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Abstract

This thesis is concerned with different characterizations of multi-particle quantum cor-
relations and with entropic uncertainty relations.

The effect of statistical errors on the detection of entanglement is investigated. First,
general results on the statistical significance of entanglement witnesses are obtained.
Then, using an error model for experiments with polarization-entangled photons, it is
demonstrated that Bell inequalities with lower violation can have higher significance.

The question for the best observables to discriminate between a state and the equiva-
lence class of another state is addressed. Two measures for the discrimination strength
of an observable are defined, and optimal families of observables are constructed for
several examples.

A property of stabilizer bases is shown which is a natural generalization of mutual
unbiasedness. For sets of several dichotomic, pairwise anticommuting observables,
uncertainty relations using different entropies are constructed in a systematic way.

Exponential families provide a classification of states according to their correlations.
In this classification scheme, a state is considered as k-correlated if it can be written as
thermal state of a k-body Hamiltonian. Witness operators for the detection of higher-
order interactions are constructed, and an algorithm for the computation of the nearest
k-correlated state is developed.






Zusammenfassung

Diese Arbeit befasst sich mit Charakterisierungen von Mehrteilchen-Quantenkorrela-
tionen und mit entropischen Unschérferelationen.

Der Einfluss statistischer Fehler auf die Detektion von Verschrankung wird unter-
sucht. Zuerst werden allgemeine Resultate zur statistischen Signifikanz von Verschran-
kungszeugen erzielt, dann wird unter Verwendung eines Fehlermodells fiir polarisati-
onsverschriankte Photonen gezeigt, dass Bellsche Ungleichungen mit niedrigerer Ver-
letzung hohere Signifikanz haben kénnen.

Die Frage nach den besten Observablen zur Unterscheidung eines Zustands von der
Aquivalenzklasse eines anderen wird behandelt. Zwei Mafe fiir die Unterscheidungs-
kraft werden definiert, und fiir mehrere Beispiele werden optimale Familien von Ob-
servablen gefunden.

Es wird eine Eigenschaft von Stabilisatorbasen gezeigt, die eine natiirliche Verallge-
meinerung der mutual unbiasedness darstellt. Fiir Familien aus mehreren dichotomen,
paarweise antikommutierenden Observablen werden Unschérferelationen mit ver-
schiedenen Entropien systematisch konstruiert.

Exponentielle Familien ermoglichen eine Klassifikation von Zustdnden nach den ent-
haltenen Korrelationen. Hierbei wird ein Zustand als k-korreliert angesehen, wenn er
sich als thermischer Zustand eines k-Teilchen-Hamiltonoperators schreiben lédsst. Es
werden Zeugenoperatoren zur Detektion von Wechselwirkungen hoherer Ordnung
konstruiert, und ein Algorithmus zur Berechnung des ndchsten k-korrelierten Zustands
wird entwickelt.
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1 Introduction

Perhaps the greatest success of quantum information theory has not been in computa-
tion or cryptography, but in the contributions it has made to our better understanding
of the fundamental concepts of quantum mechanics. The focus on states and measure-
ments as objects of investigation, detached from their concrete physical implementa-
tion, and the introduction of information-theoretic concepts have helped to determine
more clearly the differences between quantum and classical physics. The impressive
progress in control of individual quantum systems during the last decades has made it
possible to test many of the predicted phenomena experimentally.

A central role is played by the concept of entanglement [32}[100,101}[102]. The pres-
ence of entanglement is necessary to show nonlocality in the sense of Bell’s theorem,
which establishes most dramatically the fundamental difference between quantum and
classical physics [13]]. It has become popular to refer to entanglement as the key re-
source for quantum information processing [86], though this is an oversimplification:
At least, one has to distinguish between different kinds of entanglement, some of which
are useful for a given task, while others are not. Naturally, the situation becomes more
involved if more than two degrees of freedom are entangled. At a more pragmatic
level, entanglement is useful as a benchmark for the experimental control of individ-
ual quantum systems. This shows the particular relevance of methods that allow to
verify the presence of entanglement in an experiment and to determine its type. While
entanglement detection is a highly developed field [44], the question of the statistical
significance which is provided by an entanglement test has received little attention.
The terminology which is used to describe entanglement witnesses provides an exam-
ple: It is customary to call a witness optimal if there is no other witness which detects
more entangled states [74]. However, for experimental applications one is rather more
interested in a witness that detects a given target state with the highest possible signif-
icance. In Chapter [J of this thesis, the optimization of witnesses in the latter sense is
considered. Similarly, it is shown that Bell inequalities with a lower violation can have a
higher significance. In the multipartite case, where different types of entanglement can
be distinguished, one is interested in finding observables to discriminate inequivalent
states. In Chapter i the question for families of observables with the highest discrimi-
nation strength is addressed.

A prototypical example of the ways in which quantum mechanics departs from clas-
sical physics is given by the uncertainty principle [52]. This term refers to the fact that
one cannot prepare a quantum system in such a way that for all possible measurements
the outcome is certain. A quantitative formulation of the principle is provided by uncer-
tainty relations. For continuous variables, such as position and momentum, uncertainty
is usually quantified by the standard deviation. In the case of finitely many measure-
ment outcomes, the entropy of the outcome probabilities is a more natural measure.



This has lead to the study of entropic uncertainty relations [30}69,180].

While entanglement describes a form of correlation that is inherently quantum me-
chanical, one is also interested in classifying all correlations that are contained in a
quantum state, whether they can be described classically or not. A very natural way of
characterizing correlations is by asking: How much information is contained in a given
state, but is not contained in its k-party reduced density matrices? It turns out that the
answer to this question can be understood geometrically as a distance from the state to
the class of thermal states of Hamiltonians with at most k-body interactions. The term
“exponential families” in the title of this thesis refers to such classes of thermal states.
In the framework of information geometry, a theory of exponential families of classical
probability distributions has been developed [2/3]]. Even though the concept of thermal
states is very natural in quantum mechanics, the quantum version of the theory has
been developed only recently [132][133}[134].

This thesis is structured as follows:

In Chapter [2] those aspects of quantum information theory are reviewed which are
prerequisites for the main part of the thesis. These topics include entanglement and
its detection, Bell inequalities, classical and quantum entropies and uncertainty rela-
tions. An introduction is given to the stabilizer formalism, which will be used as an
important tool in all subsequent chapters. The theory of classical exponential families
of interaction spaces is outlined.

Chapters 3-6 constitute the main part of the thesis. The subject of Chapter [3is the
statistical significance of experimental entanglement tests, and Chapter @ is concerned
with finding optimal sets of observables for discriminating classes of multipartite states
with different entanglement properties.

Chapter [3 describes the results on entropic uncertainty relations. These results fall
into two categories: the characterization of measurement bases that admit strong un-
certainty relations and the generalization of the theory to the case of more than two
observables.

In Chapter [@ the theory of exponential families of interaction spaces is applied to
the study of quantum correlations. The first section aims at establishing connections
between different notions of genuine three-party correlations by studying the measure-
ment probabilities of three-party Bell experiments. The other sections concern expo-
nential families of quantum states. The focus is on the computation of the information
projection and the detection of higher-order interactions.

The results reported in Chapters 3, 4 and 5 have been published in RefsEl Bl [Cand D}
respectively. The results in Chapter 6 are as of now unpublished.

Finally, in Chapter [/Ithe thesis ends with a conclusion.

IReferences in the form of letters refer to the publication list on p. 31l

10



2 Basic concepts

2.1 Entanglement and its detection

2.1.1 Entanglement

The notion of entanglement pertains to quantum systems that are composed of identi-
tiable subsystems. Like many concepts of quantum information theory, entanglement
is best introduced while imagining that the system under consideration consists of a
number of distinguishable particles which are situated in different, spatially separated
laboratories[] The persons experimenting on the individual particles are customarily
called Alice, Bob, Charlie, ...

We begin with the case of two parties. If the two subsystems are prepared indepen-
dently and they are adequately described by two pure states |”) and |¢®), then the
composite system is in a pure separable or product state

[p) = [p?) @ [pF). (2.1)

A pure state that cannot be written as a product is called entangled. Examples of entan-
gled states are the four Bell stated!]

1 1
V2 V2

The defining property of separable states is that they can be prepared locally, i.e., by
two devices which act independently on either subsystem. Consequently, a mixed state
p is called separable if one can find states |/') of system A and |¢?) of system B and
convex weights p; > 0 with }; p; = 1 such that

p =L pily )Wl @ [l (. (2.3)

[#7) (l00) £[11)),  [p=) = —=(]01) £ [10)). (2.2)

Such a state can be prepared locally in the following way: A random generator pro-
duces numbers with probabilities p;. Given the random number i, the systems A and B
are prepared in states |/') and |p?), respectively. The set of separable states is a con-
vex and compact subset of all states!] Again, states which are not separable are called
entangled.

IThe concept of entanglement is applicable more generally, though. Hyperentanglement specifically refers
to entanglement between different degrees of freedom of the same particle.

2 As usual in the quantum information literature, |0) and |1) are the eigenvectors of the Pauli matrix o
with eigenvalue +1 and —1, respectively, and [01) = |0)[1) = |0) ® |1).

3Throughou’c this thesis all Hilbert spaces are finite-dimensional. In this case, Carathéodory’s theorem
implies that any separable state can be written as a convex combination of finitely many pure product
states [44}, Sec. 2.2].
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Separable mixed states are not necessarily product states, i.e., of the form p = p4 ®
pB. The results of local measurements will in general be correlated].

In the case of more than two parties, different classes of entangled states can be dis-
tinguished. We call an n-party pure state fully separable if it is a product of n factors,

¥e) = [ph) @ @ [y"). (24)
A pure state is called biseparable if it can be written as a product of two factors,
|Ilbb5> = |¢1>i1/---/im ® |lpz>im+1/---/in' (25)

The states |¢!) and [?) need not be entangled. For example, a pure biseparable state
of three parties has one of the following forms:

[Yapic) = 10" as @ [97)e,  [Pacis) = ¥ )ac @ [¥7)s,  |Yapc) = ¢ a® |1P2>zz§-6)
(There are three bipartitions of three parties.) States which are not biseparable are called
genuinely n-partite (or genuinely multipartite) entangled. For n > 3 parties, the bisepara-
ble states can be differentiated further Sec. 3.3].

Mixed states which can be written as convex combinations of pure fully separable
(biseparable) states are called fully separable (biseparable) [1]. The important point
here is that the states in the convex decomposition of a biseparable mixed state may
be biseparable with respect to different bipartitions of the n parties. This definition
ensures that only those states count as genuinely n-partite entangled which require for
their preparation a quantum operation on all parties.

2.1.2 Local operations

Thinking again in the picture of spatially separated laboratories, it is natural to ask
what can (or cannot) be done with local operations. Answering this question also helps
to understand multipartite entanglement.

Two states certainly have the same entanglement properties if they differ only by the
choice of local bases. This is the case if one state can be obtained from the other by a
local unitary (LU) transformation,

=0 -l - -oU. 2.7)

We call these states LU-equivalent. For a necessary and sufficient condition for the LU-
equivalence of pure n-qubit states see Ref. |68l For the study of stabilizer states, a certain
subgroup of local unitaries, namely, local Clifford operations, are particularly relevant
(see Section [2.5.3).

The most general local operation consists of the use of an additional quantum system
(a so-called ancilla) and arbitrary unitary operations and measurements on the local

41t seems to be common practice in quantum information theory to use the word correlation somewhat
loosely. This is in contrast to mathematical statistics, where one carefully distinguishes between uncor-
related (vanishing correlation coefficient) and independent (factorizing probability distribution).
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system combined with the ancillaﬁ Furthermore, we allow the parties to communicate
classically. Thus, the operation of one party may depend on a previous measurement
result of another party. We can now ask if it is possible in this way to transform a
single copy of a multipartite state p into another state p’. If we do not demand that the
conversion always succeeds, but only that the success probability is nonzero, we refer
to this scheme as stochastic local operations and classical communication (SLOCC). If the
conversion is possible in either direction (with nonvanishing probability), we call the
states SLOCC-equivalent. It can be shown that two pure states are SLOCC-equivalent if
and only if they are related by an invertible local operation [31],

) = A1 @+ @ Anlgh). (28)

Here the A; are arbitrary invertible operators.

The concept of SLOCC equivalence is relevant for quantum information processing
because SLOCC-equivalent states can in principle be used for the same applications (by
first applying SLOCC transformations, if necessary). Note, however, that any quantum
speedup might be lost due to the overhead resulting from the conversion.

For the case of pure three-qubit states there, are six SLOCC equivalence classes with
the following canonical representatives [31]:

|ss) = 1000), [ajpc) =10)a ® |97 ) e,
[¥51ac) = 10)B @ [¢T) ac, [Wagic) = 107) B @10)c, 2.9)
1 1
[Ws) = (100 + [010} +[100)),  |GHZs) = —=(000) + [111).

Here |¢T) is the Bell state from Eq. (Z2). (Any other Bell state would do as well, since
all Bell states are LU-equivalent.) The SLOCC equivalence classes of the first four states
consist respectively of the fully separable states and those states which are biseparable
with respect to a specific bipartition, but not fully separable. There are two SLOCC
classes of genuinely threepartite entangled states, which are represented by the three-
qubit W statdd and the three-qubit Greenberger-Horne-Zeilinger (GHZ) state. It is easy
to see that the W and the GHZ state have different entanglement properties: If one party
of the GHZ state is traced out, the remaining two parties are in the maximally mixed
state, while the reduced two-party density matrix of the W state is entangled. A pa-
rameter counting argument shows that for more than three qubits there are continuous
families of SLOCC-inequivalent pure states [31].

For three qubits, the class of mixed W states is defined as the convex combinations
of biseparable states and pure states which are SLOCC-equivalent to the W state [1].
In this classification scheme, the class of mixed GHZ states is the set of all states. (One
might ask if the roles of the W and the GHZ state in these definitions could be swapped.
This is not possible for the following reason: The closure of the set of pure GHZ-type
state contains all pure W-type states. Therefore the set of convex combinations of GHZ-
type pure states and biseparable states cannot be closed [1].)

5Such operations can be described in the Kraus operator or operator sum representation [86, Sec. 8.2.3].
OThis state is named after Wolfgang Diir.
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2.1.3 Entanglement criteria

The field of entanglement detection is concerned with two closely related questions:
Is the state described by a given density matrix separable or entangled?, and: Does a certain
experiment produce entangled or separable states?

For pure bipartite states, the Schmidt decomposition provides a simple answer to the
first question. It can be shown that for any such state |¢) there exists an orthonormal
basis |#) of the first subsystem and an orthonormal basis |?) of the second subsystem
such that [86, Thm. 2.7]

) = LAl @ ly7) (2.10)

with nonnegative real numbers A;, which are called Schmidt coefficients. This decompo-
sition can be found by first expanding the state |¢) in a product basis and then comput-
ing the the singular value decomposition of the coefficient matrix. As a consequence of
the uniqueness of the Schmidt coefficients, the state |¢) is separable if and only if the
number of nonzero coefficients (the Schmidt number) is one.

In general the separability problem is hard, both in the complexity-theoretic and in
the practical sense. In fact, the separability problem for bipartite mixed states is proven
to be strongly NP-hard [36]45,57]. Practical approaches fall into two broad categories:
On the one hand, a number of algorithms have been developed, which are usually
based on convex optimization or semidefinite programming [44] Sec. 2.3.3]. On the
other hand, a large variety of theorems characterizing separable and entangled states
have been proven. It is the latter approach which is considered in this thesis.

Usually one wants to prove that some state is entangled, rather than that it is separa-
ble[] Therefore, theorems in entanglement detection typically take the form of entangle-
ment criteria: An entanglement criterion consists of a condition that is satisfied by all sep-
arable states. Thus, violation of the criterion for some state proves that it is entangled.
The state is then said to be detected by the criterion. For reviews see Refs.44}55] As an
example, consider the positive partial transpose (PPT) or Peres-Horodecki criterion [54,/88]:
The partial transpose of the state

p =) pije i) {jl ® [k) (¢ (2.11)
i,jk,¢

with respect to the first subsystem is defined as

0" = Y piue 1) @ k) (] 2.12)
i,j,k,é

(note that the indices i and j of the coefficient matrix have been swapped), and analo-
gously for the second subsystem and in the multipartite case. The criterion now states
that separable states have positivﬁ partial transpose. (Though the partial transpose of
a state depends on the choice of local bases its spectrum does not.)

"For an algorithm to show separability see the supplementary information to Ref.
8 As customary we call a Hermitian matrix P positive and write P > 0 if it is positive semidefinite.
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Tr(Wp) = 0

entangled,
not detected

entangled,
detected

separable

Figure 2.1: Illustration of an entanglement witness. Shown are the convex set of all
states (large ellipse), the convex set of separable states (small ellipse) and the hyper-
plane defined by Tr(Wp) = 0 (red line). The hyperplane separates the entangled states
which are detected by the witness operator from those that are not.

For the purpose of experimental entanglement detection one is particularly interested
in criteria which do not require knowledge of the complete density matrix. Witness
operators are the most important example. An entanglement witness (witness for short)
is an observable W which has nonnegative expectation value on all separable states and
negative expectation value on at least one entangled state [54,108],

Tr(Wp) > 0 for all separable p,

(2.13)
Tr(Wp) < 0 for at least one entangled p.

Entanglement witnesses have a useful geometrical interpretation, which is illustrated
in Fig. 2T} The equation Tr(Wp) = 0 defines a hyperplane in the space of all states,
which separates the states with positive from those with negative expectation value.
The set of separable states is by definition convex and compact. For any entangled state
there exists a hyperplane that separates it from this set [54]. (This is a consequence
of the Hahn-Banach theorem.) This shows that for every entangled state there is a
witness which detects it. Since the sets of biseparable and fully separable states in
the multipartite case are also convex and compact, witnesses are equally useful in that
scenario.

Let us consider two methods to construct entanglement witnesses [44), Sec. 2.5.1].
Suppose we know a state pnpr Which does not have positive partial transposeﬁ Let |17)
be an eigenvector of piﬁaT corresponding to a negative eigenvalue. Then

W = [i7) (| ™ (2.14)

is an entanglement witness detecting pnpr, among other states[1] As a second example,

9States are called PPT if they have positive partial transpose, and NPT if they do not.
19The PPT criterion is an example of an entanglement criterion based on a positive, but not completely
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note that for any entangled pure state |) we can construct the projector witness

W =al — |¢)(¢] where 1>a> max |(¢|w)* (2.15)
|9)=1p4)®[¢F)
Here the the maximum is given by the square of the largest Schmidt coefficient of |¢).
Projector witnesses can also be constructed in the multipartite case.
We say that the witness W’ is finer than the witness W if it detects all states that are
detected by W and possibly more [74],

Tr(Wp) <0 = Tr(Wp) <0. (2.16)
One can show that in this case [74, Lemma 2]
W' = a(W — P) (2.17)

for a positive operator P and a positive coefficient . Conversely, any W’ of the form
Eq. @.I7) which is a valid witness is obviously finer than W. We call a witness optimal
if there is no other witness which is finer. In other words, the witness W is optimal
if for any positive operator P the expectation value Tr[(W — P)p] is negative for some
separable state p. It is a necessary, but not a sufficient condition for the optimality of
a witness W that the hyperplane defined by Tr(Wp) = 0 touches the set of separable
states A method has been developed to optimize a witness, i. e., to find a finer witness
by subtracting a suitable positive operator [74]. Note that subtracting a positive opera-
tor from a witness can only increase the violation for any fixed detected state. However,
a major result of Chapter Bl will be that in general there is a trade-off between optimiz-
ing a witness in the sense discussed here and maximizing the statistical significance of
entanglement detection for a given target state.

Let us conclude our discussion of witnesses by commenting on their implementation
in experiments. Although any witness corresponds to a valid measurement, in practice
only local measurements are feasible. Thus the witness has to be decomposed into pro-
jectors onto product vectors. The required number of measurement settings determines
the experimental effort Sec. 6.1.2].

2.2 Bell inequalities

2.2.1 Bell’s theorem and the CHSH inequality

Bell’s theorem states that the measurement probabilities predicted by quantum me-
chanics are incompatible with local realism [13]]. In the form of Bell inequalities the the-
orem can be tested experimentally, showing that Nature cannot be described by a local

positive map. Any such criterion gives rise to a witness Sec. 2.5.1]. Conversely, with the Choi-
Jamiotkowski isomorphism it can be shown that any witness originates from such a map [44} Sec. 2.5.3].

B\ simple counterexample shows that touching the set of separable states (this is sometimes called
weak optimality) is not sufficient for optimality: Consider a 4 x 4-system and the states |¢p;;) = (|01) —
110))/v2 and [5;) = (]23) —[32))/V2. Then W = 1/2 — |yhy;) (¢, | is a witness touching the set
of separable states, since the maximal fidelity of a Bell state with a product state is 1/2. But a similar
argument shows that W = W — [ip;) (5] is a finer witness.
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realistic theory. The theorem and its subsequent experimental verification [5,006,125] (if
we forget about the infamous loopholes) constitute one of the deepest results of quan-
tum physics.

We begin by recapitulating the prototypical Clauser-Horne-Shimony-Holt inequality.
Consider two parties (Alice and Bob), each of whom can choose between two measure-
ments, and suppose that each measurement has two possible outcomes. Denote by
Pyp(a,b) the probability that Alice and Bob obtain results a and b, respectively, if they
measure A and B (where A € {A;, A2}, B € {By,By} and a,b € {—1,+1}). We say
that the probability table allows a deterministic local hidden variable model if it can be
represented in the form

Pagp(a,b) = /d)\ u(A)xa(a,A)xe(b,A), (2.18)

where A stands for the hidden variable, y is a probability density, and the response
functions x 4 and xp [which are normalized probability distributions, thatis, x4(1,A) +
Xa(—1,A) = 1 and similarly for xp] take only the values 0 and 1. The assumptions
leading to such a model are discussed below. One can easily check that probabilities of
this form obey the Clauser-Horne inequality [22]]

Pa,p,(—=1,—=1) 4 Pa,p,(+1, —1) 4+ Pa,p,(—1,+1) — Pa,p,(—1,—1) > 0. (2.19)

Rewriting this in terms of expectation values, we obtain the Clauser-Horne-Shimony-Holt
(CHSH) inequality [23]

(A1B1) + (A1B2) + (A2B1) — (A2B2) < 2. (2.20)

For its derivation none of the laws of quantum mechanics were used. The expectation
values are not defined by observables, but are simply given as

<AB> = PAB(+1/ +1) + PAB(—l, —1) — PAB(+1/ —1) — PAB(—l, —I—l) (221)

Consider now a quantum mechanical two-qubit system with local observables A; =
—0y and Ay = —0y on Alice’s and By = (0x + cry)/\/i and B, = (0y — Uy)/\/ﬁ on Bob’s
side. For the Bell state |i~), quantum mechanics predicts

(A1B1) + (A1B2) + (AsB1) — (A2By) = 2V2, (2.22)

violating the CHSH inequality.

It is worth discussing the assumptions that lead to Eq. (2.18). First note that a general
theory [not necessarily of the form Eq. @2.18)] is called nonsignalling if the probabilities
for Alice’s results do not depend on Bob’s choice of measurement and vice versa,

Ps(a) =) Pap(a,b)  isindependent of B (2.23)
b
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and analogously for Bob’s results. We call a hidden variable model local if it is non-
signalling already for a fixed value of the variable. The idea behind the locality as-
sumption is that the hidden variable could in principle be “uncovered” and the theory
should still be nonsignalling in this case. A hidden variable model

Pan(a,b) = [ dAn(A)xa(a,b,1) @24)

is local in this sense precisely if it satisfies Eq. (2.23) with the response function x 4 in
place of Pag,
Y xas(a,b,A) is independent of B (2.25)
b

and analogously for ) _,. Each of the following sets of assumptions is sufficient to show
Eq. @I3):

1. There is a deterministic hidden variable model of the form
Pag(a,b) = / dA u(A)xas(a,b,A), (2.26)

where the (a priori not necessarily factorizing) response function x 4 takes only
the values 0 and 1, and the model is local in the sense of Eq. (Z.25).

2. There is a factorizable stochastic model of the form [34,[128]
Pas(a,b) = [ dAu(N)xan(a,A)xas(b,2), 27)

where the response functions can take any value in [0, 1], and the model is local
in the sense of Eq. (2.25).

3. There is a joint probability function P(ay,a, by, by) for the results of all measure-
ments [34] whose marginals give the probabilities Pag(a,b),

Pap,(a,b) = ) P(a,a2,b,b2)  etc. (2.28)

as,by

The proof is also instructive:

Proof. To see that the first set of assumptions implies Eq. (2.18), note that any determin-
istic (i. e., taking only the values 0 and 1) response function factorizes,

Xap(a,b,A) =6((a,b) — (ao, by)) = 6(a—ao)é(b— by), (2.29)

where gy can depend on A, B and A and similarly for by. For a factorizing response
function of the form xap(a,A)xap(b, A) locality implies that xa(a,A) = xap(a,A) is
independent of B and xg5(b,A) = xap(b,A) is independent of A. For the second set
of assumptions argue again that the response function for a does not depend on B etc.
and then use the fact that we can always replace a non-deterministic response function
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with a deterministic one at the cost of introducing an additional hidden variable [128]:
Let A = (A, Ca,CB), where ¢ 4 and {p are independently uniformly distributed on [0, 1],
and define

1 ifa < xala M),

) (2.30)
0 otherwise,

Xa(a,A) = xXa(a,(A,&a,8p)) = {
and similarly for x'p. This gives the same probability table. Lastly show that the third
set of assumptions is equivalent to Eq. 2.I8): Given Eq. 2.I8), we can define a joint
probability distribution simply as

P(ay, a2,b1,b2) = /d)\ n(A)xa, (a1, A)xa, (a2, A) x, (b1, A) xB, (b2, A). (2.31)
Conversely, given the joint probability distribution let A = (a1, az, by, by),
u(A) = u((ay,a2,b1,b2)) = P(ay, az,b1,b2), (2.32)

and define xa(a,A) by x4,(a,A) = é(a —ay) etc. [34]. O

Allowing for Pp arbitrary probability distributions on (a, b), the left-hand side of the
CHSH inequality can reach the value 4. This is known as the algebraic bound. The maxi-
mal value allowed by quantum mechanics is given by the Tsirelson boundd of 2/2 (see
Ref. 21). One might presume that this discrepancy could be explained by the fact that
quantum mechanics is nonsignalling. This is not the case, however: A model assigning
the following probabilities to the measurement results is easily seen to be nonsignalling;:

L ifa=m0,

PA1B1(a/ b) = PAle(arb) = PAzB1 (El,b) = {(2) if a # b (2.33)
0 ifa=0>

P ,b) = ’ 2.34

Asz(’Z ) {% ifa#b. ( )

Yet it reaches the algebraic bound of 4, which is thus equal to the nonsignalling bound.
(For other Bell inequalities these two bounds are in general not equal.) The model in
Egs. @33) and (2.34) is known as a nonlocal box or Popescu-Rohrlich (PR) box [90]. In
Section[6.T] of this thesis possible conditions on nonsignalling probabilistic theories that
restrict the violation of Bell inequalities will be discussed in a multipartite setting.

In a successful Bell experiment the left-hand side of the inequality takes a value
higher than the local hidden variable bound. To show convincingly that Nature cannot
be explained by local hidden variable model, one has to rule out the possibility that
this value is only an effect of statistical fluctuations. One way to do so is to put an error
bar on the experimental violation. This strategy will be pursued in Chapter [3 of this
thesis. We will see that different Bell inequalities require the experiment to be repeated
for different numbers of times to reach the same confidence level. In this sense, Bell
inequalities differ in statistical strength. A rigorous definition of the statistical strength

12The name Tsirelson is also spelt Cirel’son.
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of Bell inequalities, based on the theory of statistical hypothesis testing, was given in
Ref. 27, That article inspired the work on strategies for the discrimination of different
classes of states in Chapter

2.2.2 Genuine multiparty nonlocality

In a multipartite setting Bell inequalities can also be used to rule out models that contain
a certain type of nonlocality. For three parties, in addition to local hidden variable
models, which have probability tables of the form

Pagc(a,b,c) = / dA (M) xa(a, A)xs (b, A)xclc,A), (2.35)

we can also define hybrid local-nonlocal hidden variable models, for which [24]

Pupc(a,b,c) = fhz/CM H12(A)xap(a,b,A)xc(c, M)
+ qlg/d)\ t13(A)xac(a,c,A)xp(b,A) (2.36)
+ 25 [ dh (V) xsc(b,e, ) xala,A).

