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ix Dissertation Abstract 

 Dissertation Abstract 

In this dissertation a novel digital chirp signal generator is proposed, analyzed, and 
realized. The new system generates digital chirp signals with the lowest level of 
spurious harmonic distortion, less memory size and low hardware complexity in 
comparison with other systems and techniques reported in the literature.  

In this improved digital chirp generator the start frequency and phase can be 
controlled by the initial content of the counter and the accumulator. Furthermore, the 
sweep rate can also be controlled by means of location and size of the address lines. 
The proposed system is a hybrid of the digital chirp generator and the system using the 
methodology of the piecewise polynomial interpolation based on the direct digital 
frequency synthesizer. Moreover, an optimization technique is applied to enhance the 
performance of this chirp generator and to avoid the attenuation in the speed of its 
operations. 

The new digital chirp generator uses a clock to trigger the counter (first 
integrator) and after that its output feeds the accumulator (second integrator), the 
decimal value of selected digital lines of the content of the accumulator, which 
represents the phase, is then used to calculate the value of the chirp sine using the 
interpolator. This interpolator uses predetermined interpolation coefficients to fit the 
sine wave from the calculated phase instead of using a predetermined waveform stored 
in a big size memory. This implies, that a smaller look-up table for sine and cosine 
functions is used in comparison with the previous techniques. 

A new improved parallel processing technique is proposed in order to increase 
the bandwidth of the chirp signal up to 320 MHz and more based on the used level of 
the parallelism. 

 As a comparison with the look-up table method, the size of the ROM in the new 
method is reduced by a factor of more than 128 when using 12 address lines, and 
Spurious Free Dynamic Range (SFDR) reaching 100.9 dBc. 

The system is realized using the Innovation Integration X5-TX platform with 
FPGA Xilinx VIRTEX-5 used with the parallel processing technique to generate a chirp 
signal with high bandwidth up to 320MHz using 200 MHz clock frequency. 

 
Keywords: Direct Digital Frequency Synthesizer, Digital Chirp signal, piecewise 

Parabolic-Polynomial Interpolation, Spurious harmonic distortion, 
Parallel processing technique, and FPGA. 
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Kurzfassung 

In dieser Dissertation wird ein neuartiger Chirp-Signal-Generator vorgeschlagen, 
analysiert und realisiert. Das neue System erzeugt digitale Chirp-Signale mit im 
Vergleich zu den aus der Literatur bekannten Systemen und Techniken geringsten 
harmonischen Verzerrungen, reduziertem Speicherbedarf und niedrigerem Hardware-
Aufwand. 

Bei diesem verbesserten digitalen Chirp-Signal-Generator kann die 
Startfrequenz und Phase durch den initialen Inhalt des Zählers und des Akkumulators 
gesteuert werden. Darüber hinaus kann auch die Steigung der Frequenzrampe durch 
die Anzahl und die Beschaltung der Adressleitungen gesteuert werden. Das 
vorgeschlagene System ist ein Hybrid aus einem digitalen Chirp-Generator und einem 
System, das auf einem direkten digitalen Frequenzsynthesizer basiert und die Methode 
der stückweisen polynomialen Interpolation verwendet. Des Weiteren wird eine 
Optimierungstechnik angewandt, um die Leistung des Chirp-Generators zu verbessern 
und eine Verlangsamung der Rechengeschwindigkeit zu vermeiden. 

Der neue digitale Chirp-Generator verwendet einen, um einen Taktgenerator 
Zähler (ersten Integrator) zu takten, dessen Ausgang den Akkumulator (zweiten 
Integrator) speist. Der Dezimalwert ausgewählter digitaler Leitungen des 
Akkumulatorinhalts, welcher die Phase repräsentiert, wird dann verwendet, um den 
Wert des Chirp-Signals mittels des Interpolators zu berechnen. Dieser Interpolator 
verwendet im Voraus berechnete Interpolationskoeffizienten, um die Sinusfunktion aus 
der berechneten Phase zu erzeugen, anstatt eine vorgegebene, in einem großen Speicher 
abgelegte Wellenform zu verwenden. Dies hat zur Folge, dass im Vergleich zu den 
bisherigen Verfahren eine kleinere Look-Up-Tabelle für die Sinus- und 
Kosinusfunktionen verwendet wird. 

Eine neue, verbesserte parallele Verarbeitungstechnik wird vorgeschlagen, um 
die Bandbreite des Chirp-Signals auf bis zu 320 MHz und mehr (je nach Grad der 
Parallelisierung) zu vergrößern. 

Im Vergleich zur Methode mit Look-Up-Tabellen wird die Größe des Speichers 
durch die neue Methode um einen Faktor von mehr als 128 bei Verwendung von 12 
Adressleitungen reduziert, und der störungsfreie dynamische Bereich (Spurious Free 
Dynamic Range, SFDR) erreicht einen Wert von 100,9 dBc. 
Das System wurde realisiert auf der Plattform „Innovation Integration X5-TX“ mit 
einem Xilinx VIRTEX-5 FPGA. Verwendet wurde die parallele Verarbeitungstechnik, 
um mit einer Taktfrequenz von 200 MHz ein breitbandiges Chirp-Signal mit einer 
Bandbreite von bis zu 320 MHz zu erzeugen. 
 
Schlagwörter: Direct Digital Frequency Synthesizer, Digital Chirp signal, piecewise 

Parabolic-Polynomial Interpolation, Spurious harmonic distortion, 
ParallelVerarbeitungstechnik, and FPGA. 
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Abbreviation Meaning 

BSP Board Support Package 

CDMA Code Division Multiple Access 

DACs Digital to Analog Converters 

DCLK Data Clock 

DDFS Direct Digital Frequency Synthesizer 

DDR Double Data Rate 

DLL Delay Lock Loop 

FIW Frequency Input word 

FPGA Field Programmable Gate Array 

LFM Linear Frequency Modulated 

LPF Low Pass Filter 

LSB Least Significant Bit 

LUT Look Up Table 

LVDS Low Voltage Differential Signal 

MSB Most Significant Bit 

PA Phase Accumulator 

PCI Peripheral Component Interconnect 

PLL Phase Looked Loop 

PM Phase Modulated 

PSAC phase-to-sine-amplitude converter 

QDR Quad Data Rate 

RA Radar Altimeter 

RF Radio Frequency 

ROM Read Only Memory 

SAR Synthetic Aperture Radar 

SBSRAM Synchronous Burst Static RAM 

SCMF Sine Cosine Mapping Function 

SFDR Spurious Free Dynamic Range 

SPW Start Phase Word 

SRW Sweep Rate Word 

TDMA Time Division Multiple Access 

  



 

Abbreviations and Symbols xii 

VHDL 
VHSIC (Very High Speed Integrated Circuit) Hardware 

Description Language 

XMC XDR (External Data Representation) Memory Controller 

 

 

Symbol Meaning 

L Word length of the phase accumulator 
µ  fractional delay 

( )Ih t  finite-duration impulse response of a fictitious 

( )x m  sequence of signal samples 

kV  Interpolation coefficients 

pt  one period of system clock 

( )Tβ  The phase stored in the accumulator 

minS  lowest required sweep rate 

maxt  the maximum sweep time 

sf  Sampling frequency 

nk  Constant used to adjust the unit of each series 

nb  Fixed coefficients numbers 

0f  Starting frequency 

clkf  Clock frequency 

0φ  Starting phase 

maxf  Higher desired frequency component 

θ  Phase accumulator 

θ ′  Normalize phase accumulator 

minf  The minimum synthesizable frequency 

outf  The output frequency 

α, S  chirp rate 

pT  chirp pulse duration 

0ω  Baseband bandwidth 



 

Abbreviations and Symbols xiii 

1w  start frequency 

)(tw  The instantaneous frequency of a linearly swept signal 

( )tφ  instantaneous phase 

0φ  Start phase 

p  Least significant bits of the phase accumulator 

K Most significant bits of the phase accumulator 

x  
The phase angle, represented as a fraction in the interval 

[0, 1) 

r is the degree of the polynomial approximation, 1≥r  

s  
is the number of piecewise continuous polynomial 

segments, 1≥s  

kic  are the polynomial coefficients 

kx  is the lower bound of the kth piecewise continuous segment 

( )iy kT  The interpolants 

( )y t  The signal after re-sampling 

ky , km , and kp  Interpolation coefficients 

c  The word length of the variable γ 

AC(T) The Content of the accumulator 

AC0 Initial content of the accumulator 

CO(T) The content counter 

CO0 Initial content of the counter 

2mod ( )xπ  Modulus 2π for the phase x, it reduces x to the range [0,2π] 
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1 Introduction 

Linear Frequency Modulated (LFM), chirp or sweep signals are defined as sinusoidal signals 

whose frequency increases or decreases over a certain amount of time, and both the phase and 

frequency must be specified for all time. These signals are required for earth remote sensing 

(Synthetic Aperture Radar- SAR, Radar Altimeter- RA), planetary remote sensing, and are 

required for several applications like target velocity estimation [1], phase coding of sweep 

signals in communication applications, system characterization, radar (especially in Synthetic 

Aperture Radar), sonar, acoustic digital imaging, and the determination of system response 

with network analyzers [2, 3]. A description of the mathematical formulation for these types 

of signals can be found in chapter 3. 

There are only a few methods applicable for generating digital chirp signals. One 

method is to store it in a predetermined waveform high-speed digital memory. The main 

limitation of this method is the time-bandwidth product. Another approach is based on the 

calculation of binary words [4], corresponding to the analytical expression of the quadratic 

phase of a sampled linear sweep. These calculations must be performed in real time; as a 

drawback, the maximum attainable frequency will only be in the kilohertz range. For these 

reasons, Pedersen presented his architecture to circumvent these disadvantages [5], which are 

based on real time digital evaluation of the phase of the desired sweep signal and then reading 

its value from a look-up table (LUT) of length 𝐿𝐿 (𝐿𝐿 = 2𝐾𝐾). Other constraints which appeared 

as main disadvantages of Pedersen chirp generator are the high level of spurious harmonic 

distortion and the big size of the memory. The detailed description of this generator is given 

in chapter  3.1.  
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Chapter  3.2 reports another chirp generator in which fractional addressing is utilized to reduce 

the level of the harmonic distortion. The major disadvantage of this generator is that it 

requires the implementation of two independent chirp generators and then evaluating the 

phase difference between the two generated sweep signals. The hardware requirements, 

therefore, make its implementation costly. 

Our proposed system provides an extremely low level of spurious harmonic distortion, 

and minimizes the size of the generator’s memory. At the same time the architecture is a 

hybrid of the digital sweep generator and the system using piecewise polynomial interpolation 

based on direct digital frequency synthesizer (DDFS). The interpolator uses predetermined 

interpolation coefficients to fit the sine wave from the calculated phase instead of using a 

predetermined waveform which is stored in a big sized memory. This implies that a smaller 

look-up table for the sine and cosine functions is used compared to existing architectures with 

minimum hardware overhead, and the computation of the sinusoidal values is performed by a 

piecewise parabolic and extended by a piecewise-polynomial interpolation (approximation) 

structure. Therefore, only interpolation coefficients are stored in the memory. Chapter 4 

shows the analysis and formulation of the direct digital frequency synthesizer as reported in 

the literature, also included in chapter 4 is a short view of ROM compression techniques. 

 Chapter  5 documents the definition of the problem and introduction to the solution, 

while chapter 6 presents the complete solution, the methodology of implementing the new 

architecture, simulation and theoretical implementation.  

The theoretical work is realized and put to practical implementation by applying the 

approach and generating the digital chirp signal on the “Innovative X5-TX” platform, which 

is manufactured by Xilinx. 

Chapter 7 documents the hardware implementation and the generation of the digital 

chirp signal based on the proposed method. In the same chapter a smart parallel processing 
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technique is completely derived, implemented and exploited in order to increase the generated 

chirp signals’ bandwidth up to 320 MHz by means of 200 MHz clock frequency for the 

applications of Synthetic Aperture Radar (SAR) using a hybrid system based on direct digital 

frequency synthesizer. The conclusion of the acquired results and published contributions are 

shown in chapter 8.  
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2 Chirp Signals 

To begin, let us explain what the chirp signal is, and discuss why we want to use it. 

The chirp signal was given its name because it sounds like the chirp of a bird when 

played through a speaker. The word chirp in the dictionary means: a short, high pitched 

sound, such as that made by a small bird or insect.  

Chirp signals are also known as Linear Frequency Modulated (LFM) signals, and are 

angle modulated sweeping signals. These signals sweep through the entire frequency 

bandwidth B[Hz] from one end to the other in form of a sinusoidal waveform of a constant 

amplitude and within a certain time T[s]. If this sequence of frequencies is swept from the 

lowest to the highest frequency limit, it is called an Up chirp, while in the opposite direction it 

is a Down chirp. 

A chirp signal, in mathematical term, is defined as: 

)exp()()( 2tjtjtats αβ +=  ( 2.1) 

Where ( ) 1 0 pa t for t t= ≤ ≤  and zero otherwise; pt is the chirp pulse duration [6]. For 

an efficient explanation we will consider that both α and β are positive quantities; and α or 2α 

is the chirp rate, and the chirp pulse is a phase modulated (PM) signal. 

 We can define the instantaneous frequency of the chirp pulse within the interval

0 pt t≤ ≤  by differentiating the phase of the chirp signal in ( 2.1) with respect to the time; this 

is shown as follows: 
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t

tt
dt
dtip

αβ

αβω

2

)()( 2

+=

+=
 ( 2.2) 

Note that with 0α > , the instantaneous frequency is an increasing function of time; in 

this case the chirp is called upsweep. The minimum value of ),(tipω is β , and its maximum is 

2 ptβ α+ . The spectral support band of a chirp signal is approximately bounded by these 

minimum and maximum values, where |𝑆𝑆(𝑓𝑓)| > 0 for [ , 2 ]ptω β β α∈ + . Thus, the carrier 

(midfrequency) of a chirp pulse is c ptω β α= + , where its baseband bandwidth is 

0 ptω α± = ± . 

Why do we want these kinds of signals particularly for radar applications?  

The answer of this question is based on two requirements. Firstly, we want to consider 

how a radar system operates. A short burst of radio frequency energy is emitted from a 

directional antenna and then targets aircrafts and other items reflect some of this energy back 

to a radio receiver, which is located next to the transmitter. Since radio waves travel at a 

constant velocity, the elapsed time between the transmitted and received signals provides the 

distance to the target. This brings up the first requirement for the pulse: it needs to be as short 

as possible. For example, a 1 microsecond pulse provides a radio burst about 300 meters long. 

This means that the distance information we obtain with the system will have a resolution of 

about the same length. If we want better distance resolution, we need a shorter pulse [7].  

