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Abstract

In this thesis, we offer an investigation of the vibrational properties
of discrete one-dimensional systems with an underlying fractal struc-
ture. Thus, the primary objects of scrutiny in this work are two types
of fractal objects: the first class being quite simple structures with a
fractal boundary, the second class having an internal fractal structure
but very simple boundaries. By introducing a matrix representation
of the related Laplacians, we prove the efficiency of using techniques
originally taken from random matrix theory in the area of fractal ge-
ometry. Thereby, a unifying framework for the study of these systems

has been developed, capable of being extended to higher dimensions.

In dieser Arbeit wird eine Untersuchung der Schwingungseigenschaften
von diskreten eindimensionalen Systemen mit einer zugrunde liegen-
den fraktalen Struktur prasentiert. Hauptsachlich werden in dieser
Arbeit zwei Arten von fraktalen Objekten untersucht: die erste Kat-
egorie zeigt sich als recht einfache Struktur mit einer fraktalen Be-
grenzung, die Zweite mit einer inneren fraktalen Struktur aber ein-
facher Begrenzung. Durch die Einfiihrung einer Matrixdarstellung der
zugehorigen Laplace-Operatoren zeigen wir die Effizienz der Verwen-
dung von aus der Zufallsmatrizentheorie iibernommenen Techniken
im Bereich der fraktalen Geometrie. Auf diese Weise wird ein verein-
heitlichender Rahmen fiir die Untersuchung dieser Systeme geschaffen,
welcher auch auf hoherdimensionale Anwendungen erweitert werden

kann.
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Overview

Fractal forms are often found in nature. Typical examples are the fractal struc-
tures found in green cauliflower, fern leaves, blood vessels, crystal growth pro-
cesses, chemical oscillators, river systems and coastlines. As a consequence, it
is for example impossible to exactly determine the length of the coastline: the
more accurately the subtleties of the coastal course are measured, the greater is
the length obtained. In the case of a mathematical fractal , such as the Koch
curve, it would be unlimited. Although many natural systems exhibit such fractal
structure over a finite range of scales, their fractal features disappear at the latest
when an atomic scale is reached. It is in this context that we will try to explore
the consequence of the discreteness of natural structures on their mathematical
description. However, we will limit ourselves here to the most accessible case:
fractals in a one-dimensional space.

Thus, the primary objects of scrutiny in this work are two types of fractal
chains: the first one being the discrete analogue of fractal strings - bounded
subsets of R with a fractal set as boundary; the second one related to measures
on bounded subsets of the real line. It will be shown how important information
about these fractal chains may be discovered by combining methods from various
areas of physics and mathematics.

This thesis is organised as follows. After an introduction to the history of
investigations in the asymptotics of spectra, we review the relevant aspects of
the theory of fractal strings in the second chapter. In chapter 3, we introduce
the concept of fractal chains as discretised counterpart of fractal strings, together
with their underlying physical model. For these it is possible to give a matrix
formulation for the Laplacian in the wave equation —Af = A\f, so that the power

of methods and techniques from random matrix theory in the study of fractal
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strings/chains can be demonstrated. Several examples are shown in more detail
and we are able to state a new criterion for the Minkowski-measurability of fractal
strings, giving a more precise meaning to a statement by M.L. Lapidus and C.

Pomerance concerning the multiplicities of lengths of a string:

“Intuitively (...) the fact that N()) does not admit an asymptotic second
term is due to the symmetry of the boundary I' (here, the self-similarity of the
Cantor set). Indeed, this symmetry gives rise to high multiplicities in the eigen-
values (equivalently, in the interval lengths (1;)52) and thus causes the function

A=P2((N(X) — ¢())) to oscillate.” (see [78], page 67)

Chapter 4 acts as a link to the second part of this work, connecting the two types
of fractal chains under scrutiny here by physical considerations. The following
chapter is devoted to fractal chains arising from a measure theoretic Laplacian.
Again we first provide the necessary background before using random matrix the-
oretic means for their investigation. In this framework we first present numerical
evidence showing the validity of our approach. Subsequently, we show how the
characteristic polynomials of the approximations to the matrix Laplacian may be
used complementary to other approaches (such as those in [5], for example) for
finding the eigenvalues respectively their asymptotics. Although the results pre-
sented in this chapter are still at an early stage of development, an in-depth study
unfortunately being too complex to fit within the scope of this work, they make
clear that the tools exposed here open up new lines of thought, worth further
attention. In the final chapter, we provide an exposition of our results together
with an outlook on further research to be accomplished through the techniques
shown and developed in this thesis. Finally, two short appendices are attached,
which give some supplementary material that might be useful for future explo-

ration.
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Chapter 1
Introduction

The knowledge of the asymptotic distribution of eigenvalues of the Laplacian is
often a prerequisite for model calculations of physical properties in a variety of
classical as well as quantum systems. The origins of this problem can be traced
back to the Pythagoreans [20, 93] recognising the relation between harmonious
vibrations of elastic strings and their relative length - the first natural law ever

to be formulated in mathematical terms.

[

'r'?

Figure 1.1: Excerpt from a renaissance manuscript of Porphyry’s ”"Eis ta har-
monika Ptolemaiou hypomnema” [93]

The subject came back into focus during the renaissance with the works

of Vincentio Galilei (father of Galileo) [47] and especially Marin Mersenne’s



”L’harmonie universelle” [87]. In this work he was probably the first to pub-
lish what later became known as Mersenne’s laws for vibrating strings; their

frequency is:

e inversely proportional to their length (also known as Pythagoras’ law, see

above),
e proportional to the square root of their tension,
e inversely proportional to the square root of their linear mass density.

In 1673, Christian Huygens [56] contributed the concept of forced vibra-
tions from his studies of pendulum oscillations driven by external forces in his
"Horologium Oscillatorium”.

Several years later, Joseph Sauveur [100] was the first to use beats to determine
frequency differences and was thereby able to calculate the absolute frequencies.
Since he correctly interpreted beats, it appears that he may have been the first
to have an understanding of superposition. Furthermore, he explained the phe-
nomenon of harmonics by arguing that a string can vibrate at additional higher
frequencies as it divides itself up into the appropriate number of equal shorter
lengths separated by stationary points, which he called noeuds (nodes). Appar-
ently he did not know of the earlier experimental works on the subject by Wallis
[115] and Roberts [99]. Later, in work presented in 1713 [101], he derived the
fundamental frequency of a string from a theoretical perspective. He treated the
string, stretched horizontally and taking the form of a catenary due to the gravi-
tational field, as a compound pendulum and found the frequency of the swinging
motion, supposed to have small amplitude.

In the same year, the first description of vibrations of elastic strings in terms
of differential equations was given by Brook Taylor [112]. Ten years later, J.
Bernoulli [12] reconsidered the question using the - by then familiar - Leibnizian
notation and derived Mersenne’s laws through mathematical analysis. Bernoulli’s
treatment of the elements of the string as simple pendulums undergoing small vi-
brations of identical period is fundamental to his solution, an idea similar to
Sauveur’s approach and underlying probably all investigations of oscillatory phe-

nomena during this period. Use of this condition tended to be combined with



certain restrictions on the motion. Thus both Taylor and Bernoulli assumed in
their works that the elements of the string arrive simultaneously from one side
at the equilibrium configuration. As a result, they only determined the first fun-
damental mode. However, this inherently geometric approach appears to have
discouraged the investigation of higher modes, thereby concealing Sauveur’s in-
sight and acting as an obstacle to the discovery of the principle of superposition
[18].

In the 1740’s and 1750’s, Euler [24-27, 29], d’Alembert [2-4] and D. Bernoulli
[8, 9] followed the example of J. Bernoulli regarding the equations as the limit of
those for a massless ideally flexible thread (chain) with a finite number of beads
as the number of beads approaches infinity while their total mass remains fixed.

The motion of this system of beads being described by a finite system of or-
dinary differential equations, d’Alembert proposed his method of integrating sys-
tems of linear differential equations with constant coefficients. Also starting with
this problem, Daniel Bernoulli stated his remarkable hypothesis that the solution
of the free oscillations of a string can be represented in the form of a trigonomet-
ric series, which lead to a debate raging throughout the following decades on the
nature of an “arbitrary” function and its expansion in trigonometric functions,
initiating a fundamental discussion of the foundations of mathematical analysis.

Even though this controversy was partially solved by Lagrange [66, 67] (reprinted
in [68]), it was brought to a conclusion only in the 19th century by Fourier,
Cauchy, Dirichlet and Riemann (for a more complete discussion on this subject,
see for example [64] or [98]).

In this context the meaning and relevance of the boundary conditions is es-
pecially noteworthy. Over the years it became clear that the description of the
relationship between the geometry of a manifold and its spectrum are of utmost
importance. In 1910, Hendrik Lorentz’ 4th Wolfskehl lecture “Alte und neue
Fragen der Physik” - Old and new problems of physics - included the following
passage [84]:

“Zum Schluf} soll ein mathematisches Problem Erwéhnung finden, das vielle-
icht bei den anwesenden Mathematikern Interesse erwecken wird. Es stammt
aus der Strahlungstheorie von Jeans. In einer vollkommen spiegelnden Hiille

kénnen sich stehende elektromagnetische Schwingungen ausbilden, dhnlich den
Ténen einer Orgelpfeife; wir wollen nur auf die sehr hohen Obertone das Augen-



merk richten. Jeans fragt nach der auf ein Frequenzintervall dn fallenden Energie.
Dazu berechnet er zuerst die Anzahl der zwischen den Frequenzen n und n + dn
liegenden Obertone und multipliziert die Zahl dann mit der zu jeder Frequenz
gehorigen Energie, die nach einem Satze der statistischen Mechanik fiir alle Fre-
quenzen gleich ist. (...)

Hierbei entsteht das mathematische Problem, zu beweisen, dafl die Anzahl
der geniigend hohen Obertone zwischen n und n + dn unabhéngig von der Gestalt
der Hiille und nur ihrem Volumen proportional ist. Fiir mehrere einfache Formen
der Hiille, wo sich die Rechnung durchfiihren 1a83t, wird der Satz in einer Leidener
Dissertation bestétigt werden. Es ist nicht zu zweifeln, dafl er allgemein, auch fiir
mehrfach zusammenhéngende Raume, giiltig ist. Analoge Sétze werden auch bei
andern schwingenden Gebilden, wie elastischen Membranen und Luftmassen etc.,
bestehen”

“In conclusion there is a mathematical problem which perhaps will arouse
the interest of mathematicians who are present. It originates in the radiation
theory of Jeans. In an enclosure with a perfectly reflecting surface there can form
standing electromagnetic waves analogous to tones of an organ pipe; we shall
confine our attention to very high overtones. Jeans asks for the energy in the
frequency interval dn. To this end he calculates the number of overtones which lie
between the frequencies n and n + dn and multiplies this number by the energy
which belogs to the frequency n, and which according to a theorem statistical
mechanics is the same for all frequencies. (...)

It is here that there arises the mathematical problem to prove that the number
of sufficiently high overtones which lies between n and n + dn is independent of
the shape of the enclosure and is simply proportional to its volume. For many
simple shapes for which calculations can be carried out, this theorem has been
verified in a Leiden dissertation. There is no doubt that it holds in general even
for multiply connected regions. Similar theorems for other vibrating structures
like membranes, air masses, etc. should also hold.” (translation by M. Kac in [61])

The study of the asmptotics of eigenvalues goes back even further than stated
by Lorentz; probably to Friedrich Pockels’” 1891 work “Uber die partielle Differen-
tialgleichung Au + k*u = 0 und deren Auftreten in der mathematischen Physik”
[92]. Tt was more than a decade later that Rayleigh calculated the asymptotic
number of modes in the case of a rectangular parallelepiped [96] and Jeans tack-
led the radiation problem [59]. However it was clearly Lorentz (and in a footnote
Sommerfeld [106]) who drew attention to the problem of the boundary conditions.
In her aforementioned Leiden dissertation [97], Johanna Reudler verified Lorentz’
conjecture for several shapes, but it was Hermann Weyl who published several
papers [116-118] on the subject where he obtained the asymptotically leading
term for the frequency counting function (i.e. the number of eigenvalues not ex-
ceeding a certain value) and proved it to be independent of the shape considered

and proportional to the n-dimensional volume of the domain. Since then a lot



of progress has been made and in the case of the Dirichlet Laplacian, it is now
known to hold for an arbitrary bounded open set in R™ [88].

The question of whether it is possible to determine even more information
about the shape of the manifold from its spectrum was elegantly rephrased by M.
Kac in his 1966 paper “Can one hear the shape of a drum?” [61] and still remains
an area of active research. Indeed, if the boundary is sufficiently smooth, it has
been shown that the (n — 1)-dimensional volume of the boundary determines the
second term in the expansion of the eigenvalue counting function [58] (translated
in [57] )and [69].

However, if the manifold has a fractal boundary, the second term must be
modified since the (n—1)-dimensional volume of the boundary is then infinite. As
an eigenfunction of the negative Laplacian cannot resolve details of the boundary
significantly smaller than its wavelength, M.V. Berry [13, 14] conjectured from
scaling arguments that this term might depend on the Hausdorff dimension h of
the boundary and be proportional to its h-dimensional Hausdorff-measure.

In the 1980’s and 1990’s, the interest in this topic surged and the effects of
fractal boundaries of a region on the solutions of partial differential equations
became an active topic of discussion again. By means of counter-examples, J.
Brossard and R. Carmona [17] showed that the Minkowski dimension appeared
more suitable than the Hausdorff dimension in the formulation of Berry’s conjec-
ture. Moreover, it became clear that the second term is not necessarily monotonic
but eventually a rather complicated function [35]. Precise remainder estimates for
the asymptotics of the eigenvalue counting function then lead to the reformulation
and a partial resolution of the conjecture in [71, 73].

In two joint papers in 1990 and 1993, M. Lapidus and C. Pomerance [77, 78|
proved this “modified Weyl-Berry conjecture” in the (n = 1)-dimensional case
(note however that the conjecture is false for the case n > 1 [79]). Furthermore
it was shown that it is possible not only to recover the Minkowski dimension
of the boundary from the spectrum, but also - under certain conditions - its
Minkowski measure [32, 72]. Indeed, if the boundary is Minkowski-measurable,
the asymptotic second term of the eigenvalue counting function is monotonic (and
depends in a simple way from the boundary’s Minkowski measure), whereas in

the opposite case its behaviour will be oscillatory.



In this context an unexpected connection with the Riemann zeta-function
was discovered as well: the converse of the modified Weyl-Berry conjecture is
not true in the case where the boundary’s Minkowski dimension is dy; = % but
it is true everywhere else if and only if the Riemann hypothesis is true [75, 76].
This characterisation of the Riemann hypothesis as an inverse spectral problem
shows interesting relations between fractal and spectral geometry on one hand,
and number theory on the other.

Another important line of research arises through the consideration of intrinsic
structures of the vibrating string. After being challenged by Daniel Bernoulli [10],
it was probably again Leonhard Euler [28] and Daniel Bernoulli himself [11] who
were the first to consider the influence of a varying linear mass density on the
vibrational properties of a string. A little later, Euler even tried to obtain the
solution for a continuously varying mass density by approximating it through a
finite number of composite strings [30]. In the 1830’s, Charles Sturm and Joseph
Liouville laid the foundations of what was to be known as Sturm-Liouville theory.
Their articles [81-83, 110, 111] were the first example of an in-depth study of the
solutions of a second order differential equation and included Sturm’s famous
theorem of oscillation. Later on, in his seminal book “The Theory of Sound” [94]
John William Strutt Lord Rayleigh treated a few, by now classical, examples for
the mass distribution on a string in 1877, but in 1887, he also studied the case of a
string with a periodic mass density variation [95]; an example followed by Horace
Lamb in 1898 [70], who simplified the problem by considering a quantised version.
This line of thought is also present in another groundbreaking book on the subject,
“Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems”
[48] by Feliks R. Gantmacher and Mark G. Krein, and especially in their elegant
use made of Stieltjes” memoir on continued fractions [107, 108] in supplement II to
the revised edition in 1950 [49]. In a joint work, Krein and I. Kac [60] then used a
measure geometric approach to investigations of the spectrum of inhomogeneous
vibrating strings in 1974. With the surge of interest in fractals in the 1980’s,
T. Fujita [46] generalised earlier results by T. Uno and I. Hong in 1959 [114]
respectively H. P. McKean, Jr. and D. B. Ray in 1962 [86] on the asymptotics of
measure geometric Laplacians to self-similar measures. These investigations were

continued by a number of researchers in the following years, such as U. Freiberg,



M. Zéahle, J. Lébus, P. Arzt [5, 36, 38, 39, 43, 45], A. Teplyaev, E.J. Bird, S. Ngai
[16] to name but a few, thereby building a sound basis for the whole subject.
However, there has not been an in-depth consideration of discrete respectively
finite systems in both these contexts yet. In this work, we will try to show how
the study of these discrete systems leads to interesting links with random matrix

theory and its tools.



