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Abstract

In the last decade, scientists have put forth many artificial compound eye systems,

inspired by the compound eyes of all kinds of insects. These systems, employing

multi-aperture optical systems instead of single-aperture optical systems, provide

many specific characteristics, such as small volume, light weight, large view, and

high sensitivity. Electronic cluster eye (eCley) is a state-of-the-art artificial super-

position compound eye with super resolution, which is inspired by a wasp parasite

called the Xenos Peckii. Thanks to the inherent characteristics of eCley, it has

successfully been applied to aspects of medical inspection, personal identification,

bank safety, robot navigation, and missile guidance. However, all these applications

only involve a two-dimensional image space, i.e., no three-dimensional (3D) infor-

mation is provided. Conceiving of the ability of detecting 3D space information

using eCley, the performances of 3D reconstruction, object position, and distance

measurement will be obtained easily from the single eCley rather than requiring

extra depth information devices.

In practice, there is a big challenge to implementing 3D space information detection

in the minimized eCley, although structures similar to stereo vision exist in each

pair of adjacent channels. In the case of an imaging channel with short focal length

and low resolution, the determination of the depth information not only is an ill-

posed problem but also varies in the range of one pixel from quite near distance

(≥ 86mm), which restricts the applicability of popular stereo matching algorithms

to eCley.

Taking aim at this limitation, and with the goal of satisfying the real demands of

applications in eCley, this thesis mainly studies a novel method of subpixel stereo

vision for eCley. This method utilizes the significant property of object edges still

retained in eCley, i.e., the transitional areas of edges contain rich information in-

cluding the depths or distances of objects, to determine subpixel distances of the

corresponding pixel pairs in the adjacent channels, to further obtain the object-

s’ depth information by employing the triangle relationship. In the whole thesis, I

mainly deduce the mathematical model of stereo vision in eCley theoretically based

on its special structure, discuss the optical correction and geometric calibration that



are essential to high precision measurement, study the implementation of methods

of the subpixel baselines for each pixel pair based on intensity information and gra-

dient information in transitional areas, and eventually implement real-time subpixel

distance measurement for objects through these edge features.

To verify the various methods adopted, and to analyze the precision of these meth-

ods, I employ an artificial synthetical stereo channel image and a large number of

real images captured in diverse scenes in my experiments. The results from either a

process or the whole method prove that the proposed methods efficiently implement

stereo vision in eCley and the measurement of the subpixel distance of stereo pixel

pairs. Through a sensitivity analysis with respect to illumination, object distances,

and pixel positions, I verify that the proposed method also performs robustly in

many scenes. This stereo vision method extends the ability of perceiving 3D infor-

mation in eCley, and makes it applicable to more comprehensive fields such as 3D

object position, distance measurement, and 3D reconstruction.



Zusammenfassung

Ausgehend von den Facettenaugen der Insekten haben Wissenschaftler seit 10 Jahren

viele künstliche Facettenaugensysteme erstellt, die auf der Multi-Apertur-Optik

basieren. Im Vergleich zu den auf Single-Apertur-Optik basierenden Systemen sind

diese Systeme kleiner und leichter. Außerdem haben solche Systeme ein großes

Sichtfeld und eine hohe Empfindlichkeit. Das eCley (Electronic cluster eye) ist

ein neues künstliches Facettenaugensystem, das Bilder mit Super-Pixel-Auflösung

erstellen kann, welches vom Sehsystem der parasitären Wespe
”
Xenos Peckii“ in-

spiriert ist. Wegen seiner ausgezeichneten Fähigkeiten sind eCley-Systeme in den

Bereichen ärztliche Untersuchung, Identitätsauthentifizierung, Roboternavigation

und Flugkörperlenkung angewendet worden. Aber solche Anwendungen basieren

nur auf der Datenverarbeitung im 2D-Bereich. Wenn jedoch mit einem eCley-

System räumliche 3D-Daten erzeugt werden können, kann man nur mit eCley 3D-

Rekonstruktion, Lokalisierung und Entfernungsmessung erledigen, die man vorher

mit anderen Geräten durchführen musste.

Zwar können je zwei horizontal benachbarte Mikrokameras im eCley als ein Stereo-

Sehsystem genutzt werden, aber es ist nicht leicht, die räumlichen Informationen

durch so kleine Kameras zu erhalten. Die von der Mikrokamera gemachten Fotos

haben nur eine ziemlich niedrige Auflösung. Außerdem ist die Tiefenveränderung

der Szene kleiner als 1 Pixel, wenn die Entfernung größer als 86mm ist, d.h. dass

viele verbreitete Algorithmen zum Stereosehen mit eCley nicht gut funktionieren

können.

Um die verbreiteten Stereosehalgorithmen mit dem eCley besser anwenden zu kön-

nen, wurde eine neue Methode dafür im Bereich des Subpixel-Stereosehen erstellt.

Diese Methode basiert auf der positiven Eigenschaft des eCleys, dass die Kanten

des Ziels im eCley sehr gut behalten werden können. Im bergang zwischen Bilder

benachbarter Mikrokameras gibt es zahlreiche Tiefeninformationen. Mit diesen

Tiefeninformationen kann der entsprechende Subpixelabstand ausgerechnet wer-

den. Danach kann die Entfernung des Ziels mit dem Subpixelabstand berechnet

werden. Aufgrund der Struktur des eCleys haben wir in dieser Doktorarbeit ein

mathematisches Modell des Stereosehens für eCley abgeleitet. Dazu werden die



optische Ausrichtung und die geometrische Korrektur, die die Voraussetzungen zur

präzisen Messung sind, diskutiert. Zum Schluss haben wir die Subpixel-Baseline-

Methode, die auf der Helligkeit und den Gradienten basiert, und die Echtzeit-

Messung für den Subpixelabstand, die auf der Eigenschaft der Kanten basiert, en-

twickelt.

Um unsere Methode zu überprüfen, haben wir viele künstliche und reale Szenen-

bilder angewendet. Das Ergebnis zeigt, dass unsere Methode die Messung zum

Subpixelabstand für Stereopixelpaare ausgezeichnet realisiert hat. Außerdem funk-

tioniert diese Methode in vielen komplexen Umgebungen robust. Das bedeutet,

dass die Methode die Fähigkeit des eCleys verbessert hat, die 3D-Umgebung zu

erkennen. Das eCley kann daher in verschiedenen 3D-Anwendungsbereichen einge-

setzt werden.
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Chapter 1

Introduction

The acquirement of depth information is quite important for the artificial compound eye: it is a

prerequisite for object measurement, object tracking and 3D reconstruction. In this chapter, the

background for the artificial compound eye and the present study are introduced first. Then the

motivation is given after analyzing the demand for applications, which is followed by an outline

of the whole structure of the thesis.

1.1 Artificial Compound Eye

1.1.1 General Artificial Compound Eye

Nowadays, optic imaging systems are broadly applied to various tasks, and the demand for com-

pact vision systems is growing rapidly. A miniaturized imaging system has the advantages of

low energy consumption, small volume, and a large field of view (FOV) so that more and more

researchers are focussing on it to broadly extend its applicability. At present, these miniaturized

imaging systems have been successfully applied to personal mobile phones. Further on, they

may be expected to be implemented in smaller objects such as credit cards. Thus, the size of

the system volume is required to be smaller and smaller. When miniaturizing a classical vision

system based on the single aperture eye, one encounters the limitation of diffraction [Duparr &

Wippermann, 2006]. So, researchers have started paying more attention to the development of

the artificial compound eye. The artificial compound eye combines hundreds and thousands of

ommatidia, also called optical channels, and simulates the compound eye of creatures such as

the fly, honeybee, dragonfly, wasp, etc., to reach the desired goals of small volume, light weight,

and a large field of view [Duparr & Wippermann, 2006][Nakamura et al., 2012]. At present, the

artificial compound eye has successfully been applied to lithographic imaging [Voelkel et al.,

1996], intelligent robot vision [Tong et al., 2011], missile guidance [Duparr et al., 2005b], and

1
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some applications in civil industry such as large-scale infrared telescopes, mini cameras, and

fingerprint identification systems [Duparr & Wippermann, 2006].

In general, based on the natural compound eyes of organic creatures, the artificial compound

eyes for compact vision systems can be divided into two classes: apposition and superposition

compound eyes [Duparr & Wippermann, 2006]. The apposition compound eye consists of an

array of microlenses and a pinhole array on the front and backside of the spacing structure re-

spectively. Each microlens is associated with a small group of photoreceptors that are formed

by the pinhole array in its focal plane, and the single microlens receptor unit forms one optical

channel, also referred to as an ommatidium [Duparr et al., 2005a]. The superposition compound

eye, also called the cluster eye, is more complex than the apposition one, and has the arrange-

ment of its refracting surfaces similar to that of a Gabor superlens [Stollberg et al., 2009] in

order to achieve an image merger, and has field apertures in the intermediate image plane to

avoid overlay of different channel images and to reduce aberration. The light from multiple

facets combines to form a single erect image of the object on the surface of the photoreceptor

layer [Nakamura et al., 2012].

Compared to the apposition compound eye, the superposition compound eye is much more

sensitive to light, and so achieves a higher resolution. In practice, when miniature focal length

and volume are required, the artificial apposition compound eye can be considered as a simple

imaging optical sensor whereas the cluster eye is capable of becoming a valid alternative to

classical bulk objectives. The vision of the artificial compound eye can currently achieve a

large field view of 92◦ and a thickness of 0.3 mm.

1.1.2 Electronic Cluster Eye (eCley)

Recently, a new artificial superposition compound eye, called the electronic cluster eye (eCley)

is being developed by the German Fraunhofer Institute for Applied Optics and Precision En-

gineering, to achieve super-resolution. It is inspired by a wasp parasite called Xenos Peckii

[Brueckner et al., 2010]. As to the eCley, each channel only records a part of the whole FOV,

i.e. a cluster of small partial images, and creates a final image through the stitching together of

all the partial images by means of software processing. So a compact size, a large FOV and a

good sensitivity in the visible spectral range are achieved together.

The eCley is shown in Figure 1.1. Figure 1.1(a) demonstrates the micro lens array with

17 by 13 units. The whole micro lens array is closely attached to the sensor, which definitely

decreases the focal length to be smaller than 1 mm. Figure 1.2 shows the channel images that

capture the parts of the same scene through each micro lens and the stitched image with high

resolution.

Since the eCley has the property of compact size, a large FOV, and convenient assembly,

2



1. Introduction

(a) The eCley (b) The multilens array

Figure 1.1: Artificial compound eye: the eCley

(a) The channel images captured by the eCley (b) The stitched image from channel images

Figure 1.2: The channel images and real scene image captured by the eCley

the eCley can be widely applied to the inspection of surfaces, bio-medical imaging, document

analysis, digitalization of photographic film material, and so on. However, most applications

do not fully exploit the properties of the eCley such as its short focal length, and there are still

more potential functions, such as measuring distances, which need to be developed so that the

eCley can possess powerful and integrated performances in real applications. The eCley has an

inherent property analogous to that of the stereo camera, that is, each channel and its adjacent

channel comprise a similar pair of a small stereo camera. However, the short focal length and

tiny channel image limit the function of stereo matching, or more accurately, the perception of

object distances. How can one break through this barrier and enable the eCley to perceive the

distances of objects?

3
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1.2 Motivation and Task

1.2.1 Motivation and Goal

Artificial compound eyes possess many special properties, such as parallel multiple lenses,

which facilitate their application to many military and industrial fields where common cameras

are not normally competent. Early on, the polarization navigator was applied to sailing. It

arranges the polarization units along with each ommatidium according to the structure of the

visual cells of bee eyes [Kagawa et al., 2012]. Using this compound eye to see the sky, the

direction of polarized light is derived from the deviation of patterns regarding the position of

sun. Based on the property of multiple apertures, the hemisphere optical device with multiple

apertures has been designed to search for objects, such as infrared telescopes of large scale,

alarm satellites, and space monitoring systems [Xianwei et al., 2013]. Salient functions of an

insect’s compound eyes include the capacity to precisely process the vision information, calcu-

late in real-time the position and direction of tracked objects, simultaneously issue commands to

control the fly’s direction and speed, and track and intercept objects. In a similar way, precision-

guided imaging in the military field has been a successful application of the artificial compound

eye, utilizing two reticles and an imaging sensor to construct a multimode guided device in a

missile head to obtain the 3D information of objects [Li & Yi, 2010]. This guide head not only

inherits the properties of a large VOF, light weight, small volume, and short focal length, but

also is strongly fault-tolerant, adaptive, and highly tracking-capable. Duparré et al. developed

a full FOV imaging system based on an artificial apposition compound eye, which is quite suit-

able for detecting small holes and the use in medical endoscopes. In this system, the optical

information can be received and form image pieces at different views by microlenses that con-

nect with a special mechanical rotation axis, and then each image piece can be combined into a

full FOV image [Duparr et al., 2007].

Depth information is significant in the field of computer vision, which is the essential ingre-

dient for many real applications like robot navigation, distance measurement, object position,

three dimensional reconstruction, and so on. Similarly, if the eCley were to become capable

of getting depth information, that would greatly improve its performance and extend its field

of application to areas such as small object searching, micro distance measurement, fingerprint

reconstruction, and many more. To date, some research has been devoted to developing the

ability to obtain 3D information based on some kind of artificial compound eye. Horisaki et

al. [Horisaki et al., 2007] proposed an approach to three-dimensional information acquisition

using a compound imaging system based on the modified pixel rearrangement method and the

estimation of the object distance. This method utilizes multiple images observed from different

viewpoints, which are captured by a kind of artificial compound eye, the so called TOMBO (thin
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observation module by bound optics), to determine the depth information and reconstruct high-

resolution images from multiple low-resolution images rather than only improve the resolution

of the reconstructed image. However, that is only suitable for the TOMBO rather than the eCley,

where constant offsets exist between two adjacent channels. Unfortunately, the functionality of

depth information has not yet been implemented in the eCley. With the increasing demand for

miniaturized cameras and for extensions to the field of applications, the functionality of depth

information, i.e. object distance measurement, is becoming more and more significant to the

eCley, which inevitably affects its developmental prospects. I expect that the eCley could attain

a similar ability as that of a stereo camera to obtain disparities. This would greatly improve the

eCley’s performance and value. This thesis is dedicated to implementing 3D distance measure-

ment using the eCley.

1.2.2 Main Contributions

The goal of this dissertation is to implement distance measurement for the eCley in a real en-

vironment. Our research demonstrates the inherent structure of an artificial compound eye, the

intensity properties of the transitional areas, its optical and geometric calibration, the detection

of corresponding pixel points, subpixel baseline, and subpixel distance measurement. The main

contributions addressing key technical issues in subpixel distance measurement are listed as

follows:

• Based on the special structure of the eCley, I analyze the inherent prerequisites for stereo

vision in the eCley, which contain the same optical parameters and parallel imaging plane

for each channel. I also discuss the limitations of implementing the usual stereo vision.

• Exploiting the property that the transitional areas of edges embody gradual changes of

intensity from the object to the background, i.e. the edges contain distance information

about the object, I demonstrate relation of the subpixel positions of the edges with in-

tensity changes in the transitional areas, and then propose that the disparity between a

pair of stereo corresponding points in two adjacent channels can be determined from the

differences in the subpixel positions of edge points having the same intensity.

• I propose two brightness correction methods: one based on the maximum of the intensi-

ties and the other based on the voted probability. With respect to deriving the offsets of the

channels, I use circle fitting to the subpixel coordinates of circle centers, further improv-

ing the accuracy of the subpixel coordinates through line fitting. Additionally, the radial

and tangential distortions are removed by the least squares method and a rectification of

the two channels is also implemented.
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• With regard to the ill-posed problem of edge processing, I propose two approaches to

obtain the positions of corresponding points in adjacent channels. One is to detect tran-

sitional areas according to their intensity changes and then select the positions of points

with respect to the mean values of two transitional areas in the channel images. The other

is to detect the gradient range of edges roughly at the pixel level, and derive the subpixel

positions of the edges from fitting a sigmoid function to the edges. The proposed methods

can efficiently and accurately determine the subpixel distance between two corresponding

points of an object’s edges, i.e. calibrate the subpixel baseline in practice.

• In a real environment, I give a real-time method of measuring the subpixel distances of

objects, which first employs the edge detector to obtain the position of the edges and tran-

sitional areas, and then interpolation methods are applied to determine the fine subpixel

disparities. This method not only attains highly accurate results, i.e. accurate distances of

objects, but also ensures that the processing can be accomplished in real time.

1.2.3 Organization of the Dissertation

This dissertation contains seven chapters, which describe in detail the main research involved

with the contributions. The remainder of this document is organized as follows:

• Chapter 2 presents the situation of stereo vision in the usual cameras, the diversity of

stereo matching algorithms categorized into local and global methods, and the approach

to 3D measurement via canonical stereo vision. It then discusses the depth-resolution

sensitivity. In addition, the current 3D information function in the artificial compound

eye and the limitations of general stereo vision for the eCley are stated in detail.

• Chapter 3 discusses the need to process images at the subpixel level and the implementa-

tion methods of subpixel resolution. It is followed by an introduction to the stereo vision

structure of a multilens camera. I demonstrate a significant property: the intensity change

in the transitional area between objects and the background contains position information

which is still retained in the channel images. Then an overview of the implementation

methods is summarized by a diagram.

• Chapter 4 describes how to perform brightness corrections based on the methods of max-

imum value and voted probability in the transitional areas. Then I propose a method of

determining the subpixel coordinates of channel centers by fitting circles, and how to fur-

ther improve the accuracy of these outcomes by the constraint of co-linear centers in each

row or column, i.e. straight line fitting. The accurate subpixel parameters of the cen-

ters can be used to derive the offset between the two adjacent channels. I also establish
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the distortion model including radial and tangential distortions and solve, in the sense of

least squares, for the relevant parameters. Finally, the two channels can after rectification,

reach an ideal configuration similar to that of the canonical stereo camera.

• Chapter 5 specifies how the problem of the determination of features in transitional ar-

eas is an ill-posed problem, and discusses how to deal with this. Afterwards, I propose

two approaches to detect transitional areas: one based on intensity and another based

on the signal gradient. Correspondingly, two methods of subpixel positioning for a pair

of feature pixel points are adopted, which include the intensity mean and reconstructing

the figure of an edge. I employ synthetic channel images and real images captured by

eCley to compare the results, and analyze the illumination sensitivity, the object distance

sensitivity, and the interval of object movement.

• Chapter 6 demonstrates the essential preprocessing for real-time channel images after

giving an overview of real-time subpixel distance measurement for objects. Then I use

the coarse-to-fine strategy to obtain the subpixel position of a pixel pair, i.e. a fine inter-

polation needed after using the Canny edge detector. The difference between the subpixel

positions of a pair of feature pixels is just the disparity of the pixel pair, which yields the

subpixel distances of objects by triangular geometry. I perform the comparison experi-

ments and analyze the factor of distance measurement as well.

