
approaches seem to be the natural choice for supporting computer-based work like soft-
ware development, they mainly focus on supporting individual developers without much
consideration of the related team awareness. At the same time, the desktop metaphor
has some limitations. For example, information is only accessible if actors actively search
for it, while notifications for example by pop-up windows are often regarded as being in-
trusive and annoying. The presentation of awareness information thus has to be context-
sensitive [183], a requirement which has not been solved completely so far. With regard
to our findings, it could be interesting to experiment with Instant Messengers as output
medium at the desktop level. At the same time, public displays have several advantages

157

9. Analysis

in comparison to desktop notification systems: they support peripheral awareness of such
information that is not actively searched, with a very low level of intrusiveness [130]. At
the same time, they can be used cooperatively and thus provide a shared context for the
cooperative work [242]. According to our findings, a good space for setting up such a
display would be the coffee kitchen where much of the knowledge exchange takes place
anyways. Furthermore, such an informal space could stress the informal character of
the display and make clear that the solution would not center on the formal aspects of
the development work only. Other possible space would be a meeting room, or even the
different office rooms where displays could be placed near the door to support peripheral
awareness when leaving a room.

Due to the distributed work context of software offshoring, related approaches would have
to include several displays at different companies, as well as personalized ways of access
for developers working at customer sites or in their home offices [38]. The displayed infor-
mation would have to take into account the different working contexts of the cooperating
teams because the use of the displays as planning and learning tools can be expected
to differ strongly between the cooperating teams due to the different perspectives, aims,
and areas of work. The articulation spaces should thus not focus on providing as much
information as possible (in the sense of the rich media theory , see [165]), but on putting
the available information into context [81]. Hence, they should be designed as boundary
objects [210], and not as central knowledge repositories [73]. Given the private nature
of the documentation that is in place (and the hesitance of Russian developers to main-
tain “official” documentation in central databases, respectively), it would be probably
more important to share small chunks of information that provide hints towards what is
going on in the company and who could be asked for which problems than to provide
fully self-sufficient and codified knowledge in form of a public repository. As pointed out
above, micro-blogging could be an interesting metaphor to implement a related solution,
as this technology seems to combine several advantages of Instant Messengers (informal
character, not intrusive, etc.) with a better traceability and visibility [252, 35].

Based on our findings, the conceptional development of articulation spaces would require
to account for the following design aspects:

• The different aspects of articulation work and relevant context information of infor-
mal, less structured media such as Instant Messengers and social media would need
to be identified and aggregated with the formal development IS as well as additional
sources like for example usage data (requiring the development of APIs and assis-
tants). For doing so, it would be necessary to analyze the use of Instant Messengers

158

9. Analysis

Figure 9.1.: The concept of articulation spaces.

in software development in great detail in order to understand how it relates to the
use of formal systems (as we have seen, their use is closely intertwined). If such
interconnections could be identified, it would be promising to connect the informa-
tion that is exchanged in the several systems and make it visible for example by
providing assistants in the IDE that help users in bringing important information
to the attention of the team (by pushing it into the articulation pipeline).

• Filter mechanisms will be needed to secure the privacy of the developers, especially
with regard to media which are regarded as informal and personal (such as Instant
Messengers), and to prevent flooding the practitioners with information that they
regard as being irrelevant. Further, the socio-cultural background of the coopera-
tion will have to be taken into account. On the input side, this can be accomplished
by using assistants rather than generating and publishing information automati-
cally, as we have outlined above. Other systems like the RSS feeds of bug trackers
or the version control systems could probably be added without filtering on the
input side, but it would be important to control the output of the articulation
pipeline in a way that allows users to subscribe to and unsubscribe from particular
feeds—always taking into account that individual and team-related configurations
have to be distinguished from each other. Again, the use of a micro-blogging service
would offer interesting methaphors for this design rationale, as these systems allow

159

9. Analysis

for fine-grained control of what is displayed (filtering by users, groups, hashtags),
and offer an unfiltered public timeline at the same time.

• Structured and unstructured information has to be agreggated and put into a con-
text, in order to support awareness of relevant events at team level (with regard
to operational and strategic aspects of the cooperation in order to support single-
and double-loop learning). For this it would be necessary to analyze where relevant
information is exchanged, in order to combine different sources of information with
each other in relation to their current context. Hence, the assistants outlined above
should take into account that articulation work often spans across sites, artifacts,
and media, and help to provide a shared context to these different events perhaps
in form of a thread or by tagging them accordingly. At the same time, the presen-
tation device should make these interconnections visible, for example by displaying
them in different colors or visualizing the links between the artifacts.

• An interaction concept will be needed that supports the articulation work of the
(distributed) team members, allowing to cooperatively reflect and modify coordi-
nation mechanisms as well as stimulating learning processes between the teams (in
the sense of a “ticket to talk” approach). Hence, it needs to manage several interac-
tion modes for displaying information and working with the display. For example,
if the devices were placed in the coffee kitchens of the cooperating companies, it
would be promising if the local actors could use the device to cooperatively reflect
their results. As these places have turned out to be important spaces for knowl-
edge exchange, the device should probably support different input mechanisms as
well as access to the IS systems so that actors can use the display to actively dis-
cuss relevant aspects of their work with their colleagues, and feed the results back
into the articulation pipeline if required (for example, screenshots of cooperatively
created whiteboard sketches). The displays also need to take into account the
different perspectives of the teams, as the Russians probably have other interests
than German employees (given the division of labor we have encountered in the
two companies). At the same time, with regard to supporting inter-organizational
knowledge exchange, the display should also show what is relevant for the other
team and vice versa. This could also relate to informal, everyday information like
the local time, local weather, and local holidays for example.

• Different form factors would have to be tested in different places in the cooperating
companies. In order to do so, the social, informal spaces [66] of the company would
have to be identified and related to different designs (for example using large or

160

9. Analysis

small displays, experimenting with different interaction concepts, using mobile or
stationary displays etc.). While the coffee kitchen seems to be a natural place for
putting up a large display, there are also other possibilites that could be explored.
For example, displays could be placed in the meeting rooms (implying a more formal
character), or in each office room of the company (implying a more personalized
character). As the choice of the place will probably have a great impact on how the
displays are used, it will be important to experiment with various possibilities and
examine the practices that are formed around the different artifacts in practice.

• It has to be ensured that informal aspects of articulation work are not formalized
too much by the articulation spaces, because such a change could be perceived
as unnecessary bureaucratic burden by the practitioners (possibly even destroying
the informal character of the coffee kitchen). At least, such effects need to be
taken into account, for example by including information that comes into existence
organically within the work process, and offering assistants to further enrich such
information. In this regard, it would be interesting to experiment with different
presentation modes that imply a “playful” character for the interaction, for example
by not showing a chronologic timeline, but by showing information as sticky notes or
bubbles that can be manipulated by touch gestures (for examples allowing to burst
“bubbles” with irrellevant information, or enlarging important “sticky notes” to
make other team members aware of the information). Furthermore, the technology
should be thought of as an information offer, without guaranteed retrieval—but
with good chances for discovering something interesting or new if explored.

The interactive vizualisation of distributed articulation work is a promising approach of
supporting software teams, which would harmonize well with the existing approaches of
supporting distributed software development outlined above. According to our findings,
supporting awareness about hidden and invisible aspects of team articulation work would
improve the implicit, seamless coordination of distributed software teams. At the same
time, the interactive visualization would help distributed teams to realize learning poten-
tials which otherwise would not be accessible at all, or would at least lead to high travel
expenses. For example, a better awareness about what is going on in the company would
probably encourage more direct interaction on part of the distributed team members,
which has proven to be of enourmous value for knowledge exchange and coordination
in distributed teams. By using the display for presenting the information, information
overload could be counteracted because the actors desktops would not be cluttered with
awareness information, thus offering interesting implications for the design of social net-

161

9. Analysis

works for software development [18]. At the same time, this would require the solution to
follow a “bulletin board” metaphor, as actors could not be sure that information that is
put there would necessarily be noticed. While such technologies are not really new given
the long history of community bulletin boards and public displays (see for example [46]),
their successful application in the domain of distributed software development remains
an open challenge. A careful combination of established technologies with the practical
and theoretical findings outlined above would offer ample opportunities for supporting
the intricate practices of informal articulation work that we have found in the field.

9.3. Outlook

Our research has provided detailed insights into the complexities of distributed software
development in two cases of software offshoring of SMEs. As in every research project,
there remain open questions and new questions that emerged due to the analysis of
the material. Hence, further case studies into distributed software development will be
needed; this section is meant to provide some suggestions for possible topics and research
questions for future work.