Chapter 2
Fractal Strings

The necessary background as well as some useful tools for our subsequent studies
will be provided in this chapter. Section 2.1 is devoted to the basic facts and def-
initions, while Section 2.2 will present already known results for fractal strings in
some detail. The material presented in this chapter is compiled and reformulated
with some added details from references [31, 74] and [33], except for where noted

otherwise. Moreover, some of the proofs have been reformulated for our purpose.

2.1 Preliminaries

Definition 2.1 (Fractal strings). A fractal string £ is a nonempty bounded open
subset of R. Such a set consists of countably many pairwise disjoint open inter-
vals, whose lengths will be denoted by l1,05,03,... > 0, and called lengths of the

string.

Following the usual notation in the literature, a fractal string will be denoted
by £ = {{;}32,, where ({;);en is a nonincreasing sequence of positive numbers
with lim;_,., £; = 0. For the purpose of this work, the listing order of the lengths
is irrelevant and it is always possible to define the strictly decreasing sequence l; >
lo > -+ >0, where the [;’s are all distinct and counted with multiplicity w; = wy,,
such that £ can be written as £ = {(;}32, = {l,, : [, has multiplicity w,}52,. It
should also be noted that Zj’;l l; = > wyly, is finite and equal to the Lebesque

measure vol; (L) of L.



Definition 2.2 (Iterated function systems IFS). An iterated function system
(IFS) is a finite collection of contractions S = {D;S1,Ss,...,Sm}, with m > 2,
on a closed subset D of R™. For every IFS S, there exists a unique nonempty
compact subset F' of D, called the attractor of the IFS, such that (see [7, 55]):

Example 2.3 (The Triadic Cantor set). The triadic Cantor set Cr is the attractor
of the IFS {D; Sy, Sa} on R, where:

D:[O,l],SIZD—)D,Sng—)D,

with 5
T T +
Sl = g, and SQ = 3 .

Definition 2.4 (The Triadic Cantor string). Consider the standard triadic (or
ternary) Cantor set Cp (Figure 2.1), then the triadic Cantor string CSt is the

complement of Cr with respect to the unit interval [0,1] as shown in Figure 2.2.

Thus:
5 = {35y = (3 b o o
respectively {1;}52, = {37UT}22, where each [; appears with multiplicity w;, =
27,
For the purpose of this work, we will define generalised Cantor strings as

follows:

Definition 2.5 (Generalised Cantor strings). A generalised Cantor string CS
with parameters 1 < a € N and b € R, b > a is the sequence of lengths given by:

CS = {pllomarlye = {1 L L ..}
or alternatively as {1;}32, = {b"UTV}2, where each of the l;’s appears with

multiplicity w; = wy-G+1) = a’.

Note that the standard triadic Cantor string is obtained by setting a = 2 and

b = 3 in the definition above.



Figure 2.1: The triadic Cantor set Cr

Figure 2.2: The triadic Cantor string CSr

Figure 2.3: A generalised Cantor set € with parameters a =3 and b =5

Figure 2.4: A generalised Cantor string €S with parameters a = 3 and b =5
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Definition 2.6 (a-string). Given an arbitrary real number a > 0, then the fractal

string defined by
o [ with 1, = 2 — G+ 1,

15 called a-string.

It can be geometrically realised as the open set 2 C R obtained by removing

the points {j~%, 7 € N} from the unit interval, that is:

U G+1)7% 7).
Hence, its boundary is the (countable) subset of R given by:

o0 = {j~° j € N} U {o}.

log(3) 1

Figure 2.6: The a-string with parameter a = Tog (2)

11



Definition 2.7 (Distance and e-neighbourhood). Let ¢ > 0 and B C R. The
distance d(x, B) between a point x € R and the set B is given by:

d(xz,B) :=inf{| x —a |: a € B},

where | - | denotes the one-dimensional Euclidean norm. The (open) e-neighbourhood

of B, denoted as B, is then the set of points that are within a distance € of B:
B. :={zx e R:d(z,B) < e},

In our case of fractal strings £, we are specifically interested in its boundary
respectively the one-dimensional volume, i.e. length, of the set of all points in £

that lie within a distance ¢ of its boundary 0.L:
V(e) :==wvoli{x € L | d(z,0L) < e},

where vol; designates again the 1-dimensional Lebesgue measure.

Definition 2.8 (Upper and lower Minkowski content). Let r € Ry be given. The
upper and lower r-dimensional Minkowski contents of the boundary of a fractal

string 0L are respectively given by:

A (r,0L) == limsup 40

.
e—0t L=r

and

M (r,0L) := liminf Vie)

e—0t 61_r7

It is straightforward to see that if .Z*(r,0L) < oo for some r, then .Z*(s,0L)

0 for each s > r, as:

V(e)
cl-s

. Vige™ _ .. Vie) ot
= limsup ———— = limsup ——¢
e—0t € € e—0t €

lim sup
e—0t

and limsup,_,o+ €7 = 0, if s —r > 0. Furthermore, since £ is bounded in R,
then clearly .#*(r,0L) = 0 for r > 1. On the other hand, akin to the above,
if A#*(r,0L) > 0 for some r, then .#*(s,0L) = oo for each s < r. Therefore,

12



there exists a unique point in [0, 1] at which the function r — .#Z*(r, 0L) jumps
from the value of co to zero. This unique point is called the upper Minkowski
dimension of L. The lower Minkowski dimension of 0L is defined analogously

by using the lower r-dimensional Minkowski content.

Definition 2.9 (Minkowski dimension). The upper Minkowski dimension is de-
fined by:

dim0L :=inf{r > 0 | A*(r,0L) = 0} = sup{r >0 | .4*(r,0L) = o0},
and analogously the lower Minkowski dimension by:
dim,,0L :=inf{r > 0| A.(r,0L) =0} =sup{r >0 | A.(r,0L) = o}.

When dim ;0L = dim,,0L, the common value is called the Minkowski dimension
of 0L, denoted in the following as dy; = dimy; 0L, where we omit 0L for sake of

notational simplicity.

Definition 2.10 (Minkowski content). If the upper and lower dy;-dimensional

Minkowski contents of 0L are equal

M (dpr, 0L) = M (dp, 08),

then this common value is called Minkowski content A (dpr, 0L) = liIriV(e)Edel,
e—0

and 0L 1s called Minkowski-measurable.

However it should be noted that .# is not a measure, as it fails countable
additivity [65].

Remark 2.11. In the literature on the subject, the Minkowski content and dimen-
sion of the string’s boundary are in general simply referred to as the Minkowski
content and dimension of the string by linguistic imprecision. We will adopt this
common agreement at this stage as well. As an example, we will call a fractal
string Minkowski-measurable iff upper and lower Minkoski content of its boundary

exist and are equal.

Without proof, we will give here an important result on Minkowski-measurability,
first stated by M. L. Lapidus and C. Pomerance as Theorem 2. in [77]:

13



Remark 2.12 (Criterion for Minkowski-measurability). A fractal string £ is

1
Minkowski-measurable iff {; ~ Lj am

Here the symbol ~ means asymptotic equality in the sense that a; ~ b; iff
Example 2.13. [t is well known that the Minkowski dimension of the triadic

Cantor string CS8t is dyy = }Zgg;, and as C8p = {3L718241}% ) “we are interested

i the limat:
lim 3L~ los2()) 1653

Jj—00
Now, for each j in the interval (2",2"V), where n € N*, we have 3l71°820)] =
o los(3)
37", Thus 3L-1og200)] ) s monotonically increasing in the interval and its range
is (1/3,1), regardless of the value given to n. Furthermore, for every j that is an

o log(3)
integer power of 2, 31~ 1°g2(])Jj10§<2> = 1. Therefore, we have:

log(3)

lim sup 3= 1°g2(j)Jj g2 = 1,
Jj—o0
and
lim inf 31 le0)] 58 — L
Jj—00 3

so that the above limit does not exist and thereby the Cantor string is not Minkowski-

measurable.
Example 2.14. For the a-string, we have:

1(1
o (1+3) — 1

=0 =) = A

Using the binomial expansion, this may be written as

2 3
(1 +al 4 dol (%) + ele=le-2) (%) T .. ) 1

(j+1)°

.l a(e—1) <l>2 a(o-1)(a-2) <1)3
= -\ 31 ;
J J J +

Gr TGy T G

gj:

14



Therefore:

hm EjjaJrl =
Jj—o0
O\ —1 \“1 —1)(a—2 \“ 1
tim (o (-2 G Lyaa—D@=2) [ j 1.
j—o0 Jj+1 2! j+1/) 3! j+1) 42
= a’
as lim;_,o jjﬁ =1 and lim;_, Jin =0, for each n > 1. Thus the a-string is

1

Minkowski-measurable with L = a and dy; = o

Definition 2.15 (Geometric zeta function). For a fractal string £, the geometric

zeta function is defined as:

Cels) =D 1= w1l
j=1 l

for s € C and Re(s) > dyy, where dy is the Minkowski dimension of the string.

It should be noted that some values of the geometric zeta function have a

special meaning, i.e. the total length of the string for example is given by (- (1) =
Z;; lj'
Definition 2.16 (Geometric counting function). The geometric counting func-

tion (or alternatively: the counting function of the reciprocal lengths) of a fractal

string £, 1s defined by

Ne(z) =#{jeN|l' <z} = > w,

neN, ipi<z

for x > 0 and where the w,’s are the multiplicities of the lengths [,,.

Let us consider the following eigenvalue problem on an open bounded set €2
in R with boundary 0€:
—Au = \u

in 2, where A denores the Laplacian, with Dirichlet boundary conditions:

u|aQ: 0.

15



Then the eigenvalues form a countable sequence, such that 0 < A} < Ay < A3 <
. < M < ..., with each eigenvalue being repeated according to (algebraic)

multiplicity.

Definition 2.17 (Eigenvalue counting function). For a given positive A, we define
the eigenvalue counting function N(X) as the number of eigenvalues not exceeding
Al

NA) =#{keN| X <A}, A>0.

2.2 Spectral asymptotics of fractal strings

In this section, we present the current state of knowledge for the spectral asymp-
totics of fractal strings, partially with detailed proofs.

The Dirichlet problem on £ may be reformulated as finding the resonant
frequencies c fixed at the
boundary po *h interval of

which £ cons

|

Figure 2.7: An example for eigenfunctions of the Cantor string

Non-trivial solutions occur at the values

7k\ >
A= (-) withk=1,2,....
¢

16



for a sinusoidal eigenfunction vanishing outside the interval considered. In
other words, if we fix A > 0, then the number of eigenvalues k less than A that are
possible for this interval is given by k = [Wﬁl)\%m. Counting these eigenvalues
for all lengths ¢; of the fractal string £ then leads to:

o0

N =Y lriasg)

- gw—ué@ -y {w—u%@}

J=1

= ﬂ_lvoll(L))\% — (M), (2.1)

where
o()) = i {w—u%ej} . (2.2)

Note that in the above the symbol |z | stands for ”the greatest integer less than
x” and {z} = x — |x| means "the fractional part of z”.
The first term in Equation (2.1) is just Weyl’s expression in the one-dimensional

case.

Remark 2.18. We will use in the following the conventions of writing f(z) =<

g(z), respectively a; < b; iff there exist two constants ¢; and co, such that
0<cag(z) < f(r) < cg(x) < oo, forallz € R, > 0,

respectively
0 <cibj <aj < by < oo, for all j € N.

In the following theorem (see [33]), it will be shown that p(\) < A3 holds

under certain conditions.
dnm

Theorem 2.19. If(; < j_ﬁ for some 0 < dp < 1 then p(\) < A2 .

We give here a detailed proof, following the sketch given in [33].

17



Proof. Given a fixed A > 72¢;2, let k be the greatest integer, such that 7~ '\2¢), >
10, > A2, As 0, < k_ﬁ & clkz_ﬁ </, < Cij_ﬁ for some constants ¢;
and ¢y, one has:

b < Czkiﬁy

with
A2 < U,

so that
1 I
A2 < ok M
1 141
Skiv < cgm A2
1y 1)
Sk < <CQ7T_ /\5>
Sk < chW_dM)\dTM,
where ¢y does not depend on A. Furthermore, as for all j:
0< {w—u%@} <1,
we have: .
0< 3 {r g} <k
j=1

Thus by Equation (2.2):

ji;l {76} <o) <k +]§; {m g},

and as for every j > k, one has by the definition of &: ﬂflA%Ej < 1, and therefore
{7’(’71/\%€j} = Wﬁl)\%gj
so that:

ST <o\ <k + Y aTIA
j=k+1 Jj=k+1

18



_ _
As c1j m < l; < cyoj M, it is possible to use the integral test estimate to find
bounds for 372, | ¢;. Indeed,

Cle_WS ZngCQZj_W
j=k+1

(2.3)
j=k+1 j=k+1
and
* > 1 1
[Tt Y g [ g
k+2 i k+1
et jmi| < <
M k+2  j=k+1 dm k+1
1 1 . 1
ST+ T < S T < k1) T
dv j=k+1 dv
Now, as

1—-1
ktl>k= (k+1) 7o <k o = (chﬂ_dM)\dTM> i
and as (o < A2 by the definition of k and ¢, > ¢ (k+ 2)7¢ by the
assumption of the theorem, one has:
A2 > ¢ (k+ 2)7¢

_1
o (k4+2) < ™

1

1\ dm
eEk+2) < (“ )
(&1

19



Thus:

dv Jj=k+1 d
d - - 1 d d dp =1
S () < 30 e < O ()
L= du j=k+1 L= du
d dpr—1 > 1 d dy—1
<:> M d]w*lﬂ_—(dM—l))\ ]\42 < Z ,] dM < M C(;Mflﬂ__(d]\/f_l)A ]\/12 ,
1—dy _’k+1 —1—dy
J:

allowing us to write Equation (2.3) as:

dM _ dpr—1 > dM _ an
¢ ATl TINTE < Y < e R

L= dy j=k+1

and thereby:

dyr—1
2 .

7r_1)\%cl—1 dﬂfi c‘liM_lw_(dM_l))\dM?_l < pA) < k"_ﬂ-_l)\%CQ—l d]‘z, =t =(da=1) \

- UM M

d
Using again that k < 7~m ch %" and simplifying:

d
chW_dM)\dTM <pA) < W_ndgM)\dTM + M chﬂ_dM)\dTM
1 —dy 1 —dy

d d
M C?Mﬂ—dM)\d% < 90()\) < <1 + : _JZM) CgM,ﬂ_—dM)\dTM

which completes the proof. O]

Strengthening the condition on the asymptotic behaviour of the lengths ¢; of
1 1

the fractal string to £; ~ Lj v & limj_,o ¢;j = L > 0, leads to an interesting

connection between the concept of Minkowski-measurability (see Remark 2.12)

and Riemann’s Zeta-function defined below.

Definition 2.20 (Riemann’s Zeta-function). Riemann’s Zeta-function is defined

20



as: o
¢(s) := Z n-?’,
n=1

for all s € C with Re(s) > 1. A meromorphic continuation to Re(s) > 0 we will

need later is given by:

((s) := ! +/100(t_5 — |t]7*)dt.

s—1

We can now state the theorem announced above:

Theorem 2.21. If (; ~ Lj—ﬁ for some 0 < dy; < 1 then the following holds:
N(Y) = 7 0l (£)M + 7D (da) LYAE + oA,

as A — o0.

Here we will only sketch the proof as in [77], full details may be found in [78]
and in [74], where a different approach is chosen.
Sketch of proof. Recall from Equations (2.1) and (2.2) that:

oo

7j=1
= Zﬂ'il)\%gj — Ztﬁil)\%ng
7j=1 j=1

Let J(¢) := max{j > 1:{; > €}, then by the assumption of the theorem:
Lj ™~ > e

and thus:
j < LdMgfdM

so that

J(g) ~ L™Me=M1 a5 ¢ — 07,
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Let furthermore k& > 2 be an arbitrary fixed integer, then:
ko J(55)
o) == Z ¢+ Z {l;x} + Z Z {t;x}.
i>3(3) I P=2 j=j(2)+1
Through Abel-summation, this can be rewritten as:

p(z) = a(r) + B(z) +(z),

where:

i>J(%)
B(z) = kJ (;) - k:1 J (g) and
y(w) = > (L} —1)
<)

1
By using then that J(g) ~ L&~ and ¢; ~ Lj~ “v , one obtains for z — oo:

d
(Lz)™™ a(z) — kv 2
1—duy
k-1
(L$)7dM B(x) — flodm Zp_dM and
p=1
k
(Lx)™ ™ y(z) < (Lz)™™ J (—) — ko
T
Thus
k-1
(L) (az) + B(z)) = ———k= = 3 p = fi(day) + —
1-— dM =1 11— dM7
where

k
fils) = / (- — 1)) d.
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For Re(s) > 0, the sequence {fx(s)}?2, converges uniformly to the (analytic)

function

Fo)i= [ (o= 1)

as k — oo. Furthermore, as stated above, Riemann’s Zeta-function admits the

meromorphic continuation to Re > 0 given by:

((s) = Sil +/100 (lt)=5—t*)at.

Thus:
fr(dar) +

. — —((dp), for k — oo

and therefore:
(Lz)™™ p(z) = —C(dy), as k — .

