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Abstract

We study the eigenvalues of the Laplacian ∆µ = d
dµ

d
dx
. Here, µ is a singular measure

on a bounded interval with an irregular recursive structure, which include self-similar
measures as a special case. The structure can also be randomly build. For this
operator we determine the asymptotic growth behaviour of the eigenvalue counting
function.
Furthermore, in the case where µ is self-similar, we give a representation of the

eigenvalues of ∆µ as zero points of generalized sine functions allowing, in particu-
lar, an explicit computation. Moreover, we use these functions to describe certain
properties of the eigenfunctions.

Zusammenfassung

Wir untersuchen die Eigenwerte des Laplaceoperators ∆µ = d
dµ

d
dx
. Hierbei ist µ ein

singuläres Maß auf einem beschränkten Intervall mit einer irregulären rekursiven
Struktur, was selbstähnliche Maße als Spezialfall enthält. Diese Struktur kann auch
zufällig sein. Für diesen Operator bestimmen wir das asymptotische Wachstumsver-
halten der Eigenwertzählfunktion.
Weiterhin, im Fall eines selbstähnlichen Maßes, stellen wir die Eigenwerte von ∆µ

als Nullstellen von verallgemeinerten Sinusfunktionen dar, was insbesondere eine
explizite Berechnung erlaubt. Außerdem benutzen wir diese Funktionen um Eigen-
schaften der Eigenfunktionen zu beschreiben.
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1. Introduction

1.1. Statement of the problem

Assume that µ is a Borel measure on the interval [a, b] which is singular in the sense,
that it has no Radon-Nikodym density with respect to the Lebesgue measure. For
example, µ is a measure whose support is the Cantor set. We will define a Laplacian
∆µ on [a, b] for the measure µ and study the eigenvalue problem

∆µf = −λf

with either homogeneous Dirichlet boundary conditions

f(a) = f(b) = 0,

or homogeneous Neumann boundary conditions

f ′(a) = f ′(b) = 0.

The definition of ∆µ involves the derivative with respect to the measure µ. If a
function g : [a, b]→ R possesses the representation

g(x) = g(a) +

∫
[a,x]

dg

dµ
dµ (1.1)

for all x ∈ [a, b], then dg
dµ

is the µ-derivative of g. In Freiberg [17] an analytic calculus
of the concept of µ derivatives is developed.
The operator ∆µ is then given by

∆µf =
d

dµ
f ′

for all f from a suitable domain.
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It is well known that if µ is a non-atomic Borel measure, ∆µ has a pure point
spectrum consisting only of eigenvalues with multiplicity one, that accumulate at
infinity, see Freiberg [17, Lem. 5.1 and Cor. 6.9] or Bird, Ngai and Teplyaev [5, Th.
2.5].

This operator and the resulting eigenvalue problem has been studied in numerous
papers, for example in Feller [15], McKean and Ray [40], Kac and Krein [32], Fujita
[24], Naimark and Solomyak [41], Freiberg and Zähle [23], Bird, Ngai and Teplyaev
[5], Freiberg [17–20], Freiberg and Löbus [22], Hu, Lau and Ngai [29], and Chen and
Ngai [8].

A treatment of the classical theory of boundary problems on the real line can be
found for example in Atkinson [2].

1.2. Physical motivation for the Laplacian ∆µ

Consider a flexible string (e.g. a guitar string) clamped between two points a and
b such that, if we deflect it, a tension force drives it back towards its state of
equilibrium.

The string shall have a mass distribution given by a function ρ : [a, b] → [0,∞).
We denote the deviation of the string at the point x ∈ [a, b] at time t ∈ [0,∞) by
u(x, t) and the tangentially acting tension force by F , where we assume that F does
not depend on x and t.

Then the motion of the string, the function u(x, t), is determined by the wave
equation

∂2u

∂x2
(x, t) =

ρ(x)

F

∂2u

∂t2
(x, t) (1.2)

with Dirichlet boundary conditions u(a, t) = u(b, t) = 0 for all t. To model Neumann
boundary conditions we need a slightly modified set-up. For that, suppose that the
string ends are attached to carriages (without mass) at a and b, freely movable in the
direction orthogonal to the string. Since this is a technically difficult construction,
we can also think of a narrow (and thus assumed one-dimensional) rectangular basin
filled with water with u(x, t) being the water level at the point x at time t. Then
∂u
∂x

(a, t) = ∂u
∂x

(b, t) = 0 for all t.

In the following, we give a physical derivation of the one-dimensional wave equa-
tion based on Strauss [50, p. 13].

Look at an infinitesimal small interval [x, x+ dx] and decompose the force F into
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a longitudinal component Flong and a transversal component Ftrans in the ratio given
in the following diagram.

Then
Flong =

F dx√
dx2 + du2

and
Ftrans =

F du√
dx2 + du2

.

According to Newton’s law F = m ·a, a force gives rise to an acceleration a of a mass
m. We assume that there is no motion in longitudinal direction, but the transversal

part of the force works on the mass element ρ(x)dx and creates an acceleration
∂2u

∂t2
of the string. Newton’s law then gives

F du√
dx2 + du2

= F
du
dx√

1 + (du
dx

)2

= ρ(x) dx · ∂
2u

∂t2
.

The term
(
du
dx

)2 is neglectable, because we assume the deviation of the string to be
small. Thus, by “dividing by dx”, we get the one-dimensional wave equation

∂2u(x, t)

∂x2
=
ρ(x)

F

∂2u(x, t)

∂t2
.

To solve this equation, we use the technique of separation of variables. For that, we
make an ansatz u(x, t) = f(x) g(t) leading to

f ′′(x) g(t) =
ρ(x)

F
f(x) g′′(t).

It follows that
f ′′(x)

ρ(x) f(x)
=

1

F

g′′(t)

g(t)

for all x and t. Therefore, both sides of the equation have to be constant, say −λ.
Thus,

f ′′(x) = −λρ(x) f(x)
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and
g′′(t) = −λF g(t).

The first one of these equations is relevant for our considerations. We integrate it
to get

f ′(x)− f ′(a) = −λ
∫ x

a

f(t) ρ(t)dt

= −λ
∫ x

a

f(t) dµ(t),

where µ is the measure with density ρ. Now we apply the µ-derivative defined in
(1.1) and get

d

dµ
f ′ = −λf.

This equation no longer involves the density of µ, meaning that we can use it to
formulate the problem for singular (fractal) measures.

A solution f of this eigenvalue equation can be regarded as the shape of the string
at a certain fixed time. Then u(x, t) = g(t)f(x) describes a so-called standing wave.
The square root of the eigenvalues are up to a constant the natural frequencies of
the string, that is, the vibrating string generates a sound which is a superposition
of overtones with frequencies c

√
λn.

The same equation arises when considering the heat equation

∂2u(x, t)

∂x2
=

1

α

∂u(x, t)

∂t

after the separation of variables. Here u(x, t) describes the temperature of some,
say, metallic bar at x at the time t and α denotes the thermal diffusivity of the
material.

1.3. The Cantor set and generalizations

What we call Cantor set was introduced in 1883 as an example for a perfect set by
Cantor [7] on page 590 in footnote 11 in the context of investigations on integrability.
There, Cantor considers the set of all real numbers that can be expressed as

c1

3
+
c2

32
+ · · ·+ cν

3ν
+ · · · ,
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where cν can take the values 0 or 2.
However, there is an earlier record of a similar construction made in 1875 by Smith

[47, p. 147]. There, the interval [0, 1] is divided into m equal parts and the last one
is removed. Then this process is repeated on each of the remaining segments and so
on. Smith observes that the resulting set is nowhere dense in [0, 1]. Subsequently,
he varies this construction process to receive a nowhere dense set of positive length.
For further information on the history of the Cantor set see also Fleron [16].

In 1919, Hausdorff [28] introduces the dimension and measure concepts that are
named after him. Also in this paper, a rather general construction is made, where
an interval of varying length is removed step by step from the middle of the previous
intervals. Then, investigations are made on the Hausdorff measure and dimension
of the resulting set. In particular, the dimension log 2

log 3
of the classical Cantor set is

given on page 172.
Salem [46] gives a geometric construction of a function f whose slope is zero almost

everywhere on [0, 1] with f(0) = 0 and f(1) = 1 which is strictly monotonically
increasing. This construction starts with a straight line from zero to one that is
in the first step replaced by two lines meeting in the middle. Then, each line is
transformed in the same fashion. This process is repeated while in each step different
transformations are chosen. The resulting function defines a singular measure on
[0, 1] where the support is the whole interval [0, 1].
More general constructions and the Hausdorff dimension of the resulting sets are

considered for example in Beardon [4] and Falconer [14, p. 61ff.].
There are also numerous different models for random (Cantor) fractals. In Fal-

coner [14, Ch. 15], a random Cantor set is constructed and its Hausdorff dimension
determined by an expectation equation. Further papers treating this topic are e.g.
Mandelbrot [38], Zähle [54], Falconer [13], Mauldin and Williams [39], Graf [26], and
Hutchinson and Rüschendorf [31].
In the present thesis we are not concerned with the Hausdorff dimension of such

sets but with the eigenvalues of the corresponding Laplacian and their growth be-
haviour.

1.4. Outline of the thesis

The thesis consists of two parts more or less independent of each other being formed
by Chapters 3 and 4. Before that, in Chapter 2 we give some preliminary consider-
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ations which we will need later.

In Chapter 3 we are interested in the asymptotic behaviour of the eigenvalue
counting functions NNeu and NDir given by

NNeu(x) := #{λ ≤ x : λ is a Neumann eigenvalue of ∆µ}

and
NDir(x) := #{λ ≤ x : λ is a Dirichlet eigenvalue of ∆µ}

for x ≥ 0. The case where µ is a self-similar measure on [a, b] has been investigated
by Fujita [24] and, for a more general operator, Freiberg [19]. For the definition of
self-similarity of measures, see Section B.2. In this case, the eigenvalue counting
functions grow asymptotically like xγ, that is, there are constants c1, c2 > 0 such
that

c1x
γ ≤ NDir(x) ≤ NNeu(x) ≤ c2x

γ

for all x greater than some x0. The spectral exponent γ is given as the solution of

N∑
i=1

(rimi)
γ = 1, (1.3)

and the number ds = 2γ is often called spectral dimension of suppµ.

In the present work we will consider fractals that are not strictly self-similar,
but have an irregular recursive structure. The construction of such sets is done in
Section 3.1 but we briefly outline it here. As is very well known, the classical Cantor
set can be constructed by iteratively wiping out the middle third of intervals. We
do a similar construction as follows. Suppose we are given a collection of iterated
function systems (S(j))j∈J (for the definition of an iterated function system (IFS),
see Section B.2) and start with the interval [a, b]. In the first step, we choose an
arbitrary IFS S(ξ1) from our collection and wipe out intervals such that only those
intervals remain which are determined by S(ξ1). For the second step we choose again
an IFS S(ξ2) and treat every remaining interval accordingly. In this way we proceed
to receive the fractal K(ξ), where ξ denotes the sequence (ξ1, ξ2, . . . ). Moreover, we
construct a measure µ(ξ) on [a, b] with µ(ξ)([a, b]) = 1. For that we first assign a
mass of one to the interval [a, b]. Then, in the first wiping step, we divide this mass
according to certain weight coefficients at the remaining sub-intervals. This division
process is then repeated, where in each step, dependent on ξ, different weights are
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chosen. In our considerations we assume a given fixed sequence ξ which determines
K(ξ) and µ(ξ) completely. This concept is adopted from Barlow and Hambly [3],
where it is used for a construction of scale irregular Sierpinski gaskets. Following
Hambly [27], we call these measures and sets homogeneous, because all “first-level”
cells have the same structure.

In Section 3.2 we establish a scaling property that is essential for the proof of our
main result. In that we follow Kigami and Lapidus [35, Lem. 2.3].

The main theorem about the asymptotic growth of the eigenvalue counting func-
tion is proved in Section 3.3. It states that there are constants c1, c2, C1, C2 > 0 and
x0 > 0 such that

C1 x
γ e−c1 g(log x) ≤ N

(ξ)
Dir(x) ≤ N

(ξ)
Neu(x) ≤ C2 x

γ ec2 g(log x)

for all x ≥ x0, where the function g is determined by the sequence ξ and γ is the
solution of an equation similar to (1.3).

In Section 3.4 we go through several examples for (S(j))j∈J and ξ.

Subsequently, in Section 3.5 we take for ξ a sequence of i.i.d. random variables
and apply our results for almost every realization.

In the second part of the thesis, that is Chapter 4, we consider fractal measures on
[0, 1] that have a strict self-similar structure. For these we give a new technique of
determining the eigenvalues and eigenfunctions of ∆µ that involves a generalization
of the sine and cosine functions.

In this we follow the classical case, where µ is the Lebesgue measure. There, the
Dirichlet eigenvalue problem reads

f ′′ = −λf

f(0) = f(1) = 0.

Then, for every non-negative λ, f(x) = sin(
√
λx) satisfies the equation as well as

the boundary condition on the left-hand side. On the right-hand side, the boundary
condition is only met if

√
λ is a zero point of the sine function, which are, indeed,

very well known.

If we impose Neumann boundary conditions f ′(0) = f ′(1) = 0, we take f(x) =

cos(
√
λx), because this complies automatically with the left-hand side condition.

The right-hand side condition again is satisfied if
√
λ is a zero point of the sine

14



function, which leads to the same eigenvalues as in the Dirichlet case (supplemented
by zero). But here sine appears as the derivative of cosine, which will make a
difference when we take more general measures.
Now let µ be an arbitrary Borel probability measure on [0, 1]. For every z ∈ R

we construct functions sqz and cpz depending on µ as a replacement for sin(z ·) and
cos(zx). We do that by generalizing the series

sin(zx) =
∞∑
n=0

(−1)n
(zx)2n+1

(2n+ 1)!

and

cos(zx) =
∞∑
n=0

(−1)n
(zx)2n

(2n)!
,

replacing xn

n!
by appropriate functions pn(x) or qn(x), depending on whether we im-

pose Neumann or Dirichlet boundary conditions. These functions fulfill the eigen-
value equation and meet the left-hand side Dirichlet and Neumann boundary con-
dition, respectively.
Putting pn := pn(1) and qn := qn(1), we define

sinq(z) :=
∞∑
n=0

(−1)nq2n+1z
2n+1

and

sinp(z) :=
∞∑
n=0

(−1)np2n+1z
2n+1.

For sqz and cpz to also match the right-hand side conditions, z has to be chosen as
a zero point of sinq in the Dirichlet case and sinp in the Neumann case. All this is
described in Section 4.1.
In Section 4.2 we show how to compute the norms in L2(µ) of the eigenfunctions

by using the sequences pn and qn.
The functions cpz and sqz satisfy an identity that generalizes the classical trigono-

metric identity. This is established in Section 4.3.
In Section 4.4 we consider symmetric measures and get some symmetry results.
The main results are established in Section 4.5. We outline these briefly here.

Since the functions pn(x) and qn(x) are determined in a process of iterative integra-
tion alternately with respect to µ and the Lebesgue measure, the coefficients pn and
qn are difficult to compute in general. But if µ is a self-similar measure with respect
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to the mappings

S1(x) = r1x and S2(x) = r2(x− 1) + 1

as well as the weight factors m1 and m2, we develop a recursion formula for pn and
qn involving r1, r2,m1, and m2.

To illustrate the structure of this recursion formula, we consider again the classical
Lebesgue case. There we have

pn = qn =
1

n!

which leads to sinp(z) = sinq(z) = sin(z). The sequence pn = 1
n!

can be viewed as
the solution of the problem

2npn =
n∑
i=0

pi pn−i,

p1 = 1,

(1.4)

which is derived from the equation 2n =
n∑
i=0

(
n
i

)
. Our recursion formula for self-

similar µ looks more complicated, as it distinguishes between the two different kinds
of boundary conditions. Additionally it is different for even and odd values of n,
and it involves the parameters r1, r2,m1,m2 of the measure. However, it has the
same basic structure as (1.4).

Moreover, we establish functional equations involving sinp and sinq that can be
viewed as generalizations of the classical addition theorems.

In Section 4.6 we consider the especially interesting case where r1m1 = r2m2.
Then the Neumann eigenvalues fulfill a renormalization formula

λ2n = Rλn,

where 1/R = r1m1. This property has been established in a special case by Volkmer
[52] and in our setting by Freiberg [20]. This formula allows us to investigate the
growth of subsequences (

‖f̃k2n‖∞
)
n∈N

, for odd k,

where f̃n denotes an eigenfunction to the nth Neumann eigenvalue that is normalized
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to one in L2(µ).
We show in Section 4.7 that, if we assume r1 +r2 = 1 in addition to r1m1 = r2m2,

the Dirichlet and Neumann eigenvalues coincide.
Finally, by using the formulas we developed in the course of our investigations,

we compute approximations of eigenvalues for certain examples in Section 4.8.
Several remarks about possible further investigations are made in Section 4.9.
In Appendix A we give graphs of eigenfunctions that were plotted by using for-

mulas from Section 4.5.
For reference, Appendix B contains some mathematical foundations.
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2. Preliminaries

We consider the interval [a, b], where −∞ < a < b < ∞. The one-dimensional
Lebesgue measure is denoted by λ, the σ-algebra of Borel sets in [a, b] by B. By
measurable we will always mean Borel-measurable.

2.1. Derivatives and the Laplacian with respect to a

measure

As in Freiberg [17,19], we define a derivative of a function with respect to a measure.

Definition 2.1.1. Let µ be a non-atomic finite Borel measure on [a, b] and let
f : [a, b]→ R. A function h ∈ L2([a, b], µ) is called the µ-derivative of f , if

f(x) = f(a) +

∫ x

a

h dµ for all x ∈ [a, b].

The following lemma gives some technical statements which we will need to prove
the uniqueness of the µ-derivative.

Lemma 2.1.2. Let µ be a finite Borel-measure on [a, b]. Then the following holds.

(i) For every A ∈ B and every ε > 0 there is an open set V ⊆ [a, b] such that
A ⊆ V and µ(V \ A) < ε.

(ii) Let f ∈ L2([a, b], µ) and A ∈ B. Then, for each ε > 0, we can find a δ > 0

such that
∫
A
|f | dµ < ε, provided that µ(A) < δ.

(iii) Every open set U ⊆ [a, b] can be written as a countable union of disjoint open
intervals.

Proof. A proof of (i) can be found in Rudin [43, Th. 2.18] and of (iii) in [43, p. 50].
We prove (ii). Let f ∈ L2(µ), f 6= 0 and ε > 0. By the Cauchy-Schwarz inequality
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follows∫
A

|f | dµ =

∫
[a,b]

1A|f | dµ ≤
(∫

[a,b]

1A dµ
) 1

2
(∫

[a,b]

|f |2 dµ
) 1

2
= µ(A)

1
2‖f‖L2(µ).

Thus, if µ(A) <
ε2

‖f‖2
L2(µ)

, then
∫
A

|f | dµ < ε.

Proposition 2.1.3. The µ-derivative in Definition 2.1.1 is unique in L2(µ).

Proof. Let µ and f be as in Definition 2.1.1. Let h1 and h2 be µ-derivatives of f .
It follows from the definition that

∫ x
a

(h1 − h2) dµ = 0 for all x ∈ [a, b] and therefore∫ y
x

(h1 − h2) dµ = 0 for all x, y ∈ [a, b] with x < y. By Lemma 2.1.2 (iii) we get∫
U

(h1 − h2) dµ = 0 for any open set U ⊆ [a, b].
As h1 and h2 are measurable, the set {x ∈ [a, b] : h1(x)−h2(x) 6= 0} is a Borel-set.

We will show that its measure is zero by contradiction. Assume without loss of
generality that M := {x ∈ [a, b] : h1(x) − h2(x) > 0} has positive measure and let
ε > 0. Because of Lemma 2.1.2 (i) and (ii), we can find an open set V ⊆ [a, b] such
that

∫
V \M |h1 − h2| dµ < ε . Hence∫

V

(h1 − h2) dµ =

∫
V \M

(h1 − h2) dµ+

∫
M

(h1 − h2) dµ > −ε+

∫
M

(h1 − h2) dµ,

and thus, since µ(M) > 0 and h1 − h2 > 0 on M , we get
∫
V

(h1 − h2) dµ > 0 by
choosing ε sufficiently small. This is a contradiction.

Thus we showed that, if it exists, the µ-derivative of a function f is well defined
and so we denote it by df

dµ
. The λ-derivative df

dλ
we denote by f ′.

Lemma 2.1.4. Let f1, f2 : [a, b] → R functions with f1 = f2 µ-almost everywhere
and whose µ-derivatives exist. Then

df1

dµ
=
df2

dµ

µ-almost everywhere.

Proof. Let N ∈ B with µ(N) = 0 such that f1(x) = f2(x) for all x ∈ [a, b]\N . Then
the proof works as that of Proposition 2.1.3 if we replace the set M by M \N .

Definition 2.1.5. Let µ be a non-atomic, finite Borel-measure on [a, b]. We de-
fine H1([a, b], µ) = H1(µ) to be the space of all elements of L2(µ) that possess a
representative whose µ-derivative exists.
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Note that, according to our definition, the µ-derivative is always in L2(µ). In case
µ = λ is the Lebesgue measure, the definition of H1(λ) is equivalent to the usual
definiton of this Sobolev space.

Proposition 2.1.6. Let µ be a non-atomic, finite Borel-measure on [a, b]. All func-
tions in H1(µ) are continuous in the sense that each equivalence class in H1(µ) has
a representative that is continuous on [a, b].

Proof. Let f ∈ H1(µ). We take f to be the representative whose µ-derivative exists.
Let x ∈ [a, b]. For all y ∈ [a, b] we have by the Cauchy-Schwarz inequality,

|f(x)− f(y)| =
∣∣∣∣∫ y

x

df

dµ
dµ

∣∣∣∣ ≤ ∫ y

x

∣∣∣ df
dµ

∣∣∣ dµ ≤ µ([x, y))
1
2

∥∥∥ df
dµ

∥∥∥
2
→ 0

as y ↓ x, because µ({x}) = 0. Therefore, f is continuous in x.

Definition 2.1.7. Let µ and ν be atomless, finite Borel-measures on [a, b]. The
spaceH2([a, b], ν, µ) is the collection of all functions inH1([a, b], ν) whose ν-derivative
belongs to H1([a, b], µ).

As with L2(µ) we will denote the spaces with H1(µ) and H2(ν, µ), respectively, if
we use the interval I = [a, b].

Remark 2.1.8. According to Proposition 2.1.6 it is clear that, if f ∈ H2(ν, µ), df
dν

possesses a continuous representative.

In the following, we take ν to be the Lebesgue measure denoted by λ. Now we
define the operator ∆µ on which our investigations are focused.

Definition 2.1.9. For all f ∈ H2(λ, µ) we define

∆µf :=
d

dµ
f ′.

Remark 2.1.10. In Freiberg [17, Cor. 6.4] is shown that H2(λ, µ) is dense in L2(µ).

Similar to the classical derivative, there are several derivation and integration
rules. Some are presented in the following.

Proposition 2.1.11. (i) Let f, g ∈ H1(µ). Then fg ∈ H1(µ) and

d

dµ
(fg) =

df

dµ
g + f

dg

dµ
.
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(ii) Let f ∈ H2(λ, µ) and g ∈ H1(λ). Then∫ b

a

(∆µf)g dµ = f ′g
∣∣∣b
a
−
∫ b

a

f ′(x)g′(x) dx.

(iii) Let g : [a, b] → R be invertible and f ∈ H1
(
[g(a), g(b)], gµ

)
. Then f ◦ g ∈

H1([a, b], µ) and
d

dµ
(f ◦ g) =

df

d(gµ)
◦ g.

(iv) Let f ∈ L1(λ) and g ∈ H1(µ) increasing. Then,∫ b

a

f
(
g(t)

) dg
dµ

(t) dµ(t) =

∫ g(b)

g(a)

f(x) dx.

(v) Suppose that f ∈ H2(λ, µ) and g ∈ H1(λ). Then, with E(f, g) :=
∫ b
a
f ′(t) g′(t) dt,

E(f, g) = −
〈
∆µf, g

〉
L2(µ)

+ f ′(b)g(b)− f ′(a)g(a).

Proof. (i) is proved in Freiberg [17, Lem. 2.3 (i)] and (ii) in [17, Prop. 3.1]. We first
prove (iii). To this end, take f ∈ H1

(
[g(a), g(b)], gµ

)
and write for x ∈ [a, b]

f(g(x)) = f(g(a)) +

∫ g(x)

g(a)

d

d(gµ)
f d(gµ)

= f ◦ g(a) +

∫ x

a

df

d(gµ)
◦ g dµ.

Then the assertion follows by the uniqueness of the µ-derivative.

Next, we show (iv). Let c, d ∈ [a, b] with c < d. We denote µ̄ = dg
dµ
· µ. Then, by

the definition of the µ-derivative,

µ̄
(
[c, d]

)
=

∫ d

c

dg

dµ
dµ = g(d)− g(c) = λ

(
[g(c), g(d)]

)
.

Since this holds for all intervals in [a, b] it follows by Carathéodory’s extension the-
orem that

gµ̄ = λ.
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Then, ∫ b

a

f
(
g(t)

)
dµ̄(t) =

∫ g(b)

g(a)

f(x) d(gµ̄)(x) =

∫ g(b)

g(a)

f(x) dx,

which proves the assertion.
(v) follows directly from (ii).

2.2. Dirichlet forms related to the Laplacian

Throughout this section, we denote by µ a finite atomless Borel measure on [a, b]

and by λ the Lebesgue measure.
We define two Dirichlet forms (E ,F) and (E ,F0) on L2(µ) and show that they have

the same eigenvalues as ∆µ with homogeneous Neumann and Dirichlet boundary
conditions, respectively. To prove the desired asymptotic properties of the eigenvalue
counting functions later, we will work rather with the Dirichlet forms than with the
operator ∆µ itself. The statements and proofs are similar to those given in Kigami
and Lapidus [35] and, apart from the compactness of the embeddings that occur,
have already been established in Freiberg [18].
In the following we denote by E the bilinear form given by

E(f, g) :=

∫ b

a

f ′(t)g′(t) dt

for f, g ∈ H1(λ).
The domain H1(λ) we will denote by F .

Remark 2.2.1. The domain of the operator ∆µ is contained in F , that is,H2(λ, µ) ⊆
F . Therefore, since H2(λ, µ) is dense in L2(µ), so is F .

Note, that F ⊆ L2(λ) in the sense that if f ∈ F , then there is an equivalence
class f̃ ∈ L2(λ) such that f ∈ f̃ . But furthermore, F ⊆ L2(µ) in the sense that if
f ∈ F , then there is an equivalence class f̄ ∈ L2(µ) such that f ∈ f̄ .
That means we have to distinguish whether we regard a function f ∈ F as an

element of L2(λ) or L2(µ). For example, if we modify f on a µ-null set, then it does
not change in the L2(µ) sense, but may change in the L2(λ) sense.

Proposition 2.2.2. (E ,F) is a Dirichlet form on L2(µ) and the embedding

(F , E1) ↪→ L2(µ),
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is compact, where (F , E1) denotes the Hilbert space F with the inner product E1 given
by

E1(f, g) = E(f, g) + 〈f, g〉L2(µ).

Proof. It follows as a special case of Theorem 4.1 of Freiberg [18] that (E ,F) is a
Dirichlet form on L2(µ). It remains to show that the embedding is compact. The
proof is similar to that of Lemma 5.4 of Kigami and Lapidus [35].

An operator T : X → Y , where X and Y are Banach spaces, is compact, if for
every bounded set A in X the image T (A) is precompact in Y .

Let U ⊆ F be bounded with respect to E1, that is, there is a c > 0 such that for
all f ∈ U holds ∫ b

a

f(t)2 dµ(t) +

∫ b

a

f ′(t)2 dt ≤ c (2.1)

or, equivalently, there are constants c1, c2 > 0 such that for all f ∈ U ,

‖f‖L2(µ) ≤ c1

and √
E(f, f) ≤ c2.

We have to show that U is precompact in L2(µ). To do that, we show that U is
bounded in C([a, b]) (with respect to ‖.‖∞) and equicontinuous. Then it follows from
Theorem B.4.3 (Arzelà-Ascoli) that U is precompact in C([a, b]). Since C([a, b]) is
continuously embedded in L2(µ), U is precompact in L2(µ).

