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Zusammenfassung

Bodenzielverfolgung mit luftgestütztem Radar liefert das Lagebild von Fahrzeugbewegungen

innerhalb des beobachteten Gebiets. Fahrzeuge werden durch die Anwendung von Raum-Zeit

adaptiver Signalverarbeitung (STAP) entdeckt. Die Entdeckungen werden dann von einem

Zielverfolgungsalgorithmus zu Zielspuren verarbeitet.

In der Literatur werden Radarsignalverarbeitung und Zielverfolgung als zwei getrennte For-

schungsfelder behandelt und die Bodenzielverfolgung wird nicht anhand von Realdaten validiert.

Das erste Ziel dieser Arbeit ist, eine engere Verbindung zwischen beiden Feldern herzustellen. Das

zweite Ziel ist zu zeigen, dass die Qualität der Zielverfolgung durch das Verwenden zusätzlicher,

durch die Radarsignalverarbeitung gewonnene Information verbessert werden kann. Das dritte Ziel

ist, die Funktionalität der Zielverfolgung und die Verbesserung der Leistung durch experimentelle

Realdaten zu belegen.

Somit stellt diese Arbeit eine Gesamtbehandlung der Bodenzielverfolgung von den Radar-

Rohdaten bis zu Zielspuren dar. Es wird ein vollständiger, auf dem Gaussian Mixture Probability

Hypothesis Density Filter basierender Referenzalgorithmus für die Bodenzielverfolgung entwickelt.

Insbesondere werden Jacobimatrizen der Beobachtungsfunktion hergeleitet. Sie werden in der

Arbeit so dargestellt, dass sie direkt in einer Programmiersprache implementiert werden können.

Im Zuge dieser Arbeit wurde ein Zielverfolgungs-Experiment mit dem Experimentalsystem

PAMIR des Fraunhofer FHR durchgeführt. In dem Experiment wurden neben einer Vielzahl von

Gelegenheitszielen zwei mit GPS-Geräten ausgerüstete Fahrzeuge von dem Radar beobachtet.

Auf Basis dieses Experiments und des Referenzalgorithmus werden Zielverfolgungsergebnisse

vorgestellt.

Darüber hinaus erweitert diese Arbeit den Referenzalgorithmus um einen Parameter, der die

Varianz der Richtungsschätzung des Zielsignals charakterisiert. Dieser Parameter wird adaptiv

anhand der geschätzten Signalstärke und der Stärke störender Bodenrückstreuungen festgelegt. Der

wesentliche Beitrag dieser Arbeit in Bezug auf diese Erweiterung ist eine gründliche experimentelle

Validierung. Erstens zeigt der Vergleich von GPS- und Radar-basierten Richtungsschätzungen,

dass dieser Parameter die Verteilung des Messfehlers exzellent beschreibt. Zweitens werden

Zielverfolgungsergebnisse mit den GPS-Spuren verglichen. Es zeigt sich, dass der erweiterte

Algorithmus sowohl in Bezug auf die Spurgenauigkeit als auch in Bezug auf die Spurkontinuität

die Zielverfolgung verbessert.
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Abstract

Ground moving target tracking by airborne radar provides situational awareness of vehicle

movements in the supervised region. Vehicles are detected by applying space time adaptive

processing to the received multi channel radar data. The detections are then fed to a tracking

algorithm that processes them to tracks. In literature, radar signal processing and ground target

tracking are treated as two separate topics and results are not validated by experimental data.

The first objective of this thesis is to provide a closer link between these fields. The second

objective is to show that tracking performance can be improved by providing additional data from

the radar signal processing to the tracking step. The third objective is to validate the algorithm

and the performance improvement using experimental data.

As a result this thesis presents a unified treatment of ground moving target tracking from

radar raw data to established tracks. A complete reference algorithm for ground moving target

tracking based on the Gaussian mixture probability hypothesis density filter is presented. In

particular, Jacobians of the observation process are derived. They are presented in such a form

that immediate implementation in a programming language is possible.

In the course of this thesis a measurement campaign with the experimental radar PAMIR of

Fraunhofer FHR was conducted. The experiment included two GPS equipped reference vehicles

and a multitude of targets of opportunity. Tracking results obtained with this experimental data

and the reference tracking algorithm of this thesis are shown.

The thesis also enhances the reference target tracking algorithm by a parameter that character-

izes the variance of the direction of arrival measurement of the target signal. This parameter is

determined adaptively depending on the estimated signal strength and the clutter background.

The major contribution with regard to this enhancement is a thorough experimental validation:

Firstly, a comparison between GPS based measurements and radar based measurements of the

direction of arrival shows that this variance captures the distribution of measurement errors

excellently. Secondly, tracking results are compared to the GPS tracks of the ground truth

vehicles. It is found that the enhanced algorithm yields superior track quality with respect to

both track accuracy and track continuity.
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1. Introduction

Knowledge of the landscape, its forests, villages and roads combined with information about

movement of vehicles yields situational awareness of a region. Obtaining this awareness is crucial

in many circumstances, both in civilian and military context. In the civilian context, situational

awareness is needed in particular in the case of natural disaster, e.g. an earthquake or flooding.

Initially, supervisors of relief efforts will not know in which direction survivors are heading, which

roads are still usable or where locally organized aid convoys are progressing.

Situational awareness may be acquired by several means. Maps provide information about

the stationary features of a landscape and historically reports by personnel on the ground have

provided information about the movement of persons and vehicles. Especially to access the

dynamic development of the situation, knowledge of vehicle movements is of particular importance.

Within the last decades, technical equipment for generating situational awareness and especially

for obtaining information about vehicle movements has been developed. Different types of sensors

are available, e.g. optical sensors, infrared sensors and radar. Among these sensors, radar is an

excellent tool both for mapping a region with an airborne radar and for detecting moving objects

on the ground. Radar systems of commonly used frequencies are not impeded by clouds, fog and

rain and as active systems can operate at night.

The task of locating moving objects on the earth’s surface is denoted as ground moving target

indication (GMTI). As often in history, military requirements have been the original driver for

developing radar based GMTI systems. Such systems usually comprise an airborne platform – i.e.

a converted passenger plane in the case of Joint STARS of the United States – equipped with

radar systems. The radar antennas transmit electromagnetic waves to the ground where they are

reflected and backscattered. Part of the emitted energy is reflected to the radar antenna where it

is recorded. The data can then be digitally processed to gain information about the structure of

and movements on the ground.

Ground moving target indication with radar is particularly difficult for slowly moving vehicles

whose returns must compete with the overwhelmingly large reflections by the stationary ground,

clutter. This difficulty has given rise to Space Time Adaptive Processing (STAP) that requires

radar systems that are equipped with multiple receiving channels. In most implementations of

STAP, the radar processor attempts to learn the characteristics of the ground returns from radar

data that are free of moving target signals. It is then able to construct a filter that enhances the

detectability of ground moving targets.

For every detection target parameters are estimated. These include the range to the target, its
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1. Introduction

radial velocity with respect to the radar antenna and the direction of arrival of the signal. Linear

antenna arrays enable the estimation of the azimuth angle with which the target signal impinges

on the antenna. Combined with a digital elevation model of the earth’s surface, the range and

azimuth angle estimates enable the geolocation of a detection.

As a result of the radar signal processing, the location of detections may be displayed on

a map of the area of interest. While this already constitutes an improvement of situational

awareness, it is truly desired to display the paths of movements of the ground vehicles. To this end,

tracking algorithms that process the large number of detections to separate tracks are employed.

Historically, tracking algorithms have first been applied to the tracking of airborne targets. In

comparison, tracking of ground moving targets is more challenging since ground targets might

perform more abrupt maneuvers, may be very closely spaced, can be masked by ground clutter

and exhibit a small radar cross section. The most challenging aspect in target tracking is the fact

that the origin of detections is unclear, i.e. there is no prior association between existing tracks

and detections.

Target detections with associated parameter estimates form the link between the radar signal

processing and target tracking. In general the target parameter estimates are erroneous. Tracking

algorithms take this into account by modeling the measurements as realizations of random

variables. The variance of the random variable qualifies of how the tracking algorithm perceives

the measurements: A small variance value signifies that the measurement error is small. A large

variance implies that the measurement errors may be large.

In standard tracking algorithms a single value for the measurement variance is set in the

configuration of the tracking algorithm. It is not adapted during the run time of the algorithm.

However, in practice the configured variance may fail to capture the true behavior of the

measurement errors. For example, the measurements of different targets may be of varying

accuracy. Furthermore, changes of the true measurement error variance over time are possible.

In radar signal processing the estimation accuracy depends on the signal to noise and clutter

ratio (SCNR) of the target signal [72, Sec. 18.10]. The target signal power itself is a function of

several factors: The range between the target and the antenna, its location within the antenna

beam and its radar cross section. The radar cross section can fluctuate extremely rapidly due

to its strong dependence on the incidence angle [58]. For small values of the radial velocity, the

target signal is very similar to returns by the stationary ground, i.e. the clutter signal. This

reduces the signal to noise and clutter ratio. Thus, in ground moving target tracking there is a

strong variability of the target SCNR due to fluctuations of the target RCS and due to target

parameter dependent effects. This in turn causes strong fluctuations of the measurement error

variance between different detections. This effect has lead to the proposal of ground moving

target tracking algorithms that adapt the modeled measurement error variance for each detection

([35] and [38]). The adapted measurement error variance is obtained by a theoretical model for

monopulse estimates [54]. In these works it has been shown with Monte Carlo simulations that

the tracking error decreases due to the proposed detection dependent adaptation. However, these
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results have not yet been validated with experimental data: No analysis whether the adaptively

modeled estimation error variance does indeed conform to the distribution of errors with real

radar data has been published. Furthermore, no results with real radar data that prove an

improved tracking performance due to the adaptively modeled variance have been published.

This thesis provides the experimental validation for the case of modeling the direction of

arrival (DOA) measurement error. The model for the DOA measurement error variance is

based on inserting estimated parameters into the expression for the Cramer-Rao lower bound

(CRB). In comparison to evaluating the Monopulse variance as in [54] this approach can be

implemented much more conveniently as it does not require a numerical integration. It is shown

with experimental radar data that the introduced adaptive modeling of the measurement error

variance does indeed capture the empirical distribution of the measurement error. Furthermore,

it is shown with experimental data that the inclusion of this model in a tracking algorithm does

significantly improve the tracking performance.

In order to obtain these results several intermediate tasks had to be completed: The author

of this thesis designed and organized ground moving target tracking experiments with the

experimental system PAMIR of Fraunhofer FHR. Data that was acquired during these experiments

was used in the experimental validation. A ground moving target indication algorithm and

a tracking algorithm were implemented. The tracking algorithm without signal dependent

adaptation of the measurements serves as a reference algorithm to which tracking with detection

adaptive measurement variance is compared. For the error calculation Jacobian matrices of the

functions that determine the geolocation of a detection based on the radar measurements were

determined. Additionally to radar measurement errors, the error model also includes errors in

the antenna position, attitude and velocity determination.