Here the g;; are convex weights, 0 < g;; < 1 and 412 + 913 + 923 = 1. Note how this
parallels the definition of biseparability (see Section2.1.7)). For the threeparty Svetlichny

inequality [105]

(A1B1C2) + (A1B2Cy) + (A2B1Cq) — (A2B2 ()
+ <A132C2> + <A231C2> + <A232C1> - <A181C1> <4 (2.37)

the bound of 4 holds not only for local, but also for hybrid models. The proof of this
results is short:

Proof. First we prove the inequality for a specific bipartite split. For example, assume
g12 = 1 and g13 = g23 = 0 in Eq. (2.36). We consider the parties A and B as one party D
with measurements Dy = A1By, Dy = AyBy, D] = A1B; and D} = A,B;. We can then
write the Svetlichny inequality as the sum of two CHSH inequalities [9]

(D1C2) + (D2Ca) + (D2Cr) — (D1Gr) <2, (2.38)
(D1C2) + (D1C1) + (D3Ch) — (DyCp) < 2. (2.39)

This proves the inequality for the chosen bipartite split. We treat the remaining bipartite
splits analogously and then take convex combinations. O

The quantum mechanical bound is 4+/2, it can be attained with

1 1

NG (2.40)
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and the GHZ state. The nonsignalling bound is equal to the algebraic bound of 8. An
example of a nonsignalling model reaching this bound will be given later in Egs. (6.10)
and (6.17).

Just as any Bell inequality requires entanglement for its violation, the Svetlichny in-
equality requires genuine threepartite entanglement The inequality has been gen-
eralized to arbitrary numbers of parties and measurement outcomes [9]24,[103]. In
Ref.[73] an experiment demonstrating violation of the threepartite Svetlichny inequality
is described. Finally, Ref.[8 proposes two measures to quantify multipartite nonlocality,
which are also based on Svetlichny’s idea.

2.3 Entropies

2.3.1 Shannon entropy and classical relative entropy

The Shannon entropy of a discrete classical random variable with probability distribution
P = (p1,...,pm) is (see e.g. Ch. 2 in Ref.[25)

S(P) = =) pilog(pi), (2.41)

i=1

where we define 0log(0) := lim,_,+ xlog(x) = 0. Throughout this thesis, log denotes
the logarithm to base 2. Instead of “entropy of the random variable” we usually say
“entropy of the probability distribution”. The entropy quantifies the information that
is gained on average if one learns the value of the random variable, of equivalently,
the uncertainty about the random variable if its value is still unknown [86, Ch. 11.1].
This interpretation can be justified in various ways: By observing that the entropy gives
the expected number of bits per symbol required to store a message (Shannon’s source
coding theorem [25, Thm. 5.4.2]), by postulating axioms for a measure of information
and showing that they uniquely define the entropy [25| Problem 2.46] or by arguing
that log(1/p;) is a reasonable measure for the surprise upon observing the event i (see
our discussion of the relative entropy below).

We recall the most important properties of the Shannon entropy (see e.g. Ch. 2 in

Ref.25):
1. 0 < S(P) <log(m) with S(P) =0 < p; = d;;, and S(P) = log(m) < p; = 1/m.
2. Strict concavity:
S(AP+(1—-A)Q) > AS(P)+ (1 —-A)S(Q) for 0<A<1, (2.42)

for 0 < A < 1 equality holds if and only if P = Q.

BInterestingly, the Svetlichny inequality, published in 1987, pre-dates the idea of genuine multipartite
entanglement. The three-qubit GHZ state also appears in Svetlichny’s article.
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3. Subadditivity: Let P = (p”) be the joint probability distribution of two random
variables with marginals P(! = (X pij) and PR = (v, pij)- Then

S(P) < S(PM) 4 5(P?) (2.43)

with equality if and only if the variables are independent, p;; = pfl) p](-z).

4. Grouping rule: If we decide to consider events 1 and 2 as one event, which leaves
us with the probability distribution P = (p1 + p2, p3, .- ., Pm), then

S(P) = S(P) + (p1 + p2)S(P"), (2.44)

where P’ = (Plilpz ot pz) Note that (p1 + p2)S(P') is the conditional entropy for

the condition that p; or p, occurs.

The relative entropy, or Kullback-Leibler divergence, from the probability distribution
P = (p1,...,pm) to the probability distribution Q = (41, ...,qm) is defined as (see e.g.
Ch. 2 in Ref.[25)

D(P||Q) = Zpllog q (2.45)

where 0log(0/4q) := 0, 010g(0/0) := 0 and plog(p/0) = oo for p > 0. We list its most
important properties (see e. g. Ch. 2 in Ref. 25):

1. Positive definiteness: D(P||Q) > 0 with D(P||Q) =0« P = Q.

2. D(P||Q) = oo if and only if g; = 0, but p; > 0 for some index i, that is, if there
is an event which is impossible according to the second probability distribution,
but occurs with nonvanishing probability according to the first one.

3. Joint convexity in the arguments:
D(AP+ (1 —=M)P'[[AQ+ (1 —-1)Q") > AD(P||Q) + (1 — A)D(P'||Q)  (2.46)
for0 < A <1.

4. Additivity for independent variables: If P and Q are joint probability distributions of

two independent random variables, p;; = pgl)p]@ and g;; = qfl) q}z), then

D(P||Q) = D(PM QW) + D(PP)|Q®). (2.47)
5. Grouping rule: For P= (p1+p2,p3,--.,pm) and Q= (1 +92,93,---,qGm),

D(P||Q) = D(P||Q) + (p1 + p2) D(P'||Q"), (2.48)

; P1 P2 [ 1 2
Where P - (171+P2’ P1+P2) and Q - (L]]‘qu’ t11+’12)’
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It is tempting (and often even helpful) to interpret the relative entropy as a distance
between probability distributions. Note, however, that it is not a metric, since it is not
symmetric and does not satisfy the triangle inequality

The relative entropy gives an answer to the question [27]: Given a sample from the prob-
ability distribution P, how strongly does it indicate on average that it was indeed drawn from
P rather than from some other distribution Q? Here, only an intuitive explanation of this
interpretation will be given (following Sec. II in Ref. [118), a more rigorous justification
is postponed until Section 4.2.2]

We begin by defining a measure for surprise. If a random event occurs with probabil-
ity p, our surprise upon observing the event increases monotonically with decreasing
p: The less likely an event is, the more surprised we are if we actually see it happen.
It is reasonable to postulate that the surprise for an event composed of two indepen-
dent events is the sum of the surprises. This fixes our measure of surprise as log(1/p),
up to a constant. The average surprise is nothing but the Shannon entropy. Suppose
now that the probability distribution describing a collection of events is P = (p;), but
we mistakenly believe it to be Q = (g;). For example, we may think that a die is fair,
when it is actually loaded. Our average surprise is then }; p;1log(1/4;), where the sur-
prise depends on the probabilities in which we believe, but the average has to be taken
with respect to the correct distribution. We subtract from this the average surprise in-
herent in the process, which is given by the entropy, and obtain the amount of surprise
which is due to our erroneous assumption: Y ; p;log(1/4q;) — ¥ pilog(1/p;) = D(P||Q).
This line of thought also helps to explain why the relative entropy is not symmetric: If
P = (1/3,1/3,1/3) and Q = (1/2,1/2,0), a single observation of the third event is
enough to shatter our belief in the distribution Q, which is reflected by D(P||Q) = oo.
If we swap the roles of the distributions, a larger number of observations is neces-
sary to show with some certainty that the real distribution is Q, and correspondingly
D(Q||P) = log(3) is finite.

2.3.2 Other classical entropies

By relaxing the postulates which characterize the Shannon entropy other entropies can
be defined.
The Rényi entropy of the probability distribution P = (py, ..., pm) is defined as [92/93]

_ log [y (pi)1]
1—gq
In the limit g — 1 it gives the Shannon entropy and for g — oo the min-entropy

SR(p) ,  q>0, g#1. (2.49)
Seo(P) = — log(max p;). (2.50)

The Rényi entropy of order g = 2 is also called collision entropy. Like the Shannon
entropy the Rényi entropy satisfies 0 < SF(P) < log(m) with equality only for the 4-

14 A simple counterexample to the triangle inequality: Let P = (0,1), Q = (1/2,1/2) and R = (2/3,1/3).
Then D(P||R) = log(3), but D(P||Q) + D(QJ|R) = log(3) —1/2.
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and the uniform distribution. It is additive for independent random variables,
SR(P) = SR(PW) +SK(P))  for  py=p{'pi?. (2.51)

Unlike the Shannon entropy it is not concave. As a function of the parameter g it is
monotonically decreasing.
The Toallis entropy is defined ad3 [49, 1T

ST(P) _ 1- szzl(pi)q

. g>1. (2.52)

Again, the limit g — 1 gives the Shannon entropy, up to a factor In(2). The Tsallis
entropy satisfies 0 < S7(P) < (1 —m'™1)/(q — 1) with equality only for the J- and
the uniform distribution. Like the Shannon entropy it is concave. However, it is not
additive for independent random variables. Like the Rényi entropy it is monotonically
decreasing as a function of the parameter.

Both the Rényi and the Tsallis entropy are functions of the g-norm of the probability
vector,
_ 1-IP|g

S¥(P) = —T—log(|Pl) and  SI(P) g—1

where

} B (2.54)

1Pl = [L(po

1

2.3.3 Von Neumann entropy and quantum relative entropy

The von Neumann entropy of a quantum state is defined as (see e. g. Ch. 11.3 in Ref. 86)

S(p) = —Tr[plog(p)]. (2.55)

For vanishing eigenvalues of the density matrix the convention 0log(0) = 0 applies.
We list the most important properties [86, Ch. 11.3]:

1. 0 < S(p) < log(d) where d is the dimension of the Hilbert space, S(p) = 0 if and
only if p is pure, S(p) = log(d) if and only if p = 1/d.

2. Strict concavity: S(Y; pipi) > Y piS(pi), where 0 < p; < 1land }; p; = 1, equality
holds if and only if all p; with p; > 0 are equal.

3. Subadditivity: S(p) < S(p?) + S(p?) where p* = Trg(p) and p® = Tra(p), equality
holds if and only if p = p# @ pB.

4. Triangle or Araki-Lieb inequality: S(p) > |S(p?) — S(p®)].

15Sometimes the Tsallis entropy is defined for all nonnegative g # 1 or even all real g # 1.
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In contrast to the classical case, S(p) > S(p”) where p* = Trp(p) does not always hold.
If p = |9) (| is pure, S(|) (¢|) < S(p?) if and only if |¢) is entangled.

We are interested in the behaviour of the von Neumann entropy under measure-
ments. More specifically, suppose we perform a projective measurement, but ignore
the result. This corresponds to the map

p—p =) ILpll; (2.56)
i

where the I1; are orthogonal projectors with } ; IT; = 1. Once can show that this process
can only increase the entropy of the state [86, Thm. 11.9],

S(p") = S(p) (2.57)

with equality if and only if p = p’. For generalized measurements the result no longer
holds [86] Exercise 11.15]. If the measurement corresponds to a nondegenerate observ-
able, in other words, if the IT; are one-dimensional projectors, S(p’) is equal to the
Shannon entropy of the measurement probabilities. The above result thus shows

S(p) < S((p1,...,pa)) where p; = (¢ilo|is) (2.58)

for any orthonormal basis |;).
The quantum relative entropy is defined as (see e. g. Ch. 11.3.1 in Ref. [86)

D(plle) = Te{pllog(p) — log()]} (259)
where again 0log(0) := 0. We list its most important properties [86, Ch. 11.3]:

1. Klein’s inequality [86, Thm. 11.7]: The quantum relative entropy is positive definite,
D(p|lc) > 0and D(p|lc) =0 p = 0.

2. D(p||o) = oo if and only if ker(c) has nontrivial intersection with supp(p).
3. Joint convexity in the arguments [86, Thm. 11.12]:
D(Ap+ (1 =A) ||[Ac+ (1 =A)d") = AD(p||lo) + (1 = A)D(p’||¢”) (2.60)
for0 < A<1.
4. Additivity for product states:

D(p” @ pPllo* @ o®) = D(p*[lc*) + D(p"||c®). (2.61)

5. Monotonicity [86, Thm. 11.17]: S(p?||c?) < S(p||c) where p? = Tr(p) and ¢4 =
TrB(O').
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Let

Dy(pllo) = igﬁ) ZTr(Eip®N){log [Tr(Ep®N)] — log[Tr(Eic™N)] } (2.62)

be the classical relative entropy of the measurement probabilities maximized over all
positive operator-valued measurements acting on N copies of two states. One can show
that [118] Sec. ILE]

Dn(pllo) _

In this sense, the quantum relative entropy is a measure for the distinguishability of
two states.

2.4 Uncertainty relations

2.4.1 Uncertainty principle

Quantum mechanics does not allow to predict a measurement outcome with certainty
unless the system is in an eigenstate of the observable being measured. It follows that
if two or more observables have no common eigenstate it is not possible to prepare the
system such that for each observable only one measurement outcome can occur. We
will refer to this fact as the uncertainty principle. It can be formulated quantitatively in
terms of uncertainty relations.

The first and still the most celebrated uncertainty relation was given by Heisen-
berg [52] and formulated rigorously by Kennard [64]. It applies to canonically con-
jugate observables such as position and momentum and states that the product of their
variances A?(q) = (¢?) — (g)? and A%(p) = (p?) — (p)? is lower bounded by a constant,

N (q)N(p) > Z. (2.64)

It is usually generalized to arbitrary observables in the form of the Heisenberg-Robertson
uncertainty relation

A%(A)A2(B) > i\([A,B]}\Z. (2.65)

The Heisenberg-Robertson relation can be generalized to the case of more than two
observables [95,110].

There is another aspect of uncertainty, which is discussed in Heisenberg’s article [52]
as well (see also Refs.[717/127): Observing the position a of particle, such as an electron,
requires interaction with a photon. By the Compton effect, during this interaction an
uncontrolled momentum Ap is transferred to the electron. The spatial resolution Agq of
this measurement depends on the wavelength of the photon and is related in this way
to the momentum transfer by AgAp = h. In this sense, the determination of a particle’s
position with an accuracy Ag results in an uncontrolled change in momentum of the
order Ap ~ h/Aq. This thought experiment is known as the Heisenberg microscope.
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While the conclusion of the thought experiment is of course correct, it is not the im-
mediate content of Eq. (2.64). Unfortunately, this distinction is often ignored In this
thesis, the words uncertainty principle and uncertainty relation will always be used as
in the beginning of this section and never in the sense of the Heisenberg microscope.
This may be called preparation uncertainty, as opposed to measurement uncertainty [127].
Ballentine [7] has proposed the term statistical dispersion principle.

Uncertainty relations not only describe a fundamental property of quantum mechan-
ics, but they have also found application in quantum information tasks, for example
in quantum cryptography [28]166,67] and entanglement detection [42,43,53]]. Entropic
uncertainty relations (see below) have turned out to be particularly useful. More re-
cently, the uncertainty principle has also been formulated in terms of majorization re-
lations [87]. In Ref.[14, Berta et al. derived an entropic uncertainty relation for a system
which is entangled to a quantum memory. The access to this memory can then be used
to lower the uncertainties of measurements on the system. This relation has been the
subject of recent experiments [75,91].

2.4.2 Entropic uncertainty relations

Uncertainty can also be quantified by the entropy of the measurement probabilities.
This approach leads to entropic uncertainty relations. For a review see Ref.[124l To fix
our notation, let A be an observable with spectral decomposition A = ) ; a;,11; with
mutually distinct 4;, and let Sx be a classical entropy function. Most often Sx stands
for the Shannon entropy S, but the Tsallis entropy SqT and the min-entropy S, [see
Egs. 2.52) and (2.50)] will also be used in this thesis. We denote by Sx(A|p) the entropy
of the measurement probabilities,

Sx(A|p) = Sx((pl, .. /pm)) where pi = TI'(HZP) (266)

We are interested in uncertainty relations for a family of observables {A1,..., AL} of
the form

L
ikzlsX(AHp) > Cia- (2.67)
The lower bound ¢y 4, may depend on the observables, but preferable is independent
of the state. For a given set of observables an uncertainty relation is called tight if a state
0o exists that attains the lower bound, 1/LY.E_, Sx(Ax|po) = Cla)-
The entropy Sx(A|p) depends only on the eigenstates, but not on the eigenvalues
of the observable A, as long as they are nondegenerate. It is thus independent of the

16Tn the words of R. F. Werner [127]: “Heisenberg’s Uncertainty Relation (AQ)(AP) > /2 is one of
the most fundamental features of quantum theory, and is taught in even the most basic course on the
subject. All too often, however, teachers succumb to the persistent bad habit of proving the relations as
an inequality on variances for arbitrary state preparations, but then to go on to explain their ‘physical
meaning’ in terms of a perturbation of the momentum of a particle caused by an approximate position
measurement. Since the usual proof contains nothing of that sort, attentive students quickly get the
impression that quantum uncertainty rubs off on their teachers as some kind of conceptual fuzziness.”
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labelling of the measurement results, which in finite dimensions is to some extent arbi-
trary. Therefore the entropy can be regarded as a more natural measure of uncertainty
than the variance, at least in the case of finitely many measurement outcomes, which we
consider here[] For the same reason, we will not distinguish between a nondegenerate
observable A and its eigenbasis A.

The use of entropies also allows uncertainty bounds ¢y 4,; which hold for all states.
For Deutsch [30] this is the main argument in favour of entropic uncertainty relations.
By contrast, any uncertainty relation whose left-hand side is the product of variances
will always be trivial for any eigenstate of any of the observables (assuming a finite-
dimensional Hilbert space).

For any measurement basis A of length m the Shannon entropy satisfies S(A|p)
log(m). If we choose for p one of the states of the bases Ay, we have 1/L Y _; S(A|p)
log(m)(L — 1)/L, because in this case the entropy is zero for one basis and upper
bounded by log(m) for the remaining L — 1 bases. This implies that for the Shannon
entropy the right-hand side of Eq. (2.67) cannot exceed log(m)(L —1)/L. An uncer-
tainty relation that reaches this limit is called maximally strong, and the corresponding
measurements are called maximally incompatible [124]. In more physical terms, maximal
incompatibility means that if the outcome of one measurement is certain, for any of the
remaining measurements all outcomes are equally likely.

A classic result on entropic uncertainty relations is the connection between maximal
incompatibility and mutual unbiasedness. Two orthonormal bases |a;) and |b;), i =
1,...,d, are called mutually unbiased if

<
<

1
Vd
An almost trivial example is given by the eigenbases of the three Pauli matrices. Pair-
wise mutual unbiasedness of the eigenbases is a necessary condition for maximal in-
compatibility. Perhaps surprisingly, for more than two observables this condition is not
sufficient [124].

Mutually unbiased bases have become a subject of research in their own right. A
central question is the maximal number of such bases for a given Hilbert space di-
mension. It is known that in a d-dimensional space there are at most d 4+ 1 mutually
unbiased bases, and for the case that d is a prime power an explicit construction has
been found [10,[131]. In general, though, the problem is still unsolved [124].

The most prominent example of an entropic uncertainty relation is the Maassen-Ulffink
relation: For any two measurement bases A = {|a;)} and B = {|b;) },

|{aib;)| = Vi, j. (2.68)

[S(Ale) +S(BJo)] = ~log(max] (a6, 269)

N —

This relation was shown by Maassen and Uffink [79,80]; for the special case of mutually
unbiased bases it had been conjectured before by Kraus [69]. It follows from a similar
result for Rényi entropies, which in turn is a consequence of the Riesz-Thorin theorem.

17Entropic uncertainty relations for continuous variables also exist (see e. g. Ref.[T5).
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In the case of mutually unbiased bases the Maassen-Uffink relation is maximally strong
and thus tight. Equality holds for any of the basis states |4;) and |b;). (Note that for
two arbitrary observables A and B the entropy sum S(A|p) + S(B|p) is in general not
minimized by an eigenstate of either of them [37].) If the bases are not mutually unbi-
ased, the Maassen-Uffink relation is in general not tight [119]. While most uncertainty
relations in the literature apply to projective measurements only, the Maassen-Uffink
relation has been generalized to arbitrary positive operator-valued measurements; for
the result see Ref.

Sections 5. Iland 5.2] of this thesis are concerned with measurement bases that are not
mutually unbiased, but for which the Maassen-Uffink relation is still tight.

Results on entropic uncertainty relations for more than two measurements are com-
paratively rare [124]. Exceptions are Refs. 81 and The latter reference deals with
pairwise anticommuting observables with two distinct eigenvalues. In Section5.3]those
results will be generalized, leading to a systematic construction of uncertainty relations
for these observables using variances and different entropy functions. In this setting
the relative strengths of entropic and variance-based uncertainty relations will be com-
pared.

2.5 Stabilizer formalism

2.5.1 Stabilizer states

The stabilizer formalism allows to describe certain many-qubit states in an efficient
way. It will be used in all chapters of this thesis. Originally developed for quantum
error correction [39,140], it has proven useful in many areas if quantum information
theory, including quantum computation, where it is used to prove the Gottesman-Knill
theorem [86, Thm. 10.7], and entanglement detection [109].

This section is based on Ch. 10.5 in Ref. 86l and on Refs. 50,112l

We define a Pauli operator on n qubits as any n-fold tensor product of Pauli matrices,
including the identity. The n-qubit Pauli operators generate (under the usual matrix
multiplication) a group, which consists of all Pauli operators multiplied with phase
factors {+1, —1,+i, —i}. We call this group the Pauli group and denote it by G,. For
example, for one qubit we have

G = {*1, %il, 0y, +ioy, £0y, +ioy, +0,, Fio. }. (2.70)

Obviously, G, has 4"+1 elements, which are Hermitian or anti-Hermitian. Any two
elements either commute or anticommute.

The idea of the stabilizer formalism is to describe a pure state, rather than by its state
vector, by a subgroup of the Pauli group such that the state is an eigenvector of all
group elements. One can show [112, Prop. 2.4] that the elements of a subgroup S of
Gn have a nontrivial simultaneous eigenspace Vs with eigenvalue +1 if and only if S
is Abelian and —1 ¢ S. In particular, these conditions are sufficient to show that all
group elements are Hermitian. We call such a subgroup a stabilizer group (or stabilizer
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for short) and say that the space Vs is stabilized by it. The group elements are called the
stabilizing operators of the space.

A stabilizer group can be described by a set of generators g1, ..., gu. We choose the
generators to be independent in the sense that removing any of them makes the group
smaller. Any group element M has a unique representation as a product of generators,

M=gi'---gw,  x€{0,1}. 2.71)

This shows that |[S| = 2" and 1 < m < n. The stabilized space has dimension 2"~
(see Prop. 10.5 in Ref. 86| or Prop. 2.11 in Ref. [112). Adding a generator divides the
dimension by two.

After normalizing it, we identify the projector onto the stabilized space Vs with a
stabilizer state ps. (Most often only pure states are considered, but we will be dealing
with mixed stabilizer states in Chapter[6]) The state can be expressed by the generators
gi or by the stabilizing operators M; € S as

m 2m

ps = o [1(0+8) = o Yo M: @72

i=1 i=1

The rank of the state is rank(ps) = 2"~ ™. Pure states correspond to m = n,

1 n
[ps) (Ps| = 27H (L +8i) = 5, ZM (2.73)

The stabilizer state |ig) is uniquely defined (up to a phase, of course) by the condition

Silys) = Iys), i=1...,n (2.74)

Equation (Z.72) gives the expansion of the density matrix in the Pauli basis

1 3
s =2 D tiniOi @ D0, (2.75)

i1 yerin=0

The expansion coefficient comprise what is sometimes called the correlation tensor t;,, . ; .
As they are given by the expectation values of the Pauli operators,

+1 ifU’i1®“'®0}‘n€S/
til ..... in — TI'(U',l Q& Uzn.OS) -1 if -0, Q- R0, € S, (2.76)
0 otherwise,

the stabilizing operators can be understood as a description of the correlations of the
state.

Like any set of Hermitian, pairwise commuting operators, the elements of a stabilizer
group have a basis of common eigenstates. If the group has the maximal cardinality of
2", this basis is uniquely determined. The stabilizer state is one of the basis states. We
refer to the basis as stabilizer basis.
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2.5.2 Graph states

Graph states are a special class of stabilizer states, whose underlying interaction pattern
can be described by a simple undirected graph. It turns out that any pure stabilizer state
is equivalent under local Clifford operations (a subgroup of local unitaries) to a graph
state. For a review on graph states see Ref.

A finite undirected graph consists of a finite number of vertices and finitely many
edges connecting pairs of vertices. We require all our graphs to be simple, i.e., we do
not allow loops (edges connecting a vertex to itself) or multiple edges. Examples are
shown in Fig. Every vertex represents a qubit. Edges represent pair interactions that
have created the graph state from a product state in the following sense [50, Sec. 2.1]:
With the empty or completely unconnected graph we associate the product state

Go) = [4)°"  where '+>:é(|0>+|1>>' 2.77)

For every edge we apply a controlled phase gate on the corresponding pair of qubits,

IG) = []Cyj |+)®",  where  Cy = [0):(0] 1 + |1);(1] o/ (2.78)
(i,j)€E

and the product is over the set all edges E. As usual
(72(]) — ]l®(]'*1) Q0 ® ]1®(”*j) (279)

is the Pauli matrix o, acting on qubit j, and the projectors |0);(0] and |1);(1| are defined
similarly. Note that for the controlled phase gate it does not matter which is the control
qubit and which the target. Up to local unitaries the controlled phase gate is an Ising
interaction,
Cij =e ™ texp [igcrz(l)] exp [igaz(])} exp[—i%Hij] (2.80)

where H;; = oD,

The generators of the stabilizer group can immediately be read off the graph: With
each vertex i we associate the operator

gi=ot) TT o, (2.81)
FEN()

where the product is over the neighbourhood N(i) of the vertex i, that is, over all ver-
tices directly connected to it by an edge. The g; defined in this way commute pairwise
and generate the stabilizer group [50, Prop. 2].

As an example we consider the graph Fig.[2.2](b). The corresponding generators are

g1 =XZZ, g =27ZX1, g =Z1X, (2.82)

where X, Y and Z denote the Pauli matrices oy, oy and o, and tensor product signs
have been omitted. Up to a local Clifford operation the corresponding graph state is
the three-qubit GHZ state.
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Occasionally we need an explicit expression for the coefficients of a graph state with
respect to the standard basis. The adjacency matrix of an n-vertex graph is the symmetric
n x n-matrix I' whose entry I';; is 1 if there is an edge between vertices i and j and 0 if
there is not. It thus provides a complete description of the graph state. We denote the
basis vectors of the standard basis as |x) = |x1) ® - - ® |x,,), where x = (x1,...,X,)
with x; € {0,1} is an n-bit string. The representation of the graph state in the standard
basis is [112] Prop. 2.14]

1 N
G) = a7z L(=1)= 7 x), (2.83)

where the sum is over all n-bit strings. (Linear algebra and quadratic forms over the
finite field IF, are powerful tools to study stabilizer states and Clifford operations [29]
[112], which will not be used much in this thesis, though.)