For x ∈ [a, b] we define the function gx by

gx(t) :=

t− x, t ∈ [a, x],

0, t ∈ (x, b].
(2.2)

Then, gx ∈ F , and for every f ∈ F and x ∈ [a, b] holds

E(f, gx) =

∫ b

a

f ′(t)gx′(t) dt =

∫ x

a

f ′(t) dt = f(x)− f(a).
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First we show that U is bounded in C([a, b]). For every f ∈ U and x ∈ [a, b] holds

|f(x)− f(a)| ≤
∫ b

a

|gx′(t) f ′(t)| dt

≤
√
E(gx, gx)

√
E(f, f)

=
√
gx(x)− gx(a)

√
E(f, f)

=
√
x− a

√
E(f, f)

and therefore
‖f − f(a)‖∞ ≤

√
b− a · c2.

Furthermore, for f ∈ U ,

‖f‖∞ ≤ ‖f − f(a)‖∞ + |f(a)|

≤
√
b− a c2 +

1√
µ([a, b])

‖f(a)‖L2(µ)

≤
√
b− a c2 +

1√
µ([a, b])

(
‖f − f(a)‖L2(µ) + ‖f‖L2(µ)

)
≤
√
b− a c2 + ‖f − f(a)‖∞ +

1√
µ([a, b])

‖f‖L2(µ)

≤ 2
√
b− a c2 +

1√
µ([a, b])

c1,

and hence, U is bounded in C([a, b]).

It remains to show that U is equicontinuous. For f ∈ U and x, y ∈ [a, b] holds

E(gx − gy, f) = E(gx, f)− E(gy, f) = f(x)− f(y).

Thus,

|f(x)− f(y)| ≤
√
E(gx − gy, gx − gy)

√
E(f, f)

=
√
|x− y|

√
E(f, f)

≤ c2

√
|x− y|.

Let ε > 0 and δ :=
( ε
c2

)2

. Then, for |x− y| < δ and f ∈ U ,

|f(x)− f(y)| ≤ c2

√
|x− y| < ε.
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Lemma 2.2.3. If f is an eigenfunction of (E ,F) with eigenvalue λ, then

f(x) = f(a) +

∫ x

a

∫ z

a

−λf(t) dµ(t) dz for all x ∈ [a, b]. (2.3)

Proof. Let f be an eigenfunction of (E ,F) with eigenvalue λ, that is,

E(f, g) = λ〈f, g〉L2(µ), for all g ∈ F . (2.4)

Let x ∈ [a, b] and let gx ∈ F be as defined in (2.2). Since

E(f, gx) = f(x)− f(a)

it follows that

f(x) = f(a) + λ

∫ b

a

f(t)gx(t) dµ(t)

= f(a) + λ

∫ x

a

f(t)(t− x) dµ(t)

= f(a)− λ
∫ x

a

∫ x

a

1[t,x](z)f(t) dz dµ(t)

= f(a)− λ
∫ x

a

∫ x

a

1[a,z](t)f(t) dµ dz

= f(a)− λ
∫ x

a

∫ z

a

f(t) dµ(t) dz.

In the following proposition we show that the Neumann eigenvalues of ∆µ coincide
with those of (E ,F).

Proposition 2.2.4. For λ ∈ R and f ∈ F holds

E(f, g) = λ〈f, g〉L2(µ)

for all g ∈ F if and only if f ∈ H2(λ, µ) and

∆µf = −λf,

f ′(a) = f ′(b) = 0.
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Proof. Assume f ∈ F satisfies

E(f, g) = λ〈f, g〉L2(µ)

for all g ∈ F . Then, according to Lemma 2.2.3,

f(x) = f(a) +

∫ x

a

∫ z

a

−λf(t) dµ(t) dz for all x ∈ [a, b].

Therefore f ∈ H1(λ) and

f ′(x) =

∫ x

a

−λf(t) dµ(t), for all x ∈ [a, b].

Thus f ∈ H2(λ, µ), f ′(a) = 0 and ∆µf = −λf . From Lemma 2.1.11 (v) it follows
that

−
〈
∆µf, g

〉
L2(µ)

+ f ′(b)g(b)− f ′(a)g(a) = λ〈f, g〉L2(µ) for all g ∈ F

which implies that f ′(b)g(b) = 0 for all g and consequently f ′(b) = 0.
Conversely, suppose that f ∈ H2(µ) and ∆µf = −λf with boundary condi-

tion f ′(a) = f ′(b) = 0. Then, as seen in Remark 2.2.1, f ∈ F and furthermore,
〈∆µf, g〉L2(µ) = −λ〈f, g〉L2(µ) for all g ∈ F . By Lemma 2.1.11 (v) it follows that
E(f, g) = λ〈f, g〉L2(µ).

Example 2.2.5. The eigenvalues of the Dirichlet form
(
E , H1(λ)

)
on L2(λ) are

λn =
n2π2

(b− a)2
, n ∈ N0.

Proof. This is the special case with µ = λ. Then, ∆µf simply is f ′′ such that we
have to solve the Neumann problem f ′′ = −λf on [a, b] with boundary conditions
f ′(a) = f ′(b) = 0. The solutions are, as is easily verified, fn(x) = A cos

(√
λn(x−a)

)
,

where A ∈ R is an arbitrary constant and λn is as above.

Now, we treat the eigenvalue problem with homogeneous Dirichlet boundary con-
ditions by defining a Dirichlet form (E ,F0) as follows.
We set

F0 :=
{
f ∈ H1(λ) : f(a) = f(b) = 0

}
and denote by E again the restriction of E to F0.
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Proposition 2.2.6. (E ,F0) is a Dirichlet form on L2(µ) and the embedding

(F0, E1) ↪→ L2(µ)

is a compact operator.

Proof. (E ,F0) is a Dirichlet form according to Proposition 5.3 of Freiberg [18]. Since
every bounded set in (F0, E1) is also bounded in (F , E1), it follows by Proposition
2.2.2 that the embedding is compact.

Lemma 2.2.7. Let f be an eigenfunction with eigenvalue λ of the Dirichlet form
(E ,F0). Then there is a number η such that

f(x) = η (x− a) +

∫ x

a

∫ z

a

−λf(t) dµ(t) dz

for all x ∈ [a, b].

Proof. Let f ∈ F0 and λ ∈ R such that for all g ∈ F0,

E(f, g) = λ〈f, g〉L2(µ).

Let x ∈ (a, b]. For each n ∈ N we define a function gxn by

gxn(t) :=


−x− yn
yn − a

(t− a), if t ∈ [a, yn),

t− x, if t ∈ [yn, x),

0, if t ∈ [x, b],

where the yn are chosen such that a < yn < x, and lim
n→∞

yn = a. Then gxn ∈ F0 and
thus,

E(f, gxn) = λ〈f, gxn〉L2(µ) (2.5)

for all n ∈ N.
Further, gxn converges in L2(µ) to the function gx defined in (2.2), since

‖gxn − gx‖2
L2(µ) =

∫ yn

a

∣∣∣−x− yn
yn − a

(t− a)− (t− x)
∣∣∣2 dµ(t)

≤ |x− a|2
∫ yn

a

dµ(t)→ 0 (n→∞).

Thus, 〈f, gxn〉L2(µ) converges to 〈f, gx〉L2(µ) as n→∞.
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Now we compute E(f, gxn). We observe that

gxn
′(t) =


−x− yn
yn − a

, if t ∈ [a, yn),

1, if t ∈ [yn, x),

0, if t ∈ [x, b],

and hence,

E(f, gxn) = −
∫ yn

a

f ′(z)
x− yn
yn − a

dz +

∫ x

yn

f ′(z) dz

= −x− yn
yn − a

(
f(yn)− f(a)

)
+ f(x)− f(yn)

= −(x− a)
f(yn)

yn − a
+ f(x).

Since f(yn)
yn−a converges to some η as n→∞, it follows that

E(f, gxn)→ f(x)− η(x− a)

as n→∞.
Consequently, it follows from (2.5) that

f(x)− η(x− a) = λ〈f, gx〉L2(µ).

As shown in the proof of Lemma 2.2.3, 〈f, gx〉L2(µ) = −
∫ x
a

∫ z
a
f(t) dµ(t) dz and thus,

f(x) = η(x− a) +

∫ x

a

∫ z

a

−λf(t) dµ(t) dz, (2.6)

which finishes the proof.

Proposition 2.2.8. The following two statements are equivalent:

(i) f ∈ F0 is an eigenfunction with eigenvalue λ of the Dirichlet form (E ,F0),
that is, for all g ∈ F0 holds

E(f, g) = λ〈f, g〉L2(µ).

(ii) f ∈ H2(λ, µ) and f is an eigenfunction with eigenvalue λ of ∆µ with homoge-
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neous Dirichlet boundary conditions, that is,

∆µf = −λf

and f(a) = f(b) = 0.

Proof. Assume f ∈ F0 and λ ∈ R are given such that

E(f, g) = λ〈f, g〉L2(µ)

for all g ∈ F0. According to Lemma 2.2.7, f then has the representation

f(x) =

∫ x

a

[
η +

∫ z

a

−λf(t) dµ(t)

]
dz

for all x ∈ [a, b]. Hence, f is differentiable and

f ′(x) = η +

∫ x

a

−λf(t) dµ(t).

Consequently, f ′ is µ-differentiable, f ′(a) = η, and

∆µf = −λf.

Since f ∈ F0 it satisfies homogeneous Dirichlet boundary conditions.
Conversely, assume that f ∈ H2(λ, µ) and λ ∈ R satisfy

∆µf = −λf

and f(a) = f(b) = 0. Then, for any g ∈ F0,

E(f, g) = −〈∆µf, g〉L2(µ) = λ〈f, g〉L2(µ)

by Proposition 2.1.11 (ii).

2.3. A Poincaré inequality

We will need the following Poincaré inequality to estimate the smallest positive
eigenvalue.
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Lemma 2.3.1. Let µ be a finite Borel measure on [a, b] and let f : [a, b] → R with
f ∈ H1(λ) and f ∈ L2(µ). We set f̄ = 1

µ([a,b])

∫ b
a
f dµ. Then

‖f − f̄‖L2(µ) ≤
√

(b− a)µ([a, b])

2
‖f ′‖L2(λ). (2.7)

Proof. The idea of the proof was found in chapter 6 “Poincaré-type inequalities in
dimension one” of Chen [9]. We compute∫ b

a

∫ b

a

(
f(y)− f(x)

)2
dµ(x) dµ(y)

=

∫ b

a

∫ b

a

[
f(y)2 + f(x)2 − 2f(x)f(y)

]
dµ(x) dµ(y)

= µ([a, b])

∫ b

a

f(y)2 dµ(y) + µ([a, b])

∫ b

a

f(x)2 dµ(x)− 2

∫ b

a

f(x) dµ(x)

∫ b

a

f(y) dµ(y)

= 2µ([a, b])
[ ∫ b

a

f 2 dµ− µ([a, b])f̄ 2
]
.

Furthermore,

‖f − f̄‖2
L2(µ) =

∫ b

a

f 2 dµ− 2f̄

∫ b

a

f dµ+ µ([a, b])f̄ 2

=

∫ b

a

f 2 dµ− 2µ([a, b])f̄ 2 + µ([a, b])f̄ 2

=

∫ b

a

f 2 dµ− µ([a, b])f̄ 2,

so ∫ b

a

∫ b

a

(
f(y)− f(x)

)2
dµ(x) dµ(y) = 2µ([a, b]) ‖f − f̄‖2

L2(µ).

On the other hand, by the Cauchy-Schwarz inequality,∫ b

a

∫ b

a

(
f(y)− f(x)

)2
dµ(x) dµ(y)

= 2

∫ b

a

∫ y

a

(∫ y

x

f ′(t) dt

)2

dµ(x) dµ(y)

≤ 2

∫ b

a

∫ y

a

∫ y

x

f ′(t)2 dt (y − x) dµ(x) dµ(y),
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then, by interchanging the order of the integrals,

= 2

∫ b

a

∫ b

a

∫ b

a

1[a,y](x)1[x,y](t) f
′(t)2(y − x) dt dµ(x) dµ(y)

= 2

∫ b

a

∫ b

a

∫ b

a

1[a,t](x)1[t,b](y) f ′(t)2(y − x) dµ(x) dµ(y) dt

= 2

∫ b

a

f ′(t)2

∫ b

t

∫ t

a

(y − x) dµ(x) dµ(y) dt,

and finally, since µ([a, t]) + µ([t, b]) = µ([a, b]),

≤ 2(b− a)

∫ b

a

f ′(t)2 µ([a, t])µ([t, b]) dt

≤ 2(b− a)

∫ b

a

f ′(t)2

(
µ([a, b])

2

)2

dt

=
(b− a)µ([a, b])2

2

∫ b

a

f ′(t)2 dt.

Altogether we showed

‖f − f̄‖2
L2(µ) ≤

(b− a)µ([a, b])

4
‖f ′‖2

L2(λ).

Note that, if we take µ = δa + δb and f(t) = 2
b−a(t − a) − 1, then µ([a, b]) = 2,

f̄ = 0, ‖f‖2
L2(µ) = 2, and ‖f ′‖2

L2(λ) = 4
b−a and therefore (2.7) holds with equality.

This suggests that the constant in Lemma 2.3.1 is optimal.
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3. Spectral Asymptotics for General
Homogeneous Cantor Measures

3.1. Construction of general homogeneous Cantor

measures

We follow Barlow and Hambly [3] and use their concept of an environment sequence.

Let J be a finite or countably infinite index set. For every j ∈ J we define an IFS
S(j). To this end, let Nj ∈ N, Nj ≥ 2. For i = 1, . . . , Nj let S

(j)
i : [a, b] → [a, b] be

defined by
S

(j)
i (x) = r

(j)
i x+ c

(j)
i ,

where r(j)
i ∈ (0, 1) and c(j)

i ∈ R are chosen such that

a = S
(j)
1 (a) < S

(j)
1 (b) ≤ S

(j)
2 (a) < S

(j)
2 (b) ≤ · · · < S

(j)
Nj

(b) = b. (3.1)

Then we set
S(j) := (S

(j)
1 , . . . , S

(j)
Nj

). (3.2)

Let ξ = (ξ1, ξ2, . . . ) with ξk ∈ J for every k ∈ N. Then ξ is called environment
sequence. Each ξk stands for an IFS S(ξk).

For each sequence ξ we construct a fractal K(ξ) as follows. We put K0 = [a, b].
Then, we move on to K(ξ)

1 by replacing K0 by the union of the images of K0 under
the functions in S(ξ1). The next level, K(ξ)

2 , is constructed by first mapping K0

through S(ξ2)
1 , . . . , S

(ξ2)
N2

and then taking the images under S(ξ1)
1 , . . . , S

(ξ1)
N1

.

To describe the nth level set K(ξ)
n we introduce a word spaceWn of words of length

n by
Wn :=

{
1, . . . , Nξ1

}
×
{

1, . . . , Nξ2

}
× · · · ×

{
1, . . . , Nξn

}
.
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For n ∈ N and w = (w1, . . . , wn) ∈ Wn we set

S(ξ)
w := S(ξ1)

w1
◦ S(ξ2)

w2
◦ · · · ◦ S(ξn)

wn .

Now, for n ∈ N, we put
K(ξ)
n :=

⋃
w∈Wn

S(ξ)
w ([a, b]).

It follows that K(ξ)
n+1 ⊆ K

(ξ)
n for all n ∈ N. We define K(ξ) by

K(ξ) :=
∞⋂
n=1

K(ξ)
n .

Proposition 3.1.1. The set K(ξ) is compact and contains at least countably in-
finitely many elements, namely S(ξ)

w (a) and S(ξ)
w (b) for all w ∈ Wn and all n ∈ N.

Proof. Let n ∈ N and let w = (w1, . . . , wn) ∈ Wn. Then, by the definition of K(ξ)
n ,

we have S(ξ)
w (a), S

(ξ)
w (b) ∈ K(ξ)

n . For any m ∈ N we put

w′ := (w1, w2, . . . , wn, 1, . . . , 1) ∈ Wn+m

and
w′′ := (w1, w2, . . . , wn, Nξn+1 , . . . , Nξn+m) ∈ Wn+m.

Because of (3.1) it is clear that S(ξ)
w′ (a) = S

(ξ)
w (a) and S

(ξ)
w′′(b) = S

(ξ)
w (b). Therefore

S
(ξ)
w (a) and S

(ξ)
w (b) belong to K

(ξ)
n+m. Since this holds for all m the assertion is

proved.

The complement [a, b] \ K(ξ) is an open set and therefore consists of countably
many disjoint open intervals. These intervals we will call gap intervals or gaps of
K(ξ).
K(ξ) is not exactly invariant with respect to some IFS as defined in Section B.2,

but we have a suitable replacement for that property. As in Barlow and Hambly [3],
we denote a left-shift of ξ by θξ = (ξ2, ξ3, . . . ). Then we have

K(ξ) =

Nξ1⋃
i=1

S
(ξ1)
i

(
K(θξ)

)
(3.3)

which follows immediately from the construction of K.
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It is readily seen that, if the sequence ξ is periodic, K(ξ) is self-similar. In partic-
ular, if we take J = {1} and a constant environment sequence ξ = (1, 1, . . . ), then
K(ξ) is invariant with respect to S(1).
Next, for any environment sequence ξ, we construct a measure µ(ξ) on [a, b] with

support K(ξ). For each j ∈ J let m(j)
1 , . . . ,m

(j)
Nj
∈ (0, 1) with

Nj∑
i=1

m
(j)
i = 1.

Furthermore, for w = (w1, . . . , wn) ∈ Wn and n ∈ N we set

m(ξ)
w := m(ξ1)

w1
· · · m(ξn)

wn .

Let µ0 := 1
b−aλ on [a, b]. For A ∈ B([a, b]) we put

µ
(ξ)
1 (A) :=

Nξ1∑
i=1

m
(ξ1)
i µ0

(
S

(ξ1)
i

−1
(A)
)

and for n ∈ N
µ(ξ)
n (A) :=

∑
w∈Wn

m(ξ)
w µ0

(
S(ξ)
w

−1
(A)
)
.

Then we define µ(ξ) by
µ(ξ)(A) := lim

n→∞
µ(ξ)
n (A)

for all A ∈ B([a, b]).

Lemma 3.1.2. For any environment sequence ξ, µ(ξ) is a probability measure and
for all n ∈ N and w ∈ Wn it holds that

µ(ξ)
(
S(ξ)
w ([a, b])

)
= m(ξ)

w .

Proof. We fix an environment sequence ξ and omit the superscript (ξ). By Corol-
lary B.3.2 (Vitali-Hahn-Saks) follows that µ is a measure on B.

Let n ∈ N and w ∈ Wn. We denote Kw = Sw([a, b]). For all m ∈ N holds

µn+m(Kw) =
∑

w′∈Wn+m

mw′µ0

(
S−1
w′ (Kw)

)
=
∑
v∈Wm

mwvµ0

(
S−1
wv (Kw)

)
because Kw′ ∩Kw = Kw′ if w′ = wv for some v ∈ Wm and else Kw′ ∩Kw = ∅. Note
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that
S−1
wv (Kw) = S−1

v ◦ S−1
w (Kw) = S−1

v ([a, b]) = [a, b]

for all v ∈ Wm. Consequently, for all m ∈ N,

µn+m(Kw) =
∑
v∈Wm

mwv =
∑
v∈Wm

mwmv = mw

and thus, letting m→∞,
µ(Kw) = mw.

In particular, choosing n = 1 it follows that

µ([a, b]) =

Nξ1∑
i=1

µ(Ki) =

Nξ1∑
i=1

mi = 1.

Remark 3.1.3. For the case where

r := sup
j∈J

sup
i=1,...,Nj

r
(j)
i < 1

we want to give an alternative way of proving the existence of the measure µ(ξ) by
using the Monge-Kantorovich metric that we define in the following. This metric
is also called Kantorovich-Rubinstein metric or Wasserstein metric. It arises in the
theory of optimal transportation, for a detailed survey see Bogachev and Kolesnikov
[6].

Let a < b andM1
(
[a, b]

)
be the set of all Borel probability measures on [a, b]. For

µ, ν ∈M1 we set

dMK(µ, ν) = sup

{∫
[a,b]

f dµ−
∫

[a,b]

f dν : f ∈ Lip1

(
[a, b]

)
, sup
x∈[a,b]

|f(x)| ≤ 1

}
,

where Lip1

(
[a, b]

)
denotes the set of all Lipschitz-continuous functions f : [a, b]→ R

with Lipschitz constant 1.

Then,
(
M1, dMK

)
is a complete metric space, see e.g. [6, Theorem 1.1.3].

We show that the sequence (µ
(ξ)
n )n defined above is a Cauchy sequence and there-

fore converges to a measure µ(ξ). We take a fixed environment sequence ξ and omit
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the superscript (ξ). Let f ∈ Lip1

(
[a, b]

)
and n ∈ N. Observe that, since mw > 0,

∫ b

a

f dµn =
∑
w∈Wn

mw

∫ Sw(b)

Sw(a)

f d
(
Swµ0

)
.

Then, since
Nξn+1∑
v=1

mwv = mw,

∫ b

a

f dµn+1 −
∫ b

a

f dµn =
∑

w′∈Wn+1

mw′

∫ Sw′ (b)

Sw′ (a)

f dSw′µ0 −
∑
w∈Wn

mw

∫ Sw(b)

Sw(a)

f dSwµ0

=
∑
w∈Wn

Nξn+1∑
v=1

mwv

∫ Swv(b)

Swv(a)

f dSwvµ0 −
∑
w∈Wn

mw

∫ Sw(b)

Sw(a)

f dSwµ0

=
∑
w∈Wn

Nξn+1∑
v=1

mwv

[∫ Swv(b)

Swv(a)

f dSwvµ0 −
∫ Sw(b)

Sw(a)

f dSwµ0

]

=
∑
w∈Wn

Nξn+1∑
v=1

mwv

∫ Sw(b)

Sw(a)

[
f ◦ Sv − f

]
dSwµ0.

Thus,

∣∣∣∣∫ b

a

f dµn+1 −
∫ b

a

f dµn

∣∣∣∣ ≤ ∑
w∈Wn

Nξn+1∑
v=1

mwv

∫ Sw(b)

Sw(a)

∣∣f ◦ Sv − f ∣∣ dSwµ0

≤
∑
w∈Wn

Nξn+1∑
v=1

mwv

∫ Sw(b)

Sw(a)

∣∣Sv(t)− t∣∣ dSwµ0(t)

≤
∑
w∈Wn

Nξn+1∑
v=1

mwv(b− a)rw

≤ (b− a)rn.

Since this holds for every f ∈ Lip1, it follows that dMK(µn+1, µn)→ 0 as n→∞.

Proposition 3.1.4. Analogously to (3.3) it holds

µ(ξ) =

Nξ1∑
i=1

m
(ξ1)
i S

(ξ1)
i µ(θξ). (3.4)
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Proof. Let n ∈ N, B ∈ B and A = S
(ξ1)
i (B). By definition, we have

µ(θξ)
n (B) =

∑
w∈Wn

m(θξ)
w µ0

(
S(θξ)
w

−1
(B)
)
.

Since m(ξ1)
i m

(θξ)
w = m

(ξ)
iw it follows that

Nξ1∑
i=1

m
(ξ1)
i µ(θξ)

n (B) =

Nξ1∑
i=1

∑
w∈Wn

m
(ξ)
iw µ0

(
S

(ξ)
iw

−1
(S

(ξi)
i (B))

)
=

∑
w′∈Wn+1

m
(ξ)
w′ µ0

(
S

(ξ)
w′
−1

(A)
)

= µ
(ξ)
n+1(A).

By letting n tend to infinity we get

Nξ1∑
i=1

m
(ξ1)
i µ(θξ)

(
S

(ξ1)
i

−1
(A)
)

= µ(ξ)(A)

proving the assertion.

Lemma 3.1.5. Let i ∈ {1, . . . , Nξ1} and A ∈ B, A ⊆ S
(ξ1)
i ([a, b]). Then

µ(ξ)(A) = m
(ξ1)
i

(
S

(ξ1)
i µ(θξ)

)
(A).

Proof. The proof is immediate by Proposition 3.1.4.

Remark 3.1.6. Later, we will use derivatives with respect to the measure µ(ξ).
Since µ(ξ) is zero on the gap intervals of K(ξ), every function in H1(µ(ξ)) is constant
on each gap interval, respectively.

3.2. Scaling of the eigenvalue counting functions

The argumentation in this section relies on Section 6 of Kigami and Lapidus [35].
We fix an environment sequence ξ = (ξ1, ξ2, . . . ), take a corresponding sequence
of non-overlapping IFSs (S(ξi))i as in Section 3.1 and consider the measure µ(ξ).
Furthermore, as in Section 2.2, let F = H1(λ) and

E(f, g) =

∫ b

a

f ′(t) g′(t) dt
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for f, g ∈ F . To distinguish between different measures, we will denote a Dirichlet
form (E ,F) on L2(µ) by (E ,F , µ) in the following.

3.2.1. Scaling of the energy and the scalar product

We will establish a scaling property of E similar to Kigami and Lapidus [35, Lemma 6.1].

Proposition 3.2.1. Let f, g ∈ F . Then f ◦ S(ξ1)
i , g ◦ S(ξ1)

i ∈ F and

E(f, g) =

Nξ1∑
i=1

1

r
(ξ1)
i

E(f ◦ S(ξ1)
i , g ◦ S(ξ1)

i ) +

Nξ1−1∑
i=1

∫ S
(ξ1)
i+1 (a)

S
(ξ1)
i (b)

f ′(t)g′(t) dt.

Proof. We compute

Nξ1∑
i=1

1

r
(ξ1)
i

E(f ◦ S(ξ1)
i , g ◦ S(ξ1)

i ) =

Nξ1∑
i=1

1

r
(ξ1)
i

∫ b

a

(f ◦ S(ξ1)
i )′(t)(g ◦ S(ξ1)

i )′(t) dt

=

Nξ1∑
i=1

r
(ξ1)
i

∫ b

a

f ′
(
S

(ξ1)
i (t)

)
g′
(
S

(ξ1)
i (t)

)
dt

=

Nξ1∑
i=1

∫ S
(ξ1)
i (b)

S
(ξ1)
i (a)

f ′(t)g′(t) dt

= E(f, g)−
Nξ1−1∑
i=1

∫ S
(ξ1)
i+1 (a)

S
(ξ1)
i (b)

f ′(t)g′(t) dt.

Next, we establish a similar scaling property for the L2(µ(ξ)) scalar product.

Proposition 3.2.2. Let f, g ∈ L2(µ(ξ)). Then

〈f, g〉L2(µ(ξ)) =

Nξ1∑
i=1

m
(ξ1)
i 〈f ◦ S

(ξ1)
i , g ◦ S(ξ1)

i 〉L2(µ(θξ)).

Proof. We denote I = [a, b]. Using suppµ(ξ) = K(ξ) and Lemma 3.1.5, we work out
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that

〈f, g〉L2(µ(ξ)) =

∫
I

fg dµ(ξ)

=

Nξ1∑
i=1

∫
S
(ξ1)
i (I)

fg dµ(ξ)

=

Nξ1∑
i=1

∫
I

f ◦ S(ξ1)
i · g ◦ S(ξ1)

i d
(
S

(ξ1)
i

−1
µ(ξ)
)

=

Nξ1∑
i=1

m
(ξ1)
i

∫
I

f ◦ S(ξ1)
i · g ◦ S(ξ1)

i dµ(θξ)

=

Nξ1∑
i=1

m
(ξ1)
i

〈
f ◦ S(ξ1)

i , g ◦ S(ξ1)
i

〉
L2(µ(θξ))

.

3.2.2. Neumann boundary conditions

We consider the Dirichlet form (E ,F) on L2(µ(ξ)), whose eigenvalues coincide with
those of ∆µ(ξ) with homogeneous Neumann boundary conditions according to Propo-
sition 2.2.4. For shortness and to emphasize the dependence on the measure µ(ξ),
we denote the eigenvalue counting function by N (ξ) instead of N(E,F).
We define a new Dirichlet form (Ẽ , F̃) where F̃ is the set of all functions f : [a, b]→

R with f ◦ S(ξ1)
i ∈ H1(λ) for all i = 1, . . . , Nξ1 and the restrictions of f to the first

level gap intervals
(
S

(ξ1)
i (b), S

(ξ1)
i+1 (a)

)
are contained in H1

(
λ, (S

(ξ1)
i (b), S

(ξ1)
i+1 (a))

)
for

all i = 1, . . . , Nξ1 − 1.
Then F ⊆ F̃ , but F̃ is not contained in H1(λ) because functions in F̃ need not

be continuous in the points S(ξ1)
1 (a), S

(ξ1)
1 (b), . . . , S

(ξ1)
Nξ1

(a), S
(ξ1)
Nξ1

(b).
For functions f and g in F̃ , we define the form Ẽ by

Ẽ(f, g) =

Nξ1∑
i=1

1

r
(ξ1)
i

E(f ◦ S(ξ1)
i , g ◦ S(ξ1)

i ) +

Nξ1−1∑
i=1

∫ S
(ξ1)
i+1 (a)

S
(ξ1)
i (b)

f ′(t) g′(t) dt.

