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Zusammenfassung

Die vorliegende Arbeit beschreibt ein System das blinden Menschen einen direkt er-

fahrbaren Zugang zu Bildern mit Hilfe akustischer Signale anbietet. Der Benutzer ex-

ploriert ein Bild interaktiv auf einem berührungsempfindlichen Bildschirm und erhält eine

akustische Rückmeldung über den Bildinhalt an der jeweiligen Fingerposition. Die Gestal-

tung eines solchen Systems beinhaltet zwei größere Herausforderungen: Welche ist die rel-

evante Bildinformation, und wie kann möglichst viel Information in einem Audiosignal un-

tergebracht werden. Wir behandeln diese Probleme basierend auf einem modularen Com-

puter Vision Sonifikations Modell, welches wir als grundlegendes Gerüst für die Aufnahme,

Exploration und Sonifikation von visueller Information zur Unterstützung blinder Men-

schen vorstellen. Es werden einige Ansätze vorgestellt, welche hierzu die Information auf

verschiedenen Abstraktionsebenen kombinieren. So z.B. sehr grundlegende Information

wie Farbe, Kanten und Rauigkeit und komplexere Information welche durch die Verwen-

dung von Machine Learning Algorithmen gewonnen werden kann. Diese Machine Learning

Algorithmen behandeln sowohl das Erkennen von Objekten als auch die Klassifikation von

Bildregionen in “künstlich” und “natürlich”, basierend auf einem neu entwickelten Typs

eines probabilistischen graphischen Modells. Wir zeigen, dass dieser Mehr-Ebenen Ansatz

dem Benutzer direkten Zugang zum Wesen und Position von Objekten und Strukturen im

Bild ermöglicht und gleichzeitig das Potential neuester Entwicklungen im Bereich Com-

puter Vision und Machine Learning ausnutzt. Während der Exploration kann der Benutzer

erkannte “künstliche” Strukturen oder bestimmte natürliche Regionen als Referenzpunkte

verwenden um andere natürliche Regionen mit Hilfe deren individueller Position, Farbe

und Texturen zu klassifizieren. Wir werden zeigen, dass geburtsblinde Teilnehmer diese

Strategie erfolgreich einsetzen um ganze Szenen zu interpretieren und zu verstehen.
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Abstract

This thesis presents a system that strives to give visually impaired people direct percep-

tual access to images via an acoustic signal. The user explores the image actively on

a touch screen or touch pad and receives auditory feedback about the image content at

the current position. The design of such a system involves two major challenges: what

is the most useful and relevant image information, and how can as much information as

possible be captured in an audio signal. We address those problems, based on a Modular

Computer Vision Sonification Model, which we propose as a general framework for ac-

quisition, exploration and sonification of visual information to support visually impaired

people. General approaches are presented that combine low-level information, such as

color, edges, and roughness, with mid- and high-level information obtained from Machine

Learning algorithms. This includes object recognition and the classification of regions

into the categories “man-made” versus “natural” based on a novel type of discrimina-

tive graphical model. We argue that this multi-level approach gives users direct access

to the identity and location of objects and structures in the image, yet it still exploits

the potential of recent developments in Computer Vision and Machine Learning. During

exploration, the user can utilize detected man made structures or specific natural regions

as reference points to classify other natural regions by their individual location, color and

texture. We show that congenital blind participants employ that strategy successfully to

interpret and understand whole scenes.
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Don’t only practice your Art,

But force your way into its Secrets,

For it and knowledge can raise men to the Divine.

Ludwig van Beethoven
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4 CONTENTS

Motivation

In “Critique of Pure Reason” Immanuel Kant stated that our knowledge of the outside

world depends on our modes of perception1:

What is first given to us is appearance. When combined with consciousness, it

is called perception.

Leonardo da Vinci proclaimed2:

The eye encompasses the beauty of the whole world.

Making this visual beauty of the world more accessible to visually impaired people has

inspired researchers in Computer Vision for a long time. Perhaps the most ambitious

software solution for the vision problem would be an algorithm that produces a semantic

description of the image content which is then output of a speech synthesis device in natural

language. This automated image analysis system would mimic a partner with normal

vision who describes the image to the user. However, despite the fact that automated image

understanding will remain a challenge to researchers for many years, it would continue to

deprive the visually impaired of a direct perceptual experience, an active exploration,

and an impression of where things are in the image and what visual appearance they

have. The approaches, described in this thesis, therefore, are to augment the sensory

capabilities of visually impaired persons by translating image content into sounds. The

task of analyzing and understanding images is still up to the user, which is why we call our

approach “auditory image understanding”. Very much like a blind person who explores a

Braille text or a bas-relief image haptically with the tip of her finger, our users touch the

image (via touch pad or touch screen) and experience the local properties of the image

as auditory feedback. Due to the simplicity and directness of the sensory mapping from

visual to auditory, we harness the human ability to learn, so we consider the brain of the

user as a fundamental part of the system. Visually impaired persons can use the system

to analyze images that they find on the internet, but also for personal photos that their

friends or loved ones want to share with them. It is this application scenario that makes

the direct perceptual access most valuable. The user feedback that we received for our

system indicates that visually impaired persons appreciate the fact that they obtain more

than an abstract verbal description and that images cease to be meaningless entities to

them3. Expressed in the words of one adult participant:

What amazes me is that I start to develop some sort of a spatial imagination

of the scene within my mind which really corresponds with what is shown in

the image.

1Kritik der reinen Vernunft, 1781 [240]
2Leonardo da Vinci’s contributions to neuroscience, TRENDS in Neurosciences, 2002 [355]
3In January 2013, preparations commenced to incorporate our system permanently at a residential

school for the visually impaired (Internat des Rheinischen Blindenfürsorgeverein 1886 Düren)
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Overview of Employed and Developed Technology

Part II presents our proposed modular design principle for the sonification of visual in-

formation. This image sonification model emphasizes a local exploration paradigm within

the sonification process. Thus, like a blind person who explores a Braille text or a bas-

relief image haptically with the tip of her finger, users touch the image and experience the

local properties of the image as an auditory response. One further crucial characteristic

of the model would be its high modularity which allows for modules to be altered or even

exchanged, without effecting the overall system. Hence, the system can be adapted to a

specific application scenario.

The implementation of this model presented in part III is mostly dedicated to scruti-

nize the possibilities and limitations of recognizing objects through sound. To provide a

fundamental basis for such an “auditory object recognition”, we extract rather fundamen-

tal image characteristics, such as color along with edges of various orientations as well

as a measure of coarseness. Before feature extraction, the image is smoothed using an

edge-preserving filtering approach. Edge detection is performed based on Gaussian image

pyramids and Gabor wavelets. A novel Computer Vision algorithm is presented to filter

single and especially repetitive sets of significant edges and discard rather distracting ones.

This algorithm incorporates local variance, connected-component analysis, graph-theory

and iterative case-by-case analysis approaches. Coarseness is computed for each pixel us-

ing a measure based on local entropy of image gradients.

Also in part III, we develop a novel fundamental concept of an audible representation of

color space that can be used to convey the concept of colors and color mixing to con-

genital blind people. This audible color space is inspired by Hering’s theory of Opponent

colors and represents each color value within the intuitive HSL color space as a mixture of

instruments, assigned to the four significant opponent colors. As congenital blind people

do not have any previous visualization of colors, color sonification hence becomes a much

more challenging task.

Calculating the volumes of instruments in a mixture of sounds for all intermediate colors

is formulated as an interpolation problem. Thus, we define a mapping on a set of control

points manually to achieve the desired volumes for specific color values and mixtures and

interpolate all values in between using a non-linear interpolation approach based on Thin

Plate Splines.

Despite most other image sonification approaches, we focus on the simultaneous sonifi-

cation of multiple image information locally, i.e, at specific positions within the image,

depending on the users finger position. Simultaneous sonification of colors, significant

edges and sets of edges as well as roughness is realized based on MIDI instruments using

an external MIDI synthesizer software.

The modular sonification model and the work on “auditory object recognition” has been

published in [18].
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In part IV of the work, we consider leveraging Computer Vision and machine learning

algorithms to derive and sonify image information on many levels, ranging from low-level

such as color, to high-level, as for example scene labeling and object recognition. Machine

learning techniques are developed and employed to even pre-select the extraction of spe-

cific low-level features in certain areas. Still, the results of these algorithms remain tied

to the image pixel where the feature occurs, so the user always knows the location of any

detected image entity. Incorporating the imaginative capabilities of a blind person’s brain

as a fundamental element of the process proves to be a promising combination for more

sophisticated tasks, such as “auditory image understanding”.

First, robust scene labeling is performed to classify images into man made structures and

natural regions. Therefore, a novel type of probabilistic graphical model along with a

specific feature set for man made structure detection is presented. The novelty of this

model would be that Support Vector Machines are incorporated in the unary as well as

the pair-wise potentials. Thus, our novel model is called Dual Support Vector Field. Our

feature set surpasses any existing feature sets for man made structure recognition, as it

incorporates rather sophisticated features, such as, smoothed histograms of gradient orien-

tations as well as results that are provided by algorithms we devise to capture the specific

properties of man made structures, e.g., junctions, line patterns or corner point patterns.

Parameter learning in the Dual Support Vector Field is reduced to training a Support

Vector Machine and learning an additional scalar model parameter using gradient ascent,

both based on a given set of training images and ground truth labelings. Inference us-

ing max-flow/min-cut (Graph Cut) algorithms is employed to compute the image labeling

based on the Maximum A Posteriori estimate.

Based on our novel feature set, we do not have to compute additional features to sonify

important information about man made structures and choose from the feature set di-

rectly. Between the sonification of man made structures in general, we will further sonify

the most dominant gradient orientation as well as the number of parallel lines within each

man made structured region.

Natural Regions are are further pre-processed for sonification applying a textural rough-

ness measure based on the fractal dimension. Therefore, we implement an extension of

the regular differential box-counting method for fractal dimension estimation of an image

region.

Additionally, a Support Vector classifier along with a specific feature set is presented

to verify true or discard false object detections, which have been found by regular object

recognition approaches, before sonification to avoid confusion on the side of the blind user,

who can not check for a correct detection visually. The feature set incorporates mainly

relative information and graph based features that can be extracted from the results of

these regular object detection approaches. Due to the rather linear separable and corre-

lated nature of this feature set, Principal Component Analysis is employed to perform a

transformation of the feature set before classification.
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Within part IV, an intuitive color sonification concept, based on the one presented in

part III, will be proposed which represents colors the way they are perceived visually by

appropriate fundamental sound characteristics, instead of instruments. Sound generation

of this advanced color sonification scheme is entirely based on an integrated additive

synthesis concept and, therefore, does not require any MIDI instruments or external MIDI

synthesizer software, which makes the whole program more suitable to be operated by

blind people.

Feature sonification is performed based on acoustical elements that are selected to not

interfere with color sonification. Thus, sonification of man made structures in general

is based on a bongo drum rhythm. The number of parallel lines in each man made

structured region is acoustically represented by adding reverberation to this bongo rhythm.

Additionally, a hi-hat rhythm is employed that varies in speed according to the orientation

of most dominant gradient in each man made structure from slow (horizontal) to fast

(vertical). Roughness in natural regions is represented by an intuitive audible element

based on brown noise. Verified object detections are sonified using auditory icons that

avoid additional memorizing of object to sound mappings.

To allow for simultaneous exploration and sonification of an image a non-blocking audio

queue is implemented. Feature sonification is performed using pre-computed wave-files

with an audio engine library. It allows for post-processing of pre-computed wave-files

with sound effects. We harness such possibilities to convey complex features audibly along

with colors without additional computational effort to synthesize such sounds additionally.

Further, the usage of external audio files allows for an easy exchange of sounds.

The work on “auditory image understanding” has in part been published in [20]. The two

novel machine learning algorithms proposed, the Dual Support Vector Field as well as the

object detection verification approach, have been published in [19].
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The Explorative Image Sonifyer Software

The work on “auditory image understanding” in part IV has been developed into a stand-

alone application that is designed to run on Microsoft Windows 7 and 8 based tablet PCs,

as will be presented in detail in chapter 14. Tablet PCs offer the best solution in terms of

computational power, screen size, touch screen usability and mobility. The final software,

called Explorative Image Sonifyer (EIS), is designed to allow the user to load images either

from a specific folder or, captured, from the tablet’s integrated front camera. As designed

to be used by visually impaired, the software can be controlled by only 3 touchscreen

gestures. It further guides the user throughout the whole usage of the program via speech

output. The system has been developed under considerations of portability, reducing

the amount of adaptions needed to run the system on other operating systems as far as

possible. To summarize, the features of our Explorative Image Sonifyer Software are:

• A stand-alone software to make the internet more accessible to visually impaired by

making available image data for interactive audible exploration and helping blind

people gaining fundamental image understanding of sceneries.

• The software contains a novel sonification scheme. The sounds associated to visual

features (colors, roughness) are selected based on perceptual, semantic and aesthetic

considerations. This includes an intuitive color sonification concept, representing

colors acoustically the way they are perceived visually by appropriate sound elements.

Further, sounds are designed to be sonified simultaneously without interferences or

distractions.

• The software is controlled by only a few touch screen gestures. To load an pre-

process an image from the tablet PC’s internal camera, a double tap is performed.

To load an image from a specific image folder, an open gesture is performed. A

closing gestures exits the program. Speech output guides the user throughout the

whole usage of the program.

• Specifically developed machine learning algorithms pre-detect man made structures

and object within images. Man made structures as well as important edges among

them are sonified based on drum rhythms. Natural regions within images are sonified

based on their grade of roughness. Detected objects are sonified in an intuitive way

using auditory icons that avoid additional memorizing of object to sound mappings.

• The loaded / captured image is rendered in the middle of the tablet PC’s screen,

with found man made structures and objects highlighted, to allow a blind person

to discuss the image with a normal sighted friend. An interactive color to sound

mapping chart is rendered on the left side of the screen to allow a blind person to

quickly look up the sound of specific color mixtures.



10 CONTENTS

• The software is internally designed as a finite state machine and implements a non-

blocking audio queue to allow parallel real-time exploration and sonification.

Figure 1: The Explorative Image Sonifyer System on a regular Microsoft Windows 7/8

tablet PC. Detected man made structures are highlighted (using squares). On the left

side, the color to sound mapping
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Chapter 1

Introduction to Sonification

1.1 Definitions

Sonification as a field of research is a sub-type of the area of Auditory Displays.

Auditory Displays, formalized in [203] (see figure 1.1), denote systems that use sound to

communicate information to allow a human user to understand data through listening.

Sonification is a rather young discipline, however, its conceptual roots can be traced back

to poet Rainer Maria von Rilke. He suggested, already in 1909, to use a phonograph

needle to “seek” sounds in the lines of world materials and, thus, transform experience

into another field of sense [387]. Publications can be found since about 25 years. The first

International Conference on Auditory Display (ICAD) was held in 1992. Sonification is

defined by Kramer et al.[257] as

the use of non-speech audio to convey information. More specifically, soni-

fication is the transformation of data relations into perceived relations in an

acoustic signal for the purposes of facilitating communication or interpretation.

Although this definition is the most accepted one, others exist, such as that given by

Scaletti [413], which states sonification as

a mapping of numerically represented relations in some domain under study to

relations in an acoustic domain for the purpose of interpreting, understanding,

or communicating relations in the domain under study.

In effect, a definition quite similar to the first one. Starting from Scaletti‘s definition,

Barass [23] develops the concept of what he calls Auditory Information Design con-

sidering both the specific information to be sonified as well as the design of possible

acoustical representations:

Auditory Information Design is the design of sounds to support an information

processing activity, focusing on the specific task like interpreting, understanding

or communicating relations in the data.

14
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Figure 1.1: Auditory display systems, as formalized in [203], include (A): information

pre-processing, (B) techniques for data processing and computation, (C) a sound synthesis

engine, (D) the user. Figure taken from [203]

Although the definitions given above differ slightly, one can still point out some basic re-

quirements for a sound to be called a sonification. First, the sound synthesis depends upon

the data of the domain under study, and second, the intention for synthesizing sounds is

to learn something about the data by listening. Thus, the sound itself is only regarded as

the medium of communication. Further, speech is by definition primarily prohibited as a

sonification method. However, speech, provided in the form of a speech interface, can be

a valuable element in auditory displays as it is able to provide additional annotations or

explanations about the data-set.

By definition sonification differs from data driven music composition ([415]; [374]; [375];

[513]) where the intent is primarily an aesthetic. With data driven music composition,

the sound itself becomes more than just the medium of communication and delivering

information is of minor or no importance at all. Thus, data driven music composition is

not about learning anything about the data.

The motivations for communicating information using auditory displays, rather than vi-

sual displays, have been thoroughly discussed in the literature ([65]; [201]; [256]; [333];

[352]; [407]). Briefly, auditory displays exploit the superior ability of the human auditory

system to differentiate temporal changes and patterns ( [50]; [149]; [150]; [159]; [65]; [257];

[310]; [317]). As a result, Auditory Displays may be a very appropriate modality to exam-

ine information containing complex temporally varying patterns.
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In every day work environments auditory systems can be, and are, employed to support

or warn people besides the information given through any visual display. Especially, if the

person already has to focus on many visual entities ([51]; [56]; [147]; [507]) or is visually

impaired ([147]; [257]; [498]; [499]; [506]).

Aesthetics

Generally, Edworthy [130] emphasized the independence of sonification as a way to convey

information and aesthetics. However, it is not quite clear yet in how far the performance of

an Auditory Display can be improved if sonification methods are developed under aesthetic

and musical concerns [500]. Vickers and Hogg [486] argue that a more careful attention to

aesthetics would facilitate ease of listening and in turn promote comprehension of infor-

mation displayed through sonification.
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Figure 1.2: Left: Keplers Solar System, Right:“the Music of Sphere”. Illustrations taken

from [245] and [246])

1.2 Research in Auditory Displays

Athough not yet an explicit field of research, sonification techniques have implicitly been

employed to various applications throughout the centuries. Already Johannes Kepler pro-

posed a kind of “scientific” sonification in his “World Harmonics” [246], where he tried to

express motions and distances of planets using scales (see figure 1.2).

A detailed introduction to early researches in auditory displays and sonification can be

found in [256] and [204]. Briefly, one can say that pioneering efforts were made by Pollack

and Ficks [364] in 1954, who investigated the usage of abstract auditory variables for the

presentation of quantitative information. Their sonification method incorporated changes

in alternating tone and noise bursts, employing attributes such as pitch, volume, duration,

stereo panning and others. Their studies revealed that auditory displays using multiple

sound parameters generally outperformed selected uni-dimensional displays [256]. Further-

more, well founded research about auditory classification capabilities has been conducted

by Bly [37] in 1982, exploring the classification of non-ordered multidimensional data sets

using Parameter Mapping Sonification (see section 1.3) to represent the data. Experi-

ments with various mappings and training methods were performed to compare displays

of either only employing sound or graphics or both. Results proofed auditory displays to

be as effective as the visual display, and a combined display to perform even better.
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Nowadays, auditory displays and sonification are harnessed in a wide variety of fields.

Applications range from desktop computer and mobile phone interfaces for visually dis-

abled people and data mining, to chaos theory, molecular biology, particle physics and

cosmology, just to name a few. Equally wide spread are the research disciplines:

• Acoustics: Examining the physics of sound creation can be helpful for the selection

or design of sound synthesis techniques to represent data. For Model Based Sonifi-

cation (see section 1.3), acoustics can supply appropriate templates for a model and

its dynamics. Finally, computed sounds, given as digital representations, are trans-

formed into acoustical sound waves by sound cards, synthesizers and loudspeakers.

• Sound Engineering: Sound Engineering is concerned with the technical realization

of sound spatialization, from mono to multi speaker setups, as well as sound signal

changes according to reflections in the listening room.

• Statistics and Data Mining: In case of high-dimensional data to be sonified,

appropriate techniques can be employed for data pre-processing, such as data di-

mensionality reduction.

• Human Computer Interaction (HCI): The discipline of human computer in-

teraction in general is all about system design to provide and optimal usability for

a specific system. Hence, valuable insights from this discipline can be employed to

develop sonification systems.

• Physiology and Neurobiology: Both disciplines deal with the processing of sound

signals after reaching the auditory cortex. Therefore, they are crucial to understand

how signals are further processed within the ear and what kind of signals can be

used for sonification from a neurobiological perspective. Other aspects include, e.g.,

the processing speed for auditory signals or connections between specific sounds and

emotional states.

• Musicology: Findings in Auditory Gestalt Principles [509] or Auditory Streaming

[50] provide guidelines for the usage of sound within any sonification approach. Mu-

sicology can give a methodology for the organization of the acoustic data concerning

harmonies or rhythm and provides tools for the analysis of musical pieces. Hence, it

also be harnessed to control and describe sonification approaches.
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1.3 Sonification Techniques

We will now give a brief overview over some of the main techniques in sonification, some

of which will be employed for our specific applications in part III and IV.

Audification

Audification is the most simple and direct auditory display technique for translating data

into sound. Kramer [256] defines it as

the direct playback of data samples I refer to as “audification”.

He later updates this definition:

Audification is the direct translation of a data waveform into sound.

It is a direct acoustical alternative approach to visualization, since all abstract data series

might be either visualized or sonified. So [206] proposes another definition:

Audification is a technique of making sense of data by interpreting any kind of

one-dimensional signal (or of a two-dimensional signal-like data set) as ampli-

tude over time and playing it back on a loudspeaker for the purpose of listening.

Since all data end up in a loudspeaker, audification is essentially a continuous, non-digital

interpretation of data sets.

What makes audification difficult is that, obviously, a lot of data values are needed even

for a short audification. Additionally, audification is limited to data sets which can be or-

dered in some reasonable way, such as e.g time series data. In some applications, however,

exactly those data sets are available, such as with the analysis of dynamic systems [311]

or seismic measurements [196].

Being the simplest sonification method, audification often serves as an initial approach

to a new sonification task. However, it is later mostly replaced by more sophisticated

methods.

Auditory Icons

Auditory Icons, first invented and employed by Gaver [160], are the acoustical equivalent

to the “clickable” visual icons, nowadays common on every modern computer graphical

user interface. Auditory Icons mimic everyday “real-world” non-speech sounds that we

might be already familiar with. Therefore, the meaning of such sounds does not have to

be learnt. As an example, the deletion of some data file might be represented by the sound

of tearing a piece of paper.
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Earcons

Auditory Icons, previously introduced, require an existing relationship between the sound

and its meaning, which may not always exist. In such cases, Earcons can be utilized.

Blattner et al.[34] defined Earcons as

non-verbal audio messages used in the user-computer interface to provide in-

formation to the user about some computer object, operation, or interaction.

Brewster [52] refined such a definition. He formalized Earcons to be

abstract, synthetic tones that can be used in structured combinations to create

auditory messages.

Thus, Earcons can be thought of as short, structured musical messages that correspond

to certain elements of the data being communicated. As Earcons are defined to not

necessarily provide an already known relationship between the sound and the information

that it represents. Hence, the relationship between sounds and information, synthetically

created through Earcons, have to be learned initially. A well known example of an Earcon

would be a specific mobile phones ringing sound associated with a certain caller or the

specific and nowadays very familiar sounds representing the plugging and un-plugging of

a peripheral device to or from the computer.

Parameter Mapping Sonification

Parameter Mapping Sonification [204] involves the association of information with auditory

parameters for the purpose of an auditory display of the data under scrutiny. Since sound is

inherently multidimensional, Parameter Mapping Sonification is considerably appropriate

to display especially multivariate data. Therein lies both the power and difficulty of this

method. Grond and Berger [184], point this out:

The enormous range of interpretive mapping decisions provides equally enor-

mous opportunities to create an appropriate auditory display for a particular

desired purpose. However, the wide variety of mapping possibilities poses a

challenge in terms of consistency and comprehensibility.

Figure 1.3 illustrated the general design process of Parameter Mapping Sonification. It

involves the translation of data features (figure 1.3 (left)) into sound synthesis parameters

(figure 1.3 (right)). The design involves an interplay of, and the conscious intervention in

both the data and the signal domains. Thus, Grond and Berger [184] suggest an effective

Parameter Mapping Sonification system to involve some compromise between intuitive,

pleasant, and precise display characteristics. They state that integrating both worlds is

key in creating effective sonification.
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Figure 1.3: The general design process of Parameter Mapping Sonification. Figure taken

from [184]

Model Based Sonification

Model Based Sonification, first proposed by Hermann [208], [204], is inspired by the obser-

vation that almost every human activity and interaction within the world is accompanied

with an acoustic response and a rich feedback about the nature of the involved materials,

as well as the strength and type of contact. Model Based Sonification is a sonification

technique that scrutinizes how acoustic responses are generated in response to a user’s

interactions, and develops a framework to govern how these insights can be applied to the

sonification of data. Consequentially, it is defined as a sonification approach that models

a dynamic system, evolving in time, depending on the data and the users interaction to

generate an acoustic signal. Hence, such a sonification model is essentially a set of instruc-

tions for the creation of what Hermann calls a “virtual sound-capable system” [204] and

for how to interact with it. Such a model would remain silent in the absence of excitation,

and start to change according to its dynamics only when on user interaction. The acoustic

response however is directly linked to the temporal evolution of the model.
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Figure 1.4: Left: Excerpt of a musical score based on the human “Thymidylate Synthase

A (ThyA)” protein sequence. Amino acids are assigned to a note starting an octave

below middle C with rhythm based on human codon distribution. [454]. Picture modified

from [454]. Right: Different energy levels mapped to different notes on a traditional

musical scale. Three, red colored, notes, an F, C, and E, represent the new found particle.

Illustration by Domenico Vicinanza

1.4 Fields of Application

The various areas of applications of sonification have been thoroughly discussed and cor-

related in [206], so that we focus on giving only a brief impression here. One of the first

successful applications is the Geiger counter, where amount and frequencies of audible

clicks directly represent the radiation level in the device’s immediate vicinity. Other com-

mon applications include SONAR (Sound Navigation and Ranging) [475], medical [147]

and cockpit [151] auditory displays. There have been some publications about the appli-

cation of sonification for the exploratory analysis of specific types of data, e.g. for the

analysis or representation of certain chaotic systems ([176]; [308]) fluid dynamics, seismol-

ogy [116], or the analysis of topological properties of graphs in higher dimensions [13] or

network traffic. A quite entertaining example of the latter would be Tweetscapes by [207],

which offers a real-time sonification of Twitter data streams.

More recent research proofs the effectiveness of sonification on motor learning, in compet-

itive sports [414] as well as in rehabilitation [489]. Audible perception is then harnessed to

support the observation and reproduction of basic movements, which are essential elements

to learning a new closed skill in sports or relearning basic motor skills in rehabilitation.

These processes, dominated by visual perception, can be augmented utilizing audition as

another perceptual channel, suitable for gathering information about movement patterns.

One can e.g. hear the rhythm of a runner, even of a swimmer, even more precisely as one

can see it.
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Furthermore, sonification can be used in the natural sciences to either support visual

observation of data, or, as in case of visually impaired researchers, open up access to

the data more readily. In molecular biology it is employed to audibly browse the RNA

structure ([186]; [94]; [327]; [194]; [195]). In [454] whole musical scores are converted from

genome-encoded protein sequences in order to hear auditory protein patterns (see figure

1.4 (left)). In [488] a sonification method is proposed to develop an “acoustic standard

model of particle physics” and quite recently researcher at CERN utilized sonification to

musically illustrate a exciting irregularity within their data. It corresponded to a particle

weighing in at 126 gigaelectronvolts (GeV), consistent with the Higgs Boson that is believed

to give mass to all other particles [442]. Physicist and engineer Domenico Vicinanza, a

member of the team responsible for sonification at CERN, was previously involved in the

creation of music from volcanic activity, facilitating to spot potential eruptions around the

world due to altering a musical pitch. He appreciated the use of sonification to make this

potential breakthrough in physics easier to understand by the general public. The team

mapped different energy levels to different notes on a musical scale. Finally, there exist

couple dozen notes, representing particle background noise, and suddenly, a spike up two

octaves. In that spike, one finds three notes, an F, C, and E, representing the mysterious

new particle (see figure 1.4 (right)). However, the last example of applied sonification

is meant to be more than simple data analysis or a broader way to understand physical

concepts. Vicinanza in his own words:

Both science and music are searching for harmonies, searching for regularities,

ways to feel an inner peace and harmony in the universe. There is an inner

beauty in the nature, in what’s around us. It’s that inner beauty that I really

wanted to convert into music.
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1.5 Auditory Displays for the Visually Impaired

In recent years some research on the application of sonification to support visually im-

paired people has been carried out. The first technical audio system for blind people

was the Optophone, a reading machine with an audible output developed 1912 by Fornier

D’Albe [153]. It produced a six-tone code for letters in scanned documents. As speech

synthesis was not available at that time, sonification was used as a replacement.

To enable access to personal computers, “screen readers” were eventually developed.

Screen readers examine and convert the contents of the screen into sounds so that even

modern graphical user interfaces (GUI) become accessible to a blind person. However,

there have been attempts to create an auditory version of the GUI, called Soundtrack

[128]. Soundtrack retains most of the interactions of the GUI, such as windows, scroll-

bars, icons, but represented them in an auditory form, using acoustical parameters such as

varying pitches that represent relative spatial information. A single mouse click initiates

a spoken label and a double-click then activates the current object. Soundtrack is one of

only few attempts to design a non visual, mouse based, graphical user interface. Roth [399]

proposed AB-Web, an active audio browser that conveys information about the structure

or layout of a document while browsing websites on the internet.

Apart from the examples already presented in section 1.4, there has been further devel-

opment in the application of sonification in the natural sciences. The development of

so called Soundgraphs ([129]; [55]; [304]; [378]) allows a blind user to sonify a cartesian

graph, getting an impression about its slope, turning points a.s.o. Grond et al. [185] go

even further by acoustically displaying the first m terms of the Taylor series. To allow very

direct interaction with the mathematics , a user should be able to move along a curve,

sensing significant points. This could be, e.g., hearing a local maximum by a variation of

pitch. Yu et al. [378] facilitated such a direct interaction with sonified graphs by adding

haptic interaction via a force-feedback device. Further works ([24]; [330]; [166]) deal with

printed mathematical equations that provide a significant amount of information in an

highly succinct manner. As the visual representation immediately and unambiguously

indicates structural information, a similarly efficient and unambiguous representation for

the visually impaired is the goal of such a research.

Navigation is yet another great issue for the visually impaired. Hence, some research has

been done to make use of sonification to translate useful information on different levels.

Such useful information might be rather fundamental such as basic colors [40] as well as

more sophisticated such as GPS ([517]; [532]) or depth data [39]. However, as acoustical

awareness of his surroundings is crucial for a blind person, navigation systems often make

use of rather haptic feedback, such as the Navbelt system ([42]; [434]).
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Recent developments strive help blind users solve general visual search problems asking

multiple helpers online in near real-time [29] or even allow a visually-impaired person

to safely operate a motor vehicle [212]. The system employs an audio-tactile interface

approach to convey information about the vehicle’s speed and heading and the driver then

uses a joystick to correct his steering and speed.
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Sonification of Images

As the focus of this thesis is on sonification of images for the visually impaired, we give

a separate brief overview of the developments in this area. One of the first examples to

render an entire scene acoustically is TheVoice project [313]. It creates a representation of

the visual picture pixel-by-pixel. The vertical positions of pixels are represented by pitch.

Horizontal positions, from left to right, are represented by time, and brightness is repre-

sented by loudness. As the system scans horizontally across the image a vertical column of

pixels is sonified as a single complex sound at each horizontal position. The start of a scan

is marked by a “click”. After the image has been scanned the procedure starts all over

again. The mapping is quite simple, making the system suitable for real-time navigation.

A more recent development that follows a similar paradigm is the SeeColOr mobility aid

([40]; [39]). Other than lightness, it transforms small portions of a colored video image

into sounds represented by spatialized musical instruments, which is based on the quan-

tization of the HSL color system (see appendix B.2). The purpose is to allow for blind

people to perceive elements of an environment in real time. In [39] the work is extended

to sonification of depth information, employing additional rhythms. The rationale behind

is to enable a blind individual, e.g., to follow a path painted on the ground in an indoor

environment, such as a shopping center or a medical center. Apart from navigation the

SeeColOr system was used to perform experiments on very fundamental color image in-

terpretation tasks [40].

Various other approaches to image sonification exist without the intention to be employed

in any navigation context. One of which would be SmartSight ( [92]; [90]; [91]). It is a sim-

ple form of translation from visual pixel information of monochrome images to non-verbal

sounds of different pitch. An auditory cursor sweeps across the graphic horizontally. As it

intersects a black pixel it forms a sound, the pitch of which represents the vertical height

of the pixel. The main idea is to enable blind users to detect basic object shapes. Quite

similar tool would be the GUESS system [236] or the more recently proposed EdgeSonic

[525]. EdgeSonic focuses on the sonification of the progression of and the distance to edges

in images. As with SmartSight, the image is pre-processed using simple edge detection

algorithms, such as [67], adjusted to extract only dominant edges within the image. The

GUESS System on the other hand employs Blauert’s approach on spatial hearing using

headphones [35]. One of 3 predefined basic shapes is rendered by a moving sound that

is acoustically represented within a 2D virtual sound space, as described in [400]. If, for

instance, the rendered shape would be a right triangle, the user hears a tone descending

vertically in the right speaker channel, then moving horizontally from the bottom right

to the bottom left channel and finally, it rises from the bottom left back to the top right

channel, back to its initial position.

Rather than aforementioned methods the EdgeSonic and the GUESS system both intro-
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Figure 1.5: Left: Mapping from image features to sound with EdgeSonic. Figure taken

from [525]. Middle: A participant using the Timbremap device during a study. The shape

is displayed on the screen and the participant is completely blind and can not see the

shape. Figure taken from [450]. Right: Experimental Setup of the SoundView system. A

participant is wearing the buzzer on a wristband attached to his wrist. Note the occlusion

of the participants view of his hand by the box. Figure taken from [481]

duce a kind of explorative interaction within the image. Although the user has to stay for

1000 milliseconds at a certain image position until the area below his finger is completely

sonified from left to right (see figure 1.5 (left)), he is generally able to freely explore the

image. Sonification is performed by scanning each column in a local area in the binary

edge image below the user’s finger position. Each of the 30 pixel positions in each column

is acoustically represented by a single frequency oscillator. Each of 30 frequency oscilla-

tors is then turned on or off depending on whether its corresponding pixel lies on an edge

(see figure 1.5 (left)). A horizontal line in the edge image would then yield a long lasting

single frequency sine wave. A vertical line yields a single bleep sound, where all frequency

oscillators are turned on simultaneously for a short duration. The GUESS system utilizes

a stylus on a graphical tablet as an input device to explore an image. Another system

that exploits explorative sonification is called Timbremap [450]. It sonifies local visual

information based on the location of a user’s finger on a map. Timbremap helps the user

to navigate through a map by sonifying distances to lines on the map 1.5 (middle)). By

placing his finger on a map, finger positions with respect to closest lines are transposed

into audio signals. The system harnesses stereo panning to represent the location of the

finger according to a particular line. The SoundView system [480], [481] is one of the first

frameworks to combine color sonification with explorative interaction. Hence, an image is

mapped onto a kind of virtual surface with a color-dependent roughness texture that is

then explored by moving a pointer device over the image. This device acts as a kind of

virtual gramophone needle 1.5 (right)). The sound produced depends on the motion as

well as on the color of the area explored, as color attributes are used to filter an underlying

white noise using Subtractive Synthesis. The Walk-on-the-Sun project [376] makes use of

explorative image sonification using a user’s feed instead of his fingers. As a user moves



28 CHAPTER 1. INTRODUCTION TO SONIFICATION

across images projected onto the floor, his movements are visually tracked and used to

select pixels in the images which are immediately transformed in to sound, i.e. those of

instruments varying in pitch. Colors are mapped to one of 9 instruments and brightness

to one of 50 pitches. A user’s location within an image is mapped to panning position,

creating a considerable number of differentiable musical events.

More general models of image sonification and the transformation of visual information to

music, without the direct intention to support the visually impaired, have been proposed

over the years. [306] demonstrates a technique, using color patches within images as

chromatic patterns that can be put together to form a melody. [348] mixes 8 pre-recorded

musical timbres depending on the quantity of 8 hue values within an image. The Sonic-

Panoramas project [235] is motivated to develop real-time interactive sound environments,

such as those required in art or virtual reality and to investigate the ways in which humans

perceive physical landscapes. Therefore, a goal is to enrich a participants experience of

space based on acoustical interpretations of visual landscapes and to develop an interface

for data exploration. Movements of users through a projection space are tracked and

utilized to generate visual and auditory representation in real-time and position specific.

However, these approaches rather refer to musical composition than pure sonification,

which is outside the scope of this thesis. For a more in-depth review on the application of

image sonification methods to musics have a look at ([523]; [522]; [162]). Giannakis and

Smith [162] furthermore provide a review of auditory-visual associations that have been

studied in research in computer music.
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The Brain as (the) Essential Component of the Sonification System

Most of the systems designed as visual substitutions for the visually impaired, such as

TheVoice [313], SmartSight [92], Timbremap [450] or EdgeSonic [525], perform rather

minimal image processing and sound mapping. The rationale of those systems is to har-

ness the brain’s “plasticity”, the brains ability to shift or extend processing of a specific

senses such as listening to non used areas ([175]; [472]; [155]; [314]) enhancing these ca-

pabilities. In blind people such regions of the brain are primarily the areas involved in

visual processing. Therefore, one fundamental intention would be that users will learn to

interpret auditory scenes naturally. However, recent research reveals that visual substitu-

tion systems or sensory substitution devices (SSD) in general could be also harnessed

in research on the effects of blindness to the brain as well as in rehabilitation programs

([380]; [448]).

In traditional neuroscience, the common view, known as the “the Sensory Division-of-

Labor Principle” [530], is that the human brain is divided into separate sections, such as

the visual cortex (see appendix B.1) or the auditory cortex (see section 2.1) according

to each sensory modality which arouses it. From these uni-modal cortices the brain then

integrates information in higher order multi-sensory areas.

However, various studies suggest this view to be not fully correct ( [347]; [10]; [448]; [359]).

As already mentioned, in the blind, it is well-known that the visual cortex has been plas-

tically recruited to process other modalities, and even language and memory tasks ([155];

[314]). Lots of those changes commence within days following the onset of blindness [314],

and, therefore, do not only affect congenitally blind individuals, although, probably to a

different extent. Evidence demonstrates that, in both sighted and blind individuals, the

occipital visual cortex is not purely visual and its functional specialization could be

proofed to be independent of visual input [448]. This leads to the assumption that the

brain is task-oriented and sensory modality-independent ([381]; [447]). Such a task selec-

tivity could be demonstrated for various tasks and areas. For instance, a tactile Braille

script, a rather simplistic form of vision-substitution is employed in [381], transforming

written letters, to reveal that the visual word form area (VWFA), a visual area re-

sponsible for processing written language in the sighted [104], also considerably arouse to

Braille words in the congenitally blind [381] (see figure 1.6 (right)). Thus, the VWFA

specializes in the perception of written words, irrespective of the sensory channel through

which they are presented, and even regardless of visual experience.

Using more advanced sensory substitution devices, capable of transforming more complex

visual scenes, it is possible to test the sensory modality-independence of other occipital

areas dedicated to the processing of more complex visual categories. As an example, a

region within the human lateral occipital complex (LOC) is activated by objects when

either seen or touched. Hence it is named the lateral occipital tactile-visual (LOtv)



30 CHAPTER 1. INTRODUCTION TO SONIFICATION

Figure 1.6: Modality-independent task-specific activations in various areas of the visual

cortex. Left (a): Activation of the lateral-occipital complex (LOC) during object recogni-

tion using vision, touch and visual-to-auditory sensory substitution. Right (b): Specific

activation of the visual word form area (VWFA), the site of activation to visual written

words in the sighted, during tactile Braille reading in the congenitally blind. Text and

picture modified from [380]

region [9]. It could as well be activated by auditory stimuli, delivered by the TheVoice

[313], that conveyed shape information (see figure 1.6 (left)). The LOtv did, however, not

respond the typical sounds which regular objects might produce, which generally do not

provide any shape information [9]. This strengthens the notion that the LOtv specializes

in the processing of objects’ shapes irrespective of the input sense.