The generators defined by a graph have a complete basis of common eigenstates,
namely, the stabilizer basis, which in this case is called graph state basis [50, Prop. 3]. We
introduce the notation |G, x) for the basis states, where x = (x1,...,x,) with x; € {0,1}
is an n-bit string encoding the eigenvalues,

<ilG,x) = (—=1)%|G, x) (2.84)

and
n

1 :
G x)(G,x| = S [0+ (=1)"gi]. (2.85)
i=1
The graph state itself corresponds to x = (0,...,0). Later we will also use the fact the
remaining basis states can be obtained from the graph state by applying ¢, on a subset
of the qubits,

n

1G,x) =TT(@")16) = TTCy x)x (2.86)
(

i=1 ij)eE
where

e = 23 QI0) + (-1 1), 28)
i=1

2.5.3 Local equivalence of stabilizer states

To study the equivalence of stabilizer states under different local operations let us first
introduce a special class of local unitaries: The local Clifford group C;’" on n qubits is
defined as the group of local unitaries that map the Pauli group onto itself under con-
jugation,

CP" ={U e Uu(2)*" |ug,u* = gG,}. (2.88)

As our notation suggests, it is the n-fold tensor product of the Clifford group of one
qubit. Up to global phase factors, the latter is generated by the Hadamard gate H =
271/2(1 1) and the phase gate S = (}9). (For the proof see Thm. 10.6 in Ref. [86 or
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Figure 2.2: Examples of graphs. Up to local unitaries, the corresponding graph states
are: (a) Bell state, (b), (c) three-qubit GHZ state, (d), (e) four-qubit GHZ state, (f) four-
qubit linear cluster state, (g) five-qubit ring cluster state.

Props. 3.5 and 3.6 in Ref. [112). By definition local Clifford operations map stabilizer
states onto stabilizer states. We call two states LC-equivalent if they can be mapped onto
each other by a local Clifford operation. It turns out that any pure stabilizer state is
LC-equivalent to a graph state. (This was first shown in Refs. 41,98 Proofs can also be
found in Ref.[114/and in Corr. 3.16 of Ref.[112]) Therefore, for many purposes it suffices
to consider only graph states.

There is a one-to-one correspondence between graphs and graph states. However,
the states defined by two different graphs can be equivalent under local operations.
It has been shown that two graph states are SLOCC-equivalent if and only if they are
LU-equivalent (see Ref.[115 or Corr. 3.4 in Ref.[112). A conjecture stating that LU equiv-
alence also equals LC equivalence has been disproven [59].

Two graph states are LC-equivalent if and only if their graphs can be transformed into
each other by a sequence of local complementations (see Ref. or Prop. 5 in Ref. 50).
As graph states are mostly studied for their entanglement properties, LC-equivalent
states are often identified. However, in Chapter @ we will not make this identification.

2.5.4 Examples of graph states

To illustrate the theory outlined above, we give several examples of graph states with
small numbers of qubits.
For two qubits there is only one nonempty graph [see Fig.2.2(a)]. The corresponding
generating operators are
Q1 =XZ, p=7ZX; (2.89)

33



they define the stabilizer group
Spen = {11, XZ, ZX, YY}. (2.90)

The corresponding graph state is LC-equivalent to any Bell state.

For three qubits there are two different connected graphs, though they are related by
a local complementation. We call Fig.[2.2(b) the star graph and Fig.[2.2I(c) the complete
or fully connected graph. They have generating operators

1 =X27Z, g =272X1, g3 =Z1X (stargraph) (2.91)

and
Q1 =X27Z, ¢ =72X7Z, g3 =7Z7ZX (complete graph), (2.92)

respectively. The groups defined by these sets of generators are both LC-equivalent to
the group

Schz, = {111, 1ZZ, Z1Z, ZZ1, XXX, —XYY, —YXY, =YYX}, (2.93)
which is the stabilizer group of the three-qubit GHZ state
S
V2

For four qubits there are two LC-inequivalent graph states. Again, the graph states
defined by the star graph Fig.[2.2](d) and the complete graph Fig.[2.2] (e) are LC-equi-
valent to the GHZ state

IGHZ3) = — (]000) + [111)). (2.94)

IGHZ,) — 12(|oooo> 1 [1111)), (2.95)

which has the stabilizer group

Schz, = {1111, 11ZZ and permutations, ZZZZ,

. (2.96)
XXXX, —XXYY and permutations, YYYY},

where “and permutations” stands for all permutations of qubits that give distinct op-
erators, for example

11ZZ and permutations = 1127, 1717, 1271, Z11Z, Z171, ZZ11. (2.97)

The state defined by the four-qubit linear graph Fig.[2.2] (f) is LC-equivalent to the four-
qubit linear cluster state

ICy) = %(|oooo> +(0011) 4 [1100) — [1111)) (2.98)
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with stabilizer group

Sc, = {1111, 1127, ZZ11, ZZZZ,
XYXY, XYYX, YXXY, YXYX,
1zXX, Z1XX, XX1Z, XXZ1,
—1ZYY, —Z1YY, =YY1Z, =YYZ1}.

(2.99)

This state is not LC-equivalent to the GHZ state.

For five qubits there are four LC-inequivalent graph states. In this thesis only the
five-qubit ring cluster state, which is defined by the graph Fig. (g), will be needed.
After application of a suitable LC operation its state vector is

1
IRs) = ﬁ(mooom +100110) — [01011) + |01101)
+ ]10001) — |10111) + |11010) + [11100)) (2.100)

and its stabilizer group is

Sg, = {11111, ZZ11Z, XXX11, 1ZZZ1,
11XXZ, X11ZX, =YYX1Z, Z1ZZZ,
ZZXX1, =YZ1ZY, —XYYZ1, XX1XZ,
1XXZX, —12YYZ, XZZ1X, X1XYY,
—YXYZZ, -YY1X1, —ZYXZY, —Z1YY1,
—Y1Z1Y, YZXYX, —=XYZYZ, —1YY1X,
1IX1YY, XZYXY, =YXZY1, —ZXY1Y,
ZY1YX, YIYXX, 1YZXY, —ZXZXX}.

(2.101)

For up to eight qubits, all LC-inequivalent graph states have been classified [18]51].

2.6 Classical exponential families of interaction spaces

2.6.1 Hierarchy of exponential families

Exponential families provide a classification of probability distributions based on the
interactions between parts of a system. The exponential families considered here con-
sist of all probability distributions that can be written as thermal distributions of clas-
sical Hamiltonians containing at most k-party interactions. The notion of exponential
families naturally leads to a quantification of degrees of interaction. These measures are
motivated by the questions: How far is a probability distribution from a thermal distribution
of a k-party Hamiltonian?, and: How much information is contained in its k-party, but not in
its (k — 1)-party marginals?

In this section we will review the definitions and results that will be needed later
in this thesis. Much of the previous work on this subject has been done within the
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framework of information geometry, where methods of differential geometry are used
to study families of probability distributions [3]. However, from the point of view of
information geometry we will always be dealing with very special cases. Asit turns out,
the results we need can be obtained on a more elementary level using methods from
statistical physics. This thesis therefore makes little use of the language of differential
geometry. Only Section 2.6.4] is devoted to putting the results in the larger context of
information geometry.

We follow Refs. We consider probability distributions on a configuration space
which has a product structure,

X=X X XA, (2.102)

The X; are finite sets; for our purposes it suffices to consider X; = {0,1}. The elements
of the space X’ will be denoted as x = (x, ..., x,) where x; € A;. It is helpful to think of
the x as the configurations of a classical dynamical system of n particles.

Given a probability distribution P on X, one can ask if it can be written as a thermal
or Gibbs distribution of a “Hamiltonian” H,

P(x) = %eH(") where Z = ;eH(x). (2.103)

The Hamiltonian can be any real-valued function on &". It should not be construed as
describing an actual physical system. We therefore could take the liberty of assuming
the inverse temperature to be unity and reversing the sign in the exponent. If we put
no constraints on the Hamiltonian, any probability distribution with full supporé is
thermal. A Hamiltonian can be found by taking the component-wise logarithm of the
probability vector. In the following the set of probability distributions on X with full
support will be denoted as P(X).

Let V. = {1,...,n} be the set of all subsystems (or parties). Consider the class of
Hamiltonians acting only on a subset A C V of the parties

Ip={H: X >R |H(x) = H(x)ifx; = x{ foralli € A}. (2.104)
We define the class of k-party Hamiltonians as

T, = {H; X—HR)H:ZHA whereHAEIA}. (2.105)
| A=k

We are interested in the set of all possible thermal distribution of k-party Hamiltonians

eH(x)

Sk:{P)P(x):w

where H € Ik}. (2.106)
We call the sets & exponential families of interaction spaces. The general form of an expo-

nential family will be given later in Eq. (2.143). The exponential families considered in
this thesis will always be of the form of Eq. (Z.106).

18The support of a probability distribution P on &X' is defined as supp(P) = {x € X' | P(x) > 0}.
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3 (50,00 +901,1))
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3 (60,0 +d0,1))

5(0,1)

Figure 2.3: The exponential family & (here labelled £ 4,,) in the simplex of probability
distributions on X = {0,1}2. The symbol 6 stands for the Kronecker delta, for example
8(0,0) = 0x;,00x,,0- (Figure taken from Ref. 63])

In this way, we obtain a series of nested families (or hierarchy)
EC&HC---Céy. (2.107)

Note that £, = P(X) is the set of all distributions with full support, and & = P(X;) x
-+« X P(X,) is the set of all product distributions with full support. If we want to in-
clude distributions without full support, we work with the compactified exponential
families &. Figure illustrates the case of two parties, X = {0,1}2. Here, the set of
all probability distributions is a three-dimensional simplex. The only nontrivial expo-
nential family & is a hyperplane in this simplex.

The remainder of this subsection is based on Ref.[134. We parametrize Hamiltonians
by expanding them into an orthogonal basis of the space of functions on X,

H(X, 6) = ZGiki(x) -+ Zeljkz(x)k](x) + 401 ake (X) <o kn(X) (2.108)
i i<
where
+1 ifx; =0,
k; — 2.109
(X) {—1 if x; = 1. ( )

The constant term in the Hamiltonian has been omitted, because it only changes the
normalization. Note that this parametrization is completely analogous to the expansion
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of a diagonal quantum mechanical Hamiltonian into tensor products of o,

H(0) = )60t + Y 60t 4oy ool (2.110)

i<j
We can thus parametrize any probability distribution with full support as

Py(x,0) = exp[H(x,0) — ¢(6)], (2.111)
where

¥(8) = In[)_ et 0] (2.112)

ensures normalization. Alternatively, we can expand the distribution directly,
1
Py ) = 55 + Zﬂiki(x) + 277ijki(x)kj(x) o ki (%) k(). (2.113)
i i<j

This is just the classical version of the Bloch representation.
The relative entropy of two distributions P(x) = P, (x,#) and P'(x) = Py(x, 0') is

In(2)D(P|[P') = p(y) + p(6) —1- . @114)

Here the function ¢ is given by the Shannon entropy ad

¢(n) = —In(2)S(Py (1)), (2.115)
and the scalar product 77 - 0’ is defined as
-0 = Ym0+ Y 1y b (2.116)
i i<j
For P = P’ we obtain
o(n) +¢(6) —5-6=0. (2.117)

The last equation shows that the 8- and the #-parametrization are related by a Legendre
transformation,

oy (0 d

_ WO g 0 = () (2.118)
it Miy, i

This relation is well-known in statistical physics. Note that i corresponds to the minus

the free energy. For three distributions we have (as can easily be verified)

D(P||P") = D(P||P') + D(P'||P") + IH}Z)(” —1)- (6= 0"). (2.119)

If the scalar product vanishes, we call this equation the generalized Pythagoras theorem.

9The reason for the appearance of a factor In(2) in various places is that in this thesis the entropy S(P)
and the relative entropy D(P||Q) are defined with the binary logarithm, but thermal distributions are
defined as P(x) = e!!®) /Z and not P(x) = 211®) /7.
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2.6.2 Information projection

The definition of the information projection captures the notion of the “closest distribu-
tion with at most k-party interaction”. In this section three equivalent definitions will
be given. This section is based on Refs. 2}26,133][134

Definition 2.1. The information projectior@ P of a probability distribution P is the el-
ement of the compactified exponential family £, which is closest to P in terms of the
relative entropy, N
P = argmin D(P||P"). (2.120)
P’GE}(

This definition has an interpretation as a maximume-likelihood estimate: Suppose a
sample is drawn according to the probability distribution P, resulting in a vector of rel-
ative frequencies or empirical probability distribution F. Then the likelihood function
is

L(P|F) H P(x (2.121)

The log-likelihood is, up to a P-independent term, equal to minus the relative entropy:

log[L(P|F)] ZF )log[P(x)] = —D(F||P) — S(F). (2.122)

The information projection Py is thus the maximum-likelihood estimate for P among all
P' e &
For a subset A C V of the parties one can compute the marginal P4 of the distribu-
tion P,
Pa(x)= ) PX). (2.123)

x' with
xj=x;,VicA

We define the set of all distributions M (P) with the same k-party marginals as P by
M (P) = {P" | Py = P, forall |A| = k}. (2.124)

This is an example of a linear family [cf. Eq. (2.144)]. Working in the Bloch representation

Eq. @113),
My(Py) = {Py |y} =mi, . foralll < ¢ <k}. (2.125)

The following lemma contains the second definition of the information projection:

Lemma 2.2. The information projection Py of a probability distribution P is the maximizer of
the entropy among all distributions with the same k-party marginals as P,

D= argmax S(P’). (2.126)
P'eM(P)

20Note that this is sometimes called the reverse I-projection or rl-projection, e.g. in Ref. 26l
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M;(P)

&k

Figure 2.4: Illustration of the information projection onto an exponential family. Shown
are the linear family M (P) of distributions with the same k-party marginals as P (blue
line), the exponential family & of thermal distributions of k-party Hamiltonians (red
curve) and the information projection P of P onto &; and P’ represents an arbitrary
distribution in &.

The proof of the equivalence of the definitions, as well as all other proofs in this
section, are omitted here. These proofs are contained as special cases in the quantum
version of the theory, which is treated in Section Alternative proofs for the clas-
sical theory, which are mathematically rigorous even for the case that the information
projection does not have full support, can be found in Ch. 3 of Ref.

By combining the constraints in Eq. (2.120) and Eq. (2.126) one arrives at a definition
of the information projection that does not involve any optimization:

Lemma 2.3. The information projection Py of a probability distribution P is the uniquely de-
fined element of the compactified exponential family Ey with the same k-party marginals as P,

{B} = &N M(P). (2.127)

Let P; be the projection of P onto & and P’ € & arbitrary. Then the generalized
Pythagoras theorem Eq. (2.119) holds in the form

D(P||P') = D(P||By) + D(B||P"). (2.128)

In this sense P is really an orthogonal projection. Figure 2. 4lillustrates the situation.
_ The information projection P; onto the exponential family of product distributions
& is simply given by the product of the one-party marginals,

Pvl (X) = P{l}(x1) cee P{n} (Xn> where P{z} (x,‘) = Z P(X) (2129)
x with

For the projections P, with k > 1 there is no explicit formula. For an iterative algorithm
to compute these projections numerically see the next subsection.
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We denote the distance from a probability distribution P to its projection Py in terms
of the relative entropy by

Di(P) = D(P||P,), k=1,...,n—1. (2.130)
It can be shown that
Di(P) =S(P)—S(P), k=1,...,n—1. (2.131)

For k = 1 this is the multi-information [62]

n
Di(P) = D(P|Py) = S(P) — S(P) = }_ S(Pyy) — S(P) (2132)
i=1
[cf. Eq. (Z129)]. We also define the degree of irreducible k-party interaction?) as
Cr(P) = Dy_1(P) — Di(P), k=2,...,n (2.133)
(where D,, = 0). By the generalized Pythagoras theorem,
Ce(P) = D(P||P—1), k=2,...,n—1, (2.134)

or equivalently N N
Cr(P) = S(Px—1) — S(Px), k=2,...,n—1. (2.135)

The multi-information [Eq. (2.132)], which in the following will be called degree of total
interaction and denoted by Ci, has a decomposition

Dy(P) = Cur(P) = Y Ci(P). (2.136)
k=2

The terms in this decomposition are orthogonal in the sense of the generalized Pythago-
ras theorem. The distance Dy (P) is a measure for the information that is contained in
the distribution P, but not in its k-party marginals. Similarly, Cy(P) measures the infor-
mation contained in the k-party, but not in the (k — 1)-party marginals of P.

In Ref. 62/ the Ci were called complexity measures and applied to the study of complex
dynamical systems@ This leads to the question which properties should be expected
from complexity measures, and if the C; possess these properties. It has been pointed
out [35] that C¢(P) can increase under local transformations of P, and in particular
under tracing out of parties@ This may indicate that the C; are no good complexity
measures. (By comparison, entanglement measures are by definition invariant under
local unitaries and non-increasing under LOCCs [44] Sec. 4.1.1].) The reason for this

21Tn Ref. 2 the degree of irreducible k-party interaction is called amount of kth-order effect.

22In that reference also C; is considered, which is the distance from P; to the uniform probability distri-
bution.

23The increase of C; under local transformations was observed before in the quantum case in Ref.
and suspected to be a quantum feature.
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behaviour of the Cj is that the exponential families are not invariant under local trans-
formations; the relative entropy itself is non-increasing even under nonlocal transfor-
mations of both arguments. (However, the exponential family &1, which consists of
all product distributions, is invariant, and consequently Ci is non-increasing.) Con-
sequently, it has been suggested [35] to replace Dy by the distance to the local orbit of
&k In this thesis, the term complexity measure (and similarly correlation measure) will be
avoided; the C; will always be referred to as interaction measures.

2.6.3 Iterative scaling

The information projection onto an exponential family can be computed numerically
by iterative scaling. This algorithm is based on the following dual formulation of the
minimization problem in Eq. 2.120):

Recall the definition of the linear family My (P) of probability distributions with the
same k-party marginals as P [see Eq. @.124)]. We define the dual information projection
of a distribution Q onto M (P) a

Q* = argmin D(Q'||Q) (2.137)
Q'eMy(P)

[note that the minimization is over the first argument of the relative entropy, while
in Eq. (Z120) it is over the second argument]. Theorem 3.3 in Ref. 26 states that the
information projection of P onto & is given by the dual information projection of the
uniform distribution Py onto M (P),

argmin D(P||P") = argmin D(Q'|| ) where Py = i (2.138)

_ 21’1
P'e&y Q/eMk(P)

In the iterative scaling algorithm, which will now be described, the dual projection is
computed by scaling a distribution to adjust its marginals (see Ch. 5 in Ref. and
Refs.[35,[104). The iteration can be proven to converge [26, Thm. 5.1].

Algorithm 2.4 (Iterative scaling). B
Problem: Given a probability distribution P of n parties, compute its information projection Py
onto the exponential family Ey.

1. For each k-element subset A C {1,...,n} compute the marginal P4 of P,

Pa(x)= ), P(X). (2.139)
x' with
xi=x,VicA

2. Initialize Q as the uniform probability distribution, Q = 1/2".

24In Ref. 26/ the dual information projection is called I-projection, and the information projection is called
reverse I-projection or rI-projection. Reference 2l calls them m-projection and e-projection, respectively.
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3. Looping through all k-element subsets A of the parties, update Q according to

/ _ Py (X)
Q9 Q0 = 5L 2500, (2.140)
where Q 4 is the marginal of Q,
Q= ¥ Q). (2:141)
xf;(xlug’tzheA

4. Repeat the last step.

An algorithm for the corresponding quantum mechanical problem is developed in
Section[6.4l

2.6.4 Information geometry

This subsection aims at putting the topic of exponential families of interaction spaces
into the larger context of information geometry. It is based on Refs. 2,3l

In information geometry, families of probability distributions which depend on con-
tinuous parameters are viewed as manifolds. For example, the family of normal distri-
butions with mean y and standard deviation ¢

P(x;p,0) =

1 (x —p)?
N exp{—Tﬂ} (2.142)

is a two-dimensional manifold with coordinates (y, o). Every point in the manifold is
a probability distribution.

We will now give the general definitions of exponential and linear families. They are
defined by the way in which the probability distributions depend on the parameters
(or coordinates). An exponential family has the form

P(x,0) = exp{ko(x) + ZGiki(x) —(0)}, (2.143)

where the k; are given functions [not necessarily of product form as in Eq. (2.108)] and
1§ ensures normalization. The 6; are called e-affine coordinates. Any curve in the space of
coordinates of the form 6(t) = ta + b is called an e-geodesic.

A linear family@ has the form

P(x,17) = qo(x) + }_7:qi(x), (2.144)

where the g; are given functions. Analogously to exponential families we speak of -
affine coordinates and m-geodesics.

2Linear families are called mixture families in Refs. 23l
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The use of the terms e-geodesic and m-geodesic is justified by the existence of two cor-
responding affine connections. These two connections are related to each other by a
property called duality with respect to the Riemannian metric defined by the Fisher in-
formation matrix. It is a consequence of this duality that any e-flat manifold, such as an
exponential family, is also m-flat; and any m-flat manifold, such as a linear family, also
e-flat. We call such manifolds dually flat. For any dually flat manifold, the e- and m-
affine coordinates are related by a Legendre transformation, and the coordinate curves
are orthogonal at any point. If now the point (or distribution) P is connected by an
m-geodesic to P/, and P’ is connected by an e-geodesic to P”, and these geodesics are
orthogonal at P/, the Pythagoras theorem

D(P||P") = D(P||P") + D(P'||P") (2.145)

holds [cf. Fig.24]. One can re-formulate this as the dual Pythagoras theorem, where
the e- and m-geodesics trade places and D(P| Q) is replaced by the dual divergence
D*(P||Q) = D(Q| P).

Any linear subspace of the space of e-affine coordinates of a dually flat manifold de-
fines an e-flat submanifold, and analogously for the m-affine coordinates. This defines
orthogonal foliations of the manifold.
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3 Increasing the statistical significance of entanglement
detection in experiments

This chapter deals with the effect of finite measurement statistics on entanglement de-
tection. Two detection methods are considered: witness operators and Bell inequalities.
In Section 3] the significance of an entanglement test is defined, and two particular
Bell inequalities, namely, the Mermin and the Ardehali inequality, are introduced. Sec-
tion 3.2l describes a general method for maximizing the significance of a witness oper-
ator under the assumption that the statistical error can be estimated by the standard
deviation. In Section[B.3lthe error estimation for multiphoton experiments is discussed,
and the Mermin and the Ardehali inequality are compared with respect to their statisti-
cal significances. The result of this comparison has been tested in an experiment carried
out by the group of Jian-Wei Pan; a description of the experiment is given in Section[3.4]

The results of this chapter have been published in Ref. B} but are presented here in
greater detail.

3.1 Statement of the problem

Our first aim is to give a definition of the statistical significance of an entanglement test.
Two kinds of entanglement tests are considered, namely, witness operators and Bell
inequalities. An introduction to these concepts was given in Sections 2.1.3] and 2.2.7]
respectively. Recall that a witness operator W satisfies Tr(Wp) > 0 for all separable
states p. For any state p, we define the violation of the witness as

Viv = — Tr(Wp). 3.1)

A Bell inequality takes the form Tr(Bp) < Cp. The observable B is called Bell operator.
For the CHSH inequality, B = A1 ® By + A1 ® By + A> ® By — A, ® By. The number
Ciny is the local hidden variable bound. We define the violation as

Vi = Tr(Bp) — Ciny- (3.2)

In either case a positive violation proves entanglement. The experimental entanglement
test consists in determining the value of V.

Quantum mechanics predicts in general only probabilities for measurement results.
Thus, even in the absence of any experimental imperfections, expectation values such
as Tr(Wp) and Tr(Bp) can be determined perfectly only in the limit of an infinite num-
ber of repetitions of the experiment. When evaluating the data of an experiment imple-
menting a witness or a Bell operator, one has to rule out the possibility that a positive
violation is only an effect of statistical fluctuations!]

IClearly, this also holds for the so-called “nonlocality without inequality” proofs, such as the GHZ
argument [27)/89].
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The effect of finite statistics is particularly relevant for experiments generating entan-
gled photons by spontaneous parametric downconversion. (For a description of such
an experiment see Section B.4/below.) In this type of experiment, the rate at which en-
tangled states are generated scales very unfavourably with the number of parties. As
a consequence, the effect of statistical fluctuations is by far larger than all systematic
errors, such as misalignment of the axes of polarization measurements. In this chap-
ter we will always assume an experiment where the statistical error is dominant. (In
fact, we shall neglect systematic errors completely.) In Section 3.3 we discuss the error
estimation explicitly for experiments with entangled photons.

A way to account for statistical errors, which is obvious to any experimental physi-
cist, is to equip the measured value of V with an “error bar”, V £ £. The proper defini-
tion of the error £ is the first main subject of this chapter.

It should be mentioned that this is not the only possible way to deal with statistical
fluctuations. At a more fundamental level, we are concerned with the task of discrim-
inating classes of probability distributions for measurement results: Those which can
result from separable states and those which require entanglement. This is a problem
from the realm of statistical hypothesis testing. A rigorous analysis of Bell inequalities
from this point of view has been carried out in Ref. In Chapter 4! this idea will be
applied to the discrimination of different classes of entangled states.

The experiments that we have in mind aim at preparing a certain target state. Thus
it makes sense to optimize the entanglement test by maximizing the violation V or
minimizing the error & for this state. In general there will be a trade-off between these
optimizations. We define the significance of the entanglement test as the ratio

S= K (3.3)
in other words, as the inverse relative error. If we use the standard deviation A(V)
as an estimate for the error &, reporting the value of the significance is nothing but
reporting “violation by S standard deviations”. The optimization of witness operators
and Bell inequalities with respect to their significance S is the second main subject of
this chapter.

Recall that for witness operators the word optimization is conventionally used in a
different sense (see Section 2.T.3): It refers to enlarging the set of detected states by
subtracting a positive operator from the witness. This has the additional effect of in-
creasing (or at least not decreasing) the violation for any fixed detected state. However,
when trying to prove entanglement in an experiment with a given target state, increas-
ing the set of detected states is not the primary concern, and increasing the violation for
the target state is desirable only if it leads to a higher significance. The relation between
optimization of a witness in the conventional sense and maximization of its significance
will be studied in the next section.

Furthermore we will compare the significances of two Bell inequalities. The four-party
Mermin inequality is given by [83]

<A1B1C1D1> — Z <A7rlB7-[2C7-[3Dn4> + <A232C2D2> < 4. (34)
n(1,1,2,2)
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The symbol }_;, .. ;) stands for all distinct permutations of the indices, in this case

2 <AmB7r2C7I3D7T4> = <A131C2D2> + <A132C1D2> + <A132C2D1>
m(1122) + (AyB1C1Dy) + (A3B1CaD1) 4 (A2B,C1Dy). (3.5)

We choose Ay = By = C; = D1 = 0y and A, = By = C; = Dy = 0y. For this choice
the eight terms of the Mermin inequality are expectation values of stabilizing operators
of the GHZ state [see Eq. 2.96)]. Thus the quantum mechanical bound is 8 and it is
attained by the GHZ state.

The four-party Ardehali inequality is [4]

1
—[(A1B1C1D1>+(A1B1C1D2>— Y (AuBuCrDi)+ Y (AgBrCrDa)
V2 7(1,2,2) 7(1,2,2)

— Y (AnBoCuDi)+ ¥ (AnlBHZCn3D2>+(A2B2C2D1>—<A2B2C2D2>}
7(1,1,2) 7(1,1,2)

<2v2. (3.6)
We choose
A1 =B =C =0y, Ay =By =(C = Ty, (37)

1 1
Dl :E(Ux—FO’y), Dz:ﬁ(UX—Uy).
Then the Bell operator is equal to the Bell operator of the Mermin inequality. Thus
the quantum mechanical bound is again 8 and is again attained with the GHZ state.
From the local realistic point of view the inequalities are not equivalent, of course. The
maximal quantum mechanical violation is higher for the Ardehali inequality,

(3.8)

Wiermin =4, Vardenati = 8 — 2V2 ~ 5.1716. (3.9)

Unlike the Svetlichny inequality 2.37), both the Mermin and the Ardehali inequality
hold for local realistic models only, but not for the more general hybrid models.

