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Abstract 

In the past decade, an exciting new theorem, known as Compressive Sensing or 

Compressed Sensing (CS), mathematically establishes that relatively small number of 

non-adaptive, linear measurements can harvest all of the information necessary to 

faithfully reconstruct sparse or compressible signals. This leads to the reduction of 

sampling rates, storage volume, power consumption and computational complexity in 

signal and image processing.  

The thesis develops three different applications of compressive sensing in multimodal 

images. The first application presents an effective multi-image fusion scheme based 

on a Discrete Cosine Transform (DCT) sampling model for compressive sensing 

imaging by taking advantage of the sparsity of the image in the spectral domain. In 

the second application, although the depth images delivered by 3D vision system 

based on Time-of-Flight (ToF) camera provide new perspective, they suffer from 

relatively low spatial resolution in comparison with color images due to the size 

limitation of current 2D pixel array in ToF sensor. Hence, the soft solution (i.e., post-

processing) to increase the spatial resolution deserves to be advocated in comparison 

to high payoff of the hard solution (i.e., hardware improvement). From this point of 

view, the thesis attempts to explore the potential approaches within the framework of 

compressive sensing to enhance resolution of depth image. Regarding the third 

application, a rapid development of related research work with regard to processing 

and analysis of multi-modal image data is urgently desired due to the 2D/3D vision 

system which not only provides 2D view of the scene but also depth information of 

the same scene has become increasingly attractive. Hence, the thesis also attempts to 

explore potential approaches based on CS to sense change in the multi-modal images. 

The work presented in the dissertation is expected to contribute to the related field by 

addressing the following aspects: 

 For multi images fusion, in order to reduce the computational complexity and to 

save storage space, an effective fusion scheme based on compressive sensing is 

presented. 
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 To enhance the lateral resolution of depth image, a novel method is proposed by 

adopting the recent emerging theory of compressive sensing. This approach 

benefits from the finding of the sparsity of depth image, which is different from 

the conventional methods and open a new way for super-resolution reconstruction 

of depth image. 

 In the point of view of the sparsity in image analysis, the thesis presents an 

innovative approach to detect change occurred in multi-modal images. The 

proposed approach mainly focuses on sparse feature pursuit with arbitrary shape 

and reconstruct via matrix decomposition. So far, to our knowledge, matrix 

decomposition has not yet been applied to the multimodal image data. Thus, this 

formulation yields a novel model for this application. 
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Kurzfassung 

Die Forschungstätigkeitenin „Compressive Sensing“ (auch „Compressed Sensing“) 

haben während der letzten Dekade zu sehr interessanten und aufregenden Ergebnissen 

im Bereich der Signalverarbeitung beigetragen.Hierbei kann mathematisch belegt 

werden, daß unter gewissen, aber definierten Umständen, durch einige wenige, nicht-

adaptive und lineare Messungen eine vollständige Wiederherstellung kompressibler 

Signale möglich sein kann. Die Anwendung dieser Technik ermöglicht dann, um 

Beispiele anzuführen,die Verringerung der Signalabtastraten,der Speichervolumina 

zur Sicherung von Daten sowie der Komplexität in Bild- und Signalverarbeitung. 

In dieser Arbeit werden drei verschiedene Anwendungen dieses Forschungsgebiets 

entwickelt und präsentiert. 

Die erste Anwendung zeigt eine Lösung für eine effektive Methode zur Fusionierung 

von Daten auf, die aus Multi-Sensoren-Systemen  stammen(ToF-Kameras), die auf 

einer diskreten Kosinus-Transformation (DCT) basiert.Hierbei wird davon profitiert, 

dass nach der Transformation die Spektraldarstellung der Daten in der neuen Basis 

„sparse“ ist. 

Die zweite Anwendung konzentriert sich auf die Verbesserung von Tiefenbild-

Aufnamen der ToF-Systemen, die durch die Möglichkeit der Aquisitionvon 3D-

Distanz-Daten eine neue Perspektive in die Bewertung solcher Datensätze 

einbringen.Diese Abstandsdatensind üblicherweise von geringererräumlicher 

Auflösung als im Vergleich zu herkömmlichen 2D-Darstellungen. In einem 

nachgelagerten Schritt kann diesem Nachteil durch „Hochrechnen“ der Bildauflöung 

entgegengewirkt werden („soft solution“). Alternativ ist es durch Veränderung der 

Hardwareausstattung möglich, einen ähnlichen Effekt zu erzielen (e.g. Austausch der 

Sensoren mit höherer Auflösung).Im Rahmen des „Compressive Sensing“ werden 

hierbei Wege und Möglichkeiten untersucht, den kostenintensiven Austausch der 

Hardware zu vermeiden. 

Durch die inzwischen kostengünstige und einfache Verfügbarkeit von ToF-Systemen 

istauch der Wunsch entstanden nach einfachen Möglichkeiten, in Bild- und 
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Videoszenen Änderungen (e.g. Objektbewegungen) festzustellen. Eine dritte und die 

damit letzte Anwendung, die in dieser Dissertation untersucht wird,ist damit, 

wiesolche Änderungen in multi-modalen Datensätzenmithilfe des„Compressive 

Sensing“-Frameworksdetektiert werden können. 

Zusammenfassend kann der Beitrag dieser Arbeit damit auf die folgenden Aspekte 

festgelegt werden: 

• Eine Methode, um Daten (Bilder) unterschiedlicher Sensoren einheitlich durch 

„Compressive Sensing“ behandeln zu können, z.B., um Speicherplatz zu sparen oder 

die Komplexität in Berechnung zu reduzieren. 

• Erhöhung der Bildauflösung in Tiefenbildaufnahmen (z.B. von ToF-Systemen, 

wie der MultiCam des ZESS). Dazu wurde eine neue Methode entwickelt, die eine 

der Grundannahmen des „Compressive Sensings“ ausnutzt („sparsity“). Diese 

neuartigeHerangehensweise eröffnet eine Möglichkeit zur Steigerung der lateralen 

Auflösung („Superresolution“). 

• Mithilfe der „sparsity“-Eigenschaft wird eine neuartige Methode präsentiert, 

um Bewegungen in multi-modalen Bildaufnahmen zu detektieren und verfolgen. Die 

Rekonstruktion dieser Eigenschaften geschieht durch die Formulierung (und 

numerischer Lösung) eines zugeordneten Optimierungsproblems unter zuhilfenahme 

der „Lagrange“-Multiplikatoren.Die betreffenden Matrizen beschreiben dabei den 

Hinter- bzw. Vordergrund der Bildszene. So weit wir wissen, wurde dieses Verfahren 

noch nicht auf multi-modale Daten angewendet. 
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1 Introduction 

On one hand, from the point of view of compressive sensing, the research work 

presented in the thesis is an attempt to explore the potential approaches to solutions 

for multi-image fusion and super-resolution reconstruction of depth image, 

respectively; and on the other hand, from the perspective of low-rank and sparse 

matrix recovery, the thesis also attempts to explore the approach to detecting change 

in multimodal image provided by a 2D/3D vision system. 

This is an introductory chapter that outlines the motivation, objective and contribution 

of the thesis. 

1.1 Motivation 

With the rapid development of sensor systems, the information science focuses 

mainly on how the information about the real world is extracted from the sensor data. 

In many cases, a single sensor is not sufficient to provide a complete and fully 

informative perception of the real world. Therefore, multi-sensor fusion has attracted 

a great deal of attention in the past years. Image fusion is a branch of multi-sensor 

fusion and refers to a process of combining relevant information from two or more 

images into a fused image that possesses more information than any of the input 

images. The current image fusion schemes can be classified roughly into pixel-based 

and region based methods. For both of them all the samples of the images have to be 

acquired, which means that the storage burden and the processing challenges must be 

handled especially due to the growing sensor data volumes. Recently, an exciting new 

field, Compressive Sensing (CS), also called compressed sensing or compressive 

sampling, has attracted considerable attention in areas of applied mathematics, 

computer science, and electrical engineering by suggesting that it may be possible to 

surpass the traditional limits of sampling theory. The CS theory exploits the 

knowledge that the signal or image we are acquiring is sparse in some known 

transform domain, which means that the signal or image is compressive. Then the 
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compressive signal may be reconstructed accurately with sub-Nyquist data sampling 

rate from a significantly smaller number of measurements than sampling the original 

signal at Nyquist-Shannon rate. This is a clear and striking advantage compared with 

the conventional signal theory based on the Nyquist-Shannon sampling theory. The 

CS theory can lead to the reduction of sampling rates, storage volume, power 

consumption, and computational complexity in signal and image processing and 

related research fields. Based on the unique advantages that CS theory framework 

possesses, the first topic studied in the thesis is therefore orientated to explore the 

solution for multi-image fusion by using the CS theory framework. 

As a recent development in imaging hardware, the Three-Dimensional (3D) Time-of-

Flight (ToF) cameras has been introduced that use active sensing to capture 3D 

range/depth data at frame-rate as a per-pixel depth. A light source from the camera 

emits a near-infrared wave which is then reflected by the scene and is captured by a 

dedicated sensor. Depending on the distance of the objects in the scene, the captured 

light wave is delayed in phase compared to the original emitted light wave. By 

measuring the phase delay, the distance between the object in a scene and the camera 

at each pixel can be estimated. However, the depth map of the current ToF sensors 

suffers from the limitation in lateral resolution due to the restriction of the range 

sensor and therefore the weakness makes such kind of sensors inefficient for some 

applications in which the High-Resolution (HR) image data is required. Besides hard-

method which increases the size of sensor array, most approaches pay more attention 

to soft-method which is from perspective of algorithms by means of image processing.  

Super-Resolution (SR) is a class of techniques that enhance resolution of image and is 

known as an ill-posed inverse problem. In recent years, the novel theory of CS 

emerged and paved a way to solve the ill-posed inverse problem. Accordingly, the 

second topic studied is orientated to explore an approach to SR problem of depth 

image by putting the SR problem of the depth image into the CS theory framework. 

Detecting region of change in images of the same scene taken at different time is of 

widespread interest due to a large number of applications in the diverse disciplines. 

Important applications of change detection include video surveillance, remote sensing, 

civil infrastructure, and so forth. In spite of the diversity of applications, most work 
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has mainly concentrated on the vision system that only operates a visible spectrum 

camera (e.g. 2D color images) and ignores the other sensor modalities to some extent. 

The combinational utilization of ToF camera and standard color camera has emerged 

recently as an unusual potential to spread due to the fact that on one hand it provides 

color image and on the other hand it delivers depth information between the camera 

and the object in a scene. In recent years, a new monocular 2D/3D imaging system 

called MultiCam [5] has been developed in our research center. Since change 

detection in multimodal image has been becoming more and more attractive for many 

applications, and in the meantime, the mathematic theory in low-rank and sparse 

matrix recovery obtained more attentions from researchers and developed 

dramatically, in view of this, detecting change in multi-modal images via way of 

matrix decomposition and recovery is proposed as the third topic of the thesis. 

In a word, in this thesis, the topics studied respectively are multi image fusion via 

compressive sensing, super-resolution of depth image and change detection in 

multimodal image. 

1.2 Objective of the thesis 

The general objective of this thesis is threefold: 

 The first objective is to use the newly emerged theory of CS to implement multi 

image fusion. 

 The second one is to improve the quality of 3D depth image, especially lateral 

resolution which is the key aspect of depth image. 

 The third one is to investigate an active and of widespread topic in many 

applications, i.e., change detection in multimodal images. 

The methodological goal of the thesis is summarized as the following aspects: 

 To explore a promising method based on the theory of compressive sensing to 

implement multi image fusion. 
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 To provide a promising method based on the basis of framework of compressive 

sensing to enhance the lateral resolution of depth image. 

 To develop a promising method that can go far beyond the fact limit that depth 

image can only play an assistant role to 2D color image in multimodal image 

analysis. It can give exactly estimation of change region instead of the simple 

means via threshold technique. To this end, the thesis presents a sparse feature 

pursuit based approach to exactly reconstruct the region of change in multimodal 

image. 

1.3 Thesis contributions and outline 

The dissertation contributes to the area which is related to multimodal image analysis 

and processing. The main points of contributions can be summarized as the following 

aspects: 

 To implement the multi image fusion, an approach based on the recent emerging 

theory of compressive sensing is proposed. Compared with the traditional 

approaches such as pixel-based and region-based methods which need to acquire 

all the samples of the images and thus results in storage burden and processing 

challenges, the proposed method on one hand leads to the reduction of sampling 

rate, storage volume, and power consumption; On the other hand it opens a door 

to fuse multi image by using the newly emerged theory of compressive sensing 

instead of conventional sampling theory. 

 To enhance the lateral resolution of depth image, a novel method is proposed by 

adopting the theory of compressive sensing. This approach benefits from the 

finding of the sparsity of depth image and open a new way for super-resolution 

reconstruction of depth image. 

 In the point of view of the sparsity in image analysis, the thesis introduces an 

innovative approach to detect change occurred in multi-modal images 

simultaneously provided by 2D/3D vision system in the same scene. The 

proposed approach mainly focuses on sparse feature pursuit with arbitrary shape 
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and reconstruct via matrix decomposition. So far, to our knowledge, matrix 

decomposition has not yet been applied to the multimodal image data. Thus, this 

formulation yields a novel model for this application. 

The thesis is structured into six chapters. We start with an introductary chapter  which 

includes motivation, objective and key contribution. In Chapter 2, we give a 

background review of the compressive sensing theory and its relevant extension. 

Multi image fusion via compressive sensing will be presented in Chapter 3. In 

Chapter 4 super-resolution restruction of depth image in a sparse way will be studied. 

Detecting moving object in multimodal image using a sparse way will be presented in 

Chapter 5. And finally Chapter 6 summarizes this thesis and presents disscussions and 

outlook concerning some points. 
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2 Background 

2.1 Compressive sensing  

For many years, traditional signal processing has relied on the Nyquist-Shannon 

sampling thereom, which states that the number of samples required to capture a 

signal must be determined by the signal‟s bandwidth [8][9]. That is, to reconstruct a 

signal of band-limit, the traditional signal processing approaches sample the signal 

uniformly at a rate which is at least twice the bandwidth of the underlying signal. The 

methods need large storage space to save the measurements, and most often result in a 

waste of resources since the measurements are simply discarded after signal 

compression in many practical applications. An alternative sampling theory, well-

known compressive sensing, turns the Nyquist-Shannon theory on its head and has 

spurred resurgence in the field of sparse signal processing with contributions from the 

applied mathematic, geometric functional analysis, electrical engineering and the 

theoretical computer science communities. The key idea behind compressive sensing 

is to accurately acquire signals from relatively few samples. CS opens up an 

innovated framework to jointly measure and compress signals that allows less 

sampling and storage resources than the traditional approaches based on Nyquist-

Shannon sampling. 

2.1.1 Sparse signal 

The CS theory builds upon the assumption that the signal is sparse under some basis. 

Before getting into the formulation of compressive sensing theory framework, some 

terminologies are first defined as follows: 

 N-dimensional signal 

The dimension of a signal is the indepent components in a signal. Thus, “a vector 

signal is an N-dimensional signal” 1Nmeans a signal is an vector signal. 
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 K-sparse  

K is the sparsity number of a signal. “An N-dimensional signal f  is K-

sparse“ means that among the N components of f , only K of them are non-zero 

and N K  are zero. 

 An orthonormal basis 

An orthonormal basis for an inner product space V  with finite dimension is a 

basis for V whose vectors are orthonormal.  

Consider a real-world, finite-length, one-dimensional, discrete time signal f , which 

can be represented as a 1N   column vector in an N -dimensional space N with 

elements  , 1,2,...,f n n N . Any signal f in N can be represented with a basis of  

1N   vector 
1

N

i i



 as 

1

N

i i

i

f x



.

 
(2.1) 

If the N N  matrix   is used as basis matrix and assumed to be orthonormal, the 

signal f  also can be represented in matrix form, as shown below: 

f x 
, 

(2.2) 

where x  denotes the coefficient sequence of f  using the basis  
1

N

i i


 . 
It is obvious 

that x  and f  are equivalent representations of the same signal with x  in time domain 

and f  in a certain transform domain . 
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2.1.2 Compressive measurements 

y f

In the framework of compressive sensing, measurements are taken not by directly 

sampling the sparse signal but by measuring a few of linear projections of the 

underlying signal. The linear measurements can be modeled as 

, (2.3) 

 1 2,,...,
T

My yy ywhere  denotes the measurements, M N is an 

M

projection 

matrix, and the number of measurements N is far less than the signal dimension 

1 2
 ̂  ̂ ˆ=

T

M     ， ，...,

. 

Let 

f

, then one measurement is supposed to project the signal 

1̂onto 

,̂i iy f

. The inner product can be measured as  

,
 (2.4) 

 1,2,...,i Mwhere 

f

. A reduced sampling rate is achieved if the inner product is 

made in the analog domain. 

With the priori information that  is sparse in some basis

y

, given the linear 

measurements f, the sparse signal ycan be exactly reconstructed from via 

nonlinear optimization.  

M N

However, the inverse problem is a highly underdetermined problem in general since



. To recover the signal with high probability, the projection matrix (also 

called sensing matrix or measurement matrix) must fulfill some properties. A crucial 

factor is the incoherence between the sensing matrix  and the sparsity basis . The 

incoherence means that the orthogonal projection will spread out information of 

sparse (highly localized) signals in the entire projection space and thus makes them 

insensitive to “under-sampling”. ˆ
i That is,  cannot be represented on , and vice 

versa [1][9][11]. 
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Incoherence: 

  
1 ,

2 2

,
= = max

k j

kj N
k j

N


 
  

  ，

The coherence between two matrices is defined by: 

,

 (2.5) 

kwhere 
thkis the row of the sensing matrix 

j, 
thjis the 



row of the orthogonal 

basis 1 N and k. The incoherence property requires that the rows  of 

 j

 

cannot sparsely represent the columns 
 
of , and vice versa. A small means 

the sparse mapping operator will spread out information of sparse coefficients over 

the entire measurement space and therefore make them insensitive to random under-

sampling, otherwise the reconstruction of non-zero coefficients will be biased towards 

certain positions. Compressive sensing is mainly concerned with low coherence pairs 

[2]. The examples of such kind of pairs are: 

The identity matrix and Fourier basis 

Since the fact that 

1

 is the sensing matrix corresponding to the classical sampling 

scheme in the time or space domain. The time-frequency pair obeys and 

therefore has maximal incoherence. Further, spikes and sinusoids are maximally 

incoherent not only just in one dimension but also in any number of dimensions. If it 

is the identity matrix, coefficients are identical to the signal. This allows us to employ 

the numerous powerful sparse reconstruction techniques for spectral estimation when 

the signal itself is sparse in an identity matrix basis in the context of CS [109]. 

The noiselet matrix and Wavelet basis 

2The coherence between noiselets and Haar wavelet is 

N

 and that between noiselets 

and Daubechies D4 and D8 wavelets is, respectively, about 2.2 and 2.9 across a wide 

range of sample sizes [2]. Noiselets are also maximally incoherent with spikes and 

incoherent with the Fourier basis. Since most image data are sparse under a wavelet 

basis, there exists great potential for using the framework of compressive sensing 

theory for image processing [110]. 
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Random matrix and any fixed basis 

The random matrices are the matrices consisting of random vectors that have a flat 

power spectral density and they are incoherent with any fixed basis with coherence of 

about 2log n . The most known examples of such kind of matrices are random 

waveform whose entries are samples of independent and identically distributed (i.i.d.) 

random variables from Gaussian or Bernoulli/Rademacher (random 1 ) distributions 

[83]. 

The incoherence is also related to equivalent property, which is associated with

    , called Restricted Isomety Property (RIP) that generalizes the notion of 

incoherence. The incoherence and the RIP are the bargaining chip to find the unique 

sparse solution.  

Restricted Isometry Property: 

The restricted isometry property is a concept that was introduced by Candes and Tao 

[12] and has been proved to be very useful in studying the general robustness of CS. 

The RIP provides a tool for determining sufficient conditions that guarantees the 

sparse recovery in the presence of noise. The conditions derived based on the RIP are 

deterministic [12], in other words, there is no possibility of failure.  

Assume that ,   meets the RIP of order s if there exists a constant  0,1   

for which  

   
2 2 2

1 1s s          (2.6) 

holds for all s-sparse N . The smaller s is, the better the sparse signal can be 

recovered in the presence of noise. As a matter of fact, the RIP presents that a sensing 

matrix will be valid if every possible set of   columns of   forms an approximate 

orthogonal set and therefore preserves the energy of all vectors having only non-zero 

elements at the same K positions. The examples of matrices that have been proven to 

satisfy the RIP include independent and identically distributed Gaussian random 

matrices, Bernoulli matrices, and partial Fourier matrices [13].  
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As mentioned before, with these conditions including sparsity of signal, and 

incoherence or RIP in hand, to make reconstruction of original signal possible, an 

optimization technique must be used, and this is the topic of the next sub-section. 

2.1.3 Sparse signal reconstruction 

0x

The reconstruction algorithms often rely on an optimization, which searches for the 

sparsest coefficients y that agree with the measurements M. If 

0x

 is sufficiently 

large and 0x is strictly sparse, 0l is the solution to the

0 0
ˆ argmin ..x x st y x 　 　

 minimization: 

.
 (2.7) 

0lHowever, to solve this  minimization is Non-deterministic Polynomial-time hard 

(NP-hard) problem [14]

0l

. Fortunately, the revelation that supports the CS theory is that 

a computationally tractable optimization problem yields an equivalent solution. We 

need to replace the 1l minimization with 

1 1
ˆ argmin ..x x st y x 　 　

 minimization:  

.
 (2.8) 

1lThe optimization problem, also known as basis pursuit [15]

1l

, can be solved by linear 

programming approaches. However, the 

y x

optimization problem requires cubic 

computation in general and therefore the cubic complexity renders it impractical for 

many applications. For this reason, a flurry of research on faster algorithms has been 

motivated and the work has been done to find alternative algorithms that are faster or 

give superior reconstruction performance. 

In practice, the linear projection measurements are contaminated with noise and the 

measurements can be modeled by 

, (2.9) 
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where  denotes zero-mean white Gaussian noise. Then the recovery algorithm must 

consider the effect of noise. Basic Pursuit Denoising (BPDN) was proposed to solve 

such kind of model [3]

2

2 1
min ..x y x st y x   　 　

: 

,
 (2.10) 

 0where 2l is the balance parameter that balances the tasks of minimizing the 

1l

 

norm of the noise and the minimization of the  norm of the sparse signal.  

