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Abstract

The global trends in the construction of modern structures require the integration of

sensors together with data recording and analysis modules so that its integrity can be

continuously monitored for safe-life, economic and ecological reasons. This process of

measuring and analysing the data from a distributed sensor network all over a structural

system in order to quantify its condition is known as structural health monitoring (SHM).

The research presented in this thesis is motivated by the need to improve the inspection

capabilities and reliability of SHM systems based on ultrasonic guided waves with focus on

the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave-based

approach is driven by the fact that these waves are able to propagate over relatively long

distances, interact sensitively with and/or being related to different types of defect.

The main emphasis of the thesis is concentrated on the development of different meth-

odologies based on signal analysis together with the fundamental understanding of wave

propagation for the solution of problems such as damage detection, localisation and iden-

tification. The behaviour of guided waves for both techniques is predicted through model-

ling in order to investigate the characteristics of the modes being propagated throughout

the evaluated structures and support signal analysis. The validity of the developed model

is extensively investigated by contrasting numerical simulations and experiments.

In this thesis special attention is paid to the development of efficient SHM methodologies.

This fact requires robust signal processing techniques for the correct interpretation of the

complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing

and pattern recognition are evaluated and integrated into the different proposed methodo-

logies. Additionally, effects such as temperature variability and operational conditions are

experimentally studied in order to analyse their influence on the performance of developed

methodologies. At the end, the efficiency of these methodologies are experimentally eval-

uated in diverse isotropic and anisotropic composite structures.
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Kurzfassung

Nach den heutigen Standards zur Konstruktion moderner Leichtbaustrukturen ist es zur

Strukturüberwachung aufgrund von wirtschaftlichen, ökologischen und Sicherheitsaspek-

ten unerlässlich, Sensoren und Module zur Datenspeicherung und –analyse in diese Struk-

turen zu integrieren. Den Prozess der Strukturüberwachung anhand der Messung und

Analyse von Daten aus einem dezentralen Sensornetzwerk wird als
”
Structural Health

Monitoring (SHM)“ bezeichnet. Die vorliegende Arbeit und die darin vorgestellten Un-

tersuchungen reagieren auf den Bedarf an verbesserter Genauigkeit und höherer Zuver-

lässigkeit von SHM-Systemen, die auf geführten Ultraschallwellen basieren, wobei der

Fokus der Untersuchung auf Schallemissions- und Acousto-Ultraschalltechniken liegt. Da

geführte Wellen lange Wege zurückzulegen können und mit hoher Empfindlichkeit und

Genauigkeit auf verschiedene Schadenstypen reagieren, eignen sie sich sehr gut für die

Überwachung dünnwandiger Strukturen.

Der Schwerpunkt der Arbeit liegt in der Entwicklung verschiedener Methoden zur Sig-

nalanalyse zur Lösung von Problemen wie Schadenserkennung, lokalisierung und identi-

fizierung. Dies ist nicht ohne ein grundlegendes Verständnis der Wellenausbreitungsmech-

anismen möglich, sodass ein Modell entwickelt wird, anhand dessen die Charakteristiken

der angeregten Moden sowie die Wellenausbreitung in den zu untersuchenden Strukturen

analysiert werden können, um so die Signalanalyse zu unterstützen. Die Validität des en-

twickelten Modells wird eingehend anhand von verschiedenen numerischen Simulationen

und Experimenten untersucht.

Um besonders effiziente Methoden des SHMs zu entwickeln, sind robuste Signalverarbei-

tungstechniken zur zuverlässigen Interpretation komplexer Ultraschallwellen notwending.

Aus diesem Grund erfolgt die Auswertung einer Vielzahl existierender Algorithmen zur

Signalverarbeitung und Mustererkennung, die in die hier vorgestellten Methoden integriert

werden. Des Weiteren wird experimentell untersucht, welchen Einfluss Effekte wie Tem-

peraturschwankungen und Betriebsbedingungen auf diese Methoden haben. Abschließend

wird experimentell die Effizienz der entwickelten Methoden bei der Überwachung diverser

isotroper und anisotroper Faserverbundstrukturen nachgewiesen.
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1. Introduction

In today’s competitive market, manufacturers are required to design and construct safe,

ecological and reliable structures. This demand places a heavy burden on designers and

manufacturers for the fulfilment of these requirements. In particular, this is the case

for the nuclear, petrochemical, aerospace and aeronautic industries in which component

reliability is crucial. In order to guarantee that the structures found in such industries

perform their function in a safe, reliable and cost effective manner, regular inspection

intervals must be defined. There are many existing techniques in use for the assessing

of structural condition, each one having its own characteristics and potentials. These

techniques are well documented and are covered by a number of publications where they

are labelled as non-destructive inspection techniques [Bray and Mcbride 1992]. Common

techniques are visual inspections, magnetic particle testing, dye penetrant testing, eddy

current inspection, radiography, infrared/thermal testing and standard ultrasonics.

In the case of metallic structures, the inspection intervals can be defined according to

fracture mechanics theory based for example on fatigue crack growth rate so that in-

spections and possible maintenance are accomplished before flaws reach a critical size.

However, in case of unforeseen loads, the inspection periodicity can be too long so that

structural failure could happen before a new inspection is scheduled. Additionally to this,

the current trends in structural design are very actively incorporating the use of advanced

composite materials. For aeronautic and aerospace applications, composites materials

are, besides aluminium, the most important materials. Due to well-known properties

such as high mass specific stiffness and strength, composites use has extensively increased

in the design of existing engineering structures, which also increases the analysis com-

plexity of such structures [Chang 2002]. Additionally, one advantage of using composite

materials is the possibility to manufacture a material adjusted to the desired application.

According to the European Aeronautic Defence and Space (EADS) company, the com-

posites share has reached more than 15% of the structural weight of civil aircraft, and

more than 50% of the structural weight of helicopters and fighter aircraft over the last

40 years [Brandt 2004]. Nevertheless, the mechanical properties of composite materials

may degrade severely in the presence of damage such as delaminations, matrix cracking,

fibre debonding and breakage, coming for example from impact events, which additionally
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complicate the definition of inspection intervals since damage evolution and mechanisms

cannot be directly correlated to the loading cycles [Schulte 2010]. Moreover, the way in

which composite materials fails is highly dependent on the material configuration. Dam-

age in composites can appear anywhere on the structure and crack growth cannot be

predicted using traditional techniques [Emery 2007]. As a result, conservative inspection

intervals have to be defined to monitor the structure. Many of the previously mentioned

damage types can also be introduced to the structure in the course of its lifetime during

manufacture, service or maintenance.

As traditional inspection techniques can be very expensive in terms of both man hours

and structure down-time, the development of suitable automatic and reliable monitoring

methods would be very valuable. This demands techniques which can continuously mon-

itor the given structure and provide suitable early warning before a propagating damage

reaches the limits of criticality. Here is the place where structural health monitoring sys-

tems enter into play. The next sections will introduce the basics concepts of structural

health monitoring systems, together with a brief explanation of the interrogation methods

evaluated in this thesis. Additionally, a review of the state of the art of research in the

topics covered along this thesis, and a description of the focus and arrangement of the

thesis is provided.

1.1. Structural Health Monitoring Concepts and

Techniques

Structural health monitoring (SHM) can be defined as the process of implementing a dam-

age identification strategy for a variety of infrastructures [Farrar and Worden 2007]. As

it is defined in this reference, the process involves the monitoring of a structure over time

using either continuous or periodically spaced measurements, the extraction of damage-

sensitive features from the recorded measurements and the statistical analysis of the ex-

tracted features in order to determine the current state of system health. The main

difference between SHM and NDT techniques is that sensors are permanently installed

on the structure providing continuous or on-demand measurements. According to [Ryt-

ter 1993], the problem of structural health monitoring can be considered as a four-levels

process which are defined in hierarchical order as follows:

1. Detection: It provides a qualitative indication of the presence of damage.

2. Localisation: It provides information about the position of the damage.

3. Assessment: It provides a quantitative indication of the extent of the damage.

4. Prediction: It provides an estimate of the residual life of the structure.
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The advantages of using an SHM system are clearly an improved safety, reduction of

inspection time, maintenance costs and structural down-time. There exists a number

of techniques used for the identification of damage. Every SHM technique is based on

the measurement of a given structural property and this is what normally defines the

optimal relationship between coverage and sensitivity to a given type of defect. Structural

health monitoring systems can be divided into two main groups that allow for global as

well as local evaluation [Mengelkamp 2006]. Additionally, inside of these groups, the

methodologies contained for SHM can be classified either as active or passive approaches

depending on whether they involve the use of actuators or not.

One well-known approach for damage identification based upon changes in dynamic re-

sponse is a typical method monitoring the changes in the structure on a global basis.

The fundamental assumption of vibration-based damage detection is that changes in the

physical properties due to damage will cause changes in the measured dynamic response

of the structure [Fritzen 2005]. Damage will usually lead to local changes of stiffness

and damping causing a shift of the dynamic characteristics like eigen-frequencies, damp-

ing coefficients and mode shapes [Fritzen et al. 2003]. Nevertheless, these changes are

very small and often embedded in the background noise. Additionally, finite element

modelling and modal analysis required for this type of approach often require intensive

tuning which could result in significant uncertainties caused by modelling errors [Sohn

et al. 2001]. Additionally, in view of the fact that incipient damage is typically a local

phenomenon and the local response is mostly captured by higher frequency modes, these

techniques present some practical difficulties since it is more complicated to excite the

higher frequency response as more energy is required to produce measurable responses

at these higher frequencies [Doebling et al. 1998]. For these reasons, approaches based

solely on signal analysis are very attractive for the development of an automated health

monitoring system [Worden et al. 2011].

On a local level, there exist methods based for example on the electro-mechanical im-

pedance and guided waves. For the electro-mechanical impedance method, changes in

impedance indicate changes in the structure, which in turn can indicate that damage has

occurred [Liang et al. 1996, Peairs et al. 2004]. Methods based on guided waves are also

commonly used either as passive or active sensing techniques. These approaches are very

interesting since guided waves can propagate over long distances making it possible to de-

tect flaws over a considerable area. However, more than one propagating mode is usually

contained in the recorded ultrasonic signals which are additionally frequency and angu-

lar dispersive, i.e. characteristics such a velocities, attenuation and energy concentration

vary according to these parameters. These effects make the analysis of guided waves a

non-trivial task. Nevertheless, these techniques have emerged as prominent options in

order to estimate the presence, location, and in a more sophisticated level estimate the

severity and type of damage.
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As a result, the previously mentioned advantages and potentials from guided wave-based

methods have motivated the selection of the acoustic emission and acousto-ultrasonics

techniques for the present thesis. Additionally, both techniques share many similarities

since they are based on high frequency ultrasound waves and use a permanently attached

sensor network of piezoelectric transducers. Moreover, both techniques have their range

of coverage restricted by the structural complexity and environmental conditions [Clarke

2009].

The following subsections will present basic background and concepts for the acoustic

emission and acousto-ultrasonics techniques.

1.1.1. The Acoustic Emission Technique

Acoustic emission (AE) is formally defined as the class of phenomena whereby transient

elastic waves are generated by the rapid release of energy from localised sources within

a material or the transient elastic waves so generated [ASTM 1982]. From this context,

acoustic emission events are generated within the material due to a natural mechanism

such as deformation or fracture rather than from an ultrasonic transducer as it is the

case for active sensing ultrasonic methods. Localized stress redistribution such as that

generated due to matrix cracking, delaminations and fibre breakage generate AE waves

having a broad frequency content. The elastic waves generated by an AE event within

the structure propagate as guided waves as it was shown in [Gorman 1991]. It was shown

that generally a combination of the fundamental symmetric and antisymmetric modes of

propagation represents a typical AE signal. Once these waves propagate throughout the

structure, they may be detected by an ultrasonic transducer on its surface. Finally, the

electrically processed signal is then interpreted as the acoustic emission signal.

Acoustic emission is normally termed as a non-destructive testing technique although it

has found more success as a health monitoring approach [Holford 2000]. A major problem

with an AE system is the discrimination of the AE signals from the background noise pro-

duced by other non-damaging events such as mechanical noise, electrical noise, etc. It has

been shown for example in the context of in-flight monitoring of critical aircraft compon-

ents that the detection of true AE events in the presence of various spurious AE sources

such as jet engine noise, hydraulic noise, aerodynamic noise and electromagnetic interfer-

ence presents a great problem for the applicability of the AE technique [Rao 1990]. One

possible solution to this problem is normally given by the trade of sensoric range against

noise countermeasures which can be accomplished by the selection of the transducers.

Resonant transducers are extremely sensitive offering an excellent signal-to-noise ratio

but over a limited narrow bandwidth [Grosse and Ohtsu 2008]. Broadband transducers

ideally respond to all the frequencies of the stress wave and return a signal which closely

replicates the small-scale motion of the surface [McGugan et al. 2006]. Acoustic emission
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measurement systems consist traditionally of transducers, amplifiers and signal storage

devices. Transducers are typically piezoelectric transforming the surface dynamic motions

of the propagated signal and converting it into an electrical response.

Acoustic emission is probably the most developed method for the implementation of an

integrated health monitoring system. Early commercial examples of acoustic emission

systems can be found in [Carlyle 1989, Odell 1991]. In these studies, commercial systems

were used for the monitoring of the entire fuselage of an General Dynamics F-111 Aardvark

aircraft and to monitor AE events in the fuselage of a VC10 aircraft during proof pressure

testing by the Royal Air Force, respectively.

1.1.2. The Acousto-Ultrasonics Technique

The acousto-ultrasonics (AU) technique was originally developed in the late seventies

as a non-destructive tool for the evaluation of the mechanical properties of composite

materials [Vary and Bowles 1979]. Since then the AU technique has been used in order to

assess and quantify damage in composite materials. This technique works in a frequency

range similar to that used in acoustic emission. A review examining this technology

and discussing several applications and monitoring scenarios in aeronautic and aerospace

structures can be found in [Finlayson et al. 2001, Meyendorf et al. 2012].

Typically in an AU system, an actuator generating guided waves in the structure is excited

by a high frequency pulse signal which is normally a modulated sine or cosine toneburst

with a limited number of cycles. An active technique such as AU could take advantage

of exciting given guided modes in the structure and overcome some of the disadvantages

of AE. Additionally, in contrast to AE systems where AE events are non-repeatable, the

recorded ultrasonic signals can be averaged so that elimination of incoherent or transient

noise can be accomplished, or even the AU system can operate on-demand or continu-

ously. Once the ultrasonic wave is introduced into the structure, the characteristics of the

wave after it has propagated through the structure may be related to a discontinuity of

the structure. The structural discontinuity could come from the interaction of the guided

waves either with damage in the structure or with a structural component or boundary.

Therefore, it is required to count with prior information about the structure in its undam-

aged state in order to be able to distinguish between damage and other structural features

such as rivets, ribs, stiffeners, etc [Clarke 2009]. This is accomplished in the form of a

baseline/template signal obtained for the healthy state so that it can be used as reference

for comparison with the future test cases.

Finally, damage sensitive features are extracted from the recorded signals using specialised

signal processing algorithms, and then pattern recognition techniques are used to detect

and possibly classify and estimate the severity of damage.
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1.2. Literature Review

A wide-ranging amount of research has previously been conducted into the use different

SHM methodologies for damage assessment. Nevertheless, for the current interest of this

thesis, only relevant literature to guided waves which is of interest for acoustic emission

and acousto-ultrasonics under the context of structural health monitoring is reviewed. It

is often cited that acoustic emission history started with the work presented in [Kaiser

1950]. In this study, tensile specimens of metallic materials were tested with the purpose

of recording AE signals. Since then this technique has widespread and been topic of

continuous research. This is probably given by the fact that under the principle of AE, the

structure is always monitored while in operation what allows the permanently recording of

the structure dynamic processes. This point makes this technique a valuable tool in order

to get information regarding the origin and importance of a discontinuity in a structure.

Since the earliest works in this area the efforts have been concentrated mostly in the

correlation of AE signals to different types of damage mechanisms specially in the case

of composite laminates. For instance, investigations tried to tackle the problem based on

amplitude distribution functions [Pollock 1981], pattern recognition techniques for classi-

fication based on signal parameters [Murthy et al. 1987, Oliveira and Marques 2006], tra-

ditional AE parameter analysis [Komai et al. 1991] and correlation between the frequency

content of acoustic emissions and fracture mechanisms [Giordano et al. 1999, Ramirez-

Jimenez et al. 2004]. Advanced waveform-based acoustic emission techniques have also

been proposed. A discussion of the effects of omitting the effects of wave propagation, such

as attenuation, dispersion, and multiple modes of propagation in the damage mechanism

identification procedure using traditional parameters is given in [Prosser et al. 1995]. It

was concluded that extreme care should be undertaken in order to distinguish the different

source mechanisms in composites by conventional amplitude analyses. This is explained

by the fact that the signal parameters are influenced by material dispersion, attenuation

and the distance that the signal propagates. An evaluation of different clustering al-

gorithms for acoustic emission using traditional AE parameters as features implementing

the k-means method, K-Nearest-Neighbour classifier and self-organising neural network

was accomplished in [Godin et al. 2004].

Waveform-based clustering and classification of AE transients in composite laminates

using principal component analysis has also been proposed, see for example [Johnson

2002]. The aim of this study was to use the AE signals collected during experiments

specially tailored to activate matrix cracking and delaminations as the input data for

the analysis with principal component analysis instead of the traditional AE parameters

used for clustering purposes. Here, only the first two principal components were used as

inputs for the clustering algorithm. A similar approach based on principal component

analysis and Gaussian statistical methods, Kernel density estimation and neural networks
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is presented in [Rippengill et al. 2003]. Another technique for the calculation of the type

and orientation of damage based on the radiation pattern of AE sources and the seismic

moment has been developed for the analysis of concrete fracture in [Grosse and Ohtsu

2008].

In order to overcome some of the problems described before, it has been proposed to take

into account the modal nature of AE waves [Surgeon and Wevers 1999]. It is expected that

this type of analysis can lead to more quantitative and accurate results. Studies analysing

the different characteristics of the fundamental modes of propagation for acoustic emission

testing can be found in [Pullin et al. 2005, Eaton et al. 2006, Lee et al. 2006]. These

studies analysed the amplitude ratio of the fundamental modes of propagation for source

orientation determination, investigated the wave velocity at varying angles to assist in

source location and characterised the AE emanating from fatigue cracks with respect

to the modes of propagation in plate-like structures. Recent studies have continued to

include advanced signal processing techniques as a matter of feature extraction such as

the discrete wavelet transform in order to study damage evolution and fracture events

[Bussiba et al. 2008].

Further studies analyse the relation between transient waveforms and the failure sequence

in order to provide a deeper insight of the fracture process [Aggelis et al. 2010]. Slow

non-linear material dynamics have been studied in samples where damage was gradually

induced and quantified using acoustic emission [Bentahar and Guerjouma 2008]. It was

shown that the dynamics evolution are clearly related to AE parameters, particularly to

the cumulated energy freed during damage creation and propagation. More recent studies

have developed methods for quantifying the performance of acoustic emission systems

[Scholey et al. 2010a], provide quantitative measurements of damage [Scholey et al. 2010b]

and select the optimal combination of features for the identification of AE clusters [Sause

et al. 2012].

Regarding localisation of acoustic emissions, many methods have been presented. In

[Baxter et al. 2007] a method that does not require knowledge of the sensor location or

wave velocities was developed based on the differences in time of arrival information from

a number of locations along the structure. A further improvement of this techniques

was proposed in [Hensman et al. 2008]. This method aims at learning the relationship

between time of flight differences and damage location using data generated by artifi-

cially stimulated acoustic emission. Detection and localisation of stress waves generated

during impacts events in composite structures using neural-network or genetic algorithms

approaches are proposed in [LeClerc et al. 2007, Yan and Zhou 2009]. A more recent

technique was developed in [Kundu 2012] in which acoustic source localisation in an an-

isotropic plate is accomplished without knowing its material properties.

Active techniques based on guided waves have also attracted the attention of many re-

searchers. The study presented in [Worlton 1957] was probably the first to recognise the
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advantages of using guided waves. Depending on the material attenuation and geometric

beam-spreading effects, guided waves are able to propagate over relatively long distances,

interact sensitively with different types of defects like e.g. delaminations [Hayashi and

Kawashima 2002], corrosion damage [Yu et al. 2008], holes [Croxford et al. 2010], etc.

For example, [Xu et al. 2008] presents a combination of an improved adaptive harmonic

wavelet transform and the principal component analysis performed on baseline signals to

highlight the critical features of guided wave propagation in the undamaged structure.

The detection of damage is facilitated by comparing the features of the different signals

collected from the test structure with the features of the baseline signals. Detection of

damage has also been accomplished using a method based on the loss of local temporal co-

herence of signals combined with an optimal baseline selection procedure [Michaels 2008].

Additionally, a delay-and-sum imaging method applied to the residual signals allowed the

localisation of damage and provided characterisation information.

Sensor location studies for damage detection with guided waves have been pursued in [Lee

and Staszewski 2007b]. The problem is investigated using the local interaction simulation

approach for guided wave propagation modelling by means of numerical simulations. An

additional method devised for optimal placement of piezoelectric actuators and sensors

for detecting damage in plate-like structures is discussed in [Flynn and Todd 2010]. This

is accomplished using a detection theory framework where the optimum configuration is

defined as the one that minimizes Bayes risk.

An algorithm employing chirplet matching pursuits followed by a mode correlation check

was implemented for damage localisation in [Raghavan and Cesnik 2007]. Guided wave

sensing using laser vibrometry can be also used for localisation of damages as it is in-

troduced in [Lee and Staszewski 2007a]. An additional method for damage localisation

is presented in [Moll et al. 2010] where a generalized formulation of the common ellipse

technique is proposed. This method was capable of precisely estimate multiple damages

at different positions simultaneously for anisotropic materials. The computational as-

pects and automation for this kind of damage localisation algorithms are presented by

the author in collaborative research in [Moll et al. 2012].

Besides to damage detection, localisation and sensor placement methods based on guided

waves, there has been an increasing interest in compensation methodologies for varying en-

vironmental and operational conditions. For example, a method based on auto-associative

neural network is employed in [Sohn et al. 2002] for data normalization which separates

the effect of damage on the extracted features from those caused by the environmental

and vibration variations of the system. A study of temperature compensation techniques

ability to compensate changes caused by liquid loading or the effects of non uniform tem-

perature is discussed in [Cicero et al. 2009]. An additional method for feature extraction

and sensor fusion for ultrasonic SHM able to cope with changes such as temperature and

surface wetting is presented in [Lu and Michaels 2009].
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In addition to these studies, crack detection using the acousto-ultrasonics technique has

been gaining considerable interest recently [Li-Fei et al. 2012, Zhou et al. 2012]. The

idea behind is to exploit the non-linear features of acousto-ultrasonic waves to detect

damage onset due to their high sensitivity to damage with small dimensions. Other

application to the technique is the evaluation of joint integrity in complex structures.

For example, the assessment of bonded patch bridge repairs using acoustic emission and

acousto-ultrasonics is proposed in [Pullin et al. 2012]. Recently, an overview of structural

health monitoring for aircraft, ground transportation vehicles, wind turbines and pipes

focused in acousto-ultrasonics and acoustic emission has been presented in [Meyendorf

et al. 2012]. Complementary reviews can be found in [Sohn et al. 2004, Brownjohn 2007,

Ciang et al. 2008].

1.3. Objectives of the Thesis

The objective of this thesis is to contribute in the enhancement of the effectiveness and

reliability of acoustic emission and acousto-ultrasonics techniques by means of ultrasonic

guided waves as structural health monitoring applications for metallic and composite

structures. As a result, several methodologies are proposed in order to circumvent tradi-

tional problems faced with these techniques for the purpose of damage detection, localisa-

tion and identification. This task is accomplished with the help of different well-established

signal processing and pattern recognition techniques together with the fundamental un-

derstanding of wave propagation as an optimal way to pursue the solution of the given

problems.

As a result, the following objectives are defined:

1. Development of a mathematical model that captures accurately the wave propaga-

tion in isotropic and composite structures together with guided wave modal analysis

in order to analyse not only the frequency and directional dispersive characteristics

of the modes of propagation, but also to study the influence of environmental and

operational conditions on them.

2. Development of a robust data-based methodology for the characterisation of acoustic

emissions from the analysis of the recorded stress waves together with its experi-

mental validation from AE events occurring during tensile tests, double cantilever

tests and artificially generated AE.

3. Development of a robust data-based methodology for damage detection and identi-

fication by means of the acousto-ultrasonics principle together with its experimental

validation in structures where damage has been either simulated or introduced.

4. Development of a data-based methodology for impact magnitude estimation and

localisation together with its experimental validation.
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These four objectives are individually addressed in the subsequent chapters of this thesis.

1.4. Outline of the Thesis

The thesis will follow the sequence of topics described below.

Chapter 2 provides the theoretical background information on the field of guided waves

in pipe-like and plate-like structures. The mathematical modelling of these waves is

also presented for completeness together with the calculation and discussion of the dif-

ferent dispersive relationships which will help for supporting the understanding of the

wave propagation problem. Subsequently, different signal processing and pattern recog-

nition techniques which are integral part of the methodologies developed in the following

chapters are introduced. The main goals of the presented signal processing methods are

data cleansing, sensor-data fusion, feature extraction and selection of damage-sensitive

information from the sensed signals. Pattern recognition is used to identify the differ-

ent conditions of the extracted and selected features so that an indication of either their

innate characteristics or the state of structural health can be accomplished.

Chapter 3 introduces an approximate higher order plate theory for the solution of wave

propagation problems in multilayered elastic and viscoelastic materials. This is motivated

by the fact that exact solutions from the three-dimensional elasticity theory require very

sophisticated and computational expensive procedures for the calculation of the dispers-

ive solutions in complex multilayered and viscoelastic media. With the proposed theory,

accurate solutions in the relatively low-frequency range, which is the most used in guided

wave applications for structural health monitoring, can be obtained without the incor-

poration of complex root finding algorithms. The solutions obtained with this model are

of great help as a fundamental basis for the implementation of the different methodo-

logies developed in the following chapters. Additionally, the guidelines for a computer

implementation of the solutions given by the proposed theory are also discussed in this

chapter.

Chapter 4 is exclusively dedicated to the acoustic emission technique. It introduces the

concepts of modal acoustic emission for guided wave mode characterisation and local-

isation with emphasis in the fundamental modes of propagation. Two automatic meth-

odologies are developed for the classification of acoustic emission waveforms. In these

methodologies, artificial neural networks and advanced pattern recognition methods are

used in conjunction with careful analysis of the dispersive characteristics of the recorded

guided waves for the purpose of the identification of the propagation modes and the dif-

ferent type of damage mechanisms which could be developed in composite materials such

a matrix cracking, fibre fracture, fibre debonding and delamination.

Chapter 5 introduces a compact methodology in order to demonstrate a potential solution
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for the damage detection and identification problems via the construction of data-driven

models from baseline measurements using an acousto-ultrasonics system. Criteria for the

selection of the optimal excitation signals are explained in detail along with a discussion

of affecting factors to the damage detection performance and a possible temperature

compensation technique.

Chapter 6 discusses the different approaches for the solution of the problem of impact

load identification and introduces an approach based on a Bayesian framework within

the context of Gaussian Processes for the purpose of impact magnitude estimation and

localisation.

Chapter 7 presents the experimental validation and performance analysis of the model

and methodologies proposed in the previous chapters. It is shown that the proposed

methodologies performed successfully the health monitoring of a variety of structures.

In Chapter 8, the main outcomes of this thesis are discussed and summarized, and future

possible directions of research are suggested.

1.5. Summary of Contributions Made by This Thesis

The main contributions of this thesis to the current state of the art could be divided in four

parts. First, the development, implementation and experimental validation of a mathem-

atical model based on an approximate third order plate theory which is applicable for

multilayered and multi-oriented elastic and viscoelastic media. Additionally, a computer

program implementing not only the previous mentioned model, but also exact solutions

for both cylindrical structures and plate-like structures based on exact three-dimensional

theory was written and validated. Second, the development and experimental evaluation

of different novel approaches devoted for the detection, location and classification of differ-

ent failure mechanisms by means of pattern recognitions techniques and modal analysis for

acoustic emission. Third, the extension, further development and experimental evaluation

of a data-driven approach for damage detection and identification for acousto-ultrasonics.

Fourth, the development and experimental evaluation of a machine learning methodology

for impact magnitude estimation and localisation.
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2. Theoretical Background

2.1. Introduction

Elastic waves can propagate in solid, liquid and gaseous media. Nevertheless, the propaga-

tion of waves in solids is the major area of interest in structural health monitoring and

for this reason only wave propagation in solid media is considered in this work. The aim

of this chapter is first to review the equations and solutions of bulk waves propagating in

an infinite anisotropic medium before introducing guided waves in hollow cylinders and

multilayered plates. This is motivated by the fact that it is only possible to benefit from

the advantages of these waves once their complexity has been disclosed.

Studies of bulk waves have been published by many authors [Achenbach 1984, Auld 1990,

Rose 1999]. For example, bulk waves properties have been used for material characterisa-

tion purposes in [Hosten 1991a;b]. In spite the fact that bulk waves and guided waves are

governed by the same wave equations, they are fundamentally different. First, there are

an infinite number of modes of propagation related to guided waves. This is in contrast to

bulk waves which exhibit a finite number of longitudinal and shear modes. Guided modes

are additionally dispersive, i.e. their wave velocity is a function of frequency. Moreover,

the mathematical equations of guided waves must satisfy boundary conditions in contrast

to bulk wave equations which do not need to satisfy any boundary conditions [Rose 1999].

Guided elastic wave-based methods for evaluating the structural integrity have been de-

veloped extensively for several decades as approaches to tackle the problem of damage

detection what have led to increased efficiency and sensitivity in comparison to other

technologies. In the case of pipe-like structures several approaches based on signal ana-

lysis have been proposed [Van Velsor and Rose 2007, Hua and Rose 2010, Buethe et al.

2012]. However, this problem is particularly more difficult to treat in pipe-like systems

since at a given frequency many more modes exist in a pipe than in a plate of similar

thickness [Alleyne et al. 1996]. Similarly, guided waves have been extensively used for

damage detection in metallic and composite materials with other arbitrary geometries [Su

et al. 2006]. Normally, these structures are composed of several layers in order to improve

their mechanical properties. The multilayered system considered here is a plate system
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consisting of an arbitrary number of perfectly flat layers which are stacked together. Each

layer consists either of an anisotropic or isotropic material and it is connected rigidly to

its upper and lower connecting layer. In the case of plate-like structures, ultrasonic guided

waves, i.e. Lamb wave modes, are seen as the superposition of successive reflections of

bulk modes inside the plate boundaries. The second aim of this chapter is to introduce

different signal processing algorithms for feature extraction and selection, dimension re-

duction, data-driven modelling and multidimensional data visualization which are going

to be extensively used throughout this dissertation. The discrete wavelet transform is

used for feature extraction and signal denoising purposes, principal component analysis

and hierarchical non-linear principal component analysis are used for dimension reduc-

tion, feature selection and data-driven modelling, while self-organizing maps are used for

the visualization of high dimensional data. All of these algorithms play a critical role in

the algorithms which are going to be developed in the following chapters.

2.2. Wave Propagation in Solid Media

2.2.1. Concepts of Phase and Group Velocity

The phase velocity is the velocity at which the phase of any one frequency component

of a wave travels. The phase velocity is defined as Cph = �

k , where � is the angular

frequency and k denotes the wavenumber. The wavenumber is the spatial frequency of

a wave, i.e. the number of waves that exist over a specified distance. Formally, it is the

reciprocal of the wavelength. The group velocity Cgr is related to the velocity with which

the envelope of the wave packet propagates [Rose 1999]. For the case of isotropic media,

the group velocity is defined as Cgr =
∂�
∂k . Figure 2.1 represents the typical example for

a superposition of a group of waves of similar frequency where the individual harmonics

travel with different phase velocities Cph, but the superimposed packet travels with the

group velocity Cgr.

In isotropic plates the direction of the group velocity coincides with the direction of the

wave vector. However, for composite materials, the direction of group velocity is normally

not parallel to the wavenumber vector. It is known that the group velocity vector is

perpendicular to the tangent vector of the slowness curve, i.e. the group velocity vector is

parallel to the normal direction of the slowness curve [Auld 1990, Wang and Yuan 2007a].

The slowness curve is a plot that represents the inverse of the velocity curve, i.e. the phase

velocity curve. Figure 2.2 depicts the geometric relation between wavenumber vector and

group velocity vector [Schulte 2010, Moll 2011]. The effect of difference between the

directions of the energy flux and the wave vector, i.e. the direction of the phase velocity,

has been experimentally observed using a composite long-range variable-length emitting

radar (CLoVER) in a unidirectional composite plate in [Salas and Cesnik 2010]. The
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Figure 2.1. Schematic for phase and group velocity.

difference between the group velocity angle α and the propagation direction angle θ is

known as the skew angle β .

2.2.2. Bulk Waves

Bulk waves exist in infinite homogeneous bodies and propagate indefinitely without being

interrupted by boundaries or interfaces. A bulk wave is named pure if its polarization

vector is directed either along or normal to the propagation direction. For isotropic

materials, only pure modes are possible. One of these waves is known as longitudinal

with polarization directed along the propagation direction. The other two are known

as shear waves with polarizations directed normal to the propagation direction [Nayfeh

1995]. Figure 2.3 depicts a typical schematic of the three particle displacement vectors

and the propagation direction vector.

Wave equations may be developed from the concept of a series of infinitesimally small mass

elements, i.e. stresses are transmitted through the media. The properties of these waves
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Figure 2.2. Geometric relation between wavenumber vector and group velocity vector: (a) Wave
front curve and (b) Slowness curve.
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Figure 2.3. Polarizations of the displacement vector u and the propagation direction vector n.

are determined by the relationships between the direction of propagation and the proper-

ties of the medium. The solutions for bulk waves are the eigenvalues and eigenvectors of

the well-known Christoffel equation. In order to develop this equation, and following the

Einstein summation convention, one should start with the traditional tensorial definitions

of stress-displacement and stress-strain relations as given in Eq.(2.1a) and Eq.(2.1b):

∂σi j

∂x j
= ρ

∂ 2ui

∂ t2
, (2.1a)

σi j =Ci jlmεlm, (2.1b)

where σi j and εlm, denote the stress and strain tensors, ρ is the material density, ui the

displacement vector and Ci jlm the stiffness tensor [Nayfeh 1995]. Indices i, j, l and m vary

over 1,2,3. The linear strain-displacement relations are defined in accordance to [Hearn

1977] as:

εlm =
1

2

(
∂um

∂xl
+

∂ul

∂xm

)
. (2.2)

Substitution of Eq.(2.1b) and Eq.(2.2) into Eq.(2.1a), and taking into consideration the

symmetries of Ci jlm by interchanging the indices l and m leads to:

ρ
∂ 2ui

∂ t2
=Ci jlm

∂ 2um

∂x j∂xl
. (2.3)

Formal solutions for Eq.(2.3) are sought in the complex plane in the following form:

ui =Uieik(n jx j−Cpht), (2.4)

where k and n j denote the bulk wavenumber and the propagation direction with compon-

ents n1, n2 and n3, and U is the displacement amplitude vector defining the polarization.

Finally, substitution of Eq.(2.4) into Eq.(2.3) leads to the characteristic equation:(
Λim −C2

phδim

)
Um = 0, (2.5)
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Table 2.1. Elastic properties of the unidirectional graphite-epoxy material (units in GPa).
C11 C22 C33 C12 C13 C23 C44 C55 C66

155.43 16.34 16.34 3.72 3.72 4.96 3.37 7.48 7.48

where Λim = λi jlmn jnm and λi jlm = Ci jlm/ρ . The elements of Λim are given in Appendix

A.1. Since the phase velocity Cph is still unknown in Eq.(2.5), this equation constitutes

an eigenvalue problem with its eigenvalues identified as C2
ph. Solutions to Eq.(2.5) can be

found by numerical methods [Nayfeh 1995].

A graphite-epoxy material with material properties listed in Table 2.1 is used as an ex-

ample in order to illustrate the bulk solutions. Without any loss of generality, the solutions

are found in the x1 − x3 plane, being x2 normal to this plane. The direction x1 lies along

the zero degree direction while x3 lies along the ninety degree direction. Figure 2.4 shows

the solutions for two different directions of propagation. These plots do not depend on

the frequency in the case of a purely elastic solid. The fastest longitudinal wave is rep-

resented in blue colour while the two shear waves are given in red and green colour. It

can be noticed that the velocity for the longitudinal mode is higher in the fibre direction

than in θ = 30°. There is also an evident change in the velocities of the two shear waves

which can be easily tracked by checking the change in the shape of the slowness curves.
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Figure 2.4. Bulk solutions in a graphite-epoxy material: (a) Velocity curves for θ = 0°, (b)
Slowness curves for θ = 0°, (c) Velocity curves for θ = 30° and (d) Slowness curves for θ = 30°.
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2.2.3. Guided Waves in Hollow Cylinders

Cylindrical wave propagation problems were first studied in the late nineteenth century

in [Pochhammer 1876, Chree 1889] which formulated the equations and solutions for wave

propagation in semi-infinite elastic cylindrical rods. For longitudinal waves, imposing the

boundary condition of zero stress at the outer surface of the rod results in the Pochhammer

frequency equation.

In the mid twentieth century more researchers treated the problem concentrated mostly

in wave propagation in solid rods for use in delay lines. The dispersion curves for hollow

cylinders were first treated in [Gazis 1959a;b]. In that work, the implementation consisted

of hollow cylinders for single layer isotropic materials, considering axisymmetric or non-

axisymmetric wave propagation. For the purpose of the present work and the type of

sensor networks which are going to be implemented in the next chapters, only waves

propagating in the axial direction for isotropic materials are considered. Solutions for

waves propagating in the circumferential direction can be found in [Liu and Qu 1999], while

solutions for composite cylindrical materials can be found in [Yuan and Hsieh 1998]. The

equations governing the motions in cylindrical coordinates of a homogeneous, isotropic,

linearly elastic medium can be found in any text book of the field of wave propagation in

elastic solids [Graff 1975, Achenbach 1984]. For the present case of guided waves in hollow

cylinders, and following the Helmholtz decomposition, the three dimensional displacement

vector can be written in terms of a scalar ϕ and a vector potential H =
[

Hr Hθ Hz

]T

as [Achenbach 1984]:

ur =
∂ϕ
∂ r

+
1

r
∂Hz

∂θ
− ∂Hθ

dz
, (2.6a)

uθ =
1

r
∂ϕ
∂θ

+
∂Hr

dz
− ∂Hz

∂ r
, (2.6b)

uz =
∂ϕ
∂ z

+
1

r
∂ (rHθ )

∂ r
− 1

r
∂Hr

dθ
, (2.6c)

where ur, uθ and uz are the displacement vectors in the directions of r, θ and z. Addi-

tionally, the potentials can be expressed as [Achenbach 1984]:

∇2ϕ =
1

C2
L

∂ 2ϕ
∂ t2

, (2.7a)

∇2Hr − Hr

r2
− 2

r2

∂Hθ
∂θ

=
1

C2
T

∂ 2Hr

∂ t2
, (2.7b)

∇2Hθ − Hθ
r2

+
2

r2

∂Hr

∂θ
=

1

C2
T

∂ 2Hθ
∂ t2

, (2.7c)

∇2Hz =
1

C2
L

∂ 2Hz

∂ t2
, (2.7d)
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z

Figure 2.5. Infinitely long hollow cylinder with inner radius a and outer radius b.

where CT and CL are the transverse and longitudinal wave velocities, and ∇2 denotes the

Laplacian operator. Figure 2.5 depicts a cylindrical structure of circular cross section

in which time-harmonic waves propagate in the axial direction, i.e. the z-axis. The

displacement potentials can be expressed in terms of sine and cosine notation as follows:

ϕ = Φ(r)cos(nθ)eik(z−Cpht), (2.8a)

Hr = Ψr (r)sin(nθ)eik(z−Cpht), (2.8b)

Hθ =−Ψr (r)cos(nθ)eik(z−Cpht), (2.8c)

Hz = Ψz (r)sin(nθ)eik(z−Cpht), (2.8d)

where k is the wavenumber. The circumferential order n is an integer that describes the

symmetry of the waveform along the z-axis, i.e. the integer number of waves around the

circumference.

