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Abstract 
The recent increase in Earth Observation (EO) missions has resulted in unprecedented 

volumes of multi-modal data to be processed, understood, used and stored in archives. The 
advanced capabilities of satellite sensors become useful only when translated into accurate, 
focused information, ready to be used by decision makers from various fields. Two key 
problems emerge when trying to bridge the gap between research, science and multi-user 
platforms: (1) The current systems for data access permit only queries by geographic 
location, time of acquisition, type of sensor, but this information is often less important than 
the latent, conceptual content of the scenes; (2) simultaneously, many new applications 
relying on EO data require the knowledge of complex image processing and computer vision 
methods for understanding and extracting information from the data.  

This dissertation designs two important concept modules of a theoretical image 
information mining (IIM) system for EO: semantic knowledge discovery in large databases 
and data visualization techniques. These modules allow users to discover and extract relevant 
conceptual information directly from satellite images and generate an optimum visualization 
for this information.  

The first contribution of this dissertation brings a theoretical solution that bridges the gap 
and discovers the semantic rules between the output of state-of-the-art classification 
algorithms and the semantic, human-defined, manually-applied terminology of cartographic 
data. The set of rules explain in latent, linguistic concepts the contents of satellite images and 
link the low-level machine language to the high-level human understanding.  

The second contribution of this dissertation is an adaptive visualization methodology  used 
to assist the image analyst in understanding the satellite image through optimum 
representations and to offer cognitive support in discovering relevant information in the 
scenes. It is an interactive technique applied to discover the optimum combination of three 
spectral features of a multi-band satellite image that enhance visualization of learned targets 
and phenomena of interest. The visual mining module is essential for an IIM system because 
all EO-based applications involve several steps of visual inspection and the final decision 
about the information derived from satellite data is always made by a human operator. To 
ensure maximum correlation between the requirements of the analyst and the possibilities of 
the computer, the visualization tool models the human visual system and secures that a 
change in the image space is equivalent to a change in the perception space of the operator. 	  
This thesis presents novel concepts and methods that help users access and discover latent 
information in archives and visualize satellite scenes in an interactive, human-centered and 
information-driven workflow. 
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Introduction 
Our planet is going through unprecedented climate and environmental changes, affecting our 
society in previously unknown ways. To monitor and predict the effects of these diverse 
environmental challenges, new generations of space borne imaging sensors with advanced 
recording capabilities have been recently launched or are scheduled for the next few years 
(e.g. ESA Sentinels, SPOT 6, 7, Pleiades). This increase in Earth Observation (EO) missions 
will result in large volumes of data requiring to be processed, understood, used and stored in 
archives. The need for timely delivery of accurate, focused information for decision making 
and intervention is constantly growing and the continuous increase in archives' size and EO 
sensors' variety require new methodologies for information mining and management, 
supported by shared knowledge.  

The analysis and understanding of only a few very high resolution multi-spectral or synthetic 
aperture radar satellite images has become a highly complex and challenging task in the 
current operational scenarios of Earth Observation. In addition, major applications relying on 
remote sensing data (e.g. global monitoring, disaster management support, agriculture and 
food security) and large programmes and initiatives (e.g. GMES, GEO, GEOSS) support the 
international trend of launching new, more powerful satellites into orbit to measure 
phenomena about the Earth. While the technical capabilities of satellites have increased 
manifold, studies reveal than less than 5% of the data are actually used in applications.What 
is the reason these numbers are so low?  
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Classical data access systems in EO archives allow only queries by metadata, i.e. 
geographical location, time of acquisition, type of sensor and cloud cover. Data analysis and 
information retrieval are usually performed by remote sensing experts through time 
consuming and expensive procedures of visual inspection and semi-automated investigations. 
The manual processes performed by experts to mine information from images are currently 
too complex and expensive to be applied systematically on even a small subset of the 
acquired scenes. These limitations might become even more challenging in the future since 
more missions and constellations are being planned, with broader sensor variety, higher data 
transmission rates and increasing complexity. 

The exponential increase in volume, details, diversity and complexity, complemented by 
users' demands for simultaneous access to multi-domain data require new methodologies for 
image information mining, multi-domain information management, knowledge management 
and sharing. In today's Earth Observation scenario, the research fields of Image Information 
Mining (IIM) and Content-based Image Retrieval (CBIR) are providing new solutions for 
querying large remote sensing archives directly by image content and latent information 
discovered in the scenes. IIM is an interdisciplinary approach for automatic remote sensing 
analysis that draws on knowledge from signal processing, image analysis, pattern recognition, 
artificial intelligence, machine learning, information theory, databases, semantics, ontology 
and knowledge management. CBIR systems aim to model the human behaviour when 
querying an image archive. They rely on searching a database by image content using (1) 
techniques from computer vision to interpret and understand the scene and (2) techniques 
from information retrieval and database management to rapidly locate images suiting a 
specific query.  

 

1.1 Motivation 

The classical procedure in CBIR supports an interactive query-by-example retrieval, allowing 
users to take active part in the mining process. Searches based on natural language terms 
rapidly run into issues of intractability due to the very limited progress on the problem of 
language processing,  the need for vast common-sense knowledge about the world and the 
need to process many queries at once [90]. Most CBIR systems rely on diverse user 
interaction methods, such as search by association, search by example, and search by 
sketching. All these methods involve the use of images to search for other related images. 
Often this search process is iterative: at each stage, the user clicks an image “more like” their 
target image, refining the set of candidates [90]. A few systems have opened new directions 
for research in IIM and CBIR for EO: KIM [154, 155] with its following versions KES and 
KEO, GeoIRIS [153],  Rapid Image Information Mining RIIM [150].  

A classical CBIR system does not always successfully retrieve the target images because of 
the semantic gap - the missing link between the image signal represented by low-level 
machine features and the semantic concepts represented by words defined by a human 
operator. The semantic gap can be regarded as the key to translate the machine vocabulary 
into human language and vice-versa.  

The spectral gap is another challenge that needs to be addressed in a CBIR system for Earth 
Observation. The spectral gap is defined as the gap between the information available in a 
multi-band satellite image (e.g. 8 spectral bands) and the limited amount of information that 
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can be displayed on the computer screen (e.g. 3 spectral channels). How can this loss of 
information be reduced to minimum? This dissertation bridges the spectral gap and answers 
the question: “What features of the satellite image contain the highest amount of visual 
information in rapport with the class / object of interest?”. The answer to this question holds 
the key to minimizing the loss of information due to the spectral gap – the gap between the 
number of visual and non-visual spectral bands and the three channels of the display.  

 

1.2 Positioning this Dissertation 

The objective of this dissertation is to introduce and apply theoretical models for bridging the 
semantic gap in Earth Observation data understanding applications. The semantic gap was 
defined as the most important problem in the field of CBIR. Because an IIM system is based 
on several complex theoretic fields, this thesis integrates knowledge from parameter 
estimation, information theory, Bayesian inference, machine learning, color science, color 
vision, models of the human visual system and image processing. This dissertation brings two 
theoretical contributions, one from the perspective of latent information discovery in satellite 
images (briding the semantic gap) and one from the perspective of visual data mining 
(bridging the spectral gap). 

 

1.3 Contributions 

This thesis addresses two important modules an IIM system for EO should implement: (1) 
semantic information discovery and (2) advanced human-centered data visualization. An IIM 
system is composed of chain processes, from the raw image files, to visualization, data 
processing, feature selection, classification, indexing and ingestion. A graphical interface 
allows users to provide training samples for the mining algorithms to query the archive for 
similar images. This section presents the contributions of this dissertation and the two 
theoretical modules. 

 

1.3.1  Latent Information Discovery in Satellite Images 

The first contribution of this dissertation brings a solution for bridging the gap between the 
output of the state-of-the-art automatic classification algorithms and the high-level semantic 
terminology of cartographic data. We provide a hybrid method to automatically understand 
and describe the semantic rules that link the outputs of unsupervised information mining 
methods to cartographic vector data with different specifications. By discovering the set of 
rules that explain semantic classes in cartographic systems, we introduce the theoretical 
model of an interactive learning loop that uses the concept of direct semantics applied on 
satellite images. Thus, we provide a solution for an important problem that emerges while 
generating cartographic information layers directly for the raw files of the satellite image: 
semantic annotation of objects and classes in the scenes. 

Figure 1.1 shows an example of how the semantic gap between satellite data and the ontology 
of CORINE LAND COVER (CLC) can be bridged. CLC is the European standard for 
cartography of land cover and land use, aiming at providing an inventory of Earth’s surface 
features for managing the environment. The experiment was performed on a Landsat ETM 7+ 
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image from Romania aiming to infer the semantic rules that link the image data with the CLC 
map. Initially, the information is reduced to a spectral map with 27 clusters with intermediate 
level semantic labels attached to each pixel value and then a number of latent topics are 
estimated from this map. Each pixel in the spectral map is assigned to the latent topic of 
maximum probability. Figure 1.2 shows the distribution of visual words (clusters) within 
each of the five estimated latent topics and how the terminology of CLC can be described by 
these latent topics. Table 1.1 shows the distribution of latent topics over the classes in CLC 
and the semantic rules that bridge the intermediate-level semantics to the high-level 
information classes. In the ideal case, each topic exclusively generates a single CLC class.  

 

 
Figure 1.1a, 1.1b, 1.1c, 1.1d – fig. 1.1a shows the Landsat image 600 X 600 pixels, fig. 1.1b 
shows the index map with 27 classes (i.e. visual words), fig. 1.1c shows how each pixel is 
classified to one of the latent topics (i.e. CLC classes); fig. 1.1d depicts how each image tile 
(15x15 pixels) is classified into one of the latent topics (i.e. CLC classes) 
 

 
Figure 1.2 – The five latent topics estimated from the satellite image are distributions over 

clusters and the CLC classes are described by distributions over these latent topics. 
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 Water 
bodies 

Agricultural 
areas 

Artificial 
Land 

Forest and 
natural areas 

Wetlands 

Topic 1 73% 0% 0% 0% 0% 
Topic 2 13% 0% 0% 0% 0% 
Topic 3 0% 2% 0% 54% 15% 
Topic 4 14% 53% 32% 36% 80% 
Topic 5 0% 45% 68% 10% 5% 

Table 1.1: Semantic Rules Discovery 
 
Topic 1: 100% turbid water 
Topic 2: 90% deep clear water, 10% turbid water 
Topic 3: 100% peat bogs  
Topic 4: 100% average vegetation 
Topic 5: 70% average shrub land, 20% bright barren land,  20% strong barren land,   
              10% average vegetation. 
 
 
1.3.2  Visual Data Mining 

 
The second contribution of this dissertation introduces an adaptive visualization 

methodology used for enhancing visual mining of objects and classes in multi-band satellite 
images. The visual mining module is essential for an IIM system because all remote sensing 
applications involve several steps of visual inspection – e.g. data quality assessment, 
operation-oriented area/object search and analysis, algorithm learning, information mining 
evaluation, etc. Multiple EO-related domains require highly accurate analysis of satellite 
images and the demands of users working in these areas are so challenging that automated 
procedures have yet to reach the required quality standards. For this reason, data analysis is 
still performed through extensive trials of visual interpretation. Because the final decision 
about the information derived from satellite images is always made by an operator, the 
visualization system models the automatic response of the human visual system to external 
stimuli (i.e. the image) and optimizes the combination of the spectral bands mapped to the 
channels of the display. The algorithm ranks the features of a multi-band satellite image using 
measures from information theory and automatically feeds the top three bands to the channels 
of the display. Figure 1.3 shows an experiment performed on WorldView-2 8-band satellite 
data and the target class selected by the human operator for training. The spectral bands are 
ranked using the minimum-redundancy-maximum-relevance (mRMR) criterion and the top 
three features are automatically mapped to the R, G, B channels of the display. Figure 1.4 
shows the natural colour display and two enhanced versions of the target class using the 
method described in this dissertation. Initially, the top spectral band is displayed in the R 
channel. In the second case, the top spectral band is displayed in the G channel to take 
advantage of the increased sensitivity of the eye in the green region of the electromagnetic 
spectrum.  
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!
Figure 1.3 – Satellite image, target class  

 
 

 
Figure 1.4 – Natural colour display, bands NIR-2, Coastal and Red in the R,G,B channels and 

bands Coastal, NIR-2 and Red in the R,G,B channels 
 
 
1.4  Outline of the Dissertation 

!
The thesis presents novel theoretical concepts and methods that help users access and 

discover latent information in large image archives, visualize, analyze and interpret satellite 
scenes in an interactive workflow. Chapter 1 has given a short introduction to the new fields 
of CBIR and IIM in the context of EO, with emphasis on the motivation for developing a new 
system. The two main contributions of this dissertation are defined and exemplified. Chapter 
2 presents an extended review of the state-of-the-art of CBIR in multimedia, medical, 
forensics and remote sensing. An overview of existent query systems is provided. Chapter 3 
gives an outline of current remote sensing sensors and technologies available, explains the 
spectral gap and presents the future trends in remote sensing for EO. Chapter 4 studies the 
theoretical background in stochastic modelling, Bayesian statistics, information theory and 
parameter estimation. Chapter 5 describes the module for latent information discovery in 
satellite images and provides a solution for bridging the semantic gap, which is regarded as 
one of the most important problems in the field of CBIR. Chapter 6 presents the module for 
enhancing visualization of objects and classes of interest in multispectral satellite images. 
Because the final decision about the information derived from satellite images is always 
made by an operator, the visualization system models the automatic response of the human 
visual system to external stimuli (i.e. the image) and optimizes the combination of the 
spectral bands mapped to the three channels of the display.  
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2 
 
 
 
 
 
 
 
 
 
 

Information Spaces in Earth Observation Data 
 
Our planet is going through unprecedented environmental changes and our society will have 
to face ever increasing natural and man-made hazards. To forecast and address the effects of 
these diverse challenges, new generations of space borne sensors are being designed to 
monitor and measure phenomena about the Earth. State-of-the-art imaging sensors with 
advanced recording capabilities have been recently launched or are scheduled for the next 
few years (e.g. ESA Sentinels, SPOT 6,7, Pleiades). These new data give birth to new 
applications, new questions and new solutions that need to converge in a common space of 
user understanding: information described by semantic concepts.   

This chapter provides an overview of the current remote sensing technologies for Earth 
Observation (EO) operating in the visible and infrared part of the electromagnetic spectrum, 
with emphasis on methods used for transforming data into knowledge. The chapter concludes 
by emphasizing the need of user communities for standardized, up-to-date, semantic-based 
systems. The advanced capabilities of satellite sensors become useful only when data are 
translated into accurate, focused information, ready to be used by decision makers. Several 
approaches used to generate semantic dimensions in remote sensing applications are 
analyzed. While the spectrum of requirements has expanded, the technical capacity to keep 
up with these requirements has yet to reach the standards of quality desired by users from 
various fields.  

 
2.1   Introduction 
 
Remote sensing is the art and science of collecting information about an object or geographic 
area from a distant vantage point using remote sensing instruments. Data collection about the 
Earth was initially performed using cameras mounted on suborbital aircrafts. The first 
comprehensive definition was adopted in 1997 in [169] and stated that 'photogrammetry and 
remote sensing are the art, science and technology of obtaining reliable information about 
physical objects and the environment, through the process of recording, measuring and 
interpreting imagery and digital representations of energy patterns derived from non-contact 
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sensor systems'. A modern definition of remote sensing should include also the management 
and dissemination of information derived from data in an user-centered, easy to understand 
way. Remote sensing data become useful information only by addressing the needs of users 
on the ground. For this reason, remote sensing functions in harmony with other 
complementary related sciences including cartography, surveying and geographic 
information systems (GIS). Dahlberg and Jensen [170] and Fisher and Lindenberg [171] 
suggested a model of interaction between remote sensing, cartography, surveying and GIS. 
All are recognized as having unique yet overlapping areas of knowledge as shown in figure 
2.1. It is important to observe that, when many scientific domains partially overlap, the only 
way to connect them is by using a language that is universally understood: i.e. semantic 
concepts. Although different sciences use different models to describe different phenomena, 
the sharing of knowledge is performed only via semantics, i.e. natural language. It is the only 
common ground that scientists and decision makers share.   
 

 
Figure 2.1 - Interaction model depicting the relationship between remote sensing, GIS, 

surveying, cartography as they relate to biological, social and physical sciences  
(adapted from [179]) 

 
The process of analysis and interpretation of remote sensing data employs not only the 
scientific knowledge but all the background of the analyst, all information obtained 
throughout his or her lifetime. The synergism of combining scientific knowledge with real-
world experience allows the person to develop heuristic rules to extract information from the 
images. The information can be disseminated among interested parties only via visual 
representations and semantic concepts that describe in linguistic terms the findings and the 
results.   
 
 
 
From Photons to Electrons to Neurons 
 
Airborne or space borne sensors record very specific information about an object (e.g. size of 
the crown of a tree) or the geographic extent of a phenomenon (e.g. forest area). The 
electromagnetic energy emitted or reflected from a target is transformed into an electrical 
signal (photons to electrons) by the sensor. This recording is used to discover and analyze the 
actual property under investigation. The semantic gap requires a method to translate these 
discoveries from instrument-language (i.e. numbers) into human language (i.e. semantic 
concepts) and thus turn data into knowledge (electrons to neurons). The most reliable 
approach to infer information from the data is thorugh visual analysis or manual 
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investigations. However, remote sensing data most of the times are both visual and non-
visual, covering a wide range of the electromagnetic spectrum, including infrared, shortwave 
infrared and even microwave. The spectral gap represents the loss of information between the 
number of spectral bands in which data are recorded and the only three channels of the 
display that can accommodate only three features at any given time. The spectral gap requires 
a method to select from the large number of attributes only the ones containing the highest 
amount of relevant information with respect to the application and display them using only 
the three channels of the computer screen.  
 
Remote sensing technology is unobtrusive if the sensor records the energy emitted or 
reflected by a source on the ground. Passive remote sensing does not interfere and does not 
disturb the phenomenon of interest. Nowadays, remote sensing has become critical to the 
successful modelling of numerous natural and man-driven processes [172].  
 
 
2.1.1   Data collection & analysis procedures 
 
The data collection and analysis procedures used for remote sensing applications involve the 
following steps [179]:  
 

1. The hypothesis to be tested is defined using a specific type logic - inductive or 
deductive - and an appropriate processing model (e.g. deterministic, stochastic) 

 
2. In-situ and complementary data necessary to calibrate the remote sensing data and to 

evaluate its radiometric, geometric and thematic characteristics are collected. 
 

3. Data are collected passively or actively using remote sensing sensors, ideally at the 
same time with the ground reference data. 

 
4. Remote sensing data are processed either using image processing techniques, 

modelling and n-dimensional visualization 
 

5. Metadata, processing workflow and accuracy of information are provided and results 
are communicated using GIS, maps, statistical tables, semantic labelling, etc.  

 
 
2.1.2   Data collection 
 
Remotely sensed data are collected using passive or active systems. Passive sensors record 
electromagnetic radiation that is reflected or emitted from the terrain. Active systems (e.g. 
RADAR, LIDAR, SONAR) are the sources of electromagnetic energy and the recorders of 
the amount of radiant flux scattered back from the terrain.  
 
The amount of electromagnetic radiance L (watts per meter squared per steradian), recorded 
within the instantaneous field of view (IFOV) of a passive, optical remote sensing system is 
defined as: 
 
          

€ 

L = f (λ,sx,y,z ,t,θ,P,Ω)                          (2.1) 
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• λ = wavelength – the spectral response measured in various frequency channels 
• 

€ 

sx,y,z  = x, y, z location of the pixel and its size (x, y) 
• t = temporal information, date and time of acquisition 
• θ = the set of angles that describe the geometric relationships between the radiation 

source, the terrain target and the remote sensing system 
• P = the polarization of back-scattered energy recorded by the sensor 
• Ω = the radiometric resolution at which the data (reflected, emitted, back scattered 

radiation) are recorded by the remote sensing system. 
 
 
 
2.2   Resolution  
 
2.2.1  Spectral Resolution 
 
Remote sensing investigations are based on developing a deterministic model between the 
amount of electromagnetic energy reflected, emitted or back-scattered in specific bands and 
the physical characteristics of the phenomenon under investigation. Spectral resolution 
represents the number and width of specific wavelength intervals (bands) in the part of the 
electromagnetic spectrum in which the sensor is sensitive.  
 
Multispectral remote sensing systems record energy in multiple bands or channels. Figure 2.2 
shows the wavelength intervals (nominal spectral resolution) for the spectral channels of the 
Landsat ETM+ sensor. In practice it is difficult to create a detector that has extremely sharp 
band-pass boundaries. A more precise method of stating bandwidth is to look at the typical 
Gaussian shape of the detector sensitivity - figure 2.3.  
 
Index Spectral Band  Spectral Range (µm) Spatial Resolution (m) 

1 Blue 0.45-0.52 30 
2 Green 0.52-0.60 30 
3 Red 0.63-0.69 30 
4 Near Infrared NIR 0.76-0.90 30 
5 Mid-Infrared-1 MIR-1 1.55-1.75 30 
6 Thermal Infrared TIR 10.4-12.5 120 
7 Mid-Infrared-2 MIR-2 2.08-2.35 30 

 
Figure 2.2 – Band intervals for Landsat ETM+ sensor 
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Figure 2.3 – Detector sensitivity 

 
 
2.2.2 Spatial Resolution 
 
There is a general relationship between the size of an object or an area to be identified and the 
spatial resolution of the system. The spatial resolution is a measure of the smallest angular or 
linear separation between two objects that can be resolved by the remote sensing system. A 
sensor's nominal spatial resolution is defined as the dimension (in meters) of the ground-
projected field of view, where the diameter of the circle on the ground is a function of the 
instantaneous-field-of-view and the altitude of the sensor vehicle. The smaller the nominal 
spatial resolution, the greater the spatial resolving power of the system. Figure 2.4 depicts an 
aerial photograph at various spatial resolutions: 10 cm / pixel, 50 cm / pixel, 1 m / pixel, 10 m 
/ pixel.  
 

 
Figure 2.4 - aerial photograph at various spatial resolutions: 10 cm / pixel,  

50 cm / pixel, 1 m / pixel, 10 m / pixel. 
 
2.2.3  Temporal Resolution 
 
Remote sensing systems can record data about the same landscape through time. The 
information derived is then used for change analysis and prediction. The temporal resolution 
of a satellite refers to the time period between acquisitions of the same phenomenon of 
interest. Trade-offs are usually made in association with the various resolutions. Generally, 
the higher the temporal resolution requirement, the lower the spatial resolution requirement 
(e.g. weather satellites) and the higher the spatial resolution, the lower the temporal 
resolution.  
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2.2.4  Radiometric Resolution 
 
Radiometric resolution is defined as the sensitivity of a remote sensing detector to the 
differences in signal strength as it records the radiant flux reflected, emitted or back-scattered 
from the terrain. It defines the number of just discriminable signal levels. Radiometric 
resolution is sometimes referred to as levels of quantization: 256 levels for 8-bit resolution, 
2048 levels for 11-bit resolution and 4096 for 12-bit resolution. 
 
Remote sensing data are usually stored as a matrix of numbers. Each digital value is located 
at a specific row and column in the matrix. Each pixel is defined as a 2-dimensional picture 
element that is the smallest non-divisible element of a digital image. Each pixel has an 
original raw brightness value expressed as a digital number (DN). All bands in the satellite 
image are geometrically registered to each other.  
 
  
2.2.5  Angular Information 
 
Remote sensing instruments record very specific angular characteristics associated with each 
pixel. The angular characteristics are a function of: 
 

• The location in the 3-dimensional sphere of the illumination source (e.g. Sun) 
• The orientation of the terrain or phenomenon under investigation 
• The location of the suborbital or orbital remote sensing system and its associated 

azimuth and zenith angles. 
 
There are two angles involved in determining the angular information: the angle of incidence 
associated with the incoming energy that illuminates the terrain and the angle of exitance 
from the terrain to the sensor system. The bidirectional nature of data collection influences 
the spectral and polarization characteristics of the at-sensor radiance L. Angular information 
is the basis of photogrammetric applications. Stereoscopic image analysis is based on the 
concept that the same object is sensed from two angles. Viewing the terrain from two 
different points introduces stereoscopic parallax, which is the foundation of photogrammetry 
and radargrammetry.  
 
 
2.3  Data Analysis Methods 
 
A basic remote sensing model has three components: (1) a scene model that specifies the 
form and nature of the energy and matter within the scene and their spatial and temporal 
order, (2) an atmospheric model that describes the interaction between the atmosphere and 
the energy entering and being emitted from the scene and (3) a sensor model that describes 
the behaviour of the sensor in response to incident energy fluxes.  
 
Significant advances have been made in digital image processing with focus on scientific 
visualization, modelling and hypothesis testing [172-174]. The reader can refer to [175-178] 
for extended summaries and reviews of the image processing methods available. Data 
processing techniques include image pre-processing (radiometric and geometric corrections), 
image enhancement, pattern recognition, photogrammetric image processing of stereoscopic 
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imagery, decision-tree and neural network image analysis, multispectral and hyperspectral 
data analysis, data fusion and change detection.  
 
Parametric classification methods applied on remote sensing data can be either hard, with 
with discrete, mutually exclusive classes or fuzzy, case in which the belonging of a pixel to a 
specific class is defined in terms of probabilities.  
 
Non-parametric clustering algorithms are dependent on how the seed training data are 
extracted. It is often difficult to label the clusters and create information maps described by 
semantic concepts. Artificial neural networks have been introduced to solve the problem of 
labelling. Their drawback is that sometimes it is difficult to understand how the method came 
up with a certain conclusion because the information is locked within the weights of the 
hidden layers.  
 
 
 
The Multi-Concept 
 
The multi-concept was standardized in the 1960s by Colwell. The most useful and accurate 
method of scientific image interpretation includes the following types of analysis: 
multispectral, multidisciplinary, multiscale, multipolarization, multiresolution and 
multitemporal. Measurements made in multiple discrete wavelength regions of the 
electromagnetic spectrum (multispectral) are usually more valuable than acquiring a single 
panchromatic image. Multiscale and multiresolution images taken of an area are very useful 
for analysis and interpretation. Smaller-scale imagery is useful for placing intermediate scale 
imagery in its proper regional context. The very large-scale imagery can be used to provide 
detailed information about local phenomena. Ground reference is the largest scale and these 
data are very important to calibrate and to verify remote sensing-derived information.  
 
Image analysts should work together with multidisciplinary experts when focusing on a 
remote sensing analysis or information extraction problem. This approach often yields 
synergistic and interesting results as multidisciplinary scientists share their expertise. While 
single date remote sensing investigations can generate valuable information, usually they 
can't give information on the changes and processes at work. A multitemporal investigation 
obtains more than one image of an object and allows the understanding of processes and the 
development of predictive models.  
 
A new instrument that can be added to the multi-concept analysis of satellite imagery is 
multi-label. When experts analyze the same image data looking for different phenomena, they 
will label the information according to their own analysis. Although attached on the same 
image, these labels will vary with respect to the user and phenomena of interest.  
 
 
2.4   Remote sensing satellite systems 
 
Remote sensing systems record reflected or emitted energy from an object or area of interest 
on the ground. Multispectral systems record energy in multiple bands, hyperspectral sensors 
record energy in hundreds of bands and ultraspectral systems in thousands of bands.  
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Figure 2.5 gives an overview on how digital remote sensing data are turned into information. 
Initially, the remote sensing sensor detects electromagnetic energy exiting from the 
phenomena of interest on the ground and passes through the atmosphere. The energy is 
recorded as an analogue electrical signal, which is converted to a digital value through an 
A/D converter. If an aircraft platform is used, the data are simply returned to Earth. If a 
spacecraft platform is used, the digital data are telemetered to Earth receiving stations directly 
or indirectly via tracking and data relay satellites. Radiometric and geometric corrections are 
usually necessary to enhance visualization and interpretability of the data. Biophysical and 
land cover information extracted using visual or computer assisted processing is distributed to 
end users. This information should be labeled and explained in semantic concepts to ensure a 
wide availability and understanding throughout various user communities.  
 

 
Figure 2.5 - Workflow for transforming remote sensing data into information. The data 
recorded by the sensor are converted from an analogue electrical signal to digital values and 
then calibrated. Ground pre-processing removes geometric and radiometric distortions. This 
may involve the use of ephemeris or ancillary data such as map coordinates, digital elevation 
model,  etc. Future sensors will pre-process the information onboard. 
 
There are six types of remote sensing systems used for multispectral and hyperspectral data 
collection: (1) traditional aerial photography, (2) multispectral imaging using a scanning 
mirror and discrete detectors, (3) multispectral imaging with linear arrays, (4) imaging with a 
scanning mirror and linear arrays, (5) imaging spectrometry using linear and area arrays, (6) 
digital frame camera aerial photography based on area arrays [179]. There are a lot of 
multispectral remote sensing systems available and it is beyond the purpose of this 
dissertation to provide details about them.  
 
 
2.5  Spectral dimensions in satellite images  
 
The first remote sensing mission, Landsat-1 was launched in July 1972 with the clear 
objective to study and monitor the land cover of our planet. Its main instrument was the MSS 
multispectral scanner and it recorded data in four spectral bands - green, red and two infrared 
bands, with a spatial resolution of 60 meters / pixel. The energy reflected by all objects within 
a 60 X 60 meters area was integrated into a single cell of the sensor, making the satellite 
useful only for large-scale observations. Figure 2.6 shows one of the first satellite images in 
history - Landsat-1 image of the Amazon forest in Brazil in 1972.  
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Figure 2.6 - Landsat-1 MSS image from 1972 depicts in false colours (spectral bands 4-2-1) 
the Amazon forest in Brazil. With a spatial resolution of 60 meters / pixel, land monitoring is 
possible only at global and regional scales (Credits: United States Geological Survey -USGS) 
 
Landsat 4 satellite carried a sensor with higher spectral and spatial resolutions than its 
previous versions. The space vehicle flew the thematic mapper TM sensor that recorded 
information about the Earth in seven spectral bands: blue, green, red, near-infrared, two 
middle infrared at a spatial resolution of 30 meters/pixel and a thermal band at 120 
meters/pixel. Landsat-7 operates the Enhanced Thematic Mapper ETM+ sensor, with eight 
spectral channels and spectral resolution ranging from 15 meters/pixel (panchromatic) to 30 
meters/pixel (multispectral) and 60 meters/ pixel (thermal). The Landsat TM bands were 
selected after years of analysis for their value in water penetration, discrimination of 
vegetation type and vigour, plant and soil moisture, differentiation of clouds, snow and ice 
and identification of hydrothermal alteration in certain rock types. Landsat TM is twice as 
effective as the Landsat MSS based on its ability to provide twice as many separable classes 
over a given area [180]. Figure 2.7 shows the spectral bands of a Landsat ETM+ image taken 
over Bucharest, Romania.  
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Figure 2.7 - Landsat image of Bucharest, Romania (Image credits: USGS) 
From left to right, top to bottom: spectral bands 1, 2, 3, 4, 5, 6-1, 6-2, 7, 8 

 
The beginning of remote sensing missions for Earth Observation (1970s) shows an intense 
focus on multi-band sensors with higher spectral resolution and lower spatial resolution (e.g. 
Landsat, 8 spectral bands). Several years later (1990s) the spectral resolution of sensors 
decreased (e.g. Quickbird, IKONOS, 4 spectral bands), and the focus shifted on building 
sensors with higher spatial resolution. Today, new satellite sensors integrate both high spatial 
and spectral resolutions (e.g. WorldView-2, 8 spectral bands). European Space Agency’s 
(ESA) Sentinel-2 satellites [185] will routinely deliver high-resolution optical images 
globally, providing enhanced continuity of SPOT- and Landsat-type data. Sentinel-2 will 
carry an optical payload with visible, near infrared and shortwave infrared sensors 
comprising of 13 spectral bands (figure 2.8) - 4 bands at 10m, 6 bands at 20m and 3 bands at 
60m spatial resolution. The additional red channels improve monitoring of vegetation and 
estimation of related parameters. 	  
	  
Besides the standard spectral bands and the generic land use land cover maps, these sensors 
will also generate geophysical variables such as leaf coverage, leaf chlorophyll content, leaf 
water content and fractional vegetation cover. Figure 2.9 shows some examples of ESA 
Sentinel-2 simulated Level-2 geophysical products derived from simulated Level-1 
orthorectified products.  
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Figure 2.8 - Sentinel-2 sensor works in 13 spectral intervals. The wavelengths are represented 

on the horizontal and the spatial resolution displayed on the left  
(Image Credits: European Space agency - ESA)	  

	  

 
Figure 2.9 - Sentinel-2 simulated level-1 data and level-2 geophysical parameters   

(Image Credits: European Space agency - ESA)	  
	  
The spectral gap, i.e. the gap between the information recorded by a satellite sensor in 
multiple spectral bands and the information displayed by a computer screen, i.e. always three 
channels, is different for every sensor. Landsat required many years of studies and 
experiments to determine what spectral features optimize visualization for specific 
applications. With the launch of new satellites (e.g. European Space Agency ESA Sentinel-2, 
WorldView-3), this question will become more difficult to address due to increased spectral 
resolutions (13, 16 spectral features) and increased number of applications. The spectral gap 
will remain an unresolved problem, always challenging users to reduce the information 
available to a limited number of channels for visual display.	  
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2.6   Semantic dimensions in satellite image-based cartography 
 
Earth Observation is a modern science that studies the Earth's changing environment, using 
remote sensing instruments, space borne and airborne sensors. The study of the Earth's 
physical components, such as the atmosphere, oceans and land aims at understanding the 
natural processes as well as the effects of man’s actions on the environment. This 
understanding can be put into practice only by creating optimum communication channels 
between the multiple parties involved in the decision making processes. Communication 
between remote sensing experts and users has to be done using a language all parties 
understand - semantic labels. The need to extract semantic information directly from satellite 
data has been addressed in several projects, as described in the following paragraphs.    
 
 
 
2.6.1  Corine Land Cover  
 
Corine Land Cover (CLC) is the European standard for cartography of land cover and land 
use, aiming at providing an inventory of Earth’s surface features for managing the 
environment. If the environment and its natural resources are to be properly managed, 
decision and policy makers have to have an overview of the existing information which is as 
complete and up-to-date as possible. The CORINE project (Coordination of information on 
the environment) [187] aimed at providing a comprehensive database with relevant data 
useful for understanding different features of the environment (e.g. the state of individual 
environments, the geographical distribution and state of natural areas, of wild fauna and flora, 
the quality of water resources, land cover structures. As expressed in [187], for environmental 
purposes the land cover information has to meet special requirements: it must be cartographic 
as well as statistical and it must reproduce the information at different scales in order to be 
useful at multiple levels of decision making.  
 
In any land cover cartographic inventory, four elements are linked - the scale (the surface 
area of the smallest unit to be mapped), the nature of the basic information used (EO satellite 
data), the structure of the nomenclature and the number of items it contains. On the basis of 
the first three elements and the provisional nomenclature used for the feasibility study, the 
land cover team has formulated the definitive nomenclature for the project.  Figure 2.10 
shows the  schematic construction of the land cover nomenclature in CORINE. A key point 
of the nomenclature is the fact that the heading terminology must be unambiguous and vague 
terms are avoided.  



 

 
23 

 
 

 
Figure 2.10 - Theoretical schematic construction of a land cover nomenclature 
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Figure 2.11 - CORINE LAND COVER Nomenclature  

(Credits: European Environment Agency - EEA) 
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2.6.2    URBAN ATLAS 
 
The understanding of urban dynamics is the basis for planning the sustainable development 
of urban areas and the conservation of Earth’s resources. However, monitoring and 
understanding the urban dynamics are the most complex tasks city planners have to deal with. 
The complexity and variety of the different urban components and functions as well as of the 
interactions between them are even more pronounced when available mapping is outdated, of 
low quality and where standard information is not available. 
  
The Murbandy (Monitoring Urban Dynamics) project was initially launched with the purpose 
of monitoring and measuring the extent of urban areas and their progress towards 
sustainability through developing land use databases for various cities. Murbandy has been 
extended to Moland (Monitoring Land Use Changes) [186], a comprehensive study that uses 
different layers of information, combined with land use changes for urban areas. The 
methodology was based on developing an accurate land use database for urban areas using 
data derived from satellite images and aerial photography. The database provides the starting 
point in combining environmental, economic and social data to understand the dynamics and 
characteristics of urban growth and related parameters.  
 
The methodology implemented to understand and map the dynamics of urban areas in Europe 
consisted of three interrelated parts: (1) Change detection - measuring changes in the spatial 
extent of urban areas and in urban structures over a period of 40-50 years; (2) Understanding,  
identifying and testing a number of indicators to be used to assess the sustainability of urban 
areas; (3) Forecast - developing urban growth scenarios for the areas under surveillance using 
state-of-the-art urban dynamics models [186].      
 
The accuracy of the coverage refers to a map scale of 1:25.000, with the minimum-mapping-
unit of 1 hectare for the artificial surfaces and 3 hectares for non-artificial surfaces. In order 
to follow the standard European land cover classification standards, the nomenclature for 
land use land cover structures is based on an extended version of the CLC 2000 legend, 
described in the previous section.  
 
The CLC nomenclature is not detailed enough for the goal of Urban Atlas. The scale chosen 
for the CLC project is 1:100, with the minimum mapping unit 25 ha, while the scale for 
Urban Atlas is 1:25, with a minimum unit of 1 ha. A feature having a certain attribute in CLC 
might have a different one in Urban Atlas because the unit is smaller and the scale more 
detailed. An example of Urban Atlas mapping of Copenhagen and the related level of 
semantic abstraction is presented in figure 2.12.   
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Figure 2.12 - Urban Atlas mapping of the city of Copenhagen, Denmark showing the land use evolution of the study area  

during four different periods. (Credits: European Environment Agency - EEA)
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All datasets in Urban Atlas are used to analyze and understand different European 
environments at different levels of complexity and decision-making. The semantic concepts 
attached to the urban maps link map producers, scientists and decision makers through a joint 
vocabulary. The common understanding between the parties that use the data is ensured via 
the semantic labels attached to the information layers.   
 
 
2.6.3   Rapid Mapping Applications 
 
Every year, fires, floods, earthquakes and volcanic eruptions, landslides and other 
humanitarian crises claim the lives of thousands of citizens in Europe and around the world. 
In the framework of the GMES program [188], the GMES Emergency Response Service 
[189] reinforces the European capacity to respond to emergency situations. This service 
provides a reactive cartographic service to users involved in the management of humanitarian 
crises, natural disasters and man-made emergency situations. The service aims at developing 
and publishing timely and high-quality products derived from EO data, showing the extent 
and impact of the event. The post-disaster satellite data are used to assess and monitor the 
ongoing crisis situation, i.e. delineate the affected areas and estimate the damages caused by 
the disaster. 
 
After the satellite data has been downlinked and received, the image is geocoded, rectified, 
and fused with other data sets. Subsequently, various algorithms and processing chains 
tailored to the type of event are employed to extract the requested information. The results are 
integrated into map products or other formats. Additional interpretation texts, legends and 
overview maps are generated and incorporated into the final map product to enhance 
understanding among users. Figure 2.13 shows an example of a flood map in Romania, 2010.  
 
While old maps used graphical symbols to represent land cover categories, the legends of 
new maps created for emergency situations are represented using image patches directly 
clipped from the satellite image (figure 2.14). Each image patch has a semantic concept 
attached by the analyst to describe the phenomenon depicted and to bridge understanding 
with and between users.  
 
2.6.4  EO-based applications 
 
Several applications based on remote sensing data rely on detailed analyses and visual 
interpretation of satellite images. Similar to previous mapping scenarios, the maps derived 
from satellite images through visual investigations contain detailed explanations using 
semantic concepts directly attached to the phenomena of interest. Figure 2.15 depicts a 
chemical spill in Hungary that occurred in 2010 and severely impacted the environment in 
neighbouring countries. The map depicts the satellite image as a background, annotated with 
labels, explanations and semantic concepts directly overlaid on the data. The semantic 
concepts used by the image analysts to label the data are the only way to ensure 
understanding and usability of this product among multiple users and decision makers.  
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Figure 2.13 - Flood map from Romania (Credits: German Aerospace Agency DLR) 

 

 
Figure 2.14 - Legend using image patches and semantic concepts 
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Figure 2.15 - Chemical spill in Hungary depicted in a Quickbird satellite image with semantic 

explanations directly attached to the phenomenon of interest (Image credits: DigitalGlobe) 
 

Conclusions 

The sensor capabilities for recording and processing are constantly improving and new 
instruments provide more data than users can process and understand in an operational, 
timely manner. According to the European Space Agency, less than 5% of the data available 
are actually applied in real-world scenarios. 

Although several automatic tools for data processing (e.g. classification, segmentation 
algorithms) have been developed, these methods still lack the human dimension - the 
semantic connection with the user. While researchers focus on the inputs (i.e. algorithms), the 
user communities rely solely on the outputs (i.e. knowledge ready to be applied). For this 
reason, systems have been developed to bridge the gap between the satellite data and the 
users' needs and requirements (e.g. CLC, Urban Atlas). These approaches emphasize the need 
of EO communities for standardized, updated systems able to describe the satellite data using 
user-friendly latent semantic concepts. Although there are several methods that provide an 
inventory of the environment, all of them rely on extended, expensive manual-analyses that 
are subject to developer-bias and can become obsolete before they reach the final users 
because of the amount of time required to be produced. While requirements have increased, 
the technical capacity to keep up with these requirements has yet to reach the desired 
standards of quality. 

Next chapter gives an in-depth review of the current state-of-the-art systems developed to 
link the gap of understanding between machine and human languages. The chapter presents a 
brief history of the domains of Image Information Mining and Content-based Image Retrieval 
and concludes with the proposal for a new system concept that addresses two key problems 
that have been identified to be missing solutions.   
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Image Information Mining: State-of-the-Art  
 
This chapter explains the concept of Image Information Mining, as it evolved since the 
beginning of the 21st century when Content-Based Image Retrieval was integrated with Data 
Mining and Knowledge Database Discovery (KDD). The architecture of a classical IIM 
system containing several processing modules is detailed - feature extraction, indexing, a 
communication environment for learning and output evaluation - and upgraded with a module 
for data visualization. The pre-processing module and its functionality are explained and a 
detailed state-of-the-art on the current techniques for feature extraction, feature selection and 
dimensionality reduction is provided. The chapter continues with a state-of-the-art review on 
CBIR methods with emphasis on the current challenges and opportunities in the field of 
multimedia signal processing. The review is centered around the methods available to bridge 
the semantic gap between machine features and human-centered latent concepts. The user 
seeks similarity in semantics while the database can only provide similarity in image 
processing results. For this reason, bridging the semantic gap is maybe the most challenging 
puzzle that researchers are trying to solve.  