First of all, as the focus of this dissertation intentionally was rather narrow, it would be
interesting to see which parallels exist between the cases of software offshoring we found
in the SMEs researched by us and other forms of distributed software development. While
we have reflected on differences compared to the situation of large software companies,
there are further forms like distributed development work of (small-sized) IT departments
of larger corporations that would be interesting to compare to our findings. Furthermore,
Open Source software development is a big topic also for companies these days, and it
would be very interesting to see if the forms of articulation and learning we found in our
cases are also important for more unstable cooperations like in the case of Open Source
communities or related companies. It will also be important to learn more about how
agile development methodologies can be used in distributed contexts, without formalizing
them in a way that questions their very foundation as a set of practices that can be
combined and adjusted as needed (see chapter 9.2.3).

Second, with regard to the practical implications of our research, there remains the prob-
lem that forms of organizational development suggested by us with regard to strategic
learning are hard to implement in distributed teams. To our knowledge, there are only
few approaches which focus on the important relations of operational and strategic learn-
ing in distributed cooperation with regard to the related socio-cultural context. At the

162

9. Analysis

same time, we have seen that the asymmetric power relations of software offshoring can
make it very hard to implement changes, even when the practitioners manage to identify
possible improvements. Hence, it would be very interesting to investigate possibilities
for reconsidering concepts of organization development like Integrated Organization and
Technology Development (OTE), Business Ethnography, or Cooperative Methods Devel-
opment in their potential for supporting learning in distributed organizations (especially
with regard to how learning results can be implemented in such fields). Even though their
application may be very problematic in distributed contexts, they would have a huge po-
tential for solving many of the underlying challenges and drawbacks of international
cooperation (also, for example, with regard to mitigating the socio-cultural problems
that can prevail in such projects, see chapter 9.2.1).

Third, the design implications that we identified need to be tested in practice, especially
with regard to the aspects that we have worked out in the previous section. Even though
research on awareness support for cooperative work has been around for decades, there
are still design problems in place that have not been fully solved so far: most prominently
the access to awareness information (privacy issues), and its presentation (information
overload). As these problems are probably not universally solvable, we need highly
contextualized solutions in order to support the specific work of practitioners. As we
have showed, such design projects can be even harder to deal with in distributed contexts
where the interpretation of new tools has to be negotiated between teams with often very
different perspectives on the cooperation. Furthermore, dealing with the soft, informal
aspects of articulation work remains a challenge. On the one hand, such aspects are
highly important for distributed cooperation but it is very difficult to combine formal and
informal aspects of coordination without formalizing the latter. This may indicate that
the dichotomy between formal and informal articulation work practices which has guided
our research as an analytic lens may have to be re-thought in a design context. While
the analytic distintion between “formal” and “informal” has helped us to identify and
explore “invisible” aspects of software development work that have often been overlooked
in the management literature on offshoring (see chapter 4.2), from a design perspective it
may be more useful to center on the general genesis of these practices (for example how
coordination mechanisms are cooperatively created, adapted, and applied in practice),
and how they interact with changes of technology and new designs [213, 250]. For the
practitioners, it is not important whether a practice is formal or informal; what counts, is
if the practice works and helps to deal with the contingencies and challenges of the daily
work. Hence, instead of accounting for the informal and formal sides of coordination,
the aim would to support work practices in a way that makes them more useful for

163

9. Analysis

the actors—regardless of whether these practices are changed towards a more formal, or
more informal way. In a way, the informal aspects of articulation work seem to elude a
formalization anyways (see [200]), as we have also seen in the context of how practitioners
used formal development IS like bug tracking systems (see chapter 5). Thus, it is likely
that new forms of (informal) coordination emerge with the adoption of new technologies,
which would offer new possibilities for support, and so on.

Last but not least, the methodological challenge of researching distributed forms of co-
operation remains. Even though we tried to grasp the multiple perspectives of the actors
involved by visiting the remote sites, observing visits and interchanges of developers, and
conducting interviews with all actors involved, our access to the field remained more or
less focused on the German side of the cooperation (see chapter 9.2.1). Careful analysis
was necessary in order to avoid a bias in our conclusions as far as possible, and we see
a great potential for future research projects in working with multiple researchers who
synchronously observe work practices where they happen, at the cooperating sites. This
would probably allow for a far more detailed analysis of the different perspecties, expec-
tations, and interpretations of cooperative work, and thus could considerably contribute
to deepen our understanding of distributed software development.

164

Bibliography

[1] Ackerman, M. S., Pipek, V., and Wulf, V. Sharing expertise: beyond knowl-
edge management. MIT Press, Cambridge, Mass., 2003.

[2] Agerfalk, P. J., and Fitzgerald, B. Flexible and distributed software pro-
cesses: old petunians in new bowls? Communications of the ACM 49, 10 (2006),
27–34.

[3] Amberg, M., Gräf, L., and Wiener, M. Modelle für die Outsourcing-
Entscheidung von Softwareentwicklungsprojekten, vol. 2. Bonn, 2005, pp. 248–252.

[4] Amberg, M., Schröder, M., and Wiener, M. Competence-Based IT Out-
sourcing - An Evaluation of Models for Identifying and Analyzing Core Compe-
tences. In Proceeding of the Eleventh Americas Conference on Information Systems
(Omaha, 2005), pp. 2702–2712.

[5] Anderson, R. Work, Ethnography, and System Design. Marcel Decker, New York,
1997, pp. 159–183.

[6] Aranda, G. N., Chechich, A., Vizcaíno, A., and Piattini, M. Technology
Selection to Improve Global Collaboration. In Proceedings of the IEEE Conference
on Global Software Engineering (2006).

[7] Aranda, J., Easterbrook, S., and Wilson, G. Requirements in the wild:
How small companies do it. In Proceedings of the 15th IEEE International Require-
ments Engineering Conference (Dehli, 2007), IEEE Computer Society, pp. 39–48.

[8] Aranda, J., and Venolia, G. The secret life of bugs: Going past the errors and
omissions in software repositories. In Proceedings of the IEEE 31st International
Conference on Software Engineering (Vancouver, 2009), IEEE Computer Society,
pp. 298–308.

[9] Argyris, C., Putnam, R., and Smith, D. M. Action science. The Jossey-Bass
social and behavioral science series. Jossey-Bass, San Francisco, 1985.

165

Bibliography

[10] Aspray, W., Mayadas, F., and Vardi, M. Y. Globalization and Offshoring of
Software: A Report of the ACM Job Migration Task Force. Tech. rep., 2006.

[11] Avram, G. Developing Outsourcing Relationships: A Romanian Service Provider
Perspective. In TProceedings of the first Information Systems Workshop on Global
Sourcing - Services, Knowledge and Innovation (Val d’Isere, France, 2007).

[12] Bannon, L. J., and Schmidt, K. CSCW: Four characters in search of a con-
text. In Proceedings of the First European Conference on Computer Supported
Cooperative Work (ECSCW) (Gatwick, London, Sept. 1989), pp. 358–372.

[13] Baranano, A. M., Bommer, M., and Jalajas, D. S. Sources of innovation
for high-tech SMEs: a comparison of USA, Canada, and Portugal. International
Journal of Technology Management 30, 1-2 (2005), 205–219.

[14] Bardram, J. Activity-based Computing Support for Agile and Global Software
Development. In Proceedings of the CSCW 2008 Workshop on Supporting Dis-
tributed Team Work (2008), pp. 1–5.

[15] Baskerville, R. L. Investigating information systems with action research. Com-
munications of the AIS 2, 3 (1999).

[16] Battin, R. D., Crocker, R., Kreidler, J., and Subramanian, K. Lever-
aging Resources in Global Software Development. IEEE Software 18, 2 (2001),
70–77.

[17] Beck, K. Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, 1999.

[18] Begel, A., and DeLine, R. Codebook: Social networking over code. In Pro-
ceedings of the IEEE 31st International Conference on Software Engineering (Van-
couver, 2009), pp. 263–266.

[19] Begel, A., DeLine, R., and Zimmermann, T. Social Media for Software
Engineering. In Proceedings of the FSE/SDP Workshop on the Future of Software
Engineering Research (FoSER) (2010).

[20] Biehl, J., Czerwinski, M., Smith, G., and Robertson, G. FASTDash:
a visual dashboard for fostering awareness in software teams. In Proceedings of
the SIGCHI Conference on Human factors in Computing Systems (2007), ACM,
pp. 1313–1322.

166

Bibliography

[21] Billings, M., and Watts, L. A. A safe space to vent: Conciliation and conflict
in distributed teams. In Proceedings of the 10th European Conference on Computer
Supported Cooperative Work (Limerick, 2007), pp. 139–158.

[22] Bjornson, F. O., and Dingsoyr, T. Knowledge management in software en-
gineering: A systematic review of studied concepts, findings and research methods
used. Information and Software Technology 50, 11 (Oct. 2008), 1055–1068.

[23] BMBF (Bundesministerium für Bildung und Forschung). Analyse und
Evaluation der Softwareentwicklung in Deutschland: Endbericht an das Bun-
desministerium für Bildung und Forschung. Tech. rep., 2000.