Finally, setting x = 71\ 3 and reassembling all the terms, we obtain
NV = 77 ol (£)AF + 7= ¢(dag) DAY +o(AH)

for the eigenvalue counting function, as stated. U
The implications of Theorems 2.19 and 2.21 may clearly be seen through

the examples of the triadic Cantor string and the a-string with parameter a =

log(3) log(2)
log(2) log(3)”

Figure 2.8. Indeed, the graph of the eigenvalue counting function for the Cantor

— 1, both having the same Minkowski dimension d); = displayed in
string shows oscillations in the spectrum that are typical for strings that are
not Minkowski-measurable, while they are absent in the case of the Minkowski-
measurable a-string.

These results on the connection between the Riemann Zeta-function and the
spectral asymptotics of fractal strings were even taken further by M.L. Lapidus
and H. Maier in [75] and [76], where they formulated the Riemann hypothesis in
terms of an inverse spectral problem. Being beyond the scope of this work, we

will only state the theorem and its corollary without proof here:

Theorem 2.22 (The inverse spectral problem for Riemann’s hypothesis). Let a
fractal string £ with Minkowski dimension dy; € (0,1) be given. If the eigenvalue
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Figure 2.8: Graphs of N(A) for the triadic Cantor string (red) and the a-string

with parameter a = igigg — 1 (black).

counting function is given by N(X) = 7 Lvoly(L)Az + ONH 4 O(AdTM), with C
being a constant, then L is Minkowski-measurable if and only if ((s) does not

have any zero on the vertical line {s € C | Re(s) = dp}-
From the theorem, it is then easy to deduce the following corollary:

Corollary 2.23. Since ((s) has zeros on the critical line {s € C | Re(s) = 3},
the inverse spectral problem is not true when dy = % On the other hand, it is

true for every dyr € (0,1)\ {%}, if and only if the Riemann hypothesis holds.
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Chapter 3
Fractal chains

In the preceeding chapter, we have rendered the current state of knowledge on
the asymptotics of the eigenvalues of fractal strings, one-dimensional drums with
a fractal set as boundary. We will now present our results concerning the dis-
tribution of these eigenvalues, thereby showing the usefulness of techniques and
methods from random matrix theory to the study of vibrating fractals. Partic-
ularly, we will establish two new theorems (Theorems 3.8 and 3.9) related to
the Minkowski-measurability of one-dimensional fractals. On that account, these
fractal drums will be modelled by linear chains of a finite number of discrete
masses coupled by springs (“fractal chains”, see [21]), thus allowing a description

in terms of matrices.

3.1 Monoatomic chains

The monoatomic linear chain of masses coupled by harmonic springs (i.e. obeying
Hooke’s law) is a textbook example [53, 63] as an introduction into vibrational
normal modes (phonons) in solid state physics. Its mathematics are simple and
it has many features common to lattice vibrations in general.

The stiffness of each spring shall be K and each atom shall have a mass m.
Let u, be the displacement of the n'* atom. The force on the atom n due to the

atom at position n—1 is then K (u,_; — u,) and those from the atom at position

25



atom label: ... n-2 n-1 n n+1 n+2

Figure 3.1: Monoatomic chain

n+1is K (u,—1 — u,), so that its equation of motion can be written as:

d?u,,

=K (Un,1 — 2u, + unJrl) >

respectively
d?u,,
dt?

Let xk be the wavevector and a the distance between the atoms, then with the

m

+ 2Ku, = K (Up_1 + Upy1) -

harmonic ansatz:

U, = uoez(wtfnna)’
Up | = uoez(wtf(nfl)na) — unema and
o t(wt—(n+1)ka) __ —ika
Uiy = uge' @ FDRA) — g o=ina,
one has )
d“u,, 9
= —mw,,

e
and therefore:
(—mw2 + 2K) u, = Ku, (ema + e_i’w) )

26



Dividing by Ku, # 0 and using that e 4+ ¢~ = 2 cos (ka):

(_mw2 + QK) Up = Kun <6iffa + e—i/@a)

m
& —— 2=2
oW T cos (ka)

K
Sw=2—(1-
w — (1 — cos (ka))

K 2
o w=4— (sin (K—CL)) .
m 2
Using Dirichlet boundary conditions uy(t) = un1(t) = 0, the allowed values for
k are then given by k = (Ni—ﬂl)an, with 1 <n < N +1 and N being the number
of atoms in the chain. The squared frequencies of the chain are therefore given

by the so-called dispersion relation:

W2 = 4% <sin (2(]\7;—711)))2 (3.1)

Alternatively, the equations of motion may be reformulated in matrix form, which
makes it possible to use tools from random matrix theory (RMT). Indeed, writing

Newton’s law as:
> {F} = K{u} + D{u} + M{ii},

where {F} denotes the column vector of (external) forces acting on the chain,
K the square matrix of stiffness properties at the atoms (stiffness matrix), I" the
square matrix of damping properties at the atoms, M the square matrix of inertial
properties at the atoms (mass matrix) and {u}, {4}, {i} the column vectors of
displacements, velocities and accelerations respectively.

In our idealised model, the effects of damping and velocity will be neglected
and there will be no external forces acting on the structure, such that the equa-

tions of motion reduce to:
0 = K{u} + M{i}.
For simple harmonic motion, the acceleration is then given as above by:

{ii} = —w{u},
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where w? is the square of the circular frequency. Thus:
K{u} — w?K{u} = 0.
Multiplying this equation by M~!, M being non-singular, from the left yields:

M 'K{u} — w’T{u} =0, or
(D — w’I) {u} =0,

where D := M™!K is called the dynamic matrix and I is the identity matrix.

Now, for a single spring element, the stiffness matrix is given by:

K -K
Ks = 3

where K is the stiffness constant of the spring. For an assembly of springs, the

total stiffness matrix is given by the following two simple rules [15]:

e A term on the main diagonal K, , is the sum of the stiffnesses of all spring

elements connected to the atom n.

e A term off the main diagonal K, ,, is the negative sum of the stiffnesses of

all spring elements connecting the atoms n and m.

The mass matrix M is simply a matrix with the masses of the different atoms
on its main diagonal and zero everywhere else. Furthermore, for the monoatomic

chain, all the spring stiffnesses and masses are equal, such that the dynamic
matrix is given by:

| e
S 5= 3%
[\
s ¥R s
oo |
N3 |x
o O
3=
|
—_
[\
|
—_
(@n)

The eigenvalues A, of the dynamic matrix are then precisely the squared frequen-
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cies w? given in Equation (3.1):

K ™ 2
— w2 =4 (sin (— )
An = m<sm(2<zv+1>)>

For long wavelengths, i.e. for small n, it is possible to expand the sine-function

i
it

Figure 3.2: Corresponding vibrational modes of a string and a monoatomic chain

and by neglecting the higher order terms, the dispersion relation for the string
An ~ n? may be recovered. However, this approximation is no longer valid for the
higher normal modes, where the wavelength of the excitation becomes comparable
to the length scale of the distances between the masses. Indeed, contrary to
the normal homogeneous string, a monoatomic chain posesses a highest possible
frequency, a fact that can be easily deduced from Equation 3.1 or Figures 3.2
and 3.3. When the neighbouring masses vibrate in antiphase, there is no higher

possible mode, and \,,,; is given by setting n = N + 1 as:

3.2 Fractal chains

The lowest (fundamental) frequency of a monoatomic chain is given by Equation

(3.1) with n = 1:
K T 2
2 :
Al—w1—4—m <sm<—2(N+1))) .
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N

Figure 3.3: Eigenvalue counting functions for a string (crosses, N(\) ~ v/A) and
a monoatomic chain (boxes, N(\) ~ arcsin(v/)))

It is then possible to choose K and m, such that the fundamental frequency of
the monoatomic chain is the same as that of the length [; of the fractal string
that is to be modelled. By the same method, monoatomic chains corresponding
to any length [; of the fractal string can then be determined, such that the fractal
chain is obtained by combining chains with increasing fundamental frequencies
in accordance with the corresponding fractal set construction. The part of the
spectrum up to the maximal frequency of the basic chain then allows a comparison
with the one of the fractal string as illustrated in Figures 3.4 and 3.5.

However, it is important to note that the number of masses NV in the different
chains of the obtained pre-fractal has to be chosen such that chains of higher
order than the iteration level m do not contribute to the spectrum. In other
words, the lowest frequency of the chain corresponding to the length [, 1 of the
string has to be larger than the maximal frequency of the basic chain. We will

subsequently always choose:

N = V ;W , (3.2)

2 arcsin (Iy)
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NGO

Amax A max B1Amax

Figure 3.4: Eigenvalue counting functions for the triadic Cantor chain (black,
blue, green) and string (red)

NOD

Figure 3.5: Detalil of figure (3.4)
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where [-] denotes the ceiling function. This choice ensures that at least the
fundamental frequency of the m*-level chain will be part of the spectrum and
that all the frequencies of the (m + 1)th—level chain will be above the highest

frequency of the basic chain.

3.2.1 The dynamic matrix of a fractal chain and its traces

Recall that a system of masses coupled by springs obeying Hooke’s law can be

described in the harmonic approximation by the matrix equation:
(D—-wI)x=0

where D is the dynamic matrix; I the identity matrix and x the column vector
of displacements. The spectrum of the system is thus given by the eigenvalues
A, of the dynamic matrix. For a fractal chain the dynamic matrix is a block-
diagonal matrix, where the block matrices are taken with multiplicity w; (not to

be confused with the frequencies of the chain) from the set of matrices of type:

2 -1 0 0
DM:Z'_Q'K -1 2 -1 0
7 om0 -1 2 -1

For each sub-chain the squared frequencies of its allowed vibrations are the

eigenvalues of the sub-matrices given by:

K ™ 2
Anj =172 4=sin [ ——— ] |
I msm(2<N+1>)

wheren=1...N+1,j€{l...m}and N = [7—; -‘,sothatthetracesof

the different powers of the complete dynamic matrix are easily accessible. Indeed,

N+1 KN+1 ™ 2
(M) = 3 s =103 o0 (g7 )

n=1

1
arcsin(lm)
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and
N+1 k N+1 2k
r (DMf) = ZAM_( ) Zsm< )> .

Furthermore:

N+1 N+1

k 2 ) (K k N+1 ' n 2k
f(OM) = 320 = 3 ()" = 59 (1) S ()

so that the traces of powers of the complete dynamic matrix D are given by:

tr (D¥) = ;wj (%) <4g>k ]:21 sin (%) " (3.3)

In order to continue, we need the following proposition, the results of which may

be found in the literature for small k&, but we will prove here the general case:

Proposition 3.1.

NZ“S, ™m 2k o N+1+1 (3.4
n|(———— = —+ = .
et 2(N +1) k) 2%k 2

Proof. Following the method of A. F. Timofeev [113], write

2% it i\ 2R
. ™™ e 2(N+1)" — g "2(N+1)
s |\ ———— = -
<2 (N + 1)) 2i
1\, . . 2%
N (622(N+1)” _ 6_12(N+1)”)
21

)
— 2% (6 2(N+) 7 — e 2(N+1)> ,

where ¢ is the imaginary unit. Thus, by the binomial theorem and using the
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symmetry rule (2lk) = ( 2k ):

2k k 2k
: mmn (_1) l 2k Lo ! —is 2kl
e — — ( ) ( )
SIH(Z(N+1)> 5 Z( 1) (l)(eQNH ) (e BN )
k
1 /2% 1 [ 2k nl
- Y (-1 g
QQk(k)+2Qk1 (=1) (k—l)cos<2(N+1)>’

so that
N+1 n 2k N+l N+ i .
;SHl(m) :;2%( )+;22k 1; ( >COS(N—|—1>

G e () (7).

n=1 [=1
Interchanging the order of summation and rearranging then leads to:
k

Nglsin <%>% B %(2:%%2 < )JVZHCOS( mnl >

=1

Using Lagrange’s trigonometric inequality

N+1 N+1

Zcos(n~x):—COS(O)+Zcos(n~a:)
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on the last sum, one obtains:

. (N+§>7rl
Nil <m1) 1 1+Sm(w—fl
Cos =—| -
N 1 2 : Tl

n—1 + S1n (m)
. lN+1+%

_1 _1+sm<7r N+1>
2 sin (”—l>

2(N+1)
1 _1+sin <7rl—|— N+1)>

2 sin (”—l)

2(N+1)

As sin (z + y) = sin (x) cos (y) + sin (y) cos (x):

N+l nl 1 sin(ﬂl)cos(Q(N”—il)> cos(ﬂl)sin<2(N”—i1))
2o\ vp) =5 | T T
n=1 S11 (m) Sin <m>
=0
1
= — | =1+ cos (nl)
2 N
(1)
1 I
= (=14 (-1 )
5 (-1
Thus
N+1 2% k
, ™ N+1/2k\ 1 L[ 2k l
) == — > (1 1+ (=1
;Sln(wv“)) 92k <lc)+22kz::( )(k—l)< * ))

k k
N+1 2k 1 2k
~ o2k ( ) QQkZ < ) szz< )
1=1
It remains to evaluate the two sums of binomials. Writing

lz; (/ﬁC z) - % (é (1-621f z) +l§; (1:21C z)) ’
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and using the symmetry rule ( 2k )

P (Qk) again, we have:

S50 £(2)
> (1) 2 ()

% Z (ZZk) - (2:>>

S 6)

where we used Pascal’s fifth identity in the last equality. A similar approach is

—_

1

~
o

used for the other sum:
k k k
L2k 1 L 2k o 2k
2. (D) <k—l> ~3 (Z( D (k—l) +2_ () <k:—l>)
=1 1=1 =1
and by the symmetry rule, we have:
k k k
2k 1 2k 2k
-1 = -1 —1)! :
;( )(k:—l) 2(1221:( )(k—l>+;( )(mz))

It is then necessary to consider the cases of k being even or odd:

For k even:
g(_l)l (ka z) B % (2 (1) <2zk> +l§:1 (1) (2zk)>
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For k odd:

() =3 (g
:% ‘i(_l)l (2lk) - i’“: 1y (2lk:) +(-1)" (2:))
- (

- e

It is well known, that 21220 (—1) (2lk) = 0, which leaves us with

Xk: (-1 (k:Qf z) N _% (2:)

=1

which completes the proof. O

Hence, this proposition allows us to write the traces of the powers of the

dynamic matrix in Equation (3.3) as:
m k
o ok (KN (2R\N+1 1
tr (DY) = > w; (%) (45) ((k)QT+§
u EN*((2k\N+1 1
—2k
=S (1) ()5 +3)
k

e () ((2)51)
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where we defined the “incomplete moment zeta function” (;(m, —2k) in analogy
with the geometric zeta function (see Definition 2.15). The knowledge of the
incomplete moment zeta function makes it possible to express the traces of the

dynamic matrix of the fractal chain under consideration.

Definition 3.2 (Incomplete moment zeta function). We define the incomplete

moment zeta function (g(m, —2k) of a fractal string £ by
Ce(m, —2k) = wjl; ™
=0

for k € N and where the w;’s are the multiplicities of the lengths [;.

Note that this definition of the incomplete moment zeta function can obviously
be extended to the whole complex plane and might then be called “incomplete
geometric zeta function”, but here we would like to emphasise its relation to the
moments of the eigenvalue distribution and thus restrict the definition to integer

arguments.

3.2.2 The moments of the eigenvalue distribution of a

fractal chain

Important information on the behaviour of the eigenvalues of a matrix may be
obtained through the study of the moments of their distribution. It is possible
to attach a probability measure, or in other words an eigenvalue probability
distribution, pp ns to the dynamic matrix of the fractal chain under scrutiny

through the use of the Dirac delta functional in the following way:

N/
1 Ai(D)
po N (x)de = N E 4] (x - ) dz,

i=1

where the normalisation factor in the denominator may be justified by heuris-

tic arguments for the scaling of the eigenvalues [89]. We can then recover the
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moments My ;, of the distribution. Indeed:

1 L ADF 1 i
W @2F 77 2 (D)
=1 =1
tr(DF)

T O2kNT

Therefore, the moments of the eigenvalue distribution of a fractal chain are nor-
malised traces of the corresponding dynamic matrices. First of all, all the entries
of the dynamic matrix have to be less than or equal to one, which is achieved
by multiplying it by a factor %li, respectively (%l?n)k In addition we need the
number of independent matrix entries, given by:

m

N'=dim (D) = > " w; (dim (DM,) + 1) — 1

J=0

=N (") (N +1) -1,

where N (z) is the geometric counting function defined in Definition (2.16), so
that:

(312)" tr (DY)
N’ . 9k
_ ()" Celm, —2k) (425)" ((5) 552 + 5)
Bl (Ne (In') (N 4+1) —1) - 2%
_ IR¥Ge(m, —2k) (425)" ((3) 5 + 5)
o (Ve (') (N 1) —1) - 2%

My =

(3.5)

Thus, we have obtained here a general expression for the moments of the eigen-
value distribution of a fractal chain; all the necessary information being encoded
in its incomplete moment zeta function and its geometric counting function. For

illustration, we will apply these results to the examples of generalised Cantor
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chains and the a-chain below.