Major contributions The major contributions of this thesis are:

? A complete treatment of ground moving target tracking including both the radar signal

processing step and the tracking step.

? Published algorithms for ground moving target tracking assume simplified models for the

radar measurements. While the simplification is often appropriate for the investigated

question, such algorithms cannot be directly applied to real tracking scenarios. In contrast,

this thesis includes a complete realistic measurement model in the target tracking algorithm.

This model accounts for measurement errors that are detection specific – range, DOA and

radial velocity – and measurement errors of the antenna location, attitude and velocity vector.

In particular, this includes the cumbersome computation of Jacobians of the geolocation

of targets which are required in tracking algorithms performing a linearization as in an

extended Kalman filter.

? The distribution of the direction of arrival measurement error is investigated with an

experimental data set. It is shown that the variance of the DOA error can be modeled
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1. Introduction

excellently by inserting target parameter and clutter covariance matrix estimates into an

expression for the Cramer-Rao lower bound. As a result, it can be indicated for which

detections the estimation error is particularly small and for which detections the estimation

error may be very large.

? It is shown on the basis of experimental data that signal adaptive modeling of the DOA

measurement error improves the ground moving target tracking performance. This result is

significant because it gives confidence to use this technique in future tracking algorithms.

? In the course of this thesis the author designed and organized a ground moving target

tracking experiment with the experimental radar PAMIR of Fraunhofer FHR. The data

of this experiment is the basis for the experimental validations of this thesis. While it is

not publicly available, it is shared with Fraunhofer FKIE. It is leading to the experimental

validation of ground target tracking techniques that have previously only been validated by

simulations [51].

State of the art In GMTI, the detection of ground moving targets usually involves STAP. An

overview of basic STAP techniques has been given in [83]. [34] provides a comprehensive overview

of publications and developments within the field of STAP up to the year 2005. Furthermore [49]

is a comprehensive tutorial. Space-Time Adaptive Processing in its mathematically optimum form

is infeasible, since it requires more training data than is available and it is computationally too

demanding for implementation. Thus, [83] gives a comprehensive overview of subspace processing

techniques for reducing the computational burden and training requirements. Detection in

heterogeneous terrain [48] [24], [61], [52] i.e. in areas where the characteristics of the ground vary

strongly with location is one of the most challenging cases because the radar processor is unable

to adapt to a specific type of terrain. One technique to counter this difficulty is knowledge aided

STAP (KA-STAP) that employs prior knowledge like ground maps to aid in the adaption of

the radar processor [50]. In most cases, the radar antennas are mounted such that they are side

looking. If this is not the case, further difficulties arise [42, 49].

Usually, as part of the STAP processing, a detector is applied to the filtered receive data. It

is attempted to design the detector such that a specified false alarm probability is obtained.

This false alarm probability is directly related to the detection threshold. However, the link is

not always obvious. In [64] a method for determining the detection threshold for the adaptive

matched filter (AMF) is given. In general the type of detector that is employed depends on the

model of the target.

A field that is related to GMTI is Synthetic Aperture Radar (SAR). SAR is a technique for

generating ground images based on the observation of the ground with radar. Contrary to GMTI,

SAR can be performed with systems that comprise only one recording channel. However, data of

multi channel SAR can also be used for GMTI [18]. Some systems like PAMIR of Fraunhofer

FHR are capable of performing both GMTI and SAR functions.
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In general, the identical tracking algorithms can be applied for tracking airborne targets and

for ground moving target tracking. If applied to single target scenarios without false alarms and

no missed detections, most tracking filters are at the core Kalman filters. An important challenge

for tracking algorithms is the association of detections to tracks. An obvious simplistic solution

is to associate the detection which lies most closely to a predicted track position. Filters that

employ this technique are denoted as Nearest Neighbor (NN) or Global Nearest Neighbor (GNN).

Other than nearest neighbor filters, probabilistic data association filter (PDAF) update the track

with a weighted mean of measurements [3] [43]. Multiple hypotheses tracking methods (MHT)

[8] [62] form tracks for multiple hypothesis of measurement to track associations. In effect, this

delayed association decision increases the tracking performance at the cost of computational load.

All of the above methods may be extended to employ interacting multiple models (IMM) to

predict the target motion [47]. The target motion model is within a discrete set of states – e.g

accelerating or linear motion. Tracking filters based on the probability hypothesis density (PHD)

avoid the difficulty of associating targets with detections. Instead of forming target tracks, they

track the density of expected number of targets. For linear, Gaussian target and measurement

models a closed form solution, the GM-PHD filter has been found [80]. Most tracking techniques

are formulated for targets that move according to Gaussian and linear dynamics. If this is not

the case, linearizations according to the form of the extended Kalman filter or the unscented

Kalman filter may be used. Other, however computationally much more demanding approaches

for dealing with non-Gaussianity and non-linearities are grid based and particle filters / sequential

Monte Carlo methods [2] [81].

Track-before-Detect denotes techniques that perform tracking of targets directly with measure-

ment data that has not been thresholded. Thus, dim targets that are otherwise lost due to the

thresholding within the detection process may still be tracked. Several approaches for track before

detect exist [16]: The dynamic programming approach (Viterbi algorithm) is a computationally

efficient method for performing maximum likelihood tests with a huge number of possible target

trajectories (tracks) on the data [5]. This method is grid based, i.e. the likelihood of the most

likely path that leads to states on a grid is computed. Other methods for Track-before-Detect are

grid or particle based Bayesian filters [67], [82] and histogram probabilistic multiple hypotheses

tracking (H-PMT) [76].

In relation to ground moving target tracking, some adaptations have been investigated. An

important topic is to model the ’clutter notch’, i.e. the effect that targets below a minimum

detectable velocity cannot be detected by STAP methods [14] [15] [37] [45] [78]. Other publications

deal with using terrain information, in particular road map information [1] [6] [12] [23] [32] [33]

[60] and general terrain information [22] [28] [59] . Furthermore, the use of high range resolution

profiling (HRR) has been investigated [27], [65] .

Systems for ground moving target tracking The most widely known operational system for

ground surveillance is the U.S. Joint STARS [20] systems. It comprises a Boeing 707 carrier

17



1. Introduction

aircraft equipped with computer stations for reconnaissance personal [30]. Its radar system

(APY-6 or APY-7 of 24 foot length) is mounted below the aircraft.

SOSTAR-X was a European program that attempted to meet the requirements of the NATO

Allied Ground Surveillance (AGS) programs. Within SOSTAR-X a demonstration radar system

was developed and mounted on a Fokker 100 aircraft. The transmit-receive moduls were taken

from the AMSAR program. Fraunhofer FHR contributed two radar operating modes to this

program. Experiments were performed with up to 25, mostly GPS equipped ground truth vehicles

[85].

MP-RTIP (Multi-Platform Radar Technology Insertion Program) is a U.S. program to develop

advanced radar technique for new platforms and possibly for upgrading the Joint STARS system.

MP-RTIP technology is for example used for the unmanned reconnaissance aircraft Global Hawk.

Outside of the U.S., the Selex Galileo Seaspray 7000E and the Selex Galileo PICOSAR are two

electronically scanned surveillance systems for SAR and GMTI.

Among research radars the AER-II system [18] and the PAMIR system [9] of Fraunhofer FHR

are notable for combining high resolution SAR imaging and multi channel GMTI modes in a

single system. F-SAR is a newly developed airborne research SAR system of Germany’s DLR

that can be operated in X, C, S, L and P band [29, 63]. Recently, Airbus has developed the

research system “SmartRadar” for airborne imaging and ground moving target detection. The

French aerospace lab ONERA has airborne SAR systems for operation in VHF-UHF, L and X

band (SETHI) and Ka band (BUSARD) [66].

Previous publications of thesis results Parts of this thesis have been presented by the author

at various conferences. In [39] the general structure of the tracking algorithm and tracking results

have been shown. In [40] and [41] it is shown by simulations that the use of a signal adaptive

DOA measurement model improves the tracking results. In [41] a subset of the results with

respect to the experimental validation of the measurement model and the improved tracking

results with experimental data has been shown.
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2. Fundamentals of ground moving target

indication

This thesis treats tracking based on detections that are acquired with an airborne radar system.

As defined in [70, Sec. 1.1] a radar is an “electromagnetic sensor for detection and location

of reflecting objects”. It emits electromagnetic waves into free space. When objects lie in the

propagation path, these objects reflect some of the energy. A portion of this energy is reflected

exactly into the direction of the radar receiver. Through the antenna, the radar receiver records

the impinging electromagnetic waves. Depending on the type of radar and waveform that is

emitted by the radar, the received signal can be processed to deduce the presence of the object

or target and to measure the distance or range to the target [70, Sec. 1.1]. Due to a relative

motion between the radar and the target, the receive waveform may be modulated by the Doppler

frequency. If the Doppler frequency can be measured by the radar system, it enables to determine

the radial velocity of the target with respect to the radar.

The first use of electromagnetic waves for detecting objects was due to Christian Hülsmeyer in

the early 1900s [84, p. 10.2]. His device could detect the presence of ships up to large distances but

was not able to provide range measurements [73, Sec. 1.6]. This application of electromagnetic

waves for the detection of objects was forgotten, but prior to the second world war the radar

principle was rediscovered in various countries. From then on, a rapid development in radar

technology and theory ensued. One of the most notable relatively recent developments is the now

extensive use of digital signal processing.

2.1. Airborne MTI radar

As of today a large variety of radars exist [70, Sec. 1.2]. The type of radar that is maybe most

known in the general public is the surface based moving target indication (MTI) radar with a

rotating antenna [68]. Its purpose is the detection of airborne moving targets. As such it is

desired, that the energy emitted by the radar is reflected mostly by airborne targets. However, it

is unavoidable that some of the energy that is emitted by the radar is reflected by the ground,

buildings, woodland, etc. Undesired reflections due to these stationary targets make the detection

of airborne targets more difficult. Hence, they are called clutter. Often, clutter echoes are much

larger than returns from the target [73, Sec. 3.1, p. 105] and can thus completely hide targets. In

order to overcome this problem, MTI radars are designed to detect moving targets based on the
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2. Fundamentals of ground moving target indication

Doppler frequency shift. Ideally, the Doppler shift of return signals due to stationary clutter is

zero while the Doppler shift of reflections by moving objects is proportional to the radial velocity

of the target.

MTI radars may be realized as pulse Doppler radars [75, Table 4.2, p. 4.3]. A pulse Doppler

radar is a radar that is capable of exploiting the Doppler effect and that uses pulsed transmissions.

It periodically emits pulses of electromagnetic waves according to the pulse repetition frequency

(PRF). During the emission of a pulse, no reception is possible. Reception is only possible in

between the transmission of pulses. By using a pulsed transmission it is possible to employ

the same antenna both for reception and transmission. For a pulse of a given duration, each

of the reflections by various objects are of the same duration. For closely spaced objects the

reflected signals will overlap at the receiver, making it impossible to recognize individual objects.