1lThe 
 norm minimization with the presence of noise can also be formulated as a Least 

Absolute Shrinkage and Selection Operator (LASSO) problem [1]

1
min ..x st x y  　 　　

: 

,
 (2.11) 

where  limits the noise power in the measurements. 

The incomplete collection of the existing algorithms for reconstruction of the signal 

from the measured signal is listed as below: 

 Iterative greedy algorithms such as Matching Pursuit (MP) [84] and its popular 

extensions such as Orthogonal Matching Pursuit (OMP) [18], Regularized 

Orthogonal Matching Pursuit (ROMP) [16], Stagewise Orthogonal Matching 

Pursuit (StOMP) [30], LASSO [85] and Compressive Sampling Matching 

Pursuit (CoSaMP) [17]. 

 Algorithms based on convex optimization methods such as Basis Pursuit (BP) 

[86], Linear Programming (LP) decoding [12], Least Angle Regression (LARS) 

[88] and Gradient Projection for Sparse Reconstruction (GPSR) [89]. 

 Iterative thresholding such as, Iterative Splitting and Thresholding (IST) [90], 

Bregman iterative algorithm and Fixed Point Continuation (FPC) [92][91] and a 

successor of FPC called FPC_AS [93]. 

1l

An incomplete collection of various sparse reconstruction toolboxes have been 

available for solving  norm minimization problem as below: 
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 L1-MAGIC 

Contributions: L1-MAGIC is a collection of MATLAB routines for solving the 

convex optimization programs central to compressive sampling. The algorithms 

are based on standard interior-point methods, and are suitable for large-scale 

problems. 

Download link: http://users.ece.gatech.edu/~justin/l1magic/ 

 SparseLab 

Contributions: SparseLab is a library of Matlab routines for finding sparse solutions 

to underdetermined systems. 

Download link: http://sparselab.stanford.edu/ 

  l1_ls 

Contributions: Matlab implement of the interior-point method for 1l -regularized least 

squares and solves an optimization problem of the form: 

2

2 1
min Ax y x 

.
 

Download link: http://www.stanford.edu/~boyd/l1_ls/ 

 GPSR 

Contributions: a Matlab solver of gradient projection type for convex quadratic 

program. 

Download link: http://www.lx.it.pt/~mtf/GPSR/ 

 SPGL1 

Contributions: a Matlab solver for large-scale one-norm regularized least squares.  

Download link: http://www.cs.ubc.ca/~mpf/spgl1/ 

 YALL1 Group 

Contributions: a MATLAB package for various group/joint sparse recovery problems. 
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Download link: http://yall1.blogs.rice.edu/ 

 YALL1  

Contributions: a MATLAB package for various 1l -minimization problems, using a 

dual alternating direction method. 

Download link: http://yall1.blogs.rice.edu/ 

  cvx 

Contributions: Matlab software for disciplined convex programming. 

Download link: http://cvxr.com/cvx/ 

 FPC  

Contributions: 1l -miminization using iterative shrinkage and continuation. 

Download link: http://www.caam.rice.edu/~optimization/L1/fpc/ 

 FPC_AS (Fixed-point continuation and active set) 

Contributions: an active-set acceleration of FPC. 

Download link: http://www.caam.rice.edu/ optimization/L1/FPC_AS/ 

2.2 Low-rank and sparse matrix decomposition  

Matrix representation of complex systems and models attracting more attentions in 

various areas often have the character that such a matrix consists of a sparse 

component and low-rank component. Practically, it is significantly interesting to take 

advantage of the decomposable character of such a complex system. More recently, 

the extension of CS technique to the recovery of low rank and sparse matrix has 

become a focus of research and is demonstrating a rapidly growing array of important 

applications. In some cases this leads to underlying matrix-based signal model with 

sparsity and low rank. In this section, we briefly examine problem of low-rank and 

sparse matrix decomposition from a theoretical perspective.  
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IThe fundamental mathematic problem is considered that the observation matrix 

F

 is 

represented as the sum of an unknown sparse matrix 

B

 and an unknown low-rank 

matrix I B F , which is described as 

0l

. To exactly recover the two components, 

it is more intuitive to consider applying 


0,

min
BF
rankB F

-norm (i.e., the number of non-zero entries) 

to control the sparsity structure in the matrix and matrix rank to encourage the low-

rank structure, that is: 

,
 (2.12) 

rankwhere 
0
 is the rank of matrix, 0l denotes the -norm of matrix, 

B

 is the non-

negative balance parameter that trades off the rank of matrix 

F

 versus the sparsity of 

matrix 

rankB

. However, the minimization is not directly tractable due to the fact that the 

major difficulty on one hand lies in the non-convexity of 

0l

 and on the other 

hand is that it is extremely difficult to minimize the function of -norm. Hence, the 

decomposition problem of Eq. (2.12) is NP-hard in general and there is no effective 

solution to it. However, a computationally tractable alternative which is recently well-

studied, that is, the convex relaxation is considered to be firstly performed on it. 

:f  Let the function d m , where . The convex hull [20] f of on 

g

is 

defined as the largest convex function  gx fx so that x for all




. The 

nuclear norm or the trace norm rank has been known as the convex hull of the  

[21]

  2
, 1.B rankB B BB


    　

: 

 (2.13) 

1lAnd the 0l-norm is the convex envelope of the -norm [20]

 1 0
, 1.F F F FF


    

: 

 (2.14) 

1lBoth of the nuclear norm and the 

0l

-norm functions are convex but non-smooth, and 

they have exhibited to be effective surrogates of the matrix rank and of the -norm, 

respectively. Therefore based on the heuristic approximations in Eq. (2.13) and Eq. 

(2.14), the highly non-convex objective function in Eq. (2.12) can be relaxed by 



16 

 

rankreplacing 


1

M

ii



 

 with the nuclear norm (i.e., sum of the singular values:

0l) and replacing the 1l-norm with 

1
= ijij
 

-norm (i.e., the sum of the absolute 

values of matrix entries:

1l

), respectively.  

And afterwards the relaxation yields a new convex optimization problem: 

minimization of the nuclear norm and 

1
min ..B F st I B F


  　 　

-norm, as shown in Eq. (2.15). This is the 

tightest convex relaxation of Eq. (2.12). 

.
 (2.15) 

B

Solving this convex relaxation version is equivalent to solving the original low-rank 

matrix approximation problem if the condition that the rank of to be recovered is 

not too large. The key point is how to solve the convex optimization, as expressed in 

of Eq. (2.15). This is a problem of Robust Principal Component Analysis (RPCA), 

several recovery algorithms have been proposed to solve this problem, such as the 

Augmented Lagrange Multiplier Method (ALM) [29], Accelerated Proximal Gradient 

[36], Singular Value Decomposition (SVD) [32], and so on. 

2.3 Chapter summary 

This chapter introduces the background knowledge. It first introduces the key points 

under the theory framework of compressive sensing which include signal sparsity, 

compressive measurements and signal reconstruction. And then the basic introduction 

to low-rank and sparse matrix decomposition is presented.  
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3 Multi-image fusion 

3.1 Related work 

W. Cao et al. [22] proposed Principal Component Analysis Transform (PCAT) and 

Wavelet Packet Transform (WPT) for remotely sensed image fusion. Sveinsson et al 

[23] proposed cluster based feature extraction and data fusion in the wavelet domain. 

Mallat et al. [24] proposed that if the wavelet coefficients undergo a modification like 

coefficient merging or quantization, then the inverse transform preserves this 

modification because the transform is non-redundant. Wen et al. [26] presented the 

relationships amongst image fusion methods and aimed to reveal the nature of various 

methods. Garzelli et al. [25] explained possibilities and limitations to use wavelets in 

image fusion. Leung et al. [27] proposed image fusion techniques using entropy. 

Milad et al. [28] presented a hybrid image fusion scheme that combines features of 

pixel and region based fusion, to be integrated in a surveillance system. 

Regarding image fusion in the framework of CS, one natural way is to fuse the images 

after being reconstructed from the random projections. However, in order to reduce 

the computational complexity and to save storage space, a better way is to directly 

combine the measurements in the compressive domain, and then to reconstruct the 

fused image from the fused measurements. There are several different methods which 

have been proposed in recent years, such as a simple maximum selection fusion rule 

[80] and a weighted average based on entropy metrics of the original measurements 

[81]. 

In image compression, due to its computational simplicity and the fact that the 

spectral coefficients are real numbers, the Discrete Cosine Transformation (DCT) 

rather than the Fast Fourier Transformation (FFT) is widely used to represent a signal 

sparsely. The advantage of dealing with real rather than complex numbers also 

simplifies the algorithmic implementation of compressive approaches conceptually. 
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3.2 Fusion scheme 

3.2.1 Image sparse representation 

Sparse representations of images that have attracted considerable interest describe 

signals based on the sparsity and redundancy of their representations. For a natural 

image, the image data can be mapped to a sparse vector via a sparsifying transform. 

Different types of images have sparse representations under different transforms. 

Real-world images are known to have a sparse representation in the FFT, DCT and 

wavelet transform domain. The digital image “Lena” and its frequency transforms are 

shown in Fig.3.1.  

  

(a) (b) 

  

(c) (d) 

Figure 3.1 (a) Original image. (b) Its FFT on log-scale. (c) Its DCT on log-scale. (d) 

Wavelet coefficients. 

-10

-8

-6

-4

-2

0

2

4

6

8

10



19 

 

In Fig.3.1 (a), nearly all pixels values in the original image are non-zero. However, 

the image tends to concentrate its energy in the frequency domain, where most energy 

concentrates at low frequencies or at a few large coefficients. Fig.3.1 (b) shows the 

FFT of this original image on log-scale with shifting the zero-frequency component to 

the center of the image. The low-frequency components in an image are normally 

much larger in amplitude than the high-frequency components. The DCT relocates the 

compact energy in the upper left corner. Less energy or information is distributed over 

other areas, as shown in Fig.3.1 (c). The image is converted to a sparse vector in DCT 

domain. Most information of the original image is concentrated statistically in just a 

few large coefficients, while most of the high frequency coefficients are either zero or 

close to zero. Similarly, an image can be represented by just a few large coefficients 

in the wavelet transform domain, as shown in Fig. 3.1 (d). Thus, it can be said that the 

image has the sparsity property with a few large coefficients carrying most 

information using some orthogonal basis. 

3.2.2 Sampling 

For the reconstruction of the fused image, we first construct a viable sensing matrix   

which must satisfy the RIP. There are two ways to achieve this: (1) directly construct 

the sensing matrix to follow this property, and (2) reduce the problem to a known 

matrix that satisfies the RIP. Examples are the random Gaussian matrix, the uniform 

Spherical ensemble, Random Partial Fourier matrices, Toeplitz matrix, and so forth.  

The random partial Fourier matrix is used to expand the applicability of compressive 

sensing to large scale data such as 2D images due to the special structure of the 

Fourier transform under the partial Fourier ensemble [82]. Inspired by this work, the 

thesis proposes a sampling model to account for the property of the DCT in the 

frequency domain as shown in Fig.3.2. The DCT relocates the energy of a digital 

image in the frequency domain. Most of the energy of a digital image concentrates at 

low frequencies (upper left corner shown in Fig. 3.1(c)). Hence most information of 

an image can found in the measurements located at the upper left corner of the image 

in the DCT domain. The sampling model contains many radial lines extending from 

the upper left corner to the other side of an image, as shown in Fig.3.2. The 
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measurement matrix then is constructed from the sampling pattern in the 2D discrete 

cosine plane created by using nearest neighbor techniques.  

 

Figure 3.2 DCT based sampling model (zero frequency in the upper left corner). 

3.2.3 Fusion 

For most of the conventional fusion approaches, the image fusion is performed on the 

level of the source images. With the emergence of CS theory, however, the fusion 

progress can be implemented in the compressive domain. That is, we first combine 

the individual linear measurement of multi-input images into a single composite 

measurement, and then reconstruct the fused image from the composite measurement. 

Consider a natural image with the size of n n  pixels, we usually stack the image data 

into a one dimensional column vector f  of length  N N n n   for the purpose of 

simplifying the complexity of the computation, It has already been known that the 

column vector f  is sparse under the orthogonal 2D DCT basis  according to Fig. 
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3.1(c), that is, f x  , where x is the K-sparse coefficients. The measurement vector 

y is then considered as the projection of images onto the column vectors of the 

measurement matrix . Mathematically speaking, the relationship can therefore be 

expressed as ˆy f x x   . 

There are P  images with the same size n n  pixels are supposed to be fused and all 

the images have similar spectral features. Each image matrix is transformed to one 

dimensional column ( 1,2,..., )pf p P . All the vectors have compact representations 

in terms of the significant coefficients in the orthogonal basis. We collect the 

corresponding linear measurements  1,2,...,py p P
 
with length  M M N  in one 

large augmented observation vector of size M P  (rather than N P ). Hence, the 

measurements are not the simple pixel values of the original images any more. The 

fusion among the original images can be considered naturally as the fusion among the 

linear measurements of  1,2,...,py p P , which contain the important information 

reflecting the image texture. 

Multi-Scale wavelet decomposition shows remarkable advantages in the 

representation of a signal. In the fusion scheme, we apply a single-level one 

dimensional Daubechies wavelet transform to decompose the linear measurement 

vectors into two components: the approximation coefficients  1,2,...,pA p P and 

the detail coefficients  1,2,...,pD p P . As the larger a coefficient is, the more 

information it carries, a weighted mean is applied to incorporate the contributions of 

all inputs so that data elements with a high weight contribute more to the weighted 

mean than elements with a low weight. The fused approximation coefficient A  and 

detail coefficient D  can be formulated as: 

1

P

p p

p

A A



,

 
(3.1) 

1

P

p p

p

D D



, 

(3.2) 
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pwhere 
pand 

1 1

,
p p

p pP P

p p
p p

A D

A D

 

 

 

 
　

are the weighting factors corresponding to approximations and 

details, respectively, and defined as 

.

 
(3.3) 

yConsequently the fused linear measurement 

f

 is obtained through the inverse 

discrete wavelet transform. This is a process by which components can be assembled 

back into the original signal without loss of information. Finally, the one dimensional 

column vector 

y

 of the fused image is reconstructed from the fused linear 

measurement  via the recovery algorithm total variation minimization. 

3.3 Experimental results 

In this section, we perform two groups of comparisons for the performance evaluation 

to illustrate the effectiveness of the proposed approach. In the experiments all the 

input images have the sparsity property in the 2D discrete cosine transform domain. 

The fused images are reconstructed from measurements. In the work, we compare the 

proposed scheme with the maximum selection fusion rule proposed in [80] and the 

block-based weighted average fusion rule presented in [81]

512512

. 

In the first group, the comparison is performed on a pair of multi-focus images with 

size of  pixels. We take the classical “Lena” image as a reference image, as 

shown in Fig. 3.3 (a). We artificially produce a pair of out-of-focus images, as shown 

respectively in Fig. 3.3 (b) and Fig. 3.3 (c). Blurring is accomplished by using a 

Gaussian low-pass filter. The fusion results using the maximum selection fusion, 

weighted average fusion and our method are shown in Fig.3.3 (d), (e) and (f), 

respectively.  

In the second group, multi-modal medical images are used as input. The first one is a 

Computed Tomography (CT) image shown in Fig.3.4 (a) and the other one is a 

Magnetic Resonance Image (MRI), see Fig.3.4 (b). The fusion results using the 
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maximum selection fusion, weighted average fusion and our method are shown in 

Fig.3.4 (d), (e) and (f), respectively. 

It is well known that assessing image fusion performance in a real application is a 

complicated issue. In many cases qualitative criteria such as visual analysis is used to 

assess the fusion result. However, a more accurate and reliable evaluation is to 

combine visual assessment based on a subjective qualitative analysis with a parameter 

assessment based on an objective quantitative analysis. To evaluate our proposed 

algorithm perceptually is first conducted, and afterwards we use several quality 

measures to compare its results to previous approaches. 

3.3.1 Perceptual quality evaluation 

Perceptual evaluation mainly assesses the visual quality of the fused image by means 

of observing and contrasting details. Based on a visual comparison, the fusion results 

of the proposed method shown in Fig.3.3 (f) contain most of the details of the 

individual input images shown in Fig.3.3 (b) and Fig.3.3 (c). On one hand the image 

shown in Fig.3.3 (f) looks smoother than image in Fig.3.3 (d), on the other hand it is 

clearer than Fig.3.3 (e).  

With regard to the visual comparison of the second group, the fusion result of 

proposed method shown in Fig.3.4 (e) contains more information than the input 

images in Fig.3.4 (a) and (b). Fig.3.4 (e) has more details than Fig.3.4 (c), whereas 

Fig.3.4 (e) has a higher contrast than the image in Fig.3.4 (d). For a comparison of the 

image details the enlarged fusion results for all methods are shown in Fig. 3.5. 

This approach outperforms the method of maximum selection fusion and weighted 

average fusion when judging the perceptual quality of the fusion results for both 

image sets. 
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Figure 3.3 (a) Reference image. (b) Focus on the left part. (c) Focus on the right part. 

(d) Fusion result using maximum selection. (e) Fusion result using weighted average 

(f) Fusion result of proposed method. 
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Figure 3.4 (a) CT image. (b) MRI image. (c) Fusion result using maximum 

selection. (d) Fusion result using weighted average. (e) Fusion result of proposed 

method. 

 

Figure 3.5 Images in zoom in view. (a) Fusion result using maximum selection. (b) 

Fusion result using weighted average. (c) Fusion result of proposed method. 
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3.3.2 Objective quantity evaluation 

In general, there are a few quality measures that are commonly used to evaluate image 

fusion results: image entropy, mutual information and average gradient. 

(a) Image entropy (IE) 

Image entropy is a statistical measure of randomness that can be used to characterize 

the texture of the input image. For an 8-bit single channel image, the image entropy is 

defined as: 

255

2

0

logi i

i

H P P


 
.

 (3.4) 

where iP
 
is the probability of gray level i in the evaluated region and it is 

approximately given by 

i
i

f
P

N


,
 (3.5) 

where if  
is the frequency of gray level i  and N  denotes the total number of pixels 

in the image. The higher the value of the image entropy is, the more textural 

information is contained in the fused image. 

(b) Mutual information (MI) 

Mutual Information is often used to evaluate image fusion quality. Let the joint 

histogram of source image  A B and the fused image F  be     , ,FA FBp f a p f b . 

Then the mutual information between the source image and the fused image is given 

by 

   
 

   
2

,

,
, , log

FA

FA FA

f a F A

p f a
I f a p f a

p f p a


,

 (3.6) 
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   
 

   
2

,

,
, , log
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f b F B

p f b
I f b p f b

p f p b


.

 (3.7) 

The image fusion performance can be measured by: 

   , ,AB

F FA FBMI I f a I f b 
,
 (3.8) 

where larger values imply better image quality. 

(c) Average gradient (AG) 

The average gradient is a measure of contrast in a photographic image. It is sensitive 

to reflect the image of the tiny details contrast. It is commonly used to evaluate the 

clarity of image. We use average gradient as a criterion for image fusion quality. The 

greater the average gradient value is, the sharper is the image. It can be calculated as: 

   
22

1

2

x yI I
g

n

  
 

,
 (3.9) 

where n  is the size of the image, xI and 
yI are the differences in horizontal and 

vertical direction, respectively.  

The performance assessments of the fusion results shown in Fig.3.3 and Fig.3.4 based 

on the defined criterions (i.e., IE, MI and AG) are listed in Tables 3.1 and Table 3.2. 

Experiment 1 

Regarding the “Lena” image shown in Figure 3.3 (a), for the purpose of comparing 

mutual information parameter in detail, we calculate not only the mutual information 

between the fused image and the individual image, but also the mutual information 

between the fused image and the original reference image as listed in Table 3.1. FAI  

denotes the mutual information between the fused image and the source image A, 

while FBI  is the mutual information between the fused image and the source image B. 

MI is the sum of FAI  and FBI . FRI  is the mutual information between the fused image 
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and reference image. We present here the value using two decimal places in the Table 

3.1. 

Table 3.1 Quantitive evaluation of the multi-focus images shown in Fig.3.3. 

Methods 

Performance Evaluation Measures 

IE 
FAI  FBI  MI 

FRI  AG 

Proposed method 7.12 2.75 2.85 5.60 3.03 2.86 

Maximum 

selection 
7.10 2.40 2.57 4.97 2.81 3.59 

Weighted average 6.99 2.68 2.71 5.39 3.02 2.21 

  

It can be seen from Table 3.1 that the proposed method outperforms the other 

methods in terms of IE and MI, which means that the fusion result of proposed 

method contains more details than those of the other methods. The visual comparison 

above also suggests that the fusion result of proposed method is superior to the result 

of the maximum selection method and clearer than the result of the weighted average 

method, though the average gradient value for the maximum selection method is a 

little bit larger than that for proposed method. Overall, based on the visual comparison 

and comparison using objective measures, we can draw the conclusion that proposed 

method achieves better performance than the other two methods. 

Experiment 2 

Regarding the medical image, we only compare the three performance assessment 

measures (IE, MI and AG), since we do not have the reference image. The results are 

shown in Table 3.2. It can be seen easily that proposed method performs better than 

the other two methods when comparing the IE and MI results in Table 3.2. Taking the 

visual analysis into account, we conclude that proposed method outperforms the 

methods of maximum selection fusion rule and average gradient fusion rule. 

Thus, by considering the qualitative analysis and the quantitative evaluation it is 

concluded that the results of the proposed fusion scheme are superior when compared 

to the maximum selection fusion rule and the weighted average fusion rule. 
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Table 3.2 Quantity evaluation of multi-modal images in Fig.3.4. 

Methods 

Performance Evaluation Measures 

IE MI AG 

Our 

Method 
6.9763 5.2867 5.1054 

Maximum 

selection 
6.6992 5.1544 6.5336 

Weighted 

average 
5.8196 3.7439 3.0164 

3.4 Chapter summary 

Compressive sensing provides a novel framework to acquire and reconstruct a signal 

or digital image from sparse measurements acquired at sub-Nyquist sampling rate. In 

this chapter, an effective image fusion scheme based on a DCT sampling model for 

compressive sensing imaging is presented first. A sparse sampling model according to 

the DCT-based spectral energy distribution is proposed. The compressive 

measurements of multiple input images obtained with the proposed sampling model 

are fused to a composite measurement by combining their wavelet approximation 

coefficients and their detail coefficients separately. The combination is done by 

applying a weighting operation for every sampling location according to the statistical 

distribution. Furthermore, the fused image is reconstructed from the composite 

measurement by solving a problem of total variation minimization. The computational 

complexity decreases due to the fact that the proposed scheme only needs incomplete 

measurements rather than acquiring all the samples of the whole image. Moreover, 

although our method performs the fusion in the sparse domain, it preserves much 

richer texture information of the individual input images compared with other fusion 

schemes. Experiments demonstrate the promising performance of the proposed 

approach. 
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4 Super-resolution of depth image 

4.1 Range/Depth imaging 

The conventional image sensors such as CCD/CMOS measure the intensity or color 

image (2D image) information of the scene. 2D images are of limited use in terms of 

estimation of surfaces due to lack the depth information of the scene and therefore 

pixel values are indirectly related to surface geometry.  