3.2 Optimizing a witness with respect to its variance

In a naive error model for a witness operator, the error is estimated by the standard
deviation of the witness

EW) = A(W) =4/ (W?) — (W)2. (3.10)
In this model the fact is neglected that in a typical experiment the observable W is not

implemented directly, but rather decomposed into a sum of product observables [44]
Sec. 6.1.2]. Also, even for an observable that is directly implemented the use of the
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standard deviation as an error estimate needs to be justified (cf. the next section). Nev-
ertheless, even with this simple model one can demonstrate the difference between
maximization of the violation and maximization of the significance.

Clearly the significance
—(W)

S(W) = AN (3.11)

diverges if and only if the state being measured is an eigenstate of the witness. We will
show the following result:

Lemma 3.1. Let p = |¢) (| be a pure state detected by the witness W with finite significance.
Then there exists another witness W' which is less fine than W and which detects p with lower
violation, but arbitrary high significance. In other words, there is a positive operator P such that
|¢) is an eigenstate of W = W + P.

Before proving the lemma, we describe an iterative procedure to construct a witness
with a higher violation. This procedure motivates the ansatz for P made in the proof
and may also be of independent interest.

Let p be a state detected by the witness W. For the time being we do not require p to
be pure. We want to increase the significance iteratively by adding only a small positive
operator at a time. So let W' = W + ¢P, where P is a positive operator with unit trace
and € > 0. The violation and the standard deviation of W’ for the state p are given by

Viyr = —(W) —&(P) (3.12)
and 2
AW = [AZ(W) +e((WP) + (PW) — 2(W)(P)) +82A2<p)} . (313)
We expand the significance for small ¢,
N —W)y 1 W) (W2) 2
SW) = 3wy 2 B ((wp)+ (Pw) 220 (P)) +O(e). (3.14)
Introducing the Hermitian operator
(W?)
=pW+Wp+2 , 3.15
we rewrite this expression as
S(W') =S(W) + el W) Tr(QP) + O(&?). (3.16)

2 A3(W)

We neglect the terms of quadratic and higher order and maximize the significance over
all positive P with unit trace. Since the prefactor (W) /A3(W) is negative, this is equiv-
alent to minimizing Tr(QP). The optimal P is thus a projector onto the eigenspace of Q
corresponding to the minimal eigenvalue. If this eigenvalue is negative, we succeeded
in improving the significance.
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We will now show that for a pure state p = |¢) (| the operator Q always has a
negative eigenvalueﬂ As an ansatz for a corresponding eigenvector we use

) = cos(§)|y) +e?sin(§)|pt), 0<O<m 0<¢<2nm, (3.17)

where 1) is an as of yet undetermined normalized vector orthogonal to |¢). For
P = |i7)(n| we obtain

AFW)
—(Why
This expression has to be minimized over |¢+) and the angles 6 and ¢. By choosing
¢ = 7 — arg((Y|W|pt)) we can always make Re(e'¥(|W|¢p+)) negative. Thus the

optimal |¢) is the normalized vector orthogonal to |¢) maximizing | (y|W|¢p+)]|, which
is

Tr(QP) = 2cos () sin(§) Re(e (y|W[yp)) + 2cos®(§) (3.18)

) = W(ﬂ 1) ()W), (3.19)

where the phase has been chosen arbitrarily. Observing <¢\W|lpépt> = Ay(W) and
choosing ¢ = 7 we arrive at

(3.20)

NI

) Ay(W) }
—(Wy
The second term in the square brackets is always positive. We can now choose 6 so

close to 7t that

Tr(QP) = 2cos(§) Ay(W) [— sin(§) + cos(

Ay (W)
—(Why
and thus Tr(QP) < 0. This shows that for pure p = |¢) (¢| the minimal eigenvalue of
Q is negative.

We can now repeat the procedure with W' = W + ¢P for sufficiently small ¢ in place
of W. The new optimal |¢) is given by [cf. Eq. (3.19)]

1
|Popt)new = W(ﬂ — ) (@) (W +elm) () [9) (3.22)

tan(%) >

(3.21)

with |17) = cos(6/2)|¢) — sin(0/2) |1/J0Lpt>. The last equation can be simplified:

oo = 57y (1~ 199 1) [WI) -+ ccos() )]

= gy (1~ )W) — ecos() sin(3) Iy
_ Ap(W) —ecos(0/2)sin(8/2) |

— Alp(w/) ‘l/)opt>

= |lpé_pt>'

2For mixed o this is in general not true. A counterexample is given by W = 1/2 — [~ )(y~| and
0 =1/8+1/2|p~)(p~|. The state is detected with Tr(Wp) = —1/8, but the minimal eigenvalue of Q
is 19/32.

(3.23)
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This shows that Wjépt> will be the same in every iteration step. The angle 6 will in
general be different each time. In other words, in each iteration step P is a different
one-dimensional projector, but all these projectors are supported on the same two-
dimensional subspace spanned by |i) and ]gbOLpQ, or equivalently, by |¢) and W|).
This observation motivates the following proof of the lemma:

Proof of LemmaB.1) Let p = |¢) (¢| be a pure state detected by the witness W. We need
to find a positive operator P such that |¢) is an eigenvector with negative eigenvalue
of W = W + P. We make the ansatz

P = a|) (] + bl Wope) (Wopt| + 1) (Yope| + ¢ [¢ope) (1, (3.24)

where 2 and b are real and c is a complex coefficient and

) = 53y (1~ 0 WD) (3.25)

For this ansatz,
Wlp) = (W)y +a) 9} + (A (W) + ) [hopn). (3.26)
So |¢) is an eigenvector of W' for ¢ = ¢* = —Ay(W). The corresponding eigenvalue is
negative for 2 < —(W)y. The operator P is positive if 2,b > 0 and det(P) = ab — |c|* >
0. Since these conditions can always be satisfied, the lemma is proven. O

3.3 Error estimation for multiphoton experiments

In this section the error estimation for multiphoton experiments is discussed and ap-
plied to the Mermin and the Ardehali inequality. The setup of such an experiment
is described in the next section. The part of the setup implementing the measurement
consists of a combination of wave plates, a polarizing beam splitter and two photon de-
tectors for each spatial mode [see Fig.[3.21(c)]. By setting the angles of the wave plates,
local measurement bases are chosen. Any product basis thus corresponds to a measure-
ment setting. Only those events are counted where exactly one of the two detectors for
each mode gives a signal. The immediate result of the measurement is thus a set of 2"
coincidence count numbers, each corresponding to a vector of the measurement basis.
Any observable is decomposed into a sum of terms, each being diagonal in a product
basis (cf. Sec. 6.1.2 in Ref./44). The two assumptions of the standard error model [58] are
that the count numbers may be treated as statistically independent Poisson-distributed
random variables and that Gaussian error propagation may be applied to calculate the
error of the observable’s expectation value. We will discuss this model now in more
detail.

Let I'ly; be the projector onto the vector i of the product basis (or setting) k, and let
pri = Tr(Iyp) be the probability that we wish to estimate. Measuring in the setting
k for a certain amount of time results in coincidence count numbers, which the model
describes as Poisson-distributed random variables Ny;,

Ae—A

Prob(Ny; = n) = .

where A = nopi (3.27)
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for some unknown ng. In particular this implies that the expectation value and variance
are equal,
(Niiy = N*(Nii) = nopyi. (3.28)

Denote the observed values of the count numbers by ny;, and let nj = ) ; ny; be the total
count number for the setting. We estimate the probabilities py; by the relative count

numbers or frequencies,

n .
i & fri = . (3.29)
Ny

For an observable diagonal in the product basis k,

A=Y Aill, (3.30)
i
the expectation value is estimated by

(Ap) = Z/\ifki- (3.31)

The statistical error of the count number 7y is estimated by the standard deviation,
E(nyi) = Angi) = /ni. (3.32)

We use Gaussian error propagation to determine the error of (Ay),

"9(AL) 12
E((A)) ~ L[ 508 € )
_y AL )‘f”kf]znk,
_ / 1
Fk T (3.33)
o Az <Ak>}2
=2 | M
i L1 ny
N (Ay)
-

The form of the derivative given in the second line of the previous equation led the
authors of Ref. 58| to believe that the second term Y. Ak / ni decreased faster with in-
creasing total count number 7 than the first term A;/n;. Consequently, they dropped
the second term. This is a mistake, because the numerator Y. At scales linearly with
ng. For the experimental data given in that reference [in the paragraph below Eq. (3.20)]
the neglected terms are not significantly smaller than the retained terms. More pre-
cisely: Both the retained and the neglected term in Eq. (5.6) of Ref. 58 take values up to
the order of 10~°. (The situation considered in that reference is not completely the same
as ours: There, only one photon detector per spatial mode is used, and the total count
number is determined by measuring the identity operator.)

Let us comment on the assumptions we made. The assumption of Poissonian proba-
bility distributions is justified by the low overall efficiency of the experiment. Gaussian
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error propagation involves a linearization of the function whose error is calculated and
assumes that the errors of a sum of terms add quadratically. Adding errors quadrati-
cally gives the exact result if they are the standard deviations of uncorrelated variables.
Finally, when interpreting a standard deviation as half of the length of a 68% confidence
interval, as is frequently done, one tacitly assumes a normal distribution. However, the
Poisson distribution can be well approximated by a normal distribution for sufficiently
large numbers.

We now apply the theory outlined above to the Mermin and Ardehali inequality (3.4)
and (B.6). For the perfect GHZ state the error of the Mermin inequality is zero. This
is due to the fact that we chose the operators in the Mermin inequality as stabilizing
operators of the GHZ state. In particular, the GHZ state is an eigenstate of all those
observables. The operators in the Ardehali inequality are not stabilizing operators,
and the error does not vanish. This shows that for states sufficiently close to the GHZ
state the Mermin inequality has a higher significance than the Ardehali inequality. This
behaviour of the significance should be compared to the violation, which is higher for
the Ardehali inequality [see Eq. 3.9)].

For experimental applications it is relevant to know if the Mermin inequality has
a higher significance even for states with a realistic amount of noise. To answer this
question, we repeat the error analysis for GHZ states with different noise levels. As our
noise model we choose bit-flip noise,

p— (E10&0E50&)(p) where Eilp) =1 —p)p+ po*,(f)pcr,gi) (3.34)

and 0 < p < 1is the bit-flip probability. In a photonic experiment this type of noise can
easily be introduced on purpose to test the theory for different noise levels (see the next
section).

Figure B.Ilshows the calculated significance of the Mermin and the Ardehali inequal-
ity for the GHZ state with bit-flip noise. The noise can be quantified by the bit-flip
probability p or the fidelity with the perfect GHZ state F = (GHZ4|pexp|GHZy). It is
assumed that per data point 8000 copies of the GHZ state are prepared, such that that
either each of the eight terms of the Mermin inequality is measured 1000 times or each
of the sixteen terms of the Ardehali inequality 500 times. One observes that the Mer-
min inequality has a higher significance for fidelities F > 0.70. Such fidelities are within
reach of current experiments (again, see the next section). For the six-party versions of
the inequalities the threshold value changes to F > 0.40. The calculations have been
repeated for white noise, yielding F > 0.72 for four parties and F > 0.41 for six par-
ties. This suggests that the effect does not depend strongly on the details of the noise
channel. One can show that for white noise the threshold value decreases exponentially
with the number of parties. (For the derivation of the results on white noise and larger
numbers of parties see Ref. 61l)
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Figure 3.1: Theoretically predicted values of the significance S of the four-party Mer-
min (red, solid) and Ardehali inequality (blue, dashed) for the GHZ state with different
levels of bit-flip noise. The noise can be quantified by the bit-flip probability p (lower
horizontal axis) or the fidelity F (upper horizontal axis). It is assumed that 8000 in-
stances of the GHZ state are prepared and that either each of the eight terms of the
Mermin inequality is measured 1000 times or each of the sixteen terms of the Ardehali
inequality 500 times. (Figure taken from Ref.[Bl)

3.4 Description of the experiment and results

In this section an experiment testing the above predictions for the significance of the
Mermin and the Ardehali inequality is described. The experiment was carried out by
He Lu, Wei-Bo Gao, Yu-Ao Chen, Zeng-Bing Chen and Jian-Wei Pan at the University
of Science and Technology of China in Hefei. A four-photon GHZ state was prepared,
and different levels of simulated (or engineered) bit-flip noise were applied.

The experimental setup is shown in Fig. B2l In the first step, which is not shown
in the figure, femtosecond laser pulses (pulse length ~ 200 fs) with a repetition rate
of 76 MHz and a wavelength of 788 nm are produced and frequency-doubled with an
LiB3Os (LBO) crystal, thus converting them to ultraviolet. With these pulses two p-
barium borate (BBO) crystals with a length of 2 mm are pumped. By spontaneous para-
metric downconversion [72], polarization-entangled photon pairs of the form

[sroc) = —75(1H)V2) +¢21Vi) [Ha)) (339)

are produced in those crystals. Here H and V denote horizontal and vertical polariza-
tion and the indices 1 and 2 label spatial modes. The phase « can be compensated. For
each BBO crystal the observed two-fold coincidence count rates are about 1.6 x 10*s~1.
The visibilities are 96% in the H/V and 94% in the +/— basis. Modes 2 and 3 (see fig-
ure) each go through a half-wave plate (HWP). Following the conventions of the Jones
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Figure 3.2: Scheme of the experimental setup. (a) The setup to generate the required
four-photon GHZ state. Femtosecond laser pulses (~ 200 fs, 76 MHz, 788 nm) are con-
verted to ultraviolet through a frequency-doubling LiB3Os (LBO) crystal (not shown).
The pulses go through two main B-barium borate (BBO) crystals (2mm), generating
two pairs of photons. For each crystal, the observed two-fold coincidence count rates
are about 1.6 x 10*s~! with a visibility of 96% (94%) in the H/V (+/—) basis. (b) Setup
for engineering the bit-flip noise. (c) The measurement setup. (Figure taken from

Ref.[Bl)

calculus, we write the polarization states as |[H) = [0) = (}) and [V) = |1) = (9).
With this convention the HWD, set at an angle of 45° between the fast axis and the
vertical, implements [58] the operation —oy. In this way the biseparable state

y) = %(1H1>|H1> +[V1)[V2)) @ (1Hs)[Ha) + [Va)| Vi) (3.36)

is produced. Modes 2 and 3 then enter a polarizing beam splitter (PBS). By moving the
prism, which in the figure is labelled A d2, the path length of mode 2 is adjusted such
that the photons arrive simultaneously at the PBS. The PBS transmits horizontally and
reflects vertically polarized photons. Each reflected photon acquires a phase shift of 7.
Thus the PBS acts like

|Ha)|H3) — |Ha)|H3), |Ha)|V3) — i|H2)|V2), (3.37)
|V2)|H3) — i|V3)|H3), [V2)[V3) = —[V2)|V3). (3.38)
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The final state is

(IH1)|H2)|Hs) |Ha) + i )| Ha) [V2) | Vi)

(3.39)
+i|V1)|V3)|Ha) |Hy) — [V1)|V2)|V3) | Va)).

N| =

y") =

Each mode then goes through a noise channel (described below) and is finally mea-
sured with a setup consisting of a HWP, a quarter-wave plate (QWP), a PBS and two
detectors. Postselection is employed in such a way that only those events are retained
where a signal is detected in each of the four modes. This effectively projects the state
in Eq. (339) onto the GHZ state

(GHZ) = 1 (1) [Ha) ) i) + V) [V2) [V3)]Va)). (3.40)

We tacitly assumed that a phase has been compensated.

The bit-flip noise channel is implemented by a HWP that is sandwiched between two
QWPs. (The same implementation was used in Ref. 20l) Both QWPs are set at an angle
of 0° between the fast axis and the vertical. The HWP is set at a variable angle 6. With
these settings, the wave plates are described by the matrices [58]

_ 1 /7i—-1 0 [ cos(28) —sin(20)
Uawr = V2 < 0 i+ 1) and Urwe(0) = (— sin(26) —cos(29)) - (341)

The HWP is now flipped randomly between +6 and —6. Then the three wave plates
implement the channel

1
p—5 ; Uaqwp Unwr (£0) Ugqwp p u(BWP Ufp (£6) U5WP

(342)
= c0s?(26) p + sin*(20) oy p 0%,
which is the bit-flip noise channel with bit-flip probability p = sin?(26).
The fidelity of the prepared GHZ state is determined via
F = (GHZyexp|GHZy)
(3.43)

1 1
= (/0000 (0000] + [1111)(1111]) + 7(Bu),

where By is the Bell operator of the Mermin inequality and we again used the fact that
this operator is a sum of GHZ stabilizing operators. In this experiment, the fidelity
without simulated bit-flip noise is F = 0.84 4= 0.01.

The results of the Bell experiment are shown in Table[3.]] The angle determining the
level of engineered noise is varied from 8 = 0° to § = £8°, which corresponds to bit-flip
probabilities from p = 0 to p = 0.076. Each term in the Mermin inequality is measured
for 800s and each term in the Ardehali inequality for 400s. This results in an aver-
age total count number of about 7500 for each inequality. In particular, the total count
number is approximately the same for both inequalities. Without engineered noise, the
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Table 3.1: Experimental values of the violation V/, the statistical error £ and the signif-
icance S for different values of the angle 6, which determines the level p of engineered
bit-flip noise. Each setting in the Mermin inequality is measured for 800 s, while each
setting in the Ardehali inequality is measured for 400 s. The average total count number
for each inequality is about 7500. (Table taken from Ref. [Bl)

Mermin Ardehali
0 p % £ S % £ S

+0° 0 237 005 443 3.65 010 35.0
+£2° 0.005 200 0.06 334 314 0.11 292
+4° 0.019 157 0.07 237 248 0.11 21.8
+6° 0.043 113 0.07 162 2.05 0.11 17.8
+8° 0.076 0.67 0.08 88 1.63 0.12 13.7

violation of the Mermin inequality is smaller than that of the Ardehali inequality. The
significance, however, is larger. With increasing noise level the significance of the Mer-
min inequality decreases more quickly. For 8§ = £+6° (corresponding to p = 0.043) the
significance of the Ardehali inequality is already larger. When plotting the significance
with respect to the fidelity the points do not lie on the theoretically predicted curves in
Fig. 3.1l This is not to be expected, though, because the experimental state for 6 = 0
is not the perfect GHZ state with some amount of bit-flip noise. Rather, the type of
noise present in this state is unknown. In conclusion, the experiment clearly confirms
our prediction that the Mermin inequality has a higher significance that the Ardehali
inequality for high fidelities.
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4 Discrimination strategies for inequivalent classes of
multipartite entangled states

This chapter, based on Ref.[C] aims at answering the question for the best observables
for discriminating classes of multipartite states with different entanglement properties.
It is organized as follows: In Section 1] the discrimination problem is formulated, and
a previous approach is reviewed. In Section [4.2] two measures for the discrimination
strength of an observable are defined, and their interpretations are discussed. In Sec-
tions and [4.5] the stabilizer formalism is employed to compute these quantities
for certain graph states and to find sets of observables that result in the strongest dis-
crimination. Finally, Section [.6] contains a conclusion and some open questions.

4.1 Statement of the problem

Multipartite entangled states differ in their entanglement properties. Two important
classification schemes are based on the equivalence under local unitary (LU) opera-
tions and stochastic local operations and classical communication (SLOCC), respec-
tively. (See Section[2.1.2] for the definitions.) Here an approach is presented for the dis-
crimination of an experimentally prepared state from the equivalence class of another
state. This is a relevant problem, since it has been shown that different classes of en-
tangled states are suited for different applications. For example, cluster states are use-
ful for measurement-based quantum computation, whereas GHZ states are not [117].
Conversely, for sub shot-noise interferometry, GHZ states are optimally suited, while
cluster states are useless [56].

For the experimental verification of entanglement a number of tools exist — the most
prominent example are witness operators (see Section2.1.3). As experiments no longer
aim only at the creation of entanglement but also at creating specific classes of entan-
gled states, tools are needed for the experimental discrimination of these classes. In
the context of entanglement detection, it is well-known that a given Bell inequality or
witness operator detects only a part of all entangled states and fails to detect others.
Thus the violation (or non-violation) of a Bell inequality can provide information not
only about the entanglement present in a state but also about its type [65,97].

Consequently, in Ref.[99/Schmid et al. constructed Bell operators and implemented
them experimentally for discriminating different classes of entangled states. For an ex-
periment aiming at the creation of a particular state, a Bell operator characteristic for
this state was designed, that is, a Bell operator that has the desired state as eigenstate
with maximal eigenvalue. The maximal expectation value of this Bell operator for var-
ious other classes of states (defined as all LU equivalents or all SLOCC equivalents of
some prominent entangled state) was determined. Measuring the Bell operator then
proved that the prepared state was not in those classes with maximal expectation value
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lower than the experimentally obtained value. In this approach, the characteristic oper-
ator is far from unique. Neither is it necessary to use a Bell operator, as has already been
remarked in Ref.99. As entangled states with increasingly large numbers of qubits are
being prepared, analysis tools that give strong results in spite of a limited number of
measurement events are needed.

In the next section two measures for the discrimination strength of an observable will
be defined. The first measure is based of the difference of expectation values and coin-
cides with the one implicitly used in Ref.[99. It is shown to have an interpretation as a
noise tolerance. The second measure is based on the relative entropy (see Section [2.3.7).
It is directly related to the probability that measuring another state reproduces the ob-
served measurement outcomes in a given number of measurement runs. This use of
the relative entropy is motivated by a work of van Dam, Gill and Griinwald [27], where
it was used to assess the statistical strength of nonlocality proofs.

It should be mentioned that the approach presented here is not directly related to
the task of state discrimination as it is often discussed in the literature [19]. In partic-
ular, it does not rely on the promise that the state is always in either of two families;
such an assumption cannot be justified in an experiment aiming for the verification of
entanglement properties.

4.2 Distance measures

We consider the following situation: In an experiment aiming at the preparation of a
state p the experimenter wants to verify that the prepared state is not in a certain class
of undesired states, given by all local unitaries (and maybe permutations of qubits) of
a pure state |¢). For that purpose he or she can measure an observable A (or several
observables Aj) and one has to define to what extent such a measurement can exclude
the undesired states.

In this section two quantities will be defined that measure how well an observable
A discriminates a state p from all local unitaries of another state |¢). We are restricting
our attention to LU classes only to simplify the calculations; the same quantities can
equally well be defined for SLOCC classes.

4.2.1 A measure based on the fidelity
In analogy to the approach taken in Ref.[99, we define the fidelity-based measure as
Falpllg) = min|Tr(Ap) = (pIUf @ -+ & Uy AUy @ -+ & Un| )|
) () . i (4.1)
= min |Tr(Ap) — (p|U"AU|¢)].

In the following we will always use the shorthand notation ming¢; y for the minimiza-
tion over all local unitaries of a state. Later we will consider also the minimization over
all permutations of qubits.
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Adding or subtracting a multiple of the identity matrix to A does not change the
value of F in Eq. (@.I). So without loss of generality we can assume Tr(A) = 0. Also
without loss of generality we assume Tr(Ap) > 0.

In the following we will always assume that Tr(Ap) > maxcry(p|UTAU|¢). This
is no restriction for our purposes due to the following reasoning: Let us assume that
for the pure n-qubit state |¢) there exist 2" local unitaries U; such that {U;|¢)} forms
an orthonormal basis. States with this property are called locally encodable [106]. It
has been conjectured that all pure states are locally encodable, and the conjecture has
been proven for a variety of states, including all stabilizer states and the W state [106].
Then we can write 1 = Y; Uj|¢) (¢|U], and since A is traceless, Tr(A Y; Us|¢) (p|U]) =
0. So, if (p|A|p) < O there exists a local unitary U such that (¢|UTAU|$) > 0 and
vice versa. If maxye y(¢|UTAU|¢p) > Tr(Ap), by local encodability there exists a local
unitary U such that Tr(Ap) > 0 > (¢|UT AU|¢). By continuity there exists another local
unitary such that Tr(Ap) = (¢p|UTAU|¢), that is, F4(p|/¢) = 0 and the observable A
is not suitable for a discrimination procedure based on F. In this chapter we shall be
concerned with graph states and sometimes with the W state, so local encodability is
proven for our purposes and we have

Falpllg) = Te(Ap) — max (p|U"AU|p). (4.2)

This quantity, however, is not invariant under rescaling of A. To be able to compare
different observables, we have to agree on a normalization. We choose Tr(Ap) = 1,
which is the same normalization as in Ref.[99] and obtain

Falellg) =1~ max (¢ plutAU|g). (4.3)

This is the first quantity that will serve us as a measure for the strength with which A
discriminates p from all local unitaries of |¢).
For more than one observable we define

Far.apll¢) = ]:% YE A (oll¢)- (4.4)

In the remainder of the chapter we will discuss how to find optimal families of observ-
ables A, ..., Ay for given states p and |¢).

Our definition has a direct physical interpretation as a noise tolerance. To see this,
we exploit the similarity of our problem to the task of entanglement detection by virtue
of witness operators and consider the robustness of F in Eq. (£2) against white noise:
Let

pn(p) = (1 = P)% +pp (4.5)

be the state p affected by white noise. The maximal noise level (1 — p) such that

Tr[Apwn(p)] — max (p|U"AU|$) > 0 (4.6)
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is given by [using Tr(A) = 0]
1—p=1—max(p|u"AU|p) = Fa(pl¢)- 4.7)

The interpretation of F as a noise tolerance will be discussed in more detail in Sec-
tion4.3.3]

4.2.2 A measure based on the relative entropy

From a statistical point of view, the task of discriminating a state p and a state ¢ = |¢) (¢|
by virtue of an observable A is the task of discriminating the corresponding probability
distributions for the measurement outcomes of A.

The relative entropy (see Section 2.3.1) is a well-established information-theoretic
measure for the discrepancy between two classical probability distributions. Note that,
since we are dealing with the discrimination of classical probability distributions, we
are not using the quantum (or von Neumann) relative entropy (see Section 2.3.3). The
relative entropy D(P||Q) can be used to answer the question: How strongly does a
sample (of a fixed length) from the distribution P on average indicate that it was in-
deed drawn from P rather than from Q? This interpretation was justified heuristically
in Section 231} It can be made precise with the theory of statistical hypothesis test-
ing [27]: Suppose that a sample of length N has been drawn from Q. We consider
the empirical probability distribution P defined by the observed frequencies. Then the
probability QN [T(P)] of drawing a sample from Q with the same frequencies as P [i.e.,
within the type class T(P) of P] decays exponentially for large N (see Thm. 11.1.4 in

Ref. 25),
QN[T(P)] ~ 2 NPIQ). (4.8)

Consequently, if one observes a probability distribution P yielding a large value for the
relative entropy D(P||Q), the assumption that it was rather drawn from the probability
distribution Q is very questionable (see below for a quantitative statement).

Let us now return to our original problem: For an experiment aiming at the prepara-
tion of the state p, we define a measure for how well the observable A can exclude the
state o as the relative entropy of the corresponding measurement outcomes for A,

mwmzimmm%@ggy (4.9)

where A = )", a;I1; is the spectral decomposition of A. From the above discussion,
this is a measure for how strongly the measurement results of the observable A on the
state p on average show that they are due to the state p rather than the state o. (Note
that in this interpretation we assume that the experimental precision in implementing
the observable A outperforms the precision that can be achieved for the preparation of
the state p.)