[24] Boden, A., and Avram, G. Bridging Knowledge Distribution - The Role of
Knowledge Brokers in Distributed Software Development Teams. In Proceedings
of the 2009 ICSE Workshop on Cooperative and Human Aspects of Software Engi-
neering (CHASE) (Vancouver, Canada, 2009), pp. 8–11.

[25] Boden, A., Avram, G., Bannon, L., and Wulf, V. Knowledge Management
in Distributed Software Development Teams - Does Culture Matter? In Proceed-
ings of the Fourth IEEE International Conference on Global Software Engineering
(ICGSE 2009) (Limerick, Ireland, 2009), pp. 18–27.

[26] Boden, A., Avram, G., Bannon, L., and Wulf, V. Knowledge Sharing
Practices and the Impact of Cultural Factors: Lessons from Two Case Studies of
Offshoring in SME. Software Maintenance and Evolution: Research and Practice
(2010).

[27] Boden, A., Draxler, S., and Wulf, V. Aneignungspraktiken von Software-
Entwicklern beim Offshoring. Fallstudie eines kleinen deutschen Softwareun-
ternehmens. In Multikonferenz Wirtschaftsinformatik (MKWI) (Göttingen, 2010),
pp. 755–766.

[28] Boden, A., Müller, C., and Nett, B. Conducting Business Ethnography in
Global Software Development Projects of Small German Enterprises. Information
and Software Technology 53/9 (2011), 1012–1021.

[29] Boden, A., Nett, B., and Wulf, V. Coordination Practices in Distributed
Software Development of Small Enterprises. In Proceedings of the Second IEEE
International Conference on Global Software Engineering (ICGSE 2007) (2007),
pp. 235–246.

[30] Boden, A., Nett, B., and Wulf, V. Articulation work in small-scale offshore
software development projects. In Proceedings of the 2008 ICSE workshop on Co-

167

Bibliography

operative and human aspects of software engineering (CHASE) (Leipzig, Germany,
2008), ACM, pp. 21–24.

[31] Boden, A., Nett, B., and Wulf, V. Trust and Social Capital: Revisiting an
Offshoring Failure Story of a Small German Software Company. In Proceedings
of the Eleventh Europaean Conference on Computer Supported Cooperative Work
(ECSCW 2009) (London, 2009), Springer, pp. 123–142.

[32] Boden, A., Nett, B., and Wulf, V. Operational and Strategic Learning in
Global Software Development - Implications from two Offshoring Case Studies in
Small Enterprises. IEEE Software 27, 6 (2010), 58–65.

[33] Bodker, K., Kensing, F., and Simonsen, J. Participatory IT design: designing
for business and workplace realities. MIT Press, 2004.

[34] Boes, A., and Schwemmle, M. Herausforderung Offshoring. International-
isierung und Auslagerung von IT-Dienstleistungen. Böckler Stiftung, Düsseldorf,
2004.

[35] Bougie, G., Starke, J., Storey, M.-A., and German, D. M. Towards Un-
derstanding Twitter Use in Software Engineering: Preliminary Findings, Ongoing
Challenges and Future Questions. In Proceedings of the 2nd International Workshop
on Web 2.0 for Software Engineering (2011).

[36] Bourdieu, P. The form of capital. Greenwood Press, New York, 1986.

[37] Brodman, J. G., and Johnson, D. L. What small businesses and small organi-
zations say about the CMM. In Proceedings of the IEEE International Conference
on Software Engineering (Sorento, 1994), pp. 331–340.

[38] Broughton, M., Paay, J., Kjeldskov, J., O’Hara, K., Li, J., Phillips, M.,
and Rittenbruch, M. Being here: designing for distributed hands-on collabo-
ration in blended interaction spaces. In Proceedings of the 21st Annual Conference
of the Australian Computer-Human Interaction Special Interest Group on Design
(New York, New York, USA, 2009), OZCHI ’09, ACM Press, p. 73.

[39] Brügge, B., Harhoff, D., Picot, A., Creighton, O., Fiedler, M., and
Henkel, J. Open-Source-Software. Eine ökonomische und technische Analyse.
Springer, Berlin, Heidelberg, 2004.

[40] Calvo-Manzano Villalón, J. A., Cuevas Agustín, G., San Feliu Gi-
labert, T., De Amescua Seco, A., García Sánchez, L., and Pérez Cota,

168

Bibliography

M. Experiences in the Application of Software Process Improvement in SMEs.
Software Quality Journal 10, 3 (Nov. 2002), 261–273.

[41] Carmel, E., and Abbott, P. Why ’nearshore’ means that distance matters.
Communications of the ACM 50, 10 (Oct. 2007), 40–46.

[42] Casey, V. Leveraging or Exploiting Cultural Difference? In Proceedings of the
Fourth IEEE International Conference on Global Software Engineering (ICGSE
2009) (2009), pp. 8–17.

[43] Cataldo, M., and Herbsleb, J. D. Communication networks in geographically
distributed software development. In Proceedings of the ACM 2008 Conference
on Computer Supported Cooperative Work (San Diego, CA, USA, 2008), ACM,
pp. 579–588.

[44] Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Carley, K. M.
Identification of Coordination Requirements: Implications for the Design of Col-
laboration and Awareness Tools. In Proceedings of the 20th ACM Conference on
Computer Supported Cooperative Work (Banff, 2006), pp. 353–362.

[45] Cohen, D., and Prusak, L. In good company: how social capital makes organi-
zations work. Harvard Business School Press, Boston, 2001.

[46] Colstad, K., and Lipkin, E. Community memory: a public information net-
work. ACM SIGCAS Computers and Society 6, 4 (Dec. 1975), 6–7.

[47] Crabtree, A., O’Neill, J., Tolmie, P., Castellani, S., Colombino, T.,
and Grasso, A. The Practical Indispensability of Articulation Work to Imme-
diate and Remote Help-giving. In Proceedings of the Conference on Computer
Supported Cooperative Work (Banff, Alberta, 2006), pp. 219–229.

[48] Cramton, C., and Hinds, P. Intercultural Interaction in Distributed Teams:
Salience of and Adaptations to Cultural Differences. In Academy of Management
Best Paper Proceedings (Philadelphia, 2007).

[49] Cumps, B., Viaene, S., Dedene, G., and Vandenbulcke, J. A Theoretical
Exploration of the Relationship between Outsourcing and Business/ICT Align-
ment. In Proceedings of the 2006 European Conference on Information Systems
(Gotenborg, Sweden, 2006).

[50] Dahlberg, T., Nyrhinen, M., and Santonen, T. The Success of Selective
and Total Outsourcing of firm-wide IT-Infrastructure: An Empirical Evaluation. In

169

Bibliography

Proceedings of the 14th European Conference on Information Systems (Göteborg,
2006), pp. 1–12.

[51] Damian, D. Requirements Engineering in Distributed Projects. In Proceedings of
the IEEE Conference on Global Software Engineering (2006).

[52] Damian, D., and Zowghi, D. An Insight into the Interplay between Culture,
Conflict and Distance in Globally Distributed Requirements Negotiations. In Pro-
ceedings of the Hawaii International Conference on System Sciences (Hawaii, 2003),
pp. 19–29.

[53] Damian, D. D., and Deependra, M. Global Software Development: How Far
Have We Come? IEEE Software 23, 5 (2006), 17–19.

[54] Damian, D. D., Lanubile, F., and Mallardo, T. The role of asynchronous
discussions in increasing the effectiveness of remote synchronous requirements ne-
gotiations. In Proceedings of the International Conference on Software Engineering
(Shanghai, 2006), pp. 917–920.

[55] Davis, G. B., King, W. R., Ein-Dor, P., and Torkzadeth, R. Informa-
tion Technology Offshoring: Prospects, Challenges, Educational Requirements, and
Curriculum Implications. In Proceedings of the Twenty-Fifth Conference on Infor-
mation Systems (2004), pp. 1027–1038.

[56] DePaula, R., Fischer, G., and Ostwald, J. Courses as Seeds: Expectations
and Realities. In Proceedings of the Second European Conference on Computer-
Supported Collaborative Learning (2001), pp. 494–501.

[57] Desouza, K. C., Awazu, Y., and Baloh, P. Managing Knowledge in Global
Software Development Efforts: Issues and Practices. IEEE Software 23, 5 (2006),
30–37.

[58] Dibbern, J. The Sourcing of Application Software Services. Empirical Evidence
of Cultural, Industry and Functional Differences. Physica, Univ. Diss. Bayreuth
2003, Heidelberg, 2004.

[59] Dibbern, J., Goles, T., Hirschheim, R., and Jayatilaka, B. Informa-
tions systems outsourcing: a survey and analysis of the literature. ACM SIGMIS
Database 35, 4 (2004), 6–102.

[60] Dibbern, J., and Heinzl, A. Selective Outsourcing of Information Systems in
Small and Medium Sized Enterprises. Springer, Berlin, Heidelberg, 2006, pp. 57–81.