The second requirement comes as the following: if we want to detect and measure 

objects farther away, more energy is needed in the pulse. Unluckily, more energy and shorter 

pulse are conflicting requirements. The electrical power needed to supply a pulse is equal to 

the energy of the pulse divided by the pulse length. Requiring both more energy and a shorter 
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pulse makes electrical power handling a limiting factor in the system. The output stage of a 

radio transmitter can only handle a certain peak power without destroying itself.  

Chirp signals present a way of breaking this limitation. Earlier than the impulse 

reaches the last point of the radio transmitter, it is passed through a chirp system. Instead of 

bouncing an impulse off the target aircraft, a chirp signal is used. After the chirp echo is 

received, the signal is passed through a matched filter, and restores the signal to an impulse. 

This allows the portions of the system that measure distance to see short pulses, while the 

power handling circuits see long duration signals. This type of wave shaping in form of 

matched filtering is a fundamental part of modern radar systems. 

From a theoretical point of view, chirp signals provide an astonishing number of 

advantages. They substantiate the following ideal features of a fundamental nature in 

communications engineering: 

• They have a quasi ideal rectangular spectrum to utilize the channel's capacity and to 

offer an optimal lowest spectral power density compared to all other existing 

transmission signals. 

• They are programmable with respect to processing gain, which means that it is 

possible to achieve determinable distances in ranging while at the same time 

suppress adaptively disturbances and noise. 

• All three main modulation modes can be applied at the same time, each of which 

contributes specific physical parameters for optimal transmission properties, as 

follows:  

FM (Frequency modulation) contributes a robust transmission by a big time 

bandwidth product and also guarantees an ideal spectrum shaping and processing 

gain. 
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AM (Amplitude modulation) which is generated by the transformation of the chirp 

signal, contributes the ideal spectrum as well as an ideal envelope function. The 

kind of this function is a sinc function with the shortest duration possible at any 

given bandwidth, in order to use time effectively. This means if we apply the AM 

technology to chirp signal which is generated by the transformation of the chirp 

signal in order to change the rectangular amplitude of chirp signal by using a given 

window function practically. Therefore, it is possible to achieve both an ideal 

rectangular spectrum and an ideal envelop function. If this amplitude modulation is 

proper, then this envelop function can be a sinc function. 

PM (Phase modulation) contributes the capability to transfer single bits in BPSK 

(Binary phase-shift keying), QPSK (Quadrature phase-shift keying) or a higher 

multiphase angle modulation mode. It allows the transmission of bits by a 

combination of multi chirp modulation [8]. 

• They allow a high resolution on time axis and are, therefore, the best suited for 

ranging. 

• They enable systems that provide a very short latency by asynchronously working 

correlative transmission systems. 

• Chirp signals prove the ability to superpose these long signals to allow the data rate 

and bit energy to vary adaptively or to generate multi chirps in different 

combinations, which results in other advantages. 

• They can be processed in an analogue way to realize low power solutions. 

• Chirp Spread Spectrum (CSS) signals are resistive against overloading if chirps do 

not overlap. 
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• Chirp Spread Spectrum (CSS) signals are approximately resistive against multi 

paths effects. 

• Chirp Spread Spectrum (CSS) signals do not fail because of Doppler shifting, but 

they provide wrong distances! 

• Chirp Spread Spectrum (CSS) signals can be processed asynchronously and present 

advantages in comparison to other systems which need to be synchronized. This 

facility lowers latency and improves coexistence ability. 
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3 State of the Art Methods for 

Generating Digital Chirp 

Signals 

Several applications require linear chirp (sweep) signals, i.e., a sweep where both phase and 

frequency must be specified for all times. These applications are Synthetic Aperture Radar 

(SAR), systems characterization, sonar, acoustic imaging, etc [9-12]. Other usages may lie in 

phase coding of sweep signals in communication applications. A well known use of digital 

chirp signals is the determination of the systems response with network analyzers. As the 

excitation signal itself is used for the synchronous demodulation, and a coherent measurement 

is in fact performed without actually knowing the phase.  

Digital chirp generators exhibit the advantages of digital techniques, i.e., stability, 

flexibility and low cost. In addition, the parameters of a digital by generated sinusoidal are 

easy to control. In this chapter, we will discuss as a literature survey the generation of digital 

chirp signals using different methods and techniques.  

3.1 Pedersen’s Chirp Generator 

In 1990, Pedersen [5] proposed his method in order to generate digital chirp signals, based on 

real time digital evaluation of the phase of the desired swept signal, and then reading its value 

from a look-up table (LUT) of length ( 2 )KL L = . The methodology of this technique is based 

on a digital approach, which minimizes the restrictions of previously known techniques, i.e., 

limited frequency range or limited signal duration. This digital chirp system performs the 

following functions: 
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a. Real time generation of the phase of a linearly swept signal. 

b. Extraction of mod (2 )π from the total phase. 

c. Generation of the desired sine or cosine swept signals by means of a LUT. 

When the phase of a linearly swept signal is produced, both start phase and start frequency 

are specified. The sweep rate can be varied over a wide range in multiples of two. However, 

arbitrary sweep rates can be obtained by allowing the clock frequency to be variable. 

Moreover, by employing two sweep modules the in-phase and quadratic-phase components of 

a chirp signal may be produced. In addition, multiple coherent digital chirp signals can be 

produced by driving several sweep modules from the same clock. 

In the following section, we will show the mathematical description, which required and 

needed to understand the novelty of the approach presented later. 

3.1.1 Mathematical Description of the Chirp Generator 

As a mathematical description for the chirp signal, we will consider ( )w t as the instantaneous 

frequency of a linearly swept signal with start frequency of 1w  and sweep rate of S (Hz/s). 

The description of ( )w t  is given as:  

1( ) 2w t St wπ= +  ( 3.1) 

The corresponding instantaneous phase is obtained by integrating ( 3.1) : 

0)( 01
2 ≥++= ttwStt φπφ  ( 3.2) 

( )tφ contains a quadratic term corresponding to the linearly varying frequency (S is the sweep 

rate), a linear term corresponding to the start frequency, and a constant term 0φ   

corresponding to the start phase. 
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The generation of the coherent digital chirp signal is achieved by applying a double 

integration for the constant sweep rate in the time domain in order to obtain ( 3.1) and ( 3.2), 

then extracting of mod (2π) from the total phase, after that the generation of the desired sine 

or cosine swept signals by means of the look-up table will take place. 

Figure  3.1 illustrates the functional block diagram of Pedersen’s chirp generator, 

which produces a quadratic phase function by digitally integrating a clock signal twice. 

Mod(2π) sin() or
cos()

Constant
Source

Time 
Integration

Time 
Integration

∫ dt ∫ dt

Chirp
O/P

β γ
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++
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tt p

p2÷

Sweep rate
 control
p

βα +t

γβα ++ tt 2)2/(

 

Figure  3.1:  Functional block diagram of the digital chirp generator 

 A constant value of α  is applied to the first integrator with the initial value of α . 

The output ( )tα β+  is applied to the second integrator with the initial value equal toγ . Then 

the result of the second integration is a quadratic function and equal to 2( / 2)t tα β γ+ + . The 

sweep rate is reduced by factors of 2, because of dividing the second integrator’s output by 2P

, where P is a specified integer. This gives a phase function equal to 2[( / 2 ) ] / 2Pt tα β γ+ + . If 

/ 2 2Pα π= , 1/ 2P fβ = , and 0/ 2Pγ φ= , with a comparison we can achieve the following 

equation: 
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pttt 2/])2/[()( 2 γβαφ ++=  ( 3.3) 

This equation is identical to ( 3.2). Now, taking the 2π modulus of ( )tφ  and performing 

a sine or cosine operation will generate a linear sweep in digital form in which the start phase 

and the start frequency have been preset. 

The actual digital implementation is shown in Figure  3.2, where the two integrations 

are performed by means of a counter and an accumulator. Both of them (the counter and the 

accumulator) should typically be 32 to 36-bits wide. 

Look Up Table
(Sinusoidal Evaluation)

Start Phase
Preset

Start Frequency
Preset

Clock Counter Accumulator

Digital-to-Analog
Converter

O/P

 
Figure  3.2: Simplified Block diagram of the implementation of the digital sweep generator 

Presetting the counter and the accumulator permits a specified start frequency and start 

phase, respectively. A subset (typically 8 bits) of neighboring outputs from the accumulator 

constitutes the address lines to a look-up table (high speed RAM or PROM) in which the 

desired function is stored, typically a sine or a cosine function. However, rectangular or 

triangular waveforms may be stored instead. The output of the look-up table is sent to a high 

speed digital-to-analog converter. 
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The sweep rate is determined by selecting the output lines from the accumulator to be 

used as address lines for the look-up table. Selecting address lines that contain the more 

significant bits of the accumulator output lines will produce a low sweep rate, while output 

lines containing the least significant bits will produce high sweep rate. 

The frequency of the clock in Figure  3.2 determines the highest frequency that the 

digital sweep generator can generate. If one assumes that the minimum number of samples 

required determining one cycle of the waveform is 5, and a maximum frequency of 10 MHz is 

required, then the clock frequency should be at least 50 MHz. 

A low-pass (LP) filter is placed after the digital-to-analog converter to remove the 

periodicity of the spectrum and the sampling effects in the time domain. The cutoff frequency 

for the LP filter should be chosen in order that the signal will not suffer any amplitude or 

phase effects due to the LP filter. 

In order to understand the way of operation in this generator, the 8 least significant 

bits from the accumulator are the address lines to the look-up table memory. Therefore, the 

encoded 8-bit output from the accumulator can have values from 0 to 255 and is designed to 

represent a phase between 0 and 2𝜋𝜋 radians where 0 corresponds to 0 radian and 255 

corresponds to (255 / 256) 2π×  radians. 

As the binary value contained in the 8 least significant bits of the accumulator 

increases quadratically towards (11111111), the output of the PROM goes through the values 

of a full sine cycle. When the first “overflow” from these 8 bits into the 9th bit of the 

accumulator occurs, one cycle of the sine wave has been completed. The frequency of the sine 

wave at a given point in time is determined by the number of clock pulses required to produce 

the “overflow.” With every repeated overflow, the selected set of accumulator output lines has 

cycled through a phase change of 2𝜋𝜋. The phase changes in a quadratic fashion, and, by 
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requiring at least 5 samples per cycle, the maximum frequency of the sweep signal has been 

reached when only 5 clock pulses are needed to increase the content of the 8 bits from one 

“overflow” to the next. 

When the entered lines to the look-up table (sinusoidal evaluation) are the lines 0-7 

instead of the lines 1-8, then the time to generate an “overflow” is doubled, or, consistently, 

the sweep rate is abridged by the factor two. The slowest sweep rate is achieved when the 8 

most significant bits from the accumulator are used as address lines. At any given clock 

frequency and sweep rate, the accumulator output lines which are less significant than the 8 

lines to the look-up table represent accuracy that is not utilized; in other words, some of these 

less significant lines would be used if the word-length in the look-up table were to be 

increased. The address lines greater than the 8 bits to the look-up table represent an unused, or 

unnecessary, part of the accumulator. Thus at the chosen sweep rate, there would be no 

change in the system performance if the accumulator were reduced in bit width until the 8-bit 

output lines constituted the most significant bits. 

As shown below, the width (in bits) of the counter and the accumulator determines the 

minimum sweep rate achievable. Since the maximum frequency is specified by the clock 

frequency, changing the start frequency from dc to some higher frequency and assuming a 

fixed minimum sweep rate will produce a reduced sweep time. 

The counter must never overflow during the time of one sweep. For example, a 32-bit 

wide counter is needed in order to have sweep duration of 30 seconds when a 100-MHz clock 

is used. A 32-bit wide counter will, as far as the counter is concerned, allow a 480 seconds 

sweep. However, if the accumulator is also kept at a width of 36 bits, it will limit the duration 

of the sweep to about 120 s, which is nonetheless, sufficient for most applications [5]. 



 

28 State of the Art Methods for Generating Digital Chirp Signals 

3.1.2 Derivations of the parameters for the digital chirp generator 

The parameters of the chirp signal have been defined in the previous section. A unit of system 

time pt  is specified as one period of system clock. A new system time function then is defined 

as pttT /=  = time measured in clock cycled. 

The basis for the quantitative analysis is the quadratic look-up table. Therefore, a new 

phase function ( )tθ  is defined as: 

2( ) mo d { ( )} ( ) 2t t t nπθ φ φ π= = −  ( 3.4) 

where n  is an integer such that 0 ( ) 2tθ π≤ ≤ . 

The three basic components of the digital system to be considered are the clock, the 

counter, and the accumulator, as shown in Figure  3.2. The clock produces a pulse every pt

seconds or equivalently, the clock output is 1 when expressed as a function of the system time

T . Since the counter is incremented by 1 every pt  seconds, it is equivalent to an integrator 

having a constant input.  
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As the counter is preset with the value 0X  the output, ( )X T is given by: 

 00
0

)( XTXdTTX
T

+=+= ∫  ( 3.5) 

Where ( )X T  is the counter content, 0X  is the initial content of counter, and at every 

clock cycle, the accumulator will add the current counter output to the accumulator value of 

the previous clock cycle: 

( ) ( ) ( 1)Y T X T Y T= + −  ( 3.6) 

( )Y T  is the accumulator content and ( )Y T in ( 3.6) may be considered the result of a 

differentiation of ( )Y T , as shown below, leading to an expression for ( )Y T . 

dTTXTdY

TXTYTY
dT

TdY

)()(

)(
1

)1()()(

≅

=
−−

=
 ( 3.7) 

00
2

0
0

0

2/

)()()(

YTXT

dTXTdTTXTY
TE

++=

+== ∫∫  ( 3.8) 

The content of the accumulator ( )Y T  can be considered as a phase value. However, 

since only a subset, k of the output lines from the accumulator is sent to the look-up table, the 

phase of the sweep signal in general is not equal to the phase stored in the accumulator. In the 

following derivations, 𝛽𝛽(𝑇𝑇) represents the phase, stored in the accumulator. 

It is important to note that the k least significant bits of the accumulator can contain a 

phase range of 0 − 2𝜋𝜋 radians 𝛽𝛽(𝑇𝑇) is defined from the numerical value of the content of the 

accumulator as follows: 
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






 ++
== kk

YTXTTYT
2
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2

2
)(2)( 00

2

ππβ  ( 3.9) 

If the accumulator is n-bits wide, the maximum phase value that can be stored is 

)2(2 kn−π  radians. Therefore, equation ( 3.9) is valid as long as 0 ( ) 2 (2 )n kTβ π −≤ ≤  rad. For 

the implementation of the sweep system, 8k =  has been used. The values stored in the look-

up table correspond to only one sine (or cosine) wave, and as seen from (3.3) the phase of the 

sweep signal is, therefore, equal to 2( ) mo d { ( )}T Tπθ φ= . 

