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Zusammenfassung

In dieser Arbeit wird das Energiekonzept aus der Physik in die Statistik über-
tragen. Die Energie von Stichproben, die aus statistischen Verteilungen gezogen
werden, wird in ähnlicher Weise definiert wie für elektrostatische Punktladungen.

Ein System von zwei Punktladungsmengen mit entgegengesetztem Vorzeichen
befindet sich im Zustand minimaler Energie, wenn sie der gleichen Verteilung folgen.
Dieses Konzept wird zur Konstruktion von neuen nichtparametrischen, mehrdimen-
sionalen Anpassungstests verwendet. Weiterhin wurde das Energieverfahren auf das
Zwei-Stichproben Problem und die Entfaltung angewandt.

Das statistische Minimum Konzept der Energie hängt nicht von der Abstands-
funktion des elektrostatischen Potentials ab. Um die Güte der entwickelten Metho-
den zu erhöhen, können andere monoton fallende Abstandsfunktionen gewählt wer-
den. Wir zeigen, dass das Verfahren für alle Abstandsfunktionen anwendbar ist, die
eine positive Fouriertransformierte haben. Die vorgeschlagene Methode benötigt
keine Intervallbildung. Sie hat ihre Stärken bei mehrdimensionalen Problemstel-
lungen und ist hier herkömmlichen Verfahren in vielen konkreten Anwendungen
überlegen.

Abstract

In this thesis the concept of energy is introduced from physics into statistics.
The energy of samples, which are drawn from statistical distributions, is defined in
a similar way as for discrete charge density distributions in electrostatics.

A system of two sets of point charges with opposite sign is in a state of mini-
mum energy if they are equally distributed. This property is used to construct new
nonparametric, multivariate Goodness-of-Fit tests, to check whether two samples
belong to the same parent distribution and to deconvolute distributions distorted
by measurement.

The statistical minimum energy configuration does not depend on the applica-
tion of the one-over-distance power law of the electrostatic potential. To increase the
power of the new approach other monotonic decreasing distance functions may be
chosen. We prove that the new energy technique is applicable to all distance func-
tions which have positive Fourier transforms. The proposed approach is binning-free.
It is especially powerfull in multidimensional applications and superior to most of
the common statistical methods in many concrete situations.
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Chapter 1

Introduction

In this work a new method is proposed which allows to construct nonparametric,
multivariate, binning-free Goodness-of-Fit (GoF) tests, two-sample tests and mul-
tivariate, binning-free unfolding. The method introduces a statistical energy, in
analogy to electrostatics.

In practice it appears often that one wants to decide whether the measurements
possibly came from a given distribution or not. Statistical tests that address this
type of problems are GoF tests. GoF tests have been developed mostly for univari-
ate distributions and, except for the case of multivariate normality, very few tests
for multivariate GoF problem can be found in the literature. In principle, power
divergence statistics, where Pearson’s χ2 statistic is a member of this family, can
be applied for testing the GoF of any multivariate distribution. Power divergence
statistics are very simple and need only limited computational power, but they suffer
from some serious drawbacks: in howmany bins must the measurements be grouped,
where and how must the bin boundaries be placed? In the literature univariate GoF
tests are proposed which avoid these drawbacks. Many of these tests are based on
the empirical distribution function (EDF).

The problem of deciding whether or not a given sample may have been generated
by a specified distribution is sometimes also known as the one-sample GoF problem.
This is however not the only GoF problem. Another important member is the two-
sample GoF problem or briefly two-sample problem, where the question is to test
the hypothesis that two samples come from the same distribution. Most of the
above mentioned GoF tests, Pearson’s test and some EDF tests, are extended to
this setting as well.

Another problem is the problem of unfolding, i.e. the correction of distributions
which are distorted by measurement errors. Unfolding the measurement errors from
a measured distribution is a frequently occurring task in high energy physics. It has
been widely discussed in the literature, however, multivariate, binning-free unfolding
problem seems to have received little attention in the literature.

1



2 CHAPTER 1. INTRODUCTION

Most of the tests considered in this thesis are nonparametric, omnibus tests. A
statistical test is called nonparametric if its applicability does not depend on the
particular null hypothesis distribution and an omnibus test is a sensitive test to
almost all alternatives to the null hypothesis. Within the nonparametric, omnibus
tests there is no uniformly most powerful test available. Hence some tests will have
better powers under some alternative hypothesis and others will have better powers
under other alternatives, but none has the highest power under all alternatives. This
leaves the question open for nonparametric, omnibus test with good overall power
properties. Therefore there is ongoing research in field of nonparametric, omnibus
tests.

We have constructed a new family of nonparametric, multivariate, omnibus tests
and a new multivariate, binning-free unfolding approach which are all based on
the energy of two statistical distributions. The energy of statistical distributions is
defined in an analogous way as the laws of electrostatics fix it for charge distributions.
The energy of suitably normalized charges of two samples, one of which is positively
charged and one which is negatively charged, is minimum if the positions of the
point charges of the two samples agree, i.e. under null hypothesis the energy will
be a minimum and all alternatives to the null hypothesis will lead to an increase of
the energy.

In Chapter 2 some basic terminology and notation, as well as a formal description
of the GoF and two-sample problem are given.

In Chapter 3 an overview of the literature on tests for the GoF problem is given.
There is a very vast literature on GoF tests, therefore a complete survey of all GoF
tests is not given. Only those tests are presented that are relevant for tests that are
developed in this thesis.

The new family of nonparametric, multivariate, omnibus tests for the GoF prob-
lem is developed in Chapter 4: the Energy tests. The conjecture of the minimum
property of the energy of two distributions is proven and the consistency of the
new tests is shown. In a special case the relation with the Bowman-Foster test is
indicated. The results of a power study, comparing different tests, are given. This
is especially of interest to understand the behavior of the tests with finite sample
sizes.

For the multivariate two-sample problem, new Energy tests are presented in
Chapter 5. Since it is based on the same principles as the Energy tests for the GoF
problem, the presentation can be kept short. The null distribution of the two-sample
Energy tests is determined by a permutation method. A power study is included to
compare the new tests with some competitors. The test is also applied to a physics
case. A data sample taken from a particle experiment is compared to a Monte Carlo
simulation.
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In Chapter 6 the energy concept is applied to unfolding. Again it is based
on the same idea of the energy as a measure of compatibility of two samples. To
introduce the problem of unfolding, two unfolding techniques are reviewed. The new
multivariate, binning-free unfolding approach is applied to two examples, where the
limitations of the commonly used methods are obvious.

A summary is given in the last Chapter 7.
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Chapter 2

Introduction to statistical test
theory

One of the statistical problem, which appears often in physical experiments, is to
test how well the n independent measurements agree with a probability model for
the experiment. This problem is usually solved by a statistical test, which compares
measured values from the experiment with corresponding theoretical values derived
from the model. The purpose of this chapter is to present some basic concepts of
statistical test theory. We do not treat this topic in detail, since it can be found in
some introductory books on statistics.

2.1 Terminology

Statistics has it own specialized terminology with words whose meaning differs from
the meaning in physics. Sometimes the same term has different meaning in statistics
and in physics, we often choose the statistical term. An example is the word estimate.
In statistics estimate is used where physicist would say determine or measure. In
physics estimate is used where statisticians would say guess. We therefore make
some substitutions, see Table 2.1.

Table 2.1: Relation between statistics and physics terminology.

statistics terminology physics terminology
observation measurement, event

sample data (set)
sample of size n n measurements
sample mean experimental mean, average

class bin

5



6 CHAPTER 2. INTRODUCTION TO STATISTICAL TEST THEORY

2.2 Types of statistical hypotheses

Let X be a univariate random variable (r.v.) (for simplicity we usually confine
attention to the univariate case) defined over a sample space Π, which is the set of
all possible values that a realization x of X can take. We use capital letters for r.v.
and lower-case for its realization. Throughout this thesis r.v.s are indicated by italic
capitals (X, Y , etc.) if they are univariate and by bold capitals (X, Y , etc.) if they
are multivariate. We denote with X1,X2, . . . , Xn a random sample of size n for X.
In what follows we generally treat X1, X2, . . . , Xn as continuous, independent and
identically distributed (i.i.d.) with cumulative distribution function (c.d.f.) F (x)
whose probability density function (p.d.f.) f(x) is continuous. Throughout the
complete work we assume that the distributions are continuous.

By definition, p.d.f.s cannot be observed, they can only be induced by a set of
observations. In principle a statistical hypothesis is an assertion about the p.d.f of
a r.v. Let us give four examples of statistical hypotheses:

1. The r.v. X is distributed according to Gaussian with particular values of µ
and σ.

2. The r.v. X is distributed according to Gaussian with particular values of µ.

3. The r.v. X is distributed according to Gaussian

4. The results of two experiments, X and Y are distributed identically.

Each of these hypotheses says something about the p.d.f. of the r.v. and is hence
testable by comparison with observations. Examples 1 and 2 specify a p.d.f. and
certain values for one or both of its parameters. Example 3 specifies the form of the
p.d.f., but none of its parameters, and example 4 does not even specify the form of
the p.d.f.

Depending on the degree of knowledge of the p.d.f. f two kinds of hypotheses
are distinguished:

• parametric hypothesis
• nonparametric hypothesis

Assume that P = {f (x;θ) : θ ∈ Θ} is a parametric family of p.d.f.s, where Θ
is the parameter space and θ is a k-vector parameter. A parametric hypothesis
makes a statement about a certain set of the k parameters θ=(θ1, θ2, . . . , θk), as in
examples 1 and 2. Frequently, the true functional form of the p.d.f., from which
a random sample is drawn, is not known. In this case a nonparametric hypothesis
makes a statement about the form of a p.d.f. rather than about a set of parameters,
as in examples 3 and 4.
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Further distinctions is made in the literature; Examples 1 and 2 differ in that
1 specifies all of the parameters of the p.d.f., whereas 2 specifies only a subset
of the parameters. When all of the parameters θ are specified the hypothesis is
called simple. For an incomplete specification of f (x;θ), i.e. the form of f (x;θ)
is fixed but not the values of all parameters θ=(θ1, θ2, . . . , θk), the hypothesis is
called composite. If the p.d.f. has k parameters θ1, θ2, . . . , θk, we can define a k-
dimensional parameter space Θ. A simple hypothesis selects a unique point in this
space. A composite hypothesis selects a subspace containing more than one point.

The hypothesis being tested is traditionally called the null hypothesis and is
denoted by H0. The validity of H0 is checked in comparison with an alternative
hypothesis, which we denote by H1. Alternative hypothesis is a set of models,
which do not include the model of H0. In order to examine the measure of com-
patibility between the random sample X1,X2, . . . , Xn and a theoretical model, one
constructs a test statistic T (x1, x2, . . . , xn), which is a function of the observed val-
ues of X1,X2, . . . , Xn and determine in some way the conformity of the observations
to the hypothesized distribution.

2.3 Tests of hypotheses

To introduce some basic definitions of a test it seems likely that it will be easier to
deal with simple hypotheses than with composite ones. In this type of problem, the
parameter space Θ contains exactly two points. The following simple hypotheses
are to be tested:

H0 : θ = θ0 against H1 : θ = θ1, (2.1)

for some values θ0, θ1 of θ. A test statistic T is a r.v., because it is a function of
the observations. Hence each of the simple hypotheses H0, H1 will imply a given
p.d.f. gH0(T ), gH1(T ) for T , see Figure 2.1.

To test a hypothesis on the basis of the random sample, we must specify a test
procedure by dividing the sample space Π into two subsets. One subset, we call it
R0, contains the values of X1,X2, . . . , Xn for which one will accept H0, and R1, the
complement of R0, contains the values of X1, X2, . . . , Xn for which one will reject
H0 or equivalently accept H1. The subset R1 is referred to as the critical region of
the test, and R0 is called the acceptance region. The probability P that a random
sample will fall in the critical region R1 can be calculated, we can choose R1 such
that P is equal to some pre-chosen value α,

P ((x1, x2, . . . , xn) ∈ R1|H0) =

Z ∞

Tcritical

gH0(T )dT = α.

This value α is called the significance level or size of the test. Clearly, whether we
accept or reject H0 depends on what the alternative hypothesis is. There are two
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Figure 2.1: The p.d.f.s of the test statistic T under H0 and H1 are shown. H0 is
rejected if T > Tcritical.

ways in which a mistake can made about the decision for acceptance or rejection of
H0. From Figure 2.1 we see that there is always the possibility that, even though
H0 is true, the random sample lies in R1, in which case H1 will be accepted. Then
we have made an error of the first type and occurs with a probability α. On the
other hand, if H1 is true there is a possibility that the sample lies in R0. This is
referred to as an error of the second type and occurs with a probability β,

P ((x1, x2, . . . , xn) ∈ R0|H1) =

Z Tcritical

−∞
gH1(T )dT = β,

see Figure 2.1. The complementary probability 1− β is called the power of the test
of H0 against H1, which is the probability of accepting H1 when H1 is true.

2.3.1 Neyman-Pearson test

Ideally, one should like a test which makes both α and β small, but it is clear from
Figure 2.1 that a decreasing of α increases β and vice versa. Therefore one way in
which different tests can be compared is to fix the probability of first type error to
some pre-chosen value (α = 0.05 and α = 0.01 are common values, but throughout
this thesis we use 0.05 as significance level) and then choose the test that gives the
smallest probability of second type error β or equivalently the biggest power.

In case of simple hypotheses (2.1), for a given test T and a given value α, one
can determine β. Repeating this procedure for various values of α, a curve β(α) can
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Figure 2.2: Comparison of tests in the α− β plane. The test statistic T3 illustrates
the Neyman-Pearson test.

be constructed, see Figure 2.2. A test which minimizes β for fixed α is called a most
powerful test of size α.

The question which arises here is how to construct a most powerful test. The
method of constructing a most powerful test depends on the use of a theorem which
is named after two statisticians. The theorem, called the Neyman-Pearson lemma,
states the following [1]:

A test for the problem (2.1) is a most powerful test if the critical region R1
is chosen such that

LQ=

nY
i=1

f(xi;θ1)

nY
i=1

f(xi;θ0)

½ ≥ c inside R1,
< c outside R1,

where c is a constant which depends on the significance level α.

This lemma allows us to design a most powerful test which is based on the ratio of
the likelihood functions under the simple hypotheses H0, H1. The test constructed
according to the Neyman-Pearson lemma is called Neyman-Pearson test. It should
be noted that the most important point about this test is that it only exists for
completely specified hypotheses. But in most situations such cases are usually scarce.

Example 1 We consider the problem of testing whether a Gaussian N(µ, σ2) with
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a known variance σ2 has a mean H0 : µ = µ0 or a mean H1 : µ = µ1 > µ0. We take
the logarithm of LQ and obtain

lnLQ = − 1

2σ2

"
nX
i=1

(xi − µ1)
2 −

nX
i=1

(xi − µ0)
2

#

= −n(µ1 − µ0)

σ2

·
−x+ µ1 + µ0

2

¸
.