However, the tremendous benefits, provided by such a plasticity, come with a considerable

potential danger. On the one hand, it helps a blind person to better cope with blindness

by harnessing compensatory capabilities, on the other hand it bears the risk to inter-

fere with sight restoration efforts, by disturbing the visual cortex’s original functions and

unfortunately there exist several cases of medical sight restoration that support such an

assumption ([341]; [180]). Although visual information was available to the patients’ brain

and some visual abilities were restored quite fast, those individuals showed very serious

deficits in practical visual perception tasks such as shape and face recognition ([144]; [341];

[180]), just as if the regained visual information would be offered to a fully untrained brain

in analyzing and interpreting exactly this data.
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However, Reich et al. [380] infer, that

if the hypothesis of the highly flexible task-oriented and sensory-independent

brain applies, the absence of visual experience should not limit proper task

specialization of the visual system, despite its recruitment for various functions

in the blind, and the visual cortex of the blind may still retain its functional

properties using other sensory modalities. This is very encouraging with regards

to the potential of visual rehabilitation.

Reich et al. [380] and Striem-Amit et al. [448] propose sensory substitution devices in

general and visual substitution system in particular to be potentially used as:

• a research tool for assessing the brain’s functional organization

• an aid for the blind in daily visual tasks

• to visually train the brain prior to invasive procedures, by taking advantage of the

visual cortex’s flexibility and task specialization even in the absence of vision

• to augment post-surgery functional vision using a unique SSD-prostheses hybrid
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Contributions of this Thesis

In their recent research review on the brain’s plasticity and its implications for visual

rehabilitation using noninvasive and invasive approaches Reich et al. [380] specifically

scrutinized possibilities of TheVoice [313] system. They summarize:

The described high-level functional abilities using SSDs, as well as reported ev-

idence that the adult brain retains an impressive capacity for visual learning

[340], encourage the further development of advanced devices. Especially im-

portant are the use of more pleasant stimuli, the delivery of complementary

color and depth information, the combination of computer vision techniques

to ease the stimuli interpretation and comfortable ergonomic design that will

fit daily use. It will be fascinating to see what level the users will be able

to reach with further prolonged experience, with technology opening more and

more doors. From a scientific perspective, it will be especially valuable to as-

sess the level of acquired visual abilities in the congenitally blind despite what

is considered to be an irreversible critical period. The delivery of color through

SSDs would be of particular interest in this regard, as this feature is unique to

the visual modality and thus considered as a concept that the delivery of color

through SSDs would be of particular interest in this regard, as this feature is

unique to the visual modality and thus considered as a concept that could not

be understood or perceived by the congenital blind.

The work presented in this thesis proposes exactly such an advanced development and

first evaluations of an advanced visual sensory substitution device. Our tool is primarily

designed to make the internet more accessible to visually impaired by making available

image data for interactive audible exploration. An approach which helps blind people

gaining fundamental image understanding of sceneries.

We develop a fundamental concept of an audible representation of color space that can

be used to convey the concept of colors and color mixing to congenital blind people. As

congenital blind people do not have any previous visualization of colors, color sonification

hence becomes a much more challenging task. We very much endorse the concept of

interactive exploration in image sonification in our application. Very much like a blind

person who explores a Braille text or a bas-relief image haptically with the tip of her

finger, our users touch the image (via a touch pad or touch screen) and experience the

local properties of the image as auditory feedback. Despite most of the image sonification

approaches given in subsection 1.5, we focus on the simultaneous sonification of multiple

image information locally, i.e, at specific positions within the image, depending on the

users finger position.
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Our system design is highly modular, as discussed in part II of the thesis. Hence, parts

of it can be altered or even exchanged to the task at hand, without effecting the overall

system. Thus the implementation presented in part III is mostly dedicated to scrutinize

the possibilities and limitations of recognizing objects through sound. To provide a fun-

damental basis for such an “auditory object recognition”, we extract rather fundamental

image characteristics, such as color along with edges of various orientations as well as a

measure of coarseness. Simultaneous sonification is realized based on MIDI instruments.

Basic recognition tests (see chapter 9) revealed that audible object recognition can be

performed, though on a very limited complexity scale. Hence, in part IV of the work,

we consider leveraging Computer Vision and Machine Learning algorithms to derive and

sonify image information on many levels, ranging from low-level such as color, to high-level,

as for example object recognition. Machine Learning techniques could be successfully em-

ployed to even pre-select the extraction of specific low-level features in certain areas. Still,

the results of these algorithms remain tied to the image pixel where the feature occurs,

so the user always knows the location of any detected image entity. Incorporating the

imaginative capabilities of a blind person’s brain as a fundamental element of the process

proved to be a promising combination for more sophisticated tasks (see chapter 13), such

as scene understanding. Additionally, within part IV, the color sonification is refined to

allow the user at least in partial to perceive acoustically what corresponds to the visual

perception of a seeing person. The advanced concept does not require any MIDI instru-

ments and therefore no external MIDI synthesizer, which makes the whole program more

suitable to be operated by blind people.

As will be discussed in chapter 14, our framework has been implemented on a Microsoft

Windows 7 based tablet PCs to combine computational power with the most possible

mobility. It is designed to allow the user to load images either from a specific folder or,

captured, from the tablet’s integrated front camera. Furthermore, the system has been

developed under considerations of portability, reducing the amount of adaptions needed

to run the system on other operating systems as far as possible. To summarize, our

contribution to existing approaches to image sonification for the visually impaired are:

• A tool to make the internet more accessible to visually impaired by making available

image data for interactive audible exploration.

• An approach which helps blind people gaining fundamental image understanding of

sceneries, found either in images from the internet, or captured by a camera in a

certain environment.

• A highly modular sonification model, especially designed for image sonification for

the visually impaired.
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• A novel sonification scheme. The sounds associated to visual features (colors, rough-

ness) are selected based on perceptual, semantic and aesthetic considerations. Fur-

ther, sounds are designed to be sonified simultaneously without interferences or dis-

tractions.

• An intuitive color sonification concept, representing colors acoustically the way they

are perceived visually by appropriate sounds.

• A fundamental concept of an audible representation of color space that can be used

to convey the concept of colors and color mixing to blind and especially congenital

people.

• A Multi-level image analysis paradigm, combining low-, mid- and high-level features

in each pixel. Thus, we overcome the limits of manual acoustical object recogni-

tion, employing Machine Learning techniques to pre-detect specific regions within

an image, allowing a more directed and individual extraction of low-level features.

• A stand-alone application, designed to be used by visually impaired people on their

personal computers. Thus, the software is easily operable and supported by speech

output, guiding the user throughout the whole usage of the program.

Our visual substitution device is primarily designed as an aid for the blind to make images

explorable. Especially the system in part IV that allows an “auditory image understand-

ing” could be used by visually impaired people to analyze images that they find on the

internet, making it more accessible, but also for personal photos that their friends or loved

ones want to share with them.

It would, however, be fascinating if it could be employed as a research tool for assessing

the brain’s functional organization or to visually train the brain prior to invasive proce-

dures, by taking advantage of the visual cortex’s flexibility and task specialization even in

the absence of vision as Reich et al. [380] and Striem-Amit et al. [448] propose sensory

substitution devices in general to be utilized for.

As such, the system presented in part III could be also utilized to help congenital blind

persons to train shape or orientation recognition of basic objects. Part IV could serve as a

means to develop spacial understanding of spatial relations of objects within whole scenes.

In this context, the direct perceptual access becomes most valuable. The user feedback

that we received for the system, especially in part IV, indicates that visually impaired

people appreciate the fact that they obtain more than an abstract verbal description and

that images cease to be meaningless entities to them.

Moreover, our system can be employed to analyze photographs which blind people have

taken by themselves. Interestingly, recent studies ([4]; [225]; [270]) indicate that there is a

significant interest in being able to take and organize their own pictures in the blind and

visually impaired community. Adams et al. [4] recently developed a mobile app to help
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blind persons take and organize pictures using non-visual cues. Interestingly, Adams et al.

[4] anticipate utilizing our principles to sonify images that we propose for “auditory image

understanding” in [20] to extend their work and enable users to interpret the content of a

photo by interacting with the photo through a touch-screen interface.



Chapter 2

Auditory Perception

2.1 The Ear & the Auditory Cortex

Auditory perception in general is a very complex task and the auditory system has some

remarkable abilities to deal with it. Thus, especially in the context of designing an au-

ditory display, it is crucial to understand and incorporate these into the system design

appropriately. Hence, we will give just a brief overview of some of the main characteristics

of the human auditory system, so we can refer to them later in the work.

On the Transduction of Sound from Mechanical Energy into Bio-electrical Sig-

nals and Beyond

Sounds of particular interest typically interfere with other rather distracting sounds. The

auditory system has the remarkable ability to disentangle various simultaneous sounds and

selectively focus on a single, particular sound [50]. This phenomenon and significant signal

processing challenge is known as the “cocktail party problem” [179]. Sound, in general, is

defined in [1] as:

a mechanical wave that is an oscillation of pressure transmitted through a solid,

liquid, or gas (or plasma), composed of frequencies within the range of hearing.

Therefore, a sound is a vibration of pressure in a medium, usually generated by a vibrating

object. If this medium is in direct contact with the eardrum, such vibrations might cause

acoustic sensations. The mechanical structure of the inner ear maps sound frequencies

onto different positions of the basilar membrane within the cochlea [27]. The flexibil-

ity and width of the membrane increases with distance from the oval window, which is

the entry point of sound. As a result, it produces a peak of vibration near the oval window

for high frequencies. For a low frequency, such a peak of vibration will be closer to the

far end of the cochlea [490] (see figure 2.1). Hence, the cochlea, in many ways similar

to the Fourier transform [222], decomposes mixtures of acoustical frequencies into their

components, mapping them onto different spatial locations within itself. The thousands

36
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Figure 2.1: Left: The mechanical structure of the inner ear maps sound frequencies onto

different positions of the basilar membrane within the cochlea. Right: Each receptor cell

in the cochlea has a neuronal “cable” to the cochlear nuclei and even the auditory cortex,

where one can find a complete topographical map of the audible frequency spectrum.

Pictures modified from [77]

of so called mechano-receptors that are distributed along the basilar membrane do not

need be tuned to different frequencies, other than in color vision, where each receptor

type responds in a particular wavelength range (see appendix B.1). The position of each

mechano-receptor determines which sound frequency will arouse it ([490]; [287]).

On a higher processing level, all fibers in the auditory cranial nerve send the infor-

mation, in parallel, from the receptor cells to the brain. Thus, each receptor cell has its

own neuronal “cable” to the cochlear nuclei and even the auditory cortex, where one

can find a complete topographical map of the audible frequency spectrum (see figure 2.1).

This topographical map of audible frequencies mirrors the mapping of frequencies in the

cochlea [371].

Pitch

The perception of pitch is arranged along a single dimension, just as on a piano keyboard.

Due to the parallel processing of receptor information from the cochlea, mixtures of differ-

ent frequencies can be analyzed accurately, unless mixtures become too complex. Hence,

the tones that a chord is made up of can be identified [460]. In case where mixtures

have unique properties, such as in the case of the strengths of harmonic overtones over

some fundamental frequency that distinguish an “A” tone produced by a piano from that

of a guitar one can still identify the fundamental, whose perceived pitch is not effected

by the overtones. Thus, a mixture of 440 Hz and 880 Hz would not be perceived as an

intermediate frequency, e.g. 660 Hz.
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Loudness

Beside pitch, the auditory system is sensitive to a very large range of sound levels, measured

based on loudness. Loudness is the characteristic of a sound that psychologically correlates

with the physical strength or amplitude of this sound. More formally, it has been defined

in [220] as

the attribute of auditory sensation in terms of which sounds can be ordered on

a scale extending from quiet to loud.

Thus, it is more of a subjective measure and is often confused with more objective measures

such as sound pressure level (SPL). The perception of loudness of a sound depends on

both, the pressure (i.e. its sound pressure level) and its frequency spectrum. For sounds

such as a pure tone, equal-loudness-level curves can be defined that represent the sound

pressure levels of a sound (see figure 2.2 (left)). These curves reveal that perception of

loudness is not equal for all frequencies even when sound pressure level is constant and

are considered to reveal the frequency characteristics of the human auditory system [452].

The perception of loudness is further dependent on duration of a certain sound, at least

below durations of about one second. Up to a few hundred milliseconds, the longer the

sound, the louder it is perceived ([360]; [455]).

Figure 2.2: Left: The equal loudness curves reveal that perception of loudness is not equal

for all frequencies even when sound pressure level is constant. Picture modified from [452].

Right: An illustration of one sound masking another
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Auditory Masking

Additionally, auditory masking can occur when the perception of one sound is affected by

the presence of another sound, as illustrated in figure 2.2 (right). Due to the properties of

the basilar membrane, it is, however, asymmetrical, meaning that low-frequency sounds

mask high-frequency sounds much more efficiently than the reverse [179].

Temporal and Spectral Variation

There has been numerous research on the remarkable auditory sensitivity of the brain

that allow developing stable representations for auditory events, given the varied, and

often ambiguous, temporal patterning of acoustic spectral content received by the ears

([89]; [231]; [232]; [224]; [356]; [529]; [363]). As an example, the auditory system is capable

of recognizing gaps within broadband noise stimuli as short as only 2 to 3 milliseconds

[363]. Research on the response of human auditory cortex to spectral and temporal vari-

ation indicates that the core auditory cortex in both hemispheres respond to temporal

variation, whereas the anterior superior temporal areas bilaterally respond to the spectral

variation ([529]; [418]). It further revealed that responses to temporal varying test stimuli

are weighted towards the left, while responses to spectral variations are weighted towards

the right, as illustrated in figure 2.3. Zatorre and Belin [529] thus infer that those findings

confirm a specialization of the left-hemisphere auditory cortex for rapid temporal process-

ing and also indicate a complementary hemispheric specialization of the right-hemisphere

cortical areas for spectral processing.

Figure 2.3: Left: A horizontal section taken through the region of Heschl’s gyri that

shows significantly greater activity to stimuli varying temporally (left) than spectrally

(right). Right: A section taken through the anterior superior temporal region, which

showed a greater response to the spectral variations than to temporal. Picture modified

from [529]
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Sound Localization

The brain harnesses subtle differences in sound characteristics, such as pressure and spec-

tral characteristics to determine the location of a specific sound source [35]. It makes use

of binaural cues, such as to measure the difference in arrival times between the ears or the

relative amplitude of high-frequency sounds [388]. On the other hand it uses monoaural

methods that depend on the asymmetrical spectral reflections from and filtering effects

of various parts of our bodies, including torso, shoulders, and pinnae, summarized as the

head-related transfer function. Thus, depending on the angle from which they strike

those “filters”, sounds are frequency filtered individually. The most significant filtering

cue for sound localization is the pinna notch. The filtering effect results from destructive

interference of waves reflected from the outer ear. Depending on the angle from which the

sound strikes the outer ear, a specific frequency is selectively filtered [388].





Chapter 3

Sound Computation

This chapter briefly surveys the main algorithms and techniques for digital sound synthesis,

especially those that are employed throughout our own work, as related to auditory display

as well as how sound is represented in digital computers. For a more in-depth analysis of

sonification methods see ([388]; [403]; [316]).

3.1 Sound Synthesis

Additive Synthesis

In Additive Synthesis [403], being the oldest sound synthesis technique, each partial is

modeled by a separate sinusoidal oscillator with a specific frequency fi and amplitude

envelope ai(t). Using a time variant function fi(t) for the frequency allows continuous

changes in pitch. The output of those oscillators is superimposed to produce a composite

signal s(t):

s(t) =
∑
i

ai(t) sin(2πfit+ φi) (3.1)

The sine function is used as a building block for the signal s(t). Within practical imple-

mentations a continuous sine computation can be avoided and replaced by a table lookup

and interpolation procedure. A table holds a period of a periodic signal, called wave-

form. Such a table lookup oscillator is used everywhere in computer music [318] and

in many commercial synthesizers. As a natural generalization, Additive Synthesis can be

performed with arbitrary waveforms using table-lookup synthesis. A great benefit of-

fered through Additive Synthesis is that one gains an obvious and direct control over the

resulting acoustical signal, due to the linear mapping from control parameters to sound.

Subtractive Synthesis

Subtractive Synthesis ([318]; [403]) is quite complementary to Additive Synthesis, as it

shapes a spectral form of sound by filtering out undesired parts from a complex input sig-

42
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nal, rather than building up a complex sound by adding spectrally simple parts. However,

whereas additive models have difficulties in creating noise, it can be easily introduced in

Subtractive Synthesis by using noisy excitation signals. A desired waveform is produced

by applying time variant filter to an input signal. Hence, in Subtractive Synthesis, the two

main parts are a complex source sound and a filter. Both components usually have time

varying parameters. As such a distinction is found in a lot of physical systems, Subtrac-

tive Synthesis can be seen as a special case of Physical Modeling, which will be discussed

below.

FM Synthesis

Frequency modulation (FM) for sound synthesis [403] was first introduced by Chowning

[78]. The signal s(t) is computed as:

s(t) = sin(2πfct+ I(t) sin(2πfmt)) (3.2)

Thus, FM relies on modulating the frequency of a simple periodic waveform with another

simple periodic waveform, as illustrated in figure 3.1(left). The frequency of a modulator

fm is in the same order of magnitude as a carrier frequency fc and usually takes a fixed

multiple fm = λ ∗ fc. For a constant timbre, both the ratio λ = fm
fc

and the modulation

index I(t) are kept constant. A frequency analysis (see figure 3.1 (right)) of the signal

s(t) shows that frequency modulation basically takes energy from the carrier frequency,

spreading it to the side band components at frequencies fk1,2 = fc ± kfm, for each kth

side band. The amplitudes of each kth side-band are determined by “Bessel functions of

the first kind and kth order” Jk(I) [78].The larger the k, the higher I has to be for that

side band to have significant amplitude. “Negative side band frequencies”, as illustrated

in figure 3.1(right) occur for higher orders of k. These frequency components’ phase has

been shifted by π, which leads to a sign change and a “reflection at the origin”. Often λ

is chosen to be either an integer or a small integer fraction. λ = 1 results in sounds that

contain frequencies which are integer multiples of fc. Thus, FM synthesis delivers a very

simple model for creating a complex timbre using a single scalar parameter I. However,

unlike additive analysis, a small change in the input parameter, i.e. I, does not necessarily

result in an equivalent small change in the created sound structure. Specific modulation

functions I(t) allow to mimic several instruments, e.g. brass instruments with I(t) starting

at 0 and rising to some final value Imax within a constant attack time. Several classes of

timbre can be implemented using other modulation ratios λ. λ = 1.414, λ = 2 or λ = 3

produces bell-like sounds. λ = 2 results in a more organ alike sound [389].

Non-Linear Synthesis

The previous synthesis techniques contained the possibility of using a separate control of

amplitude envelope and timbre. However, in most real instruments these two attributes
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Figure 3.1: Left: A simple FM synthesis circuit with one carrier and one modulator sine

wave. Right: Frequency spectrum of a simple FM synthesis with fc = 600Hz, fm = 100Hz

and I = 3. Pictures modified from [81]

are closely interrelated. As an example, the intensity when blowing a flute will determine

both changes in timbre and the amplitude of the sound at the same time. Non-linear

Synthesis [388] can be employed to simulate such a behavior using a nonlinear transfer

function g(.) to manipulate the instantaneous amplitude of a source signal f(t):

s(t) = g(f(t)) (3.3)

Granular Synthesis

Granular Synthesis [388] composes a more complex waveform from the superposition of

thousands of very short so called acoustic “grains”. According to Gabor’s theory of “Acous-

tical Quanta and the Theory of Hearing” theory [97], such a granular representation is

meant to describe larger complex sounds. Each grain’s spectral property determines a

specific set of control parameters, whereas a temporal organization is controlled by the

composition of grains:

s(t) =
∑
i

aig(t− tiθi) (3.4)

where g is the time domain representation of a single grain, whose shape would be formed

by a function of further parameters θ. Grains are usually of durations of about 20 to 50

milliseconds.
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Physical Modeling

Physical Modeling [81] is about simulating the essential parts of real physical instruments

in order to create a similar sound and sound control in the model. As an example in an

acoustic guitar the plucking position determines the resulting string sound. Implementing

such “high-level” controls in other synthesis models would demand extensive parameter

modifications. In contrast, in a physical model of the string, the plucking position can

be controlled directly. There have been several approaches to Physical Modeling such

as Spring Mesh Models [437]. Though quite intuitive, the more complex the system

becomes, those models become computationally infeasible. Another approach is Digital

Waveguides (DWG) [436], a technique suitable to model traveling waves as sound waves

in the air that can be applied to model many physical system, e.g., the human vocal tract,

wind instruments or string instruments. Generally Digital Waveguides are derived from

the wave equation [319] that completely describes the motions of an ideal (without any

damping or stiffness) string under tension:

∂2y

∂t
= c2∂

2y

∂x
(3.5)

Thus, the upward and downward acceleration at any position on the string is equal to a

constant multiplied by the curvature of the string at that position. The constant c is the

speed of wave motion on the string. It is proportional to the square root of the string

tension and inversely proportional to the square root of the mass per unit length. The

same equation can be applied to describe the flow of air within a cylindrical acoustic tube

(such as a trombone, clarinet bore, or human vocal tract), except for the displacement y

to be replaced by the air pressure P . This equation can be re-formulated as:

y(x, t) = yl(t+
x

c
) + yr(t−

x

c
) (3.6)

It basically states that vibrations of the string can be represented as the combination of

two separate traveling waves, one to the left yl and another to the right yr. Both move

at rate c which refers to the velocity of the sound propagation on the string. For an ideal

string as well as ideally rigid boundaries at both ends the wave reflects with an inversion

at each end and travels back and forth indefinitely. Hence, such a simple Waveguide filter

can be implemented using two delay lines ([436]; [243]) which model the propagation of

left and right going traveling waves. Additionally, simple physical models can be extended

to consider stiffness and non-linear interaction elements [438], such as bowing friction, can

be utilized to model system components such as the mouthpiece of a clarinet or the bow

of a violin. This non-linearity turns the steady linear motion of a bow into an oscillation

of the string , and thus makes the sound to become more realistic.
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3.2 Noise

Noise of whatever kind would rather be the product of, e.g., Subtractive Synthesis than

a sound synthesis method itself. It is, however, briefly mentioned within this chapter as

specifically pre-recorded Brown Noise will be used later within the work as a means to

sonify certain information about the image.

Figure 3.2: The frequency spectra of (left) White Noise, (middle) Pink Noise and (right)

Brown Noise. Intensities (in dB) on the y-axis and frequencies on the x-axis

White Noise

The term “White Noise” arises from the analogy to white light, where the power spectral

density S(f) is distributed over the visible band so that all three color receptors of the

human eye are approximately equally stimulated [107]. It is defined in [58] as: a stationary

random process having a constant spectral density function. In other words, White Noise

contains equal power within a fixed bandwidth at any given center frequency fc. Therefore,

S(f) = S0 = const.

Pink Noise

Pink Noise, also known as “flicker” or 1/f Noise, describes a signal with a frequency

spectrum whose power spectral density S(f) is inversely proportional to the frequencies.

Mathematically speaking, S(f) ∝ 1/f . Each octave carries an equal amount of power. 1/f

noise falls off at 3 decibel (dB) per octave. Its name originates from the pink appearance

of visible light with such a distributed power spectrum [118]. Pink Noise can be found

quite frequently in nature. It is present in the electromagnetic radiation output of some

astronomical bodies. In biological systems, it was found in neural activity, heart beat

rhythms as well as the statistics of DNA sequences ([15]; [234]).
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Brownian Noise

In science, “Brownian Noise” or “Brown Noise”, is a signal produced by Brownian motion

[57], hence it is often referred to as random walk noise and, therefore, the name Brown

Noise. As the spectral density of Brownian Noise is inversely proportional to f2 it has

more energy at lower frequencies, decreasing in power by 6 dB per octave. Its spectrum

is given by S(f) = S2
0/f

2. Brownian Noise has specific “damped” or “soft” sounding

properties compared to White and Pink Noise, such as a low roar resembling a waterfall

or heavy rainfall.
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3.3 Representation of Analog Sound Signals in Digital Comput-

ers

As stated in section 1.2, sound is essentially pressure variations within a specific medium.

Therefore, it suffices to measure its time variant sound pressure signal function s(t) to store

a full representation of any given sound. To record the analogue signal s(t) with any digital

recording device, it is sampled at some specific sampling rate fs, at equidistant positions

in time ts, so that fs = 1
ts

. The sampling rate or sampling frequency fs determines the

upper limit for recordable frequencies to be reconstructed properly, according to Nyquist-

Shannon theorem ([428]; [226]; [298]), which states:

If a function s(t) contains no frequencies higher than B hertz, it is completely

determined by giving its ordinates at a series of points spaced 1
2B seconds apart

Due to the bit resolution of employed data format, values at equidistant time positions ts

are quantized. The distortion of the signal, as a result of such a quantization, is audible as

quantization noise and the Signal-to-Noise ratio (SNR) of this quantization noise, measured

in decibel dB, is proportional to the number of bits per value. For instance, in recording

audio for an audio CD a sampling rate of 44100 Hz and a sample data format of 16 bit

integers are used, yielding a SNR of about 96 dB. The common representation of discrete

sound signals in the context of digital output devices is that of a series of sample frames

{s1, s1, ...}. A single frame si contains all quantized sample values for all available audio

channels. Such a multi-channel audio signal can then be stored frame by frame within a

computer’s memory in standard floating point number format.





Part II

A Modular Computer Vision Sonification

Model
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Chapter 4

Introduction

Figure 4.1: The Modular Computer Vision Sonification Model

Figure 4.1 gives an overview of the general concept of the Modular Computer Vision

Sonification Model, with the components sensorics - exploration - computation

- sonification, and a specific setup that implements this concept and that we present

and evaluate below. As the notation “computer vision” implies, we focus upon working

with visual data. More abstract models for the process of data sonification in general, as
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illustrated in figure 1.1, have already been formulized by others, including ([203]; [205]).

There has also been some emphasize on the importance and possibilities of interaction

in sonification ([217]; [386]; [204]; [218]). Designing such a modular computer vision

sonification model we face the following challenges:

• Our sonification has to be intuitive enough to allow a blind and especially congenital

blind person to quickly learn to understand the concept of colors and textures as

well as their audification to be able to recognize objects and interpret images. F

• Our system shall be able to analyze images that users may find in a photo collection,

on the internet, or captured with a still camera.

• We need to find appropriate visual descriptors that represent particular image val-

ues. They should be informative, general and stable under transformations such as

illumination and pose.

• We have to define a way to sonify these image descriptors. The goal would be

to convey as much information as possible without distracting interference of the

acoustical signal as well as to give an auditory perception that enables users to

develop an “intuition” about the visual data.

• We want to develop an “exploration paradigm”. Human vision has many aspects of

parallel processing. Since much of the visual pathway transmits information from

different parts of the visual field in parallel, and pre-attentive vision (pop-out effects)

indicates parallel processing on higher levels and in contrast, an auditory signal is

mostly a sequential data stream. This implies that it is hard to map an entire image

to a single and constant auditory signal. Therefore, we decided that users should

explore the image locally, using a direct finger based touch device.
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4.1 The Visual to Acoustical Processing Pipeline

Figure 4.1 gives a brief overview over the processing pipeline of the modular computer

vision sonification model. Stage one is the acquisition of a rasterized input image I. For

each color pixel I(x, y) of the input image I, every information that could be sonified

is pre-computed by a set of computer vision algorithms and stored in a data-structure

called augmented visual pixel v(x, y). Meanwhile, the user is kept up to date about

the program status using speech output.

During interactive exploration, based on the user’s current position (x, y) and his selection

which of the features he wants to be sonified, the appropriate elements from v(x, y) are

copied into an individual sonification descriptor s(x, y). A sequence of those sonification

descriptors for all pixels on the exploration trajectory are added to a queue structure

([249]; [85]). Such a queue structure makes sure that no pixels are skipped even for fast

motions. Furthermore, in part IV it ensures a smooth amplitude transition during color-

sound synthesis, as will be explained in section 12.1. In real-time or buffered with a slight

delay, the sonification module finally processes all sonification descriptors from the queue,

turning all elements of each s(x, y) into a complex and internally synthesized sound, that

we call audible pixel a(x, y).

I(x, y)→


vh(x, y)

vs(x, y)
...

→

sh(x, y)

ss(x, y)
...

→ Queue→ a(x, y) (4.1)





Chapter 5

Modules

5.1 Sensorics

The sensory module acquires the data to be sonified. The actual implementations of the

system presented in this thesis, in parts III and IV, rely on still images that are available

as files taken directly from a camera or the internet. The reason why we did not work with

video material is due to the fact that our system does not strive for applications in real-time

navigation. Nevertheless, we were able to implement our algorithms, including computer

vision and machine learning techniques, to nearly comply with real-time expectations.

Figure 5.1: The different input image data sets we have been working with in various parts

of the work. Left: Pictures we work with in part III were taken by ourselves. Middle:

Pictures from the COREL Database for Content based Image Retrieval [325]. Right:

Images taken from the PASCAL Visual Object Classes Challenge [135]. Both data sets

(middle and right) are employed in part IV

The image data sets we work with in part III have been created by us (see figure 5.1 (left)).

The image sizes are about 1920 × 1080 pixels. The data sets employed in part IV were

taken from the COREL Database for Content Based Image Retrieval [325] (see

figure 5.1 (middle)) with image sizes of 384×256 pixels, and the Visual Object Classes

Challenge (VOC) [135] (see figure 5.1 (right)), about 500× 400 pixels each.
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5.2 Computation

The computation module pre-computes the augmented visual pixels v(x, y) based on the

input image pixels I(x, y). The particular implementation of this module depends on

the specific requirements that an application has. In this thesis, we present two possible

applications and implementations:

• Low-Level Feature Image Analysis: For the task of “auditory object recogni-

tion” in part III, we focus on fundamental characteristics such as colors, roughness

and edges of various orientations.

• Multi-Level Image Analysis: To allow for more sophisticated usage, such as

“auditory image understanding” in part IV, computer vision and machine learning

algorithms are leveraged to derive and later sonify image information on many levels,

ranging from low-level color information to high-level object recognition.

Within both applications, the computation module is responsible to pre-process acquired

images in terms of filtering. Although sophisticated methods, such as edge preserving

filtering ([464]; [353]; [21]) are already applied, the additional employment of algorithms

for specific tasks, such as shadow removal ([406]; [146]; [145]; [518]) or specular high-

light removal ([457]; [253]; [431]) is relinquished. We deliberately refrain from incorpo-

rating those approaches, as they, despite the remarkable results of some of the referenced

approaches, tend to introduce artifacts or unwanted changes in color.
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5.3 Exploration

The exploration module enables the user to navigate within an image, consecutively gen-

erating various finger positions (x, y) that trigger the computation module to copy the

appropriate elements of augmented visual pixels v(x, y) into an individual sonification

descriptor s(x, y) each, and append it to the queue of sonification descriptors.

A Bas-Relief Inspired Exploration Paradigm

Human vision has many aspects of parallel processing: Much of the visual pathway in

transmits information from different parts of the visual field in parallel, and pre-attentive

vision (pop-out effects) indicates parallel processing on higher levels. In contrast, an

auditory signal mostly is a sequential data stream. This implies that it is hard to map an

entire image to a single and constant auditory signal. Therefore, we decided that users

should explore the image locally. Very much like a blind person who explores a Braille text

or a bas-relief image haptically with the tip of her finger, our users touch the image (via

a touch pad or touch screen) and experience the local properties of the image as auditory

feedback. In the analogy of a blind user exploring a bas-relief at a specific position, he

would gain additional information about the direct environment of that position due to the

thickness of his finger tip. Accordingly, we simulate this characteristic by taking a specific

area around each pixel position (x, y) into account during the computation of augmented

visual pixels v(x, y).

An Evaluation of Interface Technologies

Navigating within an image requires an appropriate interface. The computer-mouse, which

is popular among users with normal vision, drops out as it does not deliver any absolute

coordinates, which are necessary for a blind user to know the position in the image.

Therefore, we worked with several interfaces to find out what suits best to a blind person.

• Pen-Tablet: The pen tablet interaction method (see figure 5.2) functioned far

better than the mouse, as it can be set to absolute coordinates. However, it turned

out, that a direct touch helps to orient within the flat image, as analogous to moving

the tip of the finger along a relief.

• Touch Screen: For training and several user studies in chapters 9 and 13 we utilized

a touch screen device (see figure 5.2 (right)) that allows the user to interact directly

with the image plane without seeing the image. The image is rendered within the

midst of the screen. The given absolute positioning and direct touch experience

proved very successful.
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• Finger Tracking: We experimented with cheaper interaction method opposed to

the touch screen, as it might not make sense for a blind person to buy a touchable

screen only to serve as an interface and not have any further use of it. The ex-

perimental system is based on a camera-based finger position tracking using on the

ARToolKitPlus pose tracking system [496]. First, a camera is to acquire the visual

data to be explored. After pre-computation the aqcuired image, the same camera

is utilized to detect a marker (see figure 5.3 (left)), attached to the user’s fingernail

(see figure 5.3 (middle)), which is thereafter calculated back to estimate the fingers

position within the image (see figure 5.3 (right)).

Figure 5.2: Left: Pen to tablet interface with absolute coordinates, Right: Touch screen

working directly on the acquired image

Figure 5.3: Left: A typical “marker” to be tracked. Middle: Finger position (x, y) is

tracked using a marker system and estimated within the image. Right: The system in

process
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Figure 5.4: A common notebook’s touch pad switched to absolute coordinates. Left: Image

rendered in the center of the touch pad. Right: touch pad mapped to the region of the

image

The Touch pad

Common notebooks are equipped with regular touch pads. Those usually provide only

relative positioning, similar to a computer-mouse, which is why they are not used by vi-

sually impaired persons and why they are generally inappropriate to be used for image

exploration. If, however, absolute coordinate positioning could be enabled, a touch pad

might be an appropriate interface after all.

Accessing absolute finger positions from a touch pad directly within an application is not

possible in general. Fortunately, those machines, equipped with a Synaptics touch pad,

allow to access these absolute coordinates, based on their System Development Kit (SDK)

[453]. As a lot of modern notebook computers are equipped with touch pads of this man-

ufacturer, this interface might be an appropriate alternative to the touch screen.

We propose to render the image within the center of the touch pad, as visualized in figure

5.4 (left). An alternative would be to map the touch pad to the region of the image and is

illustrated in figure 5.4 (right). Although this method often provides a higher spatial (ex-

plorative) resolution of the actual image, it comes with the significant drawback of possible

distortions of the original image’s geometry. For instance, the rightmost picture in figure

5.4 shows the “distortion” of the upright image. So, upright structures are compressed.

Note that our considerations concerning the usage of a regular Notebook’s touchpad are

only theoretical, as our available test machine, unfortunately, was not equipped with a

Synaptics touch pad, and thus, we were not able to perform experimental tests.

However, regular touchpads have a significant drawback, which is, that their overall area,

which can be used to represent an image, is extremely small.
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Tablet PCs

Due to our experiments, modern tablet PCs seem to be the most suitable device for using

our application concerning usability, mobility and performance, as they combine immense

computational power with an appropriate screen size and high class touchscreen technology

and can be taken along almost like any mobile phone.

Thus, as discussed in chapter 14, our system is used on a Microsoft 7 based Samsung

Slate 7 tablet PC (figure 5.5) which is sold for about 500 Euro and allows for traditional

third-party applications to run, even sophisticated 3D engines, such as the Unreal engine

3 [133]. Its integrated front-camera and touch screen make it ideally suited to be taken

along by visually impaired people on, e.g., hiking tours, to grasp, especially, scenes that

are “further away”.

Figure 5.5: Left: The Samsung Slate 7 tablet PC. The Samsung Slate 7 running the Unreal

3D graphics engine [133]
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5.4 Sonification

The sonification module sequentially processes all sonification descriptors s(x, y) from the

queue, turning all its elements into a complex sound, the audible pixel a(x, y) , as opposed

to the augmented visual pixel v(x, y). Our sonification techniques in both part III and

IV, are, therefore, a realization of Parameter Mapping Sonification, as presented in section

1.3.

A great challenge with sonification is to avoid conflicting signals and information overload,

as well as the transformation of quasi-static two dimensional image data into a dynamic

audio stream. Though humans can distinguish many attributes such as pitch, volume,

amplitude envelope, timbre, roughness, vibrato or tremolo as discussed in section 2.1, it is

still impossible to transport all potential descriptors of visual information simultaneously.

Thus, our actual implementation of this module is driven by 3 demands:

• Real-Time Exploration Driven Sound Synthesis: We want the user, as previ-

ously described, to fully interact with the visual data in real-time and to be able to

hear what is currently under his finger, unlike approaches that sonify a whole image

sequentially, e.g. by scanning its pixels row by row as in [524].

• Non-Conflicting Simultaneous Signals: We want a method to simultaneously

sonify features such as color and multi-level image features, instead of focusing all

acoustical attributes on a single feature such as the progression of edges.

• Aesthetics: The sonification model should meet aesthetic demands that are impor-

tant for comfortable and extensive usage (as discussed in section 1.1).

In this thesis we present two slightly varying approaches to meet those demands:

• Color & Low-Level Feature Sonification: For the task of auditory object recog-

nition in part III, the focus is on the sonification of fundamental characteristics, such

as colors, roughness and edges of various orientations. MIDI instruments are applied

and combined to express those features.

• Multi-Level Sonification: For the task of auditory image understanding in part

IV, image information on many levels, ranging from low-level color information to

high-level object recognition is sonified. To accomplish, a fundamental sound syn-

thesis combination of elementary sound characteristics is performed.
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A Queue of Sonification Descriptors

To build up a queue of sonification descriptors s(x, y) that consecutively adds up all pixels

on the exploration trajectory, it is necessary to ensure no pixel to be skipped even for fast

motions. As in depth discussed in section 14.4, it will be further crucial in part IV for par-

allel real-time exploration and sonification in general to allow the system to continuously

write and process variables at the same time. Other than in part III, where such real-time

parallelism is handled by the external MIDI synthesizer, it has to be implemented from

scratch in part IV.



Part III

Auditory Object Recognition
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Chapter 6

Background & Objectives

The system presented in this part is mostly dedicated to scrutinize the possibilities and

limitations of recognizing objects through sound. To provide a fundamental basis for such

an “auditory object recognition”, in this part, we refrain from employing complicated

object recognition algorithms. We rather extract very fundamental image characteristics,

such as edges of various orientations, called orientation maps, as well as a measure of

roughness which are then sonified simultaneously. Figure 6.1 gives an overview of the

specific implementations of the computation (see chapter 7) and sonification module (see

chapter 8) of our modular computer vision sonification model, proposed in part II, that

need to be performed. Beside low-level image characteristics such as orientation maps or

roughness, in chapter 8, a color sonification concept is proposed, which will be refined in

part IV of the thesis. The sonification of colors is important to us for 3 reasons:

• Understanding Colors: Color sonification can be used to offer a way to congenital

blind people, who have never had any encounter with colors, to understand colors

and to be able to communicate with normal sighted people about such fundamental

quality of human vision.

• Object Recognition: In illuminated environments, colors are crucial in the process

of detecting objects.

• The Art of Color: Color itself, without any useful purposes such as enhancing ob-

ject recognition capabilities, can be seen as a fascinating entity of life, which is worth

to be conveyed to the blind, using alternative ways. In the words of psychologist

Ulrich Beer ([26]; [300]):

Seldom, surely, is the psychological part of an appearance in nature so great

as it is in the case of color. No one can encounter it and stay neutral. We

are immediately, instinctively, and emotionally moved. We have sympa-

thy or antipathy, pleasure or disapproval within us as soon as we perceive

colors.
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Figure 6.1: Implementations of the computation and sonification modules of the Modular

Computer Vision Sonification Model for the task of auditory object recognition

The proposed approach proves to be intuitive enough not only to be understood and ap-

plied by congenital blind, but also to help convey the concept of colors and color mixing

itself (see chapter 9). Furthermore, apart from object recognition, the sonification of the

orientation of edges gave hope to be of great benefit to develop the spacial understanding,

as discussed in section 1.5, of congenital blind persons.

Training and testing with the proposed system were performed with two groups of partici-

pants, as described in detail in chapter 9. First, a congenitally blind, 54 year old academic

who had acquired a geometric understanding and spatial sense throughout his life due to

special training. Then, we had a group of congenitally blind, 14-year-old teenagers, living

at a local residential school for visually impaired4, work with our system. Unlike the adult

participant, they had little geometric understanding and sense of space. We performed an

experimental evaluation of our system to measure their progress and compare it with the

results of the adult participant.

The hope is that our system can not only support them in everyday life, but also help

them to develop cognitive abilities in geometry and spatial orientation5.