• Chapter 7 concludes with all the key points of my whole work and the real application,

which is followed by outlining avenues of future work on improving the precision and ef-

ficiency of the computation, on reducing the effects of the environment, and on obtaining

dense disparity.
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Chapter 2

Stereo Vision in the Artificial Compound
Eye

2.1 Conventional Stereo Vision

Stereo vision enables non-living systems, such as a robot, to perceive the depth information

of the real world in a similar way as the eyes of human beings do. Although a variety of

algorithms have been proposed in last decades, generally, dense stereo techniques are divided

into two categories: local approaches and global approaches. Certainly, all of these approaches

base on the canonical stereo principle, which will be explained in following section.

2.1.1 3D Measurement from a Canonical Stereo Vision

One of the advantages of the stereo approach to 3D reconstruction and object recognition is that

the geometrical relationship between left camera and right camera is already known due to the

fixed configuration of most stereo systems. Usually the geometrical relationship can be inferred

easily from the ideal standard (called canonical) system.

A standard binocular stereo camera system is illustrated in Figure 2.1. Generally, the two

cameras are mounted such that their optical axes are coplanar and aligned in parallel. The span

between the optical centers of the left (Ol) and right (Or) cameras is called the baseline B. The

middle point of baseline B is set up as the origin O(0, 0, 0) in the Camera Coordinate System

(CCS), i.e. the axis Z of coordinate system is orthogonal to the connecting line of the two optical

centers of the cameras. The two cameras have the same focal length f from the image planes to

optical centers respectively. The interaction of the optical axis of the left camera with the image

plane is the principe point Pl, likewise Pr is principle point of the right camera. The image

point ml(xl, yl) on the left image plate and mr(xr, yr) on the right image plane are projective
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Figure 2.1: Stereo vision principle. Standard (canonical) system of two cameras with focal

lengths f, and a base-line B.

respectively from the same 3D objective point M(x, y, z) (x,y and z are 3D space coordinate

in CCS) in the scene; here the tree. Considering the similar triangles ΔPlmlOl and ΔQlMOl,

where Ql denotes the projective point with respect to the 3D point M(x, y, z) on the principle

axis of left camera, we obtain the equation

f

z
=

xl

B
2
+ x

. (2.1)

For the right camera, the similar triangles ΔPrmrOr and ΔQrMOr are used, Ql is the projec-

tive point with respect to the 3D point M(x, y, z) on the principle axis of right camera. The

relationship can be described as
xr

x− B
2

=
f

z
. (2.2)

By the combination of (2.1) and (2.2), the depth z can be represented as

z =
Bf

xl − xr

, (2.3)

where xl − xr is referred to as disparity, which is not only the most important argument in

stereo vision systems but also the ultimate goal to stereo matching algorithms. For obtaining
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the x coordinate of the 3D object, we substitute (2.3) into (2.1) and derive the distance x as

x =
B(xl + xr)

2(xl − xr)
. (2.4)

As well, we can utilize the triangle similarities in the Y-Z plate to attain the following relation-

ship:
yl
f

=
yr
f

=
y

z
. (2.5)

Finally, based on (2.3) and (2.5), the y coordinate of the scene point M can be calculated by

y =
Byl

xl − xr

. (2.6)

Thus, the coordinates (x, y, z) of the 3D object point M can be exactly derived from the 2-D

coordinates (xl, yl) and (xr, yr) with respect to the known projective points ml and mr respec-

tively. In other words, through the positions of two image points in stereo vision system, we

can determine the position of the corresponding 3D object point using the following equation:

⎛
⎜⎝
x

y

z

⎞
⎟⎠ =

⎛
⎜⎝

B(xl+xr)
2(xl−xr)

By1
xl−xr

Bf
xl−xr

⎞
⎟⎠ =

B

xl − xr

⎛
⎜⎝

xl+xr

2

yl

f

⎞
⎟⎠ . (2.7)

2.1.2 Related Work in Stereo Vision

The main challenge of stereo vision is the reconstruction of 3D information of a scene from two

images taken from distinct viewpoints. The significant tasks of stereo vision are calibration,

correspondence and 3D reconstruction. Generally, we assume the two cameras rigidly meet to

a specific set up structure, the so called canonical stereo system [Cyganek & Siebert, 2009]. If

pixel correspondences between both images can be found, the depth information can be attained

easily and the 3D reconstruction can be done. Based on the canonical stereo system, compu-

tation of disparity (defined as the horizontal displacement of corresponding pixels) becomes

the main goal of stereo matching algorithms. More intuitively, all the disparities of pixels are

exactly represented by a disparity map with the same size as the stereo images, which contains

the disparity for each pixel as an intensity value. In the ideal case, the disparity of two corre-

sponding points can be determined uniquely since one scene point is projected to two image

points with the same identifiable features. Actually, there are many factors such as noise which

affect the imagery of cameras in the real world. So, the image point in the left image is not

completely matching with the corresponding image point in the right image. That means, both

points lost some common features and some dissimilarities arise. Therefore, many troublesome
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problems need to be overcome in stereo matching algorithms. The most common problems

stereo matching algorithms have to face are occluded areas, reflections in the image, textureless

areas or periodically textured areas and very thin objects [Humenberger et al., 2010].

A notable number of approaches have been proposed in the last years to solve the problem

of stereo correspondence, and most of them determine stereo disparities by exploiting different

constraints. All of these methods attempt to match pixels in one image with their corresponding

pixels in the other image. There are two main categories of stereo matching algorithms: local

and global algorithms. On the whole, local algorithms involve constraints on a small number

of pixels surrounding a anchor pixel. Similarly, global algorithms based on global constraints

loosely involve constraints on scanning lines or on the entire image [Brown et al., 2003]. Local

algorithms are traditionally characterized by efficient and simple approaches. Although being

capable of achieving real-time frame rate performance, they typically fail on low-textured areas

as well as along depth borders and over occluded regions. Global algorithms exploit nonlocal

constraints, and this additional support reduces the sensitivity to local regions in the image that

fail to match, due to occlusion, uniform texture, etc. However, the use of these constraints

makes the computational complexity of global matching significantly greater than that of local

matching.

2.1.2.1 Local matching methods

On the one hand, local matching methods can utilize the features of an image, such as corners,

curves or edges, to find the proper corresponding parts in another image, and reach the stereo

matching. On the other hand, the block of areas around each pixel can also be used to attain

matching pixel pairs all over the stereo image pair.

Feature-based algorithms appear rather robust to the regions of uniform texture and depth

discontinuities in images, since they limit the regions of support to specific reliable features in

the images. Of course, this also limits the density of points for which depth may be estimated,

i.e. only a sparse disparity map is generated. Due to the efficiency of feature-based algorithms,

many researchers paid their attention to this direction of work. Schmid and Zisserman pro-

posed an algorithm to automatically match individual line segments and curves between images

[Schmid & Zisserman, 2000]. The algorithm uses both photometric information and the stereo

geometric relationship. The homography facilitates the computation of a neighbourhood cross-

correlation based matching scores for putative line or curve correspondences. Venkateswar

and Chellappa have proposed a hierarchical feature-matching algorithm exploiting four types

of features: lines, vertices, edges, and edge-rings (i.e. surfaces) [Venkateswar & Chellappa,

1995]. Matching begins at the highest level of the hierarchy (surfaces) and proceeds to the low-

est (lines). It allows coarse, reliable features to provide support for matching finer, less reliable
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features, and it reduces the computational complexity of matching by reducing the search space

for finer levels of features. Driven by the need for dense depth maps for a variety of applications

and also due to improvements in efficient and robust block matching methods, the interest in

feature-based methods has declined in the recent decade [Brown et al., 2003].

According to Scharstein and Szeliski’s research [Scharstein & Szeliski, 2002], basically, the

area-based algorithms, also called block matching, fulfill the stereo matching trough the follow-

ing four steps: Firstly, a preprocessing should be performed to filter noise, balance brightness

or improve contrast of the image. Secondly, the matching cost for each pixel at each disparity

level in a certain range is computed and cost aggregation is done in support windows. Then,

the correct correspondence, i.e. the optimal match, is determined by comparing the dissimi-

larity or similarity. Finally, the improved and smooth disparity map is obtained by refinement

processing.

Area-based algorithms try to match each pixel independently to their correspondences with-

out the effect of the image content and calculate the disparity for each pixel in the image. Thus,

the resulting disparity map can be very dense. Usually, area-based algorithms employ different

similarity or dissimilarity measures to attain exclusive performance respectively.

Normalized cross correlation (NCC) and the Zero-mean Normalized Cross-Correlation (ZNC-

C) are the standard statistical method for determining similarity. Its normalization, both in the

mean and the variance, makes it relatively insensitive to radiometric amplitude and offset. So,

these two methods are typically employed when robustness with regard to photometric varia-

tions is required. On the other hand, a common class of dissimilarity measures is derived from

the Lp norm. The two most popular Lp norm-based dissimilarity functions are the Sum of

Squared Differences (SSD) and the Sum of Absolute Differences (SAD). In the following, pop-

ular match cost calculation approaches are shown, based on similarity and dissimilarity metrics

for the pixel (x, y) in both, the reference image I1 and in the corresponding image I2 are shown.

The size of the support window is m× n, the disparity is represented as d, and C... denotes the

calculated match cost depending on method ...

CSAD =
∑
i=m

∑
j=n

|I1(x+ i, y + j)− I2(x+ i+ d, y + j)| (2.8)

CSSD =
∑
i=m

∑
j=n

(I1(x+ i, y + j)− I2(x+ i+ d, y + j))2 (2.9)

CNCC =

∑
i=m

∑
j=n I1(x+ i, y + j)I2(x+ i+ d, y + j)√∑

i=m

∑
j=n I1(x+ i, y + j)2

∑
i=m

∑
j=n I2(x+ i+ d, y + j)2

(2.10)
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CZNCC =

∑
i=m

∑
j=n (I1(x+ i, y + j)− Ī1)I2((x+ i+ d, y + j)− Ī2)√∑

i=m

∑
j=n (I1(x+ i, y + j)− Ī1)2

∑
i=m

∑
j=n(I2(x+ i+ d, y + j)− Ī2)2

(2.11)

where

Ī =
1

mn

∑
i=m

∑
j=n

(I(x+ i, y + j)

Because area-based matching algorithms can very efficiently compute the disparity map, these

are suited for real-time application [Hirschmüller et al., 2002]. The quality of the results is

not yet comparable with global methods. As we know, the aggregation windows and manner

are significant factors in local matching algorithms. For increasing the accuracy of disparity

estimations, a number of area-based algorithms focus on the central problem that is how to

determine the size and shape of the aggregation window. More accurately, a window must

be large enough to cover sufficient intensity variation while at the same time it must be small

enough to avoid crossing depth discontinuities for a reliable estimation.

In the early stage, the traditional area-based method is the simplest fixed window or box filter

method, in which a fixed ( square) window is assigned to each anchor pixel as its support region.

Although the method has the lowest complexity and highest efficiency, it easily blurs object

boundaries [Zhang et al., 2011]. Aiming at the problem of low accuracy along depth borders,

a variable support window or multiple windows to compute the local matching cost rather than

using a fixed squared window was adopted [Veksler, 2003]. This method selects one window or

a combination of several windows from a number of candidates with respect to different anchor

points such as the points at edges, discontinuous and textureless areas, where they produce a

small matching cost. They attain much better results than the fixed window method. However,

due to the fact that the shape of the support windows is limited to a small number of candidates,

it is difficult to preserve delicate structures in disparity maps. The adaptive shape methods [Lu

et al., Jan. 2008] construct shape-adaptive support regions by approximating the local image

structures. Unlike the multiple windows methods, the shape of support regions in adaptive shape

methods is more flexible and is not restricted to be rectangles. For achieving high matching

accuracy, Zhang et al. [Zhang et al., 2009a] constructed an arbitrarily shaped support regions

in a separable way and accelerated cost aggregation by a so-called orthogonal integral images

technique. That processing brings the benefit that it is two orders of magnitude faster than the

adaptive weight methods.

Among all the local area-based algorithms, the ones based on adaptive weight cost aggrega-

tion give the finest disparity maps. This method uses a large size support window and assigns

a support weight to each pixel in the window. The weight is calculated based on Gestalt prin-
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ciples [Yoon & Kweon, 2005], which state that the grouping of pixels should be based on their

intensity difference and spatial distances to the anchor pixel. In other words, the pixels with

similar intensity and small distance to the anchor pixel are more likely to have the same depth

as the anchor pixel. These adaptive weight methods are able to yield very accurate disparity

maps with the object boundaries preserved well. To a large extent, they are comparable with

global methods for high quality disparities. But they are computationally quite expensive and

require a huge amount of memory since the window must be big enough for the aggregation to

be effective [Tombari et al., 2008][Lu et al., Jan. 2008]. Nevertheless, due to parallelism, these

methods can be speeded up if ported to programmable graphics hardware [Kowalczuk et al.,

2013][Zhang et al., 2011], so they can broadly be applied to many real-time conditions.

2.1.2.2 Global matching methods

Global methods exploit an optimization process for all cost values to determine the best stereo

matching. They reduce sensitivity to local regions in the image that fail to match, due to occlu-

sion, uniform texture, etc. This is because obtaining all local cost values and satisfying other

constraints can be reached simultaneously as the disparity values are found, which fit best into

this optimization task. Most global methods attempt to minimize an energy functional comput-

ed on the whole image area by means of a Pairwise Markov Random Field model (MRF). Since

this task turns out to be a NP-hard problem, approximate but efficient strategies such as Graph

Cuts (GC) and Belief Propagation (BP) have been proposed. The energy functional for stereo

matching can be stated as [Scharstein & Szeliski, 2002]

E(d) = Edata(d) + λEsmooth(d). (2.12)

The data term, Edata(d), measures how well the disparity function d agrees with the input image

pair. Using the disparity space formulation,

Edata(d) =
∑
(x,y)

C(x, y, d(x, y)), (2.13)

where C denotes the matching cost value. The term Esmooth(d) is introduced to enforce a

smoothness of the solution, i.e. an additional constraint on the resulting disparity map. Some-

times it is additionally related with a function of image intensity, but usually it is a function of

disparities restricted to only measuring the differences between neighboring pixels disparities,

Esmooth(d) =
∑
(x,y)

f(d(x, y)− d(x+ 1, y)) + f(d(x, y)− d(x, y + 1)), (2.14)
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where f(·) denotes a monotonically increasing function on its argument of disparity.

According to diverse global optimization approaches, global matching methods can briefly

be categorized to dynamic programming, graph cut, diffusion, and belief propagation.

The main idea of dynamic programming lies in division of the 2D search problem into a

series of separate 1D search problems on each pair of epipolar lines. The ordering constraint,

which means that pixels in the reference image have the same order as their correspondences

in the matching image, specifies the possible predecessors of all matches. The path with the

lowest matching costs is chosen recursively. This leads to a path through the possible matches

that implies a left/right consistency check. Some variant approaches that focused on the dense

scanning line optimization problem work by computing the minimum-cost path through the

matrix of all pairwise matching costs between two corresponding scanning lines [Birchfield &

Tomasi, 1998] [Bobick & Intille, 1999]. Despite the resulting disparity maps usually suffer from

horizontal streaks caused by only considering horizontal smoothness constraints, the running

efficiency makes it broadly applicable to real-time environments.

The approach called graph cuts, which exploits the two-dimensional coherence constraints

available, avoids the drawback of the dynamic programming methods. This method assumes

the solution of the stereo problem as the computation of a maximum flow in graphs. This graph

has two special vertices, the source and the sink. Those nodes are connected by weighted edges.

Each node represents a pixel at a disparity level and is associated with the according matching

costs. Each edge has an associated flow capacity that is defined as a function of the costs of the

node it connects [Kolmogorov, 2004]. This capacity defines the amount of flow that can be sent

from source to sink. The maximum flow is comparable to the optimal path along a scanning

line in dynamic programming, with the difference that it is consistent in three dimensions. The

computation of the maximum flow is extensive, so it cannot be used for real-time applications

[Tappen & Freeman, 2003].

Belief propagation is another global optimization approach, which formulates the stereo

matching problem in a probabilistic way by means of Markov random fields. From the maxi-

mum a posteriori estimation is obtained by applying a Bayesian belief propagation (BP) algo-

rithm. BP performs a kind of message passing, where the message is meant as a probability

that a receiver (a node in MRF) should exist disparity, which is congruent with all information

already passed to it by a sender. The nodes are divided into high-confidence and low-confidence

ones. The entropy of a message from high-confidence nodes to low-confidence nodes is smaller

than in the opposite direction. At every iteration, each node sends its belief value that is the sum

of the matching costs and the received belief values to all four connected nodes. The new belief

value is the sum of the actual and the received value and is saved for each direction separately.

This is done for each disparity level. Finally, the best match is the one with the highest belief
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values defined by a sum over all four directions [Klaus et al., 2006][Yang et al., 2009].

At present, most global approaches exploiting segmentation provide the most accurate re-

sults on the Middlebury dataset [Shi et al., 2012]. However, global approaches are computa-

tional expensive and hence currently not suitable for real-time application.

2.1.3 Analysis of Depth Resolution

Figure 2.2: Relation of depth sensitivity with respect to camera resolution and horopter

From the formula for 3D distances measurement (2.7), a major limitation of stereo recon-

struction can be inferred, i.e. the depth resolution decreases rapidly with increasing distance

between the objects and cameras. Figure 2.2 explains not only this phenomenon but also the

dependence of the depth accuracy versus camera resolution and distance to the observed scene.

Each line (such as the line with E) represents a plane of constant disparity with respect to a fixed

depth from camera in integer pixels. We define the horopter as the range from the minimum

disparity to the maximum one, which represents a 3D volume covered by the search range of

the stereo algorithm. Each disparity limit (the number of disparities between the maximum and

minimum) sets a different horopter at which depth can be detected. As shown in Figure 2.2,

for instance, the minimum and maximum disparities are the line with E and the line with G

respectively. So, the horopter with the limit of three pixels is the range from the line with E to
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the line with G; while the range between the line with F and the line with H become another

horopter with the limit of three pixels at the depth (Z +ΔZ). Outside of this range, depth will

not be found and will represent a hole in the depth map where depth is not known. Observing

the triangle ΔAOlB is similar to ΔOrOlF , we get the following relation:

AOl

f
=

B

Z +ΔZ
. (2.15)

Likewise, ΔCOlD is similar to ΔOrOlE, and the relation is

COl

f
=

B

Z
(2.16)

The known size of pixel is defined as Δx = COl − AOl, thus, the combination of (2.15) and

(2.16) becomes

ΔZ =
ΔxZ2

Bf −ΔxZ
(2.17)

Assuming now that Bf/Z is much larger than the pixel resolution Δx, we obtain the following

approximation:

ΔZ =
ΔxZ2

Bf
(2.18)

Due to the baseline B and focal length f are a constant values, obviously, the depth resolution

decreases with the square of distance Z2. This means that if it is necessary to measure the

absolute position of real objects with an a priori assumed accuracy, then the parameters of the

stereo setup must be chosen in such a way that R would be at least an order of magnitude less

than the assumed measurement accuracy [Cyganek & Siebert, 2009]. As we can see in Figure

2.2, there are different uncertainty values Z,ΔZ,ΔZ1 at different depths Z,Z+ΔZ,Z+ΔZ+

ΔZ1.