The use of shorter pulses is not a satisfying solution, as it reduces the amount of energy that is

transmitted per pulse and the average transmit power. A solution is to use a technique called

pulse compression [17].

In order to obtain the coverage of a large area, radars for ground moving target indication have

to be placed in airborne carriers. Among these, the most common carrier type is the airplane.

There are dedicated surveillance planes as for the Joint-STARS program. In the case of fighter

radars, GMTI is one of many radar functions. As a GMTI radar must direct the transmitted

wave towards the ground, reflections which are due to the ground and not to targets, will be

much stronger than in the case of air control radars. Thus, an effective method is needed to

distinguish between target returns and clutter.

This task is very similar to the problem faced by surface based MTI radars. The successful use

of the Doppler effect in MTI radar suggests a similar approach for airborne GMTI. However, due

to the motion of the carrier platform, the earth’s surface is also in motion with respect to the

radar. The radial velocity of a point on the ground depends on its position. Points that lie on a

line that is perpendicular to the flight path have a radial velocity of zero. The radial velocity

of points that lie far ahead of the platform in the flight direction attains almost the platform

velocity; a point far behind the platform attains almost the negative of the platform velocity.

This range of radial velocity corresponds to a range of Doppler frequencies that can potentially be

received by the radar. Figure 2.1a shows iso Doppler lines that indicate which ground reflections

have identical Doppler shifts. The area which is illuminated by the main beam of the radar is

encircled in blue. The corresponding extent of reflections by the ground in range and Doppler

is encircled in Figure 2.1b. Thus, this part of the range-Doppler map is covered with clutter.

Without further measures, target reflections are masked by clutter reflections within this area. To

illustrate this point, locations and velocity vectors of three ground targets have been inserted into

Figure 2.1a. The corresponding range-Doppler location of the targets are plotted in Figure 2.1b.

Two of the targets are within the clutter area and cannot be detected. Only the target with a

high radial velocity component lies outside of the clutter area.

In surface based MTI radars the Doppler frequency was introduced to indicate targets that
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2.1. Airborne MTI radar
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(a) An antenna footprint contour line is plotted
in blue and iso Doppler lines are shown in
gray. The location and velocity vector of
three targets is indicated in green.
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(b) The range and Doppler frequency of the an-
tenna footprint contour line is shown in blue.
Iso Doppler lines are plotted in gray. The lo-
cation of the three targets of (a) are plotted
in green.

Figure 2.1.: Extension of the antenna footprint on the earth’s surface and corresponding area
in range-Doppler. The contour line is given for a signal power that is at -13 dB
with respect to the maximum received signal power. In Figure (b) the extension of
Doppler frequencies that is covered by clutter is a function of range due to the shape
of the antenna pattern and the attenuation of a signal as a function of range. As a
target signal suffers the same attenuation, this does not imply that its detection
is easier for large ranges. Additionally, the location and velocity vector of several
targets in Cartesian coordinates and their corresponding range and Doppler values
are shown.
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2. Fundamentals of ground moving target indication

could not be distinguished by range alone. The question arises: Is it possible to use another

variable to indicate targets that cannot be detected based on range and Doppler by airborne

radar? The answer to this question has led to multichannel radars that are equipped with several

receiving antennas. Such systems are able to distinguish targets with the direction of arrival

(DOA), i.e. the direction from which a signal impinges on the antenna.

Antenna axis

w
avefront φ

(a) For a linear antenna the direction of arrival
is the angle φ between the antenna axis and
the vector that points from the antenna to
the origin of the signal.
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(b) Clutter Doppler frequency vs. directional

cosine. The range Doppler location of the
targets of Figure 2.1b are marked by green
dots.

Figure 2.2.: Definition of the direction of arrival and relation between the directional cosine and
Doppler frequency for clutter returns.

For a linear antenna, the direction of arrival is the angle between the antenna axis and the line

which points into the direction of the propagation of the electromagnetic wave (see Figure 2.2a).

The cosine of the DOA angle φ is called directional cosine.

As the direction of arrival is determined by the line of sight (LOS), the directional cosine is

given by the line of sight (between the target and antenna) and the orientation of the antenna

axis. On the other hand, the Doppler frequency of a clutter reflection is proportional to the cosine

of the angle between the LOS to the clutter reflector and the velocity vector of the antenna. Thus,

if the orientation of the velocity vector and the orientation of the antenna axis coincide, then

– for clutter – there exists a linear relation between the Doppler frequency and the directional

cosine [83, Sec. 2.6.2]. This relation signifies that more targets can now be distinguished from

clutter. To illustrate this point Figure 2.2b shows this linear relation and the locations of the

targets in a coordinate system of Doppler frequency and directional cosine. One of the targets is

located exactly on the so called clutter ridge [83, Sec. 2.6.2] and remains indistinguishable from

clutter. The other target that was covered by clutter in Figure 2.1b is now potentially detectable

as it lies off the ridge.

If a target can truly be detected depends among other factors on the actual radar system, the

recording parameters, the signal processing and the strength of the signal which is reflected by

the target.
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2.2. The radar signal

2.2. The radar signal

At this point the basic variables – range, Doppler and DOA – which combined distinguish ground

moving targets from clutter have been introduced. The radar signal that enables to exploit these

variables has yet to be presented: Airborne GMTI systems are realized as pulse-Doppler radars.

Pulses are emitted periodically and in between the emission of the pulses the reflected echoes

are recorded. The delay between the transmission of a pulse and the reception of an echo is

proportional to the range (distance) to a target. There is one recorded signal per receive channel

of the radar. For a single channel, Figure 2.3 schematically visualizes a pulse train and echos

of a scene with only a few targets. In order to detect ground moving targets, the receive data

time or range

Figure 2.3.: Schematic representation of the transmit pulse train and received echos. The
transmit pulses are colored black and the received echos in various colors. The
transmit times are marked with a solid square and the times at which the received
signal is sampled are marked with dashes.

of several consecutive pulses is grouped into a so called coherent processing interval (CPI). [75,

p. 4.9]. It is then processed with a technique called Space Time Adaptive Processing (STAP)

[83, 34]. The naming of this technique indicates that a spatial and a temporal dimension of the

receive data is used. The spatial dimension is obtained by the fact that the radar is equipped

with multiple receive channels with antennas at various locations. A single channel radar cannot

perform STAP. The temporal dimension is spanned by the transmit times of the pulses within

the CPI.

For typical radars and recording configurations, the range to the targets during the duration

of a CPI varies little in comparison to the range resolution of the radar. Thus, the scatterers

that contribute to the target signal at a specific range remain identical during the CPI. This

fact can be recognized more clearly if the data of one CPI is rearranged into a matrix. Each

column of this matrix is given by the received data that corresponds to one transmit pulse. The

rearrangement is visualized in Figure 2.4. Figures 2.3 and 2.4 show that the echo of each signal is

a time shifted and scaled version of the original transmit signal.

Due to the specific manner in which the radar operates, both the transmit and receive signals

are in fact complex valued (see [83, Sec. 2.3] and [73, p. 5.4]). A complex valued signal comprises

an imaginary and a real part of different magnitudes. It can also be given by its absolute value

and an angle. The angle is also denoted as phase. As the transmitted and received signals are

complex, in schemata as in Figure 2.3 the plots show in fact the absolute value of the signal

versus time whereas the phase of the signal is not shown. Still, the phase is an important carrier

of information. This is due to the fact that the phase of a received signal is shifted proportionally

to the distance of the target. The phase reacts very sensitively to changes of the distance. If the

23



2. Fundamentals of ground moving target indication

Time of pulse transmission (slow time)

Tim
e after pulse transm

ission (fast tim
e)

Figure 2.4.: Arrangement of the receive data of one channel into a matrix

target range is changed by only a quarter of the wavelength of the radar signal, this corresponds

to a phase shift of 180 degrees. As the wavelength of a typical GMTI system is in the order

of only 3 cm, this indicates that very small distance changes become measurable. However, if

an object is displaced further, for example by another quarter of a wavelength, the total phase

shift is 360 or 0 degrees – as if no target displacement has occurred. Hence, an absolute range

measurement based on the phase is unsuitable as it is highly ambiguous.

As the Doppler effect is due to the relative velocity between the transmitter and the target –

hence a change in range –, it manifests itself in a linear change of the phase of the received signal

over time. In the example of Figure 2.4 the targets are in fact moving away from the radar. Even

though the displacement is too small to be visible as shift of the received signals, the displacement

causes a linear progression of the phase in the time axis of the pulse emission. By performing a

discrete Fourier transform – independently for each range line – on the data matrix of Figure 2.4,

this change of phase can be exploited to split the signal into Doppler frequencies components.

The resulting two dimensional representation of the received data in range and Doppler is called

range-Doppler map. Figure 2.5 schematically represents the range-Doppler map for the set of

example targets. For better visibility, the signal is only plotted for the range lines where a target

is present.

In a multichannel radar, the data matrix and range-Doppler map of Figures 2.4 and 2.5 will

be available for each channel. Thus, the total dataset of a CPI is a data cube where the first

dimension is spanned by the receive channels, the second dimension is spanned by the pulse

24



2.2. The radar signal

Doppler frequency

Tim
e after pulse em

ission

Figure 2.5.: Schematical representation of a range-Doppler map

(a) The received data can be presented as a cube
with dimensions: receive channel, slow time,
range

(b) Arrangement of the data matrix of a single
range into a vector

Figure 2.6.: Visualization of the data structure of the received radar signal of a multichannel
radar system.
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2. Fundamentals of ground moving target indication

emission time or Doppler and the third dimension is the range to the target.

For multichannel data, the phase of the received signal enables the estimation of the direction

of arrival of a signal. In the situation which is visualized in Figure 2.2a the distance to a target is

slightly different for the antennas of the different receiving channels. The exact amount in which

the distance differs is a function of the angle of arrival. For example, for a signal which impinges

with a 90 degree angle on the antenna axis, the difference is zero. The difference in range to

target for the receive antennas causes also a phase difference between the channels of the received

signal. This phase difference can be exploited in order to estimate the direction of arrival.

In a realistic situation, the received data will be due to many more echoes than the four of

the example. The data matrix of a single channel of a more realistically simulated data will look

similar to the one of Figure 2.7a. In this Figure, the amplitude of the receive signal is represented

on a color scale. Due to the superposition of echoes from a very large number of scatterers, no

structure in the data is discernible. The same data represented as range-Doppler map is shown in

Figure 2.7b. In this Figure, the strong clutter signal in the frequency band between -0.025 and

0.025 is visible. Outside of the clutter band, the signal is mostly dominated by receiver noise.

The reflection of a single moving object is located at (-0.2, 8500 m) and the reflection of two

other moving objects are submerged in clutter.

The transformation to the Doppler domain can be understood as the change of representation

of the signal. For a multichannel data set it is similarly possible to represent the data in the so

called beamspace [83, Sec. 6.1]. The beamspace dimension corresponds to the direction of arrival.