170

Bibliography

[61] Dibbern, J., and Heinzl, A. Outsourcing of Information Systems Functions
in Small and Medium Sized Enterprises: A Test of a Multi-Theoretical Model.
Business & Information Systems Engineering 1, 1 (Dec. 2008), 101–110.

[62] Dibbern, J., Wynne, C. W., and Heinzl, A. The Impact of Human Asset
Specificity on the Sourcing of Application Services. In Proceedings of the European
Conference on Information Systems (2005), pp. 1–14.

[63] Dittrich, Y. Doing Empirical Research in Software Engineering - finding a path
between understanding, intervention, and method development. MIT Press, 2002,
pp. 243–262.

[64] Dittrich, Y., Rönkkö, K., Eriksson, J., Hansson, C., and Lindeberg, O.
Cooperative Method Development. Combining qualitative empirical research with
method, technique and process improvement. Empirical Software Engineering 13
(2008), 231–260.

[65] Dourish, P. Implications for design. In Proceedings of the SIGCHI conference on
Human Factors in computing systems (Montréal, Québec, Canada, 2006), ACM,
pp. 541–550.

[66] Dourish, P. Re-space-ing place: "place" and "space" ten years on. In Proceedings
of the 2006 20th anniversary conference on Computer supported cooperative work
(Banff, Alberta, Canada, 2006), ACM, pp. 299–308.

[67] Dourish, P., and Bellotti, V. Awareness and coordination in shared
workspaces. In Proceedings of the 1992 ACM Conference on Computer Supported
Cooperative Work (New York, New York, USA, 1992), ACM Press, pp. 107–114.

[68] Durissini, M., Nett, B., and Wulf, V. Kompetenzentwicklung in kleinen Un-
ternehmen der Softwarebranche. Zur Praxisorientierung im Software Engineering.
Oldenbourg, Munich, 2005, pp. 91–100.

[69] Eisenhardt, K. M., and Martin, J. A. Dynamic capabilities: what are they?
Strategic Management 21/10-11 (2000), 1105–1121.

[70] Espinosa, J., Slaughter, S., Kraut, R., and Herbsleb, J. Team Knowledge
and Coordination in Geographically Distributed Software Development. Journal
on Management of Information Systems 24, 1 (2007), 135–169.

[71] Faergemann, L., Schilder-Knudson, T., and Carstensen, P. H. The
Duality of Articulation Work in Large Heterogeneous Settings - a Study in Health

171

Bibliography

Care. In Proceedings of the Ninth European Conference on Computer-Supported-
Cooperative-Work (2005), pp. 163–183.

[72] Ferneley, E., and Bell, F. Tinker, Tailor: Information Systems and Strategic
Development in Knowledge-Based SMEs. In Proceedings of the European Confer-
ence on Information Systems (2005), pp. 1–12.

[73] Fields, B., Amaldi, P., and Tassi, A. Representing collaborative work: the
airport as common information space. Cognition, Technology & Work 7, 2 (June
2005), 119–133.

[74] Fischer, G. Symmetry of Ignorance, Social Creativity, and Meta-Design. Special
Issue on "Creativity & Cognition" of the International Journal on Knowledge-Based
Systems 13, 7-8 (2000), 527–537.

[75] Fisher, J., Hirschheim, R., and Jacobs, R. Understanding the outsourcing
learning curve: A longitudinal analysis of a large Australian company. Information
Systems Frontiers 10, 2 (Apr. 2008), 165–178.

[76] Fjuk, A., Smordal, O., and Nurminen, M. I. Taking Articulation Work
Seriously - an activity theoretical approach. Tech. rep., Turku Centre for Computer
Science, 1997.

[77] Floyd, C. Software Development as Reality Construction. Springer, Berlin, 1992,
pp. 86–100.

[78] Friedewald, M., Rombach, H. D., Stahl, P., Broy, M., Hartkopf, S.,
Kimpeler, S., Kohler, K., Wucher, R., and Zoche, P. Softwareentwicklung
in Deutschland. Eine Bestandsaufnahme. Informatik Spektrum 24, 2 (2001), 81–90.

[79] Fuchs, L. Situationsorientierte Unterstützung von Gruppenwahrnehmung in
CSCW-Systemen. Univ. Diss Essen, 1998.

[80] Fuchs, L. AREA: a cross-application notification service for groupware. In Pro-
ceedings of the Europaean Conference on Computer Supported Cooperative Work
(Sept. 1999), pp. 61–80.

[81] Fuchs, L., Pankoke-Babatz, U., and Prinz, W. Supporting cooperative
awareness with local event mechanisms: the groupdesk system. In Proceedings of
the fourth European Conference on Computer-Supported Cooperative Work (Sept.
1995), pp. 247–262.

[82] Fuchs, L., Sohlenkamp, M., Genau, A., Kahler, H., Pfeifer, A., and
Wulf, V. Transparenz in kooperativen Prozessen: Der Ereignisdienst in PO-

172

Bibliography

LITeam. In Proceedings of the Deutsche Computer Supported Cooperative Work
(1996), pp. 3–16.

[83] Gallivan, M., and Srite, M. Information technology and culture: Identifying
fragmentary and holistic perspectives of culture. Information and Organization 15
(2005), 295–338.

[84] Garfinkel, H., and Bittner, E. "Good" organizational reasons for "bad" clinic
records. Prentice-Hall, New Jersey, 1967, pp. 186–207.

[85] Geertz, C. The Interpretation Of Cultures. Basic Books, 1973.

[86] Geertz, C. Thick Description: Towards an Interpretive Theory of Culture. Basic
Books, New York, 1973, pp. 3–30.

[87] Generaldirektion Unternehmen der Kommission der Europäischen
Gemeinschaft. Internationalisierung von KMU. Tech. rep., Brussels, 2003.

[88] Gerson, E. M. Reach, Bracket, and the Limits of Rationalized Coordination:
Some Challenges for CSCW. No. 2003. Springer, 2008, pp. 193–220.

[89] Gerson, E. M., and Star, S. L. Analyzing due process in the workplace. ACM
Transactions on Office Information Systems 4, 3 (1986), 257–270.

[90] Geyer, W., Richter, H., Fuchs, L., Frauenhofer, T., Daijavad, S., and
Poltrock, S. A team collaboration space supporting capture and access of virtual
meetings. In Proceedings of the 2001 International ACM SIGGROUP Conference
on Supporting Group Work - GROUP ’01 (New York, Sept. 2001), ACM Press,
p. 188.

[91] Gobo, G. Doing Ethnography. Sage Publications, Los Angeles, 2008.

[92] Gotel, O., Kulkarni, V., Say, M., Scharff, C., and Sunetnanta, T.
Quality Indicators on Global Software Development Projects: Does "Getting to
Know You" Really Matter? In Proceedings of the fourth IEEE International Con-
ference on Global Software Engineering (ICGSE 2009) (2009), pp. 3–7.

[93] Granovetter, M. Economic Action and Social Structure: The Problem of Em-
beddedness. American Journal of Sociology 91, 3 (1985), 481–510.

[94] Grinter, R. Using a configuration management tool to coordinate software de-
velopment. In Proceedings of the Conference on Organizational Computing Systems
(New York, 1995), ACM, pp. 168–177.

173

Bibliography

[95] Grinter, R. E. Supporting Articulation Work Using Software Configuration
Management Systems. Computer Supported Cooperative Work 5 (1996), 447–465.

[96] Grinter, R. E. Doing Software Development: Occasions for Automation and
Formalisation. In Proceedings of the European Conference on Computer Supported
Cooperative Work (Lancaster, 1997), pp. 173–188.

[97] Grinter, R. E., Herbsleb, J. D., and Perry, D. E. The geography of co-
ordination: dealing with distance in R&D work. In Proceedings of the Interna-
tional ACM SIGGROUP Conference on Supporting Group Work (Phoenix, Ari-
zona, United States, 1999), ACM, pp. 306–315.

[98] Gross, T., and Koch, M. Computer-Supported Cooperative Work. Oldenbourg
Wissenschaftsverlag, 2007.

[99] Gutwin, C., Penner, R., and Schneider, K. Group awareness in distributed
software development. In Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work (Chicago, 2004), ACM, pp. 72–81.

[100] Handel, M., and Herbsleb, J. D. What is Chat Doing in the Workplace?
In Proceedings of the ACM Conference on Computer Supported Cooperative Work
(New Orleans, 2002), pp. 1–10.

[101] Handel, M., and Poltrock, S. Working Around Official Applications : Expe-
riences from a Large Engineering Project. In Proceedings of the 2011 Conference
on Computer Supported Cooperative Work (2011), pp. 309–312.

[102] Heath, C., and Luff, P. Collaboration and Control. Crisis Management and
Multimedia Technology in London Underground Line Control Rooms. Computer
Supported Cooperative Work 1 (1992), 69–94.