Then, Proposition 3.2.1 implies that for f, g ∈ F we have Ẽ(f, g) = E(f, g).
From Proposition 2.2.2 follows that the embedding F̃ ↪→ L2(µ(ξ)) is a compact

operator and thus we can refer to the eigenvalue counting function of the Dirichlet
form (F̃ (ξ), Ẽ).
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Proposition 3.2.3. For all x ≥ 0,

N(F̃(ξ),Ẽ)(x) =

Nξ1∑
i=1

N (θξ)(r
(ξ1)
i m

(ξ1)
i x).

Proof. Let f be an eigenfunction of (Ẽ , F̃ , µ(ξ)) with eigenvalue λ. That is, for all
g ∈ F̃ holds

Ẽ(f, g) = λ〈f, g〉L2(µ(ξ)).

Since f and g are in L2(µ(ξ)) we can apply Proposition 3.2.2. From this and the
definition of Ẽ we get

Nξ1∑
i=1

1

r
(ξ1)
i

E
(
f ◦ S(ξ1)

i , g ◦ S(ξ1)
i

)
+

Nξ1−1∑
i=1

∫ S
(ξ1)
i+1 (a)

S
(ξ1)
i (b)

f ′(t) g′(t) dt

= λ

Nξ1∑
i=1

m
(ξ1)
i

〈
f ◦ S(ξ1)

i , g ◦ S(ξ1)
i

〉
L2(µ(θξ))

.

(3.5)

Next we show that the summands of the first sum above coincide with those on the
right hand side, respectively. Take h ∈ H1(λ). For j = 1, . . . , Nξ1 , we define h̃j by

h̃j(x) =

h ◦ S
(ξ1)
j

−1
(x), if x ∈ S(ξ1)

j (I),

0, otherwise.

Then h̃j ∈ F̃ , h̃j ◦S(ξ1)
j = h for j = 1, . . . , Nξ1 , and h̃j ◦S

(ξ1)
i = 0 for i 6= j. Moreover,

h̃′j = 0 on all gap intervals. Therefore, if we put g = h̃j in (3.5), we get

1

r
(ξ1)
j

E(f ◦ S(ξ1)
j , h) = λm

(ξ1)
j

〈
f ◦ S(ξ1)

j , h
〉
L2(µ(θξ))

.

This equation now holds for all h ∈ H1(λ) meaning that r(ξ1)
j m

(ξ1)
j λ is an eigenvalue

of the form
(
E ,F , µ(θξ)

)
to the eigenfunction f ◦ S(ξ1)

j for all j = 1, . . . , Nξ1 .

To prove the converse, assume that λ is a non-negative number such that for
every i = 1, . . . , Nξ1 the number r(ξ1)

i m
(ξ1)
i λ is an eigenvalue of

(
E ,F , µ(θξ)

)
to some

eigenfunction fi. Thus,

E(fi, g) = r
(ξ1)
i m

(ξ1)
i λ〈fi, g〉L2(µ(θξ)) (3.6)
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for all g ∈ H1(λ). Let f be defined by

f(x) =

fi ◦ S
(ξ1)
i

−1
(x), if x ∈ S(ξ1)

i ([a, b]) for some i = 1, . . . , Nξ1 ,

0, otherwise.

Then f ∈ F̃ and f ◦ S(ξ1)
i = fi for every i = 1, . . . , Nξ1 . From (3.6) follows that

Nξ1∑
i=1

1

r
(ξ1)
i

E
(
f ◦ S(ξ1)

i , g
)

= λ

Nξ1∑
i=1

m
(ξ1)
i

〈
f ◦ S(ξ1)

i , g
〉
L2(µθξ)

holds for all g ∈ H1(λ). Take g̃ ∈ F̃ . Since g̃ ◦ S(ξ1)
i ∈ H1(λ) by definition of F̃ for

every i = 1, . . . , Nξ1 , we get

Nξ1∑
i=1

1

r
(ξ1)
i

E
(
f ◦ S(ξ1)

i , g̃ ◦ S(ξ1)
i

)
= λ

Nξ1∑
i=1

m
(ξ1)
i

〈
f ◦ S(ξ1)

i , g̃ ◦ S(ξ1)
i

〉
L2(µθξ)

.

Because f is chosen so that f ′ = 0 on the gap intervals
(
S

(ξ1)
i (b), S

(ξ1)
i+1 (a)

)
, the left

hand side of the above equation equals the definition of Ẽ . Hence, by Proposition
3.2.2 we have

Ẽ(f, g̃) = λ〈f, g̃〉L2(µ(ξ))

for all g̃ ∈ F̃ . So λ is an eigenvalue of (Ẽ , F̃ , µ(ξ)) with the eigenfunction f .

We thus showed that for each x ≥ 0 the following statements are equivalent:

(i) λ ≤ x is an eigenvalue of (Ẽ , F̃ , µ(ξ)) with eigenfunction f ,

(ii) r(ξ1)
j m

(ξ1)
j λ ≤ r

(ξ1)
j m

(ξ1)
j x is an eigenvalue of (E ,F , µ(θξ)) with eigenfunction

f ◦ S(ξ1)
j for each j = 1, . . . , Nξ1 .

Thus, λ is of multiplicity Nξ1 and therefore,

N(Ẽ,F̃)(x) =

Nξ1∑
i=1

N (θξ)(r
(ξ1)
i m

(ξ1)
i x).
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Corollary 3.2.4. Since (Ẽ , F̃) is an extension of (E ,F) on L2(µ(ξ)), it follows from
Theorem B.7.4 that

N (ξ)(x) ≤
Nξ1∑
i=1

N (θξ)(r
(ξ1)
i m

(ξ1)
i x) (3.7)

for all x ≥ 0.

3.2.3. Dirichlet boundary conditions

Now we prove a similar proposition for Dirichlet boundary conditions. For that we
use the Dirichlet form (E ,F0) on L2(µ(ξ)) because according to Proposition 2.2.8,
it’s eigenvalues coincide with the eigenvalues of ∆µ(ξ) with homogeneous Dirichlet
boundary conditions. We denote the eigenvalue counting function of (E ,F0) on
L2(µ(ξ)) by N (ξ)

0 .

We define a Dirichlet form (E , F̃0) where the domain F̃0 is defined as the set of
all f ∈ F0 that vanish on all ’first-level’ gap intervals, that is

F̃0 :=
{
f ∈ F0 : f(x) = 0 for x ∈

(
S

(ξ1)
i (b), S

(ξ1)
i+1 (a)

)
, i = 1, . . . , Nξ1 − 1

}
.

We use the notation E for the restriction of the previously used form E to F̃0 as well.

Proposition 3.2.5. For all x ≥ 0,

N(E,F̃0,µ(ξ))
(x) =

Nξ1∑
i=1

N
(θξ)
0 (r

(ξ1)
i m

(ξ1)
i x).

Proof. The proof of Proposition 3.2.3 can be adapted here as follows.

Let f be an eigenfunction of (E , F̃0, µ
(ξ)) with eigenvalue λ. That is, for all g ∈ F̃0

holds
E(f, g) = λ〈f, g〉L2(µ(ξ)).

From Propositions 3.2.1 and 3.2.2 we get

Nξ1∑
i=1

1

r
(ξ1)
i

E
(
f ◦ S(ξ1)

i , g ◦ S(ξ1)
i

)
+

Nξ1−1∑
i=1

∫ S
(ξ1)
i+1 (a)

S
(ξ1)
i (b)

f ′(t) g′(t) dt

= λ

Nξ1∑
i=1

m
(ξ1)
i

〈
f ◦ S(ξ1)

i , g ◦ S(ξ1)
i

〉
L2(µ(θξ))

.

(3.8)
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Let h ∈ F0. For j = 1, . . . , Nξ1 , we define h̃j by

h̃j(x) =

h ◦ S
(ξ1)
j

−1
(x), if x ∈ S(ξ1)

j (I),

0, otherwise.

Then, because h is zero at the boundary, h̃j ∈ F̃0. Furthermore, h̃j ◦ S(ξ1)
j = h for

j = 1, . . . , Nξ1 , and h̃j ◦ S
(ξ1)
i = 0 for i 6= j. Therefore,

1

r
(ξ1)
j

E(f ◦ S(ξ1)
j , h) = λm

(ξ1)
j

〈
f ◦ S(ξ1)

j , h
〉
L2(µ(θξ))

for every j = 1, . . . , Nξ1 . Thus r(ξ1)
j m

(ξ1)
j λ is an eigenvalue of

(
E ,F0, µ

(θξ)
)
with

eigenfunction f ◦ S(ξ1)
j for all j = 1, . . . , Nξ1 .

Conversely, assume that r(ξ1)
i m

(ξ1)
i λ is an eigenvalue of

(
E ,F0, µ

(θξ)
)
with some

eigenfunction fi for every i = 1, . . . , Nξ1 . Then,

E(fi, g) = r
(ξ1)
i m

(ξ1)
i λ〈fi, g〉L2(µ(θξ)) (3.9)

for all g ∈ F0. We define f by

f(x) =

fi ◦ S
(ξ1)
i

−1
(x), if x ∈ S(ξ1)

i ([a, b]) for some i = 1, . . . , Nξ1 ,

0, otherwise.

Then, since fi is zero at the boundary, f ∈ F̃0 and by (3.9),

Nξ1∑
i=1

1

r
(ξ1)
i

E
(
f ◦ S(ξ1)

i , g
)

= λ

Nξ1∑
i=1

m
(ξ1)
i

〈
f ◦ S(ξ1)

i , g
〉
L2(µθξ)

holds for all g ∈ F0.

Take g̃ ∈ F̃0. Since g̃ ◦S(ξ1)
i ∈ F0, we get as in the proof of Proposition 3.2.3 that

E(f, g̃) = λ〈f, g̃〉L2(µ(ξ)).

So, λ is an eigenvalue of (E , F̃0, µ
(ξ)) with eigenfunction f which proves the propo-

sition.
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Corollary 3.2.6. Since (E ,F0) is an extension of (E , F̃0) and (E ,F) is an extension
of (E ,F0), we finally have by Theorem B.7.4 and Corollary 3.2.4 that

Nξ1∑
i=1

N
(θξ)
0 (r

(ξ1)
i m

(ξ1)
i x) ≤ N

(ξ)
0 (x) ≤ N (ξ)(x) ≤

Nξ1∑
i=1

N (θξ)(r
(ξ1)
i m

(ξ1)
i x) (3.10)

for all x ≥ 0.

3.3. Spectral asymptotics

In this section we prove the main result of the first part of the thesis. Our intention is
to show that the eigenvalue counting functions N (ξ)(x) and N (ξ)

0 grow asymptotically
like xγ for some γ = γ(ξ), that is, there are constants C1, C2 > 0 such that

C1x
γ ≤ N

(ξ)
(0) (x) ≤ C2x

γ (3.11)

for all x greater than some x0 > 0. It turns out, that this is in general not possible.

For this section we will use the following setup and notation. We will refer to
Conditions (C1) to (C7) later. Let J be an at most countable set and suppose we
are given for each j ∈ J a non-overlapping IFS S(j) = (S(j))j∈J with scaling factors
r

(j)
1 , . . . , r

(j)
Nj

and a weight vector (m
(j)
1 , . . . ,m

(j)
Nj

) such that

α := inf
j∈J

min
i=1,...,Nj

r
(j)
i m

(j)
i > 0, (C1)

β := sup
j∈J

max
i=1,...,Nj

r
(j)
i m

(j)
i < 1, (C2)

and
sup
j∈J

Nj <∞. (C3)

Next, let ξ = (ξ1, ξ2, . . . ) with ξi ∈ J , i = 1, 2, . . . be an environment sequence
such that for each j ∈ J there is a limit

pj := lim
n→∞

h(j)
n , with pj > 0 for at least one j, (C4)

where h(j)
n := #{i ≤ n : ξi = j}. Further, let g be a monotonically non-decreasing
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function such that for all j ∈ J and all n ∈ N

n|h(j)
n − pj| ≤ g(n). (C5)

This condition is also imposed by Barlow and Hambly [3] in Section 6.

Let γ ∈ [0, 1] be defined as solution of the equation

∏
j∈J

( Nj∑
i=1

(r
(j)
i m

(j)
i )γ

)pj
= 1, (3.12)

which is equivalent to

∑
j∈J

pj log

( Nj∑
i=1

(r
(j)
i m

(j)
i )γ

)
= 0.

Lemma 3.3.1. γ is uniquely determined by (3.12) and furthermore, γ ∈ (0, 1/2].
If µ(ξ) is the Lebesgue measure on [a, b] normalized to 1, then γ = 1

2
.

Proof. At first we have to show that the possibly infinite product in (3.12) exists.
To this end, we show that

∑
j∈J

pj log

( Nj∑
i=1

(
r

(j)
i m

(j)
i

)s)

converges absolutely for every s ∈ [0, 1]. Noting that r(j)
i m

(j)
i ∈ (0, 1), we see that

for s ∈ [0, 1],
Nj∑
i=1

(
r

(j)
i m

(j)
i

)s ≤ Nj∑
i=1

1 = Nj ≤ sup
j∈J

Nj <∞

and
Nj∑
i=1

(
r

(j)
i m

(j)
i

)s ≥ Nj∑
i=1

r
(j)
i m

(j)
i ≥ αNj ≥ α > 0

and therefore there is a constant C such that for all j ∈ J ,

∣∣∣∣log

Nj∑
i=1

(
r

(j)
i m

(j)
i

)s∣∣∣∣ ≤ C.
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With that, we get

∑
j∈J

pj

∣∣∣∣log

( Nj∑
i=1

(
r

(j)
i m

(j)
i

)s)∣∣∣∣ ≤ C
∑
j∈J

pj ≤ C.

With the continuity of the logarithm, it follows that, for s ∈ [0, 1], the product

G(s) :=
∏
j∈J

( Nj∑
i=1

(r
(j)
i m

(j)
i )s

)pj
exists.

Since 0 < r
(j)
i m

(j)
i < 1 for all j and i, G is strictly monotonically decreasing.

Moreover, G is continuous and

G(0) =
∏
j∈J

N
pj
j > 1.

As in Freiberg [21, Rem. 2.1] we show that G(1/2) ≤ 1. By the Cauchy-Schwarz
inequality, we have for all j ∈ J ,

( Nj∑
i=1

(
r

(j)
i m

(j)
i

)1/2
)pj
≤
( Nj∑
i=1

r
(j)
i

)pj/2( Nj∑
i=1

m
(j)
i

)pj/2
=

( Nj∑
i=1

r
(j)
i

)pj/2

and thus, since
Nj∑
i=1

r
(j)
i ≤ 1,

G(1/2) =
∏
j∈J

( Nj∑
i=1

(
r

(j)
i m

(j)
i

)1/2
)pj

≤
∏
j∈J

( Nj∑
i=1

r
(j)
i

)pj/2
≤ 1.

Therefore, G− 1 must have exactly one zero point and this must be in the interval
(0, 1/2]. In the case where r(j)

i = m
(j)
i for all j and i and thus, µ is the Lebesgue

measure, we have G(1/2) = 1 and hence, γ = 1
2
.
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Finally, we impose that

∏
j∈J∑Nj

i=1(r
(j)
i m

(j)
i )γ>1

( Nj∑
i=1

(r
(j)
i m

(j)
i )γ

)
<∞ (C6)

and ∏
j∈J∑Nj

i=1(r
(j)
i m

(j)
i )γ<1

( Nj∑
i=1

(r
(j)
i m

(j)
i )γ

)
> 0. (C7)

Remark 3.3.2. Note that (C1)-(C3) are conditions only on the parameters of the
collection of IFS’s and (C4)-(C5) are conditions only on the environment sequence
ξ. So α and β depend only on the IFS’s and the pj and g only on ξ, while γ depends
on both. Conditions (C6) and (C7) are only relevant if J contains infinitely many
elements. Then these demand a certain relationship between the IFS’s and the
environment sequence.

Remark 3.3.3. To prove an asymptotic law of the form (3.11), we have to assume
that g is bounded. If g is not bounded, we prove a growth law similar to (3.11)
but with additional correction terms. We get a similar result to that obtained by
Barlow and Hambly [3] for the Laplacian on scale irregular Sierpinski gaskets.

Remark 3.3.4. It is possible to weaken condition (C4) by including the case pj = 0

for all j ∈ J . This can only occur if J is infinite, so assume that J = N. Then
(3.12) is true for any γ, but (C6) and (C7) demand a certain convergence of the
parameters Nj, r

(j)
i , and m(j)

i as j tends to infinity which determines a value of γ,
see Example 3.4.7.

3.3.1. Neumann boundary conditions

Consider the Dirichlet form (E ,F) on L2(µ(ξ)) for an arbitrary environment sequence
ξ. Let λ1 be the smallest positive eigenvalue (spectral gap) of (E ,F) and let f1 be
a corresponding eigenfunction with ‖f1‖L2(µ(ξ)) = 1. Then

λ1

∫ b

a

f1 dµ = E(f1, 1) = 0
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and therefore f1 satisfies
∫ b
a
f1 dµ = 0. Since µ(ξ)([a, b]) = 1 and

λ1 = E(f1, f1) =

∫ b

a

f ′1(t)2 dt,

Lemma 2.3.1 implies that

λ1 ≥
4

b− a
. (3.13)

Consequently, if x ∈ [0, 4
b−a), then

N (ξ)(x) = 1 (3.14)

for all environment sequences ξ because λ0 = 0 is always an eigenvalue.

Theorem 3.3.5. Let conditions (C1)-(C7) be satisfied and γ be defined by (3.12).
Then there are constants c1 > 1 and c2, c3 > 0 such that

N (ξ)(x)

xγc
g(c2 log c3x)
1

≤
(b− a

4α

)γ
(3.15)

for all x ≥ 4
b−a . The constants are computed explicitly in the proof.

Proof. We take an environment sequence ξ and a family (S(j))j∈J of IFS’s that
satisfy conditions (C1) to (C7) and let γ be defined by (3.12). Let x ≥ 4

b−a be fixed.
An n-fold left-shift is denoted by θnξ = (ξn+1, ξn+2, . . . ).

We define a sequence (i1, i2, . . . ) with ik ∈ {1, . . . , Nξk} as follows: let i1 be a
number between 1 and Nξ1 so that

N (θξ)(r
(ξ1)
i1

m
(ξ1)
i1
x)

(r
(ξ1)
i1

m
(ξ1)
i1
x)γ

= max
i=1,...,Nξ1

N (θξ)(r
(ξ1)
i m

(ξ1)
i x)

(r
(ξ1)
i m

(ξ1)
i x)γ

,

let i2 be a number between 1 and Nξ2 such that

N (θ2ξ)(r
(ξ2)
i2

m
(ξ2)
i2
r

(ξ1)
i1

m
(ξ1)
i1
x)

(r
(ξ2)
i2

m
(ξ2)
i2
r

(ξ1)
i1

m
(ξ1)
i1
x)γ

= max
i=1,...,Nξ2

N (θ2ξ)(r
(ξ2)
i m

(ξ2)
i r

(ξ1)
i1

m
(ξ1)
i1
x)

(r
(ξ2)
i m

(ξ2)
i r

(ξ1)
i1

m
(ξ1)
i1
x)γ

,
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and so on. Then, by (3.10),

N (ξ)(x)

xγ
≤

Nξ1∑
i=1

N (θξ)(r
(ξ1)
i m

(ξ1)
i x)

xγ

=

Nξ1∑
i=1

N (θξ)(r
(ξ1)
i m

(ξ1)
i x)

(r
(ξ1)
i m

(ξ1)
i x)γ

(r
(ξ1)
i m

(ξ1)
i )γ

≤
N (θξ)(r

(ξ1)
i1

m
(ξ1)
i1
x)

(r
(ξ1)
i1

m
(ξ1)
i1
x)γ

Nξ1∑
i=1

(r
(ξ1)
i m

(ξ1)
i )γ.

Applying the same argument n times we get

N (ξ)(x)

xγ
≤
N (θnξ)(r

(ξn)
in

m
(ξn)
in
· · · r(ξ1)

i1
m

(ξ1)
i1
x)

(r
(ξn)
in

m
(ξn)
in
· · · r(ξ1)

i1
m

(ξ1)
i1
x)γ

n∏
k=1

( Nξk∑
i=1

(r
(ξk)
i m

(ξk)
i )γ

)
. (3.16)

Now we choose n such that rinmin · · · ri1mi1x <
4
b−a and rin−1min−1 · · · ri1mi1x ≥ 4

b−a .
Then, rinmin · · · ri1mi1x ∈ [ 4α

b−a ,
4
b−a). Due to (C1), it then follows from (3.16) and

(3.14) that

N (ξ)(x)

xγ
≤
(b− a

4α

)γ n∏
k=1

( Nξk∑
i=1

(r
(ξk)
i m

(ξk)
i )γ

)
. (3.17)

For reasons of clarity, we introduce the abbreviation Σj =
∑Nj

i=1(m
(j)
i r

(j)
i )γ for j ∈ J .

To estimate the product
∏n

k=1 Σξk , we first assort the factors depending on the values
of ξk. Note that the number of factors in the product with ξk = j is nh(j)

n . Thus,

n∏
k=1

Σξk =
∏
j∈J

(Σj)
nh

(j)
n =

∏
j∈J

(Σj)
n(h

(j)
n −pj).

Here we used the fact, that
∏
j∈J

Σ
pj
j = 1 by the definition of γ. Note, that only

finitely many of the factors in the product are different from 1. Then, using (C5),
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that is, n|h(j)
n − pj| ≤ g(n), we get∏

j∈J

(Σj)
n(h

(j)
n −pj) =

∏
j∈J

Σj>1

(Σj)
n(h

(j)
n −pj)

∏
j∈J

Σj<1

(Σj)
n(h

(j)
n −pj)

≤
∏
j∈J

Σj>1

(Σj)
n|h(j)n −pj |

∏
j∈J

Σj<1

(Σj)
−n|h(j)n −pj |

≤
∏
j∈J

Σj>1

(Σj)
g(n)

∏
j∈J

Σj<1

(Σj)
−g(n).

By (C6) and (C7),
Π1 :=

∏
j∈J

Σj>1

Σj <∞

and
Π2 :=

∏
j∈J

Σj<1

Σj > 0.

With that we get from (3.17)

N (ξ)(x)

xγ
≤
(b− a

4α

)γ(Π1

Π2

)g(n)

. (3.18)

Since we chose n such that rin−1min−1 · · · ri1mi1x ≥ 4
b−a , it follows that β

n−1x ≥ 4
b−a .

Therefore,
(

1
β

)n ≤ b−a
4β
x and consequently, in view of (C2), n ≤ log b−a

4β
x

log 1
β

. Because g
is monotonically non-decreasing, it follows that

N (ξ)(x)

xγ
≤
(b− a

4α

)γ(Π1

Π2

)g( log b−a
4β

x

log 1
β

)
. (3.19)

This proves the theorem with c1 = Π1

Π2
, c2 = 1

− log β
and c3 = b−a

4β
.

Since the values of the constants in Theorem 3.3.5 do not matter for the asymptotic
behaviour, we can simplify the statement for large x by assuming g to be regularly
varying, see Section B.6. This is no significant restriction.

Corollary 3.3.6. If the function g in Theorem 3.3.5 is regularly varying, there are
numbers c > 0 and x0 > 0 such that

N (ξ)(x)

xγec g(log x)
≤
(b− a

4α

)γ
(3.20)
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for all x ≥ x0.

Proof. Let c1, c2, c3 be the constants from Theorem 3.3.5. If g is regularly varying,
g(log c3x) is regularly varying, too. Then

g(c2 log c3x) ≤ c̃1g(log c3x) ≤ c̃2g(log x)

for some constants c̃1, c̃2 > 0 and all x sufficiently large. Then

c
g(c2 log c3x)
1 ≤ c

c̃2g(log x)
1 = ec g(log x)

where c = c̃2 log c1. Now the corollary follows by the theorem.

3.3.2. Dirichlet boundary conditions

In the previous section we needed a lower estimate for the smallest positive Neumann
eigenvalue to make sure that the eigenvalue counting function is equal to one in a
certain interval. To use the appropriate counterpart argument in the Dirichlet case,
we need an upper estimate for the smallest Dirichlet eigenvalue. Because of this we
know then that the eigenvalue counting function is at least one in a certain interval.
To prove that estimate we will need the following representation of the smallest

eigenvalue λ1 of a Dirichlet form (E ,F) on L2(µ) (see e.g. Theorem 1.3 in Edmunds
and Evans [11, p. 491]). It holds that

λ1 = inf
f∈F
f 6=0

E(f, f)

‖f‖2
L2(µ)

, (3.21)

where f 6= 0 means that f is not the zero element in L2(µ). It can be seen that
if we impose homogeneous Dirichlet boundary conditions and take measures µ that
are more and more concentrated near the boundary, λ1 can grow arbitrarily large.
This suggests that, for the upper estimate, we need a restriction on µ ensuring that
it cannot be concentrated near the boundary. This is accomplished by conditions
(C1) and (C2) imposed at the beginning of this section.

Lemma 3.3.7. Let ξ be an environment sequence and let λ1 be the smallest eigen-
value of the Dirichlet form (E ,F0) on L2(µ(ξ)). Then

λ1 ≤
1

α2(1− β)(b− a)
.
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Because of this, the eigenvalue counting function satisfies

N
(ξ)
0 (x) ≥ 1

for all x ≥ 1
α2(1−β)(b−a)

.

Proof. Let µ(ξ) be the measure corresponding to the given environment sequence
ξ. Let x1 = S

(ξ1)
1

(
S

(ξ2)
Nξ2

(a)
)
and x2 = S(ξ1)(b) be the left and right endpoints of

the second-level cell that lies on the right end of the leftmost first-level cell. Then
x1 = a+ r

(ξ1)
1

(
1− r(ξ2)

Nξ2

)
(b− a) and x2 = a+ r

(ξ1)
1 (b− a). We define a function f̄ by

f̄(x) =


x− a
x1 − a

, if x ∈ [a, x1]

1, if x ∈ (x1, x2]
b− x
b− x2

, if x ∈ (x2, b].

Then f̄ ∈ F0 because it is in H1(λ) and f̄(a) = f̄(b) = 0. The energy of f̄ can be
calculated as

E(f̄ , f̄) =

∫ b

a

f̄ ′(t)2 dt =
( 1

x1 − a

)2

(x1 − a) +
( 1

b− x2

)2

(b− x2)

=
1

x1 − a
+

1

b− x2

=
1

r
(ξ1)
1

(
1− r(ξ2)

Nξ2

)
(b− a)

+
1

(1− r(ξ1)
1 )(b− a)

=
1− r(ξ1)

1 + r
(ξ1)
1

(
1− r(ξ2)

Nξ2

)
r

(ξ1)
1

(
1− r(ξ2)

Nξ2

)
(1− r(ξ1)

1 )(b− a)
=

1

r
(ξ1)
1 (1− r(ξ1)

1 )(b− a)
.

Furthermore we need an estimate of the L2-norm of f̄ . It holds

‖f̄‖2
L
µ(x)
≥
∫ x2

x1

f̄ 2 dµ(ξ) = µ(ξ)
(
[x1, x2]

)
= m

(ξ1)
1 m

(ξ2)
Nξ2

.

For the smallest eigenvalue λ1 we get by (3.21)

λ1 ≤
E(f̄ , f̄)

‖f̄‖L2(µ(ξ))

≤ 1

r
(ξ1)
1 m

(ξ1)
1 (1− r(ξ1)

1 )m
(ξ2)
Nξ2

(b− a)
≤ 1

α2(1− β)(b− a)
.

Theorem 3.3.8. Let conditions (C1)-(C7) be satisfied and γ be defined by (3.12).
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Then there are constants c1 > 1 and c2, c4 > 0 such that

N
(ξ)
0 (x)

xγ c
−g(c2 log c4x)
1

≥ [α3(1− β)(b− a)]γ (3.22)

for all x ≥ 1
α2(1−β)(b−a)

. The constants c1 and c2 are the same as in Theorem 3.3.5.