3.2.2.1 Example 1: Generalised Cantor chains

Recall from Definition (2.5), that a generalised Cantor string with parameters a
and b consists of the set of lengths {l;}32, = {b_(j“)};?‘;o, each appearing with
multiplicity w; = w11y = @/. Thus, its incomplete moment zeta function and

its geometric counting function are given by:

m b2k <(ab2k)m+1 o 1>
2%k i12G+Dk _
Ces(m, —2k) E wjly ;0 a’ bV = prET
and
mtl 1

Nes(berl Z Z o = a—1

]_

respectively. With this, the expression for My 5 becomes pretty unwieldy:

(5*2(m+1))k b%((ab%)m“_l) (4£>k (<2k> N1 %>

ab?k—1 k

(=L (N4 1) — 1) - 22k

My =

However, it is possible to get a good impression of the behaviour of the moments
of generalised Cantor chains by making a few approximations. We will here not
rigorously justify these approximations, as they are only used in the examples
and are not of crucial importance for further developments. The approximations

used are:

(abZk)m+1 1 (abzk)m+1 :

ab® — 1 — ab**,

2NN +1 1 26N N + 1
1 —2% —{—§l—> i —2% ,and

m+1 _ m+41

a
— (N+1) -1+
a—1 (V+1) a—1

(N+1).
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Thus, we obtain after simplification for our approximated moments My  opps the

K\" (2k\a—1
MN,k:,appx: (4E> (k)W’

where it should be noted that due to the normalisations, the parameter b disap-

expression:

pears. Furthermore by [109], theorem 2.6:

—Sik 22k _ (2]{:) _ 22k

6 I —7
VTVk k VTVk

so that for large k, we can expect the moments to behave like:

K\‘a—-1 1
Msswams = (13,) T75 7w

m
The precision of these approximations may be seen in Tables 3.1 and 3.2.

E | Myg MN kappa relative error | My i asymp relative error

MN,kyappm _ 1 MN,k:,asymp _ 1
My & My .k

11 19425082041 | —.0574917959 | 1.063506622 | .063506622

2 || .7127559673 | .7068811531 | —.0082423922 | .7520127441 | .055077444

3 1| .5907172921 | .5890676275 | —.0027926465 | .6140158348 | .039441105

4 || .5165739391 | .5154341741 | —.0022063927 | .5317533112 | .029384704

5 || .4648942135 | .4638907567 | —.0021584627 | .4756146204 | .023059885

Table 3.1: The first five normalised moments and their approximations for the
triadic Cantor chain, at approximation level m = 8.

3.2.2.2 Example 2: The a-chain

For an arbitrary number a > 0, the a-string is given by the set of lengths {l;}32,,
— (j + 1)~* and all multiplicities w; = 1, see Definition (2.6).

Therefore, we can write its incomplete moment zeta function and its geometric

where [; = j7¢

counting function as:
m

m 2/{3 Zw]lj 2k Z ‘—a (] + 1)_a)72k

j=1
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E | My g MN i appz relative error | My k. qsymp relative error

MN,k,appa: _ 1 MN,k,asymp _ 1
MN,k MN k
1 9866149307 | —.0133850693 | 1.113275734 | .113275734

7403952795 | 7399611981 | —.0005862833 | .7872048202 | .063222365
6166804256 | .6166343316 | —.0000747453 | .6427500447 | .042274115
.5395845225 | .5395550404 | —.0000546386 | .5566378669 | .031604584
4856258333 | 14855995362 | —.0000541508 | 4978720437 | .025217378

T W N~

Table 3.2: The first five normalised moments and their approximations for a
generalised Cantor chain with parameters a = 3 and b = 5, at approximation
level m = 8.

and N .
NLa(ln_.ll) = ij = Zl =m
j=1 j=1

respectively, so that:

N BCe(m, —2k) (45)" () 5 + 3)
A (Ne (In") (N +1) — 1) - 2%
(= — (m+ 1)) S (70— G+ 1)) (4E5) (CH 5+ 5)
(m(N+1)—1)- 2% ‘

It is quite difficult to approximate this expression, so that we will limit ourselves
to compare the moments obtained with those of generalised Cantor chains having

the same Minkowski dimension, which leads to the following important remark:

Remark 3.3. Tuable 3.3 suggests that the moments of Minkowski-measurable
chains decrease at a much faster pace than those of generalised Cantor chains,

thereby reflecting the different oscillatory behaviour in the corresponding spectra.

3.2.3 The moments of the eigenvalue distribution of a

fractal chain with cut-off

As already shown in figures (3.2) respectively (3.3), a cut-off frequency has to be

introduced in order to allow a comparison to the spectrum of a fractal string, so
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k| C8p, dy = }Zgg; a-chain, dy; = }22% CS, dy = }ggg a-chain, dy; = igi%
11 1 1 1

2 || .7127559673 5046300428 7403952795 .0031995168

3 || .5907172921 3437648204 6166804256 3405870669

4 || .5165739391 2676078436 0395845225 2633965399

5 || 4648942135 2241385614 14856258333 2193090535

Table 3.3: Comparison of the first five normalised moments for Cantor chains and
the corresponding a-chains of the same Minkowki dimension, at approximation
level m = 8.

that only the part of the spectrum up to the maximal frequency of the funda-
mental chain is retained. Without loss of generality, it is possible to set the first
length of the fractal string to [, = 1.

The eigenvalues thus to be taken into consideration are:

e Basic chain

K ™ 2
Mg = dogin [ — )
1 msm(Q(N—l—l))

with multiplicity wy.

e 1% level chain

K . ™ ?
)\mz = l2_2 . 4ESIH (m) s

2
2(N +1
152 - sin (2“3—11)) <len< %arcsin (I2)

while

with multiplicity ws.

e j'" level chain

K ™ 2
= ]T2. 4 g 0
Ang = mo (2(N+1)> ’

while )
1
l;Q - sin <%) <l&en< CAC ) arcsin ([;)

with multiplicity w;.
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This now allows us to define ” pseudo-traces” as follows:

N(j) N(j) i i K k N() ™ 2k
tr (DM}) : Ak (172 An1)" = (57 (4—) i (—) ,
pr Z 2. ,1) (J ) - ;sm 2(N+1)

with
2(N+1)

v = |25 i)

so that

ptr (DF) = iwj (%" (z%)k Nz%)sm (2(]\7;—7;1))% (3.6)

Jj=0

The second sum in the above is then calculated by Euler-Maclaurin summation:

2k N(j) m 2k
= n(———1, d =1 )
Zsm( N+1)) /n:O sm<2(N+1>> n + Ry, r + Ry

To evaluate the integral I, we will need the following proposition:

Proposition 3.4.

. 2k+1
NG) mo \* o+ nl Y h k41
Ik = S ﬁ dn = ’2F1

N+1 m 2% + 1 oy d

2
a,b
2 F1 <
c

denotes the Gaussian (or ordinary) hypergeometric function and (q), the rising

z;) |

=0
where

- (@a(B)n 2"
z) —Z () !

n=0

factorial.

Proof. In order to simplify notations, we set ¢ = ( 3 It is a well known fact

2(N+1)
that:
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For n = 0, and since 5 F} (

Gauss’s theorem [51]:

1 ik
——cos (cn) o Fy (2’ 2
c

) 2V Tk A+ 5)
1 20(k+1)

relations [6]:

b
o <a, z
c

Furthermore, we will rewrite the hypergeometric function using one of Barnes’
F'(a+b—c)(c) B c—a,c—b
= 1—2)7 % F 1—2z
) T'(a)I'(b) W=7 0
F(c—a—-0b)T b
(c—a—"0b)T(c) ( a, - z) '

_|_

Tle—al(c—b)" " \—c+atb+1

11—k D(—k— H(2) f Lk+1
£ ( g Z)Zr(l)rﬁ—zf) A= hfi s |1
2 25 +3

D(k+ HT(2) 11l _g
+ 2 2/ p [ 202 1— 2
T(1)T(k + 1) 1
1 ) 1L,k+1
= — 1—2)" e,/ |7 1—
T Z>221<k+§ '%
VL (k + 3) 5%—k1_z
ar(k+1) '\ L—k '

As we can express the last hypergeometric function in the above by the simple

form
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we obtain:

1 bt o (Lk+1
Z>:_2k—|—1<l_z) 22F1<]§—|—§

VAD(k+3) 1
Tk VB

1,k+1

3
k+§

1

1 1
_ E cos (Cn) (— ok n 1(1 — COS(CTL>2>I€+§2FI (

Vilk+1) 1
2T (k+1) \/cos(cn)?

1-— cos(cn)2>

— 1 . 2 1 . 2k+1 ]_,k -+ 1 A 9
= 1 —sin (en) <_2k: 1 (sin(cn))*" " o Fy b sin(cn)
VTL(k+ 3) 1
2I'(k+1) /1 —sin(cn)?
1 1 , _ Lk+1]| . 7l(k+ 1
sy 1 —sin (en)*(sin(cn)) 2+, Fy < bt s s1n(cn)2> - %,

as cos(en) > 0 and sm( ) >0 under the conditions imposed on n. Now, using

the approximation N (j L ) arcsin ( )J ~ (N D aresin (1),
2(N+1
sin(¢N(j)) = sin (2<N7T+ 1 ( 7:— ) arcsin (lj)) = sin (arcsin (;)) = [j,
and
1 21—k
—=cos(ecN(5))Fy | 272 cos(cN(7))? | =
c 3
2
N4 (1 e (LRI ) VAT £ 5)
7 2k + 1 7o k3|7 ) 0 ar(k+ 1)
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N(7)
cos(cn)2>]
n=0

) Val(k + %))

J R S

oT(k + 1)

2AN+1) (1 \/7 Lk+1
= s A l
T (2k:+1 i 1<k+§

2(N +1) T(k + 3)
a (_ m 2F(lc+1))’

and therefore finally

2(N+1) 1 LkE+1
Iy = 1= | 2
g T 2%k+1 o ks )7
which completes the proof. O

Remark 3.5. The expression for I, can also be formulated in terms of the in-

complete beta function B, (a,b). Indeed:

2(N+1) 1 241 LE+1|,
Iy = =1 B LR s |U
2
12(N +1) 11
=2 TR (k+ =,
2 7 lj( +2’2>
N+1 11
- Be(k+=,2).
7r ’?( +2’2>

From Proposition (3.4) and Remark (3.5) above, we can easily deduce the

following corollary:
Corollary 3.6. I can be bounded in the following way:

N +1yal(k+1)

0< I <
== T Tk+1)

and furthermore:

LkE+1
0< J1-m (1T
k48

)= 2l(k+1) (2h+1).

2> _ VAL + )
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Proof. The incomplete beta function is differentiable on the interval [0, 1] and its

derivative

0 11\ 2:(:2)Fr 2%

° (B, S 2)) = - >
aZ<BZ (k+2’2)> V1— 22 \/1—22_0

positive on the whole interval. Thus it is a monotonic increasing function on [0, 1]

and assumes its extremal values on the endpoints. As

11 11 Val(k+ 1)
Bo(k+=>)=0and B (k+-,-)=Y"""2
0( +2’2> o 1< +2’2) T(k+1)

we have
N+ 1/l (k+ 1)

0< I, <
== T(k+1)

and likewise, as:
1,E+1
NN
k+3
we obtain by the product rule for the limits:

I + F(k+1
— J 3
k+§

F —=-(2k+ 1)
as stated. O

1 11
l]?) = 5Bz (k + 5 5) N2k + 1),

= ar(k+1)

The remainder term Ry is less accessible and needs numerous manipulations

in order to formulate and prove the following proposition.

Proposition 3.7. In first order approximation, the remainder term Ry is given

by:
1 2k 1 2 2k—1

6(N+1)
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2k
Proof. Setting f(n) = sin (%) , the remainder term reads:

Ri=—Bi (f(NG) + f(O) + Y (ﬁ’ff)! (fONG) = 19(0)

=Ri1 + Ry o,

where the B;’s are the Bernoulli numbers and f® denotes the I derivative of
f. Using the same approximation as above for N(j), the first term can easily be

evaluated:

Ry = — By (J(NG)) + £(0)) = L sin (Ll)sz)

2 M\ oV ¥
1 in 7 2(N +1)arcsin(l;) o
~—si
2 M\ 2V 1) T
Lok
=30

The second term however needs numerous manipulations; first of all as B;;; =0

for [ even, we need only consider the case of [ being odd. Setting ¢ = m, we

find by induction over [ that:

k 1L1( 2k Hlim o
2m)td (2 )(=1) = T sin(2mex)
l k—m
/! )(”) = Z 92k—1
m=1
2l e~ [ 2k -
= %(—1) 2 Zm ke m (—1)™sin(2mex),

so that:

— (1 +1) /g
N B oy
;(Hl)!f (N(5))
0 lCl 1+1 k
=> (zB+l+11)! zzk_l (1= > m (k: 2—km> (=T sinmeN )
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Here we can interchange the sums and rearrange to obtain:

I
)
(Y]
x| =
L
i\g
I S
N
N
>~
| N
EN
3
~—_
C
E
B
o
3
D)
2
M 8
I
t
C
w‘:
3

Rom = — Xk: < 2k )(—1)m+l sin(2meN (5) (i _ cot(cm)) ENERS

cm

This expression is quite cumbersome and tedious to evaluate, but it is possible
to give a useful approximation. Setting v = 2m and x = ¢N(j), the sine can be

expanded [1], formula 3.173 as:

sin (vz) = (—1)2 ! cos(z) {2”’1 sin(z)" ! — ("f) 2" 3 gin(x)" " + —(”73)2(!"74) 2V P sin(z)" 0 - - - }

L/

_ (_1)% 1COS 221/ 2p+1 SlIl( )l/ 2,u+1< v—u >(_1)u—1,

pt v—2u+1

and by the consecutive changes of variables v — 2m and m — pu+1 — ¢, we
obtain:

m

sin (2ma) = cos(z) Z 221 gin(x)* ! (m;;ﬁ; 1) (—1)4,

(=1

20



Approximating N(j) again as above, one has:

sin(x) = sin (¢N(5))

~ sin (2< T2+ D) arcsin(lj))

N+1) =«
= sin (arcsin b )
f— lj?
and
cos (¢N(j)) = cos (arcsin (I;)) = 4/1 — I,
so that:

sin (2meN () ~ /1= 12> (20,)* <m2;f1 1> (—1),

7]

Furthermore, let us express % — cot(ecm) by its Taylor-series:

e cot(cm) = % + 0 ((em)?)

In first order approximation, we can then write Equation 3.7 in the form:

k m
1 2k a1 5 ar-1 (m+L—1Y _ ,cm
Rk,m_?z(k_m)( " 1= 12 (21) ( T (G e

m=1 /=1
ko k
1 2k 4 (m+rl—-1 cm
- -1 m+1 1— 2 9. 20—1 -1 @+1_.
=390 ol P [ ETED S (VRN [ETAs

(3.8)

Using the method of Iverson-bracketing, it is then possible to rearrange the sum-



mation limits as to obtain:

1 2k 5 w1 (m+Ll—1 2 1T
ka_ﬁZugmgk][lgégm](k_m)\/l—lj(%) (%_1 (1) =3

1 2k S (m+l—1 cm
= — <l<m< —12(21)% ! _qym+e
22k2[1_€_m_k]<k_m) 1—12(20) ( o0 1 )( Dl

QQkZZ 1B, )2“§(k 2_km) (m;tfle)(—mmm

{=1 m=/{
k k
1 1 c m+{—1
= — — 1_2 2 —
2%Z< Raact) 3; (k m>( 20 — 1 )m
szz )i\/1 = 12 (20;)% 155,
with .
2k m+{—1
= 1™
S ;( ) <kz—m)< 20— 1 >m
Expanding

m={
& m( 2k Com? — (n—1)°
- M(_l) (k - m) g 20— 1)

o2



= ;(_”m,ﬁl%(k Q—km)
SEorTEE () (%)

—k<m<k, m#0 p=1
l
1 m? — (u—1) 2k
—— —-1)™
3 2 0oy m)
—k<m<k pn=1
as
0 2 )2
H %_1 =0 for m = 0.

Reindexing again using v = k + m then leads to:

2

s- g S T ()

Now, for any polynomial Py (v) of degree d in v, D i ,con(—1)" Por(v) (21/’“) will
vanish if 2k exceeds d. Indeed, P, can be expressed as a linear combination

of the first d + 1 of the basis polynomials 1, v, (g), e (;), ..., with coefficients

23



which are polynomials in 2k, and then, for each p =0, ... d:

() ()=o)
(%) -vra -y

p
0,

by the trinomial revision identity and furthermore by the binomial theorem. In
the case under consideration here, we have d = 2/, so the sum will vanish whenever
2k > 20 ie., k> /L.

Thus, in S only the term with m = ¢ = k remains, so that:

=2 ( ) (e (D) (e o

m=~{

and hence as S =0 for [ < k,

/=1
k—1
1 1 C 1 _
= 272(-1)&/1—13. (21;)* 1§s+ﬁ(—1)k 1-12(21)"' s
/=1

1 2k / 2k—1,C
Ly 2%k—1,C

1 T
S SR 0 R T —
22k i (24) 6(N+1)

1 s
= —\/1—=12(l h—lp  °
2 ](]) 6(N+1)

asc:Q(N’:Ll). O

m?—(u—1)*
@-1)!

has to be replaced by Hi:l m2mQ(;+Ll_)!l)2, so that the polynomial Py (v) above is

Note that in the following order of approximation for ﬁ —cot cm, Hi:1
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of degree d' = d + 2, and thus the sum will only vanish for £ > ¢ + 1. However,
this correction term tends very rapidly to zero and can thus safely be neglected.