[103] Hebdige, D. Subculture the meaning of style, repr. ed. Methuen, London [u.a.],
1981.

[104] Heinzl, A., and Dibbern, J. Mittelständische Unternehmen haben ein großes
Outsourcing-Potential. Netzguide, IT Economics & Managed Services 06/2002
(2002), 15–17.

[105] Herbsleb, J. Global Software Engineering: The Future of Socio-technical Coor-
dination. In 2007 Future of Software Engineering (Minneapolis, MN, USA, 2007),
IEEE Computer Society, pp. 188–198.

174

Bibliography

[106] Herbsleb, J. D., Finholt, T. A., and Grinter, R. E. An Empirical Study
of Global Software Development: Distance and Speed. In Proceedings of the Inter-
national Conference on Software Engineering (Toronto, 2001), pp. 81–90.

[107] Herbsleb, J. D., Mockus, A., Finholt, T. A., and Grinter, R. E. Dis-
tance, dependencies, and delay in a global collaboration. In Proceedings of the
ACM Conference on Computer Supported Cooperative Work (Philadelphia, 2000),
pp. 319–328.

[108] Herbsleb, J. D., Paulish, D. J., and Bass, M. Global Software Development
at Siemens: Experience from Nine Projects. In Proceedings of the International
Conference on Software Engineering (St. Louis, 2005), pp. 524–533.

[109] Hildenbrand, T., Rothlauf, F., Geisser, M., Heinzl, A., and Kude, T.
Approaches to Collaborative Software Development. In Proceedings of the Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems (Mar.
2008), IEEE, pp. 523–528.

[110] Hinds, P., and Mcgrath, C. Structures that work: social structure, work
structure and coordination ease in geographically distributed teams. In Proceedings
of the 20th Conference on Computer Supported Cooperative Work (Banff, 2006),
pp. 343–352.

[111] Hinds, P. J., and Mortensen, M. Understanding Conflict in Geographically
Distributed Teams: The Moderating Effects of Shared Identity, Shared Context,
and Spontaneous Communication. Organization Science 16, 3 (May 2005), 290–
307.

[112] Hine, C. Virtual ethnography. Sage Publications Ltd, 2000.

[113] Hirschheim, R., Dibbern, J., and Heinzl, A. Foreword to the special issue
on IS sourcing. Information Systems Frontiers 10, 2 (Apr. 2008), 125–127.

[114] Hirschheim, R. A., Heinzl, A., and Dibbern, J. Information systems out-
sourcing: enduring themes, emergent patterns, and future directions. Springer-
Verlag, Berlin; New York, 2002.

[115] Hirschheim, R. A., Newman, M., Loebbecke, C., and Valor, J. Offshoring
and its Implications for the Information Systems Discipline. In Proceedings of the
Twenty-Sixth International Conference on Information Systems (2005), pp. 1003–
1018.

175

Bibliography

[116] Hoffmann, B., and Wulf, V. Building Communities among Software En-
gineers: The ViSEK Apporach to Intra- and Inter-Organizational Learning. In
International Workshop on Learning Software Organizations (LSO 2002) (Heidel-
berg, 2002), S. Henninger and F. Maurer, Eds., pp. 32ff.–32ff.

[117] Hofstede, G. H. Culture’s consequences: comparing values, behaviors, institu-
tions, and organizations across nations. Sage Publications, Thousand Oaks, Calif.,
2001.

[118] Hsieh, Y. Culture and Shared Understanding in Distributed Requirements Engi-
neering. In Proceedings of the IEEE International Conference on Software Engi-
neering (2006), IEEE Computer Society, pp. 101–108.

[119] Huysman, M., and de Wit, D. Practise of Managing Knowledge Sharing: To-
wards a Second Wave of Knowledge Management. Knowledge and Process Man-
agement 11/2 (2004), 81–92.

[120] Huysman, M., and Wulf, V. Social capital and information technology. MIT
Press, Cambridge, Mass., 2004.

[121] Iivari, J., Hirschheim, R. A., and Klein, H. K. Towards More Professional
Information Systems Development: ISD as Knowledge Work. In Proceedings of the
9th Europaean Conference on Information Systems (Bled, 2001), pp. 1025–1036.

[122] Imsland, V. The Role of Trust in Global Software Outsourcing Relationships.
Ph.d. thesis, University of Oslo, 2003.

[123] Johri, A. Look Ma, No Email! Blogs and IRC as Primary and Preferred Com-
munication Tools in a Distributed Firm. In Proceedings of the 2011 Conference on
Computer Supported Cooperative Work (Hangzhou, China, 2011), pp. 305–308.

[124] Kämpgen, B., Ell, B., Simperl, E., Vrandecic, D., and Dengler, F.
Enterprise Wikis: Technical Challenges and Opportunities. In Proceedings of the
6th Conference on Professional Knowledge Management (2011).

[125] Keil, P. Principal Agent Theory and its Application to Analyze Outsourc-
ing of Software Development. In Proceedings of the International Workshop on
Economics-Driven Software Engineering Research (St. Louis, 2005).

[126] King, W. R., and Torkzadeth, G. Information Systems Offshoring: Research
Status and Issues. MIS Quarterly 32/2 (2008).

[127] Knoblauch, H. Fokussierte Ethnographie. Sozialer Sinn, 1 (2001), 123–141.

176

Bibliography

[128] Kobylinski, R. Building Group Awareness in Distributed Software Development
Projects. PhD thesis, 2005.

[129] Koch, C. AT&T Wireless Self-Destructs as Offshore IT Outsourcing Disaster kills
Company. CIO Magazine, 15. April 2004 (2004).

[130] Koch, M., and Richter, A. Enterprise 2.0: Planung, Einführung und erfolgre-
icher Einsatz von Social Software in Unternehmen. Oldenbourg, Oct. 2007.

[131] Kotlarsky, J., and Oshri, I. Social Ties, Knowledge Sharing and Successful
Collaboration in Globally Distributed System Development Projects. Europaean
Journal of Information Systems 14/1 (2005), 37–48.

[132] Kraut, R. E., Fussell, S. R., Brennan, S. E., and Siege, J. Understanding
effects of proximity on collaboration: Implications for technologies to support remote
collaborative work. Cambridge, 2002, pp. 137–162.

[133] Krishna, S., Sahay, S., and Walsham, G. Managing Cross-Cultural Issues in
Global Software Outsourcing. Communications of the ACM 47, 4 (2004), 62–66.

[134] Lacity, M., and Willcocks, L. Global information technology outsourcing: In
search of business advantage. Wiley, 2001.

[135] Lacity, M. C. Lessons in Global Information Technology Sourcing. Computer
35, 8 (2002), 26–33.

[136] Lacity, M. C., and Hirschheim, R. A. Information systems outsourcing:
myths, metaphors, and realities. Wiley, Chichester, New York, 1993.

[137] Lacity, M. C., and Hirschheim, R. A. Beyond the information systems out-
sourcing bandwagon: the insourcing response. Wiley, Chichester, New York, 1995.

[138] Lanubile, F., Ebert, C., Prikladnicki, R., and Vizcaino, A. Collaboration
Tools for Global Software Engineering. IEEE Software 27, 2 (Mar. 2010), 52–55.

[139] Lave, J., and Wenger, E. Situated learning: legitimate peripheral participation.
Learning in doing. Cambridge University Press, Cambridge, New York, 1991.

[140] Lee, G., Delone, W., and Espinosa, J. A. Ambidextrous coping strategies in
globally distributed software development projects. Communications of the ACM
49, 10 (2006), 35–40.

[141] Lee, J.-N., Huynh, M., and Hirschheim, R. An integrative model of trust on
IT outsourcing: Examining a bilateral perspective. Information Systems Frontiers
10, 2 (Apr. 2008), 145–163.

177

Bibliography

[142] Lee, O.-K., Banerjee, P., Lim, K. H., Kumar, K., van Hillegersberg, J.,
and Wei, K. K. Aligning IT components to archieve agility in globally distributed
system development. Communications of the ACM 49, 10 (2006), 49–54.

[143] Lethbridge, T., and Singer, J. How Software Engineers Use Documentation:
The State of the Practice. IEEE Software 20/6 (2003).

[144] Levina, N., and Vaast, E. Innovating or Doing as Told? Status Differences and
Overlapping Boundaries in Offshore Collaboration. MIS Quarterly 32/2 (2008).

[145] Liao, Q., Pan, S., Lai, J. C., and Yang, C. Enterprise Blogging in a Global
Context : Comparing Chinese and American Practices. In Proceedings of the 2011
Conference on Computer Supported Cooperative Work (2011), pp. 35–44.

[146] MacGregor, E., Hsieh, Y., and Kruchten, P. Cultural Patterns in Software
Process Mishaps: Incidents in Global Projects. In Proceedings of the International
Conference on Software Engineering (St. Louis, 2005), pp. 1–5.