Proof. Let x ≥ 1
α2(1−β)(b−a)

. Using (3.10) we get

N
(ξ)
0 (x)

xγ
≥

Nξ1∑
i=1

N
(θξ)
0 (r

(ξ1)
i m

(ξ1)
i x)

(r
(ξ1)
i m

(ξ1)
i x)γ

(r
(ξ1)
i m

(ξ1)
i )γ

≥ min
i=1,...,Nξ1

N
(θξ)
0 (r

(ξ1)
i m

(ξ1)
i x)

(r
(ξ1)
i m

(ξ1)
i x)γ

Nξ1∑
i=1

(r
(ξ1)
i m

(ξ1)
i )γ

=
N

(θξ)
0 (r

(ξ1)
i1

m
(ξ1)
i1
x)

(r
(ξ1)
i1

m
(ξ1)
i1
x)γ

Nξ1∑
i=1

(r
(ξ1)
i m

(ξ1)
i )γ,

where i1 denotes the index where the minimum is attained. The same argument

applied to
N

(θξ)
0 (r

(ξ1)
i1

m
(ξ1)
i1

x)

(r
(ξ1)
i1

m
(ξ1)
i1

x)γ
gives

N
(ξ)
0 (x)

xγ
≥
N

(θ2ξ)
0 (r

(ξ2)
i2

m
(ξ2)
i2
r

(ξ1)
i1

m
(ξ1)
i1
x)

(r
(ξ2)
i2

m
(ξ2)
i2
r

(ξ1)
i1

m
(ξ1)
i1
x)γ

( Nξ2∑
i=1

(r
(ξ2)
i m

(ξ2)
i )γ

)( Nξ1∑
i=1

(r
(ξ1)
i m

(ξ1)
i )γ

)
,

where i2 denotes the index for which the appearing minimum is attained. Repeating
this n times and denoting

∑Nj
i=1(r

(j)
i m

(j)
i )γ by Σj for j ∈ J as in the proof of Theorem

3.3.5, we get

N
(ξ)
0 (x)

xγ
≥
N

(θnξ)
0 (r

(ξn)
in

m
(ξn)
in

. . . r
(ξ1)
i1

m
(ξ1)
i1
x)

(r
(ξn)
in

m
(ξn)
in

. . . r
(ξ1)
i1

m
(ξ1)
i1
x)γ

n∏
k=1

Σξk . (3.23)

Now we choose n such that

1

α2(1− β)(b− a)
≤ r

(ξn)
in

m
(ξn)
in
· · · r(ξ1)

i1
m

(ξ1)
i1
x

and
r

(ξn+1)
in+1

m
(ξn+1)
in+1

· · · r(ξ1)
i1

m
(ξ1)
i1
x <

1

α2(1− β)(b− a)
.
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Consequently,

r
(ξn)
in

m
(ξn)
in
· · · r(ξ1)

i1
m

(ξ1)
i1
x ∈

[ 1

α2(1− β)(b− a)
,

1

α3(1− β)(b− a)

)
and therefore, by Lemma 3.3.7 and (3.23),

N
(ξ)
0 (x)

xγ
≥ [α3(1− β)(b− a)]γ

n∏
k=1

Σξk .

As in the proof of Theorem 3.3.5 we assort the factors in the product
∏n

k=1 Σξk

as follows:
n∏
k=1

Σξk =
∏
j∈J

(Σj)
nh

(j)
n =

∏
j∈J

(Σj)
n(h

(j)
n −pj),

where we use the definition of γ, namely that
∏
j∈J

Σ
pj
j = 1.

Then, by n|h(j)
n − pj| ≤ g(n),∏
j∈J

(Σj)
n(h

(j)
n −pj) =

∏
j∈J

Σj>1

(Σj)
n(h

(j)
n −pj)

∏
j∈J

Σj<1

(Σj)
n(h

(j)
n −pj)

≥
∏
j∈J

Σj>1

(Σj)
−n|h(j)n −pj |

∏
j∈J

Σj<1

(Σj)
n|h(j)n −pj |

≥
∏
j∈J

Σj>1

(Σj)
−g(n)

∏
j∈J

Σj<1

(Σj)
g(n).

By using the notation

Π1 =
∏
j∈J

Σj>1

Σj and Π2 =
∏
j∈J

Σj<1

Σj,

which was defined in the proof of Theorem 3.3.5, we get

N
(ξ)
0 (x)

xγ
≥
[
α3(1− β)(b− a)

]γ(Π1

Π2

)−g(n)

. (3.24)

Since we chose n such that

1

α2(1− β)(b− a)
≤ r

(ξn)
in

m
(ξn)
in
· · · r(ξ1)

i1
m

(ξ1)
i1
x
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it follows that
1

α2(1− β)(b− a)
≤ βnx

and hence

n ≤
log
(
α2(1− β)(b− a)x

)
log
(

1
β

) .

With that, (3.24) gives

N
(ξ)
0 (x)

xγ
≥
[
α3(1− β)(b− a)

]γ(Π1

Π2

)−g( log(α2(1−β)(b−a)x)
− log β

)
. (3.25)

Then, with c1 = Π1

Π2
, c2 = 1

− log β
and c4 = α2(1− β)(b− a) the assertion follows.

As in the case of Neumann boundary conditions, we will now assume that g is
regularly varying for a more comprehensible formulation.

Corollary 3.3.9. If the function g in Theorem 3.3.8 is regularly varying, there are
numbers c > 0 and x0 > 0 such that

N
(ξ)
0 (x)

xγ e−cg(log x)
≥ [α3(1− β)(b− a)]γ

for all x ≥ x0.

Proof. We use the same argumentation as in the proof of Corollary 3.3.6.

3.3.3. Main theorem

We connect Theorems 3.3.5 and 3.3.8 to state the main result of the first chapter of
the thesis. To this end, note that from Theorem B.7.4 follows for every environment
sequence ξ that

N
(ξ)
0 (x) ≤ N (ξ)(x)

for all x ≥ 0.

Theorem 3.3.10. Let (S(j))j∈J be a collection of IFS’s, (m
(j)
i )j∈J,i=1,...,Nj weights,

and (ξj)j∈J an environment sequence that satisfy the conditions (C1) to (C7) with
a regularly varying function g. Let γ = γ(ξ) be defined by

∏
j∈J

( Nj∑
i=1

(r
(j)
i m

(j)
i )γ

)pj
= 1.
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Then there are constants c1, c2, C1, C2 > 0 and x0 > 0 such that

C1 x
γ e−c1 g(log x) ≤ N

(ξ)
0 (x) ≤ N (ξ)(x) ≤ C2 x

γ ec2 g(log x)

for all x ≥ x0.

Proof. The theorem follows immediately from Corollaries 3.3.6 and 3.3.9 and The-
orem B.7.4 as pointed out above.

Remark 3.3.11. In Barlow and Hambly [3], heat kernel estimates for a Laplacian
on “scale irregular” Sierpinski gaskets are established. In the end they lead to certain
growth results for the eigenvalue counting function. Although their operator is quite
different from the one we use, the results resemble each other.

3.4. Deterministic examples

Example 3.4.1. Suppose J = {a, b, c} and, for each j ∈ J , take S(j) with

r
(j)
1 = . . . = r

(j)
Nj

= r(j)

and let the weights be

m
(j)
1 = . . . = m

(j)
Nj

=
1

Nj

.

Consider an environment sequence with asymptotic relative frequencies pa, pb, and
pc different from zero. Then γ is determined by[

Na

(
r(a) 1

Na

)γ]pa [
Nb

(
r(b) 1

Nb

)γ]pb[
Nc

(
r(c) 1

Nc

)γ]pc
= 1,

which leads to

γ =
− log

(
Npa
a Npb

b Npc
c

)
log

[(
r(a)

Na

)pa (
r(b)

Nb

)pb (
r(c)

Nc

)pc]
=

pa logNa + pb logNb + pc logNc

pa log Na
r(a)

+ pb log Nb
r(b)

+ pc log Nc
r(c)

In addition to γ, the asymptotic growths of the eigenvalue counting function
depends on the function g in Theorem 3.3.10. This is being discussed in the following
two examples, where we have the same γ but different functions g.
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Example 3.4.2. Take J = {a, b} where a and b denote indices, let S(a) and S(b)

be corresponding IFS’s and (m
(a)
1 , . . . ,m

(a)
Na

) and (m
(b)
1 , . . . ,m

(b)
Nb

) weight vectors. We
consider the environment sequence

ξ = (a, b, a, b, a, b, . . . ).

Then, for all n ∈ N,

n
∣∣∣h(a)
n −

1

2

∣∣∣ = n
∣∣∣h(b)
n −

1

2

∣∣∣ =

0 , if n is even
1
2

, if n is odd
≤ 1

2

which means that pa = pb = 1
2
and we can take g(n) = 1

2
in Theorem 3.3.10.

Therefore,
C1 x

γ ≤ N
(ξ)
0 (x) ≤ N (ξ)(x) ≤ C2 x

γ.

This is not surprising, because ξ is periodic and therefore, K(ξ) and µ(ξ) are self-
similar with respect to the IFS

{
S

(a)
i ◦ S

(b)
k : i = 1, . . . , Na, k = 1, . . . , Nb

}
and vector of weights (m

(a)
i m

(b)
k )i,k.

The equation (3.12) defining γ then becomes

( Na∑
i=1

(
r

(a)
i m

(a)
i

)γ)( Nb∑
i=1

(
r

(b)
i m

(b)
i

)γ)
=

Na∑
i=1

Nb∑
k=1

(
r

(a)
i r

(b)
k m

(a)
i m

(b)
k

)γ
= 1.

Example 3.4.3. Let J , the IFS’s and the weight vectors as in Example 3.4.2 but
take the environment sequence

ξ = (a, b, a, a, b, b, a, a, a, b, b, b, a, a, a, a, b, b, b, b, . . . ).

We count the numbers nh(a)
n in the following table:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ξn a b a a b b a a a b b b a a a a

n h
(a)
n 1 1 2 3 3 3 4 5 6 6 6 6 7 8 9 10

n (h
(a)
n − 1

2
) 1

2
0 1

2
1 1

2
0 1

2
1 3

2
1 1

2
0 1

2
1 3

2
2
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We highlighted the values for square numbers with a box. We see that

n
(
h(a)
n −

1

2

)
≤ k

2
, if k2 ≤ n < (k + 1)2, for k ∈ N,

and therefore, for all n ∈ N,

n
(
h(a)
n −

1

2

)
≤
√
n

2
.

Moreover, since

n
(
h(a)
n −

1

2

)
=

√
n

2
if n = k2 for k ∈ N,

and
n
(
h(a)
n −

1

2

)
= 0 if n = k(k + 1) for k ∈ N,

we have

lim sup
n→∞

n
∣∣∣h(a)
n − 1

2

∣∣∣
√
n

=
1

2
,

and

lim inf
n→∞

n
∣∣∣h(a)
n − 1

2

∣∣∣
√
n

= 0.

Therefore, pa = pb = 1
2
, and the optimal choice of g in Theorem 3.3.10 is g(n) = 1

2

√
n,

n ∈ N. Thus, we get

C1 x
γ e−c1

√
log x ≤ N

(ξ)
0 (x) ≤ N (ξ)(x) ≤ C2 x

γ ec2
√

log x,

where γ is the same as in Example 3.4.2.

In the following we consider examples with an countably infinite set J . We will
see that in this case the family of IFS’s and the environment sequence can not be
chosen independently. This is because conditions (C6) and (C7) require a certain
interaction of these.

Example 3.4.4. Let J = N. To keep it simple, we take a collection of (non-
overlapping) IFS’s with the same number of mappings N ≥ 2, and for all j ∈ N,
m

(j)
1 = · · · = m

(j)
N = 1

N
, and r(j)

1 = · · · = r
(j)
N = r(j) ∈ [α, 1

N
) for some α > 0.

Consider the environment sequence

ξ = (1, 2, 1, 3, 1, 4, 1, 5, 1, 6, . . . ).
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Then p1 = 1
2
, whereas pj = 0 for all j ≥ 2. Since n(h

(1)
n − 1

2
) ≤ 1

2
and nh(j)

n ≤ 1 for
j ≥ 2, we take g(n) = 1.

To determine γ only r(1) plays a role because (3.12) reduces to

(
N
(r(1)

N

)γ) 1
2

= 1,

and therefore
γ = − logN

log r(1)

N

.

But to satisfy conditions (C6) and (C7) we get conditions on r(j), j ≥ 2, that demand
them to be “asymptotically indistinguishable”. We must check∑

j∈N
log Σj>0

log Σj <∞

and ∑
j∈N

log Σj<0

log Σj > −∞.

For every j ∈ N we have Σj = N
(
r(j)

N

)γ and therefore,

log Σj = logN − logN

log r(1)

N

log
r(j)

N

= logN
log r(1)

N
− log r(j)

N

log r(1)

N

=
logN

log r(1)

N

log
r(1)

r(j)
.

So (C6) and (C7) are satisfied if and only if

∞∑
j=1

∣∣∣log
r(1)

r(j)

∣∣∣ <∞
and that means that in order for Theorem 3.3.10 to be applicable, r(j) must converge
to r(1) sufficiently fast. Assuming that this is the case, the theorem gives

C1 x
γ ≤ N

(ξ)
0 (x) ≤ N (ξ)(x) ≤ C2 x

γ.
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The exponent γ is the same as in the case of a strictly self-similar measure that is
constructed only with the IFS S(1), but µ(ξ) is not exactly self-similar because is is
slightly “disturbed” by the IFS’s S(j), j ≥ 2. However, this disturbance vanishes
asymptotically as r(j) → r(1).

Example 3.4.5. We would like to give an example of an environment sequence
where J = N and pj > 0 for all j ∈ N. Consider ξ defined by ξn = v2(n) + 1,
where v2(n) denotes the exponent of 2 in the prime decomposition of n. For better
comprehensibility we make the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ξn 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5

n (h
(1)
n − 1

2
) 1

2
0 1

2
0 1

2
0 1

2
0 1

2
0 1

2
0 1

2
0 1

2
0

n (h
(2)
n − 1

4
) −1

4
1
2

1
4

0 −1
4

1
2

1
4

0 −1
4

1
2

1
4

0 −1
4

1
2

1
4

0

n (h
(3)
n − 1

8
) −1

8
−1

4
−3

8
1
2

3
8

1
4

1
8

0 −1
8
−1

4
−3

8
1
2

3
8

1
4

1
8

0

We have for all j ∈ N
2j−1 − 1

2j
≤ n

(
h(j)
n −

1

2j

)
≤ 1

2

which means that pj = 1
2j

and g(n) = 1
2
.

Example 3.4.6. Let J = N and let ξ be such that pj > 0 for all j ∈ N and∑∞
j=1 pj = 1.
As in Example 3.4.4, let for all j ∈ N be Nj = N ≥ 2, m(j)

1 = · · · = m
(j)
N = 1

N
,

and r(j)
1 = · · · = r

(j)
N = r(j) ∈ [α, 1

N
) for some α > 0.

Then γ is defined by
∞∏
j=1

[
N
(r(j)

N

)γ]pj
= 1

which is equivalent to
∞∑
j=1

pj

[
logN + γ log

r(j)

N

]
= 0

and therefore,

γ = −

∞∑
j=1

pj logN

∞∑
j=1

pj log r(j)

N

= − logN
∞∑
j=1

pj log r(j)

N

.

Because r(j) ≥ α, we have
∞∑
j=1

pj log r(j)

N
≥
∞∑
j=1

pj log α
N

= log α
N
> −∞.
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Finally we have to check conditions (C6) and (C7), that is,
∞∑
j=1

|log Σj| <∞. Since

log Σj = logN + γ log
r(j)

N

= logN

(
1− 1∑∞

k=1 pk log r(k)

N

log
r(j)

N

)
=

logN∑∞
k=1 pk log r(k)

N

( ∞∑
k=1

pk log
r(k)

N
− log

r(j)

N

)
=

logN∑∞
k=1 pk log r(k)

N

( ∞∑
k=1

pk log r(k) − log r(j)

)
,

this condition is equivalent to

∞∑
j=1

∣∣∣∣log r(j) −
∞∑
k=1

pk log r(k)

∣∣∣∣ <∞. (3.26)

That means that Theorem 3.3.10 can only be applied, if the sequence of the contrac-

tion ratios r(j) converges sufficiently fast to
∞∏
k=1

(
r(k)
)pk . We give such an example

for the r(j) supposing that N = 2. Let

r(1) =

(
3 · 2

1
p1

∑∞
k=2

pk
k2

)−1

and
r(j) =

1

3
2

1
j2 for j ≥ 2.

Then

∞∑
k=1

pk log r(k) = p1 log
1

3
−
∞∑
k=2

pk
k2

log 2 +
∞∑
k=2

pk log
(1

3
2

1
k2
)

= log
1

3

and therefore, for all j ≥ 2,∣∣∣∣log r(j) −
∞∑
k=1

pk log r(k)

∣∣∣∣ =
1

j2
log 2
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which implies (3.26).

Example 3.4.7. We give an example for the case we considered in Remark 3.3.4,
namely that pj = 0 for all j ∈ J . Take J = N and the parameters of the IFSs as
in the previous examples. Then Equation (3.12) does not define a value for γ but
(C6) and (C7) demand that

∞∑
j=1

∣∣∣log
(
N
(
r(j)

N

)γ)∣∣∣ <∞.
Thus, in order for our theorem to be applicable, r(j) must tend to N1− 1

γ sufficiently
fast, so that γ can be computed if N and r(j) are given.

3.5. Application to random homogeneous measures

In this section we consider fractal measures that result when we take for the environ-
ment sequence ξ a sequence of i.i.d. random variables with values in the index set
J . That means in every step of the construction of the measure, it is independently
chosen which IFS is taken. At that, for each cell the same IFS is used. Such a
construction based on the Sierpinski gasket is for example studied in Hambly [27].

Let (Ω,A,P) be a probability space, let J be an at most countable index set, and
suppose we are given an IFS S(j) on [a, b] for each j ∈ J and weight factors m(j)

i .

Let (pj)j∈J be a distribution on J with 0 < pj < 1 for all j ∈ J and let ξ =

(ξ1, ξ2, . . . ) be a sequence of i.i.d J-valued random variables on Ω with P(ξi = j) = pj

for j ∈ J .
For each ω ∈ Ω let K(ξ(ω)) be the set and µ(ξ(ω)) the measure constructed in

Section 3.1. Then N (ξ(ω)) and N
(ξ(ω))
0 denote the eigenvalue counting functions of

the Neumann and Dirichlet Laplacian, respectively.

Corollary 3.5.1. Let J , S(j) andm(j)
i be such that (C1), (C2) and (C3) are satisfied,

and let γ be defined by ∏
j∈J

( Nj∑
i=1

(r
(j)
i m

(j)
i )γ

)pj
= 1.

Suppose, if J is infinite, that (C6) and (C7) are satisfied.
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Then there exist C1, C2 > 0, x0 > 0, and c1(ω), c2(ω) > 0 such that

C1x
γe−c1(ω)

√
log x log log log x ≤ N

(ξ(ω))
0 (x) ≤ N (ξ(ω))(x) ≤ C2x

γec2(ω)
√

log x log log log x

(3.27)
for x ≥ x0 and almost every ω ∈ Ω.

Proof. Let ξ1, ξ2, . . . be i.i.d J-valued random variables with P(ξi = j) = pj for
j ∈ J .
For each j ∈ J and k ∈ N we set

X
(j)
k :=

1√
pj(1− pj)

[
1{ξi=j} − pj

]
and

S(j)
n :=

n∑
k=1

X
(j)
k .

Since EX(j)
k = 0 and VarX

(j)
k = 1 we can apply the law of the iterated logarithm

stated in Theorem B.5.1, and thus there is a set A ∈ A with P(A) = 1 such that for
all ω ∈ A there is a number c(ω) > 1 with

|S(j)
n (ω)|√

2n log log n
≤ c(ω) for all n ∈ N.

Because

S(j)
n =

1√
pj(1− pj)

( n∑
k=1

1{ξi=j} − npj
)

=
1√

pj(1− pj)
n
(
h(j)
n − pj

)
,

it follows that

n(h(j)
n − pj) ≤ c(ω)

√
pj(1− pj)

√
2n log log n ≤ c(ω)

√
n log log n

and thus conditions (C4) and (C5) are satisfied with g(ω)(n) = c(ω)
√
n log log n.

Therefore, for each ω ∈ A the conditions (C1)- (C7) are satisfied and we can apply
Theorem 3.3.10. This gives (3.27).

In the case where r(j)
i = r(j) andm(j)

i = 1
Nj

for all i = 1, . . . , Nj, we will reformulate
the equation defining γ to give it a more stochastic interpretation. For this, suppose
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we have random variables N and r with values in {Nj : j ∈ J} and {r(j) : j ∈ J},
respectively, and

P
(
N = Nj, r = r(j)

)
= P

(
N = Nj

)
= P

(
r = r(j)

)
= pj.

Then (3.12) leads to

γ =

∑
j∈J

pj logNj∑
j∈J

pj log
Nj
r(j)

=
E logN

E log N
r

.

Remark 3.5.2. As mentioned in Section 1.3 there are many other random models
of fractals. For example, in contrast to our construction the one made in Falconer
[14, Ch. 15] allows a continuous distribution of the parameters r(j).
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4. Eigenvalues of the Laplacian as
Zeros of Generalized Sine
Functions

As outlined in Section 1.4, we now want to approach the eigenvalue problem for ∆µ

by following the basic lines of the classical case.

In Section 4.1 we introduce functions that can be viewed as generalizations of
trigonometric functions. We investigate these in the succeeding sections, imposing
more conditions on the measure µ in each section.

4.1. Generalized trigonometric functions

Let µ be an atomless Borel probability measure on [0, 1]. We construct sequences of
functions pn(x) and qn(x) depending on µ.

Definition 4.1.1. For x ∈ [0, 1] we set p0(x) = q0(x) = 1 and, for n ∈ N,

pn(x) :=


∫ x

0
pn−1(t) dµ(t) , if n is odd,∫ x

0
pn−1(t) dt , if n is even,

and

qn(x) :=


∫ x

0
qn−1(t) dt , if n is odd,∫ x

0
qn−1(t) dµ(t) , if n is even.

Then, for n ∈ N, we have by definition p2n, q2n+1 ∈ H1(λ), p2n+1, q2n ∈ H1(µ) and

d

dµ
p2n+1 = p2n, q′2n+1 = q2n, p′2n = p2n−1 and

d

dµ
q2n = q2n−1.
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Remark 4.1.2. If we take µ to be the Lebesgue measure, then

pn(x) = qn(x) =
xn

n!
.

In the following, we will transfer classical concepts and techniques to a general

measure µ by replacing
xn

n!
by pn(x) or qn(x). In this sense, we can look at pn(x) or

qn(x) as a kind of generalized monomials.

To prove convergence of the series defined below, we will need the following lemma.

Lemma 4.1.3. For all x ∈ [0, 1], z ∈ R and n ∈ N0 holds

p2n+1(x) ≤ 1

n!
q2(x)n, q2n+1(x) ≤ 1

n!
p2(x)n,

p2n(x) ≤ 1

n!
p2(x)n, q2n(x) ≤ 1

n!
q2(x)n.

Proof. The proof is taken from [22, Lemma 2.3] and works with complete induction.
First we show the inequality involving p2n+1. For n = 0 the inequality reduces to
p1(x) ≤ 1, which is true. Assume the assertion holds for some n ∈ N0, then

p2n+3(x) =

∫ x

0

∫ t

0

p2n+1(s) ds dµ(t) ≤ 1

n!

∫ x

0

∫ t

0

q2(s)n ds dµ(t)

≤ 1

n!

∫ x

0

q2(t)n
∫ t

0

ds dµ(t) =
1

n!

∫ x

0

q2(t)n q1(t) dµ(t).

Since d
dµ
q2 = q1, we can apply Proposition 2.1.11 (iv) to transform the last integral,

so that we get

p2n+3(x) ≤ 1

n!

∫ q2(x)

0

wn dw =
1

(n+ 1)!
q2(x)n+1.

Next we show the inequality for the odd-numbered q. For n = 0 we have q1(x) ≤ 1

which is true for x ∈ [0, 1]. Let n ∈ N0 and suppose the assertion holds for n, then

q2n+3(x) =

∫ x

0

∫ t

0

q2n+1(s) dµ(s) dt ≤ 1

n!

∫ x

0

∫ t

0

p2(s)n dµ(s) dt

≤ 1

n!

∫ x

0

p2(t)n
∫ t

0

dµ(s) dt =
1

n!

∫ x

0

p2(t)n p1(t) dt

=
1

n!

∫ p2(x)

0

wn dw =
1

(n+ 1)!
p2(x)n+1.
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The proof for the even-numbered q is the same as for the odd-numbered p and for
the even p as for the odd q.

Definition 4.1.4. Using the functions pn(x) and qn(x) we now define for x ∈ [0, 1]

and z ∈ R:

spz(x) :=
∞∑
n=0

(−1)n z2n+1p2n+1(x), sqz(x) :=
∞∑
n=0

(−1)n z2n+1q2n+1(x),

cpz(x) :=
∞∑
n=0

(−1)n z2np2n(x), cqz(x) :=
∞∑
n=0

(−1)n z2nq2n(x).

Example 4.1.5. If µ is the Lebesgue measure, then

spz(x) = sqz(x) = sin(zx), cpz(x) = cqz(x) = cos(zx).

Lemma 4.1.6. For every z ∈ R the series in Definition 4.1.4 converge uniformly
absolutely on [0, 1] and the following differentiation rules hold:

d

dµ
spz = z cpz, sq′z = z cqz,

cp′z = −z spz,
d

dµ
cqz = −z sqz .

Proof. Let z ∈ R. By Lemma 4.1.3 we get for all N ∈ N

sup
x∈[0,1]

∞∑
n=N

|z|2n+1p2n+1(x) ≤ sup
x∈[0,1]

∞∑
n=N

|z|2n+1 q2(x)n

n!
≤

∞∑
n=N

|z|2n+1

n!
.

Hence, for every z ∈ R the series
∞∑
n=0

|z|2n+1p2n+1(x) converges uniformly in x. The

proof for the other series works analogously with the estimates in Lemma 4.1.3.
Thus, we can differentiate term by term and get the above rules.

Now we show the relation between cpz and sqz to the eigenvalue problem for ∆µ.
Consider the Neumann problem

d

dµ
f ′ = −λf

f ′(0) = f ′(1) = 0.
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It is well known that the eigenvalues can be sorted according to size such that

λN,0 < λN,1 < λN,2 < · · · ,

where λN,0 = 0 and lim
m→∞

λN,m =∞.

Proposition 4.1.7. The Neumann eigenvalues λN,m, m ∈ N0, are the squares of
the non-negative zeros of the function sinp given by

sinp(z) := spz(1) =
∞∑
n=0

(−1)np2n+1z
2n+1, for z ∈ R,

where we write pn instead of pn(1) for simplicity. The corresponding eigenfunctions
fN,m are given by

fN,m(x) := cp
λ
1/2
N,m

(x) =
∞∑
n=0

(−1)n λnN,m p2n(x), x ∈ [0, 1].

Proof. Using the differentiation rules from Lemma 4.1.6 it is easy to see that cpz

satisfies the eigenvalue equation if λ = z2, while it also fulfills the left boundary
condition cp′z(0) = −z spz(0) = 0. In order that cpz satisfies the right boundary
condition, too, z has to be zero itself or it must be chosen such that spz(1) = 0. It
is known (see Freiberg [17] p.40) that the solution of the above problem is unique
up to a multiplicative constant. So z is a zero point of sinp if and only if z2 is a
Neumann eigenvalue of − d

dµ
d
dx
.

Thus, for m ∈ N0, fN,m = cp
λ
1/2
N,m

(x) is an eigenfunction to the mth Neumann
eigenvalue λN,m.

We treat the Dirichlet eigenvalue problem

d

dµ
f ′ = −λf

f(0) = f(1) = 0

similarly. We denote the Dirichlet eigenvalues such that

λD,1 < λD,2 < λD,3 < · · ·

where λD,1 > 0 and lim
n→∞

λD,n =∞.
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Proposition 4.1.8. The Dirichlet eigenvalues λD,m, m ∈ N, are the squares of the
positive zeros of the function sinq given by

sinq(z) := sqz(1) =
∞∑
n=0

(−1)nq2n+1z
2n+1, for z ∈ R

where, as above, qn stands for qn(1). The corresponding eigenfunctions fD,m are
given by

fD,m(x) = sq
λ
1/2
D,m

(x) =
√
λD,m

∞∑
n=0

(−1)n λnD,m q2n+1(x), x ∈ [0, 1].