Figure 2.8 shows a representation of a single range line of the data in beamspace-Doppler.

2.3. Data processing and target detection

The goal of the signal processing is to indicate ground moving targets based on the received radar

data. Traditionally, this task has been cast as a detection and estimation problem [64].

The detection of a target is equivalent to deciding between two hypotheses [77, Ch. 2].

Hypothesis 0 states that the received data is due to clutter and receiver noise only. Hypothesis 1

is that the received data additionally contains the reflection of a target with specific parameters.

The detection should be performed independently for each range line of the data.

received data =

{
clutter and noise Hypothesis H0

target signal + clutter and noise Hypothesis H1

Upon considering Figure 2.2b making this decision seems to be simple. If the data contains

components that do not lie on the clutter ridge, then they must be due to targets and a detection

(hypothesis 1) can be declared. However, the representation of a realistic receive signal versus

the DOA and Doppler frequency is similar to the example of Figure 2.8. It can be seen that –

due to the limited resolution of the radar – signal energy leaks from the clutter ridge into the
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(a) Time domain signal of a single channel

(b) Range Doppler map of the sum channel

Figure 2.7.: Visual representation of simulated data sets

Figure 2.8.: Beamspace Doppler plot of a simulated signal
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2. Fundamentals of ground moving target indication

normally clutter free region. A certain amount of “contamination” of the clutter free space in the

Doppler-DOA domain is virtually unavoidable. Furthermore, noise is present in the entire domain

and weak target signals might be mistaken for receiver noise. Thus, the distinction between the

two hypotheses is blurred.

In order to be still be able to decide between the hypotheses, statistical models, i.e. random

variables are used to describe the characteristics of clutter and noise signals more precisely. Based

on these models, statistical decision theory will enable to derive a decision rule or test [77].

Several observations lead to a formulation for the clutter model: First, the clutter signal can be

understood as independent sum of countless individual signals, each due to a single reflection, be it

by a rock, leave, part of a building, etc. The amplitude and the phase of these signals are random

since the position and sizes of the reflecting objects are random. According to the central limit

theorem [10, Sec. 2.1.3], the sum of a large number of independent random variables approaches a

Gaussian distribution. Hence, at least as an approximation, it is appropriate to model clutter as

a Gaussian random variable. The second observation is that the clutter signals at different range

lines are due to different individual reflecting objects. As the location and sizes of these objects

are stochastically independent from one another, so are the clutter signals of different range lines.

Third, the clutter signal of different pulses at the same range line is highly correlated as it is due

to the same reflecting objects, only recorded at different times. Furthermore, there is a strong

correlation between the clutter signal that is recorded by the different channels (see [83, Fig. 8]).

As a result of the first two statements, the clutter of each range line can be modeled independently

of other range lines as a Gaussian random variable. The third statement signifies that data of the

same range line should be processed jointly. In doing so, it is convenient to rearrange the data of

a single range line into a vector as visualized in Figure 2.6b. The probability distribution of this

vector is parameterized by its expected value and its covariance matrix. The expected value is

in fact a vector of zeros and the covariance matrix captures the correlation of the clutter signal

within one CPI.

Statistical decision theory provides two basic principles for deriving a detection test: The

Bayes criterion [77, p. 24] which minimizes the expected cost of making a wrong decision and

the Neyman-Pearson criterion [77, p. 33] which constraints the probability of a false alarm. In

ground moving target detection, usually the second criterion is chosen. For the case of testing

between two hypotheses without additional parameters, the optimum test for this criterion is

the Neyman-Person test [77, p. 33]. In this test problem, however, hypothesis 1 comes with

an unknown parameter, the complex valued signal amplitude. As a result, hypothesis 1 is a

composite hypothesis [77, Sec. 2.5]. For composite hypotheses a type of test called generalized

likelihood ratio test [77, p. 92] can be used.
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2.4. Signal model

In order to present the target detection in more detail, it is at this point necessary to introduce a

signal model for the received data.

Target signal The model is given for the data at the range of the target. The data of pulse p

and channel n is modeled as [83, p. 15]

ynp = αte
jn2πϑtejp2πft . (2.1)

Here αt is the complex valued amplitude of the target signal, ϑt is the normalized spatial frequency

and ft is the normalized frequency of the target. The target’s spatial frequency is related to the

target’s location via

ϑt =
uTatdantAxis

λ0
(2.2)

where uat is a unit vector pointing from the antenna to the target and dantAxis is a vector that

points into the direction of the antenna axis. Its length ‖dantAxis‖ is equal to the distance between

the antenna elements. The normalized target frequency is

ft =
Ft

Fpr
(2.3)

where Ft is the Doppler frequency of the target signal (in Hz) and Fpr is the pulse repetition

frequency of the radar. The complex amplitude of the target signal can be modeled as realization

of a scalar complex normal random variable, i.e.

αt ∼ N C(0, σ2
nrsnr,sp,se) . (2.4)

Here, σ2
n is the power of noise of a single pulse and a single element. The signal to noise ratio is

given by

rsnr,sp,se =
PtxTpλ

2
0

N0 (4π)
3
r4
DtxDrxAt (2.5)

where Ptx is the transmit power, Tp is the pulse duration, λ0 is the wavelength of the transmit

signal, N0 is the spectral density of the noise at the receiver, At is the radar cross section of the

target. The variables Dtx and Drx are the array transmit and element receive power gains of the

antenna. The subscript “snr,sp,se” stands for SNR of a single pulse and single element.

The indices are in the range p = 0, ...,Mcpi and n = 0, ..., Nchan, where Mcpi is the number of

pulses of the CPI and Nchan is the number of receive channels of the radar system. The data of

equation (2.1) can be reassembled to the spatial snapshot of pulse p and all channels [83, eq. (29)
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2. Fundamentals of ground moving target indication

with eq. (13)]

yp = αejp2πfta(ϑt) (2.6)

Here,

a(ϑ) =


1

ej2πϑ

...

ej2π(Nchan−1)ϑ

 (2.7)

is the spatial steering vector. Furthermore, as visualized in Figure 2.6b, the spatial snapshots of

the received data can be stacked to space time snapshots of the data.

χt =


a(ϑt)

ej2πfta(ϑt)
...

ej2π(Mcpi−1)fta(ϑt)

 (2.8)

With the definition of the temporal steering vector

b(ft) =


1

ej2πft

...

ej2π(Mcpi−1)ft

 (2.9)

and the space time steering vector

v(ϑt, ft) = b(ft)⊗ a(ϑt) (2.10)

(where ⊗ denotes the Kronecker product) the space time snap shot of the target signal is given by

vt = χt = αtv(ϑt, ft) . (2.11)

Noise Receiver noise is modeled as spatially and temporally white Gaussian random variable.

Its space time covariance matrix is given by

Rn = E
[
χnχ

H
n

]
= σ2

nIMcpi
⊗ INchan

, (2.12)

where IMcpi
is a Mcpi ×Mcpi identity matrix, IMcpi

is a Nchan × Nchan identity matrix and ⊗
denotes the Kronecker product.
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2.5. Space time adaptive processing

Clutter As laid out above, clutter is the sum of a great number of backscattered signals due to

vegetation and other surface scatterers. Due to this, clutter of a single range line is modeled as a

Gaussian random variable with McpiNchan ×McpiNchan covariance matrix Rc. A model for the

clutter covariance matrix is given in [83, Sec. 2.6.1, eq. (61)].

Decomposition of the space time snapshot The entire space time snap shot of the data is

decomposed as

χ = αtvt + χq (2.13)

where χq is the sum of the clutter and the noise components χc and χn.

2.5. Space time adaptive processing

2.5.1. Fully adaptive space time processing

With this signal model, the detection test can be formulated as the decision between |αt| = 0

(Hypothesis H0) and |αt| > 0 (Hypothesis H1). For a set of target parameters ϑt and ft, the

generalized likelihood ratio test is given by [64, eq. (7)]∣∣vHs R−1
q χ

∣∣2
vHs R−1

q vs

H1

≷
H0

tth . (2.14)

where vs is the target model vector. This model vector may differ from the vector vt of the target

signal that is actually present in the data. According to the above expression, the received data

is effectively filtered with

ws = R−1
q vs (2.15)

and the square of the absolute value of the filter output is compared to a threshold. The identical

filtering of the data can also be derived by designing a linear filter which yields the optimum

signal to noise ratio of the filtered signal [25, Sec. 2.2.1].

The covariance matrix Rq of clutter and noise can be obtained based on signal models [83, Sec.

2.6.1], but these models assume an ideal radar system. In practice, the true signal properties will

deviate from the theoretically modeled. Thus, instead of relying on a model for the covariance

matrix, in STAP it is typically estimated from the data. The resulting test which is obtained by

replacing the true covariance matrix by an estimate is an adaptive matched filter [64].

The process of estimating the clutter and noise covariance matrix is called training. Different

training strategies have been developed among which the most basic approach is sliding window

training. As stated above, the covariance matrix is given for the data of a single range line and

range lines are stochastically independent. However, they share similar signal properties. Hence,
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2. Fundamentals of ground moving target indication

the data for training can be taken from range lines that are in the vicinity of the range which is

tested for the presence of the target. It should be avoided, that the target itself is included in the

training data, otherwise an effect called self nulling will occur. To avoid this effect, a number

of range lines within a guard gate around the range under test are excluded from the training.

Thus, the covariance estimate is given by

R̂q =

Ke∑
l=1

χlχ
H
l (2.16)

Here, χl is the data of the range gates that is used for training and Ke is the number of training

samples. The adaptive adaptive matched filter [64] is then given by∣∣∣vHs R̂−1
q χ

∣∣∣2
vHs R̂−1

q vs

H1

≷
H0

tth . (2.17)

The computation of detection thresholds that take into account the fact that the covariance

matrix is estimated from the data are given in [64].

2.5.2. Partially adaptive space time processing

With training one attempts capture the true signal properties closer than with a theoretical

model. On the other hand, the accuracy of the estimate of the covariance matrix depends on the

amount of training samples that are employed [83, Sec. 3.5]. An insufficient amount of training

samples will incur a large loss of SNR. To keep the loss limited, the number of training samples

should theoretically be at least be 3 to 5 times larger than the dimension of the clutter and noise

covariance matrix. In practice, even more samples should be used.

As a result, for typical CPI lengths and number of receiving channels, there is not sufficient

training data available. Furthermore, in fully adaptive STAP the covariance matrix is very large.

As a result, the computation of the filter, which has to be repeated for every range line and which

involves the inversion of the estimated covariance matrix, is numerically too demanding in fully

adaptive STAP.

Thus, a method called partially adaptive STAP has been developed [83]. In partially adaptive

STAP, for each test with individual target parameters of u for the cosine of the direction of arrival

angle and FD for the Doppler frequency, a transformed set of the received data is used. The

important point is that the dimension of the data is reduced in the transformation. Hence, the

dimension of the covariance matrix and required amount of training data is reduced accordingly.