The chapter concludes with a review on the CBIR systems available for EO applications and 
with the proposal for a new system that addresses the current challenges: bridging the 
semantic gap, feature ranking and scientific data visualization.  

	  
	  
3.1 Introduction	  
	  
Due to the large volume of data available, the analysis and extraction of information from 
satellite images has become a complex and challenging task. In addition, the emerging and 
increasing requirements of major EO-based applications (e.g. mapping, global monitoring of 
natural resources, disaster management) and large programmes and initiatives (e.g. GMES, 
GEO, GEOSS) require new methodologies and tools for information mining and management 
supported by shared knowledge. 	  
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The process of analysis and interpretation performed manually by experts to derive 
information from satellite images is currently too expensive to be applied systematically on 
even a small subset of the acquired scenes. This limits the full exploitation of the terabytes of 
archived and new data. Imaging satellite sensors acquire large volumes of data and statistics 
show that less than 10% of the available non-commercial (i.e. free) images are being 
downloaded and less than 5% are processed and used [1]. The issue might become even more 
challenging in the future since more missions - including constellations - are being planned, 
with broader sensor variety, higher data rates and increased complexity (e.g. ESA Sentinels, 
or ESA's third party missions). These problems are common across other fields of interest, 
such as multimedia, medicine, astronomy and planetary remote sensing. 	  
 	  
The exponential increase in volume, details, diversity and complexity as well as the users' 
demand for simultaneous access to multi-domain data created a requirement for new 
approaches for image information mining, multi-domain information management, 
knowledge management and sharing. A few examples of EO archives include the following 
systems: DLR EOWEB [2], Alexandria Digital Library [3],  USGS GLOVIS [4] and Earth 
Explorer [5]. The DLR EOWEB receives hundreds of gigabytes of data per day and users can 
retrieve images using meta-information such as acquisition time and date, geographical 
location and sensor. The Alexandria Digital Library (ADL) allows access to remote sensing 
imagery through its meta information, providing a distributed searching mechanism for 
retrieving geospatial referenced data collections. ADL has the capability of searching 
different types of databases placed at different locations and enables the implementation of 
web clients as Globetrotter [8] and Gazetteer [9]. 	  
	  
The idea to integrate database exploration with image processing techniques emerged at the 
end of the 1970s and evolved into a new field known as Content Based Image Retrieval 
(CBIR). Also known as query by image content (QBIC) and content-based visual information 
retrieval (CBVIR), CBIR is the application of computer vision and image processing 
techniques to give a solution to the problem of searching for images in large databases. 
"Content-based" implies that algorithms look for the actual contents of the images rather than 
the metadata such as keywords, tags and descriptions associated with the image. The term 
“content” refers to image features, colors, shapes, textures, or any other information that can 
be derived from the image data.  Because meta-information is not always useful for retrieving 
an image depicting a phenomenon of interest and because keyword-based search may 
sometimes be inconsistent among users, a system that can filter images based on their content 
provides better indexing and returns more accurate results [6]. The field of Image Information 
Mining (IIM) emerged at the beginning of the 21st century when CBIR was integrated with 
Data Mining and Knowledge Database Discovery (KDD).  
 
Data Mining is the process of discovering new patterns from large data sets involving 
methods from statistics, artificial intelligence and database management. In contrast 
to machine learning, the emphasis lies on the discovery of previously unknown patterns as 
opposed to generalizing known patterns to new data. The actual data mining task is the 
automatic or semi-automatic analysis of large quantities of data that extracts previously 
unknown patterns such as groups of data records (cluster analysis), unusual records (anomaly 
detection) and dependencies (association rule mining).  
 
At abstract level, the KDD field is concerned with the development of methods and 
techniques for understanding the data. The basic problem addressed by the KDD process is 
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mapping low-level data, which are typically too voluminous to process, into more compact 
forms (e.g. a report), more abstract (e.g. a descriptive approximation or model of the process 
that generated the data) and more useful (e.g. a predictive model for estimating the values of 
future cases) [7]. The application of specific data mining methods for pattern discovery and 
extraction is at the core of the process.  
 
IIM, similar to other forms of data mining such as text-based information mining or semantic 
web technologies, aims at making semantic image content accessible. The new domain of 
IIM combines expertise from image processing, database organization, pattern recognition, 
content-based image retrieval and data mining. Several key points need to be addressed:  
 

• Image processing indicates the understanding of patterns from a single image 
• Content-based retrieval discovers images based on their semantic and visual contents 
• Spatial data mining denotes the extraction of spatial relationships and patterns from 

remotely sensed images without any link to a common database.  
 
An IIM system allows users the option to operate large collections of images and access the 
databases to extract information about patterns hidden in the images. The set of relevant 
images retrieved by the system is dynamic, subjective and unknown. An IIM system can 
enable the communication between the operating low-level machine language and users that 
understand only the high level of semantic abstraction. An IIM system usually has two 
fundamental modules: a component where image processing and classification algorithms are 
executed and an interactive component where queries are introduced by the user. Figure 3.1 
describes the flow of data in an classical IIM system: the image data are imported into the 
system and the feature extraction module computes the main image characteristics. These 
features are indexed in the database. In the second module, the archive is queried by the user 
using similarity measures between the available features derived from the image and the 
features in the database.  
 

 
Figure 3.1 - Architecture of a classical Image Information Mining System 
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3.2   Image Information Mining System Design 
 
The classical design of an IIM system contains several processing modules: visualization, 
feature extraction, indexing, communication environment for learning and evaluation. In the 
following paragraphs a short review of these modules is given. 
 
 
3.2.1   Feature Extraction 
 
Feature extraction involves simplifying the amount of resources required to accurately 
describe a large dataset. When performing analysis on complex data, one of the major 
problems stems from the number of variables involved. Analysis with a large number of 
variables generally requires a large amount of memory and computation power or 
a classification algorithm which over fits the training sample and generalizes poorly to new 
samples. Feature extraction is a general term for methods to construct combinations of 
variables to get around these problems while still describing the data with sufficient accuracy. 
Best results are achieved when an expert constructs a set of application-dependent features. 
Nevertheless, if no such expert knowledge is available, general dimensionality reduction 
techniques may help. These include principal components analysis, semi-definite embedding, 
multifactor dimensionality reduction, multilinear subspace learning, nonlinear dimensional 
reduction, independent components analysis, etc. In pattern recognition and image 
processing, feature extraction is a special form of dimensionality reduction. When the input 
data are too large to be processed and may even be redundant (i.e. much data, but not much 
information), the dataset will be transformed into a reduced representation of the set of 
features.  
 
 
 
3.2.2   Feature Selection 
 
An image is described by the raw spectral information (e.g. color, radiance, reflectance) and 
by spatially-derived features at various scales (e.g. texture, shape, morphological features). 
Each image in the database is represented as a multi-dimensional feature vector - signature.  
 
Color features - Spectral information is maybe the most important feature in image 
processing and computer vision. Digital imaging systems represent color images using 
various color spaces and models but the visual information is always displayed using the R, 
G, B system. This property will become very important in the last part of the dissertation.  
 
Textural features are used to characterize the spatial structure of an image using parametric 
and non-parametric methods. Textures are complex visual patterns composed of entities with 
characteristic brightness, color, slope, size, etc and can be regarded as a similarity grouping 
within local areas of an image [11], [12]. The local sub-pattern properties give rise to the 
perceived lightness, uniformity, density, roughness, regularity, linearity, frequency, phase, 
directionality, coarseness, randomness, fineness, smoothness, granulation of the texture as a 
whole [13]. Materka and Strzelecki [14] give an extended review on the methods of texture 
analysis and discover four major steps in texture processing: 
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• Feature extraction: to compute a feature of an image able to numerically describe its 
texture properties 

• Texture discrimination: to partition a textured image into regions, each corresponding 
to a perceptually homogeneous texture 

• Texture classification: to determine to which of a finite number of physically defined 
classes a homogeneous texture region belongs 

• Shape from texture: to reconstruct a 3-D surface geometry from textural information 
 
Texture analysis methods are classified into four major groups [14]:  
 

• structural methods 
• statistical methods  
• model-based approaches 
• transform-based approaches.  

 
In structural approaches, textures are represented by local spatial primitives (micro texture) 
and a hierarchy of spatial arrangements of the primitives (macro texture) [13,15]. The 
advantage of structural approaches is that they provide a good symbolic description of the 
image for synthesis tasks. The drawback is that the abstract descriptions can be ill defined on 
natural textures because of the variability of lighting and local patterns. Mathematical 
morphology is another structural approach that has been extensively studied with positive 
results [16, 17].  
 
Statistical methods describe the texture indirectly by the properties of distributions and 
relationships between the grey levels of the image. Methods based on second-order statistics 
have a higher discrimination power than structural and transform-based methods [18]. 
Textures in grey-level images are discriminated by humans only if their second order 
moments are different.  Niemann [19] showed that because equal first and second order 
moments but different third order moments require high cognitive effort to discriminate 
textures, statistics up to second order may be the most important in automatic approaches 
[20,21]. Methods using multi-dimensional co-occurrence matrices yield better discrimination 
accuracy than wavelet techniques [22].  
 
Model based analysis methods use stochastic and generative models to interpret image 
textures [23-28]. The primary drawback of stochastic model based approaches is the 
computational complexity arising in the estimation of model parameters. Fractal-based 
models have also been studied for texture interpretation but they lack orientation selectivity 
and are not suitable for describing local structures [24, 29-31]. 
 
Transformation-based methods of texture analysis represent an image in a new space, whose 
coordinate system is interpreted close to the textural characteristics of the image, e.g. 
frequency, size. These approaches include the Fourier transform [45], Gabor [46,47] and 
wavelet transform [48-50]. Fourier transform-based methods show poor results because of the 
lack of spatial localization. Gabor filters offer better spatial localization but there is usually 
no single filter resolution at which a spatial structure can be localized. The wavelet transform 
presents several advantages over Gabor approach [14]: (1) wavelets have varying spatial 
resolutions that allow representation of textures at different scales; (2) there is a wide range 
of wavelet functions that can be used for texture analysis.  
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Geometric features - are usually effective for object detection and analysis. Shape must be 
invariant to translation, rotation and scale of the image and is characterized either by the 
boundaries (i.e. the outer contour of the objects) or by the region (i.e. the entire shape of the 
objects is considered). Several methods for deriving shape information are given in [51,52]. 
Like any features based on human perception, the major problem in using shapes in CBIR 
systems is how to describe the shape of an object. Shape representation and description are 
difficult because one dimension is lost when 3-D real world objects are recorded unto a 2-D 
image plane. As a result, the shape extracted from the image only partially represents the 
projected object. Another important problem that emerges is the fact that shape is often 
corrupted with noise, defects, distortion, occlusion and other artefacts. Searching for images 
using shape features has raised several questions and brought multiple solutions. Marr and 
Nishihara [53], Brady [54] debated the methods of representation and sets of criteria for 
evaluation of shape. Soffer and Samet [55] introduced a pictorial query specification 
technique that enables the formulation of complex queries, with the possibility of defining 
spatial constraints represented by shape features (e.g. moment, circularity, eccentricity, 
rectangularity) and contextual constraints (e.g. how many objects in the target image). 
Because boundaries can't represent the inside shape of an object, shapes were defined using 
the lower coefficients of the Fourier expansion of shape tangent angle and arc length [56-60]. 
Few papers have been published on evaluating shape similarity because a good, robust and 
image-independent representation is still needed to describe objects in the scenes [61].  
 
Topological features - derived from an image (e.g. the number of connected / disconnected 
components) are invariant to rotation, scaling, translation, stretching and deformation. The 
Euler number [62], i.e. the difference between the number of connected components and the 
number of holes in a binary image, is an example of topological feature used to characterize 
images. The Euler vector is an extension of the Euler number method defined only on 
greyscale images.  
 
Spectral indices - Image features, also known as spectral data primitives can be used to 
create derived features capable of capturing image-independent properties of the spectral 
signatures of land cover classes. These features are computed as either linear combinations of 
elementary spectral bands or as ratios between spectral data primitives acquired in different 
parts of the electromagnetic spectrum. A few examples of extracted spectral indices used for 
remote sensing applications are explained in [63]: 
 
1) Brightness is defined as the perceived luminance [64]. Initially defined for Landsat ETM+ 
data, brightness is calculated as: 
 
        Brightness = (1/8) x (TM1 + TM2 + 2 x TM3 + 2 x TM4+TM5+TM7)                     (3.1) 
 
2) Visible reflectance is the estimated reflectance in the visible portion of the electromagnetic 
spectrum. It linearly combines bands TM1, TM2 and TM3 that are individually unfeasible for 
land cover discrimination due to their high correlation.  
 
                  Visible = (1/3) x (TM1 + TM2 + TM3)                              (3.2) 
 
3) Cloud detection - Clouds are colder, with a temperature below 300 K and show higher 
reflectance at 1700 nm wavelength, equivalent to band TM5 of Landsat. A composite 
developed to enhance this property for cloud detection is [65]:              
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                                       MIRTIR = (1 - MIR) x TIR                                              (3.3) 
 
4) Vegetation indices are calculated to exploit the differences in reflectance patterns of green 
vegetation from the spectral signatures of other objects: 
 
                NDVI = (NIR - RED) / (NIR + RED)                                            (3.4) 
 
NDVI (Normalized Difference Vegetation Index) has several important properties: (1) within 
the same leaf-on / off season, NDVI is only rarely affected by the time of acquisition; (2) 
Similar to the ratio vegetation index defined in [66], NDVI is useful for extracting vegetation 
areas from shadow; (3) NDVI is unable to highlight subtle differences in canopy density [67] 
and condition NDVI > 0.35 is necessary but not sufficient to indicate the presence of 
vegetation areas [63].  
 
5) Normalized difference bare soil index NDBSI enhances bare soil areas, fallow lands and 
vegetation with marked background response [63]. This index is useful for predicting and 
assessing bare soil characteristics such as roughness, moisture content, amount of organic 
matter and relative percentages of clay, silt and sand [67].  
 
     NDBSI = (TM5 - TM4) / (TM5 + TM4 + 0.001)                                         (3.5) 
  
The NDBSI is an adaptation of the original normalized difference bare soil index defined as:  
 
            BIO = [(TM5+TM3)-(TM4+TM1)] / [(TM5+TM3)+(TM4+TM1)]                       (3.6) 
 
 
6) Normalized difference snow index NDSI is defined to enhance the difference between 
typical spectral signature of snow / ice from other objects with similar spectral signature in 
the visible portion of the electromagnetic spectrum. The mathematical expression of NDSI 
exploits the particular property of snow being brighter than the vegetation and bare soil in the 
visible portion of the electromagnetic spectrum and much darker than the clouds at 1700 nm 
wavelength.  
 
         NDSI = (TM2 - TM5) / (TM2 + TM5+0.001)                    (3.7) 
 
Another version of NDSI introduced in [63] makes use of the Visible index defined above: 
 
                NDSI  = (Visible - TM5) / (Visible + TM5 + 0.001)              (3.8) 
 
 
7) Built-up and Barren Land Area Index is suitable for detecting built-up areas because of 
their high value of blue-band reflectance.  
 
  NDBBBI = (TM1 - TM5) / (TM1 + TM5 + 0.001)                                      (3.9) 
 
Other examples include the vegetation index (VI), difference vegetation index (DVI), 
perpendicular vegetation index (PVI), ratio vegetation index (RVI), soil adjusted ratio 
vegetation index (SARVI), soil adjusted vegetation index (SAVI), transformed soil adjusted 
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vegetation index (TSAVI) and many others. The interpretation of spectral vegetation indices 
is explained in [68] and several insights from a user's perspective on their accuracy and 
uncertainty are given in [69]. 
 
Video features - New features and similarity measures based on color, texture and shape 
have been defined in the video processing domain. The MPEG-7 standard introduced a new 
set of features [86,91]. The new color features [70,71] (e.g. NF, R-G-B and M colour space) 
show benefits in areas such as lighting invariance, intuitiveness and perceptual uniformity. 
By combining relatively simple histograms, Ojala et al [72] increased the accuracy of video 
image retrieval. A new texture feature based on the Radon transform was introduced in [73] 
with the advantage of being rotationally invariant. Sebe et al [75] debate how to derive an 
optimal similarity measure given a training set and conclude that the sum of squared 
distances gives the worst results. Non-metric distances are evaluated in [76].  
 

 
3.2.3.   Feature Selection Review  

 
Feature selection is a process commonly used in information mining, wherein a subset of the 
features available from the data are selected to be used as input to a mining algorithm. 
Feature selection methods reduce the dimensionality of data by selecting only a relevant 
subset of the recorded features, with the aim of enhancing a validation measure. 

 
The dimensionality problem of the datasets has two common solutions: feature selection (e.g. 
subset selection) or feature extraction (e.g. Principal Component Analysis, Independent 
Component Analysis, Singular Value Decomposition, manifold learning, factor analysis). 
Feature selection is usually preferable to feature transformation (extraction) when the original 
units and physical meaning of features are important. Feature selection becomes the primary 
means of dimensionality reduction when categorical features are present and numerical 
transformations inappropriate. Physical models back the data recorded by imaging satellite 
sensors and the pixels’ values represent physical measurements (e.g. reflectance, radiance) of 
the natural scene. For this reason, in geospatial applications feature selection is preferred over 
feature transformation in order to maintain the physical values of pixels, thus welcoming 
interdisciplinary collaborations - the selected features retain the original meaning domain 
experts have knowledge of. Another drawback of feature transformation methods is that the 
new features (components) resulting in linear transformation may not coincide with the 
discriminatory information required by a classifier.  

 
Feature selection is a process through which a subset is chosen from the original features. 

According to their modus operandi, feature selection methods can be categorized into filter, 
wrapper and hybrid models [160], [224]. The filter models use solely the general 
characteristics of the data to evaluate and select feature subsets without employing any 
mining algorithm or classifier. They offer more general results by exploiting the data 
characteristics as their evaluation criteria. Because their searching processes do not require a 
classification procedure, they can effectively reduce time and processing complexities [161]. 
The wrapper models integrate a mining algorithm to evaluate the performance of feature 
selection. The selected attributes are chosen to optimize the respective algorithm but the 
method requires more computation power than the filter model and its results may not be 
suitable for other mining algorithms [162]. The hybrid models take advantage of both filter 
and wrapper models by exploiting their evaluation criteria in different search stages [163]. 
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Several valuable reviews for feature selection methods have been published and the reader is 
advised to refer to [164] for an extensive study. Other methods are presented in [234-241] 
and [228-230]. 

 
The general procedure of feature selection methods consists of four basis steps  – subset 
generation, subset evaluation, stopping criterion and result evaluation. Subset generation is a 
search procedure that organizes feature subsets for evaluation based on a search strategy. 
Each subset is evaluated and compared to the others according to a certain evaluation 
criterion. This process of generation and evaluation is repeated until a stopping criterion is 
satisfied. The last step is an extended evaluation of results using ground truth data or prior 
knowledge. These four steps are as follows: 

 
1. Subset Generation – choosing the candidate subset for evaluation. Two basic issues 

determine this process: (a) the search starting point and (b) the search strategy. Search may 
start with an empty set and successively add features (i.e. forward selection) or start with a 
full set and successively remove features (i.e. backward selection). Another possibility is to 
start with both ends and add or remove features simultaneously (i.e. bidirectional search) or 
to start randomly. For a data set with N features, there are 

€ 

2N  candidate subsets and in order 
to evaluate this search space, several strategies have been developed: complete search, 
sequential search and random search. The selection criteria usually implies the maximization 
of a specific accuracy indicator and by removing the most irrelevant and redundant features 
from the data, the performance of learning models is improved. In the human-centered 
approach, feature selection provides a good framework for discovering and understanding 
knowledge about the data, what attributes are important for what application and how the 
available attributes relate to each other. 

 
2.  Subset Evaluation – every subset must be evaluated using an evaluation criterion. An 

optimal subset selected using one criterion may not be optimal according to another criterion. 
The evaluation criterion can be dependent or independent to the mining algorithm applied on 
the selected feature subset.  

 
• Dependent Criterion used in wrapper models requires a predetermined mining 

algorithm applied on the selected subset to determine and evaluate which features are 
selected. It finds features better suited to the learning model but it also tends to be 
more computationally expensive and the results are not valid for other mining 
algorithms.  

 
• Independent Criterion evaluates the value of feature subset related to a specific task 

by exploiting only the intrinsic characteristics of the training data without any 
learning algorithm. The analysis of the available data attributes is performed by 
distance measures, information measures, dependency measures and consistency 
measures [165]. This paper is focused on measures of mutual information and the 
remainder of this paragraph will be directed to present the trends of this approach.  

 
Shannon’s mutual information measure [166] is a good indicator to estimate the dependency, 
relevance or similarity between two random variables. Mutual information is the gain of 
information by which the uncertainty about one variable is decreased by the given knowledge 
of a second variable. Using the properties of this measure, researchers implemented the 
Mutual Information Feature Selector MIFS [167], which maximizes the relevance of the 



 

 
39 

input candidate feature to the output class and simultaneously takes into account the 
redundancy between the candidate features and the already selected features. Because the 
calculus of the co-occurrence matrix is computationally expensive and time consuming on 
one hand and the new multispectral satellite sensors offer extended spectral resolutions on the 
other hand, the work in this dissertation limits the search space only to the available spectral 
bands. The MIFS method doesn’t provide a direct measure to judge whether to add additional 
new features or not. Another drawback of MIFS is the fact that it operates a linear 
transformation over three spectral bands, thus loosing the physical model behind pixel values 
and limiting the method to only three features. The success of an information-based feature 
selection algorithm depends critically on how much information about the target class is 
contained in the selected features.  
 
Computation of mutual information between continuous random variables is very difficult 
because it involves probability density functions and the integration of these functions. To 
assess these difficulties, two study directions have been followed: (a) derived histograms to 
approximate the probability density functions, with the risk of degrading the performance as a 
result of large errors in estimating mutual information and (b) using a Parzen window method 
to estimate the input distribution instead of dividing the input space into several partitions 
[168]. Although the latter has better accuracy than MIFS, it is not suitable to be applied with 
remote sensing data because image histograms are not approximations of probability density 
functions but discrete distributions of physical measurements.  

 
3.  Stopping Criteria – determines when the feature selection process stops. This can be 

accomplished in multiple ways: the search completes, some given bound is specified (e.g. 
minimum number of features, maximum number of iterations), adding/removing features 
does not improve the results or a threshold for evaluating results has been reached (e.g. 
classification error rate is lower than the allowable error rate for a given operation). 

 
4. Result Validation – directly measuring the results using prior knowledge about the 

data.  
 

 
3.2.4   Multidimensional Indexing 
 
An index is a structure that provides access to a database in terms of record organization. A 
N-dimensional index is a structure computed from the image data that improves the speed of 
data retrieval operations from a database. Images are assigned to a suitable content-based 
descriptor extracted from the data and the descriptors are then organized into a data structure 
for mining and retrieval. The purpose of storing an index is to optimize speed and 
performance in finding relevant documents for a search query. Without an index, the search 
engine would scan every document in the corpus, which would require considerable time and 
computing power. For example, while an index of 10,000 documents can be queried within 
milliseconds, a sequential scan of every word in 10,000 large documents could take hours. 
The additional computer storage required to store the index, as well as the considerable 
increase in the time required for an update to take place, are traded off for the time saved 
during information retrieval. 	  
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In multidimensional indexing several components have to be addressed:	  
	  
1. Dimensionality reduction at the indexing step is important because images and the 
derived spectral and spatial features contain a high amount of information. Computation is 
very expensive at this point and complicates vector processing. 	  
	  
2. Clustering - the elements in the feature vectors having similar content can be grouped 
together using an unsupervised algorithm. Clustering approaches are either model-based [77] 
(e.g. algorithms based on an apriori specified model such as Gaussian mixture model or 
Markov chains) or distance-based (e.g. Euclidean, Mahalanobis, Minimum distance). The K-
means algorithm is the most popular algorithm used in IIM. It aims 
at partitioning n observations into k clusters in which each observation belongs to the cluster 
with the nearest mean. It is similar to the expectation-maximization 
algorithm for mixtures of Gaussians in that they both attempt to find the centers of natural 
clusters in the data as well as in the iterative refinement approach employed by both 
algorithms. 	  
	  
Given a set of observations 

€ 

(x1,...,xn )  where each observation is a d-dimensional vector, k-
means clustering aims at partitioning the n observations into k sets (

€ 

k ≤ n) 

€ 

S = {S1,...,SK}  so 
as to minimize the within-cluster sum of squares: 	  
	  

               

€ 

argmin x j −µi
x j∈Si

∑
i=1

k

∑
2

                       (3.10)	  

where 

€ 

µ i  is the mean of points in 

€ 

Si . 	  
	  
Regarding the computational complexity, k-means clustering is NP-hard in a general 
Euclidean space for 2 clusters [78,79], NP-hard for a general number of clusters k even in the 
same plane [80]. Usually the method uses an iterative refinement technique. It is also called 
Lloyd’s algorithm. Given an initial set of k means 

€ 

m1
(1) ,...,mk

(1), the algorithm proceeds by 
alternating between two steps. 	  
 
1. Assignment step: assign each observation to the cluster with the closest mean:	  
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Si
( t) = x j : x j −mi

(t) ≤ x j −mi*
(t){ }                       (3.11)

 	  
for all i* = 1, …, k	  
	  
2. Update step: calculate the new means to be the centroid of the observations: 	  
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mi
(t+1) =

1
Si
( t) x j

x j∈Si
( t )

∑                (3.12)	  

	  
Commonly used initializations methods are Forgy and Random partition [80]. The Forgy 
method randomly chooses k observations from the data set and uses these as the initial means. 
The Random partition method first randomly assigns a cluster to each observation and then 
proceeds to the Update step, by computing the initial means to be the centroid of the cluster’s 
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randomly chosen points. The Forgy method tends to spread the initial means out while 
Random partition places all of them close to the center of the data set. The Random partition 
is generally preferable. As it is a heuristic algorithm, there is no guarantee that it will 
converge to the global optimum and the result may depend on initial clusters. The algorithm 
is usually very fast, it is common to run multiple times with different starting conditions. 	  
	  
3. Data structure for content-based retrieval - after the data has been clustered using an 
unsupervised method, a data structure for indexing descriptors to semantic content must be 
selected. The commonly used methods are tree-based indexing (e.g. multidimensional binary 
search trees, R-trees) and hashing-based indexing.  	  
	  
	  
3.3 Content-based Information Retrieval: State-of-the-Art in Multimedia	  
	  
Content-based information retrieval (CBIR) is now extending beyond the boundaries of art, 
science and culture by providing new paradigms and methods for searching through the 
variety of media files available. Information retrieval in multimedia aims at searching and 
extracting knowledge from a database. The great challenge of CBIR is to "make capturing, 
storing, finding and using digital media an everyday occurrence in our computing 
environment" [82]. Content-based methods are necessary to bridge the gap between human 
and machine languages and are especially mandatory when text annotations are incomplete or 
missing. They can also improve retrieval accuracy even when text annotations are available 
by providing additional insight into collections. Several domains (e.g. artificial intelligence, 
image processing, optimization theory, computer vision, pattern recognition, face recognition, 
robotic guidance) contributed significantly to the underlying foundations of CBIR. 
Psychology and related fields have given insights for developing interactions with the user. 	  
	  
The beginning of CBIR intensely focused on computed vision applications [83-85] and the 
algorithms were based on similarity searches of features for images and video. In only a few 
years, the concept of similarity search was adapted by internet image search engines, e.g. 
Webseek [86] and Webseer [87]. Extended effort was invested into the direct integration of 
the feature based similarity search into enterprise databases: IBM DB2 Extenders and Oracle 
Cartridges [88, 89].  Feature-based similarity search engines became useful in a variety of 
contexts [90], e.g. searching trademark databases [91], similar video content query [92], 
image queries. 
	  
The development of modern imaging sensor technologies has led to an exponential increase 
in the volume of visual documents available in databases. With this development comes the 
need for efficient organization and retrieval of contents. In the early days of content-based 
information retrieval (CBIR), the leading paradigm for querying multimedia databases was 
based on keyword search but the method showed many difficulties with practical 
applications. The manual annotation is very expensive and incomplete; the relation between 
words and concepts is often complex due to semantic phenomena as synonymy and 
homonymy and there is no standard criteria to link semantics coming from different users. 
The semantic gap is the divergence between “information” that comes with the data and the 
“knowledge” specific for each user and application.  
 
Research activities in the field of CBIR are trying to solve the semantic gap problem by 
finding ways to connect the discrepancy between low-level features that can be extracted 
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directly from the image data and the high-level linguistic descriptions applied to the image by 
the human operator. Keywords and visual features are complementary descriptors and using 
both of them to query the image databases may offer more meaningful results. Keywords 
offer a high-level description of the image content and context while the low-level features 
are parameters providing information about the physical world, very difficult to express in 
words [90]. 
 
Keywords annotating an image can be either linguistic terms corresponding to identifiable 
items characterizing the visual context of the scene (e.g. words attached to objects or classes) 
or words that describe the context without any link to the visual information in the image 
[10]. An example of an annotation that contains a direct link between the image features and 
the text is presented in figure 3.2. The annotations in figure 3.2 (e.g. Aircraft Airbus 330 and 
320) are directly linked to the features of the airplanes in the image. Figure 3.3 presents the 
results of a Google search using the term “Airbus”. In this case, the annotations are 
embedded in the image metadata, but they have no correlation to the visual features.  
 

 
Figure 3.2 -  The semantic annotations Aircraft Airbus are directly linked  
to the objects they describe in the image (Image Credits: DigitalGlobe) 
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Figure 3.3 -  Results of a Google search using the term “Airbus”. The semantic annotations 
are embedded in the image metadata, but they have no correlation to the visual features. 

 
Indexing and retrieval approaches relying on keywords and visual features together are 
presently being developed to try and solve the semantic gap challenge. Existent search 
engines make use of image descriptors, a set of data-driven features extracted from the image 
that may not always be directly connected to the objects the user queries for. The user seeks 
similarity in semantics while the database can only provide similarity in image processing 
results.  Bridging this gap is maybe the most challenging puzzle that CBIR scientists are 
trying to address. This means translating the low-level content-based media features into 
high-level concepts employed by users [93,94]. One of the first pictorial content-based 
systems addressing the semantic gap in a query was the ImageScape engine [95]. Users were 
able to perform direct queries for multiple visual objects by using image icons depicting the 
concepts of interest and the system employed information theory measures to determine the 
best features for minimizing uncertainty in the classification.  	  
	  
There are two fundamental requirements for a multimedia retrieval system [96]: (1) searching 
for a particular media item and (2) browsing and summarizing a media collection. The 
current systems have significant limitations in searching a specific media item because of the 
inability to understand a wider user vocabulary and the satisfaction level of the operator. 
Human-centered computing aims at creating for the user the possibility to make queries using 
his/her own terminology. Experiential computing supports the user explore and gain insights 
into the media collection. Learning algorithms create a powerful connection between the 
human and the machine because they allow the computer to understand the media collection 
at semantic level. 	  
	  
3.3.1 Human-Centered Systems for Multimedia Information Retrieval	  
	  
The concept of "human-centred" system was defined in [91] as the system that considers the 
behaviour and needs of the operator, focuses on his/her requirements and integrates the 
feedback received to improve the results. A very interesting study was performed in 2001 
[97] to evaluate if feature-based similarity helped improve image browsing. Results have 
shown that users prefer to use visual similarity rather than text caption similarity view. 
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Among the many user requirements [98,99] time is another important aspect to be addressed 
in designing a CBIR system [100]. To ensure the satisfaction of the operator, the time 
response of the system needs to be close to near-real time. A concise analysis of the 
methodologies for interactive retrieval of color images that includes guidelines for selecting 
methods based on the domains and the types of goals is described in [101]. Researchers also 
evaluated how users apply the steps of indexing, filtering, browsing and ranking in video 
retrieval [102]. 
	  
Another important goal emerging now in media information mining is the extraction of 
hidden information in user behaviour using large databases [103]. To achieve this goal, 
researchers undertook multiple directions of study, including experiential computing [104-
106] and affective computing [107-112]. 	  
	  
	  
	  
3.3.2 Semantic Learning for CBIR 	  
	  
Images can be also represented, described and interpreted using human-centred knowledge 
(e.g. association between information and semantic concepts attached to the signal features). 
To perform a query in a database using semantic concepts a comparison between the target 
image and other images in the archive must be performed using similarity measures at 
various levels: (1) pixel level - Euclidean or angular distances; (2) multidimensional space - 
color, texture, shape; (3) object / segment level - semantic labelling of classes and objects is 
the highest level of abstraction.  
 
Publications have shown the great potential of algorithm learning in multimedia retrieval for 
bridging the semantic gap [85, 113,114]. The idea behind learning semantics is to discover 
and create associations between low-level features and semantic descriptors. An initial 
direction examined the data mining problem by discovering the hidden associations during 
image indexing. This approach used a visual vocabulary that clusters similar colors and 
textures [115,116]. Other studies examined fuzzy graph matching algorithms [117] and 
clustering on space-time regions in the feature space [118] to develop a learning approach. 
Aksoy et al [119] describe a Bayesian framework for bridging the semantic gap by using a 
visual grammar that builds a hierarchical semantic model from pixel level to region and scene 
levels. The pixel-level characteristics are generated via an automatic clustering of primitive 
features; the region-level signatures through a segmentation algorithm and the scene-level 
represents the spatial relationships among segments. Two learning steps are needed to 
generate the visual grammar: a probabilistic link between features and semantic labels and a 
fuzzy model to link regions and scenes. The image classification process searches 
representative region groups to describe the scene using semantic labels. The labelled regions 
are modelled with a Dirichlet distribution based on a number of training examples that depict 
a certain region and the best matching class is assigned to the image via the maximum a 
posteriori rule.  
 
A color image segmentation algorithm based on mean shift for estimating density gradients is 
described in [52]. The users identify the segmented regions by directly labelling the features. 
A Bayesian hierarchical model for learning and retrieving natural scene categories through 
intermediate "themes" is introduced in [120]: an image is modelled as a collection of local 
tiles and each tile is represented by a codeword from a large vocabulary derived from training 
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examples. A Bayesian hierarchical model is learned for each word. To generate semantic 
meaning to a previously unseen image, the words are extracted and compared with the 
predefined models. The drawback of the method is the fact that categories are fixed and the 
user is not able to assign labels to other classes.       
 
The semantic pathfinder for multimedia indexing described in [121] uses a predefined lexicon 
of semantic concepts. Given a pattern X, the goal is to discover a semantic concept W from an 
image I using conditional probability 

€ 

fW |X . Each step in the semantic pathfinder analysis 
extracts the pattern X from data and learns 

€ 

fX |W  for all concepts W. 
 
Hudelot et al. [122] describe a learning method based on Support Vector Machine using 
positive and negative examples in the training phase. The link between semantic concepts and 
sensor data are also stored in a symbol and modelled as a fuzzy linguistic variable that 
enables representation of imprecision.  
 
A difficult challenge in semantic understanding of multimedia information is the detection of 
visual concepts in the presence of complex backgrounds. While the initial goal was to 
classify the entire image, the clutter and granularity of objects is too coarse for operational 
applications. The challenge becomes the detection and labelling of the majority of semantic 
concepts within an image and studies now focus on real world images instead of laboratory-
recorded images. In 1996 Lew and Huijsmans [94] used Shannon's theory of information to 
minimize the uncertainty in face detection problems in greyscale images with complex 
backgrounds. This method was updated through ulterior studies [93]. The reader may refer to 
[123] for a comprehensive review on the topic of face recognition.  
 
Classification of multiple features in an interactive way has proven to be fairly difficult. The 
design of a multilayer neural network model used to merge the results of basic queries on 
individual features is described in [124]. The first level of semantics is generated by dividing 
the image in semantic clusters. Then each cluster is divided in feature subclusters (color, 
texture, shape) and the semantic label is assigned to each subcluster. Fan et al [125] created a 
multilevel system for annotation of natural scenes with complex backgrounds using dominant 
image components and semantic concepts. Li and Wang [126] followed a statistical 
modelling approach for converting images into keywords.  
 
 
3.3.3 Relevance Feedback 
 
Relevance feedback is the integration of continuous feedback from the user towards learning 
more about the query. The idea behind relevance feedback is to take the results that are 
initially returned by a given query and to use information about whether or not those results 
are relevant to perform a new query. Relevance feedback is the interactive process of 
communication between human and machine while performing interactive learning for CBIR. 
The fundamental idea in the interaction loop is to show the user a set of candidate images, 
allow the user to give negative and positive examples on what images are relevant for a 
specific query and then let the computer modify the parameter space, semantic space, feature 
or clustering space to extract relevant examples. The responses are labelled as relevance 
feedback. 	  
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The first relevance feedback method was introduced in [127] and the idea was to move the 
query point toward the relevant examples and away from the irrelevant ones. Every 
supervised algorithm can incorporate a relevance feedback loop into the workflow. It has 
been found that the positive examples are more important than the negative examples for 
maximizing the accuracy of mining results [128]. Rui and Huang [129] discovered that the 
optimization-based parameter update achieves higher accuracy than heuristic methods. Li et 
al [130] propose a computationally optimized composite relevance feedback approach.  	  
	  
A one-class SVM method for updating the feedback space described in [131] showed positive 
results. He et al. [132] introduced the short term and long term perspectives for inferring a 
semantic space from the feedback provided by the user. The short term perspective implied 
the marking of the top three incorrect examples as irrelevant and the marking of the top three 
correct images as relevant examples. The long term perspective was discovered by updating 
the semantic space from the results of the short term perspective. Combining multiple 
relevance feedback strategies improves the results as compared to a single strategy [133]. The 
reader may refer to [134] for a detailed review on relevance feedback methods.	  
 
The QBIC system (Query by Image Content) [135] was developed by IBM as a commercial 
tool for allowing queries on large image and video archives. QBIC is the first system 
developed for content-based image retrieval and contains two main components: (1) database 
population and (2) database query. The population is responsible with the processes related to 
image processing and image/video database development while the queries are based on 
learned color and texture patterns, on image examples and user drawings. QBIC also offers 
an interface for graphical queries and matching the input query to the database. Initially, 
images are tiled and annotated with text information and an automatic unsupervised 
segmentation technique is used to generalize the semantic information. The flood fill 
approach is also employed to automatically identify and annotate objects in the scenes. The 
algorithm starts from a single pixel and incrementally adds neighbouring pixels with values 
under a certain threshold.  
 
Photobook [136] was developed by MIT as a content-based image retrieval system based on 
the main concept of compressing images for a quick query-time performance, preserving 
essential image similarities. A method derived from the Karhunen–Loève transform is 
applied on the spectral features to characterize object classes while preserving their 
geometrical properties. The textural features are analyzed with a method based on the Wold 
decomposition that separates structured and random texture components. The data are linked 
with classes through a method based on color difference that provides an efficient way to 
discriminate between foreground objects and image background. After that, shape, 
appearance, motion and texture of foreground objects are analyzed and ingested in the 
archive together with a description. Multiple human-machine interactions are performed to 
assign semantic labels and through a relevance-feedback loop the system learns the relations 
between image regions and the semantic content. 	  
	  
PicHunter [137] is a prototype system that represents a simple instance of a general Bayesian 
framework used to direct a search. With an explicit model of what users would do given a 
specific target class, PicHunter uses Bayes' rule to predict what is their next target image 
given their actions. Thus, the retrieval problem turns into the problem of predicting users. 
This is done via a probability distribution over possible image targets rather than by defining 
a specific query. Searches can be categorized into three main categories: (1) target specific / 
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target search; (2) category search and (3) open-ended search-browsing. The Bayesian 
network can be adapted to all these three search strategies. An entropy-minimizing display 
algorithm attempts to maximize the information obtained from the user at each iteration of 
the search. The predictive model can be simulated to estimate how effective a particular kind 
of interaction will be and design an optimal interaction scheme. PicHunter also makes use of 
hidden annotations rather than a possibly inaccurate or inconsistent annotation structure that 
the user must learn and make queries in. The system introduced two experimental paradigms 
to quantitatively evaluate the performance of the system supported by psychophysical 
evidence. PicHunter is the first system to introduce latent semantic concepts within images. 	  
	  
Motion content-based video collections are rapidly growing in both the professional and 
consumer environment and are characterized by increasing capacity and content variety. Our 
world is adapting to visual communication via video-based applications. To-date, most 
commercial video search engines (e.g. YouTube, Vimeo) use queries based on text 
annotations, file name, surrounding text, captions or speech transcript. This query approach 
works well when specific conditions are met but fails when the visual content is not 
mentioned or the captions are in different languages. The ideal interactive video approach 
depends on many factors including type of query, the browsing interface, the interaction 
scheme and the user's level of expertise. 	  
	  
Content-based video indexing and retrieval systems [207] should assist users to retrieve 
sequences of video within a large database. Video retrieval is a natural extension of CBIR 
systems [206] both focusing on accessing image and video by content, spatial (image) and 
spatio-temporal (video) information. Video indexing adds several orders of complexity to the 
retrieval problem resulting from indexing, analysis and browsing over the inherently temporal 
aspect of video.	  
 	  
To overcome some of the recent challenges, researchers developed MediaMill 2007 [184], a 
semantic video search engine using a 572 concept lexicon and an updated version - 
TRECVID 2011 [44]. Authors conclude that monitoring retrieval behaviour of users, together 
with real time active learning helps the human operator improve efficiency in finding results. 
Another learning point is that, as the number of sources of information increases, so does the 
retrieval performance. 	  
	  
Other approaches for mining video archives include [43-37] but a detailed review of the 
methods is beyond the scope of this dissertation because they include additional features that 
are not applicable to static image retrieval.  
 
 
3.3.4 Content-based Image Retrieval - Forensics 
 
Forensic investigators often face the challenge to manually analyze a large number of digital 
images to query for potential evidence [220]. Two typical tasks are the identification of fake 
images and the identification of case-specific images. Similar problems have also emerged in 
traditional forensics (e.g. fingerprint identification). Current forensic tools are inadequate in 
facilitating this process and are confined to generate pages of thumbnail images [138]. 
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3.3.5 Content-based Image Retrieval - Medical Imaging 
 
In most biomedical disciplines, digital image data are rapidly expanding in both quantity and 
heterogeneity and there is an increasing trend towards the formation of archives adequate to 
support diagnosis and preventive medicine. Exploration, query and consolidation of the 
immense collections lead to new tools used to access structurally different data for research, 
diagnosis and teaching. Overviews of the current state of research and applications in medical 
imaging are given in [139-141] and [221]. 
 