4Internat des Rheinischen Blindenfürsorgeverein 1886 Düren
5The work on “auditory object recognition” has been published in [18]
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Low-Level Feature Image Analysis

7.1 Color Information & Image Pre-Processing

Different color systems with several motivational backgrounds are discussed in appendix

B.2. The RGB model [286] uses additive mixtures of red, green and blue. It is motivated

by the human eye receptors [174] (see appendix B.1) and applied, e.g. in many display

devices. However, providing a non-visual access to colors, which is the case in this the-

sis, requires a more intuitive system, especially for congenital blind people. This is why

we prefer the HSL model ([286]; [441]), where each color value is described by hue h,

saturation s and lightness l.

Edge Preserving Filtering

What makes color sonification difficult is the fact that color values often change rapidly

from pixel to pixel even if there are only minute variations in textures and materials. Of-

ten, the reason is image noise produced by the camera. It is obvious that such changes

clearly overburden a blind user. Therefore we smooth the image patch around the pixel po-

sition (x, y) based on bilateral filtering ([464]; [353]; [125]; [21]). Other than Gaussian

filtering [222], bilateral filtering not only smoothes images but also preserves dominant

edges, by means of non-linear combinations of nearby image values. Figure 7.1 shows

an example of the data set we will be working in this part. To attain such a high noise

reduction (figure 7.1 (right)), we perform bilateral filtering based on [464], provided by the

OpenCV library ([49]; [273]), on the input image (figure 7.1 (left)) in several iterations.

Note that we transform the colors of the RGB input image I into CIELab space [286] for

bilateral filtering to avoid specific color distortions, usually caused by gaussian filtering

techniques [464]. See appendix A.1 for a more in-depth explanation of bilateral filtering

and the mentioned risk of color distortions. Subsequently, the bilateral filtered image Ibf

is converted to HSL color space, yielding Ibf/HSL.
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Figure 7.1: Left: Input image I (carrot, orange), Right: Bilateral filtered image Ibf

Color attributes of each pixel Ibf/HSL(x, y) are then stored within an augmented visual

pixel v(x, y):

vh(x, y) = hbf (x, y)

vs(x, y) = sbf (x, y)

vl(x, y) = lbf (x, y)
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Edge Detection

Edge detection is performed on the lightness channel of a spatial-resolution reduced version

I↓2/bf/HSL of Ibf/HSL, as the alternative of converting the image to gray-scale might

involve the risk of loosing certain potential edge information. Spatial reduction is based on

Gaussian image pyramids ([64]; [63]; [12]; [222]) (see appendix A.4). Gabor wavelet

transform ([156]; [100]; [99]), described in appendix A.3, relies on Gabor wavelets

ψϕ,ν(z) ([535]; [534]) of the form:

ψϕ,ν(z) = gϕ,ν,σ(z)
[
ei kϕ,ν (z) − e−

σ2

2

]
(7.1)

with the Gaussian envelope:

gϕ,ν,σ(z) =
||kϕ,ν ||2

σ2
e−
||kϕ,ν ||2 ||(z)||2

2 σ2 (7.2)

where the parameters ϕ and ν define the orientation and scale of the Gabor kernel and

σ is the standard deviation of the Gaussian window in the kernel, i.e. the size of the

window. z = (x, y) indicates a point with x, the horizontal coordinate and y, the vertical

coordinate. kϕ,ν is the wave vector, combining orientations and the spatial frequency in

the frequency domain. Gabor wavelets are widely used in computer vision ([535]; [534];

[22]; [282]; [123]; [124]) because they provide an analysis of spatial frequency that is local,

in contrast to the global analysis in a Fourier transform ([48]; [222]). The applied

version of Gabor wavelet transform is provided by [534]. As we deal with rather coarse

and big object shapes within this part, for edge extraction, we use of Gabor wavelets with

a medium sized kernel (ν = 1 and σ = 2π). Thus, Gabor wavelet transform is applied, in

32 orientations ϕ from −90◦ to 90◦ with an angular difference of 5.625◦. An alternative

would be to use a large kernel on the original image. However, advantages of the pyramid

approach are that small scale variations in the image are filtered as well as computational

complexity for filtering and further processing is reduced by a factor of 4.



7.1. COLOR INFORMATION & IMAGE PRE-PROCESSING 71

Subsequently, at each image value (x, y), the 32 responses are evaluated creating a final

gradient-orientation image I↓2/GO, see figure 7.2, that stores the orientation of the filter

with the highest filter response at each pixel position (x, y).

Figure 7.2: Edge orientations coded in gray-scale from white (−90◦) to black (90◦)

The evaluation procedure is inspired by the cascading of several Simple cells to form

Complex cells ([174]; [68]; [215]) in the human visual cortex, as discussed in appendix

B.1.
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7.2 Simulated Surround Suppression Based on Orientation Maps

The rationale behind what we call orientation maps is to create something like an

acoustical bas-relief that allows the user to hear what is under his fingers, instead of

feeling it, along with the proposed bas-relief inspired exploration paradigm, discussed

in section 5.3. Orientation maps represent dominant structures within the image, other

than roughness. We consider dominant structures single or repetitive sets of significant

edges of the same orientation and a particular direction of propagation. Our method is

based on the observation that standard edge detectors such as the Canny algorithm [67]

produce multiple edges and spurious, misleading signals that confuse the user. Therefore,

the calculation of orientation maps involves filtering important from distracting structures,

which may be motivated biologically from the surround suppression in the human visual

system that improves contour detection ([229]; [439]; [339]) as described in appendix B.1.

Moreover, a fundamental idea of orientation maps is that the user should not have to follow

contours of objects or structures to estimate their silhouette, which would be tedious and

slow. To make it easier for users to find contours, we distribute them around the edge

by a kind of “diffusion” approach. Such an approach also connects nearby repetitive line

patterns, again making it easier to recognize an object’s shape even in between the edges.
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Computation of Orientation Maps

Computing orientation maps Oθ starts with quantification of the gradient-orientation im-

age I↓2/GO so that each of the 32 orientations ϕ is mapped to the next of 8 orientations:

θ = {0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦} (7.3)

Each θ is represented in an individual gray scale image Iθ where

Iθ(x, y) =

{
255, if (x, y) ∈ edge of orientation θ

0, otherwise

The next step is the computation of a “diffusion” of edges. Therefore, we calculate for

each image position (x, y) the variance σ2(x, y) ([458], [222]) of values Iθ on its local

neighborhood on each of the 8 images Iθ, to obtain Oθ:

Oθ(x, y) = σ2(x, y) =

w
2∑

i=−w
2

w
2∑

j=−w
2

(Iθ(x+ i, y + j)− µ(x, y))2 (7.4)

with

µ(x, y) =
1

w2

w
2∑

i=−w
2

w
2∑

j=−w
2

Iθ(x+ i, y + j) (7.5)

where µ(x, y) is the mean and w the size of the local neighborhood. Orientation maps Oθ

for the carrot and orange are shown in figure 7.3. Each coherent patch of gray scale pixels,

on each orientation map Oθ is referred to as orientation patch V θi,i. As this diffusion

approach might cause overlap in image positions (x, y) of different oriented orientation

patches, we now compare orientation patches of different orientations θ and emphasize

dominating ones while suppressing insignificant and therefore distracting others.

Figure 7.3: Orientation maps for the carrot image (left) and the orange image (right)
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A Topological Representation of Orientation Patches

Orientation patches V θi,i are considered as dominant if they have a certain size, i.e. the

number of their pixels positions NV θi,i
. To formulate an iterative algorithm that is capable

to keep dominant orientation patches while suppressing distracting ones, we define 4 cases,

the algorithm will use for an iterative case-by-case analysis:

• Case 1: If an image area is dominated by 2 very big orientation patches V θi,i

and V θj ,j , with θi 6= θj , of almost equal sizes, both above a certain threshold

(NV θi,i
, NV θj ,j

> Nthres), and such patches differ in orientation by more than 22.5◦,

they are retained as “coexisting”. (This might be the case for, e.g., a rectangular

grid or a wall of bricks where two orthogonal orientations are permanently present

and form the particular textures of the image region.)

• Case 2: If the image area is dominated by 2 orientation patches V θi,i and V θj ,j , with

NV θi,i
, NV θj ,j

> Nthres, having an orientation difference of only ‖θi − θj‖ = 22.5◦,

which is the smallest possible difference, these patches are combined into a single

orientation patch by merging the smaller one into the bigger one. Each pixel of

the smaller orientation patch is assigned to the orientation map of the bigger one.

Thereafter, the smaller orientation patch is erased from its orientation map.

• Case 3: If the image area contains a large orientation patch V θi,i, with NV θi,i
>

Nthres, and further patches, e. g., (V θj ,j ,V θk,k,..), with NV θj ,j
, NV θk,k

, ... < Nthres,

such smaller patches are either (a) merged into the large patch V θi,i, as described

in Case 2, or (b) deleted from their corresponding orientation map (e.g. Oθj ,Oθk),

depending on whether their particular centers lie within V θi,i.

• Case 4: If the image area contains several orientation patches, withNV θi,i
, NV θj ,j

, ... <

Nthres, they are merged as in Case 2, if ‖θi − θj‖ = 22.5◦ and both their center po-

sitions overlap. Otherwise, they coexist.
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Each iteration of the algorithm starts with Step 1, i.e. building a topological structure

of all overlapping orientation patches by the following procedure:

• First, we apply a connected-component analysis ([451]; [109]) on each orientation

map Oθ that retrieves a sequence of all contour pixels as well as all enclosed image

positions found within the map. Each contour, as well as the enclosed pixel positions,

belongs to an orientation patch V θ,i. Each V θ,i is represented as a single image, as

illustrated in figure 7.5 (middle).

• So far, for each V θ,i we have its size, i.e. the number of pixel positions NV θ,i
, and can

now calculate its center position CV θ,i
, known as center of gravity ([222], [458]).

• Starting with a particular V θ,i, we now check pixel by pixel for overlaps with each

orientation patch having a different orientation. In case of overlapping, we compute

the number of mutual pixel positions MV θ,i,V θ,j
, with θi 6= θj , and whether CV θ,i

of

V θ,i lies within V θ,j .

The results can be modeled using graph theory ([73]; [473]; [85]):

• Overlapping orientation patches can be modeled as an undirected graph Go =

{V,E}, where each knot V represents an orientation patch V θi,i and edges E rep-

resent the existence of an overlap between pairs of orientation patches V θ,i,V θ,j .

MV θ,i,V θ,j
denotes the weight w of the edge.

• A second graph Gc is set up where the edges represent the existence of an overlap

MV θ,i,V θ,j
between pairs of orientation patches where the center CV θi,i

and / or

CV θj ,j
lies inside the related orientation patch, as visualized in figure 7.5 (middle).

In this case, connections may be only in one direction, which is why Gc would be

defined as a directed graph. Both graphs, Go and Gc, for all orientation patches

of the carrot input image, are illustrated in figure 7.4.
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Figure 7.4: Left: Undirected Graph Go, where knots V represent all orientation patches

and edges E represent the existence of an overlap between a pair of different oriented

orientation patches V θi,i. Right: Directed graph Gc, set up to represent only overlaps,

where at least the center c of one of the two orientation patches involved is found inside

the related orientation patch. Sizes of V represent sizes of orientation patches. Thickness

of E denote the number of overlapping pixel positions

Based on the topological structure represented by Go and Gc, the algorithm, in Step 2,

starts at an arbitrary knot of Go checking with directly connected knots (i.e. orientation

patches V θ,i) which of the 4 previously mentioned cases fit.

Note that the algorithm automatically aborts execution of Step 2 and switches back to

Step 1 as soon as any of the 4 cases could be applied because it implies a possible change in

the topological structure of the graphs, representing the orientation maps. The algorithm

finally stops when it ran through all knots of Go without any of the cases applied. The

general work-flow of the whole procedure is summarized in algorithm 1.
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Algorithm 1 Compute final orientation patches V θi,i & orientation maps Oθ

repeat

STEP 1 {Update Topological Structure}

for all Oθ do

compute V θi,i, NV θi,i
, CV θi,i

end for

for all V θi,i do

V (Go)← V θi,i; V (Gc)← V θi,i

for all V θj ,j do

if (θi 6= θj) ∧ (MV θi,i
,V θj ,j

> 0) then

E(Go)← (V θi,i,V θj ,j); w = MV θi,i
,V θj ,j

if CV θi,i
∈ V θ,j then

E(Gc)← (V θi,i,V θj ,j)

end if

else

proceed with next V θj ,j

end if

end for

end for

STEP 2 {Case-by-Case Analysis}

for all V (Go) do

for all V ∈ neighbors of V (Go) do

for all Casei ∈ {1,..,4} do

check criteria Casei

if if criteria fulfilled then

apply Casei; jump to STEP 1

end if

end for

end for

end for

until no case applied during STEP 2
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To give an illustrative example, for the carrot input image (see figure 7.1 (left)), there

would be 5 initial orientation patches on the 3 orientation maps (see figure 7.3(left))

whose interrelations can be described in Step 1 based on Go and Gc (see figure 7.4). Step

2 is visualized in figure 7.5. V 0◦,1 and,V 0◦,2 would merge into V 157.5◦,1 applying Case 3

(a) and V 0◦,3 would be deleted, applying Case 3 (b) (see figure 7.5 (middle)). Hence, the

final orientation maps O0◦ , O135◦ and O157.5◦ are shown (see figure 7.5 (right)).

Figure 7.5: Left: Split initial orientation maps Oθ. Middle: Arrows denote the center

positions of V 0◦,1, V 0◦,2 and V 0◦,3 to lie within V 157.5◦,1. The cross denotes the center of

V 135◦,1 to nots lie within V 157.5◦,1. (Note that for illustrative reasons, only a selection of

arrows has been visualized.) Right: Final orientation maps Oθ

In contrast, the Graph Go based on the orientation maps of the orange image (see figure

7.3 (right)) result in a ring shaped connected structure where every knot is about the same

size. Thus, such orientation patches would be left as they are, according to Case 4 which

intuitively makes sense, as a spherical object like an orange does not have any significant

propagated orientation.

Eventually, we can store the shares of all eight orientation maps Oθ at a particular pixel

position (x, y) in its corresponding augmented visual pixel v(x, y):

vOθ∈{0◦,22.5◦,45◦,67.5◦,90◦,112.5◦,135◦,157.5◦}(x, y) = Oθ∈{0◦,22.5◦,45◦,67.5◦,90◦,112.5◦,135◦,157.5◦}(x, y)
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7.3 Textural Roughness

Beside the rather large salient structures such as orientation maps, we want to capture

further information that describes small intensity variations within the image. Such smaller

variations are generally described as image texture. Although it has been proven difficult

to formulate a precise definition, Lew [286] summarizes two general properties:

• Within a texture there is significant variation in intensity levels between nearby pixels;

that is, at the limit of resolution, there is non-homogeneity.

• Texture is a homogeneous property at some spatial scale larger than the resolution of

the image.

Due to such a definition, on a larger scale, even patterns of orientation maps might form

some sort of texture, which is why Lew [286] defines those larger patterns as macro-

textures. However, we now want to extract information about rather small intensity

variations and patterns, denoted in [286] as micro-textures. Tamura et al. [456] and

Laws [277] identify various perceived qualities, texture, in general can be described by,

such as “uniformity”, “density”, “coarseness”, “roughness”, “regularity”, “linearity”, “di-

rectionality”, “direction”, “frequency” and “phase”, some of which dependent on one

another. We decide to extract and sonify roughness of image regions, as a general and

characteristic property of potential objects within an image. Because of these different

perceptions inherent in texture there is a variety of approaches to analyze various aspects

of texture ([101]; [357]; [502]; [474]; [190]; [120]; [445]; [286] [458]; [222]; [358]; [484]). Lew

[286] describes three different groups of texture measures:

• Statistical Texture Measures: Statistical methods analyze the spatial distribu-

tion of intensity levels within an image by computing local features at each pixel

position and deriving a set of statistics from the distributions of such local features

([222]; [458]; [445]). The rationale is that the spatial distribution of intensity values

is one of the most distinct qualities of texture. Depending on the number of pixels

defining each local feature, statistical methods can be further classified into first

order statistics based approaches ([222]; [458]; [445]) as well as second order

statistics or higher order statistics based approaches ([222]; [191]; [190]; [167];

[445]; [484]). First-order statistic based approaches only capture properties, such

as mean or variance, of individual pixels, ignoring any potential spatial interactions

between image pixels. In contrast, Second- and Higher-order statistics based ap-

proaches estimate characteristics of two or more pixel values occurring at specific

locations relative to each other.
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• Stochastic Texture Modeling: Due to this approach, texture is considered the

realization of a stochastic process. Thus, a texture analysis is performed by defining a

“model” and reproducing the stochastic process ([187]; [120]; [158]). The parameters

affiliated with the model can then serve as features for ,e.g., texture classification.

A major drawback of stochastic texture modeling is that many natural textures do

not conform the restrictions of a specific model defined.

• Structural Texture Measures: This approach considers textures to be seen as

two dimensional patterns that are formed by sets of sub-patterns that have been

arranged due to specific rules. These rules allow for both, varying or deterministic

shapes ([190]; [187]).

Gradient Based Entropy as a Local Roughness Measure

To capture the textural roughness of regions in the image, we define a measure based on

the concept of Entropy ([334]; [54]; [87]), first developed in Classical Thermodynamics

[79]. In image texture analysis, it is defined by Haralick’s texture measures in ([191];

[190]). The general approach would ,therefore, belong to the group of Statistical Texture

Measures. Our approach, however, slightly alters the original implementation of entropy

for image analysis, as our method does not work with intensity levels but image gradients.

This is due to a more robust differentiation of rough from smooth regions. Thus, Entropy is

computed directly from a gradient-orientation image IGO,texture, that stores the orientation

of the filter with the highest filter response at each pixel position (x, y) as a result of the

Gabor Wavelet Transform applied to the lightness channel of IHSL. IGO,texture is received

exactly as discussed in section 7.1, except the Gabor Wavelet Transform is applied to the

original full-sized and non-smoothed input image to preserve roughness information.

Entropy, generally measures the disorder within a physical system, and is used in various

scientific fields. Having zero entropy means to have maximum information about the state

of a system [334]. In information theory, it is formulated as ([427]; [429]):

H = −
N∑
i=1

pi log pi with pi =
Ni

N
(7.6)
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We calculate the Entropy H(x, y) for each pixel position (x, y) based on the Gabor trans-

form response within a local quadratic neighborhood of 11× 11 pixels. The variable pi is

the probability for a certain orientation ϕi estimated from its occurrence Ni divided by

the total number N of all orientations ϕ that occur within the window, N = 32 in our

case. H(x, y) is further normalized to 0− 1:

H ′(x, y) =
H(x, y)

Hmax
with Hmax = −log(

1

N
) (7.7)

, where Hmax would be the maximum entropy. The rationale behind is, an increase in

roughness (from isotropic to an-isotropic) is represented in an increase in entropy. A

smooth area is expressed as zero entropy.

Finally, for all pixel positions (x, y) detected to lie on any found edge in the up-scaled

(to full-size version of the gradient-orientation image IGO, as computed in section 7.1),

entropy H ′(x, y) is set to zero, so that

H ′′(x, y) =

{
0, if (x,y) ∈ edge

H ′(x, y), otherwise

This is done to not confuse salient edge regions with isotropic rough regions. Finally,

H ′′(x, y) is stored within the augmented visual pixel v(x, y):

vH(x, y) = H ′′(x, y)

Note that this texture measure does not discriminate any specific orientation. A major

drawback of this approach is the computation redundancy, as for neighboring pixels al-

most identical computations are performed. More sophisticated approaches to roughness

computation will, therefore, be discussed in part IV of the thesis in section 11.3.

Figure 7.6: Left: Original Image. Right: The entropy calculated per pixel H(x, y).

Intensity coded from 0− 1 in grayscale
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7.4 Shape Extraction of Basic Objects using Graph Cuts

The computation of especially orientation maps is rather complex depending on the num-

ber of found orientation patches, and makes foremost sense on a salient coherent object,

rather than a complete image. Hence, we incorporate state of the art segmentation algo-

rithms into our system, which are able to separate the image into regions that are likely

to show different real life objects.

Figure 7.7: A slightly modified version of the realization of the Modular Computer Vision

Sonification Model given in chapter 6. If the user hits the red “buzzer”, the segmentation

process is initiated starting from his current (x, y) position

Figure 7.7 shows the slightly modified version of Modular Computer Vision Sonification

Model implementation, given in chapter 6. Thus, the user starts exploring the image

using pre-computed colors and roughness values only. As the user moves over a, e.g. color

coherent area which he considers an object, he initiates the segmentation procedure hitting

an external additional “buzzer” button. First, based on the users current position (x, y),

we apply a seeded region growing algorithm ([397]; [222]) that iteratively adds pixels

to an area around (x, y), if their color distance to the average color of the region is below

a threshold, using (x, y) as an initial seed point. The color distances are calculated as

the Euclidean distance ‖.‖ in CIELab [286] color space. This region growing is due to

gather enough pixel data which can then be marked as “definite foreground”, all others

as “probably background”, and both groups serve as first segmentation estimation and as

input to an foreground extraction algorithm based on Graph Cuts ([401]; [47]; [254]; [45])
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which then calculates the final segmentation. For out application we use an implementation

based on [401] provided by the OpenCV library ([49]; [273]). Finally, the rest of the image

is set to “black” and orientation maps are computed on the segmented area only. Figure

7.8 shows some exemplary results of the segmentation, as well as the responses of the

Gabor wavelet transform applied to such segmentations. The whole segmentation process

takes approximately 4.5 seconds and can, therefore, be considered for interactive usage.

Note that the same external “buzzer” can be used to switch back to exploring the original

image, again based on colors and roughness.

Figure 7.8: Examplary results of the image segmentation and subsequent responses of the

Gabor wavelet transform applied



Chapter 8

Color and Low-Level Feature Sonification

8.1 Audible Color Space

As mentioned in chapter 4, color sonification is meant to be intuitive enough not only

to be understood and applied by congenital blind, but also to convey, e.g., the concept

of colors and color mixing itself. Thus, the approach proposed in this section maps each

attribute of a particular color within the HSL color space, i.e., hue h, saturation s and

lightness l to an intuitive counterpart within the sound space. Hence, we form some sort

of “audible color space”.

Throughout time, scientists and artists have been concerned with the correspondences

between color and sound and numerous studies on the subject have been written ([66];

[342]; [23]; [350]; [163]). Already, in his book “De Sensu et Sensibili” [485], Aristotle

assumes that the aesthetics of color groupings is governed by the same rules that govern

musical consonances. Newton, in his famous work “Opticks” [336], compares light, which

according to its wavelength excite the different sensations of color, with the air vibrations,

which according to their length also excite the sensations of the different sounds. On this

basis, a comparison is usually drawn between the chromatic scale of sounds and the hue

circle. In this sense, different proposals have been developed by Newton [336], Munsell [329]

and others ([221]; [366]). Goethe [494], however, denies any direct comparison between

sound and color, still maintaining that both phenomena can be referred to some “superior

formula”. Some researches have expanded and refined the comparison, introduced by

Newton, considering other variables of sound and color, too. Giannakis [163] maps color

luminosity levels to octaves. Caivano [66] relates luminosity of color with loudness of

sound as well as saturation of color with timbre of sound. Barrass [23] cites Padgham

[342] and Caivano [66] to be considered the first to model a full acoustical representation

of the entire color space. The auditory-visual associations they proposed are summarized

in table 8.1.

84
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Hue Saturation lightness

Padgham [342] Formants Timbre Loudness

Caivano [66] Pitch Timbre Loudness

Barass [23] Timbre Brightness Pitch

Table 8.1: Attempts to model sound using colour dimensions, based on the HSL color

space representation

However, there are some noticeable differences between hue and pitch. Perhaps the most-

striking is the one pointed out by Helmholtz [495], that the auditory range comprises

around ten octaves while the visible range hardly covers a single “octave”. Helmholtz, fur-

thermore, notes other differences between audition and vision in [495]. These observation

lead him to the conclusion to abandon color hue - pitch analogies in general.

Complementary Instruments Inspired by Hering’s Theory of Opponent Colors

The concept we propose represents each color value in the HSL model as a mixture of

instruments, based on General MIDI (GM), inspired by Herings theory of Opponent

colors ([202]; [174]; [179]). This theory could be affirmed to play a significant role in the

processing of incoming color stimuli from the retina [237], as discussed in appendix B.1.

The rationale behind using GM instruments is that visual impaired people may find this

a comfortable way to get perceptual access to colors and textures.

In principle, we use what we call complementary instruments to represent the op-

ponent color pairs red-green and blue-yellow, and later combine adjacent instruments to

represent color mixtures. As no mixture of a pair of opponent colors exists [174], there

will be no mixture of a pair of complementary instruments in our sonification model ei-

ther. Furthermore, we apply a musical scale to represent the luminance scale from black

to white. Complementary instruments, therefore, must guarantee certain characteristics:

• Stability: Complementary instruments must possess a relatively stable frequency

spectrum over time. That means that in terms of Attack - Decay -Sustain -

Release (ADSR) amplitude envelope [114], as illustrated in figure 8.1 (left),

they should have a short Attack- and Decay-, an infinite Sustain- and a short Release-

phase.

• Separability: It ensures that instruments, assigned to adjacent colors can be clearly

distinguished even when they are played as mixtures. This criterion does not need

to be met by complementary instruments.

• Uniqueness: Even complementary instruments need to be unique enough to be

associated with its particular color.
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• Non-Interference: Finally, we want to make sure that mixtures of instruments

do not sound like other, new instruments. To avoid mutual masking of instruments,

their frequency spectra should have narrow bandwidths (i.e. little noise components).

Figure 8.1 (right) shows our final selection of instruments: choir (red), bagpipe (yellow),

organ (green), violins (blue) and flute (white, black, gray-scale). However, working with

an external MIDI synthesizer, as presented in section 8.4, the software allows the user to

assign own selection of preferred instruments. The specific role of gray-scale, black and

white with only one instrument will be explained below.

Figure 8.1: Left: An illustration of an ADSR amplitude envelope. Right: Our selection of

complementary instruments to represent pairs of opponent colors. choir (red), bagpipe

(yellow), organ (green), violins (blue) and flute (white, black, gray-scale)
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Sonification of the HSL Color Space

Based on our idea to assign complementary instruments to certain hues, we sonify in-

termediate color tones as mixtures of two adjacent instruments, and represent the color

mixture ratio by their partial volume. Hence, the share of each instrument is controlled

by individually computed parameters, which we call volume shapes ϑ ∈ 0, .., 1. The fade

of saturation s, moving inward to the center of figure 8.2 (left), is considered as a general

absolute decrease in volumes of any two color instruments playing simultaneously, while

their relative volume ratio is maintained.

Figure 8.2: Left: Complementary instruments within the HSL model at l = 127 (50%).

Right: Lightness l ∈ 0, 1, , 255 and musical scale each l is assigned to. Brown notes are the

added thirds

Gray-scale and Lightness

Below a certain threshold smin(l), we regard the color as gray and sonify it using a single

instrument, the flute at a constant volume. Furthermore, a color is also considered to be

black or white, if its lightness l is below or above a specific threshold, l < lmin and l > lmax,

respectively. In general, gray is not considered a color, and the HSL model assigns it an

arbitrary hue h = −1 and a saturation s = 0. Still, we found it helpful to use a separate

instrument for gray, which partly reflects the fact that many languages have a separate

name for it.

Note that the minimum saturation smin(l) differs, depending on the specific lightness value

l, due to the properties of the HSL model, which is often deformed to be illustrated in

a cylindrical instead of a double cone representation, as illustrated and discussed in ap-

pendix B.2. Thus, as smin(l) is approximately independent of h we can first select a few

representative lightness positions l as well as their corresponding smin(l) values and use

those pairs as control points to fit a Catmull-Rom spline ([139]; [138]) through them.
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This approach, as described in ([16]; [17]), yields a value smin for every l that can be used

as the minimum threshold for that l. Second, we can build up a solid of revolution

([193]; [247]) structure (see appendix A.8), rotating the smin(l)-curve around the l-axis.

In contrast to smin(l), within this 3D structure ϑgray(h, s, l) every entry would be set

to either 1 or 0, depending whether a specific triplet (h, s, l) would lie within smin(l) or

beyond and further denoting whether the flute, representing gray, is to play or be muted.

ϑgray(h, s, l) would have an additional entry referring to h = −1 being ϑgray(−1, s, l) = 1.

The lightness l of gray or any other (combination of) colors is sonified as the pitch of

the tone, which might be an intuitive acoustical representation to effectively recognize

significant changes in lightness. Pitch further allows to define some intuitive “borders”

in the lightness representation. Thus, “black” as the darkest color could be assigned to

a certain comfortable frequency whereas an intuitive upper border, representing “white”

would then probably be e.g. the first or second harmonics over such a frequency.

Based on a musical scale, as shown in figure 8.2 (right), black, as the lowest lightness

value, is assigned to the tonic keynote, whereas white to its octave. In between there are

six whole tones and 12 semitones. For harmonic reasons we only utilize the whole tones

of a single octave and map each lightness value l between 0 and 255 to one of the eight

tones, forming a 1D lookup structure note(l):

key note(l) lightness range

C 0− 10

D 11− 37

E 38− 63

F 64− 101

G 102− 153

A 154− 179

H 180− 242

C 242− 255

The mapping of l values to specific tones is determined judging by our own visual per-

ception of approximately equal lightness intervals, although there has been some research

on “human perception based color segmentation” that might corroborate the concept of

quantizing colors ([479]; [426];[370]; [241]; [6]; [80]).
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Further, we add thirds to all six intermediate tones (see figure 8.2 (right)). This creates a

more comforting and aesthetic resonance and offers an elegant way to recognize whether

one has reached the top or bottom of the scale, as they are played without thirds. Oth-

erwise, users would need perfect pitch to recognize black and white. The motivation to

use distinct notes instead of a continuous pitch would be, first, that the use of MIDI in-

struments allows only for pitches in the range of a single whole tone. Second, in part IV

of the work, we extend the idea of using musical scales to emphasize the sad monotony of

gray-scale values in contrast to the rather “joyful” colors switching between a rather sad

“natural minor scale” to a more “joyful” “major scale” depending on each current color

value sonified.

Note that in general, the perception of the lightness at a specific position within an image

depends on the position’s surroundings, as discussed in appendix B.1. This characteristic

is on a very small scale reflected through the initial image filtering. However, it might

be an interesting issue for further research to represent such specific characteristics of the

visual system in an acoustical way.

A Color Sound Synthesis Equation

Finally, we formulate a color sound synthesis equation that describes the mapping

from color values (h, s, l) stored within each augmented visual pixel v(x, y), via sonification

descriptor s(x, y), into a sound, referred to as the color sound attribute acolor(x, y) of the

audible pixel a(x, y):

acolor(x, y) = ϑgray(h, s, l) ∗ flute(η) (8.1)

+ (1− ϑgray(h, s, l)) ∗
[
ϑred(h, s) ∗ choir(η) + ϑgreen(h, s) ∗ organ(η)

+ ϑyellow(h, s) ∗ bagpipe(η) + ϑblue(h, s) ∗ violins(η)
]

with:

h = sh(x, y) = vh(x, y), s = ss(x, y) = vs(x, y), l = sl(x, y) = vl(x, y)

and:

η = note(l)

Note that this equation and its mappings are relatively easy reversible, which is crucial

for a congenital blind to learn and understand the concepts of colors. Generally, volume

shapes ϑ(h, s) of colors are independent of l.
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Interpolation of Audible Colors Based on Thin Plate Splines

Calculating the volumes of instruments, i.e., their volume shapes ϑ, in a mixture of sounds

for all intermediate colors can be formulated as an interpolation problem. The basic idea

would be to define a mapping ϑ on a set of control points manually to achieve the desired

volumes for specific color values and mixtures and interpolate all values in between. Simple

linear (barycentric) interpolation is be too restricted because once the overall volume of

each instrument is set, there is no way to counteract the dominance of some instruments

in some specific mixtures. Therefore, we employ non-linear interpolation using on Thin

Plate Splines (TPS) [117], [41] based on a set of control points, as discussed in appendix

A.10. The implementation of Thin Plate Splines used in our framework is provided by

[131], which is mostly based on [117], which we modify to work for our specialized purposes.

The fundamental idea behind Thin Plate Splines is the physical model of a flat thin medal

plate that is deformed by a few punctual strains, the control values c. The plate is than

forced into a new form that minimizes the deformation energy.

Figure 8.3: Left: Illustration of a volume Shape ϑ(h, s). Right: 3D representation of

ϑyellow(h, s) (figure 8.4 (bottom-left)). Note that the highest possible volume level is set

to 0.8 (200) instead of 1.0 (255). For computational complexity reasons, values were stored

as less memory requiring character, instead of floating point values.

Based on this method, we can now calculate volume shapes ϑ(h, s) for each complemen-

tary instrument to each color (h, s) quite elegantly. As an example, the computational

considerations for ϑyellow(h, s) are visualized in figure 8.3 (left). Generally, the volume

should be 100% = 1 at the exact position of the corresponding opponent color, such as

yellow in the example at hue h = 60◦ and full saturation s = 255, and 0 at hues h equal

to 0◦ and 120◦ or greater, disregarding any saturation s.
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To control the volumes in mixed sounds, we add control values c at various positions

(hc, sc). This would be, e.g., (hc, sc) = (60◦, 255) with c = 0.8. The use of control point

based interpolation allows us to compensate for dominant instruments within mixtures,

as with the realization of yellow through a significant but also rather dominant bagpipe

instrument (see 8.3 (right)). Regular MIDI synthesizers offer the possibility to set the

volume of a particular instrument within a given interval (see section 8.4). However, as

discussed in section 2.1 this does not necessarily mean that the perceived loudness of in-

struments would be identical. Hence, an individual computation of volume shapes via

control point based interpolation is an elegant way to compensate for that.

The results of computing these volume shapes ϑ(h, s), responsible for instrument interpo-

lations, can be seen in figure 8.4. Note that the range of values for each ϑ(h, s) is from 0

to max. 255 instead of 1. This is because each ϑ(h, s) is stored and loaded as a lookup

table using less memory requiring “character”, instead of “floating point” values.

As mentioned, volume shapes ϑ(h, s) are so far independent of l and hence apply at every

position (h, s, l) if ϑgray(h, s, l) = 1. However, in part IV we refine the idea of volume

shapes ϑ(h, s) to incorporate a change in color intensity along l.
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Figure 8.4: Volume shapes ϑred(h, s) (top-left) and ϑgreen(h, s) (top-right) and ϑyellow(h, s)

(bottom-left) and ϑblue(h, s) (bottom-right). Note that the range of values for ϑred, ϑgreen

and ϑblue is from 0 (black) to max. 255 (orange-yellow). The range of ϑyellow, representing

the volume of a rather dominant instrument, has been set from 0 (black) to max. 200

(yellow)
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An Audible HSL-Opponent Color Space

Note that though working with the HSL color space, in which the distances between red,

yellow, green and blue are not equal, due to volume shapes ϑ(h, s) computation based

color interpolation and sonification, we are able to “stretch” and “compress” the color

space acoustically, illustrated in figure 8.5, creating an “audible color space” that is as easy

to understand as the HSL color space, while maintaining equidistant distances between

opponent colors as in the CIELab space. The reason why we do not use CIELab space

in the first place is its characteristic to represent only “equally bright perceived” colors

and, therefore, it is not consistent, meaning, there is no equivalent opponent color for

every specific bright color. Thus, it cannot be represented as filled solid body, such as a

cylinder, as described in appendix B.2.

Figure 8.5: An “audible color space” creation that is as easy to understand as the HSL

color space (left), while maintaining equidistant spacings between opponent colors as in

the CIELAB space (right)
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8.2 Auditory Edge Detection - the Sonification of Orientation

Maps

Orientation maps are represented using additional instruments. However, as too many

additional instruments interfere and make either recognition of colors or anything else

impossible, we utilize only four more instruments, playing an octave below our keynote,

to represent the 4 orientation maps Oθ=0◦ , Oθ=45◦ , Oθ=90◦ and Oθ=135◦ .

Figure 8.6 shows our selection of instruments: Digeridoo (Oθ=0◦), wooden percussion

(Oθ=45◦), Uilleann pipes (Oθ=90◦) and metal percussion (Oθ=135◦). This way, we

create a hum alike sound at 0◦ and 90◦ and a percussion sound at 45◦ and 135◦, which

might be appropriate to quickly distinguish horizontal or vertical from diagonal structures.

Figure 8.6: Our selection of instruments to sonify orientation maps. Digeridoo (Oθ=0◦),

wooden percussion (Oθ=45◦), Uilleann pipes (Oθ=90◦) and metal percussion

(Oθ=135◦). The arrows of different length denote either volOθ(x,y) = 100 % of instru-

ments at θ ∈ {0◦, 45◦, 90◦, 135◦} or volOθ(x,y) = 50 % of the two neighbored instruments

to θ ∈ {22.5◦, 67.5◦, 112.5◦, 157.5◦}

The four orientation maps in between of the previous discussed,Oθ=22.5◦ ,Oθ=67.5◦ ,Oθ=112.5◦

and Oθ=157.5◦ , are expressed based on a combinational approach. Thus, to sonify one of

the “in between” orientation maps just mentioned, 2 of the directly neighbored orientation

map’s instruments are utilized. To distinguish “in between” from the previously mentioned

( Oθ=0◦ , Oθ=45◦ , Oθ=90◦ and Oθ=135◦), those are played at 0.5 ∗ volθ each (illustrated in

figure 8.6).
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Finally, each orientation maps’ sound attribute aOθ
(x, y) of the audible pixel a(x, y) would

be:

aOθ
(x, y) = volOθ(x,y) =


1, if (x, y) ∈ V θ,i with θ ∈ {0◦, 45◦, 90◦, 135◦}

0.5, if (x, y) ∈ V θ,i with θ ∈ {22.5◦, 67.5◦, 112.5◦, 157.5◦}
0, otherwise

Again, the framework allows exchanging instruments according to personal taste. To

avoid auditory masking, described in section 2.1, we set all volOθ(x,y) to guarantee for

the perceived loudness of all orientation map instruments to be always lower than that

controlled by ϕ(h, s) for the color instruments for all h and s.

8.3 Audible Roughness - the Sonification of Local Entropy

The most appropriate acoustical representation of textural noise might be audible noise,

presented in section 3.2. However, working with MIDI instruments do not directly provide

an appropriate instrument. Hence, we chose an instrument that has a quite vibrant temper.

As Seashore [421] pointed out:

a good vibrato is a pulsation of pitch, usually accompanied with synchronous

pulsations of loudness and timbre, of such extent and rate as to give a pleasing

flexibility, tenderness, and richness to the tone.

The instrument chosen were a special compilation of vibrating strings, and, as we expe-

rienced, it is a pretty intuitive way to represent roughness acoustically. The higher the

computed roughness value vH(x, y), the louder the vibrant roughness instrument is:

aroughness(x, y) = volroughness =

{
vH(x, y), if vH(x, y) > 0

0, vH(x, y) = 0
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8.4 MIDI Based Sonification

As the sonification in this part relies on MIDI instruments to sonify color and features, a

considerable amount of preparation has to be done. First, an external MIDI synthesizer

has to be chosen that will accept common MIDI messages, as illustrated below, sent

by our application to play notes and control instruments volumes, a.s.o. Additionally

to the synthesizer, data sets of instruments have to be loaded and specific instruments

have to be assigned to specific midi channels. In our case this is one for each of the

5 instruments representing color (see figure 8.7), as well as 4 further channels for the 4

instruments assigned to orientation maps and another single channel for the roughness

instrument. To proof the ideas of instruments based sonification we choose the high

quality MIDI synthesizer Native Instruments Kontakt 5 [332] along with high end

sets of instruments.

Figure 8.7: Left: A “virtual midi cable” software connects our framework with an external

synthesizer. Right: 5 of the channels assigned to the 5 complementary instruments

To send MIDI messages out of our system, we use RtMidi, a set of object oriented

classes, provided with the Synthesis Toolkit (STK) ([82]; [83]) (see appendix A.9)

as an application programming interface (API) for real-time MIDI input and output.

Within the RtMidi framework, MIDI input and output functionalities are separated into

the RtMidiIn and RtMidiOut sub-classes, of which we only employ the latter.
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The RtMidiOut class provides simple functionality to immediately send messages over a

MIDI connection, similar to the following example:

RtMidiOut midiout;

std::vector<unsigned char> message(3);

// Open first available port.

midiout.openPort( 0 );

// Compose a Note On message.

message[0] = 144;

message[1] = 69;

message[2] = 90;

// Send the message immediately.

midiout.sendMessage( &message );

The syntax of “message” follows that of General MIDI. “message[0]” denotes the channel

and command. In the example this would be to start playing a note on the first channel.

“message[1]” stands for the key number on a standard piano keyboard, referring to an A

at 440 Hz. “message[2]” finally denotes the velocity or “force” by which the note is played.