The address size, k  of the sine look-up table determines the accuracy of the phase 

data to the look-up table. Of course, k  cannot exceed the size of the accumulator, and the k  

bits typically constitute only a small fraction of the total number of accumulator output lines. 

The selection of the k  bits used as address lines is defined by the parameter, p  as illustrated 

in Figure (3.3), where p  is the position of the least significant bit of the accumulator output 

which is used as an address line into the look-up table. The smallest value that p  can assume 

is 0p = . The k  input lines into the sine look-up table are then bits[ , 1, 2,..., 1]p p p p k+ + + − . 

Since the k input lines are shifted to the left by p  bits, relative to the least significant bit of 

the accumulator, 𝜃𝜃(𝑇𝑇) is equal to mod 2 { ( ) / 2 }kTπ β . From (3.8) one finds: 

2
0 0

2
/ 2( ) mod 2

2k

T X T YT πθ π
 + +

=  
 

 ( 3.10) 

The unused accumulator bits 0, 1, 2, … , p − 1 represent the accuracy and they are not 

utilized. As seen in Figure  3.3 below, the bits [𝑝𝑝 + 𝑘𝑘, 𝑝𝑝 + 𝑘𝑘 + 1, 𝑝𝑝 + 𝑘𝑘 + 2, … , 𝑛𝑛 − 1] are not 

used either; because these bits represent a count of the number of completed cycles, which is 

unrelated to the signal generation. 
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Figure  3.3: Definition of the output lines from the accumulator 

The sine look-up table has the size of 2k q× , where q  is the number of bits used to 

represent the sine data in the PROM table, typically k q= . Since sin⁡[𝜃𝜃(𝑇𝑇)] varies from 1−  

to 1 and the data in the look-up table vary from 0 to 2𝑞𝑞 − 1 , the binary words from the look-

up table to the analog-to-digital converter take the form of: 

(2 1) (cos[ ( )] 1)( )
2

q

out
TV T θ− ⋅ +

=  ( 3.11) 

Recalling that pttT /= and 𝜃𝜃 can be converted from the system time, then 𝜃𝜃(𝑡𝑡) will be 

as follows: 

2 2
0 0

2

( / 2 ) ( / )
( ) mod 2

2
p p

p k

t t X t t Y
t πθ π+

 + + =  
  

 ( 3.12) 

By restating the phase function of a linear sweep ( )tφ  and the relationship between 

( )tφ  and ( )tθ , as given in equations ( 3.2) and ( 3.4): 

01
2)( φπφ ++= tftSt  ( 3.2) 

2( ) mo d { ( )} ( ) 2t t t nπθ φ φ π= = −  ( 3.4) 
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It can be seen that the phase function in ( 3.12) is the mod 2π of the phase function in 

( 3.2). However, the time dependence of ( 3.12) and ( 3.2) is the same.  

By comparing ( 3.12) and ( 3.2), the expressions for the variables in ( 3.2) can be shown 

as the following: 

12

2 2

(2 ) /

2 (2 ) /

p k
p

p k
p

S t Hz s

t rad sπ

−+

+

 =  
 = ⋅ 

 ( 3.13) 

radtXf p
kp 12

00 ])2[( −+=  ( 3.14) 

2 1
0 02 [(2 ) ] /p k

pw X t rad sπ + −= ⋅  ( 3.15) 

Another form for the equations ( 3.13) and ( 3.14), respectively is shown as follows: 

2( ) / 2 /p k
clkS f Hz s+=  ( 3.16) 

0 0( ) / 2p k
clkf X f Hz+= ⋅  ( 3.17) 

The other important values are given in( 3.18) and( 3.19) 

0
0

2
2p k

Y radπφ +

⋅
=  ( 3.18) 

2 1 1
0 0( ) [(2 ) ] [(2 ) ]p k p k

p pf t St f t t X t Hz+ − + −= + = +  ( 3.19) 

The sweep parameters in terms of the digital systems parameters are given by 

equations ( 3.13) -( 3.19). These are the desired results of the quantitative analysis.  

The sweep rate, given in ( 3.16), allows only variations in steps of two. However, it is 

clearly possible to select the three signal parameters S , 0f  and 0φ  freely when clkf , 0CO , 
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and 0AC  are considered as dependent variables. The difference in this approach is that clkf  

has been made a dependent variable. Thus based on ( 3.16) to( 3.18) the following expressions 

for clkf , 0CO  and 0AC  can be found: 

 2p k
clkf S+= ⋅  ( 3.20) 

0 0
0 2 2p k p k

clk

f fX
f S

+ += =  ( 3.21) 

0
0 2

2
p kY ϕ

π
+=  ( 3.22) 

 

The expressions in ( 3.21) and ( 3.22) can be used to determine 0X  and 0Y  for the 

desired start frequency, 0f  and start phase, 0φ  when the clock frequency is fixed. The stop 

frequency stopf  may be implemented by having a comparator generate a "clock disable" 

pulse when the content of the counter has reached a value, maxX  corresponding to stopf . It 

can be seen that if the initial counter contents, 0X  corresponds to 0f , then in a linear fashion 

maxX  corresponds to stopf : 

max 2stop stopp k p k

clk

f f
X s

f S
+ += =  ( 3.23) 

 

3.1.3 Bit number requirements of components 

From the sampling theorem, the Nyquist sampling rate, equal to twice the highest desired 

frequency component, maxf  determines the minimum sampling rate needed to accurately 

reproduce a waveform. However, in a practical implementation, it is customary to choose a 
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sampling rate 5 times higher than the highest frequency component. Since one sample per 

system clock period will be obtained: 

max

max

1/ 5

1
5 5

clk p

clk

p

f t f
ff

t

= =

= =
 ( 3.24) 

The highest clock frequency where the system can operate is the only constraint on 

maximum frequency. The lowest required sweep rate, minS  determines the necessary bit 

number of the accumulator and the counter. Assuming that the sweep starts from dc, minS  

may be described in terms of maxf  and the maximum sweep time, maxt  as follows: 

maxmaxmaxmax

max

max
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5/15//

)0(

tttftf
t

f
t
fS

pclk ===

−
=

∆
∆

=
 ( 3.25) 

When minS S=  and maxp p= . 

The necessary bit number of the accumulator is n  and it is given by: 

kpn += max  ( 3.26) 

As will be shown in the results later, the main disadvantages of Pedersen’s chirp 

generator are the high level of spurious harmonic distortion and the large memory size. Note 

that, the spurious harmonic distortion appeared as a result of discarding the least significant 

bits of the phase accumulator. 
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3.2 Digital Chirp Generator based on the fractional bits technique 

This section demonstrates a technique based on real-time evaluation of the chirp signal, with 

the phase equal to the phase difference between two independent chirp signals and two 

different sweep rates S1 and S2 [13]. The chirp signals with sweep rates S1 and S2 are 

generated by two separate digital LUT chirp generators. 

Generally, digital generators have the disadvantage of increased harmonic distortion 

caused by different numerical errors, the most significant of which comes from implementing 

the fractional addressing to improve the frequency resolution. Fractional addressing implies 

that the LUT is addressed by the bits of both: the fractional and integer parts of the address 

register [14, 15]. However, in Pedersen’s chirp generator, the fractional part is not used; thus, 

the produced signals have spurious harmonic distortion [14, 15]. This problem can be 

modeled as nonuniform sampling (i.e. a nonuniform number of samples per period of the 

chirp signal, and hence, non-periodic chirp signals). One method of reducing the distortion 

caused by nonuniform sampling [14, 15] is by linear interpolation of the missing samples [16, 

17]. 

In the fractional bits technique, this is addressed by a sample pointer m I F= +  to 

LUT with length L, where 𝐼𝐼 and 𝐹𝐹 are the integer and fractional parts, respectively. This chirp 

generator uses the trigonometric identity method, which is based on expanding 𝑠𝑠𝑠𝑠𝑠𝑠[(2𝜋𝜋/

𝐿𝐿)(𝐼𝐼 + 𝐹𝐹)] as follows: 
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The value of the total phase of 2
0 0( ) cos( 2 )s t A St f tπ π φ= + + , where S is the sweep 

rate, 0f as a start frequency and 0φ is the initial phase, can be considered as the sample pointer 
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m  with I  and F  being the integer part and fractional part of the total phase, respectively. 

The integer-fraction technique utilizes two digital chirp generators. Each digital chirp 

generator can be considered as a Pedersen chirp generator. The analysis of this structure starts 

when the content of the two accumulators at time t  is given by: 
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Where 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜  and 𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜  are the start frequency and start phase of the thi  digital chirp 

generator in Figure  3.4. 

Since a subset, iK , of the output lines from the accumulators are sent to the look-up 

tables and the iK  input lines into the look-up tables are shifted to the left by ip  bits, the total 

phase of the thi  chirp signal can be shown in the following by: 
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Where 𝐿𝐿𝑖𝑖 = 2𝐾𝐾𝑖𝑖 . The values of the total phase in ( 3.29) can be considered as the 

sample pointer 𝑚𝑚𝑖𝑖 = 𝐼𝐼𝑖𝑖 + 𝐹𝐹𝑖𝑖 , i=1,2 with iI  and iF  being the thi  chirp generator integer and 

fractional parts. The chirp or sweep signals from LUT1 and LUT2 are represented by the 

following equations: 
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The sweep rates generated by both digital chirp generators are given by: 



 

37 State of the Art Methods for Generating Digital Chirp Signals 

sHz
L

f
S p

clk /
2 1

2

1 1
=  ( 3.32) 

sHz
L

f
S p

clk /
2 2

2

21 2
=

 
( 3.33)

 

Modulation techniques can be used as in Figure  3.4 to obtain the phase difference 

between two sweep functions as obtained by: 

















−
















=








− 2

2
1

1
2

2
1

1
2

2
1

1

2sin2cos2cos2sin22sin m
L

m
L

m
L

m
L

m
L

m
L

ππππππ  ( 3.34) 

 

Digital Chirp
Generator 1

Digital Chirp
Generator 2

∑









1

1

2sin m
L
π









2

2

2sin m
L
π








1

1

2cos m
L
π









2

2

2cos m
L
π

+ −
)(nso  

Figure  3.4: Schematic diagram of the fractional bit digital chirp generator structure 

1 1 2 2( ) sin[(2 / ) (2 / ) ]os n L m L mπ π= −  

The output chirp signal, which is denoted by 1 2( , )oS m m , is given by: 

1 2
1 2 2 1

1 2

( , ) sin 2o
m mS m m L L
L L

π
  

= − >  
  

 ( 3.35) 

The generated phase of the chirp generator in this section is written as: 
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The generated sweep rate, of this chirp generator, can be shown by using ( 3.36) and is given 

by: 
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Consequently, the start frequency and start phase can also been written as: 
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If we select identical addresses, this means that 1 2p p p= = , then ( 3.37) can be 

written in the following form 
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By assuming 𝐿𝐿1 = 𝐿𝐿2 − 1 and 𝐿𝐿2 is divisible by 4, it is clear that 𝐿𝐿1 is not divisible by 

4, then ( 3.40) can be written as 
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S p

clk
g /

2 12

2

=  ( 3.41) 

In conclusion, comparing the sweep rate of this chirp generator and the Pedersen 

sweep rate, it is clear that this chirp generator is equivalent to Pedersen’s generator with table 

length 𝐿𝐿 = 𝐿𝐿2𝐿𝐿1. This chirp generator is more suitable for the applications, which need an 

extremely low sweep rate and it can be calculated based on ( 3.41). Moreover the chirp 
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generator mentioned in this section can reach sweep rates lower than that of Pedersen by a 

factor of (2𝐾𝐾 − 1) assuming that the Pedersen LUT length is equivalent to the LUT length of 

the second chirp generator (𝐿𝐿2 = 2𝐾𝐾) as in Figure  3.4.  
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4 Direct Digital Frequency 

Synthesizer 

4.1 Introduction 

The first step of generating digital chirp signals starts with implementing a Direct Digital 

Frequency Synthesizer (DDFS) and combining it within the hybrid architecture (proposed 

architecture) in order to generate chirp signals with a quadratic phase and extremely high 

quality. 

This chapter describes in detail the basic implementation, methodology and the 

practical consideration of the DDFSs, which generate single phase or quadrature sinusoids 

with excellent frequency resolution, good spectral purity and phase continuity on switching 

[18]. DDFS plays an important role, both in modern communication systems and in 

measurement instrumentation.  

The DDFS, viewed as a single functional unit, accepts a normalized input frequency 

control word (FCW) and generates a sequence of samples of sine and cosine functions having 

the precise frequency dictated by the input FCW. Fast frequency switching is crucially 

important in modern wireless communication systems such as Time Division Multiple 

Access/Code Division Multiple Access TDMA/CDMA digital cellular systems and spectrum-

spread wireless LANs. For example, the TDMA system may require that the carrier frequency 

have to be switched during a signal slot, that is, the change must be accomplished within 100 

μs. 

The advantages of the digital components, which can be relied upon, include direct 

processing control, high programmable ability, small area, fast switching speed, low phase 
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noise, excellent stability, and low power consumption, (which is essential requirement  in 

wireless devices), and reduced device complexity. This type of circuit has improved over the 

past three decades as silicon technology has matured, and became widely applied in modern 

communication systems. 

4.2 The traditional DDFS 

The Pedersen methodology applies the modification to the phase generation circuitry of the 

direct digital frequency synthesizer in order to produce the synthesized chirps.  

The first model of DDFS was introduced by Tierney et al. [4] in 1971. As shown in 

Figure  4.1, it consists of two main blocks namely as phase accumulator (PA) and phase-to-

sine-amplitude converter (PSAC) or sine/cosine generator. The PA block consists of an over-

flowing adder and a feedback register. The second block consists of a PSAC which is 

traditionally implemented digitally using a ROM and can be followed by a digital to analog 

converter (DAC) and a low pass filter (LPF) if an analog output is desired. 
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Figure  4.1: Simplified schematic of a quadrature DDFS 

The PA is a variable-increment N-bit counter as shown in Figure  4.1, the output is 

increased by Frequency Control Word (FCW) for every successive clock pulse interval,

clkclk ft /1= . It produces a ramp by integrating the value of the FIW, which varies in the 
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interval 1[0, 2 ]N− . As shown in Figure  4.1, the frequency of the generated sine wave is 

controlled by (FCW) as shown in Figure  4.2, and the following equation shows the frequency 

relationships of the DDFS structure. 

