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Zusammenfassung
Die Arbeit mit handbeschickten Maschinen (wie z.B. Kreissägen) birgt deutlich höhere

Verletzungsrisiken als vergleichbare Arbeitsplätze mit hohem Risikopotential. Die

weite Verbreitung solcher Maschinen führt zu schwerwiegenden Problemen für den

Arbeitsschutz und hohen Kosten für medizinische Behandlungen sowie Unfallrenten.

In dieser Arbeit wird ein neues Konzept eines multispektralen Sensors vorgestellt,

welcher den Bereich vor der Gefahrenzone einer Maschine überwachen soll, um

Gliedmaßen des Benutzers zu erkennen. Ziel ist, rechtzeitig Schutzmaßnahmen

einzuleiten, um einen drohenden Unfall zu verhindern.

Das Sensorkonzept ermöglicht eine berührungslose Materialklassifikation. Ein

entsprechendes Systemdesign und spezielle Sicherheitsanforderungen unter Berück-

sichtigung internationaler Sicherheitsstandards wurden entwickelt. Darüber hinaus

wurde ein Prototyp implementiert, welcher vier Wellenlängenbänder verwendet.

Diese wurden durch eine Analyse von Reflexionsspektren ermittelt, die eigens für

diesen Zweck erhoben wurden.

Der Sensor beinhaltet ein Embedded System, welches eine Materialklassifika-

tion innerhalb weniger Millisekunden durchführt. Um dies zu erreichen, wurden

mehrere Methoden zur Verarbeitung der Sensordaten erforscht und entwickelt. Die

dargestellten Methoden wurden mit gemessenen und synthetisierten Sensordaten

evaluiert. Ebenfalls erfolgte eine Evaluierung der Prototypen, welche die dargestell-

ten Methoden implementieren. Die Ergebnisse zeigen, dass menschliche Haut unter

verschiedensten Messbedingungen, auch unter Störeinflüssen, verlässlich erkannt

wird.
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Abstract

The use of manually fed machines (e.g. table saws) bares risks of injury that are

clearly above the average level of other high risk workplaces. The wide use of such

machines causes severe problems for occupational safety and implies high costs for

medical treatments and accident annuities.

This thesis presents a new concept of a multispectral sensor to monitor an area in

front of a danger zone to detect the user’s limbs and trigger safeguarding measures

to prevent an accident in time. The sensor concept realizes a contact-free material

classification, which comprises the development of a system design and specific

safety requirements with respect to international safety standards. Furthermore,

a prototypical implementation using four wavebands, which were determined for

skin detection through an analysis of reflectance spectra acquired specifically for this

purpose, was built.

This sensor comprises an embedded system which is able to perform a material

classification within a few milliseconds. To achieve this, several algorithms were

researched and developed to process the raw sensor readings. An evaluation of

the presented methods on both real and synthesized sensor data as well as on the

prototypical implementation was performed. The evaluation yields that the prototype

implementing the presented methods can detect human skin reliably within a wide

range of measurement conditions, including the presence of interference sources.
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Chapter 1

Introduction

Manually fed machines are generally prone to accidents, as dangerous moving parts

are within the user’s reach during normal operation. In Germany, for instance, the

use of circular bench saws at joineries, construction sites and woodworking shops

led to about 2750 reported accidents in 2005, which resulted in 98 new accident

annuities1 [1]. Furthermore, in the United States of America, about 65000 accidents

were reported which led to costs for medical treatments of 1.967 billion USD in

2001 [2, Table 1]. Despite the individual sorrow, the economic damage caused by

accidents involving such machines is severe. A technical solution to allow a contact-

free detection of human limbs at certain positions could dramatically increase the

safety standards at many manually fed machines. However, such a technical solution

must react fast and sufficiently reliable while not obstructing the user in any way. In

addition to those challenging requirements, the costs for the needed hardware shall

be as low as possible in order to achieve market acceptance.

This thesis presents and validates a concept of a multispectral point sensor for

contact-free material classification. If such a sensor is optimized for skin detection, it

1Accident statistics for construction sites were supplied on demand by the department "Statistics -
Occupational accidents, Prevention" of the German Legal Accident Insurance (DGUV).
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can only be used as long as the user does not wear gloves. The limitation to bare hands

is not a problem for most applications, as the use of gloves is discouraged at many

machines with rotating tools, as tear-proof gloves increase the risk of getting caught in

by the moving parts of the machines [3]. The resulting injuries are often more severe

than a plain cut resulting from direct contact of hand and tool. Exceptions are found

in industries with special requirements to hygiene like food processing industries,

which require the use of special gloves. However, the presented sensor concept can

also be optimized to detect certain gloves or a sensor optimized for skin detection

might even be able to distinguish a particular glove from certain workpieces.
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Figure 1.1: Principle setup and signal processing of a multispectral point sensor for
material classification (compare [4, Fig. 1]).

As depicted in Fig. 1.1, the concept suggests a transmitter unit with LEDs of dif-

ferent peak-wavelengths to generate strobe pulses of spectral-selective illumination,

which are formed into a homogeneous and narrow beam. A broadband receiver

unit featuring an array of photodetectors is used to measure the incident radiation

reflected from surfaces in front of the sensor. The receiver is synchronized to the trans-

mitter’s strobe pulses to measure the specific amplitude change per waveband. These
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amplitudes can be used to judge whether the probed surface’s material is human skin

or not. Furthermore, the sensor is able to estimate its distance to the targeted surface

by triangulation. This concept was first published in the OSA Journal of Applied

Optics [5, 6]. The basic physical properties and state-of-the-art methods, which are

used for distance estimation and material classification, are described in chapters 2

and 3.

In Chap. 4, the selection of appropriate wavebands to discriminate human skin

from typical workpieces is made and denoted as a spectral signature. The main con-

tribution of this chapter is the systematic analysis of over 1000 reflectance spectra

acquired from 330 people of all ages, sex and skin color as well as from several hun-

dred typical workpieces of wood and plastics. Intermediate results from this chapter

were also published in the IOP Journal of Measurement Science and Technology [4].

In Chap. 5, the applicability of current safety standards on this new type of sensors

for material classification is investigated. In this context, it is a primary objective to

identify the gaps in current safety standards with respect to the proposed concept and

to present recommendations on how to close these gaps. To best of my knowledge,

this dissertation is the first document to address this issue. Furthermore, system

design concepts are presented and discussed, which are used to derive a system

specification. At the end of the chapter, a prototypical implementation, which aims

for compliance with these specifications, is presented.

In Chap. 6, appropriate methods were investigated to process the signals acquired

by such sensors, where the focus is on the selection of suitable state-of-the-art meth-

ods. However, a new method to estimate the measurement distance is introduced

in addition to a standard method. Furthermore, an approach to extract the spectral

signature from the available sensor readings is presented. Intermediate results on
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these topics were also published in the IOP Journal of Measurement Science and

Technology [4].

It is necessary that such a sensor operates reliable in every situation, as the health of

the users depends on the efficacy of the safeguarding equipment. Therefore, Chap. 7

presents a number of experiments that have been carried out to evaluate the presented

methods as well as the prototypical implementation. A part of these experiments

were also published in the OSA and IOP journal articles mentioned above [5, 4].

This dissertation presents comprehensive results from these experiments as well as

new experiments, e.g. on measurement artifacts caused by external factors such as

ambient temperature, humidity and light.

Chapters 5, 6 and 7 yield the major contributions of this work. An outlook on

possible applications is described in Chap. 8.

This thesis is devoted to the concept, implementation and evaluation of a mul-

tispectral sensor for skin detection. The thesis does not address any mechanical

solutions to actively protect a machine’s user from being harmed, as the necessary

means must be designed individually for any application and machine. Furthermore,

the development of the presented prototypical implementation should be understood

as a proof of concept rather than the attempt of a product development.
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Chapter 2

Basics

In this chapter, the problem and motivation for this work is described. Furthermore,

relevant techniques and a mathematical notation are introduced.

2.1 Problem Formulation

Detecting human limbs within a supervised area is a challenging task. For safety

applications, it is reasonable that a sensor system triggers a protective measure at the

very last moment before an accident becomes inevitable to allow the user as much

freedom of action as possible. For instance, a fast stopping mechanism for a saw

blade should only be triggered if a finger is less than 50mm away from the saw blade

to allow the handling of small workpieces. Considering a quick movement of the

hand of about 2 m s−1, only 50mm/2m s−1 = 25ms would be available to prevent an

accident. Stopping a saw blade within 25 ms is challenging, so the safety sensor must

trigger the brake within a few milliseconds in order to maximize the remaining time

span. On the other hand, the system must always react precisely and reliably, as it

should not trigger protective means if the hands are still outside the danger zone or if
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a workpiece enters the danger zone. In consequence, the spot observed by the sensor

system must be sharply outlined and smaller than the width of the smallest object

that must be recognized (e.g., a little finger) over the whole permissible operating

distance. Having a well-defined spot (or beam), the objects within this spot must be

classified with very high accuracy. As discussed in Chap. 5.1.1, requirements for the

accuracy can be derived from the international safety standard IEC 61508-1, yielding

that the rate of human limbs being misclassified as workpieces must be in the range

from 10−5 to 10−1 (depending on the expected risk and severity of injuries). All these

requirements must be met at all expectable ambient conditions, including vibrations

as well as varying temperatures, humidity and external light sources. Furthermore,

the system should be inexpensive, compact and mounted in a way that the users of

the machine will not be hindered by it in any way.

Therefore, at least one well suited physical feature must be used for a reliable

differentiation from usual workpieces. A variety of physical properties can be utilized

to detect the presence of human limbs. Certain properties as shape, size, temperature

and color are obvious candidates to think of, because they can be perceived with at

least one of our five human senses. In practice, all of these properties are hard to

exploit:

• With its 27 degrees of freedom, the shape of a hand is highly variable [7]. Fur-

thermore, the information on shape and size acquired by most sensors, e.g. stereo

cameras or Photonic Mixing Devices (PMDs), usually is incomplete and does

heavily depend on the observation angle. Under these circumstances, detecting

a human hand fast and reliably by shape and size is a very complex task, which

is not expected to be solved by an inexpensive sensor system.

• The surface temperature of the human hand is influenced by the blood flow and
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room temperature. Nevertheless, work pieces can warm up to body temperature

during processing easily, e.g. by heat which is generated during sawing or

drilling.

• The detectability of human skin must not depend on the skin color. Considering

woodworking industries, a sensor is required to differentiate human skin from

all types of wood. Both, skin and wood, show heavy variations as well as a high

degree of similarity in the visual spectrum, thus making a reliable differentiation

within the visual spectrum almost impossible.

Alternatively, physical properties which are independent of the human perception

can be considered. The following section presents physical basics for skin detection

beyond human perception.

2.2 Physical Basis

In 1955, J. A. Jacquez published one of the earliest scientific articles on the reflectance

spectrum of human skin in the near-infrared spectrum [9]. Jacquez concluded his

paper with the following sentence:

"Above 1.2µ(m), the reflectance curves of the skin of differently pig-

mented persons are practically identical and show primarily the absorp-

tion spectrum of water."

His conclusion can be explained by the interaction of the incident radiation with water

within the human tissue, which is possible due to the translucency of human skin.

Fig. 2.1 shows the reflectance spectra of six differently pigmented persons, acquired

at the back of the hand. The categorization of skin types, one (pale) to six (black),

is done by a scheme which was introduced by Fitzpatrick [10]. Fig. 2.2 shows an
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Figure 2.1: Reflectance of human skin with different pigmentation.

example for each of the six skin types. Obviously, the reflectance spectra within the

visual spectrum depend strongly on the skin type, but all spectra come close to each

other within the near infrared spectrum (see Fig. 2.1). In conclusion, the reflection

properties of human skin within the near-infrared spectrum are a good basis for a

skin detecting sensor system, as the properties are distinctive and do not depend on

the skin color.

2.3 Machine Learning Methods

The presented sensor concept produces a vector of multispectral remission intensity

values~s, which is denoted as spectral signature. These signatures form a vector space,

whereby the dimensionality equals the number of available wavebands. Classifiers

are needed to map a spectral signature to its material class. Plenty of machine

learning methods are available to perform such classifications. In this work, the focus
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Figure 2.2: Different skin types after Fitzpatrick [8].

is on SVMs because of their superior performance and decision trees for their simple

evaluation. Both techniques are described in the following subsections.

2.3.1 Support Vector Machine (SVM)

SVMs are able to recognize patterns in n-dimensional data and can be used for clas-

sification and regression. The basic idea of using hyperplanes was introduced and

denoted as perceptron by Rosenblatt in 1958 [11].

A (single-layer) perceptron requires a set of labeled vectors (~x1, y1), ..., (~xm, ym) ∈

X× {−1,1} for training, whereby X must be a dot product space, the label y ∈ {−1,1}

defines the membership of each vector to one of the two classes and ~w is an orthogonal
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Figure 2.3: Linear separation of two classes by a hyperplane in a two-dimensional
example [12, see Fig. 1.5].

vector to the hyperplane. Note that problems having more than two classes are called

multi-class problems and require additional processing steps, e.g. subdivision into

several two-class problems. To solve the classification problem, a hyperplane is fitted

in the vector space to separate the members of the classes as depicted in Fig. 2.3.

The hyperplane is positioned in a way that the margin to the nearest training vectors

(which are denoted as support vectors for SVMs) is maximized. This is done to optimize

the classification stability with respect to further class members, that are not available

for training.

As depicted in Fig. 2.4, the training vectors are not always linearly separable by

a hyperplane. During the 1970s, Vapnik and Chervonenkis enhanced the concept

of perceptrons by a transformation of all vectors into a feature space H of higher

dimensionality, in which the separation task is linearly solvable (see [13, 12]). When

back transforming into the original space, the hyperplane becomes a non-linear hy-

persurface.
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Figure 2.4: Example of a not linearly separable problem: separating dots from crosses.

However, the transformation in such a dot product space is considered to be too

computationally expensive. Therefore, Vapnik and Chervonenkis used a kernel to

perform an implicit transformation, which is more efficient to compute.

Mathematical Description

All possible hyperplanes in X are defined by Eq. 2.1.

〈~w,~x〉+ b = 0 , ~w ∈ X,~x ∈ X,b ∈R. (2.1)

In this equation, ~w ∈X is a vector orthogonal to the hyperplane and b ∈R is a bias [12,

S. 189]. A decision function yi = f (xi) = sgn(〈w,xi〉+ b) is required for the evaluation of

a previously unseen vector ~xi. The decision function will determine the position of ~xi
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with respect to the hyperplane. As the hyperplane cuts X into two zones, the result

of the decision function is either yi = −1 or yi = 1 to indicate the class membership of

~xi. To build a decision function with optimal margin, it is necessary to minimize the

objective function τ(~w) = 1
2‖~w‖

2 so that the inequality constraint yi(〈~xi, ~w〉)≥ 1∀i = 1, . . . ,m

is satisfied (see [12, chapter 7]). This is called the constraint optimization problem. To

solve the problem, Lagrange multipliers αi ≥ 0 are introduced. With the aid of the

Karush-Kuhn-Tucker conditions, w is expressed as a linear combination of training

vectors: w =
m∑

i=1
αiyi~xi, whereby all vectors having Lagrange multipliers αi > 0 are

denoted as support vectors. Consequently, all vectors having αi = 0 have no influence

on the hyperplane and are discarded from the final decision function to simplify the

computation. To determine the Lagrange multipliers in practice, the so called dual

optimization problem, in which the primal variables w and b are substituted, can be stated

as:

max
α∈Rm

m∑
i=1

αi−
1
2

m∑
i=1

αiα jyiy j〈~xi,~x j〉,

subjected to αi ≥ 0 ∀ i = 1, ...,m and
m∑

i=1

αiyi = 0

(2.2)

Thus, the decision function can be defined as:

f
(
~x
)

= sgn
(
〈w,~x〉+ b

)
= sgn

 m∑
i=1

αiyi〈~x,~xi〉+ b

 (2.3)

[12, S. 196ff]

As stated above, a hyperplane can only solve linearly separable problems. If

a problem is non-linear, it might be mappable into a linearly separable problem by

transforming the input space X into a feature space (or linearization space)H of higher

dimensionality. The transformation Φ : ~xi ∈ X → x̃i ∈ H is usually computational
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expensive. Therefore, an implicit transformation is used to make the computation

more efficient, which is occasionally referred to as the kernel trick. The kernel trick is

an efficient transformation for all dot product based algorithms. A kernel function k

can be used to substitute the transformation Φ and the vectors ~xi, if they are used in

only one dot product:

〈Φ
(
~x
)
,Φ

(
~xi

)
〉 = k

(
~x,~xi

)
. (2.4)

Using k, the transformation into the feature space as well as the computation of

the dot product are done implicitly. Finally, a kernel based decision function can by

constructed as:

f
(
~x
)

= sgn

 m∑
i=1

αiyik
(
~x,~xi

)
+ b

 . (2.5)

[12, S. 200f]

However, the presented approach lacks an error compensation for faulty training

data as every training vector might effect the resulting hyperplane. For instance, a

high noise level might cause an overlap of classes, which may prevent the definition

of a separating hyperplane. Hence, different advancements to suppress the influence

of outliers were suggested. The C-SVM is a prominent derivative, which is used in

this work and will be described in the following section.

C-SVM

The C-SVM is an error tolerant derivative of the original SVM. The C-SVM is often

denoted as C-SVC for support vector classification. This is realized by the introduction

of so-called slack variables ξi ≥ 0 to the optimization constraints. Every violation of

a constraint leads to an increment of ξi, so that ξi will be greater than zero. The

sum of violations
m∑

i=1
ξi is added to the optimization problem in order to prevent an

exaggerated growth of ξ. Additionally, the sum is multiplied by a constant C > 0 to
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reach a balance between the maximization of the margin and the minimization of the

training error. The optimization problem of the C-SVM is formalized as:

min
~w∈X,ξm∈R

1
2
‖~w‖2 +

C
m

m∑
i=1

ξi,

subject to yi(
〈
~xi,w〉

)
≥ 1−ξi

and ξi ≥ 0 ∀ i = 1, ...,m

(2.6)

[14]

LIBSVM

LIBSVM is an open source programing library which implements a C-SVM as well as

a number of kernels. In this work, LIBSVM was used for training and evaluation of

SVM based classifiers. All supported kernels are listed in the following:

• Linear: K
(
~xi,~x j

)
= ~xT

i ~x j.

• Polynomial: K
(
~xi,~x j

)
=

(
γ~xT

i ~x j + r
)d
,γ > 0.

• Radial Basis Function (RBF): K
(
~xi,~x j

)
= exp

(
−γ‖~xi−~x j‖

2
)
,γ > 0.

• Sigmoid: K
(
~xi,~x j

)
= tanh

(
γ~xT

i ~x j + r
)
.

γ, r, and d are kernel parameters. Some parameters differ from common literature.

These modifications were done for algorithmic optimization and do not effect the

functionality [15].

2.3.2 Binary Decision Trees

Fig. 2.5 exemplifies a binary decision tree. Binary decision trees have the characteristic

that every node yields a condition, which is either satisfied or not. Therefore, every
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node has exactly two children. The children can be further nodes or leafs, whereby

each leaf represents a target value or class. For the exemplified tree, the target values

are the classes c1 and c2. Once a leaf is reached, the traversal of the tree is terminated

and the target value of that leaf is accepted as output. As the traversal of binary

decision trees always begins at the root node and terminates at a leaf without the

possibility of back traversal, the worst case computation cost is O(n), with n being the

depth of the tree (which is n = 3 for Fig. 2.5). Binary decision trees can be computed

on low power 8-Bit microcontrollers conveniently, as the operation performed for

each node is only a comparison of two integer or floating point values.

A>0

B>0                                   C>0

C>1               A>1              C>1               B>1

c1       c2       c1      c2       c2      c1       c1      c2

true        false

true        false true        false

true        false true        false true        false true        false

Figure 2.5: Example of a binary decision tree.

In contrast to the easy classification, the generation of an efficient binary decision

tree is rather complicated. The widely accepted C4.5 tree learning algorithm, which

is based on the ID3 algorithm, is used in this work [16].

The C4.5 algorithm relies on a simple idea: It searches for the i-th attribute that

discriminates most instances of the training set M with respect to their class member-

ship y and stores a corresponding rule as a node, which is recursively repeated for

each child node.

This is done by sorting all elements (~x1, y1), . . . , (~x|M|, y|M|) in a training set M by
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their value ~x[i] | i ∈ [0,dim(~x)− 1] ⊂N in ascending order. Once the elements are

sorted, the C4.5 algorithm computes a mean ti,n between all neighboring values

as ti,n = 0.5(~xn[i] + ~xn+1[i]) | n ∈ [0, |M| − 2] ⊂N and splits the set M in two subsets

Ti,n and Fi,n by using ti,n as a threshold, with Ti,n =
{(
~x, y

)
∈M | ~x[i] > ti,n

}
and Fi,n ={(

~x, y
)
∈M | ~x[i] ≤ ti,n

}
. This threshold-split can be done very efficiently, as the set M

is already sorted by the i-th attribute. These sets are then evaluated by computing

the information gain of Ti,n and Fi,n compared to the original set M. The better

the elements are separated with respect to their class membership y, the higher the

information gain, which is calculated through the entropy of all classes in these subsets

as introduced with the ID3 algorithm [17]. After the evaluation of all threshold-splits,

the threshold ti,ν that reduces the entropy the most is stored and therefore has the

highest information gain for the i-th attribute.

Once this procedure is done for all available attributes i ∈ [0,dim(~x)−1], attribute

index ι with the highest information gain is chosen and the corresponding condition

~x[ι] < tι,ν is stored in the root node.

This process is repeated recursively for both subsets Tι,ν as well as Fι,ν and new

nodes are added, until the new resulting subsets only contain elements of the same

class y. In that case, a leaf instead of a node will be created, storing class y as

output. Furthermore, the C4.5 algorithm balances and prunes the resulting trees for

performance optimization [17, 16]. However, these processes will not be explained

here.

2.3.3 Common Evaluation Criteria for Classifiers

As exemplified in Tab. 2.1, the confusion matrix, which contains the true classes against

the assigned classes, is used as a basis for the evaluation of a classifier’s performance.

Correct classifications of the target class and not-target class are called true positive
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(TP) or true negative (TN), respectively. A wrong assignment of the target class is a

false positive (FP) or a false negative (FN) in the opposite case. In case of more than two

classes, multiple confusion matrices are evaluated, whereby one class is the true class

and all members of other classes are treated as one class of negative samples.

Table 2.1: Structure of a confusion matrix.
actual positive actual negative

predicted positive true positive false positive
predicted negative false negative true negative

Several evaluation measures can be derived from confusion matrices, as the accu-

racy (ACC), true positive rate (TPR), false positive rate (FPR) and the precision (PREC).

According to [18] these measure are defined as:

ACC =
TP + TN

TP + FP + TN + FN
(2.7)

TPR =
TP

TP + FN
(2.8)

FPR =
FP

FP + TN
(2.9)

PREC =
TP

TP + FP
(2.10)

One reason for using additional measures besides the accuracy is that it does not re-

flect a classifiers rate of misclassified positive or negative instances [19]. For instance,

if 1000 positive training samples would be available and classified correctly but only

50 negative training samples would be available and misclassified completely, the

resulting accuracy would still be 1000
1000+50 = 0.95 while the FPR would become 50

50 = 1.0.

If not explicitly stated, all confusion matrices in this work contain median values

of all individual confusion matrices from a 10-fold cross validation. Unless otherwise

described, all 10-fold evaluations use 10 unique sets for training and testing, whereby
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90% of all samples are used for training and 10% are used for testing within each

fold.

2.4 Methods for Distance Measurement

The sensor concept involves a line of detectors (e.g. pixels or photodiodes) for the

receiver, as depicted in Fig. 1.1 on page 2. A single detector would have to be

unusually large to cover a wide measuring range, as the projection of the reflected

radiation inside the receiver is shifted in relation to the measurement distance. This

shift ∆ of the projection can be used to estimate the measurement distance d by

triangulation.

In prior work, two state-of-the-art time delay estimation methods were modified

to be used for an estimation of the projection’s peak position on the detector with

subpixel resolution. Therefore, the methods were adapted from the temporal to the

spatial domain. These methods, the generalized cross-correlation (GCC) and average

square difference function (ASDF), are used as references in this work [20, 21]. In the

next subsection, the notation used for these methods is described.

2.4.1 Mathematical Notation

In general, all estimations are marked by a hat, i.e. d̂, p̂ and ∆̂, while the ground truth

data is expressed without marks. The GCC and ASDF perform a comparison of a

reference signal Xre f and a previously unknown signal Xin in the spatial domain.

In this work, all raw sensor readings from a multispectral sensor are represented

as matrices X ∈NN×B, where B is the amount of available spectral wavebands and N is

the amount of available pixels on the detector line. Furthermore, elements of matrices

or vectors are addressed by indices in square brackets (e.g. ~s[n] represents the n-th
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element of vector ~s). So, each component X[n][b],n ∈ [0,N−1],b ∈ [0,B−1] represents

the strength of the incident illumination measured at pixel n during a strobe pulse

emitted at waveband b. In the following section, b is always 0 to address the first

column of the matrix, as the original methods do not make any use of multispectral

information. Distance estimation is also discussed in a related journal article, in which

a single vector ~x is extracted from X to discard the spectral information [4]. In this

work, the spectral information is preserved to allow for corresponding extensions of

the algorithms.

For distance estimation, a reference matrix Xre f will be chosen from a set of pre-

viously obtained signals R =
{
Xνre f | ν holds the pixel peak index ∀b

}
. In other words,

each column within each Xνre f ∈ R has the property that its subpixel peak position

pν equals ν. As depicted in Fig. 2.6, the relation of Xνre f to Xin can be expressed as

Xνre f [ν][0] = αXin[ν+∆][0], whereby α is a scaling factor and ∆ a (subpixel) signal shift.
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Figure 2.6: Examples for Xνre f (with ν= 2) and Xin, such that the subpixel peak position
of Xin can be approximated as ν+∆.
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To estimate the measurement distance of a previously unknown signal Xin, νmust

be chosen to match the index of the pixel with the maximum received energy. When

expecting a Gauss-like energy distribution over the detector line, the corresponding

Xin[ν][0] will denote the pixel with the closest position to the signal’s subpixel peak

position p. Therefore, ∆ has to be in [ν−0.5,ν+ 0.5] ⊂Q instead of [0,N−1] ⊂Q.

2.4.2 Peak Estimation

The subpixel shift ∆̂ can be estimated using the GCC or ASDF. A discrete cross-

correlation function R̃[m] of Xνre f and Xin is defined as:

R̃GCC[m] = 1
N−m

N−m−1∑
n=0

Xνre f [n][0] Xin[n + m][0] (2.11)

R̃ASDF[m] = 1
N−m

N−m−1∑
n=0

(
Xνre f [n][0]−Xin[n + m][0]

)2
(2.12)

Whereby m ∈N is the search window index over M ∈ [3,N] ⊂N pixels. This leads

to a parabola fR̃ fitted through at least three points (e.g., R̃[ν−1], R̃[ν], R̃[ν+ 1]) with

vertex
(
∆̂, fR̃(∆̂)

)
, which provides ∆̂ as a shift of the peak position with respect to ν.

This definition is now expanded to allow a negative search window index m ∈

[−0.5M,0.5M],m ∈Z, so that the search window can be centered around ν and ∆̂ can

therefore be negative.

To process a negative index m, an expanded index calculation using n−(m) (Eq. 2.15)

and n+(m) (Eq. 2.16) was proposed by Kim et al. to introduce the expanded general-

ized cross-correlation (EGCC) (Eq. 2.13) and the expanded average square difference

function (EASDF) (Eq. 2.14), analogously [20]. Now, the estimated peak position of

Xin is denoted as p̂ = ν+∆̂ [22, 23].
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R̃EGCC[m] = 1
N−|m|

N−|m|−1∑
n=0

Xνre f [n−(m)] [0] Xin [n+(m)] [0] (2.13)

R̃EASDF[m] = 1
N−|m|

N−|m|−1∑
n=0

(
Xνre f [n−(m)] [0]−Xin [n+(m)] [0]

)2
(2.14)

n−(m) = n− m−|m|
2 (2.15)

n+(m) = n + m+|m|
2 (2.16)

2.4.3 Distance Mapping

Finally, a mapping of the estimated subpixel peak position to an estimated distance

p̂→ d̂ is required. This mapping is disregarded in the original work [20, 21], as a

physical setup was used which shows a linear relation between p̂ and d̂. In this work,

the setup of the prototypical implementation presented in the following chapters has

a parallel alignment of receiver and transmitter, resulting in a nonlinear relation of p̂

to d̂. Furthermore, the spot projected onto a flat surface by the transmitter is round

and the photodiodes are round too. When a round projection moves over a round

photodiode, the signals describe a Gauss-like shape with respect to the measurement

distance d (compare Fig. 6.6 on page 115). Another factor is the Gauss-like distribution

of energy within the cross-section of the beam. In consequence, when the beam’s

reflection is projected onto the detector array, its spatial energy distribution will be

captured within the sensor readings (compare reference signal Xν=2
re f in Fig. 2.6 on page

2.6).