The following ordinary differential equations, where the dependence on r has been omitted

in order to keep the notation simple, are obtained by substitution of Eq.(2.8a) to Eq.(2.8d)

into Eq.(2.7a) to Eq.(2.7d):

∂ 2Φ
∂ r2

+
1

r
∂Φ
∂ r

+ζ 2
1 Φ− n2

r2
Φ = 0, (2.9a)

∂ 2Ψr

∂ r2
+

1

r
∂Ψr

∂ r
+ζ 2

2 Ψr − (n+1)2

r2
Ψr = 0, (2.9b)

∂ 2Ψz

∂ r2
+

1

r
∂Ψz

∂ r
+ζ 2

2 Ψz − n2

r2
Ψz = 0, (2.9c)

where the expressions ζ1 and ζ2 are equal to:

ζ1 =

√(
ω
CL

)2

− k2, (2.10a)
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ζ2 =

√(
ω
CT

)2

− k2. (2.10b)

Eq.(2.9a) to Eq.(2.9c) are Bessel equations and their solutions are Bessel functions of the

first (J) and second (Y ) kind as follows [Kundu 2003]:

Φ(r) = A1Jn (ζ1r)+A2Yn (ζ1r) , (2.11a)

Ψr (r) = A3Jn+1 (ζ2r)+A4Yn+1 (ζ2r) , (2.11b)

Ψz (r) = A5Jn (ζ2r)+A6Yn (ζ2r) . (2.11c)

By substituting Eq.(2.8a) to Eq.(2.8d) into Eq.(2.6a) to Eq.(2.6c), making use of the

stress-displacement relations (see Appendix A.2) and finally substituting the Bessel solu-

tions from Eq.(2.11a) to Eq.(2.11c), the system of equations can be expressed into the

product of a matrix K and a vector of amplitudes A. Assuming that the surface of the

cylinder is free of traction forces, i.e. the boundary conditions at r = b are:

σrr = 0, σrθ = 0, σrz = 0, (2.12)

the general system yields to:

D = KA = 0, (2.13)

where K is 6×6 matrix, the vector of amplitudes A =
[

A1 A2 A3 A4 A5 A6

]T
and

D =
[

uz ur uθ σrr σrz σrθ

]T
. The components of matrix K are given in Appendix

A.3. For nontrivial solutions, the determinant of the matrix K must equal zero which al-

lows to obtain the desired dispersion relationship between wavenumber, frequency, mater-

ial properties and the circumferential order. It is known that the solutions of the equations

of motion for hollow cylinders lead to three different classes of propagating modes [Rose

1999]. These tube modes are designated as longitudinal, torsional and flexural modes.

The modes are labelled L(0,m), T(0,m) and F(n,m), where n is the circumferential order

and m the number of the mode [Silk and Baiton 1979]. These waves can travel for long

distances and their attenuation rate is much lower than that for bulk waves. Figure 2.6

depicts the mode shapes for the first fundamental modes for a steel pipe with an outer

radius of 21mm and 2mm wall thickness. It can be seen that the torsional mode T(0,1) has

only circumferential displacement while the longitudinal, L(0,1) has both axial and radial

displacements. The modes without axial symmetry, named flexural F(n,m) with n> 1, ex-

hibit all three displacements coupled. For the same structure, dispersion curves calculated

using a general-purpose computer program developed by the author in [Torres Arredondo

et al. 2011] are depicted in Figure 2.7. As it can be observed from Figure 2.7, the wave

propagation phenomenon is very complicated since many modes exist in the pipe. There-

fore, this effect makes the interpretation of the signals to be analysed for damage detection
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Figure 2.6. Mode shapes for the first three fundamental modes at f = 180kHz: (a) Longitudinal
L(0,1), (b) Torsional L(0,1) and (c) Flexural L(0,1).

very difficult. Just the fundamental modes have been labelled in order to make the figure

clearer for the understanding of the dispersive behaviour of the different modes and not

crowd the plot with labels. There are 40 modes in the frequency range up to 300kHz.

These are: L(0,1), L(0,2), T(0,1), F(n,1) for n ≤ 18, F(m,2) for m ≤ 12 and F(k,3) for

k ≤ 7.
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dispersion curves and (b) Group velocity dispersion curves.
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Figure 2.8. Lamb wave propagation in the global coordinate system.

2.2.4. Guided Waves in Multilayered Plates

This subsection introduces an extended mathematical model from the formulation intro-

duced in [Nayfeh 1991]. The notation of the original paper is kept, where allowed, for

all the procedures presented herein. It is well-known ultrasonic guided waves, i.e. Lamb

waves, in plate-like structures result from the superposition of guided longitudinal and

transverse shear waves within a layer. There exist two groups of waves, whose particle mo-

tion is either symmetric or antisymmetric about the mid-plane of the plate, and each can

propagate independently of the other. The common approach for the wave propagation

modelling in multilayered materials is to consider a flat, linearly elastic, non-piezoelectric

layer of material possessing a monoclinic crystal symmetry subjected to a complex stress

system in three dimensions [Moll et al. 2012]. A global Cartesian coordinate system

(x1,x2,x3) is assumed with the x3-axis normal to the mid-plane of the layer with outer

surfaces at x3 =±h
2 , where h denotes the thickness of the layer as depicted in Figure 2.8.

For the sake of clarity, the governing equations of motion in the absence of body forces

are repeated here and they are given by:

∂σi j

∂x j
= ρ

∂ 2ui

∂ t2
, (2.14)

where indices i and j vary over 1,2,3, ρ denotes the material density, σ11,σ11, ... the stress

components acting on the faces of the material, and u the displacement vector in the x1,

x2 and x3 global coordinate system, respectively. The usual summation convention over

repeated subscripts is assumed. The constitutive relations showing the interdependence of

strain and stress are defined in terms of the stiffness matrix Cpq(p,q= 1,2, . . . ,6), adopting
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the contracted index notation, as given in Eq. (2.15):⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε23

ε13

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.15)

Viscoelastic layers can be simulated by allowing the stiffness matrix to be complex [Sz-

abo and Wu 2000]. If the global coordinate system does not coincide with the material

coordinate system, but is rotated by an angle ϕ around the x3-axis, a coordinate trans-

formation of the elastic stiffness matrix is required so that the axes of the anisotropic

medium coincide with the chosen global coordinate axes [Vasiliev and Morozov 2007].

Formal solutions for the three displacement equations are sought in the complex plane in

the following form [Nayfeh 1995]:

(u1,u2,u3) = (U1,U2,−iU3)eik(x1cos(θ)+x2sin(θ)+px3−Cpht), (2.16)

where k is the wavenumber, θ the angle of propagation, p is an unknown parameter,

Cph is the phase velocity defined as Cph = �

k , � is the angular frequency and U is the

displacement amplitude vector defining the polarization. Combining the equations of

motion (2.14) with the strain-stress (2.15) and strain-displacement relations Eq.(2.2), and

substituting Eq.(2.16) leads to a quadratic eigenvalue relation in terms of p that can be

written as:

(Ap2 +Bp+D)U = 0, (2.17)

where A and D are 3×3 symmetric matrices and B is a 3×3 self-adjoint matrix, whose

non-zero elements are given as:

A11 =C55, A12 =C45, A22 =C44, A33 =C33, (2.18a)

B13 =−i [(C13 +C55)cos(θ)+(C36 +C45)sin(θ)] , (2.18b)

B23 =−i [(C36 +C45)cos(θ)+(C23 +C44)sin(θ)] , (2.18c)

D11 =C11cos2(θ)+2C16cos(θ)sin(θ)+C66sin2(θ)−ρc2
ph, (2.18d)

D12 =C16cos2(θ)+(C12 +C66)cos(θ)sin(θ)+C26sin2(θ), (2.18e)

D22 =C55cos2(θ)+2C45cos(θ)sin(θ)+C44sin2(θ)−ρc2
ph, (2.18f)

D33 =C55cos2(θ)+2C45cos(θ)sin(θ)+C44sin2(θ)−ρc2
ph. (2.18g)

Eigenvalue solutions occur in three pairs related to each other by a change of sign, one
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or more of which can be imaginary. In a next step, the displacement vector can be

normalized without loss of generality by any of the displacement components, e.g. U1q.

Using the relations Eq.(2.17) and Eq.(2.18a) to Eq.(2.18g) for each previously calculated

pq (q = 1,2, . . . ,6), one can express the displacement ratios Vq =
U2q
U1q

and Wq =
U3q
U1q

as:

Vq =
(D11 +A11 p2

q)B23 − (D12 +A12 p2
q)B13

(D22 +A22 p2
q)B13 − (D12 +A12 p2

q)B23
, (2.19)

Wq =
pq
[
(D11 +A11 p2

q)B23 − (D12 +A12 p2
q)B13

]
(D16 +A12 p2

q)(D33 +A33 p2
q)−B23B13 p2

q
. (2.20)

Combining the Eq.(2.18a) to Eq.(2.18g) and Eq.(2.19) to Eq.(2.20) with the stress-strain

Eq.(2.15) and strain-displacement Eq.(2.2) relations, and using linear superposition of har-

monic functions, the formal solutions for the displacements and stresses can be expressed

in a matrix form K as depicted below:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

σ33

σ13

σ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

V1 V2 V3 V4 V5 V6

W1 W2 W3 W4 W5 W6

R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
K

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U11

U12

U13

U14

U15

U16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eik(x1cos(θ)+x2cos(θ)+px3−cpht),

(2.21)

where

R1q =C13cos(θ)+C23sin(θ)Vq − iC33 pqWq +C36(sin(θ)+Vqcos(θ)), (2.22)

R2q =C44(pqVq +Wqsin(θ))+C45(pq +Wqcos(θ)), (2.23)

R3q =C45(pqVq +Wqsin(θ))+C55(pq +Wqcos(θ)). (2.24)

At this point, a formal solution of the constitutive equations has been presented. The

solution can be used now for the analysis of single and multilayered media since a general

expression for the displacement and stress components has been derived. For a required

solution, boundary and continuity conditions can be imposed at each interface and free

surfaces of the medium. The number and type of conditions depend on the layer and

surface type, i.e. solid, liquid or vacuum. At the free surfaces, the stress components (see

Eq.(2.21)) are required to vanish. In the case of a single layered system, the boundary

conditions are then imposed on the upper and lower surfaces of the same layer. For a mul-

tilayered system, under the assumption of perfectly bonded layers, the field components

of the layers above and below the interface are specified as equal. There are two popular

approaches used in order to solve the wave propagation problem. They are known as
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Figure 2.9. Global matrix structure for a two layer case: The matrix is built of submatrices
describing the behaviour of the individual layers. The blank spaces are filled zeros. Signs ±
indicate the upper and lower surfaces of the layers.

the transfer matrix method and the global matrix method. References to the different

approaches can be found in [Lowe 1995]. In this work the second approach is recommen-

ded since it is more robust and remains numerically stable for any frequency-to-thickness

product [Mal 1988]. However, the disadvantage consists in a higher computational de-

mand from the root finding procedure due to the large size of the determinant involved.

At the same time, as the complexity of the laminate increases, so does the size of the

global matrix.

Figure 2.9 depicts how the global matrix Kglobal is assembled for a two layer system

bounded by a solid interface [Pavlakovic et al. 1997]. Superscripts ± refer to the top and

bottom conditions for each layer at x3 =±h
2 , P is the displacement and stress vector, and

U is the displacement amplitude vector. Assembling of the matrix for liquid or vacuum

layers requires a modification of the matrix arrangement in order to remove unnecessary

boundary conditions and constraints on the displacement fields [Pavlakovic et al. 1997].

Once the global matrix is assembled, the dispersion relations are obtained by setting the

determinant of the global matrix depicted in Figure 2.9 to zero. This can be considered as a

characteristic function relating the angular frequency, or phase velocity, to wavenumber for

given material properties and propagation direction. The characteristic function consists

of complex quantities and yields to complex results. In case of symmetric laminates,

special conditions on the stresses and displacements at the top and mid-plane of the

structure can be imposed in order to separate the symmetric and antisymmetric modes

of propagation and reduce the size of the global matrix. This fact plays a critical role in

the simplification of the solutions since the characteristic equations decouple in this case,
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Figure 2.10. Mode shapes for fundamental modes of propagation: (a) A0 at f = 100kHz, (b)
A0 at f = 1MHz, (c) A0 at f = 2MHz, (d) S0 at f = 100kHz, (e) S0 at f = 1MHz and (f) S0 at
f = 2MHz. The direction of travel of the wave is along the x1-axis.

making the implementation of the tracing procedure easier, more stable and introducing

savings in the calculation time. The displacement profiles across the thickness of a 2mm

thick aluminium lamina for the fundamental A0 and S0 modes of propagation are depicted

in Figure 2.10 in order to show the mode shape changing behaviour with frequency. As

it can be inferred from Figure 2.10, in the low frequency range the A0 and S0 are mostly

pure flexural and extensional modes, respectively. At higher frequencies, the mode shapes

for each mode begin to vary and the dominant motions from the low frequency start to

decrease while the non-dominant increase on the outside surfaces where the measurements

are normally made.

The dispersion curves for the symmetric and antisymmetric modes of propagation in the

2mm thick aluminium lamina are shown in Figure 2.11. From this figure can be observed

that the wave propagation phenomenon in a plate is less complicated than that of a pipe

when comparing the number of modes present in the frequency spectrum (see the previous

section). This is given by the fact that many more modes exist in a pipe than in a plate of

similar thickness what makes the analysis of the propagated and recorded signals difficult.

Additionally to Lamb wave modes that exist in flat plates, there also exists a family of

time harmonic waves known as shear horizontal (SH) modes whose particle displacement

is parallel to the surfaces of the plate [Rose 1999]. This is shown in Figure 2.12 where

the direction of propagation is along the x2 direction and the particle displacement in the

x1 direction. This type of waves cannot be easily generated in isotropic plates with the

help of surface mounted piezoelectric actuators. A wedge technique is normally adopted

to generate a pure SH wave using ultrasonic probes [Su et al. 2007].
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Figure 2.11. Dispersion curves numerical results in a 2mm thick aluminium lamina for the
symmetric and antisymmetric modes: (a) Phase velocity dispersion curves and (b) Group velocity
dispersion curves.

Figure 2.13 depicts the dispersion curves for the shear horizontal modes of propagation in

a 2mm thick aluminium lamina. It can be clearly seen that the SH0 mode is not dispersive

along the frequency spectrum. The modes labelled with even numbers have a symmetric

particle displacement distribution across the thickness of the material while the modes

labelled with odd numbers have an antisymmetric particle displacement distribution.

2.3. Guided Waves Signal Attenuation

The attenuation of Lamb waves depends on many different factors. According to [Schubert

and Herrmann 2011], the four most important aspects are: geometric beam spreading,

material damping, dissipation into adjacent media and wave dispersion. Geometric beam

spreading is given by the loss of amplitude due to the growing length of a wave front

departing into all directions from the source. Material damping describes the amount of

x3

x2

h

x1

k

Figure 2.12. Shear horizontal modes propagation with direction of propagation in the x2 direc-
tion and particle displacement in the x1 direction.
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Figure 2.13. Dispersion curves numerical results in a 2mm thick aluminium lamina for the
shear horizontal modes: (a) Phase velocity dispersion curves and (b) Group velocity dispersion
curves.

energy stored in the wave that is dissipated due to non-perfect elastic material behaviour.

Effects such as hysteresis and viscoelastic damping cause internal friction and results in

energy loss [Hardy 2003]. The dissipation into adjacent media is a consequence of in-

teractions between the structure surfaces and the surrounding media, e.g. in the case of

a pressure vessel or a pipe. Wave attenuation due to wave dispersion is a result of the

frequency dependence of wave velocities. It is caused since the different frequency com-

ponents of a broadbanded ultrasonic wave travel at different velocities and the resulting

spreading in time causes a loss in amplitude [Holford 2000].

2.4. Ultrasonic Guided Wave Analysis Techniques

2.4.1. Parameter-Based Analysis

In the classic acoustic emission testing and acousto-ultrasonics signal parameters are typ-

ically studied. The recorded signals are characterized by different parameters such as

arrival time, number of counts, maximum amplitude, signal energy, signal duration, rise

time, etc. These parameters are selected from a predefined threshold determined as a

function of the background noise. Figure 2.14 shows a typical signal with some of the

aforementioned parameters.

The main advantages of the parameter-based signal analysis are the high recording and

data storing speed what makes the visualization of the recorded data easier and faster

[Grosse and Ohtsu 2008]. The disadvantage by using this kind of analysis is that reducing

a complicated signal to only a few parameters presents a great limitation when further

analysis are required, for example, for the study of the different wave modes contained in

the recorded signals.
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Figure 2.14. Typical signal parameters.

2.4.2. Signal-Based Analysis

When a signal-based approach is selected, the whole waveforms recorded by the sensors

need to be analysed. One advantage of signal-based analysis is the capability of signal-to-

noise discrimination based on waveforms, and additionally, it allows one to use different

signal analysis methods using post-processing algorithms in order to extract valuable

information regarding the structural state. These algorithms might include filtering tech-

niques to improve the signal-to-noise ratio, feature extraction and selection methods, di-

mension reduction and classification algorithms [Grosse and Reinhardt 2002, Grosse et al.

2004]. Moreover, in the case of acoustic emission testing, advanced analyses may then be

applied, for example, source mechanism calculations. However, these calculations require

the complete solution of the Lamb wave three-dimensional problem for determining the

elastic disturbance resulting from the failure source, which is not a trivial task [Ohtsu and

Ono 1986, Yang et al. 2003].

2.5. Sensors, Actuators and Measurement Chain

The SHM systems which are topic of discussion in this thesis make use of circular piezo-

electric transducers for the excitation and measurement of ultrasonic guided waves. A

piezoelectric material is one that generates an electric charge when a mechanical stress is

applied. This is known as the direct piezoelectric effect. Conversely, a mechanical deform-

ation would be produced in a piezoelectric material when a voltage is applied between the

electrodes of the piezoelectric material [Vives 2008]. The piezoelectric transducer works

in a passive way as a receiver for ultrasonic guided wave signals which are generated by

damaging mechanisms [Seydel and Chang 2001]. Active piezoelectric transducers pro-
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Figure 2.15. Schematic of a piezoelectric transducer installed in an arbitrary structure.

duce Lamb waves which are collected by distributed sensors such that distinct subject

regions may be observed selectively [Staszewski et al. 2004]. Figure 2.15 depicts a typical

schematic of a piezoelectric transducer attached to an arbitrary structure.

The use of circular piezoelectric transducers is motivated by the fact that it has been

experimentally proven that an inhomogeneous distribution of the radiation field of the

ultrasonic waves is produced due to the corners of the rectangular piezoelectric transducers

[Pohl and Mook 2010]. It also has been shown that for rectangular actuators the optimum

actuator dimensions depend on the angular location of the piezo-sensor with respect to

the piezo-actuator [Raghavan and Cesnik 2005]. This effect has a direct influence on the

damage detection procedures [Moll 2011].

Additionally to the transducers, amplifiers and filters are usually employed to magnify the

recorded ultrasonic signals and to minimize the amount of electronic noise. Amplifiers

with a flat response in the frequency spectrum are preferred for use. Fast data acquisition

units must be used to ensure the proper conversion of the ultrasonic signals. An analogue

to digital (A/D) converter is usually provided for each channel of the recording unit.

Depending on the materials and the structure under monitoring, the selection of sensor

location, the optimal frequency of excitation, the techniques employed to eliminate noise

and the conditions for system tuning may change [Grosse and Ohtsu 2008].

2.6. Signal Conditioning for Signal Post-processing

Ultrasonic guided wave-based techniques require automatic and intelligent methods in

order to separate the recorded signals from noise and accurately localize and characterize

the damage and/or source of emission. Digital filters have been extensively used in non-

destructive testing for signal conditioning, but they can introduce changes to the signals in

the form of precursory signals, phase distortion in case of being ill-defined and amplitude

modification [Scherbaum 2001]. This fact presents a great disadvantage since wave theories

cannot be properly applied for the analysis of the distorted acoustic emission waveforms

and the propagation velocities for reliable source localization and signal characterisation.
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Figure 2.16. DWT decomposition tree.

Therefore, the selection of appropriate conditioning techniques plays an important role in

the successful analysis of the failure-emitted signals.

2.6.1. Discrete Wavelet Analysis for Signal Denoising and Feature

Extraction

In order to fulfil the requirements previously stated, the discrete wavelet transform (DWT)

on the basis of a two-channel subband coding scheme is applied to the noisy ultrasonic

signals in order to produce the noisy wavelet coefficients to the level in which the signal is

properly distinguished. This analysis is performed by means of a fast pyramidal algorithm

using a special class of filters called quadrature mirror filters [Mallat 1989]. In this al-

gorithm, the signal is analysed at different frequency bands with different resolutions by

decomposing the signal into a coarse approximation and detailed information. This is

achieved by successive high-pass and low-pass filtering of the input signal.

One of the most important advantages of DWT is the ability to compute and manipulate

data in compressed parameters which are often called features [Uebeyli 2008]. The extrac-

ted wavelet coefficients give a compact representation that shows the energy distribution of

the structural dynamic responses in time and frequency [Subasi 2007]. Figure 2.16 shows

the structure of decomposing the signal and the corresponding frequency bandwidths for

the details (Dn) and approximations (An).

The approximations represent the high-scale, low-frequency components of the signal.

The details are the low-scale, high-frequency components. The frequency fmax represents

the maximum frequency contained in the recorded signal and n is the decomposition level.

The approximation and details coefficients for an input signal x(i) can be calculated as

follows:

An,m = 2−
n
2

j

∑
i=1

x(i)Γ
(
2−ni−m

)
, (2.25)
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Dn,m = 2−
n
2

j

∑
i=1

x(i)ς
(
2−ni−m

)
, (2.26)

where Γ is called the scaling function, j is the number of discrete points of the input signal,

n and m are considered to be the scaling (dilation) index and the translation index, and

ς is the wavelet basis function. Each value of n corresponds to a different resolution level

of the signal.

The family of Daubechies wavelet basis function ’db8’ was carefully chosen for the method-

ologies presented in this thesis since it proved to be adequate to encode and approximate

the ultrasonic waveforms. This is accomplished by means of different trial and error tests

by evaluating different mother wavelets and levels of decomposition so that the signals

could be properly reconstructed from the calculated wavelet coefficients. The chosen ’db8’

wavelet is an orthogonal wavelet with the advantage of avoiding phase shifts and allowing

exact reconstruction of the signal what makes this wavelet appropriate for analysing tran-

sient signals [Mallat 1997]. The index number refers to the number of coefficients. The

number of vanishing moments for each wavelet is equal to half the number of coefficients,

so the ’db8’ has 4 vanishing moments. A vanishing moment confines the ability of the

wavelet to represent polynomial behaviour [Mallat 1997, Kalogiannakis and Hemelrijck

2011].

Special attention was paid to the selection of the optimum decomposition level in order

to avoid removing important information that could be related to some of the modes of

propagation contained in the signal. The optimum number of level decompositions is

determined based on both a minimum-entropy decomposition algorithm and systematic

trials [Coifman and Wickerhauser 1992]. The entropy-based methods performs a system-

atic comparison of the signal and noise using the Shannon information theory [Mallat

1997]. It has been shown that a signal representing pure noise has the largest entropy

while a systematic signal has zero entropy [Taha et al. 2006]. The cost function for this

optimization problem is defined in Eq.(2.27) as follows:

argmin
An

(E(An,m)) =−
m

∑
i=1

A2
n,i log10

(
A2

n,i

)
, (2.27)

where E represents the Shannon entropy. The result of applying the two-channel subband

coding algorithm to an AE signal contaminated by high frequency noise is shown in Figure

2.17. It can be observed how the denoising greatly helps to elucidate the appearance of the

S0 mode that was completely hidden behind the signal noise. Furthermore, this denoising

technique will be of great help in order to improve the performance of the automatic

onset-pickers which will be later used for source localization. It is well-known that the

performance of onset-pickers is affected a great deal by the signal-to-noise ratio (SNR)

and, therefore, the improvement of the SNR plays an important role in mode detection
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Figure 2.17. Ultrasonic guided waves analysis: (a) Noisy AE signal and (b) Denoised AE
signal.

and localization [Kurz et al. 2005].

2.7. Dimension Reduction Techniques and Data-Driven

Modelling

2.7.1. Principal Component Analysis

Principal Component Analysis (PCA) is a classical method of multivariate statistics and

its theory and use are well documented in any textbook from that field [Jollife 2002].

It is a technique which may provide arguments for reducing a complex data set to a

lower dimension and reveal some hidden and simplified structure/patterns that often

underlie it. Let a matrix X with dimensions I× (M·N) contain the information from N

sensors, I experiments and M samples per experiment and sensor. To apply PCA, first a

normalization step of the X matrix should be considered [Westerhuis et al. 1999]. For the

case of the sensor networks used in this study, group scaling (GS) is selected since it allows

to analyse the changes between sensors. This process includes the step of mean subtraction

where the data need to be centred before installing the new low-dimensional coordinate

system. Had the mean of the data not been subtracted, the best fitting hyperplane would

pass through the origin and not through the centroid [Miranda et al. 2008]. Using this

normalization, each data point is scaled using the mean of all measurements of the sensor

at the same time sample and the variance of all measurements of the given sensor according

to the following equations:

μn =
1

I ·M
I

∑
i=1

M

∑
m=1

xinm, μnm =

I

∑
i=1

xinm

I
, (2.28a)
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σ2
n =

I

∑
i=1

M

∑
m=1

(xinm −μn)
2

I ·M , x̄inm =
xinm −μnm

σn
, (2.28b)

where xinm is the mth sample of the of the nth sensor in the ith experiment, μn is the mean

of all measurements of the nth sensor, μnm is the mean of all the mth samples of the nth

sensor, σn is the standard deviation of all measurements of the nth sensor, and x̄inm is the

scaled sample. The normalized matrix Xnorm will be hereafter referred to as X.

Using this normalized matrix, the covariance matrix Cx can be calculated as follows:

Cx =
1

I−1
XTX. (2.29)

This is a square symmetric (M·N)× (M·N) matrix that measures the degree of linear

relationship within the data set between all possible pairs of variables, i.e. sensors. The

subspaces in PCA are defined by the eigenvectors and eigenvalues of the covariance matrix

as follows:

CxP = PΛ, (2.30)

where the eigenvectors of Cx are the columns of P and Λ is a diagonal matrix whose

diagonal elements are the eigenvalues of Cx. The off-diagonal terms of Λ are equal to

zero. The matrix P can be considered as a transformation matrix seeking to find a

new transformed space with minimal redundancy. The columns of matrix P are sorted

according to the eigenvalues by descending order and they are called principal components

of the data. Choosing only a reduced number r < (M ·N) of principal components, the

reduced transformation matrix P̂ could be defined for the purposes of dimension reduction

and/or data-driven modelling of the investigated process. Geometrically, the transformed

data matrix T, i.e. score matrix, represents the projection of the original data over the

direction of the principal components P. This matrix is defined as:

T = XP. (2.31)

One can think of PCA as a method to squeeze as much information, as measured by

variance, as possible into the first principal components. In the full dimensional case,

using P, the projection is invertible and the original data can be recovered according to

X = TP. In the reduced case, using P̂ and with the given T, it is not possible to fully

recover X, but T can be projected back onto the original (M·N)-dimensional space and

another data matrix can be obtained as follows:

X̂ = TP̂T = XP̂P̂T. (2.32)

Therefore, the residual data matrix, i.e. the error for not using all the principal compon-
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ents, can be defined as the difference between the original data and the data projected

back as follows:
E = X− X̂.

E = X
(
I− P̂P̂T

)
.

(2.33)

Defining the optimal number of principal components required for building the PCA

models is a very important step for the analysis of the data. It is well known that if fewer

principal components are selected than required, a poor model will be obtained and an

incomplete representation of the process results. On the other hand, if more principal

components are selected than necessary, the model will be over-parameterised and will

include noise. In order to define the optimal number of principal components required

for building the models, an analysis of the variances retained in the components could be

performed. Principal components contributing less than a certain percentage to the total

variance of the data set could be discarded as a criterion to select the number of required

components.

There are several kinds of indices that can give information about the accuracy of the

model and/or the adjustment of each experiment to the model. One very well-known

index that is commonly used to this aim is the squared prediction error (SPE) statistic

[Qin 2003, Mujica et al. 2010]. This is based on analysing the residual data matrix to

represent the variability of the data projection within the residual subspace. The SPE

index measures the variability that breaks the normal process correlation, which often

indicates an abnormal situation. Denoting ei as the ith row of the matrix E, the SPE for

each experiment can be defined as follows:

SPEi = eieT
i = xi

(
I− P̂P̂T

)
xT

i , (2.34)

where xi denotes the ith row of the matrix X.

2.7.2. Hierarchical Non-linear Principal Component Analysis

Standard non-linear principal component analysis (NLPCA) is considered as a non-linear

generalization of the standard linear principal component analysis (PCA) [Scholz and

Vigario 2002]. The algorithm is carrying out a process of non-linear mapping where the

underlying dynamics of the normal condition data is learned and the network can indicate

departures from this condition [Worden et al. 2003]. It is expected that NLPCA will

describe the data with greater accuracy and/or by fewer factors than PCA, provided that

there are sufficient data to support the formulation of more complex mapping functions

[Kramer 1991].

In contrast to traditional NLPCA, the method presented here reduces the high-dimensional

inputs following a hierarchical procedure in order to decompose the data in a PCA re-
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Figure 2.18. Non-linear autoencoder network.

lated way [Scholz et al. 2008]. This technique is based on a multilayered perceptron (MLP)

architecture with an auto-associative topology as it is depicted in Figure 2.18.

Similarly to the previous section, let a matrix X with dimensions I× (M·N) contain the

information from N sensors, I experiments and M samples per experiment and sensor.

As with the traditional NLPCA, this algorithm performs an identity mapping where the

output x̂i is forced to equal the input xi with high accuracy, denoting xi the ith row of the

matrix X. This is achieved by minimizing the squared reconstruction error defined as:

E =
1

I · (M·N)

I

∑
n=1

M·N
∑
j=1

(
xn

j − x̂n
j
)2
. (2.35)

In order to compress the data, there is a bottleneck layer in the middle with fewer units

than the input and output layers that forces the data to be projected into a lower dimen-

sional representation. Note that the nodes in the mapping and de-mapping layers must

have non-linear transfer functions; non-linear transfer functions are not necessary in the

bottleneck layer.

With the purpose of guaranteeing that the calculated non-linear components have the

same hierarchical order as the linear components in standard PCA, and in contrast to

standard NLPCA, the reconstruction error is controlled by searching a k dimensional

subspace of minimal mean square error (MSE) under the constraint that the (k−1) di-

mensional subspace is also of minimal MSE [Scholz 2002]. This procedure is repeated for

any k-dimensional subspace where all subspaces must be of minimal MSE as follows:

EH = E1 +E1,2 + ...+E1,2,...,k. (2.36)
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Therefore, each subspace represents the data in the best way with regard to its dimen-

sionality. In the present work, auto-associative neural networks with different dimen-

sions in the mapping and de-mapping layers are applied to the training data to de-

termine the best network architecture. However, the total number of adjustable para-

meters is restricted to be less than I·M ·N. For the whole network, under the assump-

tion that all nodes have biases, the number of adjustable parameters Nad j is equal to

(M ·N+ k + 1)× (M1+M2)+M ·N+ k, where M1 and M2 are the number of nodes in

the mapping and de-mapping layers, M ·N the number of variables and k the number of

components to be extracted.

Other approaches to determine the optimal number of nodes can be found in [Kramer

1991]. These approaches involve the use of functions that express the trade-off between

fitting accuracy and number of adjustable parameters in explicit terms. Two such func-

tions are the final prediction error (FPE) and Akaike information criterion (AIC):

FPEh−NLPCA =
EH

2

(
1+

Nad j

Ntot

)(
1− Nad j

Ntot

)−1

, (2.37)

AICh−NLPCA = ln

(
EH

2

)
+

2Nad j

Ntot
, (2.38)

where Ntot = I ·M ·N is the total number of entries in the matrix X. Minimization of these

functions identifies models that are neither over nor under-parametrized. For Nad j � Ntot ,

the AIC and FPE functions are approximately the same, but for larger Nad j, FPE will

tend to increase faster, indicating a preference for models with fewer adjustable parameters

[Kramer 1991]. It has been shown that standard PCA can be accomplished by means of

artificial neural networks by eliminating the mapping and de-mapping layers, i.e. the

network is composed only of the input, bottleneck and output layers [Worden 2003].

2.8. Visualization Techniques

A Self-Organizing Map (SOM) is a special form of Artificial Neural Network (ANN)

which is trained using unsupervised learning allowing to convert the relationships between

high-dimensional data into simple geometric relationships of their image points on a low

dimensional display [Kohonen 2001]. This type of network has the special property of

generating one organized map in the output layer based on the inputs permitting the

grouping of the input data with similar characteristics into clusters. To do that, the

SOM internally organizes the data based on features and their abstractions from input

data. This makes self-organizing maps very useful for imaging low-dimensional views of

high-dimensional data. In order to aid the user in understanding the cluster structure,

additional visualization techniques such as the U-Matrix [Ultsch 1993], cluster connections
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Figure 2.19. Elements in a self-organizing map.

[Merkl and Rauber 1997], or local factors [Kaski et al. 1998] have been developed. In

particular, these maps have been used in practical speech recognitions, robotics, process

control, and telecommunications, among others [Kraemer et al. 2011, Buethe et al. 2012].

A self-organizing map consists of components called nodes or neurons. Associated with

each node is a weight vector of the same dimension as the input data vectors and a position

in the map space. In general, the SOM works by assigning weights to each relation between

the input data and each cluster in the map. The SOM algorithm starts working with a

random initialization of these weights. The training is done by comparing the input data

set with the weight vectors calculating their Euclidean distance in order to find the best

matching unit (BMU). The updating process takes into consideration a neighbourhood set

Nc around the cell mBMU, and by each learning step just the cells within Nc are updated

as shown in Figure 2.19.

The updating process is defined as follows:

mi (t +1) =

⎧⎨
⎩mi (t)+α (t)(x(t)−mi (t)) i f i ∈ Nc (t)

mi (t) i f i /∈ Nc (t)
, (2.39)

where t denotes current iteration, mi is the current weight vector, x is the target input

vector, and α is a scalar called adaptation gain which is defined between 0 and 1, and

it is reduced during each time step. Finally, each incoming dataset can be presented

to the map followed by the updating process or all datasets are compared to the map

before executing any updating. These methods are known as the sequential and batch

algorithms, respectively. After the training phase, different groups will normally form in

the map which can be distinguished according to their location on the map. The training

algorithm used in this thesis is implemented in a Matlab®-Toolbox created by [Vesanto

et al. 2000].

In order to find the optimal map size, a control run is repeated by changing the map

size. To accomplish the selection of the optimal map size, two quantitative measures of

mapping quality known as the average quantization error (QE) and topographic error
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Figure 2.20. Display of a U-Matrix surface for a seven cluster problem.

(TE) are analysed. The QE is the average distance between each data vector and the

BMU. The TE gives the percentage of the data vectors for which the first two BMUs are

not neighbouring units. Lower QE and TE values indicate better mapping quality. The

U-Matrix surface, showing the average distance of a cell to its neighbouring cells, can be

used to depict the difference between the groups.

The U-Matrix surface will normally contain visible boundaries separating the different

groups providing an idea of the extent of their difference and giving a landscape-like

visualization of the distance relationships of the input data in the data space. In this

manner, once the SOM has been trained, weight vectors of neurons with large U-values

are very distant from other vectors in the input data space. Conversely, weight vectors

of neurons with small U-values are surrounded by other vectors in the data space. The

mountain-like surfaces formed on a U-Matrix define the cluster boundaries. Valleys on

a U-Matrix point to cluster centres. Additionally, outliers as well as possible cluster

structures can be recognized for high dimensional data spaces.

Figure 2.20 depicts the U-Matrix surface from an ultrasonic guided wave dataset con-

taining seven different clusters. The data come from an active acousto-ultrasonics system

where the path between the actuator and sensor has been interfered by placing obstacles

on the surface of the structure. As it can be observed from the figure, all seven clusters

are well separated by clear boundaries. The projections of the input data points are

found in depressions. Using U-Matrix surface method for clustering has the advantage of

a non-linear disentanglement of complex cluster structures [Ultsch and Moerchen 2005].
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3. Development of a Model for Guided

Wave Propagation Analysis

3.1. Introduction

It is well-known that guided ultrasonic waves have many useful properties that can be

exploited for the health monitoring of mechanical, civil and engineering structures. How-

ever, it is only possible to benefit from their advantages once the complexity of guided

wave propagation is disclosed. To set up a structural health monitoring (SHM) or non-

destructive (NDT) system for a real-world structure, a deep knowledge of wave propaga-

tion phenomena including effects of material damping, beam spreading effects, energy

focusing and wave scattering is necessary. Thus, the understanding of dispersion charac-

teristic is of great importance since it plays a critical role in the selection of the optimal

inspection frequencies for the improvement of the sensitivity, optimization of sensor net-

works in terms of sensor placement and number of sensors, and for the modal analysis

and localization of the propagating waves. Since the use of composite materials has ex-

tensively increased in the design of existing engineering structures, what also increases

the analysis complexity of such structures, this poses a necessity for fast modelling tools

that can be used for a rapid and reliable analysis.

The modelling of wave propagation in multilayered anisotropic structures has been ex-

tensively studied by several researchers and a considerable amount of literature has been

published on this topic [Rose 1999, Kundu 2003]. Analysing guided waves in these struc-

tures is often categorised into three groups. There are methods based on exact three

dimensional elasticity theory, waveguide finite element methods and laminated plate the-

ories of different orders. Exact methods are based on the superposition of bulk waves that

include the popular matrix-based methods [Pavlakovic et al. 1997]. Waveguide finite ele-

ment methods have appeared for modelling the guided wave propagation numerically as an

alternative to exact approaches by using a finite element discretization of the cross-section

of the waveguide [Bartoli et al. 2006]. A different alternative providing simplicity and low

computational cost in comparison to other techniques are laminated plate theories [Whit-

ney and Sun 1973, Reddy 1984]. This approach offers a higher computational efficiency
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and simplicity in comparison to traditional exact elasticity methods, while providing an

adequate description of the structure global response in the low frequency range which

is the most used in guided wave applications for structural health monitoring. As a

consequence, several theories such as the classical laminated plate theory (CLPT), the

first-order shear deformation theory (FSDT), second and higher-order laminated plate

theories have been proposed for the analysis of elastic composite plates [Reddy 2004].

This chapter introduces a higher order plate theory for modelling dispersive solutions

in elastic and viscoelastic materials which has been presented in [Torres Arredondo and

Fritzen 2011]. First, a third order plate theory that can approximate five symmetric

and six antisymmetric Lamb wave modes is described here. The theory expands the

displacement fields in terms of the thickness to third degree and reduces the three dimen-

sional continuum problem to a two dimensional problem. The motivation for expanding

the displacement field up to the cubic term in the thickness is to provide better kin-

ematics and accurate interlaminar stress distributions. Moreover, the utilization of a two

dimensional approach is justified by comparison of dispersion curves to exact three dimen-

sional elasticity theory solutions. This theory can be considered as an extension of the

work presented in [Reddy 1984, Wang and Yuan 2007b]. Additionally, with the proposed

model, no complicated multi-dimensional root finding algorithms and high computational

cost are required in order to find the dispersive solutions as with the model presented in

the previous section based on the global matrix method. Second, the two classical models

of viscoelastic attenuation are implemented and discussed in detail. At the end, the effect

of energy flux concentration of wave modes which is sometimes more concentrated in some

directions than in others is analysed. The guidelines for the computer implementation of

the solutions given by the proposed theory are also discussed.

3.2. Model Development

3.2.1. Displacement Fields

The laminated plate theory is developed by assuming the form of the displacement fields or

stress fields as a linear combination of unknown functions and the thickness coordinate z .

Consider a plate of constant thickness h composed of anisotropic layers bonded together.

The origin of a Cartesian coordinate system is located within the central plane x − y

with the z-axis being normal to this plane. The model assumes either a linear elastic or

viscoelastic, non-piezoelectric material for each layer subjected to a complex stress system

in three dimensions. The material is considered to have a monoclinic symmetry. Figure 3.1

depicts the definition of stress resultants ( N, M, Q ) in the three dimensional system for

a given propagation direction θ and fibre orientation ϕ . The quantities Nxx, Nyy and Nxy

are named the in-plane force resultants; Mxx, Myy and Mxy denote the moment resultants;
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Figure 3.1. Complex stress system in three dimensions.

Qxx and Qyy are called the transverse force resultants. The proposed displacement fields

are given in Eq.(3.1) by:

u(x,y,z, t) = u0 (x,y, t)+ψx (x,y, t)z+ξx (x,y, t)z2 +φx (x,y, t)z3,

v(x,y,z, t) = v0 (x,y, t)+ψy (x,y, t)z+ξy (x,y, t)z2 +φy (x,y, t)z3,

w(x,y,z, t) = w0 (x,y, t)+ψz (x,y, t)z+ξz (x,y, t)z2,

(3.1)

where u, v, and w are the displacement components in x, y and z directions, ψx and ψy

represent rotations having the same meaning as in the first order shear deformation theory

[Mindlin 1951]. The additional terms expand the displacement field and are functions to

be determined. For the following developments, the traditional notation used in [Nayfeh

1995,Reddy 2004] is kept, where allowed, for all the procedures presented herein.

3.2.2. Plate Constitutive Relations

The constitutive relations for a monoclinic material showing the interdependence of strain

and stress are defined in terms of the stiffness matrix C with elements Ci j (i, j = 1,2, . . . ,6)

as given in Eq.(3.2):

⎡
⎢⎢⎢⎢⎣

σxx

σyy

σzz

σxy

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

C11 C12 C13 C16

C12 C22 C23 C26

C13 C23 C33 C36

C16 C26 C36 C66

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

εxx

εyy

εzz

γxy

⎤
⎥⎥⎥⎥⎦ ,

[
σyz

σxz

]
=

[
C44 C45

C45 C55

][
γyz

γxz

]
.