Let us discuss the interpretation of this quantity. Suppose that the measurement has
been carried out, resulting in an observed probability distribution P = (7, ..., Pm)
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of the outcomes 4y, ...,4a,, and let N be the number of measurement runs. Then, by
Eq. @.8), the probability that a measurement on the state o, after N measurement runs,
results in the same frequencies is given by

QN[T(P)] ~ 27 NP(PIQ), (4.10)

where the distribution Q is givenby Q = (Tr(c11y), ..., Tr(cT1,)). If the experimentally
prepared state is close enough to the intended state p, the relative entropy D(P||Q) will
attain a large value only if this is already the case for D4 (p||c).
For comparison, when tossing a fair coin N times, the probability of the outcome
always being “tails” is
2-ND((L0)(3,2)) — =N (4.11)

since Eq. @.8) is exact in this example. Thus, the probability Eq. (£10) of obtaining
the frequencies P after measuring N times the state ¢ is equal to the probability of
always obtaining “tails” in N = ND(P||Q) tosses of a fair coin [27]. In other words, the
likelihood after N measurement runs that the prepared state is ¢ is the same as that of
a coin to be fair after N = ND(P||Q) tosses resulting in “tails”. This gives our results
for the measure D in Eq. (£9) a quantitative interpretation.

When measuring several observables Ay,..., Al independently of each other, the
relative entropy of the joint probability distributions is given by the sum of the relative
entropies for the individual observables [see Eq. 2.47)]. However, we renormalize the
relative entropy in this case and define

1 L
Da,,..a(ple) = 7 ). Da(pllo), (4.12)
k=1

where the prefactor 1/L corresponds to keeping the overall number of measurement
runs constant, independent of the number of observables, i. e., each observable Aj will
be measured in N/L runs. We choose this definition because in experiments the rate
at which entangled states are being created is typically low, so the total number of
measurement runs is the critical resource.

Finally, we consider the minimum of D over all local unitaries of o,

Da,..a(pllo) = min Dy, _a, (plUcU"). (413)

In the following we will discuss how to find families of observables Ay which maximize
this quantity.

4.3 Discriminating four-qubit states

As our first example we will calculate the quantities 7 and D for the discrimination of
the four-qubit GHZ state [Eq. (2.95)] from the four-qubit linear cluster state [Eq. (2.98)]
and vice versa. Recall that both these states are graph states (cf. Section .5). Their
stabilizer groups were given in Egs. (2.96) and (2.99), respectively.
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The stabilizing operators of a graph state |¢) provide a natural choice of observables
for the discrimination of p = |¢) (¢| from other states. In the language of Ref.[99, they
are characteristic operators for the graph state. In the following we will restrict our
analysis to these observables.

4.3.1 Discriminating the GHZ state from the cluster state

We first consider the discrimination of the GHZ state from all LU equivalents of the
cluster state, using all stabilizing operators of the former, excluding only the identity, as
it is useless for any discrimination task. We introduce the notation S* = S\ {1} for the
stabilizer group S minus the identity. Later we will discuss which subset of the stabilizer
group gives the strongest discrimination. We start with the calculation of the quantity
D in Eq. @.13), which is based on the relative entropy.

It is useful to think of the projector onto the cluster state as the sum of its stabilizing
operators, [C4)(Ca| = 7= e s, N. For any GHZ stabilizing operator M € Sgyz,, the
term D), is a function of the overlap of M with the stabilizing operators of the cluster
state,

1 1
Du(GHZ4[|Cy) = ~log{ > [1+ == ¥ Te(MN)] }. (4.14)

2 16 Nese

If we do not consider local unitaries, Tr(MN) is zero unless M = £N. For the mini-
mization over local unitaries in Eq. (4.13) we classify stabilizing operators by the qubits
on which they act nontrivially. For any GHZ stabilizing operator M, only those stabi-
lizing operators of |C4) which act nontrivially on the exactly the same qubits as M can
have a nonvanishing overlap with M. This still holds if arbitrary local unitary opera-
tions are applied to |C4). We can thus identify those stabilizing operators of |Cy4) that
can contribute to Dy.

If no local unitary is applied, the GHZ stabilizing operators 1127, ZZ11 and ZZZZ
have maximal overlap with cluster stabilizing operators and thus give the minimal
relative entropy of zero, while 1217, 1271, Z11Z and Z1Z1 each have zero overlap
and thus give relative entropy of 1. A minimization over local unitaries cannot improve
this result, as the cluster state has no stabilizing operators acting nontrivially on the
same qubits.

All of the remaining stabilizing operators of |GHZ,),

Y = {XXXX, -XXYY, -YYXX, YYYY,

(4.15)
—XYXY, —XYYX, —~YXXY, ~YXYX},

act on all four qubits (such stabilizing operators describing four-point correlations we
call four-point stabilizing operators for short). We note that both these and the four-
point stabilizing operators of |C4) except ZZZZ are products of local operators X and
Y. It is therefore reasonable to assume that for the minimization of Dy it suffices to
consider rotations about the z axes. The rotated cluster state is

1 . , ,
[Ca(7,6)) = 5 (/0000) + e |0011) + e 7]1100) — e 11 +9)|1111)), (4.16)

62



where v = @1 + ¢2, § = @3 + @4, and the ¢; are the rotation angles about the local z
axes, and we obtain

Dyx.(GHZ4|C4(,6))
— —%{log<% [1+ sin() sin(&)]) + log<% [1— cos() cos(é)]) } (4.17)

The minimum of this expression is — log(3/4). In conclusion, we have found that

Ds.  (GHZ4||Cy) = = (4 — 8log Z) ~ 0.4880. (4.18)

15
Since the analytic optimization required an assumption, it should be mentioned that the
same result is also obtained via numerical minimization over all local unitaries. The 15
GHZ stabilizing operators do not contribute equally to D, rather, D = 0 for 11Z2Z,
ZZ11l and 272727; D = 1for 1Z17,17271, Z11Z and Z1Z1; and D = — log(3/4) ~~
0.4150 for all others.

Let us now turn to the fidelity-based measure F for the same observables and states.
If we use all stabilizing operators of |¢), excluding again only the identity, F (i||¢) is a
function of the fidelity

iz, (

2" ’
Fs,(0ll9) = 57— (1~ max|p|ulo)P), (+19)
where 7 is the number of qubits.
For our example we note that for an arbitrary local unitary U we have
1

[(GHZ4|U|Cy)|? < 5 (4.20)
This follows from the known fact [82] that the maximal overlap of the cluster state with
any product state, and thus with [0000) and |1111), is given by 1/4. This bound is
attained for example with U = Z111. So we have

Fegyy, (GHZ4C) = % (4.21)
as the fidelity-based measure for the discrimination.

Let us now discuss subsets of the stabilizer group as observables for the discrimina-
tion. In our previous analysis, it turned out that not all stabilizing operators contribute
equally to the discrimination, in fact, some of them do not contribute at all. We there-
fore ask for families of stabilizing operators of |GHZ,) that discriminate |GHZ,) from
the local unitaries of |C4) most strongly, that is, families for which F (or D) is maximal.

From the previous discussion, candidates are

17217z, 1271, Z11Z, Z1Z1, (4.22)

since any of them gives 7 = D = 1. But if we want to exclude not only all LU equiva-
lents, but also all permutations of qubits of the cluster state, we still have to minimize
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Table 4.1: Stabilizing operators of the GHZ state and stabilizing operators of the three
permutations of the cluster state acting on the same qubits. (Table taken from Ref.[Cl)

GHZ,) [y ey 1P

11Zzz 1127

1717 1717
17271 17271

Z11Z Z1172

Z171 Z171
Zz11  ZZ11

F and D over all permutations, because the set of observables is no longer necessar-
ily permutation-invariant. There are three distinct permutations of the cluster state,
namely

IC{Yy = |Cy) = 1(]0000) + [0011) + [1100) — |1111)), (4.23)
\Cff)> = 1(]0000) + [0110) + [1001) — [1111)), (4.24)
Iy = 1(]0000) + [0101) + |1010) — |1111)). (4.25)

Table .1l shows the GHZ stabilizing operators from Eq. (2.22) along with all stabilizing
operators of the permutations of |Cy4) that act on the same qubits. We see that any single
one of these six stabilizing operators gives a relative entropy of zero, if the entropy is
minimized over all permutations. Any pair of stabilizing operators gives an entropy of
either zero or 1/2. The three-element family {11ZZ,1Z1Z,1ZZ1} gives 2/3, in total
there are eight such families giving the same value.

It is easy to see that these families of stabilizing operators are optimal: It is clear
that they are optimal among all subsets of the six stabilizing operators in the table.
Furthermore, we recall that we found a local unitary transformation such that all re-
maining stabilizing operators contribute either 0 or —log(3/4) to the entropy. Because
of the permutation invariance of the set of these remaining stabilizing operators, this
holds for all permutations of |C4). As —log(3/4) < 2/3, adding some of the remain-
ing observables cannot improve the discrimination. This shows the optimality of our
three-element families. These families are also optimal when using F instead of D.

We summarize the main results of this subsection in the following observation:

Observation 4.1. For the discrimination of the GHZ state from all local unitaries and permu-
tations of qubits of the cluster state, using all GHZ stabilizing operators except the identity,
the measures D and F are given by Egs. @&18) and @&21I). When considering subsets of the
stabilizer group, {1122, 1Z1Z, 1ZZ1} is an example of an optimal family of observables,
giving F =D =2/3.

Finally, let us add that until now we assumed that all observables are measured in-
dependently. However, as the observables in Eq. (£.22), from which we constructed the
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optimal families, have a common eigenbasis of product states (the computational ba-
sis), they can also be measured jointly in one experiment with more than two outcomes.
In this case, the relative entropy is no longer given by Eq. (¢.12). When measuring the
computational basis in one experiment with 16 outcomes, we obtain

!<ei\GHZ4>!2> 1 (4.26)

R ,

D= oy LI HZ0P o8 (1
Consequently, considering measurements with more outcomes can give a stronger dis-
crimination. This is a consequence of a general feature of the relative entropy: For
each of the observables in Eq. @.22), the probability distribution for the measurement
outcomes is obtained from the one for the measurement of the computational basis
by considering several events as one (in other words, by “forgetting” information). The
relative entropy satisfies a grouping rule similar to the Shannon entropy [see Eq. 2.48)],
which implies that this process can only decrease the relative entropy.

4.3.2 Discriminating the cluster state from the GHZ state

Let us now consider the reverse discrimination Ds;. (C4||GHZ4). This will turn out to
4

be relatively simple.

First, note that the eight three-point stabilizing operators of |C4) will for any local
unitary operation have zero overlap with |GHZ,), as the GHZ state has no three-point
stabilizing operators. For the remaining eight stabilizing operators, however, the over-
lap with the GHZ state can brought to 1 by an appropriate rotation, such as U = Z111.
Thus 8

Ds;., (C4l|GHZ4) = 1. (4.27)
As a function of the fidelity, F is the same as for the reverse discrimination,

Fse, (Ca|GHZy) (4.28)

Considering the optimal subsets of the stabilizer group, it is clear that any set of
three-point stabilizing operators of |Cy4) is an optimal family of observables, resulting
in D = F = 1. Note that the GHZ state is permutation-invariant, so the optimization
over permutations does not play a role.

4.3.3 Application to a four-photon experiment

To study the noise tolerance of the quantities  and D and their performance for ex-
perimental data, we use the measurement results for the stabilizer correlations of the
cluster state obtained by Kiesel et al. in a photonic experiment [65]. When using all
cluster stabilizing operators for the discrimination (excluding the identity), these data
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Figure 4.1: Discriminating the four-qubit linear cluster state with noise from all local
unitaries of the GHZ state, using all stabilizing operators of the former. Shown are F
(red circles) and D (blue squares) versus the level of white noise (1 — p) for the perfect
(empty symbols) and the experimental (filled symbols) state. (Figure taken from Ref.[C])

giVEEI
Fsz (pexpl|GHZy) = 0.257 £ 0.014, (4.29)
4
Ds; (pexp||GHZ4) = 0189 £ 0.012. (4.30)

When using only the three-point stabilizing operators, which form an optimal family
Q, we get

Fo0exp||GHZ,) = 0.668 = 0.019, (4.31)
D (pexp||GHZ4) = 0.353 + 0.021. (4.32)

Note that in all cases the observables are normalized with respect to the perfect cluster
state as (C4|Ai|Cy4) = 1, while for the experimental data we have Tr(pexp Ax) < 1. Also,
it should be noted that the subsets of observables we use were chosen to be optimal
for the perfect cluster state but not necessarily for the experimental one. This, however,
is similar to the implementation of entanglement witnesses in experiments: There, one
typically considers some optimal witness for the pure state that one aims to prepare
and applies it to the experimental data in order to obtain a significant entanglement
test (see [44], cf. also Chapter[3).

To investigate the power of our discrimination methods, we calculate  and D for
both the perfect and the experimental cluster state under the influence of white noise.

Error estimates are obtained by Gaussian error propagation from the Poissonian counting statistics and
the errors in the independently determined detector efficiencies [65].
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Figure 4.2: Discriminating the four-qubit linear cluster state with noise from all local
unitaries of the GHZ state, using all three-point stabilizing operators of the former.
Shown are F (red circles) and D (blue squares) versus the level of white noise (1 — p)
for the perfect (empty symbols) and the experimental (filled symbols) state. (Figure
taken from Ref.[C])

Figures d.T] and £.2] show F and D as functions of the noise level. We make a number
of observations:

For the perfect cluster state with additional white noise, the quantity / decreases
with increasing noise level until it reaches zero at the noise level given by (1 — p) =
F(C4||GHZy). This interpretation of F as a noise tolerance was already mentioned in
Section @211 Note, however, that the in the case of the experimental state the noise
tolerance is no longer given by JF (pexp || GHZ4) but is larger due to Tr(pexpAx) < 1.

For the same observables, the maximal noise level at which D > 0 is at least as high
as the maximal noise level at which & > 0. This is a general feature: As a consequence
of the positive definiteness of the relative entropy, D is nonzero whenever F is. In this
particular example, D is nonzero for noise levels arbitrarily close to 1, though this is not
a general feature.

For the three-point stabilizing operators of |Cy4), also the noise tolerance of F is 1
(Fig.[£2). It is instructive to compare this to the case of witness operators: The set of
separable states contains a ball around the completely mixed state [16], which implies
that for any witness W and entangled state p detected by W the noise tolerance is strictly
less than 1. In our case the situation is different: The reason for the noise tolerance of
one is that no local unitaries of the GHZ state have any three-point correlations. This
implies that the set of states LU equivalent to [GHZ4) does not contain a ball around
1/16. For a fair comparison, one may therefore consider the three-point correlations in
experiments aiming at the generation of GHZ states (for instance, in Ref. they were
maximally 0.097) and ask whether the measured three-point stabilizer correlations in a
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cluster state experiment significantly exceed these values.

Comparing the figures shows another difference between the measures F and D: For
the measure F, the noise tolerance is higher in the case of the three-point stabilizing op-
erators (Fig.lL.2) than in the case of all stabilizing operators (Fig.[d.T)). This is remarkable
because the former set of observables is contained in the latter. In other words, adding
an observable can reduce the noise tolerance of F. From the definition of the quantity
D it is clear that its noise tolerance of Dy, 4, is lower bounded by the noise tolerance
of D for any subset of Aj,..., Ar. In Ref.[6, a quantity similar to F was constructed
from the correlations of an entangled state and used for entanglement detection. The
same phenomenon of a decreasing noise tolerance when including more correlations
was observed.

The preceding observations concerning the comparison of the measures F and D
can be understood by noting that the relative entropy uses all information contained
in the probability distributions for the measurement outcomes, whereas the quantity
effectively reduces each probability distribution to one parameter.

We recall that the value of the relative entropy D has an interpretation in terms of
probabilities (Section.2.2)). This is in contrast to the quantity 7, whose numerical value
is fixed only by a normalization condition on the observables (Section B.2.1). While in
certain cases it can be interpreted as a noise tolerance and it is useful for comparing
different observables, it gives no quantitative statement about the discrepancy between
the prepared state and states which we want to exclude. Finally, we note that in ex-
perimental applications also the error estimates for either quantity must be taken into
account. Though this has been done in Eqs. (£29)-@.32), a systematic analysis of this
point is beyond the scope of this work.

4.4 Discriminating three-qubit states

Now we consider the three-qubit case, aiming at the discrimination of the three-qubit

GHZ state and the three-qubit W state. These two states are relevant as representatives

of the two different entanglement classes of genuine three-qubit entanglement [31].
The three-qubit GHZ state has the stabilizer group Eq. (2.93). The three-qubit W state

1
V3

is not a stabilizer state. If we expand its density matrix into Pauli matrices, we arrive at

[W3) = —=(|001) + [010) + [100)) (4.33)

1
|[W3) (W3] = o [3-111 + (11Z + perm.)
+2(1XX + perm.) + 2(1YY + perm.) — (1ZZ + perm.)  (4.34)
+2(XXZ + perm.) +2(YYZ + perm.) — 3 - ZZZ].
4.4.1 Discriminating the GHZ state from the W state

Again, we will first compute F and D for the case that all stabilizing operators (except
for 1) of the GHZ state are used, and afterwards look for optimal families of observ-
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ables.
Parametrizing local unitaries as

U(p,0,9) = exp [i%az] exp [igay] exp [ig@], (4.35)

we obtain

(W3 UM (1ZZ)U|W3) = %[— cos(6,) cos(03) + 2 cos(g2 — @3) sin(6,) sin(63)]. (4.36)
The expectation values of Z1Z and ZZ1 can be obtained by cyclically permuting the
indices of the angles, as the W state is permutationally invariant. We find

max (W3|UT(1ZZ2)U|W3) = 2

A7 4.37
UeLU 3 ( )

where the maximum is attained when cos(¢@2 — ¢3) sin(6,) sin(63) = 1. Thus the expec-
tation values of 127, Z1Z and ZZ1 can be maximized simultaneously. We choose the
solution 1 = ¢» = p3 =0and 6 =6, =03 = 71/2.

Let us now consider the remaining stabilizing operators. Assuming the above choice
for the angles ¢; and 0; and making the symmetry assumption ¢ = o = 3 = ¢, we
have

(W3 |UT(XXX)U|W3) = 3cos®(1) —2cos(¢), (4.38)
(W3 U (=XYY)U|W3) = 3cos’(¢p) — %COS(I/J) (4.39)
and finally
D xxx,-xvy, (GHZ3||U|W3))
~YXY,~YYX 1 7 X
=— log{g [1+ 3cos®(p) —2cos(y)] [1 + 3 cos® () — 3 cos(9)] } (4.40)
This function is minimal at cos(¢) = —1/2.

In conclusion, we found that

Dsty, (GHZ3||W3) = ;(—310g§ —log % —3log g) ~ 0.2235. (4.41)
While the analytical calculation required some symmetry assumptions, this value is
also obtained by numerical minimization over all Euler angles.

For the fidelity-based measure F we note that the rotation we found when minimiz-
ing D gives |(GHZ3|U|W3)|?> = 3/4. This is known to be the highest possible overlap
of the GHZ state with local unitaries (or, indeed, SLOCCs) of the W state [1]. With
Eq. @19) we obtain

2
Fstay, (GHZ3[|W3) = . (4.42)

7

*
GHZ
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In Ref. [Il the state .

W3) = —~(3,-1,-1,-1,-1,-1,-1,3 443
was found to maximize the overlap of [GHZ;3) with the SLOCC class of the W state. This
state is in fact LU-equivalent to [W3). Though [W3) minimizes F, it does not minimize
D, as it gives the value DSEHz3 (GHZ;3||W3) = —(6/7)log(5/6) ~ 0.2255.

We want to find families of observables that give the highest values of 7 and D. We
claim that any combination of
172z, Z1Z, ZZ1 (4.44)

is optimal in this sense among all GHZ stabilizing operators. As we have seen above,
any element of this family gives 7 = 1/3 and D = —1log(5/6). We only have to show
that for any other stabilizing operator, or combination of stabilizing operators, there
exists a local unitary such that F < 1/3 and D < —1log(5/6). Taking in the above cal-
culations cos(y) = 1 we have (W3|U"(XXX)U|W3) = 1and (W3|UT(=XYY)U|W3) =
2/3. This proves our claim.

One might ask if these optimal families of observables can be used for the construc-
tion of a witness operator for the GHZ entanglement class (see Section for the
definition of this class). This is, however, not the case, as

max  (Ws3|(1ZZ + Z1Z 4+ ZZ1)|W3) =3 (4.45)
SLOCC of W3

holds, which can be seen from the fact that the fully separable state |000) gives this
value.
We summarize the main results of this subsection:

Observation 4.2. If all GHZ stabilizing operators except the identity are used for the discrimi-
nation of the GHZ state from all LU equivalents of the W state, the measures D and F are given
by Eqs. @.41) and @.42). If we consider subsets of the stabilizer group, any combination of 12Z,
Z1Z and ZZ1 is an optimal family of observables, yielding F = 1/3 and D = —1og(5/6).

4.4.2 Discriminating the W state from the GHZ state

For the reverse problem, the discrimination of [W3) from the local unitaries of |GHZ3),
there is no obvious choice of observables, as the W state is not a stabilizer state. How-
ever, each of the observables

117, 171, Z11 (4.46)

has an expectation value of 1/3 for the W state and zero expectation value for all lo-
cal unitaries of |GHZ3), as for the GHZ state all reduced one-qubit density matrices
are maximally mixed. Thus any appropriately normalized combination of the above
observables gives F = 1, which is the optimal value.

All of these combinations give

D(W3||GHZ3) = %log% - %log% ~ 0.0817. (4.47)
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This is the best possible value among all operators occurring in the decomposition of
|W3) in Eq. (£34). To see this, we choose the rotation ¢ = 271/3,60 = 37/2 and ¢ =
57 /4 on all qubits and observe that all these operators give a value of D less or equal
to the one in Eq. (@.47).

4.5 General graph states

In the previous sections we observed that the stabilizing operators of a given state are
natural candidates for observables that discriminate this state from other states. In
this section we will derive some general statements about the discrimination of graph
states.

In our discussion on the discrimination of the GHZ from the cluster state we learned
that the optimal families of observables consist of two-point stabilizing operators. The
reason for their optimality is that the cluster state has fewer two-point stabilizing oper-
ators than the GHZ state. Hence one may try do derive general results depending only
on the numbers of two-point (or higher-order) stabilizing operators.

The number of two-point correlations of a graph state can easily be obtained from its
graph [38,56]. Restricting ourselves to connected graphs with three or more vertices,
there are three possibilities to obtain two-point stabilizing operators:

1. Vertices connected to the rest of the graph by only one edge. The generator asso-
ciated to such a vertex is a two-point operator of the form XZ.

2. Pairs of unconnected vertices whose neighbourhoods are equal: N(i) = N(j).
The product of the two generators associated to such a pair has the form XX.

3. Pairs of connected vertices for which N(i) U {i} = N(j) U {j}. This means that
their neighbourhoods apart from i and j are the same. The product of their gener-
ators has the form YY.

The product of the generators associated to vertices i and j is never equal to the identity
at positions 7 and j. Therefore it is a two-point stabilizing operator if and only if it is
equal to the identity at all other positions, which leaves only the possibilities 2l and
For the same reason the product of three or more generators is never a two-point sta-
bilizing operator. This shows that the above list exhausts all possibilities to obtain a
two-point stabilizing operator.

Now, let |G1) and |G;) be two graph states, k; and k, the numbers of two-point cor-
relations of these states, and let Pg, be the set of two-point stabilizing operators of |G).
We assume ki > kp (our result will be trivial otherwise). We can then derive a lower
bound on Fp; (G1|/Gz) and Dp, (Gi1|/G2) that depends only on the numbers k; and k.
Namely, we have

Fr, (G1]|G2) = klklk2, (4.48)
ki — ko
ke

Dp,, (G1[G2) > (4.49)
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(a) (b)

Figure 4.3: Graphs of the graph states discussed in Section[4.5] Dashed red lines denote
the presence of two-point correlations. (Figure taken from Ref.[(])

To see this, note that from the above discussion it is clear that all two-point stabilizing
operators of the same graph state act on different pairs of qubits [38]. It follows that
any two-point stabilizing operator of |G,) can have nonzero overlap with at most one
stabilizing operator of |Gy). This shows that at least k1 — k; two-point stabilizing oper-
ators of |G;) will have zero overlap with |G;), and thus give 7 = D = 1. Note that this
still holds if local unitaries and permutations of qubits are considered.

For |G1) = |GHZy) and |G;) = |C4) the bounds give the exact results. This is,
however, not always the case, as the example of Fig..3shows: here, k1 = 4 and k, = 3.
Of the two-point correlations of |G;), three connect three qubits in a triangle, while
for |G,) the connected pairs are all disjoint. This shows that at most two of the two-
point stabilizing operators of |G1) can have nonzero overlap with |G,). In this example,
./_"pGl (G1||G2) = Dpcl (G1||G2) =1/2>1/4= (kl — kz)/kl.

While one can also use higher-order stabilizing operators for the discrimination, it
is more difficult to derive general results for them. Nevertheless, for two given graph
states the number of three-point (or higher-order) correlations can directly be computed
by writing down the whole stabilizer group; one may then compare the different num-
bers of higher order stabilizing operators.

4.6 Conclusion and outlook

Concerning the comparison of the two measures F and D, the observation that the
measure D is more robust against noise than F could be explained by the fact that the
relative entropy uses all information contained in the probability distribution, while the
measure F effectively reduces each probability distribution to one parameter (namely,
the sum of the expectation values). This leads to the following conclusion: Either mea-
sure can be used to compare the suitability of different observables for a given dis-
crimination task. For the evaluation of experimental results the relative entropy D is
to be preferred, because it uses all available information and allows a clear statistical
interpretation.

There are several interesting open questions and possible generalizations: First, one
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could extend the analysis to the measurement of non-dichotomic observables or ar-
bitrary product bases [see the discussion of Eq. @.26)]. Second, one could consider
SLOCC equivalence classes instead of LU classes. The measures F and D are equally
applicable to that case, only the optimization is different. Third, one could connect our
results to other methods for characterizing multipartite entanglement classes. For in-
stance, there exist witnesses distinguishing the class of mixed three-qubit GHZ states
from the class of mixed W states [1]] (see Section 2.1.2]for the definition of these classes).
The discrimination of such classes of mixed states is a different problem than the one
considered in this chapter; nevertheless, it would be interesting to understand possible
connections.
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5 Entropic uncertainty relations and the stabilizer formalism

This chapter, based on Ref.[D)] is concerned with entropic uncertainty relations. A short
introduction to this field was given in Section [2.4.2]

Central questions in the theory of entropic uncertainty relations include the deriva-
tion of lower bounds on the total uncertainty for given observables, the characterization
of observables that admit strong uncertainty relations and the construction of such re-
lations for the case of several observables. In this chapter it is demonstrated how the
stabilizer formalism (see Section 2.5) can be applied to these questions.

The chapter is organized as follows: In Section5.Jlconditions are studied which guar-
antee that the Maassen-Uffink relation is tight. Generalizing a well-known result on
mutually unbiased bases, it is shown that this is the case for the measurement in any
pair of stabilizer bases, which is a consequence of a deeper geometric property of these
bases. In Section[5.2]this result is applied to the special case of graph state bases, demon-
strating how the graph formalism helps to compute the maximal overlap of the basis
vectors, which determines the lower bound on the entropy sum. Section[5.3lis devoted
to entropic uncertainty relations for several dichotomic, pairwise anticommuting ob-
servables. Generalizing a result by Wehner and Winter [123], a systematic construction
of such relations is presented. The family of uncertainty relations which is obtained
contains both entropic and variance-based ones, and their relative strengths are com-
pared. Finally, in Section[5.4]the relations are applied to the stabilizing operators of two
stabilizer states.

5.1 A generalization of mutual unbiasedness

Our starting point is the Maassen-Uffink relation [69][79]80], which was given before
in Eq. (2.69), but is repeated here for convenience: for any two measurement bases

A={la)yand B={|b)},i=1,...,d,
3 [5(4l0) +S(Blp)] > ~log(max|(a,1)]) 6.