[147] Mackay, W. Patterns of sharing customizable software. In Proceedings of the
ACM Conference on Computer Supported Cooperative Work (Los Angeles, Califor-
nia, United States, 1990), ACM, pp. 209–221.

[148] Mahnke, V., Overby, M. L., and Vang, J. Strategic Outsourcing of IT Ser-
vices: Theoretical Stocktaking and Empirical Challenges. Industry and Innovation
12, 2 (2005), 205–253.

[149] Marczak, S., Damian, D., Stege, U., and Schröter, A. Information Brokers
in Requirement-Dependency Social Networks. In Proceedings of the 2008 16th
IEEE International Requirements Engineering Conference (2008), IEEE Computer
Society, pp. 53–62.

[150] Marczak, S., Kwan, I., and Damian, D. Investigating Collaboration Driven by
Requirements in Cross-Functional Software Teams. In 2009 Collaboration and In-
tercultural Issues on Requirements: Communication, Understanding and Softskills
(Aug. 2009), IEEE, pp. 15–22.

[151] McSweeney, B. Hofstede’s Model of National Cultural Differences and Their
Consequences: A Triumph of Faith - A Failure of Analysis. Human Relations 55/1
(2002), 89–118.

[152] Mertens, P., Groß e Wilde, J., and Wilkens, I. Die (Aus-)Wanderung der
Softwareproduktion. Eine Zwischenbilanz. Arbeitsberichte des Instituts für Infor-
matik 38/3. Erlangen, 2005.

178

Bibliography

[153] Milewski, A. E., Tremaine, M., Egan, R., Zhang, S., Kobler, F., and
O’Sullivan, P. Guidelines for Effective Bridging in Global Software Engineering.
In Proceedings of the International Conference on Global Software Engineering (Los
Alamitos, CA, USA, 2008), pp. 23–32.

[154] Mockus, A., and Weiss, D. M. Globalization by Chunking: Quantitative Ap-
proach. IEEE Software 18, 2 (2001), 30–37.

[155] Moe, N. B., Dingsø yr, T., and Dybâ, T. Overcoming Barriers to Self-
Management in Software Teams. IEEE Software 26, 6 (2009), 20–26.

[156] Morgan, G. Images of Organization. London, New Delhi, 1996.

[157] Narayanan, S., Mazumder, S., and Raju, R. Success of Offshore Relation-
ships: Engineering team structures. In Proceedings of the International Conference
on Global Software Engineering (Costo do Santinho, Brazil, 2006), IEEE, pp. 73–
82.

[158] Nett, B. Am Ende "Großer Theorien"? Überlegungen zur soziologischen Theo-
riediskussion. LIT, 1998.

[159] Nett, B. Konstruktion und Rekonstruktion von Technik. Business Ethnography als
reflexives Forschungsdesign für Technikentwicklungsprojekte. Habil. Univ. Siegen,
Siegen, 2011.

[160] Nett, B., and Durissini, M. Wissensprozesse in kleinen Unternehmen der Soft-
warebranche aus der Sicht von Entwicklern. Tech. rep., 2004.

[161] Nett, B., and Wulf, V. Wissensprozesse in der Softwarebranche. Kleine und
mittelständische Unternehmen unter empirischer Perspektive. Transcript, Bielefeld,
2005, pp. 147–168.

[162] Nicholson, B., and Sahay, S. Some political and cultural issues in the globaliza-
tion of software development: case experience from Britain and India. Information
and Organization 11 (2001), 25–43.

[163] Nicholson, B., and Sahay, S. Embedded knowledge and offshore software
development. Information and Organization 14/4 (2004), 329–365.

[164] OECD. Information and Communication Technologies. OECD Information Tech-
nology Outlook: 2004 Edition. Tech. rep., 2004.

[165] Olson, G., and Olson, J. Distance Matters. Human-Computer Interaction 15
(2000), 139–178.

179

Bibliography

[166] Orlikowski, W. J. Knowing in Practice: Enacting a Collective Capability in
Distributed Organizing. Organization Science 13, 3 (May 2002), 249–273.

[167] Oshrin, I., Kotlarsky, J., and Willcocks, L. Before, During, and After
Face-to-Face Meetings: The Lifecycle of Social Ties in Globally Distributed Teams.
In Proceedings of the Twenty-Sixth International Conference on Information Sys-
tems (2005), pp. 395–407.

[168] Paasivaara, M., and Lassenius, C. Could Global Software Development Ben-
efit from Agile Methods? In International Conference on Global Software Engi-
neering (Costo do Santinho, Brazil, 2006), pp. 1–5.

[169] Peirce, C. S. The Essential Peirce, Volume 2: Selected Philosophical Writings,
1893-1913. Indiana University Press, 1998.

[170] Perry, D. E., Siy, H. P., and Votta, L. G. Parallel Changes in Large-
Scale Software Development: An Observational Case Study. ACM Transactions
on Software Engineering and Methodology 10, 3 (2001), 308–337.

[171] Philip, T., Schwabe, G., and Ewusi-Mensah, K. Critical Issues of Offshore
Software Development Project Failures. In Proceedings of the International Con-
ference on Information Systems (Phoenix, Arizona, Jan. 2009).

[172] Polanyi, M. The tacit dimension. Routledge & K. Paul, London, 1967.

[173] Prikladnicki, R. Exploring Propinquity in Global Software Engineering. In
Proceedings of the Fourth IEEE International Conference on Global Software En-
gineering (2009), pp. 133–142.

[174] Putnam, R. D. Bowling Alone: The Collapse and Revival of the American Com-
munity. Simon & Schuster, New York, 2000.

[175] Ramesh, B., Cao, L., Mohan, K., and Xu, P. Can distributed software
development be agile? Communications of the ACM 49, 10 (2006), 41–46.

[176] Randall, D., Harper, R., and Rouncefield, M. Fieldwork for design: theory
and practice. Springer, 2007.

[177] Redmiles, D., Van Der Hoek, A., Al-Ani, B., Hildebrand, T., Quirk,
S., Sarma, A., Silva Filho, R. S., de Souza, C., and Trainer, E. Con-
tinuous Coordination. A New Paradigm to Support Globally Distributed Software
Development Projects. Wirtschaftsinformatik 49 (2007), 28–38.

180

Bibliography

[178] Reichling, T., Veith, M., and Wulf, V. Expert Recommender: Designing for
a Network Organization. Computer Supported Cooperative Work 16, 4 (Oct. 2007),
431–465.

[179] Richardson, I., Avram, G., Deshpande, S., and Casey, V. Having a Foot
on Each Shore - Bridging Global Software Development in the Case of SMEs. In
Proceedings of the 2008 IEEE International Conference on Global Software Engi-
neering (2008), IEEE Computer Society, pp. 13–22.

[180] Richardson, I., and Ryan, K. Software-Process Improvements in a Very Small
Company. Software Quality Professional 3/2 (2001), 22–35.

[181] Riemer, K., Richter, A., and Seltsikas, P. Enterprise Microblogging: Pro-
crastination or productive use? In Proceedings of the Americas Conference on
Information Systems (Aug. 2010).

[182] Rittel, H. Second-Generation Design Methods. John Wiley & Sons, New York,
1984, pp. 317–327.

[183] Rittenbruch, M. Atmosphere: towards context-selective awareness mechanisms.
In Proceedings of HCI International Conference on Human-Computer Interaction
(Munich, Aug. 1999), pp. 328–332.

[184] Rönkkö, K. Ethnography and Distributed Software Development. In Proceedings
of the ICSE Workshop Beg, Borrow or Steal: Using Multidisciplinary Approaches
in Empirical Software Engineering Research (Limerick, Ireland, 2000).

[185] Rönkkö, K. Ethnography. Taylor and Francis Group, New York, 2010.

[186] Rottman, J., and Lacity, M. A US Client’s learning from outsourcing IT work
offshore. Information Systems Frontiers 10, 2 (Apr. 2008), 259–275.

[187] Ruiz Ben, E., and Claus, R. Offshoring in der deutschen IT Branche. Eine
neue Herausforderung für die Informatik. Informatik Spektrum (2005), 34–38.

[188] Rumelt, R. P. Strategy, structure, and economic performance. Harvard Business
School classics; 5. Harvard Business School Press, Boston, Mass., 1986.

[189] Sabherwal, R., and Choudhury, V. Governance of Remotely Outsourced Soft-
ware Development: A Comparison of Client and Vendor Perspectives. Springer,
Berlin, Heidelberg, 2006, pp. 187–222.

[190] Sargent, A. Outsourcing relationship literature: an examination and implications
for future research. In Proceedings of the 2006 ACM SIGMIS CPR Conference on
Computer Personnel Research (Claremont CA, 2006), ACM, pp. 280–287.