Again, the concept comes from a piano keyboard. The faster that one strikes a piano keys,

the louder the note will sound.

To deliver those messages from our framework to the midi synthesizer, we need a plat-

form dependent in between software, known as virtual midi cable [305], connecting our

framework and the synthesizer, as illustrated in figure 8.7.

When working with scales in MIDI, each note has to be triggered and released, which,

again, is why a very short Attack- and Decay-and as well a short, as discussed in section

8.1, Release-Phase is essential to maintain a close-to-continuous signal. In contrast, mixing

colors on a constant luminance takes place solely within the Sustain phase for arbitrary

time - the note itself does not change.

A fundamental problem with using MIDI instruments is they inherit complex frequency

spectra and, therefore, the risk to unwanted interferences when mixed. Furthermore, it

is rather unlikely that any unique mapping could be found between a specific instrument

and a particular color, as will be discussed in chapter 12.1. Finally, an external MIDI syn-

thesizer is needed, what contradicts our vision to minimize the software, so that a blind

user is able to process it on his notebook, tablet or mobile phone. Thus, in chapter 12.1

an intuitive color sonification concept, based on the one just presented, will be proposed

which represents colors the way they are perceived visually by appropriate fundamental

sound characteristics, instead of instruments, and comes without the need of an external

MIDI synthesizer.
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User Studies

To scrutinize the possibilities of manual acoustical object recognition, we performed sev-

eral experiments on two different groups of participants, following different motivations.

Both groups, the congenital blind 54 year old academic as well as the 3 congenital blind

teenagers had about 4 - 5 hours of introducing the system and training before tests. In

contrast to the adult participant, the group of congenital blind 14 year old teenagers had

little geometric understanding and sense of space. Thus, training also included fundamen-

tal lecturing about basic geometry, shadowing and perspective.

Generally, training was based on basic object shape recognition (as in figure 9.1 (left)),

as well “Two-Alternative Forced Choice” (2AFC) training sets, (figure 9.1 (middle)). A

specific object had to be recognized, in direct comparison to a similar colored object. Fur-

thermore, the adult participant was asked to find a certain object within a more complex

accumulation of different objects (figure 9.1 (right)).

Figure 9.1: Left: Basic Shapes. Middle “Two-Alternative Forced Choice” training sets.

Right: A “complex” scene
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We then performed an experimental evaluation of our system to measure the teenagers’

progress and to compare it with the results of the adult participant. Surprisingly, after

training, the teenagers were able to perform the tests with approximately the same hit

rates and times as our adult participant. We, therefore, hope that our system can not only

support them in everyday life, but also help them to develop cognitive abilities in geometry

and spatial orientation. As already mentioned, we intentionally work with congenital blind

people, as we are specifically interested in evaluating our audible color space approaches

on people who have never seen any colors at all. Unfortunately, the group of possible

participants is thus significantly smaller as if we would work with early or late blind

people.
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9.1 Experiments

The “Two-Alternative Forced Choice” tasks are less applicable for a more qualitative

evaluation of our system, as pure guessing works out in 50 percent of all cases. Hence in

experiments I-IV, objects to recognize are displayed individually on the screen (as shown

in 9.2). That reduces chance level (pure guessing) to 25 percent.

Experiment I - Object Recognition by Color only

The first experiment is about identifying one out of four elements (orange, tomato, apple

and lemon as in 9.2) only by color while sonification of orientation maps and roughness is

deactivated. Note that the target objects used for the task have the same spherical shape.

In each of 60 trials, one of the 4 objects is selected at random and displayed at an arbitrary

position on the touch screen. This is achieved by selecting one out of 40 images (10 per

object, with the object in different positions) at random. The task of the participant is

to find and name the object. In the evaluation (table 9.1 and figure 9.4), we focus on

the time between the moment when the participant finds the object (which depends on

where he starts and is, therefore, not very informative), and the moment when he names

the object verbally to the experimenter. The average time to find an object is about 1.7

seconds. As mentioned, chance level (pure guessing) is 25 percent in this experiment.

Figure 9.2: Setup for experiments I. Objects to recognize are displayed individually

Experiment II - Object Recognition by Color and Orientation Maps (Simplified)

The second experiment involves orientation maps and color. This time, the participant

is to recognize one out of 7 objects (orange, tomato, apple, banana, cucumber, carrot,

lemon), as shown in 9.3 (left), so both color and shape are important for correctly naming

the object. Again, each element is presented individually (chance level: 14 percent) at

arbitrary positions either vertical or horizontal. The database consists of 56 images (8

for each element, varying position and orientation). Again, times are measured between

finding an naming the object verbally, as shown in table 9.1.
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Figure 9.3: Left: An example of the training set for experiment IV. Right: An example of

the possible orientations and locations of objects in experiment III

Experiment III - Object Recognition by Color and Orientation Maps (Complex)

The third experiment’s setup is similar to that of experiment II, except that each element

is presented, not only horizontal or vertical, but in one of eight orientations, as illustrated

in figure 9.3 (right). The database again consists of 56 images (8 for each element, varying

position and orientation). Again, times are measured between finding and naming the

object verbally, as shown in table 9.1 and figure 9.4.

Figure 9.4: Left: Histogram of Experiments I. Right: Histogram of Experiment III. N

elements (y axis) recognized in how many seconds (x axis) each
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Experiment IV - Object Recognition within a Set of Objects

The fourth experiment is on recognizing an object within a set of other objects and is

performed by the adult participant only. We present images such as the one shown in

figure 9.3 (left) on the touch-screen. In our database of 7 images, we make sure that two

objects of equal color (e.g. banana and lemon) are not be positioned next to each other.

In each trial, an image is presented and, based on a random generator, the participant is

told, which object he has to find. This time, we measure the overall time until the specific

element is located an correctly identified.

Results

Experiment Participant Hitrate (% , N) X̃ (sec.) µ (sec.) σ (sec.)

I Adult 100 % (60/60) 1.3 1.8 1.4

Teenager 1 91.6 % ,(55/60) 2.2 2.6 1.5

Teenager 2 100 % ,(60/60) 1.3 1.7 1.1

Teenager 3 93.3 % ,(56/60) 1.5 2.3 1.5

II Teenager 1 88.8 % ,(40/45) 13.1 14.4 7.0

Teenager 2 93.3 % ,(42/45) 9.2 9.5 5.4

Teenager 3 88.8 % ,(40/45) 13.4 13.7 7.8

III Adult 93.3 % ,(42/45) 5.6 7.0 3.9

Teenager 1 88.8 % ,(40/45) 12.1 13.3 4.7

Teenager 2 88.8 % ,(40/45) 10.1 11.4 6.6

Teenager 3 93.3 % ,(42/45) 11.9 12.5 5.5

IV Adult 100 % ,(45/45) 5.6 10.6 12.0

Table 9.1: Results of experiments I - IV. Hit rates and times (median X̃ , mean µ, and

standard deviation σ in seconds), for each trial and participant

Table 9.1 shows that all congenital blind participants, with very different educational

backgrounds, were able to pass all the given tasks in experiments I - IV within reasonable

time-spans. Further, the table proves that their results are clearly above chance level.
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9.2 Discussion

The experiments raise the assumption that manual “auditory object recognition” can be

done, although on a very limited complexity scale. Surprisingly, congenital blind teenagers,

with no background in spatial geometry, were able to perform the tests with approximately

the same hit rates and times as our adult participant. Hence, apart from object recognition

the sonification of the orientation of edges might be of great benefit to develop the spacial

understanding of congenital blind people.

Furthermore, the experiments give hope that the proposed color sonification approach that

proves to be intuitive enough to be understood and applied by 4 congenital blind people

of different backgrounds in very little time will prove also successful on a larger group of

congenital blind people.

The extension of the system to extract specific entities within the image, as proposed in

section 7.4, allows a more focused examination of specific parts in the image, similar to a

person, e.g., grabs a single fruit out of a basket to have a closer look at it.

However, there is a number of interesting improvements, which led to a minimized (blind)

user friendly stand-alone program, that will be described in detail in part IV:

• The sonification approach in this part relied on many MIDI instruments. Such

instruments inherit complex frequency spectra and, therefore, the risk to unwanted

interferences when mixed. Furthermore, an external MIDI synthesizer is needed,

what contradicts our vision to minimize the software, so that a blind user is able to

process it on his notebook, tablet or mobile phone.

• It would be interesting to develop an intuitive color sonification concept, based on

the one presented in this part, which represents colors the way they are perceived

visually by appropriate fundamental sound characteristics.

• The limits of manual acoustical object recognition could be handled, carefully em-

ploying sophisticated computer vision and machine learning techniques to classify

certain regions within an image and individually selecting specific low-level features

to compute on certain regions.



Part IV

Auditory Image Understanding
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Chapter 10

Motivation

The implementation in part III is dedicated to scrutinize the possibilities and limitations

of some sort of audible object recognition. Therefore, rather fundamental image charac-

teristics are extracted, such as colors, edges of various orientations (i.e. orientation maps)

as well as a measure of textural roughness. MIDI instruments are assigned to represent

such features. Basic recognition tests, described in chapter 9 revealed that audible object

recognition can be performed, although on a rather limited complexity scale.

Hence, we considered leveraging computer vision and machine learning algorithms to de-

rive and sonify image information on many levels, ranging from low-level such as color

information to high-level, as for example object recognition. Machine learning techniques

could be successfully employed to even pre-select the extraction of specific low-level fea-

tures in certain areas. Still, the results of these algorithms remain tied to the image pixel

where the feature occurs, so the user always knows locations of objects and structures. In-

corporating the imaginative capabilities of a blind person’s brain as a fundamental element

of the process proves to be a promising combination for more sophisticated tasks, such as

scene understanding. A system that allows such an “auditory image understanding” could

be used by the visually impaired to analyze images that they find on the internet, making

it more accessible, and also for personal photos that their friends or loved ones want to

share with them. 7

As the system presented in part III, it could be also utilized to help congenital blind people

to develop spacial understanding, although on a different level. As the user’s imagination

is trained in part III for the shape, orientation and perspective of single objects, now,

whole scenes and spatial relations of objects within are to be visualized. In this context,

the direct perceptual access becomes most valuable.

7The work on “auditory image understanding” has in part been published in [20]
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Figure 10.1: Implementations of the computation and sonification modules of the modular

computer vision sonification model for the task of auditory image understanding

Additionally, within this part of the work, the color sonification will be refined, due to

problems we observed with the one presented in part III, discussed in section 9.2. The

user feedback that we receive for the system, presented in this part, indicates that visu-

ally impaired people appreciate the fact that they obtain more than an abstract verbal

description and that images cease to be meaningless entities to them. Figure 10.1 gives

an overview of the specific implementations of the computation and sonification module

of the modular computer vision sonification model, presented in chapter 4, that need to

be done for the task of “auditory image understanding”.



Chapter 11

Multi-Level Image Analysis

As the system in this part is designed to allow visually impaired people to analyze images

that they find on the internet or personal photos from their friends it is crucial to extract

(and later sonify) specifically that sort of information, which is commonly present in these

images. This information might include, e.g., landscapes, man made structures, animals,

people, cars or every day objects. This kind of image understanding is a task of primary

importance for a wide range of practical applications and has been topic of considerable

research. One important step towards understanding an image could be to perform a “full-

scene labeling” also known as a “scene parsing”, which consists in labeling every pixel in

the image with the category of the object it belongs to. Scene parsing has been addressed

with a variety of methods in recent years, most of which rely on the usage of Markov or

Conditional Random Fields ([31]; [272]) or other types of graphical models to account for

context and ensure the consistency of the labeling ([177]; [285]; [383]; [197]; [404]; [264];

[328]; [461]; [520], [433]; [137]). Figure 11.1 illustrates some accuracies of the scene parsing

model on the MSRC 21-class database, proposed in [433].

Figure 11.1: Accuracy of segmentation for the MSRC 21-class database in [433]. Confusion

matrix with percentages row-normalized. Overall pixel-wise accuracy in [433] is 72.2 %
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A challenging task of scene labeling is that it combines multi-label recognition and segmen-

tation in a single process. As figure 11.1 indicates the incorporation of multiple classes to

recognize favors the occurrence of miss-classifications. Interestingly, although object class

recognition fails the segmentation might still be accurate, as illustrated in figure 11.2.

However, in the context of full-scene labeling for the visually impaired, it is crucial that

no not-present classes are introduced during recognition.

Figure 11.2: Examples where recognition works less well. Input test images with corre-

sponding color-coded output object-class maps. Even when recognition fails, segmentation

may still be quite accurate. Picture taken from [433]

Another great challenge with scene labeling, especially in our context, is to maintain near

real-time performance while not sacrificing accuracy. Table 11.1 illustrates the dependency

between recognition accuracy and computation times of 3 state of the art scene labeling

approaches performed on the Stanford Background data set [177], which contains images

of outdoor scenes composed of 8 classes.

Pixel Accuracy

(%)

Class Accuracy

(%)

Computation

Time (sec.)

Munoz et al. 2010 [328] 76.9 66.2 12

Lempitzky et al. 2011 [285] 81.9 72.4 > 60

Farabet et al. 2013 [137] 81.4 76.0 60.5

Table 11.1: Performance of 3 scene parsing systems on the Stanford Background dataset:

per-pixel / average per-class accuracy. The third column reports compute times, as re-

ported by the authors
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Furthermore, the selection of classes to detect might be challenging, if no prior knowledge

about the images to be explored, exist. To avoid the introduction of false object classes

and support the modular design of our system, for our specific application, we separate the

process of image labeling and object detection. Object recognition, described in section

11.4, is based on two state of the art approaches, followed by learning based approach that

we propose to filter correct from incorrect detections. To make scene labeling applicable

on a more general level, without the risk of introducing false object classes, we make

use of an idea initially proposed by Kumar and Hebert [269] and further developed in

([269]; [268]; [265]; [345]; [343]; [533]; [266]; [463]) that uses binary classification for man

made structure detection in natural scenes, as described in section 11.2. In this approach,

images are subdivided into rectangular patches and the classification of an image consists

of determining the correct labels of each patch in an image. This procedure, therefore,

does not represent a pixel-exact labeling as it “quantizes” the image and its labeling,

which in general might be undesirable. However, in the context of providing information

to visually impaired, the continuous range visual data clearly demands to much of them

and quantizations have to be applied within several steps of the process. Furthermore,

the loss in continuity is compensated by an increase in robustness and generalizability.

In the following sections we present a novel probabilistic graphical model, called Dual

Support Vector Fields 8 and an advanced feature set as an alternative to the approach

by Kumar [266]. Due to the modular design of our modular computer vision sonification

model, the proposed approaches can of course be extended or even exchanged at any time.

Our specific research contributions to the field of machine learning and computer vision

in this part of the thesis can be summarized as:

• A novel type of probabilistic graphical model, called Dual Support Vector Fields

for man made structure detection or other labeling problems that deal with spatial

dependencies.

• A novel feature set for man made structure detection that goes beyond low level

features.

• An algorithm (and feature set) to verify true or discard false object detections before

sonification to avoid con- fusion on the side of the blind user, who can not check for

a correct detection visually.

• Due to their design, both proposed algorithms can be also employed in other ap-

plications than “auditory image understanding”, e.g., for fully-automated computer

vision systems.

8The proposed Dual Support Vector Fields have been published in [19]
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Auditory Scene Labeling

Fascinatingly, the user is “incorporated ” in the image understanding process. Although

we only classify natural and man made regions, during exploration, the user can utilize

detected man made structures or specific natural regions as reference points to classify

other natural regions by their individual location, color and texture. Figure 11.3 illustrates

graphically, how congenital blind participants within the user studies in chapter 13 employ

that strategy successfully to interpret and understand a scene. Regions have been labeled

according to the verbal scene interpretation given below (see table 11).

Figure 11.3: Some examples of user based scene understanding. Top row: Original images.

Bottom row: Regions “labeled” due to human user classification

Verbally descripted Scene Interpretation

There is a yellow building. A green area beneath the building would presumably by

some sort of meadow. The different colored spots surrounding the meadow and the

building might be colored trees. [ teenage participant on figure 11.3 (left) ]

The lower part of the image from left to right is some intensive green area. There is

a strong contrast in roughness on the right from the smooth green area to a coarser

green area in the mid-section. There is some light blue spot, which will be sky, on

the top right corner and salient red building on the left. [ adult part. on fig. 11.3

(middle) ]

The lower part of the image from left to right is smooth green, such as a lawn.

Then there is a deep blue stripe which is supposedly some sort of water, such as a

river. Above the river is a very flat band of buildings, followed by some green natural

section. The top region is blue, presumably sky. [ adult part. on fig. 11.3 (right) ]
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11.1 Image Pre-Processing

As in part III, section 7.1, Bilateral Filtering is applied to smooth pixel values I(x, y)

of an input image I before finally storing them within augmented visual pixels v(x, y).

However, as we are working with much more delicate image data as in part III (see figure

11.4 (left)), we refrain from iterating and only apply bilateral filtering once (figure 11.4

(right)).

Figure 11.4: Left: Input image I, Right: Bilateral filtered image Ibf
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11.2 Detection of Man Made Structures in Natural Scenes

Images that contain man-made structures exhibit strong contextual dependencies in the

form of spatial interactions among image elements. Neighboring pixels are likely to have

similar class labels, and different regions appear in restricted spatial configurations. Addi-

tionally, detection is challenging due to ambiguities in the appearance of the visual data.

E.g., a patch corresponding to a tree might appear, on a local scale, very similar to that

belonging to a building, as illustrated in figure 11.5. Thus, the use of context can help

alleviate this problem significantly.

Figure 11.5: Tree and building regions look similar. Context can help resolve these ambi-

guities

Modeling these spatial structures is crucial to achieve good classification accuracy, and

help alleviate ambiguities. As just mentioned, there has been done considerable research

on contextual models that exploit spatial dependencies between objects, such as Markov

random fields (MRFs) and conditional random fields (CRFs) for probabilistic modeling of

local dependencies, e.g., in ([198]; [465]; [331]; [466]; [372]; [373]; [416]).

In [265], Kumar states that the detection of man-made structures from a single static

ground-level image is still a non-trivial challenge because of three main reasons:

• Realistic views of a structured object captured from a ground-level camera are uncon-

strained unlike the aerial views [259], which complicates the use of predefined models

or model-specific properties in detection.

• No motion or depth information is available, precluding the use of geometrical infor-

mation pertaining to the structure.

• Images of natural scenes contain large amount of clutter, and the edge extraction is

very noisy. This makes the computation of the image primitives such as junctions,

angles etc., which rely on explicit edge or line detection, prone to errors.
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The discriminative conditional random field framework proposed by ([268]; [265]; [266])

allows to relax the strong assumption of conditional independence of the observed data

generally used in MRF frameworks. This is crucial, as the lines or edges at spatially

adjoining regions in man-made structures follow some inherent rules of organization rather

than being completely random. These models are by nature non-causal and are typically

represented by undirected graphs.
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Modeling Spatial Dependencies in Natural Images

The general representation of an image as a Conditional Random Field (CRF) [272]

will follow the notation of Kumar and Hebert in ([268]; [265]; [266]). Thus, images are sub-

divided into rectangular patches, called “sites” of 16×16 pixels each, and the classification

of an image consists of determining the correct labels of each site si. Prior to proceeding to

the actual model of an image the following definitions and notations for a Conditional Ran-

dom Field shall be restated for clarity, given by Lafferty et al. (Lafferty et al., 2001). Let

the observed data from an input image be given by y = {yi}i∈S where yi is the data from

ith site and yi ∈ Rc . The corresponding labels at the image sites are given by x = {xi}i∈S .

Definition:

Let G = (V,E) be a graph such that x is indexed by the vertices of G. Then

(x, y) is said to be a conditional random field if, when conditioned on y, the ran-

dom variables xi obey the Markov property with respect to the graph: p(xi|y, xV {i}) =

p(xi|y, xNi), where V {i} is the set of all nodes in G except the node i, Ni is

the set of neighbours of the node i in G, and x represents the set of labels of

the nodes in set ω.

When modeling an image using conditional random fields, the set of image sites corre-

sponds to the set of vertices within the graphical model, illustrated in figure 11.6. Accord-

ingly, edges correspond to the connections between neighboring sites.

Figure 11.6: Modeling an image using CRF. yi is the data from ith site and xi the corre-

sponding label
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In their CRF model for images, Kumar uses the Hammersley-Clifford theorem [272] and

the assumption that only pairwise clique potentials are non-zero, i.e., only immediate

neighbors interact [266]. From this they obtain a conditional distribution over the labels

given observations y defined by:

p(x|y) =
1

Z
exp

∑
i∈V

A(xi,y) +
∑
i∈V

∑
j∈Ni

I(xi, xj ,y)

 (11.1)

Z denotes a normalizing factor referred to as the partition function. For our application we

are concerned with binary classification only, namely xi ∈ 1, 1, indicating a site si is nat-

ural or man-made, respectively. Kumar and Hebert refer to the unary potential A(xi,y)

and the pairwise potential I(xi, xj ,y) as the Association and Interaction potentials,

respectively.

The association potential, A(xi,y), can be regarded as a measure of how likely some im-

age site si will take label xi given a series of features y, computed at that particular site

and leaving out any effects of other sites within the image. In contrast, the interaction

potential can be interpreted as a measure of interactions of the labels at neighboring sites

si and sj given the image observations.

Leaving out the interaction term (I(xi, xj ,y) = 0) reduces the model to the Logistic

Classifier of an image, which does not incorporate any interaction between neighboring

image sites. Then, A(xi,y) is modeled using a local discriminative model that outputs the

association of the site si with class xi as:

A(xi,y) = log p(xi|yi) (11.2)

p(xi|yi)) is the local class conditional at site si. This form allows one to use an arbitrary

domain-specific probabilistic discriminative classifier for a given task. This can be seen as

a parallel to the traditional MRF models where one can use any local generative classifier

to describe the unary potential. One potential selection of p(xi|yi) might be Generalized

Linear Models (GLM) that have been used in statistics to model the class posteriors given

the observations [312]. Kumar and Hebert propose the logistic function as a link in the

GLM and define the local class conditional as:

p(xi = 1|yi) = σ(w0 +wT yi) =
1

1 + e−(w0+wT yi)
(11.3)

w0 and w are the parameters of such a reduced model, corresponding to the length of the

observed feature data y. The specific form of p(xi|yi) yields a linear decision boundary

within the feature space spanned by vectors yi.
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To extend the logistic model to induce a non-linear decision boundary, Kumar and Hebert

introduce a transformed feature vector f(yi) at each site si, employing arbitrary non-linear

functions, which might be seen as a sort of mapping of the original feature vector into a

high dimensional space, yielding p(xi|f(yi)).

The idea of using Kernels to avoid such an explicit, less efficient, mapping in discrima-

tive conditional random fields has been introduced and a employed for Protein Secondary

Structure Prediction by Lafferty et al. [271]. The concept has also been implemented in

combination with Import Vector Machines in [396].

The first element of the each feature vector f(yi) is set equal to 1 to accommodate the

constant parameter w0. Further, since xi ∈ {−1, 1}, the probability in (11.3) can be

compactly expressed as:

p(xi|yi) = σ(xi w
Tyi) (11.4)

And therefore the association potential can be written as:

A(xi|yi) = log σ(xi w
Tyi) (11.5)

Such final transformation ensures that the CRF is equivalent to a Logistic Classifier if the

interaction potential in (11.1) is set to zero.

Non-Linear Support Vector Machines

Instead of introducing a transformed feature vector f(yi) at each site si using non-linear

functions, we propose to employ non-linear Support Vector Machines (SVMs) [417] as

association potential (i.e., A(xi,y) = log psvm(xi|yi)), as they inhere appealing theoretical

properties, as discussed in appendix A.7, and tend to outperform GLMs, especially when

the classes in the feature space overlap [430]. Beneficially, the CRF framework allows

for a flexible selection of association potentials. However, the decision function computed

by SVMs measures distances to the decision boundary, while the association potential

requires a posterior probability function. Thus, we utilize the approach described in [512]

and provided by [71] to convert the decision function to a posterior probability function.

The idea to extend SVMs to consider spatial correlations, based on CRFs, has been initially

proposed for linear SVMs by Lee et al. [280] and successfully applied,e.g., in medical image

segmentation [279]. SVMs have also been harnessed in the context of Markov Random

Fields [511].



118 CHAPTER 11. MULTI-LEVEL IMAGE ANALYSIS

Dual Support Vector Fields

The CRF models represents an extension of the Markov Random Field (MRF) ([290];

[322]; [248]), which itself is a simple extension of the Logistic Classifier. For the homo-

geneous MRF, the interaction potential is defined as I(xi, xj ,y) = v xi xj , for a scalar

parameter v, which penalizes every dissimilar pair of labels. Such a form of interaction

favors piece-wise constant smoothing of the labels without considering discontinuities in

the observed data explicitly. In contrast, the CRF framework, proposed by Kumar and

Hebert, computes the interaction potentials as a function of all observations y. In addi-

tion to model pairwise relational information between sites, such a rather data-dependent

smoothing can compensate for the errors in describing the association potential. To model

these pairwise terms, the main idea is to have identical labeling at a pair of sites for which

the observations support such a hypothesis. Kumar chooses the interaction potential to

be I(xi, xj ,y) = xi xj v
T µij(y), with µij(y) being the concatenated feature vectors f(yi)

and f(yj).

In contrast, we introduce a novel type of interaction potential based on Support Vector

Machines as well:

I(xi, xj ,y) = v xi xj (1− ‖psvm(xi=1|yi)− psvm(xj=1|yj)‖)

with a scalar parameter v. The proposed distance measure of the nonlinear SVM responses

in the interaction potential encourages label continuity, while discouraging discontinuity.

It further reduces learning of additional parameters to computing v only.

As our novel CRF model incorporates Support Vector Machines in both, A(xi,y) as well

as I(xi, xj ,y), we name our approach Dual Support Vector Fields (DSVF).
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Feature Set

So far, all major approaches ([269]; [268]; [265]; [345]; [343]; [533]) to explicitly detect

man made structure from ground-level natural images , refer to the feature set initially

proposed by Kumar and Hebert in [269]. Although the design of our own feature set

is in some ways inspired by their approach, we strive to engineer sophisticated features

to further reduce the level of ambiguity. Thus, we now describe the details of our novel

feature set.

Smoothed Histograms of Gradient Orientations

As image pre-processing, bilateral filtering is applied to an input image I, as it smooths

the image while preserving dominant edges. Subsequently, the bilateral filtered image

Ibf is converted to HSL color space, yielding Ibf/HSL. To extract edges, Gabor wavelet

transform [535] is performed on the lightness channel of Ibf/HSL. As in part III, Gabor

wavelets of the form:

ψϕ,ν(z) = gϕ,ν,σ(z)
[
ei kϕ,ν (z) − e−

σ2

2

]
with the Gaussian envelope:

gϕ,ν,σ(z) =
||kϕ,ν ||2

σ2
e−
||kϕ,ν ||2 ||(z)||2

2 σ2

are applied in 32 orientations ϕ from −90◦ to 90◦ with an angular difference of 5.625◦ and

a rather small sized kernel (ν = 0 and σ = π
2 ) to account for the delicate structures in the

images. Again, z = (x, y) indicates a point with x, the horizontal coordinate and y, the

vertical coordinate. Subsequently, non-maximum suppression ([338]; [106]; [335]; [67]) is

utilized to thin edges (figure 11.7).

Figure 11.7: Gabor Voting. Left: Edge gradients intensity coded from 0 to 1. Middle:

Gabor voted image after non-maximum supression. Right: Edge orientations color coded

≈ 0◦ (blue),≈ 90◦ ∨ −90◦ (red), ≈ 45◦ (yellow) and ≈ −45◦ (green)



120 CHAPTER 11. MULTI-LEVEL IMAGE ANALYSIS

Thereafter, as in [269], for each image site si, the gradients contained within a window wc

at different scales c around the center of si are combined to yield a histogram Hsi(c) (per

scale c) over gradient orientations.

We employ five scales, instead of three as in [269], c ∈ {16 × 16, 32 × 32, 48 × 48, 56 ×
56, 64 × 64}. Instead of weighting each count by the gradient magnitude at that pixel as

in [269], we simply increment the counts in the histograms. This is due to the observa-

tion, that occurring high magnitude gradients, which are to be captured using “weighted

histograms”, might indicate a building, they may, however, also result from strong edges

that occur in nature, e.g., around the trunk of a tree. Such an observation is confirmed

by Rees [379] in his evaluations of the feature set defined in [269].

Once the histograms are computed, Kernel Smoothing [471] is employed to alleviate the

problem of hard binning of the data. With N = 32 being the total number of bins in the

histogram, hi the count of the ith bin ofHsi(c), and a symmetric positive kernel smoothing

function K(x) with bandwidth b, the smoothed bin counts are given by:

h′j =

∑N
i=1K((hj − i)/b) hi∑N
i=1K((hj − i)/b)

with K(x) =
1

ex2
(11.6)

Kumar and Hebert [268] suggest b = 0.7 to restrict smoothing only to neighboring his-

togram bins, yielding smoothed histograms H ′
si(c). We then employ a TABU search

([170]; [59]), a local search method, to find local maxima above mean and Insertion Sort

([249]; [85]) to find and sort orientations ϕ of found peaks in each H ′
si(c) from highest to

smallest. Thus, we can detect the orientation ϕ∇1 of the highest bin h′∇1 , i.e., the most

dominant gradient within the image site. ϕi is then mapped from 0 to 1 using a sinusoidal

function. The mapping slightly favors the occurrence of vertical edges of almost 90◦, as

those tend to often occur in man made structures. Such a mapping has been previously

used in the context of perceptual grouping of pre-specified image primitives [259]. The

feature is computed for all scales c. Note that this feature is the only one in common with

[269]. Additionally, we use the raw value of h′∇1 along with sin(ϕ∇1) as feature.
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Junctions & Line Patterns

Man made structures, in general, exhibit a great amount of parallel lines as well as near

right angle junctions. We harness such properties as a measure of discriminancy, defining

specialized features to capture them. Kumar and Hebert [269] suggest evaluations of

the histograms H ′
si(c) using heaved central-shifted moments of various orders to capture

what they call the average “structuredness” in image sites. However, these moment based

features might not necessarily be the obvious choice for the search for man-made structures,

as the presence of high magnitude gradients within an image site alone, does not suffice

to constitute a man-made structure, as edges exist in nature too. Additionally, such

moment based features do not yield information about differences in orientations between

the high magnitude gradients capture, which is why Kumar and Hebert suggest the use

of angular differences between the first two highest local maxima in each H ′
si(c). To get

a more qualitative measure about the number of found gradients as well as orientational

differences which incorporates all found peaks, we propose a different set of features. For

scales c ∈ {2, 3, 4, 5} we compute the number n∇ of dominant gradients per each image in

s for each H ′
si(c). A found peak in H ′

c is defined as a “dominant” gradient, if its value

is at least 60 % of that of the highest gradient h′∇1 . Additionally, we compute the average

angle ∆ϕ∇ between all found dominant gradients:

∆ϕ∇ =

{
‖ sin( 1

n∇×(n∇−1)

∑n∇×n∇
i,j ‖ϕ∇i − ϕ∇j‖)‖, if i 6= j

−1, otherwise

Additionally, we perform an analysis on line junctions and repetitive line patterns indicat-

ing significant or repeating building elements such as doors or windows. This analysis is

inspired by human grating cells, described appendix B.1, which were discovered in 1992 by

Von der Heydt et al. [492]. Briefly, grating cells respond vigorously to gratings of bars of

appropriate orientation, position and periodicity. In contrast, these cells respond weakly

or not at all to single bars.

First, line segments are detected applying the Line Segment Detector (LSD) ([183]; [493])

to the l channel of the bilateral filtered image Ibf/HSL, as visualized in figure 11.8 (left).

LSD is a state of the art linear-time line segment detector giving sub-pixel accurate results.

It is based on Burns, Hanson, and Riseman’s method [62] and designed to work without any

parameter tuning. LSD was chosen after comparing results against Progressive Probabilis-

tic Hough Transform (PPHT) ([157]; [307]) and Line Segment Detection Using Weighted

Mean Shift (LSWMS) [337]. The PPHT harnesses differences in the fraction of votes cru-

cial to reliably detect lines with different numbers of supporting points, other than the

Probabilistic Hough Transform, where the standard Hough Transform ([222]; [219]) is per-

formed on a pre-selected fraction of input points. LSWMS on the other hand is designed to

work unsupervised without tuning of input parameters as well. It uses sampling strategy

that sequentially proposes points on the image that likely belong to line segments and a
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subsequent line growing algorithm based on the Bresenham algorithm that is combined

with an altered version of the mean shift algorithm to give accurate line segments as well

as increasing noise robustness. In our experiments LSD proved to be most reliable for

detecting smaller line segments, which is crucial in the context of the delicate structures

we are dealing with in this part.

Results of the line segment detection are quantized and grouped into 8 orientations of

22.5◦ angular difference between −90◦ and 90◦. We then apply two filter approaches on

the grouped lines. First, line segments that are in length below a specific threshold, are

excluded. Thresholds for nearly horizontal and vertical lines are slightly smaller than

that for orientations in between, as also small vertical and horizontal lines bear important

information in the context of man made structure detection. Thus, this differentiation in

the thresholding procedure works as a task specific noise filter as well.

All lines that do not lie on or near to a gradient of almost similar orientation (figure 11.8

(middle)), extracted by the Gabor wavelet transform, are discarded as well (figure 11.8

(right)). This is due to observations that even very small intensity variations that were

not detected as a gradient in previous edge extraction, might invoke a line due to the LSD.

Figure 11.8: Left: Results of the line segment detection quantized and grouped into 8

orientations of 22.5◦ angular difference between −90◦ and 90◦. Middle: Edge orientations

color coded ≈ 0◦ (blue),≈ 90◦ ∨ −90◦ (red), ≈ 45◦ (yellow) and ≈ −45◦ (green). Right:

Lines that do not lie on or near to a gradient of almost similar orientation (middle) are

discarded
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For each image site si and scales c = {2, 3, 4, 5}, we then compute the number of parallel

lines n‖0◦ and n‖90◦ for 0◦ and −90◦/90◦ in wc. For scales c ∈ {2, 3, 4, 5}, we further

compute the number n� of orientations that contribute a minimum number of lines in wc

as well as the average angle ∆ϕ� between all such found dominant line orientations:

∆ϕ� =

{
‖ sin( 1

n∇×(n∇−1)

∑n∇×n∇
i,j ‖ϕ�i − ϕ�j‖)‖, if i 6= j

−1, otherwise

Note that scale c ∈ {1} has been tested and deliberately neglected for these kind of

features, as it is to small to provide non ambiguous information.
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Corner Point Patterns

Using corner points as a feature is motivated by the observation that corners in and around

man made structures often occur on near right angle corners and junctions. Thus, we as-

sume, that a clustering of such corner points in a specific image region might indicate the

occurrence of a man made structure in that region and we can simply use the number ncp

of such corner points within wc as a measure for the region to be more likely man made

than natural.

Generally, the study of spatial arrangements of points in n dimensional spaces and, specif-

ically, whether they are clustered, randomly or regularly distributed is covered by Point

Pattern Analysis (PPA) ([14];[108];[508]). The two major types of approaches in Point Pat-

tern Analysis would be first- and second order analysis methods. Both approaches compare

their evaluations against the model of Complete Spatial Randomness (CSR), which is de-

fined as the number of points in the region under study following a Poisson distribution.

This implies that the points are distributed uniformly, randomly and independently, i.e. a

pattern typically generated by a Spatial Poisson Process. First order analysis compares the

average nearest neighbor distance of points of the study region against that of a Poisson

pattern, given the number of points and the size of the study region. Generally, a problem

with nearest neighbor analysis is the lack of discrimination between scales. E.g., points

might be clustered at small scales, whereas these clusters themselves might be dispersed.

Second order methods, such as Ripley’s K Function incorporate such a behaviour into the

measurement. Therefore, the points within increasing distances from one central point are

counted and such counts are averaged over all central points. Given a Poisson pattern one

gets a function with the number of points increasing as the square of distance. Departures

from such a Poisson pattern can be captured by Monte Carlo simulations [390], simulating

a vast number of random point patterns to produce confidence envelopes.

We scrutinized the possibilities of both approaches for our specific task. To calculate the

nearest neighbor distance of points in first order analysis we employed nearest neighbor

search algorithms using the FLANN library [326]. For the computation of Ripley’s K

Function, we created a Monte Carlo procedure of simulated 2D Spatial Poisson Patterns

that were generated based on a method described in [53], called Poisson Disk Sampling

(PDS). However, results were not discriminative enough, which is why we propose a task

specific corner point feature ourselves.

First, corner points are detected applying the Shi-Tomasi corner detector [273], a corner

detection algorithm based on an improved Harris corner detector [192], to the l channel

of Ibf/HSL. Second, for each detected corner point p we select the image site si it occurs

within to take its corresponding wc as a reference region and check whether the average

gradient orientation difference would be ∆ϕ∇ > 0.95 for at least one c ∈ {1, 2, 3, 4, 5}. If
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so, the corner point is marked as a “right angle corner point”. Finally, for each image site

si, we compute the number of right angle corner points ncp for scales c ∈ {1, 2, 3, 4, 5}.
In an additional step, we also added corner points within a very close distance to the

right angle corner points along with corner points in a slightly farther distance that lie on

horizontal or vertical gradients to ncp. This is due to the assumption, that these points

belong to the man made structure as well. Figure 11.9 (right) illustrates some of the

results of our approach.

Figure 11.9: Some exemplary results of our algorithm to select only those corner points on

near right angle junctions (right) from all corner points detected by the Shi Tomasi corner

detector (left)

Additionally, in his technical report on [268], Rees [379] suggest the usage of color features

in the feature set. We, however, exclude color as a feature for two reasons. First, the

feature set as well as the detection algorithm shall be applicable to gray-scale scenes as

well. Second, color itself is not a very discriminative feature within our context and

variations in color are already captured in our approaches based on Gabor extraction.
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Parameter Learning

In their framework ([265]; [266]), to determine parameters wT and vT , Kumar and Hebert

maximize the “penalized log pseudo-likelihood” ([255];[267]) of (11.1) on a training set of

images and given ground truth labeling. They assume a Gaussian prior over the interaction

parameters v such that p(v|τ) = N (v, 0τ2I) where I is the identity matrix. Additionally,

they assume the prior over parameters wT to be uniform. Kumar and Hebert ([268]; [269])

suggest τ = 0.001.

In our framework, given a set of M independent training images (and ground truth labels),

first, psvm(xi|yi) is trained. As mentioned, one great benefit of our proposed Dual Support

Vector Field model is that it reduces additional parameter learning to learning only a single

scalar parameter v for the interaction potential. Thus, our objective function l(v) to be

maximized is given by:

v̂ = arg max
v

M∑
m=1

∑
i∈V

{
log psvm(xi|yi)

+
∑
j∈Ni

v xi xj (1− ‖psvm(xi=1|yi)− psvm(xj=1|yj)‖)− log zi

}
− 1

2τ2
v2

(11.7)

with:

zi =
∑

xi∈{−1,1}

exp
{

log psvm(xi|yi) +
∑
j∈Ni

v xi xj (1− ‖psvm(xi=1|yi)− psvm(xj=1|yj)‖)
}

(11.8)

If τ is given, the penalized log pseudolikelihood in (11.7) is convex with respect to the

model parameters and can be maximized using gradient ascent ([432]; [368]; [38]).

Inference

To find an “optimal” label configuration on a new test image, we use max-flow/min-cut

algorithms, described in appendix A.5, as these can be utilized, for binary classifications

and if the probability distribution meets certain conditions [181], to exactly compute the

Maximum A Posteriori (MAP) estimate for an undirected graph ([254]; [252]; [251]; [46]).

Our tests revealed best results for a specific higher order neighborhoods Ni, i.e. (n = 2).
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Results & Discussion

Our model was trained and tested on the image data and label sets provided by Kumar

(108 train and 129 test images). The Logistic classifier approach (i.e., I(xi, xj ,y) = 0)

of Kumar [266] and our own serves as profound references to evaluate the discriminative

power of our proposed enhanced feature set in combination with non-linear SVMs. As

illustrated in table 11.2, our enhanced feature set is able to detect up to 11 percent more

man made structures while having an almost identical false positive rate than Kumar.

The application of Dual Support Vector Fields maintains the high discriminative power

while reducing false detections.

DR (in %) FP (per img.)