1
min

min

20
2

−≤≤•=

=

N
out

N
clk

FCWFCWff

ff  ( 4.1) 

minf  is the minimum synthesizable frequency, clkf  is the clock frequency, N is the 

word length of the phase accumulator, outf  is the output frequency, FCW is the frequency 

input control word, and the frequency resolution of the synthesizer is 
N

clkf
f

2
=∆ . 

 

Figure  4.2: Effect of FCW values on output sine wave. 

When ( )nφ , the content of the PA, is greater than 2π then the accumulator overflows 

and resets to 0. The period of the sine signal is represented by 1 2N

clk
out

T t
f FCW

= = × , which 

means that the larger values of FCW the phase will be increased at faster rates. Consequently, 

higher frequencies will be generated. 
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The sine/cosine generator maps the output data of the PA to the approximated 

(quantized) sine amplitude. The function of the DAC is to convert the output sine wave to an 

analog signal form. The spectral purity of the sine wave is also enhanced by the LPF, which 

attenuates and filters out unwanted high frequency signals that are present due to the digital 

approximation. 

4.3  A demonstration for the functionality of DDFS 

The DDFS in Figure  4.1 generates the outputs corresponding to an input FIW. To understand 

the operation of the DDFS, let us assume that the PA is implemented using N = 8-bits and an 

infinite precision PSAC in which the amplitudes of the samples of the sinusoidal signal are 

not quantized. The 8-bit PA output value represents an angle corresponding to one of the 256 

equally spaced angles from )20[ π− . For example, the 8-bit PA output '00000000' represents 

the angle 0 radians, and ‘11111111’ represent the angle 255 2 / 256 2 /128π π π× = − . 

Let us assume that the DDFS input FCW = '00000100', which corresponds to an 

angular frequency of 4 2 / 256 / 32π π× =  radians/sample, is applied at time 0n =  and that 

the PA output at 0=n  has been reset to '00000000'. Thereafter, at each clock pulse, the adder 

in the PA will add the preceding PA output stored in the register to the input FCW. This will 

generate successive angles 0, / 32, /16,3 / 32, / 8,...π π π π  and so forth. At 63n =  the PA 

content is ‘11111100’ and adding  FCW  to this content an overflow will occur and the PA 

output  is set to ‘111111111’ at 64n = . This sequence of 64 samples form a complete cycle 

of the sinusoidal waveform, the adder will start again from ‘00000000’ and so on. 

If the input FCW is changed from ‘00000100’ to ‘00001000’ (i.e., the FCW is doubled 

from / 32π  radians/sample to /16π  radians/sample) immediately after 64n = . The 

overflowing accumulator will begin incrementing the PA output according to the new FCW 
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and will generate output values corresponding to the following sequence of angles 

0, /16, / 8π π  and so forth for 64,65,66,...n =  respectively [19].  

The PSAC following the PA in Figure  4.1 generates the DDFS outputs by taking the 

binary words sequence at PA output and performing a mapping from the angles to their 

corresponding sine and cosine values. The DDFS outputs for the PA output sequence 

generated from the input 00000100FCW =  for 0 64n≤ ≤  and the input 00001000FCW =  

for 64 96n≤ ≤  are given in Figure  4.3. The outputs for 0 64n≤ ≤ , plotted by circles in 

Figure  4.3, correspond to the first FCW of / 32π  radians/sample, while the outputs for 

64 96n≤ ≤ , plotted by asterisks in Figure  4.3, correspond to the second FCW of /16π  

radians/sample. 

As illustrated in Figure  4.3, the frequency of output sinusoids for 64≥n  is twice the 

frequency of output sinusoids for 64n < . This is due to the doubling of the input FCW, 

occurring at 64n = , which causes the phase accumulator to sweep the unit circle twice as 

fast. This figure shows also the phase continuity in both sine and cosine functions. This figure 

also shows the phase continuity in the case of sine and cosine functions. 

The overflowing characteristic of the phase-accumulator adder performs the necessary 

mod(2 )π  operations, mapping all phase angles greater than 2π  to their corresponding angles 

between zero and 2π  [19]. 
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Figure  4.3: Sine and cosine DDFS outputs generated from the PA outputs  

 

4.4 Practical considerations for DDFS 

In order to limit the complexity of the Phase to Sine Amplitude Converter (PSAC), it should 

be built with a reasonable amount of hardware; the PA output is typically truncated before 

being fed to the PSAC, as shown in Figure  4.4, where only M  bits out of N  bits are retained. 

This phase truncation causes errors (deterministic, periodic errors, often referred to as noise) 

at the DDFS output formed as a set of spurious frequencies (output signal components at 

undesired frequencies). Furthermore, the PSAC has finite precision outputs and its 

implementation may employ approximations and quantization operations that also generate 

deterministic noise at the DDFS output, hence, contribute another set of spurious frequencies. 

Spurious frequencies are often referred to as spurs [20]. The spurs caused by phase truncation 

are referred to as phase-truncation spurs, while the spurs resulting from PSAC imperfections 

are referred to as PSAC spurs. 
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The sine and cosine functions have symmetry properties that are exploited in DDFS design to 

reduce the complexity of the PSAC implementation. In general, the complexity of the PSAC 

implementation grows with an increasing number of PSAC input bits k as in Figure  4.4. For 

example, if the PSAC accepts the M  bits as the address to a LUT with pre-computed and 

stored values for the corresponding sine and/or cosine functions, each increase of one bit in 

M  would increase the LUT size by a factor of two. There are many alternative and more 

efficient implementation techniques for the PSAC such as those reported in [21-24]. In these 

techniques, the complexity of the PSAC grows with increasing M , but may not grow 

exponentially as in the direct LUT case. 
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Figure  4.4: General structure of a practically realizable DDFS. 
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4.5 ROM Compression Techniques 

The phase to sine amplitude converter is a digitally implemented device which converts 

digital phase input from the PA to output amplitude, which is often a sine look-up table 

(LUT) stored on a Read Only Memory (ROM). The LUT size is 2N  words and contains 

quantized amplitude values of one cycle of the waveform to be generated. The truncated PA 

output represents an address word that indicates the position in the LUT to be addressed in 

order to read the amplitude of the waveform, which is stored in the ROM. The frequency and 

amplitude resolution can be improved by increasing the number of memory locations and the 

length of memory words, in other words by a larger ROM size. Unfortunately, larger a ROM 

size means higher power consumption and lower speed. For this reason, many techniques for 

ROM reduction, which can achieve high frequency resolution and sufficient spectral purity, 

have been presented. The most important ROM compression techniques are exploitation of 

sine function symmetry, Taylor Series Approximation [24], Sunderland and its modified 

Architecure [21], and Nicholas Architecture [25]. 
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5  Problem Definition and 

Introduction to the Solution 

5.1 Problem definition 

The goal is to implement a simple chirp generator with a maximum Spurious Free Dynamic 

Range (SFDR), less power consumption, fast operations and low cost hardware complexity. 

All of the previous methods for generating chirp signals reported in literature are suffering 

from at least from one of the features mentioned above. 

The generation of the digital chirp signal based on the LUT method causes a big sized 

memory in addition to the spurious harmonic distortion as a result of neglecting some of the 

least significant bits of the generated quadrature phase, as mentioned in the previous methods. 

For the generation of this phase a counter and an integrator has been used to achieve the 

required phase, as shown in Figure  5.1. Here the presetting of the counter initial value (𝐶𝐶𝑂𝑂0) 

and that of the accumulator (𝐴𝐴𝐶𝐶0) specify the start up frequency 𝜔𝜔1 and the starting phase 0φ . 

CLOCK COUNTER ACCUMULATOR
)(tφ

 

Figure  5.1: The generation of the quadratic phase )(tφ  

The chirp signal is a sinusoidal function of a phase ( )tφ  with a quadratic term of time 

t  corresponding to linearly varying frequency (the sweep rate, S). As shown in the following 

equation: 
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)sin())(sin( 01
2 φπφ ++= twtSt  ( 5.1) 

The approach of Pedersen is based on real time digital evaluation of the phase of the 

desired chirp signal, and then reading its value from a look-up table (LUT) with the length 

(𝐿𝐿 = 2𝐾𝐾). The main disadvantage of Pedersen chirp generator is the high level of spurious 

harmonic distortion and the large size of the ROM [3, 26]. A chirp generator was reported in 

chapter  3.2 in which the fractional bits are utilized to interpolate the sample values that are not 

stored in the LUT and therefore increase the effective LUT length. This technique is known as 

fractional addressing, and was utilized to reduce the level of spurious harmonic distortion. 

The major disadvantage of the digital chirp generator in chapter 3.2 is that it requires the 

implementation of two independent chirp generators and then evaluating the phase difference 

between the two generated chirp signals. The hardware requirements, therefore, make its 

implementation costly. 

For Synthetic Aperture Radar (SAR) applications, it is hard to generate a digital chirp 

signal with 200-400MHz bandwidth using one thread as in the previous methods e.g. 

Pedersen… etc. 

5.2 Introduction to the solution 

Some compression techniques as mentioned in chapter 4.5 are used to reduce the size 

of the required memory, and manage this issue, and then are used to generate a chirp signal; 

they solve the issue of the big sized memory, but at the same time another problem appears 

like the level of the spectral purity, hardware complexity, etc. These issues became the core of 

our problem and pushed us to implement an alternative chirp signal generator with a novel 

methodology which handles the above mentioned drawbacks. 



 

50 Problem Definition and Introduction to the Solution 

The new methodology intends to implement a polynomial evaluation unit based on the 

piecewise parabolic interpolation technique to reconstruct the sinusoidal function with small 

sized memory, then combine it with a hybrid system which consists of Pedersen’s method and 

the polynomial evaluation unit as an efficient a ROM compression technique. Ultimately, the 

small size of the memory can avoid the slowdown of the chirp generator’s operation.  

A further enhancement for the new architecture is applied in order to increase the 

spectral purity of the generated chirp signal. This enhancement is based on increasing both the 

order of the interpolation equation and the number of sections per quarter in the generated 

sinusoidal function (increasing the number of samples per quadrant), furthermore applying an 

optimization technique on the harmonics calculations. 

The realization of the proposed system using the technology of the FPGA technology 

will show a promising architecture, because it is implemented with the less hardware 

complexity than the other generator in the literature. 

As a solution for the high bandwidths digital chirp signals, a smart solution will be 

presented to increase the bandwidth in order to be suitable for SAR applications. This solution 

is summarized by implementing and using the parallel processing technique and generates 

four threads instead of one. 
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6 A novel and Improved Digital 

Chirp Generator 

6.1 Introduction 

The improved generator is based on the direct digital frequency synthesizers’ (DDFS) 

technique not on the technique of the phase-locked loops (PLL), because there are a number 

of advantages offered by DDFS over PLL implementations that are very important in terms of 

performance improvement and superior capabilities. Some of these advantages are: 

1- Fast Switching Speed: The DDFS is an open loop circuit without any feedback. A 

DDFS may be tuned between any two frequencies in one clock period (pipelined), 

which is typically less than 100 ns [20]. Certainly, the switching speeding cannot be 

less than the overall latency of the digital gates. Being in the nano second range, the 

tuning latency of the DDFS is significantly less than other types of synthesizers such 

as PLL. 

2- High Frequency Resolution: when / 2N
clkf f∆ = , it can be seen that we can get 

precise frequency tuning by increasing the number of bits of the PA. Most DDFS have 

frequency resolutions in the Hz and μHz levels.  

3- Low Phase Noise: The stability of the output frequency is determined by the stability 

of the reference frequency. Therefore, the phase noise is equal to or less than the 

reference frequency. Generally, the reference frequency is generated by a fixed crystal 

oscillator. Thus, the phase noise can be dramatically reduced. 

4- Phase Continuity: if a new FCW is applied to the input of the PA, the DDFS will 

rapidly synthesize the new frequency. However, due to nature of the PA, the phase 

continuity is inherently guaranteed. 
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5- Stability of Output Frequency over a Wide Bandwidth: The minimum output 

frequency of DDFS is the minimum resolution of the reference clock frequency, or the 

resolution of the PA. According to Nyquist sampling theorem, a DAC can recover the 

signal if the frequency is less than half of the reference clock frequency [20]. 

Therefore, the maximum output frequency is equal to / 2clkf . 

Generally, there are two possible ways to improve DDFS: speed up the PA, and reduce 

the size of the ROM. These possible implementations are intended and directly related to 

obtaining higher speeds (higher frequencies or higher frequency resolutions) and reducing 

power consumption. In this thesis, we are going to deal with the reduction of the ROM size in 

the chirp generator, since ROM is a major consumer of system power and typically occupies a 

large portion of the chip area [27]. 

 

6.2 The Proposed Architecture of the Digital Chirp Signal 

Generator  

The proposed system is a hybrid of the digital chirp generator and the system using 

interpolation based direct digital frequency synthesizer as published in [28-30]. The 

interpolator uses predetermined interpolation coefficients to fit the sine wave from the 

calculated phase instead of using a predetermined waveform stored in a big sized memory. 

This implies that a smaller look-up table for the sine and cosine functions is used compared to 

existing architectures with minimum hardware overhead, and the computation of the 

sinusoidal values is performed by a piecewise parabolic and extended to a piecewise-

polynomial approximation structure. Thus, only interpolation coefficients are stored in the 

memory. As a matter of fact, this work came to avoid the consequent problems of the large 

ROMs. The large ROMs slow down the chirp generator’s operation and increase the power 
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consumption [31]. The speed of the Chirp’s operation depends on the circuit complexity and 

the hardware overhead. Therefore, our proposed system with smaller ROM has less hardware 

and circuit complexity which avoids the slowdown of the generator’s operations. Figure  6.1 

shows the block diagram of the proposed digital chirp generator.  
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Figure  6.1: Block diagram of the proposed digital chirp generator  

In this chirp generator the start frequency and phase can be controlled by the initial 

content of the counter and the accumulator. Additionally, the sweep rate can also be 

controlled by the location and size of the address lines. This digital chirp generator uses the 

clock to trigger the counter (first integrator) and feeds the output to the accumulator (second 

integrator). In general, the phase of the sweep signal is not equal to the value of the phase 

stored in the accumulator because only a subset k of the output lines from the accumulator is 

sent to the look-up table as in Pedersen’s method. The proposed architecture, as shown in 

Figure  6.1, consists of a clock, counter, accumulator, and the decisive polynomial evaluation 

unit’s block, in addition to the digital to analog converter, respectively. 
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The polynomial evaluation unit contains the evaluating methodology for the sinusoidal 

waveforms, which are based on both exploiting the sinusoidal symmetry, and piecewise 

polynomial approximation techniques as a compression technique. In the following sections 

we will explain this compression technique in detail. 