In the past years the range imaging technology became more and more attractive to a 

growing research community due to that it is powerful to provide range information 

(depth map). The technology collects mainly range values between the imaging sensor 

and the points of the object in a scene.  

Range images that are also referred to as depth images, depth maps, xyz maps, surface 

profiles. Range images are a special class of digital images in which each pixel 

expresses the distance between a known reference frame and a visible point on object 

surface in the scene. In general, range images can be represented in two basic forms. 

The one is a matrix of depth values of points along the directions of the x, y image 

axes, which makes spatial organization explicit. The other one is a list of three 

dimensional (3D) coordinates in a given reference frame (cloud of points), for which 

no specific order is required. Thus, a range image can reproduce the 3D structure of a 

scene. 

Range images are acquired with range sensors. A range imaging sensor is any 

combination of hardware and software capable of producing a range image of a real-

world scene under appropriate operating conditions. It collects large amounts of 3D 

coordinate data from visible surfaces in a scene and can be used in a wide variety of 

applications. It is a unique imaging device that is sometimes referred to as a range 

camera in which the image data points explicitly represent scene surface geometry as 

samples points. The optical range imaging sensors normally used in computer vision 

can be classified into two categories: active and passive. The active ones transmit 
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some form of energy into a scene to receive a return signal that allows determining 

ranges. While instead of project any form of energy into a scene, the passive ones use 

naturally present light to obtain range data in single shots or multi-frame grabs and 

work similarly to single-lens-reflex or film cameras. Many different technologies can 

be used to build 3D scanning devices, to some extent each technology more or less 

comes with its own limitations, advantages and costs. Some of different techniques 

are presented as the following: 

Structured light 

It is a non-contact active triangulation technology for 3D range measurement. 

Structure light 3D scanning is about determining the 3D structure of a scene based on 

the distortion of the projected pattern. Structured light 3D scanner is a device for 

measuring the 3D shape of an object using projected light patterns and a camera 

system. It projects a pattern of light on the subject and looks at the deformation of the 

pattern on the subject. The pattern is projected onto the subject using either an LCD 

projector or other stable light source. A camera, offset slightly from the pattern 

projector, looks at the shape of the pattern and calculates the distance of every point in 

the field of view [112].   

As the principle shown in Figure 4.1 [75], projecting a narrow band of light onto a 

three-dimensionally shaped surface produces a line of illumination that appears 

distorted from other perspectives than that of the projector, and can be used for an 

exact geometric reconstruction of the surface shape (light section). A faster and more 

versatile method is the projection of patterns consisting of many stripes at once, or of 

arbitrary fringes, as this allows for the acquisition of a multitude of samples 

simultaneously. Seen from different viewpoints, the pattern appears geometrically 

distorted due to the surface shape of the object. Although many other variants of 

structured light projection are possible, patterns of parallel stripes are widely used. 

The figure shows the geometrical deformation of a single stripe projected onto a 

simple 3D surface. The displacement of the stripes allows for an exact retrieval of the 

3D coordinates of any details on the object's surface [75] [76]. 
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Figure 4.1 Triangulation principle shown by one of multiple stripes 

The main advantage of structured-light 3D scanners is speed and precision. Instead of 

scanning one point at a time, structured light scanners scan multiple points or the 

entire field of view at once. Scanning an entire field of view in a fraction of a second 

generates profiles that are exponentially more precise than laser triangulation. This 

reduces or eliminates the problem of distortion from motion. Some existing systems 

are capable of scanning moving objects in real-time. However, depending on the 

specific applications, the main drawbacks of this technology include missing range 

data at region of the scene which are not visible to the light projector and are visible 

to 2D camera or vice versa [61]. A real-time scanner using digital fringe projection 

and phase-shifting technique (a various structured light method) was developed to 

capture, reconstruct, and render high-density details of dynamically deformable 

objects (such as facial expressions) at 40 frames per second [62].  

Stereoscopy 

Stereoscopy, sometimes called stereoscopic imaging, is a passive technique for 

creating or enhancing the illusion of depth in an image by means of stereopsis for 

binocular vision [113]. The basic technique of stereoscopy is to present offset images 

that are displayed separately to the left and the right eye. Both of these 2D offset 
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images are then combined in the brain to give the perception of 3D depth. A typical 

approach of stereoscopy is computer stereo vision in which two cameras are displaced 

horizontally from each other, while another are used to obtain two differing views on 

a scene, in a manner similar to human binocular vision. By comparing information 

about a scene from two vantage points, the relative depth information can be extracted 

in the form of disparities which are inversely proportional to the differences in 

distance to the objects.  

There are two main problems to conduct in stereo vision: 

 The correspondence problem 

Given two or more images of the same 3D scene, taken from different points of 

view, the correspondence problem is to find a set of points in one image which 

can be identified as the same points in another image. To do this, try to match 

points or features from one image with the same points or features in another 

image. In this problem, the disparity map can be computed when the 

corresponding points are known. 

 The reconstruction problem 

Then a 3D map of the scene is then reconstructed from the disparity map. 

The stereo vision system has the advantages of being safe for human, they are cheap, 

there is in principle no limit to the distance that can be measured, and there is no 

interference. However, the main drawbacks include it has no range data in a uniform 

region, unavoidable triangulation errors, objects not appearing in image data of vision 

cannot be measured and difficulty to solve the occlusion problem [65]. 

Laser Pulse Rangefinder  

The range finding using pulsed lasers is an active approach based on Time-of-Flight 

principle for measuring the distance of objects in the scene. As shown in Figure 4.2 

[67], it typically consists of a laser pulse transmitter, the necessary optics, two 

receiver channels and a Time-to-Digital Converter (TDC). The pulse laser emits a 

short light pulse which starts the time measurement in the receiver. As soon as the 
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pulse reflected from the object reaches the photo detector the time measurement is 

stopped. The elapsed time between start and stop pulse is used in TDC to compute the 

distance to the reflector [63] [64]. 

 

 

Figure 4.2 Principle of a pulsed time-of-flight laser rangefinder 

Due to the high speed of light, this technique is not appropriate for high precision sub-

millimeter measurements, where triangulation and other techniques are often used. 

The main drawback of laser range finders is their long acquisition time which is due 

to the scanning process. The output of laser range finders are point clouds which are 

not directly usable in most of 3D applications and therefore they should be converted 

to 3D models or range images which is itself a time consuming process. 

Time of Flight 

Recently the sensors had been developed that acquire distance information based ToF 

principle and for which distance errors based on different causes can be observed. 

There are several technologies present for range imaging such as the PMD working 

on modulated, incoherent infrared light or by using the depth imprint of an emitted 

light pulse by fast shuttering.  

Range imaging in a 3D ToF camera is the fusion of the distance measurement 

technique with the imaging aspect. It consists of an optical transmitter and an optical 

receiver. The principle of the range measurement in a ToF camera is based on the 

measurement of the time that the light needs to travel from a target to a reference 
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point, a detector. This so-called Time of Flight is directly proportional to the distance 

the light travels.  The basic ToF principle is shown in Figure 4.3 [114]. 

 

Figure 4.3 Basic Time-of-Flight principle. 

 

In its most simple form, a light pulse is transmitted by a sender unit and the target 

distance is measured by determining the turn-around time that the pulse travels from 

the sender to the target and back to the receiver. If we use T  to denote the echo time 

and c  be the speed of light, with knowledge of the speed of light, the distance can 

then easily be calculated as Eq. 4.1. 

2

T c
D




.
 

(4.1) 

In the work, we use a 3D ToF camera based on the Photonic Mixer Device (PMD) 

exploiting phase shift measurement. The entire scene is illuminated with modulated 

light. PMD technology allows us to observe this illuminated scene with an intelligent 

pixel array, where each pixel can individually measure the turnaround time of the 

modulated light. Typically this can be done by using continuous modulation and 

measuring the phase delay in each pixel [34].  

We use a modulated light signal f as a light source. With four samples 1A , 2A , 3A and

4A , each shifted by / 2 , the strength of the received signal (also termed as 
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modulation amplitude) s  and the gray scale value g are respectively formulated as Eq. 

(4.2) and Eq. (4.3) [35].  
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To calculate the phase delay  , the autocorrelation function of the electrical an 

optical signal is analyzed by a phase-shift algorithm, we calculate the phase delay by 

using 
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Knowing the phase shift to each pixel on the sensor, the sensor directly measures the 

distance 
pixelD  to the captured object [35]:  
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 (4.5) 

Advantages and Limitations of 3D Range Imaging 

Many researchers have found advantages and limitations of range imaging prototype 

sensors and especially the influence of an ambient environment. 

Some of the advantages of 3D range image cameras are: 

 Delivering range, amplitude and intensity maps in one frame at the same time 

 Capturing static and dynamic scenes 

 Ease of use at day and night 

 Insensitivity to background light changes in indoor environments 
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 Reasonable price 

While currently the main limitations to 3D range imaging cameras are: 

 Low lateral resolution 

 Ambient environment influencing measurements 

 Noisy range data from poorly reflecting surfaces 

As 3D range imaging cameras have their own strengths and limitations, lots of 

approaches have been proposed to combine sensors of difference modality in order to 

take advantages of more sensors and perform in an optimal way.  

4.2 Related work 

3D depth sensing is a key component of many machine vision systems. Among 

existing technologies, a new kind of camera developed in recent decade measures the 

time-of-flight of infrared light between camera and object in a scene to reconstruct 3D 

scene geometry at real-time frame rates, largely independently of scene texture. 

However, being a relatively young technology, the state-of-the-art ToF sensors have 

not enjoyed the same advances with respect to spatial image resolution, image quality, 

and acquisition speed, which have been made in traditional 2D CCD image sensors. 

In consequence, current ToF sensors provide depth readings of comparably low image 

resolution (e.g. typically 64 48 up to 204 204 pixels for the PMD based 3D ToF 

cameras). And therefore the ability to capture not only good quality but also high-

resolution depth image is desired. Attempts have been made to enhance the resolution 

of depth map.  

The depth accuracy of ToF sensor can be increased by a variety of methods, e.g. by 

accounting for ambient light [98], simulating the shape of the reflected signal [99], 

and applying time gated super-resolution [100]. While these methods improve 

resolution in the depth direction, they are not directly related to improving resolution 

in X-Y plane. Increasing the number of pixels per unit area (i.e., reduce the pixel size) 

by sensor manufacturing techniques is an option to capture High-Resolution (HR) 
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depth image. However, to some extent, it is difficult due to physical constraint. 

Another approach for enhancing the X-Y resolution of image is to increase the chip 

size, which leads to an increase in capacitance. The high cost for high precision optics 

and imaging sensors is also a significant concern in a lot of commercial applications 

regarding HR imaging.  

Another way to address the problem is to use signal processing to post process the 

captured images, to trade off computational cost with the hardware cost. These 

techniques are specifically referred as Super-Resolution (SR) reconstruction. The 

major advantage of the signal processing approach is that the existing low-resolution 

imaging systems can be still used and therefore apparently it may cost less in 

comparison with physical approach mentioned before. SR of depth image can be 

broadly categorized into two classes: (1) approach with help of high-resolution color 

image; (2) approach based on only depth map.  

(1) Approaches with help of high-resolution 2D image 

Super-resolution of depth image has been accomplished by the operation of fusion or 

combination with a high resolution color image acquired in the same scene from the 

same location. A common up-sampling recipe enforces heuristics between depth and 

intensity images, It relies on the co-occurrence of depth and intensity discontinuities, 

on depth smoothness in areas of low texture, and careful registration for the object of 

interest. The low resolution depth map can be up-sampled and regularized subject to 

an edge consistency term concerning color image. An approach that put this idea into 

practice was proposed by Diebel et al. [43]. They fused depth maps of a laser range 

finder with intensity maps of a color camera by defining the posterior probability of 

the high-resolution reconstruction as a Markov Random Fields (MRF) and optimizing 

for the Maximum-A-Posterior (MAP) solution. Following the similar way, Kopf et al. 

[44] proposed an alternative fusion method called joint bilateral up-sampling. Their 

algorithm utilized a modification of the bilateral filter, an edge-preserving smoothing 

filter for intensity images [46]. The bilateral filter locally shapes the spatial smoothing 

kernel by multiplying with a color similarity term, as known as the range term, which 

yields an edge-preserving smoothing filter. Kopf et al. capitalized on this adaptive 

smoothing capability and bilaterally up-sampled a low-resolution tone mapping result 
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such that it matches the resolution of a multi-megapixel intensity image. Recently, 

Crabb et al. [50] applied bilateral upsampling to range data captured by a time-of-

flight camera in order to do real-time matting. Yang et al. [45] also proposed an 

upsampling technique based upon a bilateral filter. However, they rather used the high 

resolution image to create a cost volume to which they apply a standard bilateral filter 

than used a joint bilateral technique to link the two images. This required them to run 

a 2D bilateral kernel over multiple slices of a volume. Park et al. [49] improved on 

these results with better image alignment, outlier detection and also by allowing for 

user interaction to refine the depth. Incorrect depth estimates can come about if 

texture from the intensity image propagates into regions of smooth depth. The joint 

bilateral filter performs edge-preserving smoothing to a low resolution depth map 

with assuming the occurrences of edges are highly correlated between the dept map 

and the color image. Although these approaches can reproduce high frequency detail, 

they incorrectly supposed that color is correlated with depth. This could lead to 

difficulties with colored textures and when a true depth discontinuity is invisible in 

the color channel.  

Markov Random Field 

The first successful attempt to up-sample depth values to match the resolution of a 

color image was based on Markov Random Field (MRF) that used color information 

from a color image, and depth map where available [43]. The terms of the MRF 

energy function attempt to enforce depth smoothness, but allow for depth 

discontinuities across color borders. The belief underlying the method is that areas of 

constant color are most likely areas of constant depth. Hence, the depth at any given 

pixel is mostly similar to that of its neighbors that are within the same color boundary.  

A posterior probability of each pixel value in a high-resolution depth map is defined 

as  |P H L , where L  is the vector of the observed pixel values plL ‟s in a low 

resolution depth map and H denotes the vector of the random variables for the pixels 

values plH ‟s in a high resolution depth map. According to Bayes‟ rule,  |P H L  can 

be denoted as the product of the likelihood probability  |P L H  and a priori 
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probability  P H . Therefore an optimal HR depth map can be obtained by finding 

the configuration of H  which maximizes  |P H L . 

Maximum a posterior probability can be obtained by minimizing the following energy 

function 

     E H D H V H 
.
 (4.6) 

The data penalty function  D H  makes 
plH  and 

plL  similar, and can be expressed as 
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The smoothness function  V H  is defined as  
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where  N p  denotes the neighborhood of p and  is constants. The smoothness 

function basically enforces 
pH and 

qH to be similar each other. However, in the cases 

of large differences of 
2

p qC C  in a color image, the smoothness term becomes 

small and therefore preserves the edges in the depth image by admitting different 

values of 
pH  and 

qH . 

Joint Bilateral Upsampling (JBU) 

The bilateral filter is an edge preserving smoothing filter which adaptively changes a 

spatial kernel for smoothing based on the intensity differences of an input image [46]. 

The output value of the filtering at a pixel is computed as the weighted average 

intensity for the neighboring pixels. However, the intensity difference between a pixel 

and its neighboring one controls the weight for averaging and therefore the edges can 

be preserved while the non-edge regions are smoothed.  
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As it is known, the Joint Bilateral Filter (JBF) is a modified version of the bilateral 

filter. It employs a LR depth map and a HR color image together to up-sample the 

depth map. The up-sampling techniques based on JBF assume the occurrences of 

edges between depth and color images are highly correlated [44]. The filtered value 

qH at the pixel p in a HR depth map can be denoted as  

   
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p q p q

qp

H L f p q g C C
k





   
,

 (4.9) 

where 
pk is a normalizing term.   is the neighborhood of p . 

qL  denotes the pixel 

value at q in a LR depth map. p and q  are the pixels in a LR image which 

correspond to the pixels p and q in a HR image, respectively. 
pC and 

qC  are the 

pixel values at p and q  in a HR color image.  f  and  g  are the weights of the 

spatial term and the range term, respectively, which are 2D Gaussian kernels with 

different means and variances. The spatial term is assigned a large weight when 

p q  becomes smaller. Thus, 
pH is basically the average intensity for the 

neighboring pixels resulting in a smoothing effect. However, the range term performs 

smoothing adaptively in the up-sampled depth image using the information of color 

image. 

(2) Approaches based on only Depth Map 

Interpolation-based methods for single depth image 

Interpolation has been widely used in many image super-resolution applications due 

to the fact that it is simple and easy to implement. Interpolation-based methods 

generate a HR image from its LR version by estimating the pixel intensities on an up-

sampled grid [47][48]. However, this method tends to blur the high frequency details. 

Most generally, the simplest up-sampling techniques use nearest-neighbor, bilinear, or 

bicubic interpolation to determine image values at interpolated coordinates of the 

input domain. Such increases in resolution occur without regard for the input‟s 

frequency content. As a result, nearest-neighbor interpolation turns curved surfaces 

into jagged steps, while bilinear and bicubic interpolation smooth out sharp 
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boundaries. Such artifacts are hard to measure numerically, but can be perceptually 

quite obvious both in intensity and depth images. 

Methods based on multiple depth images: 

The SR problem traditionally focuses on fusing multiple LR observations to 

reconstruct a higher resolution image [51]. Schuon et al. [52] applied combination of 

multiple LR depth images with different camera centers in a framework of 

optimization which is designed to be robust to the random noise characteristics of ToF 

sensors. In order to reduce the noise in each individual depth image, Yang et al. [45] 

composited together multiple depths from the same viewpoint to make a “single” 

depth image for further super-resolution, and Rajagopalan et al. [96] used an MRF 

formulation to fuse together several low resolution depth images to create a final 

higher resolution image. Fusing multiple sets of noisy scans has also been 

demonstrated for effective scanning of individual 3D shapes [56]. Hahne et al. [54] 

combined combine depth scans in a manner similar to exposure-bracketing for high 

dynamic range photography. Using Graphics Processing Unit (GPU) acceleration, 

Izadi et al. [55] made a system which registers and merges multiple depth images of a 

scene in real time. 

4.3 Proposed strategy 

4.3.1 Analysis of problem model  

The SR algorithms attempt to generate a single HR image from one or more LR 

images of the same scene. The goal is to reconstruct the high-frequency missing 

information in one way that approximates the desired HR image as closely as possible. 

There are both single-image and multiple-images variants of SR multiple-images 

based SR algorithms utilize the sub-pixel shifts between multiple low-resolution 

images of the same scene [57]. They create an improved resolution image by fusing 

information from all LR images. However, how to recover missing information from 

a single LR image is more interesting and challenging. That is to say, the problem of 

single-image SR is particularly important because in our application only a single, LR 
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depth map is available and the up-sampling technique must be applied as a post-

processing. It is our goal to obtain high-resolution depth map of a static scene despite 

the significant noise in the raw data. We enhance X-Y resolution of depth image and 

meanwhile reduce the overall random noise level by performing SR technique.   

The first step to comprehensively analyze the SR image reconstruction problem is to 

formulate an observation model that relates the original HR image to the observed LR 

images. In the process of recording a depth image, there is a natural loss of resolution 

caused by the optical distortions, motion blur, and insufficient sensor density [101]

f

. 

Thus, the recorded image denoted by 

I

 usually suffers from effects of warping 

denoted by G, blurring denoted by D and down-sampling operators denoted by 

g

. In 

addition, assuming that LR image is corrupted by additive noise 

k k k k ky IDGf  

, then the problem 

model can be observed as: 

 (4.10) 

kwhere 
thk

 
denotes the  LR image observed from the recorded HR image. The 

common observation model is shown in Figure 4.4.  

 

Figure 4.4 Problem model relating LR image to HR image. 

I

Considering that the depth images are obtained after the processes of distortion 

correction and noise removal and in consequence  is an identity matrix, the problem 

model can be represented as: 
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(4.11) 
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 and the observed LR image as

 1 10 1C C . If the parameters  2 20 1C C  and 

1 2M N N 

respectively represent the down-sampling factors in the problem model for the 

horizontal and vertical directions, it comes out 1k. In the situation of

1k

, 

the problem model is considered to be based on multiple-images. While in the 

situation of , it is considered as the SR image reconstruction model based on 

single image which is expressed as Figure 4.5.  

 
Figure 4.5 Problem model relating LR image to HR image. 
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In such case, the problem model can be shown as 

. (4.12) 

M

The goal of SR approaches is to reconstruct the unknown, desired HR image from the 

known, observed LR images. Mathematically speaking, the SR issue is an inverse 

problem. As it is obviously observed, the size of LR image 

N

 is less than that of HR 

image M N, i.e., 

y

. This SR issue is also an extremely ill-posed problem since 

for a given LR image f, there exist infinitely many HR images meet the 

reconstruction constraint. In order to solve the ill-posed inverse problem, one needs to 

have some prior knowledge on the kind of typical images of interest. The prior 

information should help reconstruct the missing information.  

Sparsity prior: 
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Sparsifying Transform: Natural, real-life images are known to be sparsely 

represented in the transform domain (e.g. wavelet, DCT and FFT domains). The 

wavelet transform is a multi-scale representation of the image which is usually used in 

Joint Photographic Experts Group (JPEG)-2000 image compression standard. Coarse-

scale and fine-scale wavelet coefficients respectively represent the low resolution 

image components and the high resolution component. Each wavelet coefficient 

carries both spatial position and spatial frequency information at the same time. While 

the DCT and FFT are usually used for the JPEG image compression standard and 

Moving Picture Experts Group (MPEG) video compression, and it is of course can be 

utilized to sparsely represent images. 