As depicted in Fig. 2.7, a test set, recorded in the distance range from 100 mm

to 600 mm, causes non-linear output values using the EGCC, where discontinuities

occur whenever the reference index ν is changed. In between these discontinuities,

individual curves can be seen, where each curve has three points of inflection. These
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Figure 2.7: Power-function model on EGCC-results vs. true measurement distance
(see [4]).

points of inflection are caused by the Gauss-like nature of the input values coming

from each pixel as a function of d. However, the mapping p̂→ d̂ can be approximated

coarsely by a simple function d̂ = 252.21 p̂−0.3. In this work, a more accurate mapping

is found by an isotonic regression on tuples (p̂,d) with distance classes d̂i, which results

in the boundaries ri and the maximum amount of boundaries % as defined in Eq. 2.17

[24, 4]. However, this mapping is still ambiguous for the three discontinuities shown

in Fig. 2.7, where some output values could be mapped to two different distances.
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d̂step(p̂) =



d̂0, i f 0 ≤ p̂ < r0

d̂1, i f r0 ≤ p̂ < r1

...

d̂%−1, i f r%−1 ≤ p̂ ≤ r%

(2.17)
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Chapter 3

Prior Work

In this chapter, prior and related work are summarized. Furthermore, alternative

sensor concepts are discussed and compared. An overview and comparison of prior

work on technical concepts for skin detection is given in Sec. 3.1, which is subdi-

vided for imaging and non-imaging sensor concepts. Furthermore, prior work on

beamforming with LEDs is discussed. In Sec. 3.2, prior publications and patents with

respect to the presented sensor concept are summarized.

3.1 Comparison of Technical Concepts

A number of different technical solutions in the field of human skin detection have

been investigated, which make use of the near-infrared domain. In this section, a

summary of this work is presented. First, the imaging systems are separated from

the non-imaging systems by the two following sections. In the last section, several

approaches on beamforming with LEDs are described.
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3.1.1 Imaging Systems for Skin Detection

All systems presented here comprise an active illumination and a comparable spectral

resolution of two to four wavebands. Generally, the objective for the presented devel-

opment is to use such small sets of wavebands, whereby the individual wavebands

can be relatively broad. This has the advantage that the receivable energy within a

waveband increases with its width or, respectively, with its coverage of the present

illumination source. Furthermore, minimizing the number of wavebands is desir-

able, as it helps to reduce the hardware complexity and to increase the measurement

frequency, which are also important objectives for this work. Therefore, setups that

aim for maximum spectral resolution, such as hyperspectral imaging systems, are not

taken into account for this comparison.

Pavlidis et al. [25]

Pavlidis et al. presented a system comprising two cameras equipped with different

band-pass filters, leading to a lower waveband in the range from 1100 nm to 1400 nm

and an upper waveband in the range from 1400 nm to 1700 nm. A broadband illumi-

nation source is used covering the whole relevant spectrum from 1000 nm to 2000 nm.

As the reflectance of human skin is much stronger in the lower band, every area that

is much brighter in the lower waveband than in the upper one is likely to be human

skin. This system was developed for automatic detection and counting of vehicle

passengers at so called HOV lanes, which are reserved for car-pools in Minneapolis

and elsewhere [25]. Further optimization, such as the fusion of the field of view

of both cameras using a setup of beamsplitters and the use of advanced algorithms

for classification, were described in a series of consecutive publications [26]. This ap-

proach is designed well with respect to the targeted applications, as the energy within
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two broad wavebands is integrated for a fast measurement. However, integrating the

spectrum over only two comparably broad wavebands eliminates much details of the

spectrum.

In consequence, materials with similar reflectance spectra might not be differen-

tiable by using only this information. To clarify the limits of this concept with respect

to the requirements formulated in this thesis, an analysis of twelve samples from

wood (each having a humidity of ≥ 20%) and twelve samples from human hands was

carried out. All samples were randomly selected from the database which resulted

from the preliminary study presented in Chap. 4. For each sample, a ratio R of the

energy between both wavebands was calculated as defined in equation 3.1, whereby

I(λ) is the intensity of the reflectance at wavelength λ.

R =
Eupper

Elower
, where Eupper =

1.7µm∫
1.4µm

I(λ) dλ and Elower =

1.4µm∫
1.1µm

I(λ) dλ (3.1)

For the wood samples, the calculated ratios were in the range of 0.33 ≤ Rwood ≤ 0.73,

which comprises the entire range of ratios calculated for the skin samples with 0.40 ≤

Rskin ≤ 0.51. Furthermore, three of the twelve wood samples are within the same range

as the skin samples. This proofs that the selected wood and skin samples cannot be

differentiated using ratio R alone. The system’s accuracy can be further lowered by

the unknown spectrum1 of the daylight, which is used to perform measurements.

Iwasaki et al. [27]

Another approach was published by Iwasaki et al., where two bandpass filters on a

filter wheel are used to filter the incident light for an InGaAs camera. The first filter

has its transmission peak at 1060 nm and the second at 1450 nm, whereby each filter
1The daylight spectrum depends on the solar azimuth angle and weather conditions.
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has a full-width at half-maximum (FWHM) of 30 nm. Two halogen lamps were used

to supply a broadband illumination. A test subject’s head was fixed at a well defined

position for measurement, as the setup was meant to measure the ability of facial skin

to retain moisture.

Figure 3.1: Absorption coefficient of water in the visual and near-infrared spectrum
(Source: [27, Fig. 4]).

This ability was processed as a ratio of absorption rates Adi f f = log10
I1060nm
I1450nm

with

I1060nm and I1450nm being intensity values measured using the corresponding filters

[27]. Adi f f is a good indicator for moisture, as the filters are chosen with respect to

the absorption coefficients of water (see Fig. 3.1). It takes about 5 s for the system to

perform a measurement. This is comparably slow, as only two images at the lower

and upper waveband are taken [27, Sec. 2.1.]. However, the speed of acquisition

is by far not as important for Iwasaki’s application as it is for safety applications

or counting passengers in moving cars. Using only two wavebands the presented

system’s capability of differentiating materials is limited, but the design generally

allows the use of filter wheels with more than two filters. In conclusion, the concept
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presented by Iwasaki et al. offers a variable system for multispectral imaging at rather

slow acquisition speed.

Steiner et al. [28]

A derivative of the sensor concept presented in this dissertation is a setup featuring a

camera with an InGaAs image sensor and a synchronized illumination unit. Hereby,

the illumination unit has multiple LEDs of four distinct wavebands. Similar to the

non-imaging sensors, the illumination unit transmits a sequence of strobe pulses at

all available wavebands, whereby the camera grabs frames synchronously to every

strobe pulse. During each sequence of multispectral strobe pulses, one frame is taken

without active illumination to acquire ambient illumination on its own. This frame

can then be subtracted from the frames acquired with additional, active illumination

[28]. In consequence, the time for a complete acquisition is limited by a = 1
f psmax

(N +1),

whereby f psmax denotes the maximum number of frames per second by the cam-

era and N the number of wavebands. For a configuration featuring a camera with

f psmax = 30 and three wavebands, a complete acquisition takes 133 ms. In conclusion,

the approach by Steiner et al. offers a superior spatial resolution at a lower acquisition

speed, when compared to the sensor concept presented in this work.

3.1.2 Non-Imaging Systems for Skin Detection

This section describes prior work non-imaging sensor technologies. Note that the

sensor concept presented in this work also belongs to the non-imaging sensor systems

for skin detection.
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Hacskaylo [29]

A simple setup comprising an incandescent light, being a broadband near infrared

illumination source, and three band-filters for individual detectors (1110 nm to

1330 nm, 1440 nm to 1560 nm and 1660 nm to 1780 nm) is described in a patent by

Hacskaylo [29]. The system should measure signal levels which meet certain thresh-

olds, if human skin is present. While it is not addressed in the original patent, it is

necessary that the measurement is taken at a certain distance and angle to produce

comparable signal levels, as the classification is performed using thresholds for the

amplitude value of each waveband. These signal thresholds are given by the patent

specification and yield a tolerance from ±11% to ±20%, which is already in the mag-

nitude of the variance found in human skin (see Chap. 4.3). Therefore, the system

described by Hacskaylo is not suited for contact-free operation, as ambient light and

signal attenuation by varying measurement distance are not compensated. However,

Hacskaylo’s concept could be improved by developing dedicated beamforming and

an optimization of the methods used for data processing.

Determan and Wunderlin [30]

A similar setup is described in a patent by Determan and Wunderlin, which was filed

25 years after Hacskaylo’s patent application. One difference to Hacskaylo’s patent

is that Determan and Wunderlin claim two different approaches at once:

• A broadband illumination source and two relatively wide bandpass filters for

individual detectors at 800 nm to 1400 nm and 1400 nm to 2200 nm.

• Two broadband illumination sources with the same two bandpass filters and

one broadband detector.
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The setup is described in the context of a biometrical sensor system. Determan and

Wunderlin do not take ambient light or varying measurement distances into account

[30]. The wavebands proposed by Determan and Wunderlin are very similar to those

used by Pavlidis et al. and share the disadvantage of a very low spectral resolution.

3.1.3 Summary of Prior Work on Skin Detection

The prior work offers a range of technical approaches for the task of human skin

detection using near-infrared radiation. A unique feature of the presented work

within the non-imaging sensor systems is the ability to compensate for ambient light

and varying measurement distances.

Furthermore, it is one of only two approaches using LEDs for illumination. In

most approaches, an incandescent lamp is used as illumination source. The filament

of such lamps is usually heated up to about 3000 K for operation. Therefore, such

lamps are not suited to generate short strobe pulses of ≤ 1ms, as the heating and

cooling of the filament usually takes too much time. Without the use of fast shutters,

no sequence of strobe pulses can be generated within the range from 10µs to 1000µs

by switching an incandescent lamp, as it is required for the presented sensor concept.

The concepts presented by Pavlidis et al., Iwasaki et al. as well as Determan and

Wunderlin feature only two wavebands. Those two wavebands are always chosen

with respect to the absorption characteristics of water. Generally, it depends on

the desired application if the evaluation of only two wavebands is sufficient. For

instance, a small number of misclassified pixels can be ignored by imaging systems

for most applications, but a single misclassified spot can easily cause a false reaction

of a non-imaging system, as such systems depend on only one or a few points of

measurement. Increasing the spectral resolution theoretically strengthens the data
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basis for a material classification and therefore reduces the risk of false alarms and

dangerous failures on demand.

3.1.4 Beamforming with Light Emitting Diodes

As discussed in Sec. 5.1.8, forming a collimated and homogeneous multispectral beam

using several LEDs is an important topic within this work. In this section, a selection

of relevant prior work is presented as follows:

Simultaneous Multiple Surface

Researchers at Light Prescriptions Innovators (LPI), LLC published a number of articles

on designs involving their patented simultaneous multiple surface design method for

nonimaging optics. For instance, a free-form lens to combine the light of three high-

luminance white LEDs was presented and is depicted in Fig. 3.2 [31].

PCB with 3 LEDs
LED Combiner

Free-form Lens

Figure 3.2: Free-form lens to combine three LEDs. Original source: [31, Fig. 3].

The authors emphasize that this nonimaging design is largely independent of

illuminance variations across the LED surfaces as well as LED placing errors of up to

±0.2 mm. Therefore, this technique improves beam homogeneity and reproducibility.



3.1. COMPARISON OF TECHNICAL CONCEPTS 33

This free-form lens was meant to be used with a curved mirror to form the de-

sired beam pattern for an automotive headlamp. According to information by Rubén

Mohedano, the managing director of LPI, the simultaneous multiple surface design

tool could probably be used to develop a beamforming optic which meets the re-

quirements for this work without the use of additional mirrors. Unfortunately, the

molding of such free-form lenses requires the preparation of special tools, which were

beyond the budget of this work.

Sun et al. [32]

Prior work by Sun et al. is on combining the light from red, green and blue LEDs to

a homogeneously illuminated beam [32]. They used a commercial surface mounted

device (SMD) component comprising a red, green and blue LED underneath a com-

mon lens which was coupled into a light guide. The open end of the light guide was

connected to a diffuser which was coupled to a projection lens. Note that using a

light guide for homogeneous mixing was also described in prior work related to this

dissertation [6].

However, the setups presented in their article formed beams with an opening

angle from 22◦ to 84◦. From the work of Sun et al., it can be concluded that a narrow

opening angle and homogeneous color mixing are contrary design goals [32]. This

is not surprising as most color mixers are spreading the light beam, but it clarifies

how demanding the requirements for this application are, as the multispectral beam’s

opening angle should be as narrow as possible.

Wang et al. [33]

Another design method for nonimaging optics to form a highly collimated beam

from an LED source was presented by Wang et al. [33]. Wang et al. designed a
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free-form lens using their own method as depicted in Fig. 3.3. The outside of the

lens acts as a parabolic mirror by internal reflection, while the inner surfaces act as

transmissive beamforming structures. Their design method approximates the LED

chip to be a point light source, thus simulations of the presented lens used with a

LED chip having a footprint of 1 mm2 resulted in an opening angle of 4◦. However,

it is expensive and complicated to manufacture such lenses. Therefore, this approach

could not be adopted for this work, as the prototypical implementation of the sensor

concept must be constructed of practically available parts.

Figure 3.3: Illustration of a free-form lens. The lens is depicted in an isometric view
(a), a right view (b) as well as a sectional drawing for half a lens including exemplified
ray paths (c). Source: [33, Fig. 2+3].

Chen et al. [34]

An alternative method for the design of highly collimating, nonimaging optics for

LEDs was published by Chen et al. [34]. Overall, the results of this work are pretty

comparable to those presented by Wang et al.

The most prominent difference in the resulting shape is that the light exit side is

formed as a smooth curve instead of several flat segments, as seen in Fig. 3.3. Unlike

Wang et al., Chen et al. actually built a prototype of the lens depicted in Fig. 3.4,

which proved to have an optical efficiency of 90.3 % and an opening angle of 4.75◦.
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Figure 3.4: The prototype of the collimator lens by Chen et al.. Source: [34, Fig. 11].

If this technique would be used for this work, the design priorities would shift from

optical efficiency towards an even narrower opening angle.

Using such advanced methods to design optimized beamformings for near-

infrared LEDs is promising, but could not be done in the scope of this work. In

contrast to this potential future work, the next section summarizes the prior work

within the context of this work.

3.2 Summary of Prior Work to the Sensor Concept

Initially, the search for a technical solution for the problem described in Sec. 2.1

motivated a cooperation of the Institute for Occupational Safety and Health of the

German Social Accident Insurance (IFA) and the Bonn-Rhein-Sieg University of Ap-

plied Sciences (BRSU). Within this cooperation, a number of approaches have been

investigated, including the use of passive infrared sensors, electrical field sensors

and computer vision systems. A summary of this work is described by Reinert et

al. [35]. The first work on a multispectral, LED based sensor was a master thesis

in 2006 [36], which led to a patent subscription [37]. While the patent was pending

the research continued and formed the basis of this dissertation. Three sensors were
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implemented before the prototypical sensor implementation presented in this work,

which is denoted as Skinner. None of the previous sensors implemented the final

sensor concept as described in this work. However, two articles were published in

the context of this dissertation that describe and evaluate the optical design and data

processing methods which are proposed to implement the final sensor concept [4, 5].

The particular contributions of these articles are the discussion of partial overlaps

of the sensor’s beam and arbitrary objects as a source for artifacts, the possibility

of reducing the beam diameter using field stops, measures to optimize the homo-

geneity of the beam, the introduction of a new method for distance estimation as

well as a method to isolate the spectral information from all sensor readings and a

first performance evaluation of the material classification. This dissertation describes

the results of both publications and presents updated and enhanced content as well

as new experiments and comprehensive results. Furthermore, this work issues the

applicability of international standards and proposes recommendations to enhance

their content if required.

In parallel, new research fields were derived, such as a multispectral sensor for

push buttons to verify the proper hand clothing before starting a machine in the

context of hygiene or safety, a liveness sensor for a biometric fingerprint scanner and

a multispectral camera system (see [38, 39, 28]).

This chapter summarized relevant prior and related work. In the following chap-

ter, the reflectance spectra of several hundred people and different workpieces, which

were acquired within a preliminary study, are analyzed and compared. The objective

is to derive a spectral signature to differentiate human skin from surface materials of

typical workpieces.
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Chapter 4

Preliminary Study

As a preliminary study within a research project called LBIS1, the visual and near-

infrared reflectance spectra of the thumb, palm and back of the hand were examined on

a total of 330 persons. To best of my knowledge, no comparable data is available from

prior work. The data presented in this chapter were gathered to select appropriate

wavebands for a multispectral sensor with respect to the application of human skin

detection at manually fed machines.

4.1 Metrology

A hand-held spectrometer of the type spectrocam by Avantes BV was used for measure-

ments within the visual spectrum. Measurements within the near-infrared spectrum

were performed using an irSys R©1.7 spectrometer, which was equipped with a module

to block out ambient light and an internal tungsten lamp for well defined illumina-

tion through a measurement port. This measurement port is intended to perform

reflectance spectroscopy and must be directly in contact with a surface of interest.

1See glossary for project description.
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For calibration of the irSys R©1.7 spectrometer, a reference target of sandblasted

gold with a known spectrum of reflection (REFG) was used. The gold target was

used to occlude the measurement port of the module for reflectance measurement

to perform a reference measurement (REFM). Additionally, internal stray light was

measured with the measurement port being open (STRAYM). Each measurement of

a new subject (SAMPLEM) was then corrected with the following equation to obtain

a calibrated output (SAMPLEC):

SAMPLEC,λ =
REFG,λ

REFM,λ−STRAYM,λ

(
SAMPLEM,λ−STRAYM,λ

)
|λ∈ {660nm, ...,1730nm}

The system’s dark current is automatically canceled out, as it occurs in REFM,

SAMPLEM and STRAYM, where STRAYM is subtracted from REFM and SAMPLEM.

4.2 Data Composition

For a systematic categorization of skin types, we use a scale of six skin types as

introduced by Fitzpatrick, going from pale white (type one) to black (type six) [10].

Tab. 4.1 shows the distribution of skin types over the subjects that participated in

Table 4.1: Distribution of skin types.

Skin Type 1 2 3 4 5 6
Count 3 37 255 27 2 6

Table 4.2: Distribution of age.

Age <18 18-25 26-33 34-41 42-49 50-57 58-65 >65
Count 6 142 82 22 41 21 11 5

the campaign. The distribution of age is shown in Tab. 4.2. A total of 67 females and
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263 males participated in the study. According to the typical population composition

at the locations of the study, the Bonn-Rhein-Sieg University of Applied Sciences

and the Hannover Messe, the data is focused on central European males aged 18 to

33. However, all age classes and skin types are represented in the data base. The

participants at the Hannover Messe included carpenters and construction workers

with calluses and very thick cornea at their hands.

4.3 Data Analysis

The results of the analysis reconfirmed certain correlations of the reflectance spectra

and the persons age, as described in prior work [40]. Within the spectrum from

700 nm to 1300 nm, the skin of the subject group aged ≤ 30 years reflects about 10%

more radiation than that of the subjects aged ≥ 50 years. Naturally, the skin type

is correlated to the reflectance as well. It is primarily given by the concentration of

melanin. However, the absorption coefficient of melanin is about α = 19mm−1 at

λ = 700nm and decreases to α = 5mm−1 at λ = 1000nm [41]. As the back of the hand

is a densely pigmented region, there is a strong attenuation in correlation with the

skin type at λ = 700nm, which is rapidly decreasing towards about λ ≈ 1000nm. For

λ ≥ 1200nm, no significant correlation of skin type and reflectance was found, which

reconfirms Jacquez’s conclusion quoted in section 2.2.

In summary, although the amplitude over all acquired spectra varies about factor

two from the darkest to the brightest skin sample, there are very similar local minima

and maxima on all slopes in the spectral range from about 970 nm to 1730 nm, whereby

1730 nm is the upper limit of the used near-infrared spectrometer.

Considering the highly variable concentration of melanin within human skin, it

is a logical conclusion to prefer the near-infrared spectrum over the visual spectrum.
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Within the near-infrared spectrum, the absorption is dominated by the water within

the tissue. The amount of water within the human skin varies with a persons age

and other parameters [40]. Furthermore, the thickness of the cornea (also known as

horn skin) varies and thickens at spots where the hand is often exposed to mechanical

strain. Therefore, the individual variations of the reflectance spectra within the near-

infrared spectrum need to be taken into account when choosing a set of wavebands

that is well suited for skin detection. On the other hand, the selected wavebands must

contain features that can be used to differentiate human skin from surface materials

of typical workpieces, such as wood and plastic.

To identify a set of well-suited wavebands within the near-infrared spectrum, a

data mining software called AnaSpec was developed to analyze the acquired data base.

AnaSpec features a brute force search to find the best composition of wavelengths

to differentiate two classes of samples. A brute force search evaluates
(C

B
)

sets of

wavebands, where B ⊂N is the desired number of wavebands within the resulting

set and C ⊂N is the number of wavebands considered as candidates. For instance,

if a set of C = 33 waveband candidates {800nm,825nm,850nm, . . . ,1575nm,1600nm}

is used and the targeted number of wavebands is chosen to be B = 4, the brute force

search will evaluate
(33

4
)

= 40920 sets of wavebands. For each set, a vector ~r of
(B

2
)

different ratios from amplitude pairs λ̂i/λ̂ j | i, j ∈ [0,B− 1]∧ i < j is computed for all

selected samples within the data base. The motivation to use only the ratios is to

be independent of absolute amplitude values, which are altered with the angle and

distance of measurement. However, the ratio of energy between different wavebands

can be expected to be mostly independent of measurement angle and distance (see

4.4.1).

In the next step, the algorithm computes minimum and maximum thresholds for

each ratio to enclose all members of a target set, which defines a subset of samples
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within all selected samples from the database. Afterward, all selected samples are

tested against all minimum and maximum thresholds. No members of the target

class will be falsely classified (FN), as these thresholds were chosen to enclose the

whole subset. However, samples from other material classes, which are not included

in the target set, may falsely be classified as a member of the target set, if they satisfy

all thresholds. Generally, the better a set of wavebands is chosen, the fewer samples

will be misclassified from the resulting ratios. This ratio-based classification is a very

simple, but fast approach to evaluate the suitability of a combination of wavelengths.

It is possible that several combinations of wavelengths can be used to achieve

a perfect separation of a target set from all other selected samples. In that case,

additional metrics can be applied to compare the ratios of all true negative and true

positive samples.

Furthermore, the relative reflectance at a certain wavelength is transformed for

each sample to simulate the spectral response when using a particular LED. This

transformation is implemented as a convolution of a sample’s reflectance spectrum

with an LED’s emission spectrum. For this purpose, a data base of seventeen reference

LEDs was build to cover typical emission spectra for LEDs with peak-wavelengths

between 360 nm and 1550 nm. If the peak-wavelength λ̂c of a considered LED is

not included in the reference data base, the emission spectrum of the reference LED

with the closest peak-wavelength λ̂re f is shifted by λ̂c − λ̂re f . Therefore, LEDs with

arbitrary peak-wavelengths between 360 nm and 1550 nm can be simulated.

A combination of B = 4 wavelengths was targeted for the brute force search, as

a maximum of four wavelengths is desirable with respect to the design of the mul-

tispectral source: The time required for a multispectral measurement increases with

the number of acquired wavebands, as the strobe pulses are sequentially emitted.

Furthermore, a number of four LED chips allows a comparably compact and sym-
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Figure 4.1: Reflectance of human skin and spruce wood at different humidity levels.

metrical arrangement within the transmitter, which helps to form a homogeneous

beam (see Chap. 5.2.1). Last but not least, the costs for such a sensor system depend

on the number and type of the required LEDs.

For the targeted application of manually fed machines for wood processing, a

training set was created from all available skin measurements and about 330 wood

samples, which include samples having a plastic laminated finish. Furthermore,

at least 12 wood samples yielded a moisture of ≥ 30%. As shown in Fig. 4.1, the

near-infrared reflectance spectra of wood are changing towards the characteristics of

human skin, when increasing the humidity. However, the results of the brute force

search on the training set yields that a set of four peak-wavelengths is sufficient, as

the resulting threshold-based filters are able to classify 99.9% of all skin and wood

samples correctly. Furthermore, a perfect separation could be achieved using an

SVM. The best peak-wavelengths with respect to commercially available LEDs are
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λ̂0 = 830nm, λ̂1 = 1060nm, λ̂2 = 1300nm and λ̂3 = 1550nm. Fig. 4.2 shows the two

most prominent components derived from a PCA of measurements from wood and

skin samples at these four wavelengths. This two-dimensional representation already

indicates a good separability of both classes.
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Figure 4.2: Principle Component Analysis (PCA) of skin and wood samples.

4.4 Data Mapping and Additional Experiments

To proof the validity of the concept, it is necessary to show that the data acquired

from the preliminary study are mappable to the data acquired with an actual sensor

system. Fig. 4.3 depicts reflection spectra of a set of samples, which have been

acquired during the preliminary study. Each spectrum is normalized to a maximum

of 1. For comparison, the same samples have been scanned using a Skinner mark 1

sensor system, which is described in detail in section 5.4, at a measurement distance

of 200 mm. The output values for each waveband have been normalized as well.



44 CHAPTER 4. PRELIMINARY STUDY

Furthermore, the sensor readings corresponding to the wavebands λ̂1, λ̂2 and λ̂3 are

scaled by factors to improve the alignment with the measured spectra. To compute

these factors, an individual correction factor is calculated per sample and waveband

as fλ̂ = IirSys
λ̂

/ISkinner
λ̂

, with Iλ̂ being the intensity measured at a waveband λ̂ with the

Skinner sensor or the irSys R©1.7 spectrometer. In a following step, a median factor

fλ̂ is computed per waveband over the individual factors of all samples. Namely,

these factors are f1060nm = 1.15, f1300nm = 1.29 and f1550nm = 1.19. After applying

these common factors, the mapping of the sensor readings is accurate to an average

mapping error of 0.028 for all depicted samples.
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Figure 4.3: Mapping of reflectance measurements acquired using the irSys R©1.7 spec-
trometer to measurements of the Skinner mark 1 sensor system.

The remaining mapping error is smaller than the magnitude of typical variances

for these materials within the data base. Thus, there are basic differences in the used

measurement methods, which are discussed in the following sections. Obviously,

the spectral resolution of the spectrometer is significantly higher. The used LEDs
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have a FWHM of 35 nm to 130 nm and a peak-stability of 20 nm to 40 nm. As a

consequence, the sensor readings for each waveband represent the integral over a

comparably wide and volatile spectrum. However, the bandwidth of an LED can be

reduced using optical filters and the peak-wavelength can be stabilized by controlling

the chip’s temperature (see Sec. 5.2.2).

Figure 4.4: Reflectance measurement module for irSys R©1.7.

Another factor is the measuring setup itself. As depicted in Fig. 4.4, the module

for reflectance measurement, which is mounted to the spectrometer, illuminates a

spot with a diameter of ∅i ≈ 5mm at an incidence angle of δi ≈ 40◦. On the other

hand, the actual sensor system illuminates the target surface at an incidence angle of

δs = 12◦ at the minimal measurement distance of d = 100mm, which decreases with an

increasing measurement distance. Furthermore, the illuminated spot is not as sharply

restricted as the measurement port of the spectrometer’s module.

The influence of those differences in metrology was evaluated as described below.
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4.4.1 Multi-angle Reflectance Spectroscopy

As part of a bachelor thesis, a measuring setup for multi-angle reflectance spec-

troscopy was created [42]. This setup features two stepper motor driven angular

positioning arms and a measurement platform. The setup was used to measure hu-

man skin and other material samples at various incidence and observation angles.

Theoretically, the setup can be used to acquire accurate Bi-directional Spectral Reflectance

Distribution Function (BSRDF) models. All measurements in the near-infrared spec-

trum were carried out using a fiber-coupled tungsten lamp for illumination and a

fiber-coupled collecting optic for the receiving side. The receiving fiber was con-

nected to the same irSys R©1.7 spectrometer that was used for the preliminary study.

Both optics were mounted at a distance of d ≈ 100mm above the samples. The diam-

eter of the illuminated spot on the measured object was about ∅i ≈ 40mm.

Figure 4.5: Measurement setup for scattering measurement comprising light source
S, light detector D, angle of incidence α and the distance of measurement d [42, Fig.
4.1].

The setup offers different modes of operation. As depicted in Fig 4.5, the first

mode is used to acquire the scattering distribution of a sample’s surface.

Fig. 4.6 depicts a series of measurements of the back of a hand as well as a wooden

board from different angles of observations. A diffuse white reference tile was used
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Figure 4.6: Reflectance of human skin at different angles of observation.

to calibrate the amplitudes for each individual angle, but the tile turned out to be less

diffuse than human skin. Therefore, all spectra were individually normalized to their

amplitude at 1060 nm, which eliminates information on the absolute amplitudes of

the spectra. However, the skin spectra coarsely keep their shape and are significantly

different from the wood spectra provided for comparison. Only a small decrease of

reflected energy at long wavelengths of ≥ 1400 nm can be seen, which is likely related

to a weaker share of specular reflection components at acute angles, as discussed

in the following section. For comparison, the wood spectra do not yield significant

deviations at all.

An alternative mode of operation is implemented to move the transmitter and

receiver in parallel, which is depicted in Fig. 4.7. This mode offers measurement

conditions which are very similar to the actual sensor system. Both systems are

sampling a surface at an arbitrary angle from a certain distance d with transmitter
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Figure 4.7: Measurement setup for angular dependent reflectance measurement com-
prising light source S, light detector D, angle of incidence α and the distance of
measurement d [42, Fig. 4.2].

and receiver aligned in parallel. The measurement results in this mode yield no

significant change of the reflection spectra as well.