As we will see later in the section  7.4, the proposed architecture as in Figure  6.1 will 

be improved and modified in order to achieve the goal of generating the chirp signal with high 

bandwidth using the parallel processing technique. 

 

6.3 Quadrant Compression Technique Using the Piecewise 

Parabolic Interpolation 

This technique uses the symmetry of the sine wave with the piecewise polynomial 

interpolation simultaneously, where the implementation of the sine mapping function is 

depicted in Figure  6.2, where the angle within [0, π/2] is represented by the LSBs (P-2), 

which feeds the piecewise polynomial interpolator in order to calculate the sine function. The 

two MSBs of the input phase determine in which quadrant the input phase lies in and perform 

its computations.  
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Figure  6.2: Quadrant compression architecture for single phase chirp generator  
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The quadrant compression architecture for single phase generator can be extended to 

compute the sine and cosine functions by using two piecewise polynomial interpolators. This 

extension is illustrated in Figure  6.3 in order to compute the sine and cosine functions in the 

[0, π/4] interval. If the input phase represents the angle in the [π/4, π/2] interval, then the input 

of the sine and cosine blocks is complemented while the outputs of sine and cosine blocks are 

swapped, since sin( / 4 ) cos( / 4 )x xπ π+ = −  and cos( / 4 ) sin( / 4 )x xπ π+ = −  [31]. 

Similar swapping and/or inversion operations take place if the input phase represents 

an angle belonging to second, third and fourth quadrant. The third MSB of the phase P is used 

to invert the input of both sine and cosine blocks, while the three MSBs of phase P are used to 

properly swap and/or invert their outputs.  
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Figure  6.3: Quadrant compression architecture for quadrature phase chirp generator 

 

The polynomial interpolation is an important and well known technique for computing 

very high precision approximations of the elementary functions, including exponential, 

logarithm, square-root, and various transcendental functions. This technique will be applied to 

our proposed chirp generator in order to make it more efficient than the other generators with 



 

A novel and Improved Digital Chirp Generator 56 

respect to the following important aspects: the size of the memory, the spurious harmonic 

distortion, complexity, and flexibility. 

 This architecture has four parameters that need to be adjusted in order to have a 

minimum low level of spurious harmonic distortion, and low hardware complexity. This 

system is also proposed to be able to generate a chirp signal with high bandwidth reaching up 

to 400MHz in order to use it in Synthetic Aperture Radar’s applications. These parameters are 

summarized with the degree of the polynomial approximation, the number of the piecewise-

continuous polynomial sections, the position of the segment bound, and the method for 

generating the interpolation coefficients in order to reconstruct the sinusoidal waveform. This 

methodology with the corresponding parameters will be explained in detail in the coming 

sections. 

Several DDFS design approaches have been proposed based on the following 

expression with various degrees of complexity [32]. All design approaches are specific cases 

of ( 6.1); it differs in only four main points. These points are the degree of the polynomial 

approximation, the number of piecewise-continuous polynomial sections per quadrant, the 

position of the bounds, and the method of calculating the polynomial coefficients kic . The 

expression in ( 6.1) shows the relationship of these parameters. 



 

A novel and Improved Digital Chirp Generator 57 





















=<≤−

<≤−

<≤−

=<≤−

≅

∑

∑

∑

∑

=
−−−

=
+

=

=

r

i
sss

i
sis

r

i
kk

i
kki

r

i

i
i

r

i

i
ooi

xxxxxxc

xxxxxc

xxxxxc

xxxxxxc

x

0
11)1(

0
1

0
2111

0
010

)1()(

)(

)(

)0()(

)
2

sin(



π
 ( 6.1) 

where 

x : is the phase argument, represented as a fraction in the interval [0,1)  

 r: is the degree of the polynomial approximation, 1r ≥  

s : is the number of piecewise continuous polynomial segments, 1s ≥   

kic : are the polynomial coefficients 

kx : is the lower bound of the thk  piecewise continuous segment.  

In the case where the quadrant is divided into equal length sections, the segment’s 

lower bound kx  is calculated by: 

{ }sk
s
kxk ,,2,1,0 ∈=  ( 6.2) 

In addition, if s  is equal to an integer power of two, then the subtraction ( )kx x− , for 

1k kx x x +≤ ≤  is accomplished trivially by truncating the 2log ( )s  MSBs from x . 
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6.4 The derivation of the used interpolants in the proposed 

digital chirp generator 

In the implementation of the proposed chirp generator, we will employ the piecewise 

polynomial approximation to further compress the ROM size of our generator, while 

maintaining or exceeding the spectral purity of the techniques mentioned before. As a hybrid 

system based on the direct digital frequency synthesizer, the techniques in [31, 33] will be 

adopted to achieve the new chirp generator with a good performance. 

The interpolated values ( )iy kT  can be achieved by entering the signal samples x(m) 

through a DAC, a time continuous filter, and then re-sampling the analog signal ( )y t  at t= 

kTi, as shown in Figure  6.4. It shows a hybrid analog/digital model for the interpolation filter, 

and converts the samples to a sequence of weighted analog impulses, which are applied to a 

time-continuous interpolating filter with impulse response ( )Ih t .  

DAC
TIME - CONTINUOUS 

FILTER
)(thI

Resample 
at t= k Ti 

Analog
Interpolated

Signals
Analog
ImplsesSignal

Samples

x(mTs) )( ikTy)(ty

Interpolants

 

Figure  6.4: Rate conversion with time-continuous filter 

 

The output of the filter is shown in ( 6.3) : 
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( ) ( ) ( ) ( ) ( )I s
m

y t x m h t mT y t x t= − ≠∑  ( 6.3) 

Where x(m) is a sequence of signal samples taken at intervals Ts. Then after re-

sampling ( )y t  at t= kTi, where Ti is synchronized with the signal symbols, and ( )Ih t is the 

impulse response. So the interpolated (the new samples) are given by ( 6.4): 

( ) ( ) ( )i s I i s
m

y kT x mT h kT mT= −∑  ( 6.4) 

In order to map the interpolation image, we have to recognize that m is a signal index 

and the filter index is defined by ( 6.5): 

int i

s

kTi m
T

 
= − 

 
 ( 6.5) 

where int[z] means largest integer not exceeding z. 

The base point index and the fractional interval are given by ( 6.6) and ( 6.7)  respectively 

int i
k

s

kTm
T

 
=  

 
 ( 6.6) 

0 1i
k k k

s

kT m
T

µ µ= − ≤ ≤  ( 6.7) 

The equation shown in ( 6.4) can be arranged and reformed as in ( 6.8) , if we know that 

1km m= − , ( ) ( )i s k skT mT i Tµ− = +  and the interpolants are re-sampled at time. In this case 

the following equation as shown in ( 6.8) is representing the fundamental equation for digital 

interpolation of data signals: 
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 ( 6.8) 

where { ( )}x m  is a sequence of signal samples taken at interval sT , kµ  is a fractional 

shift, km  is the base point index, and ( )Ih t  is a finite-duration impulse response of a 

continuous time analog interpolating filter as it is shown in ( 6.9). This kind of interpolation 

filter can be efficiently implemented using a new equivalent structure as in the Farrow 

structure [34]. 

The implementation assumes that the impulse response is a piecewise defined 

polynomial in each sT  segment (section) with 1 2[ , ]i I I∈ . 

[ ]
0

( ) ( ) ( )
N

n
I I k s n k

n
h t h i T b iµ µ

=

+ = ∑  ( 6.9) 

The coefficients ( )nb i  are fixed numbers, independent of kµ , determined by the 

filter's impulse response ( )Ih t . These coefficients are chosen to provide the widest pass-band 

and the strongest attenuation at multiples of the sampling frequency thus reforming robust 

interpolation. This operation and the sample time relations (Base point pivoting) are 

illustrated in Figure  6.5. 



 

A novel and Improved Digital Chirp Generator 61 

Fractional
 interval

Base point
 index

skTµ

skTm
sk Tm )2( +sk Tm )1( + sk Tm 1+sk Tm )1( −

jkT jTk )1( +jTk )1( −

INPUT SAMPLE TIMES

OUTPUT SAMPLE TIMES

Time

 

Figure  6.5: Base point pivoting 

We can consider )()( kykTy i = , after we substitute ( 6.9) in ( 6.8) and rearrange the 

terms to show that the interpolation can be performed as the following: 
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∑ ∑

∑ ∑
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 ( 6.10) 

In this work we will consider the generation of the sine chirp signal; so technically, the 

sine wave is divided into four basic quadrants; each quadrant is subdivided into sections as 

shown in Figure  6.6. 

The compression ratio can first be measured by a simple case in which only four 

sections (four base points) per quadrant are considered as illustrated in Figure  6.6. In this 

case, for each base point, three interpolation coefficients are required (V1, V2, V3). This needs 

a ROM size of 4 (base points) ×  3 (coefficients) = 12 words, by assuming that each word 

consists of 10 bits, then the total ROM size will be 120 bits. 
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By exploiting the symmetry of the sine/cosine wave, only the parameters that are 

relevant to one quadrant need to be stored, instead of storing values of the sine function 

directly in the ROM as in the traditional method, the interpolation coefficients will be stored. 

The Farrow structure as in [35] receives the input samples from the sine wave and 

performs the interpolation based on the neighboring three points. Therefore, for each base 

point (sample of the sine), three interpolation coefficients are computed. These interpolation 

coefficients are used according to ( 6.10) in order to compute the value of the sine wave at any 

arbitrary fractional delay specified by kµ . 

S1 S2 S3 S4

Time

A
pm

lit
ud

e

 

Figure  6.6: Sine wave partitioning 
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The implementation of the structure, which is based on the piecewise parabolic 

interpolation is described as the following: 

)2()2()2(),2( 3
2

21 VVVky kk µµ ++=  ( 6.11) 

where kµ is the fractional shift, n=2 is the base point index and k  is the fractional 

delay index. The interpolation calculation has been pre-computed for a specified number of 

base points (sections) of the sine wave and stored in a ROM. Each word in the ROM consists 

of (V1, V2, V3) which are in conjunction with the fractional delay kµ , and can be used to 

calculate intermediate points between two base points. 

As we will see later, when we increase the number of interpolation coefficients, the 

error will be further decreased. Equation ( 6.12) is a polynomial equation derived from ( 6.11); 

for a third order interpolation: 

)()()()(),( 4
3

3
2

21 nVnVnVnVkny kkk µµµ +++=  ( 6.12) 

Where kµ is the fractional shift, n is the base point index and k  is the fractional delay 

index. Let us express in Figure  6.7 the piecewise polynomial interpolation of the sine function 

in [0, / 2]π  for the third order approximation to be compatible with Figure 6.2 and Figure  6.3, 

and it will be inside the polynomial evaluation unit. 

The 2p −  LSBs of the input phase (representing an angle within [0, / 2]π ) feed the 

piecewise-polynomial interpolator, are used to compute the sine function. The two MSBs of 

input phase are used to determine the quadrant in which the input phase lies and to perform 

accordingly the required complementation [18]. The signal x represents the input phase 

[0, / 2]π  scaled to a binary fraction in the interval [0,1] . The range [0,1]  is subdivided in s 
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sub-intervals, with 2us = . The u  MSBs of x encode the segment starting point kx  and are 

used as an address to the small look-up tables that store the polynomial coefficients. The 

remaining bits of x represent the offset kxx − .  

ROM
constant coeff

ROM
3rd order coeff.

ROM
2nd order coeff.

ROM
linear coeff.

Polynomial
Calculation

u

kxx −

x

)(xf

ky

km

kp

kq

up −− 2

 

Figure  6.7: Piecewise-polynomial interpolation of sine function in [0, / 2]π  for a third-order 

approximation 

The polynomial calculation block computes the piecewise polynomial approximation 

of the sine function as follows: 

1;0

)()()()(

1

...1;1

32

==

≤≤
−+−+−+=

=+

s

skkk

kkkkkkk

xxwith
xxxfor

xxqxxpxxmyxf

 ( 6.13) 

For a piecewise parabolic approximation’s case 0kq = , while we have 0kp =  and 

0=kq  for a piecewise-linear approximation. 
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6.5 Spurious Free Dynamic Range (SFDR) 

The Spurious Free Dynamic Range (SFDR) is the usable dynamic range of a DAC before 

spurious noise interferes or distorts the fundamental signal.  SFDR is the measure of the 

difference between the fundamental and the largest harmonically or non-harmonically related 

spur from DC to the full Nyquist bandwidth (fS/2). In short, it is defined as the amplitude ratio 

between the wanted sinusoid and the largest undesired frequency component, and it is 

generally considered to be the most important parameter for communication systems 

applications [36]. Figure  6.8 shows how SFDR is measured correctly (usually it is measured 

in dBc). As shown in Figure  6.9, 95.6 dBc(1) is the SFDR of the generated chirp signal for 

order 2 and 16 section/quad, read from the plot. 

SFDR (dBc)

FREQUENCY

dB

INPUT SIGNAL LEVEL (CARRIER)

FULL SCALE (FS)

SFDR (dBFS)

WORST SPUR LEVEL

fs /2
 

Figure  6.8: Measure of  Spurious Free Dynamic Range (SFDR), as measured in [37]  

 

1) dBc (decibels relative to carrier) is a measure of the strength of an instantaneous signal at radio frequency . Suppose a 
signal has an unmodulated-carrier power of P 0 watts and a modulation signal power ofP watts at some specified instant in 
time. Then the instantaneous modulated signal strength in dBc, symbolized S dBc ,is: S dBc=10 log10(P/P0) 

http://searchnetworking.techtarget.com/definition/radio-frequency�
http://searchcio-midmarket.techtarget.com/definition/power�
http://searchnetworking.techtarget.com/definition/modulation�
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Figure  6.9: Output spectrum with 16 sections/quad 

6.6 Harmonics Calculation 

In this section we will analyze how to calculate the coefficients. Let us consider that the 

output of the digital chirp generator ( )g x  in terms of a Fourier series to be as the following: 

∑
∞

=






 ++=

1
0 )2sin()2cos()(

n
nn x

T
nbx

T
naaxg ππ  ( 6.14) 

We will consider here the generation of the sine chirp signal, and we will assume that 

( )g x  as a period of T=4 with an odd symmetry. Therefore the output can be represented by 

Fourier series as follow: 

∑
∞

=

=
1

)
2

sin()(
n

n
xnbxg π  ( 6.15) 

Since ( )g x  has quadrant symmetry, it’s even harmonics are zero. The amplitude of 

the odd harmonics are given by: 
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 ( 6.16) 

By substituting ( 6.13) in ( 6.16) with some calculations detailed in the appendix, we 

will obtain the following: 
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for odd n  and 0 otherwise, with: 

∑
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The coefficients kα , kβ , kγ , and kδ  in equations (2.17), (2.18), and (2.19) are, 
respectively, given by: 
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For a piecewise-quadratic interpolation, 0kq = , the coefficients δ  are zero and the 

function ( )m n  in ( 6.17) vanishes. In the case of piecewise-linear interpolation, both kp  and 

kq  will be equal to zero and consequently ( )l n  and ( )m n  will vanish too. Equation ( 6.17) will 

reduce to the following: 

)(
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8)(4)( 2 nh
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ng
n

nb
ππ

−=  ( 6.26) 

From ( 6.18)-( 6.21), it can be seen that the functions ( )g n , ( )h n , ( )l n , and ( )m n  are 

periodic in n with period 4s . Moreover, ( )g n  and ( )l n  have even symmetry, whereas ( )h n  

and ( )m n  have odd symmetry 
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 ( 6.27) 

As a result, the SFDR for the proposed system with the optimization is increased from 

97.6 dBc (in the non-optimized case) to 100.9 dBc. Both cases are illustrated in Figure  6.10 

and Figure  6.11  
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Figure  6.10: Output spectrum for 32 sections per quadrant with non-optimized parabolic 
approximation 

 

 

Figure  6.11:  Output spectrum for 32 sections per quadrant with optimized parabolic 
approximation. 
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In Table 1, we give a comparison between this work and the other techniques in terms 

of the memory size and SFDR; we can demonstrate that our proposed method presents the 

best solution for the application that simultaneously needs a small size for the ROM and high 

spectral purity for the signal. 