The sparsity of depth image: The transform sparsity of images can be demonstrated 

by applying a sparsifying transform to an image and reconstructing an approximation 

to the image from a subset of the largest transform coefficients. The sparsity of the 

image is the percentage of transform coefficients sufficient for evaluating 

reconstructions of image qualitatively and quantitatively. For purpose of illustration, 

the depth image is respectively transformed by the sparsifying transform of wavelet, 

DCT and FFT, respectively, as shown in Figure 4.6. As it can be observed that a depth 

image is highly sparse when represented by wavelet transform, DCT and FFT. This is 

not an unreasonable since the depth map is a digital image by coding the distance 

between the sensor and the object point of the scene. 

For instance, the wavelet transform consists of recursively dividing the image into its 

low-frequency and high-frequency components. The lowest frequency components 

provide a coarse scale approximation of the image, while the higher frequency 

components fill in the detail. As most coefficients in the wavelet transform of the 

depth image are zero or very small, one can obtain a good approximation of the image 

via its K-sparse representation by setting the very small coefficients to zero. 
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(a) (b) 

  
(c) (d) 

Figure 4.6 Sparse representation of a depth image via sparsifying transforms. (a) Original 

image. (b) Wavelet representation. (c) DCT representation. (d) FFT representation. 

With the fact that the image SR reconstruction is an ill-posed inverse problem and the 

image sparsity prior in place, we put this problem model into the framework of 

compressive sensing as the recently emerging inversion theory which provides a great 

tool for solving the ill-posed inverse problem.  

4.3.2 Compressive sensing model 

The theory of compressive sensing states that, a signal can be exactly recovered from 

a small number of random linear measurements if it is sparse in some basis through 

non-linear optimization [1][11].  

Signal sparsity:  In a typical framework of compressive sensing, signal sparsity is 

significantly emphasized as the strong prior knowledge and vital prerequisite. That is, 
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a signal vector
Nf   can be sparsely represented by the form f x  , where 

N N denotes an orthonormal basis , and Nx satisfies
0

x K , 
0
  is 0l  

norm, which means the number of its non-zero values, and K N . 

Random measurements: Due to the sparsity of f  is relative to the orthonormal 

basis , it is not necessary to sample all N  values of f . Instead, the CS theory 

establishes that f  can be recovered from a small number of projections onto an 

incoherent set of measurement observations [1][11]. To measure y , we compute 

M N  linear projections of f  via the matrix-vector multiplication as Eq. 4.13. 

y f , (4.13) 

where M N is the sensing matrix or the measurement matrix. Further, the 

compressive sensing model is expressed as 

y f x  . (4.14) 

As aforementioned in Chapter 2, the sensing matrix   that fulfills the RIP includes 

i.i.d. Gaussian random matrices, Bernoulli matrices, and partial Fourier matrices [13]. 

An alternative approach to stability is to ensure that the sensing matrix is incoherent 

with the sparsifying basis . 

Signal Reconstruction algorithm: 

Besides the request of the conditions that a signal can be sparsely represented in a 

transform basis and the sensing matrix satisfies the RIP, the framework of 

compressive sensing depends as well as mainly on the reconstruction algorithms in 

terms of accuracy and speed. The incomplete list of reconstruction algorithms 

collection is shown in Section 2.1.3. 

4.3.3 Super-resolution modeling via compressive sensing  

By comparing the problem model with the CS model, we observe that the similarity 

between them is the inverse and ill-posed problem (i.e., both of them attempt to 
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estimate the desired high-dimensional signal from the observed low-dimensional 

signal). Initially, it seems not possible to solve since the M  samples of y  yield a 

N M  dimensional subspace of possible solutions for the original f that would 

match the given observations. However, the sparsity and the incoherence play a 

crucial role in solving ill-defined inverse problem. With a sensing matrix with random 

coefficients, Candes and Tao [9][12][13] and Donoho [11] proved that the inverse ill-

posed problem can be solved for signals having a sufficiently sparse representation in 

some basis. The remarkable result offers a crack to the non-possibility and opens a 

door to recover high-resolution signals from a few randomized linear measurements. 

It is not an unreasonable assumption since the depth map is a digital image by coding 

the distance between the sensor and the object point of the scene and a digital image 

usually can be sparsely represented in a transform basis. We consider using the 

wavelet basis as the sparsifying basis   to highly sparsely present the depth map 

since wavelet basis is very good at sparsely representing the image data. 

Sparse representations 

Signals or images carry overwhelming amounts of data in which relevant information 

is often more difficult to find than a needle in a haystack. Processing becomes faster 

and simpler in a sparse representation where few coefficients reveal the information 

we are looking for. Such representations can be constructed by decomposing signals 

or images over elementary waveforms chosen in a family called a dictionary. The 

discovery of wavelet orthogonal bases has opened the door to a huge jungle of new 

transforms. Adapting sparse representations to image properties is therefore a 

necessary survival strategy.  

An orthogonal basis is a dictionary of minimum size that can yield a sparse 

representation if designed to concentrate the signal energy over a set of few vectors. 

This set gives a geometric signal description. Efficient signal or image compression is 

then implemented with diagonal operators computed with fast algorithms. Typically 

Fourier and Wavelet bases are usually used as transform bases for sparsifying signals 

and images. They decompose signals over oscillatory waveforms that reveal many 

signal properties and provide a way to sparse representations. Fourier and wavelet 
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transforms illustrate the strong connection between well-structured mathematical tools 

and fast algorithms.  

In the work, we use wavelet basis to sparsify the images as wavelet transforms have 

advantages over traditional Fourier transforms, especially because local features can 

be described better with wavelets that have local extent. A wavelet is a mathematical 

function used to divide a given function into different frequency components. A 

wavelet transform is the representation of a function by wavelets, which represent 

scaled and translated copies of a finite-length or fast-decaying oscillating waveform 

(known as the "mother wavelet"). Wavelet analysis represents a windowing technique 

with variable-sized regions and allows the use of long time intervals where more 

precise low-frequency information is needed, and shorter regions where high-

frequency information is necessary. Wavelet bases reveal the signal regularity through 

the amplitude of coefficients, and their structure leads to a fast computational 

algorithm. Wavelet bases are well localized and few coefficients are needed to 

represent local transient structures. A wavelet basis defines a sparse representation of 

piecewise regular signals, which may include transients and singularities. In images, 

the large wavelet coefficients are located in the neighborhood of edges and irregular 

textures. 

Inspired by the original ideas developed in computer vision by Burt and Adelson [102] 

to analyze images at several resolutions, Meyer and Mallat established the systematic 

theory for constructing orthonormal wavelet bases through the elaboration of multi-

resolution signal approximations [105].  

Wavelet for images 

The principle of the wavelet decomposition is to transform the original raw image into 

several components with single low-resolution component corresponding to low 

frequencies or smooth parts of an image called approximation and the other 

components which represent the high frequencies called details, as shown in Figure 

4.7. After applying bi-orthogonal low-pass wavelet in horizontal and vertical direction, 

and sub-sampling each image by a factor of two for each dimension, the 

approximation component can be extracted. The details are obtained by applying low-
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pass filter in one direction and a high-pass in the other direction, or alternatively a 

high-pass in both the directions. The noise is mainly presented in the details 

components. A higher level of decomposition is implemented by repeating the same 

operations on the approximation [53]. 

 

Figure 4.7 Wavelet decomposition of a 2D image. 

aA 2D image can be considered to be a matrix with b rows and  columns. The 

horizontal data is filtered at every level of decomposition, and then the approximation 

and details that produced from this are filtered on columns. Thus, at each level the 

four sub-images that are the approximation, the vertical detail, the horizontal detail 

and the diagonal detail are obtained. Likewise, the next level decomposition can be 

made via decomposing the approximation sub-image. The multilevel decomposition 

of an image is as shown in Figure 4.8. 

  

Figure 4.8 Multilevel (3 level) wavelet decomposition of an image. 
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Wavelet orthonormal bases of images can be constructed from wavelet orthonormal 

bases of one-dimensional signals. Three mother wavelets  1 x ,  2 x , and  3 x , 

with   2

1 2,x x x  , are dilated by 2 j and translated by 2 j n with   2

1 2,n n n  . 

This yields an orthonormal basis of the space  2 2L  of finite energy functions

   1 2,f x f x x : 

 
2

,

, ,1 3

1 2

2 2

j
k k

j n j j

j n k

x n
x 

   

   
  

      .

 (4.15) 

The support of a wavelet 
,

k

j n is a square of width proportional to the scale 2 j . 2D 

wavelet bases are discretized to define orthonormal bases of images including N

pixels. Like in one dimension, a wavelet coefficient ,, k

j nf  has a small amplitude if 

 f x is regular over the support of
,

k

j n . It has a large amplitude near sharp 

transitions such as edges. The following figure is the array of N wavelet coefficients, 

as shown in Figure 4.9. Each direction k and scale 2 j corresponds to a sub-image, 

which shows in black the position of the largest coefficients above a threshold: 

,, k

j nf T  . 

  

(a) (b) 

Figure 4.9 (a) Discrete image. (b) Array of orthogonal wavelet coefficients. 
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Wavelets Overview 

The essence behind wavelets is to analyze arbitrary signals according to its scales in 

frequency domain. Hence, it is a type of multi-resolution analysis. Wavelets are that 

the functions which are defined over a finite interval. They are obtained from a single 

prototype wavelet called mother wavelet by dilation and translation at different 

positions and on different scales. An arbitrary signal can be represented as a linear 

combination of such wavelet, or basis functions. 

Haar wavelets

 0,11

 

The Haar wavelet is the basis of the simplest wavelet transform. And it is the only one 

that has an explicit expression in discrete form and the only symmetric wavelet in the 

Daubechies family as well. Haar wavelets are related to a mathematical operation 

called Haar transform, which serves as a prototype for all other wavelet transforms. 

The Haar basis is obtained with a multi-resolution of piecewise constant functions. 

The scaling function is hn. The filter 

1/22

 has two non-zero coefficients equal to 

0nat 1nand 


1 0 1/2

1 1/2 1

0

t

t t

otherwise





 



　 if  

　if　　

　　　 

. Haar constructed a piecewise constant function which is the 

so-called one-dimensional Haar wavelet: 

.

 (4.16) 

Haar wavelet transform only provides non-redundant representation of the signal 

since the Haar basis is an orthogonal basis. The 2D Haar wavelet is an extension of 

one-dimensional Haar wavelet. For image processing, the standard 2D Haar wavelet 

transform can be implemented as one-dimensional Haar wavelet transform applied on 

rows of image followed by another one-dimensional Haar transform applied on the 

columns of the transformed image [102]. 

Daubechies wavelets 
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Daubechies wavelets are a family of scale functions that are orthogonal and have 

finite vanishing moments (i.e., compact support) [90]. This property insures that the 

number of non-zero coefficients in the associated filter is finite. The Daubechies 

wavelet transforms are defined in the same way as the Haar wavelet transform by 

computing the running averages and differences via scalar products with scaling 

signals and wavelets.  

Besides Daubechies wavelets, there exist some other mother wavelets families such as 

Symlet, Coiflet, Biortogonal and Reverse biorthogonal wavelet are also used for many 

applications.  

Sensing matrix  

As discussed before, the problem of super-resolution reconstruction is formulated as 

the model expressed as 

y DGf  (4.17) 

and the compressive sensing model as 

 y f . (4.18) 

If we suppose to put the problem model into the compressive sensing model, it has to 

make DG  , which means the sensing matrix is constructed by the combined 

operators of down-sampling and blurring. The RIP indicates that if every set of the 

sensing matrix columns with cardinality less than the sparsity of the signal of interest 

is approximately orthogonal, the signal can be exactly reconstructed with high 

probability. The entries of such sensing matrix can be taken from Gaussian 

distribution, symmetric Bernoulli distribution, etc. The Gaussian smoothing operator 

is usually used to “blur” images and remove detail and noise. The blur version of the 

desired HR image can be described as:  

blurf Gf
.
 (4.19) 
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1G F GF


We consider the Gaussian filter as a multiplication of a Gaussian function in the 

Fourier domain, as expressed in Eq. 4.20. 

, (4.20) 

Fwhere 1Fdenotes the 2D Fourier transform matrix and 

G

is the inverse Fourier 

transform matrix, 

1DF GF


denotes the diagonal matrix whose diagonal elements 

correspond to the Gaussian function and elsewhere is zero. The sensing matrix is then 

expressed as 

. 
(4.21) 

1y DF GFx
 

And the super-resolution problem can be modeled in the framework of compressive 

sensing as the following: 

. (4.22) 

yIn this formulation, fis regarded as known LR image and  as unknown HR image. 

Signal reconstruction 

yWith this formulation in hand, given a LR depth image

1

1
ˆ argmin ..x x st y DF GFx

  　 　

, we design a sensing matrix 

which consists of random down-sampling operator and Gaussian filter to meet the RIP 

and apply signal reconstruction algorithms to solve the optimization problem: 

.
 (4.23) 

x̂Then the HR depth image can be reconstructed from the sparse representation

ˆf x

, as 

expressed in Eq. 4.24. 

. (4.24) 
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4.4 Experimental results 

In this section, we demonstrate the experimental results of two image samples to 

evaluate the performance of the proposed method. For the first test sample, we first 

directly apply the Gaussian low-pass filter operator and decimation operator to the 

original HR image in order to obtain the LR image. We adopt the proposed approach 

on the observed LR image to reconstruct the desired HR image. The reconstructed HR 

image is compared with the original HR image using the compared methods include 

perceptual quality evaluation and quantitative evaluation.  For the second test sample, 

we would like to directly apply the proposed method to obtain the HR depth map, 

since only with the LR depth image as the measurement observations in hand instead 

of HR depth image. 

4.4.1 Simulated results 

Since the real depth map suffers from both lower resolution and high noise, in the first 

test sample we use a standard grayscale image which often is used in image 

processing community to evaluate the performance of the proposed method. We first 

use the wavelet transform with „haar‟ at level 2 to decompose the original image, as 

shown in Fig.4.10 (b). The original image shown in Fig.4.10 (a) exhibits the highly 

sparsity under the wavelet basis. With the sparsity property in hand, we then blur it 

with the Gaussian low-pass filter and obtain a sub-sample version with down-sample 

mask, as shown in Fig.4.10 (c).  

 

Figure 4.10 (a) The original HR image. (b) Wavelet decomposition. (c) The LR image. 
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The images are up-scaled with various algorithms for comparison purpose. As shown 

in Fig.4.11 we compare the results of our method with the standard approaches: 

bilinear interpolation and bicubic interpolation. 

 

Figure 4.11 (a) SR result via ‘bilinear’ interpolation. (b) SR results via ‘bicubic’ 

interpolation. (c) SR result via the proposed method. 

From perceptual point of view, the result of our method performs better than the other 

approaches with regard to sharper details. For example, one can observe the 

cameraman‟s eye in the image reconstructed by the proposed approach. In the 

meanwhile, we evaluate the results with Peak Signal-to-Noise Ratio (PSNR), the most 

widely used objective image quality metric. However, an interesting result is that the 

PSNR value from the proposed method is lower than the other methods. As we have 

known, the PSNR value does not perfectly correlate with a perceived visual quality 

due to the non-linear behavior of the human visual system.  

4.4.2 Real depth image  

The depth map (i.e., Fig.4.12 (a)) used in this work was 204 204 pixels in size with a 

bit depth of 8 bits. It was captured from the PMD camera within the MultiCam 

monitoring a natural scene with a man walked in the field of view of the camera. 

However, a big difference from the first test sample is that we directly apply the 

proposed method to the depth map instead of the down-sample version of HR image 

due to the fact that only LR depth map is available. We analyze the sparsity of the 

original LR depth map in wavelet domain. As we can observe from Fig. 4.12 (b), it 

can be sparsely represented in wavelet transform at level 2. Likewise, it is not non-
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reasonable that the desired HR depth map is also sparse in the wavelet domain. With 

the precondition in hand, we therefore can invoke the super-resolution method via 

compressive sensing framework: first apply the Gaussian low-pass filter and then 

point down-sample mask to the desired HR depth map. With y as the given LR depth 

map, we compute the sparse coefficients under the wavelet basis  and afterwards 

reconstruct the desired HR depth image using the equation of f x  .  

 

Figure 4.12 (a) Original LR depth map. (b) Wavelet transforms. 

For the clarity, we use a part of the results from interpolation and the proposed 

methods. The part of the original LR depth map is shown in Fig.4.13 (a). The results 

are shown in Fig.4.13 (b) and (c), respectively. As it can be seen, the proposed 

method produces the smoother and clearer edge than the other methods. And 

meanwhile we should also note that the proposed method not only enhances the edge, 

but also implements the function of noise removal to some extent. Therefore, the 

proposed method produces a better performance. 
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Figure 4.13 (a) Part of Original LR depth map. (b) SR result via ‘bilinear’ interpolation. (c) 

SR result via the proposed method. 

4.5 Chapter summary 

We discuss the main range measurement techniques and advantages and 

disadvantages including structured light, stereoscopy, laser pulse range finder and 

Time of Flight. We also study the problem model of depth image super-resolution and 

compressive sensing theory model and develop the super-resolution signal model via 

the framework of compressive sensing by the comparison and observation of the both 

models. The depth map is sparsely represented under the wavelet basis. As shown in 

the results, the „haar‟ wavelets at level 2 we used for compression worked well in the 

standard gray-level image, while the „db‟ wavelets at level 2 worked well in the depth 

image. We suppose that there might be better-suited wavelet basis for the sparsifying 

basis. The sensing matrix is designed with the multiplication of a point down-sample 

mask and a Gaussian low-pass filter and it is sensitive to the choice of the sparsifying 

basis according to the RIP, which means it seems there still exists better sparsifying 

basis such as complex wavelets for sparse representation. In the meanwhile, the 

random point down-sample mask can be used to improve the effectiveness of the 

proposed method. In addition, the reconstruction algorithms also play an important 

role for the result. The other recover algorithms would be interesting to explore.  
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5 Sensing change in multimodal images 

Sensing regions of change in multiple images of the same scene taken at different 

times is of widespread interest and critical element due to a large number of 

applications in diverse disciplines. Some of important applications include video 

surveillance, monitoring, remote sensing, civil infrastructure and so forth. According 

to various applications, the researchers pay more attention to the processing steps and 

core algorithms.  

In this chapter, an overview of previous work concerning change detection in images 

will be given. Then we study and discuss the proposed sparse feature based approach, 

followed by experimental results. 

5.1 Multimodal image 

5.1.1 2D/3D vision system 

In order to take the advantage of different modal sensors, the combinational use of 

multimodal sensors has been becoming a tendency in the recent research work. Many 

researchers have worked on the related field and proposed some important sensor 

combinations. Generally speaking, a 2D/3D vision system denotes the combinational 

use of 2D vision sensor and 3D range sensor. A brief overview of combinational use 

of them is given as below. 

 Combinational use of ToF camera with 2D color camera.  

Ghobadi et al. in [38] used the combined 2D camera and 3D ToF camera for analysis 

of the personnel safety in man-machine cooperation and in [37] they utilized 2D/3D 

images for hand segmentation. Van den Bergh et al. [71] combined RGB and ToF 

cameras for real-time 3D hand gesture.  

 Combinational use of ToF camera and stereo vision systems 
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Netramai et al.[73] combined PMD and stereo camera for motion estimation of a 

mobile robot. Hahne et al. [74] combined ToF camera and on-demand stereo for 

depth imaging.  

 Combinational use of laser rangefinder with a standard 2D camera system.  

Klimentjew et al. [66] used a perception system which consists of a camera and a 3D 

laser range finder do multi sensor fusion for object recognition. Joung et al. [69] 

proposed a system which reconstructed the environment with both color from 2D 

camera and 3D information from a laser range finder.  

 Combinational use of a stereo vision system with a laser range finder.  

Aliakbarpour et al. [68] presented a new and efficient method to perform the extrinsic 

calibration between a 3D laser range finder and a stereo camera with the help of 

inertial data. Monteiro et al. [70] exploited the combined laser rang finder and vision 

to track and classify the dynamic obstacles. 

5.1.2 MultiCam 

Among many approaches to combine multi-modal sensors, the use of combination of 

a standard color imager and a ToF sensor in a monocular setup called MultiCam [5], 

as shown in Figure 5.1, has been developed in the Center for Sensor System (ZESS) 

and becomes one of the promising techniques in 2D/3D imaging system.  

The so-called MultiCam consists of two imaging sensors: a conventional standard 

CMOS sensor with Video Graphics Array (VGA) resolution and a PMD ToF sensor, a 

beam splitter, a near-infrared lighting system, Field Programmable Gate Array (FPGA) 

based processing unit and USB 2.0 or Gigabit Ethernet communication interface. A 

previous version uses the 3K PMD chip with resolution of 64 48 pixels. The newest 

version uses the 41K PMD chip with resolution of 204 204  pixels. While the 3D 

sensor needs to acquire the modulated near-infrared light (in our case 870 nm) back 

from the scene, the 2D sensor is used to capture the images in the visible spectrum 
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(approximately 400 nm to 800 nm). To do this, a dichroic beam splitter (Dichroic 

beam splitters are used to combine or separate beams of two different wavelengths) 

behind the lens has been used which divides the acquired light into two spectral 

ranges: the visible light which is forwarded to the 2D sensor and the near-infrared 

spectrum which is directed to the 3D sensor.  

  

Figure 5.1 The MultiCam 2D/3D vision system 

The MultiCam with two different optical designs is available: F-mount and C-mount 

which are illustrated in Fig. 5.2. The F-mount optical design has a simple setup due to 

its large flange focal distance (The flange focal distance is 46.500 mm for a F-mount, 

whereas it is 17.526 mm for a C-mount lens.) which makes positioning of the chips as 

well as their adjustment in the setup simple. In this case, a beam splitter which is a 

commercial cold mirror is fixed at the angle of 45  with the rear surface being anti-

reflection-coated for the near-infrared spectrum. In fact, such a coating is the crucial 

part of optical design. However, F-mount is not suitable for 1/ 2  chip formats like 

PMD sensor because the large focal distance of F-mount with a small chip size of 

1/ 2yield a narrow angle of view which is not suitable for some applications. On the 

other hand, C-mount lenses are good options for the chips with 1/ 2  format. 

However, in a C-mount design the flange focal distance is shorter than in an F-mount 

which consequently makes the mechanical design and adjustment of the sensors in the 

setup more complicated. One solution to this problem, which is used in the design of 
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the C-mount MultiCam, is to use a prism beam splitter, as illustrated in Figure 5.2 and 

Figure 5.3. In fact, in this case the beam splitter is placed between two prisms made 

out of glass. As the glass has a higher refractive index, the optical path length gets 

bigger which consequently increases the focal length. In other words, by using the 

prisms made of glass one can lengthen the distance between the lens and the sensors 

which makes the arranging as well as adjusting the chips in the optical setup easier. 