In order to analyze the depth resolution in detail, I take an example of a real stereo vision

system with baseline 200 mm, focal length 25 mm and pixel’s size 3.2 μm. Figure 2.3 shows

the results of the horopter with the horopter set to 5–20 and a disparity range of 15, giving a

measurable range of around 40–310 m. The depth resolution is shown in Figure 2.4. When the

measurement accuracy is required to be 1m, the measurement distance should be kept lower

than 40m. If the object lies in the position of 100m, the uncertainty of measurement will reach

a quite large number of 6.4 m.
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Figure 2.3: Variation of depth with respect to disparities

Figure 2.4: Uncertainty values with respect to depth
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2.2 Current Stereo Vision in an Artificial Compound Eye

Since artificial compound eyes provide useful properties, the application field of digital imaging

system is extending more and more. At present, intensive studies are focused on color imaging,

multispectral imaging, and fingerprint capturing [Horisaki et al., 2008].

As for the application of stereo vision to the artificial compound eye, some researchers

are still dedicated to develop some new approaches to obtain 3D information and reconstruct

high-resolution images. R. Horisaki etc. [Horisaki et al., 2007] proposed an approach of three-

dimensional information acquisition using a compound imaging system based on the modified

pixel rearrangement method and the estimation of the object distance. This method utilizes

multiple images observed from different viewpoints, which are captured by a kind of artifi-

cial compound eye so called TOMBO (thin observation module by bound optics), to determine

depth information and reconstruct high-resolution images from multiple low-resolution images

rather than only to improve the resolution of the reconstructed image. First, the method projects

the pixels on the related channel (unit) images to the virtual image plane and set up the cor-

responding pixel values on the virtual image by a weighted average. Afterward, the sum of

squared difference (SSD) between the base image (projected image) and all the reference im-

ages (back-projected images) is calculated as objective function. Finally, the distance map is

estimated by minimizing the SSD and reconstructing the 3D high-resolution image. Although

the correct distances of objects were successfully estimated, the SSD is sensitive to the varia-

tion in brightness of the channel images. R. Horisaki etc. [Horisaki et al., 2009] introduced a

normalized cross-correlation to replace the SSD due to its robustness against brightness vari-

ations between the images and employed the iterative back-projection algorithm to implement

an image reconstructed scheme considering color shift, brightness variation, and defocus. Ev-

idently, most methods of 3D reconstruction in artificial compound eyes are based on TOMBO

and multiple channel images. Unfortunately, there is no approach developed exclusively for e-

Cley type of facet camera. A fact is that the determination of 3D information in eCley becomes

more and more desirable with the improvement of other outstanding functions of eCley and

comprehensive application.

2.3 Limitations of General Stereo Vision for eCley

Generally, the outstanding properties of the eCley are the miniature volume and short focal

length. However, these exclusive properties make some conventional approaches unsuitable

for them anymore. In this case, the miniature imaging systems can not only implement the

common functions of classical single aperture cameras but also achieve some exclusively other
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properties such as the use as a micro stereo channel array. Thus, it is important to discuss the

limitations of conventional approaches for the eCley, in order to find the solution space where

a compound optical array is appropriate. An instance of eCley has a attracting features of 17

× 13 channels with the same diameter, which keep rigidly horizontal and vertical with the

scanlines of the sensor, namely the centers of each row or column always stay in the same line

[Brueckner et al., 2010]. Thus, the adjacent two channels naturally comprise a micro stereo

camera. Is this micro stereo system able to use conventional stereo matching methods to get

satisfying disparities? The following limitation-discussions involving the short baseline, short

focal length and size of imagery plate will answer it.

In the context of stereo vision, the size of baseline is considered as a tradeoff between

precision and correctness in stereo matching. For a longer baseline, there is certainly a longer

disparity range in the stereo vision system, in which stereo searching and matching become

rather difficult. On the other hand, the occlusion arises more frequently and a greater possibility

of false matches is encountered. A short baseline between a pair of stereo images makes the

distances of objects less precise due to the narrow triangulation geometry shown in Figure 2.2.

Figure 2.5: Range with respect to disparity and different micro baselines

Usually, the baseline of eCley is quite short at the order of magnitude of a few hundreds

micron. For instance, assuming one of the eCley with the channel pitch (baseline between two

adjacent channels) 355.2 μm, focal length 778 μm and pixel pitch (size of pixel) 3.2 μm, we can

obtain the relation of the depth range with respect to disparity and different baselines shown as

Figure 2.5. Obviously the measurement range of this stereo system indicated by the blue curve
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is quite narrow around 100 mm even if the maximum disparity is increased over 8 i.e. enlarge

the horopter to 8, 16, or 64. Whether the baseline can be increased to two or more times, e.g. to

1 mm, the measurement range can be enlarged but still it is around 220 mm. That is too small

to be applied to the real environment broadly.

Figure 2.6: Uncertainty with respect to depth and different micro baseline

On the other hand, the results of minimization of eCley form a challenge to the precise of

stereo measurement. As shown in Figure 2.6, the accuracy over depth with different baselines

still is consistent with common stereo vision systems. I.e. the uncertainty of depth evidently

increases with the distance of object to the camera, but their uncertainties become more severe

than that of common stereo systems. The black points on each curve indicate the uncertainty

of 10% with respect to depth. For the assumed eCley, the black point on the the blue curve

shows that the system has high precision (uncertainty less than 10%) only under 8 mm, while

the depth measured out of the range is rather rough and uncertain.

According to (2.3) and (2.17), the properties of the focal length vary similarly to that of the

baseline in stereo vision of eCley. In that case, the conventional stereo vision only results in an

extremely small and narrow measurement range lower than one hundreds millimeters. On the

other hand, the uncertainty of the stereo vision measurement becomes quite severe at common

distances of objects for the eCley. More accurately, the confident interval limits in the rather

narrow area in a statistical perspective i.e. the acceptable precision of measurement is only

around a quite near range such as decades of millimeters.

Usually, the conventional methods do not detect the desired features easily in the case of im-
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ages with rather small sizes. Even if images are enlarged, the results are not improved, because

the noise is also multiplied and the information content is not increased. As the (2.3) describes

the relationship between the disparity and the distance of the object, when B, the baseline of the

stereo camera is known, the depth information that represents the distance between the object

and the camera can be derived from the disparity of the stereo pair [Cyganek & Siebert, 2009].

Assuming one eCley channel has a diameter of 79 pixels and the offset between channels is 17

pixels, then the maximal and minimal distances of the objects should be between 86 mm and

1.4 mm. In such a small range, if using the stereo matching, the edge size of objects detected

should not be more than 48 mm, which extremely confines the application of the eCley. Addi-

tionally, in the case of placing an object over the maximal distance, i.e. with a disparity smaller

than one pixel, the disparity will not appear and will not be detected in the images whatever the

size of the objects. Certainly, the limitation can also be seen in Figure 2.7. The place where the

chessboard lies in is near maximal distance of the disparity. However, the valid matching area

(blue area) is only approximately two third of the area of the channel, i.e. about 62 pixels for the

disparity. It is conceivable that such a small disparity range will hardly make the conventional

stereo matching algorithms work effectively.

Figure 2.7: The valid stereo area of two microlens stereo channels after calibration

Therefore, the common stereo methods are not suitable for the eCley, and new techniques

or methods have to be developed to find a reliable way to obtain the depth information. For

instance, the intensity properties of edges of the objects can be considered for this task.
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Chapter 3

Subpixel Stereo Vision Based on Variation
of Intensities

Aiming at the narrow disparity range and low precision, subpixel processing is employed for

the implementation of stereo vision for the eCley. But this subpixel process is not similar to

that in conversional stereo matching algorithms, which utilizes post processing to improve the

outcomes at pixel level. It uses a sequence of images captured from a moving test model to

calibrate the subpixel distance between each pixel pair, and then really detects the difference of

the correspondences from objects, to attain the depth information.

3.1 Subpixel Resolution

Since the effect of minimization of the eCley, the resolution of each channel image is not high

and even quite low as the images captured by common camera. Therefore, the processing results

from these channel images won’t be of high precision unless getting supports from additional

information or special processing methods. Subpixel resolution exploits more details of a scene

in an image compared to the image described as pixels. Usually this goal of improving precision

can be reached by various algorithms rather than hardware, which obviously saves resources and

cost and facilitates itself to apply to broader fields.

3.1.1 Subpixel Stereo Matching

In most stereo matching algorithms, subpixel estimation generally is used as post processing for

high precision. As we know, disparity estimation essentially computes the distance between the

positions of the stereo matching points in the corresponding images. Due to the discretization

of sampling in the real scenes, the minimal accessible unit of images is one pixel. Therefore,
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the disparity based on the integer grid of pixels can only have integer values.

Although, in most applications such as robot navigation or object recognition and tracking,

pixel accuracy may be perfectly adequate, for image-based rendering and object measurement

under low image resolution, such quantized maps lead to excessive errors and very unappealing

results. For increasing the resolution of disparity, deducing the size of pixels is the ideal way to

obtain high precision and to get satisfying processing speed. But the cost of hardware and the

technique of implementation are main restrictions at present. Alternatively, we can use software

methods to reach the goal e.g. using interpolation. Actually, many algorithms apply a subpixel

refinement stage following to the initial discrete correspondence stage. This way we can attain

a more precise position of a minimum of the matching measure (i.e. the cost function), which

does not need to fall exactly at the integer pixel position due to continuous support.

In general, these subpixel matching algorithms can be classified into interpolation-based

(fitting), phase correlation-based, and optimum parameter estimation-based. The most popular

and intuitive subpixel methods are implemented by interpolation among the discrete sample

points. Since the optimal matching should be at the minimal or maximal value, the three values

of a matching measure within the neighborhood of a interest point is usually fitted to a third-

order curve, a parabola [Yang et al., 2009]. Then, the position of a minimum of this parabola

is found, which indicates a new disparity value with subpixel resolution. Certainly, a larger

number of points can be used to interpolate higher order polynomials and possibly to increase

precision further. Nevertheless, processing a larger number of points extremely increases com-

putational cost. Considering the trade-off between precision and efficiency, in practice fitting a

parabola is the most efficient method in terms of accuracy achieved versus computational effort

[Mühlmann et al., 2002]. Another interpolation method is intensity interpolation. It seeks a

peak position of the similarity in high-spatial-resolution images obtained by image interpola-

tion [Szeliski & Scharstein, 2002]. Generally, this method requires much computation time and

memory space. But some improved methods are proposed to remedy these defects. They use

a continuous function or hierarchical coarse-to-fine measures to interpolate images [Shimizu

& Okutomi, 2005]. Nehab et al. demonstrated the strategy of symmetric subpixel refinement

for accurate correspondences [Nehab et al., 2005]. This method uses the symmetry to refine

the coordinates of corresponding points in both reference and matching images, further retains

the detail and avoids the systematic error that stems from the asymmetry between the reference

image described as discrete integer grid pixels and the matching image described with subpixel

resolution. Furthermore, an improved variant of the symmetric subpixel refinement even over-

comes the phenomenon of “pixel blocking” [Nehab et al., 2005][Shimizu & Okutomi, 2005].

The seeking correspondence problem can be seen as a mapping between coordinate systems

of two images. Further, this problem can be reduced to an optimum parameter estimation prob-
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lem for the mapping transformation, which defines objective functions and requires nonlinear

optimization techniques to reach the optimum. Lucas et al. very early proposed an iterative im-

age registration technique for subpixel stereo correspondence [Lucas & Kanade, 1981], which

uses the spatial intensity gradient information to direct the search for the position that yields

the best match. But the algorithms convergence and accuracy to a large extent depends on the

accuracy of the initial estimates for depth and on parameter vector. A regularization framework

for iteratively refining subpixel disparities is proposed by Yu and Xu [Yu & Xu, 2009], which

selects normalized cross-correlation as the matching metric, and performs disparity refinement

based on correlation gradients instead of intensity gradient-based ones. To reduce the effec-

t of image noise, Nefian introduced a Bayesian formulation to replace the cost function and

then optimally estimate the parameters of the noise model [Nefian et al., 2009], which reduces

significantly the pixel locking effect of earlier methods as well.

Phase correlation adopts the good properties of the Fourier transformation, i.e. the transfor-

mation such as shift, rotation and scale in space domain have their corresponding properties in

the Fourier domain respectively. Extensions of phase correlation can reach a subpixel matching

by detecting the phase differences in the Fourier domain which correspond to a shift in spatial

domain. An analytic expressions for the phase correlation of downsampled images has been

proposed by Foroosh et al. [Foroosh et al., 2002], which provides a closed-form solution to

subpixel translation estimation, and are used for detailed error analysis as well. Foroosh et

al. put forward that the discrete phase difference of two shifted images is a two-dimensional

sawtooth signal. Based on this prerequisite, the phase difference can be determined directly

for subpixel accuracy by the number of periods of the phase difference along each frequency

axis [Foroosh & Balci, 2004]. Therefore the improved method greatly decreases the computa-

tional cost and increases robustness to noise. A new enhanced correlation-based similarity with

invariability in photometric distortions and subpixel accuracy is introduced by Psarakis and E-

vangelidis [Psarakis & Evangelidis, 2005]. Clearly, the optimum value of the displacement is

the closed-form solution derived from the optimum solution of the parameter model. In gen-

eral, most subpixel approaches are used as a post processing, i.e. based on the initial disparity

obtained at pixel. So, the results depend heavily on the first step. They are estimated values but

not real values. Even though some algorithms derive the subpixel disparities from the intensity

images, they are not suitable for the eCley due to the limitation of minimized structure of the

eCley (see chapter 2 for more details).

3.1.2 Subpixel Edge Detection

The other class of subpixel approaches broadly arises in the context of edge detection. Accord-

ing to the formation of digital images, the digital raster limits the resolution of an image to one
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Figure 3.1: Mixed pixel problem and subdivided processing

pixel. Because one pixel only has an intensity value when it’s sampled and quantized, the image

shape may be changed or unambiguously registered compared to the original scene, especially

in mixed pixels. In the case of mixed pixels, the intensity of pixels is a mixed value from the

neighboring objects, i.e. it is affected by the different regions in its neighborhood. Although

we can generally increase the image resolution to improve the quality of image processing, this

problem is not eliminated essentially. For a better explanation of processing mixed pixels, Fig-

ure 3.1 shows the overlap region in mixed pixel and the processing by increasing the resolution.

As the left image (a) shows an original scene covered by a pixel grid, the objects (triangle, circle

and rectangle) are not totally aligned with pixels. Especially, the pixel at row 3 and column 2

overlaps on three object regions which commonly affect the intensity of the mixed pixel. The

second image (b) is the output after digitalization, which uses a uniform intensity value to set the

mixed pixel. From the right image (c), we can see that the original scene is subdivided through

increasing image resolution, more accurately, the pixel intensity increased the quintuple image

resolution, which are shown in two close-ups.

Generally, these mixed pixels compose common edge points and all of them become object

edges. Due to this, pixels affected by objects and background together. These neighborhoods

of edges can also be seen as transitional areas where objects change to background and vice

versa. Conventional algorithms of edge detection determine the results at pixel precision, actu-

ally in most cases, real edges lie at some place inside a pixel. Thus, subpixel techniques usually

are used for high precision edge position computation. Notice, that the image rasterization not

only reduces the edge information of scenes but also is an irreversible process. We only get

the approximate edge positions. At present, a variety of subpixel edge detection algorithms are

proposed to estimate reasonable edge positions and they can be classified into reconstructive

methods, moment-based methods and curve-based methods [Fabijaska, 2012]. Reconstructive

methods are based on the intensity distribution of pixels in transitional areas and derive a con-

tinuous probability function from the intensity distribution for estimating subpixel edges. A

well implemented approach based on the intensity reconstruction uses a second order polyno-
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mial to approximate image intensity at the edge. The expected subpixel position of the edges

can be indicated by a point at the reconstructed curve where the intensity equals to the mean

of the object and background [Xu, 2009]. When using the first derivative of image intensity,

the edges are comprised of points where the deviation reaches a maximum in transitional areas.

The subpixel positions of the edges are derived from sampling in the gradient neighborhood

and reconstructing a gradient function in the intensity-changing transitional areas. Certainly,

the subpixel point should be located at the maximum value of the gradient function [Fabijanska

& Sankowski, 2010][Liu et al., 2004]. In many applications, the cubic and Gaussian functions

can well fit the gradient curves in transitional areas. Since the edges are also defined as the

zero-crossing position in second derivative of image intensity, a method of edge detection is

based on finding zero crossings of the second derivative of a signal (so-called zero crossing

operator). In other words, a continuous second derivative function can be reconstructed in each

zero-crossing point neighborhood which is obtained by operators such as Laplacian of Gaus-

sian (LoG) [Perez et al., 2005]. The edge with subpixel accuracy is located at the point where

the zero-crossing of the reconstructed second derivative function is located [MacVicar-Whelan

& Binford, 1991]. In summary, reconstructive methods only use the few pixels in transitional

areas to determine subpixel positions. So, they can run fast and efficiently. But the methods will

be quite sensitive to noise regarding to the normal number of points. The main reconstructive

methods are illustrated in Figure 3.2. By the digital sampling and discretization, a real sharp

edge (a)) becomes a transitional area in the raster image where the intensities of pixels change

gradually from the intensity of object to that of the background. Using the common methods

of edge detection, the precision at most reaches one pixel because one pixel is the minimal unit

of an image. Through the function reconstructions of the intensity distribution, the first deriva-

tive of intensity and second derivative of intensity, the edges are located at accurate subpixel

position in transitional areas such as e) and f). Obviously, the determined subpixel positions are

quite near to the real one.

Moment-based methods detect the subpixel positions of edges based on the principle of in-

variant moments, i.e. the moments of objects are unchanged before and after imagery. On the

whole, these methods are clearly divided into these using geometrical moments and those with

orthogonal moments. Further, Gray moments based on pixel intensities and spatial moments

which utilize spatial information about the neighborhood are distinguished in geometrical mo-

ments [Tabatabai & Mitchell, 1984][Lyvers et al., 1989]. Gray moment-based methods assume

the Gray moments in the real edge distribution is an invariant like in the ideal step edge model.