Table 1: Comparison of ROM size and SFDR for the proposed method and the other 

compression techniques in the literature 

Architecture ROM size (Bit) SFDR (dBc) 

This work 480 97.2 

Langlois and AL-Khalili [36] 448 84.2 

Eltawil and Babak [33] 600 80.1 

Belaour et al.[24] 960 77 

Nicholas et al. [25] 3072 90.3 

Tan and Samueli [38] 16382 96.4 
 

As a result of an optimized piecewise parabolic interpolation with 16 sections per 

quadrant and 10 bits word size, a value of SFDR 97.2 dBc can be achieved. Based on the 

tradeoff theory a higher value of SFDR can be obtained by increasing the number of sections 

per quadrant. 

6.7 Implementation and Simulation Results of the 

proposed chirp generator 

The chirp generator as seen in Figure  6.12 is tested by simulating Figure  6.16 and Figure  6.17 

within the polynomial evaluation unit in order to generate the optimum chirp. The counter has 

been set as a 32 bit unsigned up counter.  

The initial counter value 𝐶𝐶𝑂𝑂0 can be set directly in the block properties. The clock 

source for the counter is defined as the system clock. The accumulator has been set as 32 bit 

with wrapping output in case of overflow. Also, the initial value of the accumulator 𝐴𝐴𝐶𝐶0 can 

be set directly in its properties dialogue box. 
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For selecting the right bits-set for achieving the required sweep rate 𝑆𝑆, the block Slice 

has been used, which extract a sequence of length k bits starting from LSB bit with an offset  

p and represents it as new data value. 

 

 

Figure  6.12: Block diagram of the proposed digital chirp generator  

The implementation of the sections’ interpolation is depicted in Figure  6.17, while the 

exploitation of the sinusoidal symmetry architecture is achieved by simulating Figure  6.16. 

These architectures were implemented based on Horner’s scheme, which is based on an 

algorithm for efficiently evaluating the polynomials form and simultaneously describes a 

manual process by which one may approximate the roots of a polynomial equation. The 

Horner’s scheme can also be viewed as a fast algorithm for dividing a polynomial by a linear 

polynomial [39]. 

The following figures show the results after each block in the proposed system. Figure 

 6.13 shows the linear phase appears after the counter or the first accumulator, and Figure  6.14 

illustrates the quadratic phase is produced after applying the accumulator. At the end, a chirp 

signal is generated from the interpolation evaluation unit, this is depicted in Figure  6.15. 
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The architectures of Figure  6.16 and Figure  6.17 are combined under the polynomial 

evaluation unit to be an alternative solution to the structure of Farrow, which is shown in 

Figure  6.18 [34]. 

 

Figure  6.13: The output after the counter or the first accumulator 

  

 
Figure  6.14: The output of the second accumulator 
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Figure  6.15: The output of the evaluation unit (chirp signal) 

 

 

Figure  6.16: The block diagram of the simulated structure works as Farrow structure to generate the 

sine wave 
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Figure  6.17: The implementation of the section interpolation in Figure  6.16 

  

The proposed architecture is a multirate filter structure which has advantages to make 

it favourable and more practical than the Farrow structure; these advantages are summarized 

by choosing a high order FIR filter, simplicity in the implementation, and flexibility with 

installed parameters in order to generate the interpolation coefficients and reshape the 

optimum sinusoidal signal, The following figure shows the structure under ROM’s mask. 
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Figure  6.18: Farrow structure 
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A MATLAB program was written to implement the Pedersen system, where the direct 

LUT method was used in his approach. The program also evaluated the spectrum based on the 

proposed method. Assuming fclk=1/tp= 1 GHz, and the chirp signal start from DC CO0= 0 to 

reach fmax=125 MHz, with 8 address lines ( 8)k = . Therefore, the maximum sweep rate is 

Smax=390x1012 Hz/s. 

Figure  6.19 and Figure  6.20 show the amplitude spectra of the error sequence 

belonging to Pedersen’s chirp generator based on the LUT technique and the proposed 

generator with the method based on the piecewise polynomial approximation technique using 

16 sections per quadrant. These figures show the efficiency of the interpolation technique, 

where the level of the spectral purity of the signal is greatly increased. 

The obtained results show that as the value of the least significant bits increases, more 

undesirable spurious harmonic components are generated in Pedersen chirp generator 

samples, while the piecewise polynomial interpolation method compensate this increment in 

the distortion by increasing the number of sections per quadrant and the order of the 

interpolation equation. Thus, the proposed method is an efficient technique which improves 

the accuracy of the digital chirp signal generator and the spectral purity of the generated 

signal. 
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Figure  6.19: Output spectrum of the chirp signal using Pedersen’s method 

 

Figure  6.20: Spectrum of the chirp signal using the interpolation method 
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In the case of a piecewise linear interpolation, only two interpolation coefficients will 

be generated for each section; therefore the expression in ( 6.13) will be reformed as in the 

following: 
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 ( 6.28) 

 

Figure  6.21 shows the spectra of the signal in the case of linear interpolation 

approximation, with a different number of sections per quadrant, where the number of section 

plays an important role in decreasing the spurious harmonic distortion. 

 
 

Figure  6.21: Signal spectra in the case of linear interpolation with different number of 
sections/quadrant 
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To begin, we have to generate and acquire the interpolation coefficients, and the 

number of these interpolation coefficients is controlled by the number of sections per quadrant 

in addition to the order of interpolation equation. For instance, the piecewise parabolic 

interpolation coefficients with different number of sections per quadrant are shown in tables 

1- 4. In the case of 4 sections per quadrant we have to generate 3×4=12 coefficients. For 16 

sections per quadrant, we have to generate 3×16=48 coefficients, etc. 

We have noticed from our calculations that the number of sections per quadrant’s 

parameter has no serious effect on the results, when the order of the interpolation equation is 

equal to four or higher.  
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Table 2: Interpolation coefficients for  

4 secs/quad 

V1 V2 V3 

-3.8551 6.3797 -0.0005 

-10.9489 7.2571 -0.0286 

-16.3758 8.5948 -0.11
7 

-19.3096 9.6690 -0.2103 
 

Table 3: Interpolation coefficients for 

32 secs/quad 

V1 V2 V3 

-0.4995 6.2848 -0.0000 

-1.4671 6.3002 -0.0001 

-2.4312 6.3305 -0.0003 

-3.3894 6.3757 -0.0008 

-4.3395 6.4353 -0.0018 

-5.2791 6.5089 -0.0032 

-6.2059 6.5960 -0.0053 

-7.1179 6.6959 -0.0080 

-8.0126 6.8080 -0.0115 

-8.8881 6.9313 -0.0159 

-9.7422 7.0649 -0.0211 

-10.5728 7.2078 -0.0272 

-11.3779 7.3590 -0.0343 

-12.1556 7.5171 -0.0424 

-12.9040 7.6810 -0.0513 

-13.6214 7.8492 -0.0612 

-14.3059 8.0205 -0.0719 

-14.9559 8.1933 -0.0834 

-15.5700 8.3661 -0.0956 

-16.1465 8.5373 -0.1083 

-16.6841 8.7054 -0.1214 

-17.1815 8.8687 -0.1348 

-17.6376 9.0255 -0.1483 

-18.0511 9.1742 -0.1617 

-18.4212 9.3130 -0.1747 

-18.7469 9.4403 -0.1871 

-19.0274 9.5542 -0.1987 

-19.2621 9.6532 -0.2091 

-19.4504 9.7356 -0.2181 

-19.5918 9.7997 -0.2254 

-19.6860 9.8438 -0.2306 

-19.7328 9.8664 -0.2333 
 

Table 4: Interpolation coefficients for 

8 secs/quad 

V1 V2 V3 

-1.9485 6.3078 -0.0001 

-5.7405 6.5450 -0.0039 

-9.3119 6.9909 -0.0179 

-12.5255 7.5922 -0.0462 

-15.2577 8.2734 -0.0887 

-17.4036 8.9415 -0.1408 

-18.8806 9.4924 -0.1922 

-19.6321 9.8178 -0.2274 
 

Table 5: Interpolation coefficients 

for16 secs/quad 

V1 V2 V3 

-0.9835 6.2895 -0.0000 

-2.9108 6.3501 -0.0005 

-4.8101 6.4692 -0.0024 

-6.6630 6.6432 -0.0065 

-8.4518 6.8671 -0.0135 

-10.1592 7.1341 -0.0240 

-11.7688 7.4360 -0.0381 

-13.2650 7.7634 -0.0560 

-14.6334 8.1055 -0.0774 

-15.8610 8.4507 -0.1017 

-16.9358 8.7865 -0.1280 

-17.8474 9.0997 -0.1549 

-18.5872 9.3769 -0.1808 

-19.1480 9.6044 -0.2039 

-19.5244 9.7687 -0.2218 

-19.7128 9.8566 -0.2321 
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As we will notice, Figure  6.22 and Figure  6.24 are devoted to proving two important 

factors in our method which should be adjusted in order to achieve the minimum harmonic 

distortion. These factors are the order of the interpolation equation and the number of sections 

per quadrant.  

 We can clearly see in Figure  6.22 how important increasing the order of the 

interpolation equation is in order to decrease the spurious harmonic distortion. Figure  6.24 

shows the spectra of the chirp signals with different number of sections per quadrant and with 

third order interpolation equation 

 

 

Figure  6.22: Signal spectra in the case of piecewise parabolic interpolation with different 
number of sections/quadrant. 
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 In the following figure, we can see the generated chirp signal by our proposed method 

and at the same time show the phase continuity of the signal. 
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Figure  6.23: The generated coherent swept signal  by  the new technique (2 periods) 

 

 

Figure  6.24: Signal spectra in the case of third order interpolation equation and different 

number of sections/quadrant 
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7 Hardware Implementation of 

the Proposed System 

7.1 Introduction 

This chapter shows the practical aspect of the dissertation and the realization of the proposed 

system using the Field Programmable Gate Array (FPGA) technology. Here we will provide a 

complete description of the implementation of the proposed interpolation method for 

generating the chirp signal and the used tools. Our goal, by the end of this chapter, is to show 

the hardware realization of the digital chirp generator with a bandwidth of up to 320MHz. 

The second section will show the road map for using the platform and the summary for the 

most important features of this kit, while the third section shows step by step the 

implementation and programs for the proposed digital chirp generator. 

The last section of this chapter shows a smart and unique parallel processing technique for 

overcoming the limited speed’s problem of the FPGA.  

 

7.2 Features of the used Platform 

7.2.1 X5-TX Platform 

X5-TX, as shown in Figure  7.1 and described in [40], is a flexible all in one solution platform 

that includes all required hardware, firmware and software for demanding applications 

involving generating complex high speed arbitrary waves used in wireless transmitters, 

RADAR, etc. 
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This platform provides a high level of abstraction that allows an easier and speedy 

development without any significant RTL design knowledge (VHDL or Verilog), which 

makes it a powerful tool for ongoing research [40]. 

 
X5-TX 

  

 

Figure  7.1: Xilinx VIRTEX-5 Innovative Integration X5-TX 

X5-TX features a high speed DAC with a bandwidth up to true 1 GSPS and 16 bit 

resolution, a powerful Virtex5 FPGA computing core, large external DRAM, SRAM 

memory, and eight lanes PCI-Express host interface for a fast data transfer rate with the host 

PC, as illustrated in Figure  7.2. It can be fully customized using VHDL and/or MATLAB using 

the Framework Logic toolset. The MATLAB Board Support Package (BSP) supports real-time 

hardware-in-the-loop development using the graphical Simulink environment with Xilinx 

System Generator [41, 42]. 

The synthesized waveform data can be fed to the DAC using one of the following methods: 

• Stream mode: system playbacks data stream from the host PC via PCI-Express 

interface which is limited by the PCI-Express bandwidth. It gives 2 GBPS with 250 

MBPS for 8 lanes.  

• Pattern mode: Where the system playbacks pattern data stored in the platform 

memory. 



 

85 Hardware Implementation of the Proposed System 

• IP logic: the system calculates the waveform data using logic implemented in the on-

board Virtex5 FPGA. The maximum clock is one of the limitations of this type. 

 

Figure  7.2: X5-TX Block Diagram 

 

7.2.2 DAC5682Z (Digital-to-Analog Converter) 

The DAC5682Z is a dual-channel 16-bit 1.0 GSPS digital-to-analog converter (DAC) with 

wideband Low Voltage Differential Signal (LVDS) data input, integrated 2x/4x interpolation 

filters, on-board clock multiplier and internal voltage reference. DAC5682Z, as illustrated in 

Figure  7.3, offers superior linearity, noise, crosstalk and PLL phase noise performance [43]. 
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DAC5682Z integrates a wideband LVDS port with on-chip termination. The on-chip 

delay lock loop (DLL) simplifies LVDS interfacing by providing skew control for the LVDS 

input data clock. 

 
Figure  7.3: DAC functional block diagram 

 

LVDS half-rate data clock (DCLKP/DCLKN) is provided by the FPGA and it is 

generated by a toggling data bit to maintain LVDS data to DCLK timing alignment. LVDS 

data relative to DCLK is input using Double Data Rate (DDR) switching and using both 

rising and falling edges as shown in Figure  7.4. 