 

(a) 

 

(b) 

Figure 5.2 (a) F-Mount. (b) C-Mount. 
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5.2 Related work 

Due to the fact that change detection in multimodal image plays a crucial role in 

various application areas, there is a rich research body in the domain related to change 

detection using multimodal image. And a number of researchers have made much 

effort to obtain good results by applying a variety of methods.  

The application that the region of interest contains only hand is extracted and used for 

hand tracking from 3D depth image as well as gesture recognition was presented in 

[37]. Plagemann et al. [94] used a novel interest point descriptor together with a 

boosted patch classifier to localize body parts using range data. Chen et al. [107] 

applied a region growing technique to segment the hand region on depth images. Then 

a mean-shift based algorithm accurately locates the hand center in the segmented hand 

region. Ghobadi et al. [38] used the combination of edge detection and an 

unsupervised clustering technique for foreground segmentation. And a rather simple 

approach to extract foreground from 2D/3D videos which is based on region growing 

and refrains from modeling the background was evaluated in the work of Bianchi et al. 

[41]. Van den Bergh et al. [71] used a simple threshold technique to separate the 

background and the foreground, given a correct mapping from the depth data to the 

RGB image. Schoenberg et al. [108] proposed that the textured 3D dense point cloud 

is then segmented based on evidence of a boundary between regions of the textured 

point cloud after fusion of camera image and laser range data using Markov Random 

Field to estimate a 3D point corresponding to each image pixel. In the work of Leens 

et al. [39] the pixel-based background modeling method, called ViBe, was separately 

applied to the RGB channels of color image and the three channels of PMD camera. 

The resulting foreground masks were combined via binary image operations. In [97] 

the ability of bilateral filtering to deal with geometric objects was demonstrated. A 

more elaborate method of fusing color and depth was bilateral filtering, which has 

been used in [50], where the preliminary foreground was produced by a dividing 

plane in space and a bilateral filter was applied to gain the final result. Harville et al. 

[42] proposed a method for modeling the background that uses per-pixel, time-

adaptive, Gaussian mixtures in the combined input space of depth and luminance-

invariant color. They improved such combination by introducing the ideas of (1) 
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modulating the background model learning rate based on scene activity, and (2) 

making color-based segmentation criteria dependent on depth observations. The input 

to the algorithm is a time series of spatially registered, time-synchronized pairs of 

color (YUV space) and depth images obtained by static cameras. Gordon et al. [94] 

modeled each pixel as an independent statistical process, recoding the (R, G, B, Z) 

observations at each pixel over a sequence of frames in a multidimensional histogram 

(depth and color information). Then they used a clustering method to fit the data with 

an approximation of a mixture of Gaussians. At each pixel, one of the clusters 

(Gaussians) has been selected as the background process, the others were considered 

to be caused by foreground processes. An approach working with one color image and 

multiple depth images is described in [96], where data fusion has been formulated in a 

statistical manner and modeled using Markov Random Fields on which an energy 

minimization method was applied. 

5.3 Sensing change by sparse feature reconstruction 

5.3.1 Image matrix decomposition 

iB

From image analysis point of view, each frame of a video sequence consists of two 

layers: background and foreground. We define the background as the static or 

approximately static region (more or less affected by ambient varying illumination) 

and the foreground as the region corresponding to the moving object. The image with 

almost stationary background and dynamic foreground can be considered as the 

samples of signals that change slowly in time with the sparse feature with arbitrary 

shape caused by dynamic foreground.  

If the background and foreground of an image are denoted by iFand iI, the image 

i i iI B F 

can be represented as: 

, 
(5.1) 

iwhere , 1,2,...,wh
iI i n  　 denotes a natural number. Assume given the images  

which are taken from a scene at the different time, if we let 
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 : w h Nvector N w h      denote the operator that stacks the image sequence 

into the column vector, then the image sequence matrix I  can be formulated as  

   1 | ... | nI vector I vector I    .
 (5.2) 

Suppose the matrix B formed by the background image sequences denoted as 

   1 ... nB vector B vector B    ,
 (5.3) 

and the matrix F formed by the foreground image sequences from each images can be 

represented as 

   1 ... nF vector F vector F    .
 (5.4) 

The image sequences matrix I can be formulated as the sum of background sequences 

matrix and foreground sequences matrix: 

I B F  . (5.5) 

However, it is a severely under-constrained problem. It is difficult to find B and F

without any prior information. In the next sub-section we will analyze and find the 

prior for the problem. 

5.3.2 Modeling change as sparse feature 

Assume in ideal situation (i.e., there is no moving object in foreground) the 

background sequence matrix is a low-rank matrix with rank one. This leads us to 

build a low-rank constraint model for the background matrix B : 

( ) 1rank B  . (5.6) 

However, in common situation background sequences taken from a static camera in a 

scene are linear correlated. The background sequence is therefore modeled by a low 

rank subspace that can gradually change over time and consequently the matrix B

exhibits a low-rank structure. While the pixels in foreground sequences can be 
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F

clustered into a gross sparse feature with arbitrarily large magnitude and most entries 

in the foreground matrix will be zero, which means the foreground matrix is a 

sparse matrix.  

The image sequence matrix is therefore considered to be the sum of a low-rank matrix 

and a sparse matrix. The problem can be formulated as exact recovery of the sparse 

matrix in order to reconstruct the sparse feature. We discuss more details about the 

reconstruction of sparse and low-rank matrix in the next sub-section. 

5.3.3 Sparse feature reconstruction 

0l

To exactly recover the two components and furthermore reconstruct the sparse feature 

for the change region, it is suggested a conceptual solution: use 

F

-norm to control the 

sparsity structure of the matrix B and seek the lowest rank 


0,

min ..
BF
rankB F st I B F  　 　

 to encourage the low-

rank structure. The Lagrangian reformulation of the problem is: 

,
 (5.7) 

where 

F

 is a balance parameter that trades off the rank of the solution versus the 

sparsity of the matrix . For appropriate balance parameter

0l

, however, this is a 

highly non-convex optimization problem. And it is known there is no efficient 

solution for it. By replacing the 1l-norm with the 

1,
min ..
BF
B F st I B F

  　 　

-norm, and the rank with the 

nuclear norm, we relax the non-convex optimization problem and yield the following 

convex surrogate: 

.
 (5.8) 

The above problem can be treated as a general convex optimization problem and 

solved by any off-the-shelf interior point solver [20]. Although interior point solver 

has excellent convergence properties of normally taking very few iterations to 

converge, it is not quite scalable for large matrices problems.  

Based on the recent work on recovery of corrupted low-rank matrix [36], we apply the 

method of augmented Lagrange multiplier to solve problem effectively. 
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 
2

1
,,, ,

2 F
L BFY B F YI B F I B F


 


       　

The augmented Lagrange function is given by: 

,
 (5.9) 

M NY where is a Lagrange multiplier matrix, ,is a positive scalar, 

F


 denotes 

the matrix inner product, and 

   

 
1 1 ,

1 1 1

, argmin ,, ,k k BF k k

k k k k k

B F L BFY

Y Y I B F





 

  



   

denotes the Frobenius norm. The augmented 

Lagrange multiplier method iteratively estimates both the Lagrange multiplier and the 

optimal solution by iteratively minimizing the augmented Lagrangian function: 

.

 (5.10) 

The iteration definitely converges to the optimal solution of the problem in Eq. (5.8) 

[59]

B

. However, it is very difficult to directly solve the first step in the above iteration 

in Eq. (5.10). Researchers commonly try to minimize the Lagrangian function 

approximately against the two unknown variables Fand 

 1 argmin ,,
kk B k kB L BFY

at one time: 

,
 (5.11)

 1 1argmin ,,
kk F k kF L B FY 

 

.
 (5.12) 

For the clearness, the complete procedure to solve the convex optimization based on 

the method of augmented Lagrange multiplier is summarized in Algorithm 5.1.  

Implementation Issues 



Due to the fact that the basic idea of the augmented Lagrange multiplier method is to 

search for the saddle point of the augmented Lagrange function, rather than directly 

solving the original constrained optimization problem. We vary the parameter 

0starting from the initial value  and increase it monotonically with each iteration to 

speedup the convergence until it reaches sufficiently large, in the meanwhile the 

difference in the value of the cost function is small enough between two consecutive 
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iterations when the iteration definitely converges to the optimal solution of the 

problem [59]. 

Algorithm 5.1: Optimization via Augmented Lagrange Multiplier Method 

Input:   Observations Matrix M NI  ,  , , . 

while not converged do 

 

 

 

1 1

1 1

1 1 1

1

1
, , ;

;

1
;

;

;

1;

k

k

k k

k

T

k

k k k

k

k k k k k

k k

U S V svd I F Y

B US S V

F S I B Y

Y Y I B F

k k













 



 

  



 
   

 



 
   

 

   



 

 

end while 

Output: ; .k kB B F F   

 

where  svd  denotes the singular value decomposition operator. 

5.4 Experimental results 

We verify the effectiveness and evaluate the performance of the proposed method 

with the experimental results on the two different image database recorded consists of 

2D color image and corresponding depth map as well as modulation amplitude map 

that represent different situations for indoor video surveillance. Both of them for 

evaluation are recorded under normal lighting conditions and bad illumination, 

respectively. To demonstrate the primary performance of the proposed method, post-

processing such as noise removal and connected component analysis are not 

introduced in the work.  
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Sequences 1  

The sequence is an indoor scene consists of lobby where a person walks from very 

close to the MultiCam to far. There is a TV mounted on the wall whose screen is 

changing. The ambient lighting conditions are quite stable. And the walking man is 

well contrasted with the background. The random three frames from this sequence are 

presented in Figure 5.3 (a). Due to the memory limitation of the standard computer, 

the color image with 640 480 pixels is firstly down-sampled to 192 144 pixels using 

simple down-scale technique. To train these images, sequential 30 frames from the 

image sequences are used. And the balance parameter is set as 0.8  . It can be seen 

from the human detection results shown in Figure 5.3 (b) that the walking man is 

perfectly detected. In the meanwhile, however, the TV screen and the shadow cast by 

the walking man also are detected due to the fact that the two regions vary when the 

man is walking.  

Since it is not possible to remove the varying background belongs to foreground, we 

directly apply the proposed method to the original depth image without deleting 

invalid measurement. Hereby, the balance parameter is fixed as 2  . The original 

depth images and human detection results from them are shown in Figure 5.4 (a) and 

Figure 5.4 (b), respectively. It can be seen the results in Figure 5.4 (b) contain much 

noise where belongs to invalid measurement in modulation amplitude map. If the 

active modulated infrared light returns from the human point in the scene cannot be 

sensed by PMD sensor, the pixel in the location should be zero in the corresponding 

modulation amplitude map. After removal of the invalid measurement for the original 

depth image shown in Figure 5.5 (a), it is apparent that the proposed method can 

remove the background details and exactly reconstruct the human, as shown in Figure 

5.5 (b).  

Simultaneously applying it to the modulation amplitude map as demonstrated in 

Figure 5.6 (a), we set g  and obtain the results as shown in Figure 5.6 (b). Although 

the original depth map exhibits noisy representation, the extraction of distance 

information belongs to the region of moving human in depth map is dramatically 

improved after removal of invalid measurement according to the modulation 

amplitude map. The combination of the human detection results from 2D color 
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images, 3D depth map and modulation amplitude map can supply big help for post-

processing such as human tracking, location and so on that are not introduced in detail 

in the thesis.  

  

  

  

(a) (b) 

Figure 5.3 (a) Color images. (b) Human detection results. 
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(a) (b) 

Figure 5.4 (a) Original depth images. (b) Human detection results. 
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(a) (b) 

Figure 5.5 (a) Valid depth images after invalid measurement removal. (b) Human 

detection results from valid depth images. 
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(a) (b) 

Figure 5.6 (a) Modulation amplitude. (b) Human detection results from 

modulation amplitude. 
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Sequence 2 

For the application of indoor surveillance, it is quite common to have a scene room in 

a mess under bad illumination. In the image sequence the scene consists of an empty 

laboratory, which has two sets of fluorescent lights on the ceiling. All the lights are 

switched when outdoor lighting conditions are completely dark, and therefore the 

illumination could be caliginous and changed gradually. A person walks in and takes 

an object, finally walks out of the field of view of the MultiCam.  

The random three frames from this sequence are presented in Figure 5.7 (a). As we 

mentioned before, we first down-sample the color images from pixels to pixels using 

simple down-scale technique. And the sequential 30 frames are trained for these 

multi-modal images. The balance parameter is set as 1  . The original color image 

and human detection results are shown in Figure 5.7 (a) and (b), respectively. The 

human is clearly detected although the environmental illumination is worse than the 

previous sequence, despite white line or part projected on his body. This is because 

that our model learns background template and human motion trajectories captured 

from the sequential 30 frames, and therefore, different color clusters which allows a 

quite fair discrimination among colors. However, as it can be seen from Figure 5.8 (a), 

the original depth map delivered from the MultiCam is quite highly noisy in the right 

part of the image due to invalid measurement in modulation amplitude map. The 

tradeoff parameter is fixed as 1   and the results are presented in Figure 5.8 (b). In 

this case, however, we can observe that the human also is perfectly detected despite of 

high noise. In the meanwhile the detection results of the modulation amplitude map 

present a quite promising performance as shown in Figure 5.9 (b). Here we also set

1  . 
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(a) (b) 

Figure 5.7 (a) Color image frames. (b) Human detection results. 
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(a) (b) 

Figure 5.8 (a) Depth image frames. (b) Human detection results. 
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(a) (b) 

Figure 5.9 (a) Modulation amplitude images. (b) Human detection results. 
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5.5 Chapter summary 

To take the advantages of multiple sensor of different modal, a 2D/3D vision system 

has been proposed by the researchers in recent years. As proposal of 2D/3D vision 

system, the MultiCam was developed recently as a novel combinational use of multi-

cameras which incorporates a CMOS chip and a PMD ToF sensor in a monocular 

optical setup. And afterwards the setup of the MultiCam is described in detail. 

We present a novel method towards human detection using sparse feature pursuit for 

multi-modal images simultaneously provided by a new monocular hybrid 2D/3D 

imaging system, which was developed based on the ToF principle in recent few years. 

The procedure of human detection in multi-modal images is implemented based on 

the following stages. We first make a conception that images with almost stationary 

background and dynamic foreground can be considered as the samples of signals that 

change slowly in time with the sparse feature with arbitrary shape caused by dynamic 

foreground. With the sparse prior, we cast a frame of video as a composition of two 

distinct layers: background and sparse foreground. And furthermore we recovery the 

two components based on the recent work on recovery of corrupted sparse low-rank 

matrix. Finally we reconstruct the foreground which contains human map from the 

sparse matrix. The experiments on the real image data on the one hand demonstrate 

the effectiveness of our proposed method, and on the other hand pave a promising 

way for the combination of multimodal images to yields a greatly improved detection 

result compared to either type of image data alone.  
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6 Summary and discussion 

6.1 Summary 

The broad objective of the dissertation is to investigates and explore the applications 

of the compressive sensing in multi-modal image processing and analysis. Three 

different kinds of applications are developed and presented. The first one presented an 

effective image fusion scheme based on the CS theory. The second one exploits the 

basis of CS to implement reconstruction of super-resolution of range/depth image. 

The last one aims to explore a potential approach based on CS to sense change in 

multi-modal images (i.e., 2D/3D images). The motivation, objective and the main 

contribution of the work to the related field are summarized in the first chapter. The 

conclusions of the dissertation are drawn as the following points: 

 The combinational use of 2D color standard camera and 3D ToF camera provides 

a new perspective to sense the 3D real world due to it provides not only 2D color 

image but also 3D depth information.  

 Along with a rapid increase in applications of difference, a rich theory of sparse 

and compressible signal reconstruction has recently been developed under the 

names of compressive sensing and sparse approximation. More recently, an 

offshoot of compressive sensing has become a focus of research on other low-

dimensional signal structure such as matrix of low-rank and sparsity. The 

revolutionary research has inspired and initiated intriguing new research 

directions, and been contributing in related areas including image processing and 

signal processing. It provides an alternative to Nyquist-Shannon sampling 

theorem when the signal under acquisition is known to be sparse or compressible. 

 The sparsity of signal or image is a ubiquitous property that plays a significant 

role in signal or image analysis. It has been shown in practice that various images 

of interest may be (approximately) represented sparsely to some extent and the 

sparse modeling is quite beneficial, or even crucial to solutions.  
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 Super-resolution is a software solution with the use of image processing 

algorithm which presumably is relatively inexpensive to implement in any 

situation where high-quality optical imaging system cannot be incorporated or too 

expensive to utilize.  

 The super-resolution reconstruction is an ill-posed inverse problem. The problem 

model of super-resolution and the underlying solution can be treated from the 

perspective of compressive sensing strategy.  

 The choice of sparsifying basis is very crucial in super-resolution reconstruction. 

And it is considered based on the property of image under some domain. The 

sensing matrix is extremely sensitive to the sparsifying basis according to the RIP 

property. In addition, the reconstruction algorithms also play a significant role in 

the result. 

 As a natural extension of the standard sparsity concept in compressive sensing, 

the sparse feature can be considered as a cluster collected from the non-zero 

values in some practical applications. 

 Sparse and low-rank matrix decomposition plays a prominent role in signal and 

image processing. 

6.2 Discussion and outlook 

Based on the current work presented in the thesis, a few topics for further discussion 

and study are outlined in which the following aspects are mainly concerned: 

 MultiCam  

The range measurement in the MultiCam which provides 2D/3D multimodal image is 

restricted. Thus, while the objects over the maximum distance can be observed in 2D 

image of the MultiCam, they have no any reliable depth information in the 3D image. 

Another one of the limitations is its poor performance in the situation of outdoor due 

to the ToF depth data are affected by the sun light to some extent. The current ToF 

sensors have no advantage in price in comparison with the conventional CCD and 
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CMOS sensors. However, with the development of ToF sensors technology, it is most 

possible to improve the performance of MultiCam by employing the new version of 

ToF sensor with higher resolution. 

 Data fusion 

The 2D color image and 3D depth image used in the thesis are processed via the 

proposed modeling. The obtained results represent only the 3D position change of the 

object. Fusion of the results from different modal can offer the full shape of moving 

object. 

 Sparsifying basis 

Although the depth map is sparsely represented under the wavelet basis, we suppose 

that there might be better-suited wavelet basis for the sparsifying basis. The sensing 

matrix is sensitive to the choice of the sparsifying basis according to the restrict 

isometry property, which means there seems to exist better sparsifying basis such as 

complex wavelets for sparse representation. In the meanwhile, the random point 

down-sample mask can be used to improve the effectiveness of the proposed method. 

In addition, the reconstruction algorithms also play an important role for the result. 

The other recover algorithms would be interesting to explore. 

 Matrix recovery algorithms 

Algorithms for the recovery of large-scale sparse and low-rank matrix influence the 

accuracy and efficiency of reconstruction result. It is believable that there might be 

better-suited recovery algorithms for the applications. 
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Abstract 
Compressive sensing provides a novel framework 

to acquire and to reconstruct a signal or digital 
image from sparse measurements acquired at sub-
Nyquist/Shannon sampling rate. In this paper, we 
present an effective image fusion scheme based on a 
Discrete Cosine Transform (DCT) sampling model 
for compressive sensing imaging.  A sparse 
sampling model according to the DCT-based 
spectral energy distribution is proposed. The 
compressive measurements of multiple input images 
obtained with the proposed sampling model are 
fused to a composite measurement by combining 
their wavelet approximation coefficients and their 
detail coefficients separately. The combination is 
done by applying a weighting operation for every 
sampling location according to the statistical 
distribution. Furthermore, the fused image is 
reconstructed from the composite measurement by 
solving a problem of total variation minimization. 
Finally, we validate the effectiveness of the 
algorithm using multiple images.  
 

1. Introduction 
 
With the rapid development of sensor systems, 

the information science focuses mainly on how the 
information about the real world is extracted from 
the sensor data. In many cases, a single sensor is not 
sufficient to provide a complete and fully 
informative perception of the real world. Therefore, 
multi-sensor fusion has attracted a great deal of 
attention in the past years. Image fusion is a branch 
of multi-sensor fusion and refers to a process of 
combining relevant information from two or more 
images into a fused image that possesses more 
information than any of the input images [1]. The 
current image fusion schemes can be classified 
roughly into pixel-based and region-based methods. 
For both of them all the samples of the images have 
to be acquired, which means that the storage burden 
and the processing challenges must be handled 
especially due to the growing sensor data volumes. 
Recently, an exciting new field, known as 
compressive  sensing  (CS),  establishes 
mathematically that a relatively small number of 
non-adaptive, linear measurements can harvest all of 
the information necessary to faithfully reconstruct 

sparse or compressible signals [2]-[3]. The CS 
theory exploits the knowledge that the signal or 
image we are acquiring is sparse in some known 
transform domain, which means that the signal or 
image is compressive [2]-[3].  Then the compressive 
signal may be reconstructed accurately with sub-
Nyquist/Shannon data sampling rate from a 
significantly smaller number of measurements than 
sampling the original signal at Nyquist/Shannon rate 
[2]-[3]. This is a clear and striking advantage 
compared with the conventional signal theory based 
on the Shannon theory. Therefore, the CS theory can 
lead to the reduction of sampling rates, storage 
volume, power consumption, and computational 
complexity in signal and image processing and 
related research fields. 
Regarding image fusion in CS, one natural way 

is to fuse the images after being reconstructed from 
the random projections. However, in order to reduce 
the computational complexity and to save storage 
space, a better way is to directly combine the 
measurements in the compressive domain, and then 
to reconstruct the fused image from the fused 
measurements. There are several different methods 
which have been proposed in recent years, e.g., a 
simple maximum selection fusion rule [4] or a 
weighted average based on entropy metrics of the 
original measurements [5]. 
In image compression, due to its computational 

simplicity and the fact that the spectral coefficients 
are  real  numbers,  the  Discrete  Cosine 
Transformation (DCT) rather than the Fast Fourier 
Transformation (FFT) is widely used to represent a 
signal sparsely. The advantage of dealing with real 
rather than complex numbers also simplifies the 
algorithmic  implementation  of  compressive 
approaches conceptually. In this paper we propose 
therefore a DCT-based sampling model based on the 
sparsity of the image in the spectral domain. 
Sampling is performed on multiple input images using the 
proposed sampling model to obtain their linear 
measurements in the compressive domain. Inspired 
by the wavelet based fusion method, we propose a 
fusion scheme which combines the wavelet 
approximation coefficients and detail coefficients of 
the linear measurement series respectively via an 
energy distribution based weighting operation. 