This edge detector based on Gray moments employs an unit circle comprised of a sequence of

pixels as input data and two-dimensional ideal step edge model that is seen as the combina-

tion of a sequence of pixels with intensity value h1 and the other pixels with intensity value
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Figure 3.2: Subpixel edge based on different classes of intensity function reconstruction: a) real

scene, b) image of the real scene, c) intensity profile of the scene, d) edge position at pixel level,

e) subpixel edge position result from the first derivative, f) subpixel edge position result from

the second derivative

h2. All the parameters: edge position ρ, edge direction θ, and both intensity values h1 and h2

are derived from the three moments which can be obtained by the weighted sum of each pixel

value in the input unit circle [Tabatabai & Mitchell, 1984]. Lyvers proposed the subpixel edge

detection based on spatial moments, which has a similar principle to the ones based on Gray

moments, but a different moment operator [Lyvers et al., 1989]. This method uses six spatial

moments to determine the parameters of edges from the 2D ideal step edge model, and locates

the supixel edges by calculating the polar coordinates of edges. Another type of moment-based

method is Zernike orthogonal moment-based method, which only use three moments instead of

six as in spatial moments. In other words, the four parameters of the ideal step edge model are

mapped into the three orthogonal moments with different orders and the subpixel edge position
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can be determined by these orthogonal moments [Ghosal & Mehrotra, 1993]. Although the

moment-based methods are relatively complicated and have high computational cost, they also

have outstanding properties. They are not sensitive to noise and quite accurate. Thus, they are

applied in many significant aspects of image measurement [Yuanyuan et al., 2010].

Curve-fitting methods utilize the edge points derived from conventional edge detectors at

pixel level to the fit real edge shape curves with continuous functions, and then determine the

subpixel edge positions. Usually, the least square method is adopted to estimate the continuous

functions in transitional areas according to prior knowledge of an object such as shapes, sizes

and positions in a scene. Certainly, a variety of fitting methods arise according to the different

models. For example, fitting a line into spatial data points provided by the Canny operator, using

a cubic spline or B-spline to get nonlinear borders of objects, and determining the parameters of

the edge shape functions [Breder et al., 2009][Yao & Ju, 2009][Bouchara et al., 2007][Yueying

et al., 2007]. Clearly the position precision of curve-fitting methods strongly depends on the

accuracy of edge points derived from the traditional edge detectors at pixel level. These methods

are also sensitive to the points selected in transitional areas. Thus, good and accurate data points

are need to guarantee exact subpixel edge positions.

Figure 3.3: Subpixel edge based on curve fitting

Considering the measurement precision and noise, I employ a combination of reconstructive

and curve-fitting methods in my work. An example of line edges is shown in Figure 3.3 where

a border of the object is represented by the gray area. The red points indicate the detected

edge points in transitional areas. Firstly, the 1D characters of intensity in transitional areas are

reconstructed to determine the subpixel points at each scanning line. Then, a line is best fitted to

the subpixel location in each scan line of pixels in the defined edge window. Finally, the whole

line edge of the object is determined using the best-fit edge generated above. A more detailed

analysis and description of subpixel edge processing is given in later chapters.
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3.2 Stereo Vision Structure of Multilens Camera (eCley)

Figure 3.4: The working principle of eCley

The electronic cluster eye (eCley) adopts a compound eye solution to achieve the desired

properties of the compact size, a large FOV and good sensitivity in the visible spectral range.

Only a part of the whole FOV is captured in each channel and a final image is obtained by

stitching all partial (channel) images by means of software processing. Figure 3.4 describes the

working principle of an electronic cluster eye (eCley). I don’t want to discuss the complicate

mechanism in detail. It can be referred as in [Brueckner et al., 2010]. I focus on how to

form a digital image from incident rays and how to miniaturize the camera lens. There are

five sequential channels displayed in Figure 3.4. Obviously, each channel only records a part

of the whole scene as a partial image and a specific deviation angle is retained between the

central viewing directions of adjacent channels. More accurately, definitely setting up the pitch

difference between the optical component and the partial image of each individual channel.

In order to obtain the specific angular sampling, the certain focal length (fsa) is defined as

fsa = ppx/ tan(Δφ) where Δφ is the sample angle and ppx indicates the pixel pitch. Further

the focal length of a single optical channel f can be derived from f = fsa/k , i.e. the braiding

factor k shortens the effective focal length while the imaging results still keeps closely with

the single lens camera. Thus, this achieves the miniaturization of camera lens. Note that the

interval between adjacent channels is necessary to maintain the acceptable light sensitivity and

prevent optical crosstalk.
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3.2.1 Stereo Properties of Adjacent Channels

The eCley has 17 × 13 channels with the same diameter, which are rigidly aligned with hor-

izontal and vertical scanning lines of the sensor, namely the centers of each row or column

always stay in the same line [Brueckner et al., 2010]. Actually, the micro optics fabrication on-

ly produces some tiny tolerance, only in the order of magnitude of sub-micron. Even if a rather

big deviation occurs by fabrication, they can be removed by the calibration process. Thus, two

adjacent channels naturally comprise a stereo camera. So, is this stereo camera able to be used

for measuring the distances of objects? Certainly, the answer is positive, but the method is quite

different from the conventional one.
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Figure 3.5: The principle of microlens stereo channels
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Figure 3.5 shows the principle of imaging in two adjacent channels of the eCley based on the

micro fabrication technique. Obviously, it is quite different from the canonical stereo camera

that has two same cameras with the same size, focal length, and properties, especially parallel

optical axes. But the structure of two adjacent channels changes the relative places of the image

planes, i.e. the offset that results in the short focal length of the eCley.

Assuming both channels have the same focal length f and a different FOV, on the image

plane, the point ul1 (here equal to ul inf ) represents the image point of the object Sinfinity at

infinity and the point ul0 denotes the intersection of the principal axis Pl and the image plane

in the left channel. Naturally, their distance ul0ul1 is equal to the corresponding one in the right

channel, i.e. ul0ul1 = ur0ur inf . Let dl indicate the distance between the left boundary of the

left image plance and the point ul1 in the left channel. Meanwhile, let dr indicate the analogous

distance in the right channel. Observe dl − dr �= 0, since there is the same size of image plane

but different position of the center. Thus,

Δd = dr − dl = tan θ · f (3.1)

where Δd represents the offset between two channels. If θ = 4◦, f = 778μm, then Δd =

17pixels. That is the offset of two channels for the eCley.

3.2.2 Variation of Intensities Following Disparities in Boundaries of Ob-
jects

Detection and recognition of objects and their relative positions are the significant task to do

in current real-time stereo systems that run on standard computer hardware. The locations of

object borders (i.e. depth discontinuities) are quite important to retrieve proper object shapes

for segmentation and recognition purposes [Hirschmüller et al., 2002].

From the previous analysis we know, when the distance between the camera and the object

is over 86 mm, an accurate disparity is quite difficult to measure. It is usually seen as infini-

ty. Actually, the disparity variation in one pixel is gradual (i.e. continuous transition), which

reflects the object distance varies from the maximum valid distance (for example, 86 mm) to

infinity. However, this transitional feature is connected with the intensity of the object’s edge,

and this fine feature can be interpreted by a lot of experiments and analysis of real images.

In Figure 3.6(a), a wing tip of the UAV (Unmanned Aerial Vehicle) called ’Psyche’ was

selected with a red rectangle in the gray image, which showed a distinguishable transition be-

tween the black wind tip and the gray sky. Figure 3.6(b) shows the close-up of the wind tip

selected and it’s gray values. There were about three pixels in the transition area, and it’s gray

values varied transitionally from dozens to hundreds. Essentially, the intensity variation reflects
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(a) The image of UAV Psyche

(b) The close-up and pixels value of Psyche’s wing tip

Figure 3.6: UAV Psyche image and the close-up of it’s wing tip
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the position changes of subpixels, these relationship also was verified by the numerous tests.

Figure 3.7: The relationship between the intensity and positions of subpixels

As seen in Figure 3.7, there were two transitional areas of the intensity on the both edges of

the black square with the white background. Clearly the position of subpixels changed follow-

ing the intensity. Although the whole transitional area did not vary linearly, the medial part of

the transitional area could be linearly approximated, which provided a significant property for

the stereo calibration and measurement approach.

If both the position of the pixel in the left image and the place of corresponding pixel in

the right image are known for the canonical stereo camera, the disparity can be derived readily

[Hartley & Zisserman, 2004]. Similarly, the subpixel disparity also can be obtained in the same

way. From the prior study, we known the important property of the transitional area that the

positions of subpixels changes follow the intensity. So, the intensity difference of a pair of

subpixels must reflect the difference of their positions, namely the disparity of the subpixel

pair. Further, the disparities of subpixels can be determined by the intensity difference in the

transitional area of the object edge. Exactly this property causes the variation of the disparity

of pixel pairs from the maximum to infinity.

3.3 Overview of Implemented Methods

In this thesis, I propose a method of obtaining depth information according to the relationship

of intensity change and positions of key point points in transitional areas, which abstracts the
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subpixel positions of key points based on the edge properties. Now I give the overall frame of

the proposed method for stereo vision in the eCley as follows.
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3. Subpixel Stereo Vision Based on Variation of Intensities

As shown in Figure 3.8, there are two main routes: calibration of subpixel pixel pairs and

distance measurement of objects running through the whole method. In the processes of cali-

bration of subpixel pixel pairs, the idea is that the corresponding pixel pairs have fixed subpixel

distances and they can be calibrated by an image sequence of the black-white triple model,

which are captured by moving the tripe model along the horizontal direction. First of all, each

pair of channel images shot at the stripe model should be corrected in brightness to eliminate

the radiated deviation stemming from the different position in the channel. Then, the optical

distortion and geometrical transformation are processed, followed by resolving the ill-posed

problem and filtering. At this point the ideal channel images can be used to determine the sub-

pixel distances of pixel pairs. The different approaches based on various features are employed

to calibrate the distances in the transitional areas after detecting them. On the route of determin-

ing the distance measurement of the objects, the real-time channel images captured for various

scenes are also corrected in brightness by the correction coefficients that are derived from the

processing of the white board. Analogously, these necessary processes of calibration, rectifi-

cation and denoise are executed before detecting the positions of the key points in transitional

areas. Considering the real applications in various environments, an efficient and flexible algo-

rithm of detecting edges is employed to attain the subpixel positions of key points. Certainly,

the subpixel disparities of key points on objects can further be determined according to the cali-

brated distances of pixel pairs. Since the exclusive offset structure in eCley, the real baseline for

each stereo corresponding pair also has a small difference at the subpixel level. Eventually, the

depth information of objects can be obtained by the triangular relation among baseline, focal

length and disparity.
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Chapter 4

Correction and Calibration

4.1 Brightness Correction

According to the previous demonstration, disparity can be determined from the intensity differ-

ence of the transition area at the edge of objects. How to obtain this relationship? Assuming the

variation satisfies some kind of function relationship: D(.), the following equation is presented:

d = D(I1 − I2), (4.1)

where the disparity is described as d. I1 and I2 represent the intensities of the pixel 1 and the

pixel 2 in the adjacent channels respectively. In a real environment, there are many factors

to seriously affect the functionality such as the variation of illumination, differences of the

scenes and deviations of channels. In this case, for obtaining the accurate difference of the

intensity between a pair of sub-pixels, denoising and correcting intensity are very necessary

before measuring the distances of objects with the eCley.

4.1.1 Intensity Correction Using Maximum Value

As the noise is inevitably caused by many factors in the real world, noise usually needs to be

removed before processing the images. Certainly, many methods can be used, but in the stage

of the sub-pixel calibration, the statistic mean is considered as a simply and feasible manner to

get rid of the noise since it can also preserve the original intensity after the processing.

Ī(x, y) =
1

n

n∑
i=1

Ii(x, y) (4.2)
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According to (4.2), the intensity mean of pixels, Ī(x, y), is derived from n image frames of the

same scene and with the same parameters.

One important effect stemming from the miniaturization of the eCley, is that the brightness

of each channel is not uniform, i.e. the parts near the rim of the channel look darker than the

center compared to a uniform white board. Consequently, this difference of brightness evidently

increases the uncertainty and measurement error. Especially the pixels that are far from the

center of the channel must be corrected. The normalization without more complex processes is

effective to reach the goal of correcting brightness.

c(x, y) =
Imax

I(x, y)
(4.3)

Usually a pure white board is used in the correction. There must exist a pixel with the maximal

intensity Imax around the center of the channel. Then, every gain coefficient of pixels, Î(x, y),

can be computed through the ratio of their original intensity to the maximal intensity.

4.1.2 Intensity Correction Using Voted Probability

A more sophisticated method is to employ the maximal probability of the intensity in the chan-

nel to estimate each correction coefficient. Assuming the point q0 with maximal probability,

which can be observed in the image, corresponds to the real white(or gray) point p0, then the

equation can be represented below by the normalization.

c(x, y) · q0∑n
k=1 qi

=
p0
n

(4.4)

where c(x, y) represents the converted coefficient at the point (x, y), qi is the ith pixel value,

and n represents the number of pixels in the channel. Alternatively, (4.4) can be written as

c(x, y) =
p0 ·

∑n
k=1 qi

n · q0 (4.5)

Once the corrected, or more accurately compensated, coefficients are determined, the brightness

of the channel image can be corrected, and then each pixel has an even brightness, whatever its

place in the channel is.

Figure 4.1 shows the brightness distribution in the channel before and after brightness cali-

bration. In Figure 4.1(a), the whole distribution of brightness appears as an ellipsoid, i.e. there

is the biggest intensity value near the center of the channel while the smallest values are lo-

cated around the boundary of the channel. This non-uniform distribution of intensity would

lead to the severe deviations in the distance measurement based on intensity. The objective of
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(a) Original channel brightness

(b) Corrected channel brightness

Figure 4.1: Brightness distribution in the channel before and after brightness correction
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brightness correction is to make the responding value of each pixel constant anywhere in the

channel. For example, a result of brightness correction using voted probability is shown in Fig-

ure 4.1(b). Obviously the whole channel appears as a cylinder, which has an uniform brightness

distribution even those pixels near the channel boundary keep the same intensity with others.

4.2 Offsets Between Adjacent Channels

The biggest difference of eCley and a common stereo camera is an offset with a constant angle

for each channel. This property allows the eCley to exhibit super resolution in the context of

a micro system structure. Usually, the offsets are measured at integer pixel precision. Actu-

ally they are different at the subpixel range. The difference of them affects significantly the

measurement of subpixel disparities. Thus, the offsets between neighboring channels should be

determined before measuring the subpixel disparities. How to attain these offsets? We can use

the distance of the corresponding features at infinite distance to subtract the distance of centers

of adjacent channels.

4.2.1 Channel Center Determination by Circle Fitting

When fabricating the eCley, the channel positions are devised accurately. This keeps all the

channels in horizontal and in vertical alinement. But there are some biases for the final position

of channels since the production process contains some errors and noise. Therefore, I utilize

the devised position, i.e. the centers of channels, to be an initial value and then fit the accurate

positions from the support points. In fact, the figures of channels are circles with the same

radius. These points around the boundaries of channels can be employed to fit circles to the

channels.

ε2 =
n∑

i=1

(
√
(xi − x0)2 + (yi − y0)2 − r) (4.6)

Equation (4.6) is the mathematic expression of determining subpixel pixel parameters. The

estimated circle has the center (x0, y0) and the radius r. Accordingly, with the least square

method, the optimal fitting will be reached at the minimal error. The implemented algorithm

is described in the sequel. Firstly, selecting three non-collinear points around the boundary of

the channel arbitrarily and using these points to fit circle C(x0, y0) and it’s radius r. Secondly,

setting a threshold Tn in order to obtain a set of boundary points where all the points have

smaller distances from the fitted circle and less than Tn. Afterwards, repeating the previous

steps and then obtaining different fitted circles and the corresponding sets of boundary points.

Finally, after sampling in time N images randomly, the optimal center and radius of the desired
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circle can be derived as the common circle for all the points around the boundary.

For obtaining the clear boundaries of channels, the channel image should be segmented

from the camera image (whole image) as accurate as possible. Due to the white board versus the

black back interval between channels, I can use a simple threshold to segment channel images.

Certainly, the result depends on the threshold that can be derived from Otsu’s method [Otsu,

1979]. Otsu’s method is used to automatically determine the optimal threshold according to the

shaped-based histogram of the image. In the case of white objects and black background, it can

seek the best threshold, which gives rise to the minimal intra-class variance, to segment channel

images and channel intervals to a binary image. As shown in Figure 4.2, the channel images

Figure 4.2: Binary channel images from the segmentation

are approximated to circles in the binary image after segmentation. The top left channel images

are not complete circles due to shade and illumination effects in the original. The left column

is not created by the channel images but by the reference holes for fabrication. Certainly, these

special cases need to be observed when fitting circles.

The fitted results of top left channels are shown in Figure 4.3 where the white crossings

near the centers of circles indicate the fitted positions of circles. In the channel (0, 1), there

are four points fitted as the center. No doubt all the three points except the point near center

are far from the real center point, and I must eliminate these false points. The green circles are

based on the fitted center points, which include the reference holes on the first column. The

cyan circles represent the sets of center parameters without the reference holes. Nevertheless,

there are some severe deviation points since the channel images are non-circles such as that in
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Figure 4.3: Circles fitted and their centers in the part of channels

channel (0, 2). The magenta circles show the valid fitted parameters and the positions of circles

are also marked as magenta crossings at the centers of channels.

4.2.2 Centers Determination by Straight Lines Fitting

After fitting the circles, the coordinates of channel centers are really subpixel values. But they

still are not accurate due to the deviation of the segmentation of the channel images. Thus,

further processing is needed. We know that each channel is arranged in a straight line when the

eCley was made. So, a line can be fitted to improve the accuracy of center coordinates. The

linear fitting is implemented by

ŷ = ax+ b (4.7)

where a and b are the unknown parameters, the observed value x and y can be gotten from the

circle fitting processing. Equation (4.7) is also called linear regression model. Given a data set

{yi, xi1, · · · , xip|i = 1, · · · , n} of n observed units, the regression values can be obtained by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ŷ1 = ax1 + b

ŷ2 = ax2 + b

· · ·
ŷn = axn + b

(4.8)

I define an error variable εi for the deviation from the observed value yi to the corresponding

regression value ŷ, and it is described as

εi = yi − ŷi = yi − (axi + b) (i = 1, 2, · · · , n). (4.9)
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Thus, the quadratic sum of all the deviations between observed values and regression line is set

as S, which is derived from the following as

S =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

[yi − (axi + b)]2 (i = 1, 2, · · · , n). (4.10)

The goal of regression is to make the value of S to reach a minimum regarding all the observed

input values. Certainly I fulfill the task by the least squares method [Rao et al., 2008]. Often

the n equation from (4.9) are written in vector form as

y = Xα+ ε. (4.11)

where

y =

⎛
⎜⎜⎜⎜⎝

y1

y2
...

yn

⎞
⎟⎟⎟⎟⎠ ,X =

⎛
⎜⎜⎜⎜⎝

x11 x12

x21 x22

· · · · · ·
xn1 xn2

⎞
⎟⎟⎟⎟⎠ ,α =

(
a

b

)
, ε =

⎛
⎜⎜⎜⎜⎝

ε1

ε2
...

εn

⎞
⎟⎟⎟⎟⎠ .

Actually the second column of the matrix X is a constant vector whose elements all are 1.