Proof. The function sqz satisfies the equation if λ = z2 and also the left boundary
condition sqz(0) = 0 . The right boundary condition gives sqz(1) = 0. So z2 is a
Dirichlet eigenvalue of − d

dµ
d
dx

if and only if z is a zero point of sinq and z 6= 0.

Thus, for m ∈ N, the function fD,m = sq
λ
1/2
D,m

(x) is an eigenfunction to the mth
Dirichlet eigenvalue λD,m. This construction has also been used in Freiberg and
Löbus [22].

Remark 4.1.9. An eigenfunction is only unique up to a multiplicative constant.
Throughout the chapter we will use the notations fN,m and fD,m for the eigenfunc-
tions as constructed above. One would also get these by imposing the additional
conditions fN,m(0) = 1 and f ′D,m(0) =

√
λD,m.

So if we only know the sequences
(
pn(1)

)
n
and

(
qn(1)

)
n
, we can determine the

Neumann and Dirichlet eigenvalues by means of the functions sinp and sinq.

Analogously to sinp and sinq we define

cosp(z) := cpz(1) =
∞∑
n=0

(−1)np2nz
2n

and

cosq(z) := cqz(1) =
∞∑
n=0

(−1)nq2nz
2n

for z ∈ R.

These functions are linked with the eigenvalue problems with mixed boundary
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conditions

(ND)

d

dµ
f ′ = −λf

f ′(0) = 0, f(1) = 0,

and

(DN)

d

dµ
f ′ = −λf

f(0) = 0, f ′(1) = 0.

We treat these problems as the problems in the above Propositions 4.1.7 and 4.1.8.
If cosp

(√
λ
)

= 0, the solutions to (ND) are multiples of cp√λ, because

cp′√
λ
(0) = −

√
λ sp√λ(0) = 0

and
cp√λ(1) = cosp

(√
λ
)
.

Similarly, if cosq
(√

λ
)

= 0, the solutions to (DN) are multiples of sq√λ, because

sq√λ(0) = 0

and
sq′√

λ
(1) =

√
λ cq√λ(1) =

√
λ cosq

(√
λ
)
.

Therefore, the (ND) eigenvalues are the squares of the zeros of cosp and the (DN)
eigenvalues are the squares of the zeros of cosq.

4.2. Calculation of L2-norms

In the course of the following sections we will often use some of the following easy to
prove multiplication formulas which we state here for easy reference. For absolutely
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summable sequences (an)n and (bn)n holds( ∞∑
j=0

a2j

)
·
( ∞∑

k=0

b2k

)
=
∞∑
n=0

n∑
k=0

a2k b2n−2k, (4.1)

( ∞∑
j=0

a2j

)
·
( ∞∑

k=0

b2k+1

)
=
∞∑
n=0

n∑
k=0

a2k b2n+1−2k, (4.2)

( ∞∑
j=0

a2j+1

)
·
( ∞∑

k=0

b2k+1

)
=
∞∑
n=0

n∑
k=0

a2k+1 b2n+1−2k. (4.3)

In this section we consider again an arbitrary atomless Borel probability measure
µ on [0, 1]. The following useful lemma is an analogue to integration by parts and
can be found in Freiberg [17] as Proposition 3.1.

Lemma 4.2.1. For c, d ∈ [0, 1] with c < d and functions f ∈ H1(µ) and g ∈ H1(λ)

we have ∫ d

c

df

dµ
(t) g(t) dµ(t) = f g

∣∣∣d
c
−
∫ d

c

f(t) g′(t) dt.

We will develop some properties of pn(x) and qn(x) and therefore of the eigenfunc-
tions in the Neumann and Dirichlet case. In this section, µ is an arbitrary atomless
Borel probability measure on [0, 1].
It turns out that by knowing the sequences (pn)n and (qn)n we can not only

determine the Neumann and Dirichlet eigenvalues, but also the L2(µ)-norms of the
eigenfunctions fN,m and fD,m. We will need the following lemma to achieve that.

Lemma 4.2.2. For k, n ∈ N0 with k ≤ n and for all x ∈ [0, 1] we have

∫ x

0

p2k(t) p2n−2k(t) dµ(t) =
2k∑
j=0

(−1)jpj(x) p2n+1−j(x) (4.4)

and ∫ x

0

q2k+1(t) q2n+1−2k(t) dµ(t) =
2k+1∑
j=0

(−1)j+1qj(x) q2n+3−j(x). (4.5)

Proof. We prove (4.4) by induction on k. If k = 0 and n ≥ 0, we have∫ x

0

p0(t) p2n(t) dµ(t) = p2n+1(x)

and so the assertion holds. Now, take k ∈ N0 and assume that the assertion holds
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for k and all n ≥ k. Then, for all n ≥ k + 1,∫ x

0

p2k+2(t) p2n−2k−2(t) dµ(t) = p2k+2(x) p2n−2k−1(x)−
∫ x

0

p2k+1(t) p2n−2k−1(t) dt

= p2k+2(x) p2n−2k−1(x)− p2k+1(x) p2n−2k(x) +

∫ x

0

p2k(t) p2n−2k(t) dµ(t),

by Lemma 4.2.1. Thus, by the induction hypothesis, we have for all n ≥ k + 1

∫ x

0

p2k+2(t) p2n−2k−2(t) dµ(t) =
2k+2∑
j=0

(−1)jpj(x) p2n+1−j(x),

which proves (4.4).
The proof of (4.5) works the same way, first, let k = 0 and n ≥ 0. Then, by

Lemma 4.2.1, ∫ x

0

q1(t) q2n+1(t) dµ(t) = q1(x) q2n+2(x)− q2n+3(x)

which is the induction basis. Now, let k ∈ N0 and assume that the assertion holds
for k and all n ≥ k. Then, for all n ≥ k + 1,∫ x

0

q2k+3(t) q2n−2k−1(t) dµ(t) = q2k+3(x) q2n−2k(x)−
∫ x

0

q2k+2(t) q2n−2k(t) dt

= q2k+3(x) q2n−2k(x)− q2k+2(x) q2n−2k+1(x) +

∫ x

0

q2k+1(t) q2n−2k+1(t) dµ(t),

again by Lemma 4.2.1. Thus, by the induction hypothesis, we have for all n ≥ k+ 1

∫ x

0

q2k+3(t) q2n−2k−1(t) dµ(t) =
2k+3∑
j=0

(−1)j+1qj(x) q2n+3−j(x).

Proposition 4.2.3. Let z ∈ R. Then

‖cpz‖2
L2(µ) =

∞∑
n=0

(−1)nz2n

n∑
k=0

(n+ 1− 2k) p2k p2n+1−2k, (4.6)

and

‖sqz‖2
L2(µ) =

∞∑
n=0

(−1)nz2n+2

n+1∑
k=0

(n+ 1− 2k) q2k+1 q2n+2−2k, (4.7)
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where pj = pj(1) and qj = qj(1).

Proof. First we prove (4.6). Using (4.1) we get for all x ∈ [0, 1] and z ∈ R

cpz(x)2 =

( ∞∑
j=0

(−1)jz2jp2j(x)

)( ∞∑
k=0

(−1)kz2kp2k(x)

)

=
∞∑
n=0

(−1)n z2n

n∑
k=0

p2k(x) p2n−2k(x).

Consequently, applying (4.4),

‖cpz‖2
L2(µ) =

∫ 1

0

cpz(t)
2 dµ(t)

=
∞∑
n=0

(−1)n z2n

n∑
k=0

∫ 1

0

p2k(t) p2n−2k(t) dµ(t)

=
∞∑
n=0

(−1)n z2n

n∑
k=0

2k∑
j=0

(−1)jpj p2n+1−j.

Note, that for any sequence a = (aj)j∈N0 holds

n∑
k=0

2k∑
j=0

aj =
n∑
k=0

k∑
j=0

a2j +
n∑
k=1

k−1∑
j=0

a2j+1

=
n∑
j=0

n∑
k=j

a2j +
n−1∑
j=0

n∑
k=j+1

a2j+1

=
n∑
j=0

(n− j + 1) a2j +
n∑
j=1

(n− j + 1) a2j−1

and thus,

n∑
k=0

2k∑
j=0

(−1)jpj p2n+1−j =
n∑
k=0

(n− k + 1) p2k p2n+1−2k −
n∑
k=1

(n− k + 1) p2k−1 p2n+2−2k

=
n∑
k=0

(n− k + 1) p2k p2n+1−2k −
n∑
k=1

k p2k p2n+1−2k

=
n∑
k=0

(n+ 1− 2k) p2k p2n+1−2k,

which proves (4.6).
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Now we show (4.7), which works similarly. We have

sqz(x)2 =

( ∞∑
j=0

(−1)jz2j+1q2j+1(x)

)( ∞∑
k=0

(−1)kz2k+1q2k+1(x)

)

=
∞∑
n=0

(−1)n z2n+2

n∑
k=0

q2k+1(x) q2n+1−2k(x).

Therefore, by (4.5),

‖sqz‖2
L2(µ) =

∫ 1

0

sqz(t)
2 dµ(t)

=
∞∑
n=0

(−1)n z2n+2

n∑
k=0

∫ 1

0

q2k+1(t) q2n+1−2k(t) dµ(t)

=
∞∑
n=0

(−1)n z2n+2

n∑
k=0

2k+1∑
j=0

(−1)j+1qj q2n+3−j.

For any sequence a = (aj)j∈N0 holds

n∑
k=0

2k+1∑
j=0

aj =
n∑
k=0

k∑
j=0

a2j +
n∑
k=0

k∑
j=0

a2j+1

=
n∑
j=0

n∑
k=j

a2j +
n∑
j=0

n∑
k=j

a2j+1

=
n∑
j=0

(n− j + 1) a2j +
n∑
j=0

(n− j + 1) a2j+1

and thus,

n∑
k=0

2k+1∑
j=0

(−1)j+1qj q2n+3−j = −
n∑
k=0

(n− k + 1) q2k q2n+3−2k +
n∑
k=0

(n− k + 1) q2k+1 q2n+2−2k

= −
n+1∑
k=1

k q2k+1 q2n+2−2k +
n∑
k=0

(n− k + 1) q2k+1 q2n+2−2k

=
n+1∑
k=0

(n+ 1− 2k) q2k+1 q2n+2−2k,

which proves (4.7).
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Corollary 4.2.4. The L2(µ)-norm of the Neumann eigenfunction fN,m is given by

‖fN,m‖2
L2(µ) =

∞∑
n=0

(−1)nλnN,m

n∑
k=0

(n+ 1− 2k) p2k p2n+1−2k

and of the Dirichlet eigenfunction fD,m by

‖fD,m‖2
L2(µ) =

∞∑
n=0

(−1)nλn+1
D,m

n+1∑
k=0

(n+ 1− 2k) q2k+1 q2n+2−2k.

4.3. A trigonometric identity

As in the previous section, we consider an atomless Borel probability measure µ on
[0, 1]. We prove a formula that links the functions cpz, cqz, spz, and sqz generalizing
the trigonometric identity sin2 + cos2 = 1. For this we need the following lemma.

Lemma 4.3.1. For k, n ∈ N with k ≤ n and for all x ∈ [0, 1] we have

∫ x

0

q2k−1(t) p2n−2k(t) dµ(t) =
2k−1∑
j=0

(−1)j+1qj(x) p2n−j(x).

Proof. We prove this by induction on k. For k = 1 and n ≥ 1, we get by Lemma
4.2.1∫ x

0

q1(t) p2n−2(t) dµ(t) = q1(x) p2n−1(x)−
∫ x

0

p2n−1(t) dt = q1(x) p2n−1(x)− p2n(x),

and so the assertion holds. Now, take k ∈ N, and assume that the assertion holds
for k and all n ≥ k. Then, again by using Lemma 4.2.1, we get∫ x

0

q2k+1(t) p2n−2k−2(t) dµ(t) = q2k+1(x) p2n−2k−1(x)−
∫ x

0

q2k(t) p2n−2k−1(t) dt

= q2k+1(x) p2n−2k−1(x)− q2k(x) p2n−2k(x) +

∫ x

0

q2k−1(t) p2n−2k(t) dµ(t).

Thus, by the induction hypothesis, for all n ≥ k + 1,

∫ x

0

q2k+1(t) p2n−2k−2(t) dµ(t) =
2k+1∑
j=0

(−1)j+1qj(x) p2n−j(x),

which finishes the proof.
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Corollary 4.3.2. If we set n = k in Lemma 4.3.1, we get the formula

2n∑
j=0

(−1)j qj(x) p2n−j(x) = 0,

which holds for all n ∈ N and x ∈ [0, 1].

With the above corollary we can prove the following theorem.

Theorem 4.3.3. For all x ∈ [0, 1] and z ∈ R holds

cqz(x) cpz(x) + sqz(x) spz(x) = 1.

Proof. Take x ∈ [0, 1] and z ∈ R. Then, by Corollary 4.3.2,

cqz(x) cpz(x) + sqz(x) spz(x)

=
∞∑
n=0

(−1)nz2n

n∑
k=0

q2k(x) p2n−2k(x) +
∞∑
n=0

(−1)nz2n+2

n∑
k=0

q2k+1(x) p2n+1−2k(x)

= 1 +
∞∑
n=1

(−1)nz2n

[ n∑
k=0

q2k(x) p2n−2k(x)−
n−1∑
k=0

q2k+1(x) p2n−(2k+1)(x)

]

= 1 +
∞∑
n=1

(−1)nz2n

2n∑
k=0

(−1)k qk(x) p2n−k(x)

= 1.
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4.4. Symmetric measures

In this section we consider symmetric measures µ on [0, 1], meaning that, addition-
ally to being an atomless Borel probability measure, µ shall satisfy

µ
(
[0, x]

)
= µ

(
[1− x, 1]

)
for all x ∈ [0, 1].

Proposition 4.4.1. Let µ be symmetric and let x ∈ [0, 1]. Then, for n ∈ N0 holds

p2n+1(x) =
n∑
k=0

p2k+1 q2n−2k(x)−
n∑
k=1

p2k p2n−2k+1(x)− p2n+1(1− x), (4.8)

and for n ∈ N

p2n(x) =
n−1∑
k=0

p2k+1 q2n−2k−1(x)−
n∑
k=1

p2k p2n−2k(x) + p2n(1− x). (4.9)

Proof. For p1(x) the formula reduces to p1(x) = p1 − p1(1− x). This holds since

p1(x) = µ
(
[0, x]

)
= µ

(
[1− x, 1]

)
=

∫ 1

0

dµ−
∫ 1−x

0

dµ = p1 − p1(1− x).

Assume p2n+1(x) satisfies the above formula for some n ∈ N0. Then

p2n+2(x) =

∫ x

0

p2n+1(t) dt

=
n∑
k=0

p2k+1

∫ x

0

q2n−2k(t) dt−
n∑
k=1

p2k

∫ x

0

p2n−2k+1(t) dt−
∫ x

0

p2n+1(1− t) dt

=
n∑
k=0

p2k+1 q2n−2k+1(x)−
n∑
k=1

p2k p2n−2k+2(x)−
∫ 1

1−x
p2n+1(t) dt

=
n∑
k=0

p2k+1 q2n−2k+1(x)−
n∑
k=1

p2k p2n−2k+2(x)− p2n+2(1) + p2n+2(1− x)

=
n∑
k=0

p2k+1 q2n−2k+1(x)−
n+1∑
k=1

p2k p2n−2k+2(x) + p2n+2(1− x).

Now, let the assertion be true for some 2n, n ∈ N. Since µ is symmetric, we have
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that dµ(t) = dµ(1− t). Thus,

p2n+1(x) =

∫ x

0

p2n(t) dµ(t)

=
n−1∑
k=0

p2k+1

∫ x

0

q2n−2k−1(t) dµ(t)−
n∑
k=1

p2k

∫ x

0

p2n−2k(t) dµ(t) +

∫ x

0

p2n(1− t) dµ(t)

=
n−1∑
k=0

p2k+1 q2n−2k(x)−
n∑
k=1

p2k p2n−2k+1(x) +

∫ 1

1−x
p2n(t) dµ(t)

=
n−1∑
k=0

p2k+1 q2n−2k(x)−
n∑
k=1

p2k p2n−2k+1(x) + p2n+1(1)− p2n+1(1− x)

=
n∑
k=0

p2k+1 q2n−2k(x)−
n∑
k=1

p2k p2n−2k+1(x)− p2n+1(1− x).

Corollary 4.4.2. Let µ be symmetric. Then, for n ∈ N,

n∑
k=0

p2k p2n−2k+1 =
n∑
k=0

p2k+1 q2n−2k. (4.10)

Proof. This follows from Proposition 4.4.1 by putting x = 1 in (4.8).

Remark 4.4.3. In the special case where µ is the Lebesgue measure, the above

formulas reduce to
n∑
k=0

(−1)k
(
n
k

)
= 0.

Corollary 4.4.4. Let µ be symmetric. Then the following statements hold.

(i) p2n = q2n for all n ∈ N.

(ii) cosp(z) = cosq(z) for all z ∈ R.

(iii) cosp2(z) + sinp(z) sinq(z) = 1 for all z ∈ R.

(iv) We have the recursion formula

p2n =
1

2

2n−1∑
k=1

(−1)k+1 pk q2n−k. (4.11)

Proof. We prove (i) by induction. By putting n = 1 in (4.10), we find that

p3 + p2p1 = p1q2 + p3,
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which implies p2 = q2. Assume that p2k = q2k for all k smaller than some n ∈ N,
n ≥ 2. We reverse the order of the summands in the second sum of (4.10) to get

n−1∑
k=0

p2k p2n−2k+1 + p2n p1 =
n−1∑
k=0

p2n−2k+1 q2k + p1 q2n.

Now it follows from the induction hypothesis that p2n = q2n. Then, (ii) follows
immediately and by Proposition 4.3.3 also (iii).

Clearly, (iv) follows from (i) and Corollary 4.3.2.

Proposition 4.4.5. Let µ be symmetric. Then, for all z ∈ R and x ∈ [0, 1],

cpz(1− x) = cosp(z) cpz(x) + sinp(z) sqz(x).

Proof. Rearranging (4.9) gives

p2n(1− x) =
n∑
k=0

p2k p2n−2k(x)−
n−1∑
k=0

p2k+1 q2n−2k−1(x).

We multiply the equation with (−1)nz2n and sum from n = 0 to infinity to get

cpz(1− x) =
∞∑
n=0

n∑
k=0

(iz)2kp2k · (iz)2n−2kp2n−2k(x)

−
∞∑
n=1

n−1∑
k=0

(iz)2k+1p2k+1 · (iz)2n−2k−1q2n−2k−1(x)

=
∞∑
n=0

(−1)nz2np2n ·
∞∑
k=0

(−1)kz2kp2k(x)

+
∞∑
n=1

(−1)nz2n+1p2n+1 ·
∞∑
k=0

(−1)kz2k+1q2k+1(x)

= cosp(z) cpz(x) + sinp(z) sqz(x).

Corollary 4.4.6. Let µ be symmetric. Then the Neumann eigenfunctions fN,m are
either symmetric or antisymmetric, that is, either

fN,m(x) = fN,m(1− x) or fN,m(x) = −fN,m(1− x)
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for all x ∈ [0, 1].

Proof. Let z2 be a Neumann eigenvalue. Then, by Proposition 4.1.7, sinp(z) = 0

and hence, by Corollary 4.4.4 (iii), |cosp(z)| = 1. Thus, by Proposition 4.4.5, we get

cpz(1− x) = ± cpz(x).

Since cpz = fN,m for z2 = λm the corollary is proved.

Analogous to (4.8) there is a formula relating q2n+1(x) to q2n+1(1− x), namely

q2n+1(x) =
n∑
k=0

q2k+1 p2n−2k(x)−
n∑
k=1

q2k q2n+2k+1(x)− q2n+1(1− x). (4.12)

The proof is exactly like the proof of Proposition 4.4.1. As in the proof of Proposition
4.4.5, we rearrange, multiply with (−1)nz2n+1, and sum up to get

sqz(1− x) = sinq(z) cpz(x)− cosq(z) sqz(x).

If now z2 is a Dirichlet eigenvalue, then sinq(z) = 0 and cosq(z) = cosp(z) = ±1

and it follows that
sqz(1− x) = ∓ sqz(x).

Thus, we have the following proposition.

Proposition 4.4.7. Let µ be symmetric. Then the Dirichlet eigenfunctions fD,m
are either symmetric or antisymmetric, that is, either

fD,m(x) = fD,m(1− x) or fD,m(x) = −fD,m(1− x)

for all x ∈ [0, 1].

4.5. Self-similar measures

In this section we impose that the measure µ has a self-similar structure. For def-
initions of the concept of iterated function systems and self-similar measures, see
Section B.2. For reasons of simplicity, we take an IFS consisting only of two map-
pings, but it does not raise considerable problems to generalize this to an arbitrary
number.
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Let r1, r2, m1 and m2 be positive numbers satisfying r1 +r2 ≤ 1 and m1 +m2 = 1.
Let S = (S1, S2) be the IFS given by

S1(x) = r1x and S2(x) = r2x+ 1− r2, x ∈ [0, 1].

By K we denote the invariant set of S and by µ its invariant measure with vector
of weights (m1,m2).
In this case we are able to prove several properties of the functions pn(x) and

qn(x) that resemble corresponding ones of xn
n!
. These we will employ to examine the

Neumann and Dirichlet eigenfunctions and eigenvalues of − d
dµ

d
dx
. In particular, we

will develop a recursion law for pn(1) and qn(1).
The self-similar structure of the measure can be used in integral transformations

to receive derivation rules like the following.

Lemma 4.5.1. Let F ∈ H1(µ) and f = dF
dµ
. Then

d

dµ
F (r1x) = m1f(r1x)

and
d

dµ
F (1− r2 + r2x) = m2f(1− r2 + r2x).

Proof. Since F ∈ H1(µ), it can be written as

F (r1x) = F (0) +

∫ r1x

0

f(t) dµ(t).

The measure µ is invariant with respect to S1 and S2 which means that

µ = m1(S1µ) +m2(S2µ).

Consequently, if restricted to [0, r1], we have

µ = m1(S1µ),

and hence

F (r1x) = F (0) +

∫ r1x

0

m1f(t) d(S1µ)(t) = F (0) +

∫ x

0

m1f(r1t) dµ(t).

Thus, the first assertion follows.
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Analogously, it follows that on [1− r2, 1] we have

µ = m2(S2µ)

and thus,

F (1− r2 + r2x) = F (0) +

∫ 1−r2

0

f(t) dµ(t) +

∫ 1−r2+r2x

1−r2
f(t) dµ(t)

= F (1− r2) +

∫ 1−r2+r2x

1−r2
m2f(t) d(S2µ)(t)

= F (1− r2) +

∫ x

0

m2f(1− r2 + r2t) dµ(t),

which proves the second assertion.

In the following proposition we present a formula that can be viewed as an ana-
logue of the binomial theorem, adapted to the self-similar measure µ. It relates the
left part, contained in [0, r1], to the right part, contained in [1− r2, 1].

Proposition 4.5.2. For x ∈ [0, 1] and n ∈ N0,

p2n+1(1− r2 + r2x) =
n∑
i=0

p2i+1(r1)( r2m2

r1m1
)n−iq2n−2i(r1x)

+
n∑
i=0

p2i(r1)( r2
r1

)n−i(m2

m1
)n−i+1p2n−2i+1(r1x)

+ [1− (r1 + r2)]
n−1∑
i=0

p2i+1(r1)( r2
r1

)n−i−1(m2

m1
)n−ip2n−2i−1(r1x),

(4.13)

where a sum from 0 to −1 is regarded as zero, and, for n ∈ N,

p2n(1− r2 + r2x) =
n∑
i=0

p2i(r1)( r2m2

r1m1
)n−ip2n−2i(r1x)

+
n−1∑
i=0

p2i+1(r1)( r2
r1

)n−i(m2

m1
)n−i−1q2n−2i−1(r1x)

+ [1− (r1 + r2)]
n−1∑
i=0

p2i+1(r1)( r2m2

r1m1
)n−i−1p2n−2i−2(r1x).

(4.14)
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Remark 4.5.3. If r1 = m1 and r2 = m2 and r1 + r2 = 1 (and hence, µ is the
Lebesgue measure), the above formulas reduce to

(
r1 + r2x

)n
=

n∑
i=0

(
n

i

)
ri1 (r2x)n−i, n ∈ N.

Proof. We prove the proposition by induction. As seen in the proof of Lemma 4.5.1
we have µ = m1(S1µ) on [0, r1] and µ = m2(S2µ) on [1− r2, 1]. Therefore,

p1(1− r2 + r2x) =

∫ 1−r2+r2x

0

dµ =

∫ r1

0

dµ+

∫ 1−r2+r2x

1−r2
dµ

= p1(r1) +m2

∫ 1−r2+r2x

1−r2
d(S2µ) = p1(r1) +m2

∫ x

0

dµ

= p1(r1) +m2

∫ r1x

0

d(S1µ) = p1(r1) +
m2

m1

∫ r1x

0

dµ

= p1(r1) +
m2

m1

p1(r1x),

which proves the assertion for p1.

Assume that the formula for p2n+1 holds for some n ∈ N0. Then

p2n+2(1− r2 + r2x) =

∫ r1

0

p2n+1(t) dt+

∫ 1−r2

r1

p2n+1(t) dt+

∫ 1−r2+r2x

1−r2
p2n+1(t) dt

= p2n+2(r1) + [1− (r1 + r2)]p2n+1(r1) + r2

∫ x

0

p2n+1(1− r2 + r2t) dt.

Applying the induction hypothesis, we get

p2n+2(1− r2 + r2x) = p2n+2(r1) + [1− (r1 + r2)]p2n+1(r1)

+
n∑
i=0

p2i+1(r1)( r2m2

r1m1
)n−ir2

∫ x

0

q2n−2i(r1t) dt

+
n∑
i=0

p2i(r1)( r2
r1

)n−i(m2

m1
)n−i+1r2

∫ x

0

p2n−2i+1(r1t) dt

+ [1− (r1 + r2)]
n−1∑
i=0

p2i+1(r1)( r2
r1

)n−i−1(m2

m1
)n−ir2

∫ x

0

p2n−2i−1(r1t) dt
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= p2n+2(r1) + [1− (r1 + r2)]p2n+1(r1)

+
n∑
i=0

p2i+1(r1)( r2
r1

)n−i+1(m2

m1
)n−iq2n−2i+1(r1x)

+
n∑
i=0

p2i(r1)( r2m2

r1m1
)n−i+1p2n−2i+2(r1x)

+ [1− (r1 + r2)]
n−1∑
i=0

p2i+1(r1)( r2m2

r1m1
)n−ip2n−2i(r1x)

=
n+1∑
i=0

p2i(r1)( r2m2

r1m1
)n−i+1p2n−2i+2(r1x) +

n∑
i=0

p2i+1(r1)( r2
r1

)n−i+1(m2

m1
)n−iq2n−2i+1(r1x)

+ [1− (r1 + r2)]
n∑
i=0

p2i+1(r1)( r2m2

r1m1
)n−ip2n−2i(r1x),

which is the formula for p2n+2.

Furthermore, suppose that the assertion is true for p2n for some n ∈ N. Then,
transforming µ as in the proof of the initial step and applying the induction hypoth-
esis in the same way as above,

p2n+1(1− r2 + r2x) =

∫ r1

0

p2n(t) dµ(t) +

∫ 1−r2

r1

p2n(t) dµ(t) +

∫ 1−r2+r2x

1−r2
p2n(t) dµ(t)

= p2n+1(r1) +m2

∫ x

0

p2n(1− r2 + r2t) dµ(t)

= p2n+1(r1) +
n∑
i=0

p2i(r1)( r2
r1

)n−i(m2

m1
)n−i+1p2n−2i+1(r1x) +

n−1∑
i=0

p2i+1(r1)( r2m2

r1m1
)n−iq2n−2i(r1x)

+ [1− (r1 + r2)]
n−1∑
i=0

p2i+1(r1)( r2
r1

)n−i−1(m2

m1
)n−ip2n−2i−1(r1x)

=
n∑
i=0

p2i+1(r1)( r2m2

r1m1
)n−iq2n−2i(r1x) +

n∑
i=0

p2i(r1)( r2
r1

)n−i(m2

m1
)n−i+1p2n−2i+1(r1x)

+ [1− (r1 + r2)]
n−1∑
i=0

p2i+1(r1)( r2
r1

)n−i−1(m2

m1
)n−ip2n−2i−1(r1x),

which is the formula for p2n+1.