 

 

Finally, we reconstruct the fused image with total 
variance minimization algorithm [5].  
This paper is organized as follows. In Section 2, 

we introduce the sparse digital image model and an 
overview of the CS background. The proposed 
fusion scheme based on CS is described in Section 3. 
Some experimental results and an analysis are 
provided in Section 4. Finally, Section 5 ends this 
paper with a conclusion.   
 

2. Sparse model and compressive sensing 
background 
 

2.1. Signal and digital image sparsity     
 

fLet Nf Rbe a vector signal

1{ }Nii 

. Then it can be 

represented with an orthogonal basis

1
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i i
i

f x

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as: 

{}ix, where

f

 denotes the coefficient 

sequence of 1{ }Nii using the basis 

f x

. This 

representation can be formulated easily in matrix 
vector notation as: 
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where nnis the imatrix with x as columns. 

fis defined as the coordinate vector of 
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T
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The signal

x

has a sparse representation if many 

coefficients in the vector 

N K

are small and therefore 
can be neglected without seriously degrading the 
signal. If K is the number of coefficients which are 
considerably larger than the rest, neglecting the 

small coefficients will hence not lead to a 
perceptual loss of the original signal [3]. Some 
examples of natural signals that have the sparse 
property have been identified such as digital images, 
radar pulse returns of a sparse scene, video 
sequences, and so on. In each of these cases the 
relevant information in a sparse representation of a 
signal is encoded in both the indices of the 
significant coefficients and the values of these.  
The image data can be mapped to a sparse vector 

via a sparsifying transform. Different types of 
images have sparse representations under different 
transforms. Real-world images are known to have a 
sparse representation in the FFT, DCT and wavelet 
transform domain. The digital image “Lena” and its 
frequency transforms are shown in Fig.1.  
 

 

 
 

(a) (b) 

  
(c) (d) 

Fig.1 (a) Original image. (b) Its FFT on log-scale (zero 
frequency in the center of the image). (c) Its DCT on log-
scale (zero frequency in the upper left corner). (d) 
Wavelet coefficients. 

In Fig.1 (a), nearly all pixels values in the 
original image are non-zero. However, the image 
tends to concentrate its energy in the frequency 
domain, where most energy concentrates at low 
frequencies or at a few large coefficients. Fig.1 (b) 
shows the FFT of this original image on log-scale 
with shifting the zero-frequency component to the 
center of the image. The low-frequency components 
in an image are normally much larger in amplitude 
than the high-frequency components. The DCT 
relocates the compact energy in the upper left corner 
of the image [6]. Lesser energy or information is 
distributed over other areas, as shown in Fig.1 (c). 
The image is converted to a sparse vector in DCT 
domain. Most information of the original image is 
concentrated statistically in just a few large 
coefficients, while most of the high frequency 
coefficients are either zero or close to zero. 
Similarly, an image can be represented by just a few 
large coefficients in the wavelet transform domain, 
as shown in Fig.1 (d). Thus, it can be said that the 
image has the sparsity property with a few large 
coefficients carrying most information using some 
orthogonal basis. 
Recent literature on Compressive Sensing states 

that a signal may be reconstructed accurately from a 
small set of measurements if it is sparse in some 
orthogonal basis. This provides the possibility to 
directly process the measurements of multi-images 
in compressive sensing and then to reconstruct the 
fused image from the measurement according to a 
recovery algorithm such as Gradient Projection for 
Sparse Reconstruction (GPSR) [15], Orthogonal 
Matching  Pursuit  (OMP)  [14],  L1-norm 
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minimization, total variation minimization [9], and 

so forth. 

 

2.2. Overview of Compressive Sensing 

 

We begin by revisiting the problem of 

recovering the signal f  from a set of M 

measurements. Mathematically speaking, this 

compressive measurement vector can be formulated 

as 

y f 
 (2) 

where ( )My R K M N   , M NR  is a  

measurement matrix (or an observation matrix in 

terms of state space theory). Since M N , the 

recovery of the signal vector f from the 

measurement vector y is a highly underdetermined 

problem in general. However, the CS theory reveals 

that a signal can be reconstructed from the M
measurements if the following conditions hold: 

 

(1)  The signal f can be represented sparsely by an 

orthogonal basis  , shown in Eq.1. 

 

(2) The orthogonal basis   and compressive 

measurement matrix  are incoherent.  

Satisfying the two conditions above, the signal 

can be recovered by solving an 
1L  -minimization 

problem  [7]-[10]: 

1
ˆ argmin || ||  s.t. x x x y  

 
(3) 

where  is defined as 

   (4) 

Therefore, an estimate f̂  of the signal can be 

recovered from x̂  by the following equation: 

ˆ ˆf x 
 

(5) 

 

3. Image fusion scheme 
 

3.1. Sampling 
 

For the reconstruction of the fused image, we 

first construct a viable sensing matrix   which 

must satisfy the Restricted Isometry Property (RIP) 

property [9]. There are two ways to achieve this: (1) 

directly construct the sensing matrix   to follow 

this property; and (2) reduce the problem to a known 

matrix   that satisfies the RIP property.  Examples 

are the random Gaussian matrix [13][16], the 

uniform Spherical ensemble, Random Partial 

Fourier matrices [11], Toeplitz matrix[12], and so 

forth.  

The random partial Fourier matrix is used to 

expand the applicability of compressive sensing to 

large scale data such as 2D images due to the special 

structure of the Fourier transform under the partial 

Fourier ensemble [11]. Inspired by this work, we 

propose a sampling model designed to account for 

the property of the DCT in the frequency domain as 

shown in Fig. 2. The DCT relocates the energy of a 

digital image in the frequency domain. Most of the 

energy of a digital image concentrates at low 

frequencies (upper left corner shown in Fig. 1(c)). 

Hence most information of an image can found in 

the measurements located at the upper left corner of 

the image in the DCT domain. The sampling model 

contains many radial lines extending from the upper 

left corner to the other side of an image, as shown in 

Fig. 2. The measurement matrix   then is 

constructed from the sampling pattern in the 2D 

discrete cosine plane created by using nearest 

neighbor techniques.  

 

 

Fig. 2 DCT based sampling model (zero frequency 

in the upper left corner). 

3.2. Fusion 
 

For most of the conventional fusion approaches, 

the image fusion is performed on the level of the 

source images. With the emergence of CS theory, 

however, the fusion procedure can be implemented 

in the compressive domain. That is, to combine the 

individual linear measurement of multi-input images 

to a single composite measurement and to 

reconstruct the fused image from these composite 

measurement. 

Consider a natural image with the size of n n . 

To simplify the complexity of the computation, the 

image data is usually arranged in a one dimensional 

column vector f  of length ( )N N n n  . We 

already know that the column vector f is sparse in 

the orthogonal 2D DCT basis  according to Fig. 

1(c). The measurement vector y (the DCT spectrum) 

is the projection of image onto the column vectors 

of the measurement matrix  . Mathematically 



 

 

speaking, the relationship can be expressed as

y f x x   
. 

Suppose there are P images with the same size

n n   need to be fused. After transforming them to 

1D column vectors ( 1,2,..., )pf p P  and supposing 

that all the images have similar spectral features, all 

the vectors will have compact representations in 

terms of the significant coefficients in the 

orthogonal basis  . We collect the corresponding 

linear measurements ( 1,2,..., )py p P with length 

( )M M N  in one large augmented observation 

vector of size M P  (rather than N P ). Thus the 

measurements are not the simple pixel values of the 

original images any more. The fusion among the 

original images can be considered naturally as the 

fusion among the linear measurements of

( 1,2,..., )py p P , which contain the important 

information reflecting the image texture. 

Multi-Scale wavelet decomposition shows 

remarkable advantages in the representation of a 

signal. In this fusion scheme, we apply a single-level 

1D Daubechies wavelet transform to decompose the 

linear measurement vectors into two components: 

approximation coefficients ( 1,2,..., )pA p P and 

detail coefficients ( 1,2,..., )pD p P . The larger a 

coefficient is, the more information it carries. 

Therefore, a weighted mean is applied to incorporate 

the contributions of all inputs so that data elements 

with a high weight contribute more to the weighted 

mean than elements with a low weight. The fused 

approximation coefficient A and detail coefficient 

D can be formulated as: 

1

P

p p

p

A A


  
(6) 

1

P

p p

p

D D


  
(7) 

where p and p are the weighting factors, and 

defined as 

1 1

p p

p pP P

p p

p p

A D

A D

 

 

 

 
 

(8) 

Consequently the fused linear measurement y

can be obtained through the inverse discrete wavelet 

transform. This is a process by which components 

can be assembled back into the original signal 

without loss of information. Finally, the 1D column 

vector f  of the fused image is reconstructed from 

the fused linear measurement y  via the recovery 

algorithm total variation minimization, see [9]. 

4. Experimental results and performance 

evaluation 
 

In this section, we perform two groups of 

comparisons for the performance evaluation to 

illustrate the effectiveness of the proposed approach. 

In the experiments all the input images have the 

sparsity property in the 2D discrete cosine transform 

domain. The fused images are reconstructed from 

/ 2M N  measurements. In this paper, we 

compare the proposed scheme with the maximum 

selection fusion rule in [4] and the block-based 

weighted average fusion rule in [5].  

In the first group, the comparison is performed 

on a pair of multi-focus images with size of 

512 512 . We take the classical “Lena” image as a 

reference image, as shown in Fig. 3(a). We 

artificially produce a pair of out-of-focus images, by 

blurring the left part to obtain the image in Fig. 3(b), 

and then blurring the right part to produce the image 

in Fig. 3(c). Blurring is accomplished by using a 

Gaussian low-pass filter. The fusion results using 

the maximum selection fusion, weighted average 

fusion and our method are shown in Fig.3 (d), (e) 

and (f) respectively.  

In the second group, multi-modal medical 

images supplied by Dr. Oliver Rockinger [17] are 

used as input. The first one is a Computed 

Tomography (CT) image shown in Fig. 4(a), while 

the other one is a Magnetic Resonance Image (MRI), 

see Fig. 4(b). For more information about the 

images, refer to [17]. The fusion results using the 

maximum selection fusion, weighted average fusion 

and our method are shown in Fig.4 (c), (d) and (e) 

respectively. 

It is well known that assessing image fusion 

performance in a real application is a complicated 

issue. In many cases qualitative criteria such as 

visual analysis is used to assess the fusion result. 

However, a more accurate and reliable evaluation is 

to combine visual assessment based on a subjective 

qualitative analysis with a parameter assessment 

based on an objective/quantitative analysis. 

Therefore, we firstly evaluate our proposed 

algorithm perceptually and afterwards, we use 

several quality measures to compare its results to 

previous approaches. 

4.1 Perceptual quality evaluation  

Perceptual evaluation mainly assesses the visual 

quality of the fused image by means of observation 

of clarity, contrast and preservation of details. 

  



 

 

 

Fig.3 Reference image, multi-focus input images and 

fused images. (a) Reference image. (b) Focus on the left 

part. (c) Focus on the right part. (d) Fusion result using 

maximum selection. (e) Fusion result using weighted 

average (f) Fusion result using our method. 

Based on a visual comparison the fusion results 

using our method, see Fig. 3(f), contains most of the 

details of the individual input images in Fig. 3(b) 

and Fig. 3(c), On the one hand Fig. 3(f) looks 

smoother that Fig. 3(d), but on the other hand it is 

clearer than Fig. 3(e). Summarizing, judging the 

perceptual quality our method performs better than 

the maximum selection and weighted average 

methods.   

With regard to the visual comparison of the 

second group, the fusion result using our method in 

Fig.4 (e) contains more information than the input 

images in Fig.4 (a) and (b). Fig.4 (e) has more 

details than Fig.4 (c), whereas Fig.4 (e) has a higher 

contrast than the image in Fig.4 (d). For a 

comparison of the image details the enlarged fusion 

results for all methods are shown in Fig. 5. 

 

 

 

 

Fig.4 Multi-modal input images and fusion images. (a) CT 

image. (b) MRI image. (c) Fusion result using maximum 

selection. (d) Fusion result using weighted average. (e) 

Fusion result using our method. 

 

Fig.5 Images in zoom in view. (a) Fusion result using 

maximum selection. (b) Fusion result using weighted 

average. (c) Fusion result using our method. 

Our approach outperforms the method of 

maximum selection fusion and weighted average 

fusion when judging the perceptual quality of the 

fusion results for both image sets. 

4.2 Objective quantity evaluation  

In general, there are a few quality measures that 

are commonly used to evaluate image fusion results: 

image entropy, mutual information and average 

gradient. 

(a) Image entropy (IE) 

Image entropy is a statistical measure of 

randomness that can be used to characterize the 



 

 

texture of the input image. For an 8-bit single 

channel image, the image entropy is defined as: 
255

2

0

logi i

i

H P P


   
(9) 

where 
iP is the probability of gray level i in the 

evaluated region and it is approximately given by 

i

i

f
P

N
  

(10) 

where 
if is the frequency of gray level i and N 

denotes the total number of pixels in the image. The 

higher the value of the image entropy is, the more 

textural information is contained in the (fused) 

image. 

(b) Mutual information (MI) 

Mutual Information is often used to evaluate 

image fusion quality. Let the joint histogram of 

source image ( )A B and the fused image F be

( , )( ( , ))FA FBp f a p f b . Then the mutual information 

between the source image and the fused image is 

given by 

2

,

( , )
( , ) ( , ) log

( ) ( )

FA

FA FA

f a F A

p f a
I f a p f a

p f p a
  (11) 

2

,

( , )
( , ) ( , ) log

( ) ( )

FA

FB FB

f b F B

p f b
I f b p f b

p f p b
  (12) 

The image fusion performance can be measured by: 

( , ) ( , )AB

F FA FBMI I f a I f b   (13) 

where larger values imply better image quality. 

(c) Average gradient (AG) 

The average gradient is a measure of contrast in 

a photographic image. It is sensitive to reflect the 

image of the tiny details contrast. It is commonly 

used to evaluate the clarity of image. We use 

average gradient as a criterion for image fusion 

quality. The greater the average gradient value is, 

the sharper is the image. It can be calculated as: 

2 2( ) ( )1

2

x yI I
g

n

  
   

(14) 

where n is the size of the image, xI and yI are the 

differences in horizontal and vertical direction 

respectively.  

The performance assessments of the fusion results 

shown in Figs. 3-4 based on the defined criterions 

(i.e., IE, MI and AG) are listed in tables 1-2. 

Experiment 1 

Regarding the “Lena” image, for the purpose of 

comparing mutual information parameter in detail, 

we calculate not only the mutual information 

between the fused image and the individual image, 

but also the mutual information between the fused 

image and the original reference image as listed in 

Table 1. 
FAI  is the mutual information between the 

fused image and the source image A, while 
FBI  is 

the mutual information between the fused image and 

the source image B. MI is the sum of 
FAI  and 

FBI . 

FRI  is the mutual information between the fused 

image and reference image. We present here the 

value using two decimal places due to the limited 

space in the table. 

Table 1 Quantitive evaluation of the multi-focus images 

shown in Fig.3. (“Lena” image) 

 Methods 
Performance Evaluation Measures 

IE 
FAI  

FBI  MI 
FRI  AG 

Our 

method 
7.12 2.75 2.85 5.60 3.03 2.86 

Maximum 

selection 
7.10 2.40 2.57 4.97 2.81 3.59 

Weighted 

average 6.99 2.68 2.71 5.39 3.02 2.21 

It is shown in Table.1 that our proposed method 

outperforms the other methods in terms of IE and 

MI, which means that the fusion result of our 

method contains more details than those of the other 

methods. The visual comparison above also suggests 

that the fusion result of our method is superior to the 

result of the maximum selection method and clearer 

than the result of the weighted average method, 

though the average gradient value for the maximum 

selection method is a little bit larger than that for our 

method. Overall, based on the visual comparison 

and comparison using objective measures, we can 

draw the conclusion that our proposed method 

achieves better performance than the other two 

methods. 

Experiment 2 

Regarding the medical image, we only compare 

the three performance assessment measure (IE, MI 

and AG), since we do not have the reference image. 

The results are shown in Table 2. 

Table.2 Quantity evaluation of multi-modal images in Fig. 

4. (Medical images) 

Methods 
Performance Evaluation Measures 

IE MI AG 

Our 

Method 
6.9763 5.2867 5.1054 

Maximum  

selection 
6.6992 5.1544 6.5336 

Weighted 

average 
5.8196 3.7439 3.0164 



 

 

It can be seen easily that our method performs 

better than the other two methods when comparing 

the IE and MI results in Table. 2. Taking the visual 

analysis in paragraph 4.1 into account, we conclude 

that our method outperforms the methods of 

maximum selection fusion rule and average gradient 

fusion rule. 

In one word, considering the qualitative analysis 

and the quantitative evaluation, we conclude that the 

results of the proposed fusion scheme are superior 

when compared to the maximum selection fusion 

rule and the weighted average fusion rule. 

5. Conclusions 
 

In the paper, we presented an effective image 

fusion scheme based on the CS theory. The 

computational complexity decreases due to the fact 

that the proposed scheme only needs incomplete 

measurements rather than acquiring all the samples 

of the whole image. Moreover, although our method 

performs the fusion in the sparse domain, it 

preserves much richer texture information of the 

individual input images compared with other fusion 

schemes. Experiments demonstrate the promising 

performance of our scheme. 
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ABSTRACT 
 
Human detection from multimodal image is a challenging 
task of information extraction and plays a striking 
important role for the later steps such as classification, 
recognition, tracking, and so forth. This paper describes 
an innovative sparse feature-based approach for human 
detection using the multimodal image. Firstly we consider 
a human as sparse feature which moves with multimodal 
image sequences. And afterwards the problem of moving 
human estimation can be formulated as decomposition of 
a matrix into a sparse human matrix and a low-rank 
background matrix. Furthermore, both of the components 
are exactly recovered by solving convex optimization 
problem. Finally the sparse feature that contains human is 
reconstructed to generate the human map. Experimental 
results on the real multimodal image from a novel 2D/3D 
vision system verify the effectiveness of our proposed 
method. Meanwhile the results yield the potential 
application of matrix decomposition for various 
multimodal data analysis. 
 
Index Terms—Human detection, multimodal image, 

sparse feature, matrix decomposition, multi-camera 

 
1. INTRODUCTION 

 
Human detection plays a crucially important role in many 
application areas, specifically in scenarios involving 
human motion. Most work has concentrated on the vision 
system that only operates a visible spectrum camera (e.g. 
2D color image) and ignores the other sensor modalities to 
some extent. In recent few years, Photonic Mixer Devices 
(PMD) camera has attracted more and more attention due 
to the fact that it is a powerful device to provide three 
maps with different modalities (i.e., depth map, 
modulation amplitude map and intensity image) with help 
of the Time-of-Flight (ToF) principle [1][3]. The 
combinational utilization of PMD camera and standard 
color camera has emerged recently as an unusual potential 
to spread. To meet the requirement, a new monocular 
2D/3D imaging system (i.e., MultiCam [2]) has been 
developed in our research center. 

I

Due to the fact that human detection in multimodal 
image plays a crucial role in various application areas, a 
number of researchers have made effort to obtain good 
results by applying a variety of methods. The foreground 

in 2D/3D image is extracted and used for hand tracking as 
well as gesture recognition by defining a volume of 
interest in the work of Ghobadi et al. [6]. While Stauffer 
et al. [9] applied the standard approach of background 
modeling by Gaussian mixtures and Harville et al. [11] 
utilized this method to color and depth image. Ghobadi et 
al. [7] used the combination of edge detection and an 
unsupervised clustering technique for foreground 
segmentation. And a rather simple approach to extract 
foreground from 2D/3D videos which is based on region 
growing and refrains from modeling the background is 
evaluated in the work of Bianchi et al. [10]. In the work of 
Leens et al. [8] the pixel-based background modeling 
method, called ViBe, is separately applied to the RGB 
channels of color image and the three channels of PMD 
camera. The resulting foreground masks are combined via 
binary image operations. 
In this work, we propose a novel approach towards 

human detection by using sparse feature pursuit for 
multimodal image data (i.e., simultaneously pursuit sparse 
feature to represent corresponding moving human for 
multimodal image). The image with almost stationary 
background and dynamic human can be considered as the 
samples of signals that change slowly in time with the 
sparse feature with arbitrary shape caused by dynamic 
human. With the sparse prior, we cast a frame of video as 
a composition of two distinct layers: background and 
sparse human (i.e., moving foreground). If these frames of 
video are stacked as the column vectors of a matrix

I
, the 

observations matrix 
B
can be expressed as the sum of a 

background matrix Tand a sparse human matrix 

B

which 
is comprised of sparse feature caused by dynamic human. 
Due to the background is static or approximate to static, 
background matrix 

T

therefore exhibits rank-one under 
the conditions of stationary assumption or low-rank 
structure. And thus human detection can be transformed 
into a problem of the pursuit of sparse feature 

I B T 
from the 

observations 
B
 which consists of low-rank 

background matrix T and sparse human matrix

1l

. 
Mathematically speaking, it is mostly possible to be 
solved by convex optimization. The minimization of a 

weighted combination of the nuclear norm and the 

B

norm 

is employed to exactly recover the low-rank matrix  
T

and 
the sparse feature matrix 

I
 [4][5]. The solution is applied 

to the observations matrix which represents the image 
sequences and furthermore the sparse feature that contains 
human is reconstructed to generate the human map. 



 

 

The significant difference from the aforementioned 

methods is that our proposed approach is based on the 

underlying assumption of the moving human as the sparse 

feature. Rather we recover the sparse feature component 

via convex optimization than try to model the background 

using the parametric or non-parametric models. It focuses 

on sparse feature pursuit with arbitrary shape and recovery 

via matrix decomposition. To our knowledge, matrix 

decomposition has not yet been applied to multimodal 

image data. This formulation yields a novel model to 

detect sparse human for multimodal image data. 

The rest of the paper is organized as follows: Section 

2 describes the formulation details of our proposed 

scheme. Sparse matrix recovery and reconstruction of 

sparse feature map are presented in Section 3. 

Experimental results on the real multimodal image data 

validate our proposed method in Section 4. We draw the 

conclusion in Section 5.  

 

2. PROPOSED SCHEME 

 

2.1. Human as Sparse Feature 

 

From a view of image analysis, each frame of a video 

sequence consists of two layers: background and 

foreground. Here we define the background as the static or 

approximately static region (more or less affected by 

ambient varying illumination) and the foreground as the 

region corresponding to the moving human. Therefore 

each frame can be expressed as the sum of human and 

background, as expressed in Fig.1. 