 
3.3.6 Concluding remarks 
 
The revolutionary imaging technologies have created the need to have a system to organize 
the abundantly available digital images for easy categorization and retrieval. The requirement 
for a versatile CBIR system operating on very large databases has attracted the focus and 
interest of many researchers and led to promising results. The methods and techniques 
developed encompass diverse areas of interest, e.g. visual image segmentation, feature 
extraction, feature representation, bridging the semantic gap, mapping features and semantics, 
storage and indexing, image similarity distance measurement and retrieval, etc. In the past 
decade, many CBIR systems have been developed. A few examples include the IBM QBIC 
System [135], MIT Photobook System [136], Berkeley Chabot System [142], Blobworld 
System [143], Virage System, [144], Visual SEEK and WebSEEK [86], the PicHunter [137], 
UCSB NeTra System [145], UIUC MARS System [146], PicToSeek system [147], WBIIS 
from Stanford [148], SIMPLIcity [149].  
 
The major problem for CBIR systems is to incorporate versatile techniques to address a wide 
variety of query tasks. An important difficulty in CBIR is bridging the semantic gap, the lack 
of connection between low-level features and the semantic dimension of a given image. The 
dimensionality of the problem increases with the number of users operating a database as a 
result of subjectivity in the visually perceived concepts.  The image retrieval system contains 
multiple interdependent tasks with the final goal of translating the subjective phenomena of 
human perception and understanding into machine language and vice-versa. Feature 
selection, complex space compression and parameter tuning are mandatory for optimum 
results.  
 
3.4  Image Information Mining Systems for Earth Observation - A Brief Review 
 
There are only a few CBIR systems operating on large archives of EO data. Most remote 
sensing retrieval systems allow only simple queries based on sensor, location, time and date 
but current research shows positive results in the development of advanced query methods in 
satellite imagery databases.  
 
The Rapid Image Information Mining (RIIM) prototype [150] is a system designed for 
coastal monitoring and disaster management with an interface for exploration of EO data 
based on scene content. RIIM offers a possible solution to reduce the feature space by 
computing only the relevant features that describe a particular concept. The ingestion chain 
begins with a generation of tiles and an unsupervised segmentation algorithm. A two-step 
feature extraction algorithm is applied: a first module with a genetic algorithm for the 
selection of a particular set of features that improves identification of a specific semantic 
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class and a second module that generates feature models through genetic algorithms. When 
the user provides a query having a specific label, the feature extraction module will be 
performed only with the optimal features for prediction thus speeding up the algorithm. The 
last step is a classification using SVMs. The system automatically computes the confidence 
value of a selected region and allows the retrieval of regions with a confidence score above a 
specified threshold.  
 
The VisiMine system [74] is an interactive mining system operating EO data. Because of its 
ability to distinguish between multiple levels of features (pixel, region and tile), VisiMine 
uses several feature extraction algorithms for each level. Pixel level features contain spectral 
and textural information, segments are characterized by their boundaries, shape and size, tile 
and scene level features contain the spectral and textural information of the whole image 
scene. Texture features are computed using the Gabor wavelets and Haralick's co-occurrence 
matrix. Image moments define the geometrical properties of objects. Features are clustered 
using k-medoid and k-means approaches that perform a partitioning of the set of objects into 
clusters. K-means clusters objects to their nearest mean (i.e. the centroid of clusters) and k-
medoid clusters objects to their nearest average distance (i.e. a medoid is the object whose 
average distance to all the objects in the cluster is minimal). The center of each cluster in k-
medoid method is a member of the data set while the centroid of each cluster in k-means 
method may not belong to the set. General statistics measures (e.g. histograms, minimum, 
maximum,  mean and standard deviation of pixel characteristics) are computed for regions 
and tiles. In the training phase, naive Bayesian classifiers and decision trees are used. 
VisiMine is connected directly to S-PLUS, an interactive environment for graphics, data 
analysis, statistics and mathematical computing containing over 3000 statistical functions for 
scientific data analysis. It also includes generic image processing tools, such as histogram 
processing, spectral balancing, false colors, multiband spectral mixing and data mining tools. 
 
GeoIRIS [153] is a content-based high-resolution satellite imagery retrieval system. GeoIRIS 
currently supports Query-by-Example using either image regions (tiles) or anthropogenic 
objects, geospatial queries and geospatial enabled QBE queries. Query content can be chosen 
from pre-selected semantic examples: region content or objects. The system includes 
automatic feature extraction at tile level, such as spectral, textural and shape characteristics 
and object level as high-dimensional database indexing and visual content mining. It also 
offers the possibility to query the archive by image example, by object and the relationships 
between object and semantics. The key point of the system is its capability to merge 
information from heterogeneous sources to dynamically create maps. The image database 
currently contains 45 GB of 1m and 0.6m pan-sharpened multispectral satellite imagery. 
GeoIRIS Enterprise Architecture is a Service-Oriented Architecture (SOA) consisting of web 
services, geospatial query services, content-based retrieval services, map server, distributed 
middleware and relational database. GeoIRIS Client is a graphical user interface delivered via 
web browsers and linkage to geoweb visualization software.  
 
KIM [154,155] and the following versions of KES and KEO [151,152, 156] are currently the 
most advanced IIM systems for EO data. The first prototype of KIM built a theoretical 
framework of collaborative methods for the extraction and exploration of the image content 
in large EO data archives and established the link between user knowledge and information 
content of images. It also provided a solution for communicating at high level of semantic 
abstraction between users from different domains and heterogeneous sources of information. 
The semantic interpretation of the image content is linked through Bayesian networks to a 
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unsupervised content index and, based on this stochastic link the user can query the archive 
for relevant images. The output is a probabilistic classification of the entire image archive as 
an intuitive representation of information. The concept was developed and extended into a 
prototype with high level of semantic concepts [158, 159].  
 
The hierarchy of information in KIM is classified into two components: (1) a resource- 
expensive, offline, unsupervised computational module responsible for extracting information 
from data by grouping features in classes and indexing classes in the database and (2) a 
supervised, online component used by the analyst to define semantic labels. The information 
representation hierarchy of KIM is based on a five-level Bayesian learning model. In the first 
phase of the workflow a dyadic k-means clustering is employed to generate a vocabulary of 
indexed classes. The semantic gap problem is solved by KIM using Bayesian networks, 
learning the posterior probabilities among classes and user defined semantic labels. The 
output product (i.e. thematic map) is automatically generated according to predefined cover 
types. 
 
OMAR [36] is an open source software that allows remote access to imagery and video. The 
software is developed and maintained in an online distributed environment and although it is 
available only to classified networks of users it can provide a good example for a wide range 
of retrieval applications. Key features of OMAR include (1) remote discovery, viewing and 
manipulation of imagery, (2) on-the-fly orthorectification, precision terrain correction and 
sensor model projection. The remote user can interactively search for data using a reference 
map. Results can be filtered only using metadata parameters including date, time, sensor, 
target ID and combinations of these attributes but do not include any semantic-based queries. 
 
 
Conclusions and Proposal For a New System 
 
This chapter presented the current status in the fields of CBIR and IIM, with emphasis on the 
systems available for EO applications. This thesis proposes a new system concept that 
complements the ones available and addresses the topics that were identified as mandatory by 
the user communities and haven't been implemented in previous methods. Our system 
consists of two modules required in an IIM system for EO: (1) semantic rules discovery in 
large databases; (2) advanced data visualization. These modules secure an optimum workflow 
and provide the capability to discover and extract relevant conceptual information directly 
from satellite images and generate an enhanced visualization for the data.  

The first module bridges the semantic gap and discovers the latent rules between the low-
level output of the state-of-the-art classification algorithms and the semantic, human-defined, 
manually-applied terminologies of cartographic data. The set of rules explain the content of 
satellite images using linguistic concepts and link the low-level machine language to the 
high-level human understanding.  

 
     The second module implements an adaptive visualization methodology that can be used in 
several steps of the workflow. The algorithm assists the image analyst in understanding the 
satellite image through optimum representations and offers cognitive support in discovering 
relevant information in the scenes. It is an interactive technique applied to discover the 
optimum combination of three spectral features of a multi-band satellite image that enhance 
visualization of learned targets and phenomena of interest. The visual mining module is 
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essential for an IIM system because all EO-based applications involve several steps of visual 
inspection and the final decision about the information derived from satellite data is always 
made by a human operator. To ensure maximum correlation between the requirements of the 
analyst and the possibilities of the computer, the visualization tool models the human visual 
system and secures that a change in the image space is equivalent to a change in the eye-brain 
system of the operator. The next chapter presents the theoretical concepts that have been used 
in the implementation of this system. 
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4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Basics of Inference and Stochastic Image Analysis 
 
The CBIR and IIM systems presented in previous chapter operate on different levels of 
abstraction of the image content, modelled using hierarchical Bayesian networks. These 
levels that are either image features, spectral bands and indices, clusters or semantic labels, 
are considered as realizations of stochastic models. Information theory concepts are applied 
to achieve robust results or to evaluate the steps and connections in the hierarchies.  

This chapter focuses on the theoretical aspects used to design the new system concept 
introduced in this dissertation. Concepts of stochastic image analysis, stochastic processes, 
Bayesian inference are described with emphasis on generative probabilistic models. These 
models have been applied to develop the methods presented in the contribution sections of 
this dissertation and are a key element in discovering latent semantic information in satellite 
images. The chapter presents the theoretical aspects of Gaussian Mixture Models, Latent 
Semantic Analysis, Probabilistic Latent Semantic Indexing and Latent Dirichlet Allocation.  

Every statistical analysis must be built upon a mathematical model linking the observable 
reality with the mechanism generating the observations. This model should be a mathematical 
description of nature: its functional form should be simple and the number of its parameters 
and components should be minimum. The model should be parameterized in such a way that 
each parameter can be interpreted easily and identified with some aspects of reality. The 
functional form should be sufficiently tractable to permit the sort of mathematical 
manipulations required for the estimation of its parameters and other inferences about nature.  
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4.1 Stochastic Image Analysis 

Two lines of thought have been followed in statistics: descriptive and inferential statistics. 
The first one analyzes, summarizes and interprets the sample without inferring any property 
of the population from which the sample was extracted. Inferential statistics introduce the 
concepts of probability and hypothesis and infers properties of the population from the 
analysis of the sample. The inferential statistics have followed two distinct trends: the 
frequentist approach that assumes constant values of unknown parameters of the population 
and the Bayesian approach that assumes the unknown parameters are continually revised in 
the light of new data by using weights assigned to previous assumptions. The unknown 
parameters are regarded as random variables with an associated probability distribution called 
prior. 
 
4.1.1 Probability  
 
According to the inferential statistics theory, probability can be defined in two ways: 
 

• Definition 1: The probability of one event is the ratio of the number of cases 
favourable to it to the number of all cases possible when nothings leads to the 
expectation that every one of these cases should occur more than any other, which 
renders them as equally possible. This is the frequentist approach probability as 
defined by Laplace in 1812.  

 
• Definition 2: The probability is a representation of degrees of plausibility by real 

numbers. This is the Bayesian definition of probability 
 

• Definition 3: In Kolmogorov's probability theory, the probability P of some event E, 
denoted 

€ 

P(E) is defined in such a way that P satisfies the Kolmogorov axioms, 
named after the famous Russian mathematician Andrey Kolmogorov, as follows: 

 
Let 

€ 

(Ω,F,P) be a measure space with 

€ 

P(Ω) =1. Then 

€ 

(Ω,ℑ,P)  is a probability space, with 
sample space Ω, event space 

€ 

ℑ and probability measure P. The probability of an event E, 

€ 

P(E) must satisfy the Kolmogorov’s axioms: 
 
1. Positivity – the probability of an event is a non-negative real number 

€ 

P(E)≥0                    (4.1) 
 
2. Certain event - This is the assumption of unit measure, the probability that some 
elementary event in the entire sample space will occur is 1. There are no elementary events 
outside the sample space. 

€ 

P(Ω) =1                          (4.2) 
 
3. Sum 

 
  

€ 

P Ei
i=1

N


⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = P Ei( )

i=1

N

∑   if 

€ 

Ei ∩E j =∅,i ≠ j                            (4.3)  
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The product axiom does not assume the exclusivity of events. As a remainder, the notation 

€ 

P(E1 | E2 ) refers to the probability of event 

€ 

E1 conditioned by 

€ 

E2 . In consequence, 

€ 

P(∅) = 0 , 
the impossible event has zero probability. However, it does not follow that an event of zero 
probability is impossible. 
 
Properties:   
 
1. Independence - Two events are statistically independent if: 
 

€ 

P(E1∩E2 ) = P(E1)× P(E2 )                           (4.4) 
 

€ 

P(E2 | E1) = P(E2 )                    (4.5) 
 

€ 

P(E1 | E2 ) = P(E1)                   (4.6) 
 
The probability of an event is not influenced by the fact that another event takes place. 
 
 
2. Bayes Formula 
 
Consider a mutually exclusive and complete set of events 

€ 

{H1,....,Hn} that is not independent 
of an event E in a certain experiment. The events H are called hypotheses and are interpreted 
as hypothetical causes of the event E. The following decomposition can be written: 
 

                

€ 

P(E) = P(E |Hi )×P(Hi )
i=1

n

∑                (4.7) 

 
and the Bayes formula: 
 

              

€ 

P(Hi | E) =
P(E |Hi )×P(Hi )

P(E)
                                             (4.8) 

 
The probability 

€ 

P(Hi | E)  is the probability satisfying the hypothesis H knowing that the 
event E was produced. This is called the a posteriori probability of H and 

€ 

P(Hi )  is called the 
priori probability. The Bayes formula can be understood as a formula for inverting 
conditional probabilities, i.e. compute 

€ 

P(Hi | E) given 

€ 

P(E |Hi ) and 

€ 

P(Hi ) . 
 
 
4.1.2 Random variables 
 
Consider an experiment characterized by its elementary, mutually independent and exclusive 
events. A particular event consists of the union of several elementary events. A random 
variable (R.V.) is defined by the biunivoque correspondence with an ensemble of elementary 
events and is characterized by the probability distribution of these events.  
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 is the sample space composed of the elements ω that are the elementary outcomes of an 
experiment. Subserts 

€ 

A ⊂Ω are called events and specifically these sets are from a class 

€ 

ℑ(A ∈ ℑ). For any of 

€ 

A ∈ ℑ  we evaluate the set function  - a mapping from  into [0,1] 
- to generate probabilities 

€ 

P(A). The triplet 

€ 

Ω,ℑ,P( )  is the probability space.  
 
The point function 

€ 

X(•) is called a random variable, a mapping from 

€ 

Ω→ Rn  evaluated for 
each  to yield realizations 

€ 

X(ω). The probabilities 

€ 

P(A)  and the realizations 

€ 

X(ω) of 
the random variable X are related by the probability distribution function 

€ 

FX (•)  - a mapping 
from 

€ 

Rn → [0,1], that yields 

€ 

FX (ξ) as the probability of the set of  such that 

€ 

X(ω) ≤ ξ .   
 

 
Figure 4.1 – Probability and random variable  

(Credits – “Stochastic models estimation and control”, Maybeck P.S., Academic Press, 1979) 
 
 
4.1.2.1 Distribution function and probability density function 
 
The distribution function 

€ 

FX :R→ [0,1]  of a continuous random variable 

€ 

X :Ω→ R  - with 

€ 

Ω= ω1,...,ωn{ }  -  is the probability that the realizations 

€ 

X(ω) of the random variable X are 
less or equal to ξ : 
 
                   

€ 

FX (ξ) = P ω : X(ω) ≤ ξ{ }                                                     (4.9) 
 
The distribution function has the following properties: 
 

€ 

FX (−∞) = 0
FX (∞) =1
FX (ξ2 )− FX (ξ1) = P(ξ1 < X < ξ2 )

                          (4.10) 
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If a scalar-valued function 

€ 

fX (•)  exists such that 

€ 

FX (ξ) = fX (ρ)dρ
−∞

ξ

∫  holds for all values of 

€ 

ξ ,	  

the probability density function (p.d.f.) is defined as: 
 

                        

€ 

fX (ξ) =
dFX (ξ)
dξ

                                                             (4.11) 

 
and is interpreted as 

€ 

P ω : X ω( ) ∈ ξ,ξ +Δξ( ]{ } = fX ξ( )dξ  
 
Unlike the probability distribution function, we are not always assured of the existence of the 
probability density function. If 

€ 

FX  is absolutely continuous, then the density function does 
exist. The p.d.f has the following properties: 
 
1. 

€ 

fX (ξ) ≥ 0  , 

€ 

−∞ < ξ <∞                                        (4.12) 
 
2. 

€ 

fX (ξ)dξ =1
−∞

∞

∫                                        (4.13) 

3. 

€ 

P ω : X(ω)∈ (a,b]{ } = F(a < X ≤ b) = fX (ξ)dξ
a

b

∫                                               (4.14) 

 
The distribution function and the probability density function can be defined for a 
multidimensional random variable 

€ 

X = (X1,...,Xn )
T  as: 

                               

 

€ 

FX1X2 ...Xn ξ1,...,ξn( ) = P ω : X1(ω) ≤ ξ1,X2 (ω) ≤ ξ2 ,...,Xn (ω) ≤ ξn{ }

FX ξ( ) = P ω : X(ω) ≤ ξ{ }
                        (4.15)   

 

€ 

fX1...Xn (ξ1,...,ξn ) =
∂ nFX (ξ1,...ξn )
∂ξ1...∂ξn

fX ξ( ) =
d
dξ

FX ξ( ) =
dn

dξ1...dξn
FX1...Xn ξ1...ξn( )

                                               (4.16) 

 
 

€ 

P ω : X(ω)∈ ξ,ξ + dξ( ]{ } = fX ξ( )dξ = fX1...Xn ξ1...ξn( )dξ1...dξn                              (4.17)  
 
 
Given a n-dimensional random variable from which only k < n components are of interest, a 
marginal probability density function is defined as:  
       

  

€ 

fX1,...,Xk ξ1...ξk( ) = ... fX1...Xk ,Xk+1...Xn
ξ1...ξn( )

−∞

∞

∫
−∞

∞

∫ dξk+1dξk+2 ...dξn                        (4.18) 
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Conditional probability and densities - An n-dimensional joint probability density function 
is called conditional relative to (n – k) variables if these (n – k)  variables have predefined 
values: 
 

€ 

fX1,...,Xk |Xk+1,...,Xn
ξ1...ξk |ξk+1...ξn( )dξ1dξ2 ...dξn

= P ω : X1(ω)∈ ξ1,ξ1 + dξ1( ],...,Xk (ω)∈ ξk ,ξk + dξk( ] | Xk+1(ω) = ξk+1,...Xn (ω) = ξn{ }
       (4.19) 

 
Using the Bayes formula, the conditional probability density function is:  
 

   

€ 

fX1,...,Xk |Xk+1,...,Xn
ξ1...ξk |ξk+1...ξn( ) =

fX1...Xn ξ1...ξn( )
fXk+1,...,Xn

ξk+1...ξn( )
                        (4.20) 

 
 
Using vector notation, 

€ 

X = [X1...Xn ]
T , 

€ 

Y = Y1,...,Ym[ ]T 	  	  
with 

€ 

X(ω)∈ Rn  and 

€ 

Y (ω)∈ Rm : 
 
   

€ 

fX ,Y ξ,ρ( ) = fX |Y ξ |ρ( )• fY ρ( ) = fY |X ρ |ξ( ) • fX ξ( )                                                (4.21) 
    
    

€ 

fX ξ( ) = fX ,Y
−∞

∞

∫ ξ,ρ( )dρ = fX |Y
−∞

∞

∫ ξ | ρ( ) • fY (ρ)dρ                                                     (4.22)

               
 

€ 

fY ρ( ) = fX ,Y
−∞

∞

∫ ξ,ρ( )dξ = fY |X
−∞

∞

∫ ρ |ξ( )• fX ξ( )dξ                                                       (4.23) 

 
 
Condtional probability density is defined as: 
 

€ 

fX |Y ξ | ρ( ) = fX ξ( )                                                (4.24) 
 

€ 

fX ,Y ξ,ρ( ) = f X (ξ) f Y (ρ)                                       (4.25) 
 
 

Through conditional probabilities and densities we are specifying interrelationships among 
random variables. The two extremes of such relationships are independence and functional 
dependence. Considering two random variables X and Y (similar for the vector case), they are 
independent if: 

€ 

P ω : X(ω)∈ A&Y (ω)∈ B{ }( ) = P ω : X(ω)∈ A{ }( )P ω :Y (ω)∈ B{ }( )            (4.26)  

€ 

FX ,Y ξ,ρ( ) = FX (ξ)FY (ρ), for all 

€ 

ξ  and 

€ 

ρ               (4.27) 
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€ 

fX ,Y ξ,ρ( ) = fX (ξ) fY (ρ), for all 

€ 

ξ  and 

€ 

ρ               (4.28) 

If X and Y are independent, applying the Bayes’ rules gives: 

€ 

fX |Y (ξ,ρ) =
fX ,Y (ξ,ρ)
fY (ρ)

=
fX (ξ) fY (ρ)
fY (ρ)

= fX (ξ)   for all 

€ 

ξ  and 

€ 

ρ                        (4.29) 

 

 
4.1.2.2  Statistical Moments 
 
The distribution and density functions for a random variable are fundamental for Bayesian 
estimation, containing all the information known about the variable. Using these functions, an 
optimal estimate can be defined using a chosen criterion or it can be used to calculate the 
expected value of a function of the random variable, where this expected value is the average 
value obtained over the ensemble of outcomes of an experiment. The expected value of 
particular functions will generate the moments of a random variable – parameters that 
characterize the distribution or density function [263].  
 
If 

€ 

X  is a n-dimensional random variable vector described through the density function 

€ 

fX ξ( )  
and let Y be an m-dimensional vector function of X: 

€ 

Y (•) = g[X(•)], where  is continuous. 
The moments of a random variable X are the expected values of certain functions of it. Given 
the function 

€ 

g ξ( )  of the random variable 

€ 

X = X1,...,Xn{ } , the expectation operator 

€ 

E[•] is 
introduced and the expectation of Y is: 
 

€ 

E[Y ]= E g X( ){ } = g
−∞

∞

∫ ξ( ) • fX ξ( )dξ = ... g
−∞

∞

∫
−∞

∞

∫ ξ1...ξn( ) • fX 1...Xn
ξ1...ξn( )dξ1...dξn                 (4.30) 

 
The expectation operator allows the definition of moments of a random variable. Let us 
consider some specific functions 

€ 

g(•). First, for 

€ 

g(X ) = X , we generate the first moment of X, 
i.e. the mean of X.  
 

                 

€ 

mX = E X{ } = ξ
−∞

∞

∫ • fX ξ( )dξ = ...
ξ1
...
ξn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ −∞

∞

∫
−∞

∞

∫ • fX1...Xn ξ1...ξn( )dξ1...dξn             (4.31) 

 

           where   

€ 

E X{ } = E
X1
...
Xn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

=

E X1[ ]
...

E Xn[ ]

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

m1

...
mn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
                                             (4.32) 
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The i –order moment is: 
 

€ 

mi = ... ξi • fX1...Xn ξ1,..,ξn( )
−∞

∞

∫
−∞

∞

∫ dξ1...dξn

= ξi ...
−∞

∞

∫ fX1...Xn ξ1,...,ξn( )
−∞

∞

∫ dξ1...dξi−1dξi+1...dξn
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dξi

−∞

∞

∫

= ξi fXi
−∞

∞

∫ ξXi( )dξi

                     (4.33) 

 
  

€ 

mX
(k ) = ξ k fX ξ( )

−∞

∞

∫ dξ                   (4.34) 

 
with k = 1,….n 
 

€ 

X = m1 = ξ ⋅ fX (ξ)
−∞

∞

∫ dξ  - the mean of the random variable 

€ 

X 2 = m2 = ξ 2 fX (ξ)dξ
−∞

∞

∫  - the square mean of the random variable 

 
 

Now, consider 

€ 

g(X ) = XXT =

X1
2 ... X1Xn

... ... ...
XnX1 ... Xn

2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 and we define the matrix  as the n-by-n 

matrix whose (i – j) component is the correlation of 

€ 

Xi  and 

€ 

X j .   
The diagonal terms of this matrix are autocorrelations: 
 

€ 

Ψij = E XiX j[ ] = ...
−∞

∞

∫ ξiξ j fX (ξ)
−∞

∞

∫ dξ1...ξn                 (4.35) 

 
The matrix  is the second noncentral moment of X or the autocorrelation if X.  
 

€ 

Ψ = E[XXT ]= ξξT fX ξ( )
−∞

∞

∫ dξ                            (4.36) 

 
By assuming another function 

€ 

g X( ) = [(X −m)(X −m)T ], we define the n-by-n matrix P 
whose (i – j) component is the covariance matrix of X and can be written as: 
 

€ 

P = E[(X −m)(X −m)T ]= ξ −m( )
−∞

∞

∫ ξ −m( )T fX (ξ)dξ              (4.37) 
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The covariance matrix P is symmetric, the variances of the separate components of X are 
along the first diagonal 

€ 

Pii = E[(Xi −mi )
2 ]T . The square root of the variance 

€ 

Pii  is called the 
standard deviation of 

€ 

Xi , denoted as 

€ 

σ i . The diagonal terms can be expressed as 

€ 

Pii = σ i
2  

 
The correlation coefficient is 

€ 

Xi  and 

€ 

X j  is defined with: 
 

€ 

rij =
E[(Xi −mi )(X j −mj )]

E[(Xi −mi )
2 ]E[(X j −mj )

2 ]
=

Pij
σ iσ j

               (4.38) 

 
If the correlation coefficient is zero, then the components 

€ 

Xi  and 

€ 

X j  are uncorrelated. 
Another expression for the covariance matrix is the following: 
 

€ 

P[(X −m)(X −m)T ]= E[XXT ]−mmT                (4.39) 
 
which reduces to 

€ 

P = E[X 2 ]− E[X ]( )2  for the scalar case.  
 
Two random vectors X and Y are uncorellated if their corellation matrix is equal to the outer 
product of their first order moments: 
 
                                     

€ 

E[XYT ]= E[X ]E[Y T ]= mxmy
T                            (4.40) 

 
Or, for any i and j: 
 

€ 

E[XiYj ]= E[Xi ]E[Yj ]                                           (4.41) 
 
The root square of the variance is called the standard deviation of the variable: 
 

          

€ 

σ i = Pii              (4.42) 
 
If the random variables are independent, their covariance is zero. However, if the covariance 
of two random variables is zero, one cannot conclude that the random variables are 
independent. When a feature increases and the other one also increases, the covariance value 
is positive. Contrary, if the covariance value is negative, when a feature increases the other 
one decreases [263].  
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4.2   Transformation-Based Analysis 
 
4.2.1 Principal Component Analysis 
 
Principal Components Analysis (PCA) [32] is a classical statistical method used in data 
analysis, feature space reduction and compression. PCA is a mathematical procedure that 
uses an orthogonal transformation to convert a set of observations of possibly correlated 
random variables (i.e. spectral bands of an image) into a set of values of uncorrelated 
variables called principal components. The number of principal components chosen for 
analysis is less than or equal to the number of original variables. This transformation is 
defined in such a way that the first principal component has the highest possible variance, i.e. 
accounts for as much of the variability in the data as possible, and each succeeding 
component in turn has the highest variance possible under the constraint that it is orthogonal 
to the preceding components. The principal components are independent only if the data set 
is jointly normally distributed. PCA is sensitive to the relative scaling of the original 
variables. The transformation is also known as the discrete Karhunen–Loève transform 
(KLT).  
 
Let the image X be an 

€ 

n×m  array of pixels with each pixel being a vector of 

€ 

nc  numbers, 
one for each spectral band of the sensor. PCA transforms X to a vector Y with the first 
component having the highest variability and the last component the least variability, i.e. the 
elements of Y are uncorrelated. Another way of saying this is that 

€ 

Sy  - the covariance matrix 
of Y is a diagonal matrix. We are looking for the matrix G such that 

€ 

Y =G × X  and allows the 
transformation of X into Y. The formula for the covariance matrix 

€ 

Sy  is:  
 

                   

€ 

Sy =
1
n

(yi − y )
i=1

n

∑ (yi − y )T                        (4.43) 

 
Considering that: 
                                 

€ 

XTGT = (GX )T                                                   (4.44) 
 
 

    

€ 

Sy = G 1
n

(xi − x )
i=1

n

∑ (xi − x )T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ GT                        (4.45) 

 
      

€ 

Sy =G × Sx ×G
T                                    (4.46) 

 
with the requirement that 

€ 

Sy  is a diagonal matrix. The square symmetric matrix A may be 
decomposed in 

€ 

A =U ×Λ ×UT  where the matrix U  has the normalized eigenvectors of A as 
its columns and  is a diagonal matrix with the eigenvalues of A along its diagonal. Since U 
is an orthogonal matrix 

€ 

UUT = I  we can also write 

€ 

Λ =UT × A×U . This leads to the 
conclusion that 

€ 

G =UT . To rotate the image to a coordinate system where channels are 
uncorrelated, we need to multiply the data with 

€ 

UT , where the columns of U are the 
eigenvectors of the covariance matrix. The capabilities of PCA to create optimum visual 
representations of satellite images will be tested in the last contribution of this dissertation. 
The detailed mathematics of PCA are described in the Appenix. 
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4.2.2   Independent Components Analysis 
 
Independent component analysis (ICA) is a computational method for separating a 
multivariate signal into additive subcomponents assuming the mutual statistical independence 
of the non-Gaussian source signals.  
 
ICA [191] finds the independent components by maximizing the statistical independence of 
the estimated components. Typical algorithms for ICA use centering, whitening, with 
eigenvalue decomposition and dimensionality reduction as pre-processing steps in order to 
simplify and reduce the complexity of the problem for the actual iterative algorithm. 
Whitening and dimension reduction can be achieved with principal component analysis or 
singular value decomposition. Whitening ensures that all dimensions are treated equally 
apriori before the algorithm is run.  
 
In general, ICA cannot identify the actual number of source signals, a uniquely correct 
ordering of the source signals, nor the proper scaling (including sign) of the source signals. If 
the data are represented by the random vector 

€ 

X = (X1,...,Xm )  and the components as the 
random vector 

€ 

S = (S1,...,Sn )  the task is to transform the observed data X using a linear 
transformation W as 

€ 

S =W × X  into maximally independent components measured by a 
function of independence 

€ 

F(S1,...,Sn ). The last chapter of the contributions provides a 
detailed comparison between the capabilities of PCA and ICA to create optimum visual 
representations of satellite data. The details of ICA and the main differences between PCA 
and ICA are described in the Appenix.  
 
 
4.3   Bayesian Inference 
 
Highly complex statistical models made up by multiple, possibly interdependent variables 
can be addressed by considering conditional independence assumptions. This allows efficient 
inference to be carried out even for models involving a large number of variables. Bayesian 
inference considers the unknown parameter θ as a representation of a random variable that is 
described by a certain probability distribution called prior 

€ 

fθ (υ) . The prior represents the 
probabilistic behaviour of the parameter before X was observed. A random sample X brings 
new information about the prior – if the assumptions were right or wrong - and the prior has 
to be modified or not.  The modified probability distribution taking into consideration the 
sample knowledge is called a posteriori distribution and is represented by 

€ 

fθ / X (υ |ξ). By 
applying Bayes’ theorem, the corresponding a posteriori probabilities can be determined for 
each value of θ as: 
 

               

€ 

fθ |X (υ |ξ) =
fX |θ (ξ |υ) fθ (υ)

fX (ξ)
            (4.47) 

 
where 

€ 

fX |θ (ξ |υ)  is the probability distribution of the observed data X for a certain θ. 

€ 

fx(ξ) is 
the marginal distribution or “model evidence” of X defined in the parameter space Θ as 

€ 

fX (ξ) = fX |θ (ξ |υ)∫ • fθ (υ)dυ = fX ,θ ξ,υ( )dυ∫  and is the same for all possible hypotheses 
being considered [263].  
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In signal processing and CBIR systems, Bayes’ theorem can be applied to extract features 
from original data or to incorporate information in the mining processes as prior knowledge 
due to the stochastic nature of the signal models. The image signal can be represented at 
various levels using the Bayesian hierarchical model. The basic idea in a hierarchical model 
is that, looking at the likelihood function 

€ 

fX |θ , it may be appropriate to use priors that depend 
on other parameters not mentioned in the likelihood. These parameters themselves will 
require priors that depend on new parameters and so on. The process finishes when no more 
new parameters are introduced.  
 
A non-hierarchical Bayesian model is represented by 

€ 

fθ , fX |θ{ }  with 

€ 

fθ  being the prior and 

€ 

fX |θ  being the likelihood function. Simply stated, knowledge of X leads to an update of θ.  
A hierarchical Bayesian model is described by: 
  

€ 

fθn , fθ1|θ2 , fθ2 |θ3 ,..., fX |θ1{ }                         (4.48) 
 

€ 

fθn , fθ1|θ2 , fθ2 |θ3 ,..., fX |θ1{ } is a hierarchical model because of the way in which the 
distribution of the parameters in each level of the hierarchy depends on the parameters in the 
previous levels. The distribution of parameters at any level of the hierarchy depends on the 
parameters at the next lower level and, conditional on those parameters, is independent of 
parameters at all levels below that. Figure 4.2 shows an example of how Bayesian networks 
are applied to represent information at different levels.  
 

 
Figure 4.2 – Hierarchical Bayesian Model. 

€ 

fθ2 |θ1 represents the stochastic link between the 
features and the data. 

€ 

fθ3|θ2  learns the unsupervised signal classes (e.g. k-means) knowing the 
features. 

€ 

fθ4 |θ3  infers the semantic content from the spectral map. 

€ 

fθ3|θ4  deduces the cluster of 
a known semantic label. 

€ 

fθ1|θ4  obtains the image data from its semantic content. The next 
section explains how Bayesian inference can be applied to image understanding tasks.  
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4.3.1    Parameter Estimation 
 
Parameter estimation and decision theory consider the problem of selecting a representative 
value for a given probabilistic distribution. While full probabilistic inference produces as 
output full posterior  distributions, in a number of situations scalar values are required to 
compare theoretical results with the actual measured quantities. Obviously there is a loss in 
the quality of the descriptor when moving from a full probabilistic description of a 
phenomenon to a single value.  
 
The parameter estimation theory is part of the statistical decision theory. The goal of 
parameter estimation is to evaluate a parameter generated by a source of information in noisy 
conditions. There are five fundamental components of an estimation problem: 
 

• The variables to be estimated 
• The measurements or observations available 
• The mathematical model describing how measurements are related to the variables 

The mathematical model of the uncertainties present  
• The performance evaluation criterion to judge which estimation algorithms are best 

 
Let image 

€ 

X = [x1,...,xN ] be the source of information observed in the presence of noise 

€ 

n = [n1,...,nN ]. 

€ 

Y = [y1,...,yN ] are the measured pixel intensities.  
 
     

€ 

Y = X + n                           (4.49) 
 
Image X is a random signal, a realization of a stochastic process. The noise n is a 2-
dimensional random signal. The problem statement is: given the observations Y and possibly 
some knowledge about X and n, find a guess of X. We consider the linearly ordered, observed 
pixel intensities of a random image 

€ 

Y = [y1,...,yN ] characterized by the conditional probability 
density function  
              

€ 

fy1...yn |X = fY |X                                     (4.50) 
 
Further we consider an estimate 

€ 

ˆ x  of the unknown random gray-level x and the estimation 
error 	  

€ 

εx .	  The error 

€ 

εx 	   is only hypothetically defined, since the true value of x is unknown. 
The loss of information that emerges when going from a full probabilistic descrition to a 
single parameter is expressed by a cost function, leading to the definition of an optimal 
estimator - the classifcal paramter estimation is formulated as the minimization of the Bayes 
risk defined over the signal space. The estimation of 

€ 

ˆ x  has to be made by minimizing a cost 
function C defined as a distance between the actual y and the desired but unknown value of x. 
 

€ 

C = C(εx )
εx = x − ˆ x 

              (4.51) 

 
The estimated 

€ 

ˆ x  is a function of the N values of the observed signal and C is a function of 
(N+1) variables, i.e. the N samples of the signal and the parameter to be estimated. The mean 
value of the cost 

€ 

C  is calculated using: 
 

€ 

C = C(x − ˆ x )
N+1
∫ fY ,X (y,x)dydx                         (4.52) 



 

 
65 

 
The estimated 

€ 

ˆ x  has to be computed so that the mean cost of the estimation 

€ 

C  is minimum.  
 

€ 

fY ,X (y,x) = fX |(Y=y)(x)• fY (y) = fY |(X=x)(y)• f X (x)            (4.53) 
 
 

                       

€ 

C = fY (y) C(x − ˆ x ) fX |Y =y
−∞

∞

∫ (x)dx
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N
∫ dy                        (4.54) 

 

Using the notation 

€ 

I(y, ˆ x ) = C(x − ˆ x )
−∞

∞

∫ fX |Y =y(x)dx , the cost function 

€ 

C  is minimum if for 

every observed y we choose 

€ 

ˆ x  so that 

€ 

I(y, ˆ x )  is minimum [263].  
 
 
4.3.2 Case studies 
 
Case 1 – Minimum mean square estimator (MMSE) 
 
In this case we use the cost function 

€ 

C(εx ) = εx
2 , to express the fact that the bigger the 

estimation error is, the more important the estimation cost becomes. In this case,  
 

€ 

I(y, ˆ x ) = (x − ˆ x )2 fX |Y =y(x)dx
−∞

∞

∫                 (4.55) 

 

The value of  that minimizes 

€ 

I(y, ˆ x ) is obtained from 

€ 

∂I(y, ˆ x )
d ˆ x 

= 0 , leading to: 

 

€ 

∂I(y, ˆ x )
∂ ˆ x 

= −2 (x − ˆ x )
−∞

∞

∫ fX |Y =y(x)dx = 2 ˆ x fX |Y =y(x)dx − 2
−∞

∞

∫ xfX |Y =y(x)dx
−∞

∞

∫            (4.56) 

Considering 

€ 

∂I(y, ˆ x )
d ˆ x 

= 0  and 

€ 

fX |Y=y(x)dx =1
−∞

∞

∫  the estimator becomes: 

 

€ 

ˆ x = x ⋅ fX |Y =y(x)dx
−∞

∞

∫                                    (4.57) 

 
 
Case 2 - Maximum a posteriori estimator (MAP) 
 
In this case, the uniform cost function is being employed. The cost function is defined as: 
 

€ 

C(εx ) =
0→ εx ≤ E /2
1→ εx > E /2

⎧ 
⎨ 
⎩ 

                 (4.58) 
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In this case we are only interested in the estimation error between specific limits E. If the 
estimation error is between those limits, the cost is null. The previous relationship can be 
written as: 

€ 

C(εx ) = 1−
1→ ˆ x − E /2( ) ≤ x ≤ ˆ x + E /2( )
0→ ˆ x − E /2( ) > x > ˆ x + E /2( )
⎧ 
⎨ 
⎩ 

               (4.59) 

 

€ 

I(y, ˆ x ) = fX |Y =y
−∞

∞

∫ (x)dx − fX |Y =y(x)dx
ˆ x −E

2

ˆ x +E
2

∫                (4.60) 

€ 

fX |Y=y
−∞

∞

∫ (x)dx =1	  => minimizing I implies maximizing 

€ 

I '= fX |Y =y(x)dx
ˆ x −E

2

ˆ x +E
2

∫  

Minimzing I’ can be accomplished only by assuming that the interval E for the error estimate 
is very small. Therefore, we can write: 
 

€ 

fX |Y=y(x) ≈ constant = 

€ 

fX |Y =y( ˆ x ) , 

€ 

∀x ∈ ˆ x − E /2; ˆ x + E /2[ ]              (4.61) 
 

€ 

I ?(y, ˆ x ) ≈ fX |Y =y( ˆ x ) dx = E ⋅ fX |Y =y( ˆ x )
ˆ x −E /2

ˆ x +E /2

∫                (4.62) 

 
Thus, the maximization of I’ implies the maximization of the probability density function 

€ 

fX |Y=y(x) . The value of x that maximizes the aposteriori probability density function is called 
maximum aposteriori estimator 

€ 

fX |Y =y(x)|x= ˆ x MAP
= max. 

 
Initially, we express the probability density function in logarithmic form: 
 

€ 

ln fX |Y =y(x) |x= ˆ x MAP
= max                  (4.63) 

 

€ 

∂
∂x

ln fX |Y =y(x) |x= ˆ x MAP
= 0                  (4.64) 

 

€ 

fX |Y=y(x) =
fY |X=x(y) f X (x)

fY (y)
                 (4.65) 

 

€ 

∂
∂x

ln
fY |X=x(y) fX (x)

f Y (y)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

|x= ˆ x MAP

= 0                 (4.66) 

 

€ 

∂
∂x

ln fY |X=x(y)+
∂
∂x

ln fX (x)− ln f Y (y)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

|x= ˆ x MAP

= 0               (4.67) 

 

€ 

∂
∂x

ln fY |X=x(y)+
∂
∂x

ln f X (x)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

|x= ˆ x MAP

= 0                (4.68) 

 



 

 
67 

Both MMSE and MAP estimators use the posterior probability density function but they 
extract different information and do not provide the same solution. The MMSE is the center  
of mass and the MAP is the mode of the probability density function. The expression for the 
posterior density includes the deterministic prior knowledge represented by the forward 
model. The knowledge about the observation noise and the apriori information about the 
desired paramter are also included. MAP is a complete framework for model-based 
approaches in information extraction.         
 
 
Maximum Likelihood Estimator (ML) 
 
If there is no information about the apriori statistical model of the unknown parameter x, we 
can declare that in the absence of any measurement or observation, x can have any value, 
with equal probabilites. Simply stated,  
 

       

€ 

fX (x) =constant, 

€ 

∀x ∈ R                                  (4.69) 
 

€ 

ˆ x ML  is that value of x that maximizes the apriori probability density function 

€ 

fY |X=x
(y) , 

 

€ 

∂
∂θ

ln fY |X=x(y)|x= ˆ x ML
             (4.70) 

 
Maximum Likelihood estimator is not an alternative for MMSE or MAP, ML is the solution 
in a particular case when there is no apriori information about the unknown parameter.  
The details of the Maximum Likelihood estimation are presented in the appendix. 
 

€ 

ˆ x ML =argmax

€ 

fY X=x
(y)                                (4.71) 

 
As the prior distribution becomes much wider, less informative, than the posterior 
distribution, the MAP estimate approaches the ML estimate. The MAP estimate is the mode 
of the posterior distribution. For unimodal, symmetric posterior distributions, the MAP 
estimate equals the conditional mean MMSE estimate. The MAP estimator requires a model 
for the prior distribution of the parameters. Since it uses the information in this apriori model, 
it is more accurate than the ML estimate. 
 