(3.2)

If the global coordinate system does not coincide with the material coordinate system, but

is rotated by an angle ϕ around the z-axis (see Figure 3.1), a coordinate transformation

of the elastic stiffness matrix is required so that the axes of the anisotropic medium
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coincide with those of the chosen global coordinate axes [Vasiliev and Morozov 2007].

The transformation matrix Y(ϕ) in Eq.(3.4) can be used to obtain the elements of the

stiffness constants Ci j in the global coordinate system from the known elements of the

stiffness constants C̄i j in the principal material coordinate system as follows:

C = Y(−ϕ) C̄YT (−ϕ). (3.3)

The transformation matrix Y(ϕ) is given in Eq.(3.4) by [Altenbach et al. 2004]:

Y(ϕ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2 ϕ sin2 ϕ 0 0 0 2cosϕ sinϕ
sin2 ϕ cos2 ϕ 0 0 0 −2cosϕ sinϕ

0 0 1 0 0 0

0 0 0 cosϕ −sinϕ 0

0 0 0 cosϕ sinϕ 0

−cosϕ sinϕ cosϕ sinϕ 0 0 0 cos2 ϕ − sin2 ϕ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.4)

The required strain-displacement relations have already been given in Eq.(2.2). However,

plate theories require the calculation of correction factors in order to match frequencies

from the approximate plate theory to frequencies obtained from the exact theory [Reddy

2004]. For the general case of a laminate, this procedure can become burdensome as the

value of the correction factors depends on the number, stacking sequence and properties

of the constitutive plies [Whitney and Sun 1973]. For the plate theory presented here, the

strain-displacement relations with introduction of the respective shear correction factors

κ j ( j = 1,2, . . . ,8) are described by:

εxx =
∂u
∂x = ∂u0

∂x + z∂ψx
∂x + z2 ∂ξx

∂x + z3 ∂φx
∂x ,

εyy =
∂v
∂y =

∂v0

∂y + z∂ψy
∂y + z2 ∂ξy

∂y + z3 ∂φy
∂y ,

εzz =
∂w
∂ z = κ1ψz +2κ2zξz,

γxy =
∂u
∂y +

∂v
∂x =

∂u0

∂y + ∂v0

∂x + z
(

∂ψx
∂y +

∂ψy
∂x

)
+ z2

(
∂ξx
∂y +

∂ξy
∂x

)
+ z3

(
∂φx
∂y +

∂φy
∂x

)
,

γyz =
∂v
∂ z +

∂w
∂y = κ3

(
ψy +

∂w0

∂y

)
+κ4z

(
∂ψz
∂y +2ξy

)
+κ5z2

(
∂ξz
∂y +3φy

)
,

γxz =
∂u
∂ z +

∂w
∂x = κ6

(
ψx +

∂w0

∂x

)
+κ7z

(
∂ψz
∂x +2ξx

)
+κ8z2

(
∂ξz
∂x +3φx

)
,

(3.5)

where the dependence of the functions on x, y and t has been omitted to simplify the

notation. The shear correction coefficients were calculated by matching specific cut-off

frequencies from the higher order modes obtained with the approximate theory to frequen-
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cies computed from the exact elasticity theory what led to the following values: κ1 =
√

π2

12 ,

κ2 = κ4 = κ7 =
√

π2

15 , κ3 = κ6 =
√

π2

11 and κ5 = κ8 =
√

π2

17 . For the model developed here,

the strain energy U of each layer is represented as:

U = 1
2

´
V
(C11ε2

xx +2C12εxxεyy +2C13εxxεzz +2C16εxxγxy +C22ε2
yy +2C23εyyεzz +2C26εyyγxy

+C33ε2
zz +2C36εzzγxy +C66γ2

xy +C44γ2
yz +2C45γyzγxz +C55γ2

xz)dV,
(3.6)

where the V in the integral of the above expression means that the strain energy is

obtained by integrating over the entire volume of the body [Vasiliev and Morozov 2007].

Additionally, the relations between stress components and strain energy are given in

Eq.(3.7):

σxx =
∂U
∂εx

,σyy =
∂U
∂εy

,σzz =
∂U
∂εz

,

σxy =
∂U
∂γxy

,σyz =
∂U
∂γyz

,σxz =
∂U
∂γxz

.

(3.7)

Finally, stress and moment resultants, each per unit length, are defined in Eq.(3.8) to

Eq.(3.10) as:

Nαβ =

ˆ h/2

−h/2

σαβ dz, Nzz =

ˆ h/2

−h/2

σzzdz, Qαβ =

ˆ h/2

−h/2

σαβ dz, (3.8)

Mαβ =

ˆ h/2

−h/2

zσαβ dz, Mzz =

ˆ h/2

−h/2

zσzzdz, Pαz =

ˆ h/2

−h/2

zσαzdz, (3.9)

Rαβ =

ˆ h/2

−h/2

z2σαβ dz, Tαz =

ˆ h/2

−h/2

z2σαzdz, Sαβ =

ˆ h/2

−h/2

z3σαβ dz, (3.10)

where α and β take the symbols x and y, respectively. The plate constitutive equations

may be derived from the strain energy density in Eq.(3.6), the linear elastic stress-strain

relations in Eq.(3.2), the strain-displacement relations in Eq.(3.5) and the stress and

moment relations given in Eq.(3.8) to Eq.(3.10).

3.2.3. Equations of Motion

The equations of motion of the third-order theory are derived using the dynamic version

of the principle of virtual displacements which is given in Eq.(3.11) by:

ˆ t2

t1
(δU +δV −δK)dt = 0, (3.11)

where δU is the virtual strain energy, δV the virtual work done by applied forces, δK the
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virtual kinetic energy and the symbol δ the variational operator. Noting that the virtual

strains can be written in terms of the generalized displacements, i.e. mixing Eq.(3.1) and

Eq.(3.5), integrating by parts to relieve the virtual generalized displacements and using

the fundamental lemma of calculus of variations, the equations of motion can be obtained

[Reddy 2002].

The set of equations of motion in absence of surface loads is given by:

∂Nxx
∂x +

∂Nxy
∂y = I0

∂ 2u0

∂ t2 + I1
∂ 2ψx
∂ t2 + I2

∂ 2ξx
∂ t2 + I3

∂ 2φx
∂ t2 ,

∂Nxy
∂x +

∂Nyy
∂y = I0

∂ 2v0

∂ t2 + I1
∂ 2ψy
∂ t2 + I2

∂ 2ξy
∂ t2 + I3

∂ 2φy
∂ t2 ,

∂Qxx
∂x +

∂Qyy
∂y = I0

∂ 2w0

∂ t2 + I1
∂ 2ψz
∂ t2 + I2

∂ 2ξz
∂ t2 ,

∂Mxx
∂x +

∂Mxy
∂y −Qxx = I1

∂ 2u0

∂ t2 + I2
∂ 2ψx
∂ t2 + I3

∂ 2ξx
∂ t2 + I4

∂ 2φx
∂ t2 ,

∂Mxy
∂x +

∂Myy
∂y −Qyy = I1

∂ 2v0

∂ t2 + I2
∂ 2ψy
∂ t2 + I3

∂ 2ξy
∂ t2 + I4

∂ 2φy
∂ t2 ,

∂Pxy
∂x +

∂Pyy
∂y −Nzz = I1

∂ 2w0

∂ t2 + I2
∂ 2ψz
∂ t2 + I3

∂ 2φz
∂ t2 ,

∂Rxx
∂x +

∂Rxy
∂y −2Pxx = I2

∂ 2u0

∂ t2 + I3
∂ 2ψx
∂ t2 + I4

∂ 2ξx
∂ t2 + I5

∂ 2φx
∂ t2 ,

∂Rxy
∂x +

∂Ryy
∂y −2Pyy = I2

∂ 2v0

∂ t2 + I3
∂ 2ψy
∂ t2 + I4

∂ 2ξy
∂ t2 + I5

∂ 2φy
∂ t2 ,

∂Txx
∂x +

∂Tyy
∂y −2Mzz = I2

∂ 2w0

∂ t2 + I3
∂ 2ψz
∂ t2 + I4

∂ 2ξz
∂ t2 ,

∂Sxx
∂x +

∂Sxy
∂y −3Rxx = I3

∂ 2u0

∂ t2 + I4
∂ 2ψx
∂ t2 + I5

∂ 2ξx
∂ t2 + I6

∂ 2φx
∂ t2 ,

∂Sxy
∂x +

∂Syy
∂y −3Ryy = I3

∂ 2v0

∂ t2 + I4
∂ 2ψy
∂ t2 + I5

∂ 2ξy
∂ t2 + I6

∂ 2φy
∂ t2 ,

(3.12)

where I j =
´ h/2

−h/2
ρz jdz for j = 0,1, ...,6 and ρ is the density of the layer.

3.2.4. Common Form of Solutions

Formal solutions for the functions proposed in Eq.(3.1) can be found now in alternative

forms. In the present thesis, these solutions are sought in the complex plane in the

following form:

ϒ = Geik(xcos(θ)+ysin(θ)−Cpht), (3.13)
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where k is the wavenumber, θ the angle of propagation, Cph is the phase velocity defined

as Cph = �

k and � is the angular frequency. ϒ is equal to the vector of functions (see

Eq.(3.1)) defined by:

ϒ =
[

u0 v0 w0 ψx ψy ψz ξx ξy ξz φx φy

]T
, (3.14)

where the dependence of the functions on x, y and t has been omitted to simplify the

notation. G is the amplitude vector of the functions previously described and it is given

by:

G =
[

U0 V0 W0 Ψx Ψy Ψz Ξx Ξy Ξz Φx Φy

]T
. (3.15)

Substitution of the constitutive relations calculated in Section 3.2.2 into Eq.(3.12), and

further substitution of Eq.(3.13), in the absence of surface loads, yields to the following

homogeneous equation of motion in the form:

LG = 0, (3.16)

where L is a matrix of size 11×11 containing the different terms resulting from the equa-

tions of motion. For the case of symmetric laminates, which is normal for engineering

structures, the system of equations can be decoupled into two independent system of

equations for the symmetric and antisymmetric modes of propagation. For the symmetric

modes of propagation, the wave modes are governed by:

LSGS = 0, (3.17)

where GS =
[

U0 V0 Ψz Ξx Ξy

]T
, and LS is a 5×5 self-adjoint matrix. For the anti-

symmetric modes of propagation, the wave modes are governed by:

LAGA = 0, (3.18)

where GA =
[

W0 Ψx Ψy Ξz Φx Φy

]T
, and LA is a 6×6 self-adjoint matrix. In

order to obtain solutions for the symmetric and antisymmetric modes of propagation,

combinations of frequency and wavenumber where the matrices determinants of LS and

LA go to zero must be found. The complete analytical expressions for the elements of LS

and LA are given in Appendix B.

3.3. Material Viscoelastic Damping Models

The mathematical modelling of viscoelasticity using ideas from elasticity has attracted the

attention of a large number of investigators over the past century. In order to account for

material damping, the stiffness matrix is represented by a complex matrix C̃ [Rose 1999].
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Table 3.1. Elastic and viscoelastic properties of the unidirectional carbon-epoxy lamina (units
in GPa).

C11 C22 C33 C12 C13 C23 C44 C55 C66

86.6 13.5 14.0 9.0 6.4 6.8 2.72 4.06 4.7
η11 η22 η33 η12 η13 η23 η44 η55 η66

7.5 0.6 0.28 0.3 0.6 0.25 0.1 0.12 0.28

The real part C of this complex term relates to the elastic behaviour of the material and

defines the stiffness. The imaginary component η relates to the material viscous behaviour

and defines the energy dissipative ability of the material. Two models are often used to

describe the viscoelastic behaviour. The first model is called the hysteretic model whose

complex stiffness matrix is given in Eq.(3.19) by:

C̃ = C+ iη . (3.19)

The hysteretic model assumes no frequency dependence of the viscoelastic constants.

The second model is the Kelvin-Voigt model which assumes a linear dependence of the

viscoelastic coefficients. The complex stiffness matrix is expressed as:

C̃ = C+ i
ω
ω̃

η , (3.20)

where ω̃ is the frequency of characterisation. In order to depict the influence on the

attenuation predicted by both methods for the fundamental modes of propagation (S0,

A0 and SH0) a 3.6mm thick unidirectional carbon-epoxy with density ρ = 1560kg/m3 is

studied. This example was chosen because it was fully analysed in [Neau 2003, Bartoli

et al. 2006, Torres Arredondo et al. 2011]. The characterisation frequency of the material

is 2MHz and the angle of propagation θ = 0°. The elastic Ci j and viscoelastic ηi j material

constants in the principal directions of material symmetry are given in Table 3.1. Results

are depicted in Figure 3.2.

From Figure 3.2 can be clearly seen that the attenuation is a linear function of the fre-

quency in the case of the hysteretic model and a quadratic function of the frequency in

the case of the Kelvin–Voigt model. In addition, both models are just coincident in the

frequency of characterisation, i.e. around 7.2MHz×mm, and away from this point the

deviation in the prediction of both models is noteworthy.

3.4. Energy Focusing Effect

Although the problem of wave propagation in multilayered composite materials has been

addressed relatively well in the literature, very few studies on the energy focusing effect

of Lamb waves exist in the scientific literature [Potel et al. 2005, Chapuis et al. 2011,
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Figure 3.2. Comparison of attenuation between the Hysteretic and Kelvin-Voigt models.

Torres Arredondo et al. 2011]. It seems to be related with the fact that this effect is

hardly encountered experimentally due to the very low amplitudes of the recorded modes

presenting this behaviour. Besides measurements, which are normally done on the struc-

ture surface, are more sensible to the out of plane particle motion modes which only show

the energy focusing behaviour at fast-attenuative high frequencies. Moreover, the first

relevant studies on the topic concentrated their efforts in analysing this effect in bulk

waves and surface acoustic waves [Every et al. 1990, Kolomenskii and Maznev 1993, Chen

et al. 1994].

It is worthy of notice that the direction θ of the phase velocity and the direction α of

the group velocity is not generally the same in anisotropic media. The energy focusing

effect can be very strong in some anisotropic materials when the group velocity direction

remains the same while the phase velocity direction varies [Maznev et al. 2003]. This

uniform distribution of wave vectors, which is not collinear, does not lead to an isotropic

distribution of the energy flux [Maris 1971, Wolfe 2005]. Figure 3.3 depicts the deviations

of the group velocity vectors from the directions of the corresponding wave vectors. It

can be noticed how the energy flux is enhanced in the y-axis direction.

The focusing effect is capable of rendering a superposition of waves into a flux pattern

containing caustics. The phenomenon of energy focusing, analogue to the phonon focusing

effect in which the energy flux is much more concentrated in some directions, can be

analysed by the focusing factor as proposed by [Maznev and Every 1995]. It is given in

Eq.(3.21) as:

A(α) =

∣∣∣∣∂α
∂θ

∣∣∣∣−1

=

[
s2 +

(
∂ s
∂θ

)2
]− 1

2

|Ks|−1, (3.21)

where s is the slowness surface and Ks its curvature. Points of zero curvature correspond
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Figure 3.3. Deviations between group velocity vectors and wave vectors.

to caustics in the acoustic intensity.

3.5. Software Implementation of the Model

Once the matrix L is assembled, the dispersion relations are obtained by setting the

determinant of this matrix to zero. This can be considered as a characteristic func-

tion relating the angular frequency, or phase velocity, to wavenumber for given material

properties and direction of propagation. The characteristic function consists of complex

quantities and yields to complex results. As previously mentioned, in the case of sym-

metric laminates, this matrix can be decoupled into two independent matrices LS and

LA which can be used to obtain the dispersive solutions for both the symmetric and

antisymmetric modes of propagation. The proposed model has been implemented in a

Matlab� computer program called DispWare [Torres Arredondo et al. 2011]. This is a

scientific computer program useful for the calculation of dispersion relations in isotropic

and anisotropic plate-like and pipe-like structures.

3.5.1. Numerical Strategy for Dispersion Equations Solution

In order to calculate a dispersion curve, it is required to find combinations of frequency and

wavenumber where the determinant goes to zero. The flow chart in Figure 3.4 summarizes

the main steps from the modelling to the dispersion curves plots. Some aspects of the

numerical strategy discussed here were presented by the author in [Moll et al. 2012].

A good technique to start the mode tracing procedure is to find roots by scanning the

phase velocity at a fixed frequency or the frequency at a fixed velocity as recommended

in [Lowe 1995]. To initialise the search, the minima of the modulus of the determinant

of the matrices are calculated since they correspond to existing solutions. These minima

are used as the initial guesses of the solution in the root finding algorithm. Each of the

calculated roots is then a mode and a point to start the tracing of a dispersion curve.
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Figure 3.4. From the modelling to the dispersion curves plot.

Finally, by selecting a particular true wave mode, cubic extrapolation can be used in order

to produce the new seed for the tracing algorithm which improves not only the stability

of the result, but also the computational time required to trace a mode.

An algorithm based on the golden section search and parabolic interpolation is used in

this thesis for the root finding procedures. The Newton Method is also recommended in

case of dealing with real or complex wavenumbers. This has an advantage since the same

algorithm can be used for instance for the calculation of dispersion curves in viscoelastic

media where modes are not only characterized by their phase and group velocity, but

also by the dependence of their attenuation along the frequency axis. In this case, the

resulting complex wavenumber k = kRe+ ikIm is used to describe the phase velocity of waves

travelling through their real part, kRe, and the amplitude decay through their imaginary

part, kIm. For a more detailed description for the implementation of the relevant numerical

root finding algorithms used here please refer to [Kaw and Kalu 2008].

Particular care has to be taken at the beginning of zones of high dispersion during the

tracing procedure. In these zones, it is observed that modes fail to remain in their correct

solution and move to a different one. In the same manner, refinements in the search must

be accomplished in the vicinity of zones where mode crossing occurs. In order to solve

these issues, an extrapolation with intercalated points and reduction in the size of the

varying step, whether it is frequency or velocity, is recommended in the tracing phase. It

is also recommended to change the method of interpolation in zones of high dispersion,

i.e. from cubic to linear, in order to avoid jumping to another solution. Finally, by tracing

the right solution of a mode, and once the phase velocity relations have been calculated,

the expression of the group velocity as function of the given matrices determinants can

be obtained. The group velocity Cgr is related to the velocity with which the envelope

of a wave packet propagates. It is well known that for anisotropic materials the group

velocity differs from the phase front direction and its dispersion characteristics are angular

and frequency dependent. As demonstrated in [Auld 1990], in the case of non-absorbing

media, the energy velocity is strictly equal to the group velocity. This is a very valuable

characteristic that provides important information for signal analysis due to the fact that

the received signal contains the energy information. The group velocity components Cgr,x

and Cgr,y in the Cartesian coordinate system can be deducted according to the definition
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given in [Auld 1973] as follows:

Cgr =
√

c2
gr,x + c2

gr,y, ϑ = tan−1

(
Cgr,y

Cgr,x

)
, (3.22)

where

Cgr,x =
∂ω

∂kRe
cos(θ)− ∂ω

∂θ
sin(θ)

kRe
, (3.23)

Cgr,y =
∂ω

∂kRe
sin(θ)+

∂ω
∂θ

cos(θ)
kRe

. (3.24)

Equations (3.22), (3.23) and (3.24) can be solved whether for a fixed propagation angle

and variable frequency or a variable angle of propagation and fixed frequency. This leads

to the calculation of a group velocity dispersion curve or a wavefront curve, respectively.

The first derivative term ∂ω
∂k can be computed directly by numerical differentiation of

the wavenumber curve, and the second derivative ∂ω
∂θ can be approximated by a finite

difference scheme. A central difference is recommended since it yields to a more accurate

approximation in comparison to other schemes given by the fact that its error is propor-

tional to the square of the spacing. Additionally, special attention has to be taken during

the calculation of the group velocity due to the step-size dependency of the routines used

for tracing; small errors in the root extraction can be amplified and distort the shapes of

the group velocity curves.
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4. Modal Acoustic Emission for Source

Identification and Localisation

4.1. Introduction

Acoustic emission testing (AET) has been proposed as a structural health monitoring

technique due to its ability to locate sources of energy release from within a structure

related to undergoing damage processes. The global and local monitoring capabilities

of AET make it a valuable tool in order to get information regarding the origin and

importance of a discontinuity in a structure for a longer safe life and lower operation costs

[Staszewski et al. 2004]. However, much information and analysis regarding the generation

and propagation of acoustic emission signals in metals and composites is needed before

AE-based techniques can provide useful information for reliable fault monitoring. For this

reason, the proper design of automatic fault detection algorithms becomes the backbone in

the application of trustworthy quantitative methods for source mechanism characterisation

and damage detection.

There is no shortage of techniques in the literature regarding AE [Pao 1978, Pollock

1989, Rios-Soberanis 2011, Paipetis and Aggelis 2012]. It seems to be that the two most

important AE topics are related to source localisation and identification. For example,

investigations regarding the localisation of synthetic AE sources using a technique based

on cross-correlation in thin plates were subject of study in [Ziola and Gorman 1991].

Other studies worked on the basis of wavelet analysis for the localisation of synthetic

acoustic emissions on the surface of an isotropic fatigue specimen and thin anisotropic

structures [Gaul et al. 2001, Kurokawa et al. 2005]. However, most of these investigations

made use of flexural waves and did not extend their procedures to other type of waves.

Other notable work in the field is given in [Holford 2000]. More recent investigations have

led to the development of algorithms that allow the localisation by learning the relation

between arrival times to the sensors and source location such as the work presented in

[Baxter et al. 2007] and a later improvement of this technique using Gaussian processes

in complex structures [Hensman et al. 2008]. The drawback faced with these methods is

that the calculation of the arrival times, needed for the creation of the so-called �T maps
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or training the Bayesian estimator, is done irrespective of the detected mode leading to

potential errors in localisation and do not provide an insight of the present failure modes.

Regarding the topic of AE source characterisation, a big amount of studies has been carried

out in order to identify and/or correlate the sources from different failure mechanisms

[Anastassopoulos et al. 2002, Ativitavas et al. 2006, Marec et al. 2008, Sause et al. 2012].

Most of these studies are based on the extraction of features representative of the source

of damage, i.e. parameters such as amplitudes, frequencies, number of counts, etc. Later

on, machine learning algorithms are used in a supervised or unsupervised manner for

analysing and correlating the different recorded and processed signals with a damage

type. Some other studies have concentrated their efforts in examining the modal content

of AE signals as a more intelligent and reliable approach to AE testing [Dunegan 1998,

Surgeon and Wevers 1999, Pullin et al. 2005].

The present chapter discusses three different approaches to overcome particular problems

faced in source identification and localisation in acoustic emission testing in plate-like

isotropic and anisotropic structures on the basis of AE modal analysis [Torres Arredondo

and Fritzen 2010; 2012a, Torres Arredondo et al. 2012]. First, the topic of excitability of

modes is discussed in order to provide a detailed physical insight into the problem of mode

generation. Second, a machine learning algorithm based on a supervised artificial neural

network is proposed for classifying AE signals so that mode identification can be accom-

plished for localisation purposes. Third, an improved version of the previous methodology

is presented where the characterisation and classification of modes in acoustic emission

is based on dispersion features and energy distribution analysis. Finally, a data fusion

technique and acoustic emission clustering methodology is proposed for discrimination of

acoustic emission signals.

4.2. Mode Excitability

The propagation of waves in infinite elastic plates has been studied since the frequency

equations for the dispersive waves based on the theory of elasticity were established [Lamb

1917, Viktorov 1967]. Theoretical treatments of the excitation of Lamb and other guided

waves from point and line source excitation sources can be found in the scientific literature

and have been reported based on methods including the generalised ray theory, integral

transforms and elastodynamic reciprocity [Ohtsu and Ono 1986, Achenbach and Xu 1999,

Velichko and Wilcox 2009]. The latter is of great interest within the context of this

thesis as it provides a straightforward way for computing the mode excitability in practice

because it can be calculated directly from the mode shapes. For the illustrative case

presented here, just the two-dimensional excitability is discussed, i.e. each source in the

two-dimensional model is represented by an infinitely long, straight line force applied

perpendicular to the plane of the cross section. The excitability is defined as the ratio of

particle displacement to excitation force per unit length [Wilcox 2004]. The expression
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Figure 4.1. Two-dimensional excitability function curves: (a) Lamb waves generation by an
out-of-plane force, (b) Lamb waves generation by an in-plane force and (c) Shear Horizontal
waves generation by an in-plane force.

for the two-dimensional excitability of a propagating mode m is given by:

E2D
m =

ω
4Pm

umūT
m, (4.1)

Pm =
ω
2

ˆ
TmūT

mdz, (4.2)

where the over bar denotes complex conjugation, um = [uvw]T is the displacement field

distribution, Pm the average power flow and Tm the stress tensor [Auld 1990]. The de-

pendence on x, y, z and t has been omitted to keep the notation simple. In the case of

three dimensional excitability functions, the waves are circularly crested and their spatial

variation is described by Hankel functions rather than the complex exponential function

used in the straight crested two-dimensional case [Wilcox et al. 2006, Velichko and Wilcox

2007; 2009].

The excitability function curves for the three orientations of a line excitation force are

shown in Figure 4.1 for the case of a 1mm aluminium plate in order to provide an illus-
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trative example of the modes that could be generated depending on the orientation of

the source. These curves were calculated using the reciprocity method described above

with the help of the model described in Chapter 3. For a force at 90° with respect to the

plane of the plate, most of the motion is normal to the plate, which normally generates a

large fundamental flexural mode, i.e. the A0 mode in Figure 4.1(a). This has also been

experimentally confirmed by exerting pencil lead breaks (Pentel 0.5mm) on the surface of

aluminium plate in order to excite elastic waves as it was presented in [Gorman 1991].

When the force is parallel to the plane of the plate, a large S0 mode is excited as it can

be seen from the excitability values provided in Figure 4.1(b). The excitability of shear

horizontal (SH) modes along the frequency axis is also depicted in Figure 4.1(c).

4.3. Time Delay Estimators and Onset Time Detectors

Time delay and onset time estimation of a transient signal is a very important task in

acoustic emission testing. The most common approach to compute the time delay between

the signals acquired by two sensors is to find the maximum of the cross-correlation between

the two acoustic signals. Unfiltered cross-correlation (UCC) is the most commonly used

method for time delay estimation. In this technique, the delay estimate is obtained as the

time-lag that maximizes the cross-correlation between unfiltered versions of the received

signals [Knapp and Carter 1976]. Nevertheless, due to reverberation problems, several

techniques have been proposed to improve the cross-correlation in the presence of noise

[Aarabi 2003]. It is known that reverberation causes extra peaks in the cross-correlation

function as sidelobes what makes difficult the determination of the peak corresponding to

the central time-delay.

Assuming two acoustic emission signals s1 (t) and s2 (t) with Fourier transforms S1 ( f ) and

S2 ( f ), respectively, the generalised cross-correlation (GCC) is given by:

τ = argmax
β

ˆ ∞

−∞
ψ ( f )Gs1s2

( f )ei2π f β d f , (4.3)

where Gs1s2
( f ) is the cross power spectral density function and ψ ( f ) a weighing function.

The choice of the weighing function has been studied at length for general sound sources,

each with their advantages and disadvantages. There are normally three different choices.

First, the unfiltered cross-correlation has a weighing function ψ ( f ) = 1. Second, the

GCC phase transform (PHAT) normalises the resulting cross spectral power density of

the two acoustic signals to a constant value pre-whitening the cross-correlation function

by equalizing the amplitude of the signals across the frequency band and leaving only the

phase information. The GCC-PHAT uses a window as given by:

ψ ( f ) =
1

| Gs1s2
( f ) | . (4.4)
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Finally, the maximum likelihood (ML) or Hannan-Thomson (HT) window is defined by:

ψ ( f ) =
| S1 ( f ) || S2 ( f ) |

| N1 ( f ) |2| S2 ( f ) |2 + | N2 ( f ) |2| S1 ( f ) |2 , (4.5)

where N1 ( f ) and N2 ( f ) are the estimated noise spectra for the first and second sensors,

respectively. Please keep in mind that the ML window requires knowledge about the

spectrum of the sensor-dependent noises.

A further approach for the onset detection of acoustic emissions is based on the so-called

Hinkley criterion or energy criterion picker [Reinhardt et al. 2000]. The energy of a

digitised acoustic signal s j( j = 1, ..,N) is given by:

EN =
N

∑
j=1

s2
j , (4.6)

where N is the number of samples of the signal. The energy function for the onset time

detection is given as follows:

H(m) =
m

∑
j=1

(
s2

j −m
EN

εN

)
, (4.7)

where s j in the signal sample measures at the jth time instant and m = 1, ..,N. The

parameter ε is used to reduce the delaying effect of the global minimum by the modified

partial energy of the signal appearing from subtraction of the trend [Kurz et al. 2005].

The minimum of this function indicates the onset point. Values of 20 ≤ ε ≤ 200 are

recommended in order to ensure minimal delay. Large values of ε may cause too early

onset time calculation which makes it advisable to select it according to the material tested

[Reinhardt et al. 2000]. The influence of this parameter in the calculation of the onset

times is presented in Figure 4.2. As it can be observed from Figure 4.2, the onset time

calculation, depicted by the arrows, is greatly affected by the tuning of this parameter.

For a value of ε = 20, the calculated tonset = 0.0462ms; for ε = 50, tonset = 0.044ms; finally,

for ε = 100, tonset = 0.038ms.

Another approach is the use of a statistical picker based on the Akaike Information Cri-

terion (AIC). It provides picks with higher accuracy in comparison to traditional threshold

methods, cross-correlation methods, and energy based detectors. Additionally, it does not

require any parameter to be tuned with the aim that onset time detection can be accom-

plished. The AIC picker definition for an acoustic signal s j ( j = 1, ..,N) is given by [Maeda

1985, Grosse and Ohtsu 2008]:

AIC (tm) = tm log10

(
var

(
s[1,tm]

))
+(tN − tm −1) log10

(
var

(
s[tm,tN ]

))
, (4.8)

where var denotes the sample variance, sN is the last sample at time tN where the onset is
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Figure 4.2. Influence of the parameter ε in the calculation of the onset time.

contained, and tm ranges through all the samples of s j ( j = 1, ..,N). The AIC picker models

the noise and signal as two different stationary time series and its minimum indicates the

point of separation of the two series, i.e. the onset point. The AIC picker explains the

similarity in entropy between the two parts of the signal when tm coincides with the

onset of the signal, i.e. the segment of the signal before tm is composed of high entropy

noise, while the segment after tm contains the low entropy AE signal depicting marked

correlation [Hensman et al. 2008]. The results of applying the AIC picker and the Hinkley

picker (ε = 100) to an AE signal are shown in Figure 4.3. From Figure 4.3 can be noticed

how the AIC picker performs to some extent better for the onset time estimation than

the Hinkley picker. It can be seen how the Hinckley picker generates a systematic delay

of the global minimum causing a retarded onset time detection. This could be solved by

adjusting the value of ε , but this is something that could be very laborious and will vary

from structure to structure.

4.4. Time Frequency Analysis

Time-Frequency analysis techniques provide the capability to analyse AE signals contain-

ing multiple propagation modes and characterize Lamb wave dispersion. Since precise

knowledge of the velocity dispersion of Lamb wave modes is required in AET, time-

frequency representations (TFRs) can offer several advantages not only for the extraction

of the velocities of the different modes that could be identified in AE signals but also for

the direct identification of these modes. One type of solution for time-frequency repres-

entation is given by atomic decompositions. A common example is the short-time Fourier

transform (STFT). The STFT uses a windowing technique in which a short time win-

dow of the original signal is transformed into the frequency domain. The window is then
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Figure 4.3. Performance of the AIC and Hinkley pickers in an acoustic emission signal.

shifted to a new position and the transformation is repeated with a different part of the

signal. The shifting window provides the means for breaking up the signal into sections

as well as enforcing periodic assumptions. However, the disadvantage of the STFT is that

it is not possible to obtain a high resolution in the time domain and in the frequency

domain since the chosen time window has a constant size for all frequencies [Auger et al.

1995]. Other possibility is the use of energy distributions where the energy of the signal

is distributed over the time and frequency. One time-frequency energy distribution of

particular interest is the Wigner-Ville distribution (WVD). The WVD of a signal s(t) is

defined as [Auger et al. 1995, Staszewski and Robertson 2007]:

WV D(t, f ) =
ˆ ∞

−∞
s
(

t +
τ
2

)
s̄
(

t − τ
2

)
e−i2π f τdτ, (4.9)

where s̄ is the complex conjugate of the signal to be analysed. The drawback with this

distribution is that this representation generates cross terms which appear when signals

with multi-frequency components are analysed, causing a misconception of the signal

frequency content. Some variants of the WVD developed to alleviate the problems of

cross terms are the pseudo Wigner-Ville distribution (PWVD) and the smoothed-pseudo

Wigner-Ville distribution (SPWVD). These techniques apply a window either in time

and/or frequency in order to overcome the problem of the interference terms. Nevertheless,

the more it is smoothed in time and/or frequency, the poorer the resolution in time

and/or frequency will be obtained [Auger and Flandrin 1995]. However, the effects of

cross terms present in the WVD do not have a relevant influence on the performance of

the approaches proposed in this chapter as it will be shown later. The resulting three-

dimensional data of the distribution can be visualized in a number of ways. It can be

displayed as contour plots, 3D surface plots, or as gray-scale or false colour images. The

time-frequency representation of an acoustic emission signal together with its time history
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Figure 4.4. Time-Frequency representation of an AE signal produced by an impact on the
surface of an aluminium plate: (a) AE signal and (b) WVD from AE signal.

can be seen in Figure 4.4 where a normalized 3D surface plot is used. The colour at a

given time and frequency point in the image represents the amplitude of the distribution,

i.e. the darker the reddish colour, the higher the amplitude. It can be observed how most

of the energy is located around 0.12ms for a frequency of approximately f = 200kHz.

4.5. Mode Identification by Supervised Neural Networks

Literature in neural network applications has shown the advantage of this technique in

the solution of problems comprising pattern recognition and classification of signals [Masri

et al. 1993, Dai and MacBeth 1997, Mustapha et al. 2007]. Due to the huge amount of

data which are recorded in AET, automatic techniques are required to separate the failure-

emitted signals from noise and localize the source of emission. In this section, a supervised

artificial neural network (ANN) is proposed in order to discriminate modes and eliminate

the localisation error produced by the detection of different modes during the application

of the onset-time picker in the signals captured by the sensor network. Figure 4.5 displays

the proposed automatic procedure for the localisation of acoustic emission signals.

Onset Time

Detection/ Time

Delay Estimation

Cross-Correlation

Energy Criterion

Entropy Criterion

Measured Dynamics

Multiresolution

Analysis

Mother Wavelet

Entropy Criterion

ANN Mode

Recognition

TFR Analysis

Wigner-Ville Distribution

Localization

Optimization

Algorithm

Figure 4.5. Proposed scheme for AE signals analysis and localisation.
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The neural network proposed in the present methodology is a non-linear multilayer feed-

forward back-propagation. A model with two hidden layers is selected since it has been

proved to be adequate in most of structural-related problems [Worden et al. 2011]. A hy-

perbolic tangent sigmoid activation function is established for all the nodes. The training

phase uses the 1 of M strategy. With this approach, each pattern class is associated with a

unique output, i.e. during the presentation of a pattern to the network during training, it

is required to generate a value of 1.0 at the output corresponding to the desired class and

0.0 at all other outputs. Multilayered perceptron (MLP) networks trained with a squared

error cost function with the 1 of M strategy estimate the Bayesian posterior probabilities

for the classes with which the outputs are associated, i.e. the network actually implements

a Bayesian decision rule if each pattern vector is associated with the class with the highest

output value [Bishop 1995, Brio and Molina 2002, Bishop 2007].

The training data are composed of segments representing the fundamental symmetric S0

and antisymmetric A0 modes as well as noise segments extracted prior to the wave first

arrival. The length of the input segment is selected in order to represent typical features

of the modes and includes several complete cycles of the wavelets. Before selecting the

segments of the signals corresponding to the different modes, these are denoised by means

of the DWT. In this case the approximations coefficients are used for the synthesis of the

AE signal. A typical denoised AE signal produced by a pencil lead break on the surface

of an aluminium plate and an example of the segments selected to form the input vectors

to the network are depicted in Figure 4.6.

Once the time difference of arrivals of the signals are calculated, with any of the methods

described in Section 4.3, and the modes corresponding to the arrivals have been identi-

fied by means of the proposed ANN methodology, time-frequency analyses based on the
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Figure 4.6. Signal generated from a pencil lead brake on the surface of an aluminium plate
containing the fundamental symmetric and antisymmetric modes of propagation together with
reflections from the boundaries and noise.
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Wigner-Ville distribution are carried out for the selected segment in order to extract the

group velocity of the respective modes from the model described in Chapter 3 and then

execute the localisation.

4.6. Mode Identification by Modal Energy Orientation

As it has been mentioned throughout this thesis, in order to make AET a trustworthy

technique, reliable source location and damage mechanism characterisation must be ac-

complished. A novel approach based on a chirplet atomic decomposition, time-frequency

energy distribution and dispersion analysis, where the failure-emitted signals are separated

from extraneous noise and the detected modes are analysed according to their dispersive

behaviour and angular dependence characteristics is presented in this section. Dispersion

relations are obtained by the use of the higher order plate theory proposed in Chapter

3, and then used in conjunction with the previous methodologies for mode identification

and localisation. A statistical onset-picker (AIC) is used to estimate the wave arrival

and dispersion analysis is then conducted on the decomposed signal in conjunction with

quadratic time-frequency analysis so that the frequency content is extracted and the en-

ergy orientation examined in order to classify the detected modes of propagation in the

recorded signals, and then select a common mode to the sensor network.

By recognizing and identifying the dominant modes of propagation in the received AE

waveform then it would be possible to discriminate between damage types. For example,

the antisymmetric wave modes with dominant out of plane motion will interact most

strongly with damages lying parallel to the plane of the wave propagation such as delamin-

ations, skin or core debonding and impact damage. The symmetric wave modes with dom-

inant in-plane motion will be more strongly related with damages lying perpendicular to

the plane of wave propagation such as matrix cracking, matrix splitting and core crushing

[McGugan et al. 2006]. Thus, by carefully analysing the dispersive characteristics of the

signals or by the application of advanced pattern recognition methods the identification

of the failure modes with different type of damage mechanism could be accomplished

[Paipetis and Aggelis 2012, Sause et al. 2012]. The focus on classification of AE events is

based on the dispersive energy attributes of the wave packets constituting the waveform.

4.6.1. Improved Atomic Decomposition

A major difficulty in acoustic emission is the analysis of broad-banded signals and the

discrimination of the modes contained in the recorded signals. The matching pursuit al-

gorithm (MAP) is proposed for the atomic decomposition of AE waveforms focused on the

ability of the method to classify between modes based on dispersive energy characteristics.

The MAP was introduced by [Mallat and Zhang 1993] and has been successfully applied
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in SHM by different researchers. It is an iterative algorithm that decomposes a signal into

a linear combination of waveforms, so-called atoms, that are selected from a redundant

database of atoms, named dictionary, having similar time and frequency characteristics

to the original signal, in our case, the AE waveforms. The atom from the dictionary that

locally better defines the signal is then selected for reconstruction. The first step of the

algorithm is to create a redundant dictionary D of atoms g which are well localized in

time and frequency, and possess unit energy. The second step is to find the best match

from the dictionary (where < •,• > symbolises the inner product) in which the residual

r0(t) equals the sensor signal s(t) for the first iteration according to:

gi = argmax
g∈D

|< ri−1,g >| . (4.10)

The third step is to compute the residual after subtracting the component along the best

atom as shown in Eq. (4.11):

ri = ri−1−< ri−1,gi > gi. (4.11)

Finally, the second and third steps are repeated until a maximum number of iterations

n is met or a predefined energy threshold of the original signal energy is reached. The

signal can be finally reconstructed according to Eq.(4.12) as:

s =
n−1

∑
j=0

< r j,g j > g j + rn. (4.12)

The proposed dictionary is composed of chirplet atoms which are well suited for the

analysis of dispersive signals with no stationary time-frequency behaviour [Raghavan and

Cesnik 2007]. The chirplet atom is defined as follows:

gk(t) =
1

π0.25√sk
exp

(
−1

2

(t − tk)
2

s2
k

+ i
(

ωk (t − tk)+
βk

2
(t − tk)

2

))
, (4.13)

where the controlling parameters sk, tk, ωk, and βk indicate the time extent, time centre,

angular frequency centre, and the linear frequency modulation rate, respectively. An

example of chirplet atoms with different parameter values is shown in Figure 4.7.

In case of acoustic emission stress waves, the dictionary can be designed with knowledge

regarding the spectral characteristics of the expected AE signals. To achieve maximum

resolution in time shift, the time translations tk are selected depending on the sampling

interval. The angular frequency ωk should lie in between the frequency range of the anti-

aliasing filters. The parameters sk and βk are optimized by finding the optimal values

that lead to a better match in the neighbourhood of the initial set of parameters. This

strategy significantly improves the resolution of the decomposition without increasing the

size of the dictionary. In this context, a small dictionary refers to a coarse discretization
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Figure 4.7. Example of different chirplet signals with different controlling parameters.

step of the parameters controlling the chirplet atoms contained in it. It is well-known

that a smaller discretization interval of the control parameters produces a large number

of functions which usually provide a better decomposition in terms of matching the signal.