Kumar [266]

Logistic Classifier 61.79 2.28

Discrim. Random Field 72.54 1.76

our approach

Logistic Classifier 72.58 2.53

Dual Support Vector Field 72.18 1.74

Table 11.2: Results of our algorithm compared to Kumar [268]. Detection Rates DR are

given in percent % and False Positives FP in false detection per image

The computation of features on a new test image, as well as scene labeling takes 7 - 14

seconds on an Intel i5 2.53GHz machine, depending on Ni, and is therefore suitable in our

application. Figure 11.11 shows some exemplary results of our Dual Support Vector Field

approach. Figure 11.10 additionally illustrates some cases where the DSVF outperforms

the Logistic Classifier approach.

Figure 11.10: Dual Support Vector Fields (top row) outperforming the Logistic Classifier

(bottom row). Man made structures highlighted via white squares
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Figure 11.11: Man made structures (highlighted) detected by Dual Support Vector Fields
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Visual Uncertainty

Note that there is a general ambiguity concerning smooth regions. Such regions might

either belong to some natural plane region, like a clear blue sky or to a man-made struc-

ture, e.g. such as a plane wall. To keep classification a 2-class problem, we rank smooth

regions among natural structures. We then post-process natural regions for sonification,

as will be described in section 11.3. Briefly, we use the an specific measure to estimate the

roughness grade of such patches. Within the sonification model, smooth regions will thus

not be sonified using man-made or natural sonification method at all, which finally gen-

erates a “acoustically three class” sonification, using the user’s acoustical discriminative

capabilities.

Figure 11.12 illustrates further cases where a strict classification into “man made” or “nat-

ural” cannot be afforded distinctly, neither by a machine nor by a sighted human. Should

a grass-covered wall be labeled as grass or man-made structure or something in between?

However, in these cases, visual information alone seems to be insufficient for the classi-

fication task and, thus, blind people that are trained in “auditory scene understanding”

might out-perform machine learning based scene labeling systems.

Figure 11.12: Visual Uncertainty: Should the framed areas be considered natural or man

made?
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11.3 Low-Level Feature Extraction Controlled by High-Level Clas-

sification

Natural Regions

Natural Regions (i.e. those that are not classified as man made) are evaluated applying

a textural roughness measure called fractal dimension (FD). Pentland [351] showed, that

the Fractal Dimension (FD) [303], [484], [242] of a surface corresponds quite closely to our

intuitive notion or roughness, as discussed in appendix A.2, which is why it was preferred

to gradient based entropy, presented in 7.3. Hence, on all natural classified regions we

compute the fractal dimension using the bilateral filtered image. A well known estimate

for the fractal dimension would be the differential box-counting (DBC) method [410].

The method represents a gray level 2D image I2D as a 2D surface within a euclidean 3D

space with the the gray level denoting a z along with each (x, y) pixel position within the

image and estimates the fractal dimension by dividing the number of little boxes, needed

to cover the overall 3D area, by their diameter. However, due to a series of problems,

outlined in [289], the accuracy of the original DBC method is limited. [289] present three

main modifications in their box-counting estimation method. Hence we implemented their

method as described in appendix A.2.

We compute the FD for each image site i at scale wc2 = 32 × 32 pixels based on the

original (not smoothed) input image. The fractal dimension of 2D regions in principle

would be between 2.0 for a smooth 2D surface, and 3.0 for a perfect 3D cube. Thus, we

map our results to 0 to 1. However, generally, results will rather lie between 2.0 and 2.5.

As a result we obtain an estimate for the fractal dimension FDi of each image site i, which

we then assign to the augmented visual pixels v(x, y) of all pixel positions (x, y) of i:

vFD(x, y) = FDi

Man Made Structures

One benefit of our novel feature set is that we gain features that are useful for both,

man made structure detection and sonification. To sonify important information about

man made structures, we, therefore, do not have to compute additional features and can

directly choose from the feature set already calculated.

Beside the sonification of man made structure image sites, we select two features to sonify

within these found man made structures from the feature set:

• vϕ∇1
(x, y) = sin(ϕ∇1) - the mapped most dominant gradient orientation within each

image site at scale c = 2.

• vn‖(x, y) = n‖0◦ ∨ n‖90◦ - the number of parallel lines n‖0◦ and n‖90◦ at scale c = 2.
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Figure 11.13: Overview over the Ideal Object Recognition & Verification Processing

Pipeline

11.4 Object Recognition & Verification

Figure 11.13 gives an overview over the processing pipeline from object detection to clas-

sification. It consists of three main stages:

• Stage I - Categorization: simply checks whether elements of an object class do

occur in the image. It, however, does not detect or localize any object of each

class within the image. Hence, it operates considerably faster than the subsequent

detection algorithm. Thus, detection is only performed for objects of found object

classes.

• Stage II - Detection: searches for instances of detected object classes. Each

detected instances is described as a surrounding rectangle and a detection confidence

value.

• Stage III - Verification / Falsification: performs a subsequent classification

based on an individually formed feature vector for each object detection, to decide

whether such an object detection is a correct one rather than a false one.

Hence, the proposed approach to verify or falsify object detections is applied to the out-

come of any object recognition algorithm, which can be treated similar to a “black box”.

To the best of our knowledge, it is the first of its kind. For object categorization we chose

a Bag of Visual Words approach [93] and for detection an approach based on Discrim-

inatively Trained Part Based Models [142], both trained on 5 classes of the “Visual

Object Classes Challenge 2010 (VOC2010)” [135]. The classes, “car”, “cat”,“airplane”,

“horse”, “person” were chosen, as they are rather distinguishable for categorization / de-

tection than, e.g., “cat” & “dog”, which allows for a better evaluation of our proposed

Verification / Falsification algorithm 9.

9The proposed Verification / Falsification algorithm has been published in [19]



132 CHAPTER 11. MULTI-LEVEL IMAGE ANALYSIS

The aforementioned algorithms for categorization and detection are chosen, as they are

current state of the art and both are provided by the OpenCV library ([49]; [273]). In

principle, our algorithm can be trained and appended to the output and characteris-

tics of any object categorization algorithms as well as any detection approaches, such as

Efficient Subwindow Search (ESS) ([275]; [276]). The application of a Verification / Fal-

sification approach subsequently to previous object detection within the context of image

pre-processing for the visually impaired has several crucial benefits:

• No matter how good an object detection algorithm will ever become, it will certainly

never reach 100 percent correct detection rate. Table 11.4 shows the average precision

scores of current state of the art detection algorithm [142] for each object category

of the PASCAL Visual Object Classes Challenge 2010 [135].

• Especially within the context of pre-processing the image for the visually impaired it

is rather important that most of the false positive detections will be removed before

sonification to avoid confusion on the side of the blind user, who can not check for

a correct detection via sight. Hence, our algorithm follows what could be called a

“conservative” strategy, which means it should rather neglect a correct detection,

than accept a false correction.

For computational complexity reduction we executed object categorization and detection

as well as parts of our own algorithm in parallel, using OpenMP ([70]; [72]), an API

for parallel computing in C/C++. Our testing machine provides 4 Cores, resulting in 4

parallel processes.

plane bicycle bird boat bottle bus car cat chair cow

49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8

table dog horse mbike person plant sheep sofa train tv

14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3

Table 11.3: Average precision scores obtained in [142] for each object category of the

PASCAL Visual Object Challenge 2010 [135]
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Object Categorization Using a Bag of Visual Words Model

One basic approach to object categorization in images is to treat those as a collection of

regions, describing only appearance and the occurrence of salient features and ignoring any

spatial structure. This approach, known as Bag of Words (BoW) model, originated in

Natural Language Processing (NLP). The simplifying assumption is made that the

order of the words in a sentence or text document is of negligible importance for classifying

the general category of the document.

To classify a document using a BoW model, as a first step, a dictionary containing a large

number of words relevant to the application domain has to be created. Relevant words

are then words which have a high probability of being contained in one class of texts and

a low probability of being contained in others. Once the dictionary has been built it is

possible to describe a document in terms of word counts. Thus, a vector describing the

document has a length equal to the number of words in the dictionary. Each dimension

represents the number of occurrences of a certain word within the document. Using such

a representation, methods such as probabalistic Latent Semantic Analysis (pLSA)

[210] and Latent Dirichlet Allocation (LDA) [36] can be harnessed to filter coherent

topics in collections of documents in an unsupervised way.

The rationale behind this approach can be applied in Computer Vision ([141]; [435]; [93]).

The assumption is that the spatial relationship of so called visual words in an image is of

negligible importance. Those visual words can be numeric descriptions of certain salient

areas of the image. These areas might be corners or junctions, or others which are most

likely invariant of scale, rotation or illumination. These highly structured regions are often

called “key points” and their numerical descriptions “features” or, as already mentioned,

visual words. There is a variety of image feature detectors, such as Scale-Invariant

Feature Transform (SIFT) [296] or Speeded Up Robust Features (SURF) ([478];

[477];[25]). In our implementation we employ SURF, as it could be proven to show signif-

icant performance over all other mentioned detectors in accuracy and speed [25].

However, in Computer Vision it would not make sense to construct a dictionary from all

the features obtained from a training set directly (as done in NLP), as it would be of over-

whelming size. An intermediary step has to be to find a limited number of feature vectors

which represent the feature space well for constructing a dictionary. This is often done

by k-means clustering [326], an iterative algorithm for finding clusters in data. After the

dictionary has been constructed new images can be described by extracting features from

them and matching them with the features in the dictionary which are closest, based on a

trained classifier, such as Support Vector Machines ([86]; [61]), discussed in appendix A.7.

The implementation provided by OpenCV library is based on [93].
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Object Detection with Discriminatively Trained Part Based Models

The approach employed for object detection / localization and provided by the OpenCV

library has been initially proposed by P.F. Felzenszwalb in [142]. It is based on a his-

togram of oriented gradients (HOG) detector by Dalal-Triggs [98] that uses filters

consisting of HOG features to represent object categories. A sliding window approach

is employed where filters are applied at all positions and different scales of an image. The

Dalal-Triggs model is enhanced, using a star-structured part-based model defined

by, what Felzenszwalb [142] calls, a “root” filter and an additional set of parts filters and

associated deformation models.

The model is represented as a part based deformable model, known as star model, and the

score of one of such models at a given position and scale would be the score of the root

filter and the sum over parts of the maximum, over placements of that part, of the part

filter score on its location subtracting a deformation cost which evaluates the deviation

of the part from its ideal position relative to the root filter. The dot product between a

filter, interpreted as a set of weights, and a sub-window of a feature pyramid is employed

to score both, root and part filters. Further, Felzenszwalb [142] propose a representation

of the class of models by a mixture of star models, where a score of a mixture model at a

particular position and scale is would be the maximum over components, of the score of

that component model at a given location.

We employ “Release Version 3” [169] of Support Vector Machine models, provided by

Felzenszwalb [142]. These models are already trained on the 20 classes of Visual Object

Classes Challenge [135], including the 5 specific classes we used for testing our algorithm.
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Figure 11.14: Overview over the modified “object recognition & verification processing

pipeline”. Results from the categorization algorithm are additionally fed into the Verifi-

cation / Falsification module

A Learning-based Approach to Verification / Falsification of Object Recogni-

tions

As mentioned, a Verification / Falsification stage subsequently to previous object detec-

tion, in the context of image evaluation for the visually impaired, is important to avoid

confusing a blind user with incorrect object detections. Our approach, therefore, is not

to improve recognition levels of the employed categorization or detection algorithms but

rather separate correct from incorrect object localizations.

Furthermore, the “ideal” cascade of the categorization to detection pipeline, as shown in

figure 11.13, has to be slightly dissolved. According to this ideal cascade, only those object

entities would be searched for by an object localization algorithm, whose existence within

the scene has been confirmed by the categorization algorithm. However, our experiments

based on ground truth data revealed that the categorization algorithm sometimes could

not find a specific object class which, however, was represented within the image and

whose instances could be localized by the detection algorithm. Thus, we performed both

algorithms individually on the all of the 5 classes and processed their outcomes within a

verification / falsification stage (as illustrated in 11.14). To reduce computation time, it is,

however, generally recommended to follow the strategy of an “ideal” processing pipeline

(as in figure 11.13) and only have the detection algorithm localize objects which have been

recognized by the categorization algorithm, accepting the miss of some object instances.

Finally, we present a learning-based approach to object detection verification / falsification,

which includes:

• A “conservative” strategy of rather neglecting a true detection than accepting a false

one, which would create confusion.

• Building an additional feature set that uses relative information between all found

objects within an image besides categorization and detection probabilities to corrob-

orate this “conservative” strategy, i.e., correct falsification.
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• Allowing uncertainty. Some objects tend to be strongly classified in several cate-

gories. For instance, an upright sitting cat is eventually classified as “cat” as well

as “person”. Our Verification / Falsification algorithm allows uncertainty as sev-

eral similarities exist indeed. The task will then be up to the user to explore and

categorize the object with additional acoustical low-level features.

Feature Set

The only absolute information we get for each object detection oi are its categorization

and detection probabilities, which are not sufficient to base a Verification / Falsification

classification upon. Although the detection probability for a specific object detection is

a strong indicator for its validity, we can gather more information and build additional

features based on observed characteristic correlations in the results of the categorization

and object detection algorithm we employ.

Figure 11.16 represents all object detections that have been localized by the detection

algorithm. As one can observe, multiple entities of four object classes have been detected

and only two of them would be considered a correct detection. We now list the observations

O that we made when using the detection algorithm:

• OI : A rather large object detection can be an indication for a correct detection.

• OII : The higher the number of object detections of a specific object class and the

smaller their size within the image, the more unlikely their validity.

• OIII : Multiple small and clustered object detections often tend to be incorrect.

• OIV : Specific object detections that have been detected multiple times and signifi-

cantly overlap tend to be correct detections.

• OV : Even if the probability of a specific object detection oi is rather small, if it

is big in comparison to other object detections of the same object class, oi is more

likely to be a true detection. The same observation is made for object detections

compared across object classes.

• OV I : Even if the probability of a specific object class categorization coi is rather

small, if it is big in comparison to other object class categorizations, objects of coi
are more likely to be present in the image.

• OV II : While detecting a correct object, the detection algorithm tends to find mul-

tiple smaller incorrect object detections of other classes.

• OV III : A correct object detections tends to be rather big compared to the multiple

smaller incorrect object detections of other classes. These often group within the

region of the correctly localized object.
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We now harness these observations to build additional “relative” features and create a

16 dimensional feature vector fvoi for each object detection. Note that, when using a

different detection algorithm, one has to check whether this observations still apply.

Further note that, before extracting features for each object detection oi, we perform a

prior algorithm that checks for major overlaps of detections within each object class. Ma-

jor overlaps are, for instance, two detections that overlap by at least 70 percent. Those

detections will then be rather assumed to be a single detection. Thus, a single detection

is built or “fused” from the former two, forming a single great bounding box out of the

smaller ones. The detection probability value of the new single detection is the greater

one of the former detections.

Generally, all information within fvoi can be divided in two major groups. First, all

elements computed based on the information of all detected objects within the object

class coi of oi, called (Intra Object Class Information). Second, all features computed

based on the information of all detected objects across all classes called (Inter Object

Class Information):

Intra Object Class Features

• vcateg.(coi) - categorization probability value for class coi (mapped to {−1, 1}). The

higher vcateg.(coi), the more likely objects of coi to occur in the image.

• r(i, coi) - ratio of the area of oi (of object class ci) divided by the area of the image.

If r(oi, coi) ≈ 0, oi covers almost no part of the image. If r(oi, coi) ≈ 1, oi covers

almost the whole image. (Based on OI).

•
∑

(r(oi, coi)) - sum of all r(oi, coi) of all oi of coi . (Based on OI and OII).

• nnb(oi) - number of all neighbored object detections of oi of coi . If high, all detections

of coi become unlikely. (Based on OII).

• µd(coi) - mean distance and “cluster index” of all oi of coi . Multiple small and

clustered oi often tend to be incorrect each. (Based on OIII).

• nfusions(oi) - number of object detections that overlapped by more than 70 % in

coi and have been “fused” to create oi. If greater zero, oi is often a true detection.

(Based on OIV ).

• µd(oi, coi) - mean distance from oi to all neighbored object detections within coi .

The greater µd(oi, coi), the more likely oi not to belong to a certain cluster. (Based

on OIII).

• vdet.(oi, coi) - probability estimate of the detection algorithm for oi of class coi
(mapped to {−1, 1}). The higher vdet.(oi, coi), the more likely oi.
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• µ↑(vdet.(oi, coi)) = 1
n

∑
j d↑(vdet.(oi, coi), vdet.(oj , coi)),

with d↑(vdet.(oi, coi), vdet.(oj , coi))

=

{
d = ‖vdet.(oi, coi)− vdet.(oj , coi)‖, if d > 0

0, otherwise

with n denoting number of objects of class coi . The higher µ↑(vdet.(oi, coi)), the more

likely oi, although vdet.(oi, coi) might be small. (Based on OV ).

• µ↓(vdet.(oi, coi)) = 1
n

∑
j d↓(vdet.(oi, coi), vdet.(oj , coi)),

with d↓(vdet.(oi, coi), vdet.(oj , coi))

=

{
d = ‖vdet.(oi, coi)− vdet.(oj , coi)‖, if d < 0

0, otherwise

with n denoting number of objects of class coi . The higher µ↓(vdet.(oi, coi)), the more

unlikely oi, especially if vdet.(oi, coi) is already small. (Based on OV ).

Inter Object Class Features

• µ↑(vcateg.(coi)) = 1
n

∑
j d↑(vcateg.(cooi ), vcateg.(cj)),

with d↑(vcateg.(coi), vcateg.(cj))

=

{
d = ‖vcateg.(coi)− vcateg.(cj)‖, if d > 0

0, otherwise

n denotes number of all found object classes cj and d↑(vcateg.(cooi ), vcateg.(cj)) is

computed ∀cj 6= coi . The higher µ↑(vcateg.,coi ), the more likely cj , although vcateg.,coi
might be small. (Based on OV ).

• µ↓(vcateg.(coi)) = 1
n

∑
j d↓(vcateg.(coi), vcateg.(cj)),

with d↓(vcateg.(coi), vcateg.(cj))

=

{
d = ‖vcateg.(coi)− vcateg.(cj)‖, if d < 0

0, otherwise

n denotes the number of all found object classes cj and d↑(vcateg.(cooi ), vcateg.(cj)) is

computed ∀cj 6= coi . The higher µ↓(vcateg.(coi)), the more unlikely cj , especially if

vcateg.(coi) is already small. (Based on OV ).

•
∑
↑(oi, coj ) - measure for the number of oj of different classes (coi 6= coj ) that do

overlap with oi of coi by more than 70 % of their sizes. The higher, the more likely

object oi to contain smaller objects oj . (Indication for oi being a correct detection,

as the detection algorithm, while detecting a correct object oi of class coi , tends to

find multiple smaller incorrect object detections of other classes coj within the region

of oi. (Based on OV II and OV III).
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•
∑
↓(oi, coj ) - measure for the number of object detections oj of different classes

(coi 6= coj ) that do overlap with oi of coj by more than 70 % the size of oi. The

higher, the more likely that oi lying in another bigger object oj . (Indication for oi

being incorrect, as the detection algorithm, while detecting a correct object oj of

class coj , tends to find multiple smaller incorrect object detections within the region

of oj). (Based on OV II and OV III).

• µ↑(vdet.(oi, coj )) = 1
n

∑
j d↑(vdet.(oi, coi), vdet.(oj , coj )),

with d↑(vdet.(oi, coi), vdet.(oj , coj ))

=

{
d = ‖vdet.(oi, coi)− vdet.(oj , coj )‖, if d > 0

0, otherwise

n denotes number of all object detections oj in all classes coj and d↑(vdet.(oi, coi),

vdet.(oj , coj )) is computed ∀coj 6= coi . The higher µ↑(vdet.(oi, coj )), the more likely oi,

although vdet.(oi, coi) might be small.(Based on OV ).

• µ↓(vdet.(oi, coj )) = 1
n

∑
j d↓(vdet.(oi, coi), vdet.(oj , coj )),

with d↓(vdet.(oi, coi), vdet.(oj , coj ))

=

{
d = ‖vdet.(oi, coi)− vdet.(oj , coj )‖, if d < 0

0, otherwise

n denotes number of all object detections oj in all classes coj and d↓(vdet.(oi, coi),

vdet.(oj , coj )) is computed ∀coj 6= coi . The higher µ↓(vdet.(oi, coj )), the more unlikely

oi, especially if vdet.(oi, coi) is already small. (Based on OV ).
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To compute µd(coi) and µd(oi, coi), the objects oi of each object class coi are represented

as a (fully connected) graph G = {V,E}, as shown in figure 11.15. Each object oi marks

a node V and the connection between two objects and edge E. The distance between two

objects is considered the edge weight. We can now compute the mean distance of all ob-

jects in coi by computing the Minimal Spanning Tree (MST) via Prim’s algorithm

([369]; [422]; [85]), described in appendix A.5. µd(oi, coi) then is the mean of the sum of

edge weights in the MST, as illustrated in figure 11.16. Additionally, we can compute the

distance from each object oi to all neighbors within coi performing Dijkstra’s Short-

est Path algorithm ([315]; [422]; [85]) on the original (fully connected) graph G, also

described in appendix A.5. The mean distance µd(oi, coi) is the sum of each path (i.e.

corresponding edge weights) divided by the number of neighbors. Note that the distance

computation is performed between the closest points of the bounding rectangles of two

objects instead of their centers. We therefore compute the intersection of the direct con-

nection of both centers with the bounding rects using a line-line intersection approach

[139]. This is crucial to allow marking overlapping objects with a zero edge weight. To

enhance speed, all graph computation are performed in parallel, using OpenMP.

Figure 11.15: Fully connected graph representations of object detections on image 16 of

the test set (see figure 11.19) for classes “car”, “cat”,“horse” and “person”. Note that no

objects of the “airplane” class have been detected. Min. distances marked in green
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Figure 11.16: MST representations on image 16 of the test set for classes “car”,

“cat”,“horse” and “person”



142 CHAPTER 11. MULTI-LEVEL IMAGE ANALYSIS

Principal Component Based Feature Set Transform

Due to the rather linear separable and correlated nature of the feature set, before training

a classifier, we propose to perform a transformation of the feature set, using Principal

Component Analysis (PCA) ([228]; [30]; [349]; [?]; [3]; [122]) , which projects each feature

vector fvi with l = 16 dimensions, onto a corresponding vector fv′i in an orthogonal

(sub)space:

fv′i = P ∗ (fvi − f̄v) (11.9)

where f̄v denotes the mean feature vector of a training set of feature vectors fvi, P the

projection matrix, and fv′i is the vector in the orthogonal subspace corresponding to each

fvi.

Such an approach has several benefits:

• PCA transforms a set of observations of variables, which might exhibit correlations,

into a set of linearly uncorrelated variables that are referred to as principal compo-

nents.

• As the number of principal components needed to describe discriminances within the

original data set is often less than the number of original variables, we additionally

yield a reduction of the number of features needed for classification.

• The transformation is defined in a way that the first principal component refers to

the direction of the largest variability within the data. Each subsequent principal

component in turn accounts for the highest variance possible under the constraint

that it is orthogonal, and therefore uncorrelated, to the preceding components. Such

a projection of the feature set on a orthogonal subspace alleviates later classification,

making linear classification approach suitable.

Generally the combination of data pre-processing based on PCA and subsequent classifi-

cation using SVM has been studied ([284]; [75]) and employed in various fields, such as

financial ([519]; [143]), medical ([405]; [516]; [395]; [521]; [405]) or biometric applications

[278].

Hence, for a set of 30 images (shown in figure 11.18), we yielded a total number of 523

object detections and ,therefore, 523 feature vectors fvi that were used to compute the

projection matrix P .
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To compute the projection matrix P , we first compute the mean feature vector f̄v over

all n = 523 fvi:

f̄v =
1

n

n∑
i=1

fvi

We then subtract the f̄v from each feature vector fvi:

xi = fvi − f̄v

and define a matrix X:

X = (x0,x1, ...,xn) ∈ Rl×n

From that, we can set up the Covariance Matrix C:

C =
1

n
X XT ∈ Rl×l

The PCA is based on the diagonalization of the covariance matrix C:

C = U diag(σ2
i )U

T

C is symmetrical, hence the columns ui of U form an orthogonal set of eigenvectors. σi

are the standard deviations within the data along these eigenvectors. The diagonalization

can be computed using Singular Value Decomposition (SVD) [368],[446].

Finally, P can be built, where each row pj of P is a column ui of U , starting with that i

corresponding to the highest σi.

The classification results (see table 11.4) show that the main of the feature set can be

described using a reduced set of principal components of the transformed feature set. Our

experiments were performed using 13 principal components, yielding k = 15 elements in

fv′i, as the influence of further principal components were rather negligible concerning

their σi. Hence the projection matrix P is of the dimensions:

P ∈ Rk×l
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Results & Discussion

We choose classification based on Support Vector Machines (SVM), discussed in appendix

A.7, based on libSVM [71] and trained on a representative set of only of 85 projected

feature vectors fv′i of the training data set used for computing PCA.

The classifier is tested on an image set of 30 images (shown in figure 11.19), yielding a total

number of 560 object detections. For tests, each detection is labeled manually as either 1

or -1, being a correct or incorrect detection. We then compared our algorithm with two

simpler classification approaches. First, a basic thresholding approach BTv, that classifies

all detections with vcateg.,ci > 0 and vdet.,i > 0 as a correct detection and as an incorrect

detection otherwise. Second, a SVM based classifier SVMv trained on vcateg.,ci and vdet.,i.

SVMv only. We trained a linear and non-linear classifier, both yielding equivalent results.

The results of our experiments in table 11.4 indicate our proposed algorithm to be very

appropriate to be used within our application. Our algorithm is not only able to correctly

falsify 100 percent of incorrect detection, it also outperformed the two other algorithms it

was compared with when it comes to correct verification and incorrect falsification rate.

Figure 11.17 illustrates some examples where our algorithm outperforms the comparison

algorithms. It performs for each image in the test set in ≈ 3 seconds on an Intel i5

2.53GHz machine, in comparison to ≈ 6 seconds for categorization (of the 5 object classes)

based on [93] and ≈ 30 seconds for detection based on [142]. Hence, it can be considered

to be used in interactive applications.

Verification / Falsifi-

cation Algorithm

Correct

Verifica-

tions

Correct

Falsifica-

tions

Incorrect

Verifica-

tions

Incorrect

Falsifica-

tions

Ground Truth 27 533 - -

BTv 13 (48.1%) 529 (99.2%) 4 (0.08%) 14 (51.9%)

SVMv 18 (66.7%) 529 (99.2%) 4 (0.08%) 9 (33.3%)

our approach 21(77.8%) 533(100%) 0 (0%) 6 (22.2%)

Table 11.4: Evaluation of our proposed Verification / Falsification approach in comparison

with a basic thresholding approach and a SVM trained on vcateg.,ci and vdet.,i
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Figure 11.17: Examples of our approach improving over the basic SVM approach. Plane

detections in images 10 (vcateg.(ci) = −0.057, vdet.(i, ci) = −0.027) and 17 (vcateg.(ci) =

0.9438, vdet.(i, ci) = −0.195) as well as the cat detection in image 7 (vcateg.(ci) = 0.1756,

vdet.(i, ci) = −0.036) are correctly verified by our approach opposed to the SVM approach.

On the other hand as opposed to the SVM approach, false person detections in images 4

(vcateg.(ci) = 0.6005, vdet.(i, ci) = 0.5979) and 6 (vcateg.(ci) = 1.2143, vdet.(i, ci) = −0.066)

are correctly falsified with our approach

Finally, correct detection are stored within the system as audible object AOplane,0 and each

augmented visual pixel v(x, y) is equipped with a queue structure vobj.−queue that stores

all the object class ci of all object detections at (x, y) in decreasing order of vdet.(i, ci).

Further, object detections in the image are stored within the system by their bounding

rects recti, ci and vdet.(i, ci) to be further processed for sonification.



146 CHAPTER 11. MULTI-LEVEL IMAGE ANALYSIS

Figure 11.18: 30 images to perform PCA and compute the projection matrix UT , taken

from the Visual Object Classes Challenge 2010 (VOC2010) [135]
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Figure 11.19: 30 images to test SVM classification on, taken from the Visual Object Classes

Challenge 2010 (VOC2010) [135]
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Extracting Objects

Foreground extraction algorithms, as already introduced and used in section 7.4, can be

harnessed to enhance the exploration experience with object detections even more ele-

gantly than in section 7.4. In contrast to the method used in section 7.4, we do not have

to employ a region growing algorithm to gather enough pixel information for foreground

extraction. Instead we can directly utilize the bounding rects recti of the object detection

i at (x, y). In case of multiple object detection at (x, y), for foreground extraction, the

object detection i that exhibits the highest vdet.(i, ci) is selected. Again, the segmentation

procedure is initialized by the user hitting an external additional “buzzer” button. Finally,

all augmented visual pixels v(x, y) that do not belong to the segmented area have a spe-

cific flag vs(x, y) set to 0 (and 1 otherwise), which will signal the sonification module to not

play any sound in these regions at all. As in section 7.4, the specific implementation of the

modular sonification, presented in chapter 10, model is slightly modifified, as illustrated

in figure 11.20.

Figure 11.20: Illustration of the slightly modified version of modular sonification model

implementation given in chapter 10. If the user hits the red “buzzer” the segmentation

process is initiated starting from his current (x, y) position





Chapter 12

Sonification for Auditory Scene

Understanding

12.1 An Audible Color Space Representation Inspired by Visual

Color Perception

Color sonification in this part of the thesis is based on the ideas proposed in part III,

except we exchanged the complementary instruments, discussed in chapter 8, with what

we call complementary sound characteristics to represent the opponent color pairs

red / green and blue / yellow. Basically, those are fundamental sound elements, such as

tremolo, beats, harmonics etc. Using such fundamental sound characteristics has several

benefits over common MIDI instruments:

• Semantic Correctness: Instruments, in general, do not give a decent representa-

tion of a color’s visually perceived characteristic. Instruments are associated rather

with certain objects, e.g. a choir, which in part III was assigned to red, with a cathe-

dral. Hence, it is hard to intuitively connect this acoustical element to an object

such as a tomato. In contrast, our fundamental sound characteristics might allow the

user to perceive acoustically what corresponds to the visual perception of a seeing

person.

• Simplicity: To describe every opponent color using a few, fundamental sound char-

acteristics rather than instruments having complex sound spectra might closer to

the idea of mixing elementary colors.

• Discriminability: Though instruments were chosen accordingly in part III, in gen-

eral, they tend to interfere with one another making color and / or feature recognition

unnecessary complicated. Mixing basic sound elements allows a more directed and,

therefore, better separable combination of colors acoustically.

150
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• Loudness Independency: The fundamental sound elements selected can be dis-

tinguished by their individual timbre, and therefore be mixed without and still be

separated without the only criteria being volume. This alleviates the computation of

control parameters considerably because no later compensation for a user’s possible

selection of too dominant instruments has to be made.

• Usability: Using high quality MIDI instruments requires usage of an external MIDI

Synthesizer and additional linkage software as well as a certain level of expertise to

connect the system with the synthesizer. While that might not be a problem for a

seeing person, it definitely is to a visually impaired.

These fundamental sound elements mentioned, when mixed, create a musical timbre.

Musical timbre is defined in [377] as:

That attribute of sensation in terms of which a listener can judge that two

steady complex tones having the same loudness, pitch and duration are dissim-

ilar

Rather than mixing instruments, which already contain a complex in time slightly chang-

ing timbre, combining fundamental sound characteristics allow for a more directed and

predictable forming of specific timbres, which are, thus, easier to assign to a specific color.

Figure 12.1: Experience shows that the blue shadows on snow or ice represent coldness

(right). “Warmth” perceptions of yellow and red alike colors mighte come from associations

with sun, fire, wood (left)
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The selection of specific sound elements to be assigned to a certain opponent color is

inspired, or driven by how colors are perceived or “felt” visually. The complementary

sound characteristics are chosen to convey emotions, a normal sighted person perceives,

when looking at a specific color, through sound. Thus, the visual to audio transformation

described in this part very closely follows the concept of isomorphism that Hofstadter

describes in his famous work “Gödel, Escher, Bach: An Eternal Golden Braid” [211]:

The word “isomorphism” applies when two complex structures can be mapped

onto each other, in such a way that to each part of one structure there is a

corresponding part in the other structure, where ”corresponding” means that

the two parts play similar roles in their respective structures. The usage of the

word ”isomorphism” is derived from a more precise notion in mathematics.

The perception of an isomorphism between two known structures is a significant

advance in knowledge – and I claim that it is such perceptions of isomorphism

which create meanings in the minds of people.

According to Color Theory ([263]; [161]; [297]; [300]; [531]) colors are visually perceived

individually, causing different emotional reactions. Wolfrath [297] found a significant in-

crease in pulse and breathing frequency with stimuli of red and yellow colors, in contrast,

a decrease on violet, blue color stimuli. He summarizes: Colors are transformed, by the

physiological process of vision, into feelings. Furthermore, three separate studies con-

firmed the effect of color alone in determining thermal comfort levels, as illustrated in

figure 12.2. A simple coat of paint varied the perception of temperature by as much as

approximately 4 degrees Celsius [300]. Accordingly, there have been stated some tries of

a psycho-physiological explanation for these phenomena. According to [263] and [531] it

is assumed that the cool perception of cold colors is founded in associations of the human

brain with blue-green ice and sea water or metal (see figure 12.1 (right)). Intuitively, the

blue shadows on snow or ice represent coldness, while the complementary red nuances are

perceived as warm colors. It might be further presumed that the ”warmth” perceptions

of yellow and red colors come from associations with sun, fire, wood or blood (see figure

12.1 (left)).

Figure 12.2: Results of three studies on thermal comfort and color as described in [300]
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A Physical Perspective on Color Temperature

From a physical perspective the color temperature of a specific light source is by definition

the temperature of a black body [420] that radiates light of comparable hue to that of

the light source. A black body is an idealized physical object defined in [361] as:

An ideal body is now defined, called a black body. A black body allows all

incident radiation to pass into it (no reflected energy) and internally absorbs

all the incident radiation (no energy transmitted through the body). This is

true of radiation for all wavelengths and for all angles of incidence. Hence, the

black body is a perfect absorber for all incident radiation.

The color temperature of such light radiated by the black body is then defined as the black

body’s surface temperature in kelvins K ([501]; [420]) which permits the definition of some

standard by which light sources can be compared. Thus, when talking of a lamp to have

a color temperature of ≈ 3000 K, what is meant is that if a black body would be heated

to 3000 K, it would give off the same light. This would be of course only valid if the light

source in question behaves at least approximately as a black body ,which is true for the

sun and most objects which simply give off light because they are hot. As an example, the

Sun, has a surface temperature of ≈ 5500 K and its emitted radiation is mostly within the

visible spectrum. Thus, light from the sun is considered to have a color temperature of ≈
5500 K. Similarly, an incandescent lamp’s light would be thermal radiation and the bulb

approximates an ideal black body radiator. Thus, its color temperature is essentially the

temperature of the filament (see figure 12.3 (right))

However, To the extent that a hot surface emits thermal radiation while not being an

ideal black body radiator, the color temperature of the light does not refer to the ac-

tual temperature of its surface. A fluorescent lamp for instance, emits light primarily by

processes other than thermal radiation, which means that the emitted radiation does not

follow the form of a black body spectrum and thus, those light sources are assigned as a

correlated color temperature (CCT). Correlated color temperature is defined as the

color temperature of a black body which to the human perception is most closely match

the light from such a lamp (see figure 12.3 (right)).

Figure 12.3 (left) visualizes the spectral intensitiy distribution of Planck’s black body

radiation as a function of wavelength at different temperatures. Note that the maximum

of the intensity shifts to shorter wavelengths as the black body temperature increases.

Thus, from a physical point of view, colors, such as yellow and red, which are perceived

as “warm” and respectively the corresponding light from lamps or fires are actually light

sources having a relatively low physical color temperature.
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Figure 12.3: Left: The spectral intensitiy distribution of Planck’s black body radiation as

a function of wavelength at different temperatures. Picture modified from [420]. Right:

Comparison of an incandescent lamp with a color temperature of approximately 2700 K, a

3500 K and a 5500 K fluorescent lamp. All lamps are all similar in light output (measured

in lumen)

Chromesthesia

Further, some people experience the ability to taste, hear, feel or smell colors. Such a con-

nection of the senses is known as Synesthesia ([95]; [96]). More specifically, the connection

between colors and hearing is called Chromesthesia [96], illustrated in figure 12.4 (left).

Although not been explained scientifically, it appears fairly frequently in history. Many

great composers appear to have had this ability such as Franz Liszt or Nicolai Rimsky-

Korsakov ([95]; [393]). Cytowic [96] gives an illustrative example of how especially Franz

Liszt tended to express his views on music:

In 1842 when Liszt took over the post of Kapellmeister in Weimar, he aston-

ished the orchestra by saying, ’Oh please, gentlemen, a little bluer, if you please!

This tone type requires it!’ Or, ’That is a deep violet, please, depend on it! Not

so rose!’ The orchestra eventually got used to the maestro seeing colors where

they saw only notes.

Vassily Kandinsky, famous artist and an accomplished musician, possessing Chromesthe-

sia, accordingly said [238]:

Color is the keyboard, the eyes are the hammers, the soul is the piano with

many strings. The artist is the hand that plays, touching one key or another

purposely, to cause vibrations in the soul.
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However, individuals rarely agree on a mutual mapping of a specific color to a given sound

[393], making a unifying sonification concept based on Chromesthesia rather infeasible.

Figure 12.4: Left: An illustration of chromesthesia. Specific colors are trigged by different

notes. Right: Goethe’s color circle, illustrating his considerations about association of

colors with certain psychological states. (Inner Ring: red - beautiful, orange - noble, yellow

- good, green - useful, blue - mean and violet - unnecessary. Outer Ring: red/orange -

reason, yellow/green - mind, green/blue - sensuality and violet/red - fantasy). Picture

taken from [171]

Color Symbolism

Note that the verifiable color perceptions just discussed have nothing in common with

what is mostly known as Color Symbolism, already considered by Goethe [171] (see figure

12.4 (right)), describing alleged associations of colors with certain psychological states or

spiritual conditions. Consequentially, Gekeler [161] states:

Cause and effect are often not separable. Though, skepticism is recommended

if specific colors are associated with certain spiritual conditions.



156 CHAPTER 12. SONIFICATION FOR AUDITORY SCENE UNDERSTANDING

Timbre Synthesis - the Creation of Colored Sounds

Timbre, as just described, refers to the “color” or quality of sounds and is typically dif-

ferentiated conceptually from pitch and loudness. [504]. It is thus a multidimensional

sensation that relies, among others, on the spectral energy distribution and temporal

variation in this distribution ([419]; [182]). In order to better understand what the tim-

bre feature refers to, numerous experiments have been performed ([200]; [262]; [258] ;[377];

[274]; [504]; [182] [309]). All of these experiments employ Multidimensional Scaling (MDS)

analysis ([43]; [88]) to process dis-similarity judgments, partitioners were to make on pairs

of sounds. Multidimensional Scaling (MDS) analysis also represents the sound stimuli in a

low-dimensional space to uncover potential underlying attributes that listeners might em-

ploy. This low-dimensional representation is often referred to as a “Timbre Space” [209].

Investigations to describe musical timbres using common adjectives has been issue of con-

siderate research for various purposes ([528]; [527]; [409]; [408]; [112]; [111]; [134]; [491];

[110]; [213]; [178]; [227]; [113]). Zacharakis et al. ([528]; [527]) conduct a study on the

verbal attributes of musical timbre to identify the most significant semantic descriptors

and to quantify the association between prominent timbral aspects. Factor and cluster

analysis is performed on the subjective evaluation data in order to shed some light on

the relationships between the proposed adjectives. Figure 12.5 shows the results of their

studies in [528] as the results of a hierarchical cluster analysis based on squared Euclidean

distances over 27 found common verbal descriptors.
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Figure 12.5: Dendrogram of the hierarchical cluster analysis over 27 found common verbal

descriptors. Picture taken from [528]

Interestingly, user studies not only indicate the behaviour of assigning similar words to

certain types of sounds, and therefore reveal a rather universal mapping between words

and timbre ([409]; [408];). They further reveal, that it is reasonable to suggest that the

description of musical sounds is not influenced by musical background and training and

is rather an innate skill ([409]; [408]; [112]; [111]). These findings are quite encouraging

for our approach to find timbres that are described by salient semantic descriptors, such

as “warm”, that match the visual descriptions for specific colors, as they ensure that our

selected associations might be intuitive not only for a small group of trained participants.
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Timbre Synthesis based on Complementary Sound Characteristics

Table 12.1 gives a brief overview over the visual perceptions associated with the opponent

colors, according to ([263]; [297]; [300]; [531]), as well as the sound characteristics we assign

as an acoustical representation.