 
4.3.3   Generative Probabilistic Models 
 
Many content-based multimedia retrieval tasks can be seen as decision theory problems. In 
classification cases, a system has to decide whether an image belongs to one class or another. 
Even the ad hoc retrieval tasks, where the goal is to find relevant documents given a 
description of an information need, can be seen as decision theory problems: documents can 
be classified into relevant and non-relevant classes, or each document in a collection can be 
treated as a separate class and classify a query as belonging to one of these.  
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The generative probabilistic approach to information retrieval – finding the generating source 
of a piece of information – has proved successful in media specific tasks, like language 
modelling for text retrieval [192-194] and Gaussian mixture modelling for image retrieval 
[195-198].  
 
Because in information retrieval, the goal is to find the best document given a query, one 
could model the probability of a document given a document directly. This way of modelling 
the problem is known as discriminative classification. When there are many different 
possibilities, direct mapping becomes hard to learn and in such cases it is more useful to 
apply Bayesian inversion and estimates for each possibility. This approach is known as 
generative classification. Many possible sources for a query exist in information retrieval 
applications: each document in a collection can be a source. In the generative approach, a 
separate distribution is estimated for each of the documents in the collection.  
The generative image models are probability distributions over a high dimensional 
(continuous) feature space. The number of different samples that can be drawn is infinite. The 
models describe the location in the feature space where the likelihood to observe samples is 
higher and the type of variance that can be expected. If an image is represented by a set of 
samples 

€ 

X = {x1,...,xS} each described by an n-dimensional feature vector 

€ 

V = (v1,...,vn ), the 
nature of samples is independent of the models.  
 
 
4.3.3.1 Gaussian Mixture Models 
 
This dissertation is centered around image processing techniques, therefore the following 
paragraphs will explain various probabilistic models from the perspective of image modeling 
applications. The Gaussian image models are appropriate models to describe an ideal point in 
a feature space where all observations are assumed to be versions of this ideal feature vector 
that are randomly corrupted by many independent minimal influences [199]. In the text 
domain, it is easy to imagine an ideal concept that has several synonyms that have more or 
less the same meaning as the concept. In the image domain, this is equivalent to having one 
point in the feature space ideally representing the class of interest. All observations from this 
class can be seen as “synonyms”, versions of the ideal point that have been corrupted by 
independent causes (e.g. lighting, angle, haze). Because images are usually representations of 
complex scenes, instead of using a Gaussian distribution, mixtures of Gaussians are defined 
to model the images with multiple colors and textures [197]. In general, a finite mixture 
density is a weighted sum of a finite number C of density functions:  
     

 

€ 

fX ξ( ) = PC (ci )
i=1

C

∑ fX |C (ξ | ci )                          (4.72) 

 
The mixing weights 

€ 

PC (ci )  are the prior probabilities of the components 

€ 

ci  in the mixture. 
The density functions 

€ 

fX |C (ξ | ci )  are Gaussian and describe part of the total density. In this 
case,

€ 

PC  is the probability mass function and f is the density function.  
 
The usage of mixture models has been classified in [200] in two distinct classes: direct 
applications and indirect applications. Direct applications refer to situations in which it is 
believed that a number C of underlying categories or sources exist such that all observed 
samples belong to one of these categories. Indirect applications refer to situations in which 
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the link between probability distributions and categories is less clear and a mixture model is 
used only as a mathematical way of obtaining a tractable way to analyze the data. Modelling 
images using finite mixture models is usually between the direct and indirect applications. An 
image can contain only a finite number of classes and only one of the mixture components 
generates a class (e.g. one component describes the grass, another component describes the 
sky and another describes the water) and at the same time, the mixture model describes image 
samples without explicitly separating the components.  
 
Gaussian Mixture Models for Image Representation – The Gaussian mixture model can 
describe an image by capturing the main characteristics of that image. The samples in an 
image are assumed to be generated by a mixture of Gaussian sources, where the number of 
Gaussian components C is fixed for all images in the collection. A Gaussian mixture model is 
described by a set of parameters 

€ 

θ = θ1...θC{ }, each defining a single component. Each 
component 

€ 

ci  is described by its prior probability 

€ 

PC |θ (ci |θi ), the mean 

€ 

µ i  and the variance 
. The process of generating an image is the following: 

 
1. Take the Gaussian mixture model θ for the image 
2. For each sample ξ: 

 
(a) Pick a random component 

€ 

ci  from Gaussian mixture model θ according to the prior over 
components 

€ 

PC |θ (ci |θi ) 
 
(b) Draw a random sample from 

€ 

ci  according to the Gaussian distribution 

€ 

N(µi ,Σi ).  
 
In this case 

€ 

θi  is the observed variable. The mixture model from which the samples for a 
given image are drawn is known. However, which component 

€ 

ci  generated a given sample is 
unknown, meaning that the components 

€ 

ci  are unknown variables. The probability of 
drawing a single sample ξ from a Gaussian mixture model is defined as the marginalization 
over all possible components: 
 

    

€ 

fX |θ (ξ |θ) = PC |θ (ci |θi ) fX |C ,θ (ξ | ci ,θ)
i=1

C

∑                              (4.73) 

 
 

 
Figure 4.3 - Graphical representation of a Gaussian mixture model 
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Any distribution can be approximated closely by a mixture of Gaussians. The higher the 
number of components in the mixture the better the approximation can be. Keeping in mind 
that these models will be used for retrieval, a perfect description of the image is not the 
ultimate goal. The purpose is to find images that are similar to a query image. A perfect 
model would only be able to find exact matches but usually an operator seeks images 
showing similar latent concepts or classes and not identical feature signatures. Images can 
represent the same class at conceptual level but at signal level they can be very different. It is 
important also to avoid over-fitting. Experiments have shown that around eight components 
are usually enough to capture the most important aspects of an image.  
 
In general, the parameters of a specific document model are unknown and the only available 
information is the representation of documents – i.e. the feature vectors [201]. A common 
way to use the data is to assume that the feature vectors are observations from the models and 
use them as training samples to estimate the unknown model parameters.  
 
  
 
4.3.3.2   Latent Semantic Analysis (LSA) 
 
One typical scenario of human-machine interaction for information retrieval involves queries 
based on human natural language. The user formulates a request and expects the system to 
return a list of ranked relevant documents. Latent semantic analysis (LSA) [202] is an 
indexing and retrieval approach that maps documents and words in a collection to a new 
representation called latent semantic space. LSA takes the high dimensional representation of 
documents based on word frequencies [203] and applies a linear projection to reduce the 
dimensionality of the data set: singular value decomposition (SVD). The rationale behind this 
approach is that similarities between documents or between documents and queries can be 
more reliably estimated in the representation of a reduced latent space than in the feature 
vector representation.  
 
 
 
4.3.3.3   Probabilistic Latent Semantic Indexing (pLSI) 
 
The concept behind pLSI is a statistical model called the aspect model [204,205] – a latent 
variable model representing the general co-occurrence data. The model associates an 
unobserved class variable 

€ 

Z = {z1,...,zK} with each observation – with each occurrence of a 
word 

€ 

w ∈W = {w1,...,wM } in a document 

€ 

d ∈ D = {d1,...,dN} .  
 
pLSI is a generative probabilistic model that is used usually to describe large but finite 
collections of text or image data and for this reason we use discrete probability functions to 
explain it. The model can be defined with the following steps: 
 

• Select a document 

€ 

di  with probability 

€ 

pD(di )  
• Pick a latent class 

€ 

zi  with probability 

€ 

pZ |D(zi | di ) 
• Generate a word 

€ 

wi  with probability 

€ 

pW |Z (wi | zi )  
 
As a result one obtains an observed pair 

€ 

(d,w) while the latent class variable Z is discarded.  
Translating the process into a joint probability model results in the expression: 
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€ 

pD ,W (di ,wi ) = pD(di ) ⋅ pW |D(wi | di )       
       (4.74) 

€ 

pW |D(wi | di ) = pW |Z
z
∑ wi | zi( )pZ |D zi | di( )  

 
To derive 

€ 

pW |D  one has to sum over the possible choices of Z which could have generated the 
observation. The aspect model is a statistcal mixture model based on two assumptions of 
independence: (1) the pair of observations 

€ 

(di ,wi ) are assumed to be generated independently 
and (2) conditioned on latent class 

€ 

zi , words 

€ 

wi  are generated independently of the specific 
document identity. The number of topics 

€ 

zi  is smaller than the number of documents and thus 
Z acts as a bottleneck variable in predicting W conditioned on D. Document-specific densities 

€ 

pW |D  are obtained by a combination of aspects 

€ 

pW |Z . Documents are not assigned to clusters, 
they are characterized by a specific mixture of topics with weights 

€ 

pZ |D . Following the 
likelihood principle, 

€ 

pD , 

€ 

pZ |D  and 

€ 

pW |Z  are determined by maximizing the log-likelihood 
function: 
 
               

€ 

L = n(di ,wi ) log pD ,W (di ,wi )
wi∈W
∑

di∈D
∑                                    (4.75) 

 
where 

€ 

n(di ,wi )  is the term-frequency matrix, i.e. the number of times word 

€ 

wi  occurred in 
document

€ 

di . The same probabilistic model can be described using the Bayes rule: 
 
  

€ 

pD ,W (di ,wi ) = pZ (zi )pW |Z (wi | zi )pD|Z (di | zi )
zi∈Z
∑                                            (4.76) 

 
The standard procedure for maximum likelihood estimation in latent variable models is the 
Expectation-Maximization (EM) algorithm. EM alternates two steps: (1) an expectation step 
where posterior probabilities are computed from the latent variables Z based on current 
estimates of the parameters and (2) a maximization step where parameters are updated for 
given posterior probabilities computed in the previous E-step. For the aspect model in the 
symmetric parametrization, the E-step derived with Bayes’ rule is: 
 

 

€ 

pZ |D ,W (zi | di ,wi ) =
pZ (zi )pD|Z (di | zi )pW |Z (wi | zi )
pZ ' (zi ' )pD|Z ' (di | zi ' )pW |Z ' (wi | zi ' )

z '
∑

                       (4.77) 

 
which is the probability that a word w in a particular document or context  is explained by the 
factor corresponding to Z. The M-step re-estimation is: 
 

                

€ 

pW |Z (wi | zi ) =

n(di ,wi )pZ |D ,W (zi | di ,wi )
di

∑

n(di ,wi ' )pZ |D ,W ' (zi | di ,wi ' )
di ,wi '
∑

                        (4.78) 

 
 



 

 
72 

                  

€ 

pD|Z (di | zi ) =

n(di ,wi )pZ |D ,W (zi | di ,wi )
wi

∑

pD '|W (di ' ,wi )pZ |D ',W (zi | di ' ,wi )
di ',wi

∑
                          (4.79) 

 
       

€ 

fZ (zi ) =
1
R

n(di ,wi ) fZ |D ,W (zi | di ,wi )
di ,wi

∑                                        (4.80) 

 
with 

€ 

R = n(di ,wi )
d ,w
∑  

 
 
 
4.3.3.4 Latent Dirichlet Allocation 
 
Latent Dirichlet Allocation (LDA) [216] is a generative model that allows the sets of 
observations to be described by unobserved (i.e. latent) variables that explain why some parts 
of the data are similar. Before presenting the mathematical model of LDA, prior explanations 
are necessary.  
 

• A generative model randomly generates observable data according to the latent 
variables and it specifies a joint probability distribution over observations and label 
sequences. Generative models are used for modeling data directly (i.e. modeling 
observations drawn from a probability density function), or as an intermediate step to 
forming a conditional probability density function. For example, if the observations 
are words grouped into text documents, LDA regards each document as a mixture of a 
small number of hidden topics and considers each word as drawn from a topic.  

 
• Latent Dirichlet Allocation is a topic model – i.e. a statistical model for discovering 

the hidden or abstract concepts that occur in a collection of documents. Intuitively, if 
a text document is about a particular topic, the expectation is that particular words 
will appear more frequently than others, e.g. words such as “elections”, 
“government”, “laws” will appear more often in documents about the topic “politics”; 
words such as “live”, “concert”, “band” will appear more often in documents about 
the topic “music”. Connecting words such as “the”, “and”, “is” will appear equally in 
both topics. A document usually contains multiple topics in various proportions, e.g. a 
document that is 80% about music and 20% politics will intuitively contain more 
“music” words than “politics” words. In the image domain, a large satellite image 
taken over the sea will usually contain more “water” pixels than “island” or “land” 
pixels. A topic can be regarded as the semantic context of a document and is not 
strongly defined but it is identified through supervised learning and manual labeling. 
A word may occur in several topics with various probabilities but with very different 
semantic contexts. For example the word “heart” can belong to the topic “medicine” 
together with other contextual words such as “cardiology”, “EKG”, “doctor”, “chest”, 
“physical” and the same word “heart” can belong to the topic “relationships” together 
with other words such as “feelings”, “St. Valentine”, “love”, etc. The topic is the 
semantic context describing an idea or a concept. A topic model describes this 
intuitive understanding using mathematical frameworks and allows the examination 
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of various sets of documents and the discovery of the latent topics and of the topics in 
each document.  

 
• LDA is a Bayesian model in which each document is represented as a mixture of 

particular hidden topics and each topic is a discrete probability distribution that 
explains how common each word is in each topic. LDA understands documents are 
collections of weighted topics from which words are generated. The topic distribution 
is assumed to have a Dirichlet prior. For an uniform prior distribution, the pLSA 
model is similar to the LDA model.  

 
• The Dirichlet distribution is over multinomials that are implemented using arrays of 

floating point values that sum to 1. The learning algorithm is designed to 
simultaneously infer the Dirichlet hyperparameters that generate both the topic 
distribution for each document and the word distribution for each topic. A 
hyperparameter is a parameter of a probability distribution rather than of the model 
itself. The only real parameter is the chosen number of topics.  

 
• A mixture model is a probabilistic model that describes the presence of 

subpopulations within an overall population, without requiring that an observed 
dataset should identify the sub-population to which an individual observation belongs. 
Formally a mixture model corresponds to the mixture distribution that represents the 
probability distribution of observations in the overall population. Mixture models are 
used to make statistical inferences about the properties of the sub-populations given 
only observations on the sampled population, without sub-population identity 
information.  

 
LDA treats data as observations that arise from a generative model composed of latent 
variables. The latent variables reflect the semantic structure of the document. Inference aims 
at answering the question “what are the topics that summarize the document network?”. New 
data are predicted by the estimated topic model, thus explaining how the new data fit into the 
estimated topic structures. The goal is to infer the underlying topic structure from 
observations.  
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Variable Type Definition 
K Integer The number of  topics 
V Integer The number of words in the vocabulary 

M Integer The number of documents in the corpus 

€ 

Nd=1...M  Integer The number of words in document d 

 
N 

 
Integer Total number of words in all documents, 

€ 

N = Nd
d=1

M

∑  

€ 

αk=1...K  Positive real Prior weight of topic k in a document, usually the same 
for all topics, normally a number less than 1.  

α  K-dimension vector of  
positive reals 

Collection of all 

€ 

αK  values, is single vector 

€ 

βw=1...V  Positive real Prior weight of word w in a topic, usually the same for all 
words; normally a number much less than 1. 

β  V-dimension vector of 
positive reals 

Collection of all 

€ 

βw values, is a single vector 

€ 

φk=1...K ,w=1...V  Probability, [0,1] Probability of word w occuring in topic k  

€ 

φ
k=1...K

 V-dimension vector of 
probabilities, sum to 1 

Distribution of words in topic k 

€ 

θd=1...M ,k=1...K  Probability, [0,1] Probability of topic k occuring in document d  
for a given word 

€ 

θ d=1...M  K-dimension vector of 
probabilties, sum to 1 

Distribution of topics in document d 

€ 

zd=1...M ,w=1...Nd
 Integer between 1 and K Mixture indicator that chooses the topic  

for the word w in document d 
Z N-dimension vector of 

integers between 1 and K 
Identity of topic of all words in all documents 

€ 

wd=1...M ,w=1...Nd
 Integer between 1 and V Identity of word w in document d 

W N-dimension vector of 
integers between 1 and V 

Identity of all words in all documents  

Table 1 – Definition of variables in the LDA model 
 
The random variables can be described with the following: 
 

€ 

φ
k=1...K

~ DirichletV β( )
θ d=1...M ~ DirichletK (α)
zd=1...M ,w=1...Nd

~ CategoricalK θ d( )

wd ,w ~ CategoricalV φ zdw( )
                (4.81) 

 
Note – these notations will be used again in chapter 5 
 

€ 

ϕ = ϕ
k{ }

k=1

K
- is a 

€ 

K ×V  matrix 

 

€ 

θ = θ d{ }d=1

M  - is a 

€ 

M ×K  matrix 
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Figure 4.4 describes the dependencies among the variables of the LDA model. The boxes are 
“plates” representing replicates. The outer plate represents documents, while the inner plate 
represents the repeated choice of topics and words within a document. M is the number of 
documents, N is the number of words in a document.  
 

• α is the parameter of the Dirichlet prior on the per-document topic distributions 
• β is the parameter of the Dirichlet prior on the per-topic word distribution 
•  is the topic distribution for document i 
• 

€ 

φk  is the word distribution for topic k  
• 

€ 

zij  is the topic for the j-th word in document i 
• 

€ 

wij  is the specific word 
• K – the number of topics considered in the model 
• φ is a 

€ 

K ×V  matrix, with each row representing the word distribution of a topic.  
 
NOTE - 

€ 

wij  are the only observable variables, while all the other are latent variables.  
 

 
Figure 4.4 – Graphical representation of the LDA model. The boxes represent replicates. The 
outer rectangle represents documents while the inner rectangle represents the repeated choice 
of topics and words within a document.  
 
The model is using the following three levels of data descriptors: corpus (the collection the 
documents), documents and words in the vocabulary, defined as: 
 

•  Word = basic unit w defined to be an item from a vocabulary  
•  Document = a sequence of N words denoted by 

€ 

W = {w1,...wN} 
•  Corpus = collection of M documents denoted by 

€ 

D = {d1,...,dM }  
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The generative process implies that documents are represented as random mixtures over 
latent topics, where each topic is described by a distribution over words. Considering a 
corpus D, with M documents, each of length m the generative process for each document is: 
 
1. Choose 

€ 

θi ~ Dir(α) , 

€ 

i ∈ {1,...,M} and Dir (α) is the Dirichlet distribution for parameter α 
2. Choose 

€ 

φk ~ Dir(β) , 

€ 

k ∈ {1,...,K}  
3. For each of the word positions i, j where 

€ 

j ∈ {1,...,Ni}  and 

€ 

i ∈ {1,...,M} 
 
 (a) Choose a topic 

€ 

zi , j ~ Multinomial θi( )  

 (b) Choose a word 

€ 

ωi , j ~ Multinomial φzi , j( )  
 
The Multinomial distribution refers to multinomial with only one trial – equivalent with the 
Categorial distribution. The categorical, the multinomial and the Dirichlet distributions are 
explained in detail in the Appendix. The Dirichlet random variable has the probability density 
function on the Euclidean space 

€ 

RK−1 defined as: 
 

€ 

fθ ;α (θ;α) =
Γ α i

i=1

K

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

Γ α i( )
i=1

K

∏
θ1
α i−1...θK

αK −1 

 
Exchangeability - The core assumption in LDA is ‘bag-of-words’. The words are generated 
by topics – i.e. fixed conditional distribution functions - and these topics are infinitely 
exchangeable within a document. The theory of exchangeability states that a finite set of 
random variables is exchangeable if the joint distribution is invariant to permutation. An 
infinite sequence of random variables is infinitely exchangeable if every finite subsequence is 
exchangeable.  
 
The total probability of the Latent Dirichlet Allocation model is: 
 

€ 

P(W ,Z ,θ,φ;α,β) = P φi;β( )
i=1

K

∏ P θ j;α( )
j=1

M

∏ P Z j ,t |θ j( )P Wj ,t |φZ j ,t( )
t=1

N

∏             (4.82)           

The key inferential problem that requires solution is computing the posterior distribution of 
the latent variables. Approximation methods for the posterior distribution include variational 
Bayes, Gibbs sampling (described in the Appendix) and expectation propagation. 
 
LDA and other topic models are new, interesting developments in machine learning that 
promise to increase the reliability and performance of data mining processes. Recently, the 
LDA model has been applied for data mining in different domains: 

 
• Mining business topics in source codes for open source and commercial systems  
• Extraction of 400 topics such as ‘September 11 attacks’, ‘Harry Potter’, ‘basketball’ 

from a corpus of 330.000 New York Time news articles 
• Classification of topics from abstracts published in scientific proceedings  
• Extraction of topics from social networks and applications on a collection of emails 
• Analysis of the 160.000 abstracts from the ‘Cite seer’ computer science collection 
• Clustering of various biological concepts from a protein related corpus 
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• Annotating large collections of digital photographs in multimedia databases 
• Classifying and annotating satellite images [10, 217] 

 
 

 
4.4  Information Theory 
 
This section briefly describes the concept of information and the essential properties in 
estimation theory. The best-known information measures are Shannon’s entropy [166] and 
Kullback-Leibler divergence [33, 34]. In this disseration, the following measures have been 
applied in the design of image processing and data mining algorithms. For this reason, we 
present only the definitions for discrete random variables.  
 
 
4.4.1 Shannon’s measure of information 
 
For the discrete random variable X with n outcomes 

€ 

ξ1,...,ξn{ } , the probability that the 
outcome will be 

€ 

ξi  is 

€ 

pX (ξi ). The information contained in a message about the outcome of X 
is 

€ 

− log pX (ξi ). The base of the algorithm is 2 and the unit of information is the bit [263]. 
 
The average information or entropy of a message about the outcome of X is: 
 

€ 

HX = − pX (ξi ) log pX (ξi )
i=1

n

∑              (4.83) 

 
For the discrete random variable X with n outcomes 

€ 

ξ1,...,ξn{ }  and the discrete random 
variable Y with m outcomes 

€ 

ρ1,...,ρm{ }, the probability that the outcome of X is 

€ 

ξi  is 

€ 

pX (ξi ) 
and the outcome of Y is 

€ 

ρ j  is 

€ 

pXY ξi ,ρ j( ) . The amount of information contained in a message 
about the outcome of X and Y is 

€ 

− log pXY (ξi ,ρ j ) . The average information or joint entropy of 
a message about the outcome X and Y is: 
 

           

€ 

HXY = − pXY (ξi ,ρ j ) log pXY (ξi ,ρ j )
j=1

m

∑
i=1

n

∑                (4.84) 

 
Properties of Shannon’s Measure of Information 
 

• 

€ 

HX is continuous in the 

€ 

pX (ξi ) 
• 

€ 

HX  is symmetric, that is 

€ 

HX = HY  when 

€ 

pY (ξ1) = pX (ξ2 )  and 

€ 

pY (ξ2 ) = pX (ξ1) .  
More generally,

€ 

HX is invariant under permutation of the distribution function

€ 

pX  
• 

€ 

HX  is additive – when X and Y are independent random variables, 

€ 

HXY = HX +HY  
• 

€ 

HX  is maximum when all the 

€ 

pX (ξi )’s are equal 
• 

€ 

HX  is minimum when one of the 

€ 

pX (ξi ) =1  
Theorem - X is a random variable with n outcomes 

€ 

ξ1,...,ξn{ }  and the probability that the 
outcome will be 

€ 

ξi  is 

€ 

pX (ξi ). Then:  
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• 

€ 

HX ≤ logn , with

€ 

HX = logn  if and only if for all i it is true that 

€ 

pX (ξi ) =1/n  
• 

€ 

HX ≥ 0 , with  

€ 

HX = 0  if and only if there exists a k such that 

€ 

pX (ξk ) =1 
 
Maximum Entropy - X is a random variable with n outcomes 

€ 

ξ1,...,ξn{ } . These outcomes 
occur with probability 

€ 

pX (ξi ) =1/n  for all i. The average amount of information contained in 
a message about the outcome of X:  
 

€ 

HX = − pX (ξi ) log pX (ξi )
i=1

n

∑ = −
1
n
log 1

n
= −

1
n
log 1

n
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1=
i=1

n

∑
i=1

n

∑ −
1
n
log 1

n
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ n = − log 1

n
= logn 

        (4.86) 
 
Conditional Entropy – The conditional entropy of a random variable X given another 
random variable Y is the expected value of the entropies of the conditional distributions, 
averaged over the conditioning random variable:  
 

€ 

HY |X = − pXY
j=1

m

∑
i=1

n

∑ (ξi ,ρ j ) log pY |X ρ j | xi( )                            (4.87) 

 
 
4.4.2 Mutual information 
 
The entropy of a random variable is a measure of the uncertainity of the random variable, it is 
a measure of the amount of information required on average to describe the random variable. 
The relative entropy is a measure of the distance between two distributions. Mutual 
information is a measure of the amount of information that one random variable contains 
about another random variable. It is the reduction in the uncertainity of one random variable 
due to the knowledge of the other. Consider two random variables X and Y with a joint 
probability mass function 

€ 

pXY ξi ,ρ j( )  and marginal probability mass functions 

€ 

pX (ξi ) 
and

€ 

pY (ρ j ). The mutual information 

€ 

I(X ,Y ) is the relative entropy between the joint 
distribution and the product distribution 

€ 

pX (ξi )pY (ρi ): 

€ 

I(X ,Y ) = pXY
j=1

m

∑
i=1

n

∑ ξi ,ρ j( ) log
pXY ξi ,ρ j( )
pX (ξi )pY (ρ j )

               (4.88) 

 

€ 

I(X ,Y ) = H (X )+H (Y )−H (X ,Y ) = H (X )−H (X |Y ) = H (Y )−H (Y | X )                           (4.89)  
  
Mutual information is a measure of the information in the random variable Y about the 
random variable X. If no information about X is recognized in Y, then 

€ 

I(X ,Y ) = 0 .  The main 
properties of mutual information are presented in the Appendix [263].  
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4.4.3 Kullback-Leibler divergence 
 
The relative entropy is a measure of the distance between two distributions. In statistics it 
arises as the log of the likelihood function. The relative entropy 

€ 

KL(p || q)  is a measure of the 
inefficiency of assuming that the distribution is q when the true distribution is p.  
 

    

€ 

KL p || q( ) = pX (ξi ) log
i=1

n

∑ pX (ξi )
qX (ξi )

                       (4.90)  

 
The divergence is interpreted as a measure describing the amount of information that a 
measurement gives about the truth of a given model as compared to a second model. If 

€ 

qX (ξ) 
is uniform, the divergence is nothing else but the Shannon entropy for the random variable X. 
The Shannon entropy can be interpreted as the amount of information in a model 

€ 

pX (ξ)  of X 
compared to the maximum incertitude model – the uniform distribution. The uniform 
distribution has the maximum entropy. The main properties of the relative entropy and the 
relationships to mutual information and entropy are presented in the Appendix.  
 
 
 

Conclusion 

This chapter focused on the theoretical concepts of this dissertation that are used to build the 
basis of the contributions. The concepts of stochastic image analysis, stochastic processes, 
Bayesian inference with emphasis on generative probabilistic models were defined and 
explained. Greater emphasis was put on Latent Dirichlet Allocation and information theory 
because these topics are used to design the algorithms in the contributions sections. In the 
next section of this dissertation these concepts are applied to bridge the semantic gap between 
machine and human languages and to design a concept for advanced visualization of satellite 
images.   
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5 
 
 
 
 
 
 
 
 
 
 
 
 

Bridging the Gap for Semantic Annotation of 
Satellite Images 

 
 

Although state-of-the-art image processing tools are broadly available, all mapping 
operations are still performed manually or in a hybrid manner because there are still 
important difficulties in creating thematic maps of the land cover using automatic 
classification methods. Output products derived from classification algorithms do not contain 
exclusive mapping units but mixtures of heterogeneous land cover classes (i.e. clusters), as 
opposed to the cartographic data that use a homogeneous array of information classes (i.e. 
conceptual areas). 

 
In Earth Observation as well as in other applications of computer vision and image 
processing, the end-users require a homogenous, conceptual object and not a pixel-based 
map. The first part of the contributions describes a method to group together similar pixels 
belonging to the same information classes (i.e. concept) with high-level semantics (e.g. user 
defined taxonomy in GIS layers) and discover the semantic rules that bridge the three 
processing layers, from (1) primitive features with no semantic meaning, to (2) intermediate-
level semantics indexing a spectral map and to (3) high-level human-centerd semantics 
revealed in cartographic products. 
 
This chapter introduces a method to semantically annotate satellite images and to map the 
low-level features to the high-level human concepts, thus bridging the semantic gap between 
the human and computer languages. (e.g. CORINE LAND COVER CLC 2000 [187]).  
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5.1 Introduction        
 
 
The books in a library, the journals in an online database are usually organized by the 

domains to which they belong, the newspapers on the stands are displayed by topics of 
interest that easily guide the reader, the articles in a scientific library are grouped together by 
their relevance to specific fields of study. If you take any daily newspaper, you will observe 
that it is divided into sections (politics, science, economics, world news). Take another 
newspaper and there is a high chance that its sections will be very similar to the previous 
paper, maybe with slightly different names (politics, science & tech, economy, world). If you 
found a newspaper that has no sections but only articles written and laid out arbitrarily, you 
would have no problem to classify every piece of news to the section it belongs to. The 
librarian doesn’t have to read all the books in order to know to which domain they belong to, 
the person at the news stand doesn’t read every paper to know where to display it and we 
don’t have to go through all the newspapers to categorize articles into specific sections. It is 
the same with the chapter you are reading right now, you only have to skim through the text 
to know what kind of subject it covers. This is a dilemma that has plagued philosophy and 
science since Plato 2400 years ago - people have much more knowledge about an observation 
than appears to be present in the information to which they have been exposed. How do 
people acquire as much knowledge as they do on the basis of as little information as they 
receive and how does a small set of events lead to generalizations that are usually correct is a 
persistent mystery of human cognition that has been observed in various fields of science, 
philosophy, psychology, linguistics, computer science, artificial intelligence, etc. Centuries 
ago, Plato’s solution to this puzzle was that people already possess their knowledge and need 
only hints and contemplation to retrieve it from the observations. However, time has brought 
up new views upon this matter and scientists explained it through simple mechanisms of 
induction [209] that were later translated into computer language and implemented for 
information retrieval [203].  
 
Some domains of knowledge (e.g. text) contain vast numbers of interrelations between the 
observations (words) of a specific event (e.g. article, book) that can greatly amplify learning 
by a process of inference. Learning leads directly to the discovery of latent information in the 
events (documents, text corpus) that in turn may be generalized to previously unseen ones. In 
order to create and implement computer models that discover latent knowledge in various 
sets of data, scientists needed to understand how the human cognition systems reveal 
information from these datasets.     

 
First, some definitions are required. A concept is a category of observations linked through 
the similarity of features [214]. For example, all the houses in the world are clustered around 
the concept house that defines a large set of objects with similar features, properties and 
functions. This is the first level of understanding – the observation level. The natural 
inference of fuzzy probabilistic concepts relies on some understanding, some mechanism by 
which experience with examples can lead to treating new instances more or less equivalently 
[209]. While the basic features (words) create the first level of understanding concepts, these 
features also combine into a common latent human-centered feature identity of the event they 
belong to (text document) which is called topic and they create the second level of 
understanding – the latent level. For example, a group of first level concepts (house, garden, 
street) combined with different weights may be grouped in second level topics under another 
name (Residential Areas). By analyzing and associating first-level concepts (words) into 
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measurable and comparable groups (topics), it is possible to categorize events (documents). 
As a simple example, the articles in the newspaper (events) can be classified into topics of 
interest by the words they contain. A political item will contain different words than the 
science reviews. The problem of synonymy appears both in text and image domains. While in 
text applications the concept of synonymy is clear, in imaging tasks, an ideal point exists in 
the feature space and all observations are assumed to be versions of this ideal feature vector 
that are randomly corrupted by many independent small influences (e.g. optical, electrical) 
[215]. Spectral mapping and clustering techniques are created to solve this challenge and 
reduce the size of the vocabulary (visual vocabulary in the case of images) from 

€ 

28 , 

€ 

211 
visual words to only a few ideal clusters, or stable points that conceptually represent the same 
class. (figure 5.1) 
 

 
Figure 5.1 – Synonymy in text and image domains 

 
 
The semantic rules that link the primitive features with the user-defined high-level semantics 
were discovered by using the LDA model presented in the previous chapter. Image clustering 
techniques provide as output maps with heterogeneous spectral classes having low-level 
semantic meaning and are not able to exclusively generate existent homogeneous land use 
land cover maps. Figure 5.2 shows the workflow of our method for discovering the semantic 
rules. Each step of the processing chain will be explained in detail in the following sections. 

 
Figure 5.2: Workflow for discovering the semantic rules between the raw satellite data, the 
intermediate-level spectral map with limited semantic labels and the high-level taxonomy of 
cartographic products. 
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5.2   Spectral Signatures And Semantic Content Extraction 
 
Geospatial users require information or information-related services that are focused, concise 
and reliable, with as low as possible time and money expenses, provided in forms compatible 
with the user’s own activities. In the current Earth Observation (EO) scenario, the archiving 
centers offer mainly data, images and other ‘low-level’ products. Usually these products 
require expert-users to extract specific information from those data or images. With all these 
considered, during the past few years several research projects developed state-of-the-art 
tools that add value to the satellite products trying to reach the users’ final needs.  
 
To discover the semantic rules that link primitive features to the high-level semantics 
ontologies of cartographic product, we begin by generating a spectral map, i.e. a cluster map. 
To achieve this goal we employ the automatic classifier described  in [63].  Soilmapper is a 
purely spectral, per-pixel rule-based classifier, based solely on the spectral domain and prior 
knowledge retrieved from the remote sensing literature.  It requires no training and performs 
a fully unsupervised preliminary classification over multiple sensors’ images calibrated into 
planetary reflectance. The degree of user supervision required to detect spectral rule-based 
categories is the same as unsupervised data clustering and far inferior to reference sample 
selection required by supervised classifiers. The symbolic meaning (i.e. level of abstraction) 
of the spectral categories (e.g. strong vegetation, deep water) is intermediate between those 
(low) of clusters (e.g. n-th cluster) and segments (e.g. m-th segment) and those (high) of land 
cover (information) classes (e.g. forest, water bodies, agriculture field). The classifier is 
based on prior spectral knowledge. The following paragraph describes the implementation 
characteristics [63]. 
 
Pattern recognition is based exclusively on known spectral signatures of the target classes 
taken from the remote sensing literature and adapted as fuzzy data templates. This implies 
that the classification system is pixel-based (context-insensitive) and purely spectral. It uses a 
set of spectral rules and the mapping system employs no supervised data learning mechanism 
to dynamically generate new rules. The system maps each pixel data vector into a finite set of 
discrete, mutually exclusive and exhaustive spectral categories (labels) adapted for Landsat 
TM and Landsat ETM+ imagery calibrated into planetary reflectance (albedo) and at-satellite 
temperature. The labels are adaptable to other space borne imaging satellite sensors sensitive 
to multi-spectral and panchromatic portions of the electromagnetic spectrum (e.g. Advanced 
Spaceborne Thermal Emission and Reflection Radiometer ASTER and System pour 
l'Observation de la Terre SPOT-4 and SPOT-5). A property that is very important is the 
consistency of the system in terms of one-to-one or many-to-one relationships with the set of 
information classes in other high-level semantic systems. Figure 5.3 shows the possible 
relations between the spectral categories and other classification schemes [63]. 
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Figure 5.3 – The correspondence between high-level human-centered semantic classes and 
intermediate-level semantic classes generated by the unsupervised classifier 

 
First-level computation of the spectral types consists of: 
 

• Spectral fuzzy rules generated from spectral reflectance curves extracted from remote 
sensing for Earth Observation literature and partitioned into different portions of the 
electromagnetic spectrum. These rules are implemented as logical expressions of 
scalar numerical variables combined with relational operators (e.g.  >; <) and logical 
operators (e.g. AND, OR) 

 
• Feature extraction and fuzzy-sets computation started from a calibrated set of spectral 

bands. 
 
The second-level processing step of the spectral categories consists of a hierarchy of logical 
expressions of binary variables. These binary variables are the outputs of spectral rules and 
FSs computed during the first-level processing.  The output product of the proposed image 
mapping system is a discrete map consisting of kernel spectral layers, equivalent to a 
preliminary map. A brief description of the system’s architecture is presented in figure 5.4 
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Figure 5.4: Physical model architecture & workflow. The system requires as input all the 
spectral bands from the sensor and provides as output a map with classes having 
intermediate-level semantic meaning. 
 
A digital image is a two-dimensional array of pixels. Each pixel has an intensity value 
represented by a digital number (DN) and a location address referenced by its row and 
column numbers. According to the classification scheme adopted and the input sensor, the 
model maps all the pixels in the satellite image to a reduced number of spectral classes. A 
newer version of the application tries to adapt the mapping schemes to a fixed number of 
classes (57) disregarding the input sensor. Summarized below are the main characteristics of 
the physical model [63]: 
 

· It requires as input a sensor-specific Radiometric Calibration and Correction 
algorithms to transform the digital numbers in each band of the remotely sensed 
image into values of planetary reflectance and at-satellite temperature. Provided with 
this, the pre-mapping system works as an independent multi-platform physical model, 
applicable to a large array of imaging sensors. 

· It performs a fully automatic classification, requiring no training data or supervision  
· As output it generates a preliminary spectral map whose pixels are labelled with 

intermediate level semantic meaning, between the low-level meaning of pixels, 
clusters or segments values and the high-level semantic meaning of land cover classes 
(e.g. Corine Land Cover 2000) 
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The physical model generates three layers of maps, with various number of spectral classes.  
A large set of 85 classes, an intermediate set of 41 and a small set of 16. The most recent 
version of the application permits also an intermediate set of 27 classes. This finite set of 
discrete values becomes the input vocabulary in the training stage of the workflow. In the 
final phase, this vocabulary explains the rules that link the pixels in the spectral map to the 
high-level cartographic layers of CLC 2000.  
 
 
5.3  Map Label Learning Using Latent Dirichlet Allocation Model  
 
The algorithm described in this section bridges the semantic gap between the low-level 
features and the cartographic products with high-level semantics. In the previous section we 
presented the classifier used to obtain a reduced map of spectral classes with intermediate-
level semantics. These classes are used in this section to create the vocabulary of visual-
words that will describe the maps’ ontologies. 

 
 

5.3.1 Latent Dirichlet Allocation 
 
The Latent Dirichlet Model (LDA) is employed to correlate the heterogeneous pixels in a 
spectral map and to describe the corresponding information classes, by following the one-to-
one or many-to-one rules. As described in the previous chapter, LDA is a generative 
probabilistic model for collections of discrete data. Generative models are random sources 
that can generate infinite sequences of samples according to a probability distribution. LDA 
was created to describe large collections of digital text documents and recently applied in 
classification and semantic annotation of satellite images [10], [217].   

 
 
5.3.2 Document Definition – Matching Images And Words 
 
LDA is a three-level hierarchical Bayesian model, in which each document in the collection 
is modelled as a finite random mixture over a latent set of topics. Each topic in turn is 
modelled as a probability distribution over a set of words in the vocabulary. Figure 5.5 shows 
the layering of information used within LDA by introducing a set of latent topics to describe 
documents in the text collection. 
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Figure 5.5 – LDA model finds latent topics to describe documents in a text collection. The 
application of a model for natural language processing on satellite images requires the 
definition of an analogy between the terminologies used. The text-based model is using the 
following three levels of data descriptors: text corpus (the collection of documents), 
documents and words in the vocabulary: 
 

• Word = basic unit w defined to be an item from a vocabulary  
• Document d = a sequence of N words denoted by 

€ 

W d  
• Corpus = collection of M documents denoted by W  

 
The following correlations with the image domain are created: 
 

• A visual-word w is a spectral class obtained in the pre-mapping phase performed by 
the physical model. The number of visual-words in the vocabulary is strictly related 
to the classification scheme adopted. Pixel values are indices to a table provided with 
intermediate-level semantic meaning. For case studies performed on Landsat images 
the vocabulary has 16, 27, 41 and 85 visual-words. 
 

•  A visual-document is a window of the image (tile). Its size was chosen similar to the 
size of the minimum mapping unit (MMU) of the land use land cover vector system 
to be described or generated. For studies performed on CLC 2000, the minimum 
mapping unit is 25 ha which corresponds to a tile of 15 X 15 pixels (Landsat) and 50 
X 50 pixels (SPOT).  

 
The visual-corpus  is the satellite image to be annotated. All the documents yield the corpus. 
The LDA model works under the bag-of-words assumption, in which the order of words in 
the document is ignored and the image is represented as a random sequence of N visual 
words. However, extracting and separately analyzing the documents, i.e. image tiles, implies 
a spatial delimitation. Thus, the results depend on the implicit contextual distribution of the 
words in the document; this component is explained exclusively by the size of the patches. 
Spatial relationships have been considered in a transformed LDA model [218] applied for 
color images with relatively homogeneous structures. However, this method is not suitable to 
remote sensing data due to the difficulties in geometrically delimiting the image objects 
[219]. Each visual-document is described by a distribution over visual-words in the form of 
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frequency-count vector (histogram). LDA models each word in a document as a sample from 
a mixture model, where the mixture components can be viewed as representations of latent 
topics. Each document is described as a probability distribution over latent topics and each 
topic in turn is a distribution over a fixed set of words from the vocabulary. The LDA model 
learns the latent topics structure without use of background knowledge. 

 
 

 Figure 5.6  - Text – Image domains analogy 
 
 

 
5.3.3   LDA Generative Process for Image Annotation 
 
The visual documents are represented as a sequence of N visual-words	   from the visual 
vocabulary (i.e. spectral map). The LDA model discovers K latent topics and assigns one of 
the inferred topics to each pixel in the image. The number of latent topics is equal to the 
number of high-level semantic classes in CLC 2000. Therefore, by introducing a new layer of 
information between the words-level and the documents-level, each visual-document is 
represented as a probability distribution over the set of topics and each topic in turn as a 
probability distribution over the visual words in the vocabulary. The number of topics to 
describe the image is pre-defined by the user.  
 