Using the lease square method, the solution of (4.11) is determined as

α̂ = (XTX)−1XTy (4.12)

where α̂ indicates the estimated parameter vector. The real discrete expression are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a =

∑n
i=1 xi

∑n
i=1 yi − (2n+ 1)

∑n
i=1 xiyi∑n

i=1 x
2
i − (2n+ 1)(

∑n
i=1 x

2
i )

b =

∑n
i=1 xi

∑n
i=1 xiyi −

∑n
i=1 yi

∑n
i=1 x

2
i

(2n+ 1)
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

(4.13)

From (4.13), the best fitting line can be obtained, which passes through the subpixel centers of

channels. Note that more observed points lead to more accurate results that are affected less

by noise. The whole camera includes 17 × 13 channels. All the initial coordinates of channels

should be used. But the uncertainty of previous processing, i.e. the scattering points with big

deviation, impacts the fitted results significantly. Ransac (Random sample consensus) is a rather

robust algorithm for linear fitting [Hartley & Zisserman, 2004], which is a non-deterministic

algorithm that estimates parameters of mathematic models by iteration from a observed data set

containing outliers. The Ransac linear fitting algorithm is described as follows.

• select two points arbitrary and use them to derive a line l1;
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Table 4.1: Positions of centers and deviations

Column X Y X-fitted Deviation Interval Ransac Deviation

(pixel) (pixel) (pixel) (pixel) (pixel) (pixel)

0 155.00 95.50 154.79 1.30 111.24 0.73

1 268.50 97.00 266.03 1.36 110.73 0.42

2 378.50 99.00 376.75 1.25 110.63 0.36

3 488.89 99.79 487.38 1.06 110.60 0.27

4 599.50 98.50 597.98 1.02 110.65 0.26

5 710.00 99.00 708.63 0.92 110.43 0.39

6 820.50 99.00 819.05 0.78 110.68 0.38

7 930.80 100.36 929.73 0.83 110.56 0.26

8 1041.00 101.00 1040.29 0.70 110.37 0.44

9 1151.71 100.41 1150.66 0.48 110.43 0.35

10 1261.51 100.59 1261.09 0.19 110.22 0.34

11 1371.88 101.35 1371.30 0.36 110.49 0.41

12 1481.90 101.40 1481.79 0.22 110.38 0.30

13 1592.00 101.50 1592.17 0.19 110.30 0.53

14 1702.81 101.67 1702.47 0.63 110.46 0.38

15 1812.50 102.50 1812.93 0.53 110.39 0.36

16 1923.00 101.00 1923.32 0.43 - -

• compare the distance between all the points and the fitted line to a preset threshold Th,

then establish a new point set E1, which contains all the center points of channels with a

distance less than Th;

• repeat the selection of two points randomly to get a different line li and its corresponding

center points set Ei ;

• through N times sampling randomly, the line l̂ is picked up as the ultimate fitted line for

all the center points, which has the most points in the point set Ei ;

After deriving the horizontal and vertical lines, the crossing points of them must be the subpixel

centers of channel.

The results of linear fitting for the first row of channels are listed in Table 4.1. Evidently,

each coordinate is at a subpixel level. The deviations are quite different for the channels. They

are affected by the binary segmentation of channel images. Here, I obtain the similar results to

the ones in Figure 4.3, i.e. the first several center coordinates have quite big deviation since their

channel images are roughly compared to others. However, these x coordinates become more

accurate after using the Ransac method to get rid of the outliers, which are shown in the last
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column. Clearly, their deviations also decrease, i.e. all the positions of center points are optimal

subpixel positions. The last two columns describe the subpixel intervals between neighboring

channels, which means all the intervals are rather even except the first one.

Figure 4.4: Fitting centers of channels

For comparing to the difference of linear fitted methods, I put the initial points, linear fitted

and Ransac methods, and fitted points regarding the first row of channels into Figure 4.4 to-

gether. Obviously, the initial points scatter around the brown and blue lines, and several points

on the left side are deviating a little bit far. These are the outliers of linear fitting. Therefore,

the blue line that results from the Ransac method is more approximate to the real line than

the brown line resulting from the common lease squares method. On the other hand, the root

mean square of residuals is 0.87 for the least squares method while the smaller value 0.59 is for

Ransac method. Additionally, the fitted center points are uniformly distributed on the blue line.

Now the intervals (distances) between two adjacent channels have been derived. Further

the offsets are also obtained after determining the position difference of the two images from

the same object at infinity. In nature, the objects that are farther than 8 m to the eCley can be

considered as the infinite ones, which will be discussed in detail in Chapter 5.

4.3 Calibration and Rectification

Most applications in 3D computer vision need a prerequisite. I.e. it is necessary to obtain

metric information from 2D images. Generally, the intrinsic parameters of the camera and the
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coefficients of distortions have to be measured. These processes are referred to as calibration in

single cameras. Further processes such as the coplane computation of two imaging planes are

referred to as rectification in stereo vision. A sophisticated method of calibration is from Zhang

[Zhang, 2000], which robustly results in camera intrinsic parameters. Here I will only focus on

calibrating distortions and implementing rectification.

4.3.1 Distortion of the Single Channel

In theory, the digital image formation model such as Lambertian and the camera model such as

the pinhole model are assuming that the sensors perceive the illumination of scenes uniformly,

and the optical components do not distorted the projection. In practice, however, the optical

components, i.e. lenses, are not perfect due to manufacturing. On the one hand, most lenses are

spherical in view of cost and convenience, which causes, essentially, the photometric distortion.

On the other hand, it is very difficult to align the lens and the imaging sensor exactly. Therefore,

calibration of lens distortion is a prerequisite of vision measurement. The two main photometric

distortions are radial distortions arising from the fabrication of the lens and tangential distortions

arising from the assembly process of the camera as a whole. Radial distortion is also known as

barrel distortion, which causes rays farther from the center of a simple lens are bent too much

compared to rays passing closer to the center. Whereas tangential distortion result from the

case that the lens is not perfectly parallel to the image plane of camera. Both distortions can

be analyzed by a mathematic model. Let (u, v) be the ideal pixel image coordinates without

distortions, and (ud, vd) are the corresponding real observed image coordinates. According to

the pinhole model, the ideal pixel points are the projection of the model of the real 3D points.

In the camera coordinate system, similarly (x, y) and (xd, yd) are the ideal point’s location

(undistorted) and real location (distorted) respectively (which are normalized). The relation

between them is described by

xd = x+ x[k1(x
2 + y2) + k2(x

2 + y2)2] (4.14)

yd = y + y[k1(x
2 + y2) + k2(x

2 + y2)2], (4.15)

where k1 and k2 represent the coefficients of the radial distortion. The transformation from

image space to camera space is given by

(
x

y

)
=

(
fxX

W/Zw + u0

fyY
W/Zw + v0

)
, (4.16)
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where the coordinates of object points in 3D space are defined as (XW , Y W , Zw). I introduce

two different lengths fx and fy that are actually the product of the physical focal length of the

lens and the size of pixels(fx = f · dx and fy = f · dy), which are modeled as a rectangle with

horizontal (dx) and vertical (dy) sizes. According to the pinhole model, I obtain xd = XW/Zw,

yd = Y W/Zw.

Typically, the radial distortion is small in the common camera compared to fish eye cameras.

So, some applications of vision such as object tracking only consider determining the intrinsic

parameters of cameras by simply ignoring distortion [Zhang, 2000]. I can also use a similar

strategy to obtain the distortion coefficients, i.e. to estimate k1 and k2 after having derived the

ideal pixel positions by estimating the intrinsic parameters. By combining (4.15) and (4.16),

the equation set for estimating the distortion coefficients is given by

(
(u− u0)(x

2 + y2) (u− u0)(x
2 + y2)2

(v − v0)(x
2 + y2) (v − v0)(x

2 + y2)2

)(
k1

k1

)
=

(
ud − u

vd − v

)
(4.17)

Tangential distortion is the second-largest common distortion, which is caused by the deviations

in the manufacturing process, i.e. the lens is not fully parallel to the imaging plane. The model

of tangential distortion can be expressed as

xd = x+ [2p1y + p2((x
2 + y2)2 + 2x2)] (4.18)

yd = y + [p1((x
2 + y2) + 2y2) + 2p2x], (4.19)

where p1 and p2 are the coefficients of tangential distortion. Setting (4.19) into (4.17), I obtain

the complete parameter equation set as follows:

(
(u− u0)(x

2 + y2) (u− u0)(x
2 + y2)2 2xy 3x2 + y2

(v − v0)(x
2 + y2) (v − v0)(x

2 + y2)2 x2 + 3y2 2xy

)⎛
⎜⎜⎜⎜⎝
k1

k2

p1

p2

⎞
⎟⎟⎟⎟⎠ =

(
ud − u

vd − v

)

(4.20)

In computer vision, we usually use vectors and matrix to simply express linear equations. Given

m points in n images, all the equations from real observed points can be stacked together to

obtain in total of 2mn equations, and its matrix form is expresses as Aα = b, where α =

[k1, k2, p1, p2]
T . Thus, I can use the methods of solving linear equations to estimate the desired

parameters. In practice, the least squares method is usually used, and the linear least-squares

solution is given by

α = (ATA)−1ATb. (4.21)
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4.3.2 Rectification of Two Stereo Channels

Almost all the stereo matching algorithms are based on the classical assumption that the images

are captured by the canonical stereo setup, i.e. the real stereo setups have to be rectified. This

means for stereo matching that the search space becomes only one-dimensional and that it is

aligned with each scanning line. In practice, stereo systems do not really satisfy the canonical or

standard stereo setup since there are individual deviations of the cameras and assembly errors.

Thus, rectification is a necessary step in computation of stereo systems. Although the optical

properties and physical parameters of channels are quite similar for different channels in an

eCley due to the high precision fabrication, they might be thought as the same at pixel level. No

doubt, a rectified system can further improve precision and reduce the errors.

Stereo image rectification is an essential process of image transformation in such as way

that all the epipolars retain parallel in images and become collinear with each other and with

the image scanning lines.In other words, the real stereo systems becomes the standard (rectified)

stereo systems through the transformation. An inherent property of rectified systems is that the

corresponding epipoles1 in images move to infinity by transformation. Therefore, I can perform

rectification by changing the positions of the epipolars in the images to infinity. In general, there

are two steps to implement rectification: rotation of coplane and collineation.

• Rotating the left and right camera imaging planes and making them coplanar, which

moves epipoles to infinity by a rotation matrix Q, i.e. the epipolar lines become parallel.

• Rotating the epipolar lines to the direction of scanning lines and making them collinear,

i.e. epipolar lines become parallel with scanning lines.

Without loss of generality, I use the stereo vision system with the same camera intrinsic param-

eters to describe rectification. As for the specific structure of eCley, I still employ the rectifica-

tion from that common stereo system and only consider the offsets between two channels. In

practice, the input data usually are two sets of corresponding image points in the left and the

right image respectively. Certainly, I can derive the cameras intrinsic parameters and extrin-

sic parameters using the specific object point from Zhang’s calibration method [Zhang, 2000],

which provides the well known prerequisites for rectification by using the Bouguet’s algorithm

[Bouguet, 2010]. As shown in Figure 4.5, there is a real stereo system with the origin Ol and

Or. pl and pr are the image points of the object point P in the left and the right image planes

respectively. First of all, I need to know the geometrical relationship between the two cameras.

More accurately, how do I compute rotation R and translation T between the left and the right

1Since the centers of projection of the cameras are distinct, each center of projection projects onto a distinct

point into the other camera’s image plane. These two image points are denoted by el and er and are called epipoles.

Refer to Figure 4.5.
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Figure 4.5: Calibration of two stereo channels

camera? I separately rotate and translate the object point P to get it’s image points in the left

and the right camera coordinates and obtain Pl = RlP + Tl and Pr = RrP + Tr for the two

cameras respectively. Obviously, the transformation from the right image point Pr to the left

image point Pl directly is described by Pl = RT (Pr −T ), where R and T are, respectively, the

rotation matrix and translation vector between the cameras. The relationship of the object point

and its image points can be given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Pl = RlP + Tl

Pr = RrP + Tr

Pr = R(Pl − T ).

(4.22)

Solving the equations, I can derive the rotation vector and translation vector between left and

right cameras as follows: ⎧⎨
⎩R = Rr(Rl)

T

T = Tr −RTl.
(4.23)

Now, I discuss how to make two image planes coplanar. Since the problem is under con-

strained, the choice is arbitrary. In general, I can create a transformation matrix Q by three

mutually orthogonal unit vectors q1, q2 and q3. Considering the left principal point Ol as the

original, the vector q1 is collinear with the translation vector T between the focus points of two
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cameras and described as [Trucco & Verri, 1998]

q1 =
T

‖T‖ . (4.24)

The second vector q2 must be under-constrained, that is orthogonal to q1. Clearly the direc-

tion to the principal axis along the image plane meets this requirement. The vector q2 can be

obtained using the cross product of q1 by

q2 =
[−Ty Tx 0]

T√
T 2
x + T 2

y

(4.25)

The third unit vector q3 should be orthogonal to q1 and q2 simultaneously. It can be gotten

using the cross product:

q3 = q1 × q2. (4.26)

The orthogonal matrix that rotates the left camera around the center of projection in order to

change the epipolar lines parallel and move the epipole to infinity is defined as

Q =

⎛
⎜⎝
q1

T

q2
T

q3
T

⎞
⎟⎠ . (4.27)

The implementation of collineation is achieved by setting the following matrix:

R′
l = Q (4.28)

R′
r = RQ. (4.29)

R′
l and R′

r are new rotation vectors, which rotate left and right camera to reach a scanning line

alignment. I can set each image point in the left camera as Pl = [x, y, f ]T ; so the rectified

image points in left camera coordinates are R′
lPl = [x′, y′, z′]T . The corresponding rectified

image points in left image coordinates are achieved as P ′
l = f

z
[x′, y′, z′]T [Trucco & Verri,

1998].

In practice, I utilize the minimization of error between the image points and their repro-

jection points to obtain the optimal rectification parameters. This minimizes the resulting re-

projection distortions while it maximizes the common viewing area. Bouguet provided the

implementation of the algorithm in Matlab on the web [Bouguet, 2010], and the implementa-

tion in C++ version also can be found in the OpenCV library [Bradski & Kaehler, 2008]. I use

a chessboard as the calibration object, of which I take images. For getting accurate results, the
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(a) Original stereo image

(b) Undistorted stereo image

Figure 4.6: Results from the calibration and rectification of a stereo camera

(a) Close-up

(b) Close-up rectified

Figure 4.7: Close-up before and after rectification

whole chessboard should be captured in two camera simultaneously and occupy an area as big

as possible. I used a conventional stereo system to verify the algorithm, and then rectified the

eCley with this method. The results are given as follows.

Figure 4.6 shows the images of the chessboard and the results from rectification. In Figure

4.6(a), the edges of black and white squares form many curves from bottom to top shown by

the yellow line in the left image, and the scanning lines between left and right images are not
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Figure 4.8: Rectified channel images of eCley

collinear. The rectified images are displayed in Figure 4.6(b). Here all the curves become

straight and both rows in two images lie on the same scanning line.

The close-ups of a specific area from Figure 4.6 is shown in Figure 4.7. Obviously, we

can see the rectified images are not only coplanar but also collinear. The scanning lines are

placed correctly. The algorithm of stereo rectification reaches the goal of moving the epipoles

to infinity. Thus, it can also be used in the eCley to implement stereo rectification. Notice

that the corners detection should be done manually due to the low resolution. As described

previously, the size of a channel image is only about 79 pixels × 79 pixels except for the offset

between two channels in a channel image, which extremely reduces quality of the detected

feature points and increases the difficulty of detecting corners precisely.
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Chapter 5

Determining Subpixel Baselines of
Channel Pairs

Based on Yuille’s demonstration [Yuille, 1986], the edge points include all the information of

the original image under the mean of different scales in the transitional areas. Therefore, we can

recognize a 3D object according to these edge points which have most of the information of the

image. On the other hand, the researches on biological vision systems have proven that vision

neurons, which sense the vision as concentric circles on the retina, are able to detect the edges.

In this chapter, we explore how to deal with the ill-pose problem on edges and the methods of

detecting transitional areas, and the calibration of the subpixel baselines.

5.1 Resolving the Ill-Posed Problem

Usually, the points represent the respective physical meaning in different transitional areas.

For instance, the points of transitional areas, also called edge area, may be the discontinuous

points of surfaces. The transitional areas are formed by the overlap of surfaces or planes. Edge

areas may arise at the overlap of two parts of different objects with different material or color;

Transitional areas also occur at the overlap of an object and background. They may further be

created at the borders of shades. Although there are different reasons for the formation of edges,

a common property of edges is that a discontinuity of intensity occurs, i.e. an area with rapid

change of intensity. At this position, the signal has many spatial high-frequency components

at the edge. Therefore, all the detectors of transitional areas essentially detect high-frequency

components. However, in natural images, signal and noise coexist in transitional areas. Thus

they are difficult to detect. In other words, it’s a fuzzy problem. Actually, edge detection is

an ill-posed problem. The solution varies sharply when adding the high-frequency noise even

with the low intensity. In the field of computer vision, regularization is usually applied to solve
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ill-posed problems [Tikhonov & Arsenin, 1977]. We define a observed signal as Y and the ideal

signal as Z, so the relation of them can be given by

A(Z) = Y, (5.1)

where A(·) is the transformed operator. However, Y may include noise and systematic errors

due to the non-ideal observer. In the case of detecting features of a transitional area, Z may

be the ideal intensity I(x, y) and Y represents the real intensity. Only considering (5.1), the

determination of Y from Z is obviously an ill-posed problem (generally A is irreversible)

E = ‖A(Z)− Y ‖+ λ‖ρ(Z)‖ (5.2)

In fact, Y does not equal to A(Z) arbitrarily due to errors, but it is the only evidence to determine

Z. Thus, we expect to search the minimum of ‖A(Z) − Y ‖ with respect to Z. Meanwhile, Z

represents the ideal physical signal and changes relatively slow compared to noise which can be

described by a continuous function. On the whole, ρ(Z) describes the smooth item with respect

to the whole range of Z, which becomes smoother with smaller ρ(Z). So the stable functional

of ‖ρ(Z)‖ should be small as well. λ is a constant factor that decides the weights of both items

on the right of (5.2), and the research shows that bigger λ lead to a greater deviation of σ of

filters.

In the application of detecting edges, the previous research [Chen & Hong Yang, 1995]

proofs that the optimal solution of (5.2) can be attained by using a cubic B-spline function to

filter the observed signal, i.e. the optimal smoothing filter is the cubic B-spline function. Due to

the extreme similarity of cubic B-spline and Gaussian functions, we usually adopt the Gaussian

function as the smoothing filter to get an unbiased estimation of the ideal edge signal. According

to the above analysis, the method of regularization further verifies that a filter is a prerequisite

for the detection of edges and the cubic B-spline or the approximate Gaussian function are the

optimal filter.

A definite mathematical model is necessary to describe edge positions. As stated previously,

the points of edges indicate positions with drastic changes in transitional areas approximately.

For example, a one-dimensional signal is shown in Figure 5.1. The magenta step signal indicates

the ideal edge model, but the real edge signal is similar to the brown curve with a gradual change

because the physical signal does not jump from one status to another. The red and blue curves

represent the first order differential and second order differential of the real edge signal. Clearly,

the position of 0, which is defined as edge position, is the common feature point of all the curves.