Then it yields

LQ ≥ c⇔ lnLQ ≥ ln c⇔ x ≥ µ0 + µ1
2

+
σ2 ln c

n(µ1 − µ0)
= k,

where x is the sample mean. Since X is distributed as N
³
µ0,

σ2

n

´
when H0 is true,

we get
α = P

¡
X ≥ k|H0

¢
= P

³
X−µ0
σ

√
n ≥ k−µ0

σ

√
n|H0

´
,

k−µ0
σ

√
n = u1−α, k = µ0 +

σ√
n
u1−α,

where u1−α is the quantile of order 1− α of the standard normal distribution.

2.3.2 Likelihood ratio test for composite hypotheses

If H0 or H1, or both, are composite hypotheses, i.e.

H0 : θ ∈ Ω0

H1 : θ ∈ Θ\Ω0

the Figure 2.2 can become a multidimensional diagram and one can only rarely find
a test which is more powerful than any other test. But also for this type of problems
it exists a simple procedure, the likelihood-ratio method, to construct ‘good’ tests.
The likelihood-ratio test LR is defined by

LR =

max
θ∈Θ\Ω0

L (x;θ)

max
θ∈Ω0

L (x;θ)
,

where

L (x;θ) =
nY
i=1

f(xi,θ)

is the likelihood function. Clearly, large values of LR lead to a rejection of H0.

LR often produces a uniformly most powerful test when such exists. A test is
uniformly most powerful if it is most powerful to each specific alternative.
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Example 2 X is assumed to be distributed as N(µ, σ2) with unknown variance σ2

and the hypothesis to be tested is

H0 : µ = µ0 against H1 : µ 6= µ0.

The maximum likelihood estimate for σ2 underH0 is given by bσ2 = 1
n

Pn
i=1 (xi − µ0)

2,
hence

max
θ∈Ω0

L (x;θ) = max
σ2

L
¡
x;µ0, σ

2
¢
= L

¡
x;µ0, bσ2¢ = µ 1

2πbσ2
¶n/2

e−n/2.

Equally the maximum likelihood estimates for µ and σ2 under H1 are given by x and
s2 = 1

n

Pn
i=1 (xi − x)2, respectively, i.e.

max
θ∈Θ

L (x;θ) = L(x;x, s2) =

µ
1

2πs2

¶n/2

e−n/2.

As a result

LR =

µbσ2
s2

¶n/2

=

µ
1 +

n(x− µ0)
2Pn

i=1(xi − x)2

¶n/2

=

µ
1 +

t2

n− 1
¶n/2

,

where
t =

x− µ0q
1

n−1
Pn

i=1(xi − x)2

√
n.

t is Student’s test statistic and H0 is rejected if |t| > t1−α
2
, where t1−α

2
is the quantile

of order 1− α
2
of the Student distribution.

2.4 Goodness-of-Fit tests

A statistical test, which is designed for deciding whether or not a given random
sample may have been drawn by a specified distribution F0 is called Goodness-of-Fit
(GoF) tests. GoF tests make inferences about the whole of a c.d.f. (or equivalently
of a p.d.f.) and the difference with the tests considered in the previous section lies
in the alternative hypothesis H1, because it is just the complement of H0, i.e. H1 is
a set of all possible alternatives to H0.

For definiteness, let F0(x) be completely specified distribution and let F (x) be
the true, but unknown c.d.f. of r.v. X. Then, the GoF problem consists of testing
the hypothesis

H0 : F (x) = F0(x) for all x
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against the general alternative

H1 : F (x) 6= F0(x) for at least one x.

Note that the hypothesized distribution F0 of the GoF problem, considered
above, is completely specified, including all parameter values. A more common
problem is assessing

H0 : F (x) = F0(x,θ) for some θ,

where F0(x,θ) is a specified parametric family, such as the normal. In this case the
unknown parameters must be estimated from the observations before tests can be
performed. In either case H1 is the complement of H0.

In order to perform a GoF test one has to look at the p.d.f. gH0(T ) of a test
statistic T under H0 and define a p-value for the test as, see [2]

P (T at least as extreme as the observed value Tobs|H0).

For example, if T is constructed such that large values correspond to poor agreement
with H0, then the p-value would be

p =

Z ∞

Tobs

gH0(T )dT

and if p is small enough, then it indicates to reject H0. The p-value is a function of
the observations and is therefore itself a r.v., therefore the significance level α of a
test should not be confused with the p-value, since α is a pre-chosen constant.

GoF tests that are sensitive to all types of deviation from H0, are called omnibus
tests and GoF tests that are especially designed to detect deviations from H0 in the
direction of specific alternatives, are called directional tests [3]. In most practical
situations, when the null hypothesis is not true, one does not know in what way the
true distribution F deviates from the specified distribution F0. Omnibus tests have
the advantage of being more generally applicable (no prior knowledge needed). Of
course, the price that has to be paid for this overall sensitivity of omnibus tests is a
loss in power for some specific alternatives. Directional tests against some specific
alternatives would be more powerful than the omnibus tests, while against all other
alternatives the omnibus test should be superior. A GoF test whose application does
not depend on the hypothesized distribution F0 is called nonparametric GoF test. A
further property of a GoF test is that it can be distribution-free. It means that the
distribution of the test statistic does not depend on the hypothesized distribution
from which the sample was drawn. This is a nice property for a test, but nowadays
the distribution of a test statistic can be easily obtained by aMonte Carlo simulation.
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2.5 Two-sample GoF tests

There are times where we want to know if two samples are drawn from the same
distribution and tests for this types of problems are called two-sample GoF tests or
briefly two-sample tests. A natural and simple approach would be to compare the
first two moments of the sample which measure location and scale. Many tests of this
type can be found in the literature [4], [5], [6]. But distributions may differ in a more
subtle way or the information about the distributions is not sufficient to provide any
idea about what type of difference is likely to exist. Therefore, we present here a
general framework for two-sample tests which compare the entire distributions of the
two samples. In this framework we have two independent samples, one containing
information about the distribution function F and the other containing information
about the distribution function G. We are interested in testing the null hypothesis

H0 : F (x) = G(x)

versus the alternative
H1 : F (x) 6= G(x).

In principle the two-sample problem can be treated with similar methods as used
in GoF techniques. The only difference lies in the fact that we have no informations
about the underlying distributions F and G of the two samples.
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Chapter 3

An overview of some relevant GoF
tests

This chapter mainly deals with the most relevant GoF tests. It is however not the
intention to be complete, because a listing of all published GoF tests with their
important properties would fill at least a book and in addition not all GoF tests are
relevant to physical experiments. A comprehensive overview of many GoF tests is
given in [7]. Tests, which are considered in this chapter, are also discussed in detail
in [8]

3.1 Tests based on binning

One classical approach to testing GoF is based on grouping observations into bins1.
Tests based on binning can only be applied to continuous observations after the
observations has been grouped, which already suggests that information will be
lost, see Figure 3.1.

Figure 3.1: The information about the position of each observation inside the bin
will be lost. That the observations indicated by the arrows are next to each other
is not taken into account.

1The term bin is mostly used in physical literature, but class is the usual term for grouping the
observations into a set of exhaustive and non-overlapping intervals.

15
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3.1.1 Pearson’s χ2-test

Probably the best known, most frequently used and oldest GoF test is Pearson’s
χ2-test. The χ2-test is closely connected to least square fits. Under the assumption
that the measurements yi, 1 ≤ i ≤ n, have a normally distributed error σi, the
quantity

X2 =
nX
i=1

(yi − fi)
2

σ2i
, (3.1)

where fi is the value under H0, is minimized in a least squares fit. From the Eq.
(3.1) it is clear that if we have chosen the fi and the σi correctly, then each term
in the sum of Eq. (3.1) will be of order unity, and hence X2 will be approximately
equal to n. If it is, then we may conclude that the measurements are well described
by the hypothesized function.

The Pearson’s χ2-test is used to test the GoF. It proceeds by binning the obser-
vations X1,X2, . . . , Xn from a distribution into B bins and comparing the measured
frequencies with expected frequencies under H0. More precisely, the general form of
the test statistic can be written as

χ2 =
BX
i=1

(Oi −Ei)
2

Ei
, (3.2)

then Oi is the number of observations that fall in the ith bin and Ei is the expected
number of observations, which is given by Ei = npi where pi is the probability
content of the ith bin under H0. The Pearson’s χ2-test (3.2) looks different from
that shown in Eq. (3.1), since the variance of each observation is replaced by the
mean value of Oi. Such an estimate for the variance makes sense in situations
involving counting, where the counted numbers are distributed according to the
Poisson distribution, for which the mean is equal to variance.

In the simplest case, Pearson’s statistic is constructed for a simple null hypothe-
sis. Then the χ2 test statistic is asymptotically χ2B−1 distributed. Often, the proba-
bilities pi that are specified under H0 are still depending on an unknown parameter
vector θ. These parameters need then to be estimated from the random sample.
Different methods of estimating these parameters result in different tests [3]. The
correct theory for a composite null hypothesis was first provided by Fisher [9], where
he used maximum likelihood estimation method to estimate the parameters. There-
fore, this test is often referred to as the Pearson-Fisher test and the test statistic
is asymptotically χ2B−k−1 distributed, where k is the number of parameters to be
estimated. In both cases large values of χ2 would indicate that the observations
are not distributed according to H0. It is sometimes asserted that H0 should also
be rejected for small values of χ2. Arguments given for this assertion are that such
small values are likely to have resulted from computational errors or overestimation
of the measurement errors σi. But it appears on the other hand even more unlikely
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to obtain a small χ2 value using wrong hypothesis. Therefore small χ2 should not
be regarded as a reason for rejecting H0.

The χ2 test is very simple and needs only limited computational power. A big
advantage compared to most of the other methods is that it can be applied to
multidimensional histograms. There are however also serious drawbacks:

• Its power in detecting slowly varying deviations of a histogram from predictions
is rather poor due to the neglect of possible correlations between adjacent bins.

• The specification of the bins is not unique.
• When the statistics is low or the number of dimensions is high, the number of
observations per bin may be low. Then systematic deviations are hidden by
statistical fluctuations.

3.1.2 Power divergence statistics

Pearson’s χ2-statistic is not the only statistic that is based on binning. Other well
known statistics are the likelihood ratio LR and the Freeman-Tukey FT statistic.
All these statistics (χ2, LR and FT ) have been embedded by [10] in the more
general class of the so-called power divergence statistics CR(λ), whose members are
characterized through a parameter λ ∈ R. We denote by ∆λ

i the power divergence
between the observed frequencies and expected frequencies in ith bin as follows

∆λ
i =

2

λ(λ+ 1)
Oi

"µ
Oi

Ei

¶λ

− 1
#
.

∆λ
i compares the fraction of the observed frequencies divided by the expected fre-

quencies raised to the power λ with 1. Then the power divergence family of test
statistics CR(λ) is just the sum over all B bins of ∆λ

i , i.e.

CR(λ) =
BX
i=1

∆λ
i .

For λ = 1 the statistic CR(λ) reduces to Pearson’s χ2, to likelihood ratio LR when
λ → 0 and to Freeman-Tukey FT when λ = −1

2
, respectively. Table 3.1 includes

some other interesting cases.

Depending on λ, the deviation between observed frequencies Oi and expected
frequencies Ei is weighted differently. The statistic of Pearson (λ = 1) is the only
one which does not distinguish whether Oi with the same absolute distance lie
above or below Ei. In so far, power divergences ∆λ

i with λ 6= 1 are asymmetrical;
for values λ < 1 Oi below Ei are weighted stronger, for λ > 1 Oi above Ei are
weighted stronger.
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Table 3.1: Certain values of λ indicate known GoF statistics

χ2 =
BX
i=1

(Oi−Ei)2
Ei

= CR(1)

LR = 2
BX
i=1

Oi ln
Oi

Ei
= CR(0)

FT = 4
BX
i=1

¡√
Oi −

√
Ei

¢2
= CR

¡−1
2

¢
LRm = 2

BX
i=1

Ei ln
Ei
Oi
= CR(−1) modified LR

χ2m =
BX
i=1

(Oi−Ei)2
Oi

= CR(−2) Neyman’s modified χ2

For a simple null hypothesis CR(λ) is asymptotically χ2B−1 distributed and for
a composite null hypothesis is asymptotically χ2B−k−1 distributed as in case of Pear-
son’s χ2 statistic.

A power comparison of some interesting members of the family of power diver-
gence statistics is given in [11].

3.2 Binning-free tests

As mentioned in previous section binning of observations loses information. Con-
sequently we should expect tests based on binning to be inferior to tests based on
each observation. Therefore this thesis is mainly focuses on construction of new
nonparametric, omnibus, binning-free tests.

3.2.1 EDF-tests

Awide and diverse family of GoF-tests is based on the empirical distribution function
(EDF) Fn. Before defining Fn we introduce the concept of order statistics denoted
by X(i). It is just the observations Xi, which are ordered in some a way. In one
dimension the order statistics obey

X(1) ≤ X(2) ≤ . . . ≤ X(n).

In more than one dimension it is rather arbitrary, since in more dimensional space
an unique ordering scheme is missing.
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Fn is defined by

Fn(x) =
number of observations ≤ x

n

or
Fn(x) = 0 , x < X(1)

Fn(x) =
i
n

, X(i) ≤ x < X(i+1)

Fn(x) = 1 , X(n) ≤ x

It is well known [12] that under the null hypothesis Fn is an unbiased and consistent
estimator of the c.d.f. F . Even a stronger convergence holds

P

µ
lim
n→∞

sup
−∞<x<∞

|Fn(x)− F (x)| = 0
¶
= 1.

This is also known as Glivenko-Cantelli theorem.

EDF-tests consist of comparing Fn with F in some way. A overview of tests
considered in this subsection is given in [7].

Supremum statistics

The Glivenko-Cantelli theorem suggests that the statistic

D = sup
x
|Fn(x)− F (x)| (3.3)

is for any n a reasonable measure for GoF. The statistic (3.3) is called theKolmogorov-
Smirnov statistic. For the simple null hypothesis the limiting null distribution of D
is given by

lim
n→∞

P

µ
D ≤ z√

n

¶
= 1− 2

∞X
i=1

(−1)i−1e−2i2z2 for every z ≥ 0. (3.4)

In case of composite hypothesis there is no general asymptotic theory available,
critical values must be estimated by simulation.

A closely related statistic to D is the Kuiper statistic V

V = D+ +D−,

where D+ = sup
x
[Fn(x)− F (x)] and D− = sup

x
[F (x)− Fn(x)]. V is also useful for

observations on a ‘circle’, for example for azimuthal distributions where the zero
angle is a matter of definition.
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Quadratic statistics

The Cramér-von Mises family of tests measures the integrated quadratic deviation
of Fn(x) from F (x) suitably weighted by a weighting function ψ:

Q = n

∞Z
−∞

(Fn(x)− F (x))2 ψ(x) dF, (3.5)

dF can be written as f(x) dx and hence the integration with respect to F may be
regarded as averaging over the sample space.

Different choices of ψ in (3.5) result in different tests. Although many choices
for ψ are allowed, in the literature mainly

ψ(x) ≡ 1
ψ(x) =

1

F (x) (1− F (x))

are chosen. The test with ψ(x) ≡ 1 is called the Cramér-von Mises (CM) test
and ψ(x) = 1

F (x)(1−F (x)) leads to the Anderson-Darling (AD) test. The weighting
function in (AD) test upweights the differences between Fn and F in the tails of
the distribution F . This is justified because there the experimental deviations are
small.