In conclusion, neither the angle of illumination nor the angle of observance have

a considerable influence on the near-infrared reflection spectrum of human skin.

This result, however, is extremely valuable with respect to the background of

this work, as the sensor system must be able to perform a dependable detection of

human skin without knowing the orientation of the measured surface. Therefore, the

experiment was repeated using a Skinner mark 2 sensor, which is described in detail

in section 5.4, to perform measurements at various angles. The experiment yield the

same results. While the signals are attenuated with increasing angle of measurement,

the ratios between the signals remain constant. In fact, the Skinner mark 2 sensor

was able to detect human skin at every measurement configuration, including an

extremely acute measurement angle of 85◦.
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4.4.2 Spectroscopy of Subsurface and Specular Scattering Compo-

nents

To best of my knowledge, no data on the specular, diffuse and subsurface components

of the reflectance spectrum of human skin is available in prior work for wavelengths

of 1100 nm to 1600 nm. Therefore, new measurements were performed using the

irSys R©1.7 spectrometer.

Transmitting 
Light Guide

Subsurface Scattering

Human Skin

Receiving
Light Guide

(to Spectrometer)

~6 mm

Figure 4.8: Setup to measure the subsurface components of the reflection spectrum.

Analogously to a measurement setup presented by Meglinski and Matcher, the

subsurface component was measured using a setup as depicted in Fig. 4.8 [41]. A

fiber coupled tungsten lamp is used for illumination, whereby the emitting side of the

fiber is put directly on the surface. Another fiber is put at a nearby (≈ 6mm) spot for

measurement. This simple setup assures that all received light has traveled through

the tissue underneath the surface. Consequently, the previous setup was modified

and extended by a polarizer (type CODIXX colorPol R©VISIR CW02) to isolate the



50 CHAPTER 4. PRELIMINARY STUDY

specular reflectance component as depicted in Fig. 4.9. According to CODIXX, which

is the manufacturer of the polarizer, the filter has a contrast of >10000 : 1 in the

wavelength range from 550 nm to 1500 nm. Unfortunately, the performance of the

filter at 1550 nm is not specified, which is the center of the fourth waveband of the

Skinner sensor. As only one filter was available for this measurement, both fibers

were sharing a common polarizer (see Fig. 4.8). The measurement principle is based

Transmitting 
Light Guide

Human Skin

Receiving
Light Guide
(to Spectrometer)

Polarizer

Polarized BeamSpecular Reflection Mixed with Diffuse 
and Subsurface Components

Isolated Specular Components

Figure 4.9: Setup to measure to specular components of the reflection spectrum.

on the assumption that polarized light will not alter its polarization when reflected at

the surface, while the polarization will be altered randomly when moving through the

tissue. In consequence, the majority of the light reflected with unchanged polarization

comes from specular reflections. This circumstance is exploited, as the receiving light

guide is placed behind the polarizer, which absorbs the majority of incoming light

with changed polarization and, therefore, isolates the specular reflection component

from diffuse and sub-surface components.

However, it must be taken into account that specular reflections from dielectric

surfaces, such as human skin are partially polarized when measuring near the Brew-
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ster angle [43]. As the incident light was polarized beforehand, the polarization of

light by the measured surface was unwanted. Therefore, the measurement was taken

at an acute angle of about 35◦, while the Brewster angle for the first skin layer (stratum

corneum) and air is about arctan(nskin = 1.55/nair ≈ 1.00) ≈ 57◦ [44].
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Figure 4.10: Subsurface and specular reflectance components in comparison to mea-
surements performed with the measurement setup used for the study, a spectroscopy
setup which is similar to the Skinner sensor and data by Jacquez et al. [9].

Overall, this improvised measurement setup was difficult to calibrate, as the mea-

surement distance could not be adjusted precisely on the uneven surface of a human

hand. However, the result displayed in Fig. 4.10 shows how the local minima and

maxima are less distinctive compared to the subsurface scattering component. This

was expected, as the specular reflected light did not pass the top skin layer and thus

cannot be influenced by water within the skin.

The reflectance spectrum with the label Module (Study) was acquired during the

preliminary study using the irSys R©1.7 spectrometer with the module shown in Fig. 4.4
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on page 45. When compared to the data published by Jacquez, it is noticeable that

the local minima and maxima are less distinctive in the data of the study [9]. This

indicates that the measurement setup used for the study measures a composition

of reflectance components in which the specular component is more dominant than

in the spectrum measured by Jacquez. Considering this observation, the mapping

error at 1 300 nm and 1 550 nm seen in Fig. 4.3 on page 44, where the intensities

measured at skin by the Skinner sensor are below the acquired reflectance spectra,

can be explained. Finally, it is likely that the measurement port of the spectrometer

cancels out a portion of subsurface remissions, which are exiting the tissue around

the directly illuminated spot (see Fig. 4.4 on page 45).

In conclusion, a selection of wavebands is chosen as a result of the analysis of

the data presented in this chapter. However, a concept to design such a sensor

system must be developed. In the following chapter, such a design concept as well as

applicable safety requirements are presented. Furthermore, system specifications are

derived and a prototypical implementation is described: the Skinner sensor system.
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Chapter 5

Sensor Concept

A concept for a new type of sensor: the active optoelectronic material classifying

protective device (AOMCPD) is presented in this chapter. In Sec. 5.1, safety related

requirements for such an AOMCPD are discussed on the basis of international safety

standards. Current standards define requirements to assure the functional safety

of a sensor with respect to state-of-the-art active optoelectronic protective devices

(AOPDs) such as common light curtains and laser scanners, which are denoted as

active optoelectronic protective devices responsive to diffuse reflections (AOPDDRs)

[45]. In consequence, the applicability to the new class of AOMCPDs is limited

and must be assessed. Furthermore, special requirements and test procedures are

proposed, which account for new questions that arise with such devices.

In Sec. 5.2, a design concept for such sensors is determined with respect to the

formulated requirements. At first, the structure of the sensor is discussed and defined.

Then, design concepts for each component of the chosen structure are presented.

Based on the developed concept, specifications for a prototypical implementa-

tion are defined in Sec. 5.3. That section is subdivided for functional and technical

specifications.
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Finally, the presented sensor concept is realized in a prototypical implementation,

which aims for full compliance with the presented specifications. The prototypical

implementation is denoted as the Skinner sensor.

5.1 Safety Requirements and Applicable Standards

Detailed safety requirements on the sensor system must consider all aspects of the

targeted application and, if necessary, even the characteristics of a particular machine.

In consequence, the safety requirements presented in this section can only establish

a common basis for typical safety applications. This basis is presented in the fol-

lowing subsections with respect to international standards, which are focusing on

different aspects of functional safety. Important information such as general design

rules, methods for failure analysis (e.g. Failure Mode and Effects Analysis (FMEA)),

guidelines to determine the required performance of a safety function (e.g. Risk

Graph) and performance measures (e.g. safety integrity level (SIL) or performance

level (pl)) are provided by prominent standards like the ISO 13849-1 or IEC 61508

[46, 47]. Other standards provide expectancy values for certain velocities or mea-

surements. For instance, the DIN 33402-2 provides 70 tables of expectancy values for

body measurements. All these standards are relevant for the proposed type of sensor

system and must be taken into account. Another standard, the IEC 61496-2, defines

specific requirements and test procedures for common AOPDs (i.e., light curtains and

light barriers), which react on beam interruption [48, 49]. In consequence, the require-

ments and test procedures provided by this standard are not always applicable to the

proposed type of material classifying sensor system.

Tab. 5.1 presents an overview on the applicability of current standards with re-

spect to the topics that are presented in detail within the following subsections. As
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Table 5.1: Applicability of current standards to AOMCPDs.

Requirements Tests / Assessment
Material Classification 61508 (p) N/A
Distances of Operation N/A N/A
Reaction Speed 13855, 33402, 61496-2 (p) 61496-2 (p)
Beam Width 33402, 61496-2 (p) 61496-2 (p)
Atmospheric Humidity 61496-1 (p) 61496-1
Temperature Range 61496-1 61496-1
Shock Resistance 61496-1 61496-1
Ambient Light 61496-2 (p) 61496-2 (p)
Eye Safety 60825 60825
Self Tests 13849, 61508 13849, 61508

(p) Partially Applicable N/A No Applicable Standard
13849 ISO 13849-1 [46] 13855 ISO 13855 [50]
33402 DIN 33402-2 [51] 60825 IEC 60825-1 [52]
61496-1 IEC 61496-1 [48] 61496-2 IEC 61496-2 [49]
61508 IEC 61508-1 [47]

a key contribution of this work, new requirements and test procedures are proposed

whenever existing standards are not applicable. The intention is to provide recom-

mendations which can be used as a starting point for the standardization of AOM-

CPDs as a new type of safety sensor, e.g. by adding a fourth part to the international

standard IEC 61496. In the end, the members of standardization organizations (e.g.,

International Electrotechnical Commission (IEC) or German Institute for Standard-

ization e.V. (DIN)) will have to decide about appropriate tests and requirements, if

AOMCPDs will be included in future versions of the standards.

5.1.1 Differentiation of Relevant Materials

The basic requirement is that a sensor is able to differentiate human skin sufficiently

reliable from typical workpieces. Generally, the reliability of such a system would be

considered to be sufficient if the risk of injury related to the work at the corresponding

manually fed machine can be reduced to an average level with respect to other high
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risk work. In consequence, the required reliability as well as the surface material of

typical workpieces strongly depend on the application. Furthermore, many applica-

tions have the obligation to either wear or not to wear gloves. If a user of a machine

wears gloves, a sensor optimized for skin detection will not be able to detect the user’s

hands. Therefore, the focus of this work is set on the example application of circular

table saws and sliding table saws at joineries and woodwork shops. In Germany, the

safety regulations do not allow the use of gloves at circular table saws, because of

the risk of getting pulled in when a tear-resistant glove is caught by the saw blade

(see [53, Sec. 2.5.1.4]). In consequence, the detection of bare human skin is defined

as the main safety function. Surface materials for typical workpieces are assumed

to be wood, different types of plastic and metal. Plastic is included to cover both

plastic-coated wood and some often processed plastic types such as Polycarbonate or

Polymethylmethacrylate (PMMA). Metal is considered for the sawing table itself and

aluminum alloy, which can be processed using special blades.

Requirements for the reliability of the material classification can be derived from

the IEC 61508-1 [47], which defines the safety integrity levels (SIL) 1 to 4. These

levels define thresholds for the average probability of a dangerous failure on demand

(PFD), which are in the range from 10−5 to 10−1. For instance, the SIL 2 requires

a PFD within 10−3 to 10−2 [47, Tab. 2]. For AOMCPDs, it is important to find an

abstract definition of a demand. A demand is any event, where protective means must

be triggered to prevent an accident. The probability of such events is not important

in this abstract contemplation, as only the probability of a false classification must be

taken into account. Let it be supposed that there is a worst-case scenario, where

only one measurement can be performed before an accident becomes inevitable. In

consequence, every single measurement can be considered as a demand - and thus

every false negative classification of a skin measurement (FN) must be considered as
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a dangerous failure on demand. The probability of a false negative classification, and

analogously a dangerous failure on demand, is implicitly given through the TPR as

PFD = 1−TPR (see Eq. 2.8 on page 17). Considering the PFD’s upper threshold of

0.01 for SIL 2, the corresponding requirement would be a TPR > 0.99. This worst-case

model will be used to evaluate the classification reliability in this work.

5.1.2 Varying Distances of Operation

The required distance range heavily depends on the application and the mount point

of the sensor. For this work, the targeted operation range is chosen as 0.1 m to

1 m, because this range should sufficiently cover most applications at manually fed

machines. The IEC 61496-2 does not provide a minimum requirement for the range,

although the devices are categorized by the maximum allowable distance of operation.

5.1.3 Reaction Speed

Generally, the reaction time of such a sensor system should be as fast as possible.

For this system, there is a minimum measurement frequency fmin that can be derived

from dimensions and typical speeds of human hands: For finger safety, the system

must be capable to detect the smallest single finger that can be expected. According

to the German national standard DIN 33402-2, the minimum width of a finger can

be expected to be ∅ f = 11mm [51, Tab. 39]. The maximum speed of a human hand

is assumed to be K = 2m s−1, according to IEC EN ISO 13855 [50, Sec. 6.2.3.1]. In

contrast, the IEC 61496-2 defines a procedure to test the reaction speed using a test

body that passes a light barrier at a velocity of only K = 1.6m s−1 [49, Sec. 5.2.1.1].

However, the higher velocity of K = 2m s−1 is used for the considerations in this work.
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Furthermore, a beam width1 ∅b must be defined for a point sensor system, which

satisfies the mandatory condition ∅b < ∅ f . Having this information, the minimum

measurement frequency can be calculated as in equation 5.1.

fmin =


(
∅ f −∅b

)
K


−1

(5.1)

For instance, when assuming ∅b = 6mm, this leads to a required measurement fre-

quency of fmin =
(
(11mm−6mm)/2000mm s−1

)−1
= 400Hz.

This frequency is sufficient in a way that at least one acquisition is started during a

total overlap of the beam with the finger, but will the measurement be finished within

this state and if not, is a total overlap really necessary? The sensor system will acquire

a mixed signal of the finger and the background, if there is no total overlap of beam

and finger. As the background is generally unknown, it is not possible to calculate

its influence on the mixed signal. E.g., a strongly reflective surface may reflect much

more radiation towards the sensor’s receiver than human skin and therefore have an

disproportional strong influence on the acquired signal. In consequence, a detection

cannot be guaranteed without a total overlap of beam and finger. To ensure a complete

measurement within a total overlap it is necessary to take the acquisition time ta into

account by extending equation 5.1 to 5.2.

fmin =


(
∅ f −∅b

)
K

− ta


−1

(5.2)

Assuming an acquisition time of ta = 0.5ms, the resulting measurement frequency is

fmin =
(
(11mm−6mm)/2000mm s−1

−0.5ms
)−1

= 500Hz, which is taken as a guide-

line for this work.
1In the IEC 61496-1, the beam width is denoted as detection area.
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5.1.4 Beam Width (Detection Area)

The size of the smallest object that can be detected by the sensor is in direct relation to

the diameter of the output beam. A total overlap of the beam and an object is possible

if all dimensions of the object are greater than the diameter of the beam∅b. Therefore,

the transmitted beam’s diameter defines the beam width (or detection area) of the

sensor.

To detect a single finger, the beam width must be smaller than the width of

the smallest expected adult finger, which is ∅ f = 11mm according to DIN 33402-2

[51, Tab. 39]. Not all applications require finger safe detectors. Therefore, a lower

specification can be used if it is sufficient to detect the presence of a hand. The minimal

dimensions of a palm are 70 mm in width, 92 mm in length and 21 mm in thickness.

In consequence, the beam diameter must be ∅b < 21mm for hand detection.

Special care must be taken for finger or hand safe light curtains. IEC 61496-2

defines the detection capacity of conventional light curtains as dc = P +∅b, whereby

P is the beam spacing. The limits of the detection capacity are defined as dc ≤ 14mm

for finger safety and dc ≤ 30mm for hand safety [49, Annex E.1]. For instance, the

beam spacing must be P≤ 9mm for∅b < 21mm to ensure dc = 9mm+21mm = 30mm,

whereby the actual beams will overlap if the beam diameter is greater than the beam

spacing. Furthermore, the beam must not exceed its specified diameter over the

whole range of operation, which requires a sufficiently narrow half beam angle.

5.1.5 Atmospheric Humidity

The atmosphere of the earth has strong absorption bands within the near-infrared

domain as depicted in Fig. 5.1. This figure shows the accumulated attenuation of the
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sunlight on its path through the atmosphere down to sea level at an incidence angle

of about 48.2◦, which corresponds to an air mass of AM=1.5.
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Figure 5.1: Atmospheric attenuation - a comparison of irradiance at sea level and the
top of the atmosphere (Source: [54]).

Naturally, the absorption bands of water vapor at about 940 nm, 1130 nm and

1365 nm are relevant with respect to this work. In this spectral range, the attenuation

of air depends on various factors such as pressure, temperature and relative humidity

[55]. In consequence, the significant attenuation of ambient air at around 1365 nm

would cause a distance and humidity dependent distortion of the spectral signature,

if this waveband would be used by the sensor system.

However, the attenuation at short distances of a few meters is expected to be

much lower than that of the entire atmosphere. Therefore, measurements in a cli-

mate chamber were carried out to evaluate the practical impact of such effects. As

parameters for outdoor environments, a temperature range from −20 ◦C to 50 ◦C, a

relative humidity RH of 4 % to 95 % and an air pressure of 86 kPa to 106 kPa can be
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Figure 5.2: Mapping of temperature and relative humidity to absolute humidity.

assumed [56]. IEC 61496-1 defines a temperature range from 0 ◦C to 50 ◦C at ≤ 95 %

RH as minimum requirement for AOPDs [48, Sec. 5.4.2]. In the presented experiment,

the attenuation has been measured at different conditions from 20 ◦C to 50 ◦C at 11 %

to 95 % RH. The measurements were carried out using an optical fiber which was

coupled to the irSys R©1.7 spectrometer. The open end of this optical fiber was turned

towards an incandescent lamp at a distance of 0.34 m within the climate chamber.

A temperature of 20 ◦C at 11 % RH was chosen as a dry reference atmosphere, as

the used climate chamber is not able to control the relative humidity below 11 % or

at lower temperatures sufficiently. Please note that the absolute humidity increases

with the temperature, if the relative humidity is constant. Fig. 5.2 maps the relative

humidity, used for the measurements displayed in Fig. 5.3, to the corresponding

absolute humidity [57]. To compensate for drifting of the irSys R©1.7 spectrometer,

all transmission spectra where normalized to the window of 1000 nm to 1100 nm,
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where no H2O absorption band is located. Fig. 5.3 summarizes the measurements,

which are showing a significant absorption with a relative attenuation of up to 13 %

at around 1365 nm. A weak absorption of 1 % at around 1130 nm can be seen at 50 ◦C

and ≥ 75 % RH while no absorption can be observed at the absorption band around

940 nm. Based on these results, the absorption bands at around 940 nm and 1130 nm

are not expected to have a practically relevant impact.
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Figure 5.3: Relative transmission over an air path length of 0.34 m. The reference
measurement was acquired at a temperature of 20 ◦C and 11 % RH.

With respect to the Beer-Lambert law, the attenuation in gases can be expressed

as shown in equation 5.3, whereby T denotes the transmission, Iin is the intensity of

incident light, Iout the intensity of the transmitted light, α′ is the absorption coefficient

of a media and l is the optical path length [58].

T =
Iout

Iin
= e−α

′l (5.3)
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Based on the presented experiment, the α′ values were derived for the wavelength of

1365 nm and listed in Tab. 5.2 with respect to the reference conditions of 11 % RH at

20 ◦C.

Table 5.2: Absorption coefficients for 1365 nm.

Temperature Relative Humidity α′

20 ◦C 50 % 0.0896
20 ◦C 91 % 0.1592
50 ◦C 14 % 0.0945
50 ◦C 51 % 0.2614
50 ◦C 95 % 0.5014

Using these absorption coefficients, the attenuation at path lengths of up to 10 m

is illustrated in Fig. 5.4. As a consequence of the severe attenuation even at relatively

short air path lengths, the waveband of about 1340 nm to 1450 nm should be avoided

in AOMCPD designs.

The housing of an AOPD must be compliant to the ingress protection rating IP54

or higher [48, Sec. 4.3.4]. When considering outdoor applications, the enclosure of the

system must sufficiently prevent the intrusion of dust and humidity, and an ingress

protection rating of IP67 or IP69 is recommended [59]. Furthermore, care should be

taken to avoid heavy formation of condensation water on the optical components at

the outside of the housing, which could be a plate of polycarbonate for mechanical

protection or bare lenses. As the actual housing is not taken into account within this

work, no protection class is defined as requirement.

5.1.6 Temperature Range

According to IEC 61496-1, an AOPD must withstand a temperature range from 0 ◦C

to 50 ◦C [48, Sec. 4.3.1]. An extended range from −20 ◦C to 50 ◦C should be used for

outdoor environments. For this work, the standard range is adopted as a requirement.
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Figure 5.4: Relative transmission at 1365 nm.

5.1.7 Shock Resistance

IEC 61496-1 defines that an AOPD must withstand the following tests for vibrations

and shocks:

• The AOPD must withstand vibrations from 10 Hz to 55 Hz and an amplitude of

0.35 mm while operating [48, Sec. 5.4.4.1].

• The AOPD must withstand 1000 shocks per axis of 10 g with an impulse duration

of 16 ms while operating [48, Sec. 5.4.4.2].

These test conditions can be adopted for the presented sensor concept without

restrictions.
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5.1.8 Ambient Light

Requirements for Conventional Light Curtains

The IEC 61496 standard defines general requirements and testing procedures for

conventional light curtains, which are collectively referred to as AOPDs [48, 49].

Generally, this standard can be used as a guideline to define requirements and testing

procedures for the presented AOMCPDs. However, the requirements and especially

the testing procedures on optical interference robustness must be viewed with a crit-

ical eye, as the multispectral reflectance measurements used by AOMCPDs must

operate more sensitively than common light curtains using special reflectors or per-

forming two-sided transmission tests. According to IEC 61496-2, an AOPD must

operate within its specified parameters while being exposed to either:

• A white light emitted by a tubular quartz lamp with a length within 150 mm

to 250 mm and a power consumption within 500 W to 1000 W, positioned at

a distance of 2 m to the receiver. The color temperature of the lamp must be

within 3000 K to 3200 K and the frequency of the supply current must be within

48 Hz to 62 Hz. A diffuse parabolic reflector of high reflectivity over the whole

spectrum must be mounted to the lamp [49, Sec. 5.4.6.2].

• A xenon flash light flashing at a distance of 3 m with a frequency from 0.5 Hz to

2 Hz with a flash duration from 40µs to 1200µs and a flash energy within 3 J to

5 J without using a reflector, filter or other housing [49, Sec. 5.4.6.2].

• A xenon strobe light operating at a distance of 1 m with a frequency from 5 Hz

to 200 Hz with a strobe duration from 5µs to 30µs and a flash energy of 0.05 J

at 200 Hz to 0.5 J at 5 Hz without using a reflector, filter or other housing [49,

Sec. 5.4.6.2].
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• A tubular fluorescent lamp with a length of 600 mm, a diameter of 25 mm, a

power consumption within 18 W to 20 W, a color temperature within 5000 K to

6000 K and a nominal frequency within 30 kHz to 40 kHz must be used without

a reflector at a distance of about 120 mm [49, Sec. 5.4.6.2].

• If a high specification is aimed (type 4), then the system must withstand the

radiation emitted by a transmitter of the same kind [49, Sec. 4.3.5].

4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0

R
es

po
ns

iv
ity

 [A
/W

]

Wavelength [nm]

1.0

0.8

0.6

0.4

0.2

0.0

10% at 800 nm to 1750 nm

50% at 960 nm to 1640 nm

Figure 5.5: Spectral responsivity of an InGaAs photodiode (Original source: [60]).

By definition, the IEC 61496-2 does not apply if the AOPD operates outside the

spectral range from 400 nm to 1500 nm, which technically excludes the Skinner sensor

for its fourth waveband around 1550 nm. The standard does not provide an explana-

tion for this restriction [49, Sec. 1]. However, the quartz and xenon lamps defined for

testing emit a high share of energy beyond 1500 nm, while fluorescent lamps usually

emit very little energy above 750 nm [61]. Another important aspect is the temporal

domain, where quartz lamps oscillate with their supply voltage and xenon lights

may generate strobe pulses of the same duration as the AOMCPD itself, such that a
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frequency-based suppression of ambient light by the receiver can become inefficient.

In consequence, quartz lamps, xenon flashes and xenon strobe lights are particularly

relevant for the safety of AOMCPDs, if InGaAs based detectors are used (see Fig. 5.5).

Two Modes of Operation
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Figure 5.6: Two-sided multispectral light curtain configuration.

The standard IEC 61496-2 defines precise test configurations for the angle and

position of the lamp to the AOPD. However, the defined conditions can only be

applied to configurations with light curtains that are spanned between a dedicated

transmitter and receiver unit or a combined transmitter/receiver unit and dedicated

reflectors. As depicted in Fig. 5.6, the first configuration can also be realized with
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AOMCPDs, when replacing the dedicated receiver and transmitter units by combined

receiver/transmitter units at both sides.

Figure 5.7: Single-sided multispectral barrier configuration.

Alternatively, a single-sided configuration can be used as depicted in Fig. 5.7 on

page 68 without the necessity of a dedicated reflector at the other side. The current

version of the IEC 61496-2 standard defines additional tests involving the use of an

highly reflective, cylindrical test rod and other highly reflecting objects, if an AOPD

uses reflectors [49, Sec. 5.2.1.3]. Obviously, these tests are based on the assumption

that the system requires a highly reflective target (reflector) to terminate the light

curtain. This assumption is not valid for configurations using AOMCPDs. For

instance, a sensor can be mounted at a circular table saw’s protective hood pointing
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downwards onto the saw bench to monitor objects at the vicinity of the saw blade. In

such an application, the sensor system must be capable of differentiating human skin

from the saw bench, wood and other workpieces at all times, which contradicts with

the requirement of a well defined reflector. Furthermore, reflectors cannot be used

to enhance the range of an AOMCPD, as the reflections coming from safety critical

objects (as the user’s hands) must be sufficiently strong to perform a classification

at maximum distance anyways. Considering the application of circular table saws,

the protective hood should be positioned as low as possible above the saw bench, so

that the system will operate at short distances of usually less than 0.5 m. The tests

listed above, such as positioning a xenon flash at a distance of 3 m in front of the

sensor, are not applicable if an AOMCPD is designed for short range operation (e.g.

≤ 0.5 m). In this case, the optical path can be extended by reflecting the test lamp

using a highly reflecting surface, as a worst case substitute for a shiny background

surface or workpiece, to test the interference robustness during standard operation.

For instance, the lamp could be positioned at a distance of ≤ 2 m to the reference

surface and the sensor could be positioned at a distance of ≤ 1 m to the same surface,

such that the total optical path length from lamp to sensor (via the surface) would

be ≤ 3 m. However, the highly reflective surface itself must be positioned within the

operating range of the tested system.

Special Rod to Test for Dangerous Failures

When testing the system for a dangerous failure, the system must continuously detect

a critical object (such as a hand) within its specified operation range during the

interference by ambient light sources as listed above. Again, these light sources

should be positioned behind the AOMCPD, so that the optical path lengths from the

light sources to the critical test object and back to the sensor matches the distances
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Figure 5.8: False color image and plot of skimmed and whole milk as well as human
skin. False color mapping: 1060nm 7→ red, 1300nm 7→ green and 1550nm 7→ blue.

specified by the previous standard, which are listed above. As human hands differ

from person to person, the use of a special test rod with defined properties would

be helpful to generate reproducible results. Especially the spectral properties must

be reproducible and as close to human skin as possible. A tubular cuvette filled

with whole milk is proposed for this purpose, as whole milk matches the spectral

properties of human skin well within the spectrum from 800 nm to 1600 nm (see

Fig. 5.8). Whole milk can be purchased with defined fat content and filled into a

cuvette of well-defined length and diameter. Furthermore, the cuvette should be

made of transparent plastic with a matte surface on the outside to minimize specular

reflections.
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Homogeneity Test

Conventional light curtains may not detect an interruption, if a sidelobe of the trans-

mitter is being reflected into the receiver by a nearby mirror. This known issue is taken

into account by current standards [49, Annex D.2]. AOMCPDs will introduce new

issues, which must be addressed by defining new tests. A new aspect of AOMCPDs

is the homogeneity of the multispectral beam. Distortion of spectral signatures may

occur when measuring an object at partial overlap with the beam, if the beams of the

individual wavebands do not align on the same optical path or the energy distribution

within this path is inhomogeneous [5]. Therefore, an AOMCPD should either utilize

measures to detect a partial overlap of an object within the beam or the beam must be

as homogeneous as necessary to guarantee the acquisition of sufficiently undistorted

spectral signatures under all conditions.

A spectral signature has a sufficient quality if the used material classifier is able

to classify materials correctly (as specified for the desired application). This can be

verified by testing the whole system at critical conditions as proposed in the following:

Tubular test bodies having a diameter ∅t of at least twice the beam width ∅b must

be used to test standard operation to cover possible sidelobes. There should be test

bodies with a reflecting surface and a matte surface with a reflectivity of ≥ 95 % over

the used spectrum with respect to an ideal Lambertian scatterer1. Furthermore, a test

body having similar scattering and subsurface scattering properties as human skin

should be used when testing a skin detecting AOMCPD, whereby the test body must

generally be differentiable from human skin by its spectral signature. For instance,

silicone rubber which is meant to create realistic masks such as CPflesh R©2 could be

used to build such a test body. Using all test bodies, a series of measurements should

1A Lambertian scatterer is homogeneously reflecting in every direction.
2See http://www.cpflesh.de/ (online 2012-12-22)
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be carried out from e.g. 10 % to 90 % partial overlap with the beam, stepping by

10 percentage points between each test. Additionally, the test bodies can be rotated

around the center of the beam during measurement while the test body is aligned for

a certain degree of overlap. The system should pass these tests without triggering a

false alarm.