It is well-known that this relation is maximally strong [meaning that the right-hand side
attains the maximal possible value of log(d) /2] and tight [meaning that there exists a
state for which equality holds] if the measurement bases are mutually unbiased,

ailby)| = ¢1;z

It is not difficult to find a more general condition which is sufficient for tightness:

Vi, j. (5.2)
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Lemma 5.1. If a pair of bases A = {|a;) } and B = {|b;) } satisfies
[(ai|bj)| € {0,7}  Vi,j (5.3)

for some r, then the Maassen-Uffink relation Eq. (5.1) for the measurement in these bases is
tight. Equality holds for any of the basis states, p = |a;){a;| or p = |b;) (b;|.

Proof. For p = |b;,)(bj,| the Maassen-Uffink relation reads
— Y pilog(pi) > —log(maxp;)  where  pi = [{ai[b;,)[*. (54)

Note that the right-hand side is the min-entropy of the probability distribution p;. By
assumption p; € {0,7%} for all i. It follows that equality holds. O

We now assume an n-qubit system. Recall that the elements of a stabilizer group (see
Section 2.5.7] for the definition) have a basis of common eigenvectors. If the group has
the maximal cardinality of 2", the eigenbasis is unique. We call this basis a stabilizer
basis. In this chapter all stabilizer groups are assumed to have cardinality 2". The main
result of this section is the following theorem:

Theorem 5.2. Any pair of stabilizer bases A = {|a;)} and B = {|b;)} satisfies
[(ai|bj)| € {0,7}  Vi,j (5.5)

for some r. As a consequence, the Maassen-Uffink uncertainty relation Eq. (5.1)) is tight for the
measurement in these bases. The bound is attained with any of the basis states.

Two proofs of this theorem will be given. The first proof is based on the theory of
mutually unbiased bases; the second proof is more elementary, requiring only basic
results of stabilizer theory. For the special case of graph state bases, the next section
contains a third proof.

The first proof makes use of the following construction method for mutually unbi-
ased bases, which is due to Bandyopadhyay et al. (see the proof of Thm. 3.2 in Ref.[10):

Theorem 5.3 (Ref.[10). Let C; and C; each be a set of d commuting unitary d x d-matrices.
Furthermore, assume that C; N Cy = {1} and that all matrices in C; U Cy are pairwise orthog-
onal with respect to the Hilbert-Schmidt scalar product. Then the eigenbases defined by either
set of matrices are mutually unbiased.

Two Pauli operators (tensor products of Pauli matrices and the identity with prefac-
tors &1 or =i) are either equal up to a phase or orthogonal in the Hilbert-Schmidt sense.
For stabilizing operators the phase factor can only be 1, because these operators are
Hermitian. If we consider two stabilizing operators that differ only by a factor —1 as
equal, the above theorem shows that two stabilizer groups whose intersection contains
only the identity define mutually unbiased bases. In the first proof of Theorem 5.2 this
result is generalized in the following way: It is shown that two stabilizer groups (which
may have nontrivial intersection) define bases which are mutually unbiased on a factor
space of the Hilbert space and equal on the other factor. Such a pair of bases satisfies

Eq. GD).
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Proof of Theorem[B.2l Throughout the proof we consider two stabilizing operators that
differ only by a minus sign as equal. Let S; and S, be the two stabilizer groups and
define Cyp = S; N Sy. Then Cy is a subgroup of both S; and S;. We consider the factor
groups C; = 51/Cp and C; = S,/ Cy. The groups Cy, C; and C; are all stabilizer groups.
The dimension of the space stabilized by the group Cj is 2"~ ", where my is the cardi-
nality of the group. This gives us a decomposition of the Hilbert space H = Ho ® H1o,
where Cp acts trivially on H1; and C; and C; act trivially on Hy. By the previous theo-
rem, C; and C; define mutually unbiased bases |ci(1)> and \ci(2)> of H1,. It follows that
the stabilizer bases can be written as

) =1 @) and s =) @ [c?), (5.6)
where |c;(?)) is the basis of H defined by Cy. The stabilizer bases thus satisfy Eq. (5.5)
with r = (dim Hyp)~1/2. O

Alternative proof of Theorem[5.2l Let S = {M;} and T = {N;} be the two stabilizer
groups, and let |S) and |T) be the corresponding stabilizer states. Define ST = SN T,
where, unlike in the first proof, we consider two operators as distinct if they differ
by a minus sign. Also define S~ = SN —T. Both S and ST U S~ are easily seen
to be subgroups of S. By Lagrange’s theorem, they have cardinalities |ST| = 27 and
|ISTUS™| = 27 withsome p € {1,2,...,n} and g € {p,p+1,...,n}. The projectors
onto the stabilizer states are given by their stabilizing operators as [S)(S| = & Y2"; My
and similarly for |T) [see Eq. @.72)]. Thus

(SIT)E = 2 37 Te(MeNy)

22" k=1

1 _
= 27(|5+| —157)

a (5.7)
= 27(2”“ —27)

_J217" forp =g,
o forp=¢q—-1.

The case p < g — 1 cannot occur, because it would give a negative value of |(S|T)|?> and
thus lead to a contradiction.

Consider now another vector |T') of the stabilizer basis defined by the group T. This
vector is again a stabilizer state, and its stabilizing operators are equal to those of |T)
up to some minus signs. In particular, ST U S~ and thus ¢ are the same for |T) and for
|T"). O

The converse of the theorem on mutually unbiased bases (Theorem[5.3)) also holds:

Theorem 5.4 (Ref.[10). If Ay,..., Ay is a set of L mutually unbiased bases in C, there are L
sets Cy,...,Cy, each consisting of d commuting unitary d x d-matrices, such that all matrices
in Cy U - - - UCy, are pairwise orthogonal.
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Though it is not stated explicitly in that reference, the sets of unitary matrices Cy that
are constructed in the proof of the theorem are groups. This raises the question if the
converse of Theorem[5.2lalso holds in the sense that any pair of bases satisfying Eq. (5.5)
originates from two groups of unitary matrices (cf. the first proof of Theorem [5.2)).

5.2 Application to graph state bases

The aim of this section is to determine the right-hand side of the Maassen-Uffink rela-
tion explicitly for pairs of graph state bases. The main result takes the form of a recur-
rence relation for the maximal overlap max;j|{a;|b;)| of the basis vectors. This relation
connects the overlap of two n-qubit bases to the overlap of the two (n — 1)-qubit bases
which are obtained from them by deleting one vertex of the graphs.

An introduction to graph states and graph state bases was given in Section
Recall that we denoted the basis vectors as |G, x), where G stands for the graph and the
bitstring x = (x1,...,x,) with x; € {0,1} labels the individual vectors. Furthermore,
recall that the vector |G, x) is obtained from |+)®" by applying first a controlled phase
gate C;; for each edge (i,]) € E of the graph and then a local phase ¢, for each vertex i

with x; =1,
n

1G,x) = T T(e*)" TTCre [+)". (5.8)
(

i=1 k()EE

Since all these operations commute, we can move all phase gates in the scalar product
(G1,x|Gy,y) to the right and all local phases to the left,

n

(G1,x|Ga, y) = <_|_|®n Hckf H(O_Z(i))xl' ﬁ(a}f]‘))%‘ Hcmp H_>®n

(k0O)eE;  i=1 j=1 (m,p)EE,
O 5.9
= (4]®n H(Uz(l))x/+yz Hckf |+)&n (5.9)
i=1 (k,0)EEL®E,

= <GQ,X@Y|G1 b G2,0>.

Because of (Ci¢)? = 1 this corresponds to replacing G; by the empty or completely
unconnected graph Go and G, by the “sum modulo 2” of the graphs, denoted here as
G1 @ Gy. Similarly, x © y denotes the sum modulo 2 of the bitstrings. The graph state
basis of the empty graph is given by |Gy, x) = H®"|x), where H = 271/2(1 1) is the
Hadamard gate and |x) is a vector of the standard basis in binary notation.

As the Hadamard gate is a local Clifford operation, the vector H®" |Gy @ Gy, 0) is a sta-
bilizer state. This shows that the scalar products (Gy, x|Ga, y) = (x D y|H®"|G; & G, 0)
can be understood as the coefficients of a stabilizer state with respect to the standard
basis. It has been shown that for any stabilizer state these coefficients are 0, &1 and
+i, up to a global normalization. (See Thm. 5 and the paragraph below in Ref.[29] For
an alternative proof see Ref. I thank Maarten Van den Nest for pointing out these
references.) This constitutes yet another proof of Theorem[5.2for the case of graph state
bases.
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(a) (b) ()

Figure 5.1: Graphs of the graph states discussed in Section (Figure taken from
Ref.[Dl)

As an example consider the graphs in Fig. 5] (a) and (b). Up to local unitary oper-
ations, the corresponding graph states are the four-qubit GHZ state and the four-qubit
linear cluster state, but the uncertainty relation is not invariant under local unitaries.
The above line of thoughts shows that the Maassen-Uffink bound for the corresponding
bases is equal to the bound for the empty graph and the sum modulo 2 of the graphs,
which in this case is given by Fig. 5.1l (c). The latter is again equal to the graph (b), up
to a permutation of vertices.

Let us return to the explicit calculation of the overlaps. We have seen that it suffices
to consider scalar products of the form (Gy,y|G,0). The relation between the graph
state basis of the empty graph and the standard basis is given by

|Go, y) 2n/2 Z Zl Yii| x (5.10)

The coefficients of the graph state |G, 0) with respect to the standard basis are deter-
mined by its adjacency matrix I' as [see Eq. (2.83)]

G,0) = /2 Z 1)Zici 4T |x). (5.11)
The scalar products are thus given by
(Go,yIG,0) = o ( 1) Ryt R 4l (5.12)

To derive a recurrence relation, we write
v O It
() y=(y) T=( ). (5.13)
We obtain

(GoyI6,0) = g ¥ T (-1
2n ¢e{01} x
1
oo
X

1
— 5(Go,y'|G0) + (~1)°

(BRI (1) PR A (5

27[

X/

<G01y +y ’G/ >

I\J\H
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where G’ is the graph defined by the adjacency matrix I'". This is the desired recurrence
relation.

From Theorem 5.2l we already know that |(Go, y’'|G’,0)| € {0,7'} for all y’ for some
', which depends on the graph G’. Since the scalar products are real, this means that
(Go,y'|G’,0) € {0,£7'}. From the recurrence relation we learn that (Go,y|G,0) €
{0,£7'/2,£¢'}. On the other hand, (G, y|G,0) € {0,%r} for some r. This shows
that either r = 1'/2 or r =/, depending on 7 and G'.

The graph state bases are mutually unbiased and the Maassen-Uffink relation is max-
imally strong precisely if ¥ = 27"/2. On the other hand,  is an integer multiple of 27"
(even 2!7"), as one can see by induction with the recurrence relation. This shows that a
pair of graph state bases is never mutually unbiased if the number of qubits is odd.

We will now use the recurrence relation to compute r for certain classes of graph
states. As above we shall assume one graph to be empty and vary only the other one.
The application of the recurrence relation is particularly easy if (G, y'|G’,0) = £’ for
all y’, which is the case if Gy and G’ define mutually unbiased bases.

Consider the fully connected graph G, defined by the adjacency matrix I';; = 1 —§;;,
whose graph state is LC-equivalent to the GHZ state. First we show by induction that
for an even number 7 of qubits the fully connected graph has (G, y|G, 0) = £27"/2 for
all y: For n = 2 one finds r = 1/2. Assume the assertion to be true for n — 2. Let G’ and
G” be the fully connected graphs with n — 1 and n — 2 qubits, respectively, and define
the (n — 1)-vector 4/ = (1,1,...,1) and the (n — 2)-vector 4" = (1,1,...,1). Fory = 0,
application of the recurrence relation gives

1 1
(Go,0|G,0) = E(Go,oy(;’,0> - E<GO,7’\G’,0>
_1 1 " 1 AValll
1,1 1
n §<§<G0,7”\G”,0) _ E<G0,0\G”,0>)
1 (5.15)
— §<G0, ')//I|G//, 0>
1 1
BT
1
on/2°

This implies that (Gy,y|G,0) € {0,+£27"/2} for all y. But because of normalization
(Go, y|G, 0) = 0is not possible. This shows the assertion. For the fully connected graph
with an odd number of qubits we have

1

1 1
(Go,¥1G,0) = 5(Go,¥'IG,0) % 5 (Go,y' +7'1G,0) € {0, %= }.

(5.16)
The generalization of the state in Fig.[5.1](b), which is equivalent under local unitary

operations to the linear cluster state, can be treated in exactly the same way, yielding
the same values of r,,.
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In Sec. 4 of Ref.[10/a general method for the construction of sets of mutually unbiased
bases in prime power dimensions d = p" was given. Though the term “graph” is never
used in that article, the construction uses a form of the graph formalism. (The matrices
A1, ..., Ay in Thm. 4.4 play the role of adjacency matrices.) It should be noted that
the method of that reference is more general than the graph state formalism as it is
used in this thesis: Firstly, the method is not restricted to qubits, but the Hilbert space
dimension of the constituent systems can be any prime number. Secondly, the diagonal
elements of the adjacency matrices are not required to be zero. In graph theoretic terms
this means that loops are allowed. The focus of that article is however different to
this thesis: There, the authors” main interest is in finding a general construction of the
maximal number of p” 4+ 1 mutually unbiased bases. They are not interested in explicit
calculations for given graphs. They also do not consider the overlap of graph state
bases that are not mutually unbiased.

5.3 Uncertainty relations for several dichotomic anticommuting observables

Little is known about uncertainty relations for more than two measurements [124] (see,
however, Ref. [81). Following Wehner and Winter [123], this section concentrates on
dichotomic anticommuting observables. An observable is called dichotomic if it has
exactly two distinct eigenvalues. We will always normalize dichotomic observables
such that their eigenvalues are £1. In other words, these observables square to the
identity.

The following result has been called a meta-uncertainty relation [123|[124], for reasons
that soon will become apparent.

Lemma 5.5. Let Aq,..., AL be observables which anticommute pairwise, { Ay, Ay} = 0 for
k # ¢, and which have eigenvalues +1. Then Y_k_, (Ay)? < 1, or equivalently,

L
Y A*(Ag) > L-1, (5.17)
k=1

where A*(A) = ((A — (A))?) is the variance of A.

The following proof of this lemma was given in Ref. For an alternative proof,
based on the Clifford algebra, see Ref.

Proof. Choose real coefficients Ay,..., A with Y& AZ = 1. Because of the anticom-
mutativity of the observables and A? = 1 we have (CE_ MA)? = Yk, A2AZ =
Yb 1 A2l = 1 and thus |CE o Md(Ax)| = [(k_q AcAr)| < 1 for all states, because for
any observable (X)? < (X?). Interpreting the expression Y_-_; Ay (A) as the Euclidian
scalar product of the vector of coefficients A; and the vector of expectation values (Ay),
and noting that the vector of coefficients Ay is an arbitrary unit vector, we see that the
vector (Ay) has a length less than or equal to 1. Observing Yt_;(A?) = L, we obtain
the lemma. O
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The converse implication is also true in the following sense, as was already shown in

Ref.

Lemma 5.6. Let Ay, ..., Ar be dichotomic anticommuting observables as above, and choose
arbitrary real numbers ay, . .., a;, with Yy a? < 1. Then there exists a quantum state p such
that the numbers ay are the expectation values of the observables, a, = Tr(Axp).

Proof. Consider the state p = %(]l + 21%:1 axAy), where d is the dimension of the Hilbert
space. Because of the properties of the observables, Tr(AxA;) = ddyy. Furthermore, the
observables Ay are traceless: Tr(Ay) = Tr(ArArAy) = Tr(AyArAy) = — Tr(AAvAy) =
— Tr(Ay). This shows that the state p has the desired expectation values. It remains to
show that p > 0. But in the proof of the previous lemma we have already seen that
Thy A < 1. O

The meta-uncertainty relation is thus the best possible bound on the expectation val-
ues of the observables. Note that in the case of one qubit and the three Pauli matri-
ces it reduces to the Bloch sphere picture. The relation has also been used to study
monogamy relations for Bell inequalities [71]. Generalizing Wehner and Winter’s re-
sult for the Shannon entropy [123], we can derive from it entropic uncertainty relations
for various entropies.

For the purposes of this section an entropy is any nonnegative function of probability
distributions P = (p, ..., p) which is invariant under all permutations of the proba-
bilities p; and which has the value zero for the J-distribution. Since we reserved the
symbol S for the Shannon entropy, general entropies will be denoted as Sx.

Let A be an observable with eigenvalues +1 and x = [Tr(Ap)]? its squared expec-
tation value. Then the probability distribution for the measurement outcomes of A is

1++/x 17\/E> or P — (17\/5 14+/x

2 /2 2 /2
under permutation of P, is thus a function of x, which we denote by Sx,

1+ 1TV
> a2 )

given by P = ( ). Any entropy Sx, being invariant

Sx(x) = Sx(Alp) = Sx(( (5.18)
We say that the entropy Sx is concave in the squared expectation value if the function Sx
is concave. This property is the crucial condition for the following entropic uncertainty
relation:

Theorem 5.7. Let Aq,..., Ay be observables which anticommute pairwise, { Ay, Ay} = 0 for
k # £, and which have eigenvalues +1, and let Sx be an entropy which is concave in the squared
expectation value (that is, an entropy for which the function Sx defined in Eq. (5.18) is concave).

Then
L

1
I Y Sx(Aklp) =
P

So, (5.19)

where Sy = Sx((3,4)) is the entropy value of the uniform probability distribution. This
relation is tight.
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Proof. For the case of the Shannon entropy the proof was given in Ref. Let x, =
[Tr(Akp)]?. Lemma 51 states that x lies in the simplex defined by Y& ; x; < 1 and
x; > 0. As the function Sy is concave on the interval [0, 1], the function x — ¥ Sx (x)
is concave on the simplex. Thus it attains its minimum at an extremal point of the
simplex, that is, when x; = 1 for one k and x;, = 0 for £ # k. At an extremal point,
1/LYE  Sx(xx) = So(L—1)/L. O

Before discussing the implications of this theorem, it makes sense to ask which of
the commonly used entropies satisfy the requirement of being concave in the squared
expectation value. For the Shannon entropy this was already shown in Ref. The
Tsallis entropy S; can be treated analogously, though one has to distinguish between
different values of the parameter 4.

Lemma 5.8 (Ref.[123). The Shannon entropy S of a dichotomic observable is concave in the
squared expectation value (that is, the function S defined as in Eq. (5.18) is concave on the
interval [0,1]).

Lemma 5.9. The Tsallis entropy SqT of a dichotomic observable is concave in the squared expec-
tation value (meaning that the function SqT defined as in Eq. (5.18) is concave on the interval
[0,1]) for parameter values 1 < q < 2 and 3 < g, but convex for 2 < q < 3.

Proof. [ Explicitly,

gg(”:qil[l_<1+2ﬁ)q_<l_2ﬁ>q] (5.20)

For g = 2 and g = 3 this function is easily seen to be linear. For the second derivative
we obtain

5 () = g {1+ VO 2L Vil -2)

q
-
— (1= VEI 14 V(g -2)] ). G21)

Substituting y = y/x and omitting the prefactor (which is always positive), we arrive at
the function

fo) = 1+ 1—y(g—2)] — (1 —y) " *[1+y(g —2)]. (5.22)

Observing that f;(0) = 0, we note that f,(y) is positive (negative) for all 0 < y < 1 if
its derivative f;(y) is positive (negative) for all 0 < y < 1. The derivative is given by

fay) =—=(@@=2)(@q-Dy[(1+y)"° -1 -y (5.23)

For 1 < q < 2, the prefactor —(q —2)(q — 1) is positive and the term in the square
brackets is negative; for 2 < g < 3, the prefactor is negative and the term in the brackets
is still negative; for ¢ > 3, the prefactor is negative and the term in the brackets positive.
This proves the lemma. 0

I The first version of this work contained a much longer and rather technical proof of this lemma. T am
indebted to Mary Beth Ruskai for this simple proof.
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Figure 5.2: Bounds on the expectation values ({A1), (A»)) for two dichotomic anticom-
muting observables provided by different uncertainty relations. The black solid line
corresponds to the meta-uncertainty relation Lemma[5.5] which can also be understood
as an entropic uncertainty relation for the Tsallis entropy with parameter value g = 2 or
g = 3. The red dashed line and the blue dotted line correspond to the entropic uncer-
tainty relation Theorem 5.7 for the Shannon entropy and the Tsallis entropy with g = 8,
respectively. (Figure taken from Ref.[Dl)

A few remarks can be made on the above theorem. The Shannon entropy has the
required concavity in the squared expectation value (Lemma [5.8), and the resulting
uncertainty relation is the one found by Wehner and Winter [123]. For the Tsallis en-
tropy SqT we have to distinguish between different parameter ranges: For parameter
values ¢ = 2 and g = 3 this entropy is, up to a constant factor, equal to the variance,
SI(Alp) = 1/2A%(A) and SI(A|p) = 3/8A%(A), and the uncertainty relation is equiv-
alent to the meta-uncertainty relation itself. Thus it is the optimal uncertainty relation
for these observables; the relation based on the Shannon entropy is strictly weaker.

In Lemma it has been shown that the Tsallis entropy satisfies the condition of
Theorem 5.7 for parameter values 1 < g < 2 and 3 < gq. The entropy value for the
uniform probability distribution, which determines the bound, is So = (1 —2'77) /(g —
1). In the special case of the observables o, and ¢, and parameter q € [21n — 1,2n] with
n € N, the uncertainty relation was derived before in Footnote 32 of Ref.

As remarked above, Lemmas 5.5 and 5.6l provide a complete characterization of the
set of expectation values of dichotomic anticommuting observables which can originate
from valid quantum states. Deriving uncertainty relations from them means approxi-
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mating this set from the outside. This is illustrated in Fig.

In the parameter range 2 < g < 3 the Tsallis entropy does not satisfy the condition
for the theorem (see Lemma[5.9). An exceptional behaviour of the Tsallis entropy in this
parameter range was also reported in Ref. The collision entropy or Rényi entropy
of order 2 and the min-entropy do not satisfy the condition either. The uncertainty
relations for these entropies given in Ref. also follow from the meta-uncertainty
relation, but do not fit into this scheme.

In the following section Theorem B.71 will be applied to the stabilizing operators of
two stabilizer states.

Uncertainty relations for several observables can also be constructed without requir-
ing anticommutativity: Applying a result by Mandayam et al. to a set of stabilizer

bases A, ..., AL with basis vectors denoted by A; = {|a§k)>}l—, one finds for their min-
entropies

1 L ) 1+r(L—-1
i k; S™ (Axlp) = — 1og[(L )}, (5.24)
where k) o
= b 5.25
r = mamax| (5" 4,7 625
is the maximal overlap of the basis vectors. The proof is omitted, since this relation
readily follows from Appendix C.1 of Ref.

5.4 An uncertainty relation for stabilizing operators

In this section the uncertainty relation for anticommuting dichotomic observables (The-
orem[5.7) is applied to the elements of a pair of stabilizer groups.

Let S and T be two n-qubit stabilizer groups, both with maximal cardinality |S| =
|T| = 2". Throughout this section two operators will be considered as equal if they
differ only by a minus sign. Define S = S\ Tand T = T\S. Let R = SUT be the
symmetric difference of S and T, and denote its elements by R = {A;,...,Ar}. In
Theorem 513 a lower bound on 1/L Yk_; S(Ag|p) will be given.

We begin by proving the following lemma:

Lemma 5.10. Let S be a stabilizer group and N a Pauli operator (that is, a tensor product of
Pauli matrices and the identity matrix) which anticommutes with an element Mo € S. Then N
anticommutes with exactly half of the elements of S.

Proof. Choose any M; € S with M; # My and let M, = MyM;. We will now show
that N anticommutes with M, if it commutes with M; and vice versa. Consider first
the case [M1, N| = 0. The identity {AB,C} = A[B,C] + { A, C} B shows that {M,, N} =
{MoyM;, N} = My[M;, N] + {My, N} M; = 0. Consider now the case {M1, N} = 0. Us-
ing the same identity, we obtain My[M, N| = {MoMy, N} — {My, N}M; = {M;, N} —
{Mp,N}M; = 0 and thus [M>, N] = 0. We now iterate this procedure by choosing
M; € S\ {Mo, M1, M} and using it in place of M;. (Note that MoMs ¢ {M;, Mp}.)
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The operator Mj is kept fixed during the whole iteration. In this way S can be divided
into pairs of observables, each consisting of one element commuting with N and one
anticommuting with N. Note that My forms a pair with the identity. O

Excluding the trivial case S = T, any element of T anticommutes with at least one
element of S, because at most 2" orthogonal (with respect to the Hilbert-Schmidt scalar
product) unitary 2" x 2"-matrices can commute pairwise (see e.g. Ref.[10). Thus L =
|R| varies from 2" to 2(2" —1).

We will now see, using only combinatorical reasoning, that this lemma implies that R
can be divided into anticommuting pairs. We shall need the following combinatorical
result:

Lemma 5.11 (Marriage lemma). Consider a bipartite graph, that is, two disjoint sets of ver-
tices U and V and a collection of edges, each connecting a vertex in U with a vertex in V. We
consider the case of |U| = |V|. Then the graph contains a perfect matching, that is, the vertices
can be divided into disjoint pairs of connected vertices, if and only if the following “marriage
condition” is satisfied: For each subset U’ of U, the set V' of vertices in V connected to vertices
in U’ is at least as large as U'.

This theorem was first proven in Ref.

Lemma 5.12. The symmetric difference R of any two stabilizer groups S and T with |S| =
|T| = 2" can be divided into anticommuting pairs of operators.

Proof. We show that the marriage condition is fulfilled. Let S’ be any subset of 5. Con-
sider first the case |S’| > 2"~!. Then any N € T anticommutes with at least one M € &/,
because any such N anticommutes with exactly 2"~! elements of S. Thus the number
of N € T anticommuting with at least one M € S’ is |T| = |S| > |S|. Consider now
the case |S/| < 2"~!. For any M € S’ we then find 2"~ elements of T anticommut-
ing with M. Thus the number of N € T anticommuting with at least one M € §' is
21 > |¢/). O

We are now ready to state the main result of this section:
Theorem 5.13. Let R = {A1,..., AL} be the symmetric difference of two stabilizer groups S
and T with |S| = |T| = 2". Then

1 & 1
I Y Sx(Axlp) > 550 (5.26)
k=1

holds, where Sx is an entropy which is concave in the squared expectation value (that is, an
entropy for which the function Sx defined in Eq. (5.18) is concave) and Sy is the entropy value
of the uniform probability distribution. For any state of either stabilizer basis the lower bound
is attained.
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Proof. Due to Theorem B.7the uncertainty relation Sx(Ax|p) + Sx(A¢|p) > So holds for
any anticommuting pair Ay, A;. Lemma [5.12] states that R consists of L/2 such pairs.
This shows the uncertainty relation. In remains to show that the bound is attained.
The density matrix of the stabilizer state defined by the group T = { N} is given by

o1 = 5 Y4_1 Ny [see Eq. @Z2)]. Thus

2}’!
Tr(Aror) = 2% Y Tr(AgNy) =0 forall Ap ¢ T, (5.27)
(=1

showing Sx(Ag|pr) = So for L/2 observables Ay. O

This relation is not maximally strong. This is due to the fact that some of the observ-
ables commute.
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6 Exponential families of interaction spaces in quantum theory

In this chapter the theory of exponential families of interaction spaces, as outlined in
Section [2.6] is applied to the study of quantum correlations. Two rather different ap-
proaches are pursued: In Section [6.1] the theory is used to characterize the probability
distributions of the measurement outcomes of threepartite Bell experiments. The expo-
nential families under consideration are thus still classical. In the remaining sections,
exponential families of quantum states are studied. Section [6.2] presents the quantum
versions of basic definitions and results such as exponential and linear families, the
generalized Pythagoras theorem, the information projection and interaction measures.
In contrast to the other sections, it contains no original research, but rather aims at giv-
ing a coherent presentation of the results of Refs. [132][133,[134l The aim of Section
is the construction of witness operators for the detection of higher-order interactions.
In Section an algorithm for the numerical computation of the quantum informa-
tion projection is developed. Finally, in Section [6.5] the chapter ends with several open
questions.