Analogous formulas hold for the functions qn.
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Proposition 4.5.4. For x ∈ [0, 1] and n ∈ N0,

q2n+1(1− r2 + r2x) =
n∑
i=0

q2i+1(r1)( r2m2

r1m1
)n−ip2n−2i(r1x)

+
n∑
i=0

q2i(r1)( r2
r1

)n−i+1(m2

m1
)n−iq2n−2i+1(r1x)

+ [1− (r1 + r2)]
n∑
i=0

q2i(r1)( r2m2

r1m1
)n−ip2n−2i(r1x),

(4.15)

and, for n ∈ N,

q2n(1− r2 + r2x) =
n∑
i=0

q2i(r1)( r2m2

r1m1
)n−iq2n−2i(r1x)

+
n−1∑
i=0

q2i+1(r1)( r2
r1

)n−i−1(m2

m1
)n−ip2n−2i−1(r1x)

+ [1− (r1 + r2)]
n−1∑
i=0

q2i(r1)( r2
r1

)n−i−1(m2

m1
)n−ip2n−2i−1(r1x).

(4.16)

Proof. The proof works by induction analogously to that of Proposition 4.5.2.

We translate the formulas about the functions pn(x) and qn(x) into formulas about
cpz(x) and sqz(x). In the Lebesgue case, these are the usual addition theorems for
cos(r1z + r2xz) and sin(r1z + r2xz).

Corollary 4.5.5. Let z ∈ R and x ∈ [0, 1]. With the abbreviation z̄ :=
√

r2m2

r1m1
z we

get

cpz(1− r2 + r2x) = cpz(r1) cpz̄(r1x)−
√

r2m1

r1m2
spz(r1) sqz̄(r1x)

− [1− (r1 + r2)]z spz(r1) cpz̄(r1x)
(4.17)

and

sqz(1− r2 + r2x) = sqz(r1) cpz̄(r1x) +
√

r2m1

r1m2
cqz(r1) sqz̄(r1x)

+ [1− (r1 + r2)]z cqz(r1) cpz̄(r1x).
(4.18)

Proof. We prove (4.18). We multiply (4.15) with (−1)nz2n+1 = 1
i
(iz)2n+1, sum from
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n = 0 to infinity and get

sqz(1− r2 + r2x) =
1

i

∞∑
n=0

n∑
k=0

(iz)2k+1q2k+1(r1)
(
i
√

r2m2

r1m1
z
)2n−2k

p2n−2k(r1x)

+
√

r2m1

r1m2

1

i

∞∑
n=0

n∑
k=0

(iz)2kq2k(r1)
(
i
√

r2m2

r1m1
z
)2n−2k+1

q2n−2k+1(r1x)

+ [1− (r1 + r2)]z
∞∑
n=0

n∑
k=0

(iz)2kq2k(r1)
(
i
√

r2m2

r1m1
z
)2n−2k

p2n−2k(r1x)

=
1

i

( ∞∑
n=0

(iz)2n+1q2n+1(r1)

)( ∞∑
k=0

(
i
√

r2m2

r1m1
z
)2k

p2k(r1x)

)
+
√

r2m1

r1m2

1

i

( ∞∑
n=0

(iz)2nq2n(r1)

)( ∞∑
k=0

(
i
√

r2m2

r1m1
z
)2k+1

q2k+1(r1x)

)
+ [1− (r1 + r2)]z

( ∞∑
n=0

(iz)2nq2n(r1)

)( ∞∑
k=0

(
i
√

r2m2

r1m1
z
)2k

p2k(r1x)

)
= sqz(r1) cpz̄(r1x) +

√
r2m1

r1m2
cqz(r1) sqz̄(r1x) + [1− (r1 + r2)]z cqz(r1) cpz̄(r1x).

By multiplying (4.14) with (−1)nz2n and summing up, (4.17) is proved in the same
way.

The following scaling properties hold that are a replacement of the property(
1
2
x)n = 1

2n
xn for pn and qn.

Proposition 4.5.6. For x ∈ [0, 1] and n ∈ N0 we have

p2n+1

(
r1x
)

= rn1m
n+1
1 p2n+1(x), q2n+1

(
r1x
)

= rn+1
1 mn

1 q2n+1(x),

and, for n ∈ N,

p2n

(
r1x
)

= (r1m1)n p2n(x), q2n

(
r1x
)

= (r1m1)n q2n(x).

Proof. We prove the asserted property for pn by induction on n ∈ N. Since µ satisfies
µ(B) = m1(S1µ)(B) for all Borel sets B ⊆ [0, r1], we have

p1(r1x) =

∫ r1x

0

dµ = m1

∫ r1x

0

d(S1µ) = m1

∫ x

0

dµ = m1p1(x).
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Suppose the assertion is true for p2n+1 for some n ∈ N0. Then

p2n+2(r1x) =

∫ r1x

0

p2n+1(t) dt = r1

∫ x

0

p2n+1(r1t) dt = (r1m1)n+1p2n+2(x).

If we assume that the formula holds for p2n for some n ∈ N, then, transforming µ
as above,

p2n+1(r1x) =

∫ r1x

0

p2n(t) dµ(t) = m1

∫ x

0

p2n(r1t) dµ(t) = rn1m
n+1
1 p2n+1(x).

The formula for qn is proved analogously.

Next, we deduce formulas corresponding to those in Proposition 4.5.6 that relate
values of cpz and sqz at S1(x) = r1x to values of cp√r1m1z and sq√r1m1z at x.

Proposition 4.5.7. For all x ∈ [0, 1] and z ∈ R we have

cpz
(
S1(x)

)
= cp√r1m1z(x) (4.19)

and
sqz
(
S1(x)

)
=

√
r1

m1

sq√r1m1z(x). (4.20)

Furthermore, we have

spz
(
S1(x)

)
=

√
m1

r1

sp√r1m1z(x)

and
cqz
(
S1(x)

)
= cp√r1m1z(x).

Proof. With Proposition 4.5.6 we get

cpz(r1x) =
∞∑
n=0

(−1)nz2np2n(r1x) =
∞∑
n=0

(−1)n(
√
r1m1z)2np2n(x) = cp√r1m1z(x)

and

sqz(r1x) =
∞∑
n=0

(−1)nz2n+1q2n+1(r1x) =

√
r1

m1

∞∑
n=0

(−1)n(
√
r1m1z)2n+1q2n+1(x)

=

√
r1

m1

sq√r1m1z(x).
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The other two equations are obtained by deriving.

The counterparts of (4.19) and (4.20) are the following formulas for cpz
(
S2(x)

)
and sqz

(
S2(x)

)
.

Proposition 4.5.8. For all x ∈ [0, 1] and z ∈ R we have

cpz
(
S2(x)

)
= cosp(

√
r1m1z) cp√r2m2z(x)−

√
r2m1

r1m2

sinp(
√
r1m1z) sq√r2m2z(x)

− [1− (r1 + r2)]

√
m1

r1

z sinp(
√
r1m1z) cp√r2m2z(x)

(4.21)

and

sqz
(
S2(x)

)
=

√
r1

m1

sinq(
√
r1m1z) cp√r2m2z(x) +

√
r2

m2

cosq(
√
r1m1z) sq√r2m2z(x)

+ [1− (r1 + r2)]z cosq(
√
r1m1z) cp√r2m2z(x).

(4.22)

Furthermore, we have

spz
(
S2(x)

)
=

√
m1

r1

sinp(
√
r1m1z) cq√r2m2z(x) +

√
m2

r2

cosp(
√
r1m1z) sp√r2m2z(x)

− [1− (r1 + r2)]

√
m1m2

r1r2

z sinp(
√
r1m1z) sp√r2m2z(x)

and

cqz
(
S2(x)

)
= cosq(

√
r1m1z) cq√r2m2z(x)−

√
r1m2

r2m1

sinq(
√
r1m1z) sp√r2m2z(x)

− [1− (r1 + r2)] z

√
m2

r2

cosq(
√
r1m1z) sp√r2m2z(x).
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Proof. By (4.17) and Proposition 4.5.7 we get

cpz(1− r2 + r2x) = cpz(r1) cp√
r2m2
r1m1

z
(r1x)−

√
r2m1

r1m2
spz(r1) sq√

r2m2
r1m1

z
(r1x)

− [1− (r1 + r2)]z spz(r1) cp√
r2m2
r1m1

z
(r1x)

= cosp(
√
r1m1z) cp√r2m2z(x)−

√
r2m1

r1m2

sinp(
√
r1m1z) sq√r2m2z(x)

− [1− (r1 + r2)]

√
m1

r1

z sinp(
√
r1m1z) cp√r2m2z(x).

Analogously, (4.22) is proved using (4.18).

The other two equations are obtained by deriving.

If the functions cosp, sinp and sinq are assumed to be known, then equations
(4.19) and (4.21) allow to compute basically all relevant values of the function cpz.
If, namely, x is a point in the invariant set K, then there is a sequence (xn)n that
converges to x and takes only values of the form

Sw1 ◦ Sw2 ◦ · · · ◦ Swn(0) or Sw1 ◦ Sw2 ◦ · · · ◦ Swn(1),

where n ∈ N and w1, . . . wn ∈ {1, 2}. For each of these values, (4.19) and (4.21) can
be applied n times to get a formula containing only values of cosp, sinp and sinq.
For example

cpz
(
S2(S1(1))

)
= cosp(

√
r1m1z) cosp(

√
r2m2r1m1z)

−
√
r2m1

r1m2

sinp(
√
r1m1z) sinq(

√
r2m2r1m1z)

− [1− (r1 + r2)]

√
m1

r1

z sinp(
√
r1m1z) cosp(

√
r2m2r1m1z).

The same holds for sqz and formulas (4.20) and (4.22). This procedure we will use
to compute numerically the maximum value of eigenfunctions in Section 4.8 as well
as to produce images of eigenfunctions shown in the appendix.

Therefore we are interested in the functions sinq, sinp, cosp, and cosq. These have
power series representations with coefficients pn = pn(1) and qn = qn(1). For these
numerical sequences we prove a recursion formula in the following.
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Proposition 4.5.9. (i) For n ∈ N0,

p2n+1 =
n∑
i=0

ri1m
i+1
1 (r2m2)n−ip2i+1 q2n−2i

+
n∑
i=0

(r1m1)irn−i2 mn−i+1
2 p2i p2n−2i+1

+ [1− (r1 + r2)]
n−1∑
i=0

ri1m
i+1
1 rn−i−1

2 mn−i
2 p2i+1 p2n−2i−1.

(4.23)

(ii) For n ∈ N,

p2n =
n∑
i=0

(r1m1)i(r2m2)n−ip2i p2n−2i

+
n−1∑
i=0

ri1m
i+1
1 rn−i2 mn−i−1

2 p2i+1 q2n−2i−1

+ [1− (r1 + r2)]
n−1∑
i=0

ri1m
i+1
1 (r2m2)n−i−1p2i+1 p2n−2i−2.

(4.24)

(iii) For n ∈ N0,

q2n+1 =
n∑
i=0

ri+1
1 mi

1(r2m2)n−iq2i+1 p2n−2i

+
n∑
i=0

(r1m1)irn−i+1
2 mn−i

2 q2i q2n−2i+1

+ [1− (r1 + r2)]
n∑
i=0

(r1m1)i(r2m2)n−iq2i p2n−2i.

(4.25)

(iv) For n ∈ N,

q2n =
n∑
i=0

(r1m1)i(r2m2)n−iq2i q2n−2i

+
n−1∑
i=0

ri+1
1 mi

1r
n−i−1
2 mn−i

2 q2i+1 p2n−2i−1

+ [1− (r1 + r2)]
n−1∑
i=0

(r1m1)irn−i−1
2 mn−i

2 q2i p2n−2i−1.

(4.26)
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Remark 4.5.10. If we take r1 = m1 and r2 = m2 (and thus r1 + r2 = 1 and µ is
the Lebesgue measure), the above formulas reduce to

∑n
i=0

(
n
i

)
ri1r

n−i
2 = 1.

Proof. We put x = 1 in Propositions 4.5.2, 4.5.4 and 4.5.6. Then we eliminate
all terms of the form pn(r1) and qn(r1) to obtain formulas that contain only the
members of the sequences (pn)n and (qn)n (as well as r1, r2, m1 and m2).

To get the desired recursion formulas, we solve the above formulas for the highest
order terms.

Corollary 4.5.11. (i) For n ∈ N,

p2n+1 =
1

1− rn1mn+1
1 − rn2mn+1

2

( n−1∑
i=0

ri1m
i+1
1 (r2m2)n−ip2i+1 q2n−2i

+
n∑
i=1

(r1m1)irn−i2 mn−i+1
2 p2i p2n−2i+1

+ [1− (r1 + r2)]
n−1∑
i=0

ri1m
i+1
1 rn−i−1

2 mn−i
2 p2i+1 p2n−2i−1

)
.

(4.27)

(ii) For n ∈ N,

p2n =
1

1− (r1m1)n − (r2m2)n

( n−1∑
i=1

(r1m1)i(r2m2)n−ip2i p2n−2i

+
n−1∑
i=0

ri1m
i+1
1 rn−i2 mn−i−1

2 p2i+1 q2n−2i−1

+ [1− (r1 + r2)]
n−1∑
i=0

ri1m
i+1
1 (r2m2)n−i−1p2i+1 p2n−2i−2

)
.

(4.28)

(iii) For n ∈ N,

q2n+1 =
1

1− rn+1
1 mn

1 − rn+1
2 mn

2

( n−1∑
i=0

ri+1
1 mi

1(r2m2)n−iq2i+1 p2n−2i

+
n∑
i=1

(r1m1)irn−i+1
2 mn−i

2 q2i q2n−2i+1

+ [1− (r1 + r2)]
n∑
i=0

(r1m1)i(r2m2)n−iq2i p2n−2i

)
.

(4.29)
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(iv) For n ∈ N,

q2n =
1

1− (r1m1)n − (r2m2)n

( n−1∑
i=1

(r1m1)i(r2m2)n−iq2i q2n−2i

+
n−1∑
i=0

ri+1
1 mi

1r
n−i−1
2 mn−i

2 q2i+1 p2n−2i−1

+ [1− (r1 + r2)]
n−1∑
i=0

(r1m1)irn−i−1
2 mn−i

2 q2i p2n−2i−1

)
.

(4.30)

Remark 4.5.12. Consider two self-similar measures µ and µ∗ on [0, 1], where µ∗ is
the reflection of µ with respect to the point 1

2
. Thus, µ∗ is described as invariant

measure by interchanging the parameters r1, m1 and r2, m2 in the IFS defining
µ. Then the above recursive formulas show that the associated p- and q-sequences
satisfy p∗2n = q2n, q∗2n = p2n, p∗2n+1 = p2n+1 and q∗2n+1 = q2n+1 for all n ∈ N. Hence,
cosp∗ = cosq, cosq∗ = cosp, sinp∗ = sinp and sinq∗ = sinq. This is consistent with
the physical intuition that the Neumann as well as the Dirichlet eigenfrequencies do
not change when the vibrating string producing them is reversed.
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Example 4.5.13. We take r1 = r2 = 1
3
and m1 = m2 = 1

2
. Then, K is the

middle third Cantor set and µ is the normalized log 2
log 3

-dimensional Hausdorff measure
restricted to K. We calculate the first members of the sequences (pn)n and (qn)n

using formulas (4.27) and (4.29) for p2n+1 and q2n+1, which simplify to

p2n+1 =
1

2 · 6n − 2

( 2n∑
i=1

pi p2n+1−i +
n−1∑
i=0

p2i+1 p2n−2i−1

)
q2n+1 =

1

3 · 6n − 2

( 2n∑
i=1

qi q2n+1−i +
n∑
i=0

q2i q2n−2i

)
.

Since µ is symmetric, we can use for p2n and q2n the simpler formula (4.11)

p2n = q2n =
1

2

2n−1∑
i=1

(−1)i+1pi q2n−i

from Corollary 4.4.4. Then,

p1 = 1, q1 = 1, p2 =
1

2
,

p3 =
1

5
, q3 =

1

8
, p4 =

3

80
,

p5 =
27

2 800
, q5 =

21

4 240
, p6 =

311

296 800
,

p7 =
6 383

31 906 000
, q7 =

33 253

383 465 600
, p8 =

4 716 349

329 780 416 000

and therefore

sinp(z) = z − 6

5

z3

3!
+

81

70

z5

5!
− 57 447

56 975

z7

7!
+ · · ·

sinq(z) = z − 3

4

z3

3!
+

63

106

z5

5!
− 299 277

684 760

z7

7!
+ · · ·

and

cosp(z) = cosq(z) = 1− z2

2!
+

9

10

z4

4!
− 2 799

3 710

z6

6!
+

42 447 141

73 611 700

z8

8!
− . . . .

The functions sinp, sinq, cosp and cosq can be characterized by the following
system of functional equations.
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Theorem 4.5.14. For z ∈ R we have

sinp(z) =
√

m1

r1
sinp(

√
r1m1z) cosq(

√
r2m2z)

+
√

m2

r2
cosp(

√
r1m1z) sinp(

√
r2m2z)

− [1− (r1 + r2)]
√

m1m2

r1r2
z sinp(

√
r1m1z) sinp(

√
r2m2z)

(4.31)

sinq(z) =
√

r1
m1

sinq(
√
r1m1z) cosp(

√
r2m2z)

+
√

r2
m2

cosq(
√
r1m1z) sinq(

√
r2m2z)

+ [1− (r1 + r2)] z cosq(
√
r1m1z) cosp(

√
r2m2z)

(4.32)

cosp(z) = cosp(
√
r1m1z) cosp(

√
r2m2z)

−
√

r2m1

r1m2
sinp(

√
r1m1z) sinq(

√
r2m2z)

− [1− (r1 + r2)]
√

m1

r1
z sinp(

√
r1m1z) cosp(

√
r2m2z)

(4.33)

cosq(z) = cosq(
√
r1m1z) cosq(

√
r2m2z)

−
√

r1m2

r2m1
sinq(

√
r1m1z) sinp(

√
r2m2z)

− [1− (r1 + r2)]
√

m2

r2
z cosq(

√
r1m1z) sinp(

√
r2m2z).

(4.34)

Furthermore, the functions sinp, sinq, cosp and cosq are the only analytic functions
that solve the above system of functional equations and satisfy the conditions that
sinp and sinq are odd, cosp and cosq are even, and

lim
z→0

sinp(z)

z
= lim

z→0

sinq(z)

z
= 1

and
cosp(0) = cosq(0) = 1.

Remark 4.5.15. If we would know all the values of all four functions on a given
interval, say, [0, a], then, using the formulas above, we could calculate all values of
all four functions on [0, (maxi

√
rimi)

−1a]. Then, iteratively, we get the values on
[0, (maxi

√
rimi)

−2a] and so on. So, the functions are determined on [0,∞) by their
values on an arbitrary small interval [0, a].
Furthermore, the theorem describes a kind of “self-similarity” of our four functions.

Proof. To show that sinp, sinq, cosp and cosq satisfy the equations, put x = 1 in
Proposition 4.5.8.
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Suppose that f1, f2, g1 and g2 are real analytic functions that satisfy the above
equations, and that f1, f2 are odd, g1, g2 are even, lim

z→0

f1(z)
z

= lim
z→0

f2(z)
z

= 1, and
g1(0) = g2(0) = 1. Then, power series representations exist, that is, there are real
sequences (an), (bn), (cn) and (dn) such that for all z ∈ R holds

f1(z) =
∞∑
n=0

anz
2n+1, f2(z) =

∞∑
n=0

bnz
2n+1, g1(z) =

∞∑
n=0

cnz
2n, g2(z) =

∞∑
n=0

dnz
2n,

where a0 = b0 = c0 = d0 = 1. Since these functions satisfy (4.31), we get for all
z ∈ R

∞∑
n=0

anz
2n+1 =

√
m1

r1

∞∑
n=0

z2n+1

n∑
k=0

ak
√
r1m1

2k+1
dn−k
√
r2m2

2n−2k

+

√
m2

r2

∞∑
n=0

z2n+1

n∑
k=0

ck
√
r1m1

2k
an−k
√
r2m2

2n+1−2k

− [1− (r1 + r2)]

√
m1m2

r1r2

∞∑
n=0

z2n+3

n∑
k=0

ak
√
r1m1

2k+1
an−k
√
r2m2

2n+1−2k
.

If we derive this equation 2j + 1 times and put z = 0, we receive formula (4.23)
for aj. Analogously, one can show that bj satisfies (4.25), cj satisfies (4.24) and dj
satisfies (4.26). Together with the initial condition a0 = b0 = c0 = d0 = 1 it follows
that aj = p2j+1, bj = q2j+1, cj = p2j and dj = q2j for all j ∈ N. Thus, f1 = sinp,
f2 = sinq, g1 = cosp and g2 = cosq.

Example 4.5.16. (i) If we take r1 = m1 and r2 = m2 and r1 + r2 = 1, then
K is the unit interval and µ the Lebesgue measure. The functions sinp, sinq,
cosp and cosq equal the usual sine and cosine functions, and the formulas in
Theorem 4.5.14 simplify to

sin(z) = sin(r1z + r2z) = sin(r1z) cos(r2z) + cos(r1z) sin(r2z),

cos(z) = cos(r1z + r2z) = cos(r1z) cos(r2z)− sin(r1z) sin(r2z).

(ii) Let r1 = r2 = 1
3
and m1 = m2 = 1

2
. Then µ is the Cantor measure and the
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formulas in Theorem 4.5.14 can be rewritten as

sinp(
√

6z) =

√
6

2
sinp(z)

(
2 cosp(z)− z sinp(z)

)
(4.35)

sinq(
√

6z) =

√
6

3
cosp(z)

(
2 sinq(z) + z cosp(z)

)
(4.36)

cosp(
√

6z) = cosp(z)2 − sinp(z) sinq(z)− z cosp(z) sinp(z). (4.37)

Since K is symmetric, cosp = cosq.

Observe that Theorem 4.5.14 in combination with the recursive rules in Corollary
4.5.11 supply a technique for investigation of further properties of the eigenvalues, for
example for numerical computation. On a given interval [0, a] we can approximate
the functions sinp, sinq, cosp and cosq arbitrarily exact by polynomials consisting
of sufficiently many members of the corresponding power series. Then, by Theorem
4.5.14, we can extend all four functions successively to larger intervals.

4.6. Self-similar measures with r1m1 = r2m2

In this section we suppose µ is a self-similar measure as in the last section but with
parameters additionally satisfying r1m1 = r2m2. This case is particularly interesting
because there we have the following property.

Theorem 4.6.1. Let r1m1 = r2m2. If λ is the mth Neumann eigenvalue of − d
dµ

d
dx
,

then 1
r1m1

λ is the 2mth Neumann eigenvalue, that is, for all m ∈ N,

r1m1 λN,2m = λN,m.

This Theorem has been proved with the method of Prüfer angles by Volkmer [52]
for the case r1 = r2 = 1

3
, m1 = m2 = 1

2
and by Freiberg [20] in a more general setting.

It delivers the foundation for the statements in this section. An analogous property
for Dirichlet eigenvalues does not seem to hold. However, in the symmetric case there
is a similar relation between Dirichlet eigenvalues and eigenvalues of the problems
(DN) or (ND) posed in Section 4.1. Remember, (DN) has boundary conditions
f(0) = f ′(1) = 0 and (ND) has f ′(0) = f(1) = 0.

Proposition 4.6.2. Let µ be symmetric, that is r := r1 = r2 and m1 = m2 = 1
2
and

let λ be an eigenvalue of (DN) or (ND). Then 2
r
λ is a Dirichlet eigenvalue and if f
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is a 2
r
λ-Dirichlet eigenfunction, then f ◦ S1 is a λ-(DN) eigenfunction, and f ◦ S2

is a λ-(ND) eigenfunction.

Proof. In Corollary 4.4.4 we showed that since µ is symmetric, we have cosp = cosq.
Then we can factorize (4.32) and get

sinq(
√

2
r
z
)

= cosp(z) ·
[
2
√

2r sinq(z) + (1− 2r) z cosp(z)
]
.

Since λ is an eigenvalue of the (DN) and the (ND) problem, cosp(
√
λ) = 0. Then,

sinq(
√

2
r
λ
)

= 0 and thus, 2
r
λ is a Dirichlet eigenvalue. From Propositions 4.5.7 and

4.5.8 we get
sq√2r−1λ ◦S1 =

√
2r sq√λ

and
sq√2r−1λ ◦S2 =

√
2r sinq

(√
λ
)

cp√λ,

which proves the proposition.

In the following we treat only the Neumann eigenvalue problem using Theorem
4.6.1. With the formula

cosq(z) cosp(z) + sinq(z) sinp(z) = 1, (4.38)

which follows from Theorem 4.3.3 by setting x = 1, we rearrange the functional
equations from Theorem 4.5.14. With the abbreviation

h(z) := r1 cosp(z) + r2 cosq(z)−
[
1− (r1 + r2)

]
z sinp(z) (4.39)

we can write

sinp(z) =

√
r1m1

r1r2

sinp
(√

r1m1z
)
h
(√

r1m1z
)
, (4.40)

cosp(z) = −r2

r1

+
1

r1

cosp
(√

r1m1z
)
h
(√

r1m1z
)
, (4.41)

and

sinq(z) =
[
1− (r1 + r2)

]
z +

1
√
r1m1

sinq
(√

r1m1z
)
h
(√

r1m1z
)
, (4.42)

cosq(z) = −r1

r2

+
1

r2

cosq
(√

r1m1z
)
h
(√

r1m1z
)
. (4.43)
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Employing the above formulas we can calculate the values of cosp, cosq and sinq

at the zero points of sinp.

Lemma 4.6.3. Let m ∈ N and let v(m) be the multiplicity of the prime factor 2 in
m. Let zm :=

√
λN,m be the square root of the mth Neumann eigenvalue, that is,

the mth zero point of sinp. Then

cosp(zm) =
(
−r2

r1

)2v(m)

(4.44)

cosq(zm) =
(
−r1

r2

)2v(m)

(4.45)

sinq(zm) = av(m) · zm (4.46)

where (ak)k is determined by

a0 = 1− (r1 + r2)

and, for k ∈ N,

ak = 1− (r1 + r2) + ak−1

(
r1

(
−r2

r1

)2k−1

+ r2

(
−r1

r2

)2k−1
)
.

Proof. Suppose m is odd. Then sinp(zm) = 0 and sinp
(√

r1m1zm
)
6= 0. To see this,

suppose sinp
(√

r1m1zm
)

= 0. Then r1m1z
2
m would be a Neumann eigenvalue, say

r1m1z
2
m = λN,l for some l ∈ N, and because of Theorem 4.6.1, z2

m would be the
eigenvalue λN,2l. Thus, m = 2l, which is a contradiction.

Hence, it follows by (4.40) that h
(√

r1m1zm
)

= 0. Then, by (4.41), we see that
cosp(zm) = −r2

r1

.

By (4.33) follows that, for all z ∈ R, if

sinp
(√

r1m1z
)

= 0,

then
cosp(z) = cosp2

(√
r1m1z

)
.

Thus, if m = 2l for some odd l, then
√
r1m1zm = zl and hence,

cosp(zm) = cosp2(zl) =
(
−r2

r1

)2

.
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Iteratively, we get that, if m = 2kl for some odd l,

cosp(zm) =
(
−r2

r1

)2k

,

which proves (4.44).

Since sinp(zm) = 0 for all m ∈ N we get by (4.38) that

cosq(zm) =
1

cosp(zm)
=
(
−r1

r2

)2v(m)

,

which is (4.45).

Now we show (4.46). At first, suppose v(m) = 0, that is, m is odd. Then, as
above, h

(√
r1m1zm

)
= 0 and thus, by (4.42),

sinq(zm) =
[
1− (r1 + r2)

]
zm.

Observe that we have for all m

h(zm) = r1

(
−r2

r1

)2v(m)

+ r2

(
−r1

r2

)2v(m)

. (4.47)

Suppose v(m) ≥ 1. Then
√
r1m1zm = zm

2
and thus,

sinq(zm)

zm
= 1− (r1 + r2) +

sinq
(√

r1m1zm
)

√
r1m1zm

h
(√

r1m1zm
)

= 1− (r1 + r2) +
sinq

(
zm

2

)
zm

2

h
(
zm

2

)
= 1− (r1 + r2) +

sinq
(
zm

2

)
zm

2

(
r1

(
−r2

r1

)2v(m)−1

+ r2

(
−r1

r2

)2v(m)−1
)
.