In this context, a test procedure for dangerous failures, where a system must detect

a test body representing a critical object at partial beam overlap, is not necessary as

the assumption formulated in Sec. 5.1.4 defines that a complete overlap of beam

and surface is required for a robust detection anyways. Therefore, such tests can be

considered as optional, as the probability of false alarms is not directly regarding the

safety of a system. However, the rate of false alarms should be minimized to maximize

the machine’s availability and to achieve market acceptance of the technology.

Maximum Measurement Angle

In contrast to a conventional AOPD, an AOMCPD must perform measurements

on the surface of an object entering the light curtain rather than just detecting the

interruption of the optical path. Therefore, the maximum measurement angle αmax
m

between the surface normal and the transmitted beam, in which a detection of critical

materials can be done reliably, must be taken into account. As illustrated in Fig.

5.9, the significance of αmax
m depends on the beam width ∅b, the shape and size of

the critical objects (e.g. fingers) and the scattering properties of the critical material

(e.g. human skin). As discussed in Sec. 4.4.1, human skin has very diffuse scattering

characteristics and behaves well at measuring angles of at leastαm = 70◦. Furthermore,

practical experiments with an actual sensor yielded a detectability of human skin at

every possible angle. However, a statement about αmax
m should be made for every

critical surface material, which must be detected reliably by the AOMCPD.
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Figure 5.9: Illustration of a finger passing the beam at an acute angle.

The assumption that αmax
m = 70◦ is set for the following discussion. For a safety

assessment, the worst case violation length must be specified, which denotes the maxi-

mum depth about which an object can pass the beam at an illegally acute angle before

any surface of the object will face the sensor at a legal angle. Thinking about a narrow

danger zone at the vicinity of a circular saw blade, a finger coming in by its fingernail

first at an acute angle is the worst case scenario, because the finger nail ends at a

relatively sharp edge so no surface will face the sensor at a flat angle. Fig. 5.9 depicts

an example of a straightened finger coming in at αm = 71◦ to the beam’s normal, which

is the smallest illegal value for αm in this example. The worst case violation length lw

can then be calculated using equation 5.4, if simplifying the surface in question to be

flat.

lw =

√
c2− (c · cos (90◦−αm))2 (5.4)

According to DIN 33402, the length of a long male middle finger is about c = 94mm
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[51, Tab. 48]. In consequence, when setting c = 94mm and αm = 71◦, the worst case

violation length would be lw = 31mm, which then can be taken into account as a safety

margin when positioning the sensor.

Direction of Movement
(Along x-Axis)
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Figure 5.10: Test rod at acute angle to transmitted beam.

However, this model can only be used for relatively coarse estimations. Therefore,

a simple test procedure to provide a general acceptance criteria should be defined.

A simple approach would be to use cylindrical test rods with diameters matching

the minimum specified detectable diameter, e.g. ∅ f = 11mm. The surface materi-

als of these rods must substitute all critical surface materials specified for a certain

AOMCPD. These test rods must be moved into the beam, at all specified detection

distances, with an acute measurement angle to the side of the rod of e.g. αm = 50◦.

Under these conditions, the AOMCPD must trigger an alarm even if the rod is pass-

ing the beam at the specified maximum velocity (e.g. 2 m s−1) and being oriented as

depicted in Fig. 5.10. Using a cylindrical test rod of minimum detectable diameter
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leads to a very unfavorable, but practically oriented measurement condition: The

curved surface will face the beam at an infinite number of different angles, whereby

all angles will be at least as sharp as the defined αm. Furthermore, a cylindrical test

rod roughly approximates the shape of a finger, which is naturally the most filigreed

part of a hand.

5.1.9 Eye Safety
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Figure 5.11: Limits for small continuous wave sources of classes 1 and 1M. Compare
[62, Fig. 130].

The system must be compliant to laser class 1M as defined in IEC 60825-1 [52,

Tab. 1] [49, Sec. 4.2.15]. Class 1 and 1M both define requirements for non-hazardous

systems, which do not require the use of protective equipment such as laser protection

glasses. Both classes have the same limits for radiation that can be received by a

human eye. The difference is that the total amount of radiation emitted by a class 1



76 CHAPTER 5. SENSOR CONCEPT

system must not exceed an eye-safe level, while a class 1M system is allowed to emit

hazardous levels of radiation, if the radiation is spatially distributed sufficiently to

assure that a human eye cannot receive a critical share of radiation. In consequence,

class 1 systems cannot harm a human eye even if external optics are used to focus the

emitted radiation, while a class 1M system might become hazardous in combination

with external focusing optics. Fig. 5.11 illustrates the limits that apply for continuously

radiating sources, which are small enough to couple all emitted radiation into a human

eye. These are worst case limits, as it is expected that the eye might be permanently

exposed to the total optical power. The actual limits that apply for a system depend

on additional factors such as beam diameter and beam divergence as well as pulse

duration and duty cycle for pulsed sources [52, p. 28ff]. Due to the comparably low

thermal hazard and no photochemical hazard to the human eye that may be caused

by near-infrared radiation, the allowable limits rise for wavelengths above 700 nm

towards a maximum of 15 mW at 1200 nm to 1400 nm.

5.1.10 Self Tests

The system must implement self testing measures as specified in ISO 13849-1 or

IEC 61508. The standards define different requirement levels, which are known as

performance level (pl) or safety integrity level (SIL) and can partially be used inter-

changeably as illustrated in Fig. 5.12. The appropriate pl or SIL must be determined

by a risk assessment of the targeted application. The higher the rated risk, the lower

must be the probability of a dangerous undetected failure, which is expressed as the

probability of a dangerous failure per hour (PFH) or probability of a dangerous fail-

ure on demand (PFD), alternatively. A dangerous undetected failure is defined as

a dangerous operating status of a machine, which is caused by at least one faulty
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component of the system, whereby the fault cannot be detected by the system’s self

testing measures [46].
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Figure 5.12: Classification of risks by ISO 13849-1 and IEC 61508 [46, Tab. 4] [47,
Tab. 3].

ISO 13849 defines how a system can be designed to fulfill the requirements of a

certain pl. These definitions affect especially the required degree of redundancy and

the general approaches that should be used for self testing. It is important to note that

ISO 13849 rates complete systems or machines rather than single components such

as a sensor. In consequence, the probability of a dangerous failure per hour (PFH) of

protective means, which are triggered by an AOMCPD, must be taken into account

as well. So, if an AOMCPD is integrated into a circular table saw, the whole machine

must be assessed with respect to the appropriate requirements. Therefore, it is not

possible to formulate general requirements covering all AOMCPDs.

At this point, the discussion of safety requirements and applicable standards is

concluded. The results of this section are used as a basis to define an optimized design

concept.
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5.2 System Design Concepts

System design concepts for LED based AOMCPDs with respect to the derived safety

requirements are discussed in this section. In a first step, the optical design is dis-

cussed by comparison of fundamentally different structures. Afterward, matching

concepts for electronic circuitry are presented.

5.2.1 Optics and Optoelectronics

Structure

Generally, there are two approaches for the structure of the sensor: One approach

is to design the sensor in a way that the receiver is in the same optical path as the

transmitter. The other is to place the receiver besides the transmitter’s optical path.

Having receiver and transmitter united at one optical path has the advantage of

allowing a single detector at a fixed position to receive the reflected light for any

measuring distance. As long as the measured surface diffusely reflects light in the

incident direction, which is required for the detectability of a material at a wide range

of measurement angles, the receiver will always be well aligned. In contrast, a spatial

offset of the receiver necessarily entails a distance dependent angular displacement

of the reflected light to the receiver.

However, the implementation of a common optical path is challenging. A common

approach would be to use a beam splitter as depicted in Fig. 5.13. The use of a beam

splitter has the disadvantage of an inevitable power loss of at least 50 % for both the

transmitter and the receiver. Furthermore, any pollution of the beam splitter’s surface

might cause a direct redirection of the transmitted light into the receiver.

Another solution would be the use of a parabolic or flat mirror with a comparably

small hole in the middle through which the transmitted light passes. As illustrated
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Transmitter

Receiver

Measured Surface

Beam Splitter

Figure 5.13: Optical paths united by a beam splitter.

Receiver

Transmitter

Measured Surfaces
at Different Distances

Parabolic Mirror with Hole

Shifted Projection

Figure 5.14: Optical paths aligned using a parabolic mirror. Distance dependent
projections are illustrated.

in Fig. 5.14, the receiver would measure the incident light being redirected by the

mirror. This design avoids high power losses at the disadvantage of not providing a

common optical path in a strict manner. Instead, the optical path of the transmitter is

encapsulated at the center of the receiver’s optical path, which is aligned in parallel.

As a consequence, the projection of the reflected light onto the receiver would be

distance depending, eliminating the advantage of being able to measure at a fixed

spot.

Both approaches share a severe problem that comes with the use of protective

screens, which are usually part of the enclosure of optical sensors. Protective screens
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Receiver

Transmitter

Measured Surface
Parabolic Mirror with Hole

Protective Screen
Shielding

Figure 5.15: Optical paths aligned using a parabolic mirror. Obstruction by additional
shielding is illustrated.

may easily become polluted at the outside, producing direct redirection from the

transmitter to the receiver at short distances. This redirected light will interfere the

measurements and, therefore, lower the reliability of operation. Besides pollution,

even a coated protective screen will always reflect a small share of radiation. This

general weakness of the design can be avoided by additional shielding as depicted in

Fig. 5.15, at the expense of obstructing the optical path of a fraction of the redirected

light by the shielding itself.

Receiver

Transmitter

Measured Surfaces
at Different Distances

Figure 5.16: Optical paths aligned in parallel.

The second approach is to position receiver and transmitter side by side. As

illustrated in Fig. 5.16, this straight forward design has the advantage that no further

optical components are needed to redirect the light and, therefore, the loss of energy

is minimal. On the other hand, the measurement angle of the receiver depends
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on the distance from the center of the transmitter to the center of the receiver and

on the measurement distance. Although this is no principle disadvantage of the

measurement accuracy, as the angle of the surface to the sensors varies anyway,

but it can be a limiting factor for the operable range of measurement distances. As

with the use of a parabolic mirror, the receiver must be designed in a way that it is

capable of receiving light from a range of incident angles to allow measurements in a

corresponding distance range. To keep the setup of the sensor simple and compact, a

side by side configuration was chosen for this work.

Distance estimation

The receiver’s requirement of being able to receive light at different incident angles

can be used to realize an additional feature: distance estimation by triangulation (if

the receiver is able to measure the angle of incident light).

Additional value is provided by the ability to compensate the distance related

reduction of light that is caught by the receiver. If approximating the scattering

properties of human skin as a Lambertian scatterer, Lambert’s cosine law can be used

to calculate this relation [63]. Then, the reflected intensity perceived by the receiver r

with an area of aperture A will exponentially decrease over the measurement distance

d as a function of r(d) = A/2πd2.

However, this function is not applicable for surfaces having a deviating scattering

behavior. A mirror has the most divergent behavior with respect to a perfectly diffuse

Lambertian scatterer. For a mirror, the amount of radiation being reflected into the

receiver will not decrease as much as that reflected by a Lambertian scatterer over

the same distance, as long as the half-angle between the optical paths of receiver

and transmitter matches the orientation of the mirror to the sensor. Naturally, the

measurement angle has a much greater effect for mirror-like surfaces than it has for
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diffuse surfaces. Therefore, this type of amplitude correction cannot work accurately

for mirror-like or shiny surfaces (see Sec. 7.2.3).

Beamforming

The beam emitted by the transmitter should be as near-collimated and homogeneous

as possible. If the beam is diverging too much, the range of the AOMCPD will be

limited by the distance at which the beam diameter ∅b becomes larger than specified

for safe operation. As discussed on page 71, an equal distribution of energy of all

wavebands within the beam is very desirable to avoid artifacts if at least one object is

intersecting the beam partially.

LED Chips
Bond Wires

Blind Spots

Figure 5.17: Image of two LED chips with bond wires.

In order to create a highly collimated beam, a point light source can be positioned

at the focal point of a condenser lens. However, LED chips usually have a square

footprint with an edge length from about 300µm to 1000µm with a topside emitting

light in every direction. Generally, LEDs do not homogeneously emit light in every

direction. For instance, a bond wire is necessarily connected to the LED’s anode or

cathode at the top side, which obstructs a part of the emitted light and produces a
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blind spot at the connection port as shown in Fig. 5.17. Furthermore, the edges of

LED chips also emit a considerable amount of the total radiant power [64]. Generally,

the larger the lens in relation to the LED chip size, the more accurate becomes a simple

approximation of the LED by a point light source. The relation is sometimes denoted

as the lens-to-LED ratio [65].

The concept of an AOMCPD comprises a multispectral light source. To build an

LED based multispectral light source, a two-dimensional array of multiple LED chips

having individual wavebands is required, as the chips are not transparent and can

therefore not be stacked on top of each other. According to information by Epigap-

Optronic GmbH, a chip gap of at least ≤ 50µm is required when installing multiple

LED chips in a common housing. So, the footprint of an LED based multispectral light

source having four distinct wavebands would optimally be positioned in a two by

two pattern, which means that the edge length of the light source will be double the

edge length of a single LED chip plus the chip gap, provided that all LED chips have

an equal footprint. It is important to note that this multispectral light source emits

the light of distinct wavebands from distinct LED chips or areas, which introduces

the problem of forming a common optical path for all wavebands.

Figure 5.18: Overview of beamforming concepts.
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Concepts on how to design the beamforming optics are listed below. A graphical

overview of the first three concepts is depicted in Fig. 5.18.

1. The first concept comprises a single condenser lens and approximates the LEDs

as a point light source.

2. The second concept installs one lens per LED. This way, each LED can be cen-

tered to the focal point of its lens. The focal point also depends on the used

wavelengths. In this setup, each LED can easily be positioned in an optimal

distance to the lens. This is a notable advantage of the concept, as it is difficult

to position the LEDs at different heights within one common housing with the

important secondary condition that the chip gaps should be minimal. Further-

more, the lenses can be rotated towards a common reference point. This way,

the projected spot can be optimized for a specific distance of measurement, but

it cannot be optimally homogeneous for all diverging distances. An advantage

is the possibility of installing each LED chip within an optimized reflector to

increase the optical output power.

3. Considering the first concept, the distribution of the light emitted by individual

LEDs within the beam can be made more homogeneous if some kind of diffuser

is used between the array of LED chips and the condenser lens. This can be

implemented by coupling the light of the LEDs into a common optical fiber.

Within this fiber, the light is mixed homogeneously as a result of multiple

internal total reflections. The open end of the fiber is positioned at the focal

point of a condenser lens. Ideally, the light emitted at the open end of the fiber

would be mixed so well that the homogeneity of the beamforming is only limited

by the dependency of the focal length to the wavelength. The fiber should

preferably be bent to increase the number of internal reflections. Furthermore,
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the optical fiber could become narrower towards the open end to come closer

to the properties of a real point light source. Disadvantages of this concept

are coupling loss and attenuation within the optical fibers [66]. According to

information by Epigap-Optronic GmbH, the optical output power achievable

with this design is below 25 % of the power achievable using individual lenses

and optimized LED reflectors.

4. Further concepts on how to design optics for LED systems are presented in

prior work and summarized in Sec. 3.1.4. Unfortunately, these approaches are

practically not available for the realization of this work. Consequently, these

approaches are excluded for further considerations, even though they could

result in superior solutions.

These concepts have been compared using the optical engineering software FRED

by Photon Engineering, LLC. To define comparable conditions, a lens with a focal

length of f ′1 = 23.25mm and a diameter of ∅1 = 22mm was chosen for models com-

prising a single lens. The multiple lens approach was modeled using lenses with a

focal length of f ′2 = 22mm and a diameter of ∅2 = 9mm to reduce the spatial shift

between the individual sources. Both selected lenses are commercially available. Just

as for the lenses, the modeled LED chips have the same peak-wavelengths and foot-

prints as real parts available. All selected LED chips have an edge length of 360µm.

They are arranged in a two by two array at a chip gap of dgap = 50µm. Using these

settings, simultaneous projections of all four sources have been rendered as false color

images at projection distances of 100 mm, 250 mm, 500 mm and 1000 mm. The results

of these simulations are depicted in Fig. 5.19.

Using a single condenser lens without additional optical elements will form a

near-collimated beam of comparably poor homogeneity, rendering this concept to be
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Figure 5.19: False color images of simulated projections from three concepts at four
projection distances. All units in millimeter. Note that the scale changes with projec-
tion distance.
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insufficient. Especially at d = 100mm it is clear that this is an imaging optic. The

pattern of the LED array is sharply projected at the center of the beam.

The multiple lens setup was optimized on a reference spot at a distance of 250 mm,

where all light is concentrated homogeneously within a diameter of only ∅ = 12mm.

The downside of this approach is clearly the beam homogeneity, which worsens while

moving away from the optimal point. Just as an auto focus of camera lenses, the optics

can theoretically be readjusted to match every measurement distance. However,

developing a mechanical actor to perform such an adjustment would be extremely

challenging with respect to the application goals in terms of speed and robustness.

Besides that, it would be necessary for the system to estimate its current measurement

distance without being correctly adjusted beforehand. Facing these difficulties, an

automated adjustment is disregarded.

The results show that the use of an optical fiber produces the best homogeneity

over all distances. Nevertheless, the pattern of the LED array is visible at the center of

the projection at d = 100mm even with this concept. So, this is not a true nonimaging

optic, but it is a much better approximation of a nonimaging optic than the other

simulated concepts. Despite this, the beam formed with the optical fiber yields large

diameters, especially when compared to the concept comprising multiple lenses.

Thus, this approach is chosen as the best available trade-off for this work.

Unfortunately, the beam widths of all projections at d = 1000mm are clearly larger

than the desired ∅b = 21mm for hand safety, as derived in Sec. 5.1.4. The beam

formed by the chosen concept yields a beam width of∅b = 6.6mm at d = 100mm with

an opening angle ofαb = 2.64◦ [5]. Assuming an equal widening of the beam, the beam

width reaches a diameter of ∅b = 21mm at a distance of d = 413mm. In consequence,

the system would fulfill the requirements for hand safety for measurement distances

of at most d = 413mm, disregarding the safety margin required for sufficient reaction
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speed as discussed in Sec. 5.1.3. Considering the requirements for finger safety, the

beam width reaches a critical diameter of ∅b = 11mm at a distance of d = 195mm (see

Sec. 5.1.3). Considering these results as well as the results presented in prior work,

the violation of the requirement for hand safety at distances of d≥ 413mm is accepted

for this work.

5.2.2 Electronics

Transmitter

Driving an LED to maintain a constant level of emitted radiance is not trivial. The

radiance of LEDs is primarily related to the forward current, which varies as an

exponential function of the forward voltage. Furthermore, the series resistance of

an LED chip does not depend on the forward current or voltage alone, but also

on its temperature and state of degradation [67]. To maintain a constant forward

current, the forward voltage must be decreased linearly with the temperature. This

cannot be achieved using a simple dropping resistor, as the total resistance of LED

and dropping resistor will decrease with increasing temperature and the forward

current will increase. A higher forward current additionally increases the self-heating

of the LED, which then results in a furthermore reduction of its series resistance.

Alternatively, a driving circuit can be used to actively control the forward current.

For this purpose, convenient drivers with adjustable forward current are available1.

The emitted radiance is decreasing as an exponential function of increasing tem-

perature, if the current is held constant. To compensate this, the forward current can

be readjusted as described by Bera et. al. [68]. Yet, the peak-wavelength of the LED

will increase linearly with the temperature, even if the radiant power is controlled.

1For instance, Infineon BCR450 or ILD4035.
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According to a data sheet by Epitex Inc.1, the peak-wavelength of an LED with a nom-

inal peak-wavelength of 1550 nm varies from 1530 nm to 1590 nm within an ambient

temperature range from 0 ◦C to 80 ◦C. This spectral shift could have a severe influence

on the obtained spectral signature, which can result in false classifications. A way

to take this spectral dependency into account is to regulate the temperature of the

LED in the first place. This could simply be achieved by controlling an active heater

element next to the LED. Employing such a heater, a target temperature of operation

could be held as long as the ambient temperature does not exceed this target temper-

ature with respect to the LED’s self heating. A more sophisticated way to regulate the

temperature is to use a Peltier effect based thermoelectric cooling. Cooling an LED

instead of heating it up has the advantages of increasing the maximum optical output

power as well as severely decreasing the LED’s degradation rate and thus elongating

its mean time to failure (MTTF) [67]. However, condense water may occur due to the

cooling, which has to be considered for the system design.

Receiver

The receiver must be capable of performing a simultaneous measurement at all avail-

able photodiodes. To achieve this, a dedicated circuit to integrate the photocurrent can

be supplied per photodiode. Integrating the photocurrent over the entire exposure

time, which is given by the strobe pulse duration of the LEDs, instead of sampling at a

single instant increases the signal-to-noise ratio (SNR). A single multiplexed analog-

to-digital converter can then read all resulting voltages sequentially, if the integrating

circuits are able to hold a sampled signal over a sufficiently long period of time.

1http://www.epitex.com/ (online 2012-12-22)
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Self Testing Measures

First of all, self testing measures must be provided to monitor the correct behavior

of the microcontroller. This can be done by using a single microcontroller, which is

monitored by a watchdog1. In this case, the microcontroller’s embedded software

must set a number of flags at crucial waypoints within the main loop. At the end

of the main loop, these flags must be checked using defined validity conditions. If

these conditions are met, it can be assumed that the embedded software is in a valid

state and, therefore, the watchdog can be reset. In the case of a failure, the watchdogs

signal can trigger a warning to the user (e.g. flashing a warning light) or initiating an

emergency stop of the machine in question.

Using a dedicated watchdog fits to the concept of a single-channel system with

a test unit, as described in ISO 13849-1 and denoted as a category two system. Alter-

natively, a category three system would employ two microcontrollers, which must

perform cross comparisons of their results or states. A category four system would

have the same outline as a category three system, but with an average diagnostic

coverage of DCavg ≥ 99%, instead of DCavg ≥ 60% [46, Sec. 6.2].

Having a monitored microcontroller, tests for the other components of the sensor

must be in place. For instance, the communication channel that is used to trigger

a safety function must be tested periodically. This can be done by transmitting test

messages, e.g. if a serial interface is used.

Besides these general diagnostic measures, which can be applied to a wide range of

safety equipment, appropriate measures to monitor the components that are required

for the operation of the sensor must be specified. For the discussed AOMCPDs, the

transmitter can be tested by measuring the voltage drop across a shunt resistor, which

1A watchdog monitors a periodic signal. If this signal is absent, the watchdog will periodically
generate pulses itself. These pulses are usually used as a reset to the monitored microcontroller.
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is in series to the LEDs. This way, it can be monitored that no current is flowing while

the LEDs are deactivated as well as that the desired current is flowing through each

LED during pulse time. However, this measure effectively tests the switches and

current regulators, but is only able to detect the LED failure mode of an open circuit.

As the LED is usually connected in series to its driver, only an open circuit will prevent

that the desired pulse current can flow. To cover the failure modes of a short circuit

or even a change of the series resistance of the LED beyond the tolerance limits, the

voltage drops across each LED needs to be monitored.

The receiver can be tested indirectly, as each pulse of an LED should result in a

positive change of the read signal. Exceptions might occur if the next surface facing

the sensor is outside the range of operation or if the surface has an extremely high

absorption rate. Furthermore, the projection of the reflected beam on the receiver

should usually cover at least two detectors. This way, blind detectors could be

identified by plausibility checks. A high diagnostic coverage can be reached by

installing at least one additional LED which is directly pointing onto the photodiodes.

Such an LED can be used to generate pulses of well-defined intensity and duration to

check if all photodiodes are responding within predefined tolerances.

The function of the sensor might also be impaired by pollution of the protective

screen, if the resulting signals are attenuated or distorted beyond acceptable limits.

Such a scenario is a special case, as it is caused by external conditions instead of a

failing component. Therefore, special measures for dust detection could be used.

Experiments were carried out using an additional LED to illuminate the protective

screen of the receiver at an angle of 30◦ as depicted in Fig. 5.20, which is similar to

the operation principle of state-of-the-art dust sensors1. If the protective screen is

1E.g., dust sensor type GP2U06 by SHARP
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polluted from the outside, the stains will be illuminated and eventually scatter light

towards the detector array.

Figure 5.20: Detecting dust using an additional LED.

Fig. 5.21 illustrates a practical experiment, which was carried out using an earlier

prototypical implementation [69]. Sawdust was applied to the protective screen to

achieve different soil levels. The measurement results yielded a sufficient sensitivity

of the sensor to the soil, as the scattered light coming from medium soil levels led to

a significant increase of the measured signals.

In the next section, system specifications for a prototypical sensor implementation

are derived with respect to the presented safety requirements and design concepts.

These specifications should be chosen considering the requirements related to the

targeted applications as well as to available technical solutions.
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Nearly Clean                    Medium Soil Level

Figure 5.21: Sideways illuminated protective screen showing very low and medium
soil level.

5.3 System Specifications

With the safety requirements and the sensor concept presented in the previous sec-

tions, it is now possible to define the system specifications for a prototypical imple-

mentation. The section is subdivided into functional and technical specifications.

5.3.1 Functional Specifications

Differentiable Materials

The targeted system is intended for skin detection. In consequence, it must be able to

differentiate human skin from surface materials of common work pieces like wood,

different types of plastics and metal.

Distance Range

The sensor must be capable to operate in a distance range from 0.1 m to 1 m, which

should cover the requirements of many applications in the context of manually fed

machines.
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Beam Width (Detection Area)

Generally, the beam width should be as small as possible. The specified goal is a

system which is finger safe for short distances of ≤ 0.2 m. As discussed in Sec. 5.2.1,

the beamforming does not achieve the requirements for hand safety, as derived in

Sec. 5.1.4, over the whole distance range. Therefore, a reduction of the distance range

for safe hand detection must be accepted for this prototype.

Speed

A single measurement and signal processing must be performed within 2 ms

to allow a measurement frequency of fmin = 500Hz. For hand safety, the sig-

nal acquisition time must be at most ta ≤ 1ms for a measurement frequency of

500Hz =
( (21mm−15mm)

K −1ms
)−1

and a beam width of ∅b = 15mm (see Eq. 5.2 on

page 58). According to simulations of the third transmitter design presented in

Sec. 5.2.1, this beam width is reached at a distance of d ≈ 300mm. In conclusion,

the minimum objective is to achieve true hand safety for measurement distances of

dmin ≤ d ≤ 300mm.

Permissible Temperature Range

The system must operate at a temperature range from 0 ◦C to 50 ◦C and a relative

humidity of ≤ 95 %, as defined in IEC 61496-1.

Ambient Light

The system must tolerate indirect sunlight and fluorescent room lighting, as these are

the most relevant ambient lighting conditions. Ambient light compatibility tests for

AOPDs as defined in IEC 61496-2 should be applied as far as applicable.
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Modes of Operation

The system must operate in single-sided and two-sided configurations as in Fig. 5.6

on page 67 and 5.7 on page 68.

Eye Safety

The system must be compliant to LED class 1M as defined in IEC 60825-1.

Dimensions

Compact dimensions are important to allow a dense arrangement of sensors and to

keep the housing of the sensors small enough to ensure that the feeding of work-

pieces to a machine is not obstructed. Anyways, the tolerable dimensions cannot be

judged without knowing the actual setup of a machine and desired sensor positions.

Therefore, no strict limits are defined for this work.

5.3.2 Technical Specifications

Wavebands

Due to the absorption bands of air, the spectral range from 1340 nm to 1450 nm must

be avoided (see Fig. 5.3 on page 62). Besides this restriction, all wavebands should

be chosen with respect to the spectral responsivity of InGaAs photodiodes if at least

one waveband is located above 1100 nm (see Fig. 5.5 on page 66). In consistence

with these restrictions and with the preexaminations presented in Sec. 4.3, LEDs with

peak-wavelengths at λ̂0 = 830nm, λ̂1 = 1060nm, λ̂2 = 1300nm and λ̂3 = 1550nm are

chosen.
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Interface

The sensor must provide an interface to a control unit or computer. For instance, a

1 Mbit/s CAN-Bus interface could be used, as this type of interface was designed for

industrial demands.

Self Testing Measures

The sensor must implement rudimentary self testing measures beyond the possibility

of pure software-based tests such as a memory test. Particularly, the currents running

through the LEDs must be readable by the embedded system for self-monitoring and

the functionality of the receiver unit must be testable by running dynamic plausibility

checks.

5.3.3 Delimitation of this System Specification

Some general requirements which are relevant for the certification of industrial prod-

ucts, such as electromagnetic compatibility, IP rating of the enclosure or shock resis-

tance, are not considered within this work. It is very likely that all those requirements

can be fulfilled and are not contradictory with the others, if enough effort is put into

system design and testing.

5.4 Prototypical Implementation

An overview on the prototypical implementations of the concept is presented in this

section. These prototypes aim for compliance with the presented system specifications

and are used for an evaluation of the concept, which is presented in Chap. 7.
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5.4.1 Implemented Concept

The prototypical implementation of the sensor system was designed to fulfill the

specifications formulated in Sec. 5.3.

Optics

Body and optical components were designed in consultation with Epigap-Optronic

GmbH, which manufactured and delivered a total of twelve bodies in two batches.