Nevertheless, as the size of the dictionary increases the computational effort also increases.

Therefore, the goal of the proposed numerical implementation is to improve the decom-

position performance without increasing the size of the dictionary. The dictionary can be

further improved by taking into consideration the effects of dispersion in order to count

with a dictionary of signals that will reflect the real wave propagation phenomenon. This

can be done by means of spectral analysis since once the signal has been characterised,

i.e. once the different modes have been calculated with the model proposed in Chapter

3 (wavenumbers, attenuation, excitability, etc.), the propagation and reconstruction of

the signal becomes fairly easy. A general diagram depicting the different factors affecting

a received time-domain acoustic emission wave once the propagation and attenuation of

waves through the structure have taken place is depicted in Figure 4.8.

In essence, the input chirplet atom gk (t) is transformed to its spectrum Gk (ω) and the
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Figure 4.8. Diagram for complete wave propagation characterisation.
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transformed solution is expressed at each frequency ωn and some position r in space as

follows:

uk(ωn) = P(ωn)Gk (ωn) , (4.14)

where P(ωn) is the analytically known transfer function of the problem. It is good to bear

in mind that the loop for PGk must be evaluated only up to the Nyquist frequency and

the remaining part is obtained by imposing that it must be the complex conjugate of the

initial part, ensuring that the reconstructed time history is real only [Doyle 1997]. A flow

diagram of the complete procedure for waveform reconstruction is presented in Figure 4.9.

For the case discussed here, free wave propagation will be considered, i.e. no effects of

boundaries are taken into account for the wave propagation problem. In other words, the

propagation of a guided wave through an uninterrupted structure is analysed. Once the

amplitude of a mode in a particular direction is known, it is straightforward to simulate

its propagation. Taking the previous statements into consideration, the transfer function

P(ωn) can be defined as follows:

P(ω) = ∑
All modes

E (ω)
1√
r

e−ikRe(ω)re−ikIm(ω)r, (4.15)

where E (ω) is the modal excitability at the AE source as explained in Section 4.2, the

second term of the equation represents the beam spreading effect, the first exponential

describes the propagation of the wave and the second exponential represents the material

attenuation both given as exponential decays in signal amplitude with distance.

The dispersion knowledge gained with the proposed plate theory in combination with

spectral analysis in the frequency domain and the understanding of the excitability func-

tions can help in the development of a dictionary with optimal acoustic emission signals.

However, if the dictionary is built with arbitrary signals with no relation to the physics

of underlying signals, then the interpretations gained with the decomposition could lead

to incorrect inferences for mode identification.

Do Loop at each

Frequency

u =Pk( )ω ω ωn n k n( ) ( )G

Time Function:

Chirplet Atom

g tk( )

Fast Fourier

Transform

g t Gk k n( ) ( )ω

Inverse Fast Fourier
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u uk n( ) (t)ω

Time Function

u(t)

Figure 4.9. Flow diagram for waveform reconstruction: From input waveform to propagated,
attenuated and beam spread signal.
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Figure 4.10. Fundamental modes of propagation: Group velocity dispersion curves.

4.6.2. Time-Frequency Analysis for Mode Identification

Once the matching pursuit decomposition has been accomplished, an energy distribution

can be defined in the time-frequency plane without the interference terms obtained with

conventional time-frequency representations (TFRs) [Mallat and Zhang 1993, Raghavan

and Cesnik 2007]. As a result, this technique will provide a clearer picture of the energy

distribution with well defined clusters of concentrated energy in comparison to traditional

smoothed representations. Moreover, since the parameters of every matched atom are

known, no special post-processing is required for the analysis. As shown in the previous

chapter, the group velocity Cgr is related to the velocity with which the envelope of a wave

packet propagates and it is equal to the energy velocity [Auld 1990]. Then, by analysing

the dispersive characteristics of the recorded modes, it would be possible to identify them.

The ability to measure Lamb mode dispersion from time-frequency analysis from acoustic

waveforms is of great importance in this context [Prosser et al. 1999, Fucai et al. 2009].

It is known that the low frequency range is the most used in Lamb wave applications for

structural health monitoring where just the fundamental S0 and A0 modes of propagation

are present and the influence of higher order modes of propagation is avoided in order

to facilitate the analysis of the recorded signals. Figure 4.10 shows the group velocity

dispersion curves for the case of a 1.5mm thick GFRP plate with material properties

listed in Table 7.1 for the fundamental modes of propagation.

It can be seen that the behaviour of the SH0 and S0 modes is different from the A0 mode

in both the low and high frequency zones. In the relatively low frequency range it can be

seen that the higher the frequency of the A0 mode, the faster its group velocity. In an

opposite manner for the S0 mode, the higher its frequency, the slower its group velocity.

These energy characteristics of the modes are analysed in order to distinguish the recorded

modes in a defined frequency range where their characteristics are noticeable, e.g. in the
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Figure 4.11. Normalised TFR from Wigner-Ville distribution used in order to depict the energy
orientation of the fundamental modes of propagation.

relatively low frequency range the slopes of the dispersion curves are used to differentiate

wave modes. From Figure 4.10 can be inferred that a wave package of the A0 mode

at a relatively higher frequency arrives earlier than one at a lower frequency, whereas

the situation for the S0 wave mode is the opposite of that of the A0 mode. From these

observations made regarding the group velocity distribution, it can be concluded that

atoms positive slope in the time-frequency representation are related to the S0 mode, and

conversely, atoms with a negative slope are related to the A0 mode. This effect of energy

orientation is shown in Figure 4.11 for the AE signal depicted in Figure 4.6 where the

high intensity of a point in the image represents a high amplitude in time and frequency.

Once the onset time of the recorded signals is estimated, the atom with same time arrival

characteristics is extracted and analysed for classification according to the interpretation

presented above. As it is conventional in AE literature, special attention was not only paid

to the A0 mode since the interest is placed for the analysis of the different fundamental

modes of propagation contained in the signals and their correlation with possible damage

mechanisms.

4.7. Localisation

Localisation of acoustic emissions is a well investigated topic [Schubert 2004, Grosse and

Ohtsu 2008, Kundu 2012] and just the relevant general information for the understanding

of the localisation procedures is presented here. It is known that source localisation

requires either the knowledge of the direction dependent velocity profile or a dense array

of sensors. Suppose that a passive sensor network has i = 1, . . . ,N sensors and that the

mode wave arrival times of an acoustic emission event have been calculated by using
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Figure 4.12. Distributed sensor network for the recording of AE events.

an appropriate picking algorithm as the ones introduced in Section 4.3. An illustrative

example of a typical sensor network for the detection of AE events is depicted in Figure

4.12.

The localisation problem can be expressed in terms of the time of arrival of the waveforms

to the different sensors as:

tA
i = ts +

√(
xs

i − x
)2

+
(
ys

i − y
)2

+
(
zs

i − z
)2

Cgr (α)
, (4.16)

where ts is the source time, xs
i , ys

i and zs
i are the known positions of the ith sensor, x, y

and z are the unknown coordinates of the acoustic event, Cgr (α) is the angular dependent

group velocity and the assumption of a straight ray model regarding the source-sensor

travel path is made.

Nevertheless, the time of the source is not known and Eq.(4.16) can be reformulated

in terms of the time difference of arrivals of the mode at the different sensors as an

optimization problem for source localisation as follows:

min
E(x,y,z)

(J) = ∑
i, j

�T A
i j −

(
tA
i − tA

j

)
, (4.17)

where �T A
i j are the differences in measured arrival times. The directional wave velocity

characteristic of the fundamental wave modes can be calculated by the plate theory pro-

posed in Chapter 3. Since Eq.(4.17) represents a non-linear system of equations, a closed

analytical solution is not available in general and thus, it has to be solved by an iterative

method [Jeong and Jang 2000, Schubert 2004, Price et al. 2005, Grosse and Ohtsu 2008].

Some other localisation approaches are discussed in [Hensman et al. 2008, Moll et al.

2012].
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4.8. Acoustic Emission Identification by Unsupervised

Neural Networks

In order to identify the type of damage occurring in composite materials, which normally

involves fibre failure, transverse failure and delamination, non-destructive testing methods

such as ultrasonic C-scans and radiographic techniques are applied [Carlsson and Norrbom

1983, Lundsgaard-Larsen et al. 2009]. Nevertheless, this can be a very time expensive and

laborious work. Due to the huge amount of AE events produced and their wide dynamic

range carrying considerable information regarding the damage processes and the status

of degradation, pattern recognition methods can be used in discriminating the different

damage mechanisms hidden in the dynamics of the recorded AE waveforms.

Numerous investigators have considered the use of pattern recognition techniques for

the classification of acoustic emission signals generated during material evaluation tests

[Oskouei et al. 2009, Loutas and Kostopoulos 2009, Sause et al. 2012]. For example,

acoustic emission transients in composite laminate tensile tests are analysed by principal

component analysis (PCA) where the input feature vector to the clustering procedure is

selected to be the acoustic emission waveform itself collected from a single sensor [Johnson

2002]. Signals features such as amplitude, duration, rise time, counts, counts to peak and

energy were used to discriminate the different types of damage occurring in a constrained

composite by means of cluster analysis using a unsupervised classifier (Kohonen map)

[Godin et al. 2004]. Nevertheless, even when these techniques proved to be successful,

first, they did not allow the integration of data from multiple sensors with the objective of

providing a more robust and confident analysis, and second, they worked with parameters

which are very sensitive and greatly affected by the intrinsic material characteristics.

The purpose of this section is to introduce a robust method able to detect and classify

failure processes based on sensor data fusion, feature extraction and selection, and cluster-

ing via unsupervised self-organizing maps for the visualization of emerging clusters. It is

considered that every failure is a combination of several mechanisms occurring simultan-

eously, but depending on the specific loading, material, load shape, emitted signal type,

the ratio of that failure combination is different. By grouping similar waveforms together,

it can be attempted to classify them as mechanisms that are known to be occurring in

that particular failure and make a “fingerprint” for a type of failure based on the com-

bination of mechanisms taking place that have been identified from their unique stress

wave waveform characteristics. The proposed methodology has been further developed

and tested by the author during his research stay at the Risø National Laboratory for

Sustainable Energy in the Technical University of Denmark with collaboration of Prof.

Povl Broendsted, Dr. Helmuth Langmaack Toftegaard and Mr. Malcolm McGugan.

As a first step, the signals collected from detected AE events are stored and analysed in

order to select only failure-related signals and delete spurious signals produced for example
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by electronic noise, friction, etc. This can be accomplished by discarding signals with an

spectral content outside of the limits of the anti-aliasing filters. This is a reasonable selec-

tion criterion since the amplitude spectrum of these spurious signals are totally different

to the one of the failure-related signals. The selected signals are then pre-processed by the

discrete wavelet transform (DWT) as a feature extraction technique in order to calculate

coefficients representing valuable time and frequency information from the recorded stress

waveforms. The approximation coefficients are taken since they represent the interesting

dynamics of the recorded AE signals. These coefficients can be calculated according to

Eq.(2.25). In the context of this section, the detail coefficients will be considered as high-

frequency noise, i.e. only the approximations are used for optimal decomposition and

further synthesis of the signal. In other words, the wavelet packet transform is not imple-

mented for decomposition purposes. Nevertheless, the DWT generates a large number of

coefficients since the input space, i.e. the whole acoustic emission waveform, has a very

large dimension. For this reason, feature selection or dimensionality reduction techniques

are required for allowing the practical implementation of the methodology [Carreno and

Vuskovic 2005].

For the current specific methodology, an auto-associative neural network based on hier-

archical non-linear principal component analysis (h-NLPCA) is trained by using the calcu-

lated DWT approximation coefficients for dimension reduction purposes. However, before

training the network, the data gathered from all the sensors are fused following unfolding

procedures (multi-way) as it is done in multivariate statistical procedures for monitoring

the progress of batch processes [Nomikos and MacGregor 1994, Mujica et al. 2010]. This

is a very common practice in multivariate statistical procedures and in the case of prin-

cipal component analysis (PCA) it is commonly called as multi-way principal component

analysis (MPCA) [Wold et al. 1987]. This method is statistically and algorithmically con-

sistent with PCA and has similar goals and benefits. The relation between hierarchical

multi-way NLPCA and h-NLPCA is that the former one is equal to performing stand-

ard h-NLPCA on a large two-dimensional matrix created by unfolding a three-way array.

This type of unfolding can be considered as a centralised fusion scheme where the feature

selection procedure attempts to remove the redundancies between sensors and within each

individual sensor [Worden et al. 2003].

It is good to bear in mind that as a preliminary step, standard scaling procedures are

performed with the unfolded matrix. For this kind of data sets, unfolded matrix, several

studies of scaling have been presented in the literature: continuous scaling (CS), group

scaling (GS) and auto-scaling (AS) [Westerhuis et al. 1999]. According to these studies,

group scaling is selected here since it considers changes between sensors and does not

process them independently. With this type of scaling, each measured ith sample is scaled

using the mean of all samples of the respective sensor at the same time instant and the

standard deviation of all measurements of the sensor. Once the normalization is applied,
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Figure 4.13. Matrix unfolding procedure for sensor-data fusion.

the mean trajectories by sensor are removed and all sensors are made to have equal

variance.

Figure 4.13 depicts the unfolding approach undertaken before the feature selection proced-

ure. After unfolding and scaling of the matrix, the fused data are presented as inputs and

outputs to the neural network for training. Once the training has been accomplished, the

calculated scores are presented as input feature vectors to a self-organizing map (SOM)

for clusterization allowing to perform the detection and classification tasks. Following

standard PCA, the number of non-linear principal components retained is constraint to

components contributing more than a certain percentage of the total variance of the data

set.

Finally, the U-Matrix surface, showing the average distance of a cell to its neighbouring

cells, is then used in order to depict the different formed clusters and allow their analysis

so that the clusters can be correlated with different damage mechanisms based on the

analysis and time of occurrence of the modes contained in the signals belonging to the

different clusters. In this analysis, the separation of the data sets defines the different

damage clusters. A diagram of the complete methodology including all the pre-processing

and post-processing steps is presented in Figure 4.14.

Matrix Unfolding

for all Sensors

and Matrix Scaling

Acoustic Emission

Events

Deletion of Spurious Signals

and DWT Preprocessing

Feature Extraction

and Dimension Reduction

with h-NLPCA

Training of the

Self-Organizing Map

Generation of the

U-Matrix Surface

Analysis of the

Clusters

Correlation of the Clusters

to Damage Types

Figure 4.14. AE signals processing for the proposed methodology.
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It is also intuitive that in some cases the stress waveforms will not trigger all the sensors

in the network. In order to solve this problem, sensor subgroups which are activated by

given events can be used for the sensor-data fusing approach. Consequently, the results

provided by each generated model can be correlated and analysed.



Chapter 5. Acousto-Ultrasonics for Damage Assessment 73

5. Acousto-Ultrasonics for Damage

Assessment

5.1. Introduction

Ways for reliable and suitable inspection of structures providing valuable information

about the origin and importance of a fault in a structure have been an extensive field of

research for long time in the structural health monitoring community. The last years have

witnessed a huge increase in efforts for the design of smart structures with the integration

of materials, transducers and algorithms which are able to monitor the structural condition

in real time and to detect at an early stage any defects that can compromise the structural

integrity [Rose 2004].

To date, several useful techniques are available but their applicability depends on factors

such as maximum admissible damage size detection, maximum range of inspection, etc.

For example, vibration-based techniques have been developed for the global monitoring

of structures [Fritzen 2005]. However, in view of the fact that incipient damage is typic-

ally a local phenomenon and the local response is mostly captured by higher frequency

modes, these techniques present some practical difficulties since it is more complicated to

excite the higher frequency response as more energy is required to produce measurable

responses at these higher frequencies [Doebling et al. 1998]. On a more local level, con-

ventional non-destructive inspection (NDI) methods based on ultrasonic tests have been

successfully applied by well-trained technicians. Nevertheless, due to possible inaccess-

ibility, short range inspection capabilities as well as due to high costs, a vast quantity

of critical structures is still monitored with NDI technology only within long intervals.

As a result, alternative procedures such as guided ultrasonic wave-based techniques rap-

idly emerged due to their very well-known properties and were adapted to the concept of

SHM [Alleyne and Cawley 1992]. These techniques enable the recording of baseline meas-

urements in order to relate changes in the dynamic responses to structural damage and

allow the monitoring of complex structures [Wilcox 1998]. Especially in composite struc-

tures, these changes can be very small and the diagnostic methods must be very sensitive

to the fault. One possible and interesting technique is the acousto-ultrasonics technique
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[Vary 1990]. The monitoring principle, based on an actuator-sensor configuration, is quite

similar to the one used in standard guided ultrasonic inspection. The difference resides

in that wave modes and propagation paths are not well established since the actuator

and sensors are normally not in a line of sight position regarding damage [Staszewski

2005]. Additionally, the acousto-ultrasonics strategy is to collect all the ultrasonic energy

that is available as a result of wave interactions within the structure [Vary 1990]. This

technique can be considered as a very sophisticated and advanced method where digital

signal processing and pattern recognition algorithms play a crucial role. Generally speak-

ing, the damage identification problem can be addressed using model-based approaches

where a high-fidelity physical model of the structure is required [Torres Arredondo and

Fritzen 2012c] or by data-driven approaches requiring a statistical model representation

of the system [Worden and Manson 2007]. For the emphasis presented here, the SHM

problem of damage detection will be essentially tackled as one of the statistical pattern

recognition [Farrar and Worden 2007]. Within this context, data pre-processing, feature

extraction and selection form an important aspect of pattern recognition procedures for

reliable health monitoring [Staszewski 2000; 2002].

This chapter is concerned with the development and evaluation of a methodology using

multi-way hierarchical non-linear principal component analysis, discrete wavelet trans-

form, squared prediction error measures and self-organizing maps for the detection and

identification of damages in mechanical structures [Torres Arredondo et al. 2012; 2013].

The chapter is organised as follows: For completeness, the proposed automatic monitoring

strategy is presented first. Second, the selection of an appropriate actuation signal and

the effects of its choice with regard to mode excitation, separation of wave packets in

time domain and frequency bandwidth are discussed. Third, the several factors affecting

the structural dynamic characteristics and the performance of the monitoring system are

reviewed. The fourth part presents a methodology for sensor data fusion and a system-

atic implementation of a damage diagnosis approach where the influence of temperature

variations of the system are taken into account.

5.2. Automatic Monitoring Strategy

The standard acousto-ultrasonics transducer configuration is based on transducers in-

stalled on the same side of the structure where the testing is carried out by holding the

transducers in a fixture and moving them as a unit in order to cover the whole test area.

Some other transducer configurations are shown in Figure 5.1. For the case of Figure 5.1

(b) and (d), i.e. for pulse-echo and straight-through transmission modes, these configur-

ations can be used for material characterisation. For the current purpose of interest, the

monitoring system should decide autonomously whether the host structure is intact or

not. For this reason, the transducers configuration used here required for the realization

of such a system needs that the sensors are permanently installed on the host structure.
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Figure 5.1. Possible acousto-ultrasonics transducers configuration: (a) Same side, (b) Pulse-
echo mode, (c) Opposite side and (d) Straight-through transmission mode.

The formalism is based on a distributed piezoelectric active sensor network for the excit-

ation and detection of structural dynamic responses where each sensor acts in turn as an

actuator during each actuation step. In each actuation step, one piezoelectric transducer

is used as an actuator, where a known electrical signal is applied, and the others are used

as sensors collecting the wave propagated through the structure at different points.

The acousto-ultrasonics approach presented here is used to collect all the waveform energy

that is available, i.e. instead of selecting specific wave packets from the recorded signal,

all the multiple reverberations are collected for their subsequent analysis. The schematic

for the proposed monitoring strategy is depicted in Figure 5.2. The primary compon-

ents embrace a computer, several analogue-to-digital converters (A/D) together with a

signal generator. Furthermore, several PZT transducers are installed on the surface of

the structure to be monitored. The spacing between the transducers and their locations

are determined by the transducers characteristics, signal strength and other factors such

as structural attenuation. In this manner, given a particular structure and type of ac-

tuation signal, the sensor placement and probability of detection (POD) problems of a

system can be improved by means of characterising the whole wave propagation problem,

e.g. using the model developed in Chapter 3, and applying the concepts of excitability

explained in section 4.2. The probability of detection is defined as the probability that

an acousto-ultrasonics signal can be detected anywhere in the monitored area or volume

of the structure.

PZT1

PZT2

PZT3Signal Generator:

Actuation Signal

s tact( )

A/D Converter

Figure 5.2. Schematic of the complete system for the acousto-ultrasonics strategy.
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Optimal placement of piezoelectric actuators and sensors for detecting damage in plate

structures using a detection theory framework can be found in [Flynn and Todd 2010].

Evolutionary algorithms have also been implemented for actuator-sensor placement in act-

ive sensing within the context of pulse-echo actuation scheme [Gao and Rose 2006]. Other

approaches based on minimum detection radius are shown in [Das et al. 2009]. Additional

relevant literature regarding optimal sensor location methods with focus on combinatorial

optimisation, neural network and information theory can be found in [Staszewski and

Worden 2001].

5.3. Selection of the Actuation Signal

The selection of the type of actuation signal regarding signal shape and carrier centre fre-

quency is very important in acousto-ultrasonics. In ultrasonic guided wave-based methods,

the actuation signals are usually a pulse or toneburst with a limited number of cycles.

Pulse excitation is normally used to excite broadband ultrasonic guided waves for the

purpose of analysing the effects of dispersion of the different Lamb wave modes along the

frequency spectrum. The dispersion effect can be reduced using a signal with a narrow

bandwidth, which is one of the reasons that windowed tonebursts rather than pulses are

used as actuation signals in applications of Lamb waves. The excitation signal proposed

here is a cosine train modified by a Hanning window function and it is defined in Eq.(5.1)

by:

sact (t) =
1

2

[
1− cos

(
2π fc

t
nc

)]
︸ ︷︷ ︸

HanningWindow

cos(2π fct)︸ ︷︷ ︸
CosineTrain

, (5.1)

where fc is the centre carrier frequency and nc the number of cycles. An example of

three different actuation signals for a carrier centre frequency of 120kHz and for different

number of cycles is presented in Figure 5.3.

As a first criterion for the selection of the carrier frequency fc, using wavelengths com-

parable to the structure thickness guarantees multiple wave reflections that can resolve

features within the structure bounding surfaces. Therefore, the selected wavelength has a

remarkable effect on the probability of detecting a discontinuity. In the case of standard

ultrasonic testing, a general rule of thumb is that a discontinuity must be larger than

one-half the wavelength to stand a reasonable chance of being detected [Rose 1999]. The

sensitivity to detect small discontinuities generally increases with higher frequency, i.e.

shorter wavelengths. Nevertheless, frequency-dependent phenomena such as dispersion

effects in signal spreading and the reduction in signal amplitude are undesirable for struc-

tural monitoring. For example, in poly-crystalline materials such as rocks, scattering

occurs when the wavelength of the stress wave becomes comparable with that of the grain
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Figure 5.3. Proposed actuation signal for a carrier frequency fc = 120kHz: (a) Three cycles,
(b) Six cycles and (c) Nine cycles.

size. In this case, the incident stress wave sees the grain as an obstacle originating in the

generation of secondary waves which spread out in different directions reducing the gen-

eral directed flow of energy [Hardy 2003]. Moreover, attenuation is generally proportional

to the square of sound frequency. For this reason and ideally, before selecting a carrier

frequency, the material structure and its thickness, the type of discontinuity, its size and

probable location should be considered. Another important parameter is the selection of

the number of cycles contained in the actuation signal. This effect is depicted in Figure 5.4

for an excitation signal with different number of cycles and carrier frequency of 120kHz.
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Figure 5.4. Normalised spectrum of the excitation signal with different number of cycles for a
carrier frequency of 120kHz.
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Figure 5.5. Spreading effects depending on the number of cycles for an actuation signal with
carrier frequency of 120kHz at a propagation distance of d = 700mm: (a) Three cycles, (b) Six
cycles and (c) Nine cycles. The sensor and actuator are treated as point-like.

If it is desired to get a separation of the different wavepackets in the time domain, then

a small number of cycles should be selected. However, at a particular frequency and with

a small number of cycles in the excitation toneburst, the bandwidth will be large and

the dispersion effects will be significant. As it is shown in Figure 5.4, as the number of

cycles is increased, the bandwidth is reduced and, therefore, the dispersion effects become

less significant. The effect of broadband excitation of a dispersive ultrasonic guided wave

mode is that energy at different frequencies propagates at different velocities. This is

exhibited physically as a spreading of the ultrasonic guided wave in space and time as it

propagates through the structure. These effects are depicted in Figure 5.5 and Figure 5.6.

The signals shown in Figure 5.5 and Figure 5.6 are simulated by assuming that an ac-

tuation signal with carrier frequency fc = 120kHz is applied at one arbitrary point of a

infinite 2mm thick aluminium plate and the propagated signal is measured at some known

distance from the actuation point. This simulation is accomplished by characterizing the

wave propagation in the plate, with the help of the model developed in Chapter 3, and

by the application of the spectral analysis procedures described in section 4.6.1. Two

wave packets can be clearly identified in both Figures. The wave packet with smaller

amplitude and faster group velocity corresponds to the S0 mode. The wave packet with

higher amplitude and lower group velocity corresponds to the A0. It can be also seen that

the S0 mode exhibits lower dispersive behaviour in comparison to that of the A0 mode.

From Figure 5.5 can be seen how the spatial dispersion effects affects the free propagation

of waves over a fixed distance of d = 700mm. It is shown how the signal is spread as it

propagates along the plate, where the change in the shape of the propagated signal is a
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Figure 5.6. Spreading effects depending on the number of cycles for an actuation signal with
carrier frequency of 120kHz at a propagation distance of d = 300mm: (a) Three cycles, (b) Six
cycles and (c) Nine cycles. The sensor and actuator are treated as point-like.

function of the degree of dispersion of the different excited modes. In can be also seen

that as the number of cycles is increased, the spatial dispersion is reduced as expected.

Correspondingly, Figure 5.6 depicts how spreading of the signal occurs in time even when

the propagation distance is small. The increasing of the number of cycles has a similar

effect like the one depicted in the previous example. It is also evident that the dispersion

of the A0 mode becomes less strong with a smaller propagation path through the struc-

ture. Moreover, by decreasing the propagation distance, one can notice that it would be

more difficult to identify the propagated modes since they will appear much closer to each

other in the time histories.

In addition, it is very important to analyse the mode shape changing behaviour of the

different modes which could be excited along the frequency spectrum. This is a crucial

point since these characteristics are relevant not only for the detection of the modes being

propagated through the structure but also for the control of the wave penetration power

and its distribution across the thickness of the structure. As it has been pointed out several

times throughout this thesis, the S0 and the A0 at low frequencies are the most frequently

used modes in Lamb wave applications for structural health monitoring since they are

more convenient for effective signal interpretation and damage identification where the

influence of high order wave modes with complex mode shapes is avoided. Nevertheless,

for illustrative purposes, the characteristics of the first two higher order modes S1 and the

A1 are also discussed. The displacement profiles across the thickness of the 2mm thick

aluminium plate are shown in Figure 5.7 for the fundamental S0 mode of propagation in

order to show the mode shape changing behaviour with frequency. As it can be inferred
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(b)(a)

Figure 5.7. Displacement variations along the plate thickness in a 2mm thick aluminium plate
for the S0 mode of Lamb wave propagation up to a frequency of 5MHz:(a) Normalised displace-
ment u and (b) Normalised displacement w.

from Figure 5.7 (a) and (b), in the low frequency range, S0 is mostly an extensional

mode where the in-plane displacements are almost constant along the thickness of the

structure. At higher frequencies, the mode shapes for the S0 mode begin to vary and

the dominant in-plane motion along the plate thickness from the low frequency starts to

decrease while the non-dominant out-of-plane motion increases on the outside surfaces

where the measurements are normally made. For this reason, the S0 mode cannot be

considered just as an in-plane vibration mode. For the case of the A0 mode, although

such mode has high dispersion, it should be noted that the particle displacement is highly

concentrated close to the surfaces of the plate in the low frequency range. It can be seen

how the proportion of out-of-plane to in-plane displacement dramatically changes as one

moves along the frequency. Here again, the A0 mode cannot be considered just as a pure

out-of-plane vibration mode.

Figure 5.9 shows the solutions for different values of frequency for the modes S1 and the

(b)(a)

Figure 5.8. Displacement variations along the plate thickness in a 2mm thick aluminium plate
for the A0 mode of Lamb wave propagation up to a frequency of 5MHz:(a) Normalised displace-
ment u and (b) Normalised displacement w.
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(b)(a)

(d)(c)

Figure 5.9. Displacement variations along the plate thickness in a 2mm thick aluminium plate
for Lamb wave propagation: (a) Normalised displacement u for S1mode, (b) Normalised displace-
ment w for S1mode, (c) Normalised displacement u for A1mode and (d) Normalised displacement
w for A1mode.

A1. For small values of frequency, it can be seen that the in-plane displacement of the

S1 mode reaches a maximum value while its out-of-plane displacement is close to zero.

In the case of the A1 mode, the in-plane particle displacement reaches maximum values

at the outer surfaces at frequencies just right after the cut-off frequency. It can be also

observed how the out-of-plane displacements are highly concentrated at the centre of the

plate. As it can be inferred from these analyses, it can be seen that the knowledge of

modal displacement distribution across the thickness of the structure plays a critical role

for damage detection. An excellent study of mode selection and wave structure to detect

small damages can be found in [Ditri et al. 1992].

5.4. Temperature Effects

Damage detection is based on the assumption that damage in the structure will cause

changes in the measured ultrasonic signals. For in-service structures, variations in the

structural dynamic responses can be also a result of time-varying environmental and
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Figure 5.10. Temperature dependence of ultrasonic signals for a 2mm thick aluminium plate:
(a) AU signal from the specimen at 20°C, (b) AU signal from the specimen at 60°C and (c) Time
window centred around 0.7ms where the solid signal corresponds to 20°C and the dotted signal to
60°C. The distance between actuator and sensor is 120mm.

operational conditions and not only of damage processes [Sohn 2007, Torres Arredondo

and Fritzen 2012c]. For this reason, these variations, which are not related to existing or

evolving damage in the structure, can negatively affect the performance of the monitoring

system. It is well-known that the effects of temperature variability on the measured

ultrasonic dynamic responses of structures is the stretch or compression of the ultrasonic

signal. Temperature variations also modify the shape of the time histories since the shape

of the actuation signal can be distorted. Figure 5.10 depicts the effects of time shift and

shape modification for a 10V Hanning windowed cosine train excitation signal with 5 cycles

in a 2mm thick aluminium plate where PZT transducers were used either as actuators and

sensors. It can be observed from Figure 5.10(c) that the acousto-ultrasonics signal at 60°C
is shifted to the right compared to the one at 20°C. Additionally, it can be seen how the

amplitude of the right-shifted signal is reduced as well as its shape is modified as a result

of the temperature effects on the material.

Additionally, temperature variations may change the material properties of a structure.

Several studies regarding the effects of temperature variability on the measured dynamic

responses of structures have shown the change of material properties due to temperature

[Halpin 1969]. Moreover, factors such as material age effect, moisture content and struc-

ture operation affect significantly the wave propagation characteristics in the material.

For example, it was observed that only 1000h of cyclic exposure to both ultra-violet (UV)

radiation and condensation resulted in a 29% decrease in the transverse tensile strength
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of a carbon fibre-reinforced epoxy material [Kumar et al. 2002]. Other studies have shown

tensile strength reduction of about 40% due to moisture and temperature changes [Jia

and Kagan 2003, Bank et al. 2003]. It has also been studied the deterioration of compos-

ite material properties with time when the composites are subject to freeze-thaw cycles,

where a 25% reduction in ultimate strain capacity was found [Wu et al. 2006]. In order

to clearly depict these effects, the model proposed in Chapter 3 is used here in order

to study the sensitivity of the group velocities to the material properties for the GFRP

plate with materials constants given in Table 7.1. Figure 5.11 presents the results for a

reduction of 20% for each constant independently at a constant frequency of 60kHz for

the fundamental modes of propagation. Solid lines represent the results for the original

values and the dashed lines the results for the reduced values.

It can be seen that both variations of E11 and E22 have a strong influence on the velocities

for the S0 mode. These influences are reflected for the SH0 mode only on its caustics

and are practicably not noticeable for the A0 mode. The shear modulus G12 has a slight

influence on the velocities of the S0 mode at ±45° (and mirrored angles) direction and

almost no influence on the 0°/90° direction. The A0 mode is nearly not affected. However,

the effect of changing G12 is quite strong for the SH0 mode. The shear moduli G13 and G23

have a strong influence on the A0 mode and almost no influence on the S0 and SH0 modes.

In order to compensate for these effects that temperature could lead to, several methods

have been developed so that the performance of SHM systems is not compromised. The

most common used methods are the optimal baseline selection (OBS) and the optimal

signal stretch (OSS) [Konstantinidis et al. 2007, Clarke et al. 2009]. The optimal baseline

selection method is used in order to select the best matching baseline measurement among

the available reference signals of the undamaged structure. The optimal baseline is the

reference signal for which the subtraction from the current signal yields the residual with

the minimum root mean square (RMS). The optimal signal stretch method is used in

order to reduce the residual of the difference between the current signal and the optimal

baseline signal [Croxford et al. 2010]. The approach proposed here to solve the problem of

temperature effects is to collect a baseline related to these environmental conditions over

a large range of these changing conditions so that they can be characterized to reflect the

different environmental states.

5.5. Additional Affecting Factors to Damage Detection

Performance

It is undesirable for damage detection algorithms to indicate damage just because of a

change in the environment or operation. However, it is inevitable in reality that structures

will not be subjected to changing environmental and operational conditions. These condi-
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Figure 5.11. Influence of the material parameters change on the wave curves for a reduction
of 20% in: (a) E11, (b) E22, (c) E33, (d) G12, (e) G13 and (f) G23.

tions include changing temperature, moisture, surface wetting, loading conditions, sensor

deterioration and sensor damage which affect the propagated ultrasonic signals, and hence

the baseline-based models, i.e. changing the waves amplitudes and their time of flight.

The effects of surface wetting on ultrasonic wave propagation are depicted in Figure 5.12

for a 2mm thick aluminium plate where the excitation voltage signal is a 12Volts Hanning

windowed toneburst with a carrier frequency of 30kHz and 5 cycles. It can be clearly seen

from Figure 5.12 how the amplitude of the modes contained in the signal are modified by

the presence of water on the surface of the structure. This energy leakage into the fluid

causing the attenuation of the ultrasonic signal strongly depends on the ratio of in-plane

and out-of-plane displacements on the surfaces of the plate for a particular mode. This
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Figure 5.12. Wet surface effect on ultrasonic signals for a 2mm thick aluminium plate. The
distance between actuator and sensor is 120mm.

effect can be reduced by using modes with small out-of-plane particle displacement to

minimize the energy leakage into the bounding fluid [Santos et al. 2004].

It is also well-known that transducers may become unavailable due to failure or malfunc-

tion. Transducer fracture is the most common type of PZT transducer failure due to its

brittle nature. Normally, one would expect that a broken piezoelectric transducer could

be easily identified if it does not give any meaningful output when working as a sensor, or

if it does not respond to the applied excitation signals when working as an actuator. Nev-

ertheless, if only a small fracture or debonding occurs to the transducer, the transducer

will still be able to generate or capture responses which look like of normal monitoring

conditions [Park et al. 2006]. Therefore, if the damage detection approach uses the faulty

sensor information to predict the structural state, it can potentially lead to a false indica-

tion of the structural condition. The structure depicted in Figure 5.13(a) is used in order

to show the effects of sensor breakage on the captured ultrasonic signals.

It is a 3mm thick aluminium plate with dimensions 200mm×200mm. The structure is

provided with five transducers PIC-151 from PI Ceramics which are attached to its sur-

face with equidistant spacing. The piezo-transducers have a diameter of 10mm and a

thickness of 0.5mm. The structure is excited by a piezoelectric transducer located in the

middle. The excitation voltage signal is again a 12V Hanning windowed toneburst with

a carrier frequency of 30kHz and 5 cycles. The transducers used as sensors are broken

with various percentages in order to simulate fracture. Figure 5.13(b) shows that the first

wave packets follow a tendency of amplitude reduction as the fracture size is increased.

The breakage of the sensor decreases the effective size of the sensors and, therefore, the

amount of energy collected from the structure. A similar structure is presented in Figure

5.14(a) which is used to study the sensor debonding effect on the captured ultrasonic
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Figure 5.13. Effect of sensor damage on the recorded ultrasonic signals with various cutting
percentages on the piezoelectric transducers. The transducers P1 and P2 are undamaged. Trans-
ducers P3, P4 and P5 are broken with percentages of 50%, 25% and 75%, respectively.

signals. Various debonding percentages are applied to the sensors attached to the struc-

ture. The dimensions, material, transducer characteristics and excitation signal are the

same of the previous example. This type of transducer failure is of great concern since in

contrast to the other failure types, e.g. sensor breakage, it is not easily seen upon visual

inspection. Figure 5.14(b) shows again an effect of amplitude reduction as one increases

the percentage of debonding of the sensors. This decrease is consistent with the previous

analysis regarding the effective are of the sensors bonded to the structure.

It is good to bear in mind that in this work just temperature variations are considered as

the main factors affecting the performance of the proposed methodology and which must

be taken into account for compensation. Other undesirable factors and sensor validation

are not discussed and/or compensated here since they go beyond the scope of this thesis.

The problem of identifying and correcting errant sensors has been tackled using different
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Figure 5.14. Effect of sensor damage on the recorded ultrasonic signals with various debond-
ing percentages on the piezoelectric transducers. The transducers P1 and P2 are undamaged.
Transducers P3, P4 and P5 are debonded with percentages of 25%, 35% and 65%, respectively.
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approaches such a auto-associative neural networks, principal component analysis, auto-

regressive models, correlation indexes [Worden 2003, Kerschen et al. 2005, Abdelghani

and Friswell 2007]. For further literature regarding sensor validation please see [Xu et al.

2008, Overly et al. 2009].

5.6. Damage Detection Approach

5.6.1. Feature Extraction

Firstly, wave propagation mechanisms in complex structures are very complicated due

to multiple reflections and mode conversions at structural boundaries such as ribs or

stiffeners. For this reason, appropriate features must be extracted from the raw measured

data that allows the separation of the different datasets into meaningful classes. The

SHM problem of damage detection can be essentially tackled as one of the statistical

pattern recognition [Farrar and Worden 2007]. Within this context, data pre-processing

forms an important aspect of pattern recognition procedures for reliable health monitoring

[Staszewski 2000].

Until the present time, there exist many dimension reduction and feature extraction tech-

niques, each using different criteria in order to decide which information should be dis-

carded. For instance, Principal Component Analysis (PCA) has been extensively applied

to measured structural dynamic response signals with the purpose of dimensionality re-

duction studies [Manson et al. 2001, Mujica et al. 2008], to distinguish between changes

due to environmental and structural damage [Manson 2002, Yan et al. 2005], for sensor

validation [Kerschen et al. 2005], among others. Wavelet applications have also been ex-

tensively studied for damage detection by several researchers and a considerable amount

of literature has been published on this topic [Kishimoto et al. 1995, Taha et al. 2006,

Staszewski and Robertson 2007]. Wavelet Packets and Principal Component Analysis

were used for the purpose of improving myoelectric signal classification in [Englehart

et al. 1999]. An enhanced sensor fault detection, diagnosis and estimation strategy was

developed for centrifugal chillers combining Wavelet analysis and Principal Component

Analysis in [Xu et al. 2008]. Discrete wavelet transform (DWT) in combination with

hierarchical non-linear component analysis was used in order to create the feature vectors

from structural dynamic responses for the training of a Gaussian process for the purpose of

impact identification and for acoustic emission denoising [Torres Arredondo et al. 2011].

To illustrate the application of the discrete wavelet transform for feature extraction, a

series of experiments are carried out in this subsection in order to generate different sig-

nals at different levels from the approximation and detail coefficients which could then be

investigated using the proposed methodologies. The objective of this investigation is to

examine the suitability of coefficients from the different levels of decomposition as robust
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features for the detection and classification of damages. The full decomposition of each

signal by the wavelet transform is carried out and all the components up to the ninth level

are calculated and analysed in order to find the dominant energy levels. As previously

mentioned, for the case under study, the family of Daubechies wavelets ’db8’ is selected

with the index number referring to the number of coefficients.

Figure 5.15 and 5.16 show the signal reconstruction from different wavelet level decom-

positions of a structural dynamic response signal from a complex structure from the levels

number one to nine. Each signal at each level represents a specific frequency range, and

the frequency range increases with increasing the wavelet levels. It can be seen from Figure

5.15 that the highest level of decomposition corresponds to the denoising of the original

analysed signal. Nevertheless, as one increases the number of level decompositions, the

amount of coefficients is reduced. This is a great advantage since less coefficients are

required in order to represent the relevant information contained in the recorded dynamic

responses. Regarding the different signal reconstructions from the details decomposi-

tions shown in 5.16, it can be observed that identifiable waveforms emerge as the level

number of decomposition is increased. For this example, approximation level nine was

found to be the more appropriate level for signal reconstruction from the approximation

coefficients according to the entropy criterion presented in the chapter of theoretical back-

ground in the present work. The main idea is to build data-driven models with the DWT

coefficients, i.e. the approximation and detail coefficients, calculated from the captured

structural dynamic responses allowing the extraction of useful time-frequency information

of the regarded signals, and analyse their individual contribution for the performance of

the damage detection and classification methodology.