 
LDA assumes the following generative process for each image tile in the satellite scene:  
 

1) Choose a K-dimensional Dirichlet random variable 

€ 

θi ~ Dir(α), where K is the 
number of topics in the collection K = {5, 15, 44} to correspond with the number of 
classes in the hierarchical semantic level of CLC data, 

€ 

θd  is the topic distribution for 
document d and 

€ 

i ∈ {1,...,M} 
 

2) Choose 

€ 

φk ~ Dir(β) , where 

€ 

k ∈ {1...K} and 

€ 

ϕk is the word distribution for topic k 
 

3) For each of the word positions: 
 

• Choose a topic 

€ 

zd ,w ~  Multinomial (θd )  
• Choose a word 

€ 

wd ,w ~ Multinomial φZd ,w( )   
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The multinomial distribution here is the multinomial with only one trial (categorical), as 
explained in the Appendix. The joint distribution of all known and hidden variables given the 
hyperparameters is: 
 

€ 

p W ,Z ,θ d ,φ |α,β( ) = p wd ,w |φ Zd ,w

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ p zd ,w |θ d( ) ⋅ p θ d |α( ) ⋅

w=1

Nd

∏ p φ |β( )                                   (5.1) 

 
This joint distribution is useful as the basis for other derivations. The probability that a word 

€ 

wd ,w instantiates a particular term t from the vocabulary given the LDA parameters is obtained 
by marginalizing 

€ 

zd ,w  from the word plate and omitting the parameter distributions: 
 
 

€ 

p wd ,w = t |θd ,φ( ) = p wd ,w = t |φk( )
k=1

K

∑ p zd ,w = k |θd( )                (5.2) 

 
The likelihoods of a document 

€ 

W d and of the corpus 

€ 

W = W d{ }d=1

M  are the joint likelihoods of 
the independent events of the token observations 

€ 

wd ,w : 
 

€ 

p W |θ,φ( ) = p W d |θ d ,φ( )
d=1

M

∏ = p wd ,w |θ d ,φ( )
w=1

Nd

∏
d=1

M

∏                 (5.3) 

 
LDA has the flexibility to assign probabilities to documents outside the training corpus thus 
allowing supervised classification procedures over previously unseen documents. This 
property will be used to classify the entire satellite image and other images in the dataset. To 
infer the latent structures we used the software package described in [222]. 

 
 
 
 
 
 

5.3.4   Semantic Learning 
 
In text and multimedia applications, the LDA model is used to infer latent topics from the 
distribution of words in the vocabulary or objects in the image as to obtain a small number of 
descriptors for the dataset. The objective is to bridge the semantic gap and is achieved by 
grouping the pixels in the satellite image so that the output map matches the classes with 
high-level semantics of the cartographic products (e.g. CLC 2000). The LDA model assigns 
pixels that follow a similarity criterion to a number of latent topics. By choosing the number 
of topics to be equal to the number of information classes, the pixels in the spectral map that 
belong to the same concept are ‘attracted’ to the same information class in CLC.  
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Figure 5.7: Correspondence latent topics – CLC information classes. The number of concepts 
in the image should be equal to the number of classes in the cartographic product. 
 
During the training phase we defined a number of visual documents to learn the topics 
observed in the satellite image.  Due to restrictions in terminology, a number of 5, 15, 44 
topics were chosen in consent with the number of information classes found in the technical 
specifications of CLC 2000, for the three hierarchical levels, as shown in figure 5.7. 
 
For precise assessment of the training documents, the vector data was overlapped on the 
satellite image and the spectral map to choose image patches underlying each of the CLC 
classes. The size of the image tiles follows the rule of the minimum mapping unit of the 
cartographic data. For CLC 2000, the minimum mapping unit is 25 ha corresponding to a 
visual document of 15 X 15 pixels (Landsat images) and 50 X 50 pixels (SPOT images). For 
optimum results, the number of training histograms fed to LDA should be balanced and the 
user should provide closely the same number of training data sets for each topic. 
20 visual documents for each CLC class were enough for learning. Figure 5.8 describes one 
step of the learning process. The user selects the training documents belonging to the desired 
topic to annotate and the LDA model generates the distribution of that topic.  
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Figure 5.8: Learning step of Urban Areas class. The histograms are used as input to the LDA 
model and a latent topic is generated from the documents.  
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In text classification the purpose is to classify each document into two or more mutually 
exclusive topics and to use the topics to index the large collection of documents. The 
annotation of the satellite image consists of classifying each document to one of the classes in 
CLC and to generate several descriptors that bridge the semantic gap. Variations of this 
method may be applied to create descriptors for large collections of multimedia images or 
application-specific image databases, such as forensics or medical. 
 
Learning using LDA achieves a model that best represents the distribution of visual words for 
each class (topic). With LDA it is possible to assign a probability to each image tile in the 
dataset, corresponding to the likelihood of that image tile for a specific class. The 
classification of the entire dataset is achieved via Maximum Likelihood. The algorithm 
assigns the image tile to the class that maximizes the likelihood 

€ 

s = argmax p(zd |α,β) 
 
Collapsed Gibbs sampling [222] is used to infer the latent structures and the probability that 
bridges the semantic gap between the image clusters and the high-level semantic classes .  
 
 
5.4   Composition Rules For Bridging The Semantic Gap  
 
In the training phase a number of 20 visual documents / class are selected from the satellite 
image to represent every high-level semantic class that is to be described by the latent topics. 
The histograms of the training documents are used as input to the LDA model and global 
parameters α and β are inferred. Parameter α yields the distribution of topics over the corpus 
and parameter β the distribution of visual words over each latent topic. To link the spectral 
map to the output of the LDA model, we use only β that provides information on the 
probability of each topic to generate a specific word in the vocabulary.  

 
                                                      word 

€ 

i→max(p(zd |wi ))                                                (5.4) 
 

Figure 5.9 shows the distribution of words in the latent topics. A number of five topics were 
inferred from the satellite image and the visual representation of the latent aspects over the 
image is shown in figure 5.10.  
 

 
Figure 5.9: Distribution of visual-words in the latent topics 1 to 5 
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Figure 5.10: Mapping all pixels in the satellite image to one of the five latent topics 

 
The goal was to discover the semantic rules that link the topic map to the high-level semantic 
classes in cartographic products. Experiments were performed on multiple sensors (e.g. 
Landsat ETM+ and SPOT 5) that discovered the semantic rules that bridge the semantic gap 
with the ontology of CLC 2000. 
 
In the first case studies, the goal was to describe the first hierarchical level of CLC 2000 
vector data. This level has 5 classes: Water Bodies, Wetlands, Agricultural Areas, Artificial 
Surfaces, Forests and Semi-natural Areas. Initially, the spectral map was generated with 
Soilmapper and 100 training visual-documents (20 for each semantic class) were chosen. The 
training histograms were used as input to LDA. 1600 visual-documents in the image were 
classified to one of the latent topics. The dimension of the Dirichlet random variable was set 
to match the number of vector classes in CLC (e.g. 5, 15, 44). The latent topic map was 
generated by replacing each pixel with the topic that was assigned to it with the maximum 
probability 

€ 

max(p(zd |wi ))   
 
In the final step a majority filter was applied to exclusively assign each document to a single 
topic. We performed tests on a number of Landsat and SPOT images, yielding different 
complexity structures in land use and land cover classes. The images to be annotated were 
chipsets from Landsat ETM7+  (600 X 600 pixels) and documents of 15 X 15 pixels. With 
SPOT 5, the chipsets selected had 2000 X 2000 pixels, with 50 X 50 pixels / document. 
 
 
 
5.5    Case Studies: Rules For Bridging Machine And Human Languages 
 
In the following case studies, a visual word corresponds to an index from the preliminary 
spectral map obtained in the pre-classification phase using the physical model. Each value in 
the visual documents corresponds to an index from a semantic table with intermediate level 
meaning (e.g. strong vegetation, barren land, shallow water, snow), value able to describe the 
high-level semantics in existent cartographic data (e.g. CLC: Agriculture Land, Forests and 
Natural Areas, Water Bodies). The number of visual words was established by the 
classification scheme adopted in the physical model.  
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CASE STUDY 1 – Semantic rules for the first hierarchical level in CLC 2000, Landsat 
 
This study was performed on Landsat ETM 7+ image (600 X 600 pixels) from Romania 
aiming to infer the semantic rules that link the spectral map to the CLC 2000 map. Figure 
5.11 presents the results. The information in the multispectral image was reduced to the 
spectral map with 27 visual-words and then a number of five latent topics have been 
discovered in the data. Each pixel in the spectral map was assigned with the topic of 
maximum probability and the index map generated. In the end, a majority filter was applied 
to assign each document (15 X 15 pixels) to an exclusive topic. Figure 5.12 shows the 
distribution of visual words within each of the five estimated latent topics.  
 

 
Figure 5.11a, 5.11b, 5.11c, 5.11d – Fig. 5.11a shows the Landsat image 600 X 600 pixels,   
fig. 5.11b shows the spectral map with 27 visual words, fig. 5.11c shows how each pixel is 
classified to one of the latent topics (topics map); fig. 5.11d shows how each document is 
classified to the one of the topics. 

 

 
Figure 5.12 – The five latent topics estimated from the satellite image are distributions  

over words in the vocabulary  
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 Water 
bodies 

Agricultural 
areas 

Artificial 
Land 

Forest and 
natural areas 

Wetlands 

Topic 1 73% 0% 0% 0% 0% 
Topic 2 13% 0% 0% 0% 0% 
Topic 3 0% 2% 0% 54% 15% 
Topic 4 14% 53% 32% 36% 80% 
Topic 5 0% 45% 68% 10% 5% 

Table 5.1: Semantic Rules Discovery 
 

Topic 1: 100% deep clear water 
Topic 2:  90% deep clear water, 10% turbid water 
Topic 3: 100% peat bogs 
Topic 4: 100% average vegetation 
Topic 5: 70% average shrub land, 20% bright barren land,    
               20% strong barren land, 10% average vegetation. 
 
 

 Agriculture Artificial Forest Water 
Agriculture 97% 25% 0% 0% 
Artificial 0% 75% 1% 0% 

Forest 3% 0% 99% 1% 
Water 0% 0% 0% 99% 

Table 5.2: Confusion matrix for the semantic rules 
 

Table 5.1 shows the distribution of latent topics over the classes in CLC 2000 and the 
semantic rules that bridge the intermediate-level semantics with the high-level information 
classes. The ideal case would be that each topic exclusively generates a single CLC class. 
Validation of results is assessed with the confusion matrix in Table 5.2 and the mean overall 
accuracy obtained is 92.5%.  
 
The Water class is generated with a precision of 99% from the first two topics (Topic 1 - 
Deep Clear Water and Topic 2 – Deep Clear Water and Turbid Water). The Forest class is 
generated with 99% precision from the last three topics in table 5.1. Confusions between the 
Agriculture and Artificial Land classes arise due to the fact that both of these high-level 
semantic classes are described with similar intermediate visual-words (e.g. light barren land, 
average barren land, average vegetation). 
 
 
CASE STUDY 2 - Semantic rules for the first hierarchical level in CLC 2000, Landsat  
 
This study was performed on a Landsat image (600 X 600 pixels) from Romania to find the 
rules that explain the first hierarchical level of CLC 2000. Figure 5.13 shows the results at 
different steps in the workflow. The information in the image was reduced to the spectral map 
with 27 visual-words and a number of five latent topics was estimated, as shown in figure 
5.14. Each of the pixels in the spectral map was assigned with a topic of maximum 
probability and the index map generated. In the end, a majority filter assigns each document 
(15 X 15 pixels) to an exclusive topic.  
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Figure 5.13a, 5.13b, 5.13c, 5.13d – Fig. 5.13a shows Landsat image 600 X 600 pixels, fig.13b 
shows the spectral map with 27 visual words, fig. 5.13c presents how each pixel is classified 
into one of the latent topics and fig. 5.13d shows how each document is classified into one of 
the topics. 
 

 
Figure 5.14: distribution of visual words on the 5 inferred topics  

 
 

 Agriculture Artificial Land Forest Water Wetlands 

Topic 1 0% 0% 0% 0% 0% 
Topic 2 0% 0% 0% 88% 0% 
Topic 3 52% 25% 51% 12% 80% 
Topic 4 3% 0% 49% 0% 20% 
Topic 5 45% 75% 0% 0% 0% 

Table 5.3: Semantic rules discovery 
 

Topic 1: 100% ice or snow 
Topic 2: 100% deep clear water 
Topic 3: 100% average vegetation 
Topic 4: 100% strong vegetation 
Topic 5: 50%  average barren land, 40% strong barren land, 10% light barren land 
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Table 5.3 shows how each class in the first hierarchical level in CLC 2000 is described by 
latent topics as inferred from the LDA model. Table 5.4 shows the confusion matrix for the  
mapping results. There is a major error with Topic 1 because the physical model 
misclassified Water pixels as Ice & Snow but the LDA model didn’t employ it in any of the 
following steps. Agriculture class is easily described by a half-half combination of Topic 3 
(average vegetation) and Topic 5 (barren land - average, light and strong). The Forest class is 
explained by Topics 3 and 4 (Average and Strong Vegetation). Water class is described with 
an accuracy of 88% by Topic 2 (labelled as Deep Clear Water) and the errors come from the 
fact that 15 X 15 pixels documents don’t overlap perfectly with the CLC vector class.  
 

 Agriculture Artificial Forest Water Wetlands 
Agriculture 97% 25% 0% 0% 80% 
Artificial 0% 75% 1% 0% 0% 

Forest 3% 0% 99% 1% 20% 
Water 0% 0% 0% 99% 0% 

Wetlands 0% 0% 0% 0% 0% 
Table 5.4 – Confusion matrix for semantic rules 

 
 
CASE STUDY 3 - Semantic rules for the first hierarchical level in CLC 2000, Landsat  
 
This experiment was performed on a Landsat image (600 X 600 pixels) from Romania. 
Figure 5.15 shows the results at different steps of the workflow. Initially the information in 
the multispecrtal image was reduced to the spectral map with 27 visual-words and then a 
number of five latent topics was estimated for the classes in the first hierarchical level of 
CLC 2000. Each of the pixels in the spectral map was assigned to a topic of maximum 
probability and the index map generated. In the end, a majority filter assigns each document 
(15 X 15 pixels) to an exclusive topic.  
 

     
Figure 5.15a, 5.15b, 5.15c, 5.15d –Fig. 5.15a - Landsat image 600 X 600 pixels, fig. 5.15b 
shows the spectral map with 27 visual words, fig. 5.15c presents how each pixel is classified 
into one of the latent topics and fig. 5.15d shows how each document is classified to one of 
the topics. 
 

 Agriculture Artificial Forest Water Wetlands 
Topic 1 0% 0% 0% 93% 0% 
Topic 2 0% 0% 0% 0% 0% 
Topic 3 1% 4% 4% 5% 6% 
Topic 4 27% 54% 82% 2% 88% 
Topic 5 72% 42% 14% 0% 6% 

Table 5.5: Semantic rules discovery 
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Topic 1:  100% deep clear water 
Topic 2:  100% deep clear water 
Topic 3:  40% turbid water, 25% shadow vegetation, 25% deep clear water 
Topic 4:  90% average vegetation, 10% strong vegetation 
Topic 5:  60% strong barren land, 20% average barren land 
 
Table 5.5 presents how each class in the first hierarchical level in CLC 2000 is described by 
the latent topics inferred by the LDA model. Table 5.6 shows the confusion matrix computed 
to validate the classification results. The Water class was generated using topic 1 (Deep Clear 
Water 93%) and topic 3 (Turbid Water, Shadow Vegetation and Deep Clear Water). The 
Forest and Agriculture classes are described by topics 4 and 5 (Strong vegetation, Average 
vegetation, Strong and Average barren land). There are some confusions with the Wetlands 
class because it was generated from the same topics and visual words as the Forest class 
(water and vegetation).  
 

 Agriculture Artificial Forest Water Wetlands 
Agriculture 99% 0% 0% 0% 0% 
Artificial 0% 96% 14% 0% 0% 

Forest 0% 0% 82% 2% 88% 
Water 1% 4% 4% 98% 6% 

Wetlands 0% 0% 0% 0% 6% 
Table 5.6 – confusion matrix for semantic rules 

 
 
CASE STUDY 4 - Semantic rules for the second hierarchical level in CLC 2000, 
Landsat  
 
This experiment was performed on a Landsat image (600 X 600 pixels) from Romania. 
Figure 5.16 presents the results at different steps in the workflow. The process is similar to 
the previous ones. The information in the satellite image is reduced to a spectral map with 27 
visual words and then a number of 15 latent topics estimated. The number of topics 
corresponds to the number of classes in the second hierarchical level of CLC 2000. Each of 
the pixels in the spectral map was assigned with a topic of maximum probability and the 
index map generated. In the end a majority filter assigns each document (15 X 15 pixels) to 
an exclusive topic. The semantic rules are presented in table 5.7.  
 

   
Figure 5.16a, 5.16b, 5.16c – Fig 5.16a - Landsat image tile, fig. 5.16b shows the spectral map 
with 27 visual words, fig. 5.16c presents how each pixel is classified into one of the ‘latent’ 
topics. 
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 Arable 
Land 

Forests Heterogeneous 
Areas 

Industrial 
Commercial 

Inland 
Waters 

Inland 
Wetlands 

Pastures Permanent 
crops 

Urban 
fabric 

1 0% 0% 0% 0% 98% 4% 0% 0% 0% 
2,5 0.4% 0% 0% 0% 1% 19% 0% 0% 0% 
6,7 74.5% 13% 56% 30% 0.5% 36% 33% 48% 48% 
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 
9 20% 25% 32% 41% 0.5% 27% 65% 35% 41% 

10 2.6% 17% 4% 20% 0% 4% 1% 9% 8% 
11 0.8% 20% 6% 7% 0% 0% 0% 8% 3% 
12 0% 0% 0% 0% 0% 0% 0% 0% 0% 
13 0.7% 25% 2% 2% 0% 10% 0% 0% 0% 
14 0.6% 0% 0% 0% 0% 0% 0% 0% 0% 
15 0.4% 0% 0% 0% 0% 0% 0% 0% 0% 

Table 5.7: Semantic rules discovery 
 

Topic 1:    100% Shadow or turbid water 
Topic 2:    40% Thin Cloud on water areas, 30% strong barren land or built-up, 20% shadow    
                  or turbid water, 10% average barren land or built-up 
Topic 3:    90% strong barren land or built-up, 10% average barren land or built-up. 
Topic 4:    100% strong barren land or built-up 
Topic 5:    100% strong barren land or built-up 
Topic 6:    100% strong barren land or built-up 
Topic 7:    70% strong barren land or built-up, 30% average barren land or built-up  
Topic 8:    60% average barren land or built-up, 40% strong barren land or built-up 
Topic 9:    70% average barren land or built-up, 20% weak rangeland leaf, 10% strong barren  

      land or built-up 
Topic 10:  40% weak rangeland leaf, 25% average barren land or built-up,  

     25% average barren land or built-up, 25% average shrub rangeland,  
     10% strong barren land or built up. 

Topic 11: 50% average shrub rangeland, 20% strong barren land, 20% average barren land or   
                 built-up, 10% weak rangeland leaf 
Topic 12: 55% average barren land or built-up, 30% wetland  
Topic 13: 45% wetland or dark rangeland leaf,  25% average barren land or built-up, 15%  
                 strong barren land or built-up, 10% weak rangeland leaf 
Topic 14: 55% dark barren land or built-up, 30% average barren land or built-up, 15% strong   

    barren land or built-up. 
Topic 15:  55% dark barren land or built-up, 30% average  
                barren land or built-up, 15% strong barren land or  built-up. 
 
The second hierarchical level in CLC 2000 contains 15 semantic classes, generated from the 
first hierarchical level with only five. The results show less acurracy than in the previous 
cases due to the increased complexity of the vector classes to be generated from a limited 
vocabulary of 27 words. 
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Conclusions 
 
This chapter offered a solution to bridge the semantic gap and discover the rules between the 
output of the state-of-the-art automatic classifiers and the high-level semantics of manually 
defined terminologies of cartographic data. Using a purely-spectral rule-based fully automatic 
classifier to define the basic visual vocabulary, the method provides a hybrid approach to 
automatically understand and describe the semantic rules that connect existent mapping data 
with different specifications (e.g. CORINE LAND COVER) to the end-results of 
unsupervised information mining methods.  
 
Using a tool initially developed for statistical text modelling in large documents collections – 
Latent Dirichlet Allocation LDA we discovered a correspondence between the text and image 
domains and linked the low-level spectral and spatial features to the spectral map with 
intermediate-level semantic labels (e.g. strong vegetation, barren land, deep water) and to the 
vector maps with application specific semantic labels.  
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6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Spectral Band Discovery for Advancing 
Multispectral Satellite Image Analysis and Photo-
Interpretation 

 
 
 
Almost all remote sensing applications involve several steps of visual inspection – data 

quality assessment, operation-oriented area/object search and analysis, algorithm learning, 
information mining evaluation, etc. Even if today’s geo-information software packages 
available offer satisfactory end products, most tasks are still manually performed and 
evaluated by a human operator. Multiple domains require highly accurate analysis of satellite 
images and the demands of users working in these areas are so challenging that machines 
have not yet reached the quality standards required for these applications. For this reason, 
data analysis is performed through extensive visual interpretation.  

Because the manual processes performed by experts to extract information from images 
are currently too complex to be applied systematically on even a small subset of the acquired 
scenes [242], next-generation software tools will have to be designed to support the human 
operator in his work, put control into his/her hands and optimize visual investigations.  

This chapter presents a novel sensor-independent, spectral-based, one-sample based 
training, spectrally and spatially balanced, application-free, fast response, low cost, 
information-based spectral band selector that automatically enhances visualization of target 
classes for image analysis and photo-interpretation [226]. Computer assisted visual analysis is 
an extremely important approach to information discovery, extracting, mapping and 
reporting.  
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6.1 Exploratory Visual Analysis of Satellite Images 
 

Multispectral and hyperspectral images contain multiple types of signatures that allow 
analysts to identify a wide range of activities (e.g. environmental, urban, marine) and objects 
based on their unique spectral “fingerprints”. Hyperspectral, recent high-resolution (e.g. ESA 
Sentinel-2, WorldView-2) and the classic Landsat multispectral data offer flexibility to 
visualize and extract information about many classes, objects and targets of interest using 
these fingerprints.  

The goal of the method described hereafter may be viewed from two perspectives: (1) the 
algorithm selects from the available spectral bands only the ones containing the highest 
amount of information relevant only to the target class and (2) its final goal is to maximize 
contrast and color difference to the surrounding classes.  

 

 
Figure 6.1 – Concept and workflow for the feature selection algorithm in advancing  

satellite image visualization 
 
The modus operandi of the feature selection algorithm is presented in figure 6.1. The 

satellite image is imported into the system and a regular grid is overlaid on top of it. The 
equally sized grid solves the problem of training samples imbalance by forcing the algorithm 
to operate in a spectrally and spatially balanced mode [230]. This ensures training classes of 
equal dimensions and also focuses the algorithm on the enhancement of local color and 
contrast for visual exploration. The user simply clicks once on the image patch labeled as 
target class (one-sample learning). Measures of mutual information are automatically 
employed between the target class and the available spectral bands (information-based). The 
spectral features are ranked based on their capability to represent the target class in a mining 
algorithm and to enhance its visual separability from other classes. The bands are ranked 
using the minimum-redundancy-maximum-relevance (mRMR) criterion [231, 232]. The 
mRMR criterion evaluates the statistical dependency of the target class to the spectral bands, 
measured in terms of mutual information, and simultaneously minimizes interband 
redundancy. The image analyst can choose any area of the image as target class and discover 
the optimum spectral bands that enhance visualization for that region or object (application 
free). Although the mRMR criterion is based on complex measures of mutual information, 
the computation time and effort are reduced because the system operates on discrete image 
histograms (fast response, low cost). The number of spectral bands that can be evaluated is 
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unlimited and the workflow is identical for any multi-band sensor data (sensor independent). 
The top three bands evaluated and ranked with the mRMR scores are automatically displayed 
for preview. Before integrating the methodology into the scientific and operational 
framework, several definitions are required.  

 
The primary purpose of satellite imagery is to describe, assess and visually depict physical 

features and activities on Earth [243]. Direct visualization of objects and classes of interest 
leads to discovery of information through analysis and interpretation for various tasks [242]. 
An important goal of satellite image understanding approaches is to present a comprehensive 
visual depiction of the imaged scenes: “A primary purpose of geospatial products has been to 
provide visualization of operational spaces and patterns of all sizes and scales ranging from 
global to regional level, to cities and buildings. A picture is simply the fastest way to 
communicate spatial information” [243, p.24].  

However, the complexity of data recorded by satellite imaging sensors is so high that 
discovery of knowledge through visual analysis is a challenging cognitive activity. For this 
reason, visualization tools should be capable of assisting the human operator in understanding 
the data through optimum representations and to offer cognitive support in discovering 
relevant information in the scenes [244]. The process of exploratory visual analysis has been 
studied across many scientific fields [245-259] but further research is required in this 
direction [260]. 

 
 
6.2 Contextual Information Integration For Spectral Feature Selection 

 
In the paper “Perceptual principles for effective visualizations”, Rheingans and Landreth 

[261] evaluate the effect of contextual information to the perception and understanding of an 
object in a scene. They conclude that (1) perception of size of an object may be influenced by 
its colour; (2) perception of color hue may be influenced by saturation; (3) perception of 
color saturation may be influenced by hue; (4) perception of color of an object may be 
influenced by the color of surrounding objects.  

To integrate human-derived contextual knowledge into the automatic feature selection 
algorithm, the methodology presented in this paper utilizes patch-level analysis. In meter and 
sub-meter resolution images, image patches interconnect complex structures (objects) with 
high diversity of spectral information [262], [10], [226].  
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Figure 6.2 – Contextual information implies studying the spectral statistics of a spatially 
delimited environment. An image patch contains a high diversity of spectral information. 
 
Patch-level analysis implies investigating sub-scenes of equal size (regular grid) using the 

spectral statistics within a local spatial context, as shown in figure 6.2. The variance of the 
spectral information of recorded compact objects increases with the spatial resolution of the 
image. On one hand for example, in urban analysis, the roof of a building may present 
regions of different colors, depending on illumination, shadows and other factors, although at 
conceptual level it is a single object. On the other hand, the spectral characteristics of urban 
land cover classes may present high similarity and cannot be separated using only spectral 
information [213] – e.g. roads and buildings with similar signatures. People perceive and 
integrate contextual information to recognize objects in the scene [212] and in some cases the 
objects are detected only by using the contextual information even though the appearance of 
the objects themselves is withheld. This effect is called blind recognition. Satellite images 
have high complexity of structures in the scenes and the higher the complexity the greater the 
likelihood of it benefitting from the context [211]. A scene is a full satellite multiband 
product covering hundreds of square kilometres.  

 
Patch analysis implies extracting and separately analyzing the spectral signatures in a 
spatially limited environment. Because the mRMR criterion discovers the most relevant 
spectral features using complex measures of mutual information, it requires a window of 
analysis large enough to contain a well-defined histogram and small enough in order for the 
distribution to characterize only the target class. If the analyzing window is too large, the 
probability density function becomes uniform, decreasing the capability of the feature 
selection algorithm to rank the spectral bands relevant to the specific target class.  
This approach lines up to the way EO emergency centers create cartographic products for 
multiple applications (e.g. maps for emergency response, geo-intelligence). Another 
motivation for the patch-level analysis of satellite images is the similarity of the method to 
the quadrant analysis of maps, widely used in GIS. The quadrant analysis works by dividing 
the area of interest into cells of equal size and analyzing the statistics of each patch 
independently [210].  
Image analysis and interpretation are essential processes through which information is 
obtained from satellite images. Several researchers support the contextual information 
integration reasoning included in this paper: “the degree of accuracy and completeness of 
image interpretation are in large measure dependent upon the experience base of the observer 
with reference to the context within which the interpretation is occurring” [35, p. 987].  
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The single most important parameter of the patch-level analysis that influences the accuracy 
of the feature selection and mining algorithms operating at patch-level is the size of the 
analyzing window. The patch size and the resolution of the information within the patch are 
critical to understand the level of contextual detail that will be modelled. The size of the tile 
is a function of the spatial resolution of the image and is directly related to the user’s choice 
for the target class. In order to fully benefit from the integration of contextual information in 
a feature selector and an automatic classifier, the size of the patch must be chosen so that it 
contains only the concept class of interest. If the size is too large and the patch contains 
information about other irrelevant classes, this information will be automatically evaluated as 
relevant and the accuracy will decrease. The size of the grid cells is 50 X 50 pixels for images 
with spatial resolution under 5 meters (WorldView-2, Quickbird, RapidEye, GeoEye-1) and 
100 X 100 pixels for images with medium resolution (Spot-5, Landsat ETM 7+) to ensure the 
homogeneity of concept classes inside each cell. The user can define the size of the analyzing 
window using a slide-bar and operate this method for multiple spatial resolutions, multiple 
sensors and multiple applications. Figure 6.3 depicts an optimal cell (a) and a suboptimal cell 
(b). 

 

 
Figure 6.3 – Grid cells size: (a) optimal, (b) suboptimal 
(a) the patch contains solely the concept class of interest  

(b) the patch contains information about other classes  
 
 
6.3  Minimum-Redundancy-Maximum-Relevance Criterion For Feature Selection 
 
In information-mining applications, feature selection is a critical step in optimizing a decision 
condition  - in our case maximizing visualization for the target class. Having available the 
data set D, described by M features 

€ 

X = {xi ,i =1...M} 	   and the target class C, the feature 
selection problem is to discover a subspace of three features in the spectral space 

€ 

RM 	   that 
best displays C with respect to its surroundings. The optimal characterization condition – i.e. 
what features best represent the target class – most of the times implies an extreme value for 
the decision function. For visualization, the function is evaluated both qualitatevely by the 
human operator and quantitavely using the color difference and contrast between the target 
area and its neighbours. 
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The feature selector consists of two steps [227] – the choice of a suitable criterion to evaluate 
the effectiveness of each spectral band (feature ranking) and the automatic display of the top 
three bands in order: R, G, B channels. Feature ranking assigns features with a score by a 
metric measure and eliminates all features that do not achieve the score over an user-defined 
threshold. The criterion used to rank the features in rapport with the target class is the 
minimum-redundancy-maximum-relevance (mRMR).  
 

 
Figure 6.4 – Hybrid spectral feature selection workflow for advancing  

satellite image visualization 
 
Figure 6.4 depicts the spectral feature selection workflow for automatic discovery of the 
optimum spectral bands. Spectral features are ranked based on their capability to represent 
the target class in a mining algorithm and to enhance its visual separability from other 
classes. In information theory, these properties translate to maximization of statistical 
dependency of the target class C to the available features.  
 
The spectral bands are regarded as random variables and their histograms are the probability 
density functions. Mutual information is a good indicator of relevance between two random 
variables. If the mutual information between two random variables (i.e. in our case between 
the spectral bands and the target class) is large it means the two variables are closely related. 
Thus, mutual information between the target class and the spectral features is a relevant 
measure of statistical dependency.  
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

€ 

Dependency(X ,C) = I((xi ,i =1...M ),C})                                       (6.1)  
 

A common way to obtain maximal dependency is to use the maximum relevance (MR) 
criterion – ranking the features by their statistical relevance to the target class C. The 
relevance of features 

€ 

Rm  to the features in C is defined in terms of mutual information. 
Maximum relevance criterion (MR) is employed in practical applications because maximum 
dependency is often hard to implement even for discrete random variables. The MR criterion 
evaluates the dependency between multiple random variables by approximating 

€ 

max(I(xi ,i =1...M ),C) with the mean value of all mutual information values between 
individual features 

€ 

xi  and class C. | X | represents the number of features available.    
 

                            

€ 

D(X ,C) =
1
X

I(xi ,C)
xi

∑                                                        (6.2) 
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The spectral bands of satellite images may be correlated. When two or more random 
variables have a rich content of mutual information, the discrimination power will decrease. 
To select only the mutually exclusive features and to reduce the dimensionality of the data, 
the redundancy (mR) scores between every pair of features are computed with:  
 

                                               

€ 

R(X ) =
1
| X |2

I(xi ,x j )
xi ,x j

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟                                             (6.3) 

 
To rank the features yielding minimum redundancy (mR) between them with the 
simultaneous maximization of the discriminating power (MR) for the target class, the above 
steps (6.2) and (6.3) are combined into the minimum-redundancy-maximum-relevance scores 
(mRMR) (6.4), where D is the maximum dependency and R is the minimum relevance:  
 
                                                   

€ 

mRMR = max(D− R)	  	  	  	  	  	  	  	  	                                           (6.4) 
 
The mRMR spectral feature ranking criterion is implemented as a Matlab package, using 
(6.5): 

                 

                                          

€ 

max I(x j ,C)−
1

m −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I(x j ,xi )
xi∈Sm−1

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
                                    (6.5) 

The calculus gives the mRMR score for each available feature with respect to the learned 
target class. The top three bands in the mRMR score - yielding maximal dependency to the 
target and minimum redundancy among them - are automatically displayed in the R, G, B 
channels. The algorithm is implemented using this pseudocode: 
 
Input: Spectral bands for the scene, X = 1 to M  

            Spectral bands for the target image patch C = 1 to M 

for i = 1 to M 

      D = 2-D mutual information 

€ 

Xi ,Ci( )  

      R = 2-D mutual information 

€ 

Xi ,X j( )
i≠ j

 

     

€ 

Score(i) = mRMR =max(D− R)  
end 

Output: order, top-down 

€ 

Score(i)  
Display, top-three spectral bands in R,G,B channels 
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6.4   Objective Evaluation Of Subjective Visual Information 
 
For visualization to be scientific it has to be able to generate a collection of methods, 
techniques and tools developed to fulfill a technical request for which standard measures 
apply. Visualization has to be effective and efficient [233]. Image I is perceived by a user, 
with an increase in knowledge K as a result. The amount of knowledge gain is a function of 
the image I, the a priori knowledge 

€ 

K0  of the user and the particular properties of the 
perceptual and cognitive abilities 

€ 

P  of the user. How can one evaluate the increase in 
knowledge 

€ 

K  that this new display creates, as compared to the standard R-G-B display? The 
goal of visualization methods – either by image processing techniques or by selecting specific 
spectral bands – is to maximize the response in the human visual system and increase the 
saliency of the object / area of interest. The reader may refer to [35, p. 988-992] and [268] for 
a detailed description of the mechanics of human vision. 
 
 
6.4.1 Visual Image Analysis – Elements of Processing 
 
     Perceiving and sensing are distinct. Sensing implies only the recording of specific flows of 
radiation while perceiving also integrates and is subject to the influence of learning. Space 
borne sensors record the reflected, emitted, transmitted and scattered energy across several 
regions of the electromagnetic sensor. The data are represented unto a 2D space (the image 
plane) in many colors, shapes, sizes and scales. The elements within an image that provide 
direct access to detection, identification and measurement tasks of advanced image analysis 
include: tone/color, size, shape, texture, pattern, height, shadow, site and association [225]. 
Figure 6.5 shows the elements related to the image interpretation process, as a function of 
their degree of complexity. 

 
Figure 6.5 - Primary ordering of image elements fundamental  

to image analysis process (adapted from [169]) 
 

An important statement in [35, p. 993] reminds us that tone, as expressed in shades of gray 
and color as expressed in hue, value and chrome convey more information than any other 
single element of interpretation. In almost all cases, it is the difference in tone or color 
between objects or between an object and the background that is important. Size and shape 
image elements represent geometric arrangements of the tone and color of pixels making up a 
given object or phenomenon.  
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The first step in all image interpretation tasks is to detect and identify important 
phenomena. Since the R-G-B display does not always provide an optimum preview for 
certain target classes/objects, a visual enhancement method is mandatory. This will allow 
characteristics of objects invisible to the human eye to be discovered and displayed in an 
easy-to-understand way.  

Color perception is an important element of awareness of the environment. Different 
objects reflect, emit, and transmit different amounts and wavelengths of energy that are 
recorded by the sensor as tonal, color or density variations. True color images often facilitate 
interpretation by providing a familiar perception of the objects but for many cases, the R-G-B 
display fails to provide users the necessary contrast to discover and analyze classes under 
investigation. In these cases, the ‘false color’ display is successfully used to improve 
interpretability by enhancing object-to-object or object-to-background contrast. In [35 
p.1001] the authors advise: “in almost all cases, it is the difference in tone or color between 
objects, or between and object and a background that is important.” This statement will prove 
highly valuable in the last part of this section, where we demonstrate the operational 
usefulness of this approach. Since almost all remote sensing image analyses appear to utilize 
tone and color, the method described here aims to offer users exactly this possibility – to 
discover the optimum spectral bands of a satellite image that maximize the difference and 
contrast between an object and the surrounding background.  

 
 
6.4.2 Color Metrics For Satellite Image Analysis 
 
     Considering the satellite scene in figure 6.6a, the image analyst is interested in evaluating 
the lake in the center-right side of the image. A quick qualitative visual analysis reveals that 
the R-G-B display doesn’t offer much contrast between the target class and the surroundings.  
     The automatic color mapping is computed scene by scene. The human operator selects 
only a tile that represents the target class and the full scene is displayed with the top mRMR 
score bands. If the user decides to choose another target class, the mRMR is applied again 
and the entire scene is displayed with the new bands. The workflow to automatically discover 
the spectral bands that enhance visualization for this area is the following: 
 
1. The image is imported into the system and the grid is automatically overlaid (50X50 
pixels) 
2. The analyst clicks on the tile depicting the target class thus training the system 
3. The mRMR scores are automatically computed for each spectral band – figure 6.7 
4. The top three features yielding the highest scores are automatically displayed in the R, G, 
B channels 
 
Once the mRMR calculus is performed for each spectral feature, the system automatically 
displays the image in ‘false colors’, with the top three bands mapped to the R, G, B channels. 
In this case: 
* R channel - Nir-1 (X) 
* G channel - Red Edge (Y) 
* B channel - Nir-2 (Z) 
It can be easily observed that with the standard natural color display (bands 532), the area of 
interest is barely contrasting the surroundings. With the automatic ‘false color’ X-Y-Z 
display (bands 768) as shown in figure 6.8b, the difference in tone and color has increased, 
thus forwarding the visualization and interpretation. 
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Because the human visual system is more sensitive to the green region of the electromagnetic 
spectrum, with a peak in sensitivity at 550 nm, another possibility to display the top three 
bands is to use the maximum score mRMR band in the green channel. In this case, the new 
visualization is: 
 
* R channel - Red Edge (Y) 
* G channel - Nir-1 (X) 
* B channel - Nir-2  (Z) 
 
Figure 6.9 shows the three visualizations for comparison: natural color (bands 532), X-Y-Z 
(bands 768) and Y-X-Z (bands 678) of the WorldView-2 full scene.  An important point is 
that the method selects the three spectral bands with the maximum amount of information 
relevant to the target class to enhance the visual differences to the surrounding classes - 
interclass variation. The new spectral features simultaneously maximize intra-class variation. 
 
 

   
 

 
Figure 6.6 a, b top – WorldView-2 image and region of interest;  

6.6 c, d bottom – region of interest and target class selection  
(Image Credits: DigitalGlobe) 
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Figure 6.7 – Measures of mutual information (X, C) between the target class  

and the available features 
 

      

 
Figure 6.8a top – R-G-B display large scene & detail (bands 532); 

 Figure 6.8b bottom - X-Y-Z display, large scene & detail (bands 768) 
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Figure 6.9 – R-G-B, X-Y-Z (bands 768), Y-X-Z (bands 678) 

 
 

 
6.4.3   Color Models For Satellite Image Analysis 
 

Vision sciences and psychological tests measure two kinds of factors: stimuli and 
responses. In image interpretation, the stimuli are the physical variations in tone, texture, 
pattern, configuration and the responses are the elements of perception of the individual user. 
The stimuli characteristics of images and the interpreter’s ability to respond to them are the 
critical determinants of the analysis performance. At the response level, the difference 
between objects and background is evaluated solely by the human visual system, 
automatically upon seeing the image and has only individual empirical value. While the 
human operator easily understands this difference at mind level (responses), the evaluation 
method should also provide numerical results to prove the usefulness of the tool, besides the 
users’ mutual agreement. How should the improvement in contrast and difference between an 
object and the background be analyzed and described numerically? While multiple users may 
accept the contrast and difference enhancement evaluated at the response level, the difference 
should also be evaluated at stimuli level.  

Color difference (distance) between two colors is a very useful measure in color science. It 
allows the human operators to quantify a notion that would otherwise be described with 
adjectives and subjective terms. For satellite image analysis, the analysts aim at enhancing 
the difference between the target class (i.e. lake in this example) and its neighbours . 

The color distance between two colors (i.e. target class and neighbours in various displays) 
can be computed using the Euclidean distance between color vectors in device dependent or 
independent color models.  

 
 
6.4.4 Quantitative Evaluation Using Color Distances 
 

To continue with the same example, once the three top features in the mRMR scores are 
displayed, the target class (figure 6.10, center) has higher contrast values in terms of color 
and intensity to the surrounding neighbours. The response of the human visual system is 
enhanced in the new ‘false color’ display and the improvement in both stimuli and response 
can be computed and evaluated. While the response is personal for each human operator, the 
improvement of stimuli is calculated in terms of color distance between the target class and 
the neighbours, for both displays. The evaluation consists in assessing the color difference 
between center and neighbours for the standard R-G-B display (532 bands) and the same 
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difference for the X-Y-Z display (768 bands in this case). Figure 6.10 shows the R-G-B (532) 
and X-Y-Z (displays), the target class in the center and the neighbours numbered 1 to 5.  

 

   
Figure 6.10: R-G-B display and X-Y-Z (NIR-1-RedEdge-NIR-2) display. The color 
differences computed between the target class (center) and the neighbours  numbered 1 to 5 

 
As shown in table 6.1, the color difference between the target class (center) and the 
surrounding neighbours  has a much higher value for the automatically detected display X-Y-
Z than for the standard R-G-B display. The stimuli distances between center and 
surroundings were computed within the CIE1976, CIE1994, CIE2000, CMC and CMC.2 
color models. The properties and differences of these color models are described in detail in 
the appendix. These models achieve close similarity to the responses of the human visual 
system, meaning that a difference in color, measured in these color spaces is equivalent to the 
same difference recorded in the human visual system. The mathematic models of these color 
spaces are described in detail in the appedix of this dissertation.  

 
Neighbour i Difference  

(Center - Neighbour i) 
R-G-B display 

Difference 
 (Center - Neighbour i) 

X-Y-Z display 
 

1 
CIE1976=20.639767 
CIE1994=14.928122 
CIE2000=15.551529 
CMC=20.545436 
CMC.2=16.589518 

CIE1976=54.488531 
CIE1994=54.488531 
CIE2000=27.964263 
CMC=106.289434 
CMC.2=54.055677 

 
2 

CIE1976=34.885527 
CIE1994=32.229948 
CIE2000=29.429358 
CMC=39.384806 
CMC.2=25.808988 

CIE1976=56.044625 
CIE1994=56.044625 
CIE2000=42.638862 
CMC=108.258960 
CMC.2=57.832300 

 
3 

CIE1976=17.117243 
CIE1994=14.579045 
CIE2000=12.939496 
CMC=17.269852 
CMC.2=13.298139 

CIE1976=45.188494 
CIE1994=45.188494 
CIE2000=32.216115 
CMC=88.299434 
CMC.2=44.503044 

 
4 

CIE1976=13.89244 
CIE1994=11.378142 
CIE2000=10.387977 
CMC=13.084284 
CMC.2=11.291230 

CIE1976=67.572184 
CIE1994=67.572184 
CIE2000=51.545117 
CMC=127.77398 
CMC.2=75.089728 
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5 

CIE1976=33.970576 
CIE1994=26.883862 
CIE2000=23.010282 
CMC=31.706614 
CMC.2=25.582071 

CIE1976=60.860496 
CIE1994=60.860496 
CIE2000=46.998762 
CMC=117.124749 
CMC.2=63.686887 

Table 6.1: evaluation of color difference enhancement 
 

The values in table 6.1 evaluate objectively how the selection of three variables from the 
signal space (spectral bands) enhances the response in the space of human perception. Each 
of the color models used to measure the color difference (before and after analysis) simulate 
the human visual system and give a reliable measure of visual improvement at both stimuli 
and response levels. 