Three different versions of the body were ordered for comparison, which are denoted

as mark 1, 2 and 3. Mark 1 has a shorter optical fiber and mark 3 has a receiving lens

of longer focal length as shown in Tab. 5.3.

Table 5.3: Modified parameters for Skinner mark 1, 2 and 3.

Mark 1 Mark 2 Mark 3
Fiber Length l = 10mm l = 20mm l = 20mm
Focal Length of Receiving Lens f ′ = 23.25mm f ′ = 23.25mm f ′ = 29.35mm
LED Chip Gap dgap = 100µm dgap = 50µm dgap = 50µm
LED Group Rotation r = 0◦ r = 45◦ r = 45◦

Produced Amount 6 5 1

The mark 1 bodies were produced within the first batch. Mark 2 and 3 share the

elongation of the optical fiber as well as the modifications to the LED placement,

which are motivated by a relatively bad homogeneity of the beam created by mark 1

sensors for distances of d < 150mm and artifacts discussed in Sec. 7.2.1. The unique

characteristic of mark 3 is the longer focal length of the receiver’s lens.

Having a longer focal length leads to a fuzzier projection of the beam’s reflection

onto the receiver line, as the aluminum body is unchanged and the photodiodes are

positioned at the same distance to the lens. The advantage is that the projection

covers more photodiodes and the incident energy to each photodiode changes less

with respect to the measuring distance, resulting in an easier distance estimation and
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Figure 5.22: Virtually augmented photograph of the implemented sensor. Source: [5,
Fig. 3].

data function as discussed in Sec. 7.1.2 and 7.1.3. The disadvantage is a significant loss

of received optical energy per photodiode, as discussed in Sec. 7.1.3 as well. Fig. 5.22

illustrates the outline of a Skinner mark 3 sensor. All components are mounted onto

the body, which is made of black anodized aluminum. Aluminum was used for its

good machinability and shape stability. It was anodized to absorb internal stray light,

which turned out to be a mistake as black anodized aluminum is highly reflective

within the near infrared spectrum. In future work, black plastics should be used,

which usually absorb the majority of radiation over the visual and near infrared

spectrum.

Electronics

The structure of the sensor’s complete circuitry is illustrated as a block diagram in

Fig. 5.23. A primary microcontroller provides an external interface and controls the

transmitter and receiver.
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Figure 5.23: Block diagram of the Skinner sensor.

The transmitter comprises a monitoring unit to enforce a maximum pulse duration

and duty cycle for each LED, to protect them from damage due to overuse. The signals

of the primary microcontroller and the monitoring unit are combined by logic gates

through a logic AND operation for each LED. Switching current regulators are used

to activate the LEDs if requested through the corresponding AND conjunction. The

supply currents of all LEDs are routed via a common shunt resistor. An analog-to-

digital converter (ADC) is used to read the voltage across the shunt resistor to allow

functional tests of the components.

The receiver comprises an ADC as well as four charge integrators, which are

directly controlled by the primary microcontroller. Each charge integrator has two

logical input signals to control the integration or perform a reset. The charge inte-

grators are connected with the photodiodes through individual amplifying current-

to-voltage converters and high-pass filters. This way, the primary microcontroller is

able to control the entire acquisition process as described in Sec. 6.1. Further details

on the actual implementation of the functional blocks are presented in this section.

As depicted in Fig. 5.24, the photodiodes and LEDs are mounted and directly

bonded onto two small PCBs. These PCBs are designed to fit into notches at the back

of the body, where they are fixed by two screw-locking brackets. Optionally, a Peltier
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element can be installed at the back of the transmitter’s PCB in order to regulate their

temperature, which has not been tested by the time of this work.

Transmitter (Mark 1)                     Receiver

Photodiodes
0 1 2 3

LEDs2    3
1    0

0:   830 nm
1: 1060 nm
2: 1300 nm
3: 1550 nm 22.5 mm

Figure 5.24: LEDs and photodiodes on their PCBs.

PCB Holding LEDs, Connected at an Angle of 90°

Pulsed Current LED Driver Board

Figure 5.25: LED driver to generate pulses at controlled current.

The PCB holding the LEDs is soldered to the driver board at a right angle as shown

in Fig. 5.25. The pulse current drivers are adjusted to currents of up to 200 mA, which

is within the LED’s rating if the pulse time is tp ≤ 50µs and the duty cycle is ≤ 50 %.

To prevent damage to the LEDs by violation of the allowable pulse time or duty

cycle, this driver board features an ATtiny44 microcontroller which monitors the LED

activation signals and is able to interrupt them. ATtiny microcontrollers are based

on the proprietary AVR R©8-Bit, in-order execution, reduced instruction set computing

(RISC) architecture by Atmel Corp., just as the better known ATmega and Xmega
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   ADC          Charge Integrators            Amp. & Filtering

PCB Holding Photodiodes, Connected at an Angle of 90°

Figure 5.26: Photocurrent readout PCB.

microcontrollers. By default, all LED pulses have a duration of tp = 40µs, which leads

to a duty cycle of 20% for measurement frequencies of fmin = 500Hz.
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Figure 5.27: Schematic of the circuit for a single photodiode.

Similar to the LED driver board, the photocurrent readout board is soldered to the

small PCB holding the actual photodiodes at a right angle. Fig. 5.26 illustrates the

photocurrent readout board, which is basically structured in three function blocks.
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A schematic of the first two blocks is presented in Fig. 5.27. The cathode of each

photodiode is connected to an amplifying current-to-voltage converter followed by

a passive high-pass filter of first order with a cutoff frequency of fc = 154Hz. These

components form the first block with respect to Fig. 5.26. Direct current and fre-

quencies of ≤ 120 Hz, as typically caused by sunlight and artificial illumination, are

(partially) rejected in the resulting signals. These signals are then connected to four

charge integrators type IVC102U from Texas Instruments. It might be irritating that a

current-to-voltage converter is set between the photodiode, which is a current source,

and the charge integrator, which is an integrating current-to-voltage converter. The

reason is that a continuous-time high-pass filtering can only be performed before the

charge integrator discretizes the signal. However, the current produced by the photo-

diode is only in the magnitude of pA to µA, which is rather impractical as an input to

a passive high-pass filter. In contrast, the current-to-voltage converter offers a signal

within the magnitude of several mV and is capable of driving much higher output

currents of up to 15 mA1. Simulations and measurements have shown that the input

current Iin to the charge integrator is proportional to the photocurrent and amplified

by a factor of about -12. The computation of the actual amplification factor is com-

plex, as it depends on many components including the high-pass filter’s capacitor

and resistor as well as the input characteristics of the ADC and the IVC102U’s internal

operational amplifier, which are permanently connected to the integrating capacitor.

Therefore, the use of a simulation tool (e.g. B2Spice from Beige Bag Software Inc.) is

appropriate to characterize the circuit’s properties.

Each charge integrator is individually connected to the primary microcontroller

by its integrate and reset control input. This way, a synchronous integration of the

signal in parallel to each LED pulse can be performed by the microcontroller. When

1Depending on the components specifications
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the integration is completed, a stabilized output voltage is available at each charge

integrator. These outputs are connected to the last function block comprising a

multiplexed 13-Bit1 ADC to sequentially convert these voltages to digital information,

which is then transmitted to the primary microcontroller. After conversion of all four

voltages, the charge integrators are reset by triggering their reset lines for a time

period of 10µs.

5.4.2 Primary Microcontroller

An AT90CAN128 microcontroller by Atmel was chosen as primary controller. This

controller features a 1 Mbit/s CAN interface and an integrated watchdog. The con-

troller is running at a CPU clock of fCPU = 16MHz, which is the maximum rating for

this type. As described in Sec. 7.1.5, the computational power of this microcontroller is

too low to achieve a measurement frequency of fmin = 500Hz. Therefore, a second ver-

sion of the embedded system comprising a more powerful AT32UC3C0512C micro-

controller, which is based on Atmel’s 32-Bit AVR R©architecture with a CPU clock of up

to fCPU = 64MHz was developed. Similar to the AT90CAN128, the AT32UC3C0512C

features a CAN interface and a watchdog. Additional features, such as a dedicated

floating point unit (FPU) or higher clock rates are useful to improve the overall per-

formance of the embedded software.

The CAN bus was selected as the primary interface to the sensor, as this bus was

designed for rough environments and safety critical applications. Alternatively, a

USB interface is available to establish a direct connection to a desktop computer or

notebook.
112-Bit amplitude plus 1-Bit sign
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5.4.3 Previous Prototypes

A total of three prototypical implementations of multispectral point sensors for skin

detection were designed prior to the presented Skinner sensor, as described in Sec. 3.2.

An article presenting the first prototype was published by Reinert et al. [35]. All of

these earlier prototypes comprise transmitters with a separate lens for each LED

instead of a common optical fiber, as described in Sec. 5.2.1. These transmitters are

emitting at two to three different wavebands, instead of four as for the Skinner sensor.

Furthermore, each receiver of the earlier prototypes comprises only one photodiode

and thus does not feature an estimation of the measurement distance. Another unique

feature of the Skinner sensor over its predecessors is the use of charge integrators to

amplify the signals coming from the photodiodes.

In the next chapter, methods for signal acquisition and processing as well as

material classification are proposed with respect to the Skinner sensor.
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Chapter 6

Acquisiton, Data Processing and

Classification

The methods and algorithms used for signal acquisition and data processing are

discussed in this chapter. Furthermore, calibration steps are required for some steps

within the data processing chain, which are also discussed. As seen in Fig. 1.1 on page

2, the aim of the signal processing chain is to retrieve a spectral signature, which can

then be used for material classification. The entire process from acquisition to material

classification is also summarized as a flow chart in Fig. 6.1. Once a spectral signature

is retrieved, it is classified using sophisticated state-of-the-art methods described in

Sec. 2.3 and Sec. 6.4.

6.1 Data Acquisition

A well timed acquisition procedure is necessary to exploit the potential offered by

the hardware. As described in Sec. 5.4.1, the photocurrent readout circuitry features

a high-pass filter of first order with a cut-off frequency of fc = 154Hz. This filter is
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Figure 6.1: Flow diagram showing data acquisition and processing.
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intended to reject ambient light caused by sunlight or electrical light sources emitting

within the near-infrared spectrum, such as incandescent lamps. These lamps are os-

cillating with their supply voltage, which usually has a frequency of 50 Hz or 60 Hz.

As the lamps light up at both positive and negative half-waves, the emitted light is

oscillating at twice the frequency of the supply voltage. Fig. 6.2 illustrates how ambi-

ent light oscillating at frequencies from 100 Hz to 120 Hz will only be attenuated by

less than half their original amplitude and constant ambient light will be suppressed

strongly. In consequence, signals measured in presence of artificial lighting are much

more problematic than sunlight, which can assumed to be relatively constant.
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Figure 6.2: Transmission characteristic of the used fc = 154Hz high-pass filter of first
order.

As the functional principle of the filter can be interpreted as a continuous adjust-

ment of an offset signal to strive for an amplitude of a ≈ Ure f = 0V, the effect can

be algorithmically improved by sampling the signal just before transmitting a strobe

pulse and using this signal as a reference rather than the static reference potential
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Ure f = 0V. This can be understood as a form of correlated double sampling [70]. Us-

ing the AT90CAN128 microcontroller, it takes a total of t = 150µs from the beginning

of the reference measurement to the end of the following strobe pulse. As illustrated in

Fig. 6.3, this time period is subdivided into ti = 40µs integration time of the reference

signal, th10µs pause to wait for the integrator’s output voltage to settle, tread = 40µs

analog to digital conversion time for all four integrators, tr = 20µs to discharge the

integrator1 and another ti = 40µs to integrate over the pulse response.

∆a =2sin
(
180r

π
180

)
= 0.113

with r =
fa = 120Hz

ft = 150µs−1
= 1.8×10−2

(6.1)

The phase of a sinusoidal signal with a frequency of fa = 120Hz shifts by

360◦120Hz/150µs−1 = 6.48◦ within a time period of ft = 150µs. According to equa-

tion 6.1, the change of the ambient signal during the acquisition of a pulse response

is at most 11.3% with respect to its peak-to-peak amplitude. As shown in Fig. 6.2,

62 % of the original signal’s peak-to-peak amplitude can pass the filter at 120 Hz.

Using an additional reference measurement, the offset error drifts at most 11.3% of

the remaining 62 %, which is 7% of the signal’s original amplitude. Furthermore,

the maximum measurement error is less than these 7%, as this is the total drift from

the beginning of the first integration to the end of the second integration. As the

integrator averages the input signal, the magnitude of the measurement error can

be assumed to be the signal’s drift from the middle of the first to the middle of the

second integration period. For an integration time of ti = 40µs, the time span can be

reduced to 150µs−2 ∗20µs = 110µs, which results in a maximum drift of 5.1%.

Compared to the total offset error, which can be as high as 62 % of the original

1Including tp = 10µs pause, as recommended in the datasheet of the IVC102 by Texas Instruments.
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Figure 6.3: Output signal of a charge integrator during signal acquisition.

amplitude, this method reduces the maximum measurement error by a factor of

twelve. Due to a faster communication with the analog-to-digital converter via the

serial peripheral interface (SPI) when using the more powerful AT32UC3C0512C

microcontroller, the time required to read the voltages from all four integrators is

reduced from tread = 40µs to tread = 25µs. In consequence, the maximum measurement

error is furthermore reduced to 4.4 %. As discussed in Sec. 7.3.1, an error of 4.4 % is still

severe in comparison to the potential 13-Bit resolution of the used analog-to-digital
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converter. Note that the resulting signal will be cut off if the summed amplitudes of

the attenuated 100 Hz or 120 Hz signal and the pulse response exceeds the rails of the

analog output voltage of ±15V.
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Figure 6.4: Simulation of high-pass filter and integrator output.

Fig. 6.3 illustrates the phases and timing for a complete signal acquisition of all

four wavebands. Looking at the sampled reference voltages, a drift into the negative

voltage range can be seen. This drift results from the high-pass filter as it reacts

on the pulse responses, which have relatively high amplitudes. In consequence, the

measurement itself induces a shift of the reference voltage. Fig. 6.4 is generated from

a B2Spice1 simulation and illustrates the behavior of the filter as well as the output

of the integrator. It is clear to see that the pulse response signals are fading as the

filter tries to readjust the offset. Fortunately, the attenuation of the filter depends on

the frequency rather than the amplitude and thus the attenuation scales proportional

to the input signal. However, the acquired spectral signature can still be distorted
1A mixed-mode simulation software by Beige Bag Software Inc.
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by the filter, as the filter will readjust its offset after every strobe pulse and the slope

steepness depends on the amplitude of the offset error. The following measurement

will be performed in parallel to the readjustment of this offset-error and, thus, a de-

pendency to the previous strobe pulse (or pulses) is created. According to circuit

simulations and measurements, this effect can cause distortions in the magnitude

of several percent. However, this distortion is also related to the spectral signature

of the respective surface material, which is generally good with respect to the dif-

ferentiability of different materials. Anyways, the embedded software reduces this

problem by generating strobe pulses in descending order from 1550 nm to 830 nm.

Reminding the typical remission spectra of human skin, as shown in Fig. 2.1 on page

8, this order acquires small pulse responses first when measuring human skin. As a

logical consequence, smaller offset errors are induced first to minimize distortion of

the following measurements.

For an integration time of ti = 40µs, a complete signal acquisition of all four wave-

bands takes ta = 800µs using the AT90CAN128 microcontroller (see Fig. 6.3 on page

109) and ta = 680µs when using the faster AT32UC3C0512C microcontroller. In con-

clusion, the required minimum measurement frequency of fmin = 500Hz, as defined

in Sec. 5.3.1, can be achieved if the computation time required for data processing and

material classification is below the remaining 2000µs− ta = 1200µs.

6.2 Low-Level Correction

It was observed that switching LEDs interferes with the integrator’s output voltage.

This effect is likely to be caused by electric or electromagnetic crosstalk. The LEDs

are driven with currents in the range from 100 mA to 200 mA, while the photodiodes

are generating much lower currents in the magnitude from pA to µA.
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Measurements have shown that this crosstalk generates a fixed pattern noise

corresponding to each pulse response measurement in the range from 15 mV to 30 mV,

if a feedback resistor of 100 kΩ is used at the current-to-voltage converter circuit.

When increasing the feedback resistor to 330 kΩ, as set for photodiode 0, the offset

reaches up to 125 mV. As these offsets are fixed, they can be compensated by simply

subtracting them from each measured value as the very first processing step.

The offsets are derived in a calibration process, which is done by performing

measurements while the receiver is covered with an opaque cap. This way, no incident

light reaches the photodiodes and therefore the unwanted offsets are isolated.

As a final low-level data correction, multipliers are applied to the resulting values

that correspond to the reference voltages used by the ADC during acquisition time.

The used AD7323 by Analog Devices can select between three different reference

voltages: Vre f = ±2.5V, Vre f = ±5.0V and Vre f = ±10.0V, whereby the voltage repre-

sented by the least significant bit Vlsb depends on the reference voltage as a function

of Vlsb = |Vre f |/213. In consequence, the multipliers are defined as Vre f = ±2.5V 7→ 1,

Vre f = ±5.0V 7→ 2 and Vre f = ±10.0V 7→ 4. Therefore, a signal read at Vre f = ±10.0V

will be multiplied by four, which provides a virtual resolution of 14-Bit plus sign

(1-Bit).

6.3 Data Processing Concept

This section introduces algorithms that are designed to extract a spectral signature

out of raw sensor readings. Some of the presented results were also published in the

IOP Journal of Measurement Science and Technology [4].
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6.3.1 Distance Estimation

As described in Sec. 2.4, the input values of the sensor can be used to perform

a distance estimation based on triangulation. Fig. 6.5 shows the relation between

the input signal and the measurement distance. The input signal is denoted as a

matrix Xin ∈N
N×B, as defined in Sec. 2.4.1, where N ⊂N is the amount of available

photodiodes or pixels and B ⊂N is the amount of available wavebands.

Fig. 6.5 shows that the signal of each photodiode, with the exception of photodiode

n = 0, can be approximated by a Gaussian function over the measurement distance.

The signal at photodiode n = 0 is comparably asymmetric, as the internal shape of the

receiver’s housing (see Fig. 5.22 on page 98) occludes a portion of the incident light

for shorter measurement distances of d < 550mm. Furthermore, the overlap of the

signals from neighboring photodiodes is relatively large. A large overlap is important

to allow gapless operation over the whole distance range. Without a sufficient overlap,

the quality of the acquired signals would be volatile over the specified distance range.

Considering an arbitrary object within the sensor’s beam having an unknown

surface material, the amount of light reflected towards the receiver depends on the

surface material’s diffuse reflectance coefficient. Furthermore, the amount of specular

reflected light caught by the receiver depends on the surface material’s specularity and

the viewing angle. As all these parameters are (yet) unknown, a distance estimator

cannot simply map the measured amplitudes to a distance. Fortunately, the ratios

of the signals from neighboring photodiodes do not depend on absolute amplitudes,

but are primarily depending on the spatial distribution of the reflected light on the

detector array. As depicted in Fig. 6.6 on page 115, these ratios are steadily changing in

between the peak positions of the corresponding pixels within a distance range from

130 mm to about 570 mm. In consequence, these ratios are a good basis to perform a
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Figure 6.5: Sensor readings of all four photodiodes acquired at λ0 = 830nm (Xin[0][0]
to Xin[3][0]).

distance estimation over that range. However, the ratios are not developing steadily

over the whole distance range. In fact, each slope has a point of inflection, which is a

typical result when calculating the ratio of two Gaussian-like slopes [71].

Having points of inflection prevents a unique mapping of a certain distance to

a certain value of a ratio. Therefore, a new method is introduced: the quick bi-

nary tree mapping (QBTM) (see [4]). This method aims to perform an accurate

distance estimation using sensors with a small number of pixels or photodiodes,

respectively. It starts with the determination of the index ~νmax[b] ∈ [0,N − 1] ⊂ N

which addresses the pixel with the strongest signal Xin[~νmax[b]][b] of all N pixels con-

cerning waveband b. Furthermore, the index ~νmax[b] is a particular element of the

B-dimensional vector ~νmax with b ∈ [0,B− 1], whereby each element holds the index

of the strongest signal with respect to waveband b. Using this information, a bi-

nary decision tree Tn,b is chosen with n = ~νmax[b] ∈ [0,N− 1] ⊂N,b ∈ [0,B− 1] ⊂N,
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Figure 6.6: Sensor readings combined with ratios of signals from neighboring photo-
diodes on a logarithmic scale.

whereby binary decision trees Tn,b have been raised for every pixel n ∈ [0,N − 1]

in an offline process beforehand. The input signal Xin is transformed in a prepro-

cessing step before being used as input for the decision trees by computing ra-

tios of amplitudes from neighboring pixels. This preprocessing step is defined as

fQ(Xin,b) = (Xin[0][b]/Xin[1][b],Xin[1][b]/Xin[2][b], . . . ,Xin[N − 2][b]/Xin[N − 1][b]). As

explained above, computing these ratios is necessary to remove the material depen-

dent signal gain and, therefore, to isolate the distance dependent information.

Once the ratios are computed, the distance mapping can be performed as

d̂QBTM(p̂,b,Xin) = Tp̂,b

(
fQ(Xin,b)

)
with p̂ = ~νmax[b]. Binary decision trees are used to

evaluate the combined information given by all available ratios, as they are able to

derive rules from multidimensional input data. This way, the symmetry of the slopes

resulting from the computation of ratios is compensated by the comparison of mul-
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tiple ratios, as each measurement distance is mappable to a unique combination of

ratios. Therefore, a direct mapping Tp̂,b

(
fQ(Xin,b)

)
7→ d̂ is performed.

To keep the depth of the trees as small as possible, individual trees are raised

for each ~νmax[b] ∈ [0,N − 1] ⊂ N. The maximum error by this forest is limited in

comparison to one big tree, as each tree only learns distance values that are related to

one ~νmax[b]. That way, the whole algorithm only performs N−1 divisions and a small

number of comparisons (given by the depth of the trees) for a complete estimation

[4].

In this work, an extension to the QBTM is proposed to benefit from multispectral

information. Generally, the spectral information in Xin is redundant for the distance

estimation, as the energy ratios at neighboring pixels do not depend much on the

used waveband. However, if an individual QBTM is trained for each available

waveband, the accuracy of the distance estimation might be improved by performing

an individual distance estimation for all B wavebands and computing the median

of all results. Analog to the multispectral quick binary tree mapping (MQBTM), the

multispectral expanded generalized cross-correlation (MEGCC) and multispectral

expanded average square difference function (MEASDF) can also be computed as the

median result of individual estimators that are applied for each available waveband.

Generally, similar implementations of multispectral extensions should be applicable

to any distance estimation method. This approach is denoted as the MQBTM and

evaluated in Chap. 7.

6.3.2 Data Fusion

In this section, the fusion of all available signals to a spectral signature is presented.

Spectral signatures are represented as a vector ~s which yields a remission amplitude

value for each waveband b. The intention is that ~s describes the remission spectrum
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of a measured object’s surface material. The influence of measurement conditions to

the acquired spectral signature, such as the target’s distance and angle to the sensor,

should be as small as possible. Finally, spectral signatures are used as input for the

material classifiers, which are described in the following section.

The presented data fusion approach is guided using the estimated distance d̂ to

select a corresponding matrix of correction factors Cd ∈ C from a set C. Each matrix

Cd has the same dimension N×B as a matrix of raw sensor readings Xin, whereby

some elements Cd[n][b] yield non-zero factors which correct the corresponding sensor

reading Xin[n][b] to a distance invariant value. The set C provides an individual matrix

Cd for every possible output value of the distance estimator d̂ ∈ [dmin,dmax] ⊂N. C

is created in an offline process beforehand using Eq. 6.2, whereby ~sre f is a reference

spectral signature, T is a set of measurements from the sensor which must be calibrated

and τmax is a manually chosen threshold that allows to avoid large correction factors,

which may cause numerical inaccuracies. Analog to this, a lower threshold tmin is

chosen for all input values, which should be higher than the system’s noise level.

Cd[n][b] =


~sre f [b]

Td[n][b] i f
~sre f [b]

Td[n][b] ≤ τmax∧Td[n][b] > tmin

0 else
(6.2)

Spectroscopic reflectance measurements are taken from the surface of a reference

object to acquire~sre f as the desired output for the transformation of each Xin ∈ T. The

same reference object must be used to create the set T, which contains actual sensor

readings over the whole range of measurement distances dmin ≤ d ≤ dmax (compare

Fig. 6.5 on page 114), whereby each element can be addressed uniquely by the ground

truth measurement distance d as Td = Xd
in. For this work, T was created using a
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step width of 1mm, which results in 901 positions within a distance range from

dmin = 100mm to dmax = 1000mm.

In a matrix of sensor readings Xin, N readings from individual pixels or photodi-

odes are available for each waveband b. This information is corrected and combined

using a weighted average function as defined in equation 6.3 [4].

~s[b] =
∑
n∈V

Xin[n][b] Cd[n][b] W[n][b] (6.3)

In this equation, W ∈NN×B is introduced as a matrix of weights. Logically, a large

correction factor Cd[n][b] is a result of a weak corresponding input signal Xd
in[n][b] ∈

T. In general, smaller signals tend to have a weaker SNR, as some of the typical

noise components in photocurrents, such as dark current and shot noise, do not

scale proportional to the signal’s amplitude [72]. Therefore, Eq. 6.4 computes each

weight W[n][b] to be inversely proportional to the corresponding correction factor

Cd[n][b] with respect to all other currently available correction factors within the

same waveband b, which are given by the set V. Set V contains the indices of all

pixels that satisfy mandatory conditions as defined in Eq. 6.5. Note that correction

factors exceeding a manually chosen upper threshold τmax will be set to 0, so that

they are ignored for the fusion process. Furthermore, an important property of W is∑
v∈V W[v][b] = 1 ∀b ∈ [0,B− 1], which means that the results are always scaled with

respect to V, as the weights for all related correction factors sum up to one.

W[n][b] =

∏
v∈V\{n}Cd[v][b]∑

w∈V
∏

v∈V\{w}Cd[v][b]
(6.4)

V = {n ∈ [0,N−1] | ∀b ∈ [0,B−1] : Cd[n][b] , 0∧Xin[n][b] > tmin} (6.5)
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Figure 6.7: Exemplified data fusion Xin→~s.

For performance optimization when implementing the algorithm in an embedded

software, the equations 6.3 and 6.4 can be converted to the much more compact, but

mathematically identical Eq. 6.6:

~s[b] =

∑
n∈V Xin[n][b]∑

n∈V Cd[n][b]−1
(6.6)

This conversion is possible, as all products Cd[n][b] W[n][b] are equal for all n in an

arbitrary set V and a distinct waveband b. Therefore, it is not actually necessary

to compute the individual weights for every combination of Xin[n][b] and Cd[n][b].

Instead, Eq. 6.6 sums up all available input values and (inverted) correction factors

and scales the result implicitly by dividing them afterwards.

Fig. 6.7 illustrates a sample Xin[n][0] ∀n ∈ [0,3] which is fused to ~s[0] with the

displayed correction factors Cd[n][0] ∀n ∈ [0,3]. In this figure, the relative standard

deviation (RSD) is 10 % over a range of 700 mm [4]. This deviation to the ideal
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output, which would be a straight line at a signal amplitude of about 1.1, is caused

by imprecise results of the distance estimation as well as the sensor’s noise. These

effects are evaluated in Sec. 7.1.3. A precise distance estimation and data fusion are

important factors for the quality of the retrieved spectral signature ~s, which is the

base for material classification.

6.4 Classification of Materials

The task of the material classification is to implement a mapping from a spectral

signature to a class m ∈M, whereby M will consist of at least two different classes (e.g.

M = {Legal, Illegal}). Equation 6.7 formally describes the mapping, whereby m̂ is an

estimated material class, fM(~s) is an optional function for data preparation and AM is

the material classifier [4].

m̂ = AM
(

fM(~s)
)

(6.7)

For instance, it is recommended to scale all input values to be within −1.0 to

1.0 when training an SVM using LIBSVM. Without scaling, dimensions yielding large

values would have a stronger influence on the algorithm than dimensions that contain

smaller values [73]. This can be done by implementing a suitable function fLIBSVM(~s).

Training is then done by supplying a set E of tuples
(
m, fLIBSVM(~s)

)
, where m ∈M is a

label denoting the actual class membership.