5.6.2. Data-Driven Modelling

It is expected that the extracted feature patterns represent different conditions of the

analysed structure. The objective of pattern recognition in damage detection is then to

distinguish between dissimilar patterns representing possible damage conditions. As pre-

viously discussed, the monitoring system is based on a distributed array of permanently

attached piezoelectric transducers where pairs of transducers are used in pitch–catch con-

figuration. The dynamic responses collected from each actuation step are stored and then

pre-processed by the discrete wavelet transform (DWT), as a feature extraction technique,

in order to calculate the approximation and detail coefficients representing valuable time

and frequency information from these responses. This is a very important step since in

real applications, where the number of sensors is normally large, the selection of a reduced

number of robust features must be highly considered since the application of the damage

detection and identification methods can become impractical. This is a common problem

in pattern recognition where the design of a good classifier becomes more difficult as the
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Figure 5.15. Wavelet decomposition and signal synthesis from approximation coefficients.
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Figure 5.16. Wavelet decomposition and signal synthesis from detail coefficients.
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Figure 5.17. Matrix unfolding procedure in the experiment direction for sensor-data fusion
when PZT1 is used as actuator.

dimensionality of the feature space increases. This problem is known as the curse of di-

mensionality [Bishop 2007]. Consequently, the approach to be developed should ensure

the decrement in the computational cost, but maintaining or increasing reliability and

robustness in the treatment of data for analysing the state of the structure.

For the current proposed methodology, auto-associative neural networks based on a hier-

archical approach will be trained independently using the calculated DWT approximation

and detail coefficients extracted from the healthy system in order to build the data-

driven models (template). Additionally, for comparison purposes, data-driven modelling

by means of principal component analysis is also performed. Before training the network

or generating the PCA model, the coefficients gathered in each actuation step are fused

following unfolding procedures. This is done by unfolding in the experiment direction in

which correlations between experiments and between sensors are analysed and the differ-

ences between experiments are emphasized [Mujica et al. 2009]. This unfolding procedure

is depicted in Figure 5.17 in the case of using as actuator the first PZT transducer of a

sensor network with i = 1, . . . ,N PZT transducers. This procedure is then repeated for

all actuation steps and for all environmental conditions over a temperature range of these

changing conditions.

Finally, standard scaling procedures are performed with the unfolded matrices where

group scaling is selected. As it was mentioned in the previous chapter, this type of

normalization removes the mean trajectories by sensor and all sensors are made to have

equal variance. In the case of h-NLPCA, the fused data are presented as inputs and

outputs to the different networks for training, i.e. each actuation step will be modelled

with an independent network. Moreover, a percentage of the data from the baseline

measurement are kept for the validation of the developed models. Ultimately, when new

structural responses are available from each actuation step, e.g. from an undamaged

or damaged structural state, the DWT coefficients are extracted from these responses

and then projected into the respective models to obtain the model scores and squared

prediction measures. In order to define the optimal number of principal components
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required for building the models, an analysis of the variances retained in the components

by the use of standard PCA can be performed. It is expected that the non-linear modelling

technique will describe the data with greater accuracy and/or by fewer components than

PCA [Kramer 1991].

5.6.3. Standard Outlier Analysis for Damage Detection

The outlier analysis allows to identify observations that appear inconsistent with the rest

of the data. Therefore, it is possible to identify data being generated by an alternate

mechanism rather than that of the baseline data, i.e. the damaged states [Worden et al.

2000]. The discrepancy of the outlier is a quantitative measure of the extent of this

inconsistency [Barnett and Lewis 1994]. In the present work, the discrepancy measure or

also so-called novelty index is taken as the squared prediction error (SPE). The novelty

index NI corresponding to a pattern vector x is given by the squared difference between

the pattern x and the result of presenting it to the network x̂. This index is defined in

Eq.(5.2) as follows:

NI (x) =‖ x− x̂ ‖2 . (5.2)

The SPE index measures the variability that breaks the normal process correlation, which

often indicates an abnormal situation [Qin 2003]. If the new data are characteristic of the

healthy structural state, then these data are reproduced accurately at the output of the

network and the SPE will be very close to zero. Otherwise, a non-zero value will indicate

an abnormality which could be related to a damage condition. Nevertheless, a threshold

on the index must be defined in order to provide a statistical analysis. The threshold is

estimated from the baseline data when the structure is known to be undamaged. This

value is adjusted to μ + ςσ , where μ is the mean value and σ is the standard deviation

value of the novelty index over the baseline. The factor ς controls the degree of confidence.

The confidence level is defined to be 99.99% in this work, i.e. a value of ς = 3.891.

It is good to bear in mind that there is a supposition here that the statistics of the novelty

index are Gaussian or near-Gaussian distributions [Worden et al. 2003]. One possible

disadvantage of using the outlier analysis is that, even when unfolding procedures are

taken and the sensor data are fused, the information from each the actuation step, i.e.

models, must be analysed independently. This type of analysis can be considered as a

pattern-level fusion architecture [Staszewski et al. 2004]. Figure 5.18 depicts the fusion

strategy where feature extraction occurs after each actuation step independently as well

as the outlier analysis. Even when it is not evident in Figure 5.18, please remember

that the baseline data-driven models are built here with both the approximation and

detail coefficients extracted from the structural dynamic responses by means of PCA and

h-NLPCA.
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Figure 5.18. Standard outlier analysis for damage detection.

5.6.4. Combined Actuation Steps Data Fusion for Damage Detection

Once the data-driven models are generated either with PCA or h-NLPCA, and when

new structural responses are available and feature extraction has been accomplished,

the scores together with squared prediction error measures are calculated by projecting

these data into the models for all actuation steps, and then they are presented as input

feature vectors to a self-organizing map for the detection and classification tasks. The

idea behind using the SPE measures in conjunction with the projections to the principal

components, linear or not, is to provide a robust set of features for the improvement of

future inferences regarding the structural condition. This analysis is accomplished by

studying the U-Matrix surface so that the different formed clusters can be associated

with different damage types and/or damage stages. Figure 5.19 depicts a flow diagram

for the proposed methodology taking into consideration all actuation steps for the pattern

recognition task. This methodology has been developed with collaboration of Prof. Jose

Rodellar, Dr. Luis Mujica and Dr. Diego Tibaduiza from the Polytechnic University of

Catalunya, Department of Applied Mathematics III during the research stay from the

author in Barcelona and from Dr. Tibaduiza in Siegen.

For the methodology proposed here and the analysis of the U-Matrix surface, the separa-

tion of a new data set with respect to the data set from the healthy structure defines the

presence of damage. Moreover, the approach can be used for damage identification when

the different data sets clusters are identified by well-defined separation boundaries. An

advantage of the proposed methodology is the ability to fuse all the information contained
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Figure 5.19. Proposed methodology fusing all the actuation steps for pattern recognition and
structural damage determination.

in the different actuation steps for the analysis rather than just analysing each actuation

step one by one as it is done in the traditional outlier analysis. Additionally, the multi-way

extension of h-NLPCA can be seen as a very useful fusion strategy for systems involving

several sensors since it allows building a model for the whole sensing system instead of

one by each actuator-sensor combination.
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6. Impact Load Monitoring

6.1. Introduction

The online monitoring of impacts can be considered as a very important structural health

monitoring technique required in order to prevent the degradation and breakdown of

structures after the incidence of any adverse impact event. In the case of aeronautical

and aerospace structures, external impact damage is of great concern for the design of

these structures. A very well known example of a catastrophe originated from impact-

induced damage is the loss of the Space Shuttle Columbia as a result of impact damage

from foam debris during ascent what led to the development of on-board impact detection

technologies. In the case of composite laminates, impacts can induce different types of

damage such as matrix cracking, fibre/matrix debonding, delamination, indentation and

fibre fracture [Coverley and Staszewski 2003]. As a consequence, several studies on the

identification of failure mechanisms of composite laminates related to impact loads and

post-impact in-plane compressive loadings have been actively pursued [Yokozeki et al.

2010]. Impact monitoring has been extensively studied by several researchers and it has

been shown that damage extent can be correlated with the impact magnitude. For this

reason, online impact detection systems are essential and require automatic and intelligent

techniques providing a probabilistic interpretation of their diagnostics.

For example, an inverse method based on a system-identification technique for identifying

impact events on a complex structure with built-in sensors was proposed in [Park et al.

2009]. The method made use of transfer functions in the system-identification technique

making possible the identification of the location and force time history of an impact event

on a structure. A genetic algorithm (GA)-based approach for impact load identification

which could identify the impact location and reconstruct the impact force history simul-

taneously was proposed in [Yan and Zhou 2009]. The impact load was represented by a set

of parameters transforming the impact load identification problem to a parameter iden-

tification problem. Some other relevant investigations have made use of artificial neural

networks based on the standard multilayered perceptron (MLP) architecture trained with

the back-propagation learning rule and/or fuzzy clustering for feature selection and adapt-

ive neuro fuzzy inference system (ANFIS) for impact locating and magnitude estimation
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[Jones et al. 1997, Worden and Staszewski 2000, Shan and King 2003]. An alternative way

of reaching similar results to the previous methods is to use a Gaussian process (GP). Very

few applications of Gaussian processes exist in the structural health monitoring scientific

literature: for example the use of single target Gaussian processes in complex structures

for locating stress waves using thermoelastic expansion by means of a high power laser

was proposed in [Hensman et al. 2008].

This chapter deals with the passive monitoring of stress waves induced by impacts and

studies an automatic approach for impact magnitude estimation and localisation in struc-

tures based on Bayesian analysis with single target Gaussian processes [Torres Arredondo

et al. 2011, Torres Arredondo and Fritzen 2012b]. A combination of time-frequency ana-

lysis for feature extraction, auto-associative neural networks for dimension reduction and

Gaussian processes for system modelling is developed to automate the impact identifica-

tion problem. The problem is treated as one of pattern recognition. The layout of this

chapter is as follows. First, the different load scenarios and the monitoring approaches

are presented. Second, the proposed algorithms for feature extraction and dimension re-

duction are discussed within the context of the proposed methodology for the purpose of

constructing the feature vectors which are going to be presented to the machine learning

algorithm. Third, an introduction to the ideas of Gaussian Processes in the context of

regression and classification is presented for the purpose of impact magnitude estimation

and localisation.

6.2. Load Types and Load Monitoring Approaches

The first step in order to be able to tackle the problem of load monitoring is to identify

the different types of external loads to which the structure is subjected. They are divided

into two categories [Klinkov 2011]:

1. Concentrated loads such as impact loads and time continuous loads (short or long

time excitation).

2. Distributed loads (spatially distributed).

The impact loads are characterized by a short time duration and spatial concentration.

The time continuous loads have a longer time duration and they can be classified into

deterministic or stochastic. Distributed loads are more complex loads since they are

spatially distributed and can exhibit different behaviours, i.e. impact-like or continuous

type. For the current interest of this chapter, the first type of concentrated loads, i.e.

impact loads, will be studied.

The approach for impact magnitude estimation can be distinguished as a inverse identific-

ation problem. This problem is normally divided into two approaches where one is either

interested in calculating the system inputs given the system responses, boundary condi-
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Figure 6.1. Diagram for impact identification inverse problem: (a) System input estimation
and (b) System model estimation.

tions and the system model, or in finding the system model based on inputs, responses

and boundary conditions. This type of problems are shown in Figure 6.1.

The impact force is ideally represented by a Dirac delta function as given in Eq.(6.1) by:

δ (t) =

⎧⎨
⎩+∞, t = 0

0, t �= 0
, (6.1)

where the function integral over the entire real line equals to one. However, since in

reality one cannot have a load with infinite amplitude, it is more convenient to express

the impact force p(x,y, t) as a short time duration function acting at some location of the

structure in a two-dimensional space as follows:

p(ximp,yimp, t) = F0δ (x− ximp (t))δ (y− yimp (t))

⎧⎨
⎩1, 0 < t < ε

0, elsewhere
, (6.2)

where F0 is the impact force magnitude, ximp (t) and yimp (t) are the locations of the impact

force, and ε is the time duration of the impact. A diagram of the impact force for a two-

dimensional space and its function are presented in Figure 6.2.
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x timp( )

y timp( )
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ε

(a) (b)

Figure 6.2. Impact event: (a) Impact force on the surface of a plate and (b) Impact function.
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6.2.1. Structural-Based Model and Stochastic Model Techniques

Model-based techniques are developed from the understanding of the structural properties

and dynamics of the system. Therefore, the accuracy of the estimated impact force highly

depends on the accuracy of the dynamic model what makes the model development the

most critical point in the inverse problem chain. The model identification is normally

accomplished by the estimation of the model parameters requiring measurements of the

inputs and outputs of the system [Uhl 2007]. Inside this type of modelling one can find

methods based on frequency domain and time domain. For the time domain approach, the

problem of load identification can be expressed as a special case of the Volterra integral

equation as follows:

y(t) =
ˆ t

0

H (t − τ) p(τ)dτ, (6.3)

where y(t) represents the system responses, H (t) is the continuous impulse response ker-

nel and p(t) is the excitation force. In case of working in the frequency domain, one

requires to know the frequency response function (FRF) H (ω) of the structure and the

spectrum Y (ω) of the measured responses so that the force spectrum can be calculated

and transformed back to the time domain by means of the inverse Fourier transformation.

This can be expressed mathematically as:

p(t) = F−1
(
H−1 (ω)Y (ω)

)
, (6.4)

where F−1 (x) symbolizes the inverse Fourier transform of the function x. In addition,

stochastic methods are based on finding statistical relations between the inputs and out-

puts of the system as well as their measurements. The most typical statistical model for

load identification is the regression model [Trujillo and Busby 1997].

6.2.2. Machine Learning Techniques

In particular, for structures of high complexity with complicated geometrical profiles and

material non-uniformity, it is a very difficult task to achieve a reliable inverse model. For

this purpose, machine learning algorithms can be adopted. The idea of machine learning

is to learn the relationships between some input vector of variables x with dimension D

and an output variable y. The output can also correspond to a vector. Let us suppose that

the true relationship is given by y = f (x) but the function f is not known beforehand, so

the learning problem is to estimate this function using the training data. Several methods

can be used for this purpose such as artificial neural networks, kernel methods, sparse

kernel methods, evolutionary algorithms, etc [Bishop 2007]. For the learning process, it

is required to conduct measurements of the inputs and outputs of the system which is

desired to be modelled. In order to construct an appropriate mapping between inputs and
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outputs, it is necessary to establish a set of training data for which this association has

already been made. As machine learning algorithms can require large training data sets,

the collection of training data can be an expensive process. In the case of very high value

structures, the expense of collecting the training data is compensated by the advantage of

getting an advance warning alarm of possible damage as it was shown in [Hensman et al.

2008]. Furthermore, numerical simulations of the system behaviour can be carried out in

order to help in the process of collecting training data [Yang et al. 2011].

6.3. Feature Vectors Construction

The construction of the features vectors used for the training of the selected machine

learning algorithm plays a critical role in the accuracy of the inferences that the developed

model will produce. These numerical features should be able to accurately represent the

process one is willing to model. In this context, two different feature vectors will be used

here for either the impact magnitude estimation and the impact localisation. For the fea-

ture vectors belonging to the impact magnitude model, as a first feature extraction step,

the discrete wavelet transform (DWT) on the basis of the two-channel subband coding

scheme is applied to the different recorded stress waveforms from the sensor network in or-

der to extract coefficients from a level in which the signals could be properly reconstructed

with the minimum loss of information [Mallat 1989]. The approximations coefficients are

taken here since they represent the interesting dynamics of the recorded stress waveforms

and the detail coefficients will be considered as high-frequency noise. As a following step,

once the optimal decomposition has been executed and the approximation coefficients are

calculated, these are further reduced by means of h-NLPCA in order to decompose the

data in a PCA related way [Scholz et al. 2008]. Nevertheless, before training the neural

network, the coefficients gathered from each impact experiment are fused following tra-

ditional unfolding procedures by unfolding the three-dimensional array in the experiment

direction as it is depicted in Figure 6.3. This process is similar to the one depicted in the

previous chapters.

As it has been done similarly in the previous chapters, standard scaling procedures are

performed with the unfolded matrix where group scaling is selected. Standard PCA is

used in order to define the number of non-linear principal components used in the h-

NLPCA algorithm. Principal components contributing less than a certain percentage of

the total variance of the data set are discarded for the task proposed here. Additional to

the extracted components, the feature vectors also include the area under the curve of the

power spectral density (PSD) from each sensor belonging to the sensor network. Since

the input force spectrum exerted in the structure is a combination of the stiffness of the

hammer tip and the stiffness of the structure, one would expect to build a more robust

feature vector by incorporating this information from each sensor. An example of typical



100 Chapter 6. Impact Load Monitoring

�� ����� �� ���������������

���� ��!�������"#����$�%��$$������!�

&����'�"������%��$$������!�
(�)�

���� ��!����
�(�)�

�� �� ��� ���

"
��
��
�*
+�
��
!�

�"
�����*+���!�

���

()�

Figure 6.3. Matrix unfolding procedure for the sensor-data fusion and dimension reduction
preprocessing.

signals recorded during an impact event is presented in Figure 6.4.

For the impact localisation model, the inputs of the feature vectors are defined to be the

differences in time of flight between the sensors and the frequency content of the first

arrival in every sensor of the network. The first quantities can be calculated by using any

of the algorithms proposed in section 4.3. The second quantities are calculated by means

of the atomic decomposition of the recorded stress waves as it is presented in section 4.6.1

and further frequency analysis of the extracted atoms for each sensor of the network.

6.4. System Modelling with Gaussian Processes

For the case of impact monitoring, the detection of possible damages generated by an

impact event requires time consuming non-destructive testing during which the structure

has to be out of service. If one would know if an impact event occurred and its approx-

imate position, then ground inspections could be performed more efficiently. Moreover,

in the case of composite materials for example, it has been shown that the delamination

area is related to the maximum impact force and impact energy for low-velocity impacts

[Zhou 1998]. Having said this, the focus of this section is on a machine learning algorithm

where the function of stochastic processing and its application to define a distribution

over functions is presented for the purpose of impact magnitude estimation and localisa-

tion. The idea is to model the given impact phenomenon from features extracted from

observations of the stress waves generated by the impact events.

One modelling approach based on a Bayesian treatment of the problem in order to find

the underlying data generative mechanism is Gaussian process (GP) modelling. A Gaus-

sian process model is equivalent to a Bayesian treatment of a certain class of multilayered

perceptron networks in the limit of infinitely large networks as it is presented in [Neal

1995]. A Gaussian process is defined as a collection of random variables, any finite num-

ber of which have a joint Gaussian distribution [Rasmussen 1996]. It can be defined as a

distribution over functions where inference takes place directly in the space of functions
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Figure 6.4. Typical signals from an impact event: (a) Impact signal collected by an impact
hammer, (b) Stress wave captured by a PZT transducer and (c) Power spectral density of the
recorded stress wave.

[Rasmussen 2004]. It is completely specified by its mean function and covariance func-

tion. This can be seen as a generalization of the Gaussian distribution whose mean and

covariance is a vector and matrix, respectively. The Gaussian distribution is defined over

vectors, whereas the Gaussian process is defined over functions [Alvarez and Lawrence

2009]. Assuming a Gaussian process model, and given the observed data and a new in-

put, making a prediction corresponds to calculating the Gaussian predictive distribution

of the related output whose mean value can be used as an estimate. In this manner, the

predictive variance provides a confidence interval on this estimate allowing to quantify

the degree of belief of the model in its prediction.

6.4.1. Regression with Gaussian Processes

Gaussian process regression provides several attractive properties such as ease of obtaining

and expressing uncertainty in predictions, the ability to capture a wide variety of behaviour

through a simple parametrisation, and a natural Bayesian interpretation [Boyle and Frean

2004]. For this reason, Gaussian processes have been suggested as a replacement for
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supervised neural networks in the context of non-linear regression and as an extension

to handle classification tasks [MacKay 1997, Gibbs and Mackay 2000]. The probabilistic

nature of the GP modelling permits to define the space of admissible functions relating

inputs and outputs by simply specifying the mean and covariance functions of the process.

Given a data set D of D-dimensional training input vectors xi with corresponding training

vector t composed of training targets ti related by ti = f (xi)+ε for i = 1, ..., N, where f (•)
is a non-linear smooth mapping function and ε is additive Gaussian noise, one should be

interested in making predictions of the noise-free output targets f (xN+1) for a new input

vector xN+1. The non-linear mapping function f (•) is modelled by a Gaussian process

with zero mean and covariance matrix K so that:

p(f | D)∼ N (0,K) , (6.5)

where K is computed from the covariance function Ki j = k(xi,x j). From a modelling point

of view, it is desired to define covariances so that points with nearby inputs will give rise

to similar predictions. For this purpose, the covariance selected in this case is squared

exponential with automatic relevance determination (ARD) distance measure defined by

[Rasmussen and Williams 2006]:

k(xi,x j) = σ2
f exp

(
−1

2

(
xi −x j

)T
M
(
xi −x j

))
, (6.6)

with M = diag(λ1, ...,λD)
−2 and where each λ is a characteristic correlation length scale

for each input dimension, and σ2
f is the signal variance. These variables which control

the distribution of model parameters are normally called hyperparameters. With this

approach a separate parameter is incorporated for each input variable. As a result, the

optimization of these parameters, for example by means of maximum likelihood, allows

to infer the relative importance of different inputs from the data and makes possible to

detect input variables that have little effect on the predictive distribution. As it can be

seen from Eq.(6.5) and Eq.(6.6), the covariances between two outputs are expressed by

the covariance function evaluated at the corresponding inputs. For given values of xi and

x j, the matrix of covariances between the corresponding outputs, f (xi) and f (x j) can be

calculated. The impact of the parameters controlling the covariance matrix that affects

the process realisations is presented in Figure 6.5 using the covariance function presented

in Eq. (6.6) for xi and x j in the range [1,10]. As it can seen from Figure 6.5, as the

distance between inputs increases, the covariances between the points for Figure 6.5(a)

decreases less rapidly than that of Figure 6.5(b) because of the higher value of λ . It can
be also inferred that the magnitudes of the diagonal terms for both figures are controlled

by σ2
f .

In order to analyse the influence of these two parameters on the possible process realisa-

tions, two different Gaussian processes are built as examples. The first process is built
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(b)(a)

Figure 6.5. Covariance Matrix for different parameters: (a) σ 2
f = 1 and λ = 2 and (b) σ 2

f = 1

and λ = 1.

with a correlation length λ = 2, while the second process is built with a correlation length

of λ = 1. Figure 6.6 depicts the realizations drawn from both models. It can be seen

that all the realisations are smooth what is an implicit characteristic of the selected cov-

ariance function. The samples from the second Gaussian process vary much more rapidly

in the horizontal direction than those of first process. It can be seen how the correlation

length λ controls the horizontal variations of the realisations. A small value of λ implies

rapid horizontal variations. The signal variance σ2
f simply controls the amplitude of the

fluctuations around zero.

Additionally, one can analyse the influence of the distance between the inputs on the

prediction results. This is illustrated in Figure 6.7 for a simple two-dimensional example.
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Figure 6.6. Functions values drawn at random from two different Gaussian processes: Solid
lines are sampled from a GP with a correlation length λ = 2 while dashed lines are sampled from
a GP with a correlation length of λ = 1. The signal variance σ 2

f is equal to one for both models.
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Figure 6.7. Illustration of jointly distributed variables for differing covariance values given
by the distance between the inputs. For the first column x1 = 0.8 and x2 = 0.6. For the second
column x1 = 1.1 and x2 = 0.6. For the third column x1 = 100 and x2 = 0.6. All other parameters
are defined to be equal to one.

The column on the left of Figure 6.7 depicts the probability distribution across f (x1) and

f (x2) for three cases. The first case is when the variables x1 and x2 are approximately the

same, the second when x1 and x2 are closer together, i.e. k(x1,x2) ≈ 0.5, and the third

when they are far apart, i.e. k(x1,x2)≈ 0. The target value for training is set arbitrarily

to f (x1) = 0.5. It can be clearly noticed how the uncertainty and the performance on the

predictions of the model are deteriorated as the distance between the inputs is increased.
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This posses clearly the necessity, as with any machine learning algorithm, to count with

sufficient data to support the formulation of more accurate mapping functions.

With the GP model at hand, the learning task corresponds to tuning the parameters of

the covariance function of the process to the data. This can be simply accomplished with a

maximum likelihood approach. The unknown hyperparameters Θ in the covariance func-

tions are calculated by maximizing the negative logarithmic marginal likelihood. Because

the negative logarithm is a monotonically decreasing function, maximizing the likelihood

is equivalent to minimizing the error. This approach is executed by maximization of the

following function:

L (Θ) =− log(p(t | x)) =
1

2
log | K |+1

2
tTK−1t+

N
2

log(2π) , (6.7)

where | K |refers to the determinant of K. Given L (Θ) and its derivatives with respect

to Θ, it is straightforward to feed this information into an optimization package in order

to obtain a local maximum of the likelihood. The partial derivatives of the logarithmic

likelihood can be expressed analytically in terms of the parameters as given in Eq.(6.8)

[Williams and Barber 1998, Girard 2004]:

∂L (Θ)

∂Θ j
=

1

2
Tr

(
K−1 ∂K

∂Θ j

)
− 1

2
tTK−1 ∂K

∂Θ j
K−1t, (6.8)

where Tr(•) denotes the trace of a matrix. The effect of finding the optimal hyperpara-

meters for future realizations of the model based on the training data is depicted in Figure

6.8. This figure shows clearly that the model can follow very well the training data with

low values of uncertainty in the zones where no training points are available. The shaded

area corresponds to ±2 standard deviations.
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With this model, given a new input, and conditioning on past observations, one can obtain

a prediction and the uncertainty attached to it which is given by the mean and variance

of the predictive distribution of the future output. This distribution is Gaussian, readily

obtained using the definition of conditional probabilities, as a consequence of the Gaussian

process assumption.

In the Gaussian Process framework, one can define a joint distribution over the observed

training targets at the test location as:

p(tN+1)∼ N

(
0,

[
K+σ2

n I k
kT k+σ2

n

])
= N

(
0,

[
CN k
kT c

])
, (6.9)

where tN+1 denotes the vector [t1, ..., tN , tN+1]
T, σ2

n is the noise variance, K is a N ×N

matrix containing the covariances between pairs of training targets, k is a N × 1 vector

giving the covariances between the test target and the training targets, k is the variance

of the training target, and I the identity matrix. The predictive posterior distribution is

obtained by conditioning the previous joint distribution on the observed data D and the

new inputs, i.e. p( fN+1 | t,x1,x2, ...,xN+1).

The Gaussian process formulae for the mean and variance of the predictive distribution

with the covariance function in Eq.(6.6) for a new input vector xN+1 is given by [Bishop

2007]:

μ (xN+1) = kTC−1
N t,

σ2 (xN+1) = k−kTC−1
N k.

(6.10)

For multiple outputs Gaussian processes a convolution process (CP) can be employed in

order to account for non-trivial correlations [Bonilla et al. 2008, Alvarez and Lawrence

2009]. Since the data are used directly for making predictions, the uncertainty of the

model predictions depends on the local data density, and the model complexity relates to

the amount and the distribution of available data [Williams et al. 1995, Qazaz et al. 1996,

Girard 2004].

6.4.2. Classification with Gaussian Processes

Gaussian processes can be adapted to classification problems by transforming the output

of the Gaussian process using an appropriate non-linear activation function so that the

probabilities lie in the interval [0,1]. In the case of a binary classifier, i.e. a two-class

problem with a target variable π ∈ [0,1], one can define a Gaussian process over the

function t (x) and then transform the function using a logistic sigmoid π (x)= p(t = 1 | x)=
σ ( f (x)), the probability of input x belonging to class one [Gibbs 1997]. This construction
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Figure 6.9. Illustration for a binary classification: (a) A sample latent function f (x) drawn
from a Gaussian process as a function of x and (b) Result of passing this sample function through
the logistic sigmoid function.

is illustrated in Figure 6.9 for a one-dimensional input space. The logistic sigmoid function

is defined by:

σ ( f ) =
1

1+ exp(− f )
. (6.11)

Please keep in mind that the covariance matrix no longer includes a noise term since it

is assumed that all of the training data points are correctly labelled. The objective is

again to determine the predictive distribution p(tN+1 | t,x1,x2, ...,xN+1). The predictive

distribution is given by [Rasmussen and Williams 2006]:

p(tN+1 = 1 | t,x1, ...,xN+1) =

ˆ
σ ( fN+1) p( fN+1 | t,x1, ...,xN+1)d fN+1. (6.12)

However, the integral described in Eq.(6.12) is analytically intractable, and it may be

approximated using analytic approximations of integrals or sampling methods [Neal 1995,

Gibbs and Mackay 2000]. The value of p(tN+1 = 0 | t,x1, ...,xN+1) can be found from

1− p(tN+1 = 1 | t,x1, ...,xN+1). The integration over the parameters Θ, required in order

to find the hyperparameters, cannot be done analytically and requires as well of integral

approximations or sampling methods.

The extension of the preceding developments to multiple classes is straightforward and

the problem can be tackled using a 1 of M class coding scheme together with the softmax

function to describe the class probabilities. The probability that an instance labelled by

i is in class c is denoted by πc
i , so that the upper index denotes the example number,

and the lower index the class label [Williams and Barber 1998, Rasmussen and Williams

2006]. The functions are represented by f c
i and specified using a 1 of M coding. The

vector of function values at all N training points and for all c classes is given by:

f =
[

f 1
1 , ..., f 1

N , f 2
1 , ..., f 2

N , ..., f c
1 , ..., f c

N
]T

. (6.13)
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The activations associated with the probabilities are denoted by tc
i , where the vector t has

the same length as f which for each i = 1, ...,N has an entry of 1 for the class which is

the label and 0 for all the other c−1 entries.. The softmax function relating the functions

and probabilities at a training point i is given in Eq.(6.14) by [Rasmussen and Williams

2006]:

p(tc
i | fi) = π i

c =
exp( f c

i )

∑c′ exp
(

f c′
i
) . (6.14)

Additionally, an augmented vector notation is introduced as follows:

f+ =
[

f 1
1 , ..., f 1

N , f 1
N+1, f 2

1 , ..., f 2
N , f 2

N+1, ..., f c
1 , ..., f c

N , f c
N+1

]T
, (6.15)

where, as in the two-class case, f c
N+1 denotes the activation corresponding to input xN+1

for class c; this notation is also used to define t+ and π+. As with the two-class case,

approximate or sampling methods are required to find p(f+|t).
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7. Experimental, Numerical and

Application Examples

7.1. Introduction

This chapter presents a variety of numerical and experimental examples where the per-

formance of the model and methodologies developed from Chapter 3 to Chapter 6 are eval-

uated in both isotropic and anisotropic structures. The first part of this chapter presents

the experimental validation of the approximate model developed for wave propagation.

Numerical and experimental results on the effects of material layup on wave propagation,

Lamb wave energy focusing and attenuation, and their importance for the proper devel-

opment of on-line SHM systems are presented and discussed. Additionally, experimental

results on the effects of variable temperature on the wave propagation in composite ma-

terials are shown. The second part demonstrates the proposed methodologies for modal

acoustic emission analysis based on artificial neural networks, energy distribution analysis

and pattern recognition by means of advanced signal processing techniques. The focus on

classification of AE events is based on the attributes of the wave packets constituting the

captured waveforms so that the present modes can be possibly correlated with different

type of damage mechanisms. Additionally, physical knowledge gained from the dispersion

characteristics obtained by the use of proposed higher order plate theory is used in or-

der to support the statements made regarding the identification of the present dominant

failure modes.

The third part deals with the proposed structural health monitoring methodology presen-

ted in Chapter 5 where a damage detection and classification scheme based on an acousto-

ultrasonics approach is used and evaluated. This methodology is experimentally evaluated

and validated in a range of different complex structures. Moreover, a critical comparison

with linear feature extraction methods indicates that the proposed method outperforms

in some cases the traditional linear methods for the purpose of damage classification. Fi-

nally, the fourth and last section presents a methodology for impact magnitude estimation

and localisation based on a Bayesian framework within the context of Gaussian Processes.

This is of great importance since online impact detection systems are essential and require
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Table 7.1. Material properties of unidirectional glass fibre reinforced lamina (units in GPa).
E11 E22 E33 G12 G13 G23 ν12 = ν13 = ν23

30.7 15.2 10 4.0 3.1 2.75 0.3

automatic and intelligent techniques providing a probabilistic interpretation of their dia-

gnostics. At the end, the effectiveness of all the proposed methodologies is demonstrated

experimentally and discussed in detail.

7.2. Theoretical Model Validation, Dispersive

Characteristics and Further Applications

This section evaluates the higher order plate theory developed in Chapter 3 which is ap-

plicable for modelling dispersive solutions in elastic and viscoelastic fibre-reinforced com-

posites so that the investigation of both the frequency and angular dependency of radiation

and attenuation of Lamb waves in anisotropic media can be accomplished. Comparisons

to exact elasticity theory and experimental data are presented in order to validate the

model. Additionally to the analyses of temperature effects on guided waves, an applica-

tion example for manufacturing control of composite laminates is presented.

7.2.1. Comparison to Elasticity Theory and Experimental Validation

In order to validate the modelling approach, two case studies have been conducted on a

unidirectional glass-fibre reinforced plastic (GFRP) plate and a multilayered and multi-

oriented carbon fibre reinforced plastic (CFRP) plate. First, a single-layered specimen was

selected because of its highly anisotropic character. Figure 7.1(a) shows the structure that

has the dimensions 800mm×800mm and a thickness of approximately 1.5mm. The density

is 1700kg/m3. The fibre direction is along the y-axis. Nine piezoelectric transducers are

attached to the surface of the structure with equidistant spacing. The piezopatches have

a diameter of 10mm and a thickness of 0.25mm. The elastic properties in the principal

directions of material symmetry provided by the manufacturer are given in Table 7.1.

In Figures 7.1(b) and (c) the velocities of the different modes of propagation are plotted

over the frequency for the 1.5mm thick glass fibre reinforced plastic (GFRP) plate for

an angle of propagation of θ = 30°. Curves depicted in continuous lines are calculated

using exact three dimensional theory and dashed lines using the proposed third order

plate theory. It can be clearly seen from these figures that all Lamb waves have cut-

off frequencies with the exception of the fundamental modes. For a frequency up to

800kHz , what corresponds to a frequency-thickness product of 1.2MHz×mm, the error in

comparison to group velocity of S0 mode is below 3%. Just as well is the conformity of

the out-of-plane mode A0. Additionally, it can be observed how the S0 and SH0 modes
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Figure 7.1. Numerical and experimental validation for a unidirectional glass-fibre reinforced
lamina: (a) Experimental setup, (b) Phase velocity dispersion curves, (c) Group velocity disper-
sion curves and (d) Wave curves plot.

are little dispersive in the low frequency-thickness range. This is not the case for the A0

mode.

For the experiments, the input signal to the actuators was generated using the arbit-

rary signal generation capability of a HandyScope HS3; it is a combined signal generator

and oscilloscope instrument manufactured by TiePie Engineering, The Netherlands. The

receiver sensors are connected to the input channels of two auxiliary HS4-HandyScopes

without a pre-amplifier. The time histories were digitised at a sampling frequency of

50MHz and transferred to a portable PC for post-processing. To ensure a good signal to

noise ratio each signal was averaged 10 times. Numerical results for the group velocities

for the fundamental modes of propagation at a central frequency of 200kHz are depicted

in Figure 7.1(d). The wave surface for the S0 mode at 200kHz is shown in comparison

with some experimental measured values at discrete angular points drawn in magenta

circles in order to validate the analytical model with experimental data. The excitation

voltage signal is a 12V Hanning windowed cosine train signal with 5 cycles. The piezo-

electric transducer number five was designated as the actuator. The experimental group

velocities were determined in the defined frequency by means of time-delay measurements.

It can be seen that the estimated group velocity matches the theoretical curve very well,
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Table 7.2. Material properties of a single carbon fibre reinforced lamina (units in GPa).
E11 E22 E33 G12 G13 G23 ν12 = ν13 = ν23

155.0 8.5 8.5 4.0 4.0 4.0 0.33

demonstrating the effectiveness of the model.

Second, a carbon fibre reinforced plastic (CFRP) plate made of 16 equal layers is analysed

in this section. The stacking sequence is [0°90° −45°45°0°90° −45°45°]s and the total

thickness is 4.2mm. The density of each layer is approximately 1600kg/m3. The nominal

material parameters of the unidirectional layers provided by the manufacturer are given in

Table 7.2. Figure 7.2(a) shows the plate of approximately 500mm×500mm instrumented

with nine piezoelectric transducers. The calculated phase and group velocities at θ = 30°
are depicted in Figures 7.2(b) and (c). It can be noticed that the behaviour of the SH0

and S0 modes is different from the A0 mode in both the low and high frequency zones.

In the relatively low frequency range the higher the frequency of the A0 mode, the faster

its group velocity. In an opposite manner for the S0 mode, the higher its frequency, the

slower its group velocity.
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Figure 7.2. Numerical and experimental validation for a multilayered carbon-fibre reinforced
laminate: (a) Experimental setup, (b) Phase velocity dispersion curves, (c) Group velocity dis-
persion curves and (d) Wave curves plot.
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Table 7.3. Elastic and viscoelastic properties of the viscoelastic carbon-epoxy lamina (units in
GPa).

C11 C22 C33 C12 C13 C23 C44 C55 C66

132 5.9 12.1 6.9 12.3 5.5 3.32 6.21 6.15
η11 η22 η33 η12 η13 η23 η44 η55 η66

0.4 0.001 0.043 0.001 0.016 0.021 0.009 0.015 0.02

For the experimental evaluation, the excitation voltage signal is a 12V Hanning win-

dowed cosine train signal with 3 cycles and a 60kHz centre frequency. The piezoelectric

transducer number five was designated as the actuator. The calculated group velocities

at a frequency of 60kHz are depicted in Figure 7.2(d) together with experimental data;

magenta circles represent the S0 mode and black circles the A0 mode. It is shown again

that the proposed method provides accurate estimates of velocity. Moreover, it can be also

inferred that the mode wave velocities are not strongly related to the frequency and ori-

entation of propagation. This is given by the fact that the multilayered and multi-oriented

composition of the structure mitigates the anisotropic impact of each layer.

7.2.2. Numerical Examples for Attenuation Models Comparison

A viscoelastic orthotropic unidirectional lamina of 1mm of thickness is analysed in this

subsection. This example was fully studied in references [Deschamps and Hosten 1992,

Neau 2003, Bartoli et al. 2006]. The elastic and viscoelastic material properties are given

in Table 7.3. The density of each layer is approximately 1500kg/m3. The material was

characterized at 2.242MHz by the use of ultrasonic waves transmitted through a plate-

shaped sample immersed in water.

Figure 7.3 presents the results for Lamb wave velocities and attenuation obtained for both

the Hysteretic and the Kelvin-Voigt viscoelastic models for the purpose of comparing the

two solutions. The phase velocities were calculated at θ = 0°. It can be clearly seen

from Figures 7.3(a) and (b) that both models do not affect the phase velocity results in

a substantial manner. Here again, it can be observed that the S0 and SH0 modes are

little dispersive in the low frequency-thickness range while the A0 mode is very dispersive.

Figures 7.3(c) and (b) show that the effect in the prediction of attenuation for both models

is appreciable when the working frequency is different from the characterisation frequency

as expected. In addition, it can be inferred that the attenuation of the multiple modes

are not only dependent on frequency as shown in Section 3.3 but also angle dependent.

7.2.3. Velocity, Attenuation and Energy Focusing Effects

This subsection provides a detailed analysis of velocity, attenuation and energy focus-

ing characteristics in two viscoelastic plate-like structures. The plates have been kindly
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Figure 7.3. Comparison from Hysteretic and Kelvin-Voigt models: (a) Phase velocity dispersion
curves with Hysteretic model, (b) Phase velocity dispersion curves with Kelvin-Voigt model, (c)
Attenuation curve with Hysteretic model and (d) Attenuation curve with Kelvin-Voigt model.

donated by Dipl.-Ing. K. Schubert from Faserinstitut Bremen in Germany. Both materi-

als have been characterised at the Laboratoire de Mecanique Physique in the University

of Bordeaux by means of immersion, contact and simulation techniques [Castaings 2007,

Calomfirescu 2008]. Numerical simulations are being conducted with both the higher or-

der plate theory proposed in this thesis and the spectral element method (SEM) in time

domain. This method combines the accuracy of global pseudo-spectral methods with the

flexibility of finite element modelling (FEM) [Patera 1984]. A SEM program developed

at the University of Siegen is used here to simulate the displacement fields produced by

the fundamental modes of propagation [Schulte 2010, Fritzen et al. 2011]. It is good to

bear in mind that the attenuation calculations, which are going to be presented next, are

being done by using the Hysteretic material damping model. This model has shown to

be more frequently used in composites literature for SHM and NDT applications [Neau

2003, Calomfirescu and Herrmann 2007].