Opponent

Colors

Visual Perception Complementary Sound Characteristic

black/white

(gray-scale)

monotonous, sad single sine wave

red alive, vibrant tremolo

green calm third + slow patterns of beats

yellow warm bass + even harmonics

blue cold flute model

Table 12.1: Our proposed visual to acoustical “isomorphism”

In words, all color sound synthesis starts off with a single (monotonous) sine wave for

gray-scale values, called the “fundamental sine”. With red, a tremolo effect [503] is cre-

ated adding a second sine wave, equal in loudness to the fundamental sine, just a few

Hertz apart. The superimposition of such two sine waves is known as a first order beat

[392] and creates the tremolo effect if both frequencies are very close (differing by < 5 Hz

). The more red the color turns, the smaller we tune the gap between both frequencies,

increasing in speed of the perceived tremolo.

To create an opponent sound characteristic to such a vibrant red, we represent the rather

calming green, as a calm motion of sound in time using an additional sine wave tuned to a

classical third to the fundamental sine wave, forming a third chord, as well as two further

sine waves, one tuned almost similar to the fundamental sine, the other almost similar to

the second sine to form a pair of beats. In contrast, frequencies are set far enough apart

to create not the vibrant tremolo effect but a smooth temporal varying sound pattern. All

additional sine waves have the same loudness as the fundamental sine, which leads to the

perception of a true chord, instead of harmonics, and therefore creates depth to the sound

[199].

To simulate the visual perception of “warmth” with yellow, we increase the volume of bass,

as encouraged in [199], created by two additional sine waves tuned 4 and 8 octaves below

the fundamental sine wave, as well as the number and loudness of up to 8 additional sine

waves, tuned to the frequencies of only the even harmonics of the fundamental sine wave,

as motivated in [423]. “Warmth” in sound is a term that has been proven to be difficult to

define. However, it is widely agreed that it deals largely with low and low mid-range fre-
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quencies ([505]; [320]; [321];), thus our selection. The resulting sound resembles a bit that

of an organ. Note that additional sine waves are adjusted in loudness. For instance, the

harmonics are played several times quieter than the fundamental sine to not be perceived

as a complex chord with the fundamental sine. The possible loudness increase intervals of

the two additional sine waves creating bass are chosen to avoid auditory masking as well

as to not be perceived as a new fundamental tone. These considerations are implemented

according to the experimental results of the equal loudness curves, discussed in section 2.1.

The coldness of blue was originally planned to be sonified adding only odd harmonics

which leads to a square wave, creating a “cold” and mechanical sound. However, the

sound so produced is too annoying to be used, so we applied one of the Synthesis Toolkit’s

pre-defined physical instrument models, which is able to synthesize the sound of a rough

flute or wind. Interestingly, those instruments contain mostly odd harmonics. As dis-

cussed in section 3.1, a beneficial property of such models is that an increase in loudness

goes along with as increase in timbral intensity and is, therefore, suitable to represent a

change in color towards intense blue.

Figure 12.6: Left: The opponent colors are represented by complementary sound charac-

teristics. Right: An audible color space inspired by visual perception

Note that our selection is inspired by the previously discussed observations on visual color

perceptions. It does, however, not claim to be the only or most appropriate selection to

convey such perceptions and it would be an interesting issue for further research, whether

our or any other selection of sound characteristics can be verified to trigger an equivalent

emotional response to the visual perception of a color.
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Luminance Sonification

As motivated in part III, different luminances are represented by changes in pitch, in the

form of a musical scale from C4 = 261.626 Hz to C5 = 523.251 Hz. Again, for harmonic

reasons, we only utilize the whole tones of the octave and map each lightness value l be-

tween 0 and 255 to one of the eight tones of the scale, as discussed in section 8.1. However,

we remove the thirds in between to not confuse with the thirds partially representing green.

Note that because we are no longer bound to the specifications of MIDI and synthesizing

own sounds and acoustical timbres “from scratch”, the usage of a continuous pitch instead

of rather discrete notes to map lightness could be considered. However, as also already

mentioned in section 8.1, we abstain from doing that to add another interesting semiotic

element, emphasizing the sad monotony of gray scale values in contrast to the rather “joy-

ful” colors.

Any time, a pixel value is considered to be gray scale, the sonification of its lightness

is performed according to a rather “sad” C natural minor scale (figure 12.7 (right)),

instead of the C major scale (figure 12.7 (left)) used with the lightness sonification of

colorful pixel values.

Figure 12.7: Left: C major scale. Right: C natural minor scale

Note that as timbre is typically differentiated conceptually from pitch and loudness [504],

we can additionally use these dimensions to support the perception of color saturation, us-

ing loudness, as well as changes in lightness based on pitch, without the risk of unintended

changes in the sound characteristic of a specific color.



12.1. AN AUDIBLE COLOR SPACE REPRESENTATION INSPIRED BY VISUAL

COLOR PERCEPTION 161

Computation of the Audible Color Space

Calculating mixture relations between our sound elements makes use of the control entity

structure, called volume shape ϑ(h, s),as presented in part III of the thesis. In part III a

volume shape ϑ(h, s) for each instrument mapped a volume ϑ from 0 to 1 to each color

(h, s), regardless of the lightness l.

We make use of this idea to control our sound parameters, except that we incorporate

lightness now. As on can see in the enrolled HSL space (see figure), as lightness increases

or decreases say above or below 50 percent it significantly looses its intensity not unlike

the fade in saturation. These properties of the HSL model should be considered in its

acoustical representation.

Further investigation in the HSL color space additionally revealed two major irregularities

that have to be considered as well:

• Below 50 percent luminance around yellow (h = 60◦) there is a certain region that

would be visually perceived as “olive green” rather than dark yellow (see figure 12.8

(left)).

• Additionally, what should be a visual “deep blue” at h = 240◦ increasing in lu-

minance tends to fade into what is perceived visually as “violet” (see figure 12.8

(right)).

Figure 12.8: Irregularities within the HSL color model. Picture taken from [441]

Consequentially, we needed to adjust our acoustical color space representation to compen-

sate for the audible perception to fit the visual perception.
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A Timbre-Based Color Sound Synthesis Equation

To incorporate lightness as well as irregularities within the HSL model, we take the idea of

volume shapes ϑ(h, s) a step further and pre-compute a control parameter value for each

sound characteristic at every position within the HSL model, calling it sound parameter

volumetric ϑ(h, s, l).

Before going into detail about adjusting the audible color space and the computation of

ϑ(h, s, l), we can now formulate a new color sound synthesis equation that describes the

mapping from color values (h, s, l) stored within each augmented visual pixel v(x, y) into

a sound, referred to as the color sound attribute acolor(x, y) of the audible pixel a(x, y),

as a try to convey visual color perceptions and physiological effects through the sense of

hearing:

acolor(x, y) = ϑgrey(h, s, l) ∗ Sine(η) (12.1)

+ ϑred(h, s, l) ∗ vibrant(η, ϑred) + ϑgreen(h, s, l) ∗ calm(η, ϑred)

+ ϑyellow(h, s, l) ∗warm(η) + ϑblue(h, s, l) ∗ cold(η)

with:

h = sh(x, y) = vh(x, y), s = ss(x, y) = vs(x, y), l = sl(x, y) = vl(x, y)

and:

warm(η) = Sine(
η

4
) + Sine(

η

8
)︸ ︷︷ ︸

bass

+
8∑
i

Sine(η ∗ 2 ∗ i)︸ ︷︷ ︸
harmonics

cold(η) = flute(η)

calm(η, ϑred) = Sine(η3rd)︸ ︷︷ ︸
third

+Sine(η + 30Hz ∗ ϑred(h, s, l)) + Sine(η3rd + 30Hz ∗ ϑred(h, s, l))︸ ︷︷ ︸
Beats

vibrant(η, ϑred) = Sine(η + 5Hz ∗ ϑred(h, s, l))︸ ︷︷ ︸
tremolo

and:

η =

{
notemajor(l), if ϑgray(h, s, l) = 1

noteminor(l), otherwise
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The 1D lookup structures notemajor(l) and noteminor(l) employs the same the mapping

of l values to 1 of the eight tones, as used in section 8.1 and discussed in appendix B.2.

However, notemajor(l) is the lookup table C major scale, noteminor(l) that of a C natural

minor scale, both containing corresponding frequencies (see table 12.2).

key notemajor(l) key noteminor(l) lightness range

C (261.6 HZ) C (261.6 HZ) 0− 10

D (293.67 HZ) D (263.67 HZ) 11− 37

E (329.62 HZ) Es (311.13 HZ) 38− 63

F (349.23 HZ) F (349.23 HZ) 64− 101

G (392 HZ) G (392 HZ) 102− 153

A (440 HZ) As (415.3 HZ) 154− 179

H (493.88 HZ) B (466.16 HZ) 180− 242

C (523.25 HZ) C (523.25 HZ) 242− 255

Table 12.2: Lookup structures notemajor(l) and noteminor(l)

Note, that in contrast to the color sonification approach presented in part III, the funda-

mental sound characteristic that represents gray also builds up the foundation for 3 of the

4 opponent color sonifications and is, therefore, never switched off.

Further, the lookup table note(l) depending on gray or not.. Based on a musical scale, as

shown in figure 8.2 (right), black, as the lowest lightness value, is assigned to the tonic

keynote, whereas white to its octave. In between there are six whole tones and 12 semi-

tones. For harmonic reasons we only utilize the whole tones of a single octave and map

each lightness value l between 0 and 255 to one of the eight tones, forming a 1D lookup

structure note(l). Note that the mapping of l values to specific tones, discussed in ap-

pendix B.2, was determined judging by our own visual perception of approximately equal

lightness intervals.

The sound synthesis method employed would be additive synthesis for the sonification of

red, yellow and green, as described in section 3.1, implemented using the Synthesis Toolkit

(STK) library [83], briefly described in appendix A.9. The sonification of blue is based on

a physical instrument model, which is also a part of the Synthesis Toolkit (STK).
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Computation of Sound Parameter Volumetrics

Although the general concept of sound parameter volumetrics ϑ(h, s, l) is based on the

idea of volume shapes ϑ(h, s), their computation has been significantly varied. Opposed

to color sonification in part III based on volume shapes, we quantize the acoustical color

representation not only in l, but also along h. The sacrifice of continuity in mapping along

h, comes with the crucial benefit to gain more control over the resulting sound, in other

words to better match the visual perception to the audible perception.

The quantization along h is inspired by the human eye’s inherent limitations to distinguish

color differences [515]. Generally, MacAdam ellipses refer to the region on a chromaticity

diagram [299], [514]. Such an ellipse, illustrated in figure 12.9 (left), contains all colors

that are indistinguishable, to the (average) human eye, from the color at the center of

the ellipse. The contour of the ellipse, therefore, represents the just noticeable differences

(JND) of chromaticity. Figure 12.9 (right) shows the application of JND ellipses in the

Cielab color space.

Figure 12.9: Left: MacAdam ellipses for one of MacAdam’s test participants. Illustration

build based on [299]. Right: ellipsoid of “equally” perceived colors in the CieLab color

space. Picture modified from [515]
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Hence, we define regions of approximately “equally perceived” color values within our

audible color space, though those regions will be significantly greater than the JND of

visual color perception. Note that such regions are chosen by judging by our own visual

observations of approximately equal hue intervals. However, there has been some research

on “human perception based color segmentation” that might corroborate our selection

([479]; [426];[370]; [241]; [6]; [80]). To avoid unnatural jumps at borders we define a linear

transition between regions. Table 12.3 shows our defined hue intervals of approximately

“equally perceived” color values, and transitions in between, within our audible color

space, at 50 percent luminance and 100 percent saturation.

Perceived Color (mixture) hue range ϑred ϑyellow ϑgreen ϑblue

red 0◦ − 14◦ 255 0 0 0

transition 15◦ − 19◦ 0 0 0 0

red / orange 20◦ − 29◦ 255 64 0 0

transition 30◦ − 34◦ 0 0 0 0

orange 35◦ − 40◦ 255 255 0 0

transition 41◦ − 47◦ 0 0 0 0

yellow / orange 48◦ − 49◦ 64 255 0 0

transition 50◦ − 56◦ 0 0 0 0

yellow 57◦ − 64◦ 0 255 0 0

transition 65◦ − 69◦ 0 0 0 0

yellow / green (olive) 70◦ − 84◦ 0 64 127 0

transition 85◦ − 89◦ 0 0 0 0

green / yellow 90◦ − 91◦ 0 64 255 0

transition 92◦ − 99◦ 0 0 0 0

green 100◦ − 159◦ 0 0 255 0

transition 160◦ − 169◦ 0 0 0 0

cyan 170◦ − 189◦ 0 0 64 127

transition 190◦ − 194◦ 0 0 0 0

light blue 195◦ − 219◦ 0 0 0 127

transition 220◦ − 225◦ 0 0 0 0

dark blue 226◦ − 264◦ 0 0 0 255

transition 265◦ − 269◦ 0 0 0 0

blue / purple 269◦ − 269◦ 64 0 0 255

transition 270◦ − 274◦ 0 0 0 0

purple 275◦ − 284◦ 255 0 0 255

transition 285◦ − 289◦ 0 0 0 0

red / purple (magenta) 290◦ − 334◦ 255 0 0 64

transition 335◦ − 339◦ 0 0 0 0

red 340◦ − 360◦ 255 0 0 0

Table 12.3: Our defined hue intervals of approximately “equally perceived” color values
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Note that in figure 12.9 (right) the “equally perceived color” ellipses within the orange

area are longer and narrower than the broad and rounder ones in the green area. As one

can see in table 12.3, such property naturally flew into our hue intervals of approximately

“equally perceived” color.

Based on table 12.3 all sound parameter volumetric values ϑ(h, s, l) at l50% = 127 can

now be computed (see figures 12.10 and 12.11). For all ϑ(r)ed, ϑ(y)ellow, ϑ(g)reen, ϑ(b)lue, a

decrease in saturation causes a linear decrease in ϑ(h, s, l):

ϑr,y,g,b(h, s, l50%) =

{
ϑr,y,g,b(h, s100%, l50%) ∗ s−smin(l50%)

s100%−smin(l50%) , if s > smin(l50%)

0, otherwise

with

s100% = 255, l50% = 127

Note that any point where ϑ(h, s, l) = 0 is, therefore, not necessarily the center of the

(h, s, l) color space (along l), but the value of the minimum saturation lookup structure

smin(l) computed in part III.

Figure 12.10: ϑred(h, s100%, l50%) & ϑgreen(h, s100%, l50%). Note that the range of values for

each ϑ(h, s) is from 0 (black) to max. 255 (orange-yellow)
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Figure 12.11: ϑyellow(h, s100%, l50%) & ϑblue(h, s100%, l50%). Note that the range of values

for each ϑ(h, s) is from 0 (black) to max. 255 (orange-yellow)

The computation using the non-linear Thin Plate Splines (TPS) interpolation method as

in part III is inappropriate given many control points that describe linear intervals and

transitions. Furthermore, the fundamental sound elements selected can be distinguished

by their individual timbre, and therefore be mixed and still be separated without the only

criteria being volume. Hence, no later compensation for a user’s possible selection of too

dominant instruments has to be made, which was another main motivation in part III to

work with TPS. However, the TPS method will still be exploited to deal with some of the

previously mentioned visually perceived irregularities. In order to not disturb the textual

flow at this point the explanation of how we deal with these irregularities has been shifted

to section 2.1.

To support the perception of changes in a color’s perceived “colorfulness” as a color gets

darker or lighter than l = 50% values of ϑ(h, s, l) decrease, starting from l = 50%, according

to:

ϑr,y,g,b(h, s, l) =

{
ϑr,y,g,b(h, s, l50%) ∗ (1− ‖l−l50%‖l50%

), if s > smin(l50%)

0, otherwise

with

l50% = 127
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Amplitude Envelope

To avoid nasty “cracks” in the output signal, it is crucial to prevent color sonification

from “jumps” in the final volume. In part III, this was internally solved by the MIDI

synthesizer. Each MIDI instrument followed a general amplitude envelope structure [114]

as illustrated in figure 12.12(left). Basically, such an amplitude contains 4 phases:

• Attack : Describes the time an instrument needs to run from zero volume to its peak

value, when a note is initially triggered, such as a key on a piano is first pressed.

• Decay : Denotes the time taken for the subsequent decay from the attack level to a

designated sustain level.

• Sustain: describes the amplitude level during the main sequence of the sound’s

duration, until the note is released.

• Release: describes the time necessary for the run down from the sustain level to zero

after the note is released.

In the color sound synthesis presented in this part, the final volume is directly depended

on the sound parameter volumetric ϑ(h, s, l) and the queue of sonification descriptors, as

discussed in chapter 5.4, offers a very elegant way to create our own amplitude envelope.

Thus, we compare all ϑ of the current and the next sonification descriptors s(x, y)curr.,

s(x, y)next to be converted into sound and check whether their difference ϑnext − ϑcurr.
would be greater than a specific threshold 4maxϑ. The sign of the difference indicates

whether the volume of the sound increases or decreases.

If |ϑnext − ϑcurr.| > 4maxϑ we create several copies si(x, y)curr. of s(x, y)curr. with inter-

mediate equidistant (increasing or decreasing) ϑi:

4ϑ =
ϑnext − ϑcurr.

n
(12.2)

with

n = dϑnext − ϑcurr.
4maxϑ

e (12.3)

n denotes the number of intermediate sonification descriptors si(x, y)curr. needed so that

each ϑi is below 4maxϑ. Finally:

ϑi+1 = ϑi ±4ϑ (12.4)
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Consecutively, the created intermediate sonification descriptors si(x, y)curr., si+1(x, y)curr.,

..., sn(x, y)curr. are positioned within the sonification queue between s(x, y)curr., s(x, y)next.

The so created smooth amplitude transition between different pixel positions shapes an

amplitude envelope of the form as illustrated in figure 12.12(right). Note that the decay

phase is not needed within our color sound synthesis.

Figure 12.12: Left: The general amplitude envelope structure [114]. Right: The amplitude

envelope for smooth transitions between pixel positions
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12.2 Classified-Region Dependent Feature Sonification

The sonification of complex features, such as roughness, highest gradients, line patterns

and objects, is processed using pre-computed wave-files with the irrklang Audio Engine [8]

(see appendix A.6). It allows for post-processing of pre-computed wave-files with sound

effects such as looping, volume change, playback-speed change, pitch change, reverber-

ation, echo, stereo panning and 3D sound positioning. We harness such possibilities to

convey complex features audibly along with colors without additional computational effort

to synthesize such sounds additionally. Further, the usage of external audio files allows for

an easy exchange of sounds.

Natural Regions Represented by Brown Noise

Natural regions are sonified using pre-recorded brown noise as an intuitive acoustical

roughness representation, as discussed in section 3.2. Its spectral density is inversely pro-

portional to f2, meaning it has more energy at lower frequencies, which gives brown noise

a ”damped” or ”soft” sound, in contrast to white and pink noise. This makes it more

comfortable to work with and it is less likely tends to mask other sonifications. It sounds

like a low roar resembling a waterfall or heavy rainfall. Additionally, we make use of stereo

panning to support localization as well as the estimation spatial propagation of natural

structures within the image easier.

The following equation shows the mapping of vFD(x, y) into the final sound, i.e. the

audible pixel’s anatural(x, y), with 2D spatialization already incorporated:

anatural(x, y) = (volleft(x, y) + volright(x, y)) ∗ volnatural(x, y) ∗BrownNoise() (12.5)

with

volnatural(x, y) =

{
volmax,natural ∗ vFD(x, y), if (x,y) ∈ natural region

0, otherwise

volmax,natural was been experimentally chosen to be low enough to not mask other sonifi-

cations.
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Man Made Structures Acoustically Encoded in Rhythms

Regions belonging to man made structures are acoustically represented using two different

rhythms, say Ωlp and Ωhg, played by two different percussion instruments, again pre-

recorded as sound files.

The perception and analysis of rhythm and rhythmic dissimilarities, in general, has been

topic of thorough research ( [470]; [468]; [425]; [424]; [469]; [188]). The selection of a

rhythmic representation for structure sonification is motivated by two major benefits:

• As discussed in section 2.1, the brain is very sensitive to temporal and spectral

variations, which makes the application of specific rhythms an ideal instrument to

convey information audibly.

• Rhythms that vary primarily in temporal rather than spectral dimensions tend to

less likely interfere with, e.g., the color sonification.

The last observation is partly corroborated by Cullen and Coyle [94], who employ rhythmic

parsing for the sonification of DNA and RNA sequences. They state:

It is often the case that sonified audio has little or no rhythmic component,

and it is felt that as rhythm is such an important part of the musical analysis

process it should be given far more serious consideration when representing

mathematical data as audio.

Other than that, in our context, the usage of rhythm can be motivated that by intuition

the occurrence of edges as well as repeating line patterns, as singular peaks within a

continuous lightness level, might be very intuitively conveyed into a regular repeating

pattern of impact sounds.

Buildings & Line Patterns

The first rhythm Ωlp, played on a wooden bongo drum, see figure 12.13(left), represents

the presence of man made structures in general. It is heard as soon as the user moves into

an area that is classified to be man made.

This first rhythm is additionally utilized to emphasize any additional occurrence of line

patterns, that is what lp in Ωlp stands for. For this purpose, we employ reverberation

[440], [476]. It is the persistence of sound in a particular space after the original sound is

produced. A reverberation, or reverb, is created when a sound is produced in an enclosed

space causing a large number of echoes to build up and then slowly decay as the sound is

absorbed by the walls and air.
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The following equation shows the mapping of line patterns to sound, i.e. the audible pixel’s

amanmade 1(x, y), with 2D spatialization already incorporated:

amanmade 1(x, y) = (volleft(x, y) + volright(x, y)) ∗ volmanmade 1 ∗ rev(Ωlp, (x, y)) (12.6)

with

rev(Ωlp, (x, y)) =

{
reverberation with intensity of vn‖(x, y) on Ωlp, if vn‖(x, y) > 1

Ωlp, otherwise

and

volmanmade 1 =

{
volmax,manmade 1, if (x,y) ∈ man made structure

0, otherwise

Note that the specific orientation of the line patterns is not additionally separately as the

user can guess such orientations by assuming the same as such of the highest gradient

which will be sonified using a different drum rhythm, described below. This is due to

keep level of confusion, caused by too many acoustical signals as low as possible and to

transport as much as possible information with as little as possible acoustical entities.

Highest Gradient

The second rhythm Ωhg is to represent the pixel element referring to the mapped orienta-

tion α1 of the highest gradient. The rhythm is performed by the opening and closing of

a hi hat percussion instrument, see figure 12.13 (right). It is altered in pitch and speed

depending on whether vϕ∇1
(x, y) is more 0◦ or 90◦. Hence, if an edge at (x, y) is more

horizontal the rhythm will be played slow and deep. If it is more of a vertical edge, the

rhythm is adapted to be played quite fast and high. If no edge is present at (x, y) at all,

Ωhg is set mute.
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amanmade 2(x, y) =

(volleft(x, y) + volright(x, y)) ∗ volmanmade 2 ∗ (vel(Ωhg, (x, y)), p(Ωhg, (x, y))) (12.7)

with

vel(Ωhg, (x, y)) =

{
vϕ∇1

(x,y)−velmin
velmax−velmin , if vϕ∇1

(x, y) 6= −1

0, otherwise

and

p(Ωhg, (x, y)) =

{
vϕ∇1

(x,y)−pmin
pmax−pmin , if vϕ∇1

(x, y) 6= −1

0, otherwise

and

volmanmade 2 =

{
volmax,manmade 2, if (x,y) ∈ man made structure

0, otherwise

velmax, velmin, pmax and pmin denote the maximum or respectively minimal values in

speed (vel) and pitch (p) that vα(x, y) will be mapped to.

Figure 12.13: Man made and natural region sonification “in action”
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12.3 Audible Object Detections Based on Auditory Icons

The objects i that are found and verified are sonified using familiar auditory icons, such

as the “meow” produced by a cat or the barking of a dog, so no abstract memorization

is required. The icon is played whenever the user moves over a pixel region referring to a

specific object. Additionally, we use 2D sound positioning to support spatial localization.

The short sounds of about 1 − 2 seconds length are repeatedly played quietly as long as

the user moves within the object region (i.e. its bounding rectangle recti), so he can shift

attention to color or texture features. Our system prioritizes the detection of objects over

the more general “man made structure” and “natural region” discrimination. This means,

the sonification of man made or natural regions will both be at first suspended within

areas of detected objects. However, besides the sonification of the general occurrence of

the object i within a certain region in the image, given by its bounding rectangle recti, we

will activate the sonification of man made and natural low-level features again individually,

depending on whether the current object i at (x, y) belongs to a more “natural” or rather

“man made” object class ci:

activate sonification of =

{
man made features, if ci ∈ {car, airplane}

natural features, if ci ∈ {car, person, horse}

In case of multiple object detections at (x, y), the class ci of that object detection i that

exhibits the highest vdet.(i, ci) is selected.
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12.4 On & Off Screen Indication Based on Earcons

When working with a touch screen as an exploration device, presented in section 5.3, we

faced the problem that the user’s finger position tended to be not registered sometimes.

Hence sonification stopped, giving the user the impression that he was maneuvering outside

the image. Thus, we implemented an additional sonification that simply signals the user

whether contact with the screen is lost or connected. The approach makes use of Earcons

which are already familiar to the user in a different context. We apply the typical sound

generally used to signalize that a peripheral device, such as a mouse, has been connected

or disconnected to the usb plug. Figure 12.14 shows the typical structure of this on screen

/ off screen sound.

Figure 12.14: Left: On Screen Earcon. Right: Off Screen Earcon



Chapter 13

User Studies & Discussion

After 9 months we consulted the same group of participants as in part III for further

studies with the refined and enhanced framework. Unfortunately, because of illness, we

were deprived of one of the teenage participants. Note that the participants had no further

encounter or possibility to work or train with our framework in between. They received

only a 10 minutes summary of the changes in the sonification in the current system and

almost no training time (approximately 5 minutes of personal interactive exploration)

before we started with the experiments. As in part III, we utilized a Touch Screen for all

tests.

176
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13.1 Experiments

Experiment I - Object Recognition by Color Only

The goal of the first experiment is to verify that the new color sonification concept is as

useful and informative as the one presented in part III. Hence, the setup is kept similar

to the one in chapter 9, except for the number of trials, which is dropped from 60 to

40 this time. The task is to identify objects by color only, while all other sonification is

deactivated. The stimuli are 40 photographs that show one out of 4 elements (orange,

tomato, apple and lemon) in different positions ( see figure 9.2). In each of 40 trials, one

image is selected at random and displayed at an arbitrary position on the touch screen.

The task of the participant is to find and name the object. In the evaluation (table 13.1

and figure 13.1), we focus on the time between the moment when the participant finds

the object (which depends on where he starts and is, therefore, not very informative), and

the moment when he names the object verbally to the experimenter. Chance level (pure

guessing) is 25 % in this experiment. The results in table 13.1 state that the advanced

color sonification approach is as appropriate as the one presented in part III is. Further, all

participants reported that the advanced color sonification approach is more comfortable,

intuitive and discriminable, especially in combination with the other sonifications.

Figure 13.1: Histogram of experiment I. N elements (y axis) recognized in how many

seconds (x axis) each

Participant Hitrate (% , N) X̃ µ σ

Adult 97.5 % (39/40) 4.5 s 4.4 s 1.6 s

Teenager 1 97.5 % ,(39/40) 7.5 s 8.3 s 2.9 s

Teenager 2 97.5 % ,(39/40) 4.5 s 5.1 s 3.7 s

Table 13.1: Experiment I. Hit rates and times (median X̃ , mean µ, and standard deviation

σ in seconds), for each trial and participant
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Experiment II - Finding Basic Scene Elements

The second experiment is about finding a set of scene elements named by the experimenter.

Table 13.2 shows the elements to find and the cumulative times per participant per trial

for images (stimulus 1 - 5 in figure 13.2). Only the sonification of color and “man made”

regions are activated. We only sonify the existence of man made structures, i.e. no

additional sonification for oriented lines and line gratings. Stereo panning is deactivated.

Img Scene Elements to Find Participant Time

1 red building, sky, snow line on mountain top Adult 12.1 s

Teenager 1 19.0 s

Teenager 2 25.0 s

2 building, green lawn, light blue sky, dark blue

water

Adult 17.3 s

Teenager 1 31.0 s

Teenager 2 23.6 s

3 building, water, sky Adult 10.6 s

Teenager 1 21.0 s

Teenager 2 20.2 s

4 buildings, lawn, trees, blue roof, white sky Adult 45.0 s

Teenager 1 12.5 s

Teenager 2 10.7 s

5 dark red part of building Adult 16.9 s

Teenager 1 6.5 s

Teenager 2 8.5 s

Table 13.2: Experiment II: Accumulated times for finding all announced scene elements

per image
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Experiment III - Understanding Scenes Audibly

This time, all Participants are given 2 minutes for each of the test images (stimulus 6

- 8 in figure 13.2) for exploration, without further information. Thereafter, they are to

report what they have found in the image and what their interpretation of the scene is.

Sonification is as in experiment II. A qualitative evaluation can be found in Table 13.3.

Img Part. Verbally Described Scene Estimation

6 Adult Lots of green parts, some small buildings within. At the top left is some kind of

dark (uncolored) region, maybe belonging to sky or some sort of rock-structure.

Teen. 1 There seems to be no sky visible in the image, but lots of green natural regions,

into which a few small buildings are embedded.

Teen. 2 There is a lot of green throughout the whole image, which is presumably a

meadow or forest. Then there are some small buildings surrounded by meadows.

Sky could not be found in any part of the image.

7 Adult Green regions in the lower image part, probably some natural areas followed

by a broad section of different colored building structures. In the mid-section

of the image there is some red building block with that is surpassing the other

building structures, presumably some sort of tower. The tower is surrounded

by light blue and white, which might be the sky.

Teen. 1 There is a meadow in the lower part of the image followed by a building or

buildings of various colors. Those buildings are rather flat except for some sort

of tower. The main upper part is covered in light blue, supposedly sky.

Teen. 2 There is some sort of meadow in the lower image part and blue sky in the upper

part. In between there is a different colored building section.

8 Adult There is a small building on the mid-right, which is yellow. A bit to the left

above the yellow building there is another building. Both buildings are sur-

rounded by various colored non man made structures, which could be a meadow

with various bushes or trees illuminated by the sun. On the top left there is a

glimpse of light, maybe representing the sky

Teen. 1 There is a yellow building. A green area beneath the building would presumably

by some sort of meadow. The different colored spots surrounding the meadow

and the building might be colored trees.

Teen. 2 There is a yellow building and another more white one. Below the white building

is a green area, presumably a meadow. There are yellow areas around and above

the buildings, which could be trees.

Table 13.3: Experiment III: Verbal descriptions of the scene estimates given by participants
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Figure 13.2: Image set used in experiment II and III
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Experiment IV - Understanding Scenes Audibly

Experiment IV is performed by the adult participant only. The setup was identical to

Experiment III except that sonification of natural regions is additionally turned on. This

time, the participant was given 10 images (stimulus 9 - 18 in figure 13.3) to explore. A

qualitative evaluation can be found in Tables 13.4 and 13.5. The participant was able to

detect and interpret all important scene content for 8 out of 10 images. With the other 20

percent, image 10 and 15, he only mistook the water for sky, which especially with picture

15 is hard to avoid.

Img Verbally Described Scene Estimation

9 There is a rather small, in parts yellowish, building in the midst of the top of an overgrown

hill or meadow. The grown region is colored in green, with yellow and red stains. The

upper part is light blue, supposedly sky.

10 A big block-like slightly red building in the mid-section of the image. Below that building is

some green stripe, which might be a lawn. To the right the building seems to be embedded

in some ascending rough natural green region with yellow elements. Could be some hilly,

sun-illuminated lawn, or trees, reflecting sunlight.

11 The lower part of the image from left to right is some intensive green area. There is a

strong contrast in roughness on the right from the smooth green area to a coarser green

area in the mid-section. There is some light blue spot, which will be sky, on the top right

corner and salient red building on the left.

12 There is a smaller band of light blue at the top across the image, supposedly sky. Then

there are a few rather small buildings. The rest seams to be natural regions, which besides

green and yellow include also some red elements. There is a dark blue spot in the lower

left corner of the image, which will be some sort of water, such as a lake.

13 There are to buildings in the upper part of the image, one more to the left, the other

more to the right. Both buildings are separated by a more white region. This white region

also surrounds the upper parts of both buildings, so it is supposed to be sky. The left

building has a slightly reddish roof. The whole lower part of the image is covered by some

green-yellowish natural regions, such as lawn or forests.

14 There are to separate or a whole building complex at the center part of the image. The

complex seems to be embedded in some sort of green-yellowish natural environment. The

lower part is very dark and the the upper part of the image is covered from left to right

by some light blue, which will be the sky.

Table 13.4: Experiment IV: Verbal descriptions of the scene estimates given by participant
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Img Verbally Described Scene Estimation

15 In the center of the image is some tower-alike building and a smaller one propagating to

the right. The area below the building seems to be green natural environment. The tower

is surrounded by blue and white of varying intensities, supposedly sky.

16 The lower part of the image is covered by some yellow-greenish area, supposedly meadows.

From the left to the center within the mid-section there are some red buildings with blue

roofs. Directly below these buildings there is some yellow band underlying such buildings

from left to center. Right to the center building is some intensive green area, presumably

a forest. The upper part, completely covered in light blue, should be sky.

17 The mid-section of the image is covered by some building complex. The building is partly

yellow, and green on top. Below is a green and yellow region, probably lawn, and above

and surrounding the building is blue and white, presumably sky.

18 The lower part of the image from left to right is smooth green, such as a lawn. Then

there is a deep blue stripe which is supposedly some sort of water, such as a river. Above

the river is a very flat band of buildings, followed by some green natural section. The top

region is blue, presumably sky.

Table 13.5: Experiment IV (continuation): Verbal descriptions of the scene estimates given

by participant
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Figure 13.3: Image set for experiment IV
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Experiment V - Categorization of Man Made Structures

Experiment V is performed by the adult participant only. All sonification modalities

(color, roughness, man made structure (including oriented lines and line gratings),Stereo

Panning) except object recognition are enabled. The participant is given 2.5 minutes for

each image (stimulus 19 - 28 in figures 13.4) to explore the man made structures and to

give an estimation what kind of building type it might be. A qualitative evaluation and

comparison to what a seeing person might estimate is given in table 13.6. The participant

was able to interpret the types of 7 out of 10 buildings correctly.

Img Categ. Verbally Described Type Categorization

19 Fortress or

Church

The flat compact building complex with tower in the lower right

corner could be some sort of fortress .

20 Temple or

Church

A bigger compact upper part on some sort of pillars or windows.

The upper part has some sort of bevel or graded slope. Definitely

a kind of temple or gallery.

21 Light-

house

My first impression is a very small tower in the upper left corner.

Might also be a small cabin on top of massive rock.

22 Hotel Definitely a very big sort of manor. Many windows or pillars below

the flat orange roof. Maybe some sort of gallery or castle.

23 Fortress A building complex flat to the right, with a tower on the left. Could

be a church.

24 Tower or

Church

Seems to be a delicate bright tower opened to its right.

25 Hotel A flat red building from left to right and equal in height. Above

deep blue sky and below deep blue water. Could be some sort of

hotel or holiday resort.

26 Temple Small, very flat, bright and many windows. Maybe some sort of

bungalow.

27 Cabin Small, in the right corner. Blue water below and woods to the left.

A red cabin in the woods.

28 Light-

house

Seems to be the lighthouse again, on first impression. Could be

a cabin also. On the left their is some sand-colored structure.

Table 13.6: Experiment V: Comparison of visual and audible building type estimates
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Figure 13.4: Image set for experiment V
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13.2 Discussion

All participants appreciated the system to be very intuitive, easy to understand and quick

to learn, and they enjoyed using it. The experimental results in experiment I indicate

that the new “visual perception” based color sonification approach our system is at least

as applicable for color recognition as the one presented in part III. However, participants

stated it to be more intuitive and pleasant to work with. Furthermore, the experiments

II - V indicate that the system raises the hope to be capable of giving visually impaired

persons access to image content. Within a reasonable span of time, they were able to get

an overview of “what is where” in the image, and to identify objects, given some context

information about the scene. It is now a realistic application scenario that blind people

can explore personal photos, perhaps together with a friend, and share memories about,

e.g., their vacation. This is due to our paradigm of direct perception and interactive

exploration using a very general tool. Expressed in the words of our adult participant:

What amazes me is that I start to develop some sort of a spatial imagination

of the scene within my mind which really corresponds with what is shown in

the image.

Figure 13.5: Our adult participant exploring a scene





Chapter 14

System Design of the Explorative Image

Sonifyer Software

Finally, the work on “auditory image understanding” in this part IV of the work has been

developed into a stand-alone application that is designed to run on Microsoft Windows 7

and 8 based tablet PCs. This chapter we give a brief overview over the system design of

this application, called Explorative Image Sonifyer (EIS).

14.1 Usability

Designed for visually impaired and especially blind users, the program can be controlled

by only 3 touch-screen gestures, illustrated in figure 14.1:

• Open Gesture: Load and pre-process an image from a specific image folder.

• Double Tab: Load and pre-process an image from the tablet PC’s integrated cam-

era. This feature makes the EIS software system ideally suited to be taken along by

visually impaired people on, e.g., hiking tours.

• Close Gesture: Exit the program.

Figure 14.1: Left: Double tab (load image from camera). Middle: Open gesture (load

image from folder). Right: Close gesture (close program)

188
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The user is informed when an image is pre-processed and ready to be explored. At the

same time, the image is rendered in the midst of the screen. Further all found man-

made structures as well as detected objects are highlighted, as illustrated in figure 14.2.

Although the blind user would not be able to utilize such visual information, it might be

important in the context of sharing the acoustical image information with a normal sighted

person. As visualized in figure 14.2, the “color to sound” mapping is permanently present

from top to bottom at the left part of the screen. As the user moves across these regions

a certain color or color-combination is played, while the name of the color is announced

verbally. This feature was inspired by one of our congenital blind users to help memorize

colors and to quickly compare what is heard in the scene to the color table.

Figure 14.2: Illustration of a captured and pre-processed image on the Samsung Slate 7

tablet Pc. The color to sound mapping is visualized in the left part of the screen
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SOFTWARE

14.2 System Architecture

The EIS software is internally designed as a finite state machine (FSM) ([288]; [72]).

A finite state machine denotes a mathematical model of computation that can be used to

design both logic circuits as well as computer programs. It is conceived as an abstract

machine that can be in one of a finite number of states and the machine is in only one

state at a time. A change of states can be triggered by an input event or condition, called

a transition. However, transitions can be unconditional too. Thus, transitions map some

state-event pairs to other states. Our FSM implementation, as illustrated in figure 14.3,

contains 3 states:

• Stand by

• Computation

• Exploration & Sonification

While running, the program stays in stand-by state until the user accesses the screen using

a double tab or open gesture. It then tries to load and pre-process (computation state)

either the next image found in the image folder or from the integrated camera. Finally,

it switches (unconditionally) to sonification state, allowing the user to explore the image

interactively. A further double tab or open gesture causes the program to switch back to

computation state and prepare the next image from the folder or camera, respectively.

Figure 14.3: Our system internally realized as a finite state machine. Unconditional tran-

sitions are illustrated in red

Note that although not enabled within the current version of the framework, hitting an

additional button in sonification state would cause the program to jump back to compu-

tation state and perform a foreground segmentation at the user’s current pixel position.

In section 11.4 we referred to such a button as the external “buzzer” like button.
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14.3 Text-to-Speech Output

As mentioned in section 4.1 the user is kept up to date about the program’s current

status using text-to-speech output. We, therefore, make use the Microsoft Speech API

(SAPI) [402]. To enhance diversity, in a separate file, we define a number of varying

expressions describing the same process within the program and a random generator that

selects any of those to communicate to the user. As an example, as the user hits a button

to load an image, the program could randomly choose between, e.g., Ok, I will load the

next image now! or I try to load an image now!.
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SOFTWARE

14.4 Non-blocking Realtime Audio Programming

Parallel real-time exploration and sonification in general is crucial to allow the system

to continuously write and process variables at the same time. Other than in part III,

where such real-time parallelism is handled by the external MIDI synthesizer, it has to be

implemented from scratch in part IV and, therefore, an essential component of the EIS

software. However, the implementation of a stand-alone sonification system that is capable

of gathering data, due to explorative interaction, while simultaneously turning such data

into sound in real-time is a pretty challenging task. As Bencina [28] writes in his technical

report on real time audio processing:

Writing real-time audio software for general purpose operating systems requires

adherence to principles that may not be obvious if you are used to writing “nor-

mal” non real-time code. Some of these principles apply to all real-time pro-

gramming, while others are specific to getting stable real-time audio behavior

on systems that are not specifically designed or configured for real time opera-

tion ... you do not want your softwares audio to glitch and real time waits for

nothing.