 

(a) 

 
(b) 

(c) 
Fig.1. Image can be regarded as a sum of human and background. 
(a) Color image. (b) Depth map. (c) Modulation amplitude map. 

 

The moving human moves with the video sequences 

while the background is mostly static. It is more 

convenient to consider that the region which the human 

occupies is clustered into sparse feature of arbitrary shape 

and the background collection from the video sequence 

therefore exhibits a low-rank structure. With the prior 

information about the sparsity of moving human and the 

low-rank property of background, the image sequences 

thus are formulated as the sum of low-rank background 

image sequences structure and sparse foreground image 

sequences, as described in Fig.2. 

 
Fig.2. Image sequences can be formulated as a sum of background 

sequences and image sequences which only contains the moving human. 
 

2.2. Image Data Representation 

For the color image, firstly the feature space 

dimensionality is reduced by using the down-sample 

technique due to the memory limitation of standard 

computer. That is, define a color image 3h w

color

   , we 

obtain 3 - ( ) ( ) 3h w down sample h w

color color

           by 

performing the down-scale technique on it, where h and w

denote the height and width of a color image; 

( 0 1  ) and  ( 0 1  ) are down-sample 

parameters. And then the color is divided into RGB 

channels: 

(1) Red channel (:,:, )r color R    

(2) Green channel (:,:, )g color G    

(3) Blue channel (:,:, )b color B   ) 

Finally individual channel is stacked as a column vector to 

form RGB column vectors, respectively: 
( ) ( ) 1h w stack d    

      , where { , , }r g b  

and ( ) ( )d h w     .  

However, with respect to the low resolution of the 

depth map (also modulation amplitude map) and 

furthermore it has the lower feature space dimensionality 

compared to the color image, what only needs to do are to 

stack the image data as column vector: 
( ) ( ) 1

† †

h w stack d        
. 

2.3. From Image to Matrix Representation 
 

If the image sequences are stacked as the column vectors 

to form the matrix I , the matrix B formed by the 

background image sequences from each images therefore 

exhibits a low-rank structure and the matrix T  formed by 

the foreground image sequences from each images lays 

out a sparse structure. And afterwards the image matrix 

can be formulated as adding the low-rank background 

matrix with the sparse foreground matrix, as shown in 

Fig.3. 

 

 

 

 



 

 

 
 
 
Fig.3. Image matrix can be formulated as a sum of low-rank background 
matrix and sparse foreground matrix. 
 
 
2.4. Matrix Decomposition 

I B T 

 
As already mentioned, it is known that the image matrix is 
considered as the summation of a low-rank background 
matrix and a sparse foreground matrix, such a natural 
attempt is expressed as: 
 

 (1) 

1 2[,,...,] dn
nI II I  where 1 2[, ,..., ] dn

nB BB B  , 

1 2[,,...,] dn
nT TT T  

, 

and 

0l

, n is the length of the image 

sequences. To exactly recovery the two components and 
furthermore reconstruct the sparse feature for the human, 

it is more intuitive to consider applying 

0
,
min () |||| ..
BT
rankB T st I B T  　 　

-norm (i.e., the 

number of non-zero entries) to control the sparsity 
structure in the matrix and matrix rank to encourage the 
low-rank structure, that is: 

 
(2) 

()rankwhere 0|||| denotes the rank of matrix, 0l is the  

-norm of matrix,

()rankB

is the non-negative balance parameter 
that trades off the rank of background matrix versus the 
sparsity of foreground matrix. However, the minimization 
is not directly tractable due to the fact that the major 
difficulty on one hand lies in the non-convexity of 

0l

 and on the other hand is that it is extremely 

difficult to minimize the function of -norm. Generally 

speaking, the decomposition problem of Eq. (2) is NP-
hard and there is no effective solution to it. Therefore a 
computationally tractable alternative, that is, the convex 
relaxation must be firstly performed on it, as described in 
the following section. 

3. RECONSTRUCTION OF SPARSE FEATURE 
 
3.1. Convex Relaxation 

:f  Let the function d m , where

f

. The convex 

hull [14] of on 

g

is defined as the largest convex 

function () ()gx fx so that x for all



. The nuclear 

norm or the trace norm 

()rank

 has been known as the 

convex hull of the 

2
|||| (), {|||| 1}B rankB B B B    　

[15]: 

 (3) 

1lAnd the 0l-norm is the convex envelope of the 

1 0|||| ||||, {|||| 1}T T T T T


    　 　

-norm 

[14]: 

 
(4) 

1lBoth of the nuclear norm and the 

0l

-norm functions 

are convex but non-smooth, and they have exhibited to be 

effective surrogates of the matrix rank and of the 

()rank

-norm, 

respectively.  Therefore  based  on  the  heuristic 
approximations in Eq. (3) and Eq. (4), we relax the highly 
non-convex objective function in Eq. (2) by replacing 

1 ()
M
i i   

 with the nuclear norm (i.e., sum of the singular 

values: 0l) and replacing the 

1l

-norm with 

1 ||ij ij  

-norm (i.e., the sum of the absolute values of matrix 

entries:

1l

), respectively.  

And afterwards the relaxation yields a new convex 
optimization problem: minimization of the nuclear norm 

and 

1
,
min|||| |||| ..
BT
B T st I B T  　 　

-norm, as shown in Eq. (5). This is the tightest 

convex relaxation of Eq. (2). 

 
(5) 

3.2. Recovery of Sparse Matrix via Convex 
Optimization



 

Now the key point is how to solve the convex 
optimization problem, as expressed in Eq. (5). According 
to the theoretical conclusion established in [13], the 
balance parameter 

 (1/ max , )mn

 should be of the order of

. The recent work on convex 

optimization has yielded few algorithms that solve the 
relaxed convex problem with a computational cost much 
lower than that of the classical Principle Component 
Analysis (PCA). Hereby we apply the method of 
augmented Lagrange multiplier [12] to solve the problem 
effectively. 
 
3.3. Human Map Reconstruction from Sparse Matrix  

For the color image, each column vector from RGB sparse 
matrix denotes individual human detection response in the 
individual RGB channel. The color human map can be 
reconstructed by combining the human map in three 
channels.  
While for the depth image and modulation amplitude 

map, the final human detection result is directly generated 



 

 

by reshaping the column vector of the sparse human 

matrix. 

4. EXPERIMENTAL RESULTS  

 

In this section, we verify the effectiveness and evaluate 

the performance of the proposed method with the 

experimental results on the two different image database 

recorded consists of 2D color image and their 

corresponding depth map and modulation amplitude map 

that represent different situations for indoor video 

surveillance. Both of them for evaluation are recorded 

under normal lighting conditions and bad illumination, 

respectively. To demonstrate the primary performance of 

the proposed method, post-processing such as noise 

removal and connected component analysis are not 

introduced in this paper. 

 

4.1. Sequence I 
 

The sequence is an indoor scene consists of a university 

hall, where a man walks from very close to the MultiCam 

to far away from the MultiCam. There is a TV whose 

screen is changing mounted on the wall. The ambient 

lighting conditions are quite stable. And the walking man 

is well contrasted with the background. The random three 

frames from this sequence are presented in Fig. 4(a). Due 

to the memory limitation of the standard computer, the 

color image with 640 480 pixels is firstly down-sampled 

to 192 144 pixels using simple down-scale technique. To 

train these images, sequential 30 frames from the image 

sequences are used. And the balance parameter is set as

0.8  . It can be seen from the human detection results 

shown in Fig.4 (b), the walking man is perfectly detected.  

In the meanwhile, however, the TV screen and the shadow 

cast by the walking man also are detected due to the fact 

that the two regions vary when the man is walking. Since 

it is not possible to remove the varying background 

belongs to foreground, we directly apply the proposed 

method to the original depth image without deleting 

invalid measurement. Hereby, the balance parameter is 

fixed as 2  . The original depth images and human 

detection results from them are shown in Fig.4 (c) and 

Fig.4 (d), respectively. It can be seen the results in Fig.4 

(d) contain much noise where belongs to invalid 

measurement in modulation amplitude map. If the active 

modulated infrared light returns from the human point in 

the scene can not be sensed by PMD sensor, the pixel in 

the location should be zero in the corresponding 

modulation amplitude map. After removal of the invalid 

measurement for the original depth image shown in Fig.4 

(e), it is apparent that the proposed method can remove 

the background details and exactly reconstruct the human, 

as shown in Fig.4 (f).  

Simultaneously apply it to the modulation amplitude 

map as demonstrated in Fig.4 (g), we set 1   and obtain 

the results as shown in Fig.4 (h). Although the original 

depth map exhibits noisy representation, the extraction of 

distance information belongs to the region of moving 

human in depth map is dramatically improved after 

removal of invalid measurement according to the 

modulation amplitude map. The combination of the 

human detection results from 2D color images, 3D depth 

map and modulation amplitude map can supply big help 

for post-processing such as human tracking, location and 

so on that are not introduced in detail in this paper. 

Therefore, the proposed method can effectively detect the 

walking person under the normal ambient lighting 

conditions with multimodal image data for indoor 

surveillance. 

 

 

        

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig.4. Original images and human detection results. (a) Color images. (b) Human detection results from color images. (c) Original depth images. (d) 

Human detection results from original depth images. (e) Valid depth images after invalid measurement removal. (f) Human detection results from valid 

depth images. (g) Modulation amplitude. (h) Human detection results from modulation amplitude. 

 

4.2. Sequence II 



 

 

For indoor surveillance, it is quite common to have a 

scene room in a mess under bad illumination. In this 

image sequence the scene consists of an empty laboratory, 

where has two sets of fluorescent lights on the ceiling. All 

the lights are on when outdoor lighting conditions are 

completely dark, and therefore the illumination could be 

caliginous and changed gradually. A man walks in and 

takes an object, finally walks out of the field of view of 

the MultiCam.  

The random four frames from this sequence are 

presented in Fig. 5. As we mentioned before, firstly we 

down-sample the color images from 640 480 pixels to 

192 144 pixels using simple down-scale technique. And 

the sequential 30 frames are trained for these multi-modal 

images. The balance parameter is set as 1  .The original 

color image and human detection results are shown in Fig. 

5 (a) and (b), respectively. The human is clearly detected 

although the environmental illumination is worse than the 

previous sequence, despite white line or part projected on 

his body. This is due to the fact that our model learns 

background template and human motion trajectories 

captured from the sequential 30 frames, and therefore, 

different color clusters which allows a quite fair 

discrimination among colors.  However, as we can see 

from Fig.5 (c), the original depth map delivered from the 

MultiCam is quite highly noisy in the right part of the 

image due to invalid measurement in modulation 

amplitude map. The tradeoff parameter is fixed as =1  

and the results are presented in Fig. 5 (d). In this case, 

however, we can observe that the human also is perfectly 

detected despite of high noise. In the meanwhile the 

detection results of the modulation amplitude map present 

a quite promising performance as shown in Fig. 5 (f). 

Here we also set =1 . 

 

      

      

      

      
(a) (b) (c) (d) (e) (f) 

Fig.5. Original images and human detection results. (a) Color image frames. (b) Human detection results from color 
images. (c) Depth image frames. (d) Human detection results from depth images. (e) Modulation amplitude images. (f) 

Human detection results from modulation amplitude images. 

 

5. CONCLUSION 

The paper presents a novel method towards human 

detection using sparse feature pursuit for multi-modal 

images simultaneously provided by a new monocular 

hybrid 2D/3D imaging system that has been developed 

based on the ToF principle in recent few years. The 

procedure of human detection in multi-modal images is 

implemented based on the following stages. Firstly we 

make a conception that images with almost stationary 

background and dynamic human can be considered as the 

samples of signals that change slowly in time with the 

sparse feature with arbitrary shape caused by dynamic 

human. With the sparse prior, we cast a frame of video as 

a composition of two distinct layers: background and 

sparse human. And furthermore we recovery the two 

components based on the recent work on recovery of 

corrupted sparse low-rank matrix. Finally we reconstruct 

the human map from the sparse matrix. The experiments 

on the real image data on the one hand demonstrate the 

effectiveness of our proposed method, and on the other 

hand pave a promising way for the combination of 

multimodal images to yields a greatly improved detection 

result compared to either type of image data alone. 
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Abstract—Moving object extraction has been an active research 
topic for decades in computer vision for different kinds of 
applications. This paper presents an innovative method to 
implement moving object extraction from 2D color image and 
3D depth image provided by a novel monocular hybrid 2D/3D 
imaging system which has been developed based on a promising 
young technology in recent few years. The problem of moving 
foreground segmentation in 2D/3D images is formulated as 
decomposition of a matrix into sparse foreground matrix and 
low-rank background matrix, and then the two components are 
exactly recovered via convex optimization afterwards. We 
further combine the two images of different modalities to 
surpass the intrinsic limitations of both modalities such as cast 
shadows from moving object in 2D images and high noise in 
depth images. Experiments on the real 2D/3D images from this 
2D/3D imaging system produce the very promising results and 
demonstrate the effectiveness of our proposed method.  

Keywords-Moving  object  extraction;  background 
subtraction; Time-of-Flight camera; 2D/3D images; matrix 
decomposition 

I. INTRODUCTION 

Detecting and tracking moving objects from a scene is an 
active and critical element in many applications such as 
video surveillance and monitoring [1]. When a static 
camera is used, a common approach to moving object 
extraction is to segment the foreground region 
corresponding to the moving objects from the background. 
Background subtraction technique is a popular approach 
for foreground segmentation in a still scene [11]. 
Although the traditional 2D color cameras have got 
widely used in the past years, there are still some well-
known issues need to be specifically addressed in the 
procedure of background subtraction such as varying 
illumination, cast shadows, object colors, and so forth. 

t

In recent few years, Photonic Mixer Devices (PMD) 
camera that can be described as a 3D camera has attracted 
more and more attention because it can provide distance 
data between the camera and the points of the scene with 
help of the Time-of-Flight (ToF) principle [9][10]. 
Modulated infrared light is emitted by a special lighting 
device mounted on the camera and reflected on the scene. 
Afterwards the time denoted as 

/2d c t

that needed by the 
infrared light signal to be transmitted and received is 
measured. This is the reason that this kind of camera is 
sometimes called ToF camera. Thereby the distance is 
calculated as c, where 

480640

 denotes the speed of 
the light [7]. Based on this principle, such camera offers a 
depth image that a color camera can not measure and as a 
result compensates for the weakness of 2D gray level or 
color image. However, the technique of ToF range 
imaging is relatively new and there still exists its own 
limitations that employed measurement technique is 

suffering from: statistical noise and low-resolution depth 
image. So the combinational utilization of PMD camera 
and standard color camera plays a strikingly important 
role in many applications. On the one hand a PMD 
camera offers a depth image which provides the range 
data information and on the other hand a color camera 
delivers 2D image with high resolution. We can extract 
more useful information by fusing the two images of 
different modalities. For example, a color camera and a 
3D depth camera are attached on both sides of a 
horizontal plane surface and equipped with identical 
lenses, but such setup comes with the obvious 
disadvantage (i.e., different view of the two cameras) and 
thus needs the step of image registration. A new 
monocular 2D/3D imaging system (i.e., MultiCam [7]) 
has been developed and it relieves the requirement of 
image registration due to the fact that the color imager 
and the PMD sensor share the same lens through an 
optical splitter. 
In this work, we use the MultiCam which on the one hand 
delivers the high speed range data and on the other hand 
offers the 2D images at the video frame rate [12], as 
shown in Fig.1. The resolutions of color imager and PMD 
sensor are 4864pixels and

D

 pixels, 
respectively. Meanwhile, we propose a novel method of 
moving object extraction from 2D/3D images. Assume 
that a frame in the images can be considered as the sum of 
static background and foreground such as moving objects. 
If these frames are stacked as the column vectors of a 
matrix D, the observations matrix

B
can be described as 

the sum of a low-rank background matrix 
F

and a sparse 
foreground matrix

F

. Therefore the problem of moving 
object extraction in 2D/3D images can be considered as a 
problem of reconstructing a sparse matrix 

D B F 
 from the 

corrupted observations

1l

. Mathematically 
speaking, the problem can be solved by a convex 
optimization. The combination of the nuclear norm (also 
known as the trace norm) minimization and 

B

norm 

minimization is employed to exactly recover the low-rank 
matrix F and the sparse matrix  [2][13]. The solution 
is applied to 2D image and 3D depth image, respectively. 
Finally the foregrounds in 2D image and 3D depth image 
are fused in order to improve the performance of moving 
object extraction and hence foreground separates from 
background successfully. 
This paper is organized as follows: we begin with the 
related work in section II. Section III describes the details 
of our proposed method of moving object extraction from 
2D/3D images. We present the experimental results and 
analysis in section IV. And finally we state the 
conclusions in section V. 
 



 

 

 
Fig.1. MultiCam 

 

II. RELATED WORK 

Due to its important role in various applications, moving 
foreground extraction in multimodal images has been 
afforded by several researchers. Stauffer et al. [4] applied 
the standard approach of background modeling by 
Gaussian mixtures and Harville et al. [3] used this 
approach to color and depth images. By defining a 
volume of interest, the foreground in 2D/3D images is 
extracted and used for hand tracking as well as gesture 
recognition in Ghobadi et al. [16]. And in Bianchi et al. [5] 
a rather simple approach to extract foreground from 
2D/3D videos which is based on region growing and 
refrains form modeling the background is evaluated. In 
Leens et al. [6] the pixel-based background modeling 
method, called ViBe, is separately applied to the RGB 
channels of color images and the three channels of PMD 
camera. The resulting foreground masks are combined via 
binary image operations.  
Our method is proposed based on the latest research on 
decomposition of sparse and low-rank matrix and 
recovery of the two components via convex optimization, 
and it offers a new approach to extract moving foreground 
in multimodal images. 

III. PROPOSED METHOD 

Foreground segmentation or background subtraction is 
one of the crucial stages in image analysis aiming to 
isolate the region of the scene corresponding to the 
moving object. We now describe how to extract the 
region of moving object from the background in a still 
scene. Here, we define the foreground as the region 
corresponding to the moving objects or motion such as 
people activity, cast shadows from moving object and 
variability in the background itself opposed to the static 
background of the video. In this work we consider that an 
image is composed of the background and the foreground. 
In a short video recorded from a static camera, the 
background is almost static and therefore the matrix 
consists of background is either low-rank structure or well 
approximately low-rank more or less due to the changing 
lighting conditions, while the matrix consists of 
foreground  has a sparse structure. This leads to that the 
problem of moving object extraction can be formulated as 
a decomposition of a matrix into two components: a low-
rank background matrix and a sparse foreground matrix, 
as well as exactly recovery of the two components. In the 
following subsections, we describe how to decomposes 
the matrix and exactly recover the two components of 
sparse foreground matrix and low-rank background 

matrix. Then we show how to apply to 2D image and 3D 
depth image. Finally the foreground activity extraction is 
done by combining the foreground masks in 2D and 3D 
images. 
 
A. Decomposition of Sparse and Low-rank Matrix  

h w
I


Assume an image can be expressed as a matrix

h

, 

where w and 
I

 are height and width of the image, 
respectively. If the matrix 

( )M
iD M h w  

 is stacked as a column 

vector 

1 2[, ,..., ] M N
ND D D D  

 and an image collection is 

denoted as N, where 

D

 denotes 

the total number of this image collection. The matrix 

B

 
therefore can be formulated by adding a background 
matrix F and a foreground matrix D B F , that is

B
. 

According to the fact that the background matrix 

B

 is 
low-rank and corrupted by some spatial localized 
foreground activity such as moving objects, we formulate 
the problem of moving object extraction in 2D and 3D 
depth images as decomposition of sparse and low-rank 
matrix.  Thanks to the latest research on robust principal 
component analysis [2], exactly recovering F and 

1
,
min , ..
BF

B F st D B F     　 　

 by 
solving the convex optimization problem: 

 
(1) 

where 

1 ()
M
i i   

 is the nuclear norm of a matrix or sum of the 

singular values: 1, 1l represents the 

1 ||ij ij  

 

norm or the sum of the absolute values of matrix entries: 

, and is the balance parameter that is set 

positive. 
 
B. Optimization via Augmented Lagrange Multiplier 

Method 

2

1
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,
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B F YD B F D B F

 








      

Now the key point is how to solve the convex 
optimization problem, as expressed in Eq. (1). Based on 
the recent work on recovery of corrupted low-rank matrix 
[13], hereby we apply the method of augmented Lagrange 
multiplier to solve problem effectively. 
The augmented Lagrange function is given by: 

 

(2) 

M NY where is a Lagrange multiplier matrix, 

,

is a 

positive scalar, 

F

 denotes the matrix inner product, and 

1 1 ,

1 1 1

( , ) argmin (,, ),

( )

kk k BF k
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B F L BFY

Y Y D B F





 

  



   

denotes the Frobenius norm. The augmented 

Lagrange multiplier method iteratively estimates both the 
Lagrange multiplier and the optimal solution by 
iteratively minimizing the augmented Lagrangian 
function: 

 

(3) 

The iteration definitely converges to the optimal solution 
of the problem in Eq. (1) [59]. However, it is very 
difficult to directly solve the first step in the above 



 

 

iteration in Eq. (3). Researchers commonly try to 
minimize the Lagrangian function approximately against 
the two unknown variables B and F at one time: 
 

1 argmin ( , , )
kk B k kB L B F Y 

 
(4) 

1 1argmin ( , , )
kk F k kF L B F Y 

 
(5) 

 
For the clearness, the complete procedure to solve the 
convex optimization based on the method of augmented 
Lagrange multiplier is summarized in Algorithm 1.  

Algorithm 1: Optimization via  Augmented Lagrange 
Multiplier Method 

Input:   Observations Matrix M ND  ,  ,  ,  . 

while not converged do 

1
( , , ) ( )k k

k

U S V svd D F Y

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; 

 1 1

k

T

kB US S V


 
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1
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


   

; 
 

1 1 1( )k k k k kY Y D B F     
; 

1k k  
; 

1k k  ; 
 
end while 

Output:   kB B
; kF F

. 

where ( )svd  denotes the singular value decomposition 

operator. 
 
C. Implementation Issues 
We hereby describe the implementation details for 
Algorithm 1. Due to the fact that the basic idea of the 
augmented Lagrange multiplier method is to search for 
the saddle point of the augmented Lagrange function, 
rather than directly solving the original constrained 
optimization problem. We vary the parameter  starting 

from the initial value 
0  and increase it monotonically 

with each iteration to speedup the convergence until it 
reaches sufficiently large, in the meanwhile the difference 
in the value of the cost function is enough small between 
two consecutive iterations when the iteration definitely 
converges to the optimal solution of the problem [14]. 