First, a viscoelastic CFRP plate with unidirectional woven fabric reinforcement, a thick-

ness of 5.1mm, density of 1500kg/m3 and a [0°]18 layup is analysed. The elastic and

viscoelastic material properties are provided in Table 7.4. The structure is excited by a

piezoelectric patch located in the middle of the structure using a 12Volts Hanning win-

dowed toneburst with a carrier frequency of 95kHz with 5 cycles. The piezopatch has a
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Table 7.4. Elastic and viscoelastic properties of the carbon fibre lamina (units in GPa).
C11 C22 C33 C12 C13 C23 C44 C55 C66

125 13.9 14.5 6.3 5.4 7.1 3.7 5.4 5.4
η11 η22 η33 η12 η13 η23 η44 η55 η66

3.0 0.6 0.6 0.9 0.4 0.23 0.12 0.3 0.5

diameter of 10mm and a thickness of 0.25mm. The plate is meshed with 80×80 spectral

shell elements using 36 nodes per element.

Following a similar behaviour as for GFRP case depicted in Section 7.2.1, it can be seen

from Figures 7.4(a) and (b) how the fibres act as a guide for the energy in their direction
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Figure 7.4. Simulation results for the fundamental modes of propagation: (a) Velocity curves,
(b) Wave curves, (c) Attenuation curve with Hysteretic model , (d) Focusing curve, (e) Snapshot
of Out-of-Plane motion after 0.058ms and (f) Snapshot of In-Plane motion after 0.158ms.
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Table 7.5. Elastic and viscoelastic properties of a single carbon-epoxy lamina (units in GPa).
C11 C22 C33 C12 C13 C23 C44 C55 C66

70.0 33.0 14.7 23.9 6.2 6.8 4.2 4.7 21.9
η11 η22 η33 η12 η13 η23 η44 η55 η66

1.8 1.4 0.5 0.9 0.3 0.2 0.17 0.2 0.5

and as scatterers in the perpendicular direction for the A0 and S0 modes of propagation.

The attenuation is also affected a great deal by the anisotropy of the material. This

effect can be observed in Figures 7.4(c), (d) and (e). This is a common characteristic

of anisotropic materials where the velocity, attenuation and energy of propagation of

the multiple modes are both frequency and angle dependent. This dependence plays

a major role in the complexity of the mode shapes of propagating modes, what also

affects their detectability. For example at this low frequency, the S0 fundamental mode is

mainly compressional and less attenuated in the direction of the fibres than in the θ = 90°
direction. This is consistent with its mode shape. In an inverse manner, the A0 mode

attenuation is fairly lower at θ = 90° than at θ = 0°. Figure 7.4(d) shows the capabilities of
the phonon focusing factor to precisely track the angular dependent energy concentration

effect. The cuspidal regions in the SH0 mode explain the energy patterns containing

caustics. These phenomena are clearly depicted in the simulations of the displacement

fields by the SEM depicted in 7.4(e) and (f).

Second, a viscoelastic orthotropic multilayered plate of 4.7mm thickness and a density

of 1500kg/m3 is analysed in this subsection. The elastic and viscoelastic material prop-

erties of the plate analysed here are listed in Table 7.5. This viscoelastic CFRP plate

is made of 18 equal layers resulting in a total thickness of 4.7mm with a stacking of

[−45°0°45°45°0° −45° −45°0°45°]s.

Numerical results analysing the effects of material layup on wave propagation, Lamb wave

energy focusing and attenuation are presented in Figure 7.5. In a similar fashion as the

previous example, the structure is excited by a piezoelectric circular patch located in the

middle of the structure using a 12V Hanning windowed toneburst with a carrier frequency

of 100kHz with 5 cycles. The plate is meshed with 80×80 spectral shell elements using 36

nodes per element. The piezopatch has a diameter of 10mm and a thickness of 0.25mm.

From Figures 7.5(a) to (c) it can be seen that the mode wave velocities and attenuation

are not strongly related to the frequency and orientation of propagation. This affirmation

is also in agreement with the displacement fields depicted in Figures 7.5(e) and (f). It

can be seen again how the multilayered and multi-oriented composition of the structure

mitigates the anisotropic impact of each layer as it was discussed before.

For the A0 and S0 fundamental modes of propagation the focusing factor is highest in

the direction α = 0°; however, a second maximum also occurs at α = 90°. Although

not depicted here, the focusing effect becomes more pronounced as one moves along the
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frequency axis to higher frequencies for the fundamental symmetric modes. This effect

is less significant for the fundamental antisymmetric mode. Regarding the experimental

calculation of attenuation as a function of the frequency, this is obtained using the ratio

of the spectra between two sensors points lying on a single line, i.e. the ratio of the

Fourier transforms (FFT) of the signals recorded at the two points allows to determine

the reduction in amplitude as a function of frequency for the given distance.

For the present study, the A0 mode was specially selected in a frequency in which dis-

persion was low in order to guarantee an accurate measurement of mode attenuation.

The attenuation curve together with experimental results for the A0 mode at a frequency

f = 100kHz are depicted in magenta circles in Figure 7.5(c). It can be seen that a good
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Figure 7.5. Simulation results for the fundamental modes of propagation: (a) Velocity curves,
(b) Wave curves, (c) Attenuation curve with Hysteretic model , (d) Focusing curve, (e) Snapshot
of Out-of-Plane motion after 0.045ms and (f) Snapshot of In-Plane motion after 0.113ms.
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Table 7.6. Material properties of a single carbon fibre reinforced lamina (units in GPa).
E11 E22 E33 G12 G13 G23 ν12 = ν13 = ν23

122.0 10 10 7.4 7.4 5.4 0.33

agreement between theoretical and experimental results is obtained. For this material,

the caustics present in the SH0 mode from the previous example are not any more present.

However, the cuspidal regions of the SH0 in the focusing curve from Figure 7.5(d) indicate

the energy concentration in the four quadrants at approximately α = 48°,138°,228° and
318°.

7.2.4. Temperature Influence on Propagation Modes

As discussed in Section 5.4, changing environmental conditions augment the complexity for

the reliable monitoring of a structure. It is well known that temperature as well as damage

can have similar effects on the dynamic behaviour of a structure. As a result, dynamic

responses obtained for wave propagation-based methods can be affected by these effects

and lead to false alarms or wrong damage locations. Therefore, it is very important to

understand the impact of these changing conditions and take them into account. Increase

in time-of-flight and changes in sensor response magnitude with temperature are analysed

and discussed here.

Experimental results are presented here for two different plates. First, a CFRP plate

made of 4 equal layers with a total thickness of 1.7mm, stacking of [0°90°90°0°] and a

density of 1500kg/m3 is studied. Nominal material parameters of the unidirectional layers

are given in Table 7.6. Temperature tests were conducted in a temperature-controlled

oven. During the test runs the temperature was raised stepwise from T = −24± 2°C up

to T = 60±2°C. The temperature was measured by two PT100 sensors mounted on the

plate opposite corners.

Figure 7.6(a) shows the structure with dimensions 200mm× 250mm. Nine piezoelectric

transducers PIC151 from PI Ceramics were attached to the surface of the structure. The

structure was excited by a piezoelectric transducer located in the middle of the struc-

ture. The excitation voltage signal is a 12V Hanning windowed toneburst with a carrier

frequency of 30kHz with 5 cycles. Transducer P5 was used as actuator. The influence

of the variation in temperature causes an evident change of the structural dynamics.

The dynamic response signal for sensor number two and three decreased monotonically

in peak-to-peak magnitude with increasing temperature and it can be seen from Figure

7.6(b) and (c). Interestingly, the inverse effect was seen in sensor number six as depicted

in Figure 7.6(d). According to experimental results depicted in Figures 7.6(b) to (d), the

increase in the temperature causes a right time-shift of the dynamic responses. Inversely,

the decrease in the temperature causes a left shift. The reason of these time-shifts is both
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Figure 7.6. Influence of temperature on the propagated ultrasonic guided waves: (a) Experi-
mental setup, (b) Ultrasonic signals collected at transducer P2, (c) Ultrasonic signals collected
at transducer P3 and (d) Ultrasonic signals collected at transducer P6.

thermal expansion and changes in wave velocities with temperature. The attenuation of

Lamb wave can be regarded to both wave dispersion as a result of frequency dependent

phase velocities and attenuation loss due to frequency/temperature dependent material

damping.

Next, a second plate made of six equal layers with a total thickness of 3mm made of roving

glass composite laminate from Bond Laminates GmbH is studied. The experimental setup

is depicted in Figure 7.7(a) showing the structure with dimensions 200mm×250mm.
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Figure 7.7. Influence of temperature on the propagated ultrasonic guided waves: (a) Experi-
mental setup, (b) Ultrasonic signals collected at transducer P2, (c) Ultrasonic signals collected
at transducer P3 and (d) Ultrasonic signals collected at transducer P6.

In a similar manner to the first CFRP plate, nine piezoelectric transducers were attached

to the surface of the structure. The constitutive laminae is built with woven fibres. The

excitation signal was the same as in the previous example and transducer P5 was used

as actuator. From Figure 7.7(b) to (c), in comparison to the previous example, one can

notice a notorious influence of temperature variability on the amplitude of the recorded

modes, i.e. the higher the temperature, the higher the attenuation of the propagated

waves. It can be also observed that the offset of all the ultrasonic signals is dependent on
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Figure 7.8. Temperature gradient effect on Peak-to-Peak amplitudes of A0 Mode: (a) Sensor
2, (b) Sensor 3 and (c) Sensor 6.

the temperature.

The second study carried out with this structure was performed in order to analyse the

influence of the temperature cycles under which the structure was subjected at differ-

ent excitation frequencies. Without loss of generality, the A0 mode was selected in this

study for the analysis of the influence of temperature gradient sign in the mode amplitude

changes since this mode is easier to excite with the provided sensor arrangement. Mode

identification was accomplished based on dispersion features and energy distribution ana-

lysis as proposed in Chapter 4.

The first effect that can be noticed from Figure 7.8(a) to (c) is the change of amplitudes

for a given frequency and orientation of the sensor. This effect is explained due to the

changing ratio of displacement and stress amplitudes with respect to the frequency and

angular orientation for a particular mode along the plate thickness as it was presented in

Chapter 5. As it can be inferred from all the results presented till now, the understanding

of these wave propagation phenomena plays a critical role in the selection of the optimal

inspection frequencies for the improvement of the sensitivity and for the optimization of
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sensor networks in terms of sensor placement and number of sensors. It can be observed

as well that the temperature gradient has a strong effect on the trajectories of the peak-to-

peak amplitudes with respect to the heating or cooling cycles. It is good to bear in mind

that the capacitance of piezoelectric materials is known to be temperature sensitive. As

temperature increases, the capacitance value of the PZT normally increases and this effect

modifies the response of the sensor. Even when not depicted for this plate, the dynamic

response signals of all sensors decreased monotonically in peak-to-peak magnitude with

increasing temperature for all the tested frequencies.

7.2.5. Applications of the Model for Manufacturing Control

As it has been experimentally validated, the proposed model for guided wave propagation

is able of providing accurate estimates of velocities for the different modes of propagation.

It is evident that the analytical model would significantly support the understanding and

interpretation of experimental results for a great variety of laminate designs. It is well-

known that based on the load requirements there are a variety of layups for composite

laminates. Consequently, Lamb waves could be used for detecting fibre misorientation or

stacking sequence errors in composite laminates.

Using the model developed in Chapter 3, an angular scan has been simulated for differ-

ent frequencies in order to calculate the phase and group velocities of the fundamental

antisymmetric and symmetric modes of propagation. The evaluated structure is a CFRP

laminate with a layup of [0°0°0°0°] with a total thickness of 1mm. Nominal material

parameters of the unidirectional layers are given in Table 7.1. The misplacing mistake is

simulated by placing the ply number two at 45° instead of 0°.

Figure 7.9 shows the results for the fundamental A0 mode. By checking the phase velocity

surfaces from Figures 7.9(a) and (c), it is very difficult to notice a clear difference between

both plots that can indicate a pattern resulting from the misalignment of the second ply.

Nevertheless, if one observes and compares the group velocity surfaces from Figures 7.9(b)

and (d), one can clearly notice the changes of the angle-frequency patterns caused by the

single-ply misorientation. This can be observed specially in the high frequency range

along the 0° direction where the curved shape changes to an almost flat surface.

Figure 7.10 shows the results for the fundamental S0 mode of propagation. It can be easily

seen from Figures 7.10(a) to (d) that a change not only in the maximum values of both the

phase and group velocity surface plots occurs (see the colour bar limits), but also in their

shapes. Another interesting change that can be identified is the modification in shape

of the group velocity plot along the 90° direction (around 1.57radians) where the profile

moves from a convex shape to a concave one. These results reflect that the transmitted

S0 mode is very sensitive to the orientation of the ply. As it could be observed from the

figures previously discussed, the velocity angular pattern is very sensitive at the different
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(b)(a)

(d)(c)

Figure 7.9. Angle-frequency surface for a 1mm thick GFRP plate for the A0 mode of Lamb wave
propagation up to a frequency of 500kHz: (a) Phase velocity for the correct stacking sequence,
(b) Group velocity for the correct stacking sequence, (c) Phase velocity for the wrong stacking
sequence and (d) Group velocity for the wrong stacking sequence.

frequencies allowing to depict the laminate layup differences between both structures.

Experimentally, these plots can be generated using a pulse excitation and recording the

transmitted wave signals in the time domain at a given angular scan resolution for later

mode identification and velocity calculation. Mode identification is the subject of study

in the following section.

7.3. Modal Acoustic Emission

This section evaluates the methodologies proposed in Section 4. The goal is to establish a

novel deviation from the traditional dependence on statistical-based and parameter-based

analysis so that an significant improvement of the monitoring capabilities of acoustic

emission can be accomplished. Nevertheless, standard AE analysis are carried out for

comparison purposes. The idea behind using modal techniques is to provide an improved

understanding of the damage mechanisms which together with the help of the model

developed in Chapter 3 could additionally and potentially support sensor reduction and
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(b)(a)

(d)(c)

Figure 7.10. Angle-frequency surface for a 1mm thick GFRP plate for the S0 mode of Lamb wave
propagation up to a frequency of 500kHz: (a) Phase velocity for the correct stacking sequence,
(b) Group velocity for the correct stacking sequence, (c) Phase velocity for the wrong stacking
sequence and (d) Group velocity for the wrong stacking sequence.

increased source location accuracy.

7.3.1. Mode Identification with Neural Networks

In order to check the performance of the proposed method for mode identification by

means of artificial neural networks, a specimen was made from a 2mm aluminium sheet

of dimensions 800mm×800mm. Four broadband AE sensors (VS900-M) were installed

on the plate and vacuum silicon grease was used to improve the signals transmission

between specimen and sensors. The sensors were positioned at an equidistance of 50mm

from each corner of the plate area and kept in position by means of C-clamps. The

experimental setup consisted of AEP3 amplifiers (Vallen Systems), a HS4 handy-scope

from TiePie Engineering and a PC. The complete experimental setup is depicted in Figure

7.11(a). The amplifier gain was set to 34dB, the anti-aliasing low-pass and high-pass cut-

off frequencies were adjusted to 95kHz and 800kHz, and the sample frequency was 50MHz.

A database consisting of more than 1500 recorded signals from pencil lead break sources

with different pencil lead hardness (2B, 2H, B, H and HB) at different angles of incidence

was used for the training, validation and test of the network. The database was composed
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Figure 7.11. Mode identification experiment by means of artificial neural networks: (a) Ex-
perimental setup and (b) Mean squared error plots for validation, training and test data sets.

of segments representing the fundamental symmetric S0 and antisymmetric A0 modes

as well as noise segments extracted prior to the wave first arrival. The data fed to the

network were normalized. Resilient back-propagation was used as training function and

the mean squared error (MSE) as performance function. An early stopping technique

was used in order to avoid overfitting of the training set and degradation in the network

prediction capabilities. The number of neurons in the hidden layers are selected so that

an acceptable classification error is obtained. However, a specific rule was not followed

in order to select the dimension of the hidden layers. As it is normally expected, if too

few nodes are defined in the hidden layers, the prediction accuracy of the neural network

might be poor. However, if too many hidden nodes are defined, the network will be

susceptible to overfitting. For the present case, the optimal network consists of one input

layer with 300 nodes, one output layer, 45 nodes in the first hidden layer and 29 nodes in

the second hidden layer. The training phase used the 1 of M strategy. The best validation

performance was obtained at epoch 75 and it was equal to 0.029. The mean squared error

plot for the test, validation and training data sets is depicted in Figure 7.11(b).

To test the mode identification method, fifty pencil lead brakes with different hardness

were exerted on the surface of the plate with a grid density of 10mm. The square area

limited by the sensors was investigated. The recorded signals were first processed with

the DWT in order to obtain denoised signals and later fed into the trained artificial neural

network for mode recognition. After the neural network has been trained, examination

of the generalization performance of the network revealed that it was possible to predict

correctly 94% of the A0 segments, 98% of the S0 segments and 95.2% of the noise segments

from the signals recorded in the test.

Localisation by means of the different Onset-time Detectors As it has already been

discussed, the accuracy of the localisation algorithm depends highly on the performance

of the onset-picker. As a part of this thesis, a toolbox comprising the most common
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algorithms depicted in Section 4.3 was implemented. The performance of each algorithm

is evaluated in this section for the purpose of stress wave localisation by means of using the

localisation scheme previously discussed in Section 4.7. This is accomplished by combining

the mode identification approach based on artificial neural networks, the time-frequency

analysis as introduced in Section 4.4 and the model developed in Chapter 3 so that

the necessary parameters could be fed into Eq.(4.17) for the solution of the localisation

problem. Figure 7.12 displays the RMSE for every interrogated node in the grid as a three

dimensional bar chart.

It can be seen how the methods based on cross-correlation, i.e. Figure 7.12(a) to (c),

provide the worst results compared to the picker-based methods. This can be explained

by the fact that wave dispersion greatly affects the performance of the algorithms for

time of difference calculation. The calculated root mean squared errors for the GCC

filter, GCC-PHAT filter and the HT filter are equal to 27.75mm, 23.25mm and 23.22mm,

respectively. The Hinkley picker performed somewhat better with a RMSE equal to

20.64mm. The optimal parameter ε for this experiment was found to be equal to 100. For

the AIC picker, it was found that the root mean square error (RMSE) was of 4.7mm for

the entire grid, which points out a clear improvement in source location in comparison

with traditional methods (see for example [Gaul et al. 2001, Baxter et al. 2007]).

7.3.2. Mode Identification by means of Modal Energy Orientation

In order to check the performance of the proposed methodology for mode identification

by means of modal energy orientation, a specimen was made from a 1.46mm unidirec-

tional GFRP laminate of dimensions 800mm×350mm. For the present experiment, four

broadband AE sensors (VS900-M by Vallen Systems) were installed on the plate and va-

cuum silicon grease was used to improve the signal transmission between specimen and

sensors. The sensors were fixed to the structure by means of magnetic clamps. The nom-

inal material parameters of the layer are the following: E11 = 30.7GPa, E22 = 15.2GPa,

G12 = 4GPa, G13 = 3.1GPa and G23 = 2.75GPa. The density is approximately 1700kg/m3.

The experimental setup consisted of AEP3 amplifiers (Vallen Systems), a four channel

HS4 handy-scope from TiePie Engineering and a PC. The amplifier gain was set to 34dB,

the anti-aliasing low-pass and high-pass cut-off frequencies were adjusted to 95kHz and

800kHz, and the signals were recorded with a sample frequency of 50MHz. The experi-

mental setup for the collection of AE data and a typical signal from a pencil lead break

containing wave packets related to the fundamental symmetric and antisymmetric modes

of propagation are depicted in Figure 7.13.

In practice larger dictionaries provide better performance for signal processing but the

algorithm running time can be excessive. For the implementation procedure in this work

a dictionary of chirplet atoms was built, which was small but sufficient by adaptively
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(b)(a)

(d)(c)

(e)

Figure 7.12. Three-dimensional bar chart for the calculated root mean squared error for every
tested node in the defined grid: (a) Localisation results using the GCC filter, (b) Localisation
results using the GCC-PHAT filter, (c) Localisation results using the HT filter, (d) Localisation
results using the Hinkley picker and (e) Localisation results using the AIC picker.

choosing the parameter space of the chirplet decomposition based on the spectrum of

the signals to be decomposed. This design led to a fast algorithm and reduced the com-

putational cost produced by defining a large redundant dictionary. The decomposition

termination was set to a threshold value of 98 per cent of the original signal energy. It is

well known that acoustic emissions occur in such a fast succession that signals of different

frequencies and amplitudes superpose each other. An example of this effect is given below
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Figure 7.13. GFRP plate: (a) Experimental setup and (b) Signal generated from a pencil lead
brake.

in Figure 7.14 in order to illustrate the full chirplet decomposition process and its ability

to decode overlapping packets in the presence of noise.

The signal was generated by a pencil lead brake at a radial distance of 200mm from the
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Figure 7.14. Pencil lead break mode identification in GFRP plate for sensor number one: (a)
Matching pursuit algorithm and AIC onset time detector estimate, (b) Atom corresponding to
the arrival time of the AE signal and (c) Matched atom energy distribution corresponding to the
onset estimation.
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sensor number one. This signal consists of four main components that are (i) a first

wave packet representing the S0 mode of propagation with faster energy velocity, (ii) a

second wave packet presenting the slower A0 mode of propagation, (iii) reflections from

the boundaries of the structure and (iv) inherent noise. From this figure, it can be clearly

seen the capabilities of the method to properly separate between modes by depressing the

effect of overlapping; the difficulty to separate wave packets both in time and frequency

and elimination of non-negligible cross-terms using traditional methods was overcome by

the proposed approach. The TFR algorithm used in this work was the Wigner-Ville

distribution and the matched atoms were considered as analytic signals. The intensity of

the plot is proportional to the energy content in the signal at the indicated frequency and

time.

From the conclusions obtained in the Section 4.6.2, it can be estimated from the energy

distribution and frequency modulation rate sign that the detected mode corresponds to

the S0 mode. Finally, the atomic decomposition on a signal produced by a pencil lead

break at 90° with respect to the plane of the CFRP plate is illustrated. It is well-known

that for this kind of elastic wave excitation most of the motion is normal to the plate and

it normally generates a large flexural mode. For this experiment, the distance between a

selected sensor in the network, P1 with no loss of generality, and the source was specially

selected in order that the chosen sensor was able to detect a different mode in comparison

to the others in the network, i.e. just the A0 mode, while the S0 mode amplitude is

totally decreased and lost in the background noise. Figure 7.15 depicts the complete

chirplet decomposition of the recorded signal at P1 and the quadratic energy distribution

related to the matched atom predicted by the onset detector. This signal consists of two

main components that are (i) a first wave packet representing the A0 mode of propagation

with (ii) a second train of wave packets related to the reflections from the boundaries of

the structure and noise. According to the same previous assumptions from the energy

characteristics of the matched atom, it can be concluded that the detected mode was A0.

By interrogating every sensor in the network, it can be found that not all the sensors

detected the same mode in this case, and a correction measure must be taken in order to

guarantee the selection of a common mode to all the sensors so that potential errors in the

localisation algorithm can be avoided. This can be easily done since all the decomposed

signals contain well defined atoms in time and frequency, and mode wave packet arrival

detection can be automatically implemented based on the energy characteristics of the

atoms.

Finally, the analysed characteristics of the recorded signals could be used for the ap-

plication of advanced source localisation algorithms. The successful application of the

present method in the current passive monitoring technique is partially due to the good

choice of the matching pursuit dictionary and the optimization method used to find the

optimal parameters representing the signal content. Moreover, the proposed method al-
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Figure 7.15. Pencil lead break mode identification in GFRP plate for sensor number one: (a)
Matching pursuit algorithm and AIC onset time detector estimate, (b) Atom corresponding to
the arrival time of the AE signal and (c) Matched atom energy distribution corresponding to the
onset estimation.

lows a different approach from traditional statistical analysis and enables an improved

understanding of the origin of the source.

7.3.3. Mode Identification with Pattern Recognition

The fast analysis and identification of acoustic emission signals is very important for the

development of AE-based structural health monitoring systems. By analysing the intrinsic

characteristics and rate of occurrence of the types of emissions generated, one would be

able to predict the type of damage processes which are occurring at various stages of

the life of a structure so that preventive measures can be undertaken for security and

economical reasons. For current state of the art AE systems, this is accomplished by

extracting various features of acoustic emissions generated during operation for further

analyses using pattern recognition techniques. A variety of features such as frequency

content, peak amplitude, signal duration, rise time are traditionally used for this purpose.

The results depicted here will include traditional standard analysis and the proposed

methodology for acoustic emission identification described in Section 4.8.
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Table 7.7. Dimensions of the test specimen (units in mm).

b0 L0 B r h Lc Lt

20 80 30 20 50 120 250

Tensile Test Experiments were carried out on twenty tensile specimens made out of

unidirectional glass fibre reinforced plastic material. This type of material was selected

since it is to a certain extent transparent and damage can be identified by visual inspection

during the running of the tests. The tensile specimens were prepared according to DIN

50125. The elastic properties in the principal directions of material symmetry provided

by the manufacturer are given in Table 7.1. The material constants units are given in

GPa. Figure 7.16 shows the geometry of a typical specimen. Dimensions are provided in

Table 7.7.

The experimental setup consisted of AEP3 amplifiers (Vallen Systems), a HS4 handy-scope

from TiePie Engineering and a PC. The amplifier gain was set to 40dB, the anti-aliasing

low-pass and high-pass cut-off frequencies were adjusted to 95kHz and 800kHz, and the

sample frequency was 50MHz. Four broadband AE sensors (VS900-M) were installed on

the plate and vacuum silicon grease was used to improve the signals transmission between

specimen and sensors. The sensors located near the specimen corners were placed at a

distance of 50mm from the specimen ends. The remaining sensors were installed at a

distance of 30mm from each of these sensors. The sensors are numbered from top to

bottom. Tensile tests were carried out in an MTS 810 loading machine with a 50kN load

cell kindly provided by the Research Group for Material Science and Material Testing at

the University of Siegen. The crosshead speed was fixed at 0.1mm/min. The tests were

stopped after total failure.

The tests specimens with a unidirectional fibres were loaded along the fibre axis. The

fibres are loaded in tension by shear forces transferred from the matrix through the fibre-

matrix interface. It is expected that the given composite material consisting of fibres

and a polymeric matrix which is subjected to external loading will fail as a result from

a combination of damage mechanisms such as matrix cracking, debonding at the fibre-

matrix interface and fibre fracture. Ideally, it should be possible to identify individual

damage mechanisms by analysing the recorded AE events emitted by the specimen. This

is given by the fact that signals arising from events such as matrix cracking, fibre/matrix

debonding and fibre breakage are completely different in nature and give rise to different

signals. Accordingly, the samples and experiments have been intentionally selected in

order to produce this type of damage mechanisms.

For the sake of brevity, only one out of twenty experiments was selected for analysis in

this section. However, results were similar for all the tested samples. Figure 7.17 depicts

the progressive failure of the specimen where 7.17(a) shows the unloaded specimen. Mat-

rix cracking is normally the first damage mechanism happening in a composite structure
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Figure 7.16. Geometry of the test specimen.

subjected to a quasi-static or cyclic tensile load (see [Adolfsson and Gudmundson 1997]).

Normally, this type of cracks extend across the thickness of the sample and propagate

parallel to the fibre direction, and are normally known in the composite materials jar-

gon as ply cracks or transverse cracks. This damage mechanism can be seen in Figures

7.17(b) and (c) by tracking the change in colour of the specimen between sensor 2 and

4. Nevertheless, matrix cracks are rarely critical from a structural failure point of view,

but they can lead to possible fibre debonding, fibre fracture and delaminations in case of

a laminate. When the matrix fails, the load carried by the matrix is then transferred to

the fibres, and given that the breaking stress of the fibres is not exceeded, the fibres will

be further extended, leading to multiple cracking of the matrix and possible debonding

between the fibres and the matrix. This effect can be observed in Figures 7.17(d) and (f)

where one can see how the fibres and matrix are debonded for a certain length. This can

also be observed when a strong mechanical bond between the matrix and fibres exists (see

[Aveston and Kelly 1973]).

During the experiments, it was observed that cracking still occurred after fibres have de-

bonded. Finally, while the load continues to grow to relatively high load values, fibre

breaking starts to happen in the specimen. It can be clearly deducted from the dam-

age evolution phases depicted in Figure 7.17 that keeping track of all of these damage

mechanisms and locations is a very complex problem.

The loading curve and accompanying AE parameters, including AE number of hits and

AE cumulative sum of signal energy, for the tensile experiment are shown in Figure 7.18.

Noise signals coming from specimen slippage in the grips were identified and deleted

for the analysis. These signals were characterised by short duration and low amplitude.

Additionally, sensors number one and four can be used as guard sensors in order to

reject this type of signals. It can be noticed from 7.18(a) that very few acoustic emission

events are detected at the lowest loading values. The stable acoustic emission rate in

Figure 7.18(a) suggests the irreversible damage accumulation. According to this figure,

all sensors appear to have detected almost the same amount of hits per AE event. It can
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Figure 7.17. Damage evolution during the tensile test: Progressive failure from undamaged
state to total failure is depicted from (a) to (f).

be seen that AE increased significantly each time the sample was loaded to higher loads.

When the load drops and is increased again, AE events do still occur. This appearance of

significant acoustic emission events at a load level below the previous maximum applied

level is known as the Felicity effect. This effect is typical observed in composite materials.

This fact indicates that loads of this magnitude may begin to cause damage to the sample.

The cumulative sum of energy plots depicted in Figure 7.18(b) allow to identify that

sensor number four and two were the ones receiving signals with higher amplitudes. It

can be additionally observed that after the first drop-off of the load, a drastic increase

in the energy of the recorded AE events took place. In this stage, few AE signals with

high amplitudes and short durations were detected. For this experiment, no exact source

location technique was used in order to try to determine the location of damage.

Figure 7.19 shows the three-dimensional plots relating the amplitude, time of occurrence

and number of hits for every sensor in the network. Each sensor output is chosen to

10μVolts as the 0dB reference since it was the lowest detectable voltage above the noise

level of the system electronics. The results imply that an observable range of different
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Figure 7.18. Standard acoustic emission parameter analysis: (a) Cumulative hits plot for every
sensor and (b) Cumulative energy plot for every sensor.

orders of magnitude are detected during the running of the test for the recorded signals.

Traditionally, this phenomenon based on the acoustic energy released is used in order to

identify the different damage mechanisms.

Based on the analysis and observation of the first appearing damage mechanisms, the first

appearing cracks seem to correlate with low amplitude AE events. This is in accordance

to existing literature where a typical matrix crack signal is said to be of short duration

with a small amplitude and low energy. It can be seen as well from Figure 7.19(a) to (d)

that a significant amount of damage signals with low amplitude accumulates before the

specimen fails. Nevertheless, this generalization must be done with extreme care since this

cannot be generalised for any structure since most composite structures do not exhibit the

same plastic-elastic behaviour found in metallic structures. This is supported by the fact

that the anisotropic behaviour of the medium causes the wave to propagate with different

velocities in different directions and the viscoelastic behaviour of the structure causes

damping and dispersion. Thus, the recorded wave arriving at the transducer is a highly

distorted and attenuated version of the source waveform. In addition, the frequency

response of the transducers and the couplant between the medium and the transducer
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(b)(a)

(d)(c)

Figure 7.19. Three-dimensional histograms depicting the time of occurrence and amplitude of
the different AE hits in the sensor network: (a) Sensor number one, (b) Sensor number two, (c)
Sensor number three and (d) Sensor number four.

contribute to the general distortion of the recorded signals.

It was observed that large cracks formed just prior to failure and fibre breakage at the

last stage before total failure appears to correlate with high amplitude events. The last

failure mechanism found during the test, fibre breakage, is typically the most damaging of

the mechanisms due to the fact that the fibres are the main load bearing constituents of

the structure. Glass fibre breaks have the highest amplitudes of the three primary failure

mechanisms. In order to support the statements about the different type of damage

mechanisms encounter during the tests, the samples were carefully analysed not only

by visual inspection but also by means of a 3D measuring laser microscope. Results are

depicted in Figures 7.20, 7.21 and 7.22. A LEXT 3D measuring laser microscope OLS4000

was kindly provided by the Research Group for Material Science and Material Testing at

the University of Siegen. The examined samples were covered with gold. It can be seen

from Figure 7.20(a) that when the matrix of the continuous fibre reinforced composite

fails at a lower strain than the fibres, multiple cracking of the matrix results along the fibre

direction. This effect will continue as long as the fibres are strong enough to withstand

the additional load.
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Figure 7.20. Experimental analysis with the 3D measuring laser microscope for matrix crack-
ing: (a) Top view of the damage and (b) Calculated three-dimensional surface.
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Figure 7.21. Experimental analysis with the 3D measuring laser microscope for fibre debonding:
(a) Top view of the damage and (b) Calculated three-dimensional surface.
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Figure 7.22. Experimental analysis with the 3D measuring laser microscope for fibre breakage:
(a) Top view of the damage and (b) Calculated three-dimensional surface rotated 180°.
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Figure 7.20(b) depicts the calculated three-dimensional surface where one clearly sees

how the cracks extend in a direction parallel to fibre orientation in form of a channel.

The other type of damage mechanism occurring is fibre debonding as it can be clearly

observed from Figure 7.21. Finally, when higher loads are reached, fibre breakage occurs

before final failure as it is shown in Figure 7.22. It was observed that the final failure

of the specimen was imminent at the onset of fibre breakage. The same experiment

was used in order to evaluate the practical performance of the proposed methodology

in Section 4.8. If one focuses the attention on the general situations encountered with

AE data such as difficulties in generating a training set for analysis, the advantages of

using an unsupervised method outweighs the supervised methods. As the first step, the

DWT coefficients are calculated from the captured stress waves and fused following the

described unfolding procedures. Four levels of decomposition were used for an optimal

DWT. Second, a review of the variances retained in the components using standard PCA

was performed in order to define the optimal number of principal components required

for h-NLPCA. It was found that by selecting 3 components more than 97% of the total

variance was retained. The optimal number of units for the mapping and de-mapping

layers was calculated using Eq.(2.38). For the experiments depicted here, 84 neurons

were used for both layers. In order to define the size of the self-organizing map, the

quantization error (QE) and topographic error (TE) were analysed. As a result of the

analysis, a map size of 30×10 was defined. Additional to the map size, the map lattice

and shape must be specified. The SOM lattice gives the local topology of the map, i.e.

the connectivity of the map units. For the present study a hexagonal lattice and a flat

sheet shape are considered here. Additionally, a Gaussian neighbourhood function was

used.

The correspondence between acoustic emission events and damage mechanisms was valid-

ated by comparison between the time of occurrence of the acoustic emission events and the

energy distribution analysis explained in the previous section. This is further validated by

checking the damage evolution for each tensile test in addition to scanning of the samples.

The 3D measuring laser microscope results and careful analysis of the samples during the

test showed that the main failure mechanisms of the specimens were matrix cracking and

fibre-matrix debonding. In addition, few fibre failures were observed. Fibre breakage

and matrix cracking along the fibre direction are characterised by having a highly excited

fundamental symmetric mode of propagation, while fibre debonded is characterized by a

highly excited antisymmetric mode or propagation. Figure 7.23 depicts an example of the

three type of signals identified, each of which was attributed to different damage mechan-

isms according to the clustering results. The first group is characterised by low amplitude

signals believed to represent emissions due to matrix cracking. The second group are high

amplitude signals believed to represent emissions due to fibre breakage. The third group

are low amplitude signals believed to represent emissions due to fibre-matrix debond-
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Figure 7.23. Recorded waveforms for the identified clusters: (a) Matrix cracking, (b) Fibre
breakage and (c) Fibre Debonding.

ing. These results are in good agreement with the relevant literature regarding failure

mechanism identification [Guo et al. 1996, Qi 2000, Loutas and Kostopoulos 2009].

The calculated U-Matrix surface is depicted in Figure 7.24 in order to show the formed

clusters. As it can be seen from this figure, three clusters are well identified where the zones

in lighter colours mark the boundaries. These results further validate the experimental

and modal analysis carried out throughout this section. The different clusters have been

labelled in Figure 7.24 according to the analysis and explanations given before. One can

see how one can increase the understanding and the possibility to interpret the measured

AE signals by means of mixing the developed analytical model describing the source

mechanism characteristics and pattern recognition approaches.

In addition, even when not discussed here, twelve samples were also loaded with the fibres

in a direction parallel to the load. It could be observed that the composites failure in

tension resulted as an instantaneous failure for all the samples, being the failure located

in the proximity of the sample necks. No clear defined clusters were found for these

experiments; only one big cluster seemed to have formed. This could be explained by the

fact that only a dominant damage mechanism took place during the failure process, i.e.

matrix cracking.

Double Cantilever Beam Tests As it has been shown throughout this thesis, modern

structural components are made of materials arranged in layers. Examples are airplanes,

ships and large wind turbine blades. Typical examples of damage mechanisms in these

structures are delamination of laminates and interface cracks in sandwich structures, ad-
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Figure 7.24. U-Matrix surface for acoustic emission clustering after data-fusion and feature
extraction. In-plane axes correspond to the number of neurons.

hesive joints and multilayered structures [McGowan et al. 2007]. Generally, there are three

modes describing different crack surface displacement. Mode I is an opening or tensile

mode where the crack surfaces move directly apart. Mode II is sliding in-plane shear mode

where the crack surfaces slide over one another in a direction perpendicular to the leading

edge of the crack. Mode III is tearing and antiplane shear mode where the crack surfaces

move relative to one another and parallel to the leading edge of the crack [Kim 2000].

Cracking of fibre composites frequently occurs together with fibre bridging. Fibres or

fibre ligaments continue to be attached to both crack faces and, in consequence, multiple

connections between the crack faces behind the crack tip are developed [Soerensen et al.

2004].

The next series of experiments comprised dual cantilever beam (DCB) test series carried

out at DTU Wind Risø Campus. The samples were kindly provided by Dr. Helmuth

Langmaack Toftegaard. A Laptop based two-channel PAC USB node system with R15-

alpha sensors from Physical Acoustics was used for these experiments. The sensors have

a resonance frequency at 150kHz and use an integral pre-amplifier. The system was

calibrated using pencil leadbreaks (Hsu-Nielsen sources) according to the standard ASTM

E 976-84. Additionally, the computer program AEwin from Physical Acoustics was used

for data acquisition and replay. The sensors were installed at a distance of 90mm and

230mm away from the upper end of the samples. Sensors were clamped against the

outside surface of the specimen without affecting the crack line of the DCB. The amplifier

gain was set to 40dB, the anti-aliasing low-pass and high-pass cut-off frequencies were

adjusted to 20kHz and 200kHz, and the sample frequency was 5MHz. A water based

couplant was used to improve energy transfer between sensor and specimen. The AE

monitoring proposed here was intended to give information about the initiation and growth



142 Chapter 7. Experimental, Numerical and Application Examples

����������	
���	

��	��������	
��	

��	

�	

�	

�	

�
��	��	

Figure 7.25. Schematic of the loading method. The mode mixity is controlled by altering the
length of one the transverse beam arms.

of the crack, including localisation information, as well as highlighting differences in the

behaviour of the specimen responses when loaded in Mode I and Mode II.

The specimen material used is an E-glass/LPET laminate with the quasi-isotropic lay-up

[(90°45°0° −45°)s2]s. A 13μm thick release foil was placed with between a layer with 90°
orientation (ply 17) and a layer with 45° orientation (ply 18). The foil was placed to help

as a pre-crack source and ease crack initiation. The measured fibre and matrix volume

fractions are 46.9± 0.1% and 53.1± 0.2%, respectively. The volume fractions are given

with a 95% confidence interval for the mean. The length, width and depth of the samples

were approximately 500mm, 18mm and 30mm. Details of fibre and matrix properties are

proprietary. The principle of creating different bending moments in the two free beams of

the double cantilever beam specimen loaded with uneven bending moments (DCB-UBM)

specimen is shown schematically in Figure 7.25. Forces of identical magnitude P are

applied perpendicular to two transverse arms connected to the end of the beams of the

DCB specimen. These are obtained by the use of a wire arrangement. The uncracked

end of the specimen is restricted from rotation but can move freely in the x1-direction.

Different moments are obtained if the length of the two moment arms, l1 and l2, of the

transverse arms are uneven. The applied moments are M1 = Pl1 and M2 = Pl2. Further

details of the experimental setup can be found in [Soerensen et al. 2006].

The specimens identified as A-01 to A-04 were loaded in mode I (mode mixity 0°) and

the specimens B-01 to B-04 were loaded in mixed mode close to mode II (mode mixity

89°). The specimens were loaded at a constant displacement rate of 10mm/min. The

data acquisition frequency for the load control was 20Hz. During all the tests the applied

force was measured with load cells. The damage evolution process during the double
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Figure 7.26. Damage evolution during the double cantilever beam test for Mode II: Progressive
failure from undamaged state to total failure is depicted from (a) to (f).

cantilever beam test for one of the tested samples under Mode II crack growth is depicted

in Figure 7.26. A linear localisation array was formed between sensor one (top) and

sensor two (bottom) to detect and measure the growth of the crack during both Mode I

and Mode II loading. As it could be observed from the test images, in the first part of

the experiments, all the samples started to bend without any visual or audible evidence

of possible damage initiation, even though, significant AE activity was recorded (see

7.26(a) to (c)). After continuing with the bending phase, a jump in the samples suddenly

happened what indicated the initiation of damage, i.e. a initial crack opening which led

to further delamination. This is shown in Figure 7.26(d). The crack tip position was

located around the top middle position. Following further loading, acoustic events were

still recorded and the sample suddenly failed as it is depicted in Figure 7.26(f). No fibre

breaks due to fibre bridging could be clearly observed for the tests. The total energy of all

the Mode II tests is entirely concentrated in these two bursts related to the main cracking

events.