As discussed in section 4.1 the appropriate elements from the augmented visual pixels

v(x, y) have to be evaluated by the sonification module in real-time, during interactive

exploration, based on the user’s current position (x, y) and his selection which features he

wants to be sonified. Subsequentially, adjustments in the play-back of features sounds as

well as rather complex alterations in the color sound synthesis have to be performed at the

same time while new data is gathered, due to interactive exploration. Hence, exploration

and sonification have to run in separate threads and share mutual data and this is where

the usage of an intermediate queue structure, as proposed in section 5.4, that contains the

necessary control parameters really pays off.

Generally, when working with threads that share data, they have to be prevented from

one thread writing data while another one wants to read it. Hence, mutual exclusion

techniques, known as mutexes ([449]; [33]) are employed to prevent that from happen-

ing. Thus, the thread writes something into the shared data firstly locks a mutex that

encapsulates the access to this data. When finished, he releases the mutex and the second

thread is free to read it, himself locking the mutex.

While this technique works well under non-real-time purposes it has a significant drawback

when applied to real-time applications. While the mutex is locked, the second thread is

stalled, which leads to a delay in the further processing. Hence, the concept has been

extended to use a trylock approach. A thread attempts to acquire the mutex. If it is

available, the call returns with the mutex locked and returns true and the thread can

access the data. Otherwise, if the mutex is locked by another thread, the call returns false
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and the thread can process with any other operation.

However, in our application the first thread is assigned to the exploration module and

the second to the sonification module. Both threads now try to access the same shared

data. The exploration module tries to select the appropriate information for passing it

to the sonification module, while this module tries to constantly transform this data into

sounds and, therefore, both modules can not afford to wait upon each other. Other than

that, both modules process data at different speeds, meaning the transformation of data

into sounds occurs at a different speed than the gathering of data through the exploration

module.

Hence, the queue structure in between, in combination with mutexes, can be harnessed as

a non-blocking buffer. The whole queue contains the shared data. While the exploration

module appends sonification descriptors s(x, y) at the end of the queue, the sonification

module sequentially process the first one. Trylock techniques are employed to prevent es-

pecially the sonification module from waiting upon the exploration module to unlock the

queue. In case the queue is locked when the sonification module wants to access it, it sim-

ply continues to sonify the current given data and tries again after a specific period of time.

Threading and mutual-exclusion is implemented based on the QT4 library ([33]; [136]).

While the timing of the exploration module to access the queue (via tryLock) is left to

QT4 ’s general interface policies, the sonification module is timed to try to access the queue

every ≈ 50 milliseconds.
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SOFTWARE

14.5 Portability

The EIS software is designed to be easily ported to several other systems and platforms,

using few and platform independent libraries, such as QT4 for threading, exploration

interfaces and the (minimal) graphical user interface. Further we employ the irrklang

audio engine and the Synthesis Toolkit (STK),which is only a set of C/C++ classes for

sound generation. The rest of the project would be a set of object oriented C++ classes

only.
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If the brain were so simple we could understand it,

we would be so simple we couldn’t .

Lyall Watson

The modular computer vision sonification model presented in part II with the two sample

implementations presented in part III and IV, propose a promising general framework of

some device that can support blind and visually impaired persons in exploring images or

scenes. All of our congenital participants appreciated the system to be very intuitive, easy

to understand and quick to learn, and they enjoyed using it. The experimental results

indicate that our system is successful in giving visually impaired persons access to image

content: Within a reasonable span of time, they were able to perform both, “auditory

object recognition” and “auditory image understanding”. Thus, they able to obtain an

overview of “what is where in the image”, and to identify objects, given some context

information about the scene. As mentioned in chapter 13, it is now a realistic application

scenario that blind people can explore personal photos, perhaps together with a friend,

and share memories about, say, their vacation. This is due to our paradigm of direct per-

ception and interactive exploration using a very general tool. In contrast, many everyday

tasks, such as navigation, are more likely to be the domain of special-purpose tools and a

faster, more automated procedure to derive specific relevant information.

Our experiments give hope that the proposed color sonification approach that proves to

be intuitive enough to be understood and applied by 4 congenital blind people of different

backgrounds in very little time will prove also successful on a larger group of congenital

blind people. As a fascinating insight, within the experiments on “auditory image un-

derstanding” in chapter 13, participants are “incorporated ” in the image understanding

process. Although pre-classification is only into natural and man made regions, during

exploration, participants utilize detected man made structures or specific natural regions

as reference points to classify other natural regions by their individual location, color and

texture.

For image pre-evaluation, we have presented two novel algorithms, especially for the vi-

sually impaired. Robust scene classification is performed based on a novel type of Condi-

tional Random Fields, called Dual Support Vector Fields (DSVF), that harness the high

discriminative power of non-linear support vector machines for both, unary and pairwise

potentials. As shown in section 11.2, DSVF, in combination with an advanced feature

set, provide a valuable alternative to existing models for man made structure detection.

DSVF crucially reduce parameter learning, in both time and complexity, and are, there-

fore, highly suitable, given an arbitrary feature set, for “rapid prototyping” of classification

problems with spatial dependencies.
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A second algorithm has been proposed in section 11.4 as a subsequent step of object recog-

nition to verify or falsify results, which becomes significantly important in the context of

image evaluation for the visually impaired. Great benefit of the proposed algorithm is

that both, the algorithm itself as well as the integrated feature set can be applied to the

results of any common recognition algorithm.

Due to their design, both algorithms can be also employed in other applications than

“auditory image understanding”, e.g., for fully-automated computer vision systems. In-

tegrated in the image sonification implementation in part IV, these approaches deliver a

complete powerful system that helps visually impaired users to explore image material.

Furthermore, it is also important to us to introduce the problem setting of employing algo-

rithms to provide an exploratory visual substitution system, rather than a complete verbal

description, to the computer vision community, as it sheds new light on the understanding

of vision in general in terms of what might be the “intermediate description level” below

a complete semantic image description, or what features, categories and mechanisms need

to be integrated for scene understanding, both in computer vision and in the human visual

system.

For further research, it might be interesting to extend the computation and sonification

module in part IV to incorporate depth information, as there have been recent interest-

ing developments to create a depth perception from single still images ([292]; [412]; [411];

[467]).

As described in section 14.5, the system proposed in part IV is designed to be easily ported

to several other systems and platforms. Therefore, it would be interesting not only to port

the system but also provide some sort of “training” mode, that blind users can obtain

along with the system, that replaces a sighted person to introduce the program on a larger

scale.
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Incorporating the System at the “Internat des Rheinischen Blindenfürsorgev-

erein 1886 Düren”

In all our experiments, the group of 3 congenital blind 14 year old teenagers are resi-

dents at a residential school for the visually impaired, the Internat des Rheinischen Blin-

denfürsorgeverein 1886 Düren. This residential school offers accommodations for about 84

students, who live in 10 family-like residential-groups. In close cooperation with parents

and the Louis-Braille-school for the visually impaired, the residential school contributes

to nurture all students. Therefore, it provides various additional educational workshops,

that are incorporated in the student’s daily routines. These workshops deal with various

areas, such as gross and fine motor skills, orientation, mobility, perception, communica-

tion, social skills or recreation. As mentioned, in January 2013, preparations commenced

to incorporate our system permanently within some of these workshops as a method to

support students in some of these areas on a regular basis.

Figure 14.4: The residential school for the visually impaired in Dueren, Germany (Internat

des Rheinischen Blindenfürsorgeverein 1886 Düren)
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A.1 Edge Preserving Filtering

Anisotropic Diffusion

Anisotropic diffusion ([353]; [32]; [125]) is inspired by interpreting Gaussian smoothing as

a heat conduction partial differential equation (PDE): ∂I
∂t = −4I. Thus, the intensity I

of each pixel denotes heat that is propagated to its neighbors according to the heat spatial

variation. An “edge-stopping” function g has been introduced by Perona and Malik [353]

that varies the “conductance” according to the image gradient and therefore prevents heat

flow across edges:

∂I

∂t
= div[g(‖∇I‖)∇I]

Perona and Malik [353] propose two expressions for such an edge-stopping function g:

g1(x) =
1

1 + x2

σ2

g2(x) = e−
x2

σ2

where a scale parameter σ in the intensity domain specifies the gradient intensity which

should stop diffusion. The discrete Perona-Malik diffusion equation governing the value Ii

at pixel i would then be

It+1
i = Iti +

λ

4

∑
j∈N4(i)

g(Itj − Iti )(Itj − Iti )

Discrete time steps are described based on t, andN4(i) denotes the first order neighborhood

of pixel i. One further scalar λ determines the rate of diffusion. Generally, anisotropic

diffusion is a rather slow process due to its discrete diffusion nature and the results depend

on the stopping time, since the diffusion converges to a uniform image.
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Bilateral Filtering

Figure A.1: Bilateral filtering. Colors are used only to convey shape. Picture taken from

[125]

Bilateral filtering has been developed by Tomasi and Manduchi as an alternative to

anisotropic diffusion ([464]; [21]; [125]). It describes a non-linear filter with the output

being a weighted average of the input. Bilateral filtering starts with Gaussian smoothing

based on a spatial kernel f (see figure A.1). Further, the weight of a pixel additionally

depends on a function g in the intensity domain that decreases the weight of pixels with

large intensity differences. g can be seen as an edge-stopping function similar to that of

Perona and Malik [353]. The final result Bi of the bilateral filter for a pixel i would then

be:

Bi =
1

k(i)

∑
j∈Ω

f(j − i) g(Ij − Ii) Ij

with k(s) being a normalization term:

k(i) =
∑
j∈Ω

f(j − i) g(Ij − Ii)

In practice, a Gaussian for f in the spatial domain as well as a Gaussian for g within the

intensity domain are used. Therefore, each pixel value Ii is influenced mainly by spatially

close pixels that have similar intensities, as illustrated in figure A.1. Thus, bilateral filtering

can easily be extended to color images, and any metric g on pixels can be used, such as in

CIELab Color Space.
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On the Distortion of Colors

For gray-scale images, intensities between gray levels are still gray levels. Thus, Gaussian

smoothing on gray-scale images produces intermediate levels of gray across edges, result-

ing in blurred images. Smoothing color images is therefore more complicated, as between

any two colors there are, mostly, rather different colors. Disturbing color bands can arise

when smoothing across color edges, resulting in a smoothed image which does not only

look blurred, but also contains strangely colored auras around objects.

To compensate for, edge-preserving smoothing could be applied to the red, green, and

blue channels of an image separately, altough intensity profiles in the three color bands

are generally different across an edge, rendering such an approach infeasible. In contrast,

bilateral filtering allows to combine the three color bands appropriately, and to measure

photo-metric distances between pixels in such a combined space. using Using a Euclidean

distance measure in the CIELab color space [286], such a combined distance closely cor-

responds to perceived dissimilarity. Therefore, as Tomasi and Manduchi [464] emphasize:

In a sense, bilateral filtering in the CIElab color space would describe the most

natural type of filtering for color images, as only perceptually similar colors are

averaged together, and only perceptually important edges are preserved.

Figure A.2: Bilateral filtering example. Left: Original images, Right: Bilateral filtered

images
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A.2 Fractal Geometry & Fractal Dimension

The idea of “fractured” dimensions has a long history in mathematics ([126]; [140]) but the

term itself was first introduced by Benoit Mandelbrot based on his famous paper on self-

similarity, in which he discusses fractional dimensions (FD) [302]. In [302], Mandelbrot

cited previous work by Lewis Fry Richardson describing the counter-intuitive idea that a

coastline’s measured length changes with the length of the measure used [385].

Therefore, the fractal dimension of a coastline quantifies how the number of scaled mea-

sures, such as boxes, necessary to evaluate the coastline, changes with different box scales

[303], illustrated in figure A.3.

Figure A.3: Estimating the box-counting dimension of the coast of Great Britain

There are various formal mathematical definitions of fractal dimension that build on this

concept of change in detail with change in scale, one which would be the Hausdorff

dimension ([115]; [459]), also known as box-counting dimension:

FD = lim
r→0

logNr

log(1/r)

withNr being the least number of boxes of side length r needed to cover the entire structure

under examination.
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Figure A.4: Left: A 2D gray-scale texture. Right: The corresponding 3D representation

The box-counting method or its variation, the differential box-counting (DBC), can

easily extended to evaluate 3D structures or surfaces [410]. Pentland [351] showed, that the

fractal dimension of a surface corresponds quite closely to our intuitive notion or roughness.

The DBC method represents a gray level 2D image I2D, see figure A.4 (left), as a 2D

surface within a euclidean 3D space with the the gray level denoting a z along with each

(x, y) pixel position within the image, see figure A.4 (right), and estimates the fractal

dimension by dividing the number of boxes, needed to cover the overall 3D area, by their

diameter. However, due to the a series of problems, outlined in [289], the accuracy of

the original DBC method is limited. Li et al. [289] present three main modifications in

their box-counting estimation method to compensate for these problems, which is why we

implement their method to compute the fractal dimension of image sites in chapter 11.3.

Generally, fractal dimension approaches are employed in Computer Vision in segmentation

and classification problems ([484]; [242]; [74]; [214]; [76]).
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A.3 Gabor Wavelet Transform

Gabor wavelets have been introduced to image analysis due to their biological relevance

and computational properties ([230]; [99]). They have been widely adopted for feature

extraction in various areas, such as face recognition ([535]; [534]; [282]), texture segmenta-

tion ([123]; [124]; [223]) or iris recognition ([99]; [100]). A Gabor function, first proposed

by Dennis Gabor in 1946 [156], is a 2D Gaussian function multiplied by a 2D harmonic

function. In [156], Gabor showed that a sort of “quantum principle” exists for informa-

tion as well. Hence, it is crucial for the conjoint time-frequency domain for 1D signals to

be quantized so that no signal or filter occupies less than a minimum area in it. Simi-

lar to Heisenbergs uncertainty principle ([244]; [301]), such a minimal area, reflecting the

inevitable trade-off between time resolution and frequency resolution, has a lower bound

in their product, and, according to Gabor’s discoveries, Gaussian-modulated complex ex-

ponentials provide the best trade-off. Generally, a harmonic function is a Fourier basis

function. Especially, in a 2D Gabor kernel it is a sinusoidally modulated function, in a

form of complex exponential function. Elements of a family mutually similar Gabor func-

tions are called Gabor wavelets if they are created by dilation and shift from a single

elementary Gabor function. The Gaussian function varies in dilation and the harmonic

function varies in rotation and frequency ([535]; [534]; [282]). Gabor wavelets capture local

structure corresponding to spatial frequency, i.e., scale, spatial localisation (coordinates),

and orientation selectivity. A Gabor wavelet ([100]; [123]) is defined as

ψϕ,ν(z) = gϕ,ν,σ(z)
[
ei kϕ,ν z − e−

σ2

2

]
(A.1)

with the Gaussian envelope:

gϕ,ν,σ(z) =
||kϕ,ν ||2

σ2
e−
||kϕ,ν ||2 ||z||2

2 σ2 (A.2)

where z = (x, y) indicates a point with x, the horizontal coordinate and y, the vertical

coordinate. The parameters ϕ and ν define the angular orientation and the spatial fre-

quency of the Gabor kernel. The spatial frequency in equation (A.1) modulates the size

of the 2D discrete Gabor kernel. Thus, ν also determines the scale of kernel. ||.|| denotes

the norm operator. The parameter σ is the standard deviation of Gaussian window in the

kernel.
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The Gaussian window shape in the 2D Gabor function provides the best time-frequency

localization window in a sense of the Heisenberg uncertainty principle [301]. The wave

vector kϕ,ν is defined as

kϕ,ν = kν e
i φϕ (A.3)

with kν = kmax
fν and φϕ = πϕ

n . n denotes the number of different orientations chosen,

kmax the maximal frequency, and f denotes a spatial factor between kernels within the

frequency domain.

Since Gabor kernels in equation (A.1) are generated from one kernel by dilation and ro-

tation via the wave vector kϕ,ν they are all self-similar. Each kernel is a product of a

Gaussian envelope gϕ,ν,σ(z) formulated in equation (A.2) and a complex plane wave

ei kϕ,ν z. The complex wave determines the oscillatory part of the kernel. The term −e−
σ2

2

is defined to compensate for the Disparity Compensated (DC) value that makes the kernel

DC-free [260]. In other words, the term ensures the wavelets do not lose any generality,

i.e., there is no minimal energy loss when images are reconstructed by the wavelets. Thus,

DC-free wavelet representations do compensate for global illumination changes. In case

the parameter σ that determines the ratio of the Gaussian window width to wavelength,

is sufficiently large, the effect of the DC term becomes negligible.

Generally, five different scales and eight orientations of Gabor wavelets are used, e.g., for

face recognition in [535], with ν ∈ {1, ..., 3} and ϕ ∈ {0, ..., 7}. In our application we

only use a single scale, depending in size upon the specific task in part III and IV, and

32 orientations. We choose the maximum frequency to be kmax = π/2, and the factor

f =
√

2. Gabor wavelets are modulated by a Gaussian envelope function with relative

width σ = 2π. These parameters are chosen according to previous findings ([510]; [535];

[293]). The kernels contain useful characteristics of spatial frequency, orientation selectiv-

ity or spatial locality.

The Gabor kernel is defined as the product of a Gaussian and a complex plane wave with

real, called “even”, and imaginary parts, called “odd”. The equation (A.1) can, thus, be

separated into real part

||kν ||2

σ2
e−
||kν ||2 ||z||2

2 σ2

{
cos(kνcos(φϕ)x+ kν sin(φϕ)y)− e−

σ2

2

}
(A.4)

and the imaginary part

||kν ||2

σ2
e−
||kν ||2 ||z||2

2 σ2 sin(kνcos(φϕ)x+ kν sin(φϕ)y) (A.5)

Figure A.5 illustrates the real and imaginary parts of an ensemble of Gabor wavelets of

various scales and orientations. A discrete ensemble of the 1.5 octave bandwidth family
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Figure A.5: An ensemble of odd (a) and even (b) Gabor filters. Picture taken from [282]

of Gabor wavelets along with their coverage of the spatial frequency plane is illustrated in

figure A.6.

Figure A.6: An ensemble of Gabor wavelets (1.5 octave bandwidth) (a) and their coverage of

the spatial frequency plane (b). Each ellipse shows the half-amplitude bandwidth contour

dilated by a factor of 2, covering almost the complete support of a wavelet. Picture taken

from [282]
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Gabor Responses

The Gabor wavelet transform of an image can be performed by convolving all Gabor

wavelets with the image. This convolution of an image I and a Gabor kernel ψϕ,ν is

defined as

Oϕ,ν(z) = I(z) ∗ ψϕ,ν(z)

where ∗ denotes the convolution operator, and Oϕ,ν(z) is the convolution result corre-

sponding to the Gabor kernel at the orientation ϕ and the spatial frequency ν. z = (x, y)

defines the position in the image. Since Gabor wavelets are of complex form, convolution

results contain a real response and imaginary response as follow

Oϕ,ν(z) = <{Oϕ,ν(z)}+ i ={Oϕ,ν(z)}

where < represents the real response and = represents the imaginary response. The real

response of Gabor filtering is an image I(z) convolved with the real part of the Gabor

kernel in (A.4) . The real response of Gabor filtering is than defined as

<{Oϕ,ν(z)} = I(z) ∗ <{ψϕ,ν}

The imaginary response is the image convolved with the imaginary part of the Gabor

kernel in (A.5). It is stated as

={Oϕ,ν(z)} = I(z) ∗ ={ψϕ,ν}

The magnitude response of Gabor filtering, widely employed in Computer Vision and as

well in our application in part III and IV, is the square root of the sum of the squared real

response and imaginary response, such as

||Oϕ,ν(z)|| =
√
<2{Oϕ,ν(z)}+ =2{Oϕ,ν(z)}

As discussed in [22], an even Gabor function, a cosine function, can be seen as a partial

differential operator of an even order, see figure A.7 (right), while an odd Gabor function,

a sine function, can be looked at as a partial differential operator of an odd order, see

figure A.7 (left). To compute the even and odd derivatives together with a single complex

Gabor wavelet, one determines the even derivative from a real part of the function < and

the odd derivative from an imaginary part of the function =.
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Figure A.7: Left: Graphs of the odd Gabor functions with different frequencies (dash-dot,

dashed) and the first derivative of the Gaussian function (solid). Right: The even Gabor

functions with different frequencies (dash-dot, dashed) and the second derivative of the

Gaussian function (solid). Picture taken from [22]
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A.4 Gaussian Image Pyramids

Gaussian Image Pyramids ([222]; [64]; [12]) serve as a multi-scale representation of an

input image for image processing (illustrated in A.8). It consists of a set of low-pass copies

of the input image, each representing pattern information of a different scale. Gaussian

pyramids have been applied in various areas, such as image data compression [64] or

mosaic-ing [63] just to name a few. In the implementation in section 7.1 (part III) we deal

with rather coarse structures. Hence, we apply sub-scaling of the original input image using

Gaussian pyramids to perform filtering on a lower resoluted copy. Thus, we can efficiently

reduce computation time. Subsampling with Gaussian pyramids is not just e.g. taking

every second pixel in every second line as such a procedure would violate the Nyquist-

Shannon Sampling Theorem ([428]; [226]; [298]). Given a structure that is sampled

three times per wavelength within the original image would only be sampled one and a

half times in the sub-sampled image and therefore appear as an aliased pattern. Hence,

one must ensure that all structures that are sampled less than four times per wavelength

would be suppressed by an appropriate smoothing filter to ensure a proper subsampled

image. The combined smoothing and size reduction can be expressed in a single operator

using the following notation to compute the q + 1th level of the Gaussian pyramid from

the qth level:

G0 = G, Gq+1 = B↓2Gq

The number behind the ↓ in the index denotes the subsampling rate. The 0th level of the

pyramid is the original image. If we repeat the smoothing and sub-sampling operations

iteratively, we obtain a series of images, which would be the actual Gaussian pyramid.

From level to level, the resolution and size decreases by a factor of four. Consequently,

one gets series of images forming the shape of a pyramid as illustrated in figure A.8.

However, in section 7.1, after several experiments to find the most appropriate low-level

image representation in terms of computational speed and edge detection quality, we finally

selected the first down-scaled image G1.

Figure A.8: From level to level, the resolution and size of the input image decreases by a

factor of four. The result is series of images forming the shape of a pyramid
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A.5 Algorithms in Graph Theory

Dijkstra’s Single-Source Shortest-Paths Algorithm

Given a weighted graph Go = (V,E) ([73]; [473]; [85]), Dijkstra’s algorithm, as used in

section 11.4 (part IV), finds the connections of minimum costs from a specific source vertex

s ∈ V to each other vertex v ∈ V , known as the “Single-Source Shortest-Paths problem”

([315]; [422]; [85]). It keeps a set S of vertices whose final shortest-path weights from

the source s have already been determined. The algorithm repeatedly selects the vertex

u ∈ V −S with the minimum shortest-path estimate, adds u to S, and scrutinizes all edges

leaving u, as illustrated in A.9.

Figure A.9: An illustrative example of Dijkstra’s Shortest Path algorithm. Shaded edges

indicate potential predecessor values. The set S of vertices whose final shortest-path

weights from the source s have already been determined are marked in black. Picture

taken from [85]
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Prim’s Minimum-Spanning-Tree Algorithm

Given a weighted graph Go = (V,E), a Spanning Tree of that graph is a sub-graph

which is a tree that connects all the vertices together. Thus, a specific graph might have

various of such spanning trees. A Minimum Spanning Tree (MST) ([73]; [473]; [85])

would be that spanning tree where the sum of weights of all edges involved is less than

the sum of weights of every other spanning tree. Prim’s algorithm ([369]; [422]; [85]), as

used in section 11.4 (part IV), is one algorithm that computes such a MST. It starts from

an arbitrary vertex s ∈ V and grows until the tree spans all vertices in V . In each step it

adds an edge to the tree that connects the tree to a vertex v ∈ V on which no edge yet

exists. As there will be more than one potential edge, the edge with the minimal weight

is chosen. The algorithm is illustrated in figure A.10.

Figure A.10: An illustrative example of Prim’s algorithm to form a Minimum Spanning

Tree. Starting from vertex “a”, shaded edges are added to the tree until all vertices have

been connected, visualized in black. Picture taken from [85]
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Graph Cuts and the Min-Cut / Max-Flow Problem

Given a weighted graph Go = (V,E), with V being a set of nodes and E a set of directed

edges in between. The set of nodes now contains two additional specific terminal nodes

V = {s, t}, called source (s) and sink (t), as illustrated in figure A.11. Each edge in G

is assigned a non-negative weight w(p, q) and w(p, q) might differ from w(q, p). An edge

connecting a non-terminal with a terminal node is called a “t-link”. Edges connecting two

non-terminal nodes are called “n-links”.

The Min-Cut / Max-Flow Problem

An s/t cut C is a partitioning of the nodes in the graph into two disjoint subsets S and T

such that the source s would be in S and the sink t is in T . The cost of a cut C = {S, T}
is the sum of weights of all “boundary” edges (p, q) such that p ∈ S and q ∈ T . If (p, q)

is a boundary edge, then one can say that cut C severs edge (p, q). The minimum cut

problem would then be to find a cut that has minimal costs among all possible cuts.

As a fundamental result in combinatorial optimization ([84]; [281]), the minimum s/t cut

problem can be solved by finding a maximum flow from the source s to the sink t. The

maximum flow problem can be illustrated as finding these edges, visualized as “pipes” of

certain capacity, i.e., edge weights, that allow a “maximum amount of water” from the

source to the sink. Thus, the theorem of Ford and Fulkerson [152] states that such a

maximum flow from s to t saturates a set of edges in the graph dividing the nodes into

two disjoint parts {S, T} corresponding to a minimum cut. Therefore, the min-cut and

max-flow problem formulations are equivalent. In fact, the maximum flow value is equal to

the cost of the minimum cut. An early use of graph cuts for energy minimization in vision

is due to Geig et al. in [181], which considers the problem of binary image restoration of

binary images corrupted by noise. As min-cut/max-flow algorithms are principally binary

techniques, binary problems constitute the most fundamental case for graph cuts.

Standard polynomial time algorithms for min-cut/max-flow exist ([84]; [281]; [45]; [46]),

which are be divided into two main groups: approaches known as “push-relabel” methods

([172]; [45]) and algorithms based on augmenting paths [45]. In practice the push-relabel

algorithms perform better for general graphs. In vision applications, however, common

types of a graph are two or a higher dimensional grids. For the grid graphs, Boykov and

Kolmogorov [45] developed a fast augmenting path algorithm which often significantly

outperforms the push relabel algorithm with linear running time.
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In general, graph construction as in figure A.11 can be used for arbitrary binary “labeling”

problems. In section 7.4 (part III) of our work it is the essential element of the utilized

approach to image segmentation by [401]. In section 11.2 (part IV) it is employed to do

image labeling considering neighbor interactions. Suppose we are given a penalty Dp(l)

that pixel p incurs when assigned label l ∈ L = {0, 1} and we need to find a spatially

coherent binary labeling of the whole image. We can then state a spacial regularization

via some global energy function:

E(f) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq) (A.6)

The question is would then be whether one can find a globally optimal labeling f using

some graph cuts construction and a definitive answer to this question exists for the case

of binary labelings. According to Kolmogorov and Zabih [254], a globally optimal binary

labeling for (A.6) can be found via graph cuts if and only if the pairwise interaction

potential Vpq satisfies

Vpq(0, 0) + Vpq(1, 1) ≤ Vpq(0, 1) + Vpq(1, 0) (A.7)

(A.7) is called the regularity condition.

Figure A.11: Left: An example image and corresponding graph representation. Right: The

minimum cut and final image labeling. Graph construction is equivalent to the one by

Greig et al. in [181]. Picture modified from [45]
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A.6 The Irrklang Audio Engine

The irrKlang audio engine ([8]; [2]) is a high level 2D and 3D sound engine and audio

library that can play and post-process almost any common file format, such as WAV,

MP3, OGG, just to name a few. irrKlang is cross platform, currently supporting Microsoft

Windows, Mac OS X and Linux platforms. Within Microsoft Windows, irrKlang makes

use of Direct Sound [233], the audio component of the Microsoft DirectX library [233],

which provides an interface to the sound card driver. irrKlang offers several interesting

sound effects to post-process audio files, such as, e.g., Volume, Chorus, Distortion, Echo,

Flanger, Compressor, Reverb, Stereo Panning, 3D Doppler Effect and so forth. As it is

possible to enable or disable these effects during playback for every single sound, as well

as to adjust parameters of the effects if it is already active, they are very convenient to

be harnessed for sonification, as employed in section 12.2. The usage of such a library

therefore very easily allows further research and even sonify additional features with the

same number of sounds only by altering parameters of effects applied. The following basic

example shows how to start up the engine and play an MP3 file in C++:

#include <iostream>

#include <irrKlang.h>

using namespace irrklang;

int main(int argc, const char** argv)

{

// start irrKlang with default parameters

ISoundEngine* engine = createIrrKlangDevice();

if (!engine)

return 0; // error starting up the engine

// play some sound stream, looped

engine->play2D("somefile.mp3", true);

char i = 0;

std::cin >> i; // wait for user to press a key

engine->drop(); // delete engine

return 0;

}
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A.7 Learning Theory & Support Vector Classifiers

The main goal of statistical learning theory ([483]; [482]; [417]; [61]; [86]; [430]) is to provide

a framework for studying the problem of making predictions or decisions or constructing

models from a set of data. Assumptions can be made of the statistical nature about the

underlying phenomena. One of the original problems to model using learning theory is

that of (binary) pattern recognition. Thus, given two classes of entities and being faced

with a new unknown object, one has to assign this new unclassified object to one of the two

classes. The problem can be formalized as follows. Suppose we are given m observations.

Each observation consists of a pair: a vector xi ∈ Rn, i = 1, ...,m and the associated

“ground truth” labeling yi ∈ {−1, 1}. Given the empirical data

(x1, y1), ..., (xm, ym) ∈ X × {−1, 1} (A.8)

one wants to estimate a decision function f → X × {−1, 1}. An appropriate decision

function will have the property to generalize to unseen data points, achieving a rather

small value of the actual or expected risk:

R(α) =

∫
1

2
| y − f(x, α) | dP (x, y) (A.9)

Being a statistical model, it is assumed that some unknown probability distribution P (y,x)

from which these data are drawn exists, i.e., all data is assumed to be independently

drawn and identically distributed (iid). If a certain density p(y,x) exists, dP (y,x) might

be written p(x, y)dxdy, as a way of writing the true mean error rate. However, unless

P (x, y) is known it is of no use at all. Statistical learning theory shows that it is crucial to

restrict the set of functions from which f is chosen to one that has a capacity suitable for

the number of available training data. It provides some bounds on the test error, depending

on the capacity of the function class and the empirical risk. Subsequently, minimizing of

such bounds leads to the principle of structural risk minimization ([482]; [417]; [61];

[86]). The empirical risk Remp(α) is defined to be the measured mean error rate on the

training set, for a finite number of observations:

Remp(α) =
1

2m

m∑
i=1

| yi − f(xi, α) | (A.10)

Remp(α) is a fixed number for a particular choice of α and a particular training set {xi, yi},
without any probability distribution attached. The quantity 1

2 | yi − f(xi, α) | is known

as the loss function.
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For binary classification, it can only take the values 0 and 1. Thus, choosing some η such

that 0 ≤ η ≤ 1 yields the following bound for previously mentioned loss functions, with

probability 1 - η ([417]; [61]; [86]):

R(α) ≤ Remp(α) +

√
(
h(log(2m/h) + 1)− log(η/4)

m
) (A.11)

h denotes a non-negative integer called the Vapnik Chervonenkis (VC) dimension

and describes a property of a set of functions {f(α)}. It can be defined for various classes

of function f . For functions, corresponding to the two-class pattern recognition case, if

a given set of m observations can be labeled in all possible 2m ways, and for each label-

ing, a member of the set {f(α)} can be found that correctly assigns those labels, this set

of observations is described to be “shattered” by that set of functions. Hence, the VC

dimension for such a set of functions {f(α)} is then defined as the maximum number of

training points that can be “shattered” by {f(α)}. Note that, if the VC dimension would

be h, then there is at least one particular set of h points that can be shattered. In general,

it will, however, not be true that each set of h points can be shattered.

The second term on the right hand side of (A.11) is, therefore, called the “VC confidence”

and the whole right hand side of (A.11) the “risk bound”, which is independent of P (x, y).

The risk bound only presumes that both, the training and test data, are drawn indepen-

dently according to P (x, y). Generally, it is not possible to compute the left hand side,

however, if h is known, one can compute the right hand side.
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Structural Risk Minimization

Thus, given several different families of functions f(x, α), called “learning machines” and

choosing a fixed, sufficiently small η, by then taking that machine which minimizes the

right hand side, one can choose that machine which provides the lowest upper bound on the

actual risk. This provides a method for selecting a learning machine for a given task and is

the fundamental idea of structural risk minimization. The VC confidence is described as a

monotonic increasing function of h (see in figure A.12) for any number of observations m

and given a selection of learning machines whose empirical risk would be equal to zero, one

wants to select a learning machine whose set of functions, associated with it, has minimal

VC dimension, which then leads to a better upper bound on the actual error, as illustrated

in figure A.12. In general, for non zero empirical risk, one selects that specific learning

machine that will minimize the right hand side of (A.11).

Figure A.12: Structural risk minimization: Choosing the best learning machine model
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Support Vector Machines

Support Vector Machines (SVM) can be considered an approximate implementation of

the principle of structural risk minimization, as they try to minimize a combination of the

empirical risk in (A.10), and a capacity term derived for the class of hyper-planes in a

dot product space H ([482]; [483]; [417]; [61]; [86]),

〈w,x〉+ b = 0 with w ∈ H, b ∈ R (A.12)

corresponding to decision functions

f(x) = sgn(〈w,x〉+ b).

Figure A.13: Left: Linear separable classification. Optimal hyperplane is shown as a solid

line. Weight vector w and a threshold b yield yi(〈w,xi〉+ b) > 0 ∀i = 1, ...,m. Support

Vectors lie on the borders of the margin (dashed lines). Right: Examples of a non-linear

separation surface found using a radial basis function kernel k(x,x′) = e‖x−x
′‖2
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Hard and Soft Margin Solutions

In case of a linearly separable set of observations a unique optimal hyper-plane exists,

differentiated by the maximal margin of separation between any observation point xi and

the hyper-plane, as visualized in figure A.13 (left). Such a case is called a hard margin

solution. Such an optimal hyper-plane would be the solution of

maximize
w∈H,b∈R

min{‖x− xi‖ | x ∈ H, 〈w,x〉+ b = 0, i = 1, ...,m} (A.13)

Moreover, the capacity of the class of separating hyper-planes decreases with increasing

margin. As illustrated in figure A.13 (left), in order to construct the optimal hyper-plane,

on needs to solve the following quadratic programming problem

minimize
w∈H,b∈R

1

2
‖w‖2 subject to yi(〈w,xi〉+ b) ≥ 1 ∀i = 1, ...,m (A.14)

The constraints ensure that f(xi) will be +1 for yi = +1, and -1 for yi = -1. This

constrained optimization problem in (A.14) is computed based on Lagrange multipliers

([391]; [61]) αi ≥ 0 (α := (α1, ..., αm)) and a Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m∑
i=1

αi(yi(〈w,xi〉+ b)− 1) (A.15)

L has some saddle point in w, b and α at the optimal solution of the primal optimization

problem. Therefore, it is minimized with respect to the primal variables w and b

and maximized with respect to the dual variables αi. Moreover, the product between

constraints and Lagrange multipliers in L diminishes at optimality, i.e.,

αi(yi(〈w,xi〉+ b)− 1) = 0 ∀i = 1, ...,m (A.16)

,which is known in optimization theory [148] as Karush-Kuhn-Tucker conditions

([148]; [61]). Minimization with respect to the primal variables requires

∂

∂ b
L(w, b,α) = −

m∑
i=1

αi yi = 0 (A.17)

∂

∂ w
L(w, b,α) = w −

m∑
i=1

αi yi xi = 0 (A.18)

The solution has some expansion (A.18) in terms of a subset of the observations, with

non-zero αi. This subset of observations are called Support Vectors (SVs). Most often,

only a fraction of the training examples actually end up being Support Vectors and due to

the Karush-Kuhn-Tucker conditions, Support Vectors lie on the margin (see A.13 (left)).

Thus, once the αi have been found this can be harnessed to compute b . All remaining

training examples (xj , yj) turn out to be irrelevant as their constraints yj(〈w,xj〉+ b) ≥ 1

can be discarded. Therefore, the hyper-plane is completely determined by the observations
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closest to it. Substitution of (A.17) and (A.18) into the Lagrangian (A.15) eliminates the

primal variables w and b, yielding a problem, which is usually solved in practice, known

as dual optimization problem:

maximize
α∈Rm

m∑
i=1

αi−
1

2

m∑
i,j=1

αiαj yi yjKij subject to αi ≥ 0 ∀i = 1, ...,m ∧
m∑
i=1

αi yi = 0

(A.19)

with Kij := 〈xi,xj〉. Based on (A.18), the decision function in (A.7) is written as

f(x) = sgn

(
m∑
i=1

yi αi 〈x,xi〉+ b

)
(A.20)

b can be computed using (A.16). Usually, a separating hyper-plane may not exist, for

instance, if noise within the training data causes a large overlap of the classes. To allow

for this case, slack variables ξi ≥ 0 ∀i = 1, ...,m are introduced in order to relax the

constraints of (A.14) to

yi(〈w,xi〉+ b) ≥ 1− ξi ∀i = 1, ...,m (A.21)

Thus, a learning machine that generalizes appropriately is found by controlling both, the

classifier capacity, based on ‖w‖, and the sum of the slack variables
∑m

i=1 ξi, which provides

an upper bound on the number of training errors. Such a classifier, known as soft margin

solutions, is obtained by minimizing the objective function

1

2
‖w‖2 + C

m∑
i=1

ξi (A.22)

subject to the constraints on ξi and (A.21). The constant C > 0 determines the trade-off

between margin maximization and training error minimization. Again, this leads to the

problem of maximizing (A.19), subject to modified constraint with the only difference

from the separable case being an upper bound C on the Lagrange multipliers αi. Another

realization replaces the parameter C by a parameter ν ∈ (0, 1] that provides upper and

lower bounds for the subset of examples which become Support Vectors and those which

will have non-zero slack variables, respectively ([482]; [483]; [417]; [61]; [86]).
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Non Linear Support Vector Machines

If the decision funtion f (A.7) is not linear, all above methods have to be generalized to

these cases. Boser et al. [44], proved that a rather old method [7], referred to as kernel

trick, can be used to accomplish this in a straightforward manner. Thereby, symmetric

similarity measures of the form k : H ×H → R, with (x,x′) → k(x,x′), are considered.

These functions, given two observations x and x′ return a real number value denoting

their similarity. To allow for a variety of similarity measures and learning algorithms, the

observations are represented as vectors in an arbitrary selected feature space Φ, due

to the mapping: Φ = X → H with x → Φ(x). The function k is often referred to as

a kernel. Some popular kernel choice are Gaussian, k(x,x′) = e−
‖x−x′‖2

2σ2 , or Radial

Basis Functions (RBF), k(x,x′) = eγ‖x−x
′‖2 , as shown in figure A.13 (right). Finally,

f can be rewritten as

f(x) = sgn

(
m∑
i=1

yi αi k(x,xi) + b

)
(A.23)

Furthermore, in the quadratic optimization problem (A.19) the definition of Kij becomes

Kij = k(xi,xj).
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Probability Estimates

As discussed, SVM predicts only class labels without probability information. However,

in section 11.2 (part IV) of our work we need probability estimates in the context of build-

ing a graphical model. The libSVM library provides an extension to provide probability

estimates based on the approach described in [512]. Briefly, given n classes of data, for

any observation x, the goal would be to estimate

pi = P (y = i|x), i = 1, ..., n (A.24)

Following the setting of the one-against-one (i.e., pairwise) approach for multi-class clas-

sification, we first estimate pairwise class probabilities

rij ≈ P (y = i|y = i ∧ j,x) (A.25)

using an improved implementation ([362] ; [291]). If f̂ is the decision value at x, then we

assume

rij ≈
1

1 + eA f̂+B
(A.26)

where A and B are estimated by minimizing the negative log likelihood of training data

(using their labels and decision values). It has been observed that decision values from

training may overfit the model in (A.26), so five-fold cross-validation is conducted to obtain

decision values before minimizing the negative log likelihood. After collecting all rij values,

Wu et al. [512] propose various possible approaches to obtain pi, ∀i.