 
 
6.5   Experiments And Results 
 
CASE STUDY 1 – Visual Enhancement of Urban Objects 
 
In this study, we evaluate the capabilities of the mRMR feature selection method on a more 
complicated case of visual analysis using a WorldView-2 image with 2m/pixel spatial 
resolution. In this instance, the image analyst aims at investigating the target class – Building 
X. The workflow to automatically discover the spectral bands that enhance visualization for 
this target is the same as in the previous section: 
 
1. the image is imported into the system and the grid is automatically overlaid (50X50 pixels) 
2. the analyst clicks on the tile depicting the target class thus training the system 
3. the mRMR scores are automatically computed for each spectral band 
4. the top three features yielding the highest scores are displayed in the R,G,B channels 
 
Figure 6.11 shows the satellite image used in test, the target class and the mRMR scores. 
Once the mRMR calculus is performed for each spectral feature, the system automatically 
displays the image in ‘false colors’, with the top three bands in the R, G and B channels.  
In this case: 
 
* R channel - Nir-2 (X) 
* G channel - Coastal (Y) 
* B channel - Red (Z) 
 
While using the standard R-G-B display (bands 532) the area of interest is barely contrasting 
the surroundings; with the automatic ‘false color’ X-Y-Z display (bands 815) the difference 
in tone and color has increased manifold. Another possibility to visualize the results is to feed 
the maximum mRMR score band Nir-2 to the Green channel of the display. In this case, the 
new visualization is:  
 
* R channel – Coastal (Y) 
* G channel - Nir-2 (X) 
* B channel - Red (Z) 
 
Figure 6.12 depicts the R-G-B and X-Y-Z full scene displays.  
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Figure 6.11 – Satellite image, target class, mRMR spectral features scores.  

The top three bands that will be displayed automatically are Nir-2, Coastal and Red 
 

 
Figure 6.12 – Satellite image full scene R-G-B and X-Y-Z (Nir-2, Coastal, Red)  

 
Once the three top spectral bands in the mRMR scores are automatically displayed, the 

target class (figure 6.13, center) has higher contrast values in terms of color and intensity 
with respect to the surrounding neighbours. The response of the human visual system is 
enhanced in the new ‘false color’ display and the improvement in both stimuli and response 
is computed and evaluated. While the response is personal for each human operator, the 
improvement of stimuli is calculated in terms of color distance between the target class and 
the neighbours for both displays.  

The evaluation consists in assessing the difference between center and neighbours  for the 
standard R-G-B display (532 bands) and the same difference for the X-Y-Z display (815 
bands in this case). Figure 6.13 shows the R-G-B (bands 532), X-Y-Z (bands 815) and Y-X-Z 
(bands 185) displays, with the target class in the center and the neighbours numbered 1 to 7.  
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Figure 6.13 – Evaluation scene R-G-B, X-Y-Z and Y-X-Z displays. The color differences are 
computed between the target class (center) and the neighbours numbered 1 to 4. Color 
distances are shown in table 2 for the R-G-B and X-Y-Z displays. 

 
The color difference between the target class (center) and the surrounding neighbours  has a 
higher value for the automatically detected display X-Y-Z than for the standard R-G-B 
display. The stimuli distances between center and surroundings were computed within the 
CIE1976, CIE1994, CIE2000, CMC and CMC.2 color models (Table 6.2).  

 
Neighbor i Difference  

(Center - Neighbor i) 
R-G-B display 

Difference  
(Center - Neighbor i) 

X-Y-Z display 
 

1 
CIE1976=36.523965 
CIE1994=36.183517 
CIE2000=31.311818 
CMC=36.696567 
CMC.2=23.354890 
 

CIE1976=90.448881 
CIE1994=69.249540 
CIE2000=38.734551 
CMC=85.208034 
CMC.2=85.190009 

 
2 

CIE1976=32.939338 
CIE1994=32.832303 
CIE2000=26.606823 
CMC=32.317841 
CMC.2=18.295922 
 

CIE1976=69.649121 
CIE1994=54.288439 
CIE2000=36.291654 
CMC=67.234029 
CMC.2=67.2283188 

 
3 

CIE1976=40.049969 
CIE1994=40.035893 
CIE2000=29.649214 
CMC=38.518898 
CMC.2=19.359649 
 

CIE1976=64.373908 
CIE1994=51.417370 
CIE2000=38.788487 
CMC=63.031829 
CMC.2=62.148550 

 
4 

CIE1976=34.014703 
CIE1994=34.010560 
CIE2000=26.020360 
CMC=32.703813 
CMC.2=16.381461 
 

CIE1976=76.478755 
CIE1994=59.559259 
CIE2000=39.879707 
CMC=73.304748 
CMC.2=73.047668 

Table 6.2: Evaluation of color difference enhancement  
 

Assessment of the effectiveness and efficiency of different visualization methods and 
techniques is mandatory from a technological point of view. The science of visualization 
should be empirical in the sense that concrete measurements of the phenomena under 
investigation are done and verified. Because the value of visualization is ultimately 
determined by the perceptual abilities of end users, their knowledge on the data presented and 
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the value they assign to various insights, both qualitative and quantitative evaluation methods 
should be employed in assessing the results of a visualization technique.  
 
CASE STUDY 2 – Water Class Visualization 
 
This scenario studies the capabilities of the method presented in this paper to enhance 
visualization of the concept class Water to the surrounding classes.  The experiment is 
performed on the WorldView-2 satellite scene depicted in figure 6.14a. The human operator 
trains the system with a single image-patch representing the desired class Water (figure 
6.14b) and the optimum three spectral bands were automatically detected and displayed on 
the the screen – figure 6.14d.   
 
The new display is: 
* R channel – Coastal (X) 
* G channel – Yellow (Y) 
* B channel – Blue (Z) 
 

 
Figure 6.14 

 
(a) WorldView-2 satellite image R-G-B,  
(b) Target class “Water” displayed in R-G-B, 
(c) Detail of the target class and neighbours displayed in R-G-B – top row 
(d) Satellite image X-Y-Z,  
(e) Target class “Water” displayed in X-Y-Z bands 
(f) Detail of the target class and neighbours  displayed in X-Y-Z - bottom row. While the R-
G-B display barely reveals the water and the tree line in the bottom of the image, the new 
visualization maximizes the color difference between these classes for further analysis. 
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Figure 6.15 shows the R-G-B (bands 532), X-Y-Z (bands 142) and Y-X-Z (bands 412) 
displays for comparison. 
 

 
Figure 6.15 - R-G-B, X-Y-Z and Y-X-Z full scene displays 

 
An expert-driven qualitative visual analysis reveals that the R-G-B depiction (figure 6.14c) 
shows little contrast between the concept class Water and the surrounding neighbours – the 
tree line north to the water body and the forest to the south. The new display (figure 6.14f) 
creates a powerful contrast for the target class. The enhancement offered by the new display 
is evaluated also in the CIE2000 color space. While in the R-G-B, the color difference 
between the target class and the neighbours  has a mean value of CIELAB2000 = 3.75, in the 
X-Y-Z display, the color difference is 10 times higher, with a value of CIELAB2000 = 37.5. 
In the images, X marks the target class and the numbers indicate the neighbours. Table 6.3 
evalutes the color differences between the target class and the neighbours, in the standard R-
G-B display and the new X-Y-Z display. Figures 6.16a - 6.16f represent sample scenes 
extracted from figure 6.14a and 6.14d. To evaluate the effectiveness of the algorithm 
presented in this paper, an important step is to assess its generalization capabilities across the 
entire scene. 
 

Neighbor i Difference  
(Center - Neighbor i) 

R-G-B display 

Difference 
 (Center - Neighbor i) 

X-Y-Z display 
 

1 
CIE1976=41.4246 
CIE1994=22.2769 
CIE2000=30.3129 
CMC=79.5065 
CMC.2=41.5417 

CIE1976=71.9027 
CIE1994=66.4310 
CIE2000=51.5410 
CMC=112.7743 
CMC.2=78.1052 

 
2 

CIE1976=36.5650 
CIE1994=34.0719 
CIE2000=22.5088 
CMC=54.0473 
CMC.2=44.6151 

CIE1976=93.6269 
CIE1994=84.4601 
CIE2000=69.8385 
CMC=137.1914 
CMC.2=102.206 

 
3 

CIE1976=2.4494 
CIE1994=1.6401 
CIE2000=2.0666 
CMC=4.3230 
CMC.2=2.6832 

CIE1976=46.6261 
CIE1994=41.7054 
CIE2000=31.7161 
CMC=64.7258 
CMC.2=52.9081 

 
4 

CIE1976=10.488 
CIE1994=10.4171 
CIE2000=6.9019 
CMC=19.9953 
CMC.2=10.6109 

CIE1976=93.3059 
CIE1994=85.6344 
CIE2000=59.8364 
CMC=144.34172 
CMC.2=100.732 
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5 

CIE1976=4.6904 
CIE1994=4.5929 
CIE2000=4.5016 
CMC=7.5784 
CMC.2=5.6119 

CIE1976=78.1472 
CIE1994=69.9134 
CIE2000=43.7152 
CMC=110.827 
CMC.2=86.3392 

Table 6.3: Evaluation of color difference enhancement  
 
A qualitative visual analysis reveals that the R-G-B display does not provide a powerful 
discrimination between the target class and surroundings. While 6.16d, 6.16e and 6.16f 
enhance the visualization and contrast with neighbours, the displays in 6.16e and 6.16f create 
a powerful contrast also with the plants in the water, undistinguishable in R-G-B. While in 
the R-G-B, the color difference between Water and the plants (figure 6.16b) has a mean value 
of CIELAB2000 = 8.90, in the X-Y-Z display (figure 6.16e), the color difference has a value 
of CIELAB2000 = 50. 
 

 
Figure 6.16 

 
(a) R-G-B detail shows possible confusion between the river and the forest in the right upper 
part of the image; (b) R-G-B detail shows that the phytoplankton is not distinuishable in the 
water; (c) R-G-B detail shows possible confusion between the water and the forest in the 
right and left lower parts of the image – top row. (d)  X-Y-Z detail shows the border between 
water and forest classes, (e) X-Y-Z detail reveals clearly the phytoplankton in the water; (f) 
X-Y-Z detail – bottom row shows the border between the water and the forest classes with 
enhanced contrast. 
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CASE STUDY 3 – Forest Concept Visualization 
 
This scenario studies the capabilities of this algorithm to enhance visualization of the concept 
class Forest to the surrounding areas in a WorldView-2 image from Romania.  The 
experiment is performed on the satellite scene depicted in figure 6.17a. The human operator 
trained the system with a single image-patch representing the desired class (figure 6.17b) and 
the optimum three spectral bands were automatically detected and displayed on the the 
screen, figure 6.17d.  The new display is:  
 
* R channel – Red Edge (X) 
* G channel – Coastal (Y) 
* B channel – Yellow (Z) 
 

 
Figure 6.17 

 
(a) WorldView-2 satellite image R-G-B, (b) target class “Forest” displayed in R-G-B, 
(c) Detail of the target class and neighbours displayed in R-G-B – top row 
(d) Satellite image X-Y-Z, (e) target class “Forest” displayed in X-Y-Z bands; (f) detail of the 
target class and neighbours  displayed in X-Y-Z - bottom. While the R-G-B display barely 
reveals the water and the tree line in the bottom of the image, the new visualization 
maximizes the color difference between these classes. Figure 6.18 shows the  R-G-B (bands 
532), X-Y-Z (bands 614) and Y-X-Z (bands 164) full scene displays for visual comparison. 
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Figure 6.18 -  R-G-B (bands 532), X-Y-Z (bands 614) and Y-X-Z (bands 164) full scene 

 
 
The qualitative visual analysis reveals that the R-G-B depiction (figure 6.17c) shows little 
contrast between the target class Forest and the surrounding neighbours – water bodies. The 
new visualization (figure 6.17f) creates a powerful contrast for the target class. The 
enhancement offered by the new display is evaluated also in the CIE2000 color space. In the 
R-G-B display, the color difference between the target class and the neighbors has a mean 
value of CIELAB2000 = 4, in the X-Y-Z display, the mean color difference was evaluated at 
CIELAB2000 = 35.  
 
     A qualitative visual analysis reveals that the R-G-B display does not provide a powerful 
discrimination between the target class and surroundings. While figure 6.19d and 6.19e 
enhance the visualization and contrast with the neighbours, the display in 6.19f creates a 
powerful contrast also for the plants in the water, undistinguishable in the R-G-B. This 
contrast is assessed also by color difference measures in CIE2000 color space. While the 
difference in color between plants in the water and the water in R-G-B (figure 6.19c) is 
CIE2000 = 5.25, the X-Y-Z display (figure 6.19f) gives a color difference value of CIE2000 
= 36.5. In the images, X marks the target class and the numbers indicate the neighbours. 
Table 6.4 evalutes the color differences between the target class and the neighbours, in the 
standard R-G-B display and the new display.  
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Figure 6.19 

(a) R-G-B detail shows low contrast between the river and the forest in the right upper part of 
the image; (b) R-G-B detail; (c) R-G-B detail - the phytoplankton is not distinuishable in the 
water - top row; (d) X-Y-Z detail shows increased contrast between the forest and the water 
classes; (e) X-Y-Z detail shows improvement in the details of the target class; (f) X-Y-Z 
detail reveals clearly the phytoplankton in the water - bottom row 
 

Neighbor i Difference  
(Center - Neighbor i) R-G-B 

Difference 
 (Center - Neighbor i) X-Y-Z 

 
1 

CIE1976=18.0554 
CIE1994=12.2068 
CIE2000=13.8524 
CMC=13.2309 
CMC.2=13.1219 

CIE1976=65.5896 
CIE1994=33.6991 
CIE2000=41.4472 
CMC=46.1940 
CMC.2=41.9247 

 
2 

CIE1976=45.5741 
CIE1994=43.3749 
CIE2000=36.3868 
CMC=83.0572 
CMC.2=42.8006 

CIE1976=47.6864 
CIE1994=17.3999 
CIE2000=22.7026 
CMC=23.1756 
CMC.2=21.5127 

 
3 

CIE1976=85.44 
CIE1994=84.4315 
CIE2000=81.6416 
CMC=164.672 
CMC.2=82.7683 

CIE1976=91.1756 
CIE1994=63.8974 
CIE2000=69.3035 
CMC=84.4547 
CMC.2=65.0367 

 
4 

CIE1976=20.1494 
CIE1994=15.5861 
CIE2000=14.8240 
CMC=23.3942 
CMC.2=16.1210 

CIE1976=63.0713 
CIE1994=29.8463 
CIE2000=38.8948 
CMC=41.2587 
CMC.2=38.8078 

Table 6.4:  Evaluation of color difference enhancement  
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CASE STUDY 4 – Water Class Visualization 
 
This scenario studies the capabilities of the method to enhance visualization of the concept 
class Water to the surrounding areas in another satellite scene from Romania. The experiment 
is performed on the WorldView-2 satellite scene depicted in figure 6.20a. The human 
operator trained the system with a single image-patch representing the desired class (figure 
6.20b) and the optimum three spectral bands were automatically detected and displayed on 
the the screen – figure 6.20d.  The new display is: 
 
* R channel – Blue (X) 
* G channel – Nir-2 (Y) 
* B channel – Red  (Z) 
 
 
Figures 6.20g - 6.20i depict the same areas but with the maximum mRMR score band in the 
green channel of the display. For these image the new display is: 
 
* R channel – Nir-2 (Y) 
* G channel – Blue (X) 
* B channel – Red  (Z) 
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Figure 6.20 

 
(a) Satellite image R-G-B; (b) target class (R-G-B), (c) R-G-B detail – top row 
(d) Satellite image X-Y-Z; (e) target class X-Y-Z, (f) X-Y-Z detail shows improved contrast 
for the class river compared to the surroundings – middle row 
(g) Satellite image Y-X-Z; (h) target class Y-X-Z; (i) Y-X-Z detail – bottom row 
 
  The qualitative visual analysis reveals that the R-G-B depiction (figure 6.20c) shows little 
contrast between the target class Water and the surrounding neighbours – agriculture fields, 
tree lines, etc. The new display in figure 6.20f creates a powerful contrast for the target class. 
The enhancement offered by the new display is evaluated also in the CIE2000 color space. 
While in the R-G-B, the color difference between the target class and the neighbours has a 
mean value of CIELAB2000 = 39, in the X-Y-Z display, the color difference has a value of 
CIELAB2000 = 99. Figures 6.21a - 6.21f represent sample scenes extracted from figure 6.20a 
and 6.20d. While figure 6.21c displays the target class in R-G-B with little color difference 
from the surroundings, figure 6.21f depicts a powerful contrast for concept class Water. The 
difference in color between water and the agricutlure field in R-G-B (figure 6.21c) is 
CIE2000 = 36, the X-Y-Z display (figure 6.21f) gives a color difference value of CIE2000 = 
94. 
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Figure 6.21  

 
(a) R-G-B detail; (b) R-G-B detail; (c) R-G-B detail – top row 
(d) X-Y-Z detail reveals the fields that contain high amounts of water, undetectable in the R-
G-B display; (e) X-Y-Z detail shows the river with increased contrast to the surrounding 
areas and the crops that contain high amount of water. The new combination of bands clearly 
differentiates the visual signatures of the river, crops with high moisture level and crops with 
normal moisture level; (f) detail X-Y-Z shows improved contrast and color distance between 
the river and its neighbours – bottom row 

 
Table 6.5 evalutes the color differences between the target class and the neighbours , in the 
R-G-B and X-Y-Z displays.  
 
 
 

Neighbor i Difference  
(Center - Neighbor i) 

R-G-B display 

Difference 
 (Center - Neighbor i) 

X-Y-Z display 
 

1 
CIE1976=47.6759 
CIE1994=45.9082 
CIE2000=45.3277 
CMC=46.9951 
CMC.2=35.9724 

CIE1976=175.356 
CIE1994=82.99 
CIE2000=98.069 
CMC=90.0785 
CMC.2=82.496295 

 
2 

CIE1976=37.6031 
CIE1994=35.6820 
CIE2000=38.0183 
CMC=37.205 
CMC.2=29.079 

CIE1976=46.9361 
CIE1994=10.8456 
CIE2000=12.9679 
CMC=15.7088 
CMC.2=14.8345 
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3 

CIE1976=40.4103 
CIE1994=37.4051 
CIE2000=38.2101 
CMC=42.9525 
CMC.2=36.1426 

CIE1976=115.95 
CIE1994=74.11 
CIE2000=90.8987 
CMC=80.2562 
CMC.2=74.4494 

 
4 

CIE1976=45.0333 
CIE1994=42.5835 
CIE2000=44.2472 
CMC=49.008 
CMC.2=41.0801 

CIE1976=171.201 
CIE1994=81.298 
CIE2000=96.907 
CMC=88.3293 
CMC.2=80.5826 

 
5 

CIE1976=59.5399 
CIE1994=57.3698 
CIE2000=50.137 
CMC=57.7571 
CMC.2=43.5156 

CIE1976=180.820 
CIE1994=82.613 
CIE2000=100.32 
CMC=83.7809 
CMC.2=85.161 

 
6 

CIE1976=38.0131 
CIE1994=35.0173 
CIE2000=37.8534 
CMC=42.7139 
CMC.2=37.1394 

CIE1976=160.433 
CIE1994=76.0737 
CIE2000=92.5973 
CMC=82.7365 
CMC.2=75.3796 

Table 6.5: Evaluation of color difference enhancement  
 

Calculus of color distances reveal that the automatically-generated visualizations enhance the 
target class in rapport with the surrounding regions. These measurements allow this method 
to be integrated into a scientific workflow and its results to be verified and compared to other 
approaches. 
 
 
CASE STUDY 5 – Smoke Plume Visualization 
 
This scenario studies the capabilities of the method to enhance visualization of the concept 
class Smoke Plume to the surrounding areas. The experiment is performed on the Landsat 
ETM 7+ satellite scene depicted in figure 6.22a. The human operator trained the system with 
a single image-patch representing the desired class (figure 6.22b) and the optimum three 
spectral bands were automatically detected and displayed on the the screen – figure 6.22d.  
The new display is: 
 
* R channel – band 1    (X) 
* G channel – band 6-2  (Y) 
* B channel – band 3    (Z) 
 
Figure 6.23 shows the mRMR scores for this target class. Another possibility of displaying 
the first three bands is by feeding the maximum score band to the Green channel. The new 
display in this case is presented in figures 6.23c and 6.23f: 
 
* R channel – band 6-2 (Y) 
* G channel – band 1    (X) 
* B channel – band 3    (Z) 
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Figure 6.22 

 
(a) Satellite image R-G-B shows the smoke coming from a forest fire and its direction in the 
atmosphere  
(b) Target class chosen by the user depicted in R-G-B 
(c) R-G-B detail of the smoke plume and its surroundings - top row 
(d) Satellite image X-Y-Z shows clearly the direction of the smoke plume and the affected 
areas  
(e) Target class X-Y-Z, 
(f) X-Y-Z detail shows areas affected by the smoke plum that were not visible in the R-G-B 
display. The upper right and the lower left areas of the image show clearly the signature of 
the smoke plume, undistinguishable in the R-G-B display -  bottom row. 
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Figure 6.23 – mRMR scores 

 
 
The qualitative visual analysis of figure 6.22 shows that the R-G-B depiction (figure 6.22a, 
6.22c) displays little contrast between the target class Smoke Plume and the surrounding 
areas. The new display in figures 6.22c and 6.22f creates a powerful visualization for the 
target class, allowing detection of the smoke plume in areas where R-G-B display makes it 
undistinguishable. An example of this is given in figure 6.24a, where the plume is barely 
observable in R-G-B. The new visualizations (figures 6.24b, 6.24c) highlight the target class 
allowing for precise detection and evaluation of the smoke extent. 
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Figure 6.24 (a) R-G-B (b) X-Y-Z (c) Y-X-Z full scene – upper row 

(d) R-G-B, (e) X-Y-Z, (f) Y-X-Z detail – bottom row  
 

 
6.6   Discussion 
 
6.6.1 Comparison and evaluation: mRMR, PCA, ICA 
 
In 2004, Johnson [223] wrote in a review article for the IEEE Journal of Computer Graphics 
and Applications that scientific visualization is still a relatively new discipline and 
visualization researchers are not necessarily accustomed to undertaking strict examinations in 
their work. In trying to take the science of visualization to the technological level of exact 
science, new tools and methods have to be measurable, effective and efficient. 
This chapter presented an adaptive visualization technology used for enhancing visual 
analysis of multi-band satellite imagery. Since several researchers used PCA and ICA in their 
studies, in this section we evaluate the new visualizations created using our method to PCA 
and ICA. Figure 6.25a shows the R-G-B display of a WorldView-2 image, 6.25b shows the 
X-Y-Z display with the bands discovered by the mRMR criterion, 6.25c shows the first three 
principal components and 6.25d the first three independent components.  
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Figure 6.25 

 
(a) R-G-B display (bands 5-3-2); (b) X-Y-Z display (bands 8-1-5) - top row 
(c) PCA – first three components; (d) ICA – first three components - bottom row 
 
The evaluation consists in assessing the color differences between center and neighbours  for 
the standard R-G-B display (5-3-2 bands), for the X-Y-Z display, for PCA and ICA displays. 
The following graphics in figures 6.26, 6.27 and 6.28 show the results for the first three 
neighbours  marked with 1, 2, 3 in the R-G-B image. The analysis reveals that the maximum 
increase in contrast is given by the mRMR criterion, followed by R-G-B, ICA and PCA. For 
CIE1994 and CIE2000, PCA visualization shows a negative trend, i.e. a loss in the quality of 
visualization, as compared to the standard R-G-B display. 
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Figure 6.26 – Color distance evaluation for neighbour number 1.  

The graph clearly shows that the X-Y-Z display creates the best visual enhancement, when 
compared to R-G-B, PCA and ICA 

 

 
Figure 6.27 – Color distance evaluation for neighbour number 2. 

The graph clearly shows that the X-Y-Z display creates the best visual enhancement, when 
compared to R-G-B, PCA and ICA 
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Figure 6.28 – color distance evaluation for neighbour number 3.  

The graph clearly shows that the X-Y-Z display creates the best visual enhancement,  
when compared to R-G-B, PCA and ICA. 

 
If results are clear for homogeneous classes like water bodies, forest areas and even large 
objects, several questions arise when applying this method on a heterogeneous class from an 
urban environment. The following example evaluates the performance of the method on a 
class containing several small-scaled objects, i.e. buildings. The spatial resolution of the 
image in this case is 2m/pixel and an image tile (50 X 50 pixels) covers an area of 100 m X 
100 m. Although the tiles might contain several objects, it is likely that these objects belong 
to the same class (i.e. residential, commercial, etc). Figure 6.29 depicts the WorldView-2 
satellite image in test and the target class containing small-scale objects. Figure 6.30 shows 
the mRMR scores evaluating the eight spectral bands. In this case, the new visualization is: 
 
* Red channel - Red Edge (X) 
* Green channel - Nir-2 (Y) 
* Blue channel - Nir-1 (Z) 
 

 
Figure 6.29 - WorldView-2 satellite image and heterogeneous target class 
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Figure 6.30 - mRMR spectral feature evaluation scores. 

The top three bands that will be displayed automatically are Red Edge, Nir-2 and Nir-1 
 
This case study evaluates the performance of the method to enhance visualization of the 
target class containing multiple small-scale objects and compares the results to the 
visualizations created using the first components of the PCA and ICA transformations. Figure 
6.31 shows the R-G-B, X-Y-Z, Y-X-Z, PCA and ICA displays for visual comparison. The 
first column contains the R-G-B (bands 532) scene, the second column shows the mRMR, 
PCA and ICA top three features displayed in R,G,B channels and the last column shows the 
mRMR, PCA and ICA top three feature displayed in G,R,B order - i.e. the top feature 
displayed in the Green channel.  
 
Figure 6.32 shows a detailed view of the target class and its surrounding neighbours. The first 
column depicts the R-G-B (bands 532) displays, the second column shows the mRMR, PCA 
and ICA top three features displayed in R,G,B channels and the last column shows the 
mRMR, PCA and ICA top three feature displayed in G,R,B order. A qualitative visual 
analysis reveals that the finest spatial details are maintained only by displaying the spectral 
bands of the satellite image. Although the first three components PCA and ICA contain more 
information than the first three mRMR bands, the transformations reduce the spatial detail, as 
described in [208]. This reduction of high frequency details can be observed especially at the 
corners and sides of the buildings.  
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Figure 6.31 - The first column depicts the R-G-B (bands 532) displays, the second column 
shows the mRMR, PCA and ICA top three features displayed in R,G,B channels and the last 
column shows the mRMR, PCA and ICA top three feature displayed in G,R,B order.  
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Figure 6.32 - Detail of the target class in the center and the eight surrounding tiles from the 
previous image. The first column depicts the R-G-B (bands 532) displays, the second column 
shows the mRMR, PCA and ICA top three features displayed in R, G, B channels and the last 
column shows the mRMR, PCA and ICA top three feature displayed in G, R, B order.  
 
Besides the color distances calculated in multiple color models and the difference in entropy, 
the Kullback-Leibler divergence (KL) measure can be utilized to evaluate the increase of 
visual information in the new combinations of features. If p is the probability density function 
of the R-G-B display and q is the probability density function of the new display (top three 
components of mRMR, PCA, ICA), the KL divergence gives a measure of the difference 
between p and q. This measure is a quantitative evaluation of the increase / decrease of visual 
information between the standard R-G-B and the new display. For this case study we evaluate 
the KL divergence between the R-G-B display and each of the mRMR, PCA and ICA 
displays in figure 6.32. The X-Y-Z notation below represents the top three components of 
mRMR, PCA, ICA displayed in R, G, B order and Y-X-Z notation represents the top three 
components displayed in G, R, B order - the most relevant component in the green channel. 
The calculus shows that the X-Y-Z display contains a higher amount of information 
compared to the Y-X-Z display. As expected, the first three components of PCA and ICA 
contain more information than the top three features in the mRMR scores because they 
contain 99% of the information available in all the eight spectral bands. However, this higher 
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amount of information doesn't ensure a powerful visualization of objects in the target class 
and the surrounding areas for three reasons: the color distance and contrast are reduced in the 
PCA and ICA display, high-frequency spatial details are filtered by the PCA and ICA 
transforms and spectral artefacts emerge following the two transformations. 
 
KL (R-G-B, mRMR_X-Y-Z) = 0.327553824203326 
KL (R-G-B, mRMR_Y-X-Z) = 0.303522796330313 
KL (R-G-B, PCA_X-Y-Z) = 1.383523583171621 
KL (R-G-B, PCA_Y-X-Z) = 0.999025574181783 
KL (R-G-B, ICA_X-Y-Z) = 1.573529476403733 
KL (R-G-B, ICA_Y-X-Z) = 2.103526699090990 
 
 
6.6.2    mRMR score similarity statistics & physical modelling 
 
This is an information-based method that ranks the spectral bands of a satellite image 
according to the amount of information relevant to a user-defined target class, while 
simultaneously reducing the inter-feature redundancy. Two important questions that need to 
be addressed is what is the physical meaning of the results and if they can be verified by 
remote sensing literature studies.  
 
We evaluated the capabilities of the mRMR criterion to discover the top three spectral bands 
in 64 satellite images recorded by various sensors, using the same target class Forest 
Vegetation. Results reveal a high similarity between the top three bands for the same class of 
interest. Because the physical responses of vegetation in remote sensing imagery have been 
extensively studied during the last 30 years, we verified if physical models support the 
results. We discovered that independent of the sensor, the NIR, MIR, SWIR bands (where 
applicable) were ranked among the first mRMR top three bands.  
 
Table 6.6 presents a statistical analysis of results across 64 satellite images. Testing the 
ranking capabilities of the mRMR criterion on 20 Landsat ETM+ images (Forest Vegetation 
class) the following conclusions were drawn: spectral band 6-2 (SWIR 2100-2135 nm) was 
ranked in the top three spectral bands in 90% of the cases and band 6-1 (TIR 1040-1250 nm) 
was ranked in the top three bands in 95% of the cases. When testing 17 SPOT-5 images, band 
4 (MIR 1580-1750 nm) was ranked among the first three in 100% of the cases and band 3 
(NIR 780-890 nm) in 76% of the cases. With Quickbird and GeoEye-1 data, band 4 (NIR 
760-900nm / 780-920 nm) was ranked in the top three spectral bands in 100% of the cases. 
When testing MERIS satellite data, bands 10 (750-760 nm) and 13 (845-885 nm) were 
ranked in 100% of the cases among the top three bands and bands 14 (880-900 nm) and 15 
(890-910nm) in 50% of the cases. Conclusions show that independent of the sensor, specific 
wavelength intervals are relevant for specific target classes and estimations and predictions 
can be made based on this generalization capability.  
 
Studies performed on WorldView-2 images show interesting results: band 4 (Yellow 585-625 
nm) was ranked among the first three bands in 100% of the cases and bands 1 (Coastal 400-
450 nm) and 7 (NIR-1 770-895 nm) in 66% of the cases. These results were expected because 
the Yellow band is highly important for vegetation applications. Plants' spectral responses in 
this spectral domain are directly correlated to their health status. This band is used to evaluate 
individual tree crown cover and leaf health. The Coastal band also optimizes vegetation 
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identification and analysis upon its chlorophyll penetration characteristics [157]. 
Measurements on RapidEye data ranked band 3 (Red 630-685 nm) among the first three 
features in 87% of the cases, followed by band 2 (Green 520-590 nm) and band 4 (Red Edge 
690-730 nm) in 50% of the cases. The Red Edge band measures the chlorophyll production 
and plant health status. Researchers have demonstrated that the Red Edge band can better 
discriminate healthy and damaged trees, can reveal the differences between young and 
mature plants and even discriminate species [181-183].  
      
These results conclude that the mRMR criterion has the potential to discover the optimum 
wavelength intervals that hold the maximum amount of information relevant to a specific 
target class and to simultaneously minimize spectral correlation among the available features. 
In order to rank the features only by the amount of relevant information without taking into 
account the inter-band redundancy, the maximum-relevance (MR) criterion yields reliable 
results. 
 

Sensor 
 

Number of Images Statistics 

 
 

Landsat ETM+ 

 
 

20 

Band 6-2 – 90% 
Band 6-1 – 95% 
Band 7 – 40% 
Band 2 – 20% 
Band 4 – 15% 

 
SPOT-5 

 
17 

Band 4 – 100% 
Band 3 – 76% 
Band 2 – 76% 
Band 1 – 47% 

 
Quickbird 

 
4 

Band 4 – 100% 
Band 2 – 100% 
Band 3 – 100% 

 
GeoEye-1 

 
2 

Band 4 – 100% 
Band 3 – 100% 
Band 2 – 50% 
Band 1 – 50% 

 
WorldView-2 

 
3 
 

Band 6 – 100% 
Band 1 – 66% 
Band 7 – 66% 
Band 8 – 33% 

 
MERIS 

 
2 

Band 10 – 100% 
Band 13 – 100% 
Band 14 – 50% 
Band 15 – 50% 

 
RapidEye 

 
16 

Band 5 – 50% 
Band 4 – 62% 
Band 3 – 87% 
Band 2 – 81% 

Table 6.6 
 

The mRMR criterion was employed to discover the top three spectral bands in 64 satellite 
images recorded by various sensors, using the same target class Forest Vegetation (table 6.7). 
Results reveal high similarity between the top three bands for the same class of interest. The 
mRMR criterion has the potential to discover the optimum wavelength intervals that contain 
the maximum amount of information relevant for a specific target class and to simultaneously 
minimize spectral correlation among the available features.  
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Another possibility to assess the physical meaning of results is to investigate the visualization 
generated by the mRMR criterion against a spectral map. For this purpose we use the model 
described in [63] - chapter 5 - and compare the spectral classes retrieved from satellite images 
to the new visualization.  
 
The model is a purely spectral per-pixel rule-based classifier, based solely on the spectral 
domain and prior knowledge retrieved from the remote sensing literature.  It requires no 
training and performs a fully unsupervised preliminary classification over multiple sensors’ 
imagery calibrated into planetary reflectance. The degree of user supervision required to 
detect spectral rule-based categories is the same as unsupervised data clustering and far 
inferior to reference sample selection required by supervised classifiers. The classifier is 
based on prior spectral knowledge and in the following paragraph we briefly summarize its 
characteristics. Pattern recognition is based exclusively on known spectral signatures of target 
classes taken from remote sensing literature and adapted as fuzzy data templates. This implies 
that the classification system is pixel-based (context-insensitive) and purely spectral. It uses a 
set of spectral rules and the mapping system employs no supervised data learning mechanism 
to dynamically generate new rules.  
For a throughout description of the system, the reader may refer to [63]. Using the Landsat 
ETM+ image depicted in figure 6.33a, we generated a set of 12 spectral categories using the 
physical model (figure 6.33b) and a new visualization with the mRMR criterion (figure 
6.33c). In this case the target class is "Forest Vegetation" to continue the previous tests and 
the new visualization is: 
 
* R channel - TIR 
* G channel - SWIR 
* B channel - NIR 
 

 
Figure 6.33 - (a) Landsat ETM+ satellite image 

(b) Map with 12 spectral categories 
(c) New visualization generated by the mRMR criterion 
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Figure 6.34 - The left column shows the details from Landsat ETM+ satellite image (R-G-B), 
the middle column shows the corresponding details in the spectral map and the target class 
depicted in green and the right column the new visualization (X-Y-Z display) with the target 
class depicted in blue.  
      
Figure 6.34 reveals a high correlation between the spectral class "high vegetation" generated 
by the physical model and the corresponding regions in the new visualization mode. The left 
column shows the details from Landsat ETM+ satellite image in R-G-B display, the middle 
column shows the corresponding details in the spectral map with 12 categories and the target 
class depicted in green and the right column the new visualization (X-Y-Z display) with the 
target class depicted in blue. These examples confirm the fact that the physical meaning of 
results is maintained in the new mRMR visualization.  
     The visualization technique can also improve the accuracy assessment procedures of 
different automatic algorithms and support different users to discover classification errors in 
their results. Figure 6.35 shows a detail from a Landsat image, the corresponding spectral 
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map generated by the physical model and the same detail depicted using the new 
visualization. The model misclassified a large area in the image as "high vegetation" (figure 
6.35b), while the new visualization (figure 6.35c) clearly shows the same region belonging to 
a different class. Although the R-G-B display (figure 6.35a) can be used to evaluate the 
classification results, the new display increases the confidence of the visual investigation.   
 

 
Figure 6.35 - (a) Landsat image R-G-B, (b) spectral map showing misclassification of Barren 
Land as Forest (c) new visualization X-Y-Z showing increased confidence in assessing the 
accuracy of classification maps.   
 
The following case studies and results how the algorithm can be integrated in operational 
activities relying on multispectral satellite images. These examples present only the 
qualitative visual analysis and all have been performed on WorldView-2 images. 
 
Figure 6.36 shows a visual comparison between the natural color display (bands 5, 3, 2) and 
the new visualization (bands 6, 4, 5) discovered with this band ranking method in the case of 
a flooding event. The new visualization clearly outlines the flooded areas in blue. In the 
natural color display the flooded areas present high similarity to the vegetation areas.  
 
Figure 6.37 shows a visual comparison between the natural color display (bands 5, 3, 2) and 
the new visualization (bands 8, 7, 6) used for an agricultural study. The new visualization 
clearly indicates the healthy areas (depicted in white) and the areas with a lower health status 
(the irregular patches depicted in blue). This differentiation is almost invisible in the natural 
color display.  
 
Figure 6.38 shows a visual comparison between the natural color display (bands 5, 3, 2) and 
the new visualization (bands 8, 7, 6) for the evaluation of a large forested area. Barely 
noticeable in the natural color combination, various vegetation types are clearly revealed in 
the new visualization in multiple variations of yellow.  
 
Figure 6.39 shows the visual comparison between the natural color display (bands 5, 3, 2) and 
the new visualization (bands 8, 7, 6) for investigating a large forest area under fire. The 
algorithm selects the three features that allow visualization of areas under the smoke plumes.  
 
Figure 6.40 takes the previous study a step further and discovers the optimum combination of 
spectral bands for visualizing smoke plumes (bands 1, 3, 2). The new visualization shows 
enhanced contrast between the target class and the surrounding areas, thus allowing a more 
efficient mapping of smoke plumes.  
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Figure 6.41 shows the visual comparison between the natural color display (bands 5, 3, 2) and 
the new visualization (bands 4, 1, 7) discovered for the investigation of  man-made objects in 
the desert. The new combination of features depicts enhanced contrast between the target 
class and the surrounding areas.  
 
Figure 6.42 shows the visual comparison between the natural color display (bands 5, 3, 2) and 
the new visualization (bands 4, 8, 6) employed for studying the toxic waters resulting from 
mining activities in the Australian deserts. The new combination of features depicts enhanced 
contrast between the target class and the surrounding areas. Results show that the polluted 
waters blend with the background in the natural color display and clearly stand out in the new 
visualization mode.  
 
 
Conclusions 
 
This chapter presented an interactive technique to discover the optimum combination of three 
spectral features of a multi-band satellite image applied to enhance visualization of learned 
targets and phenomena of interest.  The software prototype is designed to support Earth 
Observation service providers to improve and testify the accuracy and reliability of their 
products and guarantee the quality of information offered to end users. The  method is 
designed to assist the geospatial operator in understanding the satellite image through 
optimum representations and to offer cognitive support in discovering relevant information in 
the scenes.  

A key point of this approach is its broad applicability, it can be used in all civil, commercial, 
defence and security operations to generate increased confidence in information products and 
services. The method facilitates an easier and more reliable interpretation of data and 
generates increased amount of information derived directly from EO images. The system 
models the human visual system and guarantees the correlation between the output of the 
machine and the understanding of the human operator. For this reason, users from 
commercial and academic environments, working in fields like natural resources and 
conflicts, nuclear and treaties monitoring, crisis management and assessment, marine safety, 
marine and coastal environmental monitoring, emergency response, spatial planning, 
agriculture, water management, forestry, natural resources can benefit from the capabilities of 
this visualization prototype. Through various examples and experiments, we demonstrated its 
operational efficiency and inter-operational adaptability using scenes from around the world 
on a wide variety of sensors and EO-based applications. 
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Figure 6.36 - WorldView-2, Flooding events 

Natural Color (bands 5,3,2) & New Visualization (bands 6,4,5) 
 

 
Figure 6.37 - WorldView-2, Agriculture, crop health status 

Natural Color (bands 5,3,2) & New Visualization (bands 8,7,6) 

 
Figure 6.38 - WorldView-2, Forest areas 

Natural Color (bands 5,3,2) & New Visualization (bands 8,7,6) 
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Figure 6.39 -WorldView-2, Forest areas – note how the algorithm allows visualization under 

plumes, Natural Color (bands 5,3,2) & New Visualization (bands 8,7,6) 
 

 
Figure 6.40 WorldView-2, Smoke plumes – note how the algorithm reveals areas covered by 

plumes, Natural Color (bands 5,3,2) & New Visualization (bands 1,3,2) 
 

 
Figure 6.41 - WorldView-2, Man-made objects in the desert 

Natural Color (bands 5,3,2) & New Visualization (bands 4,1,7) 
 

 
Figure 6.42 - WorldView-2, Toxic waters, mining activity 

Natural Color (bands 5,3,2) & New Visualization (bands 4,8,6) 
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7 
 

 
 
 
 
 
 
Conclusions 
 

Although the availability of data has increased and its cost decreased, statistics show that 
less than 5% of the satellite images available in archives are actually downloaded, analyzed 
and applied in operational scenarios. Studies show that users  require the information that can 
be derived from remote sensing images but the process of obtaining that information is still 
prohibitive for main stream communities for multiple reasons:  

(1) Data are stored in large collections and access is available only via specific metadata 
(e.g. geographic location, acquisition date, sensor) that does not always offer a user-friendly 
interface. The operator accessing the collection must have knowledge of how to operate a 
geospatial database, how to evaluate the query results using only a visual inspection and 
finally, how to generate information from the raw files of a satellite image. Most of the times, 
this workflow can be approached only by a limited number of experts and end users depend 
on their availability and capability to access, process and translate satellite imaging data into 
information ready to be implemented in projects.  