As said in Sec. 2.3.1, SVMs are capable of implicitly mapping a nonlinear clas-

sification problem to a linear solvable problem by transforming the input data into

a feature space of higher dimensionality. The C4.5 tree learning algorithm, which

is mentioned in Sec. 2.3.2, cannot perform such a mapping. Instead, a tree learning

algorithm may raise a number of tree branches to describe a nonlinear class bound-

ary, which increases the size of the resulting decision tree. However, the absolute
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amplitudes within ~s are influenced by the angle of measurement, while the ratios

between wavebands remain stable, as mentioned in Sec. 4.4.1. In consequence, these

ratios may deliver linear class boundaries even if the corresponding amplitudes are

not linearly separable. Therefore, the preprocessing function presented in Eq. 6.8

computes ratios from all combinations of values within a spectral signature ~s. This

way, a characteristic ratio can be compared to a threshold within a single node of the

tree, even if the corresponding amplitudes vary greatly among all samples of a tar-

geted material class. However, these ratios are just offered as additional parameters

to the tree learner. The original amplitudes are still supplied as ftree
(
~s,~r

)
with~r being

the additional vector of ratios. The vector ~r is also used for the brute force search

presented in 4.3.

fr
(
~s
)

=
(
~s[0]/~s[1], ~s[0]/~s[2], ~s[0]/~s[3], ~s[1]/~s[2], ~s[1]/~s[3], ~s[2]/~s[3]

)
=~r (6.8)

In practice, it turned out that a simple threshold filter, which compares all values

within ~s and ~r to skin-typical minimum and maximum values, is useful to reduce

the chance of false positive skin classifications. This simple filter will classify a

spectral signature as skin if all values are within the specified thresholds. If a spectral

signature is classified as skin by this filter, a more sophisticated filter (e.g. a decision

tree or SVM) is used for verification. The advantage of this method is in its very

good performance on outliers, which are often misclassified by the more complex

classifiers, if no similar samples were included in the set of training data. Methods

such as SVMs try to separate the members of given classes with maximized margin,

while the thresholds enclose the cluster of spectral signatures acquired from samples

of human skin. This allows a rough decision whether a spectral signature is close to
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that cluster or not. An evaluation of material classifiers based on thresholds, SVMs

and decision trees is provided in the following chapter.
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Chapter 7

Concept Validation

A quantitative evaluation of the presented sensor concept, prototypical implementa-

tion and data processing methods is provided in this chapter. The chapter is subdi-

vided into four sections. Sec. 7.1 discusses the performance of the data processing

methods. Sec. 7.2 discusses typical artifacts, that must be taken into account for

the presented sensor concept. Experiments to investigate the impact of different en-

vironmental influences are presented in Sec. 7.3. The last section briefly discusses

the achievable reliability of the system, if two or more of the discussed artifacts or

environmental influences occur in parallel.

7.1 Data Processing Methods

This section presents an evaluation of the high-level methods for distance estimation,

data fusion and material classification. As this is an evaluation of algorithms, both

synthesized and real sensor data are used for evaluation. The synthesis of sensor data

was done using a commercial software for optical engineering and ray tracing called
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FRED as described in Sec. 7.1.1. This way, the results do not depend on the specific

characteristics of the Skinner sensor prototypes alone.

7.1.1 Data Basis

A total of 17 different measurement configurations was chosen for test and training

of different distance estimation methods. A white diffuse tile with a diameter of

∅t = 80mm was used as measurement target. Originally, this tile is meant to be used

as a white-reference to calibrate spectroscopes. The tile was rotated and shifted about

it’s X- and Y-axis as depicted in Fig. 7.1. Tab. 7.1 defines 17 different configurations of

the target. Configuration 1 to 15 define different rotations of the tile. Such rotations

affect the light intensity distribution on the detector, as discussed in prior work

[20]. As the light intensity distribution is used to perform the distance estimation,

deviations caused by rotations should be suppressed to minimize the estimation error.

Table 7.1: Definition of the 17 orientations of the target tile (see [4, Tab. 1]).

Conf. 1 2 3 4 5 6 7 8
α 0◦ −10◦ 10◦ −20◦ 20◦ −30◦ 30◦ 0◦

β 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ −10◦

X 0 mm 0 mm 0 mm 0 mm 0 mm 0 mm 0 mm 0 mm

Conf. 9 10 11 12 13 14 15 16 17
α 0◦ 0◦ 0◦ 0◦ 0◦ −20◦ 20◦ 0◦ 0◦

β 10◦ −20◦ 20◦ −30◦ 30◦ −20◦ 20◦ 0◦ 0◦

X 0 mm 0 mm 0 mm 0 mm 0 mm 0 mm 0 mm 40 mm −40 mm

The beam is centered on the tile if the axial shift is 0 mm. In configuration 16

and 17, the beam will be centered on the edge of the tile by a shift of ±40mm on

the X-axis. The rest of the beam disappears into open space, as no second object

was located behind. As discussed in Sec. 5.1.3, measurements at a partial overlap of
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Figure 7.1: Rotation and shift of the reference tile (see [4, Fig. 8]).

the beam with an object will occur regularly while a new object is moved into the

beam. In consequence, such measurement conditions must be included for a realistic

evaluation.

A virtual model of the presented sensor was created to generate synthesized mea-

surement data from simulations using a commercial software for optical engineering

and ray tracing called FRED. The model was optimized iteratively to achieve synthe-

sized data of sufficient quality at acceptable memory consumption and runtime of the

simulation. Fig. 7.2 depicts a real and a synthesized measurement, showing that the

shapes of the normalized curves are comparable for all corresponding pixels. How-
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Figure 7.2: Comparison of real (HW) and synthesized (M1) data.

ever, the curves from the real sensor data (HW) are smoother than the synthesized

curves (M1), which indicates that the real system’s noise level is below the numerical

inaccuracy of the simulation.

The model was modified to virtually create four alternative sensors. These alterna-

tive models were used to synthesize measurement data at all 17 target configurations

to provide a wider data basis for evaluation, which does not depend on a specific

implementation alone (see [4]). The first modification (M1) is an idealized housing

of the detector, which absorbs all radiation. Therefore, no unwanted internal stray

light can affect the sensor readings. Furthermore, the modified housing does not

occlude portions of the incident light on the first detector, as described in Sec. 6.3.1.

The second modification (M2) is an idealization of the transmitter. As discussed in

Sec. 5.2.1, a point light source would be ideal to create a highly collimated beam.

Therefore, the four LEDs were replaced by a single source of switchable waveband

with a reduced edge length of 2×10−2 mm. For comparison, the actual LED-pattern
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in Skinner mark 2 and 3 sensors has an edge length of 7.7×10−1 mm. The optical

fiber was removed for this model and the idealized source is positioned directly at

the focal point of the lens. This modification leads to an almost perfect match of the

beams at different wavebands, as only the wavelength dependent refractive index of

the glass lens causes a negligible mismatch. Furthermore, the beam width is reduced

from ∅b1 = 20mm to ∅b2 = 7.5mm at a distance of d = 500mm to the sensor.

The diameter of the beam ∅b directly influences the length of the projection on

the Z-axis lz as a function of lz =
√

(∅b/sin(90−α))2
−∅2

b, depending on the rotation

angle α of the target. An example was published in [4] regarding configuration 5

with α = 20◦ and beam diameters of ∅b1 = 20 mm and ∅b2 = 7.5 mm, whereby the

resulting projection lengths are lz1 = 7.3mm and lz2 = 2.7mm. A projection length of

lz1 = 7.3mm will cause an ambiguous light intensity distribution, as the projection of

the illuminated spot corresponds to a distance range rather than a distinct distance.

Two further modifications of the model (M3) and (M4) are based on the mod-

ifications M1 and M2 with eight instead of four photodiodes to achieve a higher

spatial resolution. As the total length of the detector is unchanged, the round pho-

todiodes with ∅p = 1mm are replaced by rectangular detectors with a footprint of

lx = 0.62mm ∗ ly = 1mm.

The evaluated distance estimators were trained and tested on input data of all

configurations for all virtual and real sensors. For each configuration, measurement

data were generated for a distance range from dmin = 100mm to d = 500mm. The data

from a Skinner mark 2 sensor was gathered using a motorized linear driving stage,

where 100 measurements were performed for each of 401 different sensor positions

within a range from dmin = 100mm to d = 500mm to the target with an equidistant

step width of 1 mm. As the variance over 100 samples per position and configuration

is only 0.1 % to 3 %, a random selection of 10 samples was made for each position to
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reduce the amount of data. Such a fine spatial sampling was not applicable for the

data synthetization, as this would have consumed to much computation time.
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Figure 7.3: FFT of a signal from the last photodiode.

To find a sufficient sample frequency, a signal XIN[3][1] from the last photodiode,

which generally shows the most rapid changes over the measurement distance, was

converted into frequency domain by the Fast Fourier Transformation (FFT). Before-

hand, the signal was averaged over 100 sample points per (discrete) measurement

distance to reduce the dynamic noise components. The result shows that the highest

frequencies are found at 500 m−1, which is the natural limit from the original sampling

steps of 1 mm. Furthermore, the magnitude is strongly increasing towards lower fre-

quencies. The highest magnitude of about 109 dB is found at a frequency as low as
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5 m−1, which is about the expactable frequency if the part of the slope between the

120 mm and 220 mm mark would be mirrored and continuously repeated as a sinu-

soidal wave. From the results of the FFT it can be expected that the frequencies below

100 m−1 are most important to reconstruct the shape of the signal. According to the

Nyquist-Shannon sampling theorem, the simulation was carried out with equidis-

tant steps of 2 ∗ 100m−1 = 5mm instead of 1 mm. This compromise accelerated the

synthetization process by a factor of five, which was sufficient to perform all desired

experiments in time. To achieve a full compatibility of the data, a step width of 1 mm

was interpolated using cubic splines [74, p.40ff].

The data recorded by the Skinner mark 2 sensor yield a SNR of at least 21 dB, cal-

culated from the random signal changes within a hundred measurements acquired at

each of the 401 measurement distances per configuration. However, the SNR of the

synthesized data cannot be determined easily, as the data is interpolated from synthe-

sized sampling points. In Fig. 7.2 on page 126, a comparison of real and synthesized

sensor data is showing that the real signals are smoother than the synthesized ones.

7.1.2 Distance Estimation

Common optical triangulation sensors often use red lasers to emit highly collimated

beams with diameters of only about 1 mm. For the presented sensor concept, LEDs

are preferred over lasers, as lasers of well suited wavelengths are more expensive. The

receivers of common triangulation sensors consist of a lens system as well as a CCD

or CMOS detector line with a comparably high spacial resolution of several hundred

to several thousand pixels 1. Therefore, these sensors are much better preconditioned

in terms of distance measurement than a Skinner sensor. On the other hand, fewer

pixels of larger active area are useful to maximize the SNR and thus to acquire

1E.g., see optoNCDT series by Micro-Epsilon Messtechnik GmbH & Co. KG.
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spectral signatures ~s of good quality. Maximizing the quality of spectral signatures is

a primary design aim for the presented sensor concept, as the material classification

is the most important feature. Therefore, optimizing the sensor design to maximize

the accuracy of the distance estimation must be a secondary objective. Nevertheless,

techniques presented in prior work for distance (or displacement) measurement such

as the EASDF or EGCC (see Sec. 2.4) can be used as references to evaluate the new

approaches of QBTM and MQBTM [4]. For this evaluation, the size of the search

window for the EASDF and EGCC was always set to M = 3, as the best results were

achieved with this value.

The QBTM, EGCC and EASDF were compared in an experiment, where all con-

figurations presented in the previous section were evaluated on all sensor designs.

Tab. 7.2 shows the results of this experiment. The EASDF is outperformed by the

EGCC and QBTM on the data from the Skinner sensor and the first modification

(M1). The averaged results of the QBTM are significantly better than those of the

other methods with the exception of the performance on the second virtual model

(M2), where the EASDF has the best performance. The performance of the QBTM

shown in this table differs from the evaluation presented in the related article [4], as

the Orange tree induction algorithm (see [75]) was replaced by the C4.5 tree learn-

ing algorithm (see Sec. 2.3.2). The C4.5 implementation provided by the Weka data

mining software was used with default parameters [76]. This algorithm was pre-

ferred as the resulting trees have about 80 % less nodes than those raised using the

Orange tree inducer. Furthermore, the Orange tree inducer was forced to produce

trees with a maximum depth of 100 by a corresponding parameter, whereby this limit

was reached for most trees. For comparison, none of the trees generated by the C4.5

algorithm is deeper than 15 layers. In consequence, the trees generated by the C4.5

algorithm require significantly less memory and are more computationally efficient
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Table 7.2: Root mean square error (RMS) in millimeters of all configurations with all
basic estimators. Measurements of a Skinner mark 2 sensor (HW) and virtual sensor
configurations M1, M2, M3 and M4 are used as data sources (compare [4, Tab. 2]).

Configuration 1 2 3 4 5 6 7 8 9
QBTM (HW) 01.59 01.79 03.43 01.58 02.77 02.34 02.29 001.81 01.89
EGCC (HW) 05.74 06.48 05.48 06.32 05.48 06.56 06.00 005.57 06.00
EASDF (HW) 22.41 21.91 21.66 21.66 21.73 21.66 22.23 021.75 21.70
QBTM (M1) 02.81 07.06 05.07 06.74 06.27 07.60 18.55 005.49 06.16
EGCC (M1) 03.32 03.16 02.83 05.29 03.87 05.00 02.83 003.00 03.00
EASDF (M1) 21.59 15.33 19.67 16.37 12.88 29.24 27.91 018.11 16.46
QBTM (M2) 03.50 03.06 02.47 01.67 01.36 02.30 03.62 002.45 02.72
EGCC (M2) 02.65 02.24 02.24 02.65 02.65 03.32 02.83 003.00 02.24
EASDF (M2) 05.92 05.66 07.00 07.00 07.07 07.42 10.15 006.86 06.08
QBTM (M3) 00.28 00.25 00.36 00.64 03.11 00.21 00.23 000.63 00.34
EGCC (M3) 03.00 02.45 01.73 04.58 03.74 04.90 02.24 002.45 02.00
EASDF (M3) 06.48 05.66 02.83 05.57 05.20 11.22 04.69 002.45 05.00
QBTM (M4) 02.16 00.69 00.57 02.04 00.67 03.07 02.41 001.18 00.47
EGCC (M4) 02.24 02.00 02.24 02.24 02.00 02.24 02.00 002.00 02.00
EASDF (M4) 01.41 01.00 01.00 01.41 01.41 01.00 02.00 001.00 01.00

Configuration 10 11 12 13 14 15 16 17 Avg.
QBTM (HW) 01.06 01.05 01.19 01.25 05.06 01.76 18.99 019.43 04.07
EGCC (HW) 06.08 05.48 05.57 08.77 06.08 05.74 33.97 036.01 09.49
EASDF (HW) 21.61 21.66 22.00 22.05 22.25 22.34 29.03 044.75 23.67
QBTM (M1) 01.61 03.36 07.38 06.57 02.23 05.37 21.47 029.27 08.41
EGCC (M1) 02.83 03.00 03.16 02.83 03.74 03.61 53.27 088.06 11.34
EASDF (M1) 04.12 15.23 30.79 29.82 23.73 26.19 47.21 105.05 27.04
QBTM (M2) 03.19 02.37 02.08 02.32 01.00 03.22 10.49 020.93 04.04
EGCC (M2) 02.83 02.65 02.45 02.45 02.24 02.83 14.83 022.76 04.52
EASDF (M2) 01.00 01.41 01.41 01.41 01.00 01.41 14.35 025.44 03.45
QBTM (M3) 00.29 00.35 00.18 00.30 00.29 00.28 04.60 009.74 01.30
EGCC (M3) 02.00 02.00 03.00 02.00 03.61 03.16 57.93 070.63 10.08
EASDF (M3) 01.41 04.00 09.00 08.37 07.55 03.74 68.68 079.40 13.60
QBTM (M4) 01.29 05.71 01.39 00.50 01.29 02.14 08.34 017.41 03.02
EGCC (M4) 02.00 02.24 02.24 02.00 02.00 02.00 15.52 022.16 04.06
EASDF (M4) 01.00 01.41 01.41 01.41 01.00 01.41 14.35 025.44 03.45
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for their shallow depths. When compared to the results achieved with the Orange

tree inducer in [4, Tab. 2], the results of the QBTM presented in Tab. 7.2 are not as

superior to the other methods as before. Especially the root mean square errors at

configurations 16 and 17 are larger for the QBTMs using trees generated by the C4.5

algorithm. It can be assumed that the large trees generated by the Orange tree inducer

delivered very specific rules to account for all training data, which does not guarantee

a good performance on data that were not available for training. In literature, this

problem is often denoted as overfitting. This was verified by removing these data

from the training set. As a result, the performance of the QBTM was very close to that

of the EGCC for configuration 16 and 17. In consequence, the tree learners used for

the QBTM can derive special rules to account for special measurement situations like

defined in those configurations. It is important to evaluate if these rules are a result

of an overfitting to the training data or if those rules are generalized to improve the

accuracy for a range of similar conditions.

Table 7.3: Results as averaged RMS in millimeters from additional configurations.

Shift 30 mm Shift −30 mm Shift 50 mm Shift −50 mm
EGCC (M1) 10.58 33.80 141.35 129.80
MEGCC (M1) 10.58 25.46 187.43 131.73
EASDF (M1) 32.12 63.68 150.04 147.56
MEASDF (M1) 32.93 50.69 136.20 149.48
QBTM (M1) 36.13 60.83 150.01 088.72
MQBTM (M1) 27.77 45.73 158.19 093.95

To evaluate this, an additional experiment was carried out on the virtual M1

model with shifts of ±30 mm and ±50 mm on the X-axis. The MQBTM, MEGCC and

MEASDF, which are multispectral extensions to the basic methods as described in

Sec. 6.3.1, were also applied to the data. The results displayed in Tab. 7.3 show that
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Shift by -50 mm 
on X-axis

d = 150 mm

Figure 7.4: Simulation of sensor (M1) showing target shifted by−50 mm at d = 150mm.

all methods perform very poor on the shifts by ±50 mm, where the overlap of object

and beam is minimal, especially for short measurement distances (see Fig. 7.4).

However, the EGCC and MEGCC clearly achieve the best results for shifts of

±30 mm. Unfortunately, this shows that the good performance of the QBTM on con-

figuration 16 and 17 is a result of a strong fitting to the training data. In consequence,

the QBTM does not generally perform better at partial overlaps, but the performance

could be optimized using big training sets which cover a wide range of measurement

situations with the disadvantage of generating larger trees.

Tab. 7.4 extends Tab. 7.2 on page 131 by displaying results for the MQBTM and

MEGCC on the original configurations. As in the experiment presented above, the

results by the MQBTM improve more over the basic QBTM than the results of the

MEGCC over those of the EGCC. Especially the data provided by the modified model

M2 improved much by the use of the redundancy within the sensor’s data. Overall,
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Table 7.4: Evaluation of multispectral extensions by the root mean square error (RMS)
in millimeters of all configurations with all multispectral estimators. Measurements
of a Skinner mark 2 sensor (HW) and virtual sensor configurations M1 and M2 are
used as data sources.

Configuration 1 2 3 4 5 6 7 8 9
MQBTM (HW) 0.88 01.99 02.44 01.72 02.05 01.84 01.54 01.65 01.76
MEGCC (HW) 05.05 05.80 04.83 05.76 04.88 06.04 04.92 05.45 05.44
MQBTM (M1) 01.58 00.66 01.66 01.49 04.87 01.09 05.55 00.63 00.53
MEGCC (M1) 02.40 02.91 02.17 03.75 02.80 03.95 02.72 02.33 02.41
MQBTM (M2) 01.35 01.01 00.83 00.74 01.05 01.46 01.27 00.67 00.83
MEGCC (M2) 02.98 02.60 02.34 02.76 02.80 03.27 02.88 02.80 02.73

Configuration 10 11 12 13 14 15 16 17 Avg.
MQBTM (HW) 01.66 01.38 01.50 01.17 04.24 01.34 15.34 16.53 03.47
MEGCC (HW) 04.95 05.51 05.01 05.38 08.23 05.05 30.54 34.73 08.68
MQBTM (M1) 00.40 00.56 00.94 00.59 01.21 03.80 09.72 53.73 05.24
MEGCC (M1) 02.10 02.37 02.33 02.36 03.48 02.43 52.85 82.55 10.35
MQBTM (M2) 0.98 00.79 00.34 00.78 00.69 00.91 09.16 22.20 02.65
MEGCC (M2) 02.66 02.61 02.59 02.66 02.56 02.74 16.73 26.30 04.94

the MQBTM achieves the highest accuracy over the 17 test configurations of all tested

methods.

In a further experiment, the ability of the estimators to process data which are very

different from the training data is evaluated (see [4]). A total of 20 measurements from

human hands, 15 measurements from wooden boards and seven samples from meat

were measured using the same Skinner mark 2 sensor to provide further test data.

The scattering properties of those samples are very different than that of the reference

tile used for training. Tab. 7.5 summarizes the results. On the described data, the basic

QBTM achieved the worst performance. This confirms the importance of appropriate

training data for the QBTM. However, the MQBTM achieved comparable results to

the MEASDF. In conclusion, the decision trees utilized by the QBTM often fail on

previously unknown data, as one "wrong turn" in the decision tree may cause a

severe error. This weakness of decision trees can partially be compensated by the
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Table 7.5: Averaged RMS in millimeters on a selection of samples from hands, wooden
boards and meat samples.

Human Skin Wooden Boards Meat Samples
EGCC (HW) 8.93 7.04 24.18
MEGCC (HW) 10.72 6.88 22.23
EASDF (HW) 23.00 28.72 27.55
MEASDF (HW) 19.73 13.81 28.30
QBTM (HW) 40.62 46.67 51.22
MQBTM (HW) 18.52 17.06 24.34

MQBTM, as it chooses the median from four results. The used implementation of the

median function computes the average of the second and third element in a sorted

list of four elements. Nevertheless, the EGCC and MEGCC clearly achieved the best

results in this experiment.

A true advantage of the QBTM and MQBTM over the EGCC and EASDF is their

ability to estimate and differentiate distances if the focal point is on or even past

the first or last photodiode. This is not possible for the EGCC or EASDF, as these

methods estimate a subpixel position within a search window which is limited to

reference data provided from available pixels (see Sec. 2.4). For the used Skinner

mark 2 sensor, this limits the differentiable distance range for the EGCC and EASDF

by 105 mm to 564 mm1.

Fig. 7.5 shows a comparison of the results from an EGCC to a QBTM which was

trained over a range from 75 mm to 800 mm. The plot reveals that the QBTM achieves a

high accuracy within a distance range from 75 mm to 650 mm. The accuracy decreases

drastically over≈ 650 mm, as the available ratio approaches values of X[1][b]/X[0][b]≤

0.08 (see Fig. 6.6 on page 115). However, the range is extended by ≈ 25 % over the

EGCC.

Artificial, multiplicative noise was added to the data acquired with the Skinner

1There are small differences from sensor to sensor that depend on the detector’s alignment.
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Figure 7.5: Distance estimation from 100 mm to 800 mm on actual sensor data using
EGCC and QBTM (Compare [4, Fig. 10]).

sensor at configuration 1 to evaluate it’s influence on the accuracy of the distance

estimation. The results of this experiment are plotted in Fig. 7.6. At a high SNR of

20 dB, the results primarily depend on the basic methods, namely the QBTM and the

EGCC, regardless of the multispectral extension. For SNR< 4dB, the results of the

MQBTM and MEGCC as well as the QBTM and EGCC are very similar. So, both

methods profit from their multispectral extensions on noisy data. Furthermore, the

plot shows that the QBTM is not more susceptible to noise than the EGCC, as the

estimation results of the QBTM do not get worse than those of the EGCC.

In conclusion, the multispectral extensions are generally useful for noisy and

distorted sensor data. Furthermore, QBTM based distance estimators could achieve

the highest accuracy from all evaluated methods. On the other hand, the EGCC based

estimators have shown the best performance on variously distorted sensor readings,

if they were not included in the training set. In conclusion, the EGCC and MEGCC

are easy to train and yield a superior generalization, while the best accuracy can be

achieved with the QBTM and especially the MQBTM, if an appropriate training set

was used.
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Figure 7.6: Influence of noise on the distance estimation.

7.1.3 Data Fusion

In this section, the transformation Xin→ ~s as described in Sec. 6.3.2 is evaluated.

As no standard method for this specific problem could be found in literature, a

comparison to the state of the art cannot be presented here. Instead, two alternative

methods are introduced to evaluate the performance of the weighted average function

defined in Eq. 6.3, 6.4 and 6.5 on page 118. The first alternative function is a simple

average function defined in Eq. 7.1 (see [4]).

~savg[b] = |V|−1
∑
n∈V


Xin[n][b]Cd[n][b] i f (Cd[n][b] , 0)∧ (Xin[n][b] ≥ tmin ∀b ∈ [0,B−1])

0 else
(7.1)

The second alternative is defined in Eq. 7.2, where the first pixel which satisfies the

condition Cd[n][b] , 0∧Xin[n][b] ≥ tmin ∀b ∈ [n,B− 1] is used as the only input. This

simple approach tries to exploit the fact that the signals acquired at pixels with lower
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indices have generally flatter slopes than those from pixels with higher indices (see

Fig. 6.5 on page 114), which means that the same error of the distance estimation ρ

will cause a smaller change to the corresponding signals (e.g., d+ρ = d̂ = 308mm | d =

300mm,ρ = 8mm).

~sheur[b] =Xin
[
η
]
[b]Cd

[
η
]
[b]

with η =
N−1
min
n=0
{n | Cd [n] [b] , 0∧Xin [n] [b] ≥ tmin ∀b ∈ [0,B−1]}

(7.2)

The data basis used for evaluation comprises four sets Tn of 501 samples acquired

within a distance range from dmin = 100mm to d = 600mm from a flat surface made of

CPflesh R©silicon rubber. Each set was recorded with a different sensor, whereby the

index of the set matches the mark of the used Skinner sensor. For instance, T1 was

recorded with a Skinner mark 1 sensor. The fourth set contains noise free, synthetic

data, which are generated using Gaussian functions instead of the data presented in

Sec. 7.1.1.

Real sensor data show different spatial peak positions for the signals of a distinct

pixel at different wavebands. An analysis has shown that these differences are not

significantly related to the corresponding wavebands with respect to the change of

the refractive index of the lenses, yielding a focal length from f ′830nm = 23.02mm to

f ′1550nm = 23.44mm. Instead, the difference is related to the imperfect alignment of the

beams corresponding to each waveband and thus depend on the LED-pattern within

the transmitter.

Tab. 7.6 summarized the shifts measured with the different versions of the sensor.

Obviously, the Skinner mark 1 sensor yields the largest shifts, which can be explained

by the larger chip gap, the shorter fiber guide and orientation of the LED-pattern,
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Table 7.6: Maximum distance between peak positions at all wavebands.

Skinner Mark 1 Mark 2 Mark 3
n = 0 32 mm 17 mm 20 mm
n = 1 18 mm 5 mm 5 mm
n = 2 12 mm 3 mm 3 mm
n = 3 7 mm 2 mm 26 mm
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Figure 7.7: Gaussian functions as noise free synthetic sensor data (T4).

which is rotated about 45◦ for the other versions. This reduces the shift by
√

2 with

respect to the X- or Y-axis. The suspiciously large shift for pixel n = 3 measured with

the Skinner mark 3 sensor is a result of an unwanted internal reflection within the

housing of the sensor. These shifts are causing distortions of the ratios in fr(~s) = ~r,

if ~s was fused using an estimated distance d̂ that differs from the true measurement

distance d (see Eq. 6.8 on page 121). This was regarded in the synthesized data by

increasing the mean of each Gaussian at waveband b by 1 % with respect to the mean

of the Gaussian at waveband b−1. All synthesized samples are displayed in Fig. 7.7.

Sets of correction factors Cn were built for each set Tn using the ground truth
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measurement distance d. For T1, T2, T3, the reference was set to~sre f = (500,500,500,500)

with tmin = 10 and τmax = 10.0. Other values were chosen for T4, where the reference

was set to ~sre f = (0.1,0.1,0.1,0.1) with tmin = 0.01 and τmax = 10.0, as the scale of the

synthesized values is very different.

The concept of the following evaluation is to manipulate the ground truth mea-

surement distance d by adding a static offset ρ and use the resulting false distance

information d̂ = d + ρ as input for the data fusion algorithms. As the error of the

input information is constant, a comparison of the corresponding errors within the

output ~s can be made with respect to the presented data fusion methods. Further-

more, the reason to use a static offset ρ instead of the actual results generated with a

particular distance estimation method, such as the QBTM, is to be independent of its

particular characteristics. An analysis using different input errors within the range

of ρ ∈ [−32mm,32mm] ⊂Z yielded that the output error is proportional to the offset

error ρ. In consequence, the evaluation can be simplified by considering only one

representative value for ρ, which was chosen to be ρ = 8mm with respect to typical

errors of the distance estimation presented in Tab. 7.2 on page 131.
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Figure 7.8: Relative deviations with ρ = 8mm for the presented methods on set T1.
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Figure 7.9: Relative deviations with ρ = 8mm for the presented methods on set T2.
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Figure 7.10: Relative deviations with ρ = 8mm for the presented methods on set T3.

Figures 7.8 to 7.11 show the deviations γ =

∣∣∣∣∣~s[0]−~sre f [0]
~sre f [0]

∣∣∣∣∣, γavg =

∣∣∣∣∣~savg[0]−~sre f [0]
~sre f [0]

∣∣∣∣∣ and

γheur =

∣∣∣∣∣~sheur[0]−~sre f [0]
~sre f [0]

∣∣∣∣∣ that occurred for the presented methods. From the T1 results

displayed in Fig. 7.8 it is hard to judge which method performs best. Vector ~s yields

the highest deviation at dmin, but performs comparably good at d > 250mm. The

pragmatic index priority approach of Eq. 7.2 on page 138 used to compute ~sheur
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Figure 7.11: Relative deviations with ρ = 8mm for the presented methods on set T4.

outperformed the averaging approaches for short distances of d < 125mm, as pixel

n = 3 provides strong signals distributed over a short range of about 54 mm with

steep slopes. Therefore, relatively strong errors occur when multiplying the value

from pixel n = 3 with a correction factor that was selected with respect to ρ.