The reduction of the data leads to a loss in SNR. For an appropriate transformation of the data,

this SNR loss is much smaller than the training loss for fully adaptive STAP.

In general, the subspace transformation in partially adaptive STAP can be expressed by the
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2.5. Space time adaptive processing

matrix multiplication [83, Sec. 4.2]

χ̃ = THχ . (2.18)

The transformed data is decomposed as

χ̃ = αtṽt + χ̃q (2.19)

where ṽt = THvt is the transformed target steering vector and χ̃q is the transformed clutter and

noise data. The AMF test is found by replacing the full dimension variables in 2.17 with the

reduced dimension versions ∣∣∣∣ṽHs ˆ̃R
−1

q χ̃

∣∣∣∣2
ṽHs

ˆ̃R
−1

q ṽs

H1

≷
H0

tth . (2.20)

Here ˆ̃Rq is the covariance matrix of the transformed data set. It has to be estimated separately

for every different transformation.

Adjacent bin post Doppler STAP

Among the different subspace projections, the one that leads to adjacent bin post Doppler STAP

shall be presented in greater detail here, since it is employed in the processing of this thesis.

In adjacent bin post Doppler STAP, the data is transformed to the Fourier domain. For the

detection of a target with a given frequency, only the Doppler bins in the vicinity of the Doppler

frequency are used. The motivation for adjacent bin Doppler processing lies in two facts:

• According to the signal model of equation (2.1), the signal power is identical at every pulse

(index m). In the Fourier domain – however – the signal energy is concentrated in a few

Doppler bins due to the constant frequency of the target signal.

• In the time domain the clutter signal is strongly correlated, even for time bins that are

relatively far apart in time. In the Doppler domain, the correlation at the same distance

(in Doppler frequency) is much smaller. Thus, in the Doppler domain a covariance matrix

of much smaller dimensions captures the clutter properties.

For the filtering of a target with frequency fm, the transform to the Fourier domain and subsequent

selection of 2P + 1 adjacent Fourier bins is expressed by multiplication with the matrix [83, eq.

(203), p. 119]

Tm = F̃m ⊗ INchan
, (2.21)
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2. Fundamentals of ground moving target indication

where INchan
is a Nchan ×Nchan identity matrix. The matrix

F̃m =
[
fm−P . . . fm . . . fm+P

]
(2.22)

consists of a subset of the columns of a discrete Fourier transform (DFT) matrix, i.e. fm is the

m-th column of

F = diag(tf)U
H (2.23)

In this definition of the DFT matrix, tf is a time domain taper.

The transformed space time snapshot for the detection of a target with frequency fm is

χm = Tmχ (2.24)

and the transformed target component is

χ̃t,m = αt

(
F̃mb(ft)

)
⊗ a(ϑt) . (2.25)

The transformed steering vector is

ṽs,m = Tmvs (2.26)

where

vs = v(ϑs, fm) (2.27)

The transformed data is decomposed as

χm = χ̃t,m + χq,m (2.28)

The test for the present of a target at Doppler bin m is the defined as∣∣∣∣ṽHs,m ˆ̃R
−1

q,mχ̃m

∣∣∣∣2
ṽHs,m

ˆ̃R
−1

q ṽs,m

H1

≷
H0

tth . (2.29)

2.5.3. Performance of STAP

The performance of STAP can be measured by the signal to clutter and noise ratio (SCNR) that

is obtained after applying the STAP filter [83, Sec. 3.4.2]. The SCNR is a function of the target’s

frequency. For untapered fully adaptive STAP (assuming a known clutter and noise covariance
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Figure 2.9.: Example for the signal to clutter and noise ratio (SCNR) after Space Time Adaptive
Filtering for fully adaptive STAP and adjacent bin post Doppler STAP (ABPD).
In generating this Figure no taper was used for fully adaptive STAP while a 40 dB
Chebyshev window was employed for adjacent bin post Doppler STAP. The number
of receiving channels is 3 and the number of pulses is 128. The SNR of a single
pulse and channel is 0 dB and the respective single pulse, single channel CNR is
12 dB.

matrix) it is given by [83, eq. (111), p. 62]

rscnr =
σ2
nrsnr,sp,se

∣∣wH
s vt

∣∣2
wH
s R−1

q ws

, (2.30)

where ws is defined in equation (2.15). For partially adaptive STAP it is

rscnr =

∣∣∣∣ṽHs ˆ̃R
−1

q ṽt

∣∣∣∣2
ṽHs

ˆ̃R
−1

q ṽs

. (2.31)

Figure 2.9 shows the SCNR that is obtained for a clutter free case, fully adaptive STAP and

adajacent bin post Doppler STAP. Well visible at a Doppler frequency of zero is the so called

clutter notch, a sharp drop in SCNR. It signifies that targets with very small velocities cannot be

detected. Its width is related to the minimum detectable velocity [83, Sec. 3.4.5].
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2. Fundamentals of ground moving target indication

2.5.4. Parameter estimation

In addition to the detection of targets, GMTI also comprises the estimation of target parameters.

The target parameters that are typically estimated with a radar are range, Doppler frequency

and the direction of arrival [71, p. 2]. Due to the fact that the test is already constructed for a

grid in range and Doppler, each detection automatically yields estimates of these parameters. A

very coarse estimate of the DOA is also obtained as it can be assumed that the target was located

in the main beam of the antenna. It is possible to refine this estimate further by techniques such

as maximum likelihood estimation [77, p. 65] or adaptive monopulse [53].
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3. Ground moving target indication and

geolocation

This thesis considers ground moving target tracking based on data acquired by a single airborne

platform such as an aircraft. It is assumed that the radar is mounted on the aircraft in a side

looking configuration, i.e. it is capable of illuminating the ground to the side of the aircraft but

not in the front or back. Furthermore, it is assumed that the radar is equipped with a linear,

multichannel, electronically steerable antenna. The data that is recorded by the radar system is

partitioned into coherent processing intervals (CPIs). For each CPI with index k, estimates of

the antenna location, velocity and attitude are given by

x̂Eant,k =

 x̂Eant,k,1

x̂Eant,k,2

x̂Eant,k,3

 , v̂Eant,k =

 v̂Eant,k,1

v̂Eant,k,2

v̂Eant,k,3

 (3.1)

and

γ̂A←Ek =

 γ̂A←Eyaw,k

γ̂A←Epitch,k

γ̂A←Eroll,k

 (3.2)

Here, x̂Eant,k and v̂Eant,k are given with respect to an east-north-up (ENU) coordinate system.

The origin of this coordinate system is defined by a coordinate in WGS-84, i.e by a latitude,

longitude and height. The axes of the coordinate system point east (x), north (y) and up (z).

Additionally, an antenna coordinate system with time dependent origin at the location of the

antenna is defined. The x-axis of the antenna coordinate system is given by the principal axis of

the antenna. Together, the x- and y-axes span the planar aperture of the antenna. The z-axis

points exactly into the direction into which the antenna transmits the highest proportion of the

energy if no steering is applied. Superscripts E (ENU) and A (antenna) indicate the coordinate

system that is used for a specific variable. The attitude of the antenna coordinate system and

hence the antenna is given by the Euler angles of γ̂A←Ek [21, Sec. 4.3, p. 112]. A rotation matrix

can be constructed based on these angles (see Appendix A.7.1). Multiplication with this matrix

will rotate a vector from the ENU coordinate system into antenna coordinates; hence the notation

A ← E is used. For some computations, only the yaw and pitch angles are required. In this

case, the vector γA←Eyp,k which contains only the first two elements of γ̂A←Ek is passed as function

argument.
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3. Ground moving target indication and geolocation

Figure 3.1.: Visualization of the subsquent steering of the antenna beam to different antenna
footprints in a scan mode acquisition.

In this work it is assumed that the steering of the antenna remains constant during one CPI

and it is denoted by ust,k. Furthermore, the radar uses a constant pulse repetition frequency Fpr

and a CPI dependent carrier wavelength λ0,k. Each CPI contains Mcpi pulses. It is assumed that

the CPIs are sufficiently short such that the same ground area is illuminated during its entire

duration. The sequence of steering values ust,k may be programmed in an arbitrary fashion. For

a scanning mode, the radar system will steer the antenna between minimum and maximum values

such that a scan illuminates a set of ground areas as visualized in Figure 3.1. The distribution of

the transmitted radar energy versus angle is captured by the antenna gain patterns. The transmit

gain pattern is denoted by the function Dtx(γdir, ust, λ0), where γdir and the receive gain pattern

is Drx(γdir, ust, λ0). These patterns must be determined based on the specific configuration and

parameters of the radar antenna.

Additionally to the platform location and recording parameters, the received data of each CPI

is given. As illustrated in Chapter 2, it consists of a data cube with the dimensions pulse number

(within the CPI), range and recording channel.

Data notation After range compression, the complex scalar data sample of CPI k, range l,

pulse p and channel n is denoted as ytrpc(k, l, p, n). The data of all channels of a specific pulse is

given by

ytrp(k, l, p) = [ytrpc(k, l, p, n)]
Nchan−1
n=0 , (3.3)
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which is obtained by arranging the samples of the different channels. Here, the subscript “trpc”

stands for time, range, pulse, channel. The corresponding slow time of a pulse is tp = p
Fpr

, the

range is rl = r0 + l∆r and the position of the receive channel in the antenna coordinate system is

xph,n.

The data of an entire range line l of CPI k is obtained by stacking the vector data of the

different pulses

ytr(k, l) =
[
ytrp(k, l, p)

]Mcpi−1

p=0
. (3.4)

The dimension of this vector is McpiNchan × 1.

For subsequent processing of the data and for visualization, a range Doppler representation of

the received data is useful. It is found by applying the discrete Fourier transform across the third

dimension (pulse index) to the data [56, Sec. 8.5, eq. (8.67), p. 669], i.e. the pair of the Doppler

domain and time domain signal is

yΩ
trpc(k, l,m, n) w(p)ytrpc(k, l, p, n) . (3.5)

Here m is the index of the frequency bin and w(p) is a window function that is applied to the

data before computing the discrete Fourier transform. The window function is defined by the

product

w(p) = wtaper(p)w0(p) , (3.6)

where wtaper(p) is set according to the desired Taper, for example Taylor tapering. The second

factor

w0(p) = e−j2πf ft
0 p (3.7)

determines the origin of the frequency vector after applying the Fourier transform. The normalized

frequency vector is given by

f ft
m = f ft

0 +
m

Mfft
, m = 0, ...,Mfft − 1 . (3.8)

Here Mfft is the number of Fourier bins in the frequency domain. For Mfft > Mcpi the received

signal is zero-padded in the time domain before performing the Fourier transform. The frequency

domain data can be stacked similarly to the time domain data to yΩ
trp(k, l,m) (data of all channels

of one frequency bin) and yΩ
tr(k, l) (data of an entire range line).
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3.1. Application of space time adaptive processing to a

received data set

In order to apply the adjacent bin post Doppler algorithm of Section 2.5.2 to the received data

set, the signal model of Section 2.4 is adapted to the notation of the received data set (which

accounts for the range dependence).