A modification of CM is the Watson statistic U2 defined by

U2 = n

Z ∞

−∞

½
Fn(x)− F (x)−

Z ∞

−∞
[Fn(x)− F (x)] dF (x)

¾2
dF (x),

which can also be applied for observations on a circle.

3.2.2 The Neyman Smooth test

For a simple H0 where the form of F0(x) is completely specified, such as uniformity
or normality, many existing tests, for example entropy tests [13], [14], could be
employed in a straightforward manner. As an application of the likelihood ratio
method to construct a test statistic we present a powerful test, the Neyman Smooth
(NS) test, for the uniform distribution. Before defining the test statistic NS we
introduce here a transformation method. With a probability integral transformation

z = F (x) (3.6)

a given sample from a full specified distribution can be transformed to a sample
from a uniform distribution. Therefore tests based on the transformed sample
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F0(X1), F0(X2), . . . F0(Xn) leading to tests for uniformity on the interval [0, 1]. From
this point of view a GoF problem with a simple H0 is equivalent to the problem

H0 : F (x) = uniform

H1 : F (x) 6= uniform

by using the transformation (3.6).

Note, however, that the transformation (3.6) does not necessarily conserve all
interesting features of the GoF problem. For example, in a lifetime distribution an
excess of observations at small and large lifetimes may be judged differently but are
treated similarly after a probability integral transformation.

The test NS is different from all previously discussed tests, since the alternative
hypothesis is parametrized. The alternative hypothesis density has the functional
form

gk(z) = C (θ1, θ2, . . . , θk) exp

"
kX
i=1

θiπi(z)

#
,

where πi are the Legendre polynomials of order i, C (θ1, θ2, . . . , θk) is a normalization
constant and θi are free parameters. In the literature gk is known as exponential
family. The term ‘smooth’ refers to the characteristic that the specified distribution
in H0 is imbedded in a family of alternatives gk which varies smoothly with the
parameters θ1, θ2, . . . , θk. From the form of gk it is clear that the test for uniformity
reduces to

H0 : θi = 0 for all i,

H1 : at least one of θi 6= 0.

Since the distribution function of the family of the alternatives is explicitly given,
likelihood ratio test may be applied directly and it leads to the test statistic

NS =
1

n

kX
i=1

Ã
nX

j=1

πi(zj)

!2
.

The number k of parameters is selected by the user. It seems that the most
difficult problem connected with the application of NS is the choice of k. This
problem is very similar to the problem of choosing the number of bins in the χ2

GoF test. In the literature k = 2 and k = 4 are recommended, see [7]. NS is
asymptotically distributed as χ2 with k degrees of freedom and large values of NS
lead to a rejection of H0.
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3.2.3 Tests based on density estimation

The most well known density estimator bfn is the histogram. By allowing the bin
width to vary another class of density estimator, the kernel density estimator (KDE),
can be obtained. A KDE is constructed by centering a smooth kernel function about
the observations and summing the heights of the kernels at each observation. The
KDE bfn can then be written as

bfn(x) = 1

nh

nX
i=1

K

µ
x−Xi

h

¶
=
1

n

nX
i=1

Kh (x,Xi;h) , (3.7)

where K is itself a probability density, called kernel function, whose variance is
controlled by the parameter h which is called smoothing parameter, see [15]. From
(3.7) it is clear that a KDE inherits all the continuity and differentiability properties
of the used kernel K. Therefore it is often convenient to use for K a normal density
function. A KDE is illustrated in the Fig.3.2

Figure 3.2: Kernel estimate using Gaussian kernel with smoothing parameter 0.4.

It should be noted that the behavior of a KDE is affected by the choice of h.
When h is small the estimate displays spurious fine structure. When h is too large
all detail is obscured. The effect of varying of h is illustrated in Fig.3.3

EDF test statistics are in some sense measures of the difference between the
EDF and hypothesized distribution. A similar approach with density estimates can
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Figure 3.3: Kernel estimate using Gaussian kernel with two different smoothing
parameter.

also be applied as test procedure. Instead of the EDF the density estimate bfn is
compared to the hypothesized p.d.f. For example, the idea of the Anderson-Darling
test statistic with kernel density estimate bfn leads to the test statistic

Z h
f(x)− bfn(x)i2
V ar

h bfn(x)i f(x) dx.

As shown in [16], V ar
h bfn(x)i is asymptotically proportional to f(x). Therefore we

get the L2 error of the kernel density estimate as a test statistic:Z h
f(x)− bfn(x)i2 dx. (3.8)

The idea of using density estimators for GoF tests goes back to [17] and [18].
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Figure 3.4: Searching for the maximum of the test statistic R3 with three variable
intervals, where the interval boundaries are placed at the observations.

3.3 Three region test

Often experimental distributions have local clusters as a result of statistical fluctu-
ations. Sometimes though, the clustering is the result of a new physical effect. For
this process of bump hunting we have designed a test which subdivides the variable
space into three pieces, containing n1, n2 and n3 = n− n1 − n2 observations, such
that the deviation between observed sample and prediction from H0 is maximum,
see Figure 3.4.

The test statistic which we have developed is given by

R3 = sup
n1,n2

£
w1 (n1 − np1)

2 + w2 (n2 − np2)
2 + w3 (n3 − np3)

2¤ ,
where npi are the expected values and wi weights depending on npi. In the power
simulation study R3 is carried out with weights equal to one. We did not investigate
the consistency and biasness of this special test for bump hunting.

Clearly, the three region test can be extended to test for densities containing
high frequency components, but in physical applications one is mainly confronted
with slowly varying deviations between hypothesized distribution and observed dis-
tribution whereas in other fields where for example time series are investigated, high
frequency distortions are more likely.
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3.4 Multivariate normality tests

In sociology or medicine it is rather common to deal with samples of observations
which are drawn from a multivariate normal distribution. Therefore much of mul-
tivariate GoF tests have been developed mostly for multinormality and a current
review of the literature has revealed at least 50 tests for multivariate normality. We
select 4 promising tests of multivariate normality.

Mardia’s tests

The third standardized moment characterizes the skewness of a distribution. The
skewness of a univariate normal distribution is 0. The fourth standardized moment
characterizes the kurtosis of a distribution. The kurtosis of a univariate normal
distribution is 3. Therefore univariate sample measures of skewness and kurtosis
may be used for testing univariate normality. In [19] a generalization of these sta-
tistics to test a hypothesis of multivariate normality is given. The test statistic for
multivariate skewness is

b1 =
1

n2

nX
i=1

nX
j=1

£
(Xi −X)0S−1(Xj −X)

¤3
.

and the corresponding test statistic for kurtosis is

b2 =
1

n

nX
i=1

£
(Xi −X)0S−1(Xi −X)

¤2
,

where S is the sample covariance matrix.

Neyman smooth test

In [3] a multivariate version of Neyman smooth test for multivariate normality is
given. The formulation of the test statistic would fill at least two pages, we refer to
[3].

BHEP test

[20] proposed a test, which is called BHEP test, of multivariate normality based on
the following statistic:

Tβ =

Z
|P (t)−Q(t)|2 ϕβ(t) dt,

where P (t) is the characteristic function of the multivariate normal distribution,
Q(t) is the empirical characteristic function, ϕβ(t) is a kernel function which was
chosen to be N

¡
0, β2Id

¢
(Id = d× d unit matrix) in order to obtain a simple closed
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form expression for Tβ and β is a smoothing parameter. Carrying out the integration
leads to

Tβ =
1

n

nX
i,j=1

exp

µ
−β

2

2
[Dii − 2Dij +Djj]

¶
+

n¡
1 + 2β2

¢d/2+
− 2¡

1 + β2
¢d/2 nX

i=1

exp

Ã
− β2Dii

2
¡
1 + β2

¢! ,

where
Dij = (Xi −X)0S−1(Xj −X), 1 ≤ i, j ≤ n,

and d is the dimension of the variate space.

The statistic Tβ was proposed by [21] for the univariate case d = 1. An extension
for the multivariate case d > 1 is given in [22] for β = 1. By [23] the term BHEP
tests is introduced with reference to the four authors of the papers [21] and [22].



Chapter 4

The quantity energy as a GoF test

Tests which are based on the order statistics (some of them are discussed in pre-
vious chapter) play an important role in univariate GoF problems. If one tries to
generalize order statistics to the multivariate case, one is faced with the problem
of defining an ordering scheme. Because of the absence of a natural linear order
in Rd it is not clear how to define a multivariate order statistic in a meaningful
way. Therefore the extension of the EDF tests to the multivariate case is difficult.
However tests based on binning suffer from the arbitrariness of binning and from
lack of power for small samples, since a high dimensional space is essentially empty
which is known in the literature under the term curse-of-dimensionality [24]. In
this chapter we propose a new class of nonparametric, multivariate, omnibus GoF
tests which avoid ordering and binning of the observations. The new class of tests
is called Energy tests, because the definition of the test statistic is closely related to
the energy of electric charge distributions. The Energy tests are essentially powerful
in multivariate testing problems.

4.1 The interaction energy of a system of charges

The energy of a system of interacting charges can be calculated simply in the follow-
ing way. Let a charge e1 be fixed at r1. A second charge e2, which was at infinity, is
displaced to a point r2 located at a distance |r2 − r1| from the first charge. In this
case we must do work W12 against the forces of the field of the first charge:

W12 = −e2
Z r2

∞
E1 dr =e2 (ϕ1(r2)− ϕ1(∞)) ,

where E1 is the field of the first charge. ϕ1(r2) represents the potential of E1 at the
point r2, which is given by

ϕ1(r2) =
1

4π�0

e1
|r2 − r1| .

27
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Hence the work W12 of displacement of the second charge is equal to

W12 = e2ϕ1(r2) =
1

4π�0

e1e2
|r2 − r1| ,

since the potential of the field of the first charge at infinity is equal to 0.

If a third charge e3 is added to a system of two charges, one has to expend the
work

W123 =
1

4π�0

e1e3
|r3 − r1| +

1

4π�0

e2e3
|r3 − r2| .

Continuing with such a procedure for a system of n charges, it is necessary to produce
the work

W =
1

4π�0

nX
i=2

i−1X
j=1

eiej
|ri − rj|

=
1

8π�0

nX
i6=j

eiej
|ri − rj| . (4.1)

Passing over from point charges to a continuous charge density distribution ρ,
we can write (4.1) in the form

W =
1

8π�0

Z Z
ρ(r)ρ(r0)
|r− r0| drdr0. (4.2)

The total energy W of an external continuous charge density distribution ρex
with a continuous charge density distribution ρ can be easily obtained by the Eq.
(4.2):

W =
1

8π�0

Z Z
[ρ(r) + ρex(r)] [ρ(r

0) + ρex(r
0)]

|r− r0| drdr0. (4.3)

In Figure 4.1 both continuous charge density distributions ρex and ρ are illus-
trated.

We now consider a system of a positively continuous charge density distribution
ρ and a negatively external continuous charge density distribution −ρex withZ

[ρ(r)− ρex(r)] dr = 0, (4.4)

i.e. we fix the total charge to zero. Physics tell us that for that case the energy of
this system is zero, i.e. the state of minimum energy, the vacuum, is free of charges.
In this thesis we will use this property to compare statistical distributions.
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Figure 4.1: Illustration of the interaction of two continuous charge density distrib-
utions.

4.2 The Energy tests

4.2.1 The idea

The energy W , which is given by (4.3), can be used simply as a test statistic in the
following way. We consider a sample X1,X2, . . . ,Xn as a system of positive charges
and a second sample Y1,Y2, . . . ,Ym as a system of negative charges. The charges
are normalized such that each sample contains a total charge of one unit. From
electrostatics we know that in the limit of where n, m tend to infinity, the total
potential energy of the pooled sample computed for a potential following an one-
over-distance law will be minimum if both charge samples have the same distribution.
In this limit any displacement of charges would increase the energy. We use this
property to construct a binning-free multivariate test procedure.

4.2.2 The new test statistics

Corresponding to (4.3) with (4.4) we define a quantity φ, the energy, which measures
the difference between two p.d.f.s f0(x) and f(x), x ∈ Rd, by

φ =
1

2

Z Z
[f(x)− f0(x)] [f(x

0)− f0(x
0)]R(x,x0)dxdx0. (4.5)

Here and in what follows, an unspecified integral denotes integration over Rd. The
distance function R(x,x0) is a monotonically decreasing function of the Euclidian
distance |x − x0|. Relation (4.5) with R(x,x0) = 1/|x − x0| is proportional to the
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electrostatic energy of two charge distributions f and f0 of opposite sign which is
minimum if the charges neutralize each other. In this thesis we have considered three
different distance functions R which are discussed in section 4.4. The coefficient 1

2
in

(4.5) is introduced because the same terms, corresponding to x and x0, are considered
twice.

We want to compare a p.d.f. f(x) to a reference p.d.f. f0(x) which we consider
as being fixed, i.e. our GoF problem can be formulated as

H0 : f(x) = f0(x)

H1 : f(x) 6= f0(x).

The vacuum is free of charges and therefore it is characterized by the minimum of
energy. Hence, φ must equal zero under H0 and otherwise positive. Mathematically,
this assertion is not immediately obvious. We will see in the next section that the
test statistic (4.5) is a non-negative functional under some constraints of the distance
function R(x,x0).

The formula in Eq. (4.5) is however not convenient for computation. Expanding
(4.5)

φ =
1

2

Z Z
[f(x)f(x0) + f0(x)f0(x

0)− 2f(x)f0(x0)]R(|x− x0|)dxdx0

=
1

2
E1 +

1

2
E2 − E3 (4.6)

we obtain three terms which are the expectation values of R.

Statistics is concerned with finite samples. To obtain the Energy statistic φn of
a sample X1,X2, . . . ,Xn relative to f0 we consider the first term E1 in (4.6). This
is the expectation value

E1 = E(R) =

Z
g(y)R(y)dy

of the distance function R(y) relative to the p.d.f. g(y), where y = (x,x0) and
g(y) = f(x)f(x0). We accept only distance functions R for which its expectation
value E(R) and variance V (R)

V (R) =

Z
g(y) (R(y)−E(R))2 dy

exist. From the law of large numbers follows that the sample mean of n observations
from a distribution with mean µ and finite variance will converge towards µ as
n becomes large, see [25], [26]. Hence E1 can consistently be estimated from a
corresponding sample mean.
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Note that to obtain one observation y two independent observations xi, xj both
drawn from f(x) are required. Thus for a sample X1,X2, . . . ,Xn, we can construct
the sampling version E1n of E1 by splitting the sample into two parts in the following
way:

E1n =
2

n

n/2X
i=1

nX
j=n/2+1

R(|xi − xj|). (4.7)

The splitting of the sample used in (4.7) is arbitrary. We can improve the precision
of the sample mean by averaging over all possible splittings of the sample into two
parts

E1n =
1

n(n− 1)
nX
i<j

R(|xi − xj|).