 

D. Foreground Segmentation on 2D color Image 
2D color camera usually has high resolution compared to 

PMD camera. In our work, their resolutions are 480 640

pixels and 48 64 pixels, respectively. To isolate the 

standard PC memory limitation, we downsample all the 
test color images to 48 64 . After being processed, they 

will be resized to 480 640 via the upscaling technique. 

The methods of matrix decomposition and convex 
optimization above described are sequentially applied to 

the individual RGB channels of color images, and then 
the segmentation maps are combined to build an RGB-
foreground. With this modality, some regions could be 
misclassified in the foreground, including the following 
cases: 

 Background is not static. 

 There are strong shadows cast by moving objects. 

 The color of moving objects is similar to those of 
the background in a scene. 

In addition to the cases above mentioned, other pixels 
could also be misclassified in the background. For 
example, the environmental lighting condition is too dark. 
However, the ToF depth data naturally compensates for 
these disadvantages and weakness of RGB data. For 
example, the depth image automatically segments 
foreground objects from background, a very difficult task 
in color images. The ToF camera has its own modulated 
infrared lighting source so that it is almost unaffected by 
ambient light sources. The detail analysis and discussion 
are presented in the experiments.  
 
E. Foreground Segmentation on 3D Depth Image 
Actually, the PMD camera based on ToF principle also 
delivers the three channels:  distance data, modulation 
amplitude and intensity image. The distance data is 
encoded as a depth image, as shown in Fig.2 (b). Fig.2 (a) 
is the color image corresponding to the depth image. Here 
we only use the depth information due to the fact that 
PMD camera uses its own modulated infrared light source 
and can even works in the complete darkness. 
Furthermore, the depth image does not suffer from the 
shadow of moving object.  

  
(a) (b) 

Fig.2 (a) Color image. (b) Depth image. 
 
However, it is necessary to perform the pre-processing 
techniques before applying the complex processing 
algorithms to the depth images. As we can observe from 
Fig.2 (b), the distance images provided by the PMD 
camera are noisy, especially in the corner. To improve the 
depth image, a median filter is used to filter the statistical 
noise and smooth the distance data. Owing to the fact that 
the lighting system does not illuminate the whole field of 
view of the camera, some pixels in the corner of the depth 
image take the out of range value and therefore are 
filtered in order not to affect the accuracy of the post-
processing [15]. As the colors have different reflection 
factors, to some extent the depth image is affected by the 
color of the object (i.e., the region belongs to the 
Television in the image) [16]. Some pixels could be 
classified in the background if the object lies at the same 
distance from the camera as the background (i.e., the 



 

 

posters mounted on the wall). We simultaneously apply 
our proposed methods to the depth image and obtain the 
results, as shown in Fig.3 (b). In order to combine with 
color images, we upscale the depth image with low 

resolution to 480 640 by interpolation operation. 

  
(a) (b) 

Fig.3 (a) Original depth image. (b) Moving foreground extraction. 

Combining moving foreground  from 2D and 3D Images 
From the above discussions in section III-D and section 
III-E, there exists the necessity to combine both images of 
different modalities to overcome their intrinsic limitations 
and thereby improve the performance of moving 
foreground extraction. 

IV. EXPERIMENTS 

In this experiment, our proposed methods are applied to 
the real images recorded from this 2D/3D imaging system 
at the modulation frequency of 20 MHz and the maximum 
distance for the target of 7.5 meters in an indoor scene. 
The sequence contains 100 frames of color images with 

resolution of 480 640  pixels and depth images with 

resolution of 48 64  pixels. The indoor scene consists of 

a university hall, where a man comes in and walks away 
until disappears out of the field of view of the cameras. 
The ambient lighting conditions are very stable and 
moving object is well contrasted with the background 
(background is mostly static). Due to the limitation of 
standard computer memory, we downsample the color 

image to 48 64  pixels and process them sequentially by 

individual RGB channels. After completing processing 
them, we upscale the results to 480 640  via 

interpolation operation. The parameters   and   are 

fixed as 1  and =1.25 , respectively.   is initialized as

0 1/ ( )norm D  , where ( )norm D denotes the norm of 

observations D . And afterwards the results of the three 
channels are merged as RGB-foreground, as shown in the 
third column of Table 1. As we can see from the first 
column of Table 1, the moving object has been exactly 
extracted from the original color images. However, the 
strong shadows cast by moving object can also be 
observed in the color sequence. Especially, the shadow of 
moving object still is left in the color image (frame=99) 
when the man has already come out, as shown in the last 
row of the third column in Table 1. To solve this problem, 
the depth images are also processed to compensate for the 
drawbacks in the color images. The filter is firstly used 
since the noise in the top-right corner of the depth images 
is extremely heavy as we can see from the second column 
in Table 1. The processed results are presented in the 
forth column in Table 1. The moving object without the 
shadow is also completely detected from the depth images. 
By combining them, we obtain the final moving 
foreground extraction results, as shown in the fifth 

column in Table 1. From such results, we can observe that 
the moving object is successfully extracted from 2D/3D 
images. 

TABLE 1. EXPERIMENTAL RESULTS 
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V. CONCLUSTIONS 

The paper presents a novel method of moving object 
extraction using 2D color and 3D depth images provided 
by a new monocular hybrid 2D/3D imaging system that 
has been developed based on the ToF principle in recent 
few years. The procedure of background subtraction in 
2D and depth images is implemented based on the recent 
work on recovery of corrupted low-rank matrix. And then 
we are able to extract moving foreground by combining 
the depth images with those of RGB camera. The 
experiments demonstrate the effectiveness of our 
proposed method and provide promising results. 
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ABSTRACT 

This paper introduces a novel approach for post-processing of depth map which enhances the depth map resolution in 

order to achieve visually pleasing 3D models from a new monocular 2D/3D imaging system consists of a Photonic mixer 

device (PMD) range camera and a standard color camera. The proposed method adopts the revolutionary inversion 

theory framework called Compressive Sensing (CS). The depth map of low resolution is considered as the result of 

applying blurring and down-sampling techniques to that of high-resolution. Based on the underlying assumption that the 

high-resolution depth map is compressible in frequency domain and recent theoretical work on CS, the high-resolution 

version can be estimated and furthermore reconstructed via solving non-linear optimization problem. And therefore the 

improved depth map reconstruction provides a useful help to build an improved 3D model of a scene. The experimental 

results on the real data are presented. In the meanwhile the proposed scheme opens new possibilities to apply CS to a 

multitude of potential applications on various multimodal data analysis and processing.  

 

Keywords: Super-resolution, compressive sensing, Time of Flight camera, depth map, resolution enhancement 

 

1. INTRODUCTION 

The ability to capture 3D model of a scene has attracted more and more attentions. However, to build 3D geometric 

information of real environments in an automated and fast way is still a challenge task. The conventional image sensors 

such as CCD/CMOS measure the color image information of the scene, but it lacks the depth information of the scene. 

Even for static scenes there is no low-priced off-the shelf system available, which provides full-range range information 

in real-time and low-cost way. Laser scanning techniques merely sample a scene row by row with a single laser device, 

are rather time-consuming and impracticable for dynamic scenes. Stereo vision camera systems suffer from the inability 

to match corresponding points in homogeneous regions [3].  

As a recent development in imaging hardware, the Time-of-Flight (ToF) cameras has been introduced that capture 3D 

depth map by measuring the return travel time of a modulated infrared light wave-front emitted from the lighting system 

mounted on the sensor. The combinational utilization of ToF camera and standard color camera has emerged recently as 

an unusual potential to spread due to the fact that on one hand it can provide color image and on the other hand it 

delivers depth information between the camera and the object in a scene. Therefore to meet the requirement, a new 

monocular 2D/3D imaging system (i.e., MultiCam [2]) has been developed in our research center.  

Visual input from the color camera delivers high-resolution texture image but meanwhile increases the requirement of 

enhancement of the depth map calculated from the distance information output of ToF camera in term of spatial 

resolution. Unfortunately, the depth map suffers from the drawback of far too low resolution due to the restriction of the 

range sensor. To address this problem, a lot of interesting works have been done to enhance the spatial resolution of 

depth map. Prasad et al. 0 applied the interpolation method into the depth map. Sebastian et al. proposed an approach 

that used several depth maps for the super-resolution reconstruction of a depth map [5][8]. Bilateral filtering of the cost 

volume is used in [4] and the Joint Bilateral Up-sampling method is proposed in the work of [6]. Rajagopalan et al. [10] 

proposed a Markov-Random-Field (MRF) based resolution enhancement method from a set of low-resolution depth 

recordings that formulates the up-sampled 3D geometry as the most likely surface given several low resolution 

measurements. And the similar method based on MRF energy minimization framework is proposed in [7]. 
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In this work, to overcome the problem, we propose a novel approach to enhance the resolution of depth image by 

adopting the recent emerging theory framework of CS. The problem of estimating and reconstructing high-resolution 

depth map from low-resolution depth observations is basically ill-posed problem and prior constraints must be imposed 

to enforce regularization. We build the super-resolution model in the CS framework way. The desired super-resolution 

(SR) depth image is estimated and furthermore reconstructed by solving non-linear optimization problem. Therefore the 

improved range image reconstruction provides a useful help to build an improved 3D model of a scene. 

The remainder of this paper is organized as follows. We briefly introduce the 2D/3D imaging system in Section 2. 

Section 3 describes the problem model for super-resolution and the compressive sensing model. We present an approach 

to solution for the super-resolution problem using the compressive sensing framework. And Section 4 demonstrates the 

experimental results. Finally we draw a conclusion and make a discussion in Section 5.  

 

2. 2D/3D IMAGING SYSTEM 

The multimodal data acquisition device used in our setup is a new monocular 2D/3D imaging system, as shown in Fig.1. 

This vision system is comprised of two imaging sensors: a standard 2D sensor (CCD/CMOS) and a Photonic Mixer 

Device (PMD) range sensor. The PMD is an implementation of an optical Time-of-Flight sensor, able to capture distance 

data between the sensor and the object points of a scene at a video frame rate [9]. The depth image is obtained by coding 

the distance data afterwards. However, current PMD range sensors suffer from the drawback of noise and low-resolution, 

typically 64 48  up to 204 204 pixels, which is small compared to standard RGB sensors. 

 

Figure 10.  The 2D/3D imaging system developed in our research center. 

3. SIGNAL MODAL 

 

3.1 Problem modal 

Super-resolution (SR) is a technique that offers the promise of overcoming some of the inherent resolution limitations of 

low-cost imaging system. SR algorithms attempt to generate a single high-resolution (HR) image from one or more low-

resolution (LR) images of the same scene. The goal is to reconstruct the high-frequency missing information in one way 

that approximates the desired HR image as closely as possible. There are both single-image and multiple-images variants 

of SR. Multiple-images based SR algorithms utilize the sub-pixel shifts between multiple low-resolution images of the 

same scene [57]. They create an improved resolution image fusing information from all LR images [13]. However, how 

to recover missing information from a single LR image is more interesting and challenging. That is to say, the problem 

of single-image SR is particularly important because our application in which only a single, LR depth map is available 

and the up-sampling must be applied as a post-processing procedure. It is our goal to obtain high-resolution depth map of 

a static scene despite the significant noise in the raw data. We enhance X-Y measurement resolution and meanwhile 

reduce the overall random noise level by performing SR technique.   

Let us assume we have a LR depth image, denoted as y . It can be formulated to be obtained through the observations 

given by the model: 



 

 

                                                                                   y DGf                                                                                           (1) 

where D  and G  respectively stand for the down-sampling (i.e., decimation) and  blur operators, and f  is the desired 

HR image of the scene subject to reconstruction. The problem model can be expressed as Fig.2. 

 

Figure 2. Problem model. 

Mathematically speaking, the SR issue is an inverse problem.  However, this issue is also an extremely ill-posed problem 

since there exist infinitely many HR images f meet the reconstruction constraint (i.e., the formulation of Eq. (1)) for a 

given LR y . Fortunately, the recently emerging inversion theory of CS provides us a great tool for solving the inverse 

problem. In the next two sub-sections, we describe the formulation of CS theory and problem modeling with 

compressive sensing framework, respectively. 

3.2 Compressive sensing modal 

The theory of compressive sensing states that, a signal can be exactly recovered from a small number of random linear 

measurements if it is sparse in some basis through non-linear optimization [11][12].  

Sparsity and random measurement:  In a typical framework of compressive sensing, a signal vector
0

Nf    can be 

represented by the form
0 0f x  , where 

N N denotes an orthonormal basis, and 
0

Nx  satisfies 

0 0|| || =x K N  (
0|| ||  is 

0l  norm.). Due to the sparsity of 
0f  relative to the basis , it is not necessary to sample all N  

values of
0f . Instead, the CS theory establishes that 

0f  can be recovered from a small number of projections onto an 

incoherent set of measurement observations [11][12]. To measure
0f , we compute M N  linear projections of 

0f  via 

the matrix-vector multiplication 

0y f x                                                                                  (2) 

where 
M N is the measurement matrix. 

Restricted Isometry Property (RIP):  CS addresses the problem of solving for 
0f when M N , i.e., =   is 

severely underdetermined. This is an ill-posed problem as there are an infinite number of candidate solutions for
0f . 

Nevertheless, the sparse signal 
0f  can be accurately estimated if the measurement matrix  in conjunction with   

satisfies a technical condition called Restricted Isometry Property [12]. That is to say,    meets the RIP of order s if 

there exists a constant (0,1)s   for which  

2 2 2(1 ) || || || || (1 ) || ||s sv v v                                                                     (3) 

holds for all s-sparse 
Nv .  As a matter of fact, the RIP presents that a measurement matrix will be valid if every 

possible set of v  columns of   forms an approximate orthogonal set. The examples of matrices that have been proven 

to satisfy the RIP include independent and identically distributed (iid) Gaussian random matrices, Bernoulli matrices, 

and partial Fourier matrices [13]. An alternative approach to stability is to ensure that the measurement matrix  is 

incoherent with the sparsifying basis  in the sense that the vector { }j  cannot sparsely represent the vector { }j  and 

vice versa [11][12][15].  



 

 

Reconstruction algorithm: 

0x

 The reconstruction algorithms often rely on an optimization, which searches for the 

sparsest coefficients y that agree with the measurements M. If 0xis sufficiently large and 0x is strictly sparse, 

0l

 is the 

solution to the 

0 0
ˆ argmin|||| ..x x st y x 　 　

 minimization: 

                                                               (4) 

0lHowever, to solve this 

0l

 minimization is NP-problem [17]. Fortunately, the revelation that supports the CS theory is 

that a computationally tractable optimization problem yields an equivalent solution. We need to replace the 

l１

 

minimization with 

ˆ argmin|||| ..x x st y x １ １　 　

 minimization:  

                                                                

l１

(5) 

 

This 

l１

optimization problem, also known as Basis Pursuit [18], can be solved by linear programming approaches. 

However, the optimization problem requires cubic computation in general and therefore the cubic complexity renders 

it impractical for many applications. For this reason, a flurry of research on faster algorithms has been motivated.  
Iterative greedy algorithms such as Orthogonal Matching Pursuit (OMP) [21], Regularized Orthogonal Matching Pursuit 
(ROMP) [19] and CoSaMP [20] have been investigated. The general framework of CS theory is shown in Fig.3. The 
high-dimensional signal is transformed to coefficients matrix via sparsifying transform. Then we obtain the low-
dimensional observations by applying random measurement to the coefficients matrix. Finally, the original high-
dimensional signal can be exactly reconstructed from the small observations by using the recover algorithms. 
 

 

Figure 3. The framework of compressive sensing  

3.3 Super-resolution modeling via compressive sensing framework 

By comparing the problem model with the CS model, as described in Eq. (1) and Eq. (2), we observe that the similarity 
of them is the inverse and ill-posed problem (i.e., Both of them want to estimate the high dimensional signal from the 
low dimensional signal). MInitially, it seems not possible since the ysamples of N M yield a 

f

 dimensional subspace 

of possible solutions for the original 

f

that would match the given observations. However, a key assumption of CS 

framework offers a crack to this non-possibility, i.e., the transform version of the signal is sparse in some basis



. It 

is not an unreasonable assumption since the depth map is a digital image by coding the distance between the sensor and 
the object point of the scene. Therefore we consider using the wavelet basis as the sparsifying basis 

0f f
 to sparsely 

present the depth map, and here



.  In order to satisfy the RIP as described in Eq. (3) with high probability, the 

measurement matrix 

DG

is modeled as  
                                                                                                                 

                                                                                            (6) 
 

Dwhere G is the down-sampling mask and denotes the Gaussian filter mask. In this work, we consider the 
Gaussian filter as a multiplication of a Gaussian function in the Fourier domain: 



 

 

 

1G F G F

                                                                                        (7) 

where F is the 2D Fourier transform matrix, G
 denotes the diagonal matrix whose diagonal elements correspond to the  

Gaussian function and 1F   is the inverse Fourier transform matrix. Therefore the measurement matrix can be expressed 

as 1DF G F

  . And the super-resolution problem can be modeled as Eq. (8) with the framework of CS. 

1y DF G F x

                                                                                 (8) 

With this formulation in hand, to reconstruct the HR image, we apply the ROMP algorithm to solve the optimization 

problem. Given a LR depth image y , we obtain the wavelet transform x using ROMP algorithm. And then we apply the 

inverse wavelet transform to x  , afterwards reconstruct the desired high-resolution depth map f .  

4. EXPERIMENTAL RESULTS 

In this section, we demonstrate the experimental results from two image samples to evaluate the performance of the 

proposed method. For the first test sample, firstly, we directly apply the Gaussian low-pass filter operator and decimation 

operator to the original HR image in order to obtain the LR image. And then we adopt the proposed approach on the 

observed LR image to reconstruct the desired HR image.  The reconstructed HR image is compared with the original HR 

image using the compared methods include perceptual quality evaluation and quantitative evaluation.  For the second test 

sample, we would like to directly apply the proposed method to obtain the HR depth map, since only with the LR depth 

image as the measurement observations in hand instead of HR depth image. 

4.1 Test I 

Since the real depth map suffers from both of drawbacks of lower resolution and high noise, in the first test sample we 

use a standard grayscale image which often is used in image processing community to evaluate the performance of the 

proposed method.  

 Figure 3. (a) The original HR image. (b) The corresponding wavelet transform with „haar‟ at level 2. (c) The LR image 

after applying Gaussian low-pass filter and decimation operators. 

 

 Figure 4. (a) SR result from Fig.3 (c) via „bilinear‟ interpolation. (b) SR result from Fig.3 (c) via „bicubic‟ interpolation. 

(c)SR result Fig.3 (c) via the proposed method. 



 

 

We firstly use the wavelet transform with „haar‟ at level 2 to analyze the sparsity of the original image, as shown in Fig.3 

(b). The original image (as shown in Fig.3 (a)) exhibits the highly sparsity under the wavelet basis. With the sparsity 

property in hand, we then blur it with the Gaussian low-pass filter and obtain a sub-sample version with down-sample 

mask, as shown in Fig.3 (c). To test the propose method, we up-scale the image using various algorithms. In Fig.4 we 

compare the results of our method against the standard approaches: bilinear interpolation and bicubic interpolation. From 

a point of view of perception, the result of our method is better than the other approaches with sharper details. For 

example, one can observe the cameraman‟s eye in the image reconstructed by the proposed approach.  In the meanwhile, 

we evaluate the results with Peak Signal-to-Noise Ratio (PSNR), the most widely used objective image quality metric. 

However, an interesting result is that the PSNR value from the proposed method is lower than the other methods. As we 

have known, the PSNR value does not perfectly correlate with a perceived visual quality due to the non-linear behavior 

of the human visual system.  

4.2 Test II 

The depth map (i.e., Fig.5 (a)) used in this work was 204 204 pixels in size with a bit depth of 8 bits. It was captured 

from the PMD camera of MultiCam monitoring a natural scene with a man walked in the field of view of the camera. 

However, a big difference from the first test sample is that we directly apply the proposed method to the depth map 

instead of the down-sample version of HR image due to the fact that only LR depth map is available. Firstly we analyze 

the sparsity of the original LR depth map in wavelet domain. As we can observe from Fig. 5 (b), it can be sparsely 

represented in wavelet transform with „db2‟ at level 2. With this precondition in hand, we assume that the desired HR 

depth map is also sparse in the wavelet domain. Therefore we invoke the super-resolution method via compressive 

sensing framework and apply the Gaussian low-pass filter and point down-sample mask to the desired HR depth map. 

With y as the given LR depth map, we compute the sparse coefficients under the wavelet basis x and afterwards 

reconstruct the desired HR depth image using the equation of f x  .  

 

Figure 5. (a) Original LR depth map. (b) The corresponding wavelet transform with „db2‟ at level 2. 

 

Figure 6. (a) Part of Original LR depth map. (b) SR result via „bilinear‟ interpolation. (c) SR result via the 

proposed method. 

 



 

 

For the clarity, we use a part of the results from interpolation and the proposed methods. The part of the original LR 

depth map is shown in Fig.6 (a). The results are shown in Fig. 6 (b) and (c), respectively. As we can see, the proposed 

method produces the smoother and clearer edge than the other method. And meanwhile we should also note that the 

proposed method not only enhances the edge, but also implements the function of noise removal to some extent. 

Therefore, the proposed method produces a better performance. 

5. CONCLUSTIONS AND DISSCUSSIONS 

In this work, we firstly study the problem model of super-resolution and compressive sensing theory model. We build 

the super-resolution signal model via the framework of compressive sensing by the comparison and observation of the 

both models. The depth map is sparsely represented under the wavelet basis. As shown in the results, the „haar‟ wavelets 

at level 2 we used for compression worked well in the standard gray-level image, while the „db‟ wavelets at level 2 

worked well in the depth image. We suppose that there might be better-suited wavelet basis for the sparsifying basis. We 

design the measurement matrix using the multiplication of a point down-sample mask and a Gaussian low-pass filter. 

The measurement matrix is sensitive to the choice of the sparsifying basis according to the RIP, which means there 

seems to exist better sparsifying basis such as complex wavelets for sparse representation. In the meanwhile, the random 

point down-sample mask can be used to improve the effectiveness of the proposed method. In addition, the 

reconstruction algorithms also play an important role for the result, therefore the other recover algorithms would be 

interesting to explore.  
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