The maximum of first order differential and the zero crossing point of second order differential.

In 2D images I(x, y), its first order derivative should be thought as the modulus gradient. The
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Figure 5.1: Signal edge and its differential

gradient vector is given by

g = ∇I(x, y) =

(
∂I(x, y)

∂x
,
∂I(x, y)

∂y

)T

. (5.3)

On the other hand, the second derivative of edges is considered as the directional derivatives

along the gradient directions. For reducing the complexity, we usually employ the Laplace

operator, a second order differential operator with isotropy, which is expressed by

∇2I(x, y) =
∂2I(x, y)

∂x2
+

∂2I(x, y)

∂y2
. (5.4)

The isotropy results from that ∇2f is an invariant under rotation. When detecting edges, the

derived second derivative from the Laplace operator is independent to the directions of image

edges [Pratt, 2001]. Summarily, determining the local maximum of the first derivative and the

zero crossing point of the second derivative are basic approaches for edge detection. Although

both approaches are equivalent in the outcome, the method of detecting the zero crossing point

is quite simple and easy to implement. As we know, noise gives rise to the ill-posed problem for

edge detection. So, the smoothing filter is devised to get rid of noise before extracting edges.

Assuming the pulse transfer function of a filter as s(x), first of all, we use s(x) to filter noise in

the signal and get the filtered signal g(x) = I(x)⊗s(x); ⊗ denotes the convolution operation. In

this way, we derive the edge points from first or second derivative of g(x) [Cyganek & Siebert,
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2009]. Since the order between the convolution operation and filter can be exchanged due to

commutativity as follows:

g′(x) =
dI(x)⊗ s(x)

dx
=

d

dx

∫ +∞

−∞
I(t)s(x− t)dt

=

∫ +∞

−∞
I(t)s′(x− t)dt = I(x)⊗ s′(x),

(5.5)

we can combine the two processes of filtering and computing the derivative, and then obtain the

first differential filter s′(x) and the second differential filter s′′(x). Thus, the general method of

edge detection is to devise a smooth filter s(x), and detect the local maximum of I(x) ⊗ s′(x)

or the zero crossing point of I(x)⊗ s′′(x).

gσ(x) =
1√
2πσ

e−
x2

2σ2 (5.6)

g′σ(x) =
−x√
2πσ3

e−
x2

2σ2 (5.7)

g′′σ(x) =
1√
2πσ3

e−
x2

2σ2 (
x2

σ2
− 1) (5.8)

Figure 5.2: Gaussian function and its differential

The common smoothing filters are based on the Gaussian function or its derivative, which

are described in (5.6), (5.7) and (5.8); where σ denotes the standard deviation of the Gaussian
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function. A bigger σ causes a stronger smoothing. But actually, a too big σ gives rise to

eliminating the sharp high-frequency components of edges even if most noise is filtered. This is

the biggest challenge in edge detection. In Figure 5.2, the red, blue and green curve indicate the

Gaussian function of (5.6), first differential Gaussian function of (5.7) and second differential

Gaussian of (5.8). Compared to Figure 5.1, the function curves based on Gaussian are similar

to that of edges and its derivatives, i.e. we can use these model based on Gaussian function to

approximate the real edges.

5.2 Detection of Transitional Areas

The significant property of transitional areas are edge points that imply rich features of objects

and scenes. As the definition of edge exists at both intensity and gradient levels, we can detect

edges or transitional areas at intensity or gradient of images.

5.2.1 Edge Detection by Intensity

According to the definition of edge, the position of an edge is placed at the points with maximal

variation of intensity. How to find the maximal variation? According to Figure 3.6 and Figure

3.7, the intensity mainly varies at a few pixels in the transitional area, especially around the

mean intensity between the object and the background. An outstanding property of the transi-

tional areas is that the variation of the intensity always appears monotonously and the difference

of the intensity between the adjacent pixels is typically bigger than that at other places in the

image. How do we decide where the transitional area is? So, this property can be employed

to find the transitional areas. A row of pixels at the transitional area from Figure 3.6 is shown

Figure 5.3: A piece of the transitional area

in Figure 5.3, which was taken from a black object with the white background. Obviously the

pixels p3 − p6 lie in the transitional area, and their pixel values change sharply from the 54 to

193. This variation spans at least 25 gray levels between two adjacent pixels, whereas the pixels

in the object or background vary only in several gray levels, what is usually caused by noise.

Thus, (5.9) is introduced to represent the transitional area. Namely, consecutive pixel values

are monotonous in a row of the image and their differences are greater than a preset threshold
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between arbitrary adjacent pixels.

Tij :

⎧⎨
⎩p(xi, y0) < p(xi+1, y0) or p(xi, y0) > p(xi+1, y0)

|p(xi, y0)− p(xi+1, y0)| > α i = 1, 2, ..., n,
(5.9)

where p(xi, y0) represents the value of the pixel xi at the specific row y0; p(xi+1, y0) is the

adjacent pixel; α is a preset value that distinguishes the domain pixels in the transitional area

Tij with the size of n.

5.2.2 Detection from Signal Gradient

The other main method of detecting edges is to utilize the gradient information. Let us assume

that the function I(m, n) represents discrete values of intensity at the image point with coordi-

nate(m, n), which corresponds to a 2D continuous function I(x, y). Both the discrete and the

continuous forms of the luminance function can be converted to each other by sampling and

interpolation. With these assumptions we can use the intensity gradient vector defined in (5.4)

[Cyganek & Siebert, 2009]. Each image point can be described as a small patch of the triple (x,

y, I(x, y)), where the normal vector is defined as [Klette et al., 1998]

n =

[
∂I(x, y)

∂x
,
∂I(x, y)

∂x
, 1

]T
. (5.10)

Thus, the edge detection modulus of the gradient and normal to the gradient vectors are derived

from

‖∇I‖L2 =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

(5.11)

‖n‖L2 =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

+ 1. (5.12)

Generally, the L2 norm is applied to the modulus and the vector. For simplification of compu-

tations, the L1 norm commonly is adopted by

‖∇I‖L1 =

∣∣∣∣
(
∂I

∂x

)∣∣∣∣+
∣∣∣∣
(
∂I

∂y

)∣∣∣∣. (5.13)

According to the definition of edges, the modulus of the gradient vector grows in transitional

areas with much variation of the luminance signal. More accurately, it happens just in the case

of edges as well. Therefore, we can compute the gradient by means of some methods of discrete
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differentiation such as the Sobel operator to extract edges precisely in the images. The Sobel

operator is one of the discrete differentiation operators for image processing, which focuses on

edge detection by computing an approximation of the image gradient. Using the Sobel at an

arbitrary point of an image results in the corresponding gradient (or normal vector). According

to the previous analysis of filters, the derivative image is represented by the convolution of

the image and a differential filter. The Sobel operator uses two 3 × 3 derivative masks, one

for horizontal and one for vertical derivative, It is convolved with the image I to approximate

the derivatives. The image Gx with horizontal derivative approximation and Gy with vertical

derivative approximation are given as

Gx =

⎛
⎜⎝
−1 0 1

−2 0 2

−1 0 1

⎞
⎟⎠⊗ I and Gy =

⎛
⎜⎝
−1 −2 −1

0 0 0

1 2 1

⎞
⎟⎠⊗ I. (5.14)

The final gradient and gradient direction of the image can be determined by combining the

resulting gradient approximations Gx and Gy using:

G =
√

Gx
2 +Gy

2 (5.15)

θ = arctan(
Gy

Gx

), (5.16)

where θ indicates the angle of direction. When the edge is vertical, θ becomes 0 degree, and a

horizontal edge corresponds to the value of 90 degree.

To implement the Sobel operator, we deduce an approach of discrete pixels. The differential

of each image point with respect to the direction x and y is approximated as follows:

∂I(x, y)

∂x
≈ I(x+ 1, y)− I(x− 1, y)

2

≈ I(x+ 1, y − 1)− I(x− 1, y − 1)

2

≈ I(x+ 1, y + 1)− I(x− 1, y + 1)

2

∂I(x, y)

∂y
≈ I(x, y + 1)− I(x, y − 1)

2

≈ I(x− 1, y + 1)− I(x− 1, y − 1)

2

≈ I(x+ 1, y + 1)− I(x+ 1, y − 1)

2
(5.17)

From (5.13), we can obtain the L1 norm of the gradient. It is approximate to the sum of two
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direction differentials regarding x and y. Further, the equation (5.13) is replaced by (5.17).

‖∇I(x, y)‖L2 ≈ ‖∇I(x, y)‖L1

≈ 1

4

(
4
∥∥∥∂I(x, y)

∂x

∥∥∥+ 4
∥∥∥∂I(x, y)

∂y

∥∥∥)

≈ 1

4

(
2
(
I(x+ 1, y)− I(x− 1, y)

)
+
(
I(x− 1, y + 1)− I(x− 1, y − 1)

)
+
(
I(x+ 1, y + 1)− I(x+ 1, y − 1)

))
(5.18)

Obviously, the gradient of images can be attained robustly and accurately using the above (5.18),

which utilizes the differences between positions of the key point and its neighborhood points

and weight the contribution of each point in its neighborhood.

5.3 Calibration of Subpixel Baselines

In general, we only consider a uniform baseline for a classic stereo camera. The disparity

is derived from the difference of corresponding pixel positions between the left and the right

image. But this uniform baseline is not correct for channel pairs in the eCley, i.e. each channel

pair has its own baseline that is usually not equal to others at subpixel precision level.

5.3.1 Subpixel Referred Position Based on Local Mean

In the sequel we call pixel position that are handled with subpixel precision simply subpixels.

According (4.1), the difference between the two corresponding subpixels in both adjacent chan-

nels can be determined easily if the function D(.) is known, but, the feasible approach actually

is to transform (4.1) to (5.19), that is⎧⎨
⎩d̄ = 1

n

∑n
k=1 (x1k − x2k)

I(x1k) = I(x2k) I(x1k), I(x2k) ∈ Mij

(5.19)

where the disparity d̄ is represented by the difference of positions between a pair of subpixels

(x1k, x2k) that are with the same intensity. Here a question arises, namely I(x1) = I(x2). That

is: which points should be picked out for determining the disparity? Simply the neighborhood

of the mean intensity in the transitional area, namely the range Mij in (5.19), is quite suitable

for computing the disparity since the medial area is more sensitive to a variation of position.

Certainly, the effect factors will emerge when all the subpixels referred are adopted, especially
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those subpixels far from the mean. A feasible method is using the local subpixels to calculate

the mean instead of all the subpixels in the transitional area. The results are thereby called as

local mean that is more accurate than the mean derived from all the subpixels.

5.3.2 Subpixel Edge Fitting

Actually, the intensity distribution curves of transitional areas are quite similar to the Sigmoid

function [Zhang et al., 2009b]. The sigmoid function also called the S function is widely applied

to neural networks, due to its continuity, smoothness and monotony. The Sigmoid model of an

intensity distribution in transitional areas is created by

I(x) =
a

1 + e
−(x−b)

c

+ d, (5.20)

where a denotes the difference between maximal and minimal intensities, b and d indicate

the offsets of the S function at x-axis and y-axis respectively, and the gradient of the edge is

represented as c. For determining the subpixel positions, let be y = I(x) and derive the first

derivative of the intensity by

y
′
= I

′
(x) =

(y − d)(a− y + d)

ac
. (5.21)

When the derivative of (5.21) with respect to y is attained, let it be equal to zero as follows,

dy
′

dy
=

a+ 2d− 2y

ac
= 0. (5.22)

Based on (5.22), as y = d+ a
2
, the responding point reaches the maximum, which is exactly the

desired position. Here, the x-axis coordinate of the maximum should be equal to b.

According to the previous demonstration, the first differential feature of transitional area

looks like the Gaussian curve. Thus, Gaussian function can be used to fit the gradient character

of transitional area [Fabijaska, 2012]. The Gaussian model of an intensity gradient distribution

is described as (5.7).

The proposed algorithm is summarized below. First of all, the brightness deviation of the

input image is corrected by (4.5). Noise has been eliminated through the mean of multiple

frames, Afterwards, every transitional area is detected. Then, to find the translation of the

object pattern, fitting curves of the intensities distribution and obtaining the subpixel edges are

implemented by (5.19) and by (5.20) respectively. Finally, the subpixel distances of stereo pixel

pairs are determined using the difference between subpixel edge positions.
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5.4 Experiments and Analysis

Through the previous statements, we have obtained the approaches to the detection of transi-

tional areas and calibration of the subpixel baselines. The following experiments will verify

their reliability, accuracy, and robustness in real environments.

(a) The eCley (b) The multilens array

Figure 5.4: Artificial compound eye: the eCley

In the experiments, we employed a demonstration system of eCley that is made of the Aptina

MT9T031 USB high resolution camera and a micro lens array. The related technical data are

listed as follows:

Table 5.1: Parameters of the eCley demonstration system

Property Value

Image sensor: Aptina MT9T031

Size of image: 2048 by 1536

Size of channels : 17 by 13

Focal length: 778 micron

Pixel pitch : 3.2 micron

Channel pitch: 355.2 micron (111pixels)

Visual field: 7.8 degree

Angular distance: 0.2 degree

The demo version of eCley is shown in Figure 5.4(a). The red rectangle area marks the

micro lens array, whose close-up is shown in Figure 5.4(b). Clearly, the micro lens array with

17 by 13 units is closely glued to the sensor. This definitely decreases the focal length to be
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smaller than 1mm. Apart from the necessary eCley, an object with some clear transitional areas

is needed to provide a target in the experiment. In our experiments, two classes of objects:

synthetic objects and real objects, are used to verify the performance of subpixel algorithms

and calibrate the subpixel distances of pixel pairs. Additionally, the main parameters of the

computer are the CPU pentium 4 3.20 GHz and 1.50 GB of RAM.

5.4.1 Experiments Using Synthetic Objects

Generally, subpixel algorithms are needed to verify their precision and reliability. For reaching

the goal, an ideal edge is required, which has known position and low noise. A simple and

(a) The ideal sharp edge (b) A blurred edge after the convolution with

Gaussian function

Figure 5.5: The ideal sharp edge and a blurred edge

easy solution is to generate a straight line edge from a black object and white background. We

adopted a pair of white channel images as background, which were shot at a white paper or

white wall. Meanwhile, two black blocks were added in the two channel images as objects,

which were put at a fixed positions in both channel images [Zhonghai et al., 2002]. Figure

5.5(a) shows the synthetic channel images. The first edge lies in (1024.5, y) in the left image,

where y indicates the row coordinate of the edge. Correspondingly, the column coordinate of

the first edge is at 1024.5 in the right channel image. The fixed distance between the two edges

is 270 pixels.

According to the formation of a digital image, we know that the object edges in digital

images captured by a digital camera can be see as the results from the convolution of the real

object edges. This processing can be described as:

I(x) = f(x)⊗ g(x), (5.23)

where the digital edge image I(x) is derived from the convolution of the real edge signal f(x)

and the operator g(x). Figure 5.5(b) shows the simulated edges that were generated by convo-

luting the ideal edges in Figure 5.5(a) with the Gaussian function. The advantage of simulated
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edges is to keep the same edge position as an ideal edge even if they have different transitional

areas. Furthermore, the distance between the edges in the left channel image and its correspond-

ing edges in the right channel image still keeps the same, i.e. 270 pixels.

Figure 5.6: The ideal edge and its blurred edges with different σ

In fact, for the simulated edges derived from the Gaussian function, the transitional areas

of edges depends on the standard deviation σ of the Gaussian function. As Figure 5.6 shows

the red curve represents the ideal edge that appears sharp, the blue and magenta curves are the

simulated edges after the Gaussian blur. The edges have the same position, i.e. a common

intersection point at the transitional area. This shows the significant property that the range of

the transitional area increases as σ rises up.

We used the simulated edged image (Figure 5.5(b)) to examine the proposed algorithm-

s. Both approaches—based on local mean and based on subpixel edge fitting—are examined

respectively. Part of results shows Table 5.2, where the ideal distance is 127 pixels from the

vertical edge at 1014.5 pixels in the left channel to the one at 1151.5 in the right channel. The

first column indicates the y coordinates of edge points from 756 to 775. The edge points es-

timated by the Sigmoid curve fitting are listed in the third and fifth columns. From the last

two columns, we know the distances of corresponding edge points in both images are quite

close to the ideal distance of 127 and their distance means are near equal. This means that the

local mean method and fitting method are able to implement the distance detection of stereo

pixel pairs and the results reach high subpixel precision (their standard deviations are around

0.01). Note that the estimated positions of edge points don’t significantly affect the determined

distances since the position errors in the left channel are compensated by the one in the right

channel. For example, the position error of edge point at (1024, 765) in the third column is

0.054 pixel (1151.5−1151.446 = 0.054), which can be compensated by the position error (also

0.054 pixel) of the corresponding point (1151, 765). Thus, the distance between the stereo pixel

pair is still the same 127 pixel like the ideal distance.
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Table 5.2: The results of distance measurement using local mean and subpixel edge fitting

Y-pos. X-pos.-ch1 Position-ch1 X-pos.-ch2 Position-ch2 Distance-F Distance-LM

(pixel) (pixel) (pixel) (pixel) (pixel) (pixel) (pixel)

756 1024.5 1024.454 1151.5 1151.446 126.993 126.993

757 1024.5 1024.451 1151.5 1151.446 126.995 126.995

758 1024.5 1024.447 1151.5 1151.446 126.999 127.005

759 1024.5 1024.446 1151.5 1151.446 127.001 127.001

760 1024.5 1024.445 1151.5 1151.446 127.001 127.000

761 1024.5 1024.445 1151.5 1151.446 127.001 127.000

762 1024.5 1024.446 1151.5 1151.446 127.000 127.000

763 1024.5 1024.446 1151.5 1151.446 127.000 127.000

764 1024.5 1024.446 1151.5 1151.446 127.000 127.000

765 1024.5 1024.446 1151.5 1151.446 127.000 127.009

766 1024.5 1024.446 1151.5 1151.446 127.000 127.013

767 1024.5 1024.446 1151.5 1151.446 127.001 127.013

768 1024.5 1024.445 1151.5 1151.446 127.001 127.013

769 1024.5 1024.454 1151.5 1151.446 126.993 126.993

770 1024.5 1024.455 1151.5 1151.446 126.991 126.993

771 1024.5 1024.459 1151.5 1151.446 126.988 126.983

772 1024.5 1024.459 1151.5 1151.446 126.988 126.983

773 1024.5 1024.460 1151.5 1151.446 126.986 126.982

774 1024.5 1024.462 1151.5 1151.446 126.985 126.979

775 1024.5 1024.464 1151.5 1151.446 126.983 126.976

Mean 1024.5 1024.451 1151.5 1151.446 126.995 126.996

Std. - 0.006 - - 0.006 0.011

The noise resisting ability is a very important for evaluating the performance of subpixel

algorithms. By adding random noise in the simulated edge images, we can obtain the simulated

image with noise. This examines the performance of methods for measuring subpixel distances.