E1n converges to E1 in the limit of large n, since it is a consistent estimator of E1.
This leads to the energy statistic φn of a sample X1,X2, . . . ,Xn

φn =
1

n(n− 1)
nX
i<j

R(|xi − xj|) + 1
2

Z Z
f0(x)f0(x

0)R(|x− x0|)dxdx0+

− 1
n

nX
i=1

Z
f0(x

0)R(|xi − x0|)dx0. (4.8)

Since the evaluation of φn usually requires a sum over difficult integrals, we prefer to
represent f0 by a sample Y1,Y2, . . . ,Ym, usually generated through a Monte Carlo
simulation. In many experimental situations f0 is anyhow available only in form
of Monte Carlo simulations. Statistical fluctuations of the simulation are negligible
if m is large compared to the observed sample size n, typically m ≥ 10n. The
sampling version of (4.6) can easily be obtained from two samples X1,X2, . . . ,Xn

and Y1,Y2, . . . ,Ym drawn from f and f0, respectively:

φnm =
1

n(n− 1)
nX
i<j

R (|xi − xj|) + 1

m(m− 1)
mX
i<j

R (|yi − yj|)+

− 1

nm

nX
i=1

mX
j=1

R (|xi − yj|) . (4.9)

4.2.3 The distance function

A discrepancy between a sample and the theoretical description can be of different
origin. The problem may be in the theory which is wrong or the sample may be
biased by measurement errors or by background contamination. In physical experi-
ments we mainly have the latter situation. Even though the statistical description is
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the same in both cases the choice of the specific test may be different. In our appli-
cation in physics we are mainly confronted with slowly varying deviations between
f and f0 whereas in other fields where for example time series are investigated, high
frequency distortions are more likely. Therefore R should be adjusted to a specific
statistical problem. For slowly varying deviations between f and f0 a long range
distance function would be preferred.

4.2.4 Normalization of the distances

The Euclidean distances between two points zi and zj in Rd is

|zi − zj| =
vuut dX

k=1

(zi,k − zj,k)2 (4.10)

with projections zi,k and zj,k, k = 1, . . . , d, of the vectors zi and zj.

Since the relative scale of the different variates usually is arbitrary, we propose
to normalize the projections by the following transformation

z
∗
ik =

zi,k −mk

sk
,

i = 1, . . . , n+m
k = 1, . . . , d

,

where mk, sk are the empirical estimate of the mean and variance of the projec-
tion z1,k, . . . , z(n+m),k of the coordinates of the observations of the pooled sample
(Z1, . . . ,Zn+m) = (X1,X2, . . . ,Xn;Y1,Y2, . . . ,Ym). In this way we avoid that a
single projection dominates the value of the energy and that other projections con-
tribute only little to it.

To allow a direct comparison of the Energy tests with some selected tests from
the literature, we did not apply this transformation in our power studies.

4.3 Proof of the minimum property of φ

The Energy test statistic is based on the assertion that the energy φ is zero only
for H0 and positive for H1. To show that φ > 0 implies f(x) 6= f0(x) we substitute
h(x) = f(x)− f0(x) and obtain from Eq. (4.5)

φ =
1

2

Z Z
h(x)h(x0)R(x,x0)dxdx0. (4.11)

We replace in the Eq. (4.11) the distance function R(x,x0) = R(|x− x0|), which
also called kernel, by its Fourier integral R̃(k)

R(|x− x0|) =
Z

R̃(k)eik·(x−x
0)dk
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and obtain

φ =
1

2

Z Z Z
h(x)h(x0)R̃(k)eik·(x−x

0)dxdx0dk

=
1

2

Z ¯̄̄
h̃(k)

¯̄̄2
R̃(k)dk (4.12)

where h̃(k) is the Fourier transform of h(x).

If
R̃(k)>0

we get from Eq. (4.12) that φ is zero only for h(x) = f(x)− f0(x) ≡ 0 and positive
for h(x) 6= 0. Therefore the new test statistics are only applicable with decreasing
distance functions which have positive Fourier transforms or equivalently the kernel
R(x,x0)must be positive definite. Clearly, we may also use monotonically increasing
distance functions which should have negative Fourier transformation. For these
distance functions f(x) 6= f0(x) would imply φ < 0.

Note that the minimum energy requirement for the equality of f and f0 is strictly
correct only when the size of Monte Carlo sample, m, is equal to n, where n is the
size of the observed sample X1,X2, . . . ,Xn which is drawn from f . For the general
case with a continuous distribution f0 or Monte Carlo sample and observed sample of
different size, the optimum agreement of the two distributions is not well defined and
there is a slight dependence of the minimum energy configuration on the distance
function. The assertion that the Energy statistic φnm is zero only for H0 is valid
when n,m tend to infinity. For small n,m we did not success to proof this assertion.
In special case of R(x,x0) = |x− x0|, where the Fourier transform of |.| is negative,
the assertion of the maximum condition of the energy for n = m is proven in [27]
where one can see the difficulty of this problem even for a simple distance function.
This assertion was originally formulated by [28] in the form of a question as

For equal numbers of black and white points in euclidean space the sum of the
pairwise distances between points of equal color is less than or equal to the
sum of the pairwise distances between points of different color, and equality
holds only in the case when black and white points coincide.

We assert that for n = m the minimum condition still applies if we have to
replace the factors 1/(n− 1) and 1/(m− 1) by 1/n in (4.9):

φnn =
1

n2

nX
i<j

R (|xi − xj|) + 1

n2

nX
i<j

R (|yi − yj|)+

− 1

n2

nX
i,j=1

R (|xi − yj|) .
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To demonstrate the minimum condition which leads to φnn = 0 for two samples
of equal sizes which coincide, we apply an infinitesimal shift to one observation
xi − yi = δxi. Note that only the pair xi,yi contributes to the energy, all other
terms cancel, i.e. the change of the total energy is given by

∆φnn =
1

n2
[R (|δxi|)−R(0)] .

Since R decreases with its argument, R (|δxi|) − R(0) < 0, we have found a lo-
cal minimum of the energy. For n 6= m this conclusion is not obvious, however
experimentally the test statistic φnm has shown to be powerfull also in this case.

4.4 Some selected distance functions

We note that the minimum energy configuration does not depend on the application
of the one-over-distance power law of electrostatics. We may apply a class of distance
functions with the requirement that R has to decrease monotonically and the Fourier
transform of R must be positive. Therefore different choice of R leads to different
tests.

We know that the Fourier transform of a Dirac Delta function is positive, hence
we can set R (x,x0) = δ(x− x0) in (4.5) and we obtain

φ =
1

2

Z
[f(x)− f0(x)]

2 dx.

For R (x,x0) = δ(x− x0) the φ reduces to the integrated quadratic difference of the
two p.d.f.s. The Dirac Delta function is not well suited for testing GoF, since we
are not only interested in local differences. For that reason we have considered three
different distance functions which correlate different locations:

R (|x− x0|) = 1

|x− x0|κ , 0 < κ < d/2 (4.13)

R (|x− x0|) = − ln (|x− x0|) (4.14)

R (|x− x0|) = e−|x−x
0|2/(2s2) (4.15)

The first type of the distance function is motivated by the analogy to electrostatics,
the second is long range and the third emphasizes a limited range for the correlation
between different observations. The power κ of the denominator in Eq. (4.13) and
the parameter s in Eq. (4.15) may be chosen differently for different dimensions of
the sample space and different applications. For example, for long range distortions
a small value of κ and for short range deviations a large value of κ would be used.

The inverse power law and the logarithm have singularity at x = x0. In principle
these singularities are not a problem since the expectation values exist, however due
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to rounding, limited resolution in measurement scales, and so forth x = x0 might
occur. They can be easily handled by introducing a cut-off parameter ε. Very small
distances, however, should not be weighted too strongly, since distortions with sharp
peak are not expected and usually inhibited by finite experimental resolution. To
prevent this, a simple remedy is to reset any such distances of length zero to some
small positive value ε. The value of the cut-off parameter ε is not critical, it should
be of the order of the average distance in the regions where the f0 is maximum
and not less than the experimental resolution. A cut-off parameter is also desirable
for another reason. Comparing two finite samples modifications of the distances by
values which are very small compared to the average distance of the most dense
regions should not matter. The choice of the cut-off parameter could be left to the
user of the test. We have not observed a statistically significant change of the power
of the Energy tests when we varried ε by an order of magnitude.

It is well known that the Fourier transform of the Gaussian function is also
Gaussian and hence is positive. We have to show that the Fourier transforms of the
other two distance functions are positive. The distance functions considered in this
thesis are symmetrical functions and it is known if R (|r|) is a function only of the
modulus of r, then its Fourier transform F (k) is also a function only of the modulus
of k, see [29].

For the function R (|r|) = R(r) = 1
rκ
with d > κ, where d is the dimension of r,

the Fourier transformation F (k) is [30]:

F (k) = 2d−κπd/2
Γ
¡
d−κ
2

¢
Γ
¡
κ
2

¢ kκ−d > 0

with k = |k|.
Note that the second momentsZ Z

f(x)f(x0)R2(|x− x0|)dxdx0,
Z Z

f(x)f0(x
0)R2(|x− x0|)dxdx0

for the specific kernel R (|r|) = R(r) = 1
rκ
with d > 2κ are finite because R2 (|r|) =

R2(r) = 1
r2κ

is again a positive definite kernel of the same type. Hence φnm is a
consistent estimator of φ with the distance function R (|r|) = R(r) = 1

rκ
, d > 2κ.

The logarithmic distance function R (r) = − ln (r) can be considered as the
κ→ 0 limit of the power law distance function (4.13), i.e. it yields

− ln r = lim
n→∞

n

Ãµ
1

r

¶1/n
− 1
!
.

The corresponding test quantiles of φnm are invariant under a linear transformation
r → ar. In the remainder of this thesis, we will restrict the attention mainly to the
logarithmic distance function.
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Figure 4.2: Energy distributions for a Gaussian distance function a) and a logarithmic
distance function b) and their approximation by generalized extreme value distributions,
where the term depending only on f0 which is independent from the sample is not taken
into account.

4.5 The distribution of the Energy test statistic

The distribution of the Energy test statistic depends on the probability distribution
function f0 and on the distance functionR. Figure 4.2 shows the energy distributions
for uniform f0 with Gaussian and logarithmic distance functions. The distributions
are well described by a generalized extreme value distribution

f(x) =
1

σ

µ
1 + ξ

x− µ

σ

¶−1/ξ−1
exp

(
−
µ
1 + ξ

x− µ

σ

¶−1/ξ)

depending on three parameters, a scale parameter σ, a location parameter µ, and a
shape parameter ξ. This class of generalized extreme value distributions is consid-
ered, since the energy quantity in GoF testing is in some sense an extreme value.
Rather than computing these parameters from the moments of the specific φ distrib-
utions, we propose to generate the distribution of the test statistic and the quantiles
by a Monte Carlo simulation. As a consequence of the dramatic increase of comput-
ing power during the last decade, it has become possible to perform the calculations
on a simple PC within minutes. There is no need to publish tables of critical values.
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4.5.1 Relation to U-statistics

To introduce some basic properties of U-statistics we follow [31] and [32]. For more
details on U-statistics, [33] is recommended.

We assume that the c.d.f. F is completely unknown and let X1,X2, . . . , Xn be
i.i.d. with F . Consider a ‘parametric function’ θ = θ(F ) which may be, for example,
the expectation, variance or the median and so on of F .

U-statistics U (X1, X2, . . . , Xn) form a class of unbiased estimators of θ. For
instance to estimate

θ(F ) = mean of F = E(X) =

Z
xdF (x)

one will use the sample mean

U (X1, X2, . . . , Xn) =
1

n

nX
i=1

Xi = X.

Other statistics for θ may correlate different Xi’s, for example

θ = Eϕ (X1,X2, . . . , Xr) , (4.16)

where we assume that ϕ, called a kernel, is a symmetric function in its r arguments.

A U -statistic U (X1,X2, . . . , Xn) of order r with a kernel ϕ for estimation of θ is
obtained by averaging the kernel ϕ symmetrically over the observations:

U (X1,X2, . . . , Xn) =
1¡
n
r

¢ X
· · ·
X

(1≤i1<i2<...<ir≤n)
ϕ (Xi1 ,Xi2 , . . . , Xir) . (4.17)

U-statistics can be generalized in a natural way to k several samples by

U =
1¡

n1
r1

¢ · · · ¡nk
rk

¢Xϕ (X1i1 ,X1i2, . . . , X1ir ; . . . ;Xkj1 ,Xkj2 , . . . , Xkjs) , (4.18)

for example, for k = 2 we get

U =
1¡

n
r

¢¡
m
s

¢Xϕ (Xi1, Xi2, . . . , Xir ;Yj1 , Yj2 , . . . , Yjs) , (4.19)

where n is the size of the first sample and m is the size of the second sample.

From (4.17) and (4.19) it is clear that the Energy test statistic φnm can be
expressed as a sum of three different U-statistics of order 2 with a symmetric kernel
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R. Therefore our main concern here is the asymptotic behavior of U-statistics. In
the theory of one sample U -statistics it is known that

lim
n→∞

U − θp
V ar(U)

∼ N(0, 1)

where

V ar(U) =

"
rX

i=1

µ
r

i

¶µ
n− r

r − i

¶
σ2i

#
(n− r)!r!

n!
(4.20)

if
V arϕi (X1, X2, . . . , Xi) = σ2i <∞ for all i = 1, 2, . . . , r.

∼ is read as ‘is distributed according to’. A same result holds for U-statistics of
two samples, namely a two sample U -statistic is also asymptotically distributed as
a Gaussian.

These results might lead to the assumption that the asymptotical distribution
of φnm must be Gaussian. But we see from Figure 4.2 that it is a skew distribution
and not Gaussian. We have also determined for large sample size, n = 1000, the
distribution of φnm for uniform f0 with a logarithmic distance function and we got
a skew distribution and not a Gaussian. The reason for that lies in the fact that the
three sums in (4.9) are not independent. The first two sums in (4.9) are independent,
but they are correlated with the third sum. A theoretical determination of the
asymptotical distribution of φnm seems difficult.

4.6 Consistency

One important aspect which a test must have is that, as the sample size increases,
it should distinguish better between the hypotheses being tested. A test is termed
consistent if the power tends to unity as the number of observations increases.

To show that the Energy test is consistent we investigate the variance of the
three terms of φmn. The first two terms are one sample U -statistics and we get from
(4.20) for r = 2

V ar(U) =

"
2X

i=1

µ
2

i

¶µ
n− 2
2− i

¶
σ2i

#
(n− 2)!2!

n!

=
4(n− 2)
n(n− 1)σ

2
1 +

2

n(n− 1)σ
2
2 →

4σ21
n
.

If σ21 = V ar [R(X)] <∞, which is in most situation given, then the variance of the
first term tends to 0 at rate 4σ21

n
. The same holds for the second term, since X may

be replaced by Y .
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If the covariances

σ210 = Cov[ϕ(X1, X2, . . . , Xr;Y1, . . . , Ys),

ϕ(X1,X
0
2 . . . , X

0
r;Y

0
1 , . . . , Y

0
s )]

σ210 = Cov[ϕ(X1, . . . , Xr;Y1, Y2, . . . , Ys),

ϕ(X 0
1, . . . , X

0
r;Y1, Y

0
2 . . . , Y

0
s )]

are > 0 and if N = n+m and

n

N
→ ρ,

m

N
→ 1− ρ with 0 ≤ ρ ≤ 1,

then for the asymptotic variance of the two sample U-statistics holds

V ar(U) =
1

N

µ
r2

ρ
σ210 +

s2

1− ρ
σ201

¶
, (4.21)

see [31].