3.1.1. Signal model of the received data set

The received data is decomposed into a target signal, a clutter signal and receiver noise

ytr(k, l) = αtytr,t(k, l) + ytr,c(k, l) + ytr,n(k, l) (3.9)

The sum of receiver noise and clutter is denoted by ytr,q(k, l). Here k is the index of the CPI and

l is the index of range gates within the CPI. The index k is within the interval [1, number of

CPIs] and the index l is in the interval [1, number of range gates].

Target signal

The target signal is modeled as

ytr,t(k, l) =

{
v(ϑt,k, ft,k), if l = lt,k

0, otherwise
(3.10)

where v(·, ·) has already been defined in equation (2.11) of Section 2.4, ϑt,k is the spatial frequency

of the target at the time of recording CPI k and ft,k is the Doppler frequency of the target at

CPI k. In comparison to the signal model of Section 2.4 the additional range gate parameter lt

has been introduced. It determines the range gate in which the target signal is present.

These target parameters are related to the Cartesian location and velocity coordinate of the

target during CPI k as follows. For clarity of notation, the CPI index k is dropped now. For a

target with location xEt and velocity vector vEt , the range to the target is given by

rt = ‖xEt − xEant‖ (3.11)

The range bin of the target is given by

lt = round

(
rt − r0

∆r

)
(3.12)

The direction vector pointing from the antenna to the target is

uEt =
xEt − xEant

rt
(3.13)
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and it is related to the target’s spatial frequency by

ϑt =
[
uEt
]T
uEant

dsub

λ0
(3.14)

Here, the antenna axis is given by

uEant =
[
TA←E

]−1

 1

0

0

 (3.15)

In this equation, the matrix

TA←E = TEuler(γypr) (3.16)

rotates from the ENU coordinate system to the antenna coordinate system. The radial velocity

of the target

vt,rad =
[
uEt
]T (

vEt − vEant

)
(3.17)

yields the target signal Doppler frequency

Ft = −2vt,rad

λ0
(3.18)

The normalized target frequency is

ft =
Ft

fpr
(3.19)

The angles of arrival are given as

ϕt = atan2
(
uA2 , u

A
1

)
, π ∈ (−π, π)

θt = arccos
(
uA3
)
, π ∈ (0, π) (3.20)

and combined to the vector

γdir =

[
θt

ϕt

]
(3.21)

Clutter signal and receiver noise

Both clutter and noise are modeled as realizations of Gaussian random variables, i.e.

ytr,n(k, l) ∼ N C (0,Rn) (3.22)
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and

ytr,c(k, l) ∼ N C (0,Rc(k, l)) (3.23)

This notation shows that the clutter covariance matrix is a function of the CPI (index k) and

range (index l).

3.1.2. Data preprocessing

(a) Simulated data with J-hook (b) Simulated data after J-Hook removal

Figure 3.2.: Visualization of simulated received radar data in the range Doppler domain before
and after removal of the J-Hook.

With STAP, the covariance matrix is estimated using data of the same CPI, but different range

lines. It is important, that the statistical properties of these data are as close as possible to those

of the cell under test. Otherwise, the performance will degrade. If the antenna axis is coaxial

with the direction of flight, the relation between DOA and frequency for ground clutter is range

independent. The only range dependence in clutter is then that of clutter power.

However, if the antenna and the flight direction are not coaxial, the relation between the

direction of arrival and the clutter Doppler frequency becomes range dependent. For example,

this is visible in Figure 3.2a of a simulated data set with a a yaw angle 10 degrees and a squint

angle of 7 degrees. At high ranges, the clutter centroid, i.e clutter impinging from the steering

direction lies at -1000 Hz. For small ranges, there is a curvature in the clutter frequency, the so

called J-hook.

Thus, in general, the statistical similarity between data of different range lines is not given.

To remedy this, in a preprocessing step the J-hook is removed by a range dependent frequency

shift of the data. After the frequency shift, the clutter centroid of the data is located at 0 Hz,

regardless of the range. The magnitude of the frequency shift is equivalent to the range dependent

42



3.1. Application of space time adaptive processing to a received data set

frequency value of the clutter centroid. It is determined with the function

fcentroid(k, l) = f f←ur
n

(
ust,k, rl,x

E
ant,k,γ

A←E
yp,k ,n

E
plane, d

E
plane;λ0,k

)
, (3.24)

which is given in Appendix A.4. This function is defined with the help of another function, fE←ur
rc,n

that locates a measurement of range and direction of arrival on a surface plane that serves as

approximation for the ground. This function is also used for geolocating targets (see Section 3.3.1).

Once that the located position of a range DOA pair has been found, the computation of the

corresponding radial velocity and range Doppler frequency is straight forward. After the removal

of the J-hook, the data is given by

ytrp,dcs(k, l,m, n) = e−j2πtmfcentroid(k,l)ytrp(k, l,m, n) (3.25)

where tm = m
fpr

is the slow time within the CPI of pulse m. The stacked version and the frequency

domain version of the received signal after Doppler centroid shift (DCS) are found as above. The

frequency vector of the DCS signal is given by fdcs,m = − fpr2 + m
Mfft

. To visualize the effect of

DCS, Figure 3.2a shows the simulated data set after removal of the J-hook.

3.1.3. Target detection with adjacent bin post Doppler processing

After DCS, the data is processed with the adjacent bin post Doppler algorithm that has been

presented in Section 2.5.2. The spacial steering vector is given by

a(ϑst,k) (3.26)

where

ϑst,k = uAst,k,1
dsub

λ0
(3.27)

is the spatial frequency that corresponds to the steering direction of the antenna at CPI k. Thus,

the space time steering vector for a target with normalized frequency fm is

vs,m = v(ϑst,k, fm) = b(fm)⊗ a(ϑst,k) . (3.28)

This space time steering vector is independent of the target range. The transformed data for the

detection of a target with frequency fm is given by

ỹ(k, l,m) = Tmytr(k, l) (3.29)
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where Tm is constructed according to equations (2.21) to (2.23) of Section 2.5.2. The transformed

steering vector is

ṽs,m = Tmvs,m . (3.30)

The estimate of the clutter covariance matrix for the detection of a target at range gate l and

frequency fm is given by

ˆ̃Rq(k, l,m) =
1

|Mt|
∑
Mt

ỹ(k, l,m) [ỹ(k, l,m)]
H

(3.31)

Here Mt is the set of range gates that is used for training and |Mt| is the number of training

samples. The test variable for detecting a target of CPI k, range gate l and Doppler bin m is

given by

z(k, l,m) =

∣∣∣∣[ṽs,m]
H
[
ˆ̃Rq(k, l,m)

]−1

ỹ(k, l,m)

∣∣∣∣2
[ṽs,m]

H
[
ˆ̃Rq(k, l,m)

]−1

ṽs,m

. (3.32)

This test variable is compared to the detection threshold tth [64]

z(k, l,m) =
H1

≷
H0

tth (3.33)

Detections are numbered in an arbitrary order and indexed by p = 1, ..., Nz,k, where Nz,k is the

number of detections at CPI k. The range bin where the detection has been made is lp and the

Doppler bin is mp. Each target detection is associated with the covariance matrix

R̂q,k,p = ˆ̃Rq(k, lp,mp) (3.34)

and the data vector is

yk,p = ỹ(k, lp,mp) (3.35)

Practical implementation In practice, the Fourier transform is done with the fast Fourier

transform in parallel for all Fourier bins and not by matrix multiplication, see equation (3.5).

Clustering of detections Often a single target causes multiple detections in adjacent test cells,

either in range or in Doppler. For a cluster of detections, the detections can be sorted by

significance, i.e. the detection with the largest valued test variable is the most significant one. In

the detection clustering step, only this most significant detection is retained.
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3.2. Parameter estimation

3.2. Parameter estimation

3.2.1. Target radial velocity

Each detection implicitly provides estimates of the target range and target Doppler frequency

with the range gate and Doppler bin of detection. Due to frequency folding, the Doppler estimate

is ambiguous, i.e. for a detection p at time step k at Doppler bin mp and range gate lp, any of

the normalized Doppler estimates

f̂amb,k,p(q) = fmp +
fcentroid(k, lp)

Fpr
+ q , where q = ...,−1, 0, 1, ... (3.36)

is valid. Here,
fcentroid(k,lp)

Fpr
accounts for the shift of the Doppler centroid during preprocessing and

the possible values of q represent the ambiguity. These estimates correspond to the ambiguous

radial velocity estimate

v̂rad,amb,k,p(q) = −λ0,k

2
Fprf̂amb,k,p(q) , where q = ...,−1, 0, 1, ... (3.37)

For recording configurations with small pulse repetition frequencies, tracking algorithms have to

take the ambiguity in estimating the Doppler frequency/radial velocity into account. If the pulse

repetition frequency is sufficiently large, all but one of the possible radial velocity estimates in

equation (3.37) are unlikely – these radial velocities are too small or large for a realistic target.

In this case, it is desirable to provide the tracking algorithm only with the likely estimate and

this most likely estimate shall be the output of the estimation step.

In order to determine the most likely velocity estimate, one recalls that the radial velocity of a

target (see equation (3.17)) is the sum

vrad = vrad,a + vrad,t (3.38)

of a component which is due to the antenna motion vrad,a = −
[
uEat

]T
vEant and a component

caused by the target motion itself vrad,t =
[
uEat

]T
vEt . Since the target detections are most likely

in the antenna main beam, the antenna component of the radial velocity is approximately the

radial velocity of the clutter centroid, i.e.

vrad,a ≈ −
λ0,k

2
fcentroid(k, lt) . (3.39)

The radial velocity estimates shall be centered at vrad,a. Thus, the Doppler frequency and radial

velocity estimates are

f̂k,p = fmp +
fcentroid(k, lp)

Fpr
(3.40)

45



3. Ground moving target indication and geolocation

and

v̂rad,k,p = −λ0,k

2
Fprf̂k,p . (3.41)

3.2.2. Target range

Similarly to the Doppler estimate, the range estimate of a pulse Doppler radar is ambiguous.

This is due to the fact, that a received signal is potentially due to backscattering of any of the

previously emitted pulses [83, p. 22]. Thus, for a detection p with range bin lp at time step k,

the range estimates

r̂amb,k,p(q) = rlp + pRU ,where q = 0, 1, 2, ... (3.42)

is valid. Here, Ru = c
2Fpr

is the unambiguous range [83, p. 22]. For large values of the pulse

repetition frequency these ambiguities have to be taken into account by the tracking algorithm.