(2) Reliable information can be obtained from the data only through highly complex 
processes that require expert knowledge, dedicated software tools and extended periods of 
interactive analyses.  

(3) The output information products (i.e. maps, reports) are subject to operator bias. The 
link between data and knowledge is not standardized and this may lead to misunderstandings 
between users working in various fields.  

 
The recently developed cartographic products (e.g. Corine Land Cover, Urban Atlas) offer 

land use land cover inventories of the Earth using a standard nomenclature, clearly explained 
to be applied by users in different areas. However, these information products are very 
limited due to the standard spatial resolution (minimum mapping unit), to the standard 
nomenclature, not leaving users the possibility to derive their custom semantic concepts and 
to the extended amount of time and high cost necessary to be produced. In some areas, the 
land cover changes and the layers are outdated before they reach the final users.  
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In recent years, the fields of IIM and CBIR have been investigating new solutions for 
querying collections by image content described using semantic concepts that can be used, 
understood and disseminated by multiple users. These state-of-the-art systems employ 
advanced algorithms from image processing, data dimensionality reduction, text processing, 
data compression and mining and semantic knowledge discovery. To become fully 
operational, these algorithms need to be implemented in user-friendly software packages.  

  
 
7.1   The Value of the Contributions 
 
In this dissertation we combined knowledge from IIM and CBIR - signal processing, 

image analysis, pattern recognition, artificial intelligence, machine learning, information 
theory, databases, semantic knowledge discovery - to design the concept of a new system that 
brings solutions to query large image archives directly by content, to bridge the gap of 
understanding between machine and human languages and between science and operations. 
This thesis also brings several solutions to the IIM domain by developing new image 
processing algorithms for latent information discovery in satellite images and visual data 
mining based on models of the human visual system. To summarize the value of the 
contributions, we enumerate the following key aspects: 

 
(1) Semantic Rules Discovery - we bring a solution to one of the most challenging puzzles 

scientists have to solve: bridging the semantic gap between the low-level image features and 
the high-level semantic concepts. Using our approach, users can generate customized 
vocabularies, discover the semantic rules that link images with cartographic data and create 
new maps that have semantic meaning. By discovering the set of rules that explain semantic 
classes in available cartographic systems, we introduce the prototype of an interactive 
learning loop that uses the concept of direct semantics applied on satellite imagery. 

 
(2) Visual Mining of Satellite Images -  because the final decision in almost all EO-based 

applications is made by a human operator, we developed a visual mining module that is 
essential for an IIM system. This module can be implemented as a stand-alone tool used for 
advanced visual analysis and also offers the possibility to be integrated into commercial 
software packages. It can be applied in operational tasks to verify the quality of data, to 
search and analyze for objects and classes of interest, to improve selection of learning areas 
for mining algorithms and to validate the output of automatic image understanding methods.  

 
(3) Theoretical concepts - we adapted the LDA model to bridge the semantic gap between 

low-level features of an image and high-level semantic concepts attached by a user or 
available in standard cartographic data. The LDA model was initially developed to annotate 
large collections of text documents but studies conclude that future work should focus on 
developing a simplified version of this algorithm. Text documents contain a more complex 
vocabulary of words and the satellite images contain more complex spatial and contextual 
structures. For this reason, a more simple vocabulary of visual words is required to describe 
these structures. Future work will aim at developing a simplified LDA model that can operate 
optimally with complex spatial structures. 

  
This dissertation presented novel concepts and methods that support users to access and 

discover latent information in large image collections, visualize, analyze and interpret 
satellite scenes in an interactive, human-centered, result-driven workflow.  
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APPENDIX 

 

1. Color Science 

The first part of the Appendix describes the principles of color science, the mathematics of 
color perception and the color models used in this dissertation. For thorough explanations and 
further details, the read is advised to refer to [264-275], [70-71], [144], [243-250], [253-256].  

Color vision is the ability of an organism or machine to distinguish objects based on the 
wavelengths of the light they reflect, emit, or transmit. Colors can be measured and 
quantified in various ways. The human perception of colors is a subjective process whereby 
the brain responds to the stimuli that are produced when incoming light reacts with the 
several types of cone photoreceptors in the eye. In essence, different people may see the same 
illuminated object or light source in different ways. Perception of color begins with 
specialized retinal cells containing pigments with different spectral sensitivities, known as 
cone cells. In humans, there are three types of cones sensitive to three different spectra, 
resulting in trichromatic color vision. The cones are conventionally labeled according to the 
ordering of the wavelengths of the peaks of their spectral sensitivities: short (S), medium (M), 
and long (L) cone types. These three types do not correspond well to particular colors as we 
know them. Rather, the perception of color is achieved by a complex process that starts with 
the differential output of these cells in the retina and it will be finalized in the visual cortex 
and associative areas of the brain. The peak response of human cone cells varies, even among 
individuals with 'normal' color vision. 

Two complementary theories of color vision are the trichromatic theory and the opponent 
process theory. The trichromatic theory proposed in the 19th century states that the retina's 
three types of cones are preferentially sensitive to blue, green, and red. Ewald Hering 
proposed the opponent process theory in 1872. It states that the visual system interprets color 
in an antagonistic way: red vs. green, blue vs. yellow, black vs. white. Both theories are now 
accepted as valid, describing different stages in visual physiology. 
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Figure A1.1 – Eye Color sensitivity 

Nothing categorically distinguishes the visible spectrum of electromagnetic radiation from 
invisible portions of the broader spectrum. In this sense, color is not a property of 
electromagnetic radiation, but a feature of visual perception by an observer. Furthermore, 
there is an arbitrary mapping between wavelengths of light in the visual spectrum and human 
experiences of color. The possibility of a clean dissociation between color experience from 
properties of the world reveals that color is a subjective psychological phenomenon. 

 

Mathematics of Color Perception 

A "physical color" is a combination of pure spectral colors in the visible range. Since there 
are, in principle, infinitely many distinct spectral colors, the set of all physical colors may be 
thought of as an infinite-dimensional vector space. We call this space H-color. An element C 
of H-color space is a function from the range of visible wavelengths—considered as an 
interval of real numbers 

€ 

[λmin,λmax ]  to the real numbers, assigning to each wavelength in 

€ 

[λmin,λmax ] its intensity 

€ 

C(λ). A humanly perceived color may be modeled as three numbers: 
the extents to which each of the 3 types of cones is stimulated. Thus a perceived color may be 
thought of as a point in 3-dimensional Euclidean space. This space is called the R3-color. 

Since each wavelength  stimulates each of the 3 types of cone cells to a known extent, these 
extents may be represented by 3 functions 

€ 

S(λ) , 

€ 

M (λ) and 

€ 

L(λ)  corresponding to the 
response of the S, M, and L cone cells, respectively. 

Finally, since a beam of light can be composed of many different wavelengths, to determine 
the extent to which a physical color C in H-color stimulates each cone cell, we must calculate 
the integral (with respect to ), over the interval 

€ 

[λmin,λmax ]  of 

€ 

C(λ)•S(λ) of 

€ 

C(λ)•M (λ)and of 

€ 

C(λ)•L(λ). The triple of resulting numbers associates to each physical 
color C to a particular perceived color which is a single point in R3-color. Many different 
elements in the H-color space can result in the same single perceived color in R3-color, so a 
perceived color is not unique to one physical color. 

Thus human color perception is determined by a specific, non-unique linear mapping from 
the infinite-dimensional space H-color to the 3-dimensional Euclidean space R3-color. The 
image of the mathematical cone over the simplex whose vertices are the spectral colors, by 
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linear mapping, is also a mathematical cone in R3-color. Moving directly away from the 
vertex of this cone represents maintaining the same chromaticity while increasing its 
intensity. Taking a cross-section of this cone yields a 2-D chromaticity space. Both the 3-D 
cone and its projection or cross-section are convex sets; that is, any mixture of spectral colors 
is also a color. In practice, it would be quite difficult to physiologically measure an 
individual's three cone responses to various physical color stimuli. Instead, a psychophysical 
approach is taken. Three specific benchmark test lights are typically used; let us call them S, 
M and L. To calibrate human perceptual space, scientists allowed human subjects to try to 
match any physical color by turning dials to create specific combinations of intensities (IS, 
IM, IL) for the S, M, and L lights, resp., until a match was found. This needed only to be done 
for physical colors that are spectral, since a linear combination of spectral colors will be 
matched by the same linear combination of their (IS, IM, IL) matches.  

By considering all the resulting combinations of intensities (IS, IM, IL) as a subset of 3-space, 
a model for human perceptual color space is formed. A color model is an abstract 
mathematical model describing the way colors can be represented as numbers, typically as 
three or four values or color components. When this model is associated with a precise 
description of how the components are to be interpreted (viewing conditions, etc.), the 
resulting set of colors is called color space. This section of the Appendix describes ways in 
which human color vision can be modeled.  

 

CIE 1931 Color Space 

The CIE XYZ color space encompasses all color sensations that humans can experience. It 
serves as a standard reference against which many other color spaces are defined. A set of 
color-matching functions, like the spectral sensitivity curves of the LMS space but not 
restricted to be nonnegative sensitivities, associates physically-produced light spectra with 
specific tristimulus values. 

Most wavelengths will not stimulate just one type of cone cell only, because the spectral 
sensitivity curves of the three types of cone cells overlap. Certain tristimulus values are thus 
physically impossible. And LMS tristimulus values for pure spectral colors would, in any 
normal trichromatic additive color space (e.g. RGB color spaces), imply negative values for 
at least one of the three primaries, since the chromaticity would be outside the color triangle 
defined by the primary colors. To avoid these negative RGB values, and to have one 
component that describes the perceived brightness, "imaginary" primary colors and 
corresponding color-matching functions have been formulated. The resulting tristimulus 
values are defined by the CIE 1931 color space, in which they are denoted X, Y, and Z.  

When judging the relative luminance (brightness) of different colors in well-lit situations, 
humans tend to perceive light within the green parts of the spectrum as brighter than red or 
blue light of equal power. The luminosity function that describes the perceived brightness of 
different wavelengths is thus roughly analogous to the spectral sensitivity of M cones. The 
CIE model capitalizes on this fact by defining Y as luminance. Z is quasi-equal to blue 
stimulation, or the S cone response, and X is a mix (a linear combination) of cone response 
curves chosen to be nonnegative. The XYZ tristimulus values are thus analogous to, but not 
equal to, the LMS cone responses of the human eye. Defining Y as luminance has the useful 
result that for any given Y value, the XZ plane will contain all possible chromaticities at that 
luminance.  
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Color Matching Functions 

The CIE’s color matching functions 

€ 

x (λ),y (λ),z (λ)are the numerical description of the 
chromatic response of the human observer. They can be regarded as the spectral sensitivity 
curves of three linear light detectors yielding the CIE tristimulus values X, Y, Z. The 
tristimulus values for a color with a spectral power distribution 

€ 

I(λ)  are given by: 

 

€ 

X = I(λ)
380

780

∫ x (λ)dλ  

€ 

Y = I(λ)
380

780

∫ y (λ)dλ          (A1.1) 

€ 

Z = I(λ)
380

780

∫ z (λ)dλ  

where  is the wavelength of the equivalent monochromatic light measured in nanometers.  

 

CIE Chromaticity Diagram & CIE Color Space 

Since the human eye has three types of color sensors that respond to different ranges of 
wavelengths, a full plot of all visible colors is a three-dimensional image. The concept of 
color can be divided into two parts: brightness and chromaticity. The CIE XYZ color space 
was deliberately designed so that the Y parameter was a measure of the brightness or 
luminance of a color. The chromaticity of a color was then specified by the two derived 
parameters x and y, two of the three normalized values which are functions of all three 
tristimulus values X, Y, and Z: 

€ 

x =
X

X +Y + Z
 

€ 

y =
Y

X +Y + Z
                   (A1.2) 

€ 

z =
Z

X +Y + Z
=1− x − y  

The derived color space specified by x, y, and Y is known as the CIE xyY color space and is 
widely used to specify colors in practice. The X and Z tristimulus values can be calculated 
back from the chromaticity values x and y and the Y tristimulus value: 

 

€ 

X =
Y
y
x                              (A1.3)  

€ 

Z =
Y
y
(1− x − y)                  (A1.4) 
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The chromaticity diagram is an instrument specifying how the human eye will experience 
light with a given spectrum. The outer curved boundary is the spectral locus, with the 
wavelengths shown in nanometers.  

 

Figure A1.2 – CIE 1931 XY chromaticity diagram 

The chromaticity diagram illustrates a number of properties of the CIE XYZ color space: 

1. The diagram represents all of the chromaticities visible to the human being - the gamut of 
human vision. The gamut of all visible chromaticities on the CIE plot shown in figure A1.2. 
The curved edge of the gamut is called the spectral locus and corresponds to monochromatic 
light (each point representing a pure hue of a single wavelength), with wavelengths listed in 
nanometers. The straight edge on the lower part of the gamut is called the line of purples. 
These colors, although they are on the border of the gamut, have no counterpart in 
monochromatic light. Less saturated colors appear in the interior of the figure with white at 
the center. 

2. It is seen that all visible chromaticities correspond to non-negative values of x, y, and z and 
therefore to non-negative values of X, Y, and Z. 

3. If one chooses any two points of color on the chromaticity diagram, then all the colors that 
lie in a straight line between the two points can be formed by mixing these two colors. It 
follows that the gamut of colors must be convex in shape. All colors that can be formed by 
mixing three sources are found inside the triangle formed by the source points on the 
chromaticity diagram  

4. An equal mixture of two equally bright colors will not generally lie on the midpoint of that 
line segment. In more general terms, a distance on the xy chromaticity diagram does not 
correspond to the degree of difference between two colors. In the early 1940s, David 
MacAdam studied the nature of visual sensitivity to color differences, and summarized his 
results in the concept of a MacAdam ellipse. Based on the work of MacAdam, the CIE 1960, 
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CIE 1964, and CIE 1976 color spaces were developed, with the goal of achieving perceptual 
uniformity (have an equal distance in the color space correspond to equal differences in 
color). Although they were a distinct improvement over the CIE 1931 system, they were not 
completely free of distortion. 

 

CIE RGB Color Space 

The CIE RGB color space is one of many RGB color spaces, distinguished by a particular set 
of monochromatic primary colors. The standardized CIE RGB color matching functions 

€ 

r (λ),g (λ),b (λ) are obtained using three monochromatic primaries at standardized 
wavelengths of 700 nm (red), 546.1 nm (green) and 435.8 nm (blue). The color matching 
functions are the amounts of primaries needed to match the monochromatic test primary. 
These functions are depicted in figure A1.3. 

 

 

Figure A1.3 - The CIE 1931 RGB Color matching functions. The color matching functions 
are the amounts of primaries needed to match the monochromatic test primary at the 
wavelength shown on the horizontal scale. 

The primaries with wavelengths 546.1 nm and 435.8 nm were chosen because they are easily 
reproducible monochromatic lines of a mercury vapor discharge. The 700 nm wavelength, 
which in 1931 was difficult to reproduce as a monochromatic beam, was chosen because the 
eye's perception of color is rather unchanging at this wavelength, and therefore small errors in 
wavelength of this primary would have little effect on the results. The curves are normalized 
to have constant area beneath them, fixed to a particular value by specifying that: 

€ 

r (λ)
0

∞

∫ dλ = g (λ)
0

∞

∫ dλ = b (λ)
0

∞

∫ dλ                               (A1.5) 

The resulting normalized color matching functions are then scaled in the r:g:b ratio of 
1:4.5907:0.0601 for source luminance and 72.0962:1.3791:1 for source radiant power to 
reproduce the true color matching functions. By proposing that the primaries be standardized, 
the CIE established an international system of objective color notation. 

Given these scaled color matching functions, the RGB tristimulus values for a color with a 
spectral power distribution 

€ 

I(λ)  would then be given by:  
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€ 

R = I(λ)
0

∞

∫ r (λ)dλ

G = I(λ)
0

∞

∫ g (λ)dλ

B = I(λ)
0

∞

∫ b (λ)dλ

                  (A1.6) 

The CIE RGB space can be used to define chromaticity the usual way: 

€ 

r =
R

R+G +B

g =
G

R+G + B

                  (A1.7) 

  

 

Figure A1.4 – Gamut of the CIE RGB primaries and location  
on the CIE 1931 xy chromaticity diagram 

 
 
 
 
 
 
 
 
 
The standard transformation between the CIE RGB and XYZ spaces is described by: 
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€ 

X
Y
Z

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
1
b21

b11 b12 b13
b21 b22 b23
b31 b32 b33

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

R
G
B

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
1

0.17697

0.49 0.31 0.20
0.17687 0.81240 0.01063
0.00 0.01 0.99

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

R
G
B

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
                      (A1.8) 

 
While the above matrix is exactly specified in standards, going the other direction uses an 
inverse matrix that is not exactly specified, but is approximately defined by: 
 

€ 

R
G
B

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
=

0.41847 −0.15866 −0.082835
−0.091169 0.25243 0.015708
0.00092090 −0.0025498 0.17860

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
•

X
Y
Z

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
                                  (A1.9) 

 

 

Color Difference 

The International Commission on Illumination (CIE) calls their distance metric 

€ 

ΔEab
* .  

Different studies have proposed different 

€ 

ΔEab
*  values that have a JND - just noticeable 

difference. Recently the standard has been set to a JND of 

€ 

ΔEab
* = 2.3. However, perceptual 

non-uniformities in the underlying CIELAB color space prevent this and have led to the 
CIE's refining their definition over the years, leading to the superior CIE1994 and CIE2000 
formulas. These non-uniformities are important because the human eye is more sensitive to 
certain colors than others. A good metric should take this into account in order for the notion 
of a JND to have meaning. Otherwise, a certain 

€ 

ΔEab
*  that may be insignificant between two 

colors that the eye is insensitive to may be conspicuous in another part of the spectrum.  

 

CIE1976 

In colorimetry, the CIE 1976 (L*, u*, v*) color space, commonly known by its abbreviation 
CIELUV, is a color space adopted by the International Commission on Illumination CIE in 
1976, as a simple-to-compute transformation of the 1931 CIE XYZ color space, that 
attempted perceptual uniformity.  
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Figure A1.5 - CIE 1976 uniform chromaticity scale diagram. 

CIELUV attempts to define an encoding with uniformity in the perceptibility of color 
differences. The non-linear relations between CIE XYZ and CIELUV are expressed with: 
 

€ 

L*=

29
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3

Y /Yn , Y /Yn ≤
6
29
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3

116 Y /Yn( )1/3 −16, Y /Yn >
6
29
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

             (A1.10) 

 

€ 

u*=13L *• u'−un
'( )

v*=13L *• v'−vn
'( )                 (A1.11) 

The quantities 

€ 

un 'and 

€ 

vn '  are the (u′, v′) chromaticity coordinates of the white point – and 

€ 

Yn  
is its luminance. In reflection mode, this is often but not always taken as the (u′, v′) of the 
perfect reflecting diffuser under that illuminant. Equations for u′ and v′ are given below: 
 

€ 

u'= 4X
X +15Y + 3Z

=
4x

−2x +12y+ 3

v'= 9Y
X +15Y + 3Z

=
9y

−2x +12y+ 3

             (A1.12) 
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The transformation from (u’,v’) to (x, y) is the following: 
 

€ 

x =
9u'

6u'−16v'+12

y =
4v'

6u'−16v'+12

                         (A1.13) 

 
The transformation from CIELUV to CIE XYZ is defined with: 
 

€ 

Y =
Yn •L *•

3
29
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3

, L*≤ 8

Yn •
L *+16
116

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3

, L*> 8

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

                        (A1.14) 

 

€ 

X = Y •
9u'
4v'

                           (A1.15) 

 

€ 

Z = Y •
12− 3u'−20v'

4v'
                                     (A1.16) 

 
 
Cylindrical Representation 
 
The cylindrical version of CIELUV is known as CIE 

€ 

LChuv  where 

€ 

Cuv
*  is the chroma and 

€ 

huv  
is the hue, defined with: 
 

€ 

Cuv
* = u *( )2 + v *( )2

huv = a tan2(v*,u*)
                                      (A1.17) 

 
where function computes the polar angle from a Cartesian coordinate pair.  
The saturation can be defined as: 
 

€ 

suv =
C *
L *

=13 u'−un
'( )2 + v'−vn

'( )2                          (A1.18) 

 
 
Color and Hue Difference 
 
The color difference can be calculated using the Euclidean distance of the 

€ 

L*,u*,v* 
coordinates with . The Euclidean metric can be used in CIE 

€ 

LChuv  with that 

component of  attributable to the difference in hue as  where 
.  
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CIE 1994  

The 1976 definition was extended to address perceptual non-uniformities, while retaining the 
L*a*b* color space. 

€ 

ΔE1994  is defined in the L*C*h* color space with difference in 
lightness, chroma and hue calculated from L*a*b* coordinates. Given a reference color 

€ 

L1
*,a1

*,b1
*( ) and another color 

€ 

L2
* ,a2

*,b2
*( ), the difference is: 

€ 

ΔE94
* =

ΔL *
kLSL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
ΔCab

*

kcSc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
ΔHab

*

kHSH

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

                          (A1.19) 

where 

€ 

ΔL*= L1
* − L2

*                            (A1.20) 

€ 

C1
* = a1

*2 + b1
*2                (A1.21) 

€ 

C2
* = a2

*2 + b2
*2                (A1.22) 

€ 

ΔHab
* = ΔEab

* 2 − ΔL *2 −ΔCab
* 2 = Δa *2 +Δb *2 −ΔCab

* 2           (A1.23) 

€ 

Δa*= a1
* − a2

*                 (A1.24) 

€ 

Δb*= b1
* − b2

*                                           (A1.25) 

€ 

SL =1                            (A1.26) 

€ 

SC =1+K1C1
*                  (A1.27) 

€ 

SH =1+K2C1
*                             (A1.28) 

and where 

€ 

Kc and 

€ 

KH are usually unity and the weighting factors 

€ 

KL =1, 

€ 

K1 = 0.045  and 

€ 

K2 = 0.015for graphic arts.  

 

CIE2000 

Since the 1994 definition did not adequately resolve the perceptual uniformity issue, the CIE 
refined their definition, adding five corrections: 

• A hue rotation term RT to deal with the problematic blue region - hue angles in the  
• neighborhood of 275° 
• Compensation for neutral colors, the primed values in the L*C*h differences 
• Compensation for lightness 

€ 

SL  
• Compensation for chroma 

€ 

SC  
• Compensation for hue 

€ 

SH  
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€ 

ΔE00
* =

ΔL'
kLSL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
ΔC'
kCSC

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
ΔH '
kHSH

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+RT
ΔC'
kCSC

ΔH '
kHSH

                                 (A1.29) 

€ 

ΔL'= L2
* − L1

*                (A1.30) 

€ 

L =
L1
* + L2

*

2
                (A1.31) 

€ 

C =
C1
* + C2

*

2
                             (A1.32) 

€ 

a1
' = a1

* +
a1
*

2
1− C 7

C 7 + 257
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟                  (A1.33) 

€ 

a2
' = a2

* +
a2
*

2
1− C 7

C 7 + 257
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟                  (A1.34) 

€ 

C '= C1
' + C2

'

2
                   (A1.35) 

€ 

ΔC'= C2
' −C1

'                    (A1.36) 

€ 

C1
' = a1

' 2 + b1
*2                               (A1.37) 

€ 

C2
' = a2

' 2 + b2
*2                    (A1.38) 

€ 

h1
' = a tan2 b1

*,a1
'( )mod360

h2
' = a tan2 b2

*,a2
'( )mod360

                 (A1.39) 

  

€ 

Δh'=

h2
' − h1

' for h2
' − h1

' ≤180

h2
' − h1

' + 360 for h2
' − h1

' >180

h2
' − h1

' + 360 for h2
' − h1

' >180,h2
' > h1

'

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

,h2
' ≤ h1

'              (A1.40) 

€ 

ΔH '= 2 C1
'C2

' sin Δh' /2( )                   (A1.41) 

  

€ 

H '=
h1
' + h2

' + 360( ) /2 for h1
' − h2

' >180

h1
' + h2

'( ) /2 for h1
' − h2

' ≤180

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
               (A1.42) 

  

€ 

T =1− 0.17cos H '−30( ) + 0.24 cos 2H '( ) + 0.32cos 3H '+6( )− 0.20cos 4H '−63( )         (A1.43) 
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€ 

SL =1+
0.015 L − 50( )2

20+ L − 50( )2
                  (A1.44) 

€ 

SC =1+ 0.045C '                    (A1.45) 

€ 

SH =1+ 0.015C 'T                    (A1.46) 

  

€ 

RT = −2 C '7

C '7 +257
sin 60 exp − H '−275

25
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
                                (A1.47) 

 

CMC l:c  

In 1984, the Color Measurement Committee of the Society of Dyers and Colorists defined a 
new difference measure, also based on the L*C*h color model. Named after the developing 
committee, their metric is called CMC l:c. The quasimetric has two parameters: lightness (l) 
and chroma (c), allowing the users to weight the difference based on the ratio of l:c that is 
deemed appropriate for the application. Commonly used values are 2:1 for acceptability and 
1:1 for the threshold of imperceptibility. 

The distance of a color 

€ 

L2
* ,C2

*,h2( ) to a reference 

€ 

L1
*,C1

*,h1( ) 

€ 

ΔECMC
* =

L2
* − L1

*

lSL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
C2
* −C1

*

cSc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
ΔHab

*

SH

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

                              (A1.48) 

€ 

SL =

0.511 L1
* <16

0.040975L1
*

1+ 0.01765L1
* L1

* ≥16

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

                 (A1.49) 

€ 

SC =
0.063C1

*

1+ 0.0131C1
* + 0.638                  (A1.50) 

€ 

SH = SC FT +1− F( )                   (A1.51) 

€ 

F =
C1
*4

C1
*4 +1900

                   (A1.52) 

  

€ 

T =
0.56+ 0.2cos h1 +168( ) 164 ≤ h1 ≤ 345



0.36+ 0.4 cos h1 + 35( ) otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
             (A1.53) 
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2. Principal Component Analysis 

The central idea of principal component analysis (PCA) is to reduce the dimensionality of a 
dataset consisting of a large number of interrelated variables, while retaining as much as 
possible of the variation present in the data set. This goal is a achieved by transforming the 
data to a new set of variables - the principal components - which are uncorrelated and which 
are ordered so that the first few retain most of the variation present in all the original 
variables. For further details the reader is adviced to refer to [276]. This part of the Appendix 
has been adapted from [276].   

Notations 

• X is a vector of p random variables  

• 

€ 

Pk  is a vector of p constants 

• 

€ 

Pk
'X = PkjX jj=1

p∑                  (A2.1) 

 

Procedural description 

• Find linear function of X: 

€ 

P1
'X  with maximum variance 

• Next, find another linear function of X, 

€ 

P2
'X  uncorrelated with 

€ 

P1
'X  with maximum 

variance  

• Iterate 

In general, the goal is that most of the variation in X will be accounted for by the first m 
principal components, where m << p. 

 

Derivation of PCA 

• Σ is the known covariance matrix for the random variable X 

• Σ will be replaced with S - the sample covariance matrix, when Σ is unknown 

 

Solution 

• For k = 1, 2…, p the k-th principal component is given by 

€ 

zk = Pk
'X  where 

€ 

Pk  is an 
eigenvector of Σ corresponding to its k-th largest eigenvalue of 

€ 

λk  

• If 

€ 

Pk  is chosen to have unit length (i.e. 

€ 

P
k

'Pk =1) then 

€ 

Var(zk ) = λk  
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First Step 

• Find 

€ 

P
k

'X that maximizes 

€ 

Var(Pk
'X ) = Pk

'ΣPk  

• Without constraint, select 

€ 

Pk  

• Choose normalization constraint 

€ 

P
k

'Pk =1, unit length vector 

Constrained maximization – The method of Lagrange multipliers 

• To maximize 

€ 

Pk
'ΣPk subject to 

€ 

P
k

'Pk =1, the Lagrange multipliers technique is used.  

The function 

€ 

Pk
'ΣPk − λ Pk

'Pk −1( )  is maximized with regard to 

€ 

Pk .  

• Resulting in the following: 

€ 

d
dPk

Pk
'ΣPk − λk (Pk

'Pk −1)( ) = 0

ΣPk − λkPk = 0
ΣPk = λkPk

                             (A2.2) 

This should be recognizable as an eigenvector equation where 

€ 

Pk  is an eigenvector of 

€ 

Σb f  
and  is the associated eigenvalue. Which eigenvector should we choose? If we recognize 
that the quantity to be maximized is 

€ 

Pk
'ΣPk = Pk

'λkPk = λkPk
'Pk = λk then we should choose  

to be as big as possible.  

Calling  the largest eigenvector of Σ and 

€ 

P1 the corresponding eigenvector, then the 
solution to 

€ 

ΣP1 = λ1P1 is the first principal component of X. In general, 

€ 

Pk  will be the k-th 
principal component of X and 

€ 

Var(P'X ) = λk . We will demonstrate this for k = 2. The second 
principal component 

€ 

P2Xmaximizes 

€ 

P2
'ΣP2  subject to being uncorrelated with 

€ 

P1X .  

The un-correlation constraint can be expressed by using the equations: 

 

€ 

cov(P1
'X ,P2

'X ) = P1
'ΣP2 = P2

'ΣP1 = P2
'λ1P1

' = λ1P2
'P1 = λ1P1

'P2 = 0                                  (A2.3) 

We can choose a Lagrangian to maximize 

 

€ 

P2
'ΣP2 − λ2(P2

'P2 −1)−ϕP2
'P1              (A2.4) 

Differentiation of this quantity with regard to 

€ 

P2  and setting the result equal to zero gives:  

€ 

d
dP2

P2
'ΣP2 − λ2(P2

'P2 −1)−ϕP2
'P1( ) = 0

ΣP2 − λ2P2 −ϕP1 = 0
                         (A2.5) 

€ 

P1
'ΣP2 − λ2P1

'P2 −ϕP1
'P1 = 0                 (A2.6) 
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Therefore  must be zero, leading to 

€ 

ΣP2 − λ2P2 = 0 . This equation is another eigenvalue 
equation and the same strategy of choosing 

€ 

P2  to be the eigenvector associated with the 
second largest eigenvalue yields the second principal component of X, namely 

€ 

P2
'X . 

This process can be repeated for k = 1, …, p yielding up to p different eigenvectors of Σ 
along with the corresponding eigenvalues

€ 

λ1,...,λ p . Furthermore, the variance of each 
principal component is given by 

€ 

Var[Pk
'X ]= λk . 

 

Properties of PCA  

For any integer q, 

€ 

1≤ q ≤ p , consider the ortho-normal linear transformation 

€ 

y = B'Xwhere y 
is a q-element vector and B is a 

€ 

q× p matrix and let 

€ 

Σy = B'ΣB  be the variance-covariance 
matrix for y. Then the trace of  , denoted 

€ 

tr Σy( )  is maximized by taking 

€ 

B = Aq , where 

€ 

Aq  
consists of the first q columns of A. Therefore, if you want to choose a lower dimensional 
projection of X, B is a good option. It maximizes the retained variance of the resulting 
variables. Since projections are not correlated, the percentage of variance accounted for by 
retaining the first q principal components is given by: 

€ 

λkk=1

q∑
λkk=1

p∑
×100                              (A2.7) 

The sample covariance matrix – an unbiased estimator for the covariance matrix of X is given 

by 

€ 

S =
1

(n−1)
X 'X  where X is a 

€ 

(n× p) matrix with 

€ 

(i, j)− thelement 

€ 

xij − x j( ) .  

The matrix A is formed by combining the p eigenvectors of S, then we can define a matrix of 

principal components scores 

€ 

Z = XA . Given the sample covariance matrix 

€ 

S =
1

(n−1)
X 'X , 

the most straightforward way of computing the principal component analysis loading matrix 
is to use the singular value decomposition of 

€ 

S = A'ΛA  where A is a matrix consisting of the 
eigenvectors of S and  is a diagonal matrix whose diagonal elements are the eigenvalues 
corresponding to each eigenvector. Creating a reduced dimensionality projection of X is 
accomplished by selecting the q largest eigenvalues in  and retaining the q corresponding 
eigenvectors from A.  

 

Limitations of PCA 

• PCA assumes approximate normality of the input space distribution – PCA may still 
be able to produce a “good” low dimensional projection of the data even if the data 
isn’t normally distributed 

• PCA assumes that the input data is real and continuous  
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3. Independent Component Analysis 
Independent component analysis (ICA) is a statistical method, with the goal to decompose 
multivariate data into a linear sum of non-orthogonal basis vectors with coefficients being 
statistically independent. ICA generalizes a widely-used subspace analysis method such as 
principal component analysis (PCA) and factor analysis, allowing latent variables to be non-
Gaussian and basis vectors to be non-orthogonal in general. ICA is a density estimation 
method where a linear model is learned such that the probability distribution of the observed 
data is optimally captured, while factor analysis aims at best modeling the covariance 
structure of the observed data. For further details the reader may refer to [277-280]. This part 
of the Appendix has been adapted from [280]. 

We consider a linear generative model where m-dimensional observed data 

€ 

x ∈ Rm is 
assumed to be generated by a linear combination of n basis vectors 

€ 

ai ∈ Rm{ }  

€ 

x = a1s1 + a2s2 + ...+ ansn  where 

€ 

si ∈ R{ } are encoding variables representing the extent to 
which each basis vectors is used to reconstruct the data vector. Given N samples, the model 
can be then written in a compact form: 

€ 

X = AS , where 

€ 

X = x(1),...x(N )[ ]∈ Rm×N is a data 
matrix, 

€ 

A = [a1,...,an ]∈ Rm×n is a basis matrix and 

€ 

S = s(1),...,s(N )[ ]∈ Rn×N is an encoding 
matrix with 

€ 

s(t)= s1(t),...,sn (t)[ ]T  

A strong application of ICA is a problem of blind source separation – the goal of which is to 
restore sources S without the knowledge of A, given the data matrix X. ICA and blind source 
separation have often been treated as identical problems since they are closely related to each 
other. In blind source separation, the matrix A is referred to as mixing matrix. In practice, we 
find a linear transformation W referred to as demixing matrix such that the rows of the output 
matrix 

€ 

Y =WX  are statistically independent. In this case, 

€ 

WA  becomes a transparent 
transformation when the rows of Y are statistically independent. The transparent 
transformation is given by 

€ 

WA = PΛ  where P is a permutation matrix and  is a nonsingular 
diagonal matrix involving scaling. This transparent transformation reflects two 
indeterminacies in ICA: (1) scaling ambiguity and (2) permutation ambiguity.  

Principal component analysis PCA has been used for dimensionality reduction and feature 
extraction. Having a data matrix 

€ 

X ∈ Rm×N , the covariance matrix 

€ 

RXX  is defined by 

€ 

RXX =
1
N
XHXT  where 

€ 

H = IN×N −
1
N
1N1N

T  is the centering matrix where 

€ 

IN×N  is the 

€ 

N × N  

identity matrix and 

€ 

1N = [1,...1]T ∈ RN . The approximation of the covariance matrix 

€ 

RXX  is 

€ 

RXX ≈UΛU
T , where 

€ 

U ∈ Rm×n  contains n eigenvectors associated with n largest eigenvalues 
of 

€ 

RXX in its columns and the corresponding eigenvalues are in the diagonal entries of . The 
principal components are determined by projecting data points onto the eigenvectors - 

€ 

Z =UT X . 

ICA is a generalization of PCA in the sense that the latent components are non-Gaussian and 
A can be a non-orthogonal transformation. PCA assumes only orthogonal transformation and 
considers the Gaussian variables. Figure A3.1 shows the main difference between PCA and 
ICA. 
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Figure A3.1 -  Two-dimensional data with two main arms are fitted by two different basis 
vectors: (a) PCA makes the implicit assumption that the data have a Gaussian distribution and 
determines the optimal basis vectors that are orthogonal, which are not efficient at 
representing non-orthogonal distributions; (b) ICA does not require that the basis vectors be 
orthogonal and considers non-Gaussian distributions, which is more suitable in fitting more 
general types of distributions (Credits: “Independent Component Analysis”, Seungjin Choi) 

Theorem – Let  be a set of independent random variables. Consider two random 
variables  and  which are linear combinations of  

€ 

y1 = α1s1 + ...+αnsn
y2 = β2s2 + ...+βnsn

                 (A3.1) 

where 

€ 

αi{ }and 

€ 

βi{ } are real constants. If 

€ 

y1 and 

€ 

y2  are statistically independent, then each 
variable  for which 

€ 

αiβi ≠ 0 is Gaussian. Considering 

€ 

m = n , we define the global 
transformation 

€ 

G =WA, where A is the mixing matrix and W is the demixing matrix. The 
output is written as 

€ 

y(t)=Wx(t) =Gs(t) . If A and W are nonsingular, G is nonsingular. If 

€ 

yi (t){ } are mutually independent non-Gaussian signals, in this G has the following 
decomposition , justifying the fact that ICA performs blind source separation.  

The task of ICA is to estimate the mixing matrix A or its inverse 

€ 

W = A−1 such that the 
elements of the estimate 

€ 

y = A−1x =Wx  are independent. There are multiple techniques to 
estimate ICA, including maximum likelihood estimation, mutual information minimization, 
information maximization. In this Appendix we present only the maximum likelihood 
estimation.  
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Maximum likelihood estimation 

Suppose that sources s are independent, with marginal distributions 

€ 

qisi , 

€ 

q(s) = qi (si )
i=1

n

∏ . In 

the linear model 

€ 

x = As , a single factor in the likelihood function is given by:  

€ 

p(x | A,q) = p(x | s,A)q(s)ds = δ x j − Ajisi
i=1

n

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ qi (si
i=1

n

∏ )
j=1

n

∏∫∫ ds = det A −1 qi Aij
−1x j

j=1

n

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i=1

n

∏     

                   (A3.2) 

The log-likelihood is written as 

€ 

log p(x | A,q) = − log det A + logq A−1x( )  

€ 

log p(x |W ,q) = log detW + log p(y) 

Where 

€ 

W = A−1 and y is the estimate of s with the true distribution q replaced by a 
hypothesized distribution p. Because sources are assumed statistically independent, the 

previous equation can be written as 

€ 

log p(x |W ,q) = log detW + log pi (yi )
i=1

n

∑ .  

The demixing matrix W is determined by: 

€ 

ˆ W = argmax
W

log det W + log pi (yi )
i=1

n

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

              (A3.3) 

Maximum likelihood estimation is equivalent to Kullback matching where the optimal model 
is estimated by minimizing the Kullback Leibler (KL) divergence between the empirical 
distribution and the model distribution. If 

€ 

˜ p (x)  is the empirical distribution and 

€ 

pθ (x) = p(x | A,q) is the model distribution, then the KL divergence is defined as: 

€ 

KL ˜ p (x) || pθ (x)[ ] = ˜ p (x)∫ log
˜ p (x)

pθ (x)
dx = −H ( ˜ p )− ˜ p (x)∫ log pθ (x)dx            (A3.4) 

where 

€ 

H ( ˜ p ) = − ˜ p (x) log ˜ p (x)dx∫  is the entropy of 

€ 

˜ p .  Given a set of data points 

€ 

{x1,...,xN} 
drawn from the underlying distribution 

€ 

p(x) , the empirical distribution 

€ 

˜ p (x)  puts probability 
 on each point in the data: 

 

€ 

˜ p (x) =
1
N

δ(x − xt )
t=1

N

∑ , leading to 

€ 

arg min
θ

KL[ ˜ p (x) || pθ (x)] = argmax
θ

log pθ (x) ˜ p 
 where 

€ 

• ˜ p  

represents the expectation with respect to the distribution 

€ 

˜ p . In conclusion: 

€ 

log pθ (x) ˜ p 
=

1
N

Nδ(x − xt ) log pθ (x)dx =
1
N

log pθ (x)
t=1

N

∑
t=1

N

∑∫             (A3.5) 

Maximum likelihood estimation is obtained from minimizing the KL divergence.  
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4. Information Theory 
4.1 Relationship Between Entropy and Mutual Information 

€ 

I(X ,Y ) = pXY ξi ,ρ j( )
i , j
∑ log

pXY ξi ,ρ j( )
pX (ξi )pY (ρi )

= pXY ξi ,ρ j( ) log
pX |Y ξi | ρ j( )
pX (ξi )i , j

∑

= − pXY
i , j
∑ ξi ,ρ j( ) log pX ξi( ) + pXY

i , j
∑ ξi ,ρ j( ) log pX |Y ξi | ρ j( )

= − pX (ξi ) log pX
i
∑ (ξi )− − pXY

i , j
∑ ξi ,ρ j( ) log pX |Y ξi | ρ j( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= HX −HX |Y

                               (A4.1) 

The mutual information is the reduction in the uncertainty of X due to the knowledge of Y. By 
symmetry, it follows that 

€ 

I(X ,Y ) = HY −HY |X . The random variable X contains the same 
amount of information about Y that Y contains about X.  

Since 

€ 

HX ,Y = HX +HY |X , the following applies: 

€ 

I(X ,Y ) = HX +HY −HX ,Y                      (A4.2) 

Finally we note that 

€ 

I(X ,Y ) = HX −HX |X = HX  - the mutual information of a random variable 
with itself is the entropy of the random variable.  

Theorem – the relationship between entropy and mutual information 

€ 

I(X ,Y ) = HX −HX |Y

I(X ,Y ) = HY −HY |X

I(X ,Y ) = HX +HY −HX ,Y

I(X ,Y ) = I(Y ,X )
I(X ,X ) = HX

                           (A4.3) 

 

Figure A4.1 – Relationship between entropy and mutual information 
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The relationship between 

€ 

HX , 

€ 

HY ,

€ 

HX ,Y  ,

€ 

HX |Y ,

€ 

HY |X  and 

€ 

I(X ,Y ) is expressed in the Venn 
diagram, figure A4.1. The mutual information corresponds to the intersection of the 
information in X and the information in Y.  

 

4.2 Chain Rules for Entropy, Relative Entropy and Mutual Information 

Definition – Let 

€ 

X1,...,Xn  be drawn according to 

€ 

pX1,...,Xn (ξ1,...,ξn ), then: 

€ 

HX1...Xn
= HXi |Xi−1,...,X1

i=1

n

∑                 (A4.4) 

By repeating the two-variable expansion rule for entropies, we have: 

 

€ 

HX1X2
= HX1

+HX2 |X1

HX1X2X3
= HX1

+HX2 |X1
+HX3| X2 ,X1( )

...