The asymptotic variance of the last term of φnm is equal to (4.21) with r = s = 1
and ϕ = R.

We have shown that the variance of the test statistic φnm tends to 0 if the
sample sizes of the observed and Monte Carlo samples increase. Therefore the test
is consistent.

A test is called biased, if for some members of H1 the probability of rejecting H0

is smaller when H0 is false than when it is true. To determine whether the Energy
test is biased or not is very difficult. But the consistency of the Energy test implies
that it is asymptotically unbiased, see [25].

4.7 A link between φnm and the Bowman-Foster
test statistic

The Bowman-Foster (BF ) test for multivariate normality can be constructed from a
kernel density estimate bfn(x) of the null hypothesis density f0(x). The test statistic

BF =

Z ³ bfn(x)− E
h bfn(x)i´2 dx (4.22)

is an integrated squared error of bfn(x) and its expected value E h bfn(x)i, where
E
h bfn(x)i = 1

n

nX
i=1

E [Kh (x,Xi;h)] =

Z
Kh (x,y;h) dy,
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i.e. E
h bfn(x)i is a folding of f0(x).bfn(x) is a biased estimator, see [15]. Hence it is inappropriate to consider the

L2 distance between bfn(x) and the hypothesized density f0(x) as a test statistic.
For that reason (4.22) is a suitable test statistic. It is shown in [34] that when
the kernel function is a normal density then for testing multivariate normality the
integration in (4.22) can be carried out analytically. In concrete applications it is
tedious or impossible to compute analytically the integrations involved in (4.22). But
they can be replaced by a Monte Carlo integration. To avoid additional statistical
uncertainties, the number of simulated observations should be large compared to
the sample size. This is not a disadvantage with today’s computing power on simple
PCs.

The Energy test is related to Bowman-Foster test [34]. To show the link between
φnm and BF we put the multivariate version of (3.7) into (4.22) and obtain

BF =

Z "
1

n

nX
i=1

Kh (x,Xi;h)−
Z

f0(y)Kh (x,y;h) dy

#2
dx, (4.23)

By expanding of (4.23) we get

BF =
1

n2

nX
i,j=1

Z
Kh (x,Xi;h)Kh (x,Xj;h) dx+

− 2
n

nX
i=1

Z
f0(y)

µZ
Kh (x,y;h)Kh (x,Xi;h) dx

¶
dy+

+

Z µZ
f0(y

0)Kh (x,y
0;h) dy0

Z
f0(y)Kh (x,y;h) dy

¶
dx.

We substitute

R (y,y0;h) =
Z

Kh (x,y;h)Kh (x,y
0;h) dx, (4.24)

where the Fourier transform of R (y,y0;h) is positive which can be seen easily, and
obtain

BF =
1

n2

nX
i,j=1

R (Xi,Xj;h)− 2
n

nX
i=1

Z
f0(x)R (x,Xi;h) dx+

+

Z Z
f0(x)f0(x

0)R(x,x0;h) dxdx0. (4.25)

For a Gaussian kernel Kh we get from the Eq. (4.24) that R (y,y0;h) is also a
Gaussian. Hence, we see from the form of (4.25) that the BF test statistic resembles
the Energy statistic φnm with a Gaussian distance function R. Therefore the Energy
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test statistic with a Gaussian distance function R has an alternative interpretation in
terms of L2 distances between a kernel density estimate bfn(x) of the null hypothesis
density f0(x) and its expected value E

h bfn(x)i.
Note that it is impossible to get the kernel Kh from a distance function R with

the Eq. (4.24). Therefore the Energy test is more general.

It was pointed out by [35] that the Bowman-Foster statistic is essentially the
same as that given by [22] and [20]. In [36] is shown that Tβ can be written as

BF = βd(2π)−d/2Tβ

with β = 1
h
√
2
and h =

³
4

n(2d+1)

´1/(4+d)
. Hence the Bowman-Foster test is a member

of the BHEP tests. From this point of view the Energy test statistic with a Gaussian
distance function R has also another interpretation in terms of weighted integral of
the squared modulus of the difference between the empirical characteristic function
and the characteristic function of the proposed distribution.

4.8 Power study

4.8.1 Univariate case

Optimization of the test parameters

To study the dependence of the power of the Energy test on the choice of the distance
function and its parameters, we have chosen for H0 a uniform, univariate p.d.f. f0
restricted to the unit interval [0, 1]. We determined the rejection power with respect
to contaminations of f0 with a linear and two different Gaussian distributions which
represent a wide and a more local distortion. These alternative hypothesis densities
are

f1(x) = 0.3 + 1.4x (4.26)

f2(x) = 0.7 + 0.3
h
c2e

−64(x−0.5)2
i

(4.27)

f3(x) = 0.8 + 0.2
h
c3e

−256(x−0.5)2
i

(4.28)

where the c2 and c3 are normalization constants for the associated Gaussians.

We required 5% significance level and computed the rejection power which is
equal to one minus the probability for an error of the second kind. As a reference,
we also computed the power of a χ2 test with bins of fixed width. The number
of bins B ≈ 2n2/5 was chosen according to the prescription proposed in [37]. The
cut-off parameter � for (4.13) and (4.14) was set equal to 1/(4n).
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Figure 4.3: Rejection power of different Energy tests for a uniform distribution f0 with
respect to a linear distribution and two Gaussian contaminations, exp[−64(x−0.5)2] and
exp[−256(x− 0.5)2].
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In Figure 4.3 we show the results for samples of 100 observations. Five different
values of the Gaussian width parameter s, four different power laws and the logarith-
mic distance function have been studied. As expected, the linear distribution is best
discriminated by slowly varying distance functions like the logarithm, low power laws
and the wide Gaussians. The p.d.f. f3 contains a narrow Gaussian contamination
and since is better recognized by the narrow distance functions (s = 1/16, κ = 0.3).
Here the two wide Gaussian distance functions fail completely.
Figure 4.4 illustrates the dependence of the rejection power on the sample size

for the three different alternative hypothesis densities as in (4.26), (4.27), (4.28) to
the uniform distribution. The amount of contamination was reduced with increasing
sample size.

We applied the Energy tests φnm with power law κ = 0.3, the logarithmic and
two Gaussian distance functions with fixed width s = 1/8 (Gfix) and variable width
(Gvar). The variable width was chosen such that the full width at half maximum is
equal to the χ2 bin width, chosen according to the 2n2/5 law. This allows for a fair
comparison between the two methods. As expected the linear distribution is best
discriminated by the Energy test with logarithmic distance function. The power of
the χ2 test is considerably worse. The Energy test with variable Gaussian distance
function follows the trend of the χ2 test but performs better in 14 out of the 15
cases.

Comparing the samples with sizes 50 and 100, respectively, we realize one of
the caveats of the χ2 test: For the sample of size 50 there are 9 bins. The central
bin coincides favorably with the location of the distortion peak of the background
sample and consequently leads to a high rejection power. For the sample of size 100,
however, there are 12 bins, thus two bins share the narrow peak and the power is
reduced. The Gaussian Energy test is insensitive to the location of the distortion.

Comparison with alternative univariate tests

We have investigated the following GoF tests, which are introduced in this thesis:
χ2 test, Kolmogorov-Smirnov test, Kuiper test, Anderson-Darling test, Watson test,
Neyman smooth test, three region test, Energy tests with logarithmic and Gaussian
distance functions.

Samples contaminated by different background sources were tested against H0,
corresponding to the uniform distribution. The power of each test for a 5% signifi-
cance level was evaluated for 100 observations. The following 6 different alternative
hypothesis densities are considered to study the power of the tests against uniform
distribution on [0, 1] where some of them are illustrated in Figure 4.5.
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Figure 4.4: Power of tests for 3 different contaminations to uniform distribution and 5
different sample sizes ranging from 10 to 200. The shape of the contamination is displayed
on top of the columns. The type of test is indicated in the lowest left hand plot.
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Figure 4.5: Illustration of some alternative distributions to the uniform distribution.
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½
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The power of the different tests is presented in Figure 4.6. As expected, none of
the tests is optimum for all kind of distortions. The Energy tests are quite powerful
independent of the background function.

4.8.2 Bivariate case

The real power of the Energy test manifests itself in multidimensional applications.
We compare the Energy test with logarithmic and Gaussian distance functions to
tests for multivariate normality which are introduced in third chapter.

The question of how to maximize the power of the BHEP tests in terms of the
choice of the smoothing parameter β is still under investigation. For our power
study we chose β = 1.
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Figure 4.6: Rejection power of tests with respect to different contaminations to the
uniform distribution.
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As null hypothesis we chose two-dimensional Gaussian N(0, I2) and the alterna-
tive probability distributions under investigation are the following:

1 : 0.85N(0, I2) + 0.15U(0,1)

2 : 0.7N(0, I2) + 0.3Nlog(0, I2)

3 : 0.5N(0, I2) + 0.5U(−1,1)
4 : 0.6N(0, I2) + 0.4N

µ
0,

1 0.9
0.9 1

¶
5 : 0.85N(0, I2) + 0.15N

µ
0,
1/9 0.1
0.1 1/9

¶
6 : 0.9N(0, I2) + 0.1N

µ
0,
0.04 0.02
0.02 0.04

¶
7 : 0.95N(0, I2) + 0.05N

µ
0,
0.0025 1/800
1/800 0.0025

¶
The distribution denoted by Nlog is obtained by the variable transformation

x→ ln |x| applied to each coordinate of a two-dimensional normal distribution and
is not to be mixed up with the log-normal distribution. It is extremely asymmetric.

Figure 4.7 displays the results for 200 observations. We were astonished how well
the Energy test competes with alternatives especially designed to test normality. We
attribute the excellent performance of the Energy test to the fact that it is sensitive
to all deviations of two distributions whereas, for example, the Mardia tests are
based only on two specific moments.



48 CHAPTER 4. THE QUANTITY ENERGY AS A GOF TEST

Figure 4.7: Rejection power of tests with respect to different contaminations of a two-
dimensional Gaussian.



Chapter 5

Energy for the two-sample
problem

In this chapter we consider the classical problem of testing whether two samples
of observations are from the same distribution. To develop a multivariate test for
the two-sample problem based on the energy approach, we briefly introduce some
resampling methods used in statistical analysis. The power of this new test is
compared with that of competing tests in different dimensions and the proposed
test shows high performance independent of the dimension of the variate space.

5.1 Resampling methods

During the last twenty years, the development of faster and cheaper computers has
made Monte Carlo methods more affordable and attractive in statistical analysis.
Important developments in this area include the use of resampling methods for
improving standard asymptotic approximations. The basic idea of the resampling
methods is that, in absence of any other information about the distribution, the
observed sample contains all the available information about the underlying distrib-
ution, hence resampling the sample is the easiest way to get informations about the
underlying distribution.

5.1.1 The bootstrap and permutation principle

The bootstrap and permutation methods are described and explored in detail by
[38], and only a brief summary will be given here.

Let bθ (X1,X2, . . . ,Xn) denote some sample estimate. Suppose we wish to esti-
mate some feature of this r.v. bθ, such as its mean value, its variance, etc. The basic
idea of the bootstrap is to construct an empirical distribution function (EDF) Fn

of the sample X1,X2, . . . ,Xn and draw a new random sample X0
1,X

0
2, . . . ,X

0
n from

Fn. This resample is called a bootstrap sample.

49
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The bootstrap algorithm consists of the following steps:

1. Obtain the EDF Fn of the sample X1,X2, . . . ,Xn.

2. Draw a bootstrap sample from Fn. This consists of drawing each X0
i indepen-

dently with replacement from the observed sample X1,X2, . . . ,Xn. Using this
bootstrap sample, compute bθ0 = bθ (X0

1,X
0
2, . . . ,X

0
n).

3. Repeat step 2 a large number of times, say B times, obtaining bootstrap repli-
cations bθ01, bθ02, . . . , bθ0B. Based on this replications, we may compute features of
interest of the distribution of bθ.

The permutation method proceeds identically as the bootstrap method, except
that resampling is done without replacement.

5.1.2 The smoothed bootstrap

Because the EDF Fn is a discrete distribution, samples drawn from Fn, bootstrap
samples, are inappropriate for the energy approach. Nearly every bootstrap sample
will contain repeated values. The smoothed bootstrap [39] is a modification to the
bootstrap procedure to avoid samples with this property. The essential idea of the
smoothed bootstrap is to perform the repeated sampling not from Fn itself, but from
a smoothed version bFn of Fn. For example bFn may be the distribution function of
the continuous density estimate bfn. If bfn is constructed by the kernel method with
kernel K, then it is very easy to find independent realizations from bfn. Realizations
X0 from bfn can be generated as follows:
1. Choose i uniformly with replacement from {1, 2, . . . , n}.
2. Generate α from the kernel K.

3. Set X0 = Xi + hα, where h is a smoothing constant, chosen by trial.

5.2 The two-sample Energy test

Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym be two samples of independent random
vectors with distributions F and G, respectively. Then as considered in section 2.5
the general two-sample problem consists of testing the hypothesis

H0 : F (x) = G(x), for every x,

against the general alternative

H1 : F (x) 6= G(x), for at least one x,
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where F and G are unknown.

In principle the two-sample problem can be treated with similar methods as used
in GoF techniques. The only difference lies in the fact that the underlying distribu-
tions F and G of the two samples X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym are unknown.
This difficulty can be relaxed by considering for example a permutational version of
the Energy tests which uses the fact that all permutations of the pooled observations
(Z1,Z2, . . . ,Zn+m) := (X1,X2, . . . ,Xn,Y1,Y2, . . . ,Ym) are equally likely.

The energy concept can also be applied to the two-sample problem. We consider
the first sample X1,X2, . . . ,Xn as a system of positive charges and the second
sample Y1,Y2, . . . ,Ym as a system of negative charges. The two-sample Energy
test statistics φnm, which is given below, is based on the fact that the total potential
energy of the pooled sample will be minimum if both charge samples have the same
distribution.

φnm =
1

n(n− 1)
nX
i<j

R (|xi − xj|) + 1

m(m− 1)
mX
i<j

R (|yi − yj|)+

− 1

nm

nX
i=1

mX
j=1

R (|xi − yj|) .

To compute the power of the two-sample Energy tests we use the permutation
method to evaluate the distribution of φnm under H0. We merge the N = m + n
observations of both samples and draw from the combined sample a subsample
of size n without replacement. The remaining m observations represent a second
sample. The probability distribution under H0 of φnm is evaluated by determining
the values of φnm of all

¡
N
m

¢
= N !

n!m!
possible permutations. For largeN this procedure

can become computationally too laborious. Then the probability distribution is
estimated from a random sample of all possible permutations.

To determine the distribution of φnm we could also use a smoothed bootstrap
sample but we prefer permutation technique, since it is free of arbitrary parameters,
as for example smoothing parameters.