The pseudo-traces in Equation (3.6) are hence given by:

ptr (D¥) = iwj (1" (%)kjism <%>%

2k+1 2
m K\* (2N +1) 5 1=13 1.k+1
S (Y (A0 o

T 2k+1 k+%

zg)

J
1 2%k 2k—1 ™
ZJ? /1 =12 (L -
+2l + l] (l]) k6(N—i—1))

K\ AN + 1) /113 Lk+1
) (T

T 2k+1

1 1 T
o 1-e2ag)ytp—
PR i (L) k6(N+1)>
K\*& o(N +1) i1 = 1,k+1
= (4— , A 2
(m) j;ow] s 2k+1 1 k+32 g

+ <4g>k gwj (% + %\/ng(zj)l k(i(NLH)) . (3.9)

Before treating the important case of Minkowski-measurable chains, it seems
appropriate to reconsider the two standard examples already used in the previous

section for illustration.
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3.2.3.1 Example 1: Generalised Cantor chains

For generalised Cantor chains with parameters a and b, the pseudo-traces are

z§>

)

) 2o

>kzm:aj (2(N+1)b—<j+1>m_2ﬂ (1,k:+1
) -

obtained as:

ptr (Dk)

Il
7~ N
N

3

Il
N\
N

+
7N
W

= 3= 2R 3=

b—2(j+1)>>

2k +1 k+3

/11 . oy —1 T
I 24 21 —p26+) (p=U+Dy =
2o (2 T3 R I Y

+
VRS
W

i
=
+
v

We can give upper bounds for the "Weyl”-term W by using Corollary (3.6). As:

J 2U'(k + 1) (2k+1),

l2> _ VAl(E+3)

it is bounded by:

e ()

3=

<
Il
o

b2(j+1)>)

; (2(N e L Sl SR (1, k+1
a 241

T 2k +1 k;+%

Il
o

VAN

I
T
3= 3= =X

W

. (2(N +1) b0+ /al(k + 3)

j 2% + 1
T ka1 a1 O )>

1) val(k + %) zm:ajb—(jﬂ)
L(k+1) e

FIN+1)VAT(R+3) ()™ —1
T I'(k+1) a—b

m+1

W

x>
<
=
3|+

o6



Furthermore, as v/1 — b2(U+1) < 1, the second term R may be bounded by:
F & 11 1 m
R=(4— (24 21 —p-206+) (p=GHDYy T
(m) 2 o <2+2 ( ) 6(N+1)
(1 1 ) -1 s
i 2 (p Gy T
¢ (2 5 ) kg (N+1)
=0
B 4K k am+1 -1 N ke b ((ab>m+1 - 1)
S \Um 2(a—1) 12(N+1) ab—1 '
Thus, an upper bound for the pseudo-traces is given by:

ptr (D) < (4K) <N+1ﬁr(’f+§) ()" -1

VAN
7 N
=
T
—
M= 1

.

m T Dk+1) a—b

m
a™t —1 kw b ((ab)™ - 1))

+2(0L—1)+12(N—|—1) ab—1

This expression is still quite inaccessible. However, substituting its first order

approximation for N + 1 = %m} + 11— ™7 there is a substantial

gain in transparency:
k rbm+1 1 a\m+1
= Jrl'(k+ 3) (¢ -1
ptr (Dk) < 45 2 VL (k + 2) (b)
m m ID(k+1) a—>b

a™tt —1 N kr o b((ab)™" —1)
2(a—1)  12(75%) ab—1

_|_

< (4 (o) ()™ )

m o (k +1) a—b

_|_

a™tt —1 N k(ab)™ — 1
2(a—1) 6™ (ab—1)
i (45)’f (ﬁr(k +3)amtt— g™l 1 kg™ — b—m) |

m Mk+1)  a=b  2@-1) "6 a—1

Recalling that ™™t —b"*! = (a—b) Y7, ™ 9b', it is now easy to see that the first

term is O (b™) and the remaining terms O (a™). Alternatively, we can state that

57



the ”Weyl”-term is O (N) and the remainder terms are O (N dar ), as for a gener-

alised Cantor chain we have dy; = 112((2; & a=0b" and N = gml =
o(bm—i-l)_

3.2.3.2 Example 2: The a-chain

Recall that for the a-chain, the lengths are given by [; = j~% — (j + 1)~¢, with

Jj =1...00, and the multiplicities are always w; = 1. Thus the pseudo-traces are

2
zj)

given by:

T 2k +1 kE+ 2

Lia/1 =12
20N +1)" J LE+1
> (N +1) F(
2

Using again Corollary (3.6), the ”Weyl”-term W can easily be bounded. Indeed:

2
K\*& 2V + 1) by =6 Lk+1] ,
v-(0)S

T 2k+1 k—}—%
(2k+1))

FO (AN Y L AR+ )
Z( m  2k+1 2T(k+1)

J

T 2I'(k+1)

"N 4+ 1) 7T (k + 1)
r  20(k+1)

(1)
- (aly 2RI 5
(45)

o8



as Z?:l l[; <1 by the definition of the a-chain. In order to give an upper bound
for the remaining terms, we will again use the fact that /1 — ljz < 1, such that:

= () 55 /B0 )

Jj=1

s(ﬁ)’“ (530 o)

M

) (1S (0 )

For clarity, it is possible to substitute again its first order approximation for
Iyt :
N+1= %m] + 1+ 72—, such that:

S
AN
7N
W

l
7N
A~
= 3= I

)’“ 2(N +1) val(k+ )
T 2I'(k+ 1)
)’“ 2(Tan) /AT (k + 1)
T  2I'(k+1)
)’“l_lﬁr(k +3)
™ Tk + 1)

I
7N
I

and

r< (45) (1 +1ki 1) =t
=Um) 2T &Y e
K\" (1 1 <& Lo
~(4=) | Zm+ -
(5 e 2\ oy
K\"* 1 o

29



Now, as the sequence of lengths is decreasing, i.e., I, < [; & llﬂ < 1, we have:
J

R~

< (4

VRS
W
3= 3I® 3N

N——— N

It should be noted that although not being the best possible upper bound, it is
sufficiently accurate to illustrate the example. Hence, we have for the pseudo-

traces:

ptr (D*) =W + R
- <45>’€ (llﬁF(’H 3 N k+3m) |

m "2k + 1) 6
As the a-chain is Minkowski-measurable and as w; = 1 = {; = [;, we have by
Remark (2.12):
_1
lj ~ Lj dn
=l ~ Lm_ﬁ

G m o~ L (151

Finally, taking into account that N = O (I;!), it becomes obvious that again the
first term in the expression for the bound of the pseudo-traces is O (IV), while the
remainder term is O (N dnm ), as was to be expected.

3.2.3.3 Minkowski-measurable chains

In the previous example, we used the Minkowski-measurability of the a-chain in

order to get a neat expression allowing us to study the asymptotic behaviour of its
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pseudo-traces. However, the a-chain is just one example of Minkowski-measurable
chains. Because of the importance of this class of fractal chains, we will try a
more in-depth exploration in the following. As before, the starting point for our
subsequent study of Minkowski-measurable chains are their pseudo-traces given
by Equation (3.9):

m /1 — 12
+ 1)l j 1,k+1
tr (D¥) = N 12
pr( ( )z% . 2% + 1 21(1{;—1-% J)
K 1 1 s
4= N S SO ey
+(m> jzo%<2+2 7 () 6(N+1))
=W+ R.

The ”Weyl”-term W can again be bounded using Corollary (3.6):

K\ & AN + 1) iy /1= 1 k+1
W:(4_) ij W17 o T

() S (O g e e v)
( ) Nﬂ )\zrrraik:))z“’jlj
(1

N +1)al(k+1)
) T 2I'(k+ 1)

IN

voly (L),

where voly (L) is simply the total length of the fractal chain. Using the same

approach as in the previous section, i.e. approximating /1 — l? <land N+1=
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m__ 1
2 arcsin(lm)

1+1— %‘7‘1, the second term may be bounded by:

R () S (3 300 ki)

K\*& 1 1kl
= (4= (2
(1) T (G rant)

Finally, the sequence of lengths is decreasing, [; > [, & lﬁ < 1, such that:

K\ & 1 1k
< (4= Y i
R-( m> Zwﬂ(2+23)

m 6
7=0
k
_ (45> SRR
m

by the definition of the geometric counting function N (x). Hence the pseudo-

traces admit an upper bound:

ptr (Dk) =W+R

< <4§>k (Q(N; D) @F(lik:j)voll(ﬁ) 3 Jg kNL (l;ﬁ)) :

where the ”Weyl”-term is O (N) = O (I;!) and from our results for the a-chain, we
expect the remaining terms to be O (N%7). Indeed, by Remark (2.12), N (I;}) =
O (Ix™) = O (N9), as £ is Minkowski-measurable. From this, it is possible to

deduce the following two theorems:

Theorem 3.8. A fractal string £ is Minkowski-measurable if and only if:

Ne (") = Cm+ o (m)
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and
K\F& 1 1 T
= 4— . — _ 1_2 ,_1— — NdM
R <m> ;%(2+2 12 (1) k6(N+1)> O (N,

for m — oo.
Proof. Let us first recall that the following are equivalent:
1. £ is Minkowski-measurable.

1

1
= L, respectively [; = Lj 1 +o <j7W>, as j — oo.

QU
<]

Ny ()

3. limy 00 =5 = ¢, respectively Ny = cx®™ + o (de), as r — 00.

b b
=

If £ is minkowski-measurable, then by point 3. above:

Ng(x)

By point 2. above and the power rule, the limit:

lim [$m = [9
m—00

& lim ([, mt =L,

m—00

exists and is different from zero, such that by the quotient rule:

Ne (Ip)m™

m—o00 (ln_ll)dM m-1!
& lim N (1) m™" = e lim (1) m™!

& lim N (I ) m™ = cL™™ = C.

m—o0
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Thus:
Ne (1Y) =Cm+o0(m),

for m — oo.
9 <:77

Assume that the remainder term:

n= (1) B (3o 3yi- B0 ) o)

then
N (I51) = 0 (Vo)
and as J
o (Ta)"
v ()
we have:
N (I5') =0 ()
NG (D)
(:)n}glgo T c#0
[dar 1
< lim m N T =
m—oo N (lm ) c
Thus:

N (ln')

— = ( exists, we have by the product rule:

As limyg oo

N (11 [dm 1
lim m~ '™ = lim — (') lim —%—— =(C= =L,
m—o00 m—o00 m m—00 NL (lm ) C

or equivalently:

which completes the proof.
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If we have no information on the behaviour of the remainder term R, it is still

possible to formulate a slightly weaker version of the theorem above:

Theorem 3.9. The geometric counting function of a fractal string £ is given by:

N (') h(m) = Cmf(m) + o (m),

with
L log(/m)
m—oc  log(m)

and
o los(h(m)

if and only if

with | l
Im—0 log<§)

form — oo.

Proof. "="

Recall that the Minkowski-dimension d; of the fractal string £ is given by

= 1 lim 28V ()
=0 loge

where V(g) denotes the e-neighbourhood of the boundary of £, which may be

expressed as:

Vie)= > 2+ > I;=2-Ng <2i€)+AZ ;.

Jilj>2¢e Jilj<2e Jilj<2e
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. Setting 2¢ = [, we have:

l l _
1% (S‘") =5 2N (1) + >,

j:l]'<lm

and thus

log <l?m . 2NL (lil) Zj:lj<lm lj)

In—0 log (%)
‘ log <l7m . (QNL (l 1) 2Zgl i<lm 1 m))
<1 —dy = lim
ln—0 log ( n)
g () + 1o (2N (') + 21,0 )
&1 —dy = lim i
I —0 log (5m>
log <2NL (l;l) +2 Zj:l]'<lm ll_i)
I —30 log (7"‘)
log <2NL Ua) +23 50 m>
=1 — dM =1 —+ lim l
w0 log (%)
log <2Nc Uah) +232 50, zm)
lm—0 log (_m>
log <2NL (- + 22;1 <l llm)
<1 = lim 1
I —0 (—dar)log ()
log <2NL (') +2 Z]l <l lm>
&1 = lim )

Ilm—0 10g ((lm)*dM>

Now as the sequence of lengths is decreasing, we have [; > [, for every j < m

and thus the second term in the numerator above:

DI

Jil; <lrn
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so that:

log <2NL () +2 Z]l <lm llm>
lim =1

I —0 log <(%n )

log (2N, (1=
o g s um )
lm—0 log( dM)

From this we can deduce that:

2N (1) () _

T

= 1. (3.10)

dy
& lim (%‘“) 2Ne (1) b (le) =1

lm—0

& lim 2" N (L) b (1) = 1

lm—0

with:
i 1080 ()

=="1o0g (%))

Then, by the assumption of the theorem:

=0.

lim m™'N, (I;1) = Cf(m),

m—o0

and noting that as [, — 0, m — oo, we have

lim 2" N (1) b (ln) = 1

m—o0
& lim 27 Rvmm ™I (151) b () = 1
& lim 217 Im O f(m)h (I,) = 1.

m—00

Putting:
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we obtain that:

lim 217D f(m)h (1) = 1

m—0o0
& lim 2 mC f(m) (g <lm>>"M =1

& Tim 2170 (Ing (1)) mC f () =

and finally:
T (g (1) mf(m) = 2
e Jun g (1) ()7 = (£) ™
5 T bug (k) (mf(m)) 7 = L
g (In) = L (mf(m)) 7 +o0 (m™ 7 )
e

Assume that:

< lim —lmg (I) (mf(m))dnr =1,

m—oo [,

then, as m — oo, [, — 0:

g ( Jimy 7 g (1) () ) =0

m

= fim 1o (g () (mf ()7 ) =0

< lim <log (%) +log (In) +1og (g(lw)) + — log (m) + L log (f (m))) =

lm—0

o <10g (z_) (log(%) 4 Jog (i) | log(g(ln) | 1 log(m) LM)) o

lm—0 2
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and as log (%) is unbounded:

1
lim log (l_m) lOg (lL) + log (im) + lOg (g
e 2 log (7m) log (—) log (

Furthermore, as:

and as by the assumption of the theorem:

m—0 \ dpr log (7‘“)

we have

(1 los(m) 1 log(f (m)
lrlnao 1+dMlog(12) dm log( ) ) 0

. 1 log(mf(m)) ) _
<:>lr1nlin0 dM lOg(m) )—1

o [ oz (m (m)

lm—0 log <(l_m)—dM>
2

We already know by Equation (3.10) that:

=1

-1

lm—0 log ((l?m)*dM>

=1
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and hence, using again that m — oo, [, — 0:
(log(QNL (l;l)))
lo I ) "M
lim g<( ) )

ZWO( log(mf () )
10g<(l7‘“)7 M
log (2N, (I;1))

=1

from which we can deduce that:

iy 20V () ()
moco  mf(m)

=1,

respectively

Ng (I3') h(m) = Cmf(m) + o (m),

with:

. log (h(m))
<:>n}1—I>Ic}o log (m) + log (f (m))
log (h(m))

< lim =0

% Jog (m) <1 4 log(f(m)))

log(m)
1 m

=0
m—oo  log (m) '

- log(f(m)

=0
m—oo log(m) ’

which completes the proof.

=0

]

The two theorems above provide a new characterisation of Minkowski-measurability

through the methods developed in this thesis. Furthermore, as already stated in

the overview, we thereby obtain a more precise statement concerning the mul-

tiplicities of lengths of a Minkowski-measurable string than the one previously

obtained by M.L. Lapidus and C. Pomerance in [78].
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Chapter 4
Interlude

As pointed out before, the case of the fractal strings respectively fractal chains
investigated in the preceeding chapters may appear a bit artificial. Indeed, such
a fractal string may as well be represented as a “fractal harp” [74], as shown in

Figure 4.1, thereby emphasizing the disconnectedness of the underlying set.

'IHH

Figure 4.1: An approximation to the triadic Cantor string and the corresponding
harp

71



From a physical viewpoint, the transition from fractal strings to fractal chains
is then simply a discretisation of the constituting strings with a constant linear
density ¢ = 7 to a system with lumped masses coupled by massless springs
(Figure 4.2).

p=constant

,// \\ 2 "

A

Figure 4.2: The transition from a fractal string (left) to a fractal chain (right)

One may now wonder what happens if one releases the conditions on the nodes
(i.e. the boundary of the set) by allowing the masses placed at these nodes to be
finite.

M=finite

Figure 4.3: From a fractal chain (left) to a fractal-layered chain (right)

The case shown at the right of Figure 4.3 has been treated to some extent, at

least numerically in [22] and in [23]. As visualised in Figure 4.4, it appears that
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a further modified version of this configuration is related to measure geometric
operators, a relationship to be explored in detail in the next chapter.
o

0.4

.2

Figure 4.4: The mass distribution of an approximation of a fractal-layered chain
(red) compared to that of a measure geometric chain (black)
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Chapter 5
Measure geometric fractal chains

Measure geometric fractal chains arise from a different context than those treated
in the preceeding chapters. However, it is also possible in this case to develop a
physical model that may be described in terms of dynamic matrices. In this frame-
work, the techniques presented earlier appear useful and a few results thereby

obtained are included here.