The contents of this chapter (with the exception of those in Section of course)
have not been published before.

6.1 Exponential families of measurement probabilities

The aim of this section is to establish connections between different notions of genuine
three-party correlations. Our starting point is the Svetlichny inequality (2.37), repeated
here for convenience

<A131C2> + <A132C1> + <A2B1C1> — <A232C2>
+ <A1B2C2> —+ <A231C2> + <A232C1> — <AlB1C1> < 4. (6.1)

Recall that this Bell inequality cannot be violated by hybrid local-nonlocal hidden vari-
able models as defined in Eq. 2.36). One can thus say that a probabilistic model con-
tains genuine three-party nonlocality if it violates this inequality. The predictions of a
probabilistic model for the outcomes of a Svetlichny experiment are summarized in a
set of eight probability distributions

Pupc(a,b,c), (6.2)

where the indices A € {A;, A2} etc. denote the choice of local measurements and
the arguments a,b,c € {—1,+1} denote the measurement results. Accordingly, such
a model is characterized by 56 real parameters. For the purposes of this section, any
choice of eight probability distributions of length eight constitutes a valid model.
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Exponential families provide us with another notion of genuine three-party correla-
tions, which originated in a different context. In that classification scheme, a probabil-
ity distribution contains irreducible three-party interactions if it cannot be written as a
thermal distribution of a two-party Hamiltonian, or as a limit of such distributions.

In this section we will address the question: If we restrict the probability distributions
that constitute a probabilistic model to the exponential family given by two-party Hamiltonians,
what does this mean for the model’s ability to violate the Svetlichny inequality?

To make this constraint more explicit, let &, be the exponential family of probability
distributions on {—1,1}2 that can be written as P(a,b,c) = exp[H(a,b,c) — ¢] with
a classical two-party Hamiltonian H. (The constant ¢ ensures normalization.) If the
Hamiltonian is parametrized as

H(a,b,c;0) = 04k(a) + 0gk(b) + 0ck(c)
+ 04pk(a)k(b) 4+ Oack(a)k(c) + Opck(b)k(c) (6.3)
+ 0apck(a)k(b)k(c)

[where fora, b,c € {—1,1} one can choose k(x) = x], it contains three-party interactions
precisely if 0 4pc is nonzero. Vanishing 6 4p¢ is equivalent to

log[P(+1,+1,+1)] + log[P(+1,—1,-1)]
+log[P(—1,+1,—1)] +1log[P(—1,—1,+1)]
— log[P(+1, +1,-1)] + log[P(+1, —1,+1)]
+1og[P(—1,+1,+1)] +log[P(~1,~1,-1)] (6.4)

and hence to

P(+1,+1,41)P(+1, -1, -1)P(-1,+1, -1)P(-1,—-1,+1)
= P(+1,+1,—1)P(+1,—1,+1)P(=1,+1,+1)P(—1,—1,—1). (6.5)

[If we write the probability distribution as a diagonal matrix as if it was a quantum
mechanical density operator, Eq. (6.4) reads Tr[o; ® 0, ® 0 log(P)] = 0.] In this section
we also allow probability distributions without full support, meaning that the set of
allowed distributions is the compactified exponential family &,.

It is not difficult at all to write down a model satisfying the £»constraint and still
violating the Svetlichny inequality maximally: Let

1 ifa=b=c= -1,
PA1 B1Cy (ﬂ, b/ C) = PA2B2C2 (a/ b/ C) = {0 otherwise (66)

1 ifa=b=c=+1,

all remaining distributions = ) (6.7)
0 otherwise.

Then the left-hand side of Eq. (6.I) takes the value 8. The probability distributions of
this model are not only in &, but even in £, that is, they are product distributions.
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The negative answer to the question raised at the beginning should not come as a sur-
prise: The £,-condition is a constraint only on the individual probability distributions.
It does not restrict the way in which the model’s predictions depend on the choice of
local measurements. Indeed, the above example is highly signalling. Signalling mod-
els can be dismissed for being unphysical. We modify our question by allowing only
nonsignalling models with probability distributions in &>.

So let us discuss the no-signalling conditions for Bell experiments with three parties.
A model is called nonsignalling if

1. Alice cannot signal to the combined systems of Bob and Charlie,

ZPAlBC(a, b,c) = ZPAch(ﬂ/ b,c) VB,C,b,c, (6.8)
a a

and analogously for all permutations of the parties;

2. the combined systems of Alice and Bob cannot signal to Charlie,

Z PAlBlc(a’ b’ C) - ZPAlec(al b/ C)
a,b a,b

a,b

=Y Pacla,bc) VCe,
a,b

and analogously for all permutations of the parties.

Obviously, the first set of conditions implies the second. It also includes the weaker
condition that Alice cannot signal to Bob or to Charlie.

Equation (6.8) and its permutations impose 48 linear constraints on the probability
distributions, but these constraints are not all linearly independent: If we collect the
probability distributions in a vector P € IR%, the 48 no-signalling constraints together
with the 8 normalization conditions take the form of a system of affine linear equa-
tions TP = t. The 56 x 64-matrix T turns out to have rank 38. Choosing a basis in
the nullspace of T, one can parametrize all nonsignalling models with 64 — 38 = 26
parameters. However, in this parametrization the probabilities are not automatically
guaranteed to be nonnegative.

The no-signalling conditions alone do not restrict the violation of the Svetlichny in-
equality either: The model

0 ifabc= 41,
P a,b,c) =P a,b,c) = 6.10
A131C1( ) Aszcz( ) {411 if abc = —1, ( )
1 ifabc=+1
all remaining distributions = { * 1 e ="+ (6.11)
0 ifabc= -1

is nonsignalling, but the left-hand side of Eq. (6.I) takes the value 8. In other words, the
nonsignalling bound of the Svetlichny inequality is equal to its algebraic bound.
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The probability distributions in Egs. (6.10) and (6.11) are prototypical examples for
distributions containing irreducible three-party interactions [35,62]. They can be writ-
ten as limits of thermal distributions as follows:

Pa,c,(a,b,¢) = Pa,p,c,(a,b,c) = elim exp{—babc — In[8 cosh(6)]}, (6.12)
— 00

all remaining distributions = Blim exp{+6abc — In[8 cosh(6)] }. (6.13)
—r00

Note that the Hamiltonians H(a, b, ¢; 6) = +60abc contain only three-party and no lower-
order interactions. Intuitively, this is because the distributions are essentially given by
the parity function, which is +1 (—1) if an even (odd) number of the arguments 4, b, ¢
has the value —1. For the parity, knowledge of the values of one or two arguments
gives no information about the value of the function. The interaction measures defined
in Egs. (2.133) and (2.136) take the values C; = C; = 0 and Ciot = C3 = 1.

It is instructive to see how the quantum mechanical measurement probabilities which
violate the inequality maximally fit into this picture. For the GHZ state and the opera-
tors given in Eq. (2.40), quantum mechanics predicts

2-v2 ~0.03661 if abc = +1

P ab,c)=P abc)=1{_1°6 ' ’ 6.14

4281y (4/0,€) = Pz, (a,6,€) {qu52502134 if abc = —1, (649
24V2 02134 if abc = +1

all remaining distributions = 21f/i ' 1 ave=+1L (6.15)
222 % 0.03661  if abe = —1.

These distributions achieve the maximal quantum mechanical violation, meaning that
the left-hand side of Eq. (6.I) takes the value 41/2. Writing the distributions in expo-
nential form,

Pa,B,c, (a,b,¢) = Pa,p,c,(a,b,c) = exp[— arcoth(v/2)abc — Z1In(2)], (6.16)
all remaining distributions = exp [+ arcoth(v/2)abc — 7In(2)], (6.17)

we again find Hamiltonians with only three-party interactions. Here,

1 o [2+\/§
22 gz—ﬁ

We have seen that neither the no-signalling conditions nor the £,-constraint alone
preclude maximal violation of the Svetlichny inequality. We do not yet know the effect
of both sets of conditions combined. Numerical maximization over all models subject
to these constraints supports the following conjecture, which is the first main “result”
of this section:

C1 = Cz =0 and Ctot = C3 =

1
] — ;=039 (6.18)

Conjecture 6.1. A nonsignalling probabilistic model whose probability distributions are in the
compactified exponential family £, cannot violate the Svetlichny inequality.
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Below the conjecture will be proven for the class of models satisfying a certain sym-
metry condition. The general case is still open. The numerical results should not
be taken on trust, because the maximization problem is somewhat unwieldy: If we
parametrize the probability distributions of all nonsignalling models in the 26 indepen-
dent parameters (see above), the requirement that the distributions are in &, constitutes
eight nonlinear constraints, in addition to the constraints imposed by the nonnegativity
of the probabilities. Conversely, if we parametrize the Hamiltonians, the nonsignalling
constraints are rather cumbersome.

To simplify the problem we consider now only models which satisfy

Pa,B,c, = Pa;,c, = Pa,gic, and  Pap,c, = Pa,,c, = Pa,,c,- (6.19)

This symmetry is suggested by the distribution of the signs in the Svetlichny inequality
itself. Also note that all examples of models discussed so far obey this condition. This
may indicate the symmetry assumption is not very restrictive. We are left with the four
independent distributions

Py = Pa,B,cy/ (6.20)
P> = Pa,B,c, = Pa,B,c, = Pa,B,cy/ (6.21)
P3 = Pa,,c, = Pa,B,c, = Pa,B,cy/ (6.22)
Py = Papc,. (6.23)

The no-signalling conditions [Eq. (6.8) and permutations] reduce to

ZP1(L1, b,c) = ZPz(a, b,c) = ZP3(a, b,c) = ZP4(a, b,c) Vb, c (6.24)

and permutations. In other words, the two-party marginals of the P; are all equal.
The following lemma is the second main result of this section:

Lemma 6.2. A nonsignalling probabilistic model which obeys the symmetry assumption given
in Eq. ©I9) and whose probability distributions are in the compactified exponential family &,
cannot violate the Svetlichny inequality.

Two proofs of this lemma will be given: The first one is based on information geom-
etry, the second one is more elementary.

Information-geometric proof of Lemmale.2l According to the second definition of the in-
formation projection [see Eq. (2126)], the projection of P onto &, is completely deter-
mined by the two-party marginals of P. We already know that the four probability
distributions that constitute the model have the same two-party marginals. Thus their
projections onto &; are equal. On the other hand, by assumption each distribution is
in £ and hence equal to its own projection. This shows that the four distributions of
the model are all equal. Consequently the eight expectation values in the Svetlichny
inequality (6.1) are equal. It follows that the absolute value of the left-hand side of the
inequality is < 4, which is the local hidden variable bound. [
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Alternative proof of Lemma We write the probability distributions that constitute the
model as vectors P() € R®. The constraint that two distributions PV and PU) have
the same two-party marginals can be written in the form RPW) = RPV) with a 12 x 8-
matrix R. This matrix turns out to have rank 7; its nullspace is spanned by the vector
n = (1,-1,-1,1,-1,1,1,—1). It follows that P{) = pl) + gn for some g. Writing
PO = (p1,--.,ps), the distributions P and PY) are in &; if [cf. Eq. (€5)]

P1PaPeP7 = P2P3P5P8 (6.25)

and

(p1+q)(pa+aq)(ps +q)(p7+49) = (p2—9)(p3 — ) (ps — q)(ps — q) (6.26)

This implies 4 = 0. If P() does not have full support, at least one factor of the left-
hand side and one factor on the right-hand side of Eq. ©25), say p1 and py, have to be
zero. This implies ¢ = 0, because p> — g is a probability and must be nonnegative. We
have shown that the four distributions of the model are all equal. Proceeding as in the
first proof, we see that all eight expectation values in the Svetlichny inequality (6.J)) are
equal and that the absolute value of the left-hand side of the inequality is < 4, which is
the local hidden variable bound. O

6.2 Exponential families of quantum states

In this section the theory of exponential families of interaction spaces is generalized to
the quantum domain, with quantum states taking the place of probability distributions.
The results presented here are due to Zhou [132[133][134].

6.2.1 Exponential and Bloch representation

We consider n-qubit states throughout; the generalization to higher Hilbert space di-
mensions will be obvious.
Any n-qubit quantum state with full rank can be written in the exponential representa-
tion
Pexp(e) = eXP( 2 Oii,..in0iy @ -+ & O'in) (6.27)

11,0eey In

with indices running from 0 to 3. It will be convenient to use a multi-index notation,
Pexp (0) = exp () 0a0w), (6.28)
14

where 0, = 0y, ® - -+ ® 0y,,. Greek indices will always be multi-indices. The coeffi-
cient 6y of the identity cp = 1%" is not free, but rather determined by normalization.
Explicitly, g = —1(0) where

¥(0) = In{Tr [exp(%@a%)] }. (6.29)
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We call the number of factors in the Pauli operator 0, = 0, ® - - - ® 0y, Which are
different from the identity its weight and denote it by W(«). In other words, the weight
W () of a multi-index « is the number of nonzero elements «;.

We often think of the exponent in the exponential representation as a Hamiltonian
and of the state as a thermal or Gibbs state. As in the classical case this Hamiltonian
does not necessarily correspond to an actual physical system. The function ¥ is minus
the free energy.

For any 1 < k < n we define the exponential family Q) of thermal states of k-party

Hamiltonians,
={p|p=exp( ) 6uon)}. (6.30)
« with
W(a)<k
This defines a hierarchy
QCQDC---CQy (6.31)

where Q,, is the set of all states with full rank and Q; the set of all product states with
full rank. It we want to include states without full rank, we work with the compactified
exponential families Oj.

Alternatively, any state can be written in the Bloch representatzorﬂ

1
Pati (1) = 55 ) Ia0a: (6.32)
e

Here the normalization condition is 779 = 1.
We calculate the relative entropy of two full-rank states p = pexp(0) = pag(f7) and

0= Pexp(0') = pase(y'),

In(2)D(pllp") = —In(2)S pasi(1)) - Tr{zln 1+ Y ] | Y 0505 — (0] }

470 p70 (6.33)
= 9(n) +9(6") = ) 1,
a#0
where the function
¢(n) = —In(2)S(pase(17)) (6.34)
was introduced. With the scalar product
=Y 1.0, (6.35)

a#£0
this result takes the form
In(2)D(pllp") = ¢(y) +p(8') — - 6. (6.36)

In the special case p = (/,

¢(n) +(0) — 0. (6.37)

n Ref.[134 the 1, are called affine parameters.
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The last equation shows that the exponential and the Bloch representation are related
by a Legendre transformation,

_ 9p(6) _ 9¢(n)
= 50 and 0, = S (6.38)

for all @ # 0. It is instructive to formulate the results obtained so far in the language of
statistical mechanics: We define a thermodynamic ensemble by the requirement that the
observables ¢, have expectation values 7,. Maximizing the entropy under these con-
straints, we find the thermal state of this ensemble to be p = pexp (6), where the 6, arise
as Lagrange multipliers. In statistical mechanics it is well-known that the Lagrange
multipliers 6, are related to the expectation values 7, by a Legendre transformation.
For the pairwise relative entropies of three full-rank states p, p’ and p” we obtain

D(p|lp") — D(pllp") — D(p'll0")
= D(pll0") = D(pllp") — D(p'[lp") + D(p'll0")
= g [P0+ 90— -0 = pl) = (0) -0

" / 1" !l / / Il (6'39)
— o) = p(0") + 1 - 0" + 9(f) +9(0)) =1 - 0|
1
= m(’i —1')- (6 —86")
and thus .
D(pllp") = D(pllp") + D(¢'[lp") + m(’] —1)-(6/ —8"). (6.40)

If the scalar product vanishes, we call this relation the generalized Pythagoras theorem.

6.2.2 Information projection

Proceeding as in the classical case, we give three definitions of the information pro-
jection. We then prove their equivalence. The proof given here, which uses methods
from statistical mechanics, fails if the information projection does not have full rank.
To be on the safe side, all definitions and results will be formulated only for the non-
compactified exponential families. It is to be expected, though, that the results remain
valid in the general case.

Definition 6.3. The information projection py of a quantum state p is the element of the
exponential family Oy which is closest to p with respect to the quantum relative entropy,

P = argmin D(p||p"). (6.41)
'€k

For any state p we define the set M (p) of states with the same k-party reduced den-
sity matrices,

Mi(p) ={p' | P4 = paforall AC {1,...,n} with |A| = k}, (6.42)
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where pg = Trg; A (p). In the language of information geometry this is a linear
family. Explicitly,

Mi(pate(n)) = {pate (1’ ‘ 11y, = 1, for all « with W(a) < k}. (6.43)

The following lemmas contain the second and the third definition of the information
projection:
Lemma 6.4. The information projection py of a quantum state p is the maximizer of the von
Neumann entropy among all states with the same k-party reduced density matrices as p,
px = argmax S(p’). (6.44)
P’ €Mi(p)

Lemma 6.5. The information projection py of a quantum state p is the uniquely defined element
of the exponential family Qy with the same k-party reduced density matrices as p,

{ox} = Qi Mi(p)- (6.45)
We will now show that the definitions are equivalent and define a unique state.

Proof of Lemmas 6.4 and Define py according to Eq. (6.44). We have to maximize the
entropy of p’ under the constraints Tr(p’c,) = Tr(poy) for all @ with W(a) < k. This
maximization is analogous to the well-known derivation of the thermal state in statis-
tical mechanics, but it will be repeated here for completeness. Introducing Lagrange
multipliers é; for 0 < W(a) <k, the information projection is the solution to

1}K—hmm)—n+- y awgam}zo, (6.46)
0<W(a)<k
which is _
Ok = exp(z 000%), (6.47)

where we re-defined 6y — 1 — 6. This g obviously is in Qy. (If the system of equations
determining the Lagrange multipliers does not have a solution, the information projec-
tion does not exist in the non-compactified exponential family.) We still have to show
that the stationary point is indeed a maximum and that it is unique. Let p’ = pag(7')
be any other state satisfying the constraints Tr(p'c,) = Tr(poy) for all & with W(a) < k.

Using Eq. (6.36),
In(2)D(e'lIpx) = —n(2)S(p") + p(6) — 1 - . (6:48)

The terms in the scalar product 4 - 8 = ¥, 746, with W(a) > k vanish because 6, = 0
for these a. The coefficients 7}, with W(a) < k are fixed by the constraints Tr(p'c,) =
Tr(poy) and are thus equal to 77,. This shows

In(2)D(p'[|p) = —In(2)S(p") + ¢ (6) —1'- 6
= —1n(2)S(p") + ¢() — 6 (6.49)
:_m@ﬂm+m@ﬂmy
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Figure 6.1: Illustration of the information projection onto a quantum exponential fam-
ily. Shown are the linear family My (p) of distributions with the same k-party reduced
density matrices as p (blue line), the exponential family Q) of thermal states of k-party
Hamiltonians (red curve) and the information projection py of p onto Qy; and p’ repre-
sents an arbitrary state in Q. This figure is the quantum version of Fig.[2.4]

where Eq. (6.37) was used. From the positive definiteness of the relative entropy (see
Section[2.3.3) we conclude that py is indeed the unique maximum.

We now apply Eq. €40) to the states p = pa5(17), o = pati(if) = pPexp(#) and an
arbitrary p’ = pexp (') in Qy, obtaining

D(plle’) = D(pllge) + D@elle’) + ln}z)(n —7)-(0-0). (6.50)

The terms in the scalar product with W(«) < k vanish because 7, = 7, for these «, and
the terms with W(a) > k vanish because of 6, = 0, = 0. The Pythagoras theorem

D(plle") = D(pllpx) + D(pkllo"), (6.51)

which we have just shown, implies that py, which was defined according to Eq. (6.44), is
also the unique state minimizing the relative entropy D(p||p’) among all p’ € Q. This
establishes the equivalence of the first and the second definition of the information pro-
jection. The state py defined in this way obviously satisfies Eq. (6.45). The uniqueness
of the third definition follows again from the Pythagoras theorem. O

Figure [6.1] illustrates the geometric relations which we have established. It is com-
pletely analogous to Fig.2.4lin the classical case.

Lemma [6.4 implies that any state which is completely determined by its k-party re-
duced density matrices is in the exponential family Q; (ignoring for the moment the
issue of states without full rank). The question which states are completely determined
by their reduced density matrices has already received attention. For the special case of
pure states a number of interesting results have been obtained: Almost every pure n-
party state with equidimensional subsystems is uniquely determined among all states
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(whether pure or mixed) by its reduced k-party density matrices, where k scales like
n/2. (This was shown in Ref.|60; see also Refs.[76}[77/for earlier works). For a qubit sys-
tem, only the generalized GHZ states cos(0/2)[0)®" + el?sin(0/2)|1)®" and their LU-
equivalents are undetermined by the (n — 1)-party reduced density matrices [121]122].

Analogously to the classical case, we denote the distance from a quantum state p to
its projection pj in terms of the relative entropy by

Di(p) = D(pllg),  k=1,..,n—1 (652)

and define the degree of irreducible k-party interaction as

Ci(p) = D-1(p) = Di(p),  k=2,...,n (6.53)

(where D, = 0). By the generalized Pythagoras theorem, the last definition is equiva-
lent to

Ck(p) = D(ﬁk“ﬁkfl)/ k:2,...,l’l—1. (654)
Writing 0 = page(17) and px = paz(7]) = pexp (), one obtains with Eqs. (6.36) and (6.37)

In(2) Dy(p) = In(2)D(p||ox)

= —In(2)S(p) + ¥(6) — v (6.55)
= —In(2)S(p) + ¢(6) —77-0
- _1n(2)5( )+1n(2)5(ﬁk)~

Here the fact was used that 8, = 0 for W(«) > k and 7, = 7, for W(a) < k. This shows

Di(p) = S(px) — S(p), k=1,...,n—-1 (6.56)

and
Ck(P) = S(ﬁkfl) _S(ﬁk)r k=2..,n-1 (657)

The multi-information or degree of total interaction has an expansion into a telescopic
sum of entropy differences

Crot(p) = Z Cr(p (6.58)

This is an orthogonal decomposition in the sense of the generalized Pythagoras theo-
rem.

The exponential family &; is comprised of all product states (with full rank). The
projection of a state p onto this family is given by the tensor product of the one-party
reduced density matrices,

1 =pp® - @py  where oy =Ty (i) 0 (6.59)

For the other projections there is no explicit formula.
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6.2.3 Information projections of stabilizer states and generalized GHZ states

In Ref. Zhou gave a method for the explicit calculation of the information projec-
tions for two classes of states, namely, stabilizer states and generalized GHZ states.
In this subsection the method is described, examples are given, and relations to other
works are discussed.

Let ps be an n-qubit stabilizer state with stabilizer group S. This state does not
need to be pure. The rank of pg is related to the cardinality of the stabilizer group
by rank(pg) = 2"~ where |S| = 2™. The stabilizing operators can be classified accord-
ing to the numbers of qubits on which they act nontrivially. Recall that we defined the
weight W(«) of a Pauli operator 0, = 0, ® - - - ® 0y, as the number of factors which are
not equal to the identity. The set of stabilizing operators of weight less than or equal to k
is in general not a group. For any k < 1 we define S as the smallest subgroup of S that
contains all elements +0, of S with W(a) < k. This group is again a stabilizer group;
we will show that the corresponding stabilizer state is the information projection of ps.

In general S®) contains operators of weight larger than k, but by definition one can
find a set g%) of generators with weight less than or equal to k. The generating set of
S®) can be completed to a generating set of S**1), since S C §*+1), We choose

where each ¢(*) is a generating set of S) containing only operators of weight less than
orequal to k; and g = {g1,...,9m} is a generating set of S.

Since ps does not have full rank we will regularize it. Recall that ps can be written in
terms of the generators as [see Eq. (2.72)]

m

1
s = o 11(11 + 8i)- (6.61)
1=
This state is obtained in the limit A — oo of the following parametrized family of full-
rank states:

m

ps(A) = 2”coslh’”()\) exp(A ) gi)

i=1

L m (6.62)
=5 [1 [1 + tanh(A)g;].
Expanding the product in the last equation, we obtain
1 &
ps(A) = > Z;tanhsi(A)Mi, (6.63)
iz

where the M; are the stabilizing operators of ps and s; is the number of factors when
writing M; as a product of generators.
Similarly the generator set ¢(*), whose elements will be denoted as

g™ = {g",....gh}, (6.64)
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defines the regularized stabilizer state

~ iy = 1 v (k)
Pk()\> Y COShm(A) exp()‘ggi )
My

k
“ ol [1+ tanh(2)g{"] (6.65)
1=
1 L . L
= on Z;tanhs’()\)Mi( ),
1=
By construction this state is in the exponential family Q. The M Z.(k) are the elements of
the group S*). By definition these are all M in the expansion in Eq. (6.63) which have
weight less than or equal to k. This shows that py(A) has the same k-party reduced
density matrices as ps(A). According to Lemma[6.5] the state pi(A) is the information
projection of ps(A). In the limit A — oo,
My

pr(A) — zl [ +¢™). (6.66)
i=1

The von Neumann entropy of a stabilizer state is easily seen to be S(ps) = n — m, where
m is the number of generators. We summarize our findings in the following theorem:

Theorem 6.6 (Ref.[132). The information projection py of the stabilizer state ps with stabilizer
group S is again a stabilizer state, given by the smallest subgroup S®) of S which contains all
stabilizing operators with weight less than or equal to k. The distances to the exponential families
and the degrees of interaction are given by

Di(ps) = m — my (6.67)
and
Crlps) =mg—mg_y  and  Ci(ps) = m —my, (6.68)

respectively, where 2" is the cardinality of S¥) and 2™ is the cardinality of S.

As our first example we consider the four-qubit GHZ state, whose stabilizer group
was given in Eq. (Z96). This group does not contain operators of weight 1, therefore
S = {1111}. The stabilizing operators of weight 2 are 11ZZ and its permutations.
The set formed by those six operators and the identity is not closed under multiplica-
tion. The smallest group containing this set also includes ZZZZ,

S = {1111, 11ZZ and permutations, ZZZZ}. (6.69)

As there are no stabilizing operators of weight 3, we have S©®) = S(2). For the nested
generating sets in Eq. (6.60) one can choose

V=0, (6.70)
¢® =¢® = {1177, 1717, ZZ11}, (6.71)
g=¢W={1127, 1212, ZZ11,XXXX}. (6.72)
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We define @ rather than {1°"} as the generating set of the trivial group {1%"} for
reasons of consistency, ensuring that the cardinality of a stabilizer group is always 2"
if m is the number of generators. The distances from the GHZ state to the exponential
families are given by

Di(pcuz,) =4, Dalpcuz,) =1, Ds(pchz,) =1 (6.73)
and its degrees of interaction by
Co(pcuz,) =3, GCslpguz,) =0, Calpcnz,) =1, Crotlpcuz,) = 4. (6.74)

As a caveat note the following: While the numbers m;, which determine the degrees
of interaction, can be found by counting the generating operators with weight k in
Eq. (6.72), this does not work with an arbitrary generating set. For example, § =
{11ZZ,17Z17Z,ZZ7Z7Z, XXXX} is a legitimate generating set for the GHZ state, but
gives the wrong numbers m;. The reason is that the operators of weight 2 contained
in this set, namely {11Z2Z,1Z1Z}, do not generate S since ZZ11 is missing. In
other words, the generating set is not of the form of Eq. (6.60).

As our second example we take the four-qubit linear cluster state with stabilizer
group Eq. @99). Here, S) = {1111} and

S@ = {1111, 1122, ZZ11, ZZZZ}. (6.75)

The group S®®) contains at least the four elements of S(?) and the eight stabilizing opera-
tors of weight 3, so the cardinality of this group is at least 12. But because the cardinality
of a stabilizer group is a power of 2, this group must have cardinality 16 and is equal
to the complete stabilizer group of the cluster state. The distances and the interaction
measures take values

Di(pc,) =4, D2(pc,) =2, Ds(pc,) =0 (6.76)
and

Ca(pc,) =2, GCslpc,) =2, Culpc,) =0, Ciotlpc,) =4, (6.77)

respectively.