The AE-hit trace recorded for the different types of cracks generated in the samples during

the tests are depicted in Figure 7.27. It could be observed that Mode II loading with a
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Figure 7.27. Cumulative hits for the four Mode II DCB Tests: (a) Sample B-01, (b) Sample
B-02, (c) Sample B-03 and (d) Sample B-04.

mode mixity of 89 degrees generated a friction dominated crack propagation where the

specimen tends to fail in sudden jumps as it can be seen from all plots in Figure 7.27.

This effect is very clear if one tracks the load time history in which a significant load drop

occurs with crack initiation and final fracture. As previously mentioned, almost of all the

recorded AE energy was generated during these two phases. As it was expected due to

attenuation of the stress waves and proximity to the damage, sensor number one received

the majority of hits for all the experiments. As it was shown before, in composites the high

frequency components of stress waves are damped very rapidly, whereas lower frequency

components travel much further. It can be seen that The Mode II tests reflected the fact

that crack growth is not so steady with exception of the test run with the sample B-01.

Table 7.8 summarizes the AE analysis for the calculated AE parameters.

Table 7.8. Acoustic emission parameter analysis for DCB tests in Mode II.

Specimen AE Hits Counts Energy Counts/Hit Energy/Hit Energy/Count

B-01 13026 315594 636559 24.2 48.9 2.02
B-02 1934 41466 220445 21.4 114.0 5.33
B-03 4455 107855 217879 24.2 48.9 2.02
B-04 6590 141328 307172 21.4 46.6 2.18

Average 6501 151560 345514 22.8 64.6 2.89
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Figure 7.28. Three dimensional histograms for depicting the time of occurrence and amplitude
of the different AE hits in the sensor network: (a) Sample B-01, (b) Sample B-02, (c) Sample
B-03 and (d) Sample B-04.

For all the tested samples, most of the AE events were localised in the close proximity

of sensor one. This is further validated by just simply inspecting the deformation and

damage evolution of the samples as it is shown in Figure 7.26. The results of hit amplitude

distribution with respect to time of occurrence are shown in Figure 7.28. Each sensor

output is chosen to 1μVolts as the 0dB reference. At the early stage of loading, it appears

to be almost not AE activity. It can be seen from all figures that a few number of

low-amplitude AE events are recorded prior to both crack opening and final cracking.

These events can be considered as microscale events that do not contain a big amount

of energy, however, a huge amount of high amplitude events are produced before the two

sudden jumps. These macroscale events, characterised by high amplitudes, can be directly

identified during the cracking stages and correlated with the load drops in Figure 7.27.
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Figure 7.29. Damage evolution during the double cantilever beam test for Mode I: Progressive
failure from undamaged state to total failure is depicted from (a) to (f).

Mode II tests showed a rapid crack growth with more limited activity behind the crack

front. By analysing Figure 7.28, one can infer how the energy release accelerates prior to

failure of composite materials. Following this concept, the monitoring of acoustic emission

energy would enable to anticipate the failure of the samples as a result of the detection

of more energetic signals during the tests. The damage evolution process during the

double cantilever beam test for one of the tested samples under Mode I crack growth is

depicted in Figure 7.29. Mode I loading with a mode mixity of 0 degrees generates a

fibre bridging dominated crack propagation where the crack front develops steadily due

to the cohesive zone behind the crack front. For the experiments presented here, the

crack growth was controlled and grew very slowly. Delamination propagation was clearly

observed during the duration of all the tests. Additionally, fibre breaks could be observed

while the delamination process was taking place due to the bridged fibres. No matrix

cracks were observed on the delaminated surfaces for the laminates.

The AE-hit traces recorded for the different tested samples are depicted in Figure 7.30.

These plots show that the AE activity for the Mode I tests is almost perfectly constant

for the entire duration of the crack growth with both sensors responding identically. This
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Figure 7.30. Cumulative hits for the four Mode I DCB Tests: (a) Sample A-01, (b) Sample
A-02, (c) Sample A-03 and (d) Sample A-04.

is in contrast to the Mode II tests showing an unsteady crack growth. A considerable load

drop is only seen for the case of crack initiation. Nevertheless, the crack growth took place

via a series of small load drops. These load drop points correspond to damage initiation

and accumulation, respectively. In comparison to the Mode II tests, a huge number of

hits was recorded. As a consequence, more energy is released during the Mode I tests.

Additionally, a crack propagation process involving fibre bridging would be expected to

have many microscale AE events than one that does not [McGugan et al. 2006]. Table 7.9

summarizes the AE parameters calculated for the specimens under Mode I crack growth.

The character of the AE is significantly different between the tested samples under Mode

I and Mode II crack growth, with the Mode I tests showing longer duration hits with

greater energy content, but the Mode II acoustic emission has a slightly higher energy

Table 7.9. Acoustic emission parameter analysis for DCB tests in Mode I.

Specimen AE Hits Counts Energy Counts/Hit Energy/Hit Energy/Count

A-01 51805 3280766 5138185 63.3 99.2 1.57
A-02 49536 3615485 7182435 73.0 145.0 1.99
A-03 80969 6232135 11612661 77.0 143.4 1.86
A-04 60369 4910615 8849783 81.3 146.6 1.80

Average 60670 4509750 8195766 73.6 133.6 1.80
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Figure 7.31. Three dimensional histograms for depicting the time of occurrence and amplitude
of the different AE hits in the sensor network: (a) Sample A-01, (b) Sample A-02, (c) Sample
A-03 and (d) Sample A-04.

density, i.e. the Energy/Count value. An analysis of the hit amplitude distribution with

respect to time of occurrence between the samples shows a great similarity between the

tests. These results are depicted in Figure 7.31. It can be seen that a huge number of hits

with medium amplitude occurred during the tests (around 60dB to 75dB). This intense

activity appears to show around the same experiment time for all the tests. The AE

amplitudes increased to a maximum value and steeply decreased before final failure. This

evolution is observed for all the tests. This behaviour of AE activity and energy seems to

be an interesting way of anticipating the final failure. Here again, the AE energy released

during the tests was found to accelerate before ultimate failure.

For the localisation calculations, the longitudinal and transverse velocities are defined
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Figure 7.32. Linear localisation results: (a) Sample A-01, (b) Sample A-02, (c) Sample A-03
and (d) Sample A-04.

as CL = 2.73km/s and CT = 1.43km/s, respectively. Linear localisation results for all the

tested samples are shown in Figure 7.32. It can be observed that the Mode I localisation

shows the crack front progressing with a large amount of AE activity taking place behind

it, i.e. in the fully developed bridging zone. According to the obtained results, all the

detected AE events seemed to have been well localised.

The succeeding damage processes were quite different for both samples; accumulation and

sudden growth of delaminations were observed in samples subjected to Mode II failure,

while fibre bridging, sudden fibre fractures and delaminations occurred in samples under

Mode I failure. In order to find correlation between the recorded AE signals and the

observed damage mechanisms, the methodology proposed in Section 4.8 is evaluated. As

it is performed with the proposed methodology, following the calculation of the DWT

coefficients calculated from the captured stress waves and the unfolding procedure for
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(b)(a)

(d)(c)

Figure 7.33. U-Matrix surface for acoustic emission clustering after sensor data-fusion and
feature extraction: (a) Sample A-01, (b) Sample A-02, (c) Sample A-03 and (d) Sample A-04.
In-plane axes correspond to the number of neurons.

sensor-data fusion, a review of the variances retained in the components using standard

PCA is performed. It was found that by selecting 10 components more than 95% of

the total variance was retained. This number of components was selected for h-NLPCA.

Four levels of decomposition were used for the DWT. The optimal number of units for

the mapping and de-mapping layers was calculated using Eq.(2.38). For the experiments

depicted here, 120 neurons were used for both layers. In order to define the size of the self-

organizing map, the quantization error (QE) and topographic error (TE) were analysed.

As a result of the analysis, a map size of 60× 20 was defined. For the present study a

hexagonal lattice and a flat sheet shape are considered here. Additionally, a Gaussian

neighbourhood function is used. For the specimens loaded under Mode II, following

similar clustering results to the tensile tests with load normal to the fibre direction, no

clear defined clusters were found. For these tests one big cluster seemed to have formed

with no identifiable boundaries. This again could be possibly explained since only one

dominant and discrete type of damage mechanism governed the failure process. However,

results for the samples loaded under Mode I provided more detailed information regarding

the clustering of AE events. The calculated U-Matrix surfaces for the Mode I tests are

depicted in Figure 7.33.
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Figure 7.34. Recorded waveforms for the identified clusters: (a) Fibre Bridging related damage
and (b) Delamination.

As it can be seen from this figure, two clusters are well identified where the zones in lighter

colours mark the boundaries. With exception of the case for the second sample, i.e. A-

02, all the clusters were separated by well-defined boundaries. Additionally, it is very

interesting to see that the cluster shape keeps a good similarity for the tests, specially for

the case of samples A-01 and A-04. Conclusively in all samples, the correlation between

the resulted clusters from the pattern recognition of experimentally recorded AE events

and damage mechanisms is delamination between the middle plies and fibre bridging-

related events such as fibre breakage. Figure 7.34 depicts typical signals coming from

these clusters. One can observe how the signals generated by fibre bridging effect have a

small amplitude compared to the energetic signals produced by the delamination process.

It can be also seen that not only the number of AE hits, amplitude distribution and

energy content but also the feature extraction and patter recognition approaches provide

a solid insight for the way damage develops. For all the experiments carried out in this

section, the analysing parameters peak definition time (PDT), hit definition time (HDT)

and hit lockout time (HLT) were set to the following values: PDT = 35μs, HDT = 150μs

and HLT = 300μs, whereas the recording threshold was set at 40dB.

7.4. Damage Assessment with Acousto-Ultrasonics

This section presents the evaluation of the data-driven multivariate methodology proposed

in Chapter 5 as a reliable method for damage detection. The proposed structural health

monitoring (SHM) methodology is based on a network of piezoelectric transducers oper-

ating in pitch-catch mode to excite and record information on the structural condition

and inform the user of the presence of any damage. A combination of time-frequency

analysis, auto-associative neural networks for data-driven system modelling, squared pre-
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Table 7.10. Material properties of a single carbon fibre reinforced lamina (units in GPa).
E11 E22 G12 G13 ν12 ν13 ν23

142.6 9.65 6.0 6.0 0.334 0.328 0.54

diction errors and self-organizing maps is developed to automate the damage detection

and identification problem. The problem is then treated as one of pattern recognition. For

the creation of the self-organizing maps, all the studies presented used a hexagonal lattice

and a flat sheet shape was considered for ease of visualization. Additionally, a Gaus-

sian neighbourhood function is used. For all the experiments depicted in this section,

the processing engine for transmitting the waveform signal and acquiring the dynamic

responses was written in Matlab® 7.9 using the DLLs provided by TiePie Engineering

running under Windows operating system. The input signal to the selected actuators was

generated using the arbitrary signal generation capability of a HandyScope HS3. The

receiver sensors are connected to the input channels of auxiliary HS4-HandyScopes. The

time histories are digitised at a sampling frequency of 50MHz and transferred to a port-

able PC for post-processing. The record length was set to 30000 points and the recording

triggering source was defined as the generator.

7.4.1. Aircraft Composite Skin Panel

The first structure to be studied is a simplified aircraft composite skin panel made of

carbon fibre reinforced plastic. The structure is depicted in Figure 7.35(a). The overall

size of the plate is 500mm×500mm×1.9mm and its weight is about 1.125kg. The stringers

are 36mm high and 2.5mm thick. The properties of the unidirectional (UD) material are

given in Table 7.10. The fibre volume is equal to VFiber = 60%. The plate and the stringers

consist of 9 plies. Four piezoelectric transducers PIC-151 from PI Ceramics are attached

to the surface of the structure with equidistant spacing. The piezoelectric transducers

have a diameter of 10mm and a thickness of 0.5mm.

Localized Mass Problem Firstly, damage on the multilayered composite plate is sim-

ulated by placing magnets with the same mass at random orientations on both surfaces

of the structure as artificial damage as it is depicted in Figure 7.35(b). The magnets

have a disk shape and their diameter, height and mass are 12mm, 5.26mm and 0.004kg,

respectively. The reason for using this approach for damage simulation is that local stiff-

ness reductions will reduce the natural frequencies and an alternative way of reducing the

frequencies might be to locally increase mass [Worden and Manson 2007]. Additionally,

the contact area of the magnets and the structure surface will help for energy leakage of

the interacted guided wave. For the case of this study, the aim of this form of artificial

damage was to introduce reversible changes in the structure along the wave propagation
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Figure 7.35. Simplified aircraft composite skin panel: (a) Setup and (b) Damage Positions.

paths without destroying the structure.

The excitation voltage signal is a 12V Hanning windowed cosine train signal with 5 cycles;

150 experiments were recorded per sensor-actuator configuration. To determine the car-

rier central frequency for the actuation signal in the structure, a frequency sweep was

performed and the spectral content of each signal was analysed. The optimal carrier fre-

quency was found to be 50kHz for the structure. The carrier frequency was chosen to

maximize the propagation efficiency. This type of excitation generates a dominant A0

mode that is propagated along the structure allowing a better interaction of the guided

wave with the simulated damage. In order to evaluate the identification capabilities of the

SOM with regard to the input feature vectors generated by the proposed methodology,

seven different states of the structures were tested, i.e. the undamaged structure and six

localized and independent damages. Table 7.11 outlines the coordinates for the simulated

damages on the composite skin panel.

As it was introduced in Section 5, auto-associative neural networks (h-NLPCA) are trained

independently using the calculated DWT approximation coefficients extracted from the

healthy system in order to build the models. The details coefficients are not taken into

account in this study since they are going to be discussed in the next subsection in detail.

For the current example, a level eight decomposition was accomplished as the optimal

decomposition level. However, before training the network, the data gathered in each

Table 7.11. Damage locations in the simplified aircraft composite skin panel.

Damage Number xposition (mm) yposition (mm)

1 208.25 400
2 291.55 400
3 374.55 250
4 291.55 100
5 208.25 100
6 124.95 250
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actuation step were fused following unfolding procedures.

As a first step, an outlier analysis is performed using standard PCA and h-NLPCA as

it is explained in Section 5.6.3. A review of the variances retained in the components

was performed in order to define the optimal number of components required for building

the models from the pristine structural condition. For this purpose, standard PCA was

performed first. It was found that the first three components included around 80% of the

total variance into the reduced model. This previous analysis is important in order to

ensure that enough variance is retained in the model that allows performing an optimal

reduction. A similar analysis was performed for each actuation step and finally, three

components were selected as a good representation of the input data for the h-NLPCA.

This a reasonable option since it is expected that h-NLPCA will describe the data with

greater accuracy and/or by fewer factors than standard PCA. The optimal number of

units for the mapping and de-mapping layers was calculated using Eq.(2.38). For the

experiments depicted here, 32 neurons were used for both layers.

In this work, the threshold is calculated from the baseline data. As it was explained

in Section 5.6.3, the threshold is adjusted to μ + ςσ , where μ is the mean value, σ is

the standard deviation value of the novelty index over the baseline, i.e. the undamaged

structure, and the factor ς controls the degree of confidence. The confidence level is defined

to be 99.99% in this study. For the experiments presented here, not all the baseline data

were used for building the models. The models were built with 35% of the total data

and the remaining percentage was used for validation purposes. The results of applying

PCA and outlier analysis as explained before show that damage can be separated from

the pristine state using only the first three linear components for all the actuation steps

as it is depicted Figure 7.36(a) to (d).

Nevertheless, it can also be observed that when the different simulated damages are pro-

jected into the baseline and the discordance index is calculated, these damages cannot be

clearly distinguished. Additionally, one can notice how the first two actuation steps, i.e.

the actuation for transducer one and two, provide a more compact representation of the

novelty index in which this value is concentrated in a well-defined cloud around the value

of one. This is not case for the last two actuation steps, i.e. the actuation for transducer

three and four, where a clear higher deviation of the novelty index around the value of one

is present. The explanation for this effect is not clear and require further study. However,

theoretically, one would expect to obtain a similar behaviour in all the actuation steps

due to the geometrical symmetry of the structure.

Following the outlier analysis with the help of h-NLPCA, the results are similar to the

ones obtained by applying PCA. In this case again, damage can be separated from the

pristine state using only the first three non-linear components for all the actuation steps.

Results are depicted in Figure 7.37. In comparison to the previous case, the distribution

of the novelty index value seems to be relatively better concentrated around the value
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Figure 7.36. Outlier analysis by means of PCA: (a) Actuator 1, (b) Actuator 2, (c) Actuator
3 and (d) Actuator 4.

of one in almost all of the actuation steps. Nevertheless, there seems to be almost no

considerable differences between both algorithms for the outlier analysis results.

One disadvantage of using the outlier analysis is that, even when unfolding procedures are

taken and the sensor data are fused, the information from all the actuation steps (models)

must be analysed independently. This is not the case for the methodology proposed in

this thesis. The advantage of the proposed methodology is the ability to fuse all the

information contained in the different actuation steps for the analysis rather than just

analysing each actuation step one by one. The results obtained applying the proposed

methodology with help of PCA, SPE measures and SOM are presented in Figure 7.38.

The SOM training algorithm used here is implemented in a Matlab®-Toolbox created

by [Vesanto et al. 2000]. To find the optimal map size, a control run is repeated by

changing the map size. In order to accomplish the selection of the optimal map size, the

average quantization error (QE) and topographic error (TE) were analysed. As a result,

a map size of 30×10 was defined. Nonetheless, for a proper understanding of the figures,

some properties of the U-Matrix must be discussed. It is good to bear in mind that the

mountain-like surfaces formed on a U-Matrix surface define the cluster boundaries. Valleys
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Figure 7.37. Outlier analysis by means of h-NLPCA: (a) Actuator 1, (b) Actuator 2, (c)
Actuator 3 and (d) Actuator 4.

on a U-Matrix surface point to cluster centres. The cluster maps in Figure 7.38(a) can be

used as a tool to show the different data sets grouped with similar characteristics showing

the clustering tendency. However, in this specific case, no clear cluster separation between

all the damage scenarios can be identified in the corresponding U-Matrix surface as it is

shown in Figure 7.38(b). This can be clearly seen since the simulated damage number two,

three and six cannot be differentiated in the U-Matrix surface, i.e. mountain-like surfaces

were not formed for allowing a separation between all the damage types. Nevertheless,

the undamaged state can be separated very well from the other simulated damage states.

This result is sufficient if the objective is just to identify if the system departs from normal

condition. However, if one wishes to address the problem of damage identification, the

obtained results cannot provide much information about the damage type.

In a similar manner as the one discussed before, analysis were carried out by means of

h-NLPCA, SPE measures and SOM. Figure 7.39(a) shows the cluster map. In this case,

seven clusters seem to have been well identified. This is the case for the U-Matrix surface

as well as it is shown in Figure 7.39(b). Additionally, the boundaries are more clearly

formed when compared with the previous example. It is also visible that a more compact
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(b)

(a)

Figure 7.38. Analysis with fused PCA, SPE and SOM: (a) Cluster map and (b) U-Matrix
surface. In-plane axes correspond to the number of neurons.

representation of the clusters with a lesser variance around the cluster centre is present

for the undamaged scenario as it can be seen from Figure 7.39(a).

In this case, the proposed methodology and algorithms seem to outperform the results

obtained with the previous methodology based on standard principal component ana-

lysis. The main advantage of using the processing approach presented here is to provide

robustness in the analysis by the use of data fusion using the projections obtained by

each model together with the square prediction errors measurements as inputs to a self-

organizing map.

Localised Increasing Mass Problem As it was previously discussed, it has been shown

that the proposed methodology was able to detect damage and the different damage cases.

Nevertheless, since the type of damages which were simulated in the previous example are

not very realistic with respect to a growing damage process, a second series of experiments
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(b)

(a)

Figure 7.39. Analysis with fused h-NLPCA, SPE and SOM: (a) Cluster map and (b) U-Matrix
surface. In-plane axes correspond to the number of neurons.

were undertaken. In these experiments damage is simulated again by a localised mass,

but the difference resides in that damage increase is simulated by locally increasing the

mass at the same damage location by steps so that damage states could be realistically

simulated. The magnets employed have a disk shape and their diameter, height and mass

of the magnets are 25mm, 10mm and 0.012kg, respectively. The magnets were placed on

both sides of the structure. A combination of magnets was used to get different mass

values. Four damage evolution steps were simulated using the following mass increase:

1. Damage state one corresponds to a localized mass of 0.024kg.

2. Damage state two corresponds to a localized mass of 0.048kg.

3. Damage state three corresponds to a localized mass of 0.072kg.

4. Damage state four corresponds to a localized mass of 0.096kg.
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(b)

(a)

Figure 7.40. Analysis with fused h-NLPCA, SPE and SOM for the localised increasing mass
problem: (a) Cluster map and (b) U-Matrix surface. In-plane axes correspond to the number of
neurons.

The damages were located in the middle position between P1 and P2. For the current

example, a level eight decomposition was accomplished as the optimal decomposition

level as with the previous example. The size of the mapping and demapping layer are

kept the same as well as the map parameters and number of retained components. For

comparison reasons, analyses are carried out by means of h-NLPCA, SPE measures and

SOM as presented before. Figure 7.40(a) shows the cluster map. In this case, four clusters

seem to have been identified. Nevertheless, the distance in the map between the clusters

associated to damage three and four is not significant. As it is shown in Figure 7.40(b),

this effect is also reflected in the U-Matrix surface as well. One can observed that for the

first two damage states the boundaries are very well-defined. However, the boundaries

separating the clusters for damage states three and four have very low values making an

separation between the states not so visibly clear and straight-forward to be identified.
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It seems from that from Figure 7.40 one could relate the damage severity with respect

to the distance between the cluster centres to the undamaged case. Nevertheless, as it

is going to the shown in the following subsections, where real damage is introduced to a

structure, this principle does not seem to always hold.

Temperature Influence on Damage Assessment Capabilities In order to conclude the

analyses with this structure, a final experiment was performed. As it was done previously

done, all the controlling parameters are kept the same for comparison purposes, i.e. DWT

decomposition levels, number of retained components, etc. The idea behind the exper-

iments carried out here is to depict the influence of changing environmental conditions,

i.e. temperature changes, in the assessment capabilities of the method. For this purpose,

baseline measurements are taken at different temperature levels. Temperature is varied

from T = 25°C to T = 75°C in increments of 10°C. The temperature was measured by two

PT100 sensors mounted on opposite corners of the aircraft composite skin panel. Results

are depicted in Figure 7.41.

These results are obtained by projecting the new measurements recorded at different

temperatures into the baseline models at T = 25°C, similarly to all the previous cases.

Figure 7.41(a) clearly shows how the recorded data are properly clustered according to

the temperature of measurement. It can be observed how the baseline measurements

at T = 25°C fall into a single and compact cluster around a neuron. The other clusters

appear to have a larger deviation around their cluster centres, even though, they are well

separated. This can be explained by the fact that during the temperature measurements

there was a temperature variation of ±3.5°C around the desired reference temperature.

Figure 7.41(b) shows that at higher temperatures, that is to say at T = 55°C, 65°C and

75°C, the boundary values between the clusters formed at these temperature levels are very

high. Even when it is not visually evident at first sight, the separation of the measurements

between the baseline model at T = 25°C and the measurements at T = 35°C and T = 45°C
have also well defined boundaries. As it was depicted before, special measures must be

taken into account in order to avoid false-positive indication of damage. As a result, it is

very important to collect training datasets over a wide range of environmental conditions

of the system so that the minimization of false indications of damage are accomplished

and in order to develop a robust monitoring system.

7.4.2. Pipe Structure

An experiment was performed in order to evaluate the practical performance of the pro-

posed methodology in pipework. Figure 7.42(a) depicts the experimental setup used for

testing. The pipes were kindly donated by Prof. Dr.-Ing. Bernd Engel, chair of the Form-

ing Technology Department at the University of Siegen. Four piezoelectric transducers
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Figure 7.41. Analysis with fused h-NLPCA, SPE and SOM for the temperature problem:
(a) Cluster map and (b) U-Matrix surface. In-plane axes correspond to the number of neurons.

PIC-151 from PI Ceramics are attached to the surface of the structure with equidistant

angular spacing on both sides at a distance of approximately 35mm from the flanges. The

piezoelectric transducers have a diameter of 10mm and a thickness of 2.5mm. The mon-

itored pipe has a length of approximately 850mm. It was made of stainless steel with an

outer radius of 20mm and 2.15mm wall thickness. Damage was introduced into the struc-

ture in several steps. It was executed as a cut with an angular grinder. The depth and its

vertical extension are enlarged in four steps, starting with a cut of 0.75mm depth. This

cut is increased in depth in a second step until the wall is almost penetrated, followed by

an increase in vertical direction. Finally the pipe wall is penetrated, increasing the depth

in the middle of the former notch. The different states can be found in Figure 7.42(b) to

(e).

It is well-known that each of the possible excited modes will produce different deformation

fields along the wall thickness, i.e. the particle displacements and velocities as well as the
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Piezoelectric Transducers

Monitored Pipe

Figure 7.42. Pipe structure used for evaluating the acousto-ultrasonics methodology: (a) Ex-
perimental setup, (b) Damage 1, (c) Damage 2, (d) Damage 3 and (e) Damage 4 cross sections.

stress and strain fields will all vary for each mode. Therefore, it is desired to select a

mode with greater penetration power across the wall thickness in the pipeline. Previous

works have shown that the second order longitudinal mode L(0,2) is very attractive to use

for long-range testing since it is practically non-dispersive and it is also the fastest mode

[Alleyne et al. 1998]. Additionally, this mode has most of its energy flow proportionally

located across the wall thickness. For this reason, special attention was paid in order to

excite this mode. In order to assure the selection of the mode, dispersive characterist-

ics and energy distribution analysis is carried out. To guarantee this requirement, the

excitation voltage signal was a 12V Hanning windowed cosine train signal with 5 cycles

and carrier frequency of 180kHz. The carrier frequency was chosen not only to maximize

the propagation efficiency but also to specially excite the L(0,2) mode [Torres Arredondo

et al. 2012]. Figure 7.43(a) shows the group velocity dispersion curves representing the

velocity of propagation of the wave energy. The normalized amplitude spectrum is also

shown in order to depict the frequency bandwidth of the pulse excitation signal used

in this study, i.e. toneburst with 5 cycles and carrier frequency of 180kHz. Moreover,
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Figure 7.43. Guided wave dispersive characteristics: (a) Group velocity dispersion curves and
pulse spectrum, (b) Displacement fields and (c) Normalised power flow.

the normalised displacement fields and power flow for the L(0,2) mode at a frequency of

180kHz are shown in Figure 7.43(b) and (c).

As it has been done previously, an outlier analysis is performed first. Nevertheless, in this

part both the detail and approximation coefficients at the optimal level of decomposition

are studied for the purpose of damage detection and possible identification of the damage

process. Furthermore, and according to the previous example conclusions, the analyses are

going to be done based solely on h-NLPCA built models. A level eight of decomposition

was found to be the optimal decomposition level. A review of the variances retained

in the components is performed in order to define the optimal number of components

required for building the non-linear model by means of standard PCA. For both models,

i.e. models built either with the approximation or detail coefficients calculated from

the pristine structure data, it was computed that the first three components included

around 95% of the total variance into the reduced model. In the present work, auto-

associative neural networks with different dimensions in the mapping and de-mapping

layers are applied to this training data to determine the best network architecture. For

the experiments depicted here, 178 neurons were used for both layers. The threshold

for the novelty index is calculated from the baseline data and the confidence level is
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Figure 7.44. Outlier analysis by means of h-NLPCA from the detail coefficients: (a) Actuator
1, (b) Actuator 2, (c) Actuator 3 and (d) Actuator 4.

defined to be 99.99%. For the present study, 80% of the recorded baseline data were

used for building the template models for each actuation step. The actuation signals

were generated in one of the ends near the pipe flanges for each transducer and then

the propagated guided waves were collected in the other side of the structure (see Figure

7.42(a)). Figure 7.44 shows the outlier analysis results obtained from the non-linear

modelling from the calculated details DWT coefficients and h-NLPCA modelling. It can

be observed that all damage cases were correctly identified for all the actuation steps.

However, as it can be seen from Figure 7.44(b), one undamaged data point appears to

be incorrectly identified during the actuation step number two. One additional point

to discuss is that the novelty index value is almost the same for all the damage cases.

This is a non-optimal result if one desires to track the dissimilarity between the different

damage evolution steps. Moreover, it can be seen that the novelty index values have a

big deviation for the baseline data. This can be explained by the fact that data-driven

modelling techniques are very sensitive to data which do no appear to be consistent

to the process to be modelled. This kind of inconsistent results can be introduced by

experimental errors, noise sources, small deviations during the recording of the guided

waves due to the internal clock synchronization differences between experiments, etc.
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Figure 7.45. Outlier analysis by means of h-NLPCA from the approximation coefficients:
(a) Actuator 1, (b) Actuator 2, (c) Actuator 3 and (d) Actuator 4.

The outlier analysis results obtained from the non-linear modelling from the calculated

approximation DWT coefficients and the h-NLPCA modelling are depicted in Figure 7.45.

The analysis shows that damage can be well separated from the pristine state using only

the first three non-linear components for all the actuation steps. It can also be observed

that the damage cases can be relatively well distinguished by just using the novelty index.

Interestingly, it appears to be that the novelty index correlates well with the damage

severity for the first three damage cases, i.e. the values increase as the damage severity

increases. However, this correlation breaks down for the case of damage four where the

novelty index values decrease. For the case of the h-NLPCA models, one can see that

the novelty index values for the baseline measurements turn up to be somewhat more

compact in contrast to the values previously discussed using the detail DWT coefficients.

Finally, the proposed methodology is evaluated for both the detail and approximation

coefficients. As it has continuously done throughout this section, a control run is repeated

by changing the map size in order to find the optimal map size by analysing the average

quantization error and topographic error. As a result, an optimal map size of 30×10 was

obtained. Results are quite similar to the ones obtained with the outlier analysis. For this

analysis, only the U-Matrix surface plots are depicted. It can be seen from Figure 7.46(a)
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(b)

(a)

Figure 7.46. Analysis with fused h-NLPCA, SPE and SOM for the pipe damage detection prob-
lem: (a) U-Matrix surface from detail coefficients and (b) U-Matrix surface from approximation
coefficients. In-plane axes correspond to the number of neurons.

that all damage cases can be clearly identified but not separated for the case of the detail

coefficient-based models. For the case of the approximation coefficient-based models, it

can be observed from Figure 7.46(b) that five clusters seem to have been well formed.

In particular, it can be observed that the undamaged state can be properly separated

from the rest of damage cases. A separation between the different damaged cases is also

possible due to the well-defined boundaries in the U-Matrix surface.

As it has been shown, in this particular case, the coefficients of the details, i.e. the high

frequency part of the signal, also provide good results. This could probably be explained

by higher harmonic generation of guided Lamb waves. It has been shown that non-

linear materials depict power-dependent transmission and selective generation of higher

harmonics [Bermes et al. 2007, Shadrivov et al. 2008, Srivastava and Scalea 2009]. A

study of the applicability of DWT coefficients for damage detection is presented under
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Figure 7.47. Experimental setup for the CFRP sandwich structure.

joint research by the author in [Tibaduiza et al. 2013]. Nevertheless, this topic requires

further research.

7.4.3. Carbon Fibre Reinforced Plastic Sandwich Structure

The next experiment to be performed is done in a CFRP sandwich structure. The sample

was kindly provided by Dr. Kaj Kvisgaard Borum from the Risø National Laboratory

for Sustainable Energy at the Technical University of Denmark. The overall size of the

structure is 217mm×217mm×31mm. The skin is made of carbon/ epoxy material with a

0.5mm thickness. The stacking sequence is [0°90°]. The core is made of polyether imide

foam with a 30mm thickness. Four piezoelectric transducers PIC-151 from PI Ceramics

are attached to the surface of the structure with equidistant spacing. The piezoelectric

transducers have a diameter of 10mm and a thickness of 0.5mm. The sensors were posi-

tioned at an equidistance of 40mm from each corner. Figure 7.47 depicts the experimental

setup used for testing.

Damage on the multilayered composite sandwich structure was intentionally produced in

order to simulate different damage mechanisms, i.e. delamination and cracking of the skin.

The damages were carefully introduced and measured. Table 7.12 outlines the descriptions

for the six simulated damages on the composite skin panel. The excitation voltage signal

is a 12V Hanning windowed cosine train signal with 5 cycles and carrier frequency of

50kHz. The carrier frequency was chosen to maximize the propagation efficiency.

For the current experiment and according to the conclusions drawn from the previous

example, only the approximation coefficients are evaluated. A level eight of decomposition

was found to be the optimal decomposition level. A review of the variances retained in

the components by means of standard PCA is performed in order to define the optimal

number of components required for building the non-linear model. It was calculated that

the first fifteen components included around 80% of the total variance into the reduced
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Table 7.12. Damage description for the generated damages in the CFRP sandwich structure.

Damage Number Damage Description

Delamination: Started symmetrically from the right side of the
1 sample at its middle position along the y-axis. Its width

along the y-axis is 16mm and depth along the x-axis is 10mm
2 Extended the previous damage to a width of 33mm

and depth of 42mm
3 A crack of 25mm length initiated at the middle position along

the vertical y-axis and in parallel direction to the x-axis
4 Extended the previous crack to a length of 30mm
5 Extended the previous crack to a length of 45mm
6 Extended the previous crack to a length of 70mm

model. This number of components was selected for h-NLPCA. The optimal number of

units for the mapping and de-mapping layers was calculated using Eq.(2.38). For the

experiments depicted here, 80 neurons were used for both layers. The optimal map size

was found by analysing the average quantization error and topographic error. As a result,

an optimal map size of 30×15 was obtained. Results are depicted in Figure 7.48.

Figure 7.48(a) show the clusters map using the fused data from the h-NLPCA models

and the SPE measures calculated from the approximation coefficients. As it is possible

to observe by means of the separations between the groups in the Figure 7.48(a), seven

clusters seem to have been well identified. Nevertheless, if one observes carefully 7.48(b),

only six clusters appear to be formed in the U-Matrix surface. It can be seen that there

is no a clear visible boundary separating damage three and four. This could be probably

explained due to the fact that there is no a significant increase in the crack length between

both damages. Additionally, it can be observed that the boundaries values are higher

for the last two damage cases. This is probably given by the fact that these damages

are located inside of the area covered by the sensor network which provides a higher

interaction of the waves with the damage and less disturbing effects introduced by the

boundaries of the structure. Nevertheless, the results obtained with the first four damage

cases are also very satisfactory.

7.5. Impact Load Monitoring

In this section, the Bayesian framework within the context of Gaussian Processes for

the purpose of impact magnitude estimation and localisation presented in Chapter 6 is

demonstrated experimentally and discussed. Following this concept, a probabilistic model

is constructed either for impact load or impact location estimation and predictions are

then expressed in terms of a predictive distribution that gives the probability distribution

over the predicted targets, rather than simply a point estimate. The training algorithm
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(b)

(a)

Figure 7.48. Analysis with fused h-NLPCA, SPE and SOM for the pipe damage detection
problem: (a) Cluster map and (b) U-Matrix surface. In-plane axes correspond to the number of
neurons.

used here for regression is implemented in a Matlab®-Toolbox created by [Rasmussen

and Williams 2006].

7.5.1. Impact on an Isotropic Plate

A specimen was made from a 2mm aluminium sheet of dimensions 800mm×800mm. For

the present experiment, six broadband piezo-transducers PIC-255 from PI Ceramics were

installed on the surface of the plate. The piezoelectric transducers have a diameter of

10mm and a thickness of 0.5mm. Figure 7.49 displays the evaluated structure. The sensor

positions are given in Table 7.13.

The experimental setup consisted of two HS4 handy-scopes from TiePie Engineering, an

impulse force hammer from Kistler Holding AG and a PC. The time histories are di-
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Figure 7.49. Experimental setup for the aluminium plate.

gitised at a sampling frequency of 10MHz. For the impact magnitude estimation, the

Gaussian process had a single output target whose inputs were the area under the curve

of the power spectral density from each sensor and the non-linear principal components

extracted from the calculated approximation coefficients obtained by the DWT. A level

six of decomposition was found to be the optimal decomposition level. Standard PCA

was used in order to define the number of principal components used in the h-NLPCA.

Principal components contributing less than 2% to the total variation of the data set were

eliminated for this task. Accordingly, ten components were selected for the purpose of

dimensionality reduction. The optimal number of units for the mapping and de-mapping

layers was defined as thirty following the same procedures depicted in the previous ex-

amples. To test the proposed method, more than 800 impacts of different magnitudes

were exerted on the surface of the plate with a grid density of 50mm in order to create

the database. The data were then divided into training and test sets. Twenty percent of

the total amount of data was used for testing purposes.

Figure 7.50 shows the results of impact magnitude estimation for 30 randomly selected

Table 7.13. Sensor locations in the aluminium plate.

Sensor xposition (mm) yposition (mm)

1 200 400
2 350 400
3 450 400
4 600 400
5 400 550
6 400 250
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Figure 7.50. Estimated and measured impact forces on the plate.

testing events. The grey bars represent the means provided by the Gaussian process

predictive distribution, and the error bars corresponds to plus and minus two stand-

ard deviations. For the testing set, the Gaussian process was able to estimate the impact

magnitude force with an average percentage error of 3.3%. This result reflects an improve-

ment in comparison with traditional methods based on neural networks and traditional

descriptors when it is compared to results obtained from a similar structure [Jones et al.

1997]. It is worth noting that since the input force spectrum exerted in the structure is

a combination of the stiffness of the hammer tip and the stiffness of the structure, the

Gaussian process ability to provide accurate estimates between different types of impacts

is highly dependent on the provided training data covering all the possible ways an impact

may occur. To generate the database experimentally under these conditions can be a very

expensive and almost an impractical task, therefore, the use of computer modelling tools

is suggested for this purpose. Here, only hard tip impacts are studied.

For the impact localisation, two independent Gaussian processes with outputs corres-

ponding to x and y coordinates of the impact were implemented. The inputs were the

differences in time of flight between the sensors and the frequency content of the first

wave arrival in every sensor of the network. The Wigner-Ville time-frequency analysis

was evaluated for the analysis of the MAP decomposed stress waveforms.

Figure 7.51(a) and (b) depict the impact positions estimated by the algorithm and the

known positions in every test. The root mean squared errors (RMSE) on the test set

were found to be 2mm and 3.2mm for the x and y coordinates, respectively. As it can be

seen, the results obtained are very accurate. It can be noticed from the previous figures

how the uncertainty increases in the regions where the estimates deviate from the true

values. However, this is not always true and sometimes the algorithm provides poor results

with high confidence. This is a common case and criticism in Bayesian methods where
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Figure 7.51. Estimated and real impact locations on the plate: (a) x coordinate and (b) y
coordinate.

poor choices of priors lead to these results [Bishop 2007]. Another general shortcoming

of the proposed methodology is that it depends on the quality of inputs, i.e. onset-time

estimation, principal components, etc. These inputs must be determined precisely and

with a high degree of automation.

7.5.2. Impact on an Airbus A320 Fuselage

An aircraft fuselage from an Airbus A320 is used in order to investigate the effectiveness

of the method in a more complex and realistic structure. The structure includes a curved

plate, four vertical stringers and seven horizontal ribs. The fuselage was instrumented

with nine broadband piezo-transducers PIC-255 from PI Ceramics bonded on the curved

plate surface. The piezoelectric transducers have a diameter of 10mm and a thickness of
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Figure 7.52. Experimental setup for the Airbus A320 fuselage.

0.5mm. The structure and transducers configuration are shown in Figure 7.52.

The hardware used for this experiment is the same as the one used in the previous example.

The time histories are digitised at a sampling frequency of 2MHz. To test the proposed

method with this structure, more than 1500 impacts of different magnitudes were exerted

on the surface of the fuselage in order to create the database. Impacts were executed

with four different types of hammer tips, i.e. one soft, one medium and two hard tips.

A level four of decomposition for the wavelet transform algorithm was found to be the

optimal decomposition level. In order to define the number of principal components

used in the h-NLPCA, an analysis by means of standard PCA was carried out. Principal

components contributing less than 2% to the total variation of the data set were eliminated

for this task. As a result, ten components were selected for the purpose of dimensionality

reduction. The optimal number of units for the mapping and de-mapping layers was

defined as eighty. The data were then divided into training and test sets. Twenty percent

of the total amount of data was used for testing purposes. Figure 7.53 shows the results

of impact magnitude estimation for 30 randomly selected testing events.

Here again, the grey bars represent the means provided by the Gaussian process predictive

distribution, and the error bars corresponds to plus and minus two standard deviations.