181

Bibliography

[191] Sarma, A., Maccherone, L., Wagstrom, P., and Herbsleb, J. Tesseract:
Interactive visual exploration of socio-technical relationships in software develop-
ment. In 2009 IEEE 31st International Conference on Software Engineering (May
2009), IEEE, pp. 23–33.

[192] Sauer, J. Agile Offshore Outsourcing - Concepts and Practices for Flexible In-
tegration of Offshore Development Services. In Proceedings of the Agile Business
Conference (London, 2006).

[193] Sauer, J. Agile Practices in Offshore Outsourcing - An Analysis of Published
Experiences. In Proceedings of the 29th Information Systems Research (Helsingoer,
2006).

[194] Sauer, J. Architekturzentrierte agile Anwendungsentwicklung in global verteilten
Projekten. Univ. Diss. Hamburg, 2010.

[195] Scheitor, D., Müller, W., Leppeck, M., and Reimer, H. Offshore. Total
global? IG Metall, Munich, 2003.

[196] Schmidt, K. Riding a Tiger, or Computer Supported Cooperative Work. In Sec-
ond European Conference on Computer Supported Cooperative Work (Amsterdam,
1991), L. R. Bannon and K. Schmidt, Eds., pp. 1–16.

[197] Schmidt, K. Of maps and scripts. The status of formal constructs in cooperative
work. Information and Software Technology 41 (1999), 319–329.

[198] Schmidt, K. Asking for the moon: Or model-based coordination in distributed
design. In Proceedings of the European Conference on Computer Supported Coop-
erative Work (ECSCW) (2009), pp. 383–402.

[199] Schmidt, K. Cooperative Work and Coordinative Practices: Contributions to
the Conceptual Foundations of Computer-Supported Cooperative Work (CSCW).
Springer, 2011.

[200] Schmidt, K., and Bannon, L. Taking CSCW Seriously: Supporting Articulation
Work. Computer Supported Cooperative Work 1, 1 (1992), 7–40.

[201] Schmidt, K., and Simone, C. Coordinaton Mechanisms: Towards a Conceptual
Foundation of CSCW Systems Design. Computer Supported Cooperative Work 5
(1996), 155–200.

[202] Schmidt, K., and Wagner, I. Ordering Systems: Coordinative Practices and
Artifacts in Architectural Design and Planning. Computer Supported Cooperative
Work 13, 5-6 (Dec. 2004), 349–408.

182

Bibliography

[203] Schutz, A. The structures of the lifeworld. Northwestern Univ. Pr., Evanston Ill.,
1983.

[204] Shapiro, D. The limits of ethnography: combining social sciences for CSCW.
Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work
(CSCW) (1994), 417–428.

[205] Sieber, A. Kleine Softwareunternehmen und ihre Erfahrungen mit Softwareen-
twicklung in Osteuropa und Indien. In Informatik 2006. Informatik für Menschen.
Beiträge der 36. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 2.-6. Ok-
tober 2006 in Dresden (Bonn, 2006), C. Hochberger and R. Liskowsky, Eds., vol. 1
of Lecture Notes in Informatics, pp. 642–649.

[206] Simone, C., Divitini, M., and Schmidt, K. A notation for malleable and
interoperable coordination mechanisms for CSCW systems. In Conference on Or-
ganizational Computing Systems (Milpitas, California, 1995), pp. 1–12.

[207] Sohlenkamp, M., Prinz, W., and Fuchs, L. PoliawaC: design and evaluation
of an awareness-enhanced groupware client. AI & Society 14, 1 (Mar. 2000), 31–47.

[208] Spanjers, H., ter Huurne, M., Graaf, B., Lormans, M., Bendas, D.,
and Van Solingen, R. Tool Support for Distributed Software Engineering. In
Proceedings of the International Conference on Global Software Engineering (Costo
do Santinho, Brazil, 2006), pp. 1–10.

[209] Star, S. L. The Sociology of the Invisible: The Primacy of Work in the Writings
of Anselm Strauss. Aldine de Gruyter, Hawthorne, 1991, pp. 265–283.

[210] Star, S. L., and Griesemer, J. R. Institutional Ecology, ‘Translations’ and
Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of Verte-
brate Zoology, 1907-39. Social Studies of Science 19, 3 (Aug. 1989), 387–420.

[211] Star, S. L., and Strauss, A. L. Layers of Silence, Areas of Voice: The Ecology
of Visible and Invisible Work. Computer Supported Cooperative Work 8 (1999),
9–30.

[212] Stark, J., Arlt, M., and Walker, D. H. T. Outsourcing Decisions & Models
- Some Practical Considerations for Large Organizations. In Proceedings of the In-
ternational Conference on Global Software Engineering (Costo do Santinho, Brazil,
2006), pp. 1–6.

[213] Stevens, G. Understanding and Designing Appropriation Infrastructures: Ar-
tifacts as boundary objects in the continuous software development. Diss. Univ.
Siegen, 2010.

183

Bibliography

[214] Stevens, G., and Nett, B. Business Ethnography as a research method to
support evolutionary design. Navigationen. 2009.

[215] Stevens, G., Pipek, V., and Wulf, V. Appropriation Infrastructure: Mediat-
ing appropriation and production work. Special Issue on End-User Development of
the International Journal of Organizational and End User Computing 22, 2 (2010),
58–81.

[216] Stevens, G., and Wiedenhöfer, T. CHIC - a pluggable solution for community
help in context. In Proceedings of the 4th Nordic Conference on Human-Computer
Interaction (Oslo, Norway, 2006), ACM, pp. 212–221.

[217] Stopford, J. M., and Wells, L. T. Managing the multinational enterprise; or-
ganization of the firm and ownership of the subsidiaries. The Harvard multinational
enterprise series. Basic Books, New York, 1966.

[218] Storey, M.-A., Treude, C., van Deursen, A., and Cheng, L.-T. The
Impact of Social Media on Software Engineering Practices and Tools. In Proceedings
of the Workshop on the Future of Software Engineering Research (Santa Fe, 2010),
pp. 359–364.

[219] Strauss, A. L. Social organization of medical work. University of Chicago Press,
Chicago, 1985.

[220] Strauss, A. L. Work and Division of Labor. The Sociological Quarterly 26, 1
(1985), 1–19.

[221] Strauss, A. L. The Articulation of Project Work: An Organizational Process.
The Sociological Quarterly 29, 2 (1988), 163–178.

[222] Strauss, A. L. Continual permutations of action. Communication and social
order. Aldine de Gruyter, New York, 1993.

[223] Strauss, A. L., and Corbin, J. M. Basics of qualitative research: techniques
and procedures for developing grounded theory. Sage Publications, Thousand Oaks,
1998.

[224] Strübing, J. Pragmatistische Wissenschafts- und Technikforschung: Theorie und
Methode. Campus Verlag, 2005.

[225] Stuttgart, L. V., and Schmidt, R. Praktiken des Programmierens. Zur Mor-
phologie von Wissensarbeit in der Software-Entwicklung. Zeitschrift für Soziologie
37, 4 (2008), 282–300.

184

Bibliography

[226] Suchman, L. A. Plans and situated actions: the problem of human-machine
communication. Cambridge University Press, Cambridge, New York, Port Chester,
Melbourne, Sidney, 1987.

[227] Suchman, L. A. Making Work Visible. Communications of the ACM 38, 9 (1995),
56–64.

[228] Sutherland, J., Viktorov, A., Blount, J., and Puntikov, N. Distributed
scrum: Agile project management with outsourced development teams. In Pro-
ceedings of the 40th Annual Hawaii International Conference on System Sciences
(2007), IEEE Computer Society.

[229] Takeuchi, H., and Nonaka, I. o. Hitotsubashi on knowledge management. John
Wiley & Sons (Asia), Singapore, 2004.

[230] Thom-santelli, J., Millen, D. R., and Street, R. Organizational Accultur-
ation and Social Networking. In Proceedings of the 2011 Conference on Computer
Supported Cooperative Work (2011), pp. 313–316.

[231] Tichy, W., and Höfer, A. Status of Empirical Research in Software Engineer-
ing. Tech. rep., 2006.

[232] Timonen, H., and Jalonen, M. A Critical Review of Knowledge Management
Literature: Introducing a Practice-based Approach on Knowledge Sharing. In
Proceedings of the 9th European Conference on Knowledge Management (South-
hampton, UK, 2008).

[233] Treude, C., and Storey, M. Awareness 2.0: Staying aware of projects, devel-
opers and tasks using dashboards and feeds. In Proceedings of the International
Conference on Software Engineering (2010), ACM, pp. 365–374.

[234] Twidale, M. B. Over the Shoulder Learning: Supporting Brief Informal Learning.
Computer Supported Cooperative Work (CSCW) 14, 6 (Nov. 2005), 505–547.

[235] Vähäniitty, J., and Rautiainen, K. T. Towards a conceptual framework and
tool support for linking long-term product and business planning with agile software
development. Proceedings of the International Conference on Software Engineering
(2008), 25–28.