Interfacing very high-speed LVDS data and clocks presents a big challenge to system 

designers as they have unique constraints and are often implemented with specialized circuits 

in order to increase the bandwidth. One such specialized LVDS circuit used in many FPGAs 

and ASICs is a SERializer-DESerializer (SERDES) block. For interfacing to the DAC5682Z, 

only the SERializer functionality of the SERDES block is required. SERDES drivers accept 
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lower rate parallel input data and output a serial stream using a shift register at a frequency 

multiple of the data bit width. For example, a 4-bit SERDES block can accept parallel 4-bit 

input data at 250 MSPS and output serial data 1000 MSPS. 

External clock distribution for FPGA and ASIC SERDES drivers often have a chip-to-

chip system constraint of a limited input clock frequency compared to the desired LVDS data 

rate. In this case, an internal clock multiplying PLL is often used in the FPGA or ASIC to 

drive the high-rate SERDES outputs. Due to this possible system clocking constraint, the 

DAC5682Z accommodates a scheme where a toggling LVDS SERDES data bit can provide a 

“data driven” half-rate clock (DCLK) from the data source. A DLL on-board the DAC is used 

to shift the DCLK edges relative to LVDS data to maintain internal setup and hold timing. 

To increase bandwidth of a single 16-bit input bus, the DAC5682Z assumes Double 

Data Rate (DDR) style interfacing of data relative to the half-rate DCLK. Figure  7.4 provides 

an example of implementation using FPGA-based LVDS data and clock interfaces to drive 

the DAC5682Z. In this example, an assumed system constraint is that the FPGA can only 

receive a 250 MHz maximum input clock while the desired DAC clock is 1000 MHz. A clock 

distribution chip such as the CDCM7005 or the CDCE62005 is useful in this case to provide 

frequency and phase locked clocks at 250 MHz and 1000 MHz. 

From the example provided by Figure  7.4, driving LVDS data into the DAC using 

SERDES blocks requires a parallel load of 4 consecutive data samples to shift registers. Color 

is used in the figure to indicate how data and clocks flow from the FPGA to the DAC5682Z. 

The figure also shows the use of the SYNCP/N input, which along with DCLK, requires 18 

individual SERDES data blocks to drive the DAC’s input data FIFO that provides an elastic 

buffer to the DAC5682Z digital processing chain [43]. 
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Figure  7.4: Data Flow to DAC (taken from [43]) 

Due to the sampled nature of high-speed DAC’s, the well known sin(x)/x or (sinc(x)) 

response can significantly attenuate higher frequency output signals. Figure  7.5 shows the 

normalized sinc attenuation roll-off with respect to the final DAC sample rate in 4 Nyquist 

zones. For example, if the final DAC sample rate FS = 1.0 GSPS, then a tone at 440MHz is 

attenuated by 3.0 dB. Although the sinc response can create challenges in frequency Planning, 

one side benefit is the natural attenuation of Nyquist images. 
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Figure  7.5: Sinc response of the DAC 

7.2.3 The Used FPGA 

A Xilinx Virtex5 SX95T, with external 512 MB DDR2 DRAM and 4MB QDR-II memory, 

provides a very high performance DSP core for demanding applications such as RADAR and 

direct RF digitizing [44]. X5-TX platform has the close integration of the analog IO, memory 

and host interface with the FPGA enables real-time signal processing at rates exceeding 300 

GMAC/s. The X5 XMC modules couple Innovative's powerful Velocia architecture with a 

high performance, 8-lanes PCI Express interface that provides over 1 GB/s sustained transfer 

rates to the host. Private links to host cards with >1.6 GB/s capacity using P16 are provided 

for system integration[45]. 

7.2.4 Software and the used blocksets in the HDL language 

X5-TX can be programmed using an HDL language (VHDL, Verilog) or Simulink 

accompanied with System Generator tool from Xilinx. Another possibility is to develop a part 

of the design in Simulink and the rest using HDL language and then combine the two parts. 
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The advantages of using Simulink over the HDL language is the higher level of 

abstraction that allows the design to be automatically compiled into an FPGA logic at the 

push of a button without any significant RTL design knowledge. Also, it provides access to 

underlying FPGA resources through low level abstractions, allowing in principle the 

construction of highly efficient FPGA designs. 

The System Generator tool allows device-specific hardware designs to be constructed 

directly in Simulink modeling environment. It allows designs to be composed from a variety 

of ingredients. Data flow models, HDL codes and functions derived from MATLAB can be 

used side-by-side, simulated together, and synthesized into working hardware. 

The main difference between Simulink FPGA-targeted designs and typical Simulink 

designs is the usage of special blocks for the logic that should be implemented in the FPGA, 

called System Generator blocks. These blocks can be either Xilinx standard blocksets or 3rd 

party ones, and they are described as follows: 

Xilinx Standard Blockset: It provides abstractions of mathematical, logic, memory, and DSP 

functions that can be used to build and debug high performance DSP systems in Simulink. 

Xilinx blockset contains functions for signal processing such as FIR Filters and FFTs, error 

correction (i.e. Viterbi decoder, Reed-Solomon encoder/decoder), arithmetic, memories (e.g. 

FIFO, RAM,) and digital logic. There are also blocks that provide interfaces to other software 

tools (e.g., FDATool, ModelSim). 

Innovative Integration Blockset: It is a 3rd party blockset containing functions for accessing 

various features on X5-TX board such as DDR memory, ADC, DAC, SBSRAM, Rocket IO, 

PCI-Express…etc. They can be thought of drivers for the X5-TX hardware. 

 



 

91 Hardware Implementation of the Proposed System 

Bit-True and Cycle-True Modeling: Using the SysGen blocks guarantees that the simulations 

are bit-true and cycle-true. To say a simulation is bit-true means, that at the boundaries (i.e., 

interfaces between System Generator blocks and non-System Generator blocks,) a value 

produced in simulation is bit-for-bit identical to the corresponding value produced in the 

hardware. To say a simulation is cycle-true means, that at the boundaries, corresponding 

values are produced at corresponding times. The boundaries of the design are the points at 

which System Generator gateway blocks exist. When a design is translated into hardware, 

Gateway In (respectively, Gateway Out) blocks become top-level input (resp., output) ports. 

Timing and Clocking: The designs in the System Generator are discrete time systems. In 

other words, the signals and the blocks that produce them have associated sample rates. A 

block's sample rate determines how often the block is awoken (allowing its state to be 

updated). The System Generator sets most sample rates automatically. A few blocks, 

however, set sample rates explicitly or implicitly[46]. 

A simple System Generator model, as depicted in Figure  7.6, illustrates the behaviour 

of discrete time systems. Consider the model shown below; it contains a gateway that is 

driven by a Simulink source (Sine Wave,) and a second gateway that drives a Simulink sink 

(Scope) [47]. 

 

Figure  7.6: A simple System Generator model 
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The Gateway In block is configured with a sample period of one second. The Gateway 

Out block converts the Xilinx fixed-point signal back to a double (so it can be analyzed in the 

Simulink scope) but does not alter sample rates. The scope output, as shown in Figure  7.7, 

shows the unaltered and sampled versions of the sine wave [46]. 

 

 

Figure  7.7: unaltered and sampled versions of the sine wave 

According to the design flows using the system generator, which can be used in many 

settings, the following is a brief description for each setting: 

• Algorithm Exploration: SysGen can be used for algorithm exploration, design 

prototyping and model analysis. It helps to get a feel for the design problems that are 

likely to be faced, and perhaps to estimate the cost and performance of an 

implementation in hardware. In this setting, a designer assembles key portions of the 

design without worrying about fine points or detailed implementation with little need 
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to translate the design into hardware. Simulink blocks and MATLAB (.m) code 

provide stimuli for simulations and for analyzing results.  

• Hardware co-simulation: Creating a “FPGA-in-the-Loop” simulation target, the 

System Generator provides hardware co-simulation, which incorporates a design 

running in an FPGA directly into a Simulink simulation. When the design is simulated 

in Simulink, the results for the compiled portion are calculated in hardware and 

delivered to Simulink.  

• Implementing a Complete Design: In this setting, the whole system is implemented 

using SysGen, where SysGen translates the design into HDL and generates the 

required files to process the HDL code using downstream tools. Figure  7.8 shows the 

design hierarchy of the work process on the platform, which can achieve all the 

previous settings. 

•  

Xilinx USB

User Interface

 

Figure  7.8: Design Hierarchy (edited and taken from [46]) 
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Automatic code generation: Using SysGen provides different kind of compilation depending 

on the purpose of usage: 

• Two types of Netlists, HDL Netlist and NGC Netlist 

• Bitstream - produces an FPGA configuration bitstream that is ready to run in a 

hardware FPGA platform 

• EDK Export Tool - for exporting to the Xilinx Embedded Development Kit 

• Various varieties of hardware co-simulation (i.e. Innovative Integration products) 

• Timing Analysis - a report on the timing of the design 

 

7.3 Programming the FPGA on the platform X5-TX to 

generate the chirp signal 

In this section we will show the description of the Simulink model and develop the equivalent 

synthesizable model of the chirp signal and after that combine it with the X5-TX 

infrastructure. In order to be able to execute the previously described algorithm for generating 

the chirp signal on FPGA, an equivalent synthesizable system should be developed using only 

Xilinx blocks in Simulink. 

7.3.1 Description of the Simulink model 

As mentioned in chapters 2 and 6, the chirp signal is a sinusoidal function with a quadratic 

phase term of time ϕ(t), and it is corresponding to linearly varying frequency (the sweep rate, 

S), as shown in the following equation: 

0)sin()(sin 01
2 ≥++= ttwStt φπφ  ( 7.1) 

where 𝜔𝜔1,𝜙𝜙0 are the starting frequency and starting phase, respectively. 
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For the implementation of this equation, a counter and an integrator have been used to 

generate the required phase, where the presetting of the counter initial value is 𝐶𝐶𝑂𝑂0  and the 

one of the accumulator is 𝐴𝐴𝐶𝐶0, specifying the start up frequency 𝜔𝜔1 and the starting phase 𝜙𝜙0. 

Figure  7.9 shows the system described in the previous chapter, which will be a 

reference model and the starting point for developing the FPGA-synthesizable model. 

 

Figure  7.9: Simulink model of the proposed system 

 

7.3.2 Developing the equivalent synthesizable model  

The interpolation block in the last figure contains the compression algorithm that has the 

following functions: 

• Exploitation of the sine function symmetry 

• Execution of the piecewise polynomial interpolation algorithm 
 

For implementing the reference model shown in Figure  7.9 in FPGA, an FPGA-

synthesizable model should be developed by replacing each block with an equivalent from the 

Xilinx library. Figure  7.10 shows the equivalent of the model depicted in Figure  7.9. 
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Figure  7.10: Equivalent FPGA implementation of the Simulink model of Figure  7.9 

The counter and the accumulator in the reference model are directly replaced with 

their equivalent from Xilinx library. 

Now, the implementation of the Interpolation block is done by two steps: 

• Achieving the quarter compression 

• Piecewise polynomial (parabolic) interpolation 

In Figure  7.11  an equivalent sub-system to the one of Figure  7.10 is depicted. The 

Slice1 block extracts the most two significant bits of the phase 𝜙𝜙(𝑡𝑡) which can be used to 

indicate in which quarter the phase 𝜙𝜙(𝑡𝑡) is located. Slice2 block extracts the rest bits of the 

phase 𝜙𝜙(𝑡𝑡) and produces 𝜙𝜙−2(𝑡𝑡). The Mux block is used to find the relevant angel of the 

phase 𝜙𝜙−2(𝑡𝑡) in the first quarter based on the quarter number. When the phase 𝜙𝜙(𝑡𝑡) is located 

in the first or third quarter, it is simply routed directly to the Interpolation block. However, in 

the case of the second and fourths quarter the phase is complemented by subtracting 2𝑘𝑘−2 

from the  𝜙𝜙−2(𝑡𝑡) before it is routed to the Mux output. 

The sine value of phase 𝜙𝜙(𝑡𝑡) is identical to the sine value of its relevant angle  𝜙𝜙−2(𝑡𝑡) 

in the first and second. However, it should be negated when 𝜙𝜙(𝑡𝑡) is in the third or fourth 

quarter. The value of the sine is delivered through Mux2 block which uses the quarter number 

to select the right value from its input. 
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Figure  7.11: Equivalent FPGA architecture to the Simulink architecture for the proposed chirp 
generator 

 

Piecewise polynomial algorithm 

The algorithm is implemented by dividing the first quarter into 𝑠𝑠 = 2q  sections, in each 

section the sine value is calculated by quadratic interpolation using a dedicated parabolic 

curve for each section specified by a set of coefficients 𝑏𝑏𝑛𝑛 . To find out in which section the 

current phase is located, the phase value is divided by a factor 2𝑘𝑘−2

𝑠𝑠
 and rounded to the next 

higher value. The result represents the q MSB bits in 𝜙𝜙−2(𝑡𝑡). This q is used as an input to the 

Selector block which selects the right set of coefficients from the LUT in Constants block. 

The Polyval block as shown in Figure  6.17 calculates the sine value of the phase 𝜙𝜙−2(𝑡𝑡) using 

parabolic interpolation, which is defined by the corresponding section coefficients and the 

scaled value of 𝜙𝜙−2(𝑡𝑡). Scaling is performed by dividing 𝜙𝜙−2(𝑡𝑡) by 2𝑘𝑘−2
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To implement the interpolation algorithm mentioned above in FPGA, an equivalent 

circuit is developed as in Figure  7.12. 

 

Figure  7.12: The FPGA implementation of the interpolation algorithm 

The Slice3 block extracts the q MSB bits which are used as the address lines for the 

Coeff ROM block which is the LUT that stores a set of three coefficients for each section. At 

the same time, Figure  7.12 includes the implementation of the Coff ROM block. 

In Figure  7.12, the Reinterpret1 and the CMult blocks act as a divider; first it moves 

the binary point to the left 𝑘𝑘 − 2 digit positions and then divides it by 4. The Convert block 

changes the data type of the signal from unsigned 10_10 to signed 11_10 where the additional 

bit is added to accommodate the sign bit. 

The interpolation calculation is performed, and the DSP48 macro 2.0 block calculates 

the b. x + c part where the a. x2 part is calculated separately as shown in Figure  7.13. 
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Figure  7.13: The performance of the interpolation calculations 

 

Synchronizing the inter-results: 

Different delays have been inserted in the system to compensate the different processing time 

in each block. For example, in case of 𝜙𝜙−2(𝑡𝑡) is crossing from a section to the next one, a 

new value of 𝑥𝑥 will be available before the new 3 coefficients sets corresponding to the new 

section are available at the output of the Coeff ROM block, therefore a delay of one clock is 

implemented in the Convert block. Similarly, a delay of 3 clocks is inserted by using 3 

register blocks with 1 clock delay for each to compensate the delay in the Mult which needs 3 

clock cycles to complete its operation. The complete design of the chirp signal generator is 

packed in a subsystem as shown in Figure  7.14. 