5.1 Preliminaries

Although the involved fractals are very similar or even the same as those already
considered, the underlying approach is quite different (see for example [16, 19, 34,
37, 39-43, 45, 46, 54, 60, 86, 90, 91, 102105, 114] and the references contained
therein), so that it is necessary to state several already known results on the
subject beforehand. The material presented in this section is compiled from
[37, 38, 44]. Consider generalised second order differential operators of the form
Ar = %%, where 1 is a finite atomless Borel measure on [0, 1] which is compactly
supported on L := supp p C [0,1] with {0,1} € L. This operator may be
interpreted as a measure geometric Laplacian with properties analogous to those
of a standard Euclidean Laplacian. Denote by Ly([0, 1], dz) the Hilbert space of

all real-valued and square-integrable functions on the interval [0, 1]. The Sobolev
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space W12[0,1] is then given by:
wh2[0,1] .=

{ripa-r137 € Lo an |70 =70+ [ £y e o)
Note that for any f € W12[0,1], f’ is called the weak derivative of f. The
second derivative is then defined by repeating this construction with respect to

the measure p instead of the Lebesgue measure. Let Lo(L, dp) denote the Hilbert

space of all square p-integrable functions on L. By setting
D(A*) :=
{rew 013 L 1 7@ =70+ [ Fwduw.oepn},
0
(5.1)

we can define the operator A* = %% on D (A*) by:

Al f i(ﬁ)z f* onlL

dp \ dx 0  everywhere else,

where f” is given by Equation (5.1) above.

In the following, we will only consider Dirichlet boundary conditions, i.e. the
restriction A%, of A* on D (A}) = {f € D(A*) | f(0) = f(1) = 0}. The
operator A’ is then a negative symmetric operator on Ls(L,du) and we can

consider the eigenvalue problem:
—ALf=Mf, with f € D(A}).

In the self-similar case, i.e. if L C [0, 1] is the attractor of an IF'S with contractions
S ={[0,1];51,...,Sn}, m > 2 as defined in Definition 2.2, and if for any Borel
set A in [0, 1], the Borel probability measure p satisfies
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for a given m-dimensional vector of weights 0 = (o1, ..., 0m), where g; € RT and
>, 0 =1, then it holds that:

Np (z) <27, as £ — 00 (5.2)

for the eigenvalue counting function Np (z) := #{k € N | A, <z}, > 0, defined
in a way analogous to Definition (2.17), with the spectral exponent v being the

unique solution of

Z (0iri)” =1, (5.3)

i=1
where the r; are the scaling ratios of the contractions S;, ¢ =1...m.

Remark 5.1. If the weights o; are chosen such that g; = rd, fori =1,...,m,
where d denotes the Hausdorff dimension (which, in the self-similar case, is iden-

tical to the Minkowski dimension) of L = supp , then u is simply the normalised

Hausdorff measure on L and the spectral exponent is given by v = #‘ll.
Furthermore, by applying the renewal theorem, it is possible to establish the

following theorem:

Theorem 5.2. Under the assumptions made above, two cases are to be distin-
guished for the asymptotic behaviour of the eigenvalue counting function N¥ (x)

as x tends to infinity:

e The non-arithmetic case:
If the additive group Y. | Zlog (o;1;) is a dense subset of R, then N (x) 27

converges as r — Q.

e The arithmetic case:
If Y Zlog (0ir;) belongs to a discrete subgroup of R, i.e. if Y ", Zlog (o;r;)
hZ for some h € R, then

Np(z) = (G(lnz)+o0(1))x7, as ¢ — oo

holds, where G is a positive, T-periodic function and T the positive generator

of the subgroup.
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Remark 5.3. It must be noted that convergence of N5, (x) 2™ asx — oo does not
necessarily imply the non-arithmetic case. Indeed, even in the arithmetic case,
the function G may be a constant function and thus the limit lim, . N5 (x) can

also exist in this case.

5.2 A physical interpretation

It is possible to give a physical interpretation of the generalised second order
differential equations described in the preceeding section (see for example [60]
or [5]). In order to do this, we start with the well known one-dimensional wave
equation for a string fixed at its endpoints a and b, given as:

Pu(z,t)  plx) P*u(z,t)

92 B oE with u(a,t) = u(b,t) =0,

where u(x,t) is the displacement of the string at the point x € [a,b] at time
t € [0,00), p: [a,b] = [0,00) the linear mass density (mass distribution) along
the string and Fr the constant tension of the string. This differential equation
can be solved by the method of separation of variables if we make the ansatz
u(z,t) = v(x)w(t), so that:

or alternatively:
o(x) 1 w(t)

playo(x) — Fru()

As this must hold for each x and ¢, both sides of the equation have to equal a

constant, denoted here by —\, and thus we have for the left hand side:

respectively
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We can now integrate this equation to obtain:

o(x) — b(a) = —A / " oy)oly)dy
= —A/xv(y)du(y),

with p being the measure induced by the linear mass density p, so that du(y) =
p(y)dy. Using the concepts developed in the preceeding section, we can then state

the eigenvalue problem for the string in the form:

d d d
—0=——v=Alv=—)\v,
du dp dx
respectively
—Afv = \v.

5.3 A physical model

The question now arises on how the kind of string described by a fractal measure
could be approximated. We will solve the model following the pioneering works
of F.P. Gantmacher and M.G. Krein [48], translated in [50]. For this we consider
massless strings of length [ loaded with N beads, obtained according to the con-
struction rules of the corresponding fractal set, as shown in Figure 5.1. At each
level of approximation j, the configuration of the beads induces a measure p;
that is not atomless, but as the total mass is kept constant, these measures will
tend to the desired atomless measure p.

It must be noted, that this is not the best possible approximation in terms of
the resulting quantisation error (see for example [52, 62]). Indeed the best ap-
proximation assigns to each midpoint of the basic intervals of order j a mass 277
instead of the masses 27771 assigned to the two endpoints of these same intervals
by the model used here. However, the chosen procedure has the advantage of
showing the relationship to the type of fractal chains treated in the preceeding

chapters most clearly.
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Figure 5.1: The first three iterations of a beaded string loaded according to the
classical Cantor set construction

Now, let u;(t) denote the transverse displacement of the mass m; at the instant
t. Then the formulas for the kinetic and potential energy of this string under

constant tension o take the form

lez
TZ7Z-

1=

and

| —

331

=0 i

wm

uz+1 9

Sl

where [; denotes the distance between the masses m; and m;,;. Moreover, we

have yo = yy = 0 under Dirichlet boundary conditions. We can expand V' to

poNco (L 1Y s N (]
! 1

lis

obtain
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and

with coefficients:

c (1
=1 (l—) (5.5)
and
m;
C = 7=,
2

from which we can build the mass matrix M:

C1
M —
Cp,
and the stiffness matrix K:
ap  —by
—b a
K — 1 2
_bn—l
| _bn—l Ap |

The Euler-Lagrange equations describe the evolution of this system according to
the differential equation:
Mi + Ku = 0.

Substituting the ansatz
u(t) = sin (wt + 0)

into this differential equation, we find, after simplification, that solutions of this
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form exist, provided that
Ku = w’Mu.

We can convert this into a standard eigenvalue problem by premultiplying with
M2 and postmultiplying with Id = M-:M: :

M KM M3y = w?*Mzu.

By relabelling the variables: D = M’%KM’%, v =Mz2uand A = w?, we arrive

at the standard eigenvalue problem:
Dv = \v.

T
Notice that M~2 = (M_%> , so D is a symmetric matrix. It inherits the

structure of K,

ar —p
B
_671—1

_ﬁnfl Qp

with coefficients; a; = c;a; and §; = —.,/¢;¢;11b;. The eigenvalues can then be

obtained by one of the standard numerical algorithms.

5.4 Numerical spectral asymptotics for measure

geometric chains

A few empirical results on the spectra of two typical examples of measure geo-
metric chains will be presented in this section, as these examples will again be
used in the next section in order to illustrate the use of the techniques developed

therein.
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5.4.1 Example 1: The measure geometric Cantor chain

The eigenvalues for different approximation levels to the measure geometric Can-
tor chain are calculated directly from the corresponding dynamic matrices by
the usual numerical techniques. In Figure 5.2, a normalised eigenvalue counting
function N/ oo (2) = 57 Np (52 55) for the eigenvalues 0 < A (j) < Ao(j) <

(4) AN (
... < An(j)(j) of the 4" approximation of the measure geometric Cantor chain

is depicted and the approximate self-similarity in the resulting spectra is clearly

visible (Note that the curves have been shifted for visualisation purposes). At

ND norm (%)

e j=3; shift: 0.3

1.2
j=4; shift: 0.2
j=b; shift: 0.1

1_
j=6; unshifted

0.8

[y

0.4

0.2

0 xr
0 02 04 06 08 1

Figure 5.2: Normalised eigenvalue counting functions for different approximation
levels j of the measure geometric Cantor chain.



this point, one may thus wonder about the behaviour of the spectral exponent
of the consecutive approximations to the eigenvalue counting function. As an
example, the empirical eigenvalue counting function thus obtained for the j = 7t
approximation to our model of the triadic measure geometric Cantor chain is
displayed together with the prediction from Equation 5.3 and a power law fit in

Figure 5.3. From the graph, it is obvious that the empirical spectral exponent is

1 NCAD

Figure 5.3: N(A) as a function of A for a seventh order measure geometric Cantor
beaded string, blue: power-law fit, green: expectation from Equation 5.3.

larger than expected. Nevertheless it decreases for higher iteration levels towards

the theoretical value vy, = }E% ~ .3868528073. The eigenvalue counting func-

tion was calculated for the first eight approximations, together with power-law
fits to the results in order to determine the spectral exponent. However, due to
the largeness of the involved dynamic matrices, computation time explodes. We
therefore attempt to estimate the spectral exponent for the iteration level j going
to infinity by a fit to the data contained in Table 5.1. Using an exponential fitting
function

Vepj ~ -3842123042¢ 7017 1 4144647159,
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we obtain a spectral exponent of Veyp oo = 4144647159, in excellent agreement
with the numerical data (r? = .9999991155), but notably bigger than predicted on
theorical grounds. Another approach would be to assume that for the iteration
level going to infinity, the theoretical value will be recovered and then fit an
exponential to the differences between empirical and theoretical values, in which
case we obtain

Yeapj — Vin A -3389689479¢ 2108141347

or equivalently:
Yepj A 3868528073 + .3389689479¢ 29108141347

for a correlation coefficient of 72 = .9906972163.

0.6 -Y \
0.55-
0.5
P
0.45 "
-
+
0.4
n
] 4 [ [ 10 12

Figure 5.4: Fits to the empirical value for «y: direct exponential fit (green), by an
exponential fit for yezp; — yin (red).

Taking into consideration the higher correlation coefficient for the direct fit, it
appears likely that the difference between the empirical spectral exponent vezp oo
and the theoretical value 7, is not an artefact but relates to higher terms for the
spectral asymptotics for the eigenvalue counting function not contained in the

theory yet, but it appears premature at this point to make any conjectures.
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Iteration level j H Spectral exp. Yezp,; | Rel. error % Corr. coeff. r?

2 5811456978 1.502239836 9874801293
3 .5241536656 1.354917570 9911948532
4 4868316531 1.258441567 9927419688
5 4621031627 1.194519347 9924434198
6 4457886491 1.152346941 9918004560
7 4350772540 1.124658386 .9912320096
8 4281003266 1.106623291 9908043079

Table 5.1: Spectral exponents and correlations for the second to eight iterations

5.4.2 Example 2: A measure geometric chain with two
different scaling ratios
A straightforward extension of the results for the triadic Cantor set is the applica-

tion of the methods presented to more general sets obtained through an iterated

function system (IFS), as the next example will show.

Figure 5.5: The first four stages in the construction of the Cantor set (above)
and its analogue with two different scaling ratios (below).

We will now consider a set analogous to the triadic Cantor set, but with two

1
3

Furthermore, the mass matrix is not a simple scalar matrix as in the case of the

different scaling ratios r, = % and r, = = instead of r{ = ry = % (see Figure 5.5).

Cantor set. Indeed the weights o; are not identical, but we have o; = (}l)d and
02 = (%)d, with d being the (unique) solution to (}L)d + (%)d = 1, leading to a

more complicated structure of the matrix.

85



1 By

Figure 5.6: N(\) as a function of A for the fifth order measure geometric beaded
string with scaling ratios r, = }1 and ry = %, blue: power-law fit, green: expecta-
tion from Equation 5.3.

Although this set is still self-similar, we are in the non-arithmetic case as de-
tailed above. Thus, we expect a different behaviour of the eigenvalue counting
function, which should converge as 7 = 2@ for ¢ — 0o. The numerical results
are displayed in Figure 5.6 for the eigenvalue counting function of an approxi-
mation to this measure geometric chain, again together with the prediction from
Equation 5.3 and a power law fit. Note that here as well the empirical spectral
exponent is larger than expected, but decreasing for higher iteration levels to-
wards the theoretical value 7, ~ .3591792841, as shown in Table 5.2. A direct

exponential fit to the numerical data leads to:
Yerpj = 3944339298 + 1.397516812¢ 09732305537

and thus a spectral exponent of Yezp o = 3944339298, for a correlation coefficient
of r? = .9971452711, while we obtain through an exponential fit to the differences:

Yexp,j — Vth 1.035154523¢ 51220423445
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Iteration level j H Spectral exp. Yezp,; | Rel. error % Corr. coeff. r?

1

N O U~ W N

7439261802
5564274578
4853204184
4445257935
4195608533
4034406621
3926714797

2.071183426
1.549163558
1.351192677
1.237615345
1.168109832
1.123229206
1.093246457

1.000000000
9904905534
9938516799
.9942803053
9953937077
9964191165
9970909198

Table 5.2: Spectral exponents and correlations for the first seven iterations

or equivalently:

Yerpj A 3591792841 + 1.035154523¢ 01220423447

with a correlation coefficient of 2 = .9845580382.

Figure 5.7: Fits to the empirical value for 7: direct exponential fit (green), by an

0.7

.5

0.4

exponential fit for vz ; — Yin (ved).

The same considerations as for the measure geometric Cantor chain apply in

this case as well; the difference between the empirical spectral exponent and the
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theoretical value probably being not an artefact but possibly related to higher
terms for the spectral asymptotics for the eigenvalue counting function.
Analogously to the measure geometric Cantor chain, the spectrum of the
chain under consideration also displays an approximate self-similarity as shown
in Figure 5.8, but moreover, the influence of the symmetries of the underlying
fractal becomes obvious when comparing the graphs (Figures 5.3 and 5.6) of
the corresponding eigenvalue counting functions in each case. Indeed, as pre-
dicted by the theory, in the case of the measure geometric Cantor chain (i.e. the
arithmetic case) strong oscillations are visible, whereas in the second example

(non-arithmetic case) the graph shows much weaker oscillations.

16{ N j=3; shift: 0.3
1.4 j=4; shift: 0.2
1.2 j=b; shift: 0.1
1 j=6; unshifted
0.8
0.6
0.4
0.2
ol x

02 04 06 08

Figure 5.8: Normalised eigenvalue counting functions for different approximation
levels j of the measure geometric chain with two scaling ratios.
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5.5 The traces of powers of the dynamic matrix

of measure geometric chains

Let {l;(j )}fvz(f ) denote the sequence of lengths separating the masses in our physi-
cal model of measure geometric chains and K; the corresponding stiffness matrix,
constructed as detailed in Section 5.3, where j is the approximation level under
consideration and N (j) the number of masses. Since the stiffness matrix K, of a
measure theoretic chain at any approximation level j is a tridiagonal matrix, it
is easily possible to establish the following quite simple relations for the traces of

powers of the stiffness matrix by careful bookkeeping:

Lemma 5.4. The traces of the stiffness matriz K; of a measure geometric chain

and of its square K? are given by:
Veof(_ 1 _ 1 NG) 1
o tr(K;) =3 ( B0 vy ® T2 20 zim)f and

o)2 N .
o tr(K}) = (%) (4 > <ﬁ) +2 3O s — 3I3(5) - 351%;@)(]));
where N(j) = 271 — 2 is the size of the matriz.

Proof. By the construction rule for the stiffness matrix, the elements a;;(j) on

its diagonal are given by Equation 5.4 and thus:

N(j) 1 1 o 1 1 € 1
Za” B _; (li—l(j) " li<j)) - 2 _lo(j) - lN(j)(j) +2iz:; Li(7)

Furthermore, we have:

J) N(35)

E E azk akz

=1 k=1

As the matrix is symmetric, a; x(j) = ax;(j) and moreover a; x(7) = 0,V|i—k| > 1,
such that:

N(j) N(j) N(j) N(j) N(j)-1
=D > anlDarii) = Y ai,() + Y _ai () + Y ali(
i=1 k=1 i=1 =2 i=1
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we finally obtain:

one [ NG N2 N(j)—1 1
tr(K?) = (= 4 (—) +2 —————— = 315(j) — 3% | »
&) =G) "2 i5) 2 X igmam 0 -
thereby completing the proof of the lemma. O

Although it is possible to continue in this manner, the expressions for higher
powers become very cumbersome. However, the use of only the first two already
allows us to give upper and lower bounds for the trace of all powers of the stiffness

matrix K;:

Proposition 5.5. The traces of powers of the stiffness matriz K; are bounded

from above and from below in the following way:

(%) = (tt:(g))k = (mf(ég)))

with \(K;) denoting the set of the eigenvalues of K;.