5.3 Competing tests

Before we discuss the simulations and their results in the next section we will give
a short overview on some tests which are natural competitors to the two-sample
Energy test. These tests were used in the simulations to show how the two-sample
Energy test perform in comparison with existing tests. The critical value of these
tests are determined by a Monte Carlo simulation.
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5.3.1 Univariate case

In the literature exists a multitude of two-sample tests. But we select only a few
of the proposed tests for a wide variety of functional alternatives. Some of the
GoF tests, for example the χ2 test and the EDF-tests, can be adapted to the two-
sample problem. We have seen that as a GoF criterion the EDF-tests compared
the empirical distribution function of a sample with a hypothesized distribution.
In the two-sample case, the comparison is made between the empirical distribu-
tion functions of the two samples. The χ2 test, Kolmogorov-Smirnov two-sample
test, Cramér-von Mises two-sample test, Wilcox test, and the Lepage test will be
considered.

Chi-square χ2 test

χ2 test requires grouping of observations therefore some informations get lost. But
it is the most popular test, which is used in practice, even though it is well known
that it has some disadvantages from the point of view of the power. χ2 statistic is
defined by

χ2 =
X
i

p
m
n
ni −

p
n
m
mi

ni +mi
,

where the sum is over all bins and ni is the number of the observations from the
first sample in the ith bin, mi the number of observations in the same bin i for the
second sample. A large value of χ2 indicates that H0 is rather unlikely.

Kolmogorov-Smirnov (KS) test

The familiar Kolmogorov-Smirnov two-sample test is defined by

KS =

r
mn

n+m
sup

1≤i≤n+m

¯̄
Fn(Z(i))−Gm(Z(i))

¯̄
,

where Fn and Gm denote the empirical distribution function for the both samples
and the Z(i) are the order statistics of the pooled sample from X1, X2, . . . , Xn and
Y1, Y2, . . . , Ym. The test procedure suggests to reject H0 if KS ≥ k1−α(n,m), where
k1−α is the 100α% percentile of the null distribution of KS.

Cramér-von Mises (CvM) test

Another class of test, which uses information from all and not just from the largest
deviation is:

CvM =
nm

(n+m)2

n+mX
i=1

¡
Fn(Z(i))−Gm(Z(i))

¢2
.
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For practical work the alternative form

CvM =
1

n(n+m)

nX
i=1

¡
R(X(i))− i

¢2
+

1

m(n+m)

mX
j=1

¡
R(Y(j))− j

¢2
+

− 4nm− 1
6(n+m)

is preferable, where R(X(i)) is the rank in the combined sample of the ith observa-
tion in the first sample and R(Y(j)) is the rank in the combined sample of the jth
observation in the second sample, respectively . Large values of CvM leads to a
rejection of H0.

Wilcox (W) test

Wilcox test W [40] is a version of KS test, which is based on weighting the Kol-
mogorov distance between two distributions.

W =

r
nm

n+m
sup

1≤i≤n+m

¯̄
Fn(Z(i))−Gm(Z(i))

¯̄¡
H(Z(i))(1−H(Z(i)))

¢ 1
2

,

where
H(Z(i)) = λF (Z(i)) + (1− λ)G(Z(i))

with λ = m
n+m

.

Wilcox test gives more weights to differences in the tails so that the variance of
W remains fairly stable over all possible values. Consequently, W must be more
sensitive than KS to differences that occur in the tails.

Lepage (L) test

The Lepage test L [41] is expressed in terms of two independent tests. The Wilcoxon
statistic WN

WN =
nX
i=1

R(X(i))

for location alternatives and the Ansari Bradley statistic AB

AB =
nX
i=1

n+m+ 1

2
−
¯̄̄̄
R(X(i))− n+m+ 1

2

¯̄̄̄
for scale alternatives are included in the Lepage statistic L and is given by

L =

Ã
WN − E(WN)p

V ar(WN)

!2
+

Ã
AB −E(AB)p

V ar(AB)

!2
,
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where

E(WN) =
n(n+m+ 1)

2

V ar(WN) =
nm(n+m+ 1)

12

E(AB) =

(
n(n+m+2)

4
n(n+m+1)2

4(n+m)

if n+m is even
if n+m is odd

V ar(AB) =

(
nm((n+m)2−4)
48(n+m−1)

nm(n+m+1)((n+m)2+3)
48(n+m)2

if n+m is even
if n+mm is odd

The asymptotic distribution of L is under H0 a χ22 distribution with 2 degrees of
freedom, since the statistics WN and AB are independent.

5.3.2 Multivariate case

For the multivariate two-sample problem with general alternatives there are only
a few tests on the market. In the literature tests are proposed which like the En-
ergy test are based on the distance between the observations. One of them is the
Friedman-Rafsky test. Its statistic [42] is the number of edges in the minimal span-
ning tree that connect observations X1,X2, . . . ,Xn,Y1,Y2, . . . ,Ym from different
samples. Another multidimensional test which we have chosen for a comparison to
the Energy test, is the k nearest neighbor test [43].

Friedman-Rafsky test

The Friedman-Rafsky test can be seen as a generalization of the univariate run
test [44]. The test statistic in [44] is the run which is defined as a set of adjacent
observations which belong to the same sample, where the two samplesX1,X2, . . . , Xn

and Y1, Y2, . . . , Ym are combined into a single ordered sequence from smallest to
largest, see Figure 5.1. Clearly, small values of the run of the ordered pooled sample
lead to a rejection of the null hypothesis.

The problem in generalizing the run test to more than one dimension is that there
is no unique sorting scheme for the observations. The minimum spanning tree can
be used for this purpose. For independent d-variate random samples X1,X2, . . . ,Xn

i.i.d. with f(x) and Y1,Y2, . . . ,Ym i.i.d. with g(y) a spanning tree on a pooled
sample Z1, . . . ,Zn+m is a connected graph with no cycles. A minimal spanning tree
is the spanning tree for which the total Euclidean length of the connections is the
smallest possible. Clearly, in one dimension the Friedman-Rafsky test is exactly the
run test.

The Friedman-Rafsky test proceeds as follows. In the first step the minimal
spanning tree of the pooled sample is constructed. In the second step one counts
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Figure 5.1: Two samples of observations (5 circles and 4 squares) result in 4 runs.

the connections between observations from different samples. The result is the test
statistic Rnm and small values of Rnm lead to a rejection of H0. In [45] it is proved
that Rnm is asymptotically distribution-free under the null hypothesis.

The nearest neighbor test

For independent d-variate random samples X1,X2, . . . ,Xn i.i.d. with a p.d.f. f and
Y1,Y2, . . . ,Ym i.i.d. with a p.d.f. g, where the densities f and g are assumed to
be continuous, the nearest neighbor test statistic Nnm is the sum of the number of
vectors Zi of the pooled sample Z1, . . . ,Zn+m such that the nearest neighbor of Zi,
denoted by N(Zi), is of the same type as Zi:

Nnm =
n+mX
i=1

I (Zi and N(Zi) belong to the same sample) ,

where I is the indicator function. N(Zi) can be determined by a fixed but otherwise
arbitrary norm on Rd. We select the Euclidean norm. In [46] it is shown that the
limiting distribution of Nnm is normal, as min(n,m)→∞ and n/(n+m)→ τ with
0 < τ < 1 :

√
n+m

µ
1

n+m
Tnm − n(n− 1) +m(m− 1)

(n+m− 1)(n+m)

¶
→ N

¡
0, σ2(τ)

¢
, (5.1)

where σ2(τ) is given by

σ2(τ) = 4τ(1− τ)

µ
τ(1− τ)(1 + b1(d)) + (τ − 1

2
)2b2(d)

¶
.

For dimension d = 2 the constants b1 and b2 are given by

b1(2) =
6π

8π + 3
√
3

and b2(2) ≈ 0.633.

From (5.1) critical values can be determined for moderate or large sample sizes.
Clearly, large values of Nnm leads to a rejection of H0.



56 CHAPTER 5. ENERGY FOR THE TWO-SAMPLE PROBLEM

Table 5.1: Confidence intervals as a function of the number of permutations for
nominal α = 0.05.

# of
permutations

CI(95%) for α

100 [0.006, 0.095]
300 [0.025, 0.075]
500 [0.031, 0.068]
1000 [0.036, 0.063]

The k nearest neighbor test

As a generalization of the nearest neighbor test statistic, the k nearest neighbor
test statistic T k

nm is the number of all k nearest neighbor comparisons in which
observations and their neighbors belong to the same sample, i.e.

T k
nm =

n+mX
i=1

kX
r=1

Ii(r),

where

Ii(r) =

½
1, if Zi and Nr (Zi) belong to the same sample
0, otherwise

and Nr (Zi) = Zj is the rth nearest neighbor to Zi satisfying |Zs − Zi| < |Zj − Zi|,
1 ≤ s ≤ n+m, s 6= i, j.

Note that for k = 1 the test statistic T k
nm reduces to the statistic Nnm.

5.4 Power comparisons

The performance of various tests were assessed for finite sample sizes by Monte Carlo
simulations in d = 1, 2 and 4 dimensions. Also the critical values of all considered
tests were calculated by Monte Carlo simulation. We chose a 5% significance level.

For the null hypothesis we determine the distribution of φnm with the permuta-
tion technique, as mentioned above. We followed [38] and generated 1000 randomly
selected two subsets in each case and determined the critical values φc of φnm. For
the specific case n = m = 50 and samples drawn from a uniform distribution we
studied the statistical fluctuations. Transforming the confidence interval of φc into
limits for α, we obtain the interval [0.036, 0.063], see Table 5.1. This means that the
critical value obtained by 1000 permutations corresponds with 95% confidence to a
value α included in this interval.
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Even though the Energy test has been designed for multivariate applications, we
investigate its power in one dimension because there a comparison with several well
established tests is possible . To avoid a personal prejudice we drew the two samples
from the probability distributions, which have also been investigated in [47]:

f1(x) =

½
1
0
−√3 ≤ x ≤ √3
otherwise

f2(x) =
1√
2π

e−
x2

2

f3(x) =
1

2
e−|x|

f4(x) =
1

π

1

1 + x2
, Cauchy

f5(x) = e−(x+1) , x ≥ −1
f6(x) = χ23

χ2 with 3 degrees of freedom,
transformed to mean 0, variance 1

f7(x) =
1

2
N(1.5, 1) +

1

2
N(−1.5, 1)

f8(x) = 0.8N(0, 1) + 0.2N(0, 4
2)

f9(x) =
1

2
N(1, 22) +

1

2
N(−1, 1)

This set f1 to f9 of probability distributions covers a variety of cases of short
tailed up to very long tailed probability distributions as well as skewed ones.

To evaluate the power of the tests we generated 1000 pairs of samples for small
n = m = 25, moderate n = 50, m = 40 and ‘large’ n = 100, m = 50, for seven
different scenarios. We have transformed the variates Y ∗i = θ + τYj, j = 1, . . . ,m
of the second sample, corresponding to the alternative distribution, with different
location parameters θ and scale parameters τ . The power was determined in all
cases by counting the number of times a test resulted in a rejection divided by 1000.
All tests have a nominal significance level of 0.05.

Table 5.2 shows the estimated power for small sample sizes, n = 25, m = 25,
of the selected tests. The χ2 test is performed with 5 equal probability classes.
Tables 5.3 and 5.4 present the results for n = 50, m = 40 and n = 100, m = 50,
respectively. For the large sample the number of χ2 classes was increased to 10.
Some of the results from tables 5.2, 5.3 and 5.4 are shown in Figure 5.2.

It is apparent that none of the considered tests performs better than all other
tests for all alternatives. The results indicate that the power of the Energy test in
most of the cases is larger than that of the well known χ2 and KS tests and com-
parable to that of the CvM test. For long tailed distributions, e.g. for combination
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Table 5.2: Power of the selected tests for n=m=25, α = 0.05, x→ θ + τx

P1 P2 θ, τ KS CvM W L φ25,25 χ2

f1(x) f7(x)

0.4; 1.4
0.6, 1.6
0.6; 0.8
0.5; 0.5

0.12
0.37
0.40
0.70

0.18
0.41
0.55
0.70

0.48
0.87
0.66
0.93

0.38
0.69
0.50
0.86

0.24
0.54
0.45
0.85

0.11
0.17
0.52
0.85

f7(x) f2(x)

0.4; 1.4
0.6, 1.6
0.6; 0.8
0.5; 0.5

0.08
0.20
0.34
0.72

0.13
0.29
0.46
0.69

0.22
0.46
0.57
0.93

0.14
0.34
0.51
0.93

0.13
0.31
0.44
0.89

0.08
0.14
0.45
0.88

f2(x) f3(x)

0.4; 1.4
0.6, 1.6
0.6; 0.8
0.5; 0.5

0.17
0.33
0.64
0.74

0.23
0.44
0.70
0.77

0.22
0.42
0.67
0.84

0.19
0.37
0.66
0.91

0.19
0.38
0.67
0.89

0.14
0.24
0.60
0.84

f2(x) f9(x)

0.4; 1.4
0.6, 1.6
0.6; 0.8
0.5; 0.5

0.06
0.14
0.46
0.71

0.09
0.22
0.59
0.72

0.19
0.35
0.65
0.89

0.13
0.29
0.59
0.88

0.12
0.21
0.45
0.82

0.07
0.11
0.54
0.85

f6(x) f5(x)

0.4; 1.4
0.6, 1.6
0.6; 0.8
0.5; 0.5

0.10
0.16
0.95
0.99

0.16
0.25
0.94
0.98

0.15
0.24
1.00
1.00

0.12
0.22
0.97
1.00

0.12
0.16
0.98
1.00

0.12
0.20
0.97
1.00

f3(x) f8(x)

0.4; 1.4
0.6, 1.6
0.6; 0.8
0.5; 0.5

0.26
0.55
0.85
0.90

0.34
0.64
0.89
0.93

0.30
0.56
0.86
0.94

0.25
0.53
0.84
0.97

0.28
0.50
0.85
0.95

0.21
0.43
0.79
0.91

f8(x) f4(x)

0.4; 1.4
0.6, 1.6
0.6; 0.8
0.5; 0.5

0.34
0.60
0.80
0.81

0.42
0.67
0.85
0.84

0.45
0.68
0.78
0.81

0.52
0.77
0.72
0.71

0.54
0.80
0.82
0.84

0.32
0.51
0.70
0.72
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Table 5.3: Power of the selected tests for n=50, m=40, α = 0.05, x→ θ + τx

P1 P2 θ; τ KS CvM W L φ50,40 χ2

f1(x) f7(x)
0.3; 1.3
0.4; 0.8

0.22
0.49

0.18
0.47

0.67
0.67

0.41
0.53

0.25
0.46

0.14
0.62

f7(x) f2(x)
0.3; 1.3
0.4; 0.8

0.15
0.62

0.17
0.56

0.34
0.66

0.16
0.70

0.20
0.58

0.10
0.58

f2(x) f3(x)
0.3; 1.3
0.4; 0.8

0.28
0.67

0.29
0.66

0.25
0.65

0.22
0.70

0.26
0.68

0.14
0.61

f2(x) f9(x)
0.3; 1.3
0.4; 0.8

0.07
0.51

0.07
0.50

0.27
0.66

0.12
0.58

0.14
0.46

0.07
0.61

f6(x) f5(x)
0.3; 1.3
0.4; 0.8

0.13
1.00

0.14
0.97

0.18
1.00

0.12
0.99

0.11
1.00

0.14
1.00

f3(x) f8(x)
0.3; 1.3
0.4; 0.8

0.38
0.84

0.39
0.84

0.32
0.80

0.29
0.78

0.31
0.86

0.25
0.74

f8(x) f4(x)
0.3; 1.3
0.4; 0.8

0.50
0.76

0.52
0.77

0.59
0.70

0.66
0.63

0.64
0.79

0.39
0.59

Table 5.4: Power of the selected tests for n=100, m=50, α = 0.05, x→ θ + τx

P1 P2 θ; τ KS CvM W L φ100,50 χ2

f1(x) f7(x)
0.3; 1.3
0.4; 0.8

0.32
0.68

0.33
0.73

0.97
0.85

0.62
0.76

0.44
0.76

0.28
0.66

f7(x) f2(x)
0.3; 1.3
0.4; 0.8

0.21
0.82

0.27
0.79

0.67
0.82

0.28
0.90

0.33
0.82

0.26
0.64

f2(x) f3(x)
0.3; 1.3
0.4; 0.8

0.31
0.85

0.37
0.86

0.41
0.82

0.29
0.90

0.34
0.89

0.17
0.72

f2(x) f9(x)
0.3; 1.3
0.4; 0.8

0.08
0.65

0.10
0.66

0.51
0.79

0.18
0.77

0.21
0.67

0.17
0.63

f6(x) f5(x)
0.3; 1.3
0.4; 0.8

0.13
1.00

0.19
1.00

0.25
1.00

0.18
1.00

0.18
1.00

0.22
1.00

f3(x) f8(x)
0.3; 1.3
0.4; 0.8

0.46
0.95

0.52
0.97

0.44
0.92

0.44
0.94

0.47
1.00

0.25
0.86

f8(x) f4(x)
0.3; 1.3
0.4; 0.8

0.61
0.90

0.68
0.93

0.81
0.87

0.84
0.86

0.86
0.92

0.63
0.74
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Figure 5.2: Rejection power of six two-sample tests for some selected different alter-
natives.
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(f8, f4), the Energy test is the best among those which have been investigated. This
is not unexpected since R(x) = − ln(x) is long range. Lepage and Wilcox tests
are powerful tests for all combinations and sample sizes considered, however, the
Lepage test is based on the first two moments of the null distribution and therefore
specifically adapted to the type of study presented here.