Hence,
sinq(zm)

zm
depends only on v(m) and so, with av(m) =

sinq(zm)

zm
, we get

av(m) = 1− (r1 + r2) + av(m)−1

(
r1

(
−r2

r1

)2v(m)−1

+ r2

(
−r1

r2

)2v(m)−1
)
,

which proves the assertion.

We use the above computed values of cosp(zm) and Propositions 4.5.7 and 4.5.8
to get a relation between the mth and the 2mth Neumann eigenfunction as defined
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in Proposition 4.1.7.

Proposition 4.6.4. Let m ∈ N and v(m) be the 2-multiplicity of m. We denote the
mth Neumann eigenfunction by fm := cp√λm. Then, for all x ∈ [0, 1],

f2m

(
S1(x)

)
= fm(x) (4.48)

and
f2m

(
S2(x)

)
=
(
−m1

m2

)2v(m)

fm(x). (4.49)

Proof. Because of Theorem 4.6.1 we have λm = r1m1λ2m and thus,

sinp
(√

r1m1λ2m

)
= 0.

Since fm = cp√λm , Propositions 4.5.7 and 4.5.8 give for x ∈ [0, 1]

f2m

(
S1(x)

)
= fm(x)

and
f2m

(
S2(x)

)
= cosp

(√
λm
)
fm(x).

Noting that
r2

r1

=
m1

m2

, we get with (4.44) that

f2m

(
S2(x)

)
=
(
−m1

m2

)2v(m)

fm(x).

The above proposition can be employed to work out the relationship between the
suprema and the L2(µ) norms of fm and f2m.

Proposition 4.6.5. Let m ∈ N and v(m) the 2-multiplicity of m. Then

‖f2m‖2
L2(µ) =

(
m1 +m2

(m1

m2

)2v(m)+1
)
‖fm‖2

L2(µ) (4.50)

and

‖f2m‖∞ = max
{

1,
(m1

m2

)2v(m)}
‖fm‖∞. (4.51)
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Proof. At first we prove (4.50). For m ∈ N we have

‖f2m‖2
L2(µ) =

∫ S1(1)

S1(0)

f2m(t)2 dµ(t) +

∫ S2(1)

S2(0)

f2m(t)2 dµ(t)

= m1

∫ S1(1)

S1(0)

f2m(t)2 d(S1µ)(t) +m2

∫ S2(1)

S2(0)

f2m(t)2 d(S2µ)(t)

= m1

∫ 1

0

f2m

(
S1(t)

)2
dµ(t) +m2

∫ 1

0

f2m

(
S2(t)

)2
dµ(t).

By (4.48) and (4.49) we get

‖f2m‖2
L2(µ) = m1

∫ 1

0

fm(t)2 dµ(t) +m2

(
−m1

m2

)2v(m)+1 ∫ 1

0

fm(t)2 dµ(t)

=
[
m1 +m2

(m1

m2

)2v(m)+1]
‖fm‖2

L2(µ).

Now we show (4.51). With (4.48) and (4.49) we have

sup
x∈[S1(0),S1(1)]

|f2m(x)| = sup
x∈[0,1]

∣∣f2m

(
S1(x)

)∣∣ = sup
x∈[0,1]

|fm(x)| = ‖fm‖∞

and

sup
x∈[S2(0),S2(1)]

|f2m(x)| = sup
x∈[0,1]

∣∣f2m

(
S2(x)

)∣∣ =
(m1

m2

)2v(m)

‖fm‖∞.

Therefore, since f2m is linear on [S1(1), S2(0)] and continuous,

sup
x∈[0,1]

|f2m(x)| = max
{

1,
(m1

m2

)2v(m)}
‖fm‖∞.

Now we consider the normalized Neumann eigenfunctions. For m ∈ N0 we set

f̃m := ‖fm‖−1
L2(µ)fm.

We are interested in the asymptotic behaviour of the sequence (‖f̃m‖∞)m. With
Proposition 4.6.5 we get some information about certain subsequences stated in the
following theorem.
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Theorem 4.6.6. Let µ be a self-similar measure with r1m1 = r2m2. Then, for all
m ∈ N0,

‖f̃2m‖∞ =
max

{
1,
(
m1

m2

)2v(m)
}

√
m1 +m2

(
m1

m2

)2v(m)+1
‖f̃m‖∞. (4.52)

Suppose m1 ≤ m2 and let l be an odd number. Then, for all k ∈ N,

‖f̃2kl‖∞ = m
− k

2
1

k∏
j=1

(
1 +

(m1

m2

)2j−1)− 1
2 ‖f̃l‖∞. (4.53)

Proof. (4.52) follows directly from (4.50) and (4.51). Suppose m1 ≤ m2 and l ∈ N
is odd. Then iterative application of (4.52) gives

‖f̃2l‖∞ =
1
√
m1

1√
1 + m1

m2

‖f̃l‖∞,

‖f̃22l‖∞ =
1
√
m1

1√
1 +

(
m1

m2

)3

1
√
m1

1√
1 + m1

m2

‖f̃l‖∞,

and so on, and therefore (4.53) holds.

Corollary 4.6.7. Let l ∈ N be odd. Then the following statements hold.

(i) If m1 = m2, then for all k ∈ N,

‖f̃2kl‖∞ = ‖f̃l‖∞.

(ii) If m1 < m2, then C :=
1√

m1

(
1 + m1

m2

) > 1, and we have for all k ∈ N,

‖f̃2kl‖∞ ≥ Ck‖f̃l‖∞.

Additionally, for all k ∈ N,

‖f̃2kl‖∞ ≤ m
− k

2
1

(
m2

m1

) k
2

(2k−1)

‖f̃l‖∞.

Proof. (i) follows directly from (4.53) by putting m1 = m2 = 1
2
.
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If m1 < m2, then, for all j ∈ N,

1 +
(m1

m2

)2j−1

≤ 1 +
m1

m2

.

Then,

‖f̃2kl‖∞ ≥ m
− k

2
1

(
1 +

m1

m2

)− k
2 ‖f̃l‖∞,

and since m1 < m2 implies m1 <
1
2
, we have m1

(
1 + m1

m2

)
< 1.

For the upper estimate, we write

k∏
j=1

(
1 +

(m1

m2

)2j−1
)
≥
(

1 +
(m1

m2

)2k−1
)k
≥
(m1

m2

)k(2k−1)

,

which proves (ii).

4.7. Self-similar measures with r1m1 = r2m2 and

r1 + r2 = 1

As in the previous section we have the condition r1m1 = r2m2. We treat the special
case where r1 +r2 = 1 from which follows that r1 = m2 and r2 = m1. Such measures
have been investigated e.g. by Sabot [44] and [45].

Theorem 4.7.1. Let µ be a self-similar measure where r1 = m2 and r2 = m1

(and therefore r1 + r2 = 1). Then the positive eigenvalues of − d

dµ

d

x
with Neumann

boundary conditions coincide with those with Dirichlet boundary conditions.

Proof. Since the eigenvalues are the squares of the zeros of sinp and sinq, respec-
tively, it is sufficient to show that sinp = sinq. To do that we show that for all
n ∈ N0

p2n+1 = q2n+1.

We do this by complete induction using the recursion formulas from Corollary 4.5.11.
By Definition 4.1.1 we have

p1 =

∫ 1

0

dµ = 1

and

q1 =

∫ 1

0

dt = 1.
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Now, let n ∈ N and suppose that for i = 0, . . . , n− 1 holds p2i+1 = q2i+1. By (4.27)
and rearrangement of the order of the terms in the sums we get

p2n+1 =
1

1−mn
2r

n+1
2 −mn

1r
n+1
1

( n−1∑
i=0

mi
2r
i+1
2 (r1m1)n−ip2i+1 q2n−2i

+
n∑
i=1

(r2m2)imn−i
1 rn−i+1

1 p2i p2n−2i+1

)
=

1

1−mn
2r

n+1
2 −mn

1r
n+1
1

( n∑
i=1

mn−i
2 rn+1−i

2 (r1m1)ip2n+1−2i q2i

+
n−1∑
i=0

(r2m2)n−imi
1r
i+1
1 p2n−2i p2i+1

)
.

Then, by the induction hypothesis and (4.29),

p2n+1 =
1

1−mn
2r

n+1
2 −mn

1r
n+1
1

( n∑
i=1

mn−i
2 rn+1−i

2 (r1m1)iq2n+1−2i q2i

+
n−1∑
i=0

(r2m2)n−imi
1r
i+1
1 p2n−2i q2i+1

)
= q2n+1.

With the above theorem we can reformulate Theorem 4.3.3 to get a property of
the Wronskian of fN,m and fD,m.

Corollary 4.7.2. Let µ be as above, let λm be the mth eigenvalue, let fN,m = cp√λm
and fD,m = sq√λm be the corresponding Neumann and Dirichlet eigenfunctions con-
structed in Section 4.1. Then, for all x ∈ [0, 1],

fN,m(x) f ′D,m(x)− fD,m(x) f ′N,m(x) =
√
λm.

Proof. We put z =
√
λm in Theorem 4.3.3 and observe that

f ′N,m(x) = cp′√
λm

(x) = −
√
λm sp√λm(x)

and
f ′D,m(x) = sq′√

λm
(x) =

√
λm cq√λm(x).
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Since eigenfunctions can be multiplied with any non-zero number, the above equa-
tion states basically that the Wronskian is constant. A similar property of a slightly
different Wronskian has been established in Freiberg [17, p. 41].

4.8. Figures and numbers

In this section we give some explicit results and figures calculated by using formulas
we developed in the preceding sections for several examples of self-similar measures.
For the calculations we used Sagemath cloud [49].

Example 4.8.1. Tables 4.1, 4.2 and 4.3 collect the first few values of the sequences
(pn)n and (qn)n for the classical Cantor set with evenly distributed measure, that is,
for r1 = r2 = 1

3
and m1 = m2 = 1

2
. We computed these values with the recursion

formulas in Corollary 4.5.11 that we implemented for that purpose in Sagemath.
Figures 4.1 and 4.2 show plots of the functions sinp and sinq for x ∈ (0, 50) and

for x ∈ (0, 120), respectively, where the first 100 terms of the series are taken into
account. In the figures, sinq is drawn in a dash-dot line and sinp in a solid line. The
zero points of these functions squared give the Dirichlet and Neumann eigenvalues,
respectively. Observe that the pictures suggest that the eigenvalues are in the order

λN,0 < λN,1 < λD,1 < λD,2 < λN,2 < λN,3 < λD,3 < λD,4 < . . . .

Table 4.4 contains the first 32 positive Neumann eigenvalues correct to 15 decimal
places (rounded down). These values have been calculated as zero points of the
polynomial

a∑
n=0

(−1)n p2n+1 z
n

(
≈ sinp(

√
z)√

z

)
,

using certain numerical methods. For that we used the command findroot from
the mpmath library in Sagemath cloud ([49]) with a starting value that we took from
a plot in each case. This way, we computed each zero point of the above polynomial
with an accuracy of 100 digits, where we chose a in each case such that the first 15

decimals of the zero point remain fixed against any further increase of the number
of terms. Note that by Lemma 4.1.3 we have

p2n+1 ≤
1

n!
q2(1)n =

1

n! · 2n
,
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from which a more detailed error estimate can be obtained.

Observe that, as stated in Theorem 4.6.1, we have that λN,2m = 6 ·λN,m for all m.
The distances between eigenvalues differ very much, there are several groups that
lie very close together while there are big gaps as well.

In Table 4.5 we give approximate values of the L2(µ) norms and the sup norms
of the eigenfunctions fN,m = cp√λm .

The L2 norms have been calculated with the formula in Corollary 4.2.4 where we
put in the values for λ from Table 4.4. The number of summands had to be chosen
higher with bigger eigenvalues, so that the limit value could be approximated with
sufficient accuracy.

For the supremum norms we calculated fN,m
(
Sw(0)

)
and fN,m

(
Sw(1)

)
for all words

w ∈ {1, 2}n for a certain iteration level n and determined the biggest of these values.
We varied n between 5 and 8 to get the values. These calculations were made with
the formulas in Proposition 4.5.8. For that, the eigenvalue λm and values of the
functions sinp, sinq and cosp were needed. Note that the sup norm values are rather
rough approximations.

Then we determined the sup norm of the normalized eigenfunctions

‖f̃N,m‖∞ =
‖fN,m‖∞
‖fN,m‖L2(µ)

.

Observe that, as stated in Equation (4.52), the values for even m are the same as
for m

2
, respectively.

In Table 4.6 we state the first 32 eigenvalues with Dirichlet boundary conditions
exact to 15 decimals. The procedure for the calculations is the same as with the
Neumann eigenvalues explained above. Note that two values at a time lie close
together, namely λD,2m−1 and λD,2m. Especially close together are pairs of the form
λD,2n−1 and λD,2n . Therefore we had to increase the accuracy of λD,31 and λD,32 to
25 digits to make the difference visible.

Approximations of the Dirichlet eigenvalues have been calculated before by Eti-
enne [12] by approximating µ by finitely many point masses.

As in the Neumann case, we calculated norms of Dirichlet eigenfunctions, see
Table 4.7.
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n p2n+1

0 1

1 1
5

2 27
2 800

3 6 383
31 906 000

4 928 046 087
427 065 638 720 000

5 18 312 146 532 699
1 290 321 173 531 252 800 000

6 36 205 626 974 761 334 065 053
595 390 835 517 679 574 442 022 016 000 000

7 4 976 934 962 986 304 441 117 658 183
27 444 983 400 881 701 904 144 720 110 742 041 600 000

8 9 554 109 968 352 546 557 662 907 330 504 773 561 465 623
24 293 779 244 421 488 801 231 482 393 897 413 175 652 507 508 121 600 000 000

9 146 991 787 616 583 137 720 984 325 054 111 289 057 094 244 281 881 523 497
228 839 658 236 344 563 453 452 927 437 095 017 291 959 177 590 164 358 527 465 655 296 000 000 000

Table 4.1.: The first ten odd members of (pn) for r1 = r2 = 1
3
and m1 = m2 = 1

2
.

n q2n+1

0 1

1 1
8

2 21
4 240

3 33 253
383 465 600

4 76 118 969
91 537 621 184 000

5 20 165 083 798 890 939
4 103 397 246 999 022 891 520 000

6 129 726 498 389 261 896 497
6 714 982 210 971 717 632 658 867 200 000

7 2 413 673 468 793 966 201 825 434 809 368 471
45 210 174 990 342 427 454 327 995 801 851 920 608 256 000 000

8 1 194 381 655 935 980 000 421 990 244 022 269 580 561 517
11 036 319 046 998 816 108 771 342 849 627 021 590 229 476 137 440 051 200 000

9 126 866 175 828 333 349 955 887 526 100 988 154 691 317 901 447 037 378 112 773
762 232 235 417 372 510 271 600 164 875 680 211 782 266 161 937 386 279 477 493 896 522 956 800 000 000

Table 4.2.: The first ten odd members of (qn) for r1 = r2 = 1
3
and m1 = m2 = 1

2
.
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n p2n, q2n

0 1

1 1
2

2 3
80

3 311
296 800

4 4 716 349
329 780 416 000

5 186 511 983 201
1 659 577 072 065 920 000

6 7 179 455 540 679 158 013
12 761 565 438 166 961 192 627 200 000

7 159 906 376 968 352 543 502 900 259
83 334 473 684 067 539 316 352 053 491 456 000 000

8 60 996 703 846 644 308 894 938 372 985 688 873
13 022 158 544 999 621 792 336 779 426 151 940 728 460 083 200 000

9 55 173 436 475 334 110 717 731 416 972 957 128 310 218 371 151 677
6 487 868 455 643 720 781 486 892 657 131 701 453 895 648 546 905 230 058 700 800 000 000

Table 4.3.: The first ten even members of (pn) and (qn) for r1 = r2 = 1
3
and m1 =

m2 = 1
2
.

Figure 4.1.: sinp (solid, Neumann) and sinq (dash-dot, Dirichlet) for r1 = r2 = 1
3

and m1 = m2 = 1
2
.
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Figure 4.2.: sinp (solid, Neumann) and sinq (dash-dot, Dirichlet) for r1 = r2 = 1
3

and m1 = m2 = 1
2
.

m λN,m a m λN,m a
1 7.09743 10981 41122 12 17 9211.73939 77562 51229 86
2 42.58458 65888 46733 19 18 9288.33494 53277 71442 85
3 61.34420 39227 01662 19 19 9316.34702 24100 75024 85
4 255.50751 95330 80403 28 20 9827.40854 94892 99413 87
5 272.98357 08191 47205 28 21 9847.99008 31996 68501 87
6 368.06522 35362 09975 30 22 9975.76460 05394 58261 87
7 383.55288 31276 93176 31 23 9994.03735 25970 68208 87
8 1533.04511 71984 82423 47 24 13250.34804 73035 59112 97
9 1548.05582 42212 95240 47 25 13260.71659 87844 44965 96

10 1637.90142 49148 83235 48 26 13324.61669 98067 78407 97
11 1662.62743 34232 43043 48 27 13342.22766 88915 03102 97
12 2208.39134 12172 59852 53 28 13807.90379 25969 54355 97
13 2220.76944 99677 96401 53 29 13816.72725 09206 34538 98
14 2301.31729 87661 59059 53 30 13875.49272 43655 06427 98
15 2312.58212 07275 84404 53 31 13883.67238 03565 18424 97
16 9198.27070 31908 94542 85 32 55189.62421 91453 67256 160

Table 4.4.: Neumann eigenvalues of − d
dµ

d
dx

for r1 = r2 = 1
3
and m1 = m2 = 1

2
.
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m ‖fN,m‖2 ‖fN,m‖∞ ‖f̃N,m‖∞ m ‖fN,m‖2 ‖fN,m‖∞ ‖f̃N,m‖∞
1 0.801 1.000 1.248 17 0.666 1.001 1.503
2 0.801 1.000 1.248 18 0.687 1.007 1.467
3 0.966 1.261 1.306 19 0.829 1.307 1.577
4 0.801 1.000 1.248 20 0.746 1.049 1.405
5 0.746 1.049 1.405 21 0.688 1.093 1.588
6 0.966 1.261 1.306 22 0.897 1.356 1.512
7 1.145 1.604 1.401 23 1.057 1.703 1.612
8 0.801 1.000 1.248 24 0.966 1.261 1.306
9 0.687 1.007 1.467 25 0.826 1.262 1.529

10 0.746 1.049 1.405 26 0.886 1.306 1.474
11 0.897 1.356 1.512 27 1.063 1.694 1.594
12 0.966 1.261 1.306 28 1.145 1.604 1.401
13 0.886 1.306 1.474 29 1.049 1.656 1.579
14 1.145 1.604 1.401 30 1.346 2.029 1.508
15 1.346 2.029 1.508 31 1.579 2.563 1.625
16 0.801 1.000 1.248 32 0.801 1.000 1.248

Table 4.5.: Norms of Neumann eigenfunctions for r1 = r2 = 1
3
and m1 = m2 = 1

2
.

m λD,m a m λD,m a
1 14.43524 05120 53874 13 17 9233.86793 80086 63779 84
2 35.26023 80242 77225 16 18 9271.62879 27212 74161 83
3 140.78105 33845 56059 24 19 9589.26839 61415 98781 85
4 151.29061 60550 19631 23 20 9598.24041 25849 12727 85
5 326.05732 83577 53770 29 21 9923.46445 25858 18608 85
6 353.41692 07675 57756 29 22 9957.06520 21538 29857 87
7 876.27445 96020 73755 39 23 12190.28558 35702 41470 93
8 876.50531 85096 60313 39 24 12190.29241 90995 34112 94
9 1581.17702 42871 45662 46 25 13284.12682 48731 70732 94

10 1619.40072 91584 24238 46 26 13311.27448 40460 62950 95
11 2029.61356 34510 19039 51 27 13668.53690 39463 19748 96
12 2033.85281 30577 61437 51 28 13671.26816 68726 11762 96
13 2268.79163 36445 60767 53 29 13851.83951 26643 76419 96
14 2289.60406 94424 69130 52 30 13866.93782 41331 73771 96
15 5258.33939 69212 17309 71 31 31550.03640 02815 21874 64223 25788 139
16 5258.33940 31726 23308 71 32 31550.03640 02815 21874 89689 65410 139

Table 4.6.: Dirichlet eigenvalues of − d
dµ

d
dx

for r1 = r2 = 1
3
and m1 = m2 = 1

2
.
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m ‖fD,m‖2 ‖fD,m‖∞ ‖f̃D,m‖∞ m ‖fD,m‖2 ‖fD,m‖∞ ‖f̃D,m‖∞
1 0.627 0.920 1.469 17 8.492 15.635 1.841
2 0.711 0.985 1.387 18 7.115 12.394 1.742
3 0.446 0.790 1.770 19 1.685 3.996 2.372
4 0.457 0.793 1.734 20 1.679 3.985 2.374
5 1.115 1.628 1.461 21 5.110 10.266 2.009
6 1.273 2.105 1.654 22 5.787 11.252 1.944
7 0.262 0.646 2.469 23 0.415 1.195 2.883
8 0.262 0.646 2.468 24 0.415 1.306 3.151
9 2.798 5.034 1.799 25 9.565 18.428 1.927

10 2.656 4.694 1.767 26 8.944 16.597 1.856
11 0.719 1.460 2.032 27 1.950 4.852 2.489
12 0.717 1.602 2.233 28 1.945 4.863 2.501
13 3.048 5.661 1.857 29 8.777 15.403 1.755
14 3.481 6.296 1.809 30 9.995 19.451 1.946
15 0.151 0.509 3.369 31 0.087 0.416 4.765
16 0.151 0.528 3.491 32 0.087 0.416 4.765

Table 4.7.: Norms of Dirichlet eigenfunctions for r1 = r2 = 1
3
and m1 = m2 = 1

2
.

Example 4.8.2. For the next example, we take the asymmetric self-similar measure

with r1 = 1/3, r2 = 1/4, m1 =
1

3dH
and m2 =

1

4dH
where dH is the Hausdorff

dimension of the invariant set. That is, dH is the solution of the equation

1

3dH
+

1

4dH
= 1.

For the calculations we used 0.56049886522386387883902233 for dH . Variation of
this value led to no change in the first 15 digits of the eigenvalues. Plots of sinp and
sinq are shown in Figure 4.3 and the first eigenvalues exact to 15 decimal places are
displayed in Table 4.8. Note that here m1r1 6= m2r2. There seem to be no fixed
order of Neumann and Dirichlet eigenvalues as in Example 4.8.1 and there are no
clear pairings of the values.

Example 4.8.3. Figure 4.4 shows plots of sinp and sinq for r1 = 1
3
, r2 = 1

4
and

m1 = 3
7
, m2 = 4

7
. The invariant set is geometrically the same as in Example 4.8.2,

but m1 and m2 are chosen such that r1m1 = r2m2 = 1
7
and thus, λN,2m = 7 · λN,m.

Comparing with Example 4.8.1, we observe that the Neumann eigenvalues behave
qualitatively similar, but the Dirichlet eigenvalues do not appear in such close pairs.
However, it seems to hold again, that two Neumann and two Dirichlet eigenvalues
appear in turns.

111



Figure 4.3.: sinp (solid, Neumann) and sinq (dash-dot, Dirichlet) for r1 = 1/3, r2 =

1/4, m1 =
1

3dH
and m2 =

1

4dH

m λN,m a m λD,m a
1 6.567037965687942 11 1 16.107849410419070 12
2 41.632795946820830 16 2 35.907601066462638 15
3 66.822767372091789 19 3 128.330447556120622 21
4 233.355013145153884 24 4 236.463676343561213 24
5 365.584215801794021 27 5 373.701929431216995 27
6 389.945618826510339 28 6 423.638157028808414 28
7 582.138208794906725 30 7 713.786986198043209 31
8 1295.888937033626505 37 8 2013.164883016581104 44

Table 4.8.: Neumann and Dirichlet eigenvalues for r1 = 1/3, r2 = 1/4, m1 =
1

3dH

and m2 =
1

4dH
.
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Figure 4.4.: sinp (solid, Neumann) and sinq (dash-dot, Dirichlet) forr1 = 1/3, r2 =
1/4, m1 = 3

7
and m2 = 4

7
.

m λN,m a m λD,m a
1 6.752284245618646 10 1 16.452512161464721 12
2 47.265989719330522 16 2 36.904245287406090 15
3 62.066872795561511 18 3 154.577520453343494 21
4 330.861928035313659 26 4 212.376524344704458 23
5 345.194670941772007 27 5 395.526819249411977 27
6 434.468109568930577 28 6 417.532700806716224 27
7 446.407999438501248 28 7 1083.253271255975735 34
8 2316.033496247195616 45 8 1485.470110503836517 37
9 2332.825185220436900 46 9 2360.481274606702758 44

10 2416.362696592404055 46 10 2397.801276276128236 44
11 2434.484694248270572 46 11 2830.491432008378221 47
12 3041.276766982514042 50 12 2850.987710468049166 47
13 3051.736543145083444 50 13 3093.525406096403347 48
14 3124.855996069508739 50 14 3111.593713450879200 48
15 3133.914016082441210 49 15 7582.772906434721944 58
16 16212.234473730369315 82 16 10398.290767742394136 64

Table 4.9.: Neumann and Dirichlet eigenvalues for r1 = 1/3, r2 = 1/4, m1 = 3
7
and

m2 = 4
7
.
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Figure 4.5.: sinp (coincides with sinq) for r1 = 0.6, r2 = 0.4, m1 = 0.4 and m2 = 0.6.

m λm a m λm a
1 11.113238313123921 13 9 1012.173153820335730 54
2 46.305159638016340 19 10 1194.689209582619744 57
3 97.600761284513435 24 11 1396.721102656337624 60
4 192.938165158401419 29 12 1694.457661189469363 65
5 286.725410299828738 34 13 1910.161155469398890 67
6 406.669838685472647 38 14 2157.157626864968439 70
7 517.717830447592425 41 15 2316.668360848575284 73
8 803.909021493339246 48 16 3349.620922888913526 83

Table 4.10.: Neumann (and Dirichlet) eigenvalues for r1 = 0.6, r2 = 0.4, m1 = 0.4
and m2 = 0.6.

Example 4.8.4. We choose the measure with r1 = 0.6, r2 = 0.4, m1 = 0.4 and
m2 = 0.6. This measure is supported on the whole interval [0, 1], yet is singular to
the Lebesgue measure. In Theorem 4.7.1 we showed that sinp and sinq and thus
the Dirichlet and Neumann eigenvalues coincide. In Figure 4.5 a plot of sinp is
displayed. It is comparable to the sine function, which we would get for r1 = r2 =

m1 = m2 = 0.5. Table 4.10 contains the first 16 eigenvalues. Plots of the Neumann
and Dirichlet eigenfunctions can be found in Appendix A.

Example 4.8.5. We take r1 = 0.9, r2 = 0.1, m1 = 0.1 and m2 = 0.9. The resulting
measure is supported on [0, 1] as in Example 4.8.4, but in Figure 4.6 we see that
sinp looks very different from the sine function. Table 4.11 contains the first 16

114



Figure 4.6.: sinp (coincides with sinq) for r1 = 0.9, r2 = 0.1, m1 = 0.1 and m2 = 0.9.

m λm a m λm a
1 111.021168159382246 9 9 164619.744662988877161 44
2 1233.568535104247184 15 10 165477.638319057818349 43
3 1403.454381590697316 15 11 166543.871983977116823 43
4 13706.317056713857601 24 12 173265.973035888557594 43
5 14892.987448715203651 24 13 176376.608221577384951 43
6 15593.937573229970183 25 14 177512.483919664028463 44
7 15976.123552769762561 25 15 178137.700783469958606 44
8 152292.411741265084466 40 16 1692137.908236278716292 72

Table 4.11.: Neumann (and Dirichlet) eigenvalues for r1 = 0.9, r2 = 0.1, m1 = 0.1
and m2 = 0.9.

eigenvalues up to 15 decimal places.
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4.9. Remarks and outlook

In this section we state several remarks and thoughts we could not pursue any further
in the scope of this thesis.

Conjecture 1. Due to the examination of several examples (see e.g. Examples
4.8.1, 4.8.3, 4.8.4 and 4.8.5) we conjecture that in case of a self-similar measure µ
with r1m1 = r2m2 the Neumann and Dirichlet eigenvalues satisfy

λN,0 < λN,1 < λD,1 < λD,2 < λN,2 < λN,3 < λD,3 < λD,4 < . . . .