 
Figure  7.14: The complete FPGA design of the chirp generator 
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Before sending the chirp signal data stream to the DAC, the data should first be 

converted to another form in order to fit the DAC, and to achieve a suitable conversion the 

following points should be taken into account: 

• Chirp generator output is 34 bit fixed point number with 30 bit after the binary point. 

• Data codes to the DAC are 16 bit signed integer. 

To scale the chirp generator data to fit the DAC, the data stream is converted to 16 bit 

fixed-point number with 14 bit after binary point. To get the 16 bit singed integer out of the 

16 bit fixed point number, a multiplication by 214  should be executed. A faster 

implementation can be done by simply reinterpreting the data as 16 bit singed integer which 

matches the DAC data type. This conversion is shown in Figure  7.15. 

 
Figure  7.15: The block diagram of converting the data in order to fit the DAC 

Finally, the block of the chirp generator is integrated within the card logic; this can be 

done by adding it right before the data samples enter the DAC interface component. The other 

logic is used to configure the DAC and the other on-board components. The whole 

implementation of the proposed chirp generator based on the FPGA technology and based on 

the Xilinx libraries is shown in Figure  7.17. 

As a result of the implementation we have successfully generated the chirp signal 

based on the piecewise parabolic interpolation using the technology of the FPGA. Figure  7.16 
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presents the generated sine chirp signal, with clock frequency equal to 250 MHz, CO0 = 100 

Hz, AC0 = 0, and the bit width of the counter and accumulator is 32 bit. 

 
Figure  7.16: The generated chirp signal based on the proposed method and using the FPGA 

technology 
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Figure  7.17: The complete implementation of the proposed chirp generator using the libraries of 

Xilinx 
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7.4 A parallel processing technique and overcoming the 

limited speed’s problem of the FPGA 

The parallel processing (multi-processing) technique is used to increase the sampling rate by 

replicating hardware so that multi inputs can be processed in parallel and multi outputs can be 

produced at the same time. Note that, multiple outputs are computed in parallel in a clock 

period and the effective sampling speed is increased by the level of parallelism. 

7.4.1 The complete derivation and implementation for the parallel 

processing technique with level of four threads  

 

When Tsys_clk is the system clock, then n= t/ Tsys_clk ; n=0, 1, 2,…, and assuming that the 

system is capable of generating 1 sample per clock , thus Ts = Tsys_clk ; Ts sampling period , 

Fs = 1/ Ts. 

Our X5-TX card has a system clock of Tsys_clk =1/250 MHz  Fs = 250 MHz, and a 1GSPS 

DAC. 

To be able to feed the DAC with 1GSPS using 250 MHz system clock, the system 

should be able to generate 4 samples per clock. That means the system throughput should be 4 

times more than the system frequency. Now, to satisfy this criterion, either the system clock 

should be increased to 1000 MHz, which is not possible due to hardware restrictions, or a 

parallel processing structure (technique) should be applied, using 4 threads to calculate 4 

samples per system clock. 

One issue facing the usage of parallel structure is, that at a specific time step n, there is 

only one data available for processing, not 4. This data is the system clock which forms the 

input to the counter/accumulator. 
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To solve this problem a prediction scheme is used, that will calculate the input of each 

thread at time step n. 

To simplify the solution, the design process will be split into two steps: 

• Design of a prediction scheme for the counter (1st Accumulator) (linear output) 

• Design of a prediction scheme for the 2nd accumulator (quadratic output) 

First step: Design of a prediction scheme for the counter (1st Accumulator) (linear output)  

Let f(n) be the function of the counter output: 

( )f n n FCW= ×  ( 7.2) 

 When f(0:n)={0, 0+FCW, 2×FCW, …, n×FCW } 

                   = {0, FCW, 2×FCW, …, n×FCW } 

where: 

 n is the time step of the counter (1st accumulator); n=0, 1, 2, … 

FCW: frequency control word (step size). 

Therefore, the output function of the counter with time step (n+1) is given by: 

 
( 1) ( 1)f n n FCW

n FCW FCW
+ = + ×

= × +
 ( 7.3) 

It is required for our implementation to define the four functions f0, f1, f2, f3 that 

fulfill ( 7.5). These four functions will be defined according to two cases of FCW, the first 

when FCW equal one and the second when FCW is bigger than one. 

In the case of FCW=1, those functions are given by: 
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( )
( )
( )

0,  1,  2,  3 ,

4,  5,  6,  7 ,

8,  9,10,  11 ,( )
.
.
.

pf n

 
 
 
  =  
 
 
 
  

 ( 7.4) 

When FCW is bigger than one, considering the number of threads ( )q  is equal to 4, 

then the formula of the case 4q =  is given by: 

( )
( )

( )

0,0 ,0 2 ,0 3 ,

4 ,4 ,4 2 ,4 3
.( )
.
.

0, 1, 2, 3

p

FCW FCW FCW

FCW FCW FCW FCW FCW FCW FCW

f n

f f f

 + + × + ×
 

× × + × + × × + × 
  =  
 
 
 
  

 

          
 

( 7.5) 

Note that 

f0= q×n×FCW  = (q×n)×FCW 

f1= q×n×FCW+ FCW = (q×n+1)×FCW 

f2= q×n×FCW+2×FCW = (q×n+2)×FCW 

f3= q×n×FCW+3×FCW = (q×n+3)×FCW 

So, the required 4 functions of the counter/accumulator are given by: 

( ) ,  ,
0, 1, 2, 3

2 , 3
q n FCW q n FCW FCW

f f f f
q n FCW FCW q n FCW FCW
× × × × + 

=  × × + × × × + ×            
 ( 7.6) 

Figure  7.18 shows a simplified block diagram of the parallel processing structure with 

a level of four threads and the throughput of the counter at each thread. 
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Figure  7.18: Simplified block diagram for the throughput at each thread 

For simplicity, k can be used as time step instead of n in thread functions as (k0, k1 , 

k2, k3): k0 = q×n, k1 = q×n+1, k2 = q×n+2, and k3 = q×n+3. Thus, the time step for a 

specific thread is given as follows: 

 0,1,..., 1ik q n i i q= × + = −
          

 ( 7.7) 

where: 

q: number of threads 

n: time step relative to clock time 

i: thread number, i=0, 1, .., q-1 

 

Table 6: Time step results for the 1st and 2nd accumulator 
 

n k k0, k1, k2, k3 

0 0 0, 1, 2
 3 

1 4 4, 5, 6, 7 

…  … 

n q×n q×n, q×n+1, q×n+2, …, q×n+q-1 
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Writing f1…fq in terms of k gives: 

0 0
1 1
2 2
3 3

f k FCW
f k FCW
f k FCW
f k FCW

= ×
= ×
= ×
= ×

 ( 7.8) 

Figure  7.19 shows the generated single tune (mono frequency) signal based on the 

parallel processing technique with a level of four threads. To clearly show the parallel 

processing technique, Figure  7.19 has focused on the first two quadrants of the generated sine 

signal in order to prove the derived equation in the previous sections, for example if we take 

the blue pulse we will notice that it occupies only 1 fourth of the system clock period 

[1/200MHz], on the other hand the other pulses do the same repetition in order to form the 

whole sine wave. This figure shows simply how each thread completes the other in order to 

form the whole sine signal. 
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Figure  7.19: The generated single tune signals using 4 threads parallel processing technique  
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Figure  7.20: The generated single tune signal with 320 MHz. (a) Sampled Signal (b) Single-Sided 

Amplitude Spectrum (c) Mean Square Spectrum  (d) The spectrogram   

 

Second step: design of a prediction scheme for the 2nd accumulator (quadratic output) 

Using the output of the previous step to feed q accumulators in q threads will lead to 

erroneous results, because each accumulator should accumulate all counter values, not only 

the one of the respective thread, for example in case of 4 thread system, the 1st thread will 

accumulate the values: 0, 4 ,8, 12,… 

To work around this problem, a correction scheme should be implemented to 

compensate the deficit from the required accumulator output because of the missed 

accumulation steps. In the generation of the chirp signal, the constant value will be the sweep 

rate word (SRW) instead of the frequency control word. 

The Spurious-Free Dynamic Range of the 125 MHz generated single tune signal reaches 52 

dB, this is clearly shown in the following figure. 
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Figure  7.21: Spurious Free Dynamic Range (SFDR) of the generated signal with 125 MHz. 
 

Now, Let g(n) be the output function of the accumulator and it is given by: 

SRWnng
nfng

nfnf

nfng

n

n

n

n

×−+−=
−+−=

−+







=

=

∑

∑
−−

=

−

=

)1()1(
)1()1(

)1()(

)()(

1)1(

0

1

0

 ( 7.9) 

Now, it is required to define the q functions 0 1 2, , ,... qg g g g  that represent the output of the 

accumulator at time steps , ( 1), ( 2), ( 1)k k k k q+ + + −  respectively, where: 

( ) ( 1) ( 1)i i i i ig k g k f k= − + −  ( 7.10) 

In case of multithreading, the value of the function 𝑔𝑔𝑖𝑖  at time step ( 1)ik − , which should 

represent the previous value, is not available for the thread, because in a single thread the 

calculations are done at steps equal 𝑞𝑞, therefore the previous value in a thread 𝑖𝑖 is 𝑔𝑔𝑖𝑖(𝑘𝑘𝑖𝑖 − 4). 
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Therefore ( 7.10) should be written using 𝑔𝑔𝑖𝑖(𝑘𝑘𝑖𝑖 − 4) terms only, which should be as in the 

following: 

( 1) ( 2 )( 2 )
( 3) ( 3) ( 2 )
( 4 )( 4 )( 3) ( 2 )

g k g k f k
g k f k f k
g k f k f k f k

− = − + −
= − + − + −
= − + − + − + −

 ( 7.11) 

The Substitution of ( 7.11) in ( 7.10) gives: 

( ) ( 4 )( 4 )( 3) ( 2 )( 1)i i i i i i i ig k g k f k f k f k f k= − + − + − + − + −  ( 7.12) 

The replacing of the value of 𝑓𝑓(𝑘𝑘) in ( 7.12) gives:  

( ) ( 4) ( 4) ( 3)
( 2) ( 1)

( ) ( 4) (4 6)

i i i i i i

i i

i i i i i

g k g k k SRW k SRW
k SRW k SRW

g k g k k S RW

= − + − × + − ×
+ − × + − ×

= − + − ×
 ( 7.13) 

We can also write ( 7.13) to be as follows: 

( ) ( 4) 4( 4 4) 6
( 4) 4( 4) 16 6
( 4) 4( 4) 10

i i i i i

i i i

i i i

g k g k k SRW SRW
g k k SRW SRW SRW
g k k SRW SRW

= − + + − × − ×
= − + − × + × − ×
= − + − × + ×

 ( 7.14) 

The complete implementation of the previous mathematical analysis is shown in Figure  7.22 
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Figure  7.22: The generation of the digital chirp signal using 4 threads parallel processing 
structure and the interpolation methodology 

 

A chirp signal is successfully generated by using the methodology of piecewise 

parabolic interpolation and a parallel processing technique. This chirp signal is illustrated in 

Figure  7.23. Figure  7.24 shows the spectrum of the chirp signal and the linearly swept-

frequency signal from 0 up to 320 MHz. The proposed system (in the hardware 

implementations) has the ability to increase the bandwidth by increasing the level of the 

parallel processing (number of threads), if the hardware features (e.g. clock of the DAC) 

permit. 
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Figure  7.23: The generated chirp signal using 4 threads parallel processing technique and the 
interpolation methodology. 

  

 

Figure  7.24:A 320 MHz digital chirp signal using the proposed method: single sided amplitude 
spectrum, (b)The energy spectrogram 
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8 Conclusions and Contributions 

8.1 Conclusions  

In this dissertation, a new digital chirp signals generator is proposed based on the 

methodology of the piecewise polynomial approximation and using FPGA technology. We 

have realized our new architecture via X5-TX innovation Xilinx card to generate a sine chirp 

signal. 

The proposed system is a hybrid of the digital sweep generator and the system using 

interpolation based direct digital frequency synthesis. The interpolator uses predetermined 

interpolation coefficients to fit the sine wave from the calculated phase instead of using a 

predetermined waveform stored in a big sized memory.  

The proposed digital chirp generator showed an extremely low level of the spurious 

harmonic distortion and at the same time reduced both the hardware complexity and memory 

size of the LUT. The new size of the ROM is reduced by a factor of more than 128 when 

using 12 address lines, and Spurious Free Dynamic Range (SFDR) reaches 100.9 dBc. This 

chirp signal generator is comparable with other methods that implement the look-up table 

method. 

The system is realized using the FPGA technology, The Innovation integration X5-TX 

platform with FPGA Xilinx VIRTEX-5 was used to generate a chirp signal with high 

bandwidth reaches 320MHz. 
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8.2 Contributions 

During the course of PhD research, the other has significantly contributed to the scientific 

knowledge in the area of waveform generation and signal processing.  Some of the 

achievements made through this research are listed below: 

1. A novel method, for generating chirp signals based on piecewise- polynomial 

interpolation for radar application with reduction in the hardware complexity and the 

spurious harmonic distortion, is proposed. 

2. The novel approach and the proposed theoretical aspects are realized using the 

technology of FPGA.  This contribution makes this work really important, because it 

will be integrated within the HITCHHIKER system, which gives ZESS the ability to 

operate its own SAR sensor. 

3. A unique parallel processing technique with 4 threads is derived and implemented by 

the FPGA technology in order to generate high bandwidth digital chirp signals for 

radar applications. 

4. A reduction in the size of the memory (with respect to the previous methods in the 

literature), less hardware complexity, and high SFDR are important parameters have 

been achieved to make our system (architecture) unique. 

5. Extension for the architecture using an optimization method in order to achieve further 

enhancement in the error metrics like SFDR and Total harmonic distortion. 
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Appendix  

The detailed derivation of ( 6.17)-( 6.25) is achieved by substituting ( 6.13) in ( 6.16) and 
based on [31], we have 

𝑏𝑏𝑛𝑛 = �𝐽𝐽𝑘𝑘 ,𝑛𝑛
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Since 𝑛𝑛 is odd, then the term cos⁡(𝑛𝑛π
2

) will vanish, therefore (10) can be written as 
follows: 
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By substituting (11)-(14) in (15), we get 
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(16) 

 

We achieved the formulae ( 6.17)-( 6.25) after rearranging (16) . 
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