               (A.45) 

€ 

HX1...Xn
= HXi |Xi−1,...,X1

i=1

n

∑                            (A4.6) 

 

The conditional mutual information as the reduction in the uncertainty of X due to knowledge 
of Y when Z is given. The conditional mutual information of random variables X, Y, Z is 
defined by 

€ 

I(X ,Y | Z ) = HX |Z −HX |Y ,Z  

Mutual information also satisfies the chain rule for information: 

€ 

I(X1,...,Xn;Y ) = I Xi;Y | Xi−1,Xi−2 ...,X1( )
i=1

n

∑

= HXi |Xi−1,...,X1
i=1

n

∑ − HXi |Xi−1,...,X1,Y
i=1

n

∑

= I Xi;Y | Xi−1,Xi−2 ...,X1( )
i=1

n

∑

             (A4.7) 
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4.3 Jensen’s Inequality and Its Consequences 

Definition – A function 

€ 

f (x)  is said to be convex over an interval (a, b) if for every 

€ 

x1,x2 ∈ (a,b) and 

€ 

0 ≤ λ ≤1,  

€ 

f λx1 + (1− λ)x2( ) ≤ λf (x1)+ (1− λ) f (x2 )               (A4.8) 

A function f is said to be strictly convex if equality holds only if  or  

Definition  – A function f is concave if  (- f) is convex. A function is convex if it always lies 
below any chord. A function is concave if it always lies above any chord.  

Theorem (Jensen’s Inequality) – If f is a convex function and X is a random variable, then 

€ 

Ef (X ) ≥ f (EX ), where E = expectation. If f is strictly convex, then 

€ 

X = EX , with probability 
1 and X is a constant. 

From a two mass point distribution, the inequality becomes: 

€ 

p1 f x1( ) + p2 f (x2 ) ≥ f (p1x1 + p2x2 ) which follows directly from the definition of convex 
functions. Suppose the theorem is true for distributions with (k – 1) mass points. Then, 
writing  for i = 1, 2, …, (k – 1): 

€ 

pi f xi( ) = pk f (xk )
i=1

k

∑ + (1− pk ) pi
' f (xi )

i=1

k−1

∑

≥ pk f (xk )+ (1− pk ) f pi
'xi

i=1

k−1

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

≥ f pk xx + (1− pk ) pi
'xi

i=1

k−1

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= f pi xi
i=1

k

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

           (A4.9) 

 

The following theorem is of fundamental importance for entropy and relative entropy. 

Theorem – Let 

€ 

pX (ξ) , 

€ 

qX (ξ) be two probability mass functions 

Then 

€ 

KL(p || q) ≥ 0  with equality if and only if  

€ 

pX (ξ) = qX (ξ) for all ξ.  

Let 

€ 

A = {ξ : pX (ξ) > 0} be the support set of 

€ 

pX (ξ) .  

 

 

 

 

 



 

 
169 

Then: 

€ 

−KL(p || q) = − pX (ξ)
ξ∈A
∑ log pX (ξ)

qX (ξ)

= pX (ξ) log
qX (ξ)
pX (ξ)ξ∈A

∑

≤ log p(x)
ξ∈A
∑ qX (ξ)

pX (ξ)

= log qX (ξ)
ξ∈A
∑

≤ log qX (ξ)
ξ∈L
∑

= log1= 0

            (A4.10) 

Since log t is a strictly concave function of t, we have the above equation valid if and only if 

€ 

qX (ξ) / pX (ξ) =1 everywhere.  Thus, 

€ 

KL(p || q) = 0  if and only if 

€ 

pX (ξ) = qX (ξ) for all .  

 

Corollary – For any two random variables X, Y, 

€ 

I(X ,Y ) ≥ 0  with equality if and only if X and 
Y are independent. 

€ 

I(X ,Y ) = KL(pXY (ξ,ρ) || pX (ξ)pY (ρ)) ≥ 0 with equality if and only if 

€ 

pXY (ξ,ρ) = pX (ξ,)pY (ρ) , i.e. X and Y are independent.  

 

Corollary - 

€ 

KL pY |X (ρ |ξ) || qY |X (ρ |ξ)( ) ≥ 0  with equality if and only if 

€ 

pY |X (ρ |ξ) = qY |X (ρ |ξ)  for all  and  with 

€ 

pX (ξ) > 0  

 

Corollary  - 

€ 

I(X ,Y | Z ) ≥ 0  with equality if and only if X and Y are conditionally independent 
given Z. 

Theorem – Conditioning reduces entropy: 

€ 

HX |Y ≤ HX  with equality if and only if X and Y are 
independent. 

€ 

0 ≤ I(X ,Y ) = HX −HX |Y . The theorem express that knowing another random 
variable Y can only reduce the uncertainty in X. This is true only on the average. Specifically, 

€ 

HX |Y=ρmay be greater than or less than or equal to 

€ 

HX , but on the average 

€ 

HX |Y = ΣρpY (ρ)HX |Y=ρ ≤ HX . For example, in a court case new evidence could increase 
uncertainty, but on the average evidence decreases uncertainty.  

 

Theorem – Independence bound on entropy. Let 

€ 

X1,...,Xn  be drawn according to 

€ 

pX1,...Xn (ξ1,...,ξn ) , then 

€ 

HX1,...,Xn ≤ HXi
i=1

n

∑  with equality if and only if the 

€ 

Xi  are independent.  

For further reading the reader is adviced to refer to [263]. 
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5. Estimation Theory 
5.1 The Naïve Bayes Model for Classification 

Naïve Bayes is an important model for binary classification. We start with the training set 

€ 

ξ (i) ,ρ (i)( )  for i = 1…n, where each  is a vector and each 

€ 

ρ i( ) ∈ (1,...,k). k is an integer 
specifying the number of classes. In the case of a multiclass classification problem, the goal 
is to map each input vector  to a label ρ that can take any one of the k possible values. When 
k = 2,  the classification problem is binary.  

Each vector  is in the set 

€ 

{−1,+1}d  for an integer value d specifying the number of features 
in the model. Each component 

€ 

ξ j  for j = 1…d can take one of the two possible values. 
Because this dissertation focused on classifying text and image documents, we use an 
example from the text domain to illustrate this. Consider the problem of classifying 
newspaper articles into k different categories – e.g. ρ =1 corresponds to a sport class, ρ = 2 
corresponds to entertainment class, ρ = 3 to politics, etc). The label 

€ 

ρ(i)  represents of the 
category of the i-th article / document in the collection. Each  component 

€ 

ξ j
(i)  for j = 1…d 

might represent the presence or the absence of a particular word. We can define 

€ 

ξ1
(i)  to be 

(+1) if the i-th document contains the word football, or (-1) otherwise; 

€ 

ξ2
(i)  to be (+1) if the i-

th document contains the word government, or (-1) otherwise.  

Assuming the random variables Y and 

€ 

X1...Xd  corresponding to the label ρ and the vector 
components , our goal with the Naïve Bayes is to model the joint discrete probability 

€ 

P(Y = ρ,X1 = ξ1,...,Xd = ξd )  for any label ρ paired with attribute values 

€ 

ξ1,...,ξd . The 
following assumption is fundamental in the Naïve Bayes model: 

€ 

P(Y = ρ,X1 = ξ1,...,Xd = ξd ) = P(Y = ρ) P X j = ξ j |Y = ρ( )
j=1

d

∏                       (A5.1) 

First, by the chain rule, any joint distribution over 

€ 

Y ,X1,...,Xd  can be factored as: 

€ 

P(Y = ρ,X1 = ξ1,...,Xd = ξd ) = P(Y = ρ)× P(X1 = ξ1,...,Xd = ξd |Y = ρ)                           (A5.2) 

€ 

P(X1 = ξ1,...,Xd = ξd |Y = ρ) =

= P X j = ξ j | X1 = ξ1,...,X j−1 = ξ j−1 |Y = ρ( )
j=1

d

∏

= P
j=1

d

∏ X j = ξ j |Y = ρ( )

                                   (A5.3) 

By the chain rule, the first equality is exact. The second equality – by the Naïve Bayes 
assumption – follows that for all  j = 1…d the value for the random variable 

€ 

X j  is 
independent of all other attribute values 

€ 

X j '  for all 

€ 

j'≠ j , when conditioned on the identity of 
the label Y. This assumption dramatically reduces the number of parameters, yet keeping the 
model effective.  
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The Naïve Bayes model has two types of parameters: 

•  for 

€ 

ρ ∈ 1,..,k{ } , with   
• 

€ 

q j ξ |ρ( )  for j = 1…d, 

€ 

ξ ∈ −1,+1{ }, 

€ 

ρ ∈ 1,..,k{ } , 

€ 

P(X j = ξ |Y = ρ) = q j (ξ | ρ)  

Resulting 

€ 

p ρ,ξ1,...,ξd( ) = q(ρ) qj ξ j | ρ( )
j=1

d

∏               (A5.4) 

The Naïve Bayes model has k = the number of labels, d  = the number of attributes and the 
following parameters explained: 

• 

€ 

q(ρ) for 

€ 

ρ ∈ 1,..,k{ }  - the probability of seeing the label ρ 
• 

€ 

q j (ξ |ρ)  for j = 1…d, 

€ 

ξ ∈ −1,+1{ },  - the probability of attribute j taking 
value ξ,  conditioned on the underlying label being ρ 

The probability for any 

€ 

ρ,ξ1,...,ξd  is defined as: 

€ 

p ρ,ξ1,...,ξd( ) = q(ρ) qj (ξi | ρ)
j=1

d

∏ . In the 

following paragraph we describe the estimation of the parameters using training samples. 
After the parameters have been estimated, the output of the Naïve Bayes classifier for a new 
test example 

€ 

ξ = ξ1,...,ξd  is: 

€ 

ρ∈{1,...,k}
argmax p ρ,ξ1,...,ξd( ) =

ρ∈{1,...,k}
argmax q(ρ) q j ξ j |ρ( )

j=1

d

∏
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟                         (A5.5) 

 

5.2 Maximum Likelihood Estimation for the Naïve Bayes Model 

The question is how to estimate the parameters 

€ 

q(ρ)and 

€ 

q j (ξ |ρ)  from the data.  

The training set is 

€ 

ξ (i) ,ρ (i)( )  for i = 1…n, where each  is a d-dimensional vector. We write 

 for the value of the j-th component of 

€ 

ξ (i)  and 

€ 

ξ j
(i)  have the values {+1, -1}. The 

maximum-likelihood estimate for the parameters 

€ 

q(ρ), with 

€ 

ρ ∈ {1,...,k} is: 

€ 

q(ρ) =
[[q(i) = q]]

i=1

n∑
n

=
count(q)

n
               (A5.6) 

Defining 

€ 

[[q(i) = q]]=1 if 

€ 

q(i) = q  and 0 otherwise. Therefore, 

€ 

[[q(i) = q]]
i=1

n∑ = count(q) 
represents the number of times the label q is in the training set.  

The ML estimates for the 

€ 

q j (ξ |ρ)  parameters will have the following form: 

€ 

q j (ξ |ρ) =
[[ρ(i) = ρ,ξ j

(i) = ξ]]
i=1

n∑
[[ρ(i) = ρ]]

i=1

n∑
=
count j (ξ | ρ)
count(ρ)

             (A5.7) 

€ 

count j (ξ |ρ) = [[ρ(i) = ρ,ξ j
(i) = ξ]]

i=1

n∑              (A5.8) 
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ML simply counts the number of times label ρ is observed with 

€ 

ξ j  taking value ξ, counts the 
number of times the label ρ is observed in total and compute the ratio of the two.   

 

5.3   Maximum Likelihood Estimates 

In this section we describe how the ML estimates are derived.  

Given the training set 

€ 

(ξ (i) ,ρ (i) ), the log-likelihood function is: 

€ 

L(θ) = log p ξ (i) ,ρ(i)( )
i=1

n

∑

= log q ρ (i)( ) q j ξ j
(i) | ρ(i)( )

j=1

d

∏
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i=1

n

∑

= logq ρ(i)( )
i=1

n

∑ + log q j ξ j
(i) |ρ(i)( )

j=1

d

∏
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i=1

n

∑

= logq ρ(i)( )
i=1

n

∑ + log
j=1

d

∑
i=1

n

∑ q j ξ j
(i) | ρ(i)( )

              (A5.9) 

θ is the parameter vector having the values for all parameters 

€ 

q(ρ) and 

€ 

q j (ξ |ρ)  in the 
model. The log-likelihood function is a function of the parameter values and the training 
samples. The log-likelihood function 

€ 

L(θ) is a measure of how well the parameter values fit 
the training data. Therefore, we need to find the parameter value that maximize

€ 

L(θ). 

 

  

5.3.1 ML Estimation for Naïve Bayes Models 

The maximum-likelihood estimates are the parameter values 

€ 

q(ρ) for 

€ 

q = {1...k} , 

€ 

q j (ξ |ρ)  
for j = 1…d, 

€ 

ρ ∈ {1...k}, 

€ 

ξ ∈ {−1,+1} that maximize: 

€ 

L(θ) = logq ρ(i)( ) + logq j ξ j
(i) |ρ(i)( )

j=1

d

∑
i=1

n

∑
i=1

n

∑              (A5.10) 

with the following conditions: 

•  for all 

€ 

ρ ∈ {1...k}. 

€ 

q(ρ)
ρ=1

k∑ =1 

• For all ρ, j, ξ, 

€ 

q j (ξ |ρ) ≥ 0 ; for all 

€ 

ρ ∈ {1...k}, for all j = 1…d, 

€ 

q j (ξ | ρ)
ξ∈{−1,+1}
∑ =1 
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The ML estimated parameters for Naïve Bayes models take the following form: 

 

€ 

q(ρ) =
[[q(i) = q]]

i=1

n∑
n

=
count(q)

n
             (A5.11) 

€ 

q j (ξ |ρ) =
[[ρ(i) = ρ,ξ j

(i) = ξ]]
i=1

n∑
[[ρ(i) = ρ]]

i=1

n∑
=
count j (ξ | ρ)
count(ρ)

           (A5.12) 

 

Proof  

€ 

L(θ) = logq ρi( )
i=1

n

∑ + logqi ξi , j | ρi( )
j=1

d

∑
i=1

n

∑

= count(ρ) logq(ρ)+ count j
ξ∈{−1,+1}
∑ (ξ | ρ)

ρ

∑
j=1

d

∑
ρ

∑ logq j (ξ |ρ)
         (A5.13) 

 

 

Considering that: 

€ 

count(q) = [[q(i) = q]]
i=1

n∑              (A5.14) 

€ 

count j (ξ |ρ) = [[ρ(i) = ρ,ξ j
(i) = ξ]]

i=1

n∑             (A5.15) 

We can write: 

€ 

logq ρ(i)( )
i=1

n

∑ = [[ρ(i) = ρ]]
ρ=1

k

∑
i=1

n

∑ logq(ρ)

= [[ρ(i) = ρ]]
i=1

n

∑
ρ=1

k

∑ logq(ρ)

= logq(ρ)
ρ=1

k

∑ [[ρ(i) = ρ]]
i=1

n

∑

= logq(ρ)( )
ρ=1

k

∑ × count(ρ)

           (A5.16) 

 

and similarly 

€ 

logq j ξi , j | ρi( ) = count j (ξ | ρ)
ξ∈{−1,+1}
∑

ρ

∑
j=1

d

∑
j=1

d

∑
i=1

n

∑ logq j (ξ |ρ).                    (A5.17) 
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Going back to the term  

€ 

count(ρ) logq(ρ)+ count j
ξ∈{−1,+1}
∑ (ξ | ρ)

ρ

∑
j=1

d

∑
ρ

∑ logq j (ξ | ρ)          (A5.18) 

Results that maximizing with regard to the 

€ 

q ρ( )  parameters implies maximizing only the 
term 

€ 

count(ρ)
ρ

∑ logq(ρ), considering the constraints previously defined. The value of  

€ 

q ρ( )  

that maximize the term under the constraints is defined as: 

 

€ 

q(ρ) =
count(ρ)

count(ρ)
i=1

k

∑
=
count(ρ)

n
             (A5.19) 

Similarly for 

€ 

count j
ξ∈{−1,+1}
∑ (ξ,ρ) logq j(ξ |ρ) ,             (A5.20) 

we can find the value of  maximizing this term: 

€ 

q j (ξ |ρ) =
count j (ξ | ρ)
count j (ξ |ρ)

ξ∈{−1,+1}
∑

 

 

5.3.2 ML Estimation for Multinomial Distributions 

This section describes the ML estimation method for multinomial distributions. Considering a 
finite set , the distribution over  is a vector q with components 

€ 

qρ  for each 

€ 

ρ ∈ Λ , 
expressing the probability of observing element q. 

€ 

Pρ  is the set of all distributions over the set 
.  

€ 

Pρ = q ∈ R|Λ| :∀q ∈ Λ,qY ≥ 0, qρ =1
q∈Λ
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
            (A5.21) 

There exists a vector c with components 

€ 

cρ  for each , each .  

• 

€ 

cρ  will usually be a count value derived from the data – i.e. the number of times 
element q is observed.  

• There is at least one 

€ 

ρ ∈ Λ  such that 

€ 

cρ  is strictly positive 
 

The estimation problems means finding the distribution q* that maximizes: 

€ 

q*=
q∈Pρ

argmax cρ
ρ∈Λ

∑ logqρ                               (A5.22) 

Vector q* has the components 

€ 

qρ
* =

cρ
N

 for all , where 

€ 

N = cρρ∈Λ
∑ . 
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Proof 

The goal is to maximize the function 

€ 

cρ
ρ∈Λ

∑ logqρ , conditioned by 

€ 

qρ ≥ 0  and 

€ 

qρ =1
ρ∈Λ

∑ . For 

simplicity, in this case all 

€ 

cρ  are strictly positive.  

We introduce a Lagrange multiplier 

€ 

λ ∈ R , corresponding to the constraint 

€ 

qρ =1
ρ∈Λ

∑ : 

€ 

g(λ,q) = cρ
ρ∈Λ

∑ logqρ − λ qρ −1
ρ∈Λ

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟             (A5.23) 

The solution 

€ 

qρ
*  must satisfy the following conditions: 

• 

€ 

d
dqρ

g(λ,q) = 0 , for all ρ              (A5.24) 

 
• 

€ 

qρ =1
ρ∈Λ

∑                (A5.25) 

 

€ 

d
dqρ

g(λ,q) =
cρ
qρ
− λ               (A5.26) 

Setting this derivative to zero, results that 

€ 

cρ
λ

= qρ  and 

€ 

qρ =
cρ
cρ

ρ∈Λ

∑
         (A5.27) 

 

5.4 Expectation-Maximization (EM) 

This section presents the general form of the EM algorithm. We start with the following 
definitions: 

• The sets  and , with 

€ 

Λ = {1,...,k} . The model 

€ 

p(ξ,ρ;θ)  assigns a probability to 
each 

€ 

(ξ,ρ) such that 

€ 

ξ ∈ Γ  and  under parameters θ - includes all the 
parameters in the model.  

• Ω refers to the set of all valid parameter settings in the model  
• The training set is 

€ 

ξ (i) , i = (1,…,n), with 

€ 

ξ (i) ∈ Γ .  

• The log-likelihood function is: 

€ 

L(θ) = log p ξ (i);θ( ) = log p
ρ∈Λ

∑
i=1

n

∑
i=1

n

∑ ξ (i) ,ρ;θ( ) 

• The maximum likelihood estimates are: 

€ 

θ*= argmax
θ∈Ω

L(θ) 

In general, computing the ML estimates in this approach is intractable. The EM algorithm is 
an iterative algorithm that defines parameter settings 

€ 

θ0 ,θ1...θT  and is driven by updating 

€ 

θ t = argmax
θ∈Ω

Q θ,θ t−1( )  for t = 1…T.  
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The function 

€ 

Q θ,θ t−1( )  is defined as 

€ 

Q θ,θ t−1( ) = δ(ρ | i) log p ξ (i) ,ρ,θ( )
ρ∈Λ

∑
i=1

n

∑        (A5.28) 

Where 

€ 

δ(ρ | i) = p ρ |ξ (i);θ t−1( ) =
p ξ (i) ,ρ,θ t−1( )
p ξ (i) ,ρ,θ t−1( )

ρ∈Λ
∑

            (A5.29) 

The idea is to fill in the  values using the conditional distribution, under the previous 
parameter values 

€ 

δ(ρ | i) = p(ρ |ξ (i);θ t−1). The EM algorithm is the following 

Initialization  

* Set  to an initial value in the set Ω - a random initial value conditioned by 

€ 

θ ∈ Ω 

Algorithm 

For t = 1…T, 

€ 

θ t = argma
θ∈Ω

xQ θ,θ t−1( )   

Where 

€ 

Q θ,θ t−1( ) = δ(ρ | i) log p ξ (i) ,ρ,θ( )
ρ∈Λ

∑
i=1

n

∑  

And 

€ 

δ(ρ | i) = p ρ |ξ (i);θ t−1( ) =
p ξ (i) ,ρ,θ t−1( )
p ξ (i) ,ρ,θ t−1( )

ρ∈Λ
∑

 

Output: Parameters 

€ 

θT  
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6. Latent Dirichlet Allocation 
 
6.1 Gibbs Sampling - The key inferential problem in Latent Dirichlet Allocation that 
requires solution is computing the posterior distribution of the latent variables. This section 
explains the Gibbs sampling approximation method.  
 
The total probability of the LDA model is: 

€ 

P(W ,Z ,θ,φ;α,β) = P φi;β( )
i=1

K

∏ P θ j;α( )
j=1

M

∏ P Z j ,t |θ j( )P Wj ,t |φ j ,t( )
t=1

N

∏                      (A6.1) 

θ  and φ  need to be integrated out.  

€ 

P Z ,W ;α,β( ) = P W ,Z ,θ,φ;α,β( )
φ

∫
θ

∫ dφdθ

= P φi;β( )
i=1

K

∏
φ

∫ P Wj ,t |φZ j ,t( )
t=1

N

∏ dφ P θ j;α( )
j=1

M

∏
θ

∫
j=1

M

∏ P Z j ,t |θ j( )dθ
t=1

N

∏
                   (A6.2) 

  

All θ  and φ  are independent to each other and we treat them separately.  

1. Integrating θ  

€ 

P θ j;α( )
j=1

M

∏
θ

∫ P Z j ,t |θ j( )
t=1

N

∏ dθ = P θ j;α( )
θ j

∫
j=1

M

∏ P Z j ,t |θ j( )
t=1

N

∏ dθ j            (A6.3) 

By focusing on only one θ, we obtain the following: 

€ 

P θ j;α( )
θ j

∫ P Z j ,t |θ j( )d
t=1

N

∏ θ j                            (A6.4) 

In the above equation we replace the probabilities with the actual expression of the 
distribution and we obtain: 

€ 

P θ j;α( )
θ j

∫ P Z j ,t |θ j( )dθ j
t=1

N

∏ =
Γ αii=1

K∑( )
Γ αi( )

i=1

K∏θ j

∫ θ j ,i
α i−1 P Z j ,t |θ j( )dθ j

t=1

N

∏
i=1

K

∏          (A6.5) 

Let 

€ 

n j ,r
i  be the number of word tokens in the j-th document with the same word symbol (the 

r-th word in the vocabulary) assigned to the i-th topic. 

€ 

n j ,r
i  is three dimensional. If any of 

these three dimensions is not limited to a specific value, we adopt the notation (•). To 
exemplify this, 

€ 

n j ,(⋅)
i  denotes the number of word tokens in the j-th document assigned to the 

i-th topic. Thus, we can write 
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€ 

P Z j ,t |θ j( ) = θ j ,i
n j ,(⋅ )
i

i=1

K

∏
t=1

N

∏                             (A6.6) 

The integration formula becomes: 

€ 

Γ αii=1

K∑( )
Γ αi( )

i=1

K

∏θ j

∫ θ j ,i
α i−1 θ j ,i

n j ,(⋅ )
i

i=1

K

∏
i=1

K

∏ dθ j

=
Γ αii=1

K∑( )
Γ αi( )

i=1

K

∏θ j

∫ θ j ,i
n j ,(⋅ )
i +α i−1

i=1

K

∏ dθ j

              (A6.7) 

The expression inside the integration has the same form as the Dirichlet distribution. 

€ 

Γ n j ,(⋅)
i +αii=1

K∑( )
Γ n j ,(⋅)

i +αi( )
i=1

K

∏θ j

∫ θ j ,i
n j ,(⋅ )
i +α i−1

i=1

K

∏ dθ j =1              (A6.8) 

Thus 

€ 

P θ j;α( )
θ j

∫ P Z j ,t |θ j( )dθ j =
Γ αii=1

K∑( )
Γ αi( )

i=1

K

∏θ j

∫
t=1

N

∏ θ j ,i
n j ,(⋅ )
i +α i−1

i=1

K

∏ dθ j

=
Γ αii=1

K∑( )
Γ αi( )

i=1

K

∏

Γ n j ,(⋅)
i +αi( )

i=1

K

∏

Γ n j ,(⋅)
i +αi

i=1

K

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Γ n j ,(⋅)
i +αii=1

K∑( )
Γ n j ,(⋅)

i +αi( )
i=1

K

∏θ j

∫ θ j ,i
n j ,(⋅ )
i +α i−1

i=1

K

∏ dθ j

=
Γ αii=1

K∑( )
Γ αi( )

i=1

K

∏

Γ n j ,(⋅)
i +αi( )

i=1

K

∏

Γ n j ,(⋅)
i +αi

i=1

K

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

           (A6.9) 
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2. Integrating φ  

€ 

P φi;β( )
i=1

K

∏
φ

∫ P Wj ,t |φZ j ,t( )dφ
t=1

N

∏
j=1

M

∏

= P φi;β( )
φ i

∫
i=1

K

∏ P Wj ,t |φZ j ,t( )dφi
t=1

N

∏
j=1

M

∏

=
Γ βrr=1

V∑( )
Γ βr( )

r=1

V

∏φ i

∫
i=1

K

∏ φi ,r
βr−1 φi ,r

n(⋅ ),r
i

r=1

V

∏
r=1

V

∏ dφi

=
Γ βrr=1

V∑( )
Γ βr( )

r=1

V

∏
φi ,r
n(⋅ ),r
i +βr−1

r=1

V

∏
φ i

∫
i=1

K

∏ dφi

=
Γ βrr=1

V∑( )
Γ βr( )

r=1

V

∏i=1

K

∏
Γ n(⋅),r

i +βr( )
r=1

V

∏

Γ n(⋅),r
i +βrr=1

V∑( )

            (A6.10) 

The final equation with θ  and φ  integrated out is: 

€ 

P Z ,W ;α,β( ) =
Γ αii=1

K∑( )
Γ αi( )

i=1

K

∏

Γ nj ,(⋅)
i +αi( )

i=1

K

∏

Γ n j ,(⋅)
i +αi

i=1

K

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

×
Γ βrr=1

V∑( )
Γ βr( )

r=1

V

∏i=1

K

∏
Γ n(⋅),r

i +βr( )
r=1

V

∏

Γ n(⋅),r
i +βrr=1

V∑( )j=1

M

∏             (A6.11) 

The goal of Gibbs sampling is to approximate the distribution 

€ 

P Z |W ;α,β( ) . 

€ 

P W ;α,β( )  is 
invariable for any Z, Gibbs sampling equations can be directly derived from 

€ 

P Z ,W ;α,β( ). 
The key point is to derive the following conditional probability: 

€ 

P Z(m ,n ) | Z −(m ,n ),W ;α,β( ) =
P Z(m ,n ),Z −(m ,n ),W ;α,β( )
P Z −(m ,n ),W ;α,β( )

           (A6.12) 

where 

€ 

Z(m ,n )  denotes the Z hidden variable of the n-th word token in the m-th document and 
we make the assumptions that the word symbol of it is the v-th word in the vocabulary. 

€ 

Z−(m ,n )  
denotes all the Zs except for 

€ 

Z(m ,n ) . Gibbs sampling only requires a sample value for 

€ 

Z(m ,n ) . It 
doesn’t require an exact value of 

€ 

P Z(m ,n ) | Z −(m ,n ),W ;α,β( ) but the ratios among the 
probabilities that  

€ 

Z(m ,n )  can take value. Therefore, the above equation becomes: 
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€ 

P Z m ,n( ) = k | Z (m ,n ) ,W ;α,β( )∝ P Z m ,n( ) = k,Z (m ,n ),W ;α,β( )

=
Γ αii=1

K∑( )
Γ αi( )

i=1

K

∏

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

M

Γ n j ,(⋅)
i +αi( )

i=1

K

∏

Γ n j ,(⋅)
i +αii=1

K∑( )j≠m
∏

×
Γ βrr=1

V∑( )
Γ βr( )

r=1

V

∏

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

K

Γ n(⋅),r
i +βr( )

r≠v
∏

i=1

K

∏

×
Γ nm ,(⋅)

i +αi( )
i=1

K∏
Γ nm ,(⋅)

i +αii=1

K∑( )
Γ n(⋅),v

i +βv( )
Γ n(⋅),r

i +βrr=1

V∑( )i=1

K

∏

∝
Γ nm ,(⋅)

i +αi( )i=1

K∏
Γ nm ,(⋅)

i +αii=1

K∑( )
Γ n(⋅),v

i +βv( )
Γ n(⋅),r

i +βrr=1

V∑( )i=1

K

∏

         (A6.13) 

To conclude, let 

€ 

n j ,r
i ,−(m ,n )  have the same meaning as 

€ 

n j ,r
i  with 

€ 

Z(m ,n )  excluded. In the above 
equation, we regard terms that are not dependent on k as constants: 

€ 

∝
Γ nm ,(⋅)

i ,−(m ,n ) +αi( )i≠k
∏

Γ nm ,(⋅)
i ,−(m ,n ) +αii=1

K∑( ) +1⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

Γ n(⋅),v
i ,−(m ,n ) +βv( )

Γ n(⋅),r
i ,−(m ,n )

r=1

V∑ +βr( )i≠k
∏
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LDA – Implementation 
 
The implementation of LDA using a collapsed Gibbs sampler involves setting up the 
requisite count variables, randomly initializing them and then running a loop over the desired 
number of iterations, where on each loop a topic is sampled from each word instance in the 
corpus. Post to the Gibbs iterations, the counts can be used to compute the latent distributions 

 and .  The only required count variables include 

€ 

nd ,k  - the number of words assigned to 
the topic k in document d - and 

€ 

nk ,w  - the number of times word w is assigned to the topic k. 
For the algorithm to be more efficient, a running count of 

€ 

nk - the total number of times any 
word is assigned to topic k – is kept. Another array z is necessary to keep the current topic 
assignment for each of the N words in the corpus.  
 
Because the Gibbs sampling method involves a sampling from distributions conditioned on 
all other variables (all other topic assignments, except the current one), before building a 
distribution from equation 4.83 the current assignment must be removed from the equation. 
This assignment can be removed by decrementing the counts associated with the current 
assignment because the topic assignments in LDA are exchangeable, i.e. the joint probability 
distribution is invariant to permutation. Then the probability of each topic assignment is 
calculated using equation 4.83. This discrete distribution is then sampled from and the chosen 
topic is set in the z array and the appropriate counts are then incremented. The following 
algorithms explains the full LDA Gibbs sampling procedure. 
 
 
Input: words w  documents d 
Output: topic assignments z and counts 

€ 

nd ,k , 

€ 

nk ,w , and 

€ 

nk  
Begin 
 Randomly initialize z and increment counters 
 For each iteration do 
  

for 

€ 

i = 0→ (N −1)  do    
        

€ 

word← w[i] 
            

€ 

topic← z[i]  
        

€ 

nd ,topic− =1 ; 

€ 

nword ,topic− =1 ; 

€ 

ntopic− =1 
      for  do 

  

€ 

p(z = k |•) = (nd ,k +αk )
nk ,w +βw
nk +β ×W

 

      end 
     

€ 

topic← sample from 

€ 

p(z |•) 
     

€ 

z[i]← topic  
                      

€ 

nd ,topic+ =1,     

€ 

nword ,topic+ =1, 

€ 

ntopic+ =1 
             end 
 end 
 return z, 

€ 

nd ,k , 

€ 

nk ,w , 

€ 

nk  
end 
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Categorical Distribution – a generalized Bernoulli distribution is the probability distribution 
that describes the result of a random event that can have one of the K possible outcomes, and 
the probability of each outcome is specified. The K-dimensional categorical (discrete) 
distribution is the most general distribution over an event with K outcomes.  

The categorical distribution is the generalization of the Bernoulli distribution for a discrete 
variable with more than two possible outcomes. It is common in machine learning and natural 
language processing to use “multinomial distribution” for to refer to a categorical 
distribution. In the Dirichlet multinomial distribution which comes as the results of a Gibbs 
sampling where Dirichlet distributions are collapsed out of a Hierarchical Bayesian model, it 
is very important to distinguish categorical from multinomial.  

The sample space is a finite sequence of integers - 

€ 

{1,2,...,k}.  

and 

€ 

P = {p1,..., pK}   

The probability mass function is 

€ 

fX (ξ = i | P) = pi
[ξ=i]

i=1

k

∏           (A6.15) 

With  is 1 for  and 0 otherwise. This representation of the probability mass 
function shows that the Dirichlet distribution is the conjugate prior of the categorical 
distribution.  

The categorical distribution can also be treated as a special case of the multinomial 
distribution, in which the parameter n (the number of sampled items) is set to 1. The sample 
space is now regarded as the set of 1-of-K encoded random vectors X of dimension k, with the 
property that exactly one element has the value 1 and the others equal 0. The particular 
element having the value 1 indicates which category has been chosen. In this case, 

€ 

fX (ξ | P) = pi
ξ i

i=1

k

∏ where 

€ 

pi  represents the probability of seeing element i and 

€ 

pi
i
∑ =1.  

• The distribution is completely expressed by the probabilities associated with each 
number i:  

€ 

pi = P X = i( ) , with 

€ 

i ∈ {1,2,...,k} and 

€ 

pi
i
∑ =1 

• For k = 2, the categorical distribution is reduced  to the Bernoulli distribution 

• The sufficient statistic from n independent observations is the set of counts in each 
category, where the total number of trials n is fixed.  

• The conjugate prior distribution of a categorical distribution is a Dirichlet distribution. 
In a model consisting of a data point having a categorical distribution with unknown 
vector parameter P , if we treated P as a random variable and give it a prior 
distribution defined using a Dirichlet distribution, then the posterior distribution of the 
parameter after incorporating the knowledge gained from observed data is also a 
Dirichlet.  
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Given a model: 

€ 

α = α1,...,αK( )  concentration hyper-parameter 

€ 

P |α = p1,...,pK( ) ~ Dir(K,α)  

€ 

X | P = ξ1,...,ξN( ) ~ Cat(K,P)  

The following holds: 

€ 

C = (c1,...,cK ) number of occurrences of category 

€ 

i = [ξ j = i]
j=1

N

∑  

€ 

P | X ,α ~ Dir(K,C +α) = Dir K ,c1 +α1,...,cK +αK( )                       (A6.16) 

This relationship is used to estimate the underlying parameter P of a categorical distribution 
given a collection of N samples. The expected value of the posterior distribution is: 

€ 

E[pi ,α]=
ci +αi

N + αk
k
∑

              (A6.17) 

 

Multinomial Distribution – is a generalization of the binomial distribution. For n 
independent trials, each of which leads to a success for exactly one of k categories, with each 
category having a given fixed success probability, the multinomial distribution gives the 
probability of any particular combination of numbers of successes for the various categories.  

The binomial distribution is the probability distribution of the number of successes for one of 
just two categories in n independent Bernoulli trials, with the same probability of success on 
each trial. In a multinomial distribution, each trial results in exactly one of the fixed finite k 

possible outcomes, with probabilities 

€ 

p1,..., pk , with  and 

€ 

pi
i=1

k

∑ =1. If the random 

variables  indicate the number of times outcome i is observed over the n trials, the vector 

€ 

X = X1,...,Xk( )  follows a multinomial distribution with parameters n and P where 

€ 

P = (p1,..., pk ) .  

The probability mass function of the multinomial distribution is: 

€ 

fX ξ1,...,ξn ;n, p1,.., pk( ) = Pr X1 = ξ1 & ...& X1 = ξ1( )

=

n!
ξ1!...ξk!

p1
ξ1 ...pk

ξ k , when ξi
i=1

k

∑ = n

0 otherwise

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

for , integers        (A6.18) 

 

 



 

 
184 

Properties  

• The expected number of times the outcome i was observed over n trials is 

€ 

E Xi( ) = npi  

• The covariance matrix is described as follows  

– (1) each diagonal entry is the variance of a binomially distributed random variable 

€ 

var Xi( ) = npi(1− pi )  

– (2) the off-diagonal entries are the covariances 

€ 

cov Xi ,X j( ) = −npi p j | i ≠ j  

• The correlation matrix is described with: 

€ 

ρ Xi ,X j( ) =
cov Xi ,X j( )
var Xi( )var X j( )

=
−pi p j

pi(1− pi )pj (1− p j )
=

pi p j

(1− pi )(1− p j )
                    (A6.19) 

 

Dirichlet Distribution – is a family of continuous multivariate probability distributions 
parameterized by a vector α  of positive real numbers. Dirichlet is the multivariate 
generalization of the beta distribution. Dirichlet distribution is the conjugate prior of the 
categorical distribution and multinomial distribution – its probability density function returns 
the belief that the probabilities of K rival events are 

€ 

ξi  given that each event has been 
observed 

€ 

αi −1 times.  

 The Dirichlet distribution of order  with parameters 

€ 

α1,..,αk > 0 has the following 
probability density function: 

€ 

fX ξ1,...,ξK−1;α1,...,αK( ) =
1

B(α)
ξi
α i−1

i=1

K

∏             (A6.20) 

for all ; satisfying the condition 

€ 

ξ1 + ...+ξK−1 <1 and 

€ 

ξK =1−ξ1 − ...−ξK−1  

and 

€ 

B(α) =

Γ αi( )
i=1

K

∏

Γ αii=1

K∑( )
 

The domain of the Dirichlet distribution is a K-dimensional discrete distribution. The set of 
points in the support of a K-dimensional Dirichlet distribution is the K – 1 simplex, a 
generalization of a triangle embedded in the next-higher dimension.  

The density function of a symmetric Dirichlet distribution – where all elements in the 
parameter vector α  are equal – is parameterized by a single scalar value α:  

€ 

fX ξ1,..,ξK−1;α( ) =
Γ αK( )
Γ α( )K

ξi
α−1

i=1

K

∏              (A6.21) 

For α =1, the Dirichlet distribution is similar to a uniform distribution.  
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Properties of the Dirichlet distribution 

For 

€ 

X = X1,...,XK( ) ~ Dir(α); 

€ 

XK =1− X1 − ...− XK−1and

€ 

α0 = αi
i=1

K

∑ : 

Mean 

€ 

E[Xi ]=
αi

α0
               (A6.22) 

Variance 

€ 

Var[Xi ]=
αi α0 −αi( )
α0
2 α0 +1( )              (A6.23) 

Covariance 

€ 

Cov[Xi ,X j ]=
−αiα j

α0
2 α0 +1( )

;i ≠ j              (A6.24) 

Marginal distributions = the beta distributions 

€ 

Xi ~ Beta αi , α j
j=1

K

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −αi

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟                 (A6.25) 

Dirichlet multinomial distribution – In a model where a Dirichlet prior distribution is 
placed over a set of categorical-valued observations, the marginal joint distribution of the 
observations is a Dirichlet multinomial distribution. In Gibbs sampling or variational Bayes 
Dirichlet prior distributions are often marginalized out.  

Entropy – If 

€ 

X ~ Dir(α) is a random variable, the exponential family differential identities 
can be used to get an analytic expression for the expectation of 

€ 

log(Xi ) . 

€ 

E log(Xi )[ ] = ψ(αi )−ψ(α0 )

Cov log(Xi ),log(X j )[ ] = ψ ' (αi )δij − ψ' (α0 )
           (A6.26) 

where ψ is the digamma function, ψ’ is the trigamma function and 

€ 

δij  is the Kronecker delta 
(not to be confused with Dirac delta) 

Digamma function 

€ 

ψ(x) =
d
dx
lnΓ(x)              (A6.27) 

Gamma function

€ 

Γ(n) = n−1( )!              (A6.28) 

Trigamma function 

€ 

ψ ' (x) =
d2

dx2
lnΓ(x) =

1
x + n( )2n=0

∞

∑                  (A6.29) 

Kronecker delta 

€ 

δij =

0 if i ≠ j

1 if i = j

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

                      (A6.30) 

Entropy -

€ 

H (X ) = logB(α)+ α0 − K( )ψ α0( )− (α j −1)ψ(α j )
j=1

K

∑          (A6.31) 
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Dirichlet distributions are most commonly used as the prior distribution of categorical 
variables or multinomial variables in Bayesian mixture models and hierarchical Bayesian 
models. Inference over hierarchical Bayesian models is often done using Gibbs sampling, and 
in such a case, instances of the Dirichlet distribution are typically marginalized out of the 
model by integrating out the Dirichlet random variable. This causes the various categorical 
variables drawn from the same Dirichlet random variable to become correlated, and the joint 
distribution over them assumes a Dirichlet-multinomial distribution, conditioned on the 
hyper-parameters of the Dirichlet distribution. 
 
For further reading the reader is adviced to refer to [281-286] 
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Acronym List 
 

ASTER – Advanced Spaceborne Thermal Emission and Reflection Radiometer 
CBIR – Content-based Image Retrieval 
CBVIR – Content-based visual information 
CIE – Commission Internationale De L’Eclairage 
CLC – Corine Land Cover 
CMC – Color Management Committee 
DLR - Deutsche Luft und Raumfahrt, German Aerospace Center 
DN – Digital number 
EEA – European Environmental Agency 
EO – Earth Observation 
ETM – Enhanced Thematic Mapper 
ESA – European Space Agency  
GEO – Group on Earth Observation 
GEOSS - Global Earth Observation System of Systems 
GIS – Geographic Information System 
GMES – Global Monitoring for Environment and Security 
IFOV – Instantaneous Field of View 
IIM – Image Information Mining 
KDD – Knowledge Database Discovery 
KEO – Knowledge-centered Earth Observation 
KES – Knowledge Enabled Services 
KIM – Knowledge Driven Information Mining 
LiDAR – Light Detection and Ranging 
MSS – Multispectral Scanner 
QBIC – Query by Image Content  
RADAR – Radio Detection and Ranging 
ROSA – Romanian Space Agency 
SOA  - Service-Oriented Architecture 
SONAR – Sound Detecting and Ranging 
SPOT – System Pour L’Observation de la Terre 
TM – Thematic Mapper 
USGS – United States Geological Survey 
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