We attained results similar to Table 5.2. The comparison of the results with noise and the ones

without noise are shown in Figure 5.7, where the red curve represents the deviations between the

ideal distance and estimated distances according to the fitting method with respect to no noise

environment. Correspondingly, the blue curve describes the results with respect to the noise

environment. Obviously, the medial part of the blue curve, i.e. around the y coordinate of 763

pixels, is rather smooth and with small deviations, but at far edge points away from the center at

pixel 763 such as pixel 774 relatively big deviations arise. This is due to the fact that the distant

pixel points are distorted more severely than the ones near the optical center. Although the
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Figure 5.7: The effect of noise to the proposed algorithms

results from the environment with noise have small fluctuation around the red curve, the whole

variation range of the blue curve is limited to 0.02 pixel. This lets the fitting method sustain high

precision also under noise. In addition, the local mean method obtained a similar performance

in our experiments. Summarily, the proposed methods to measure the subpixel distances of

stereo pixel pairs have a strong noise resisting ability and high measurement precision.

5.4.2 Experiments Using Real Objects

Although the proposed algorithms perform quite well at the images with a synthetic object, we

still have to test the subpixel distances of pixel pairs in a real environment.

For producing the accurate edges in real images, the object adopted was a flat board with

black and white stripes, which produced several vertical transitional areas. Figure 5.8(a) shows

the experimental setup. The object plane was kept parallel to the plane of the camera. Note

that the distance between the eCley and the object should be over the minimum with respect

to the minimal precision. In our experiments, we estimated the ideal precision smaller than

1% of a pixel, i.e. the minimal object distance should be kept over 8636mm ( derived from

(eq1.22) and the minimal distance 86mm with respect to the disparity of one pixel). Certainly,

the eCley needs to stay in a fixed position and the stripe board should be moved at small steps

on a straight line with a range of 1000mm, so that the edges of black and white could sweep

over all the pixels in a specific channel. A captured image is shown in Figure 5.8(b) where

we specified the stereo channel is the channel 6-8 (row-column) and 6-9. For improving the
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(a) The experimental setup (b) The captured image

Figure 5.8: Experimental setup and captured image

efficiency of test, we designed three pairs of black-white stripes with six edges. Certainly, an

image with more pairs of black-white stripes could be designed theoretically. But the diffraction

of edges, the resolution of the image and the field of view must be considered.

Figure 5.9: Obtaining the intensity of a specific pixel with respect to an edge

For obtaining the intensity properties of transitional areas, we need to record the intensity

of the specific pixel when an edge passes at a specific pixel position following the movement of

the stripe pattern. As shown in Figure 5.9, for example, the red pixel point indicates a specific

pixel and the blue line describes an edge that passes by the specific pixel point. From the left

image to the right image, each intensity of the specific pixel is stored. After the edge passes by

the specific pixel, the whole information of the transitional area is attained, which can be used

to compute the distance of stereo pixel pairs.

According to the previous analysis, the sub-pixel disparity, theoretically, can vary in the

range of 100% to 1% of the size of a pixel, when the distance between the object and the eCley

lies in the range 86mm to 8636 mm. Therefore, the test distance for experiments should be kept

over the 8636 mm. Actually a distance around 8–9 m is enough because the image of the object

is too small to be identified clearly with respect to the extremely far distance.
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Figure 5.10: The property of transitional area tested outdoors vs. indoors

Additionally, an even illuminance is a very significant requirement, which will make the

experiment a success or a failure. For instance, we used the setup as shown in Figure 5.8(a)

and shifted the stripe pattern along the horizontal line that parallels with the image plane of

the eCley. While the other parameters remained unchanged, we captured a sequence of images

for each position of the stripe pattern indoors and outdoors. Figure 5.10 shows the outcomes

from outdoor and indoor tests respectively. Obviously, the result from the indoor test was quite

smooth, i.e. only little noise was measured. The curve of the transitional area rather resembles

the theoretical one mentioned in Section 2. However, the two curves (blue and green) tested

outdoors were extremely irregular and some aberrant points arose in the curves as well, which

stemmed from the uneven daylight. Note that the intensity range of transitional area is changed

by the different luminance in scenes. In Figure 5.10, the result from the indoor tests is in the

range from 56 to 233 but the outdoor results vary in different ranges. Certainly, a large range of

intensity for transitional area is necessary to get highly accurate results.

Generally, the effect of thermal noise can’t be eliminated in digital cameras. The formed

images have slight variations in intensity at different times. This slight variations can not be

ignored in case of signal processing at subpixel level. A practicable method is to use multiple

frames. The number of the frames, n was set at 10 frames. If we would set n too small, the

noise in the images could not be removed effectively. If it is set too big, this would aggravate

the computational cost. The accuracy of results was considerably affected by the intervals of

the relative movement between the object and the eCley. Assuredly, small intervals increased
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the number of sampled points. This resulted in a smoother curve and less errors. In view of

the size of the stripe pattern and the test distance, the interval of object movement distance was

kept below 50 mm. Within this range, satisfying results could be obtained.

Due to the special structure of the eCley, the brightness of a channel image is not consistent

with input brightness, that is, the brightness at the border is darker than the one in the middle

of the channel. So, the brightness deviation must be corrected at first in the experiments. 10

frames of a uniform white object were captured by the eCley at proper position, and data near-

ly without noise were obtained. Further, corrected coefficients were computed thought (4.5),

which could be used to correct the brightness of input images and let all the points have the

same response to a homogenous white object. One of the uncorrected and corrected results is

showed in Figure 5.11(a), which was shot at a homogenous white paper in a scene with uniform

illuminance. Obviously, the corrected right image has a homogenous intensity at each pixel

in the whole channel. However, the intensities of pixels in the uncorrected left image are not

uniform, especially near the border. We extract a scan line from the channel images, which are

marked by red and blue lines respectively in Figure 5.11(a). As shown in Figure 5.11(b), the

channel image had a deviation of the brightness between the center and the border at the same

scanning line as the red curve shows. The corrected blue curve becomes regular as a square

wave. Both sides of it reach the same grey level as the middle. Analogously, the magenta curve

indicates the corrected brightness using the same coefficients at the different illuminance and

distance. To verify the performance of the brightness correction in a complex environment,

two channel images that were shot under uncorrected brightness and corrected brightness re-

spectively shown in Figure 5.11(c), evidently the corrected right image lights the edge of the

channel comparing to the left one. This is, brightness correction not only corrects the brightness

deviation from optical imaging, but also enlarges the visible range of the channel.

For utilizing the information of the neighbor rows of the image as well, the transitional band

needs to be vertical during the movement of the stripe model. In this case, the information of

the neighbor rows would not affect the intensity of the measured row but just eliminate the noise

and improve the robustness. Note that the threshold α in (5.9) was set at 20, which depends on

the test condition such as the illuminance, object distance, and size of the object. As part of

results shown in Figure 5.12, there were several sets of data tested at different positions where

the transitional areas of the stripe model were moved to. Definitely, the four transitional areas

from the white to black area were picked out to show the properties of the channel. From

Figure 5.12(a), the axis x indicate the diameter of the whole channel from pixel 1108 to 1191.

Obviously, the red curve occurred near the boundary in the current channel, especially the blue

curve also represented the boundary of the adjacent right channel that lies near the pixel 1302

though the transitional area arose in the middle of the current channel, and the rests of green
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(a) The uncorrected and corrected brightness of a channel

(b) The changes of channel brightness

(c) The effect of brightness correction to real channel images

Figure 5.11: The comparison of the brightness of channels
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(a) Transitional characters at different positions

(b) Distances of pixel pairs at different positions

Figure 5.12: The comparison to calibrated stereo pixel distances at different places
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and magenta curves were in the middle of the test channel. Correspondingly, the measured

results in Figure 5.12(b) show that the pixels at the middle position of the channel had stable

values, particularly near the mean of the transitional area. Although the boundary curves were

inevitably affected by the distortion, the neighborhood of the mean, i.e. from 40 to 60, still

stayed stable and had a constant mean.

Figure 5.13: Fitting the sigmoid curves to the edges

On the other hand, we further used the fitting method to get subpixel distances. Commonly,

this data fitting method adopts non-linear least square, which can easily deal with noise and

derive accurate and robust results. In our experiment, the GNU Scientific Library (GSL) that

is a numerical library for C and C++ programmers was used to implement the tasks of curve

fitting. For the fitting questions, a key point is to set up the initial values. According to (5.20),

we set a, b, c, and d to 250, 1250, 7, and 10. Then, the algorithm will convergence to the

desired precision after a few steps. Note that the number of pixels out of the transitional area

considerably affects the fitting results. Therefore, the accurate determination of the transitional

area is very important for the fitting results. Figure 5.13 shows the results from two transitional

areas, where the red line indicates the detected feature points in the transitional areas, and the

blue and green curves represent the fitting curves from the sigmoid model. Obviously, the fitting

curves employ the information of all the feature points very well regardless if it is a white-black

edge or a black-white edge.

Consequently, the sub-pixel distances between the pixels in the current channel and the cor-

responding pixels in the adjacent channel were measured completely. Note that all the distances
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Figure 5.14: The valid region existing the stereo pixel pairs between two adjacent channels

of pixel pairs can be measured, but not all pixels have corresponding pixels in the adjacent

channel at infinite object distance. An area with stereo pixel pairs was shown in Figure 5.14.

Clearly, the top and bottom of a channel don’t have stereo pixel pairs. As well, at a part of

the right region of a channel don’t have subpixel correspondences from the stereo pixel pairs.

These just verified the previous analysis again, which indicated that only two third of the area

of a channel was validly useable for stereo matching. This is due to the fact that both channels

have different viewing angles. Table 5.3 lists the part of the sub-pixel distances of pixel pairs in

a specific row (Y=765). Certainly each pixel pair had a different distance, and the pixel pairs at

the middle of the channel such as X=1029, 1032 and 1035 presented the closest value 128.3, but

a big difference arose near the boundary, especially at the pixel of (1054,765). On the whole,

all the distances measured by the proposed method had small variances, that is, the measured

distance is quite stable and precise.

For observing the subpixel distance distribution in a channel, I constructed a 3D image to

demonstrate the character on the whole. As shown in Figure 5.15(a), X and Y indicate the

related positions of the channel and Z denotes the number of pixels where 0 denotes 124 pixels,

1 denotes 125 pixels, and so on. Figure 5.15(b) shows the surface of subpixel distance variation

in the channel where the subpixel distances can be read from Z axis. Whether in Figure 5.15(a)

or in Figure 5.15(b), we can see that the subpixel distances are not a uniform value, i.e. each

stereo pixel pair has its own subpixel distance(relative viewing angle). Commonly, big distances

arise at the border of a channel. The central area of a channel has even distances compared to

the border.
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(a) Subpixel distances distribution in a channel

(b) The surface of subpixel distance distribution

Figure 5.15: The distribution of subpixel distances of stereo pixel pairs
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Table 5.3: The measured distances of the channel and their deviations

Position X Y axis Mean Variance

(pixel) (pixel) (pixel) (%)

1014 765 127.375 2.4

1017 765 127.225 2.5

1020 765 128.912 4

1023 765 127.759 0.5

1026 765 127.682 1.2

1029 765 128.195 1.1

1032 765 128.461 1.2

1035 765 128.32 1.5

1038 765 128.1 1.4

1041 765 127.853 1.5

1047 765 127.706 1.1

1051 765 125.954 1.14

1054 765 126.363 1.52

Utilizing the calibration distances of stereo pixel pairs, the eCley can implement the mea-

suring of distances of objects, and 3D position. Generally, the baseline in a stereo camera may

be considered as uniform for all the pixels. Actually, I have shown that for each stereo pixel

pair, their (angle) distance can be seen as the subpixel baseline in a corresponding pixel pair

which is different from the others. This distance belonging to each stereo pixel pair provides

a prerequisite to extend the stereo function in eCley. In the next chapter, I will discuss how to

apply the calibrated subpixel distances of stereo pixel pairs in the stereo channel to measure the

distances of objects.
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Chapter 6

Real-Time Subpixel Distance
Measurement for Objects

For finding the correspondence of two images, there are two categories of processing methods

in real applications. One is based on intensity patterns, and the other is to use the features of

images. In general, the edges of objects are more easily adopted by object recognition rather

than points and surfaces. The main reason is that edges include many properties of objects

such as contour and intensity difference. In this section, we will develop a real-time method to

determine subpixel based distances of objects.

6.1 Overview of the Approach

The implemented procedure is described as follows. From the diagram: firstly, a pair of channel

Figure 6.1: The diagram of implementation of measuring distance for objects

images is captured. It is preprocessed by a filter to eliminate noise and calibrate the optical

distortion. Then the brightness correction coefficients obtained from the previous chapter are

applied to balance the brightness in the whole channel image. Afterwards, the pure image is

used to detect the edge positions of objects. The subpixel disparity between stereo pairs of
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pixels is computed. It results from the difference of the determined subpixel baseline correction

(see previous chapter) and the distance of pixel pairs in the image. Finally, combining the input

offset based on adjacent channels, the subpixel disparity and the baseline of pixel pairs, the

measurement of the subpixel distances of objects is reached successfully.

6.2 Image Preprocessing

An image from a real environment generally includes many factors such as noise and optical

distortion. In many cases the scene is not invariable, thus the previous methods that calculates

the mean from multi-frames of the same scene is not exactly appropriate any more. Actually,

the noise in images can be described by the Gaussian distribution. As mentioned before, the

ideal filter for the edges that include much high-frequency information is the Gaussian filter, i.e.

the Gaussian filter is an optimal estimation. The one-dimensional Gaussian filter is described

by

g(t, σ) =
1√
2πσ

e−
t2

2σ2 , (6.1)

where t denotes the argument that can be along with x axis or y axis. Analogously, the 2D

Gaussian kernel G(x, y, σ) is given by the formula:

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 . (6.2)

It is observed that (6.2) can be expressed with the multiple between two one-dimension Gaus-

sian kernels in the formula:

G(x, y, σ) = g(x, σ)g(y, σ), (6.3)

where x, y denote two free coordinates and σ is a parameter. That means that the Gaussian

kernels are isotropic, i.e. their characteristic is perfectly symmetric in all directions. We can

commonly employ the 2D Gaussian function to get rid of noise directly, but this way causes high

computational cost. In the context of a real-time application, two one-dimensional functions

(6.2) are preferable over the 2D filter.

6.3 Detecting Coarse Edges of Objects

Since the shapes of real objects are not as simple as a line or a circle but more complicated, the

transitional area cannot be directly determined by the method of the previous chapter. Here we

employ another method to estimate rough edge positions of objects in a real-time environment.
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6.3.1 Detection of boundaries of Objects

John F. Canny proposed the Canny edge detector that uses a multi-stage algorithm to detect a

wide range of edges in images [Yao & Ju, 2009]. Due to the excellent performance of the Canny

operator, this type of edge detection is popular at pixel level. The Canny operator is an optimal

edge detection algorithm which tries that not only to mark as many real edges in the image

as possible but also marks edges as close as possible to real position and tries to avoid false

detections. On the whole, the stages of the Canny algorithm consist of noise reduction, finding

the intensity gradient of the image, non-maximum suppression, and tracing edges through the

image based on two thresholds.

Noise reduction: In order to eliminate the effect of noise, the Canny edge detector employs

the Gaussian filter, i.e. the raw image is convolved with the Gaussian filter ((6.1) and (6.3)).

Essentially, there is a tradeoff between filter noise and edge detection, but the result of Gaussian

filtering keeps the edge properties better than other denoising approaches.

Determination of the intensity gradient: In view of the gradient of the image, we can

approximate it using the first finite difference so that the two partial derivative matrices (Gx

and Gy of the image at the respective direction x and y can be obtained. We devise a simple

convolution operator as

sx =

(
−1 1

−1 1

)
, sy =

(
1 1

−1 −1.

)
(6.4)

Thus, the partial derivative of each image point with respect to the gradient direction x and y is

obtained as follows:

Gx(x, y) = (f(x, y + 1)− f(x, y) + f(x+ 1, y + 1)− f(x+ 1, y))/2 (6.5)

Gy(x, y) = (f(x, y)− f(x+ 1, y) + f(x, y + 1)− f(x+ 1, y + 1))/2, (6.6)

and then the edge gradient and direction can be derived from (5.16).

Non-maximum suppression: A fact is that the greater value in the gradient matrix response

is the greater gradient value of the point in the image. But it doesn’t mean that point is the

desired edge point. Given estimates of the image gradients, a search is carried out to determine

if the gradient magnitude assumes a local maximum in the gradient direction. In other words,

that is to search a local maximum and set the values of points with non-maximum to zero

so most non-edge points can be rejected. As we can see in Figure 6.2, for the goal of non-

maximum suppression, we firstly need to judge whether the gradient value at the pixel C is the

maximum in its neighborhood of eight pixels. The blue line indicates the gradient direction at

C, the definite fact is that the local maximum of C must exist on the blue line. In other words,
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Figure 6.2: The principle of non-maximum suppression

besides the point C, the other two points (T1 and T2) where the gradient direction line interact

with the adjacent scanning lines are also candidates for the local maximum. Therefore, we can

know whether the point C is exactly the local maximum in its neighborhood by comparing C

with T1 and T2. Assuming the gradient as data value of C is less than T1 or T2, that means the

point C is not the local maximum and C can not be the edge point. Note that T1 and T2 have

to be calculated by interpolation since only the values of pixels such as g1, g2, g3 and g4 are

derived directly in the neighborhood. The non-maximum suppression results in a binary image

in which the edge points have a constant value such as 127 and all others are set to 0. By now,

the rough edges have been detected, but there is still some noise and false edges in the binary

image. Thus, further processing is still needed for finding the final fine edges.

Tracing edges through the image based on two thresholds: Large intensity gradients are

more likely to correspond to edges than small intensity gradients, but they also include many

false edges. Therefore, we need to filter the false edges by thresholds. In most cases, a high

threshold can suppress most false edges to a related pure edges image, i.e. edges with little

false information, but the edges are likely to be unclosed due to the high threshold. Thus, a low
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threshold is usually used in the Canny algorithm. The fine edges are extracted by

I(x, y) =

⎧⎨
⎩1, (I(x, y) > Th) or (Th > I(x, y) > Tl and Ik > Th), k ∈ [m,n]

0, others
, (6.7)

where Th and Tl denote the high and low thresholds respectively and I(x, y) represents the

gradient value of arbitrary pixel. In the neighborhood [m,n] of I(x, y), the kth pixel’s value is

Ik.

6.3.2 Decision of Transitional Areas

Using the Canny edge detector, the edge positions of objects can be found. However, these

edges only describe the coarse positions of real edges, i.e. at pixel resolution level. For the goal

of subpixel positions, the decision of transitional areas becomes the significant procedure since

this does not only define a range for the subpixel computation but also gets rid of outliers. As we

Figure 6.3: The edge of black and white under different focusing

know, the edge appears differently with respect to changing focusing, which causes variations

of transitional areas. A real example can illustrate this property of the camera. We used a

common camera with fixed focal length to take several photos under different focusing for a

black straight object with white background. In order to obtain images with different values of

blurring parameters, we shot some images with different manual focusing. To avoid artifacts the

uncompressed images were converted from original raw format to 24 bits color PNG format.