Proof. We have:
tr(K¥)
(tr(Kj]))k - 1 tr(Kf) - 1

tr(K;?il) N tr(Kj) tr(K?il) - tr(KJ)
(tr(K;))F+

£’<kv )\(K]))a

where £(-,-) denotes the Lehmer mean [80], defined by:

Z?:l xf

L(p,Azi}iny) = S T
=11
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Thus:
tr(KF) 1 tr(K5 ™)

(K wK) A e

and by induction:

tr(KY) _( 1
(tr(K;))*  \tr(K

Now, as by the properties of the Lehmer mean:

.))k1 Lk, ANK;)) - L(k — 1,AK))) - - £(2, \(K;)).

— £(2.M(K;)) < £(kA(K;)) < £(00,A(K;)) = max(A(K,)), Vk > 2,

(HLAD) 0 (i

or equivalently

(K2 ' te(KE)
((tr(sz) = ()"

INA

R

2

JaX

>

~

o
~_
T

]

The knowledge of the behaviour of the powers of the traces of the stiffness

matrices allows us to give bounds for those of the dynamic matrice D; as well.

Proposition 5.6. The traces of powers of the dynamic matriz D; are bounded

by:

min (¢;1(5)) ’ tr(K2) "' tr(Dh) max(A(D;)) o
<max(c;1(j))> ((tr(Kj)P) S(tr(Dj>>’“§(min(czl(ﬁ)tr(Kj)) ’

where min (¢;'(j)) and max (c; ' (j)) are the minimal resp. mazimal entry of the

corresponding inverse mass matrix M]-’l.
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Proof. As the trace of a product is invariant under cyclic permutations, we have:
_1 _1 11
tr(D;) = tr (M, 7K,M, 7 ) = tr (M M 7K ) = tr (M 'K;)

Now as M; is a diagonal matrix, the trace of (Mj’lKj)k = M;"K¥ is the sum of

the products of the diagonal entries and thus:
min (¢ () tr(K;) < tx(D;) < max (¢ () tr(K;).
respectively

1 1 1
< <
(max (¢; ()" (tr(K))F ~ (t2(D))* ™ (min (¢7'(5)))" (br(K;)"

Y

and
(min (¢;1(7)))" tr(K¥) < tr(D5) < (max (¢ (5)))" tr(KY),

such that:

J

(max (¢;'(5))) (tr(K;)* ~ (tr(Dy))*’
and thus by Proposition (5.5):

(min (ci_l(j)))ktr(K’?) - tr(D?)

<mm<c;1<j>>)’“( (K )S(Hﬂ

max (¢, (7)) )\ (0r(K;) (D))

Although the relations above would also allow to obtain an upper bound, it is
more convenient to use the same approach as in Proposition (5.5) again and use

the properties of the Lehmer mean to establish that:

(DY) (max(A(D)\ "
<tr<Dj>>k§( tr(D) ) |

Then, as

1 < 1
tr(D;) ~ min (cl-_l(j)) tr(K;)’
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we have:

u®h) _( ma(a@)) )
(tr(Dy))* = \ min (¢; ' (5)) tr(K;) 7

which concludes the proof of the proposition. n

From this proposition it is easily possible to derive the following corollary for

the upper bound of the traces of powers of the dynamic matrix:

Corollary 5.7. The following inequality holds:

tr(D¥) ON(j)7 kol N
(tr(Dy))* = (min (¢;(5)) tr(Kj)> , for j — oo,

where N(j) = 2971 — 2 4s the number of eigenvalues, respectively the size of the

dynamic matrix.

Proof. By Equation (5.2), the eigenvalue counting function N/ (z) is monotonously
increasing and fulfils

N§ () < a7, for x — o0,

respectively

2=

z =< (NG (x))7, for z — oc.

Let us now consider the monotonously increasing sequence of the sorted eigen-
values A, then by the definition of Nj(z), NE(\,) = #{k e N| A, <\ } =n,
and thus:

1
Ap <X n7, for n — oo.

Hence, as the eigenvalues are ordered according to their magnitude, max (A(D;)) =

An() and as N(j) — oo for j — oo, we obtain hereby:
max (A(D;)) = An) < N(j)7, for j — oo,

so that
max (A(D;)) < C' - N(j)7, for j — o0,
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for some constant C' and finally, by Proposition (5.6):

tr(DH) CNG) R -
(tr(Dy))* = (min (cl-_l(j)) tr(Kj))  for § = co.

]

5.5.1 Application: Dirichlet eigenvalues of measure geo-
metric strings as zeroes of a generalised trigonomet-

ric function

In a recent thesis, P. Arzt [5] defined analogues of the sine and cosine functions
such that their squared zeroes are the eigenvalues of the measure geometric Lapla-
cian on self-similar sets. In our context of the Dirichlet Laplacian, the function

of interest is the sing-function, defined as:

o

sinq(z) := Z(—l)"q2n+1z2”+1, for z € R,
n=0

where the coefficients ¢, 11 may be obtained through a recursive procedure (de-
tails in [5]). Such an infinite series represents a traditional instrument in the
representation of functions, where their approximation, as well as their termwise
differentiation and integration are classical applications. Although infinite prod-
ucts have also been known and developed for centuries, their usefulness in the
same applications has often been overseen. The two forms share a lot of common
features, but an important difference is the fact that the partial products of an
infinite product representation share the same zeroes with the original function,
whereas the Maclaurin expansion does not; a property that might be crucial in
further applications. Therefore, we will now show that an infinite product repre-
sentation, analoguous to the standard Euler product formula for the sine function,

does also exist for the sinq function.
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Lemma 5.8. The sinq function has a representation of the form:
' — h 12
sina(2) = exp(h(z)= [T0 - )

with h(z) being some entire function and 0 < Ay < Ay < ... the (real) eigenvalues

of the measure geometric Laplacian.

Proof. Indeed, by Weierstraf’s factorisation theorem, such a product representa-

tion converges if the sum
00 kn+1 0o 1 kn+1 00 1 an
r
S(5) (L) ()
n=1 )\TQL n=1 >\1’2L n=1 n

converges for each » > 0 and some k£, € N*. We will show in the following that
the sum converges for k, = 1 (and therefore for all k,, > 1). By Equation 5.2, we

know that
N§ () < a7, for x — o0,

or equivalently
Cl)\% S Ng()\n) § CQ)\z
el < (NEOW)T < 3 M

1 . 1
&) < (Np(A))7 A <3

© (Ngcén)Y <3< ()

O

Thus:




and as by the definition of N5 (z), N5(A,) = n, we obtain

Now, as the Haussdorff dimension d of the fractal sets under consideration is

always d € (0,1) and as we choose the weights in the "natural way” (see Remark

_d_
d+1

fortiori % > 1. Therefore the above sum

5.1 above), the spectral exponent v = < % always satisfies % > 2 and thus a

o0

s 1 1 1 11
Y <G ) <y Z 3
n=1"" n=1 N7 n=1 ’I’L
always converges, which proves the assertion. O]

Although valid approximations to the sinq function may be obtained by both
approaches, - either by the partial products of the infinite product representation
or by the partial sums of the Maclaurin expansion given by P. Arzt -, we will push
our strategy here a little further by the use of the characteristic polynomials of
the dynamic matrices D; as approximations to the partial products in question.
The characteristic polynomial of D; may be written as:

tr(D;)? — tr(D3?)

J )\N73 o

pp,(A) = AN —tr(Dj)AN 2 4 5 e

and thus, conjecturing that exp(h(z)) = 1, the approximation to the MacLaurin

series by:

tr(D;)* — tr(D3)

N—-2
2! AT

sing;(A) :== A pp,(A) = AV — tr(D;) AN +

. N N-—1 N-2
= 7"]',]\[/\ — Tj7N_1)\ +rj,N—2)\ —
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where r; 5 := 1, and the coefficients:

TjN—-1 = tl"(D])

L wDy)? - w(Dh) (D)’ (1 - ﬂ)
PN 2! 2l tr(D,)>2
tr(D;)* — 3tr(D;) tr(D3) + 2tr(D?)  tr(D;)? (1 B 3tr(D?) 2tr(D§?))

TN = 3! T tr(D;)? | tr(D;)?

may be obtained through the Newton-Girard identities, given here in the form of

a determinant as:

T 1 0
T, T, 0
T3 15 T 3 0 0
1
Qk = E T4 T3 T2 T1 0
Tpow Tho Th—z Tp—a --- - k-1
Ty Th1 Tpo Thz Thu -~ T

with k! := 1-2... .-k denoting the factorial of k and the abbreviation T} := tr(D}),
for a fixed j € N.

The zeroes A(D;) of sing;(A) = App,()\) thereby approximate the zeroes of
the sinq function, rapidly gaining accuracy as the iteration level increases. Unfor-
tunately, the coefficients in the Newton-Girard identities rise too quickly, so that
our bounds for the traces of the powers of the dynamic matrix cannot be used
to obtain reasonable bounds on the coefficients of the characteristic polynomial
and the MacLaurin expansion of the sinq function. However, the characteristic
polynomials of the dynamic matrices still provide an efficient way to approxi-
mate the coefficients in the MacLaurin expansion of the sinq function as well as
the eigenvalues of the Dirichlet Laplacian, as will be illustrated in the examples

below.
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5.5.1.1 Example 1: The measure geometric triadic Cantor string

For the measure geometric triadic Cantor string, the coefficients ¢o,,1 are given
in Table 5.3.

n || Gont1 Decimal value of gg,41
01 1

1|3 125

2 || 5 .4952830189...-1072
3 || gomazs .8671703537...-10~*
4 || Gpolises .8315593962...-107F
5 || To3307216090022501320000 4914241197 ... - 107
6 || Srimszz100TI717632658867200000 1931896382 - 1071
7 4521017244919306:‘574324462877495333626729091588205148354189029036608;27516000000 5338783735 - 10_13

Table 5.3: The first coefficients of the MacLaurin expansion of sinq(z) for the
measure geometric triadic Cantor string [5].

The sinqg function is thus given in this case by:

sinq(z) : = Z(_l)n92n+122n+1
n=0
1 21 33253
=z— -2+ ——2° 7

8° T 4240 T 383465600

This function may now be approximated by the characteristic polynomials of
the dynamic matrices D; as exposed above. In Table 5.4, the results of this
approximation procedure are compiled for different iteration levels j, showing an
excellent agreement with the exact values.

Furthermore, the convergence behaviour of the Euler partial products and
Maclaurin partial sums are depicted in Figure 5.9, illustrating the difference be-
tween the two approaches. As expected, the Euler partial products are much

better behaving than the Maclaurin expansion in the sense that much less terms
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n || goni1 (from [5]) [ ron 5
011 1 1

1 .125 12345 .. 12499. ..

2 | .49528...-1072 | .46724...-1072 | .49529...-1072
3| .86717...-107% | .72635...-107% | .86740...-10*
4

)

6

83155...-107% | 53335...-1076 | .83222...-107F
49142...-1078 | 18375...-107% | .49227...-107®
19318...-10710 | 23926...-10"* | .19380...-1071°

Table 5.4: Approximations for the first coefficients in the expansion of sinq(z) for
the measure geometric triadic Cantor string

are needed for an acceptable precision in the determination of the location of the
zeroes. However, it seems that the Maclaurin partial products are superior in
reproducing the precise location of the zeroes, so that both approaches should be
used in a complementary way, see Table 5.5, where the values obtained by the

different procedures are compiled for the first 14 eigenvalues.

"

03\,\//5"

Figure 5.9: Comparison of Euler (green) and Maclaurin (red) expansions with 15
terms of the sinq function for the measure geometric triadic Cantor string with
the exact function (black).
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) Euler expansion Maclaurin expansion

! 15 terms (j=3) ‘ 31 terms (j=4) | 15 terms ‘ 31 terms ‘ A; from [5]
1 14.43255178 14.43762586 14.43524052 | 14.43524052 | 14.43524051
2 35.35117654 35.28609386 35.26023798 | 35.26023798 | 35.26023802
3 139.5766208 140.9112455 140.7409942 | 140.7810639 | 140.7810534
4 150.8057878 151.5317597 151.4033955 | 151.2906053 | 151.2906161
5 329.1786428 327.7153593 264.7423721 | 326.0567532 | 326.0573284
6 361.3572084 355.6811463 - 353.4177464 | 353.4169208
7 722.6493481 871.1442351 - - 876.2744596
8 725.8900454 871.4268943 - - 876.5053185
9 921.5659867 1571.090688 - - 1581.177024
10 || 942.8877239 1613.225029 - - 1619.400729
11 || 1419.506205 2060.242648 - - 2029.613563
12 || 1420.106796 2065.507130 - - 2033.852813
13 || 1493.090646 2349.243103 - - 2268.791634
14 || 1499.601264 2376.048024 - - 2289.604069

Table 5.5: Goodness of appoximation for the zeroes of the sinq function.

For sake of completeness, we will also give our bounds on the traces of the
dynamic matrices here. In the case of the measure geometric Cantor string with
unit length, tension and mass, the traces of the stiffness matrix K;, respectively

its square K7 are given by:

1 . .
tr(K;) :5(8-63—5-3J—3),
respectively
1 . . ,
tr(K?) = — (362 - 18 —255-97 — 102-3/ — 90) .
Thus

tr(K3) _ 905,
(tr(K;))* — 1088

so that the higher powers of the dynamic matrix are bounded (see Proposition
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5.6) from below by:
005 N[ &)\ (D)
(—2_]> < —]2 < —]k, and by:
1088 (tr(K;)) (tr(Dy))

wDy) _( engyr o\
(D) = \min (1() 4(K))

from above (Corollary 5.7), with N(j) = 2/t — 2 and % = }Eg; This can be

simplified even further as in this case the mass matrix is a scalar matrix with
min (¢; ' (j)) = max (¢; ' (j)) = 20+

. In(6) k-l
C (2J+1 _ 2)1!1(2)

tr(D%) g 1502_j k-1
2+2l(s 6 —5-3—3) ) ~\16 ’

(tr(D;))*

<

5.5.1.2 Example 2: A measure geometric string with two different

scaling ratios

For the measure geometric string with two different scaling ratios introduced

above, the coefficients ¢, 11 are summarised in Table 5.6.

n || Decimal value of ga,41[5] | 72 5

0|1 1 1

1 || .1127708838. .. 11202 .. 1277 ...

2 || .3996475470...- 1072 38490 ...-1072 | .39969...-1072
3 || 5979114624 ...-1074 52741...-107% | .59812...-107*
4 | .4716361707...-107° 33249 ...-107% | 47202...-1076
5 || .2228258258...-1078 .83372...-107° | .22318...-1078
6 | .6830278639... 107! 79994 ... - 1071 | 68494 ... - 101

Table 5.6: The first coefficients of the MacLaurin expansion of sinq(z) for the
measure geometric string with two different scaling ratios
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In this case, the sinq function is thus given by:

[e.9]

sinq(z) : = Z(_l)nﬂbnﬂz%ﬂ

n=0

= 2 — 112770883823 + .399647547 - 10722° — 5979114624 - 102" + - - .

Again it is possible to approximate this function by the characteristic polynomials
of the dynamic matrices D, with the results (see again Table 5.6, columns 3 and
4) in excellent agreement with the exact values. The convergence behaviour of the
Euler partial products and Maclaurin partial sums is very similar to that already
observed in the case of the triadic Cantor string as can be seen in Figure 5.10.

Furthermore, the complementary nature of both approaches is also reflected here

in Table 5.7.

Figure 5.10: Comparison of Euler (green) and Maclaurin (red) expansions with
15 terms of the sinq function for the measure geometric fractal string with two
scaling ratios with the exact function (black).