A related question which has been addressed in the literature is under which condi-
tions stabilizer states can occur as ground states of k-party Hamiltonians. In particu-
lar, it would be advantageous if states which are known to be universal resources for
measurement-based quantum computation, such as the two-dimensional cluster state,
occurred as nondegenerate ground states of physically reasonable Hamiltonians. In this
case, they could be prepared by cooling, obviating the need to manipulate the qubits in-
dividually. In Ref.[116/Van den Nest et al. have shown the following: The minimal k for
a pure, fully entangled stabilizer state ps to be the (possibly degenerate) ground state
of a nontriviafl k-party Hamiltonian is given by the minimal weight of its stabilizing
operators (excluding the identity),

Kmin, = in  W(a). 6.78
Lmin (o) (6.78)

%In this context a Hamiltonian is called nontrivial if it is not a multiple of the identity.
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If one asks for a nondegenerate ground state, the threshold is given by the minimal
k such that the stabilizing operators of weight at most k generate the whole stabilizer
group. In our language this is the minimal k such that the state is contained in the
compactified exponential family,

kmin = min{k | S® = S} = min{k | ps € Q¢}. (6.79)

In particular, for more than two qubits this knin is always at least 3. Furthermore, it
was shown in that reference that a stabilizer state can only be close (in the sense of
the fidelity) to the ground state of a Hamiltonian whose k is lower than the threshold
in Eq. (6.79) if the energy gap of the Hamiltonian (relative to the total energy scale) is
small. (See also Ref.!48|for related results.) The topic of states that cannot be written as
general eigenstates (not necessarily ground states) of few-party Hamiltonians has also
received attention [33,47].

We resume the description of Zhou’s method [132]], discussing the explicit calculation
of the information projections of the generalized GHZ state of n qubits (n > 3),

IGHZ,(6,¢)) = cos(§)]0)*" + €' sin(§)[1)“". (6.80)

This state can be written in a form reminiscent of a stabilizer state,

n

1 i
pcuz, (0, ¢) = > [1+ 2] H[]l + Uz(l)ffz( )] (6.81)
i—2

where X = eq 4 - L with

sin(0) cos(¢) U,E”U,EZ) . -U,En)
egp = | sin(6)sin(¢) and  Z=|gMe®...o"|. (6.82)
cos(0) o

This can be seen as follows: First note that
$o=1 and  [Zg0el)] =0 6.83)

The operators oMol can be regarded as generators of a stabilizer group, stabilizing a
two-dimensional subspace. This subspace is spanned by |0)®" and |1)®". The operator

Y44 acts on this subspace as

S0 (a|0)S" + B1)EM) = a[0)*" + B/[1)" (6.84)

(5) = (5t “ver) (3) (6.85)

The matrix in the last equation has eigenvalues +1; the eigenvector corresponding to
+1is (cos(6/2),e?sin(0/2)).

where
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The generalized GHZ state is obtained in the limit
pGHZn (9/ (P) - ;}g{}o pGHZn (;’l/ ]’l/ 9/ (P) (686)

of the parametrized family of full-rank states

n

1 i
pcuz, (A, 1;0,¢) = o [1+tanh(A)Zg6] [ J[1 + tanh(y)cfz(l)(fz( )]
i=2
: (6.87)

" on cosh(A) cosh™ ! (u)

exp [/\29/4, +u Z (Tz(l)az(i)} .
i=2

Now observe that multiplication of the x- or the y-component of £ [which was de-
fined in Eq. (6:82)] with the product [T, [1 + tanh(y)o, Vo, )] gives only operators of
weight n. This shows that only the z-component of X contributes to the reduced one-
party density matrices of pgrz, (A, 115 0, ¢). Therefore this state has the same information
projections as pgnz, (A, 1#;0,0) if

tanh(A’) = tanh(A) cos(6). (6.88)

The latter state is in Qp. Let A’(p, 0) = artanh(tanh(y) cos(6)). Then

=

1 .
li A (1,0),1,0,0) = —[1 0oV 1+ oW 0
lim parz, (A (1,6),#,0,0) = 7 [1 + cos(6)cz ]g[ + oMol o59)

= cos?(§)]0)(0|®" 4 sin? (§) 1) (1]*".
This state is the information projection of the generalized GHZ state for k > 2. The

projection for k = 1 is as always given by the tensor product of the reduced density
matrices, which is

b1 = (cos(§) 0 (0] +sin®(H) 1) 1]) (6.90)

A direct calculation gives the interaction measures (see below).

If one is not afraid of working with states without full rank, one can obtain these
results more easily by arguing that the generalized GHZ state has the same reduced
density matrices, and hence the same information projections, as the state in Eq. (6.89).

We summarize the results in the following theorem:

Theorem 6.7 (Ref.[132). The generalized n-qubit GHZ state
|GHZ,(6,¢)) = cos(5)[0)*" + e sin(§)[1)“" (6.91)

has information projections

b= (cosz(g)\o><o| +sin2(§)|1><1|)®n (6.92)

and
Pr = cos?(§)[0)(0]“" +sin?(§)[1) (1| for 2<k<n-—1. (6.93)
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It has distances to the exponential families given by

nS;(cos?(0)) fork =1,
D = 6.94
leciz,) {(n —1)Sy(cos?(9)) for2<k<n-1, (694)
degrees of irreducible k-party interactions
S>(cos?(9)) fork =2,
Ck(PGHZ,,) =<0 f01’3 <k<n-1, (6.95)
(n—1)Sy(cos?(0)) fork=mn
and degree of total interaction
Crot(pGHz,) = nS2(cos?(0)), (6.96)

where Sy(p) = —plog(p) — (1 — p)log(1 — p) is the binary entropy function.

6.3 Witness operators for exponential families

It would be interesting to show that an experimental state is not in a certain exponential
family, in other words, that is contains irreducible interactions of higher order. This is
similar to the task of entanglement detection (cf. Section2.1.3). Exploiting this similar-
ity, we adopt the method of witness operators, which is widely used in entanglement
detection. The aim of this section is to prove statements of the following type: If the
fidelity of a state p.x, with a target state |T), which is not in the quantum exponential family
Qy, is larger than certain bound Fy, then Qexp 1s not in Qy either. In this case

W = Foll — |T)(T| (6.97)

is a witness operator for irreducible (k 4 1)-party interactions. Because of the linearity
of the witness criterion, a state detected by the witness is not in the convex hull of Oy
either. The existence of a witness for O, thus shows that the convex hull of this set is
not the complete space.

The fidelity bounds that will be derived here are much too close to 1 to be useful.
Therefore the present section should be understood as a proof-of-principle, showing
that such bounds can be found at all.

As target state the five-qubit ring cluster state |Rs) will be used, which is the graph
state defined by the graph in Fig.[2.2](b). Its state vector and stabilizer group are given
in Egs. @.100) and (ZI0T). For the purpose of this section it is only important that
the stabilizer group contains no operators of weight 1 of 2. For the distances and the
interaction measures one finds with the method of the previous section

Di(prs) = D3(prs) = 5, D3(pr,) = D4(prs) =0 (6.98)
and

Ca(prs) = Calprs) = Cs(prs) =0,  Ciot(prs) = C3(pr;) = 5. (6.99)
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Figurebelow shows these quantities for the ring cluster state with white noise.
We expand the experimental state into Pauli operators,

1
Poxp = 25 ;naaa. (6.100)

If this state has a high fidelity with the ring cluster state, the coefficients #, correspond-
ing to the stabilizing operators of the ring cluster state will be large, and the coefficients
corresponding to other Pauli operators will be small. In particular all Pauli operators of
weight 1 and 2 will have small coefficients. This observation will be used to show that
for sufficiently high fidelity of pexp the operator p’ defined by

1
o'=—=(1+ Na0u (6.101)
i, X )

(with the same 77, for W(a) = 1,2 as pexp) is a valid quantum state and has a higher von
Neumann entropy than Pexp- In this case Pexp cannot be equal to its own projection onto
O,, because there is another state, namely p’, with the same two-party reduced density
matrices, but a higher entropy. This shows that peyp is not in Q5. (In general p’ is not
the information projection of pexp, but this is not the point.)

Let S be the stabilizer group of the ring cluster state and S* = S\ {1}. Suppose we
measure a fidelity

1
F = (RslpeplRs) = 2= (14 X (M)) 21— (6.102)
MeS*
With the inequality
1 1Y 1N \1/2
‘N_Xl;xi < Ngx” < (NZ;xl?) , (6.103)
1= 1= 1=

which holds for all real numbers x;, we obtain

Y (M)2 > 31(1 - 2¢)?, (6.104)
MeS*

From Tr(pgxp) < 1it follows that ¥, .o 72 < 31 and thus

Y @< Y- Y (M2 <31-31(1— Ze)® = 6de(1— 1), (6.105)
W(a)=1,2 a0 Mes

Here it is essential that the stabilizer group does not contain any operators of weight 1
or 2.
We shall need the following lemma:

Lemma 6.8. The one- and two-qubit Pauli operators of a five-qubit system can be divided into
15 sets of 7 operators each such that all operators in the same set anticommute pairwise.
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Proof. The elements of the set

{O}Ej), U,Ei)ay(j), y(i)ay(j), Z(i)%gj)/ W) U§j)ay(k), az(j)az(k)} (6.106)
anticommute pairwise. Consider this set together with the two sets that can be obtained
from it by the cyclic replacement of Pauli operators 0, — 0, — 0, — 0y. Put together
these three sets are comprised of the one-qubit Pauli operators on qubit j and the the
two-qubit Pauli operators on the pairs of qubits (7, ) and (j, k). Now choose (i, ], k) =
(n,n+1,n+3)forn =1,...,5(qubit labels to be understood modulo 5, of course). [

This lemma allows us to apply a result on dichotomic anticommuting observables
which we derived in the context of uncertainty relations, namely the meta-uncertainty
relation Lemma With the above lemma and the meta-uncertainty relation we can
show:

Lemma 6.9. If the coefficients 1, for W(a) = 1,2 are bounded by Y (o)1, n2 < 1/15, then
P =51+ YW (a)=12 a0a) is a valid quantum state.

Proof. With Lemma 6.8/ we can write the state p as

/ > . 1 1 <
o = ;yzpi with  p = (1+ L D, ) (6.107)

]

such that the 0, with the same 7 anticommute pairwise. We can choose the y; such that

Youi<wui and Y opi=1. (6.108)
j i

[How? Let p; = (¥ 171.2]-)1/2. Then Y, u? < 1/15. Using again Eq. (6.103), we obtain
Y. #i < 1. Then increase some of the y; until } ; 4; = 1.] The meta-uncertainty relation
Lemma5.6]shows that the p; are positive semidefinite. Then p’ is a convex combination
of valid states. [

The last lemma together with Eq. (6.105) show that 64e(1 — 16¢/31) < 1/15is a
sufficient condition for the positive semidefiniteness of p’. This translates to

31 1 /899
< — — -/ == = 0.001042. a1
e < w8\ 15 0.0010 (6.109)

It remains to show that S(p’) > S(pexp). First an upper bound on S(pexp) will be
derived. Let p;, i = 1,...,32 be the probabilities for the measurement of peyp in the
graph state basis of the ring cluster state. This gives the bound

S(pexp) < S((p1,---,p22)) (6.110)
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[see Eq. @.58)]. By assumption p; = F > 1 — ¢, where p; corresponds to the ring cluster
state. The probability distribution with the highest entropy which is consistent with
this constraint is (1 — ¢, 57,..., 57), and so
S(pexp) < S((1—¢,57,.-,57)) = —(1—¢)log(1l —¢) — elog(5). (6.111)

This gives S(pexp) < 0.01699 for the e from Eq. (€.109).
We will now derive a lower bound on S(p’). From Eq. (6.105) we obtain, using once

again Eq. (6.103),

Y Il < /105 64e(1 — L), (6.112)
W(w)=1,2

Since for any normalized state |¢)

(wlo'l) = &O+memw) O+Zm) (6.113)
inequality (6.112) gives an upper bound on the eigenvalues p; of p/, namely
P < Si [1+ /105 64e(1 - 12¢) |. (6.114)
This shows that
S(p") = S((p,1-p,0,...,0)) = —plog(p) — (1 — p)log(1 - p) (6.115)
where
P=15 [1 + \/105 64e(1 — L6¢ )} (6.116)

This gives S(p’) 2 0.5117 for the value from Eq. (6.109). In conclusion, S(p’) > S(pexp)
for all values of & for which we have shown that p’ is positive semidefinite.

Let us discuss the implications of our result. As was briefly mentioned above, any
state detected by the witness W = Fy1 — |R5)(Rs| (where F is the threshold fidelity)
does not lie in the convex hull of Q. In this context it is worth noting that in the
classical case even the convex hull of £;, which consists of all convex combinations of
product distributions, is the complete space. By constructing a witness for Q; we have
thus shown the quite nontrivial result that quantum exponential families are different
in this respect, and that lower bounds on the distance of a state to the convex hull of
such a family can be found. For experimental applications it only remains to improve

the bound in Eq. (6.109).

6.4 Iterative computation of the quantum information projection

In this section an algorithm for the computation of the quantum information projec-
tion is developed. It is based on the iterative scaling procedure for the classical case,
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which was described in Section 2.6.31 However, it is not a straightforward generaliza-
tion of that algorithm. Rather, it involves a certain approximation in the iteration step
to circumvent the difficulties associated with the matrix exponential.

We recall the iteration step of the classical scaling algorithm: For a subset A C
{1,...,n} of the parties with |A| = k, the approximation Q to the projection P of P
is updated in such a way that after the update Q has the same A-marginal as P:

Q — Q' suchthat Q) =P,. (6.117)

The algorithm for the quantum case is based on the idea of adapting this update rule
to the quantum case as follows: Let p be the state whose projection onto 9y we want to
calculate, and let ¢ = e/ Tr(ef’) with a k-party Hamiltonian H be the approximation
to p that we have obtained so far. For an /-party observable A with ¢ < k we add €A
to the Hamiltonian with e chosen such that afterwards A has the correct expectation
value:

el , eH+eA ,
= Te(e) —0 = Te(eFreAy such that Tr(Ac') = Tr(Ap). (6.118)
The difficulty lies in finding e. We linearize the equation which determines it,
Tr(Ac’) = Tr(Ao) + €de|,_, Tr(Ac’) + O(€?) (6.119)

with the derivative
ageH—i-sA eH+sA Tr(ageH—&—eA)

Tr(eHJrsA) Tr(eHwLeA)} Tr(eHJrsA) :

When evaluating the derivative of the exponential one has to deal with noncommuting
H and A. With the identity [see for example Eq. (4.1) in Ref.[130]

(6.120)

9. Tr(Ad) = Tr [A ] Ty [A

9,eM®) — / ! gsesM) M (£)esM() M) (6.121)
0
one obtains for ¢ = 0

ae‘s:o Tr(Ad') = TT[A / dsetH Ae—H H}

Tr(ef)
—Tr[A et } /dseSHAe SHEH}
Tr(ef) 1 Tr(eH)
- i (6.122)
_ sH —sH_H) __
_Tr(eH)/o ds Tr( Ae’™ Ae*"e") {TI[ATr(eH)}}

= Tr(leﬂ) /01 ds Tr(AeSHAe_SHeH) — [TT(A‘T)}Z'

We crudely approximate the integral by evaluating the integrand only at the two end
points s = 0 and s = 1 of the integration interval,

1 ! SH g —sH_HY ~ 1 H 2 H\] _ 2
Tr(eH)/o dsTr(Ae*" Ae™*"e") ~ f[Tr(Ae A) + Tr(A% )} = Tr(A%0).

Tr(eH) 2
(6.123)
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which leads to
Tr(Ac') ~ Tr(Ao) + e{Tr(A%0) — [Tr(Ao))*}. (6.124)

Like the above expansion in ¢, this approximation is only justified a posteriori by the
performance of the algorithm. The solution for ¢ is

Tr(Ap) — Tr(Ac) (A)p — (A

N T(A%) - (A0)E  AZ(A) (6.125)

To compute the information projection onto 9y, one chooses an orthogonal basis Vj in
the space of k-party observables (omitting the identity) and updates ¢ for each A € Vi
in turn. For an n-qubit system one can choose the Pauli operators

Vi = {on |1 < W(a) <kj}. (6.126)
The complete algorithm is as follows:

Algorithm 6.10 (Iterative computation of the quantum information projection).
Problem: Given an n-qubit state p, compute its information projection py onto the exponential

family Q.

1. For each element A of an orthonormal basis V. of the space of k-party observables compute
the expectation value (A),.

2. Initialize o = 1/2" as the completely mixed state.
3. Looping through all observables A € Vi, update o according to the rule

H H+eA _
e , e (A —(A)e
7Tr(eH) = 7Tr(eH+8A) where €= 7A§(A) . (6.127)

4. Repeat the last step.

When implementing the algorithm, it turns out to be useful to introduce an additional
parameter w which controls the size of the steps in the space of Hamiltonians,

eH , eH+wsA
O= —5- — 0

To(e = T (6.128)

with e as above. Choosing w < 1is arguably at odds with the idea of the algorithm, but
sometimes improves the convergence rate. (Figure[6.5has been obtained in this way:.)

Note that we did not prove that the algorithm converges. One could also think of
improving it by using a better approximation to the integral. However, the numerical
results shown below demonstrate that the algorithm as described here works remark-
ably well.
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Having obtained the projections py of p, one can compute the distances Di(p) =
D(p||px) and the interaction measures Ci(p). The latter can be calculated in three dif-
ferent ways, namely

Ci(p) = Dx—1(p) — Dx(p), (6.129)
Ci(p) = D(pxllpx-1), (6.130)
Cr(p) = S(Pk-1) — S(px)- (6.131)

If py is not the correct information projection, these three expressions will in general
give different values for Ci(p). This is useful as a consistency check for the numerical
value of py.

In order to test the algorithm, the information projections have been computed for a
number of four- and five-qubit states, each with additional white noise,

plp) = p% +(1=pp- (6.132)
These states are the four-qubit GHZ state, the four-qubit Smolin state
PSmo = % (1 +XXXX+YYYY +ZZZZ), (6.133)
the five-qubit W state
|[Ws) = L(\10000) + 101000) + |00100) + [00010) + [00001)) (6.134)

V5

and the five-qubit ring cluster state [Eq. 2.100)]. Figures show the distances
Dy and the interaction measures Cy and Ciot as functions of the noise level p. The first
three of these figures reproduce results which were obtained before by Zhou [133] with
a different method

In Ref.[133 Zhou seems to compute the information projections as follows: The expo-
nential family Q is parametrized by the coefficients of the Hamiltonian in an operator
basis. The information projection gy is determined among all states in Qj by the re-
quirement that it has the same k-party reduced density matrices as p. This constitutes
a system of nonlinear equations for the parameters of the Hamiltonian, which is then
solved numerically. The numerical method which is employed is not described. How-
ever, this method apparently requires to be provided with a carefully chosen initial
guess for the roots of the equations. In fact, in that reference the parametrized families
of the form Eq. (6.132) are introduced explicitly for the purpose of using the result for
a higher noise level p as initial guess for a lower p. Starting from a state close to the
completely mixed state, the information projections of states with progressively lower
noise levels are calculated.

3Note that in this reference the base of the logarithm is handled inconsistently: In the equations the
natural logarithm is used, but the numerical results in the figures use the binary logarithm. Also, there
is a mistake in the definition of the Smolin state, but for the calculation the correct state was apparently
used.
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sures (lower figure) as functions of the level of white noise for the four-qubit GHZ
state. This reproduces results which were obtained in Ref.[133|with a different method.
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Lacking detailed information on Zhou's algorithm, it is difficult to compare the per-
formances of the algorithms objectively. However, it seems fair to say that the algorithm
developed here makes better use of the structure of the problem.

While the data shown in the figures were produced for the purpose of testing the
algorithm, understanding the results might also help to understand the geometry of
the exponential families in the space of density matrices. Generally speaking, both the
distances Dy and the interaction measures Ciot and Cj decrease with increasing noise
level p, as one might expect. Interestingly, there are exceptions to this rule, where some
of the quantities increase with p within a certain p-interval. This behaviour is most
pronounced in D; and C; for the five-qubit W state (see Fig.[6.4). Since the depolarizing
channel, whose effect it is to add white noise to a state, can be implemented locally, this
shows again the known fact that the quantities can increase under local operations. This
interpretation was already given in Ref. an explanation of when this phenomenon
occurs is still lacking, though.

There is an interesting connection between the quantum information projection and
the maximum likelihood—maximum entropy (MLME) state reconstruction scheme which
has been proposed in Ref. for estimating a state from data obtained by an incom-
plete tomography: Let I1; with )} ;II; = 1 be the projection operators describing the
measurements, and let F = {f;} be the vector of relative frequencies of the measure-
ment outcomes. Then the likelihood is

L(p|F) = [][Tr(1L0)]". (6.135)

i
If the tomography is incomplete, the maximume-likelihood estimate

pmL = argmax L(p|F) (6.136)
0

will in general not be uniquely defined. The authors of Ref.[107| propose to estimate the
state by the maximizer of the von Neumann entropy among all states maximizing the
likelihood. To this end, they introduce the function

I(p; A, F) = AS(p) + log[L(p[F)], (6.137)
where A is a positive parameter. Then

pmLME = lim argmax I(p; A, F) (6.138)
A—0 0

is the desired estimate. For the calculation of the maximum for fixed A they use an
iterative procedure based on the likelihood maximization algorithm of Refs. 7885|120l
To see the connection to the information projection, suppose that the measurements
IT; correspond to a complete set of k-party observables. Consider now the case that
the f; in the likelihood are the exact values of the measurement probabilities for a valid
state, f; = Tr(I1;p), without any statistical error. Then the log-likelihood is given by

loglL(p'|F)] = ~D(F|{p}) — S(F)  with  p; = Te(IL'). (6.19)
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As the relative entropy is positive definite (see Section2.3.1)), the log-likelihood is max-
imized by any state p’ which gives probabilities p; = f;. Since we assumed the IT; to
correspond to a complete set of k-party observables, this is the case precisely if p’ has the
same k-party reduced density matrices as the state p, which defined the f;. The MLME
estimate, which was defined as the maximizer of the Shannon entropy among all states
maximizing the likelihood, is thus nothing but the information projection. The results
in Figs. can indeed be obtained with the MLME algorithm of Ref. as well,
though the MLME algorithm seems to needs more time to achieve a similar accuracy.

Another interesting connection is provided by the above-mentioned likelihood max-
imization algorithm, which is remarkably similar to classical iterative scaling.

The function I(p; p, F) in Eq. (6I37) is concave in the state p. This means that the
MLME estimate is found by maximizing a concave function over the convex set of all
states. Therefore it is to be expected that, in addition to the algorithm of Ref. and
the one introduced in this thesis, other efficient numerical methods can be applied to
this problem as well.

6.5 Outlook

The results reported in this chapter raise a number of new questions. Recall that the
generalization of Lemma in Section remains a conjecture. Moreover, a proof
would only be a first step towards understanding possible connections between infor-
mation geometry and multipartite nonlocality in the sense of Svetlichny. Concerning
the theory of exponential families of quantum states (Section [6.2)), it has already been
mentioned that the proofs fail if the information projection does not exist as a full-rank
state. Presumably the methods used in Ch. 3 of Ref. 26 for the classical case can be
adapted to prove rigorously that the quantum information projection always exists as
a state in the compactified exponential family with the expected properties. In this
context, it would be interesting to see how the results of Ref. on stabilizer states
as ground states of k-party Hamiltonians (see above) fit into the general scheme. In
Section [6.3] it was demonstrated that witness operators can be used to detect higher-
order interactions. The next step would be to improve the bound on the fidelity un-
til it reaches an experimentally accessible value. It might also be possible to adapt
the information-projection algorithm of Section 6.4l for the computation of the maximal
overlap of an exponential family with a target state. Finally, at the end of Section
it has already been pointed out that there are connections to the maximum likelihood-
maximum entropy scheme that warrant further investigation.
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7 Conclusion

The main subject of this thesis have been different characterizations of multipartite
quantum correlations; another subject have been uncertainty relations.

In Chapter 3] the effect of finite measurement statistics on the detection of entangle-
ment was studied with focus on witness operators and Bell inequalities. For either
detection method, the statistical significance was defined as the ratio of the violation to
the statistical error. Within a naive model, where the statistical error of an observable is
estimated by its standard deviation, it was shown that for any fixed target state that is
detected by a given entanglement witness the significance can be made arbitrarily large
by adding a positive operator to the witness. This is the opposite of witness optimiza-
tion in the conventional sense, where a positive operator is subtracted from the witness
in order to maximize the set of detected states. An error model for experiments with
polarization-entangled photons was described, and the underlying assumptions were
discussed. In this scenario the significances of the four-qubit Mermin and Ardehali in-
equality were compared, showing that a Bell inequality with a lower violation can have
a higher significance. The dependence of this effect on the fidelity of the state was stud-
ied. This analysis motivated an experiment implementing these two Bell inequalities,
in which bit-flip noise was introduced on purpose. The experimental results confirmed
the prediction that the Mermin inequality has a higher significance than the Ardehali
inequality for fidelities above a critical value.

Chapter  was concerned with the experimental discrimination of different classes
of multipartite entangled states. More precisely, the question was for the best set of
observables to show that an experiment which aimed at preparing a certain target state
did not result in a state from some class of undesired states. In order to formulate
the optimization problem precisely, two measures were defined for the discrimination
strength of an observable. The first of these measures is based on the difference of the
expectation values of two states and can be interpreted as a noise tolerance. The sec-
ond measure is given by the relative entropy of the probability distributions for the
measurement results; its interpretation is based on the theory of statistical hypothe-
sis testing. These measures were applied to finding optimal families of observables
for several examples. Here, the sets of undesired states were given as LU equivalence
classes, though this was done only to facilitate the calculations; the discrimination mea-
sures themselves are equally applicable to different scenarios, such as SLOCC classes.
Results of a four-photon experiment were used to demonstrate the suitability of the
measures for assessing experimental data.

The subject of Chapter Bl were entropic uncertainty relations. The question for pairs
of measurement bases for which the well-known Maassen-Uffink relation is tight led
in a natural way to a generalization of mutual unbiasedness. It was shown that pairs
of stabilizer bases have precisely this property. The deeper reason for this fact lies in
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the close relation between the geometric properties of pairs of stabilizer bases and the
group-theoretic properties of the corresponding pairs of stabilizer groups. For the more
special case of graph state bases, some explicit results were obtained. The second part of
the chapter was concerned with the many-observable setting. For dichotomic, pairwise
anticommuting observables the tuples of expectation values that correspond to valid
quantum states could be characterized completely (this was known before), and from
this characterization entropic uncertainty relations were derived for a large class of
entropy functions. The variance as a characterization of uncertainty also fitted into this
scheme, in fact, it was seen to give the strongest possible uncertainty relation for these
observables.

In Chapter [fl the theory of exponential families of interaction spaces was applied to
different questions concerning the characterization of quantum correlations. In an at-
tempt to understand the properties of this classification scheme better, it was first used
in its variant for classical probability distributions by applying it to the measurement
probabilities of a three-party Bell experiment. After that, the corresponding theory
for quantum states was outlined, presenting previously known results in a coherent
fashion. Particular attention was given to the different equivalent characterizations of
the information projection. It was emphasized that the calculation of the projection is
completely equivalent to the computation of the equilibrium state of a suitably defined
thermodynamic ensemble. Also mentioned was the relation to the question (frequently
studied in the literature) if graph states can be approximated by ground states of local-
interaction Hamiltonians. In analogy to the task of entanglement detection, witness
operators to detect higher-order interactions were constructed. An efficient algorithm
was developed for the computation of the information projection. This algorithm was
employed to compute the distances to the exponential families, which have an interpre-
tation as interaction measures, for certain four-and five-qubit states. The equivalence
of the underlying maximization problem to a certain maximum likelihood-maximum
entropy state estimation procedure was pointed out.
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