We only focus on the properties of edges, a cutout of 240 x 120 pixels around the edge (Figure

6.3) was extracted for analysis. Certainly, all the color channels are not necessary for out task.
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(a) The sharp focusing

(b) The blurring focusing 1

(c) The blurring focusing 2

Figure 6.4: The intensity character curves under different focusing
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Here the information of red channel was adopted in our test.

Figure 6.4 shows the plot of the edges under different focusing. Obviously, a big blurring

parameter generated a big transitional area, while a sharp edge makes its transitional area more

narrow. Based on this property of camera, we can confirm that a camera with fixed focal length

and fixed focusing distance imaging an arbitrary object will create edges of all objects to have a

fixed size of the transitional area. Thus, this property provides great convenience for specifying

the transition area. The definition of transitional area is described by

I(x, y) =

⎧⎨
⎩1, x ∈ [x0 −m,x0 + n]

0, others,
(6.8)

where I(x, y0) denotes the value of the pixel (x, y) and x0 is the position of an edge pixel that

was determined by the above Canny edge detector. m and n are the preset number of pixels for

the above and below limit of a neighborhood at the position of coarse edges.

6.4 Distance Measurement at Subpixel Level

According to (4.1), the difference between the two corresponding subpixel positions in both

adjacent channels can be determined easily if the function D(.) is known, but, the feasible

approach actually is to transform (4.1) to (6.9). That is, the disparity d̄ is represented by the

difference of subpixel positions between a pair of pixels (x1k, x2k) that have the same intensity,

namely I(x1) = I(x2).⎧⎨
⎩d̄ = 1

n

∑n
k=1 (x1k − x2k)

I(x1k) = I(x2k) I(x1k), I(x2k) ∈ Mij

(6.9)

Here a question arises, that is, which points should be picked up for determining the dispar-

ity? Simply the neighborhood of the medial intensity in the transitional area, namely the range

Mij in the (6.9), is quite suitable for computing the disparity. There are two benefits: one is

that the middle of the edge area is not sensitive to the variation of places, the other one is that

the intensity of pixels around the middle value approximately vary linearly. So that the linear

interpolation can be used to obtain the required data. Therefore, based on the points around the

middle of the left channel, the corresponding points with the same intensity can be obtained

by linear interpolation in the right channel. For instance, when the difference between the ob-

ject and the background is 100, the value 50 should be selected as the base point. The base

point’s neighborhood is exactly specified by extending one third of the value 50 as the limit of
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the neighborhood, i.e. range[33, 66]. Then, in this range, the mean of the intensity regarding

n pairs of points is derived from the linear interpolation. Considering the effect of noise, the

bilinear interpolation is an ideal approach to derive the corresponding points since it can not

only eliminate the noise but also remove the deviation of the response of sensors. The (6.10)

describes the real implemented method.

I(x, y) =
(
x2 − x x− x1

)
·
(
I(x1, y1) I(x1, y2)

I(x2, y1) I(x2, y2)

)
·
(
y2 − y

y − y1

)
, (6.10)

where the four points (x1, y1), (x1, y2), (x2, y1), (x2, y2) are contiguous, and the intensity I(x, y)

at the point(x, y) can be computed by their corresponding positions.

The advantage of bilinear interpolation is that the four points around the unknown point can

be utilized to support the value of the expected point rather than only depend on the gray value

of a point. Thus, the bilinear interpolation actually appears better that the nearest neighbor

interpolation. However, it will result in edges with big error when the edges have big curve

rates or big incline with respect to the vertical scanning lines.

Certainly, a bicubic interpolation would not only use the information of adjacent vertical

points but also the rate of change between the adjacent points. Thus, the precision of edge

positions could be improved very much. But the complexity and its high computational cost

restrain its application in real-time environment.

An alternative approach is the cubic polynomial interpolation that considers the rate of

change between the adjacent points and computes efficiently. The cubic polynomial interpo-

lation utilizes the four points on the same scanning line and that they are sequential in position.

We can obtain definitely the interpolation points by

L4(x) =
4∑

i=0

4∏
j=0

x− xj

xi − xj

f(xi). (6.11)

In the above equation, the left side L4(x) indicates the Lagrange interpolation, and the right

side is the sum of four items that are the product of base functions of interpolation and function

values with respect to each point. The cubic polynomial interpolation is highly precise and

efficient in real applications.

6.5 Experiments and Performance Analysis

In general, the subpixel algorithms need to be tested and verified in ideal and real environment.

In the experiments, we first used the synthetic object to examine the algorithm for measuring
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real-time subpixel distances. Then, the real performance of the proposed method was verified

in indoor and outdoor environments in order to implement the desired results.

6.5.1 Verifying Effectiveness and Precision of Algorithms

As in the previous chapter, the algorithm for measuring real-time subpixel distances should be

examined using a synthetic object. We adopt the simulated edge image of Figure 5.5(b), which

has the edge positions of 1024.5 pixels and 1152.5 pixels in the respective channel. The ideal

distance between the two vertical edges is 127 pixels. The experimental results are listed in

Table 6.1.

Table 6.1: The results of distance measurement and deviations

y-pos. x-pos.-ch1 x-pos.-ch2 Distance Distance-noise Deviation Deviation-noise

(pixel) (pixel) (pixel) (pixel) (pixel) (pixel) (pixel)

756 1024.5 1151.5 126.995 126.989 0.005 0.011

757 1024.5 1151.5 126.997 126.985 0.003 0.015

758 1024.5 1151.5 127.005 126.992 -0.004 0.008

759 1024.5 1151.5 127.002 127.007 -0.002 -0.007

760 1024.5 1151.5 127.001 127.004 -0.001 -0.004

761 1024.5 1151.5 127.000 127.003 0.000 -0.003

762 1024.5 1151.5 127.000 126.986 0.000 0.014

763 1024.5 1151.5 127.000 126.992 0.000 0.008

764 1024.5 1151.5 127.001 127.003 -0.001 -0.003

765 1024.5 1151.5 127.006 126.990 -0.006 0.010

766 1024.5 1151.5 127.006 127.003 -0.006 -0.003

767 1024.5 1151.5 127.011 127.005 -0.011 -0.005

768 1024.5 1151.5 127.013 126.990 -0.013 0.010

769 1024.5 1151.5 126.993 126.991 0.007 0.009

770 1024.5 1151.5 126.995 126.981 0.005 0.019

771 1024.5 1151.5 126.984 126.990 0.016 0.010

772 1024.5 1151.5 126.983 126.988 0.017 0.012

773 1024.5 1151.5 126.983 126.976 0.017 0.024

774 1024.5 1151.5 126.982 126.976 0.018 0.024

775 1024.5 1151.5 126.988 126.978 0.012 0.022

Mean 1024.5 1151.5 126.997 126.992 0.003 0.008

STD - - 0.009 0.010 - -

Clearly, we find that the distances between the feature points and their corresponding points

are quite stable. More accurately, the distances vary around the ideal distance of 127. The
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standard deviations of distances are rather small ( about 0.01); even in the case of the simulated

edge image where noise was added. The last two columns show the deviations from the ideal

distance, which demonstrates the small values. This means that the algorithm for measuring

real-time subpixel distances can effectively fulfill the subpixel distance measurement and obtain

highly precise outcomes. Certainly, the goal of the chapter is not only to derive distances of

Figure 6.5: The estimated distances of the synthetic object

stereo pixel pairs but also to determine object distances. Here, we utilize the calibrated distances

of stereo pixel pairs to get the disparities of objects’ edge features. Further, the object distances

from the eCley can be determined by (2.3). Figure 6.5 shows the distances between the feature

points of the synthetic black object and the eCley. Although determining the real distance of the

synthetic object is meaningless, the results demonstrate that the subpixel differences between

each pixel pair in the stereo channels are different instead of the uniform value as the baseline of

stereo channel. The distances of near pixels are quite close so that the eventual object distances

that are estimated from the feature pixel points of the object are approximate.

6.5.2 Tests Indoors and Outdoors

In our experiments, we used the eCley to measure the distances of preset objects indoors and

outdoors, and then evaluated the precision of the proposed algorithm comparing to the ground

truth. The influence factors of the measurement precision are also discussed at the end, such as

the effect of offset error, brightness correction, distortion, noise et al.

In the indoor experiments, we used three objects: a tea box, glue and a stripe board as the

scene. They had preset distances to the eCley. Theoretically, the eCley can test the distance

with respect to subpixel disparity from the minimum distance corresponding to one pixel up

to infinite. Usually, the error is around 1/20 pixel for a camera with the resolution of 512 ×
512 [Cyganek & Siebert, 2009], i.e. the distance measurement at the range over 1/20 pixel
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Figure 6.6: The ground truth of distances

disparity is of no concern. But for far distances with respect to the very small disparity big

errors occur. This is caused by the difference between the real camera and the pin-hole model

with the illumination, noise and blooming effect. Therefore, the preset distances have been in

the measurable range of [90 mm, 900 mm] in our experiments. The objects should have rather

obvious edges distinct from the background to be detected using the proposed algorithm. We

adopted a tea box with sharp edges and a glue bottle with smoothly curved edges. In addition,

the stripe board used was an ideal object for comparison with others because it has highly

contrasted black and white stripes. For avoiding the effect that different distances results from

different positions of the same object, we keep the eCley vertical with all the objects. The set

of experimental objects and the eCley are shown in Figure 6.6.

The coarse edges are obtained by the Canny detector that has been discussed in the previous

section but the result of Canny detector includes strong edges and weak edges. Therefore, we

need to filter the weak edges to improve the accuracy of the distance measurement. Additionally,

the horizontal edges and inclining edges also need to be eliminated. Since the processing for the

whole image including all the channel images, the rough edges include the rims of the channels.

Certainly, the rims of the channels should not arise in the purified channel images.

Figure 6.7 shows an edge image of the channel at row 6 and column 8 in the eCley. By the

Canny detector, the channel image of Figure 6.7(a) becomes the edge image of Figure 6.7(b),

in which there are some horizontal edges, heavily inclining edges and the rim of the channel.

Figure 6.7(c) and Figure 6.7(d) are the results without the rim and horizontal and inclining

edges.

Table 6.2 lists the ground truth and the results from the several measured points on the edges

of the objects. Clearly, each sampled point on the edge leads to a different real distance around

the ground truth, which is caused by many factors such as illumination, sensor sensitivity and
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(a) The channel image (b) The edges of the channel image

(c) The edges without the rim (d) The edges without horizontal bars

Figure 6.7: Determination of edges and transitional areas

Table 6.2: The measured distances of the channel and their deviations

Objects Ground truth Point1 Point2 Point3 Point4 Point5 Mean Deviation

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (%)

Glue 200 211 208 204 202 199 205.4 2.5

Tea box 250 262 260 256 256 251 251 3.7

Stripe board 310 324 321 318 314 312 316 4.2
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(a) Indoor objects measuring (b) Outdoor objects measuring

Figure 6.8: The results of measuring object distances indoors and outdoors

noise. In fact we can see is that the mean values of the distances are quit near to the ground truth.

The error is smaller than 5%. For single measurement, it is also smaller than 5%. Even if there

are different types of edges, the error of the measurement is limited to 10% of our experimental

range, i.e. the proposed method fulfills the goals of the subpixel measurement. Additionally,

the precision of measurement decreases for distant objects but stays in the mentioned range.

Figure 6.9: Comparison between different interpolations

Utilizing the measured distances, the eCley can measure the distances of objects and imple-

ment 3D position. Figure 6.8 shows the results of the application that measures the distances of

objects exactly. The new subpixel distance measurement of stereo pixel pairs enables the eCley
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to measure the distances of objects effectively.

In the same scene, I used different approaches to attain the subpixel disparities. This gave

rise to different results. As Figure 6.9 shows, the cubic interpolation outperforms the mean and

bilinear interpolations. Clearly, a common tendency for all approaches is that the accuracy of

measurement decreases with increasing distances of objects.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

In many high-technology fields, such as informatics, artificial intelligence, aerospace, national

defence, and so on, applied optical imaging systems are being used more and more widely. In

the meantime, there is an increasing expectation of a miniaturization of the whole system. How-

ever, due to the limitations of the fabrication technology and the effects of optical diffraction, a

minimization through modifying the size of the electronic elements and mechanical devices is

faced with a dilemma. An alternative is to minimize the entire optical part of the system so as

to reach the goal of a small volume and light weight for the whole imaging system.

The artificial compound eye is a novel branch of imaging systems, which combines bionics,

integrated optics, and micro optics. Researches on artificial compound eyes can overcome the

limitations of conventional cameras, such as their enormous size, narrow FOV (Field of View),

and insensitivity to objects. Thus, their important practical value has attracted a lot of attention

to research on artificial compound eyes. Quite successful applications include, for example, the

imaging needed for precision-guided missiles, a polarization navigator for micro aerial vehicles,

vision navigation and object recognition for robots, fingerprint and credit card identification for

information security, full FOV imaging for small distance detection, and so on.

The electronic cluster eye (eCley) is a new artificial superposition compound eye with super-

resolution. Its many outstanding characteristics, such as small volume, light weight, large FOV,

short focal length, and high sensitivity, increase some potential abilities such as stereo vision

in the same imaging system. Nowadays, applications based on the eCley mainly concentrate

on the processing of 2D image information. When users want to obtain 3D image information,

extra processing devices or sensors such as Time of Flight (TOF) depth sensors and laser scan-

ners must be used to capture depth information. To get information on the depth of objects we

can certainly also use passive image devices such as the stereo camera. Nevertheless, the cost

of the extra devices is quite significant and their bulky volume conflicts with the goal of minia-
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turization, thus limiting its application. Taking aim at these problems, I can obtain some cues

from the structure of eCley, which contains 17 × 13 microlens channels with the same optical

parameters and geometry size, and then the image channels are retained straight on each row

and column. These properties enable the functionality of stereo vision in the eCley. Just in this

context, the present dissertation analyzes the significant fact that the transitional areas of image

brightness contain rich information, including depths or distances of objects, in either the usual

camera or the eCley. The advantage of the eCley is to allow a multi baseline stereo arrangement.

Furthermore, the varying relation between the positions of feature points and their intensities

in transitional areas can be used to determine the subpixel distances of the corresponding pixel

pair in adjacent channels. I mainly develop theoretically a mathematical model of stereo vision

in the eCley based on its special structure, discuss the optical correction and geometric cali-

bration that are essential to high-precision measurements, study the implementation methods of

the subpixel baselines for each pixel pair based on intensity information and gradient informa-

tion in transitional areas, and implement a real-time subpixel distance measurement method for

objects through the use of features on the edge. I also verify my proposed methods by using

both an artificial synthetic stereo channel image and a large number of real images captured in

diverse scenes, and discuss the experimental results with respect to various influencing factors.

The whole dissertation demonstrates my work in the following five parts.

• Firstly, I introduce the methods of distance measurement based on the canonical stereo

camera system, develop a mathematical model for depth information, and analyze the

limitations of conventional stereo matching algorithms for eCley due to its short focal

length and miniaturized structure.

• Secondly, the ill-posed problem of image processing, especially for distance measure-

ment, is demonstrated, followed by analyzing the structure of eCley and the significant

characteristics of the transitional area between objects and background, e.g. that the vari-

ation of intensity reflects the position of a feature point. With reference to this fact, the

whole framework of stereo vision in a multilens camera, such as the eCley, is illustrat-

ed, and how 3D depth information results from the implementation of subpixel distance

measurement for objects.

• Afterwards, I propose two approaches to brightness correction: maximal mean and voted

probability. The offsets of each adjacent two channels are also derived from the difference

between the center coordinates of two neighboring channels, which are coarsely calculat-

ed by circle fitting and then more finely by straight line fitting. In addition, after analyzing

the optical radial and tangential distortions, I create a projective model including various

distortion and transformation parameters, and then employ the method of least squares to
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solve for the optimal parameters that maintain the suitability for distance measurement of

the calibrated channel images.

• Then, I discuss the detection of subpixel features in the transitional areas as a ill-posed

problem. Based on the characteristics of intensity and gradient, I get the subpixel posi-

tions of pixel points by the max mean and edge reconstruction, and determine the subpixel

baseline between the two corresponding pixels in adjacent channels. After traversing the

whole channel (left or right channel), all the baselines of pixel pairs in the pair of chan-

nels can be calibrated accurately at the subpixel level. The experimental results, involving

both synthetic channel images and numerous real images shot in real scenes, verify the

proposed methods. The factors of precision are discussed, for instance, the subpixel po-

sition versus error, the variation of illumination versus error, the objects’ distance versus

the precision, and so on.

• Finally, I propose a method of real-time subpixel distance measurement for objects, which

removes noise and some uncertainty by a gaussian filter, and finds the subpixel posi-

tions by interpolating the characteristic curve in the transitional areas to determine the

depth information of an object. To ensure overall efficiency, the whole algorithm adopts

a coarse-to-fine strategy. I also compare the different accuracies arising from different

interpolating approaches in my experiments, and analyze the sensitivities of the offset,

distortion, and distance of the object.

In general, these proposed algorithms give eCley the ability to detect the 3D positions of objects,

i.e. they implement a real-time subpixel distance measurement for objects. The main point is

that the measurement range has been extended from 8 cm with conventional methods to about

80 cm. This allows wide field supervision e.g., in automotive applications.

7.2 Further Work

Although stereo vision is a novel function in the eCley, which greatly extends its applicability,

there is still room for improvements in the accuracy and efficiency of real-time 3D measure-

ments in future research.

• Although the approaches proposed in this dissertation calibrate the distortion and correct

the brightness, some specific improvements are necessary. For example, the distortion at

the boundary of the channel should be dealt with before computing the distance, since it

may cause the aberrance in the properties in the transitional area. Furthermore, removing

the effect of uneven illuminance in the test environment is quite important for obtaining
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precise results, something which limits its applicability: a more robust correction and

calibration method should be developed.

• This dissertation employs both the intensity and gradient features to derive the subpixel

positions of corresponding feature points, but the number of pixels in a 1D transitional

range is only around four, which can only provide limited information for the construction

of the characteristic curve. This paucity of points can not guarantee the accuracy of the

reconstructed curve, so that the positions of the feature points are not quite accurate. How

to utilize more information from related pixels or more pixels is to be considered in future

research.

• In the real-time processing algorithm, the dissertation uses a preset size of the transitional

area for a quick decision about the transitional area using coarse edges and interpolation

to improve the efficiency. However, the Canny edge detector is used to get the coarse

edge, which is computationally expensive. A simple edge detector with suitable accuracy

and high efficiency should be adopted as part of the overall coarse-to-fine strategy, but the

influence of this change had to be investigated.

• The uncertainty from other factors such as illumination could be analyzed in detail in

order to see how deviations in experiment cause differences in the results.
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