Fig. 7.9 on page 141 displays the results for the Skinner mark 2 sensor, where ~s

yields the smallest deviations. Different from the results shown in Fig. 7.8 on page

140, all vectors yield comparable deviations for d < 125mm.

Unlike the deviations computed from T1 and T2, the results from T3 yield compa-

rably small deviations for d< 125mm, which increase for d> 200mm within~s and~savg

(see Fig. 7.10 on page 141). The deviations of ~sheur to ~sre f are relatively constant over

the whole distance range. Vector ~s yields deviations of 9 % at d = 492mm, which are

almost two percent points higher than the largest deviation found with ~sheur. There-

fore, the weighted averaging approach achieved the worst results on T3 compared to

the other approaches. However, the signals acquired by the Skinner mark 3 sensor

are very different form the signals acquired by the other sources, as the unfocussed

receiver leads to comparably wide curves for all pixels. In Fig. 7.12 it can be seen that
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Figure 7.12: Raw signals within T3 with b = 0.

the noise of the signals is comparably high. In conclusion, the deviations are more

related to noise within the data than to the distance estimation error ρ.
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Figure 7.13: Maximum relative deviation δ computed from ~r with ρ = 8mm for the
presented methods on set T1.

Compared to ~savg and ~sheur, ~s yields the lowest deviations on the last set T4. The

results of the simple mean function ~savg describe a zigzag-shaped curve, as smaller

values at the steeply increasing parts of the signals have the same influence to the result



144 CHAPTER 7. CONCEPT VALIDATION

as the strong values around the peak positions of the signals. Here, the concept of the

weighted averaging function performs well, as values from such steeply increasing

parts are usually associated to smaller weights.
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Figure 7.14: Maximum relative deviation δ computed from ~r with ρ = 8mm for the
presented methods on set T2.

Finally, the methods are evaluated with respect to the vectors of ratios fr(~s) = ~r,

fr(~savg) =~ravg and fr(~sheur) =~rheur. To evaluate the quality of each vector, the maximum

relative deviation from the reference value over all six elements is computed using

Eq. 7.3.

δ =
5

max
j=0

∣∣∣∣∣∣~r[ j]re f −~r[ j]

~r[ j]re f

∣∣∣∣∣∣ (7.3)

All results are presented in figures 7.13 to 7.16. Fig. 7.13 and Fig. 7.14 show that the

results of the weighted averaging function are overall better than those of the other

methods, at least for measurement distances of d < 300mm. The results of the index

priority approach represented by δheur clearly yield the strongest deviations. This is

also true for the analysis on data set T3, whereby δ and δavg are indifferent.

For Fig. 7.16, δheur yields the smallest deviations. Here, the assumption behind
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Figure 7.15: Maximum relative deviation δ computed from ~r with ρ = 8mm for the
presented methods on set T3.
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Figure 7.16: Maximum relative deviation δ computed from ~r with ρ = 8mm for the
presented methods on set T4.

the weighted averaging function that larger values yield a stronger SNR is not true,

as T4 is free of noise. Therefore, the only advantage over the simple mean function

is that values from steep parts of the signals will potentially be associated to smaller

weights. Nevertheless, δavg is smaller at some measurement distances. For instance,

at about d = 190mm, the signals from the pixels n = 2 and n = 3 are equally strong
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and will thus be equally weighted. However, Fig. 7.7 on page 139 shows that this

part of the signals from pixel n = 3 change much more rapidly over the measurement

distance than the signals from pixel n = 2. Eq. 6.4 on page 118 does not account for

such properties of the signals, although they can be derived from a test or training

set T. For future work, the steepness of the signals could be taken into account by an

extension to the presented method which defines a static bias for each weight at each

distance in an offline process in parallel to the generation of C.

In conclusion, the weighted averaging function achieves the best quality with

respect to ~r on test data from real sensor systems. However, the stability of the

amplitudes in ~s is not generally better than that achieved with the simple reference

methods. With the assumption that the quality of ~r is more important to the material

classification, the weighted averaging function is the best choice of the considered

methods.

7.1.4 Material Classification

In this section, the material classification is evaluated on five scenarios: Skin vs. Wood,

Skin vs. Meat, Leather vs. Wood, Nitrile vs. Wood and Glove vs. Meat. Test sets of

measurements for each scenario were acquired from a number of samples within the

full specified distance range from dmin = 100mm to dmax = 1000mm with a step width

of 1 mm using a Skinner mark 2 sensor. This results in 901 measurement distances for

each sample. The test sets comprise skin measurements from 10 individuals as well

as measurements from 13 pieces of wood, 16 different gloves (i.e. latex, leather, nitrile

and vinyl) and 10 pieces of meat (i.e. pork, beef, turkey and chicken). 20 spectral

signatures were acquired at each measurement distance at samples of human skin

and 100 spectral signatures were acquired at each measurement distance for all other

types of samples. As wet and greasy meat samples often have a shiny appearance,
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some meat samples were measured at random angles to achieve a realistic variance

of the corresponding set. All measurements of human skin were taken from the palm

and back of the hand. For three individuals, all measurements were repeated at an

angle of 45◦ to the sensor. The measurement spots on the meat samples were selected

with respect to the dominant tissue type, such as fat, bone or flesh. Different tree types

such as birch, oak, spruce, beech, pine and plastic-coated wood are included within

the wood samples. Two samples (birch and spruce) were measured at moisture levels

of about ∼ 10% to ∼ 100%1. The test set for gloves comprised samples of nitrile,

latex and vinyl gloves. In particular, three disposable nitrile gloves in blue and

yellow, an impregnated nitrile glove in blue, disposable latex gloves in red, green,

blue and yellow as well as two vinyl gloves in green and yellow. The same data basis

was previously used for an evaluation published in an IOP article [4]. All spectral

signatures used for the first part of this evaluation were computed using a basic QBTM

distance estimator and a weighted averaging function for data fusion (see previous

sections). As described in Sec. 6.4, the C4.5 tree learning algorithm as well as SVMs

were used to implement material classifiers.

Table 7.7: Results for material classification using decision trees.

Scenario ACC TPR FPR PREC
Skin vs. Wood 1.0000 1.0000 0.0000 1.0000
Skin vs. Meat 0.9834 1.0000 0.0255 0.9834
Leather vs. Wood 0.9475 0.5689 0.0114 0.9890
Nitrile vs. Wood 0.9242 0.9247 0.0043 0.9956
Glove vs. Meat 1.0000 1.0000 0.0000 1.0000

Tab. 7.7 presents the results of binary decision trees for all scenarios. The results

were determined through a ten-fold cross-validation. As described in Sec. 2.3.3,
1100% wood moisture is reached if the weight of the contained water equals the bone-dry weight

of the sample.
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the accuracy (ACC), true positive rate (TPR), false positive rate (FPR) and precision

(PREC) are used as quantitative measures. The differentiability is perfect for Skin vs.

Wood as well as Glove vs. Meat, which confirms the performance of the sensor concept.
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Figure 7.17: PCA of spectral signatures acquired from all samples of human skin and
meat (compare [4, Fig. 12]).

The results of Skin vs. Meat are relatively good when considering the similarities

of the tissues. A PCA was performed on a set of all available spectral signatures from

human skin and meat samples, which is shown in Fig. 7.17. Besides a good clustering

of meat samples in two or three groups, there is a group of meat samples that is

located right within the skin cluster. Fig. 7.18 shows a selection of reflectance spectra

acquired from pork at regions of fat or bone marrow in comparison to a selection of

reflectance spectra from human skin. This shows that the presented sensor concept is

not optimally suited for the differentiation of human skin from animal tissue, as both

have very similar (optical) characteristics.

The scenarios Leather vs. Wood and Nitrile vs. Wood were chosen with respect to
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Figure 7.18: Similar spectra from human skin and pork samples.

the application of circular bench saws at construction sites, which is discussed in the

next chapter. Unfortunately, both scenarios do not reach a perfect separation, which

makes a practical use in the context of functional safety unlikely. As mentioned in

Sec. 8.3, the reflectance spectra of these gloves are not very distinctive in comparison

to typical workpieces. In conclusion, gloves with spectral markers would be required

to realize such an application.

For comparison, C-SVMs were also used to solve the same scenarios. As

shown in Tab. 7.8, optimized learning parameters were selected for each scenario

by a grid search algorithm, where a 10-fold cross validation is performed for a

total of 110 different combinations of the parameters C =
{
2−5,2−3,2−1, . . . ,215

}
and

γ =
{
2−15,2−13,2−11, . . . ,23

}
(see [77]). For explanation, γ is a LIBSVM specific pa-

rameter within the radial basis function (RBF) kernel K(x, y) = e−γ||x−y||2 and C is a

C-SVM specific parameter to influence the trade-off between margin maximization

and training error minimization [73, 12].
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Table 7.8: Results for material classification using C-SVMs (compare [4, Tab. 4]).

Scenario C γ ACC TPR FPR PREC
Skin vs. Wood 8 0.5 1.0000 1.0000 0.0000 1.0000
Skin vs. Meat 512 8 0.9980 1.0000 0.0047 0.9965
Leather vs. Wood 128 8 0.9648 0.9808 0.0045 0.9956
Nitrile vs. Wood 32 8 0.9995 1.0000 0.0000 1.0000
Glove vs. Meat 0.5 0.5 1.0000 1.0000 0.0000 1.0000

When comparing the results in the tables 7.7 and 7.8, the performance achieved

by the SVMs is generally better than that of the decision trees. However, the use of

SVMs could only achieve perfect separations in the scenarios Skin vs. Wood and Glove

vs. Meat. In consequence, SVMs do not enable further applications.

In a final experiment, the robustness of the classifiers against artificially increased

variance was tested. The variance was added as artificial multiplicative white noise

to each component of every sensor reading Xin. The data sets of the scenario Skin

vs. Wood was used, as this is one of the two sets that achieved a perfect separation.

This test was performed with and without an optional threshold-based classifier, as

described in Sec. 6.4. Furthermore, the analysis was performed using an EGCC and a

QBTM distance estimator, whereby the QBTM estimator was trained on all available

original data over the full distance range from dmin = 100mm to dmax = 1000mm.

Tab. 7.9 shows all results of this experiment. Overall, the SVMs perform better than

the decision trees. Furthermore, the simple threshold filter achieved a false positive

rate of 0.0 and a precision of 1.0 at the expense of a lowered true positive rate for all

configurations. This means that the risk of false positives and therefore false alarms is

drastically reduced. In consequence, the availability of a production machine would

be maximized in trade for a lowered safety level. The results are almost indifferent

with respect to the chosen method of distance estimation.
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Table 7.9: Analysis of the scenario Skin vs. Wood with artificially added white noise.

Noise Dist. Est. Mat. Class. Thresholds ACC TPR FPR PREC
10 % EGCC C4.5 false 0.9973 1.0000 0.0038 0.9906
20 % EGCC C4.5 false 0.9894 1.0000 0.0149 0.9643
30 % EGCC C4.5 false 0.9871 0.9992 0.0178 0.9578
40 % EGCC C4.5 false 0.9871 0.9950 0.0161 0.9613
10 % EGCC C4.5 true 1.0000 1.0000 0.0000 1.0000
20 % EGCC C4.5 true 0.9997 0.9989 0.0000 1.0000
30 % EGCC C4.5 true 0.9944 0.9804 0.0000 1.0000
40 % EGCC C4.5 true 0.9762 0.9171 0.0000 1.0000
10 % EGCC C-SVM false 1.0000 1.0000 0.0000 1.0000
20 % EGCC C-SVM false 1.0000 1.0000 0.0000 1.0000
30 % EGCC C-SVM false 0.9999 1.0000 0.0002 0.9995
40 % EGCC C-SVM false 0.9988 0.9999 0.0016 0.9959
10 % EGCC C-SVM true 1.0000 0.9999 0.0000 1.0000
20 % EGCC C-SVM true 0.9984 0.9945 0.0000 1.0000
30 % EGCC C-SVM true 0.9828 0.9400 0.0000 1.0000
40 % EGCC C-SVM true 0.9546 0.8419 0.0000 1.0000
10 % QBTM C4.5 false 0.9970 1.0000 0.0042 0.9898
20 % QBTM C4.5 false 0.9884 1.0000 0.0163 0.9610
30 % QBTM C4.5 false 0.9877 0.9993 0.0170 0.9595
40 % QBTM C4.5 false 0.9892 0.9954 0.0132 0.9681
10 % QBTM C4.5 true 1.0000 1.0000 0.0000 1.0000
20 % QBTM C4.5 true 0.9997 0.9991 0.0000 1.0000
30 % QBTM C4.5 true 0.9954 0.9839 0.0000 1.0000
40 % QBTM C4.5 true 0.9788 0.9262 0.0000 1.0000
10 % QBTM C-SVM false 1.0000 1.0000 0.0000 1.0000
20 % QBTM C-SVM false 0.9999 0.9999 0.0000 1.0000
30 % QBTM C-SVM false 0.9998 1.0000 0.0003 0.9992
40 % QBTM C-SVM false 0.9993 1.0000 0.0010 0.9974
10 % QBTM C-SVM true 1.0000 1.0000 0.0000 1.0000
20 % QBTM C-SVM true 0.9988 0.9959 0.0000 1.0000
30 % QBTM C-SVM true 0.9853 0.9487 0.0000 1.0000
40 % QBTM C-SVM true 0.9582 0.8543 0.0000 1.0000

At this point, it is required to derive requirements with respect to applicable safety

standards. As discussed in Chap. 5.1.1, the international standard IEC 61508-1 can be

used to derive requirements for the true positive rate. This standard defines the safety

integrity levels (SIL) 1 to 4, which are defining a range for the average probability

of a dangerous failure on demand (PFD) from 10−5 to 10−1. Generally, every single
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classification result can be a demand in terms of the standard, if there is a worst case

scenario where only one measurement can be performed before an accident becomes

inevitable. For instance, if a little finger, moving at maximum foreseeable velocity,

passes the beam so that only one measurement at full intersection of beam and finger

will be performed before the finger leaves the beam towards the danger zone. In this

worst case scenario, a dangerous failure on demand occurs if the measurement at

full beam intersection would be misclassified. In consequence, the TPR must satisfy

the condition TPR > 1−PFD. The safety requirements for a safeguarding system at a

manually fed machine can be expected to be SIL=2 for many cases, which corresponds

to PFD < 0.01 or TPR > 0.99, respectively [47, Tab. 2]. However, Tab. 7.9 yields results

satisfying this condition for all tested magnitudes of multiplicative noise, whenever

no additional thresholds are used. A true positive rate of at least 0.9999 was achieved

using SVMs without thresholds, which complies with the requirements for the highest

safety integrity level (SIL=4).

In conclusion, both evaluated methods to implement material classifiers perform

very robustly with respect to the chosen scenario. The SVMs generally achieve better

results than the decision trees raised using the C4.5 tree learning algorithm. On

the expense of a lowered true positive rate, the risk of false positive classifications

can be reduced to 0.0000, although the data is highly distorted. This is especially

important for the practical acceptance of this new technology, as sensors which often

produce false alarms would not be accepted for most of the targeted applications.

Furthermore, a perfect true positive rate of 1.0000 was achieved at four of five test

scenarios, although the wavebands acquired by the sensor were exclusively chosen

with respect to the first scenario of Skin vs. Wood.
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7.1.5 Computational Performance

The aimed measurement rate of fmin = 500Hz can only be achieved if the data process-

ing is done sufficiently fast on the used microcontroller. A series of measurements

was performed to evaluate the actual computing time of the presented methods on

an AT90CAN128 microcontroller clocked at fCPU = 16MHz and an AT32UC3C0512C

microcontroller clocked at fCPU = 64MHz [78]. The embedded software was written

in C and compiled using the GNU Compiler Collection at the highest optimization

level (O3).

Table 7.10: Maximum measured computational time.
Microcontroller Floating Point EGCC Data Fusion Decision Tree C-SVM Overhead Total1

AT90CAN128 in software 660µs 1030µs 30µs 7060µs 680µs 2400µs
AT32UC3C0512C in software 66µs 68µs 7µs 1080µs 74µs 215µs
AT32UC3C0512C FPU 44µs 11µs 7µs 792µs 20µs 82µs
1 Total = EGCC + Data Fusion + Decision Tree + Overhead (Without C-SVM)

Unfortunately, the measurements only comprise a selection of the presented meth-

ods: An EGCC distance estimator, the weighted averaging function for data fusion, a

binary decision tree for material classification with a maximum depth of 5 as well as a

C-SVM with 26 support vectors. Tab. 7.10 displays the results of these measurements,

which show that the targeted measurement frequency of fmin = 500Hz can only be

achieved with the stronger AT32UC3C0512C microcontroller. When using the binary

decision tree for material classification, the total computation time is only tp = 82µs for

the 32-Bit AT32UC3C0512C with enabled FPU. With this configuration, the measure-

ment frequency can even be increased to more than f = 1000Hz, as ta + tp < 1ms. Even

the C-SVM based material classifier can be evaluated in time with this microcontroller

(ta + tp < 2ms). The 8-Bit AT90CAN128 does not feature an FPU and needs a total of

tp = 2.4ms to compute all steps, if the decision tree is used for material classification.
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7.2 Typical Artifacts

Measurement artifacts due to imperfections of the beamforming have shown to be a

major problem in the context of the presented sensor concept. Especially a misalign-

ment of the individual beams formed at certain wavebands to each other can lead

to serious deviations in specific situations. These situations comprise measurements

at partial overlap of the multispectral beam to an object and at shiny surfaces. An-

other type of artifact occurs if several objects intersect the multispectral beam at once.

The spectral signatures acquired at such situations are influenced by the reflectance

spectra of all intersecting objects and are therefore denoted as mixed signatures.

7.2.1 Measuring on Edges

Partial intersections of the beam and moving objects are expected to occur regularly

during standard operation of an AOMCPD. Therefore, it is discussed in Sec. 5.1.3 that

it is not necessary to correctly classify a safety critical material (such as skin) at such

conditions. However, a false positive classification may occur if a spectral signature

acquired from a work piece at a partial beam overlap coincidentally shows the ex-

pected characteristics of human skin. To avoid such false positives, the artifacts that

occur at such measuring conditions must be investigated. Three relevant factors were

identified: target movement during acquisition, the shape of the target’s projection

on the detector array and inhomogeneity of the multispectral beam.

The acquisition speed is critical if the target passes a great fraction of the beam’s

diameter ∅b during the measurement process. For instance, when the first waveband

would be acquired at an overlap of 10 % to 20 % and the last waveband would be

acquired at 60 % to 70 % overlap. As a result, the share of reflectance acquired at

the last waveband would be disproportionally large compared to that at the first
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waveband. Therefore, a heavy distortion of the spectral signature would occur with

respect to the actual properties of the object’s surface. However, such conditions can

be ignored relatively easily, e.g. by requiring two consecutive positive classifications

before triggering protective measures. Such a filter function over two ore more

measurements would reduce the reaction speed of the system, which will result in

higher temporal requirements.
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Figure 7.19: Signal ratio of neighboring photodiodes. Measured at full and partial
beam coverage using a Skinner mark 1 sensor.

For this evaluation, a target was shifted on the X-axis to a 50 % overlap with the

beam and then measured within a distance range from d = 80mm to d = 1000mm.

This is important, as the receiver is also shifted to the transmitter on the X-axis. A

partial overlap at the X-axis leads to an altered projection of the target’s remission

onto the detector, as the reflecting area is reduced to the overlap. This causes a change

of the obtained energy distribution over neighboring pixels as illustrated in Fig. 7.19.

As discussed in Sec. 7.1.2, such changes may result in large errors of the estimated
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distance, which reduces the performance of the data fusion. However, it is shown

in Tab. 7.2 on page 131 that the QBTM is able to derive rules to compensate for such

conditions, if adequate training data is available.

Furthermore, as a fraction of the emitted radiance misses the surface, the ampli-

tudes found in the spectral signature will be lowered. Having lowered amplitudes

is not problematic as long as the material classes in question are differentiable by the

ratios of multispectral amplitudes (see vector~r in Sec. 6.4) and the spectral signature is

not distorted beyond the contrast between those classes. However, if the emitted beam

is not homogeneously composed over all available wavebands, the resulting ratios

will be distorted for measurements at partial overlaps. The problem is illustrated in

Fig. 5.19 on page 86, were projections of exit beams from different transmitter designs

are presented. These projections show clearly how a partial overlap of a surface and

an inhomogeneously composed beam will result in over- or under-representations of

certain wavebands. This was evaluated in a practical experiment involving a Skinner

mark 1 and mark 2 sensor. Skinner mark 1 sensors have fiber guides with a length of

l1 = 10mm, which is half the length of the fiber guides within Skinner mark 2 sensors.

Shorter fiber guides lead to less attenuation of the emitted radiance at the expense of

a less homogeneous beam composition, as fewer internal reflections will occur in the

fiber [5].

A series of measurements at full and partial overlap with a wooden board have

been acquired using both sensors over the full distance range. The wooden board

was shifted left and right on the X-axis to achieve a 50 % beam coverage. This way,

two complementary overlaps of the beam and the object were achieved, just as in

configuration 16 and 17 in Tab. 7.1 on page 124. Spectral signatures were derived

from the acquired data, whereby the ground truth distance information was used

as input to the data fusion to prevent a dependency to a specific estimator. For
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Figure 7.20: Maximum deviation of ratios within spectral signatures acquired at
partial beam coverage to a wooden board using Skinner mark 1 and mark 2 sensors.

evaluation, the vector ~r was computed from all spectral signatures ~s, to determine

if any waveband was over- or underrepresented. The maximum deviations within

the vectors ~r acquired at partial beam overlap with respect to those acquired at full

overlap are illustrated in Fig. 7.20, where significant differences between the sensors

are shown for shorter measuring distances of d ≤ 250mm. Still, with maximum

deviations of about 30 % for the Skinner mark 2 sensor, the combination of a partial

beam overlap and an inhomogeneous beam composition is responsible for severe

measuring artifacts - even if the target is not moving. In conclusion, optimizing the

beam homogeneity must be a main objective for the optical design.

7.2.2 Measuring Multiple Objects Simultaneously

As considered in Sec. 5.1.3 and Sec. 5.1.4, the possibility of acquiring a mixed spectral

signature from several surfaces at once occurs if there is a partial overlap of the beam
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with an object or several objects. Furthermore, it was discussed that it is not necessary

that a sensor is able to classify one of the two surfaces correctly at such situations.

Instead, the system must be designed in a way that a total coverage of a critical object

(e.g. a finger) and the beam must occur before an accident becomes inevitable. This

requires the beam to be smaller than the shortest edge of the smallest object which

must be detectable. For finger detection, this is∅ f = 11mm for a smaller than average

female little finger, as stated in DIN 33402-2 [51, Tab. 39]. Eq. 5.2 on page 58 shows

that the beam must be even smaller with respect to the maximum velocity of the

objects to detect and the data acquisition speed of the sensor.

Figure 7.21: A forefinger on a wooden board as measurement target.

However, these requirements are not fulfilled by the Skinner sensor for the whole

distance range. Therefore, a practical experiment on finger detection was carried

out using a Skinner mark 2 sensor: As shown in Fig. 7.21, a male forefinger, with a

diameter of ∅ f = 22mm in the middle, was positioned on a wooden board. A linear

positioning stage was used to gather measurements at a distance range from 100 mm

to 1000 mm. This measurement was repeated with a modified sensor having an

external field stop to crop the exit beam’s initial diameter to ∅b = 7mm. A simulation

of this modification yielded that the beam width at dmax = 1000mm would be reduced
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from ∅b = 48mm to ∅b = 38mm. The results of this experiment were also published

in the OSA Journal of Applied Optics [5].

100 200 300 400 500 600 700 800 900 1000
0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

Finger on Wood (with Field Stop) Finger on Wood

Wood (with Field Stop) Wood

Measuring Distance [mm]

R
a

tio
 o

f I
n

te
n

si
tie

s 
a

t 8
3

0
 n

m
 to

 1
3

0
0

 n
m

w
ith

 S
ta

n
d

a
rd

 D
e

vi
a

tio
n

Figure 7.22: Evaluation of the experiment using the ratio of ~s[0]/~s[2] (see [5, Fig. 6]).

Fig. 7.22 illustrates the results of the experiment on the example of the ratio

~s[0]/~s[2], which is usually about ~s[0]/~s[2] = 1.3 for skin and ~s[0]/~s[2] = 2.0 for the used

wooden board. The ratios acquired with the original sensor setup start to drift from a

distance of d≥ 450mm, while the modified setup with the field stop delivers relatively

constant ratios over the whole distance range. However, the standard deviation is

significantly worse for the modified version, as a lot of optical energy is absorbed by

the field stop. This loss of illumination strength results in a reduction of the SNR by

about 10 dB, as illustrated in Fig. 7.23. In fact, ratio ~s[1]/~s[3] yields typical values for

skin of about ~s[1]/~s[3] = 7.0, while it is only about ~s[1]/~s[3] = 1.0 for the used wooden

board. Nevertheless, this ratio could not be used to generate Fig. 7.22, as the SNR of

values acquired at λ̂3 = 1550nm with the modified sensor are as low as 3 dB for the
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finger measurement, which results in a very noisy plot. For comparison, the SNR of

values acquired with the original sensor are not below 14 dB for all measurements and

wavebands. In conclusion, the use of a field stop changes the maximum measurement

distance for which the ratio of ~s[0]/~s[2] is not influenced by the wooden board from

about d = 450mm to the maximum specified measuring distance dmax. However, the

SNR of the acquired signals was reduced to an insufficient level. For future sensor

designs, a field stop could be used if its inner diameter is chosen as a tradeoff with

respect to a required SNR.
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Figure 7.23: Signal-to-noise ratios of ~s[0] and ~s[2] from measurements of the wooden
board. Acquired with and without field stop.

7.2.3 Measuring Shiny Surfaces

A simple experiment was carried out to evaluate the range of spectral signatures that

occur when measuring shiny surfaces: A Skinner mark 2 sensor was continuously
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probing a flat surface of brushed aluminum at a measuring distance of 1 m. Mean-

while, the surface was panned back and forth between−45◦ to 45◦ to the sensor’s beam

with three repetitions. As a result, the amplitudes at all wavebands vary from zero

to maximum level. There are even a few outliers showing values close to maximum

level for three wavebands and a very little response for one arbitrary channel. In con-

sequence, all ratios in ~r are varying between extreme values of 0.001 <~s[x]/~s[y] < 200.

Nevertheless, the spectral signatures of 8 % of all samples are yielding skin typical

amplitudes within three of four bands, but not a single sample is within the typical

amplitude range within all four wavebands. Considering the ratios mentioned above,

no sample has skin typical values at more than three of the six computed values within

~r. In consequence, the danger of a false positive classification is negligible.

To validate that those sensor readings are not a result of oscillations within the

analog circuits of the receiver, a Harvey-Shack scatterer was used in the optical en-

gineering software FRED to simulate a shiny surface. Measurements with a virtual

model of the Skinner mark 2 sensor have been made with a setup as depicted in Fig. 7.1

on page 125 and at a measurement distance of d = 800mm. The orientation of the tar-

geted tile was altered using α ∈ {−1.0◦,−0.5◦,0.0◦,0.5◦,1.0◦} and β ∈ {−10◦,−9◦, . . . ,10◦}.

The results of this simulation are very comparable to the data recorded with the real

sensor by showing extreme variations within all values. Even a comparable, unequal

development for different wavebands at small changes of the target’s orientation (e.g.,

by 0.5◦) could be observed within the data from both experiments. Therefore, it can

be assumed that the deviations are primarily a deterministic function of α and βwith

respect to (minor) inhomogeneities of the multispectral beam composition.



162 CHAPTER 7. CONCEPT VALIDATION

7.3 Environmental Influences

In this section, the influence of common ambient parameters is discussed on the basis

of experimental data. This is the practical counterpart to the theoretical discussions

presented in the previous chapters.

7.3.1 Ambient Light

An experiment was carried out with a Skinner mark 2 sensor, which was equipped

with an AT90CAN128 microcontroller. The sensor was aimed at a target of diffusely

scattering CPflesh R©1 silicon rubber, which was positioned at a distance of 1 m. With

these fixed measuring conditions, the ambient lighting was altered using a 50 W

halogen lamp with a reflector and a color temperature of about 3000 K. The lamp was

supplied by an alternating current at a nominal frequency of 50 Hz. Note that this

lamp satisfies the requirements for a white quartz lamp as cited in Sec. 5.1.8, in terms

of color temperature, frequency and the use of a parabolic reflector.

Figure 7.24: Positions of ambient light source.

1See http://www.cpflesh.de/ (online 2012-12-22)
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The lamp was placed at four different positions as depicted in Fig. 7.24. A thousand

measurements were taken for each position of the halogen lamp. Furthermore, a

thousand measurements were taken with the lamp turned off as reference.
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Figure 7.25: Averaged spectral signatures with standard deviation acquired at differ-
ent positions of an AC powered 50 W lamp.

The results of this experiment are illustrated in Fig. 7.25, where the average of the

acquired spectral signatures is shown along with the standard deviation. It is clear

to see that the standard deviation is increasing with decreasing distance of the lamp

to the target. Tab. 7.11 lists the relative standard deviation for each ambient lighting

condition, averaged over all wavebands.

Table 7.11: Development of the relative standard deviation in relation to the position
of an AC powered 50 W lamp, averaged over ~s[0] to ~s[3].