In order to investigate how the performance of the tests using φnm, Rnm and
T k
nm changes with the dimension, we have considered problems in dimensions d =
2 and 4. In Table 5.5 and Table 5.6 we summarize the alternative probability
distributions PX and P Y from which we drew the two samples. The first sample was
drawn either from N(0, I) or from U(0,1) where N(µ,V) is a multivariate normal
probability distribution with the indicated mean vector µ and covariance matrix V
and U(0,1) is the multivariate uniform probability distribution in the unit cube. The
parent distributions of the second sample were the Cauchy distribution C, the Nlog

distribution, correlated normal distributions, the Student’s distributions t2 and t4
and Cook-Johnson CJ(a) distributions [48] with correlation parameter a > 0. CJ(a)
converges for a → ∞ to the independent multivariate uniform distribution and
a → 0 corresponds to the totally correlated case Xi1 = Xi2 = ... = Xid, i = 1, ..., n.
We generated the random vectors from CJ(a) via the standard gamma distribution
with shape parameter a, following the prescription proposed by [49]. It is extremely
asymmetric, see Figure 5.3

Figure 5.3: Cook-Johnson CJ(a) distribution for different parameter a.

Some of the considered probability densities have also been used in a power study
in [50].
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Table 5.5: Two dimensional distributions used to generate the samples.

case PX P Y

1 N(0, I) C(0, I)
2 N(0, I) Nlog(0,I)

3 N(0, I) N

µ
0,

1 0.6
0.6 1

¶
4 N(0, I) N

µ
0,

1 0.9
0.9 1

¶
5
6

N(0, I)
N(0, I)

Student’s
t2
t4

7
8
9
10
11
12

U(0,1)
U(0,1)
U(0,1)
U(0,1)
U(0,1)
U(0,1)

CJ(10)
CJ(5)
CJ(2)
CJ(1)
CJ(0.8)
CJ(0.6)

13 U(0,1) 80%U(0,1) + 20%N (0.5,0.052I)
14 U(0,1) 50%U(0,1) + 50%N (0.5,0.22I)

Table 5.6: Four dimensional distributions used to generate the samples.

case PX P Y

1 N(0, I) C(0, I)
2 N(0, I) Nlog(0, I)
3 N(0, I) 80%N(0, I)+20%N (0,0.22I)

4 N(0, I) 50%N(0, I)+50%N

0,
1 0.4 0.5 0.7
0.4 1 0.6 0.8
0.5 0.6 1 0.9
0.7 0.8 0.9 1


5
6

N(0, I)
N(0, I)

Student’s
t2
t4

7
8
9
10
11
12

U(0,1)
U(0,1)
U(0,1)
U(0,1)
U(0,1)
U(0,1)

CJ(10)
CJ(5)
CJ(2)
CJ(1)
CJ(0.8)
CJ(0.6)

13 U(0,1) 80%U(0,1) + 20%N(0.5,0.052I)
14 U(0,1) 50%U(0,1) + 50%N(0.5,0.22I)
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The various combinations emphasize different types of deviations between the
distributions. These include location and scale shifts, differences in skewness and
kurtosis as well as differences in the correlation of the variates. The test statistics
φnm, Rnm, Nnm and T k

nm were evaluated.

The power was again computed for 5% significance level and samples of equal size
n = m = 30, 50, and 100 (small, moderate and large) in two and four dimensions.
Table 5.7 and Table 5.8 illustrate the power of the considered tests calculated from
1000 replications.

The Friedman-Rafsky and the nearest neighbor tests show very similar rejection
power. For all three sample sizes and dimensions the Energy test performed better
than the Friedman-Rafsky and the nearest neighbor tests in almost all considered
alternatives. This is astonishing because the logarithmic distance function is long
range and the probability distributions in the cases 11 and 12 have a sharp peak
in one corner of a d dimensional unit cube and in case 13 a sharp peak in the
middle of this unit cube. The multivariate student distribution represents very mild
departures from normality, but nevertheless the rejection rate of the Energy test
is high. The power of the k nearest neighbor test T k

nm increased considerably for
k ≥ 2 relative to k = 1 and almost reached the power of the Energy test for some
optimal k in the considered examples. The value of the free parameter k has to be
chosen independently from the result and there is no prescription on how to choose
k [51]. In Figure 5.4 the power of the considered two-sample tests is shown for some
selected combination of p.d.f.s from the Tables 5.5, 5.6.

To study the power of the k nearest neighbor test T k
nm and Energy test φnm for

sample sizes n >> m, for example n = 30 and m = 3, we selected combination of
four dimensional p.d.f.s (PX and P Y ) which are strong differently, see Table 5.9.
The distribution denoted by Ncorr is the same as in the case 4 of the Table 5.6, i.e.

Ncorr = N

0,
1 0.4 0.5 0.7
0.4 1 0.6 0.8
0.5 0.6 1 0.9
0.7 0.8 0.9 1

. As result from Table 5.9 we obtain that the

power of the k nearest neighbor test remained relatively low for alternatives, which
include correlation between variables, for that case the Energy test is recommended.
For alternatives which include shift in skewness or kurtosis the k nearest neighbor
test should be used.

5.5 An example from high energy physics

We compare observed J/ψ particle production to a Monte Carlo simulation, where
the observed sample is taken from the HERA-B detector [52] during the 2000 run.
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Table 5.7: Power at significance level α =0.05, calculated from 1000 repetitions,
n = m = 30, n = m = 50 and n = m = 100, d = 2

case R30,30 N30,30 T 230,30 T 330,30 T 430,30 T 530,30 φ30,30
1 0.41 0.38 0.43 0.48 0.48 0.47 0.90
2 0.33 0.30 0.42 0.49 0.51 0.49 0.58
3 0.14 0.12 0.15 0.17 0.20 0.19 0.13
4 0.63 0.57 0.72 0.79 0.81 0.80 0.55
5 0.14 0.14 0.15 0.17 0.16 0.14 0.32
6 0.07 0.07 0.06 0.06 0.05 0.05 0.11
7 0.04 0.07 0.05 0.05 0.05 0.05 0.05
8 0.05 0.06 0.06 0.08 0.07 0.07 0.08
9 0.08 0.08 0.08 0.10 0.10 0.11 0.10
10 0.13 0.12 0.13 0.16 0.18 0.18 0.15
11 0.15 0.14 0.18 0.21 0.22 0.22 0.18
12 0.20 0.20 0.25 0.30 0.34 0.34 0.26
13 0.11 0.10 0.12 0.17 0.18 0.17 0.14
14 0.09 0.09 0.08 0.08 0.09 0.08 0.14

case R50,50 N50,50 T 450,50 T 550,50 T 850,50 T 1050,50 φ50,50
1 0.62 0.55 0.79 0.79 0.76 0.75 1.00
2 0.53 0.50 0.73 0.74 0.77 0.77 0.89
3 0.17 0.20 0.29 0.28 0.31 0.34 0.21
4 0.87 0.83 0.97 0.98 0.98 0.98 0.88
5 0.18 0.20 0.25 0.22 0.21 0.22 0.49
6 0.08 0.08 0.07 0.07 0.08 0.08 0.13
7 0.04 0.07 0.05 0.04 0.05 0.04 0.05
8 0.05 0.08 0.05 0.05 0.06 0.06 0.07
9 0.08 0.10 0.11 0.11 0.13 0.12 0.14
10 0.18 0.18 0.24 0.25 0.28 0.30 0.23
11 0.23 0.22 0.32 0.32 0.37 0.38 0.30
12 0.33 0.31 0.49 0.52 0.59 0.59 0.46
13 0.16 0.15 0.25 0.26 0.36 0.39 0.33
14 0.12 0.11 0.05 0.07 0.07 0.06 0.22

case R100,100 N100,100 T 5100,100 T 8100,100 T 13100,100 T 20100,100 φ100,100
1 0.91 0.85 1.00 1.00 1.00 0.99 1.00
2 0.82 0.74 1.00 1.00 1.00 0.99 1.00
3 0.31 0.28 0.58 0.66 0.70 0.70 0.47
4 0.99 0.97 1.00 1.00 1.00 1.00 1.00
5 0.34 0.29 0.57 0.58 0.55 0.47 0.86
6 0.10 0.11 0.14 0.14 0.14 0.12 0.24
7 0.04 0.05 0.06 0.07 0.07 0.07 0.10
8 0.05 0.05 0.09 0.10 0.11 0.10 0.09
9 0.10 0.11 0.19 0.23 0.26 0.28 0.24
10 0.25 0.23 0.45 0.52 0.58 0.59 0.52
11 0.32 0.29 0.64 0.72 0.77 0.77 0.66
12 0.56 0.48 0.87 0.91 0.94 0.93 0.90
13 0.23 0.19 0.55 0.68 0.82 0.87 0.78
14 0.16 0.16 0.08 0.09 0.10 0.13 0.56
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Table 5.8: Power at significance level α =0.05, calculated from 1000 repetitions,
n = m = 30, n = m = 50 and n = m = 100, d = 4

case R30,30 N30,30 T 230,30 T 330,30 T 430,30 T 530,30 φ30,30
1 0.76 0.70 0.77 0.81 0.80 0.76 1.00
2 0.54 0.51 0.61 0.66 0.67 0.66 0.90
3 0.14 0.13 0.15 0.19 0.22 0.23 0.23
4 0.17 0.17 0.18 0.20 0.20 0.19 0.13
5 0.24 0.21 0.20 0.22 0.22 0.21 0.73
6 0.07 0.07 0.05 0.08 0.07 0.06 0.18
7 0.06 0.06 0.06 0.06 0.05 0.05 0.06
8 0.06 0.07 0.06 0.07 0.07 0.06 0.08
9 0.12 0.12 0.15 0.16 0.18 0.19 0.18
10 0.26 0.26 0.31 0.36 0.39 0.39 0.30
11 0.42 0.37 0.41 0.49 0.53 0.53 0.47
12 0.55 0.51 0.64 0.71 0.75 0.74 0.66
13 0.16 0.16 0.16 0.22 0.27 0.29 0.27
14 0.15 0.13 0.10 0.12 0.14 0.13 0.17

case R50,50 N50,50 T 450,50 T 550,50 T 850,50 T 1050,50 φ50,50
1 0.94 0.93 0.99 0.99 0.98 0.97 1.00
2 0.80 0.78 0.92 0.93 0.95 0.95 1.00
3 0.16 0.17 0.30 0.32 0.43 0.44 0.47
4 0.25 0.26 0.31 0.30 0.31 0.30 0.18
5 0.37 0.35 0.40 0.38 0.36 0.36 0.95
6 0.09 0.10 0.08 0.07 0.07 0.07 0.31
7 0.06 0.06 0.06 0.06 0.07 0.08 0.07
8 0.08 0.09 0.07 0.08 0.09 0.09 0.07
9 0.18 0.20 0.29 0.29 0.30 0.31 0.30
10 0.45 0.42 0.59 0.62 0.66 0.68 0.62
11 0.61 0.58 0.76 0.78 0.83 0.83 0.77
12 0.79 0.76 0.94 0.95 0.96 0.96 0.93
13 0.19 0.20 0.39 0.42 0.58 0.57 0.62
14 0.19 0.18 0.21 0.21 0.26 0.27 0.31

case R100,100 N100,100 T 5100,100 T 8100,100 T 13100,100 T 20100,100 φ100,100
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.98 0.98 1.00 1.00 1.00 1.00 1.00
3 0.31 0.25 0.71 0.83 0.92 0.94 0.94
4 0.52 0.46 0.77 0.81 0.79 0.75 0.49
5 0.70 0.63 0.87 0.87 0.83 0.79 1.00
6 0.16 0.16 0.22 0.20 0.18 0.16 0.63
7 0.06 0.08 0.08 0.08 0.08 0.07 0.10
8 0.09 0.09 0.15 0.16 0.17 0.17 0.12
9 0.31 0.29 0.54 0.60 0.65 0.67 0.60
10 0.72 0.66 0.94 0.96 0.97 0.98 0.97
11 0.88 0.84 0.99 1.00 1.00 1.00 0.99
12 0.98 0.96 1.00 1.00 1.00 1.00 1.00
13 0.35 0.29 0.79 0.92 0.98 0.99 0.99
14 0.28 0.23 0.50 0.57 0.63 0.65 0.68



66 CHAPTER 5. ENERGY FOR THE TWO-SAMPLE PROBLEM

Figure 5.4: Power comparison for selected two-sample tests shown as histograms for
d = 2 (left) and d = 4 (right)
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Table 5.9: Power at significance level α =0.05, calculated from 1000 repetitions,
n = 30, m = 3, d = 4

PX P Y T 230,3 T 430,3 T 630,3 T 1030,3 T 1530,3 φ30,3
N(0, I) C(0, I) 0.39 0.56 0.63 0.73 0.78 0.42
N(0, I) Nlog(0, I) 0.08 0.13 0.16 0.23 0.23 0.16
N(0, I) Ncorr 0.04 0.04 0.05 0.08 0.08 0.11
N(0, I) t2 0.17 0.31 0.37 0.49 0.55 0.11
U(0,1) CJ(0.5) 0.08 0.08 0.09 0.09 0.09 0.15
U(0,1) CJ(0.3) 0.11 0.09 0.10 0.09 0.08 0.20
U(0,1) CJ(0.1) 0.13 0.11 0.11 0.09 0.07 0.30

The detector was designed to exploit the collisions of the HERA proton beam with a
wire target. In proton-nucleus interaction bb quark pairs are created and hadronize
to B mesons. The bb production cross section in proton-nucleus collisions is not
well measured. The bb events are identified via the decay B → J/ψ, where the J/ψ
mesons decay to µ+µ− or e+e−. In the selected data set the J/ψ mesons decay to
µ+µ−. The B events are separated from directly produced J/ψ’s by requiring that
the J/ψ decay vertex does not coincide with the primary vertex, i.e. the B → J/ψ
events are selected using the impact parameter of the muon tracks with respect
to the wire and the decay distance, projected on the beam direction, between the
secondary vertex and the target wire.