[236] Volery, T., and Jakl, M. L. Chancen und Problemfelder der International-
isierung für KMU - eine Grundsätzliche Betrachtung. Erich Schmidt Verlag, Berlin,
2006, pp. 1–18.

[237] Weick, K. Making Sense of the Organisation. Blackwell, 2001.

185

Bibliography

[238] Wenger, E. Communities of practice: learning, meaning, and identity. Learning
in doing. Cambridge University Press, Cambridge, New York, 1998.

[239] Wiener, M. Critical success factors of offshore software development projects:
The perspective of German-speaking companies. Duv, 2006.

[240] Williamson, O. E., and Masten, S. E. The economics of transaction costs.
An Elgar critical writings reader. E. Elgar Pub., Cheltenham, UK; Northampton,
Mass. USA, 1999.

[241] Williamson, O. E., Winter, S. G., and Coase, R. H. The Nature of the firm:
origins, evolution, and development. Oxford University Press, New York, 1991.

[242] Wilson, S., Galliers, J., and Fone, J. Not all sharing is equal. In Proceedings
of the Conference on Computer Supported Cooperative Work (New York, New York,
USA, Nov. 2006), ACM Press, pp. 25–28.

[243] Winkler, J., and Dibbern, J. Herausforderungen und Chancen der Interna-
tionalisierung für mittelständische Softwareunternehmen in Deutschland. In Pro-
ceedings of the Multikonferenz Wirtschaftsinformatik (MKWI) (2008), pp. 751–762.

[244] Winkler, J., Dibbern, J., and Heinzl, A. The impact of cultural differences
in offshore outsourcing - Case study results from German-Indian application devel-
opment projects. Information Systems Frontiers 10, 2 (Apr. 2008), 243–258.

[245] Wittel, A. Ethnography on the Move: From Field to Net to Internet. Forum
Qualitative Sozialforschung 1, 1 (2000).

[246] Womack, J. P. Die zweite Revolution in der Autoindustrie: Konsequenzen aus der
weltweiten Studie aus dem Massachusetts Institute of Technology. Campus-Verl.,
Frankfurt/Main [u.a.], 1994.

[247] WPIE (Working Party of the Information Economy). Potential Off-
shoring of ITC-intensive using Occupations. Tech. rep., 2005.

[248] Wulf, V., and Mark, G. The Emergence of Conventions within Processes
of Organizational and Technological Change. In Proceedings of the International
Conference on Human-Computer Interaction (Amsterdam, 1997), pp. 293–296.

[249] Wulf, V., and Rohde, M. Towards an integrated organization and technology
development. Designing Interactive Systems (1995), 55.

[250] Wulf, V., and Rohde, M. Engaging with Practices : Design Case Studies
as a Research Framework in CSCW. In Proceedings of the 2011 Conference on
Computer Supported Cooperative Work (2011), pp. 505–512.

186

Bibliography

[251] Yang, X.-H., and Xu, B. Towards Adaptive Tasks Arrangement in Offshore
Outsourcing Software Development. In Proceedings of the Fourth International
Conference on Machine Learning and Cybernetiks (Gouangzhou, 2005), pp. 654–
657.

[252] Zhao, D., and Rosson, M. B. How and why people Twitter: the role that
micro-blogging plays in informal communication at work. In Proceedings of the
ACM 2009 International Conference on Supporting Group Work (Sanibel Island,
Florida, USA, 2009), ACM, pp. 243–252.

[253] Zolin, R. Interpersonal trust in cross-functional, geographically distributed work:
A longitudinal study. Information and Organization 14, 1 (Jan. 2004), 1–26.

187

Appendix I: List of Publications

Parts of this dissertation have already been published as conference or journal papers.
The chapters of part II resemble the accepted versions of these publications:

• Chapter 4: Boden, A., Müller, C. & Nett, B., 2011. Conducting Business Ethnog-
raphy in Global Software Development Projects of Small German Enterprises. In-
formation and Software Technology 53/9, pp. 1012-1021.
http://www.sciencedirect.com/science/article/pii/S095058491100036X
Publisher: Elsevier B.V.

• Chapter 5: Boden, A., Nett, B. & Wulf, V., 2007. Coordination Practices in
Distributed Software Development of Small Enterprises. In Proceedings of the
Second IEEE International Conference on Global Software Engineering (ICGSE
2007). pp. 235-246.
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=4299859
Publisher: IEEE

• Chapter 6: Boden, A., Nett, B. & Wulf, V., 2010. Operational and Strategic
Learning in Global Software Development - Implications from two Offshoring Case
Studies in Small Enterprises. IEEE Software, 27(6), pp. 58-65.
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=5204064
Publisher: IEEE

• Chapter 7: Boden, A., Nett, B. & Wulf, V., 2009. Trust and Social Capital:
Revisiting an Offshoring Failure Story of a Small German Software Company. In
Proceedings of the Eleventh Europaean Conference on Computer Supported Coop-
erative Work (ECSCW 2009). London: Springer, pp. 123-142.
http://www.springerlink.com/content/978-1-84882-853-7#section=99856&page=1&locus=0
Publisher: Springer

• Chapter 8: Boden, A., Avram, G., Bannon, L. & Wulf, V., 2010. Knowledge
Sharing Practices and the Impact of Cultural Factors: Lessons from Two Case

188

Appendix I: List of Publications

Studies of Offshoring in SME. Software Maintenance and Evolution: Research and
Practice, doi: 10.1002/smr.473.
http://onlinelibrary.wiley.com/doi/10.1002/smr.473/abstract
Publisher: John Wiley & Sons, Ltd.

189

	Introduction
	Concept
	Related Work
	Global Software Development
	Background
	Offshoring of Information Systems
	Software Offshoring in SMEs
	Flexibility and Learning as Core Competencies of software developing SMEs

	Computer Supported Cooperative Work
	Articulation Work
	Articulation Work in Distributed Software Projects

	Study Outline
	Perspective
	Methodology
	Case Studies
	Company Alpha
	Company Beta

	Findings
	Conducting Business Ethnography
	Introduction
	Related Work
	Qualitative Research in Software Engineering
	The Concept of Business Ethnography

	Research Project: Articulation Work in Offshoring of small to medium-sized Software Companies
	Aims and Research Design
	Analysis of our Research Methodology
	Case Study: Company Alpha

	Conducting a Business Ethnography in our Project
	Challenges of GSD Research
	Studying Global Work Practices through a Local Lens
	Adapting to Changing Interests of the Company
	Dealing with Micro-Political Conflicts between the Sites

	Discussion
	Conclusion

	Coordination Practices
	Introduction
	Global Software Development in SME
	Theoretical Perspectives on Offshoring
	Agility as a Core Competency

	Articulation Work
	Articulation Work and Software Development
	Articulation Work in Distributed Work Environments

	Research Method
	Interviews
	Participant Observation
	Grounded Theory Analysis
	The Cases

	Results
	Bug fixing
	Specification of Features
	Communication

	Discussion
	Conclusion

	Operational and Strategic Learning
	Introduction
	Single- and Double-Loop Learning
	Research Methods
	The Case Studies
	Company Alpha
	Company Beta

	Different Work-Organization Models
	Model 1: Division of Labor for Alpha’s Standard Software Solution
	Model 2: Division of Labor for Alpha’s Customer-Specific Projects
	Model 3: Initial Division of Labor for Beta
	Model 4: Division of Labor for Beta after Reorganization

	Discussion
	Conclusion

	Trust and Social Capital
	Introduction
	Offshore Cooperation in the Literature
	Methodology
	The Case Study
	Changes to the Division of Labor
	Attempts of Standardization
	Selling the Offshore Organization
	Salaries and Infrastructure
	The Termination of the Cooperation

	Analysis of Articulation Work and Social Capital
	Conclusion

	Knowledge Sharing Practices
	Introduction
	Related Work
	Knowledge in (Global) Software Engineering
	Cross-Cultural Aspects of Global Software Engineering

	Cases
	Company A Overview: Germany (Bonn)—Russia (Tomsk)
	Company B Overview: Ireland (Dublin)—Romania (Bucharest)

	Methodology
	Case Study A: Research Methods
	Case Study B: Research Methods
	Data Analysis for the Current Study

	Research Findings
	Status Meetings and Maintaining Awareness
	Collaborative Use of Shared Artifacts and Repositories
	Spending Time at the Other Site
	Human ``Bridges'': Mediating between People and Cultures

	Discussion
	Conclusion

	Conclusions
	Analysis
	Summary of Findings
	Articulation Work in Software Offshoring of SMEs
	Articulation Work and Organizational Learning
	Articulation Work and its Socio-Cultural Embedding

	Implications
	Methodological Implications for Research
	Theoretical Implications for the Scientific Discussion
	Practical Implications for Companies
	Implications for Design

	Outlook

	Appendix I: List of Publications