Once more, we state our bounds on the traces of the dynamic matrices here

for sake of completeness. For unit length, tension and mass, the traces of the
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—e

Euler expansion

15 terms (j=

3) | 31 terms (j=4)

Maclaurin expansion

15 terms

31 terms

| Ai from [5]

431.1612225
627.4593717
1273.909249

425.8377868
702.7281198
2025.528203

423.6396377
713.7835520
1916.839156

423.6381570
713.7869861
2013.164883

1] 16.10040819 16.10800303 16.10784937 | 16.10784937 | 16.10784941
2 || 36.00493193 35.92811605 35.90760124 | 35.90760124 | 35.90760106
3 || 126.3184029 128.2017000 128.3304467 | 128.3304456 | 128.3304475
4 || 238.7840729 237.2626229 236.4499727 | 236.4636999 | 236.4636763
5 || 378.5291318 375.4260909 - 373.7010994 | 373.7019294
6
7
8

Table 5.7: Goodness of appoximation for the zeroes of the sinq function.

stiffness matrix K;, respectively its square KJ2 are given by:

1 . . .
tr(Kj):E(14~7]—5-4]—5-3]—4),
respectively
tr(K?) = =50 (12548 - 257 — 1320 - 47 — 1680 - 37 — 5775 -9/ — 5775 - 167 — 1848) .
Thus

Furthermore, as:

and

with v =

d+1

tr(K3)

3773 49\ Y
> — .
(tr(K;))* ~ 3137 (25)

min (¢; (7)) = (37)

max (¢; ' (j)) = (47,

1

d_ ~ 3591792841, and d ~ .5604988652 being the solution of the

Moran equation (i)d + (—)d = 1. Hence, we obtain the following upper and lower

3

bounds for the powers of the traces by Proposition (5.6) and Corollary (5.7):

10C (221 — 2)7

k—1
(37]’(14-7]‘—5-41‘—5-31‘—4)) '

(@) () o
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Through our investigations, we have thus shown the complementarity of our
method to the one used in [5], both approaches being inherently different but lead-
ing to the same results and having their advantages and disadvantages depending

on goal and situation.
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Chapter 6

Conclusion and Outlook

In this thesis, we offer an investigation of discrete respectively finite systems

through the study of the moments of the eigenvalue distribution for fractal chains:

e We introduce a matrix representation of the related Laplacians, thereby

suggesting links to random matrix and graph theory.

e Exact results as well as lower and upper bounds for the moments of the
eigenvalue distribution are obtained for the chains under consideration, as

well as a new criterion for Minkowski-measurability.

e Further extensions are then made to fractal measure geometric Laplacians
in the one-dimensional case, where we show the usefulness of the methods

and techniques developed.

e Euler-expansions of generalised trigonometric function whose squared ze-
roes are the eigenvalues of the corresponding measure geometric Laplacian

are approximated.

e The most unexpected result of this work is the exposition of an important
and fascinating relation between the two, at first glance very different, types
of fractal objects studied; the first class being quite simple structures with
a fractal boundary, the second class having an internal fractal structure
but very simple boundaries (see Figure 6.1). This discovery clearly proves
the efficiency of using the techniques originally taken from random matrix

theory in the area of fractal geometry as a unifying framework.
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Lapidus et al., see for example [74]

Freiberg et al., see for example [38]

al strings

A unifying
framework

this work, Chapter 5 this work, Chapter 3

Fractal chains

Figure 6.1: The unifying framework

partially by the author in [22] and [23]
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Originally unforeseen, our approach revealed itself to be extremely fertile.
Thus, in the course of its writing, this thesis has become not a mere statement
or presentation of results obtained but has evolved into a draft programme for
future research, opening up new ways certainly worth exploring.

We will close this chapter with a non-exhaustive list of thoughts and questions

of interest arising from within this work.

e What sense can be given to the moments of fractal chains without cut-
off in Section 3.2.27 Table 3.3 suggests that the moments of Minkowski-
measurable chains decrease at a much faster pace than those of generalised
Cantor chains. Other types of chains, of Minkowski-measurable and not
Minkowski-measurable type should be investigated, maybe generalising this

observation.

e The connection between the moments of the eigenvalue distribution and
oscillations in the spectrum is not absolutely clear yet. In this context
it appears interesting to find lower bounds for the “Berry-term” in the

moments of Minkowski-measurable chains.

e Are the differences between the spectral exponents 7., and vy, in the
asymptotics of the eigenvalue counting function (Section 5.4) of measure
geometric chains an artefact due to the discretisation or are they indicative

of contributions of higher order terms?

e What lessons could be learned from an investigation of adjacent neighbour

h

or n'"-nearest neigbour spacings of the eigenvalues of measure geometric

chains?

e [s it possible to extend the approach used in the appendix to more complex
chains such as chains with multiple scaling ratios, as we only covered the
case of p being the homogeneous middle third Cantor measure, and can the

bounds on the traces somehow be improved?

e What is the meaning of the growth factor ¢ for the powers of traces suggested
by the results compiled in the appendix? Would it be possible to estimate

its value through numerical experience, thereby potentially allowing us to
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find approximations to the sing-function, or conversely, could it be possible
to recover a power law for the traces from just the knowledge of the first
coefficients in the sing-function? In this context, an investigation of the
asymptotic behaviour of the Newton-Girard coefficients might simplify the
task.

In view of the approximation of the sing-function by the characteristic poly-
nomials of the matrix Laplacians, it would certainly be worth studying the
spectral asymptotics of measure geometric strings corresponding to distri-
butions with known moments. Furthermore, is it possible to deduce the
spectrum of random strings from the knowledge of their statistical param-

eters only?

An in-depth study of fractal-layered chains (see References [22, 23]) should
also be addressed in pursuit of a better understanding of the links (see

Figure 6.1) between the different types of fractal strings.

Is it possible within this framework to establish a direct link between the
two main types of fractal strings, thereby also elucidating the connection
between the arithmetic/non-arithmetic and Minkowski measurable/non-

Minkowski measurable dichotomies?

It would be interesting to apply respectively transfer the techniques and
methods developed here for the one-dimensional case to higher dimensional

settings.

108



Physical modelisation of ordinary and
measure geometric fractal strings

Discretisation / Quantisation of the model
(Fractal chains)

l

Matrix representation of the corresponding Laplacians

Use of methods from
Random matrix theory

Upper and lower bounds for the
traces of the dynamic matrices

l

Moments of the eigenvalue distribution
(with and without cut-off)

Link between
ordinary fractal
chains and measure
geometric chains

Figure 6.2: Explanatory chart of methods and results of this thesis;
strategies, rectangles: methods, diamonds:
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Appendix A: A different

approach for the traces of the

measure geometric Cantor chain

This alternative approach for bounding the traces of the measure geometric Can-

tor chain is inspired by [16].

The matrix Laplacian

In the case of the Cantor measure, the dynamic matrix (the Laplacian in matrix

form) at approximation level j is given by

N

_1 _

where Mj; is a multiple of the identity matrix and K is given by:

2 -10 0 00 0 0 0 0 0 0 0 0]
12 -1 0 0 0 0 0 0 0 0O 0 0 0
0o -1 4 -10o o0 0 0o 00 0 0o 0o
0o 0o-+ 4 -10 0 0o 00 0 0 00
000 0 -1 2-10 0 00 0 0 0 0
00 0 0 -12 -1 0 00 0 0 0 0
K. = 3] 0o o o o -1 7(% 00 0 0 0 0
] oo 0o o o0 o0o-44-10 0 0 0o
000 0 0 00 0 —-12-10 0 0 0
000 0 0 00 0 0 —-12 —-1 0 0 0
0o 0o o o o0 0o o o0o-1%2-1o0 o0
oo 0o 0o o0 o0 0o o o0o0-1%_-10
000 0 0 00 0O 0 0 0 0 -1 2 —1
|0 0 0 0o 00 0 0 00 0 0 —12 |
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The stiffness matrix K; can then be decomposed in two more accessible matrices:

K]' = 3] (Kmain,j + EJ)

- 00 0 0 00 0 0 00 0O 0 00
2 710 0 00 00000 00 0 00 0 0 00 0 0 00 O O 00
-12 -10 0 0 0 0 0 0 0 0 0 O 0o 1 1000 0 000 0 00
0-11 0 0 00 00 0 0 O0 0 O 3 73
00 0 1 —-10 00000 0 0 O 00-3 3 00 0 0 00 O O 00
O 0 0 -1 2 —-10 0O O O O O 0 O 00 O 0O 00 O 0O 00 O 0 00
00 0 0-12 100000 0 0 00 0 0 00 0 0 00 0O 0 00
=3/ 00 00 0-11100 000 0 O + 00 0 o000 4 —Loo o o o0
- 0O 0 0 0 0 0 0 1 —-10 0 0 0 O 00 0 O 00_% é 00 0 0 00
660 0 0 00 0-12-10 0 0 0 00 0O 0 00 0O 0O 00 O O 00
00 00 0 00 0-12-10 00 00 0 0 00 0 0 00 O O 00
00 000 0O O0O0--1120 00 00 0 0000 o0o00i —Loo
000 000 0O 0O 00 1 —-10 00 0 0 000 0 00-1 240
0 00 0707000000 -1 2 —1 000 0000 0000 0 00
00 000 0O 0O 0 0 0 —12
- E 00 0 0 00 0O 0 00 0 0 00|
K'pase O 0 0 0
0 Kpgse O 0 0
— J
=3 0 0 0 0 +E; |,
0 0 0 Kpgse 0
0 0 0 0 K'pase
with
1 -10 0
2 -10 1 -10
-12 -10
/ "
Kiuse i = | -1 2 -1, Kpgse := ,and K'pgee := | -1 2 -1
0 -12 -1
0 —11 0 -12
0 0 -11

The traces of powers of the stiffness matrix

Both matrices K,,q:n; and E; are positive definite, so that by Raleigh’s principle
[95], we have:
tr(KY) > tr(37KE, ;) = 37 tr(KL i ). (1)

main,j main,j

Furthermore, by a result of J. Magnus and H. Neudecker [85]:

main,j

tr(KY) = 37 tr (Kuainy + E;)") <3 (tr(Kk )k + tr(Ef)'lec : (2)
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Now, by simple induction, the trace of E; is given by:

2k (2.3K) —1 2%
ky _
o(E)) = i g gD S 3R

The apparent self-similarity of the matrices K4, ; can then be exploited to ob-
tain the traces of their powers, as they can be expressed through the constituting

submatrices K'pose, K" pase and Kp.se defined above. Indeed:

o tr(K'} ) =tr(K"L ).

base base

The eigenvalues of K'y,,, respectively K”p,. are given by S = 4COSQ(§),

25-3 S-3
= and 5

The eigenvalues of Ky, are given by 4cos2(§) =242, 2, 4sin2(§) =
2 — /2 and 0.

Each of the matrices K4, ; consists of one submatrix K'y,s., one submatrix

K" puse and 2771 — 2 submatrices Kpyge.

Proposition 1. The trace of K*

main,j

is bounded by:

. 328%F 4 41
—1 ok k
9i—1g (1 + g ) < tr (Kmain,j) ,

from below, and by:

tr (K ) <207 (2 + ﬂz)) (1 + 5779%)

from above, where S = 4 cos (%)2 is the silver constant.
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Proof. The traces of K'¥ and K"*

base base
25 —3\" S —3\"
tr(K,lZ@SC):tr(KIIIIfase):Sk+(S—l) +<m)
25 —3 \" S—3 \*
_ Qk
— 5 <1+(—S(S_1>> +(—S(S_2)> >

In order to obtain upper and lower bounds for this expression, we use the contin-

are given by the sums of their eigenvalues:

S—-3

ued fraction expansion of @ and use for example:

328 25-3 329
et gt
687 — S(S—1) — 687

Using the same denominator, we have furthermore:

41 S—3 42
<=t < =
687 — S(S—2) — 687

so that

687k

328% + 41% 329% + 42k
Sk <1 + T_;k) < tr(K/Ilfase) = tr(K”]ljase) < Sk <1 + —+)

k

hase leads to:

Using the same approach for K

k 576% + 168* k 577F + 169*
2 2) 1 207 T L KE ) < (2 2) 1428 T
(2+v2 ( LT )— T(KGe) < (24 V2) {1+ —gg

k

main,j

) = 2tr(K'j,,.) + (271 — 2) tr(K}

base

Finally, by its block-diagonal structure, the trace of K is the sum of the

traces of its submatrices tr(K* ), with

main,j
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tr(K'}

base

) < tr(K§

se) and thus, using the bounds given above:

, 328%F 4 41* . k 577F 4+ 169*
gimigk (14229 TN 4 (KE ) < 9i-l (2 2) 14200 T
( + 687k- ) — r ( mmn,j) —_ + \/Z ) + 985k )

which concludes the proof. O

Note that these bounds are not the best possible, but sufficient here.

Proposition 2.

A A tr (Ek) g
Ftr(KE ) <tr (K¥) <3tr (KE . Y |14+ | —2— ,
( malna]) — ( ]) — ( m(un,j) tr (K]Tcnainhj)
Proof. Using Equations 1 and 2 above, the assertion follows immediately. m

Thus, the following corollary holds:
Corollary 3.

- 28F + 41*
37271 g* <1+38—+) < tr (

68TF r (KJ)

J

and

- k ) k 577F + 169*
tr (Kf) < 37277 (2 + \f(2)> (1 + %2}@) (1 + #) :

Proof. Using the facts that tr(Ef) < g—i? and tr (K’“ ) > 2i-16k (1 + 328k+41k>,

main,j 687F
we have
%
k k 2k 5
<—ti<(kEj) ) < e < %2%

1, o - i1Qk 328k 441k -

! ( mam,]) 21-18 (1 + etk )
and the statement follows immediately from the proposition above. O]

114



Finally, this allows us to formulate the following theorem:
Theorem 4. As the trace of Kf is bounded by:

A 328k  41* , 577F + 169*
1 k k -1 k
2 (14 ) < e <2 (1 2 ),

there exists ¢ € [c1, ¢o], such that for all € > 0, we have:

lim tr (K¥) (¢ — )" = o0, and

k—00

lim tr (Kk) (c+e)f =0

k—o0

Proof. As tr (Kk) is bounded by 27~ 1¢c¥ (1 + 3286;%1 ) from below, we have either

Kk
lim o ( )

[L,
k k
k—o0 2] 1 k <1 328~%+41 >

for some finite a > 0, in which case we set ¢ = ¢y, or

K*
hm tr ( ])

k—oo oi—1 .k 328k 41k
27 101 <1 -+ T

= OQ.

In this case, consider the fact that tr (Kf) is bounded by 297 1c¥ <1 + %)

from above. Then we either have:

tr (Kk)
lim =b,
k=00 91 ok (1 X 577k+169k>

985k
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for some finite b > 0, in which case we set ¢ = ¢, or

tr (K*
lim r( ]) =0

k—00 oi—1 .k 577~k 4169k
217t (1 + o

As we have in this case simultaneously

Kk
hm tr ( J)

k k =
k=00 9j-1ck (1 | 328h441 )

687k

and

k
lim tr (Kj )

k—00 9j—1 .k 577F 41695\
271k (14 Lot

()

there exists a unique point ¢; < ¢ < ¢9, where the value of limy_, ., - jumps

from oo to zero, which concludes the proof. O
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Appendix B: The moments of the
triadic Cantor chain with and

without cut-off: a comparison

We present here a comparison between the moments of the triadic Cantor chain
before and after introducing a cut-off. Recall that a cut-off eigenvalue had to
be introduced in order to allow a direct connection between Cantor chains and
strings. In Section 3.2.2.1, we obtained the general expression for the moments

of generalised Cantor chains as:

—a(m kb2k (ab2k)m+1_1 k
o) ST s ()3 +

M =
N,k (ama+_11_1 (N + 1) o 1) . 92k

Furthermore, in Section 3.2.3.1, we deduced the upper bound:

m T [(k+1) a—>b
a™t —1 kw b ((ab)™ - 1))

ptr (D¥) < (45) <N+1\/%F(k+§) (5 -1

2(a—1)+12(N+1) ab—1
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for the pseudo-traces related to generalised Cantor chains. In the case of the

triadic Cantor chain, a = 2 and b = 3, so that these expressions simplify to:

£y (2neta - 7)) ()5 + 1)

My = (4E (2-3% — 1) ((2n — 1) (N +1)—1)- 22

and

KN (N1 VAT H (1= (™)
> T I'k+1)

N km (6™ —1)
20(N +1)
respectively. Now, normalising the pseudo-traces in the same manner as in Section

3.2.2, we obtain an upper bound for the moments of the Cantor chain with cut-oft:

ptr (Dk)
! PO
My < 22+1(N + 1)
m+1
! K\ (N1 VA (1= ()™
22N +1) \Um ™ D(k+1)

F2m 14

km (6™ — 1)
20(N + 1) )

1 RV TEED (-G oy e o)
(%)

~ o\ ST+l N1 20Nt 1)

Using the fact that (Equation 3.2):

T 1
N=|Z.
{2 arcsin (3(“‘“))—‘ ’
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Figure A.1: Behaviour of My (crosses) and M’y (boxes) as a function of the
iteration level m for different values of k.

and noting that m — oo = N — o0, it is then easy to calculate the limits:

, K\* 3% 2k\ 1
a M =\ ) g\ g ) o
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and

K\*1 T(k+31) 1
lim Mye=(4— ] = (k+3) —
m—00 ’ m ) 2+/ml(k+ 1) 2%
ko (2k
_(EY LG L
m) 2 2% 22
(BN L2 L
S \Um/) 2\ k)2’
2k
where we used the well known fact that % = (2’;,2 Comparing the limits

above for My and Mk, it becomes clear that they are highly similar (see also
Figure A.1). Thus, we conjecture that the moments of the Cantor string are given

by the above limits, up to some factor depending on k:

K\" 72K\ 1
e =) (1) ()
with % < C(k) < 1. However, we must note that the information on the second

term in the asymptotic expansion of the eigenvalue counting function, contained

in the unnormalised pseudo traces, is lost in the process of passing to the limit.
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