The original intention was to perform a detailed comparison of the observed J/ψ
particle production to a Monte Carlo simulation. However, we found that even for
small samples the agreement was not satisfactory and could not easily be improved.
As a consequence all considered tests with large samples and high dimensions led to
p-values much below 10−3. Nevertheless we show a comparison in two dimensions
for a restricted sample of the detached J/ψ events. The two similar samples of the
detached J/ψ events, an observed sample of size n = 32 and a simulated sample of
size m = 800, were compared using only the two variables, momentum of µ+ and
momentum of µ−, see Figure 5.5. We have chosen only these two variables because
then the distribution can be visualized.

The compatibility of the observed sample with the simulated sample is deter-
mined by the two-sample Energy test statistic φnm with the normalization of each
components as described in subsection 4.2.4 and by the k nearest neighbor test sta-
tistic T k

nm. The p-values for φnm and T k
nm with n = 32, m = 800, k = 5, were

found to be 0.07 and 0.6, respectively. Whereas the Energy test detects a signifi-
cant difference between experimental data and simulation which supports the visiual
impression of the Figure 5.5, the k nearest neighbor test is insensitive to it.
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Figure 5.5: Momentum of µ+µ− from J/ψ → µ+µ− for measured and simulated
events.



Chapter 6

Deconvolution

This chapter concerns the estimation of p.d.f. in cases where no parametric form
is available, and where the measurements (observations) are subject to additional
random fluctuations due to the limited resolution of the measuring device. In high
energy physics the procedure of correcting for these distortions is usually called
deconvolution or unfolding. An introduction to unfolding and the related statistical
problems can be found in [53].

6.1 The problem

A standard task in high energy physics and other fields of science is the measurement
of some p.d.f. f(x) using a random sample X1,X2, . . . ,Xn where the r.v. X may
be for example energy, decay times, etc. or some other quantity of one or more
dimensions. Up to now in this thesis we have considered the observed values of the
r.v.s under the assumption that they are free of error. But in practice measured
values are affected by the limited resolution of the measuring device as expressed by
a resolution function t and by the acceptance a of the measuring device which is the
probability to obtain a given observation is less than 1. It may also be the case that
t and a are not known analytically and must be obtained approximately by using
Monte Carlo simulation, which will be another source of error.

Each observed value is characterized by a true measured value x and a measured
value x0. Suppose that the true observation X is distributed according to f . Math-
ematically the true p.d.f. f(x) and the measured p.d.f. f 0(x0) are related by an
equation of the type

f 0(x0) =
Z
Rd
k (x0,x) f(x) dx, (6.1)

where k (x0,x) := t (x0,x) a(x) is called response function, which gives the proba-
bility to obtain x0, including the effect of acceptance, given that the true measured
value was x. The resolution function t (x0,x) is the conditional probability for the
measured value x0 given that the true value was x. In what follows, for simplicity

69
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we assume the acceptance to be unity. The acceptance correction can be separated
from the unfolding problem.

Eq. (6.1) is an integral equation of the first kind where f is unknown. Solving
Eq. (6.1) is known as unfolding or deconvolution.

If we have a priori information about the form of the p.d.f. f , for example f
belongs to a parametric family P = {f (x;θ) : θ ∈ Θ} then standard techniques for
parameter estimation can be used to obtain estimators bθ, where the hypothesized
p.d.f. will be denoted by bf ³x, bθ´. In this case unfolding can be avoided. We can
apply a GoF test by computing

bf 0(x0) = Z
Rd
t (x0,x) bf(x) dx

and by comparison bf 0 with the measured p.d.f. f 0. This procedure is considerably
simpler than unfolding.

As we will see unfolding is not a simple, straightforward procedure. One is well
advised to ask in each problem if it can be avoided. But without unfolding many
problems in practice cannot be solved, for example the results of experiments cannot
be compared, since each experiment will have in general a different resolution.

6.2 Unfolding methods

It is not our intention to list all existing unfolding methods in the literature. Most
of the important methods are discussed in [53].

6.2.1 Matrix inversion

For the numerical solution of Eq. (6.1) the p.d.f.s of f and f 0 have to be estimated
by histograms. Then we obtain from Eq. (6.1)

d0i = E [ni] =
rX

j=1

tijdj (6.2)

where ni ∈ N, i = 1, 2, . . . , s, is the actual number of entries in bin i of the histogram
of X0 (measured histogram), dj ∈ R≥0, j = 1, 2, . . . , r, is the expectation value for
the jth bin contents of the histogram of X and tij is the resolution matrix, which
is the discrete version of t (x0,x) and has the simple interpretation as a conditional
probability:

tij = P (observed in bin i | true value in bin j) .
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Under the condition that the resolution matrix can be inverted, we obtain from Eq.
(6.2)

di =
sX

j=1

t−1ij E [nj] =
sX

j=1

t−1ij d
0
j

where t−1ij is the matrix element of the inverted resolution matrix.

d0j can be estimated by nj and as estimator for di we will obtain

bdi = sX
j=1

t−1ij nj. (6.3)

It is well known that this procedure of matrix inversion produces bin-to-bin
oscillations in the unfolded histogram.

Example 3 Suppose N =M = 2 and let be the resolution matrix given by

(tij) =

µ
0.6 0.4
0.4 0.6

¶
,

i.e. if the true value lies in the first bin, it has a 60% chance of lying in the first bin
of the histogram of X 0 and 40% for the second bin. The inverse matrix is¡

t−1ij
¢
=

µ
3 −2
−2 3

¶

and if we measure
µ
20
30

¶
unfolding gives

µ
0
50

¶
. Unfolding

µ
15
35

¶
gives

µ −25
75

¶
.

The bin contents tend to vary strongly from bin to bin, even matrix inversion method
can produce unphysical negative bin contents.

6.2.2 Iterative unfolding

Statistically not significant bin-to-bin oscillations are damped by introducing in
some way a measure of smoothness to bdi. This approach is known as regularization
of the unfolded distribution, see [53]. Matrix inversion can be done iteratively.
If the matrix inversion is stopped after some iterations, bin-to-bin oscillations are
suppressed. Hence the choice of the number of iterations playing the role of the
regularization.

To illustrate the idea of the iterative method we consider the Figure 6.1, which is
taken from [53]. The first histogram is the input histogram, which should be smooth.
It is obtained by grouping the simulated observation which is denoted by XMC,MC
(Monte Carlo) refer to simulation of the true distribution. The bin contents dMC

j

of the simulated input histogram is an estimator for dj. If no information about
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Figure 6.1: Illustration of iterative unfolding method.
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the true histogram is available then it is recommended to start with a uniform
distribution [53]. The second histogram, where the number of entries in ith bin is
denoted by d0

MC

i , is obtained by folding the first histogram. The third histogram
is the measured histogram. To get an agreement with the measured histogram in
the iterative unfolding method the bin contents of the second histogram is weighted
with the factor ni

d0MC
i

. In the Figure 6.1 these factors are displayed on top of the

bins. These weights are then propagated back into the input histogram. As result
we get a first updated estimator d(1)

MC

j for dj. This procedure of iterative unfolding
can be expressed by following equations:

d
(k+1)MC

j =
sX

i=1

tijd
(k)MC

j

ni

d
0(k)MC

i

with

d
0(k)MC

i =
rX

j=1

tijd
(k)MC

j , k = 0, 1, . . .

and d
(0)MC

j = dMC
j , d0(0)

MC

i = d0
MC

i . The statistical uncertainties of the simulation
are not taken into account. Therefore the size of the simulated true random sample
should be much larger than the total number of measured values. In the limit
k →∞ this procedure is equivalent to matrix inversion method, provided that the
latter does not contain negative bin contents, i.e. it yields

lim
k→∞

d
(k+1)MC

j = dj.

6.3 A new binning-free unfolding approach

Binning of observations is always linked with loss of information and should be
avoided where possible. Consequently we should expect unfolding methods based on
binning to be inferior to methods based on each observation. In addition unfolding
without binning offers several advantages:

• Arbitrary bin boundaries are avoided.
• Variable transformations are possible after unfolding.
• Arbitrary histogramming is possible after unfolding.
• Low statistic of the measurement can be handled in arbitrarily high dimensions
where histogramming is problematic.

The iterative unfolding approach can be easily generalized to a binning-free
method which is proposed in [54]. The difference is that instead of weighting the bin
contents d0

MC

i each individual observation X0MC
is weighted according to the ratio
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of the ‘local’ densities of X0 and X0MC
. The support of these local densities is of the

order of the resolution and the densities can be estimated with standard techniques
like kth nearest neighbor method, see [15]. To suppress the statistical uncertainties
of the estimation of the local densities the binning-free iterative unfolding method
requires high sample sizes n. Often in high energy physics experiments the statis-
tic of the measurements is not high. Therefore a binning-free unfolding method is
required which can also be applied to low sample sizes in arbitrarily high dimensions.

The new method proposed in [55] is based on the migration of the simulated
observationsXMC

i . XMC migrates in the true variate space until the two samples, the
simulated sample and the observed sample, coincide. The new unfolding approach
can be performed as follows:

1. Choose the size of the simulated sample of XMC equal to the size of the
observed sample of X0, n = m.

2. Generate for each XMC
i k observations Ys

r, r = 1, 2, . . . , n, s = 1, 2, . . . , k,
from a p.d.f. which estimates the resolution function. k is typically of the
order of 20.

3. Compute the energy of the pooled sample

X0
1,X

0
2, . . . ,X

0
n;Y

1
1,Y

2
1, . . . ,Y

k
1 ,Y

1
2,Y

2
2, . . . ,Y

k
2 , . . . ,Y
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n, . . . ,Y

k
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4. Select randomly one XMC
i , set XMC

i = XMC
i + ∆, where ∆ is distributed

according to a arbitrary p.d.f. with a variance of order of the FWHM of the
resolution function and regenerate at this new position the k accompanying
observations Ys

r, s = 1, 2, . . . , k.

5. Compute the change of energy φ, see Eq.(6.4). The migration of XMC
i is

accepted if energy φ has decreased, otherwise it is rejected.

6. Step 4 and Step 5 is repeated until the minimum of the energy φ is reached.

The computation of the energy φ follows the relation:

φ =
1
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nX
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¯̄¢
+

1
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nX
i=1

kX
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R
¡¯̄
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¯̄¢
+

+
1

k2n(n− 1)
kX
l,s

nX
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R
¡¯̄
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¯̄¢− 1

kn2

nX
i=1

nX
j=1

kX
l=1

R
¡¯̄
xi − ylj

¯̄¢
.

(6.4)

Also this unfolding technique produces oscillating solutions unless a regulariza-
tion is introduced, which can be done in two different ways:

1. The migration process can be stopped before the oscillations become intoler-
able.
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Figure 6.2: Unfolding of a point source with the new method.

2. The value of the parameter k can be used. Large values provide high resolution
but introduce oscillation.

Here we present first experiences with the new binning-free unfolding method.
A detailed study is beyond the scope of this work. A preliminary study of unfolding
a distribution generated for a point source with Gaussian resolution σ = 1 is shown
in Figure 6.2. The black dots represent the observed point source, the red points
are result of unfolding.

The dependence of the point resolution on the parameter k is shown in Figure 6.3
as a function of the number of observations and of the value of k. Each measurement
is an average of 40 simulations. The results show that the resolution converges with
increasing of k and n.

We present now a simple example in two dimensions shown in Figure 6.4. This
example of course is not very typical for a physics application but it shows how an
observed distribution can be unfolded even when the original distribution is rather
peaked and when the statistics is low. The true picture of the face, displayed in
Figure 6.4 a), contains 500 observations, which has been blurred with a Gaussian
resolution function, Figure 6.4 b). It would have been quite difficult to apply stan-
dard unfolding techniques to the picture of the Figure 6.4 b), which are based on
histogramming. The binning-free iterative unfolding method to Figure 6.4 b) would
also fail, since the two-dimension sample size of n = 500 observations is not large
enough. We know of no other unfolding methods which are able to perform this
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Figure 6.3: Illustration of the dependence of the new method of the parameter k.

job. Figure 6.4 c) shows the result of the new unfolding method with a Gaussian
distance function and k = 20, which is obtained after 40000 trials of random moves.

6.3.1 Some remarks

• We propose to use Gaussian with width similar to the resolution or logarithmic
distance functions.

• The average migration steps should be larger than the resolution. We propose
to generate ∆ from a uniform distribution.

• Only the combinations which contain the moving observations lead to a change
of the energy.

• If acceptance and resolution are independent of the location, the k accompa-
nying observations can migrate together with the Monte Carlo observation.

The new approach opens the possibility to solve problems which are not accessible
with conventional unfolding methods. It is especially powerful in multidimensional
applications with sharp structures. If the statistic of the measurement is high,
histogramming methods are preferable because they are faster.

More work is needed in order to study the effect of local minima of φ and to
optimize the migration process.
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Figure 6.4: Unfolding of a simple picture: a) true face, b) observed face, blurred
with a Gaussian resolution function, c) the energy unfolded face, d) convergence of
energy
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Chapter 7

Summary

The concept of physics energy is introduced into statistics. It provides very general
tools to compare two samples to each other. The energy of samples, which are
drawn from statistical distributions, is defined in a similar way as for discrete charge
density distributions in electrostatics. It is computationally simple, nonparametric,
and avoids arbitrary binning.

A system of two sets of point charges with opposite sign is in a state of mini-
mum energy if they are equally distributed. This property is used to construct new
nonparametric, multivariate Goodness-of-Fit tests, to check whether two samples
belong to the same parent distribution and to deconvolute distributions distorted
by measurement.

The Energy tests are powerful nonparametric, multivariate omnibus tests. Under
many alternatives investigated in the simulation study, the Energy tests give much
better results than the existing relevant tests in all considered dimensions. It is
especially powerful in multidimensional applications.

The statistical minimum energy configuration does not depend on the application
of the one-over-distance power law of the electrostatic potential. To increase the
power of the new approach other monotonic decreasing distance functions may be
chosen. We proved that the new energy technique is applicable to all distance
functions which have positive Fourier transforms.

Multivariate, binning-free unfolding based on energy is straightforward. The
new approach opens the possibility to solve problems which are not accessible with
the conventional unfolding methods. The new method of unfolding that has been
proposed in this study looks promising for future research.
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