Parameter Estimation

In both our application contexts in sections 11.2 and 11.4 (part IV), we check for the most

appropriate parameters C (III), for linear SVM, and (C, γ) IV, for RBF based non-linear

SVM, via grid search based (five-fold) cross validation (CV), provided by the libSVM

library.
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A.8 Solid of Rotation

A Solid of Rotation ([193]; [247]) denotes a solid figure obtained by rotating a curve in an

Euclidean plane around a straight line (i.e. an axis) lying on the same plane.

Figure A.14 illustrates several stages in the progression of rotating the following function

around its rotational axis, creating some sort of a “vase” alike 3D structure:

f(r, φ, z) = {(2 + tan(z) cos(φ, (2 + cos(z)) sin(φ), z}

Figure A.14: Illustration of several stages in the progression of rotating the function

f(r, φ, z) around its rotational axis done in Mathematica [384]. Parameters are z ∈ {0, 2π},
φ ∈ {0, α} and α ∈ {0.1, 2π} with π/12 step-size. The plotting range is x = {−3, 3},
y = {−3, 3} and z = {0, 6}
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A.9 The Synthesis Toolkit

The Synthesis ToolKit (STK) ([82]; [83]) was developed as a set of C++ audio signal pro-

cessing and algorithmic synthesis classes. The toolkit allows rapid development of music

synthesis and audio processing software, with an emphasis on cross-platform functionality

and real-time control. The STK currently supports audio and MIDI real-time processing

on Linux, Mac OS X as well as Microsoft Windows computer platforms. It further has been

ported to Symbian OS as well. It contains both, low-level synthesis and signal processing

classes (oscillators, filters and so forth), as well as higher-level instrument classes. These

instrument classes contain examples of state of the art physical modeling algorithms. The

following example, taken from the example section from [82], illustrates the basic use of

the SDK. In the example a stream “RtAudio dac” is initialized and “opened” for a callback

function (called “tick()” function) to be processed and to write single audio frames to the

sound device with a sample rate of 44100 Hz. In the example, the audio signal is a simple

sine wave at 440 Hz.

#include "SineWave.h"

#include "RtAudio.h"

using namespace stk;

// This tick() function handles sample computation only. It will be

// called automatically when the system needs a new buffer of audio

// samples.

int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,

double streamTime, RtAudioStreamStatus status, void *dataPointer )

{

SineWave *sine = (SineWave *) dataPointer;

register StkFloat *samples = (StkFloat *) outputBuffer;

for (unsigned int i=0; i<nBufferFrames; i++)

*samples++ = sine->tick();

return 0;

}
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int main()

{

// Set the global sample rate before creating class instances.

Stk::setSampleRate(44100.0);

SineWave sine;

RtAudio dac;

// Figure out how many bytes in an StkFloat and setup the RtAudio stream.

RtAudio::StreamParameters parameters;

parameters.deviceId = dac.getDefaultOutputDevice();

parameters.nChannels = 1;

RtAudioFormat format = (sizeof(StkFloat) == 8) ? RTAUDIO_FLOAT64

: RTAUDIO_FLOAT32;

unsigned int bufferFrames = RT_BUFFER_SIZE;

try {

dac.openStream(&parameters,NULL,format,(unsigned int)Stk::sampleRate(),

&bufferFrames,&tick,(void *)&sine);

}

catch (RtError &error) {error.printMessage(); goto cleanup; }

sine.setFrequency(440.0);

try {dac.startStream();}

catch (RtError &error){error.printMessage();goto cleanup;}

// Block waiting here.

char keyhit;

std::cout << "\nPlaying ... press <enter> to quit.\n";

std::cin.get(keyhit);

// Shut down the output stream.

try {dac.closeStream();}

catch (RtError &error) {error.printMessage(); }

cleanup:

return 0;

}
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A.10 Thin Plate Splines

Thin Plate Splines (TPS) ([117]; [41]; [121]; [497]; [444]; [394]), introduced in 1976 by

Duchon [121], describe a specific form of radial basis functions (RBF) ([60];[367];

[117]; [41]) ϕ(r) (see figure A.15) of the form:

ϕ(r) = r2 log r (A.27)

Typically, linear combinations of radial basis functions in general, or TPS in particular

are employed to approximate other functions f(r):

f(r) =
∑
i∈N

λi‖ϕ(r)‖ (A.28)

Thereby, N denotes the number of applied radial basis functions, and λi are the coefficients,

which weight each used RBF’s contribution. The formulation given in (A.27), replaces the

more hat-alike structure of, e.g., the Gaussian RBF (see figure A.15 (left)) by bowl-alike

introducing smoother deviations (see figure A.15 (right)). TPS are commonly employed

for representing coordinate mappings. As an example, Bookstein [41] and Davis et al.

[102], scrutinize their application to the problem of modeling changes in biological shapes.

However, the TPS interpolation model is inappropriate for the approximation of rather

linear functions, as it itself is non-linear.

Figure A.15: Left: A Gaussian RBF. Right: The specific form of RBF, the Thin Plate

Spline
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3D Interpolation

The name Thin Plate Spline refers to a physical analogy of a flat thin medal plate (see

figure A.16(left)) that is deformed by a few punctual strains, which we will call control

values c. The plate is than forced into a new form that minimizes the deformation energy

(see figure A.16 (right)).

Figure A.16: Visualization of the Thin Plate Spline physical analogy. Left: A flat thin

medal plate is deformed by a few punctual strains, called control values c. Right: The

plate is forced into a new form that minimizes the deformation energy

Given N control points c, then zci denotes the target function value at (xci , yci) of ci. It

is assumed that the locations (xci , yci) are all different and not collinear. The Thin Plate

Spline interpolant f(x, y), therefore, takes the form

f(x, y) = a0 + axx+ ayy +
N∑
i=1

λiϕ(‖(xci , yci)− (x, y)‖) (A.29)

with ϕ(r) being the radial basis functions employed. In order for f(x, y) to provide square

integrable second derivatives, it is required that

N∑
i=1

λi = 0 ∧
N∑
i=1

λixci =

N∑
i=1

λiyci = 0 (A.30)

The weights λi can be found by minimizing a cost function Ef , that involves the sum of

squared distances to each control value ci, as well as the integral of the square of the second

derivatives of f(x, y). Such a term, describing the bending energy, serves as smoothing

term

Ef =

∫∫ [(∂2f

∂x2

)2

+ 2

(
∂2f

∂xy

)2

+

(
∂2f

∂y2

)2 ]
dx dy (A.31)
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Finally, the interpolation conditions, f(xci , yci) = zci , and (A.30) yield a linear system to

obtain the weights λi ∣∣∣∣∣ K P

P T O

∣∣∣∣∣
∣∣∣∣∣ λa

∣∣∣∣∣ =

∣∣∣∣∣ zo
∣∣∣∣∣ (A.32)

On the left side of the linear system (A.32) , Kij = ϕ(‖(xci , yci)− (xcj , ycj )‖), the ith row

of P is (1, xci , yci) and O is some 3× 3 matrix of zeros. λ is a column vector formed from

λi and a is the column vector with elements a0, ax and ay.

On the right side of (A.32), z is a column vector formed from zci and o a 3 × 1 column

vector of zeros.

The (p+ 3)× (p+ 3) matrix of this system is described by L which is non-singular matrix,

as discussed in [367]. If the upper left p× p block of L1 is denoted by L1
p, it can be shown

that

Ef ∝ zTL−1
p z = λTKλ (A.33)

As an alternative one may relax the exact interpolation requirement based on regulariza-

tion. The objective cost function to minimize would, therefore, be

E = a0+axx+ayy+
N∑
i=1

(zci−(f(xci , yci))
2+ρ

∫∫ [(∂2f

∂x2

)2

+2

(
∂2f

∂xy

)2

+

(
∂2f

∂y2

)2 ]
dxdy

(A.34)

ρ denotes a regularization constant, representing the trade-off between the smoothness of

the interpolated function and its progression through or near the control points c. As

discussed in ([168]; [497]), one can solve (A.34) by replacing the matrix K by K + ρI in

(A.32), where I is the p× p identity matrix.

In section 8.1 (part III) we choose ρ = 0, as we want the function to definitely move

through all the control points c, which represent certain acoustical states.

As we do not need many control points, in part III, complexity of finding appropriate

weights λi can be reduced considerably and solutions such as Lower Upper (LU) decom-

position ([368]; [365]) can be employed. However, since inverting L is an O(p3) operation,

more optimized methods, as in [117], should be employed for larger sets of control points.
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B.1 The Human Visual System

Color Vision

Color vision starts, when light of various wavelengths, emitted or reflected by objects of

the surrounding world, enters the human eye and stimulates photo receptors. Humans

have lightness receptors, called “rods” and 3 types of color receptors, called color “cones”,

within the retina, which are sensitive to short(S), medium (M) an long (L) wavelength of

light which can loosely be assigned to blue, green and red. This theory of trichromatic

color vision was first postulated in 1802 by Young [526]. Nevertheless, through neuro

physiological studies [103] the theory of opponent colors by Hering ([202]; [237]) could be

affirmed to play a significant role in the further processing of incoming color stimuli from

the retina, and could therefore be connected to the trichromatic Theory found by Young

and Helmholtz ([174]; [526]). According to Hering, humans perceive certain colors like

blue, green, red and yellow as significantly clean, which is why Hering calls them unique-

colors. All other colors are perceived as mixtures, whereupon 2 of the 4 colors cannot be

mixed, such as there is no green-red or blue-yellow. Hering calls these 2 pairs opponent-

colors. Figure B.1 visualizes the principle of color processing in the human brain. The

cones within the retina deliver impulses to neural color channels. On a neural level, these

color stimuli are interconnected. The difference of red and green is transmitted to the

red / green channel. The addition of red and green creates the perception of yellow. The

difference between blue stimuli and this perception of yellow is send to the blue/yellow

channel. Luminance can be assigned to a white/black channel that measures R,G,B,

against each other.

Figure B.1: Left: Normalized spectral absorption curves of color receptors (and rods in

intersected black). (b) Color processing in the human brain from trichromatic to opponent

dimensions. (Visualizations based on [174] and [237])
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The Retina

The human eye is equipped with an “inverted-type” retina, which means that light must

pass through all retinal layers before it reaches the photo-receptor cells that are aligned at

the back of the tissue. As the vertebrate retina contains various structures that differ in size

and refractive index, such differences should lead to significant scattering. Accordingly,

Goldsmith [173] pointed out that the application of the inverted retina is equivalent to

placing a thin diffusing screen directly over the film in your camera. Interestingly, in 2007,

Franze et al. ([154]; [382]) discovered the remarkable properties of radial glial cells, also

known as “Mueller cells”, that span the entire retina from front to back. These cells

act as optical fibers and guide light to the photo-receptor cells which otherwise would be

scattered from the retinal surface.

Figure B.2: Left: Mueller glial cells acting as living optical fibers, transporting light

through the inverted retina. Due to their funnel-shaped endfeed, Mueller cells collect

light at the retinal surface and guide it to photo-receptor cells on the opposite side. Im-

ages are thus transmitted through optically distorting tissue. Right: Mueller cell shape,

refractive properties, and light-guiding capability. (a) Nomarski differential interference

contrast microscopy image of a dissociated (guinea pig) Mueller cell with several adherent

photoreceptor cells, including their outer segments (ROS) and a dissociated retinal neuron

(bipolar cell) to the left. (b) Schematic illustration of a Mueller cell in situ. The lighter

the coloring of the Mueller cell, the lower the refractive index. Typical diameters and the

calculated V parameters for 700 nm (red) and 500 nm (blue) are indicated at the endfoot,

the inner process, and the outer process. Although diameters and refractive indices change

along the cell, its light-guiding capability remains fairly constant. (Scale bar, 25 µm.).

Text and picture taken from [154]
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The collective presence of these parallel optical fibers mediates the image transfer through

the retina with minimal distortion. This recent findings explain a fundamental feature of

the inverted retina as an optical system and ascribe new functions to glial cells. Light

enters the Mueller cells, illustrated in figure B.2 at a shallow angle and is slowed down

by the cells’ high refractive index. When hitting the cells’ boundaries, light is reflected

back along the tube. Due to their funnel shape, Muller cells gather and transmit as much

light as possible, and as they are narrow in the middle, they take up a very small amount

of space and leave plenty of room for nerves and blood vessels that the retina needs. On

average, every Muller cell serves several rod cells but only a single cone photo-receptor

cell, which ensures that distortion-free and high contrast images that eventually hit the

light sensors. Therefore, the way in which Mueller cells transport light is similar to that

of optical fibers.



B.1. THE HUMAN VISUAL SYSTEM 241

The Visual Pathway & The Visual Cortex

The purpose of this chapter is not to give an in depth introduction into the human visual

system , but rather a short introduction to the visual cortex and its various visual areas

and pick out specific features, taking place at various positions within the visual cortex,

that resemble or inspired some of the low-level features we extracted in various sections of

the work. For a more in depth introduction into the visual system and the visual cortex

see ([237]; [179])

Figure B.3: Left: The visual pathway. Picture taken from [189]. Right: Overview over the

Visual Cortex and its specific areas V1, V2, V3 and V4. Picture modified from [294]

At the start of the visual pathway, illustrated in figure B.3 (left), images from the retina

at the back of each eye are channeled first to a pair of small structures deep in the brain

called the lateral geniculate nuclei (LGN) ([294]; [237]). Individual neurons in the

LGN can be activated by visual stimulation from either one eye or the other but not

both. They respond to any change of brightness or color in a specific region within an

area of view known as the receptive field, which varies among neurons. From the LGN,

visual information moves to the primary visual cortex, known as V1, which is at the

back of the head. Neurons in V1 behave differently than those in the LGN do. They

can usually be activated by either eye, but they are also sensitive to specific attributes,

such as the direction of motion of a stimulus placed within their receptive field. Visual

information is transmitted from V1 to more than two dozen other distinct cortical regions.
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Some information from V1 can be traced as it moves through areas known as V2 and

V4 before winding up in regions known as the inferior temporal cortex (ITC) ([294];

[237]), which like all the other structures are bilateral. A large number of investigations,

including neurological studies of people who have experienced brain damage, suggest that

the ITC is important in perceiving form and recognizing objects. Neurons in V4 are known

to respond selectively to aspects of visual stimuli critical to discerning shapes. In the ITC,

some neurons behave like V4 cells, but others respond only when entire objects, such

as faces, are placed within their very large receptive fields. Other signals from V1 pass

through regions V2, V3 and an area known as MT/V5 before eventually reaching a part

of the brain called the parietal lobe. Most neurons in MT/V5 respond strongly to items

moving in a specific direction. Figure B.3 (right) illustrates the locations of the various

visual areas.
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Luminance and Brightness

Luminance is the measure of the per-area intensity of light travelling in a particular

direction, measured in “candela per square metre” (cd/m2). Illuminance is a measure

of the per-area incident of luminous flux (a measure of the perceived (adjusted based on

human sensitivity to different wavelengths) power of light). There are several sources of

illumination, and the eyes can cope with a vast range from starlight (10−4) lux to direct

sunlight (32000 − 130000) lux. The brain takes in illuminance, and from there computes

brightness (stimuli and sensation). The perception of the apparent lightness of an object

depends on the context in which this object is embedded in, as illustrated in figure B.4

([11]; [250]; [398]; [5]; [164]; [165] ).

Figure B.4: Corresponding chess pieces on the two surrounds are physically identical.

Figures on light surround appear as dark objects visible through light haze, whereas figures

on dark surround appear as light objects visible through dark haze. Picture modified from

[11]

The Kanizsa square, visualized in figure B.5 (left), shows that one can perceive the borders

of an object even in regions of an image without direct visual evidence for them. This is

an example of the phenomenon of illusory or subjective contours [239], which have a rich

history in psychology ([443]; [346]), although they are still an active field in research.
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Figure B.5: Illusory contours and brightness enhancement. Left: Illusory contours (a) gen-

erated by the visual system from suggestions of an occluding figure (Kanisza square, top),

or by fracture lines between two textures (circle, bottom). Note the illusory brightness

enhancement accompanying the sides of the square as well as the central circle. Right:

Illusory contour signals (b) in V1 are weaker and arrive later than signals in V2, indicat-

ing the perception of illusory contours to involve intercortical feedback interactions [283].

Picture modified from [127]
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Simple & Complex Cells

Simple Cells, discovered by Hubel and Wiesel [215] in the primary visual cortex (V1),

are retinal ganglion cells ([237]; [179]) that respond primarily to oriented edges. Thus,

they can be as linear filters that compute a weighted sum of the intensities in a stimulus,

with weights given by the receptive field [132]. Daugman discovered that simple cells

within the visual cortex of mammalian brains can be modeled by Gabor functions ([99];

[282]), as illustrated in figure B.6. Hubel and Wiesel [215] defined simple cells as having

distinct antagonistic regions, excitatory and inhibitory, in their receptive fields. They

further suggested that knowing those regions, one could predict responses to any shape of

a given stimulus, stationary or moving. Simple cells were complemented by the discovery

of another kind of ganglion cells, which perform non-linear operations, suggesting that

they sum the distorted output of sub-units that in turn have linear receptive fields ([132];

[487]).

Figure B.6: Left: Illustrations of empirical 2D receptive field profiles in simple cells of

the cat viual cortex . Middle and Right: Best fitting 2D Gabor wavelets representation.

Picture modified from [230]
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Complex cells, located in V1, V2 and the nearby Brodmann area, are insensitive to the

specific position of a bar within the receptive field, and respond both to the onset and to

the offset of the bar ([215]; [216]). They receive inputs from a number of simple cells and

their receptive field would therefore be the summation and integration of the receptive

fields of many input simple cells ([323]; [324]; [68]), shown in figure B.7.

Figure B.7: Left: The models of simple and complex cells proposed by Movshon, Thompson

and Tolhurst ([323]; [324]). A: Linear model of simple cells. The first stage is linear

filtering, i.e. a weighted sum of the image intensities, with weights given by the receptive

field. The second stage is rectification: only the part of the responses that is larger than

a threshold is seen in the firing rate response. B: Subunit model of complex cells. The

first stage is linear filtering by a number of receptive fields such as those of simple cells

(here only four of them with spatial phases offset by 90 degrees are shown). The subsequent

stages involve rectification, and then summation. Text and Picture taken from [68].
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Grating Cells

Simple and complex cells respond to periodic stimuli and aperiodic stimuli such as sine-

and square-wave grating, bars, and edges of a preferred orientation. Von der Heydt et al.

([492]; [119]) discovered a new type of cell in areas V1 and V2 that responded to periodic

stimuli, which they called “grating cells”, as they respond vigorously to periodic patterns

and only weakly or not at all to aperiodic patterns such as bars or edges. Thus, these

structures could presumably be responsible for texture processing in the visual system.

Computational models inspired by these findings have been used as texture operator ([261];

[295]), illustrated in figure B.8.

Figure B.8: Responses to square gratings of different orientations and spatial frequencies.

Top rows show stimuli and bottom rows the responses of the modeled grating operator.

Grating cells responded vigorously to grating patterns of preferred orientation and fre-

quency. Responses decreased when stimuli differed from this pattern. Responses strongly

decreased when the gratings were rotated by 10 degrees and completely vanished at a 20

degrees rotation. Halving or doubling the spatial frequency also abolished these responses.

Picture modified from [295]
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Surround Suppression

Relatively recent insights obtained in neurophysiology of the visual system reveal a neural

mechanism called surround suppression which can observed in areas V1 and V2 ([339];

[229]; [69]; [439]). Essentially, it enables the response of an orientation selective neuron

to a local oriented stimulus to be inhibited by the presence of other similar stimuli in the

immediate surroundings. Recently, computational models based on Gabor wavelets have

been proposed to simulate surround suppression ([344]; [354]), visualized in figure B.9.

Figure B.9: Simulated surround suppression model by [344] (Middle) of an input image

(left), compare to the plain results of the Canny edge detector (right). Picture modified

from [344]
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B.2 Color Spaces

Figure B.10: Entitled Paris, Momatre - a painters paradise. Picture by Chris Willis taken

from flickr.

A “color space” is a concept to understand the color capabilities of a specific file or device.

When reproducing color on another device, color spaces can be a reference to what extent

details concerning shadowing or highlighting or color saturation can be retained or to

what extent either will be compromised. As an artist mixes primary colors on a palette

in order to visualize the range of colors and shades, as visualized in B.10, color spaces are

sometimes represented as digital palettes, except these palettes are much more precisely

quantified.
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RGB

The RGB color space [286], standing for red, green and blue, is an additive color model,

where these three primary colors of light are added to produce specific colors as combi-

nations. It is based on the theory of trichromatic color vision proposed by Young and

Helmholtz [526]. Thereby, the intensity of the light is determines the color perceived. No

intensity leads to the perception of black, whereas full intensity leads to that of white.

Differing intensities among primary colors are responsible for the hue of a color. The RGB

model is the color space mostly utilized on, e.g., computer or TV monitors. Geometri-

cally it is often depicted as a cube with red, green and blue occupying three vertices, as

illustrated in figure B.11 (left).

Figure B.11: Left: the RGB color model. Right: The HSL space in a cylindrical represen-

tation and unrolled

HSL

The HSL color space ([286]; [441]) stands for hue, saturation and lightness. Thereby,

hue describes the color type, ranging from 0◦ to 360◦. Saturation denotes the variation

of the color depending on the lightness. Thus, the HSL space is rather intuitive. The

hue channel is represented as a circle going through all the colors in the color wheel.

Saturation indicates the intensity of color and lightness how bright a color would be (see

B.11 (right)). Thus, the HSL model can be interpreted as a double-cone or a “stretched”

cylinder, visualized in figure B.12 (right). Where the minimal saturation (s = 0) forms

a straight line aling l within the double-cone model, it is more of a curve within the

cylindrical model. This observation leads to the interpolation of the minimum saturation

curve smin(l) in section 8.1.

Figure B.12: The HSL color space as a cylinder (left) or double-cone model (right)
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Irregularities in the HSL Color Space

As introduced in section, the HSL color space contains some “perceived irregularities”.

Below 50% luminance around yellow (h = 60◦) there is a certain region that would be

visually perceived as “olive green” rather than dark yellow. Additionally, what should

be a visual “deep blue” at h = 240◦ increasing in luminance tends to fade into what is

perceived visually as “violet”. These visual irregularities can be observed in comparison

to the development of other colors in the HSL model (see figure B.13).

Figure B.13: Color Table of the HSL color space, taken form [441]
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To deal with both irregularities, we match the acoustical perception to the visual. For

the problem around yellow, we adjust the values of ϑyellow(h, s, l) along h as illustrated

in figure B.14. Ranges of h for yellow below 50 % luminance were adjusted by our own

perception, we, however, propose the application of region growing algorithms [397] based

on representative “olive yellow-green” regions as seed points.

Figure B.14: Matching the acoustical perception around “olive” (green-yellow) to the vi-

sual. Exemplary values of ϑyellow(h, s, l) at 50 % (left), 35 % (middle) and 20 % (right).

Note that the range of values for each ϑ(h, s) is from 0 (black) to max. 255 (orange-yellow)

To adjust the acoustical perception around “violet” h = 240◦ to the visual we need to

“add” some red. However, the region is rather unpredictable than the irregularity around

yellow. Thus, due to our own observations of the color space, we set ϑred(h, s, l) at specific

positions. These are ϑred(h265, s50%, l70%) = 0.125, ϑred(h265, s100%, l70%) = 0.125 at 70

% luminance. Further choices are ϑred(h265, s50%, l50%) = 0.125 at 50 % luminance and

ϑred(h260, s50%, l20%) = 0.125 as well as ϑred(h265, s100%, l20%) = 0.125 at 20 % luminance.

Subsequently, the Thin Plate Spline based diffusion is employed to “diffuse” these manip-

ulated values ϑred(h, s, l) into their immediate surrounding area (at constant luminance

level l for hue range from 260◦ to 265◦). Results are shown isolated in figure B.15 and

within the complete color circle in figures B.16 (l = 20%), B.17 (l = 50%) and B.18

(l = 70%). Thereafter, interpolation of ϑred(h, s, l) along l is performed linearly.
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Figure B.15: Matching the acoustical perception around “violet” h = 240◦ to the visual.

Thin plate spline manipulated values ϑblue(h, s, l) and their diffusion in the immediate

surrounding area at levels at 20 % (left), 50 % (middle) and 70 % (right). Note that the

range of values for each ϑ(h, s) is from 0 (black) to max. 32(= 0.125) (yellow)

Figure B.16: Adjusted color circle at l = 20%. Range of values is from 0 (black) to max.

255 (orange-yellow)



B.2. COLOR SPACES 255

Figure B.17: Adjusted color circle at l = 50%. Range of values is from 0 (black) to max.

255 (orange-yellow)

Figure B.18: Adjusted color circle at l = 70%. Range of values is from 0 (black) to max.

80 (orange-yellow)
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CIELab

The CIELab color model [286] was developed in 1976 as a system for representing percep-

tible colors in a device independent and especially uniform way, where the latter entails

that equidistant distances within the color model equate to equally perceived color differ-

ences, evaluated by a human observer. As it shall be “device independent”, the color space

should overcome or be independent of limitations which are inherent in specific devices,

such as displays or printers.

Because it has been developed to be free from such restrictions, the CIELab model can act

as some sort of universal translator between the different color systems native to various

devices. Figure B.19 (left) visualizes the CIELab space as a sphere. The L axis refers to

the lightness or luminance value. a* represent the shares of the red-green component, i.e.,

a negative number would be more green, positive is more red. The b* axis refers to the

blue-yellow component. Again, going in direction of the negative axis increases the blue

share, in the positive axis more the yellow share. However, the real implementation of the

CIELab color space does not fill the complete sphere along the L axis, as illustrated in

figure B.19 (right).

Figure B.19: The CIELab color space. Left: Sphere representation. Picture taken from

[105]. Right: Visualization of “equally perceived” regions. Picture from [462]
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[488] K. Vogt and R. Höldrich. A metaphoric sonification method - towards the acoustic standard

model of particle physics. Washington, D.C., USA, June 9-15 2010. International Community

for Auditory Display.

[489] K. Vogt, D. Pirro, I. Kobenz, R. Hldrich, and G. Eckel. Physiosonic - evaluated movement

sonification as auditory feedback in physiotherapy. pages 103–120. Springer-Verlag Berlin,

2009.

[490] G. von Bekesy. Experiments in hearing. New York: McGraw-Hill, 1960.

[491] G. von Bismarck. Timbre of steady tones: A factorial investigation of its verbal attributes.

Acustica,, 30:146–159, 1974.

[492] R. von der Heydt, E. Peterhans, and M. R. Duersteler. Periodic-pattern-selective cells in

monkey visual cortex. Journal of Neuroscience, 12(4):1416–34, 1992.

[493] R. G. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall. Lsd: A fast line segment

detector with a false detection control. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32:722–732, 2010.

[494] J. von Goethe. Zur Farbenlehre. Number Bd. 2 in Zur Farbenlehre. J.G. Cotta, 1810.

[495] H. von Helmholtz and J. P. C. Southall. Helmholtz’s treatise on physiological optics.

Helmholtz’s Treatise on Physiological Optics. The Optical Society of America, 1924.

[496] D. Wagner and D. Schmalstieg. ARToolKitPlus for Pose Tracking on Mobile Devices. Tech-

nical report, Institute for Computer Graphics and Vision, Graz University of Technology,

2007.

[497] G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF Regional Confer-

ence Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),

1990.

[498] B. N. Walker. Magnitude estimation of conceptual data dimensions for use in sonification.

volume 8, pages 211–221, 2002.

[499] B. N. Walker and G. Kramer. Ecological psychoacoustics and auditory displays: Hearing,

grouping, and meaning making. pages 150–175. New York: Academic Press., 2004.

[500] B. N. Walker and M. A. Nees. Theory of sonification. In T. Hermann, A. Hunt, and J. G.

Neuhoff, editors, The Sonification Handbook, chapter 2, pages 9–39. Logos Publishing House,

Berlin, Germany, 2011.

[501] R. S. Wallace. Principles of Lighting. London, Constable, 1951.

[502] H. Wechsler. Texture analysis - a survey. Sig Process, 2:271–282, 1980.

[503] P. Weiss. Music in the Western World: A History in Documents. Schirmer, 1984.



286 BIBLIOGRAPHY

[504] D. L. Wessel. Timbre Space as a Musical Control Structure. Computer Music Journal,

3(2):45–52, 1979.

[505] P. White. The secrets of warmth & air. Sound on Sound Magazine, 2001.

[506] C. D. Wickens, S. E. Gordon, and Y. Liu. An Introduction to Human Factors Engineering.

Prentice Hall, 1998.

[507] C. D. Wickens and Y. Liu. Codes and modalities in multiple resources: A success and a

qualification. volume 30(5), pages 599–616, 1988.

[508] T. Wiegand and K. A. Moloney. Handbook of Spatial Point Pattern Analysis in Ecology. Crc

Pr Inc, 2013.

[509] S. M. Williams. Perceptual principles in sound grouping. SFI studies in the sciences of com-

plexity. Addison Wesley Longman, 1992. Auditory display: Sonification, Audification, and

Auditory Interfaces. Santa Fe Institute Studies in the Sciences of Complexity, Proceedings,

Volume XVIII. Reading, MA: Addison Wesley Publishing Company.

[510] L. Wiskott, J. M. Fellous, N. Krüger, and C. Malsburg. Face recognition by elastic bunch

graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:775–

779, 1997.

[511] T. Wu, M. Bae, M. Zhang, R. Pan, and A. Badea. A prior feature svm-mrf based method

for mouse brain segmentation. Neuroimage, 59(3):2298–306, 2012.

[512] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class classification by

pairwise coupling. J. Mach. Learn. Res., 5:975–1005, Dec. 2004.

[513] X. Wu and Z.-N. Li. A study of image-based music composition. In Multimedia and Expo,

2008 IEEE International Conference on, pages 1345–1348, 23 2008-April 26.

[514] G. Wyszecki and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data and

Formula. Wiley-Interscience, 2000. Second Edition.

[515] X-Rite. A guide to understanding color tolerancing. Technical report, X-Rite Incorporated,

Grandville, Michigan 49418, USA, 1997.

[516] S.-y. Xie, R. Guo, N.-f. Li, G. Wang, and H.-t. Zhao. Brain fmri processing and classifica-

tion based on combination of pca and svm. In Proceedings of the 2009 international joint

conference on Neural Networks, IJCNN’09, pages 3510–3515, 2009.

[517] J. Xu, Z. G. Fang, D. H. Dong, and F. Zhou. An outdoor navigation aid system for the

visually impaired. In Industrial Engineering and Engineering Management (IEEM), 2010

IEEE International Conference on, pages 2435 –2439, dec. 2010.

[518] L. Xu, F. Qi, and R. Jiang. Shadow Removal from a Single Image. Intelligent Systems Design

and Applications, International Conference on, 2:1049–1054, 2006.

[519] C. G. Yang and X. B. Duan. Credit risk assessment in commercial banks based on svm using

pca. In Machine Learning and Cybernetics, 2008 International Conference on, volume 2,

pages 1207 –1211, 2008.

[520] M. Y. Yang and W. Frstner. A hierarchical conditional random field model for labeling and

classifying images of man-made scenes. In ICCV Workshops, pages 196–203. IEEE, 2011.



BIBLIOGRAPHY 287

[521] S. Yanhui, D. Enqing, L. Zhenzhi, L. Chenglin, C. Bo, and L. Zhenguo. Research on the

segmentation of tiny multi-target in brain tissues based on support vector machines. In

Complex Medical Engineering (CME), 2011 IEEE/ICME International Conference on, pages

478 –482, 2011.

[522] W. S. Yeo and J. Berger. Application of image sonification methods to music. 2005.

[523] W. S. Yeo and J. Berger. A framework for designing image methods. 2005.

[524] W. S. Yeo and J. Berger. Application of raster scanning method to image sonification, sound

visualization, sound analysis and synthesis. In Proc. of the Int. Conf. on Digital Audio Effects

(DAFx-06), pages 309–314, Montreal, Quebec, Canada, Sept. 18–20, 2006.

[525] T. Yoshida, K. Kitani, S. Belongie, K. Schlei, and H. Koike. Edgesonic: Image feature

sonification for the visually impaired. In International Conference on the Augmented Human,

Tokyo, 2011.

[526] T. Young. The bakerian lecture: On the theory of light and colours. Phil Trans R Soc,

92(5):12–48, 1802.

[527] A. Zacharakis, K. Pastiadis, G. Papadelis, and J. D. Reiss. An investigation of musical

timbre: Uncovering salient semantic descriptors and perceptual dimensions. In Proceedings

of the 12th International Society for Music Information Retrieval Conference, pages 807–812,

2011.

[528] A. Zacharakis, K. Pastiadis, G. Papadelis, and J. D. Reiss. Analysis of musical timbre

semantics through metric and non-metric data reduction techniques. In Proceedings of the

12th International Conference on Music Perception and Cognition, 2012.

[529] R. J. Zatorre and P. Belin. Spectral and Temporal Processing in Human Auditory Cortex.

Cerebral Cortex, 11(10):946–953, 2001.

[530] S. M. Zeki. Uniformity and diversity of structure and function in rhesus monkey prestriate

visual cortex. J Physiol, 277(1):273–290, 1978.

[531] P. Zelanski and M. P. Fisher. Color. Pearson Prentice Hall, 2003. Fourth Edition.

[532] H. Zhao, C. Plaisant, B. Shneiderman, and J. Lazar. Data sonification for users with visual

impairment: A case study with georeferenced data. ACM Trans. Comput.-Hum. Interact.,

15(1):4:1–4:28, May 2008.

[533] H. Zhou and D. Suter. Fast sparse gaussian processes learning for man-made structure

classification. In Online Learning for Classification Workshop 2007, 2007.

[534] M. Zhou. Gabor-Boosting Face Recognition. PhD thesis, School of Systems Engineering,

University of Reading, 2008.

[535] M. Zhou and H. Wei. Face verification using gaborwavelets and adaboost. In 18th Inter-

national Conference on Pattern Recognition (ICPR 2006), 20-24 August 2006, Hong Kong,

China, pages 404–407, 2006.


	Front page
	Zusammenfassung
	Abstract
	Contents
	Introduction
	Motivation
	Overview of Employed and Developed Technology
	The Explorative Image Sonifyer Software


	I Sonification & Auditory Perception
	Introduction to Sonification
	Definitions
	Aesthetics

	Research in Auditory Displays
	Sonification Techniques
	Audification
	Auditory Icons
	Earcons
	Parameter Mapping Sonification
	Model-Based Sonification

	Fields of Application
	Auditory Displays for the Visually Impaired
	Sonification of Images
	The Brain as (the) Essential Component of the Sonification System
	Contributions of this Thesis


	Auditory Perception
	The Ear & the Auditory Cortex
	On the Transduction of Sound from Mechanical Energy into Bio-electrical Signals and Beyond
	Pitch
	Loudness
	Auditory Masking
	Temporal and Spectral Variation
	Sound Localization


	Sound Computation
	Sound Synthesis
	Additive Synthesis
	Subtractive Synthesis
	FM Synthesis
	Non-Linear Synthesis
	Granular Synthesis
	Physical Modeling

	Noise
	White Noise
	Pink Noise
	Brownian Noise

	Representation of Analog Sound Signals in Digital Computers


	II A Modular Computer Vision Sonification Model
	Introduction
	The Visual to Acoustical Processing Pipeline

	Modules
	Sensorics
	Computation
	Exploration
	A Bas-Relief Inspired Exploration Paradigm
	An Evaluation of Interface Technologies

	Sonification
	A Queue of Sonification Descriptors



	III Auditory Object Recognition
	Background & Objectives
	Low-Level Feature Image Analysis
	Color Information & Image Pre-Processing
	Edge Preserving Filtering
	Edge Detection

	Simulated Surround Suppression Based on Orientation Maps
	Computation of Orientation Maps
	A Topological Representation of Orientation Patches

	Textural Roughness
	Gradient Based Entropy as a Local Roughness Measure

	Shape Extraction of Basic Objects using Graph Cuts

	Color and Low-Level Feature Sonification
	Audible Color Space
	Complementary Instruments Inspired by Hering's Theory of Opponent Colors
	Sonification of the HSL Color Space
	Gray-scale and Lightness
	A Color Sound Synthesis Equation

	Interpolation of Audible Colors Based on Thin Plate Splines
	An Audible HSL-Opponent Color Space

	Auditory Edge Detection - the Sonification of Orientation Maps
	Audible Roughness - the Sonification of Local Entropy
	MIDI Based Sonification

	User Studies
	Experiments
	Experiment I - Object Recognition by Color only
	Experiment II - Object Recognition by Color and Orientation Maps (Simplified)
	Experiment III - Object Recognition by Color and Orientation Maps (Complex)
	Experiment IV - Object Recognition within a Set of Objects
	Results

	Discussion


	IV Auditory Image Understanding
	Motivation
	Multi-Level Image Analysis
	Auditory Scene Labeling
	Image Pre-Processing
	Detection of Man Made Structures in Natural Scenes
	Modeling Spatial Dependencies in Natural Images
	Non-Linear Support Vector Machines
	Dual Support Vector Fields

	Feature Set
	Smoothed Histograms of Gradient Orientations
	Junctions & Line Patterns
	Corner Point Patterns

	Parameter Learning
	Inference
	Results & Discussion
	Visual Uncertainty


	Low-Level Feature Extraction Controlled by High-Level Classification
	Natural Regions
	Man Made Structures

	Object Recognition & Verification
	Object Categorization Using a Bag of Visual Words Model
	Object Detection with Discriminatively Trained Part Based Models
	A Learning-based Approach to Verification / Falsification of Object Recognitions
	Feature Set
	Principal Component Based Feature Set Transform

	Results & Discussion
	Extracting Objects



	Sonification for Auditory Scene Understanding
	An Audible Color Space Representation Inspired by Visual Color Perception
	A Physical Perspective on Color Temperature
	Chromesthesia
	Color Symbolism
	Timbre Synthesis - the Creation of Colored Sounds
	Timbre Synthesis based on Complementary Sound Characteristics
	Luminance Sonification

	Computation of the Audible Color Space
	A Timbre-Based Color Sound Synthesis Equation
	Computation of Sound Parameter Volumetrics

	Amplitude Envelope

	Classified-Region Dependent Feature Sonification
	Natural Regions Represented by Brown Noise
	Man Made Structures Acoustically Encoded in Rhythms
	Buildings & Line Patterns
	Highest Gradient


	Audible Object Detections Based on Auditory Icons
	On & Off Screen Indication Based on Earcons

	User Studies & Discussion
	Experiments
	Experiment I - Object Recognition by Color Only
	Experiment II - Basic Scene Elements
	Experiment III - Understanding Scenes Audibly
	Experiment IV - Understanding Scenes Audibly
	Experiment V - Categorization of Man Made Structures

	Discussion

	System Design of the Explorative Image Sonifyer Software
	Usability
	System Architecture
	Text-to-Speech Output
	Non-blocking Realtime Audio Programming
	Portability


	V Conclusion
	Incorporating the System at the ``Internat des Rheinischen Blindenfürsorgeverein 1886 Düren''

	VI Appendix
	Mathematical & Algorithmic Concepts
	Edge Preserving Filtering
	Anisotropic Diffusion
	Bilateral Filtering
	On the Distortion of Colors

	Fractal Geometry & Fractal Dimension
	Gabor Wavelet Transform
	Gaussian Image Pyramids
	Algorithms in Graph Theory
	Dijkstra's Single-Source Shortest-Paths Algorithm
	Prim's Minimum-Spanning-Tree Algorithm
	Graph Cuts and the Min-Cut / Max-Flow Problem
	The Min-Cut / Max-Flow Problem


	The Irrklang Audio Engine
	Learning Theory & Support Vector Classifiers
	Structural Risk Minimization
	Support Vector Machines
	Hard and Soft Margin Solutions
	Non Linear Support Vector Machines
	Probability Estimates
	Parameter Estimation


	Solid of Rotation
	The Synthesis Toolkit
	Thin Plate Splines
	3D Interpolation


	Visual Perception
	The Human Visual System
	Color Vision
	The Retina

	The Visual Pathway & The Visual Cortex
	Luminance and Brightness
	Simple & Complex Cells
	Grating Cells
	Surround Suppression


	Color Spaces
	RGB
	HSL
	Irregularities in the HSL Color Space

	CIELab


	Bibliography

	Bibliography