Remark 2. It would be very interesting to find out, if there was a relation between
our sequences (pn)n and (qn)n to any known number sequences as e.g. Bernoulli
or Euler numbers. Indeed, the definition of pn(x) or qn(x) (Definition 4.1.1) is
reminiscent of the recursive definition of the Euler polynomials En(x) by E0(x) := 1

and
En(x) :=

∫ x

c

nEn−1(t) dt,

where c = 1
2
if n is odd and c = 0 for even n. Then the nth Euler number is

En = 2nEn(1/2).
Furthermore, Equation (4.11) has a similar structure as the recursion rule

αn =
1

2n

n−1∑
j=0

αj αn−1−j

with α0 = α1 = 1. With that we have αn = 1
n!
|E2n|.

Remark 3. One could investigate the functional equations in Theorem 4.5.14 fur-
ther. In the simple case where r1 = r2 = 1

3
and m1 = m2 = 1

2
, for instance, we

can transform them (after eliminating terms containing sinq by using cosp2(z) +

sinp(z) sinq(z) = 1) with the abbreviations u(z) = z sinp(z) and v(z) = 2 cosp(z)

to

u
(√

6z
)

= 3u(z) v(z) − 3u(z)2

v
(√

6z
)

= v(z)2 − v(z)u(z)− 2.

From this one can derive recursion formulas for the sequence (pn)n that contain only
members of pn and not, as in Corollary 4.5.11, both pn and qn.
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Furthermore, it could be possible to somehow solve these functional equations to
get a more direct representation of sinp and cosp.

Remark 4. We defined our functions sinp, sinq, cosp and cosq only for real argu-
ments. However, one can just allow the argument to be complex. Then these power
series can be treated with methods of complex analysis.

Remark 5. Our recursion law for pn and qn works only for self-similar measures
with r1 + r2 ≤ 1. It would be interesting to know if one could develop similar
formulas for measures with overlaps, i.e. if r1 + r2 > 1. Such measures are treated
for example in [42] and [8], which contains, in particular, numerical solutions of the
eigenvalue problem by the finite elements method.

Remark 6. In this work, we examined the eigenvalues of − d
dµ

d
dx

by following the
basic lines of the treatment of the classical second derivative operator on the interval.
In this classical case all eigenvalues are multiples of π2 and have therefore direct
representations in many forms, e.g. by using the series expansion of arctan. Maybe
one can find a series representation of eigenvalues of the generalized operator, too,
by using such functions as sinp, sinq, cosp and cosq.

Remark 7. In Corollary 4.6.7 we stated upper and lower estimates for subsequences(
‖f̃2kl‖∞

)
k
, l odd, of the suprema of the normed eigenfunctions. We have no infor-

mation about the growth of the sequence
(
‖f̃2k+1‖∞

)
k
, though.

Such estimates could be used to prove estimates of the heat kernel

K(t, x, y) =
∞∑
m=1

e−λmtf̃m(x) f̃m(y)

for the corresponding quasi-diffusion process. This process has been investigated for
example in [37], [33] and [34].

Remark 8. We used the functions pn(x) and qn(x), x ∈ [0, 1], defined in Defi-
nition 4.1.1 to replace monomials 1

n!
xn in the classical case. One could use these

functions to build a kind of generalized polynomials that are adjusted to the measure
µ. For instance, we take the sequence

P̃0(x) = 1, P̃1(x) = q1(x), P̃2(x) = p2(x), P̃3(x) = q3(x), . . .

and orthogonalize it in L2(µ) by using the Gram-Schmidt process. We take odd
numbered qn(x) and even numbered pn(x), because they are the building blocks for
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the eigenfunctions sqz and cpz and they are continuously Lebesgue-differentiable,
namely

q′n(x) = qn−1(x) for odd n

and
p′n(x) = pn−1(x) for even n.

Furthermore, we can µ-integrate them and get∫ x

0

qn(t) dµ(t) = qn+1(x) for odd n

and ∫ x

0

pn(t) dµ(t) = pn+1(x) for even n.

With that we can apply the generalized integration by parts rule from Lemma 4.2.1
to do the calculations in the Gram-Schmidt algorithm. Note again that we use the
notation pn := pn(1) and qn := qn(1) and assume that those numbers are given since
we have a recursion rule in the self-similar case. Then we get

P0(x) := 1,

P1(x) := q1(x)−
∫ 1

0

q1(t) dµ(t) = q1(x)− q2,

P2(x) := p2(x)−
∫ 1

0

p2(t) dµ(t)−

∫ 1

0

(
q1(t)− q2

)
p2(t) dµ(t)∫ 1

0

(
q1(t)− q2

)2
dµ(t)

(
q1(x)− q2

)
.

We calculate∫ 1

0

(
q1(t)− q2

)
p2(t) dµ(t) =

∫ 1

0

q1(t) p2(t) dµ(t)−
∫ 1

0

q2 p2(t) dµ(t)

= q1(t) p3(t)
∣∣∣1
0
−
∫ 1

0

p3(t) dt− q2p3

= q1p3 − p4 − q2p3
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and ∫ 1

0

(
q1(t)− q2

)2
dµ(t) =

∫ 1

0

q1(t)2 dµ(t)− 2q2

∫ 1

0

q1(t) dµ(t) + q2
2

∫ 1

0

dµ(t)

= q1q2 −
∫ 1

0

q2(t) dt− 2q2
2 + q2

2p1

= q1q2 − q3 − 2q2
2 + q2

2p1.

To simplify these expressions a bit we utilize p1 = q1 = 1 which follows from the
definition and p2 +q2 = 1 which follows from Corollary 4.3.2 by putting n = 1. Then
we get

P2(x) = p2(x)− p4 − p2 p3

q3 − p2 q2

q1(x) +
q2 p4 − q3 p3

q3 − p2 q2

.

In this fashion one can calculate a sequence of L2(µ)-orthogonal “polynomials”.
As an example we take the Lebesgue measure for µ and put pn(x) = qn(x) = 1

n!
xn.

Then
P0(x) = 1, P1(x) = x− 1

2
, P2(x) =

1

2
x2 − 1

2
x+

1

12

which are the first Legendre polynomials on [0, 1] (not normed).
If µ is the standard Cantor measure, then p2 = q2 = 1

2
, p3 = 1

5
and q3 = 1

8
and we

get

P0(x) = 1, P1(x) = q1(x)− 1

2
, P2(x) = p2(x)− 1

2
q1(x) +

1

20
.

Maybe one can use these functions for further analytical studies.

Remark 9. With the presented methods one could investigate not only the equation
d
dµ
f ′ = −λf , but maybe other differential equations on the interval [0, 1] that are

generalized involving a self-similar measure µ.

Remark 10 (Fourier series). It is well known that the normed eigenfunctions
(f̃N,k)

∞
k=0 and (f̃D,k)

∞
k=1 form orthonormal bases in L2(µ) (see [17]).

We denote cN,k := ‖cp√
λN,k
‖L2(µ) and cD,k := ‖sq√

λD,k
‖L2(µ) so that

f̃N,k(x) =
1

cN,k
cp√

λN,k

and
f̃D,k(x) =

1

cD,k
sq√

λD,k
.

As an example, we decompose some functions f ∈ L2(µ) into series of eigenfunctions
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(Fourier series), ignoring questions about convergence for the moment. Assume that
for x ∈ [0, 1]

f(x) =
∞∑
k=0

akf̃N,k(x)

with

ak =

∫ 1

0

f(t) f̃N,k(t) dµ(t).

For reasons of simplicity, we take µ to be a symmetric measure. Then cosp = cosq

and we have cosp2(z)+sinp(z) sinq(z) = 1. From that follows that cosp2(
√
λN,k) = 1

and it is heuristically clear that cosp(
√
λN,k) = (−1)k. Employing this fact and

Lemma 4.2.1, the computations can be made explicitly, following the lines of the
classical (Euclidean) case.

As a first example, take f(x) = x. Then, for k ∈ N,

ak =
1

cN,k

∫ 1

0

t · cp√λk(t) dµ(t)

=
1

cN,k

[
1√
λN,k

t sp√
λN,k

(t)

∣∣∣∣1
0

− 1√
λN,k

∫ 1

0

sp√
λN,k

(t) dt

]
=

1

cN,kλN,k
cp√

λN,k
(t)
∣∣∣1
0

=
1

cN,kλN,k

(
cosp(

√
λN,k)− 1

)
.

Thus, ak = 0 for even k ≥ 1 and ak = − 2

cN,kλN,k
for odd k. Furthermore, we have

a0 =

∫ 1

0

t dµ(t) = q2(1) = q2.

Therefore, we have the decomposition into Neumann eigenfunctions

x = q2 − 2
∞∑
k=0

1

cN,2k+1λN,2k+1

f̃N,2k+1(x).

Note, that the required norms cN,k can be computed with Corollary 4.2.4.

We apply Parseval’s identity to this series. This gives∫ 1

0

t2 dµ(t) = q2
2 +

∞∑
k=0

4

c2
N,2k+1 λ

2
N,2k+1

,
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and with ∫ 1

0

t2 dµ(t) = t q2(t)
∣∣∣1
0
−
∫ 1

0

q2(t) dt = q2 − q3

and 1− q2 = p2 we get

∞∑
k=0

1

c2
N,2k+1 λ

2
N,2k+1

=
1

4
(p2 q2 − q3).

If we choose the Lebesgue measure for µ (then p2 = q2 = 1
2
, q3 = 1

6
and c2

N,2k+1 = 1
2
),

the above equation becomes the well known identity

∞∑
k=0

1

(2k + 1)4
=
π4

96
.

In the same fashion we compute the decomposition of some more examples (µ sym-
metric):

x =
∞∑
k=1

(−1)k+1

cD,k
√
λD,k

f̃D,k(x)

1 =
∞∑
k=0

2

cD,2k+1

√
λD,2k+1

f̃D,2k+1(x)

fD,2n+1(x) =
2√

λD,2n+1

− 2
√
λD,2n+1

∞∑
k=1

1(
λN,2k − λD,2n+1

)
cN,2k

f̃N,2k(x),

for every n ∈ N0

which are plotted for the standard middle third Cantor measure in Figures 4.7 and
4.8. For the images we used the eigenfunctions as computed and shown in the
appendix and the norms cN,k and cD,k shown in Tables 4.5 and 4.7.

Applying Parseval’s identity to these decompositions leads, as above, to

∞∑
k=1

1

c2
D,kλD,k

= q2 − q3

∞∑
k=0

1

c2
D,2k+1 λD,2k+1

=
1

4

∞∑
k=1

1(
λN,2k − λD,2n+1

)2
c2
N,2k

=
c2
D,2n+1

4λD,2n+1

− 1

λ2
D,2n+1

.
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Figure 4.7.: Left side: approximation of f(x) = x by the first 5 terms of the Dirichlet
Fourier series for r1 = r2 = 1

3
and m1 = m2 = 1

2
.

Right side: approximation of f(x) = 1 by the first 5 terms of the Dirich-
let Fourier series for r1 = r2 = 1

3
and m1 = m2 = 1

2
.

Figure 4.8.: Left side: approximation of fD,1 by the first 3 terms of the Neumann
Fourier series for r1 = r2 = 1

3
and m1 = m2 = 1

2
.

Right side: approximation of fD,3 by the first 3 terms of the Neumann
Fourier series for r1 = r2 = 1

3
and m1 = m2 = 1

2
.

If we again take the Lebesgue measure for µ, we receive the well known identities

∞∑
k=1

1

k2
=
π2

6

∞∑
k=0

1

(2k + 1)2
=
π2

8

∞∑
k=1

1(
4k2 − (2n+ 1)2

)2 =
π2

16(2n+ 1)2
− 1

2(2n+ 1)4
.

Remark 11. The definition of the operator − d
dµ

d
dx

can be extended to subsets of Rd,
d ∈ N, see, for example, [48], [41] and [29]. This case, however, is substantially more
difficult and the techniques presented here can probably not be readily extended to
it.
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A. Plots of Eigenfunctions

Figures A.1 to A.4 show plots of the first 32 L2(µ)-normalized Neumann eigenfunc-
tions for the measure µ with r1 = r2 = 1

3
and m1 = m2 = 1

2
, that is, Example 4.8.1.

The eigenfunction corresponding to λN,0 is just a constant and is therefore not im-
aged. The pictures have been created by calculating fN,m

(
Sw(0)

)
and fN,m

(
Sw(1)

)
for all words w ∈ {1, 2}n by iterative application of the formulas in Proposition
4.5.8. Then, since the eigenfunctions are linear on all gap intervals, we connected
the points with straight lines. For the images we chose an iteration level of n = 8.

Figure A.1.: f̃N,1 to f̃N,6 for r1 = r2 = 1
3
and m1 = m2 = 1

2
.
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Figure A.2.: f̃N,7 to f̃N,18 for r1 = r2 = 1
3
and m1 = m2 = 1

2
.
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Figure A.3.: f̃N,19 to f̃N,30 for r1 = r2 = 1
3
and m1 = m2 = 1

2
.
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Figure A.4.: f̃N,31 to f̃N,32 for r1 = r2 = 1
3
and m1 = m2 = 1

2
.

Figures A.5 to A.7 show the first 32 normalized Dirichlet eigenfunctions for the
same measure as above. The images were created in the same way as the ones with
Neumann eigenfunctions above.

Figure A.5.: f̃D,1 to f̃D,8 for r1 = r2 = 1
3
and m1 = m2 = 1

2
.

126



Figure A.6.: f̃D,9 to f̃D,20 for r1 = r2 = 1
3
and m1 = m2 = 1

2
.
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Figure A.7.: f̃D,21 to f̃D,32 for r1 = r2 = 1
3
and m1 = m2 = 1

2
.
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We want to state some observations made at the above images. First, one can
see why the eigenvalues appear in pairs. Namely, we have that, roughly spoken,
eigenfunctions f̃N,2m and f̃N,2m+1 differ only by a twist of the second half. In the
Dirichlet case this is even more clearly visible, but with the difference that pairs are
formed by an odd and the following even numbered value. Pairs prior to a power
of two are hereby especially closely related, which means that the corresponding
eigenvalues lie very close together, as seen in Table 4.6.

Then one finds that the Dirichlet and Neumann eigenfunctions are qualitatively
very different. The Neumann eigenfunctions seem relatively regular while the Dirich-
let eigenfunctions appear more irregularly. This reflects the fact that, physically
speaking, Neumann boundary conditions are “natural” while Dirichlet conditions
are “forced”.

In Figures A.8 to A.11 we consider the self-similar measure from Example 4.8.4,
that is with r1 = 0.6, r2 = 0.4, m1 = 0.4 and m2 = 0.6. In Theorem 4.7.1 we
showed that Neumann and Dirichlet eigenvalues coincide and the first eigenvalues
are displayed in Table 4.10. To get a plot of the eigenfunctions, we calculated
fN,m

(
Sw(0)

)
and fN,m

(
Sw(1)

)
as in the previous example, but now, since the measure

is supported on the whole interval, we have no gaps where the functions are linear.
Therefore we just plotted the separate points for iteration level 8.

The functions are normed in L2(µ). Numerical plots of similar eigenfunctions
have been done in Bird, Ngai and Teplyaev [5].

Figure A.8.: f̃N,1 to f̃N,4 for r1 = 0.6, r2 = 0.4, m1 = 0.4 and m2 = 0.6.
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Figure A.9.: f̃N,5 to f̃N,16 for r1 = 0.6, r2 = 0.4, m1 = 0.4 and m2 = 0.6.
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Figure A.10.: f̃D,1 to f̃D,12 for r1 = 0.6, r2 = 0.4, m1 = 0.4 and m2 = 0.6.
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Figure A.11.: f̃D,13 to f̃D,16 for r1 = 0.6, r2 = 0.4, m1 = 0.4 and m2 = 0.6.

132



B. Mathematical Foundations

B.1. L2 spaces

Suppose E = E(x) is a property which depends on x ∈ [a, b] and µ is a Borel-
measure on [a, b]. Then we say E holds µ-almost everywhere on [a, b], if there is a
set N ∈ B of measure zero such that {x ∈ [a, b] : E(x) does not hold} ⊆ N .
We denote the image measure of a measure µ through a map S by Sµ.

Definition B.1.1. Let µ be a Borel-measure on [a, b].

(i) We define L̃2([a, b], µ) to be the space of all real-valued, Borel-measurable
functions on [a, b] with

‖f‖L2([a,b],µ) :=

(∫
[a,b]

|f |2 dµ
) 1

2

<∞.

(ii) For f, g ∈ L̃2([a, b], µ) we set

〈f, g〉L2([a,b],µ) :=

∫
[a,b]

f g dµ.

(iii) For f, g ∈ L̃2([a, b], µ) let f be equivalent to g (f ∼ g) if and only if f = g

µ-almost everywhere.

(iv) L2([a, b], µ) is defined as the set of all equivalence classes in L̃2([a, b], µ) with
respect to ∼.

In the following we will speak mostly of functions in L2([a, b], µ) instead of equiva-
lence classes. By that, we mean either an arbitrary or a specific representative of the
corresponding equivalence class, depending on the context. This is justifiable since
the integrals of all functions of the same equivalence class coincide. Consequently,
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equalities or inequalities involving functions in L2([a, b], µ) should be interpreted to
hold µ-almost everywhere.
Since we will mostly use the interval I = [a, b], we will in this case omit [a, b] and

call the space simply L2(µ).
Note, that if µ is finite, that is, there is a numberM such that µ([a, b]) = M , then

the space C([a, b]) of all continuous functions on [a, b] is continuously embedded in
L2(µ), because for all f ∈ C([a, b]),

‖f‖L2(µ) =

(∫ b

a

f(t)2 dµ(t)

)1/2

≤
√
M ‖f‖∞.

Definition B.1.2. We say µ is non-atomic or atomless, if µ({x}) = 0 for every
x ∈ [a, b].

If µ is non-atomic, we will write
∫ y
x
f dµ instead of

∫
[x,y]

f dµ,
∫

(x,y]
f dµ,

∫
[x,y)

f dµ

or
∫

(x,y)
f dµ.

B.2. Self-similar sets and measures

We give a short introduction to iterated function systems and self-similar sets based
on Falconer [14, Ch. 9]. The first systematic treatment of iterated function systems
is due to Hutchinson [30].

A mapping S : D → D for a closed subset D ⊆ Rn is called a contraction on D if
there is a number r with 0 < r < 1 such that

|S(x)− S(y)| ≤ r|x− y|

for all x, y ∈ D. If
|S(x)− S(y)| = r|x− y|,

then we call S a contracting similarity.
An iterated function system (IFS) is a finite collection of contractions S = (S1, . . . , SN)

on D. A non-empty compact set K ⊆ D with

K =
N⋃
i=1

Si(K)

is called an attractor for the IFS S or invariant with respect to S.
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The following theorem is Theorem 9.1 in Falconer [14].

Theorem B.2.1. Consider the iterated function system given by the contractions
S1, . . . , SN on D ⊆ Rn, so that

|Si(x)− Si(y)| ≤ ri|x− y|, x, y ∈ D,

with ri < 1 for each i. Then there is a unique attractor K, i.e. a non-empty compact
set such that

K =
N⋃
i=1

Si(K).

Moreover, if we define a transformation F on the class D of non-empty compact
sets in D by

F (E) :=
N⋃
i=1

Si(E)

for E ∈ D, and write F k for the kth iterate of F (so F 0(E) = E and F k(E) =

F
(
F k−1(E)

)
for k ≥ 1), then

K =
∞⋂
k=0

F k(E)

for every set E ∈ D such that Si(E) ⊆ E for all i.

We say that an IFS S satisfies the open set condition if a non-empty bounded
open set V exists such that

N⋃
i=1

Si(V ) ⊆ V

with the union disjoint.
If the open set condition holds for an IFS S consisting of similarities with ratios

ri ∈ (0, 1) then the Hausdorff dimension of the attractor K is given as the solution
d of the equation

N∑
i=1

rdi = 1.

Example B.2.2. Let S = {S1, S2} where S1, S2 : [0, 1]→ [0, 1] given by

S1(x) =
1

3
x and S2(x) =

1

3
x+

2

3
.

Then the attractor K is the classical Cantor set and its Hausdorff dimension is log 2
log 3

.
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Furthermore, we need a self-similar measure µ with support suppµ = K. We
denote

M1 := {µ : µ is a Borel measure on Rn with compact support and µ(Rn) = 1}.

The following definition is taken from Hutchinson [30, Sect. 4.2]. By Sµ we denote
the image measure of µ through a map S given by Sµ(A) = µ

(
S−1(A)

)
for all

A ∈ B(Rn).

Definition B.2.3. Let S = (S1, . . . , SN) be an IFS on Rn and letm = (m1, . . . ,mN)

be a weight vector with 0 < mi < 1 and
N∑
i=1

mi = 1. A measure µ ∈ M1 is called

invariant with respect to S and m if

µ(A) =
N∑
i=1

mi ·
(
Siµ
)
(A)

for all A ∈ B(Rn).

In Theorem 4.4.1 of Hutchinson [30, Sect. 4.4] the existence and uniqueness of
an invariant measure for a given IFS and a weight vector is proved by using a fixed
point argument.

If the contractions Si are similarities, we call the invariant measure self-similar
measure. In that case, the particular choice of the weights as mi = rdi is considered
natural, where d is the Hausdorff dimension of the attractor.

B.3. The Vitali-Hahn-Saks theorem

We briefly review the theorem of Vitali-Hahn-Saks, which we use for the construction
of the measure µ(ξ). We state the theorem in a form that is sufficient for our case,
though it holds also true in a considerably more general setting. Further details can
be found e.g. in Alt [1, p. 279], Dunford and Schwartz [10, Sect. III.7], or Yosida
[53, p. 70].

Theorem B.3.1. Let (Ω,A, ν) be a finite measure space, and for every n ∈ N let
µn be a finite measure on (Ω,A) such that µn � ν and lim

n→∞
µn(A) exists for every

A ∈ A.
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Then the ν-absolute continuity of µn is uniform in n, that is, for every ε > 0 there
is a δ > 0 such that for every n ∈ N and every A ∈ A holds

ν(A) < δ ⇒ µn(A) < ε.

Proof. The proof, in which the Baire category theorem is used, can be found in each
of the citations mentioned above.

The name of the theorem is also often associated with the following corollary.

Corollary B.3.2. Let (µn)n be a sequence of finite measures on a measurable space
(Ω,A) such that µ(A) := lim

n→∞
µn(A) exists for all A ∈ A.

Then µ is also a measure on (Ω,A).

Proof. In order to apply Theorem B.3.1 we construct a measure ν that satisfies the
requirements.

For each A ∈ A we set

ν(A) :=
∞∑
n=1

2−n
µn(A)

µn(Ω)

(assuming w.l.o.g. that µn(Ω) > 0 for all n ∈ N). Then ν is a measure on (Ω,A).
Indeed, if A1, A2, . . . ∈ A are pairwise disjoint, we can say that, since all summands
are positive,

ν
( ∞⋃
j=1

Aj

)
=
∞∑
n=1

2−n
∞∑
j=1

µn(Aj)

µn(Ω)
=
∞∑
j=1

∞∑
n=1

2−n
µn(Aj)

µn(Ω)
=
∞∑
j=1

ν(Aj).

Furthermore, ν is finite and µn � ν for all n ∈ N.
We show that µ is continuous in ∅, which is equivalent to the σ-additivity of µ

because it is finite. Let (Aj)j be a decreasing sequence in A with
∞⋂
j=1

Aj = ∅. Let

ε > 0. By Theorem B.3.1 there is a δ > 0 such that for all n ∈ N and for every Aj
holds that ν(Aj) < δ implies µn(Aj) < ε. Since ν is ∅-continuous, we can take j0

such that ν(Aj) < δ for all j ≥ j0. Then µn(Aj) < ε for all j ≥ j0 and all n ∈ N.
Thus, µ(Aj) ≤ ε for all j ≥ j0 and hence lim

j→∞
µ(Aj) ≤ ε. Since this holds for all

ε > 0, we have lim
j→∞

µ(Aj) = 0 and therefore, µ is σ-additive.

The other properties of a measure are very easy to check.
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B.4. The Arzelà-Ascoli theorem

We need the Arzelà-Ascoli theorem to prove the compactness of an embedding. Its
statement and proof can be found in Triebel [51, p. 32-33].

Definition B.4.1. Let a < b. A set A ⊆ C([a, b]) of continuous functions is called
equicontinuous if for any ε > 0 there is a δ = δ(ε) > 0 such that for all x, y ∈ [a, b]

and all f ∈ A,
|x− y| < δ ⇒ |f(x)− f(y)| < ε.

Definition B.4.2. Let (X, ‖.‖) be a Banach space. A set A ⊆ X is called precom-
pact in X if for every sequence in A there is a convergent subsequence.

Theorem B.4.3. Let a < b. A set A ⊆ C([a, b]) is precompact in
(
C([a, b]), ‖.‖∞

)
if and only if A is bounded and equicontinuous.

B.5. The law of the iterated logarithm

In Section 3.5 we need the law of the iterated logarithm to apply our results in the
random case, that is, where the measure is determined by a sequence of independent,
identically distributed random variables.
This theorem has been found by Khinchin in 1923 for certain special cases and

extended by Kolmogoroff in 1929. The general form stated below has first been
proved by Hartman and Wintner in 1941. Later, further generalizations and several
different proofs have been established by various authors. For further references and
the proof, see Klenke [36, p. 517ff.].

Theorem B.5.1. Let X1, X2, . . . be independent, identically distributed random
variables with EX1 = 0 and VarX1 = 1. For n ∈ N let

Sn := X1 + · · ·Xn.

Then
lim sup
n→∞

Sn√
2n log log n

= 1 a.s.

Remark B.5.2. Analogously holds

lim inf
n→∞

Sn√
2n log log n

= −1 a.s.
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Therefore, there is a random variable C with P
(
0 < C < ∞

)
= 1 such that for all

n ∈ N,
|Sn| ≤ C

√
n log log n a.s.

B.6. Regularly varying functions

Definition B.6.1. A function g : (0,∞)→ R is regularly varying if, for all c > 0,

lim
t→∞

g(ct)

g(t)
∈ (0,∞).

The notion of regular varying functions is due to Karamata, for further reading,
see, for example, Galambos and Seneta [25].

B.7. Dirichlet forms

Definition B.7.1. Let µ be an atomless Borel measure on [a, b] and let F be a set
of functions on [a, b] that forms a dense subspace of L2(µ). Let E be a non-negative
symmetric bilinear form on F and let Eα(f, g) = E(f, g) + α〈f, g〉L2(µ). For f ∈ F
let f̃ be defined by

f̃(x) :=


1, if f(x) > 1

0, if f(x) < 0

f(x), otherwise.

Then (E ,F) is called a Dirichlet form on L2(µ) if (F , Eα) is a Hilbert space for all
α > 0 and if for all f ∈ F we have f̃ ∈ F and E(f̃ , f̃) ≤ E(f, f).

In the following we define the concept of eigenvalues for a Dirichlet form.

Definition B.7.2. Let (E ,F) be a Dirichlet form on L2(µ). We call λ ∈ R an
eigenvalue of (E ,F) if there is a f ∈ F , f 6= 0 such that for all g ∈ F holds

E(f, g) = λ〈f, g〉L2(µ).

As in Kigami and Lapidus [35] we will consider a Dirichlet form where the inclusion
map from the Hilbert space (F , Eα) into L2(µ) is a compact operator. Then it follows
that the eigenvalues have finite multiplicity and accumulate only at infinity. This can
be found in Triebel [51, Th. 4.5.1 and p. 258], see also Edmunds and Evans [11, Sect.
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IV.2]. We assort the eigenvalues by size taking in account their multiplicities and
denote this sequence by

λ1 ≤ λ2 ≤ · · · .

Definition B.7.3. Let (E ,F) be a Dirichlet form on L2(µ). Then we define the
eigenvalue counting function N(E,F) by

N(E,F)(x) := #{k ≤ x : k is eigenvalue of (E ,F)}.

The following theorem can be found in Kigami and Lapidus [35, Th. 4.5].

Theorem B.7.4. Let (F , E) and (F ′, E ′) Dirichlet forms on L2(µ) with F ′ ⊆ F
and E|F ′×F ′ = E ′. Then

N(E ′,F ′)(x) ≤ N(E,F)(x), for all x ≥ 0.
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