Off d = 1.000m d = 0.500m d = 0.250m d = 0.125m
RSD 2.50% 6.43% 12.78% 22.64% 34.14%

Although the distortion of the spectral signatures is extreme for d = 0.125m, all
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acquired spectral signatures are correctly classified as not skin by a decision tree based

classifier for skin detection. An additional experiment, in which the silicon rubber

target was replaced by a hand, has shown that the same classifier could reliably

detect human skin for all conditions except for d = 0.125m, where the influence of the

ambient light is too dominant. Therefore, having the lamp at a distance of d = 0.25m

to the target is defining the limit for the sensor’s operation.
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Figure 7.26: Averaged spectral signatures with standard deviation acquired at differ-
ent positions of a DC powered 50 W lamp.

Table 7.12: Development of the relative standard deviation in relation to the position
of a DC powered 50 W lamp, averaged over ~s[0] to ~s[3].

Off d = 1.000m d = 0.500m d = 0.250m d = 0.125m
RSD 1.98% 3.87% 4.53% 5.61% 9.72%

The experiment was repeated with a DC power supply connected to the lamp,

which was adjusted to a voltage of 12 V. This matches the effective voltage of the

AC power supply used for the previous experiment, resulting in the same wattage
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and color temperature as before. Fig. 7.26 and Tab. 7.12 are showing the results

of this experiment, which yields much lower distortions to the acquired spectral

signatures. Compared to the previous experiment, the relative standard deviation

for d = 0.125m is lower than that for d = 0.500m when using an AC power supply.

Therefore, a constant ambient light has a much smaller influence on the acquired

spectral signatures than an oscillating ambient light (compare Sec. 6.1).

In conclusion, these rather simple experiments have confirmed the effectiveness of

the implemented analog and digital filters, which are discussed in Sec. 6.1. However,

it is unclear if the presented Skinner sensors fulfills all requirements for conventional

AOPDs as defined in IEC 61496-2 [49, Sec. 5.4.6.2]. Nevertheless, there is still a lot of

potential to optimize the presented readout circuitry, e.g. by implementing filters of

higher order.

7.3.2 Atmospheric Humidity

Fig. 7.27 illustrates the atmospheric attenuation in relation to the absolute air hu-

midity per waveband. The measurements were carried out in a climate chamber

within 20 ◦C to 50 ◦C, which allows a wide range of absolute humidity. Within the

climate chamber, a target of diffuse white plastic was measured at a fixed distance

of 0.25 m. An adjustment of the values was necessary, as the ambient temperature

affects the sensor’s performance (see Sec. 7.3.3). Furthermore, an averaging over ten

measurements was done to reduce variance.

The results show an attenuation of up to about 11 % with respect to the reference

measurement at an absolute air humidity of 1.91 g/m3. From the reference mea-

surement to the measurement with the second highest humidity of 62.44 g/m3, the

wavebands λ̂0 = 830nm and λ̂1 = 1060nm are attenuated less than the wavebands

λ̂2 = 1300nm and λ̂3 = 1550nm with a difference of up to 0.89 percentage points.



166 CHAPTER 7. CONCEPT VALIDATION

0 10 20 30 40 50 60 70 80
0.85

0.90

0.95

1.00

1.05

830nm
1060nm
1300nm
1550nm

Absolute Humidity in g ofH2O perm³ ofAir

N
or
m
al
iz
e
d
M
ea
su
re
d
R
e
fle
ct
an
ce

Figure 7.27: Atmospheric attenuation measured using a Skinner mark 2 sensor.

A comparably large attenuation at λ̂2 = 1300nm can be explained by the neighbor-

ing absorption band, which is centered around 1365 nm as discussed in Sec. 5.1.5.

The used LED1 for this waveband, has a nominal FWHM of 85 nm. Therefore, 50 %

of the LED’s peak intensity is radiated at 1300nm + 42.5nm = 1342.5nm, which is

already within an H2O absorption band. However, the absorption bands shown

in Fig. 5.1 on page 60 have only little overlap with the emission spectrum of the

waveband λ̂3 = 1550nm, which has a nominal FWHM of 130 nm2. Furthermore, the

measurement at the highest humidity of 79.1 g/m3 yields a surprising development,

as the attenuations for λ̂1 = 1060nm and λ̂2 = 1300nm increase disproportional to

each other. This measurement was performed twice at 50 ◦C at a relative humidity of

95 %. A possible reason might be that the peak-wavelengths of the LEDs are shifted

towards longer wavelengths due to the increased ambient temperature, as discussed

11300 nm LED chip type Epigap EOLC-1300-17-1
21300 nm LED chip type Epigap EOLC-1550-17-1
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in Sec. 5.2.2. According to the datasheet of a 1550 nm LED type L1550-03 from Epi-

tex1, the peak-wavelength increases by 21 nm for a temperature change of 30 ◦C. This

could result in a larger overlap of the shifted emission spectra of these LEDs to the

absorption bands, which are centered at about 1130 nm and 1365 nm. Therefore,

the atmospheric attenuation will naturally increase with the overlap of the emission

spectra and the absorption bands. The adjustment of the data compensates for the

lowered sensitivity of the photodetectors as well as the lowered emission intensity of

the LEDs, which is related to the increased ambient temperature. However, the shift

of the peak-wavelengths could not be taken into account, as the emission spectra were

not measured during the experiment. Another factor can be unequal self-heating of

the LEDs, as discussed in the following subsection.

The relative attenuation, measured at an absolute humidity of 79.1 g/m3, is within

a magnitude of 9.4 % to 11.2 % for all available wavebands. As the absolute reflectance

intensities also depend on further parameters (e.g. the angle of measurement), they

are not as reliable as the ratios between available wavebands anyways. However,

these ratios remain stable, if the attenuation is uniform. In conclusion, the experiment

confirmed that the Skinner sensors are sufficiently robust against varying atmospheric

humidity. Furthermore, it can be expected that the attenuation on all wavebands can

be harmonized by controlling the temperature of the LED chips as suggested in

Sec. 5.2.2, as this would stabilize the emission spectrum and optical output power for

each LED.

7.3.3 Ambient Temperature

The influence of the ambient temperature was also tested in a climate chamber. Again,

a target of diffuse white plastic was measured at a fixed distance of 0.25 m and with

1Source: www.epitex.com/products/led_plastic_mold/pdfs/L1550-03.pdf (online 2012-12-22)

www.epitex.com/products/led_plastic_mold/pdfs/L1550-03.pdf


168 CHAPTER 7. CONCEPT VALIDATION

ambient temperatures ranging from 0 ◦C to 50 ◦C. All measurements presented here

were performed at minimal relative humidity, which was about 10 % to 15 % for the

used climate chamber.
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Figure 7.28: Spectral signatures acquired from 0 ◦C to 50 ◦C using a Skinner mark 2
sensor.

Fig. 7.28 illustrates the spectral signatures, averaged from ten measurements per

temperature. As expected, the amplitudes decrease with increasing temperature,

because the temperature affects the efficiency of the LEDs and photodiodes (see

Sec. 5.2.2). However, the amplitudes at λ̂0 = 830nm and λ̂1 = 1060nm decrease

significantly less than the amplitudes at λ̂2 = 1300nm and λ̂3 = 1550nm.

Table 7.13: Pulse current settings for the used Skinner sensor.

830 nm 1060 nm 1300 nm 1550 nm
167 mA 144 mA 167 mA 202 mA

As listed in Tab. 7.13, the 1060 nm LED is operated at the lowest current and the

1550 nm LED is driven at the highest current. The currents of the LEDs emitting at
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1060 nm, 1300 nm and 1550 nm were set with respect to their forward voltages to

achieve equal levels of power dissipation. To compensate the lower sensitivity of the

detector at 830 nm, the current for the corresponding LED was set to result in a higher

power dissipation.

A possible explanation for the unequal signal regression over the temperature is

that the forward voltages and thus the power dissipation of the LEDs is changing

differently with the ambient temperature. Furthermore, the LED emitting at 830 nm

has the highest power dissipation and therefore the strongest self heating, which

could result in a reduced dependence on the ambient temperature. Nevertheless, the

temperature of the transmitter should be supervised by the embedded system to allow

an algorithmic compensation to minimize the distortion of the spectral signatures.
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Figure 7.29: Relative standard deviation of spectral signatures acquired over a tem-
perature range from 0 ◦C to 50 ◦C.

Fig. 7.29 shows the RSD measured at different ambient temperatures. The min-

imum is at 10 ◦C with an average RSD of 0.11 %, which increases to 0.24 % at 50 ◦C.
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However, the maximum RSD of 1.72 % on average was measured at 0 ◦C. Usually,

the electrical characteristics of analog components are better at low temperatures, but

the component1 which is used to control the pulse current of the LEDs has an ex-

ponentially increasing drop-out voltage with decreasing temperature. Furthermore,

it is the only component which is not specified to operate at temperatures below

0 ◦C. Therefore, the measurement was performed at the component’s specified limit.

As a consequence, this component should be replaced by one which is rated for an

extended temperature range for future designs (such as Infineon BCR321U).

7.4 Cross Relations of Interference Factors

The last sections provided an evaluation of the presented methods as well as the

significance of typical artifacts and environmental influences to Skinner sensors. In

practice, different artifacts or external interference factors might occur at once. For

instance, measurements at partial beam overlap will occur if a new object is moved

into the beam while being illuminated by a strong incandescent lamp, which is os-

cillating at 100 Hz. In this situation, a systematic deviation of the spectral signature

would be combined with an increased variance (Sec. 7.3.1+7.2.1). In consequence, the

additional variance may cause false classifications that would not occur with one of

the two distorting factors alone, if the acquired spectral signatures would be distorted

towards the characteristics of another material class. Naturally, this scenario can be

extended by more factors, such as a high ambient temperature.

In summary, it is not possible to investigate all combinations of several interference

factors and their extents, but it is possible to categorize the mode of interference of

the discussed factors. Such a categorization is attempted in Tab. 7.14.

1Adjustable regulator type LM1117-ADJ
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Table 7.14: Overview of interference factors and their impact.

Factor Distortion Type Effect on d̂ Effect on ~s Effect on ~r
Partial Beam Overlap systematic medium1 high high2

Multiple Objects systematic medium3 high high
Shiny Objects systematic4 low extreme extreme
Ambient Light increases variance5 low medium medium
Air Humidity attenuating very low medium low
Amb. Temperature attenuating/variance6 very low medium low

1 Depending on estimator
2 Depending on beam homogeneity
3 Leads to ambiguous data
4 Random values may occur if object is moving and/or beam is not homogeneous
5 Saturation of receiver possible (depending on distances, radiation power and frequency)
6 Depending on (opto-)electronics (if not temperature compensated)

This table can only be seen as a point of orientation, as the actual significance

and mode of the distortion is depending on various factors. For instance, ambient

light can be constant or oscillating at different frequencies and within a wide range

of tolerable intensities. Besides these obvious limitations, the table shows that optical

measurement artifacts are the most problematic group of interference factors. Fur-

thermore, the extent of those artifacts is depending on the optical design, especially

the beamforming. The evaluation presented in this chapter shows which measures

are appropriate to reduce some of these artifacts. However, there is still room for

improvement with respect to several applications. This is discussed in the following

chapters, which are concluding this thesis.
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Chapter 8

Examples of Applications

Within Chap. 5, different assumptions were made to characterize typical requirements

for an AOMCPD. In this chapter, three examples of possible applications for such

sensors are presented. Each example bares unique requirements to an AOMCPD, as

shown in the following sections.

8.1 Woodwork Shops

At woodwork shops, large sliding table saws are widely used. According to technical

information on the F45 ELMO IV sliding table saw by Altendorf, saw blades with

diameters ∅blade of 250 mm to 550 mm can be used. The saw blade can be adjusted

in height and tilted to an angle of up to 45◦. Both settings and the blade’s diameter

∅blade effect the position of the blade’s cutting edge on the worktop and thus the

definition of the danger zone. Furthermore, a second saw blade can be installed in

front of the primary saw blade, which is denoted as the scoring blade. This blade is

significantly smaller with diameters of about ∅scoring ≈ 80mm and it protrudes only

a couple of millimeters over the worktop. Having such a variable danger zone, the
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AOMCPD(s) cannot be installed at a fixed position(s), if a constant distance to the

actual danger zone is desired. Simultaneously, the top safety hood of the saw should

always be adjusted to the thickness of the workpiece to prevent that the user’s hands

can get underneath [79, p.129]. The top safety hood is designed to encompass the

largest specified saw blades at the highest possible position together with the optional

scoring blade (see Fig.8.1). So, if the top safety hood would always be adjusted to the

height of the workpiece, the user could hardly ever reach the saw blade and the risk

of injury would be minimized. According to information provided by the Institute

for Occupational Safety and Health of the German Social Accident Insurance (IFA),

this safety rule is often flouted, which is most likely a reason for the high amount of

accidents at such machines (see Chap. 1).

In consequence, an effective attempt is to ensure a minimal height of the safety

hood in every situation by an automatic adjustment. Fig. 8.1 depicts the concept,

where only one spot directly in front of the safety hood is observed by an AOMCPD.

The AOMCPD measures the height of approaching workpieces and controls a motor-

ized height adjustment, which lifts the safety hood a couple of millimeters above the

workpiece’s surface. Furthermore, the AOMCPD recognizes skin and will not adjust

the height of the safety hood for an approaching hand, so that the saw blade(s) can

hardly be reached.

Technically, such an automatic height adjustment is relatively simple to implement,

as only the narrow front side of the safety hood must be observed and extremely fast

brakes for the saw blades are not required. Braking the saw blades within some tens of

milliseconds is especially problematic for sliding table saws, because large and heavy

saw blades are used which rotate at up to 5000 rpm. This concept was successfully

investigated in the first part of the SMART.HOOVER1 project.

1Funded by the Berufsgenossenschaft Holz und Metall (BGHM).
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Figure 8.1: Concept image depicting an observed spot. (Source: SMART.HOOVER
project)

For a simplified cost estimation, the costs for the required optoelectronic com-

ponents can be used, as they are among the most expensive parts of the sensor.

According to a reseller of optoelectronic components1, the costs for a set of four LEDs

at the desired wavebands are about EUR 22 by the time of this work. At the same

reseller, an InGaAs photodiode costs about EUR 15. In consequence, the total costs

for the required optoelectronic components for a single sensor with four photodiodes

are about EUR 22 + 4 ∗EUR 15 ≈ EUR 80. Naturally, the costs for the components

would scale down for a mass production. For this estimation, it is assumed that this

saving will compensate the additional direct costs and common expenses. As only

1Roithner Lasertechnik GmbH, Austria.
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the front side of the safety hood must be observed, a small amount of one to three

sensors can expected to be sufficient. For three sensors, the costs would be about

EUR 80 ∗3 = EUR 240. According to Altendorf, a sliding table saw type F45 ELMO IV

costs between EUR 31800 to EUR 50000, depending on the options. In consequence,

the sensor system would cost less than 1 % of the machine’s total costs with respect

to the basic version of the saw.

Furthermore, the functional requirements related to this application example are

good-natured: The sensors would operate at relatively close distances, as the top

safety hood cannot be moved much higher than the maximum cut depth of the saw,

which is at most 200 mm for an F45 ELMO IV. Usually, only dry wood is processed

at woodwork shops, which is easier to differentiate from skin than wet wood. As

such machines are installed indoors, lighting and temperature are usually controlled

as well. Furthermore, it is disregarded to work with gloves at such machines. In

consequence, the AOMCPD must differentiate skin from different types of wood,

including plastic laminated finishes. Saw dust is removed by suctions underneath

the worktop and within the top safety hood. Therefore, pollution of the sensors can

be prevented.

8.2 Meat Processing

In this section, the example of a bone band saw is chosen to discuss the applicability

of an AOMCPD. Bone band saws are operated indoors at low temperatures. They

are frequently cleaned using hot water from high-pressure cleaners. In consequence,

a sensor being a part of such a machine must withstand water at high pressures

and changing ambient temperatures. Fortunately, the environment is very clean and



8.2. MEAT PROCESSING 177

the user’s gloves or skin will be covered at most by a thin layer of grease from the

processed meat.

Sensor

Figure 8.2: Practical test of a Skinner mark 2 sensor at a bone band saw.

As shown in Fig. 8.2, a practical test was carried out using such a machine as part

of the LBIS project. A single Skinner mark 2 sensor was mounted at the machine with

the detecting beam in parallel to the band saw at a distance of about 180 mm. Two

tests were performed with this setup. First, the sensor was measuring at maximum

frequency with two visible LEDs attached, to signalize if human skin or gloves were

detected. Afterward, a total of 95432 measurements were recorded at a frequency of

60 Hz in a second run. As a result of the tests, the user’s gloves could be perfectly

differentiated from the processed meat and bones, while meat was often misclassified

as human skin. In consequence, the recorded data were analyzed to see if the classifier
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for human skin could be improved to avoid false positive classifications. Using the

original classifier, about 15000 recorded measurements were misclassified as human

skin. A new SVM was trained on a combination of the laboratory measurements

and recorded data. Using the resulting classifier, only 44 false positive classifications

occur on the recorded data. However, having 44 false positives in less than 27 minutes

is clearly too much, as it would lead to an unacceptable rate of false alarms. As only

a differentiation of gloves and meat could be done reliably, the users need to wear

gloves in order to be protected by such a sensor system.

Furthermore, it was shown that the distance of the sensor to the band saw was

too large. The test user’s opinion was that it should be as close as 40 mm to the band

saw. Assuming that a distance of 40 mm would be sufficient to stop the band saw in

time, such a machine could be monitored using a small amount of about one to four

sensors.

In the previous section, the costs for one sensor were predicted to be EUR 80.

Therefore, with one to four sensors the costs for the whole system would be in the

range from EUR 80 to EUR 320, which is about 2.5 % to 10 % of the price for a high-

end bone band saw such as the SO2400 INOX from Sirman SpA. This bone band saw

was offered for EUR 3100 by the gi management GmbH (a reseller for gastronomic

equipment) in December 2012.

8.3 Construction Sites

For construction sites, circular table saws are selected as an example for a dangerous

manually fed machine. Such machines are used outdoors at construction sites. In

consequence, they are unprotected from rain, direct sunlight and a wide temperature
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range. Therefore, the AOMCPD must be designed to withstand water, strong ambient

illumination and must be able to operate from −20 ◦C to 50 ◦C.

Figure 8.3: Soiled supporting timber and glove from a construction site.
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Figure 8.4: Reflectance spectra of new and soiled nitrile gloves.
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These saws are used to cut supporting timber, plastic pipes and other materials.

The users may wear nitril gloves to protect their hands from splinters. As shown

in Fig. 8.3, gloves and workpieces can be soiled, wet and worn out. Fig. 8.4 shows

reflectance spectra from a new and a used and soiled nitrile glove. The back of the

gloves is not covered with nitrile, so the uncoated cloth is visible. The fingers are fully

covered by nitrile. All presented spectra were measured at a construction site as part

of the preliminary study presented in Chap. 4. Comparing the spectra of the gloves,

it can be seen that the overall reflectance differs strongly between the new and the

used glove.
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Figure 8.5: Reflectance spectra of new and soiled nitrile gloves, normalized to the
reflectance at 1070 nm.

However, the shape of the spectra is quite stable within the range from 800 nm to

1350 nm, as illustrated in the normalized plot in Fig. 8.5. As the Skinner sensors posses

three wavebands within this range, these gloves can be detected relatively good.

However, the shape of the spectra is not very distinctive, as it basically provides



8.3. CONSTRUCTION SITES 181

a steady reflectance level. As shown in Fig. 8.6, other artificial materials such as

polyvinyl chloride (PVC) or hard polystyrene foams yield similar reflectance spectra.

Unfortunately, these materials are often used for tube spacers and thermal insulation,

which can be cut using circular table saws. In consequence, distinctive spectral

markers (such as fluorescent dyes) should be added to the gloves to increase their

differentiability from typical workpieces.
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Figure 8.6: Reflectance spectra of common workpieces at construction sites.

Unlike sliding table saws, modern circular table saws for construction sites feature

self-adjusting safety hoods (e.g., see AVOLA ZBV-10). Therefore, the sides of the

saw blade are usually shielded and only the area in front of the saw blade must be

protected by additional sensors. Assuming that one sensor is enough to protect this

area, the costs estimated in the last sections would be EUR 80, which is about 3 % of

a high-end circular table saw for construction sites as the AVOLA ZBV 500. Such a

saw was offered for about EUR 2580 without further equipment options by Escher

Schalungszubehör GmbH in December 2012.
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In summary, the presented sensor concept is applicable to many different applica-

tions, but each application’s specific requirements and characteristics must taken into

account.
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Chapter 9

Summary and Outlook

9.1 Summary

In this thesis, the concept for a multispectral sensor for safety applications is presented

in detail, which introduces the class of active optoelectronic material classifying pro-

tective devices (AOMCPD). This concept makes use of the distinctive characteristics

of human skin within the near-infrared spectrum as a basis for the differentiation of

skin against a wide range of other materials [9]. To classify the surface material of an

object in question, its spectral key properties are acquired contact-free by a sequen-

tial reflectance measurement at several wavebands. To achieve this, LEDs are used

to generate strobe pulses at distinct wavebands. If these strobe pulses illuminate a

surface, the incident energy will partially be absorbed and reflected in a characteris-

tic ratio. This ratio varies from waveband to waveband, creating a spectral signature

for each material. A selection of appropriate wavebands, which represents spectral

key properties with respect to the application field of skin detection at manually fed

machines, has been determined through an analysis of reflectance spectra gathered

from several hundred people and workpieces.
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Besides a well-suited selection of wavebands, a good optical design is crucial

to acquire precise measurements from a sharply defined spot. This work presents

a design concept, which comprises beamforming optics to generate a narrow and

homogeneous multispectral beam and a receiver unit to measure the reflected radia-

tion. Furthermore, a concept to implement the electronics and self testing measures

is described. As a result, system specifications for a prototypical implementation are

derived. This prototype is denoted as the Skinner sensor system. Introducing a set

of profound methods for signal processing, the prototype’s raw sensor readings are

converted into the desired spectral signature, which is then used for material clas-

sification. The material classification either results in the detection of an uncritical

material representing an arbitrary workpiece or a critical material, such as human

skin. If a critical material is detected, the sensor would trigger protective means

in order to prevent a potential accident. Additionally, the sensor’s distance to the

targeted surface is determined.

Both, the Skinner sensor system and the presented methods are evaluated with

respect to their susceptibility to measurement artifacts and external influences. Syn-

thesized data from optical simulations of idealized sensor models are used to evaluate

the distance estimation methods individually. This way, the comparison of the meth-

ods depends less on the specific characteristics of the built hardware [4]. Furthermore,

a multispectral extension was proposed and evaluated for all respected methods,

which yields an improved accuracy on noisy and distorted data. The data fusion

method is validated using idealized input values and intentionally added errors to

allow for a validation apart of the distance estimator’s accuracy. As the last step of

signal processing, the classification reliability was evaluated for several application

scenarios. The results show that the Skinner sensor system is capable of perfectly

discriminating human skin from typical workpieces, such as wood and plastics.
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Furthermore, the performance of two state-of-the-art methods for the implemen-

tation of material classifiers is evaluated in several experiments. The evaluation of

the presented methods is concluded by a measurement of the computational time us-

ing an AT32UC3C microcontroller by Atmel, yielding that the entire data acquisition

and processing can be done in about t = 0.9ms. Furthermore, the results of several

experiments on external influences such as ambient light, temperature, air humidity

and artifacts arising when measuring at partial overlap of the beam with a surface

are presented. The results are yielding that unfavorable geometrical measurement

conditions, such as a partial overlap of the beam with a surface, are causing the most

severe distortions.

Active optoelectronic material classifying protective devices (AOMCPDs) define

a new type of safety equipment, which is not yet covered by international safety

standards. Therefore, current safety standards are used as a basis to derive common

safety requirements for the presented sensor concept. Especially the IEC 61496-2 is

important among these standard, which defines requirements and tests for common

optoelectronic protective devices (AOPD), i.e. light curtains and light barriers [49].

Some of these requirements can directly be applied to AOMCPDs, while requirements

on optical properties are generally harder to adopt. Therefore, the current limits are

discussed and new safety requirements and test procedures are proposed as a primary

contribution.
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9.2 Outlook

The validation of the system has shown that the beamforming could be optimized

furthermore to reduce artifacts when measuring at partial overlap of the beam to a

surface and to allow the detection of single fingers at larger measurement distances.

Therefore, alternative beamforming design methods should be investigated. Further-

more, an algorithm could be developed to detect a partial overlap of an object with

the beam, which could be done by analyzing the light intensity distribution over the

photodetectors. A snapshot of the light intensity distribution is captured with each

strobe pulse for each waveband. An algorithmic comparison of these light intensity

distributions per waveband could allow to detect shiny surfaces or a quick movement

of an object’s edge within the beam.

The evaluation has shown that the data fusion method could be improved by

taking the shape of the individual signals into account. The electronics for the sup-

pression of ambient light might be optimized as well. Additionally, a temperature

control or at least an algorithmic temperature compensation should be implemented.

Another important task is the actual industrialization of the sensor concept. This

requires optimized designs in terms of costs and performance with respect to the

targeted applications. Furthermore, the existing international safety standards on

AOPDs are not covering all relevant aspects for this new type of sensors. In conclu-

sion, requirements and test procedures for AOMCPDs should be included into future

versions of the corresponding standards to ensure legal certainty for manufacturers

and operators of AOMCPDs. This work is meant to be a starting point for such

normative processes as well as product developments.
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76, 77

pl performance level 54, 76, 77
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Glossary

beam width The beam width denotes the diameter of a

beam defined as its full width at half-peak in-

tensity (3dB below maximum intensity). 58,

59, 71, 72, 87, 88, 94, 127, 158

BSRDF The Bi-directional Spectral Reflectance Dis-

tribution Function is an extension of the

BRDF to regard for spectral information. 46

CAN The Controller Area Network is an industrial

standard bus system, which was originally

developed for the automotive industry. It

is specified as an international standard in

ISO 11898. 96, 103

FFT An efficient algorithm to compute the dis-

crete Fourier transformation (DFT). It is used

to convert discretely recorded time or spatial

data into the frequency domain or the other

way around. 128, 129
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FRED is a commercial software for optical engi-

neering and simulation by raytracing. FRED

is developed by Photon Engineering, LLC.

See http://www.photonengr.com/software/ .

85, 124, 125, 161

FWHM The full-width at have-maximum denotes the

width of an emission spectrum, measured

from peak intensity to the wavelengths hav-

ing the half of the peak intensity. 28, 45, 166

GCC The GNU Compiler Collection (GCC) is an

open source project which comprises compil-

ers for various programming languages and

platforms. It was founded by Richard Stall-

man and is available at http://gcc.gnu.

org/. 153

irSys 1.7 A near-infrared spectrometer manufactured

by TQ-Systems GmbH. The device acquires

120 bands in a spectral range of 660 to

1 730 nm, which equals a spectral resulution

of 9 nm. xvi, 37, 38, 44–46, 49, 51, 61

http://gcc.gnu.org/
http://gcc.gnu.org/
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LBIS A research project to investigate an adaptive,

contactless near-infrared-sensor-systems for

protective devices at saws. The projects

name "LBIS" is an abbreviation of the Ger-

man title. Project sponsor is the German

statutory accident insurance DGUV. Project

reference is FFFP0289. 37, 177

Microcontroller A microcontroller is an integrated circuit

comprising all basic components of a com-

puter. Namely, a processing unit, pro-

grammable input/output peripherals as well

as memory. Usually, microcontrollers can

execute software without the use of external

components. 15, 90, 98–103, 108, 109, 111,

153, 162, 185

NIRS The near-infrared spectrum denotes electro-

magnetic radiation with a wavelength of

about 800 nm to 2 500 nm. This wavelength

range is directly adjacent to the visual spec-

trum (VIS). 7, 25, 40, 46, 59
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PCA The principle component analysis (PCA) is

commonly used as a tool to explore high-

dimensional data (see [80, 81]). It creates

q linear combinations over all p original

dimensions of a data set, whereby q ≤ p.

These linear combinations capture the essen-

tial patterns of the original data in q dimen-

sions. xix, 43, 148

Skinner The sensor is named after the fictional char-

acter Seymour Skinner from the TV show

"The Simpsons" (1989-today), whose name

can be understood as a word play for "see

more skin(ner)". xviii–xxii, 36, 43, 44, 48,

50, 52, 54, 66, 97–99, 104, 124, 127, 129–131,

134, 135, 138, 139, 142, 146, 155–158, 160–162,

165–168, 170, 177, 180, 184

Spectral signature A vector of multispectral remission intensity

values, which can be used for classification

of an object’s surface material. 8
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spectrocam A hand-held spectrometer, originally manu-

factured by Avantes BV. The device acquires

75 bands in a spectral range of 380 to 750 nm,

which equals a spectral resulution of 5 nm.

The device possess a pulsed Xenon gas dis-

charge tube as an illumination source for re-

flectance spectroscopy. 37

SVM A support vector machine is a classifier tech-

nique which classifies sets of objects in a way

that the margin between the classes is maxi-

mized. A detailed description can be found

in chapter 2.3.1. xxii, 9, 10, 13, 14, 42, 120–

122, 147, 149–153, 178

VIS The visual spectrum denotes electromag-

netic radiation that can be detected by the

human eye, which is roughly within a wave-

length range from 380 nm to 780 nm. 37,

203
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