If the pulse repetition frequency is sufficiently small, then it is reasonable to assume that the

detection is within the first unambiguous range. Thus, the output of the estimation step is given

by

r̂k,p = rlp . (3.43)

3.2.3. Direction of arrival estimation

The direction of arrival estimation is performed with the central Doppler bin of the test data; the

adjacent Doppler bins are discarded. The data of the central Doppler bin is of the dimension

Nchan × 1. For detection p of time step k it is extracted from the multiple bin data by the matrix

multiplication

ysb,k,p = TT
sbyk,p , (3.44)

where

Tsb =

 0P×1

1

0P×1

⊗ INchan
(3.45)

is the central Doppler bin selector matrix. The estimate of the clutter covariance matrix of the

central Doppler bin is given by

R̂q,sb,k,p = TH
sbR̂q,k,pTsb . (3.46)
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3.2. Parameter estimation

The signal model for the received data of the central Doppler bin is

ysb,k,p = at,k,pe
jφt,k,pd (ut,k,p) + qsb,k,p , (3.47)

where at,k,p is the amplitude of the target signal, φt,k,p is its phase, ut,k,p is the directional cosine

of the target and qsb,k,p is the clutter and noise signal at the range Doppler bin of detection. The

direction of arrival vector d is related to the spatial steering vector of equation (2.7) according to

d(u) = b

(
u
dsub

λ0

)
. (3.48)

The DOA vector is periodic in u, i.e. d(u) = d(u+ urep), where urep = λ0

dsub
. Thus, an estimate

of u will be ambiguous with urep. Since |u| ≤ 1 ambiguities can be excluded, if urep < 2.

An estimate of the directional cosine is found with a maximum likelihood estimator or with

the monopulse technique [53]. The maximum likelihood estimate is given by

ûk,p = arg max
u


∣∣∣∣d(u)H

[
R̂q,sb,k,p

]−1

ysb,k,p

∣∣∣∣2
d(u)H

[
R̂q,sb,k,p

]−1

d(u)

 , where |ûk,p − ust,k| <
urep

2
. (3.49)

The constraint |ûk,p − ust,k| < urep

2 ensures that – among all the ambiguous estimates – ûk,p is

the estimate which lies the closest to the main beam. In general, the ambiguous estimates are

given by

ûamb,k,p(q) = ûk,p + qurep , where |ûamb,k,p(q)| < 1 (3.50)

Impact of the DOA estimation ambiguities The significance of the DOA estimation ambiguities

depends on the value of urep and the antenna power pattern. Obviously, for urep > 2 there are no

ambiguities at all. For smaller values of urep, the question is whether ambiguous measurements

can be excluded due to the antenna power pattern.

This point shall be illustrated with Figure 3.3 that shows the two way power pattern of the

PAMIR array for ust = 0. It is the pattern of an untapered linear array as the PAMIR system

cannot be tapered in the Scan-MTI mode (since the antenna is not calibrated for tapered receive).

The pattern shows that signals impinging from the main lobe are about 26 db stronger than

signals from the first side lobe and 36 dB stronger than signals from the second side lobe. Vertical,

dashed lines – spaced urep apart – indicate the edges of the ambiguity intervals, i.e. the directional

cosine can only be estimated with respect to the position of the dashed lines.

This pattern shows that targets in the third or fourth antenna side lobe are suppressed by about

40 dB with respect to main lobe targets. Thus, it is most likely that a target that is placed in

the main lobe by its estimate û
(p)
k is in fact from the main lobe area. However, strong stationary

targets, e.g. large buildings may cause detections, even if their reflections impinge from the side
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Figure 3.3.: Two way antenna pattern of PAMIR of the Scan-MTI mode. Due to the lack of
tapering, high side lobes are present. Dashed vertical lines indicate the width of
the unambiguous DOA estimation interval. Shaded intervals (in gray) correspond
to DOA angles that seemingly are due to targets in the main lobe. For example,
targets that are located in the third and fourth sidelobes – if detected – cannot be
distinguished from targets in the main lobe. Targets in the first, fourth side lobe,
etc. can be distinguished.

lobes. In this case, the above reasoning will lead to an incorrect geolocation of the detection.

3.3. Geolocation of detections

As a result of the target detection and parameter estimation step Nz,k detections are made for

each CPI. Each of these detections p = 1, ...Nz,k is associated with estimates of the direction of

arrival, the range and the radial velocity. Combined, the measurements yield the measurement

vector zk,p = [ûk,p r̂k,p v̂rad,k,p]
T

, where p is the index of the detection. This section presents

the geolocation of these detections, i.e. how these measurements are used to compute a Cartesian

position.

The task of geolocation of a detection consists of converting the measurements of range and

DOA to a location in the 3 dimensional ENU coordinate system. Due to the DOA measurement,

the target location is constrained to a cone whose central axis is given by the orientation of

the linear array. The range measurement constraints to a sphere. The combination of both

constraints signifies that the detection is located on a circle. Clearly, an additional constraint is

necessary for the geolocation a detection
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3.3. Geolocation of detections

3.3.1. Geolocation of the detections with a plane earth assumption

Figure 3.4.: A target is geolocated by combining the range measurement, i.e. distance to the
radar antenna, the direction of arrival measurement and the information that it
lies on a plane that approximates the earth’s surface. In general, there are two
solutions. In this Figure, the x, y and z axes of the antenna coordinate system are
colored red, green and blue, respectively.

If only a coarse geolocation in a relatively small area is required, modeling the earth’s surface

as a plane provides the additional information. The detection is then constrained to a plane and

the located position is the intersection of the plane with the circle.

As there are in general (except of the degenerate case that the circle lies within the plane) 0,

1 or 2 intersections of the circle with the plane, there are also, in general, 0, 1 or two possible

locations of the target. A sample case is illustrated by Figure 3.4. In the case of this Figure the

circle intersects the plane at two location. In case that there are two solutions, both solutions, for

n = 1, 2 are found with the function

x̂Etgt,k,p,n = fE←ur
rc,n

(
ûk,p, r̂k,p; x̂

E
ant,k, ê

E
ant,k,1,n

E
plane, d

E
plane

)
(3.51)

which is given in an implementable algorithmic form in Appendix A.1.1. In most practical cases
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3. Ground moving target indication and geolocation

and in all situations that are investigated here, one of these solutions places the target in the

back lobe area of the antenna, i.e. in a location where a target detection is highly unlikely. In

order to obtain a unique solution, the other solution, which is not in the back lobe, is selected. If

both solutions are in the back lobe or not in the back lobe, then an arbitrary solution is chosen.

In any case, in function form, the unique target geolocation is given by

x̂Etgt,k,p = fE←ur
rc

(
ûk,p, r̂k,p, x̂

E
ant,k, ê

E
ant,k,1,n

E
plane, d

E
plane

)
, (3.52)

which is defined in Section A.1.4.

3.3.2. Conversion of the Doppler measurement with a plane earth

assumption

The radial velocity vrad of a target is related to the target velocity vEtgt and platform velocity

vEant by

vrad =
[
uEat

]T (
vEtgt − vEant

)
, (3.53)

where

uEat =
xEtgt − xEant

‖xEgrd,n − xEant‖
, (3.54)

is the direction vector pointing from the antenna to the target location xEtgt. The component of

the radial velocity which is due to the motion of the target itself is given by

vt,rad =
[
uEat

]T
vEtgt = vrad +

[
uEat

]T
vEant . (3.55)

Thus, the estimate of the radial velocity can be converted to an estimate of the target component

of the radial velocity by

v̂t,rad,k,p = v̂rad,k,p +
[
ûEat,k,p

]T
v̂Eant,k , (3.56)

where

ûEat,k,p =
x̂Etgt,k,p − x̂Eant,k

‖x̂Etgt,k,p − x̂Eant,k‖
. (3.57)

is the estimate of the direction vector. Thus, one of the 3 Cartesian velocity components of the

target – i.e. the one aligned with the line of sight between antenna and target – can be directly

estimated from the detection data. Additionally, the fact that the target’s motion is constrained

to the plane provides the information that the target’s velocity perpendicular to the plane is 0.

Thus, the target’s radial velocity can be converted to the component of the target velocity which
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is parallel to the projection of the direction vector onto the plane

uEat,p = PEplaneu
E
at (3.58)

= uEat − ρpl,atn
E
plane . (3.59)

(see Figure 3.5 and Figure 3.6) The magnitude of this target velocity component is related to the

full target velocity vector according to

vt,pl =
[
vEtgt

]T uEat,p

‖uEat,p‖
=

vt,rad

‖uEat,p‖
. (3.60)

An estimate of this velocity component is obtained with

v̂t,pl,k,p =
v̂t,rad,k,p

‖ûEat,p‖
, (3.61)

where

ûEat,p = PEplaneû
E
at (3.62)

is the estimate of the projection of the direction vector on the surface plane. The estimate of this

target velocity component is given in function form in Section A.2.1 and A.2.3 by

v̂t,pl,k,p = fv←urv
(
ûk,p, r̂k,p, v̂rad,k,p, x̂

E
ant,k, ê

E
ant,k,1,n

E
plane, d

E
plane

)
. (3.63)

3.3.3. Geolocation with a digital elevation model

In cases where the approximation of the ground as plane is not sufficiently accurate, a digital

elevation model (DEM) is required for the geolocation. In this thesis the DEM is given as z values

for a grid of x-y coordinates in the ENU coordinate system. This representation is possible for

small areas as long as there is a unique z value for every location. For an arbitrary x-y coordinate,

the z value is found by bilinear interpolation

fbilin

([
x

y

]
,θdem

)
, (3.64)

where the definition of the bilinear interpolation is given in Appendix A.7.3.

Intersection of the DEM surface and the circle

Due to the constraints, the detection must be located at the intersection of the surface that is

defined by the DEM and the circle. Any position on the circle can be represented by the angle φ;
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Figure 3.5.: A 3D view of the conversion of the velocity measurement. Due to the information
that the target motion is constrained to a plane, the line of sight velocity of the
target can be converted to a component of the target velocity that lies within the
plane. In this Figure the line of sight between the antenna and the target is shown in
blue and the true target velocity is represented in light green. Velocity components
that cannot be measured are shown in dark green and velocity components that
can be measured in red.