For the testing set, the Gaussian process was able to estimate the impact magnitude

force with an average percentage error of 9.3%. This result is not so unsatisfactory if one

considers the high complexity of the structure in comparison to the plate-like structure

analysed before. It can be noticed from this figure how the uncertainties are higher in

this example. This result provides an idea about the uncertainty and reliability of the

developed model predictions.

For the impact localisation, the structure is divided into eighteen sections (see Figure

7.52) where one is interested in determining the section where the impact occurred instead

of the exact impact coordinate. One independent Gaussian process is implemented for
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Figure 7.53. Estimated and measured impact forces on the Airbus A320 fuselage.

classification. The training phase used a 1 of M strategy, i.e. the Gaussian process is

required to produce a value of 1 at the output corresponding to the desired class and

0 at all other outputs. As it was explained before, this actually estimates the Bayesian

posterior probabilities for the classes with which the outputs are associated. Due to the

long time taken to run the multi-class code and as it is done in [Williams and Barber

1998], a maximum penalised likelihood approach was undertaken in which the gradient

is used as input to a scaled conjugate gradient optimizer attempting to find a mode of

the class posterior rather than to average over the posterior distribution. A part of the

codes implemented here for the multiple class problem were kindly provided by Professor

Christopher K. I. Williams from the School of Informatics at University of Edinburgh.

An average percentage error of 3.33% was obtained for the multi-class problem. Due

to the big size of the confusion matrix, this one is not depicted here. A classification

approach based on a standard multilayer perceptron network was further pursued due to

the long processing time required with the Gaussian process. It was found that similar

results were obtained with the neural network within a processing time of few seconds in

comparison to several hours required using the Gaussian process. This fact clearly depicts

a disadvantage of using Gaussian processes for classification purposes when one takes into

account the computational cost and time required.
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8. Conclusions and Future Work

This thesis has examined and proposed possible solutions to several research issues which

are still opened in guided wave structural health monitoring applications which perform

their tasks under the principles of acoustic emission and acousto-ultrasonics. It has been

shown throughout this thesis that these technologies have a broad area of application for

aeronautic, aerospace, civil and mechanical structures. This is explained by the fact that

guided waves are able to propagate over relative long distances, interact sensitively with

and/or being related to different types of defects. Examples of the proposed methodologies

have been experimentally evaluated and their advantages and limitations identified.

Firstly, Chapter 1 described the concepts of structural health monitoring as well as the

impact of the implementation of an SHM methodology for life-safety, economic and eco-

logical benefits. Additionally, this chapter introduced a review in literature together with

the subject of research and the framework under which it was accomplished. Within this,

it was proposed to tackle the different problems presented in this thesis using a data-based

approach combining both the physical understanding of the wave propagation problem

and advanced signal processing and pattern recognition approaches. After the introduc-

tion, Chapter 2 reviewed the fundamentals of guided wave propagation in solid media for

pipe-like and plate-like structures. This is motivated by the fact that many structures

have this type of geometry in practice. The mathematical modelling of these waves in such

type of structures and an analysis of the dispersive nature of guided waves as a function of

the frequency-thickness product have been depicted. Discussion regarding the variation of

wave velocities and effects of guided wave attenuation have been brought into attention in

order to aid for a better understanding of the physical problem which allowed an improved

inspection of complex structures. This is followed by an introduction to ultrasonic guided

wave analysis techniques in conjunction to an explanation of the sensors and actuators

used in this thesis. Finally, different techniques for signal processing and analysis are

presented. These techniques are introduced for the purpose of signal conditioning, extrac-

tion and selection of damage-sensitive features, sensor-data fusion, pattern recognition

and visualisation. It is known that structures normally contain structural features such

as reinforcements, holes, thickness changes, rivets, welds, etc. This structural features

influences the path of ultrasound from source to sensor and make the interpretation and
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analysis of the recorded guided waves a challenge. For that reason, it is expected that the

use of robust signal processing and patter recognition techniques lead to the development

of efficient SHM methodologies.

In Chapter 3 a coupling between viscoelasticity theory and a laminated plate theory has

been suggested which is applicable to viscoelastic fibre reinforced composite materials for

the calculation of wave velocities, attenuation and energy focusing for the different modes

of propagation. It is believed that one can only possible benefit from the advantages of

guided waves once the complexity of guided wave propagation is disclosed. Given this

reason, an understanding of the behaviour of wave propagation in solid structures would

greatly help to improve the accuracy and applicability of the techniques implemented in

this thesis. The motivation of using an approximate theory is given by the fact that

exact solutions from the three-dimensional elasticity theory require very sophisticated

and computational expensive procedures for tracing the dispersive solutions in complex

multilayered and viscoelastic media. The proposed model is intended to shorten time

consumption in calculations, allow to study wave propagation phenomena with a higher

efficiency while maintaining good accuracy in the results. Additionally, the computational

requirements of the proposed model are reasonably modest. This chapter presented the

complete mathematical development of the theory, introduced the standard material vis-

coelastic damping models, and provided a guideline for the computer implementation of

the model.

According to the results presented in Section 7.2, comparisons to experimental data

showed that the proposed model provided accurate estimates of velocity and attenuation

in anisotropic laminates in the frequency range of guided wave applications. Furthermore,

the focusing of guided waves has been numerically depicted and its importance brought

into consideration for the development SHM systems. From numerical calculations it

was illustrated that this phenomenon rendered a superposition of waves into a flux pat-

tern containing caustics. Additionally, a computer program for the modelling of guided

wave-based SHM systems for thin shells developed at the University of Siegen was used

to further validate the proposed model and depict visually in a clear manner the wave

propagation phenomenon [Schulte 2010]. Section 7.2.5 presented a possible application

example of the developed model for manufacturing control where lamb waves could be

used for detecting fibre misorientation or stacking sequence errors in composite laminates.

Nevertheless, it is also worth mentioning that the model suffers from some limitations that

prevent it from being used to solve the whole spectrum of composite laminate problems,

i.e. for high frequency-thickness products. By increasing the complexity of the structure,

that is to say as the number of constitutive layers increases, the solutions obtained with

the plate theories start to highly deviate from the exact solutions and render to incorrect

results. It is well known from literature that higher order theories accuracy deteriorates

as the laminate becomes thicker; in the case of the developed model an error below 3% in
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comparison to the exact three-dimensional elasticity theory was obtained for a frequency-

thickness product of 1.2MHz×mm. Moreover, plate theories require the calculation of

correction factors, as it was depicted in Chapter 3, in order to match frequencies from the

approximate theory to frequencies obtained from the exact theory. As it was concluded

there, for the general case of a laminate, this procedure becomes burdensome as the value

of the correction factors depends on the number, stacking sequence and properties of the

constitutive plies [Whitney and Sun 1973].

Despite these limitations, it has been demonstrated that the knowledge of factors like

attenuation, wave velocity and energy focusing of Lamb waves provides a better under-

standing of the wave propagation phenomena and allows to analyse in depth the influence

of important parameters like actuator/sensor positions, the determination of the inspec-

tion range of the sensor network and to improve the probability of detection of guided

waves.

Chapter 4 was fully dedicated to modal analysis of acoustic emission. It is emphasized

here that the selection of AE in this thesis is due to its ability to detect evolving dam-

ages during in-service life of structures. Source characteristics of acoustic emissions are

investigated first on the basis of mode excitability based on elastodynamic reciprocity.

This allows to understand and provide a quantitative measure of the radiation pattern of

guided wave energy which is separated between the various modes of propagation being

excited. Furthermore, these calculations provide a mean to get an insight into the source

mechanism in relation to the modes present in an AE signal by correlating the direc-

tion of displacement from damage sources to the excited modes. As it was mentioned in

Chapter 4, the antisymmetric wave modes with dominant out of plane motion will be more

strongly related with damages lying parallel to the plane of the wave propagation such

as delaminations, fibre, skin or core debonding, and impact damage. Alternatively, the

symmetric wave modes with dominant in-plane motion will be more strongly related with

damages lying perpendicular to the plane of wave propagation such as matrix cracking,

matrix splitting, fibre breakage and core crushing [McGugan et al. 2006]. Furthermore,

an introduction to time delay estimators, onset time detectors and frequency analysis is

given. These topics are of great interest since they are one of the most important steps

required for the localisation of acoustic emission events.

At the end, three automatic methods are proposed for the analysis of AE signals. The

first two methods are used for the identification of propagating modes in acoustic emis-

sion signals. They are based on artificial neural network classification of the recorded

waveforms and a combined methodology used for the characterisation and classification

of modes based on dispersion features and energy distribution analysis. The third method

proposes a scheme where feature extraction, sensor-data fusion and pattern recognition

based on unsupervised clustering is used to find different patterns among the input data.

Based on the results presented in Section 7.3.1, the first methodology based on neural net-
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works was successfully used to classify the fundamental modes of propagation contained

in the recorded AE data with great accuracy for the evaluated structure. Additionally,

a comparison of the performance of the localisation algorithm presented in Section 4.7

together with the proposed technique was shown by evaluating the different time delay

estimators and onset detectors presented in Section 4.3. It could be seen that the per-

formance of the methods based on the cross-correlation technique was greatly affected by

the dispersive effects of the recorded signals which led to big inaccuracies in the localisa-

tion results. The methods based on the Hinkley criterion and the AIC proved to provide

more accurate results for localisation. However, it is recommended to use the AIC picker

since this algorithm does not require any parameters to be adjusted as it is the case for

the Hinkley method where the parameter ε is selected according to the material tested.

Nevertheless, some issues with the proposed techniques must be discussed. First, a pos-

sible source of error leading to the incorrect identification of modes can happen when they

overlap and interfere which will further induce errors in the source localisation. Moreover,

the selected length of the signal characterising the different modes will vary according to

the structure and its features. These effects can generate some difficulties in the practical

application of this method. Moreover, real AE data from evolving damages will be rarely

available in practice in order to successfully implement the supervised learning algorithm.

A way to possibly tackle this problem would be the creation of computer models from

which the AE could be generated, but this could be a very complicated and expensive

tasks.

In order to overcome this problem, the second approach based on a special decomposition

technique and dispersive/energy analysis was proposed. This approach was specially

developed in order to be able to identify the different modes recorded in the AE signals

and guarantee that the onset time predictions corresponded to the same picked mode in the

sensor network for the improvement of the localisation of the source. As it has been stated

continuously all over this thesis, a major difficulty in acoustic emission is the analysis of

broad-banded signals and discrimination of the modes contained in the recorded signals.

Here, a chirplet atomic decomposition was developed to accurately classify wave packets

pertaining to different modes of propagation based on dispersive energy characteristics.

As it was depicted in Section 7.3.2, the proposed decomposition automatically finds the

atoms describing the content of the AE signals and provides an optimized representation

of the acoustic emission waveforms. Additionally, in contrast to previous studies imple-

menting the matching pursuit algorithm for the analysis of ultrasonic waves [Zhang et al.

2000, Hong et al. 2005], the atoms contained in the dictionary of the proposed technique

are well-suited for analysing the dispersive signals with a non-stationary time-frequency

behaviour. A matching pursuit decomposition in a given dictionary defines a system of

interpretation for signals. The algorithm isolates the signal structures that are coherent

with respect to a given dictionary. For this reason, the atoms contained in the dictionary
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must be coherent with the physics of the signals to be decomposed. The dispersion know-

ledge gained with the proposed plate theory in combination with spectral analysis in the

frequency domain and the knowledge of excitability functions helped in the development of

a dictionary with optimal control parameters for the signals contained in it. This strategy

significantly improves the resolution of the decomposition without increasing the size of

the dictionary and speeding up the computation time. From a statistical point of view,

this method is closely related to projection pursuit strategies developed by [Friedman and

Stuetzle 1981] for statistical parameter estimation. In addition, a time-frequency energy

distribution allowed the complete investigation of the frequency content evolution from

complex ultrasonic signals of interest to structural health monitoring.

The third proposed methodology is motivated for the purpose of automating a proced-

ure for acoustic emission clustering based on self-organizing maps where the inputs to

the neural network are obtained from the processed stress waves. The processing steps

included feature extraction, feature selection, sensor-data fusion and dimensionality re-

duction as it is explained in Section 4.8. Within this methodology, a fundamental un-

derstanding of guided waves and the characterisation of their nature were essential for

the correct identification of the formed clusters. Additionally, it is expected to benefit

from the capabilities of unsupervised learning such as the ability to find the hidden struc-

tures in the recorded data without any previous knowledge. It was assumed here that

damage mechanisms will generate AE signals with different waveform characteristics so

that the pattern recognition methodology can exploit this fact for the proper clustering of

the recorded AE events. In order to validate this methodology, the first case study con-

sisted of analysing the AE waves detected during tensile testing of a unidirectional GFRP

sample with fibres parallel to the load whose damage sequence was well established as it is

shown in Section 7.3.3. This fact allowed to further validate the correlation of the formed

clusters with the damage mechanisms. Additionally to the application of the proposed

methodology, standard AE analyses were also performed.

As it was expected from the standard AE analyses, the number of hits increased with the

load due to the succession of the different damage mechanisms. The number of cumulative

AE hits was very repeatable for all the tested specimens. Using the proposed methodo-

logy three clusters of damages were clearly identified for the tests. The relations of the

clusters to the respective damage mechanisms were done based on modal analysis of the

signals by analysing their dispersive characteristics and their energy distribution in time

and frequency. This was additionally validated by inspecting the samples both during the

tests and careful analysis using a 3D measuring laser microscope. As the samples were

transparent, visual identification and correlation to the damage mechanisms was as well

facilitated. The first cluster was characterized by low amplitude signals representing emis-

sions due to matrix cracking. The second cluster were high amplitude signals representing

emissions due to fibre breakage. The third cluster were low amplitude signals representing
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emissions due to fibre-matrix debonding. The results are similar to the ones presented in

the reviewed literature regarding damage mechanism identification [Hallett and Wisnom

2006, Emery 2007, Bussiba et al. 2008, Paipetis and Aggelis 2012]. The samples loaded

with the fibre direction perpendicular to the load suffered from sudden failure, generated

very few AE activity and did not provide valuable information for analysis.

The second configuration tested was a double cantilever beam configuration where the

samples were forced to fail either in Mode I or Mode II of failure. For the specimens

under Mode II failure, a similar behaviour to the one observed with the tensile samples

with the fibres perpendicular to the load direction was obtained. The samples failed

during two sudden jumps which could be easily observed from the load time histories.

The amount of collected AE hits was high but, in a similar manner, no visible clusters

were identified using the proposed methodology. In contrast, the specimens under Mode I

failure presented a quite different behaviour. The samples showed higher AE activity and

a steady crack growth. Using the proposed methodology two clusters of damages were

clearly identified for all the tests. The correlation between the formed clusters from the

pattern recognition of experimentally recorded AE events and damage mechanisms were

believed to correspond to delamination between the middle plies and fibre bridging-related

events such as fibre breakage according to the occurrence of the damages and the modal

analysis performed on the clustered signals. It could be seen as well that the localisation

of AE events was successfully accomplished.

The methodology developed in this thesis seems to satisfactorily work for the purpose of

identification of failure mechanisms. However, there were many influencing effects that

were not taken into consideration and that could influence the performance and clustering

capabilities of the method and which deserve further discussion. For example, it is known

that boundary reflections, transducer response and transducers sensitivity could affect the

waveforms used to characterise the damage mechanisms and this could lead to possible

wrong characterisation. These effects were omitted in the proposed methodology. It has

also been shown in [Hamstad et al. 2001] that the close proximity of the specimen edges

can influence measurements giving waveform observations that differ depending on the

test specimen size. For the reasons given before, it is highly desirable in many cases to

complement AE analysis with confirmation of the damage mechanisms by another tech-

nique. It would be also interesting to evaluate the concept of moment tensor inversion

used for modelling the source mechanisms. This theory is based on the fact that dis-

placement discontinuities can be represented by equivalent volume forces [Ohtsu and Ono

1986, Grosse and Ohtsu 2008]. However, this concept can only be applied in case that the

size of the defect is much smaller than the dimensions of the structure and the shortest

wavelength being studied [Johnson and Gudmundson 2000]. Moreover, additional testing

and data analysis would be of great importance for the further validation of the method

so that it could be employed for the quasi real-time classification of damage mechanisms
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during AE monitoring.

Chapter 5 was completely dedicated to the application of acousto-ultrasonics for damage

assessment. Firstly, an introduction to the transducers configuration and the criteria for

the selection of the optimal excitation signal was presented. The selection of parameters

such as the optimal number of cycles and excitation frequency together with an analysis

of spreading of ultrasonic guided waves in space and time were discussed in detail. The

mode shapes of different guided wave modes have been analysed in order to depict the

importance of the selection of the actuation signal for an optimized damage detection

strategy. This is explained by the fact that it is possible that the modes that are excited

in the structure could not be able to interact with damage. This is given due to the

changing ratio of displacement and stress amplitudes along the wall thickness as it was

depicted in Section 5.3. As it was explained there, the behaviour of guided waves and their

interaction with damage is very complex where the sensitivity to damages is a function

of the type of mode being excited, the frequency-thickness product and not only of the

used wavelength [Alleyne 1991]. This behaviour of mode interaction is exploited in the

study case undertaken with the pipe-like structure introduced in Section 7.4. Moreover,

several factors affecting the damage detection performance such a variable temperature,

changing operational conditions and sensor damage were treated and their effects on the

wave propagation were experimentally depicted. At the end, a methodology for damage

assessment was developed on the basis of data-driven modelling.

According to the results presented in Section 7.4, an efficient way to detecting and identi-

fying damages was developed in this thesis. A comparison of data-driven modelling using

both multi-way PCA and multi-way h-NLPCA by means discrete wavelet transform coeffi-

cients, squared prediction error measures and self-organizing maps was presented. Results

were shown that illustrated the application of the proposed methodology to isotropic and

anisotropic composite structures. The coefficients from the DWT allowed a reduction

in the computational cost by decreasing the size of the unfolded matrices by each ac-

tuation step since the whole recorded time histories are not used. This step allowed to

lessen the difficulty of analysing directly the complex time traces by extracting relevant

damage-related information and reducing the dimensionality of the problem. Similarly,

the identification of the data set from different structural states was improved. The res-

ults showed that the proposed methodology outperformed the analysis accomplished with

PCA. This is given by the fact that the method allowed securing the separability of the

data classes and permitted a lower dimensional representation. In addition, it was shown

how the SOM algorithm by means of the U-matrix surface allowed the identification of the

different structural states. Nevertheless, it is good to bear in mind that for the method

to be functioning, reliable models for the healthy and damage conditions must be avail-

able as with any physical or data-driven models. The analyses showed how the damage

detection and identification should be performed by reviewing the cluster maps and the
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U-matrix surfaces. Using the cluster map, the clustering tendency can be evaluated and

the identification of the data sets can be performed. The U-matrix surface allowed to

identify the sparser regions between the map. A comparison of the use of either the

approximation or details coefficients from the DWT showed that both methods allowed

the detection of damage. However, the results obtained from the detail coefficients did

not allow to identify the different damage scenarios. It is very interesting to see how the

high frequency bands of the recorded signals provided valuable damage-related informa-

tion. This could be probably explained by the possible presence of high order harmonics

in the spectrum of the transmitted signals which could be an indication of non-linearity

inside the material. This effect could potentially lead to significant enhancement in the

sensitivity to structural defects.

The effects of temperature and surface wetting on guided wave propagation were also

addressed. From Section 7.2.4 it could be observed that the main effects where increase

in time-of-flight and changes in sensor response magnitude. It can be concluded that

influences such as temperature and changing operational conditions, which modify the

structural dynamic responses, can be sufficient to disguise any changes correlated to dam-

age to a level that it might not be detected. These changes can be considered as one of the

main disadvantages for implementing active guided waves based techniques in real world

applications. This is of special attention in baseline-based methods where the detection

and characterisation of damage is performed normally by means of metric indices by com-

parison of two dynamic response signatures. It was shown in Section 7.4 that the influence

of temperature must be compensated so that the damage assessment capabilities are not

degraded. It is good to bear in mind that the effects of temperature on the transducer

performance were not studied here. Nevertheless, it has been shown that these effects are

significantly less than the effect of temperature on wave propagation within the structure.

According to the authors opinion, the development of an improved modelling technique

incorporating the effects of variable temperature in wave propagation and sensor response

as well as the analysis of sensor fault detection would be of great support for the design

of a virtual SHM system. It was suggested to collect a baseline related to these envir-

onmental conditions over a large range of these changing conditions so that they can be

characterized to reflect the different environmental states. However, this approach can be

an expensive process and other methods such as the optimal baseline selection and/or the

optimal signal stretch are recommended [Konstantinidis et al. 2007, Clarke et al. 2009,

Croxford et al. 2010].

An advantage of the approach presented here is to provide robustness in the analysis

by the use of sensor-data fusion using the projections obtained by each actuation step

together with the squared prediction errors measurements as inputs to a self-organizing

map. Additionally, the self-organizing maps visualization capabilities makes this approach

interesting, especially for larger amount of data with high dimensional feature vectors.
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From the results it can be seen that the multi-way extension of the method proved to be

very useful in systems involving several sensors since it allowed building a model for the

whole system instead of one by each sensor.

However, there are as usual limitations attached to the proposed methodology. The pro-

posed scheme is a qualitative method which is not capable of multi-site damage detection

and identification. If several damages appear in the structure, they will emerge as a

new cluster inside the map. Moreover, damage localisation with the acousto-ultrasonics

technique has not been proposed in this study. A possible solution for damage localisa-

tion is the use of statistical indices and contributions based on PCA as it is proposed in

[Tibaduiza-Burgos et al. 2011]. However, this technique can only provide a very rough

estimate of the area where damage can be located and the implementation of a very dense

sensor network would be required in order to provide more accurate locations of damage.

More advanced and reliable techniques are discussed by the author in [Moll et al. 2012].

Chapter 6 was dedicated to the topic of impact load monitoring. The chapter started with

a description of the type of loads and the different approaches available for load monit-

oring. In this section the motivation of using a machine learning techniques is stated.

This is motivated by the fact that for structures of high complexity with complicated

geometrical profiles and material non-uniformity, it is a very difficult task to achieve a re-

liable inverse model from physical laws-based models. This is followed by a description of

the procedures used for sensor-data fusion, feature extraction and selection together with

the introduction of Gaussian processes for the purposes of regression and classification.

A unique combination of time-frequency analysis, auto-associative neural networks for

dimension reduction and Gaussian processes is developed to automate the impact identi-

fication problem. This process involved the passive monitoring of stress waves induced by

impacts and evaluated the proposed automatic approach for impact magnitude estimation

and localisation based on Bayesian analysis with single target Gaussian processes.

Results from Section 7.5 demonstrated the success of the adopted scheme to provide

accurate estimates of position and impact magnitude in two structures. Analysis of the

experimental results have depicted that the selection of training data able to reflect the

physics of the system under study is a decisive factor in order to obtain an accurate

and reliable Gaussian process model for regression and classification. The application of

advanced signal processing techniques allowed the extraction of non-linear components

from signals of interest to structural health monitoring providing a noise reduced model

of the investigated process and improving the performance in regression and classification

of the implemented Gaussian processes. As with the supervised neural network approach,

the limitations of the method are given by the collection of data representing the different

impact loads which could happen in reality. The Gaussian process model should be trained

with data representative of the complete possible scenarios in order to be a robust method

able of providing reliable estimations. As it was already mentioned in Section 6.2.2,
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machine learning algorithms can require large training data sets in which the collection

of training data can be an expensive process. In the case of very high value structures,

the expense of collecting the training data would be compensated by the advantage of

getting a more accurate predictive model. In order to try to cope with this problem,

numerical simulations of the system behaviour could be carried out in order to help in

the process of collecting training data as it was discussed by the author in [Yang et al.

2011]. Additionally, a detailed evaluation of the use of Gaussian processes for multi-class

classification showed that this technique proved to be a very expensive method in both

computational resources and elapsed calculation time. A neural network trained with a

1 of M strategy showed to provide similar results in a fraction of the time required with

the Gaussian process classification.

Within the framework of future developments, the objective analysis of the developed

methodologies and their experimental results depicted that there were several areas which

could be improved through further research before implementing them in operative SHM

systems. For example, the methods proposed in this thesis must be evaluated on a wider

variety of practical structures under real operating conditions since the structures tested

during this work only represent a small part of those encountered in reality. It is expec-

ted to meet additional challenges while implementing these methods on more complex

structures and variable conditions. Additional studies must be also carried out for the

design of sensor networks and the sensors themselves based on all the considerations de-

picted throughout this thesis. The consideration of higher order modes of propagation

would be also very useful as a mean for the possible improvement of damage sensitivity

for active-sensing technologies. In the case of AE technologies, additional testing must

be implemented in order to be able to design robust methods for damage mechanism

characterisation. As it was proposed in [Ono 2006], the development of regional or global

databases for AE under international cooperation will greatly help researchers in order to

tests their algorithms.
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A. Appendix A

A.1. Christoffel Equation

The system of equations presented in Eq.(2.5) can be expressed in a matrix form where

the eigenvalues and eigenvectors of the Christoffel matrix fully provide the bulk modes.

This can be expressed as [Nayfeh 1995]:

⎡
⎢⎣ Λ11 − c2

ph Λ12 Λ13

Λ12 Λ22 − c2
ph Λ23

Λ13 Λ23 Λ33 − c2
ph

⎤
⎥⎦
⎡
⎢⎣ U1

U2

U3

⎤
⎥⎦= 0, (A.1)

where the elements of Λim are given by:

Λ11 =
1
ρ
(
C11n2

1 +C66n2
2 +C55n2

3 +2C16n1n2 +2C15n1n3 +2C56n2n3

)
,

Λ12 =
1
ρ
(
C16n2

1 +C26n2
2 +C45n2

3 +(C12 +C66)n1n2 +(C14 +C56)n1n3 +(C46 +C25)n2n3

)
,

Λ13 =
1
ρ
(
C15n2

1 +C46n2
2 +C35n2

3 +(C14 +C56)n1n2 +(C13 +C55)n1n3 +(C36 +C45)n2n3

)
,

Λ22 =
1
ρ
(
C66n2

1 +C22n2
2 +C44n2

3 +2C26n1n2 +2C46n1n3 +2C24n2n3

)
,

Λ23 =
1
ρ
(
C56n2

1 +C24n2
2 +C34n2

3 +(C46 +C25)n1n2 +(C36 +C45)n1n3 +(C23 +C44)n2n3

)
,

Λ33 =
1
ρ
(
C55n2

1 +C44n2
2 +C33n2

3 +2C45n1n2 +2C35n1n3 +2C34n2n3

)
.

(A.2)

Eq.(A.1) can be solved once the material properties and the direction of propagation are

selected.

A.2. Equations of Motion in Cylindrical Coordinates

The displacement equations of motion in a cylindrical coordinate system can be written

as [Achenbach 1984]:

∇2ur − ur

r
− 2

r2

∂uθ
∂θ

+
1

1−2ν
∂�
∂ r

=
1

C2
T

∂ 2ur

dt2
, (A.3a)



210 Chapter A. Appendix A

∇2uθ − uθ
r
− 2

r2

∂ur

∂θ
+

1

1−2ν
∂�
∂θ

=
1

C2
T

∂ 2uθ
dt2

, (A.3b)

∇2uz +
1

1−2ν
∂�
∂ z

=
1

C2
T

∂ 2uz

dt2
, (A.3c)

where ur, uθ and uz are the displacement vectors in the directions of r, θ and z (see Figure

2.5), ν the poisson ratio and CT is the transverse wave velocity. Additionally, ∇2 denotes

the Laplacian operator given by:

∇2 =
∂ 2

∂ r2
+

1

r
∂
∂ r

+
1

r2

∂ 2

∂θ 2
+

∂ 2

dz2
, (A.4)

and � denotes the dilatation defined as:

�=
∂ur

∂ r
+

1

r

(
∂uθ
∂ r

+ur

)
+

∂uz

∂ z
. (A.5)

The corresponding stresses in cylindrical coordinates are given in terms of the displace-

ments as:

σrr = λ
(

∂ur

∂ r
+

ur

r
+

1

r
∂uθ
∂θ

+
∂uz

∂ z

)
+2μ

∂ur

∂ r
, (A.6a)

σθθ = λ
(

∂ur

∂ r
+

ur

r
+

1

r
∂uθ
∂θ

+
∂uz

∂ z

)
+2μ

(
ur

r
+

1

r
∂uθ
∂θ

)
, (A.6b)

σzz = λ
(

∂ur

∂ r
+

ur

r
+

1

r
∂uθ
∂θ

+
∂uz

∂ z

)
+2μ

∂uz

∂ z
, (A.6c)

σrθ = μ
(

∂uθ
∂ r

− uθ
r
+

1

r
∂ur

∂θ

)
, (A.6d)

σθz = μ
(

∂uθ
∂ z

+
1

r
∂uz

∂θ

)
, (A.6e)

σzr = μ
(

∂uz

∂ r
+

∂ur

∂ z

)
, (A.6f)

μ =
E

2(1+ν)
, (A.6g)

λ =
E

(1+ν)(1−2ν)
, (A.6h)

where λ and μ are the Lamé connecting the components of an elastic stress at some

point of a linearly-elastic (or solid deformable) isotropic body with the components of the

deformation at this point [Hearn 1977]. They are related to the modulus of elasticity E

(Young’s modulus) and Poisson’s ratio ν . The Lamé constants depend on the material
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and its temperature.

A.3. Components of the General Matrix for Cylindrical

Waveguides

By substituting Eq.(2.8a) to Eq.(2.8d) into Eq.(2.6a) to Eq.(2.6c), making use of the

stress-displacement relations, i.e. Eq.(A.6a) to Eq.(A.6f) , and finally substituting the

Bessel solutions from Eq.(2.11a) to Eq.(2.11c), the system of equations can be expressed

into the product of a matrix K and a vector of amplitudes A. The general system yields

to: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uz

ur

uθ

σrr

σrz

σrθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= KA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

A3

A4

A5

A6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.7)

After long and non trivial calculations, the terms of the matrix K are given below. The

terms for uz are given by:

K11 = i(kWn (ζ1r)) , (A.8a)

K12 = i(kZn (ζ1r)) , (A.8b)

K13 = i(λ2βWn (ζ2r)) , (A.8c)

K14 = i(βZn (ζ2r)) , (A.8d)

K15 = 0, (A.8e)

K16 = 0. (A.8f)

The terms for ur are given by:

K21 =
n
r

Wn (ζ1r)−λ1αWn+1 (ζ1r) , (A.9a)

K22 =
n
r

Zn (ζ1r)−αZn+1 (ζ1r) , (A.9b)

K23 = kWn+1 (ζ2r) , (A.9c)

K24 = kZn+1 (ζ2r) , (A.9d)

K25 =
n
r

Wn (ζ2r) , (A.9e)

K26 =
n
r

Zn (ζ2r) . (A.9f)
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The terms for uθ are given by:

K31 = i
(n

r
Wn (ζ1r)

)
, (A.10a)

K32 = i
(n

r
Zn (ζ1r)

)
, (A.10b)

K33 =−i(kWn+1 (ζ2r)) , (A.10c)

K34 =−i(kZn+1 (ζ2r)) , (A.10d)

K35 = i
(n

r
Wn (ζ2r)−βWn+1 (ζ2r)

)
, (A.10e)

K36 = i
(n

r
Zn (ζ2r)−λ2βZn+1 (ζ2r)

)
. (A.10f)

The terms for σrr are given by:

K41 = μ
((

k2 −β 2
)
+

2n
r2

(n−1)Wn (ζ1r)+
2

r
αWn+1 (ζ1r)

)
, (A.11a)

K42 = μ
((

k2 −β 2
)
+

2n
r2

(n−1)Zn (ζ1r)+
2λ1

r
αZn+1 (ζ1r)

)
, (A.11b)

K43 = μ
(

2λ2kβWn (ζ2r)− 2(n+1)

r
kWn+1 (ζ2r)

)
, (A.11c)

K44 = μ
(

2kβZn (ζ2r)− 2(n+1)

r
kZn+1 (ζ2r)

)
, (A.11d)

K45 = μ
(

2n(n−1)

r2
Wn (ζ2r)− 2n

r
βWn+1 (ζ2r)

)
, (A.11e)

K46 = μ
(

2n(n−1)

r2
Zn (ζ2r)− 2λ2

r
nβZn+1 (ζ2r)

)
. (A.11f)

The terms for σrz are given by:

K51 = μi
(

2n
r

kWn (ζ1r)−2αkWn+1 (ζ1r)
)
, (A.12a)

K52 = μi
(

2n
r

kZn (ζ1r)−2λ1αkZn+1 (ζ1r)
)
, (A.12b)

K53 = μi
(

2λ2

r
nβWn (ζ2r)+

(
k2 −β 2

)
Wn+1 (ζ2r)

)
, (A.12c)

K54 = μi
(

2n
r

βZn (ζ2r)+
(
k2 −β 2

)
Zn+1 (ζ2r)

)
, (A.12d)

K55 = μi
(n

r
kWn (ζ2r)

)
, (A.12e)

K56 = μi
(n

r
kZn (ζ2r)

)
. (A.12f)
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Table A.1. Required substitutions for the appropriate selection of the parameters and Bessel
functions required during the root finding procedure.

Cph >CL CL >Cph >CT CT >Cph

ζ1 =
√

ζ 2
1

ζ2 =
√

ζ 2
2

λ1 = 1

λ2 = 1

Zn (ζ1r) = Jn (ζ1r)
Wn (ζ1r) = Yn (ζ1r)
Zn (ζ2r) = Jn (ζ2r)
Wn (ζ2r) = Yn (ζ2r)

ζ1 =
√

ζ 2
1

ζ2 =
√

ζ 2
2

λ1 =−1

λ2 = 1

Zn (ζ1r) = In (ζ1r)
Wn (ζ1r) = Kn (ζ1r)
Zn (ζ2r) = Jn (ζ2r)
Wn (ζ2r) = Yn (ζ2r)

ζ1 =
√

ζ 2
1

ζ2 =
√

ζ 2
2

λ1 =−1

λ2 =−1

Zn (ζ1r) = In (ζ1r)
Wn (ζ1r) = Kn (ζ1r)
Zn (ζ2r) = In (ζ2r)

Wn (ζ2r) = Kn (ζ2r)

The terms for σrθ are given by:

K61 = μi
(

2n(n−1)

r2
Wn (ζ1r)− 2n

r
αWn+1 (ζ1r)

)
, (A.13a)

K62 = μi
(

2n(n−1)

r2
Zn (ζ1r)− 2λ1

r
nαZn+1 (ζ1r)

)
, (A.13b)

K63 = μi
(
−λ2βkWn (ζ2r)+

2(n+1)

r
kWn+1 (ζ2r)

)
, (A.13c)

K64 = μi
(
−βkZn (ζ2r)+

2(n+1)

r
kZn+1 (ζ2r)

)
, (A.13d)

K65 = μi
(

2n(n−1)−β 2r2

r2
Wn (ζ2r)+

2β
r

Wn+1 (ζ2r)
)
, (A.13e)

K66 = μi
(

2n(n−1)−β 2r2

r2
Zn (ζ2r)+

2λ2

r
βZn+1 (ζ2r)

)
, (A.13f)

where the terms α and β are given by:

α =| ζ1 |, (A.14)

β =| ζ2 |, (A.15)

additionally, Zn (•) and Wn (•) are Bessel functions of order n. The selection of the appro-

priate Bessel functions and of the terms λ1 and λ2 are provided in Table A.1 [Pavlakovic

and Lowe 2003]. The functions Jn (•) and Yn (•) are Bessel functions of the first and second

kind, respectively. The functions In (•) and Kn (•) correspond to modified Bessel functions

of the first and second kind, respectively.
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B. Appendix B

Substitution of the constitutive relations calculated in Section 3.2.2 into Eq.(3.12), and

further substitution of Eq.(3.13) yields to the equations of motion. For the case of sym-

metric laminates the equations of motion can be decoupled into two independent matrices

LS and LA. In order to obtain solutions for the symmetric and antisymmetric modes of

propagation, combinations of frequency and wavenumber where the matrices determinants

go to zero must be found.

After long and non trivial calculations, the symmetric modes are governed by:

LSGS =

⎡
⎢⎢⎢⎢⎢⎢⎣

L11
s L12

s L13
s L14

s L15
s

L12
s L22

s L23
s L15

s L25
s

L13
s L23

s L33
s L34

s L35
s

L14
s L15

s L34
s L44

s L45
s

L15
s L25

s L35
s L45

s L55
s

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

U0

V0

Ψz

Ξx

Ξy

⎤
⎥⎥⎥⎥⎥⎥⎦ , (B.1)

where the terms of LS are given by:

L11
s = A11k2

x +A66k2
y +2A16kxky −ω2I0,

L12
s = A16k2

x +A26k2
y +(A12 +A66)kxky,

L13
s = iκ1 (A13kx +A36ky) ,

L14
s = D11k2

x +D66k2
y +2D16kxky −ω2I1,

L15
s = D16k2

x +D26k2
y +(D12 +D66)kxky,

L22
s = A66k2

x +A22k2
y +2A26kxky −ω2I0,

L23
s =−iκ1 (A36kx +A23ky) ,

L25
s = D66k2

x +D22k2
y +2D26kxky −ω2I2,

(B.2a)
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L33
s =−κ2

7 D55k2
x −κ2

4 D44k2
y −2κ4κ7D45kxky −κ2

1 A33 +ω2I2,

L34
s = i

(
2κ2

7 D55 −κ1D13

)
kx + i(2κ4κ7D45 −κ1D36)ky,

L35
s = i(2κ4κ7D45 −κ1D36)kx + i

(
2κ2

4 D44 −κ1D23

)
ky,

L44
s = H11k2

x +H66k2
y +2H16kxky +4κ2

7 D55 −ω2I4,

L45
s = H16k2

x +H26k2
y +(H12 +H66)kxky +4κ4κ7D45,

L55
s = H66k2

x +H22k2
y +2H26kxky +4κ2

4 D44 −ω2I4.

(B.2b)

The antisymmetric modes are governed by:

LAGA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L11
A L12

A L13
A L14

A L15
A L16

A

L12
A L22

A L23
A L24

A L25
A L26

A

L13
A L23

A L33
A L34

A L35
A L36

A

L14
A L24

A L34
A L44

A L45
A L46

A

L15
A L25

A L35
A L45

A L55
A L56

A

L16
A L26

A L36
A L46

A L56
A L66

A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W0

Ψx

Ψy

Ξz

Φx

Φy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.3)

where the terms of LA are given by:

L11
A =−κ2

6 A55k2
x −κ2

3 A44k2
y −2κ3κ6A45kxky +ω2I0,

L12
A = iκ6 (κ6A55kx +κ3A45ky) ,

L13
A = iκ3 (κ6A45kx +κ3A44ky) ,

L14
A =−κ6κ8D55k2

x −κ3κ5D44k2
y − (κ3κ8 +κ5κ6)D45kxky +ω2I2,

L15
A = 3i(κ6κ8D55kx +κ3κ8D45ky) ,

L16
A = 3i(κ5κ6D45kx +κ3κ5D44ky) ,

L22
A = D11k2

x +D66k2
y +2D16kxky +κ2

6 A55 −ω2I2,

L23
A = D16k2

x +D26k2
y +(D12 +D66)kxky +κ3κ6A45,

L24
A = i(κ6κ8D55kx +κ5κ6D45ky +2κ2 (D13kx +D36ky)) ,

(B.4a)



Chapter B. Appendix B 217

L25
A = H11k2

x +H66k2
y +2H16kxky +3κ6κ8D55 −ω2I4,

L26
A = H16k2

x +H26k2
y +(H12 +H66)kxky +3κ5κ6D45,

L33
A = D66k2

x +D22k2
y +2D26kxky +κ2

3 A44 −ω2I2,

L34
A = i(κ3κ8D45kx +κ3κ5D44ky +2κ2 (D36kx +D23ky)) ,

L35
A = H16k2

x +H26k2
y +(H12 +H66)kxky +3κ3κ8D45,

L36
A = H66k2

x +H22k2
y +2H26kxky +3κ3κ5D44 −ω2I4,

L44
A =−κ2

8 H55k2
x −κ2

5 H44k2
y − (κ5 +κ8)H45kxky −4κ2

2 D33 +ω2I4,

L45
A = 3i

(
κ2

8 H55kx +κ5κ8H45ky
)−2iκ2 (H13kx +H36ky) ,

L46
A = 3i

(
κ5κ8H45kx +κ2

5 H44ky
)−2iκ2 (H36kx +H23ky) ,

L55
A = K611k2

x +K66k2
y +2K216kxky +9κ2

8 H55 −ω2I6,

L56
A = K16k2

x +K26k2
y +(K12 +K66)kxky +9κ5κ8H45,

L66
A = K66k2

x +K22k2
y +2K26kxky +9κ2

5 H44 −ω2I6,

(B.4b)

where kx = k cos(θ), ky = k sin(θ) are the components of the wavenumber vector and k is

the wavenumber. Additionally,

(Ai j, Di j, Hi j, Ki j) =

ˆ h/2

−h/2

C̃i j(1, z2, z4, z6)dz, (B.5)

where i, j = 1, ,2...,6, C̃i j are the elements of the complex stiffness matrix, ρ is the density

of the material and h the thickness of the plate. The resulting complex wavenumber

k = kRe + ikIm is used to describe the phase velocity of waves travelling through their real

part kRe, and the amplitude decay through their imaginary part kIm.
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