Ground plane

Antenna position

Target position

Line of sight

v
tgt

,rad

vtgt

θ

Figure 3.6.: A cut through the 3d view of Figure 3.5: The velocity component vtgt,rad of the
target that lies along the line of sight between the target and the antenna is
converted into a velocity component that lies within the plane.
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Figure 3.7.: Geolocation with a digital elevation model. The location of the detection must lie
at the intersection of the circle and the surface that is defined by the DEM.

the corresponding position in the ENU coordinate system is

xphi(φ) = mEcirc + rcirce
E
circ,1 cos (φ) + rcirce

E
circ,2 sin (φ) . (3.65)

For the first two components of this coordinate xphi,(1,2)(φ) the corresponding point on the DEM

surface can be computed. If xphi(φ) lies on the surface, then these points are identical and

fbilin

(
xphi,(1,2)(φ), zdem

)
= xphi,3(φ) . (3.66)

For other values of φ, there is a difference in the elevation which is given by

ferror(φ) = fbilin

(
xphi,(1,2)(φ), zdem

)
− xphi,3(φ) . (3.67)

Thus, numerically solving

ferror(φint) = 0 (3.68)

finds one of the solutions for the geolocation. (see Figure 3.7) The coordinate of this solution is

xsol,1 = f surf

(
xphi,(1,2)(φint), zdem

)
= xphi(φint) (3.69)
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A second solution may be found by selecting a different starting value for φ for solving equa-

tion (3.68). At the location of the solution a tangent plane to the DEM surface exists. It is

spanned by the vectors

rx(x2d, zdem) =
∂f surf

∂x2d
1

(x2d, zdem) =


1

0
∂fbilin
∂x2d

1
(x,θgrid)

 (3.70)

and

ry(x2d, zdem) =
∂f surf

∂x2d
1

(x2d, zdem) =


0

1
∂fbilin
∂x2d

2
(x,θgrid)

 (3.71)

The partial derivatives of fbilin are derived later and given by equation (A.62b). The normal

vector of the tangent plane is given by

nEtangent(x
2d, zdem) = rx(x2d, zdem)× ry(x2d, zdem) (3.72)

and the distance to the coordinate system origin is

dEtangent =
[
nEtangent(x

2d, zdem)
]T
f surf

(
x2d, zdem

)
. (3.73)

For the specific detection, the same ENU location is found either by performing the geolocation

with the tangent plane according to Section 3.3.1 or by using the DEM based geolocation. Thus,

error calculations of the DEM based geolocation can be performed with the geolocation for a

planar surface.
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The task of target tracking is to reconstruct the motion of targets or objects based on measurement

data [7, Sec. 1.1]. In general, the measurements may be provided by radar, infrared sensors,

sonar or other sensors. Most tracking algorithms do not receive the full measurement data that is

recorded by the device. In most cases, it would be computationally infeasible to do so. Instead,

in between the sensor and the tracking algorithm there is usually a detection and parameter

estimation step. In this step the received data is processed in order to detect targets of interest.

For each target, some parameters such as its location or velocity are estimated. Over time the

tracking algorithm is provided with a sequence of target detections.

Figure 4.1.: An illustration of a complicated tracking situation: The tracking algorithm receives
erroneous – due to noise and clutter – location measurements (red), a false alarm
(blue) of two closely spaced targets. The locations of the targets where detections
are made are marked by black circles, locations when a detection is missed are
marked in grey.

Thus, the task of target tracking can be formulated more precisely: it is to reconstruct the

motion of targets based on a sequence of target detections with associated parameter estimates.

In doing so, tracking algorithms encounter several challenges: The parameter estimates are in

general erroneous, at some times targets may not be detected, closely spaced targets might be

detected as one target only, false detections or false alarms occur. Furthermore, for most sensors

the detections are not labeled, i.e. it is unclear which detection originates from which target.

In order to introduce an important technique for tracking, it is useful to imagine a situation in

which only one of these difficulties exists, i.e. erroneous measurements. This means, that there
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exists only one target, the target is detected at every observation time step and there are no

false alarms. This problem is in fact identical to estimating the state of a discrete time dynamic

system [4, Sec. 5.2.1]; the state is the entity of the location, velocity, possibly the acceleration of

the tracked target. The target parameter estimates correspond to the measurements in the state

estimation problem.

There are two important classes of estimation problems. One is the estimation of an unknown

non-random parameter of which there exists no prior knowledge. The other is the estimation of a

parameter which is modeled as random variable, i.e. Bayes estimation [77, Sec. 2.4.1]. In Bayes

estimation, prior knowledge of the parameter is expressed in form of a probability distribution.

The measurement data modifies the prior probability distribution in order to yield a posterior

probability density function. The posterior probability distribution then captures the complete

information that is available on the random parameter.

The tracking of a single target can be understood as a sequential Bayes estimation problem

[2, Sec. II]. Starting from an initial probability distribution for the target state, each incoming

measurement refines the probability density of the state. On the other hand, the possibility

of target maneuvers like turning, accelerating, stopping decreases the knowledge of the state

and counteracts the refinement. In general, there exists no implementable solution to Bayesian

tracking based on an analytical derivation [2, Sec. IV]. Approximative solutions can for example

be found with a computationally demanding particle filter [2, Sec. V].

For a specific case, an analytical solution of the dynamic state estimation problem exists: The

initial probability distribution of the state has to be assumed as Gaussian, the target dynamics

and measurement model must be linear, [4, Sec. 5.2.1] [2, Sec. III.A], the prior probability of

a state must be defined completely by the state at the preceding time step (Markov property),

the measurement error and unknown target state changes due to maneuvers must be modeled

as Gaussian random variables. In this case, the solution to the state estimation is given by the

Kalman filter. Due to the linearity and Gaussianity of the state dynamics and measurements,

the probability density of the target state is at all times Gaussian. As the density of Gaussian

random variables is completely determined by its mean and covariance matrix, the output of the

Kalman filter is the mean and covariance matrix of the target state density. The Kalman filter is

a recursive algorithm and every recursion step contains a prediction and an update state. In the

prediction step, the prior probability density of the state at time step k + 1 is computed, taking

only into account the measurements up to time step k. In the update step, the measurement

at time step k + 1 is used to refine the predicted probability using the Bayes principle. As

the densities are Gaussian, the Kalman filter performs these computations by simple algebraic

operations on matrices and vectors.

A two dimensional Gaussian distribution can be represented graphically by plotting the mean

and the region where realizations occur with a certain probability. This enables to schematically

represent one recursion of the Kalman filter as in Figure 4.2.

The Kalman filter serves as basis for tracking algorithms that are able to handle multiple
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true target location at t0

true target location at t1

detection
and detection confidence area

predicted target location
confidence region

updated target location
confidence region

Figure 4.2.: Schematic representation of one time step of the Kalman filter recursion. The
probability density of the location component of the target state at time step k
is represented by the orange ellipse (top left). The ellipse represents a specific
confidence region; in this plot all ellipses are for a confidence level of 50 %. The
velocity component of the state is not visualized. Based on this density and the
target motion model, the Kalman filter predicts a prior probability density for
the target state at time step k + 1 – visualized by the green confidence interval
ellipse. The measurement consists of a location and of a confidence interval of the
measurement, shown by the red ellipse. Taking into account both the measurement
and the predicted location, the posterior target state probability density for time
step k + 1 is obtained – graphically represented by the blue confidence ellipse.

targets, missed detections and false alarms. In the assignment based approach, detections are

assigned to tracked targets. At every time step at most one detection is assigned to every track.

This assignment is based on the probability that a given detection originates from a certain target.

If there is no suitable detection for a tracked target, then a missed detection is assumed. Due to

the assignment, the Kalman filter can be used to track the target state. For time steps with a

missed detection, the update step is simply omitted and the covariance matrix of the predicted

density is used directly. Of course, before detections can be assigned to tracks, tracks have to be

established. Thus, detections that are not assigned to any existing track are allowed to initialize

new tracks. For every track, a track score [7, Sec. 6.2] is computed. The higher the track score,

the more likely that a track is not due to false alarms. Tracks with low track scores will be deleted.

The assignment of detections to tracks is performed based on the distance of the detections to the

predicted measurement. Gating excludes detections that are far from the predicted measurement.

If a detection could possibly be due to multiple targets, then a technique called global nearest

neighbor (GNN) [7, Sec. 6.4] can be used to find the optimal assignment.
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In some situations, the assignment based approach might be problematic. For closely spaced

targets the assignment might be wrong and false alarms might incorrectly be considered as

detections. With a technique called probabilistic data association (PDA) all detections within

the gated region are used to update a track [7, Sec. 6.6.1] [3]. The update due to a detection is

weighted with the probability that the detection originates in fact from the target. In an extension

of PDA, called joint probabilistic data association (JPDA), the probabilities are computed taking

into account the presence of multiple targets.

The above methods are similar in that they perform the association or computation of association

probabilities based on the information of a single time step. In some situations, it might be

useful to take into account information from multiple time steps. In order to do so, a technique

called multiple hypothesis tracking (MHT) has been developed [7, Sec. 6.7]. With MHT tracks

are computed for different possible assignment hypotheses. For each hypothesis the probability

that it represents the correct assignment of measurements is computed. Due to the combinatorial

nature of assignment, without countermeasures there is an exponential growth of the number

of hypotheses. To make MHT computationally feasible, hypotheses with low probabilities are

deleted (pruning) and similar hypotheses are merged.

The above techniques are extensions of the Kalman filter. A relatively recent method for

multiple target tracking is based on a mathematically more stringent derivation: In multiple

target tracking, both the measurements and target states can best be described as finite random

sets (RFS) [81]. The sets are random because the number of elements in the sets – i.e. the

number of measurements or target states – are random and because the values that these elements

assume are random as well. The alternative of stacking the measurements or states to vectors is

not appropriate, since the ordering of the measurements or states is not of importance. In [81,

Sec. II.B] probability densities are defined for RFS and based on these probability densities a

Bayes recursion for RFSs is derived. The mathematical formulation of the RFS Bayes recursion

is in principle identical to the Bayes recursion of a single target. The major difference is that the

single target state and measurement have been replaced by multi target state and measurement

random finite sets.

While it is possible to use a particle filter for solving the RFS Bayes recursion, this approach

is in general computationally infeasible. A different approach to multiple target tracking as

been derived with the RFS formalism [81, Sec. III]: The probability density of a target RFS

determines the probability distribution of the number of targets and where they are located.

Hence, it enables to derive the expected number of targets that are located in a specific region of

the state space. It also enables to determine the density of expected targets in the state space.

This density of expected targets is denoted intensity or probability hypothesis density (PHD).

It is a scalar, nonnegative function; its input are vector valued points of the target state space.

The integral of the PHD function over a region of the target state space yields the number of

targets that are expected within this region. An integral over the entire state space yields the

total number of expected targets.
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Under some assumptions, a recursion of the PHD is possible without having to perform the

Bayes recursion of the RFS. One of the assumptions for the PHD recursion is that false alarms

are distributed according to a Poisson RFS and that the predicted RFS (of the Bayes recursion)

is also a Poisson RFS. Poisson RFS are random finite sets for which the number of targets obeys

a Poisson distribution and where the targets are distributed in the state space according to the

PHD function. Thus, a Poisson RFS is completely defined by the PHD function similar to a

Poisson distributed random variable that is completely defined by its expected value. Since the

PHD is a function of the single target state space, the PHD recursion is significantly more simple

than the full RFS recursion. Furthermore, it does not require an association of measurements to

targets. Thus, particle filter implementations of the PHD are computationally more feasible [81].

For linear Gaussian target dynamics and measurements, a Gaussian mixture implementation of

th PHD recursion has been presented in [80]. This recursion is denoted the Gaussian mixture

probability hypothesis density (GM-PHD) filter. The GM-PHD filter also does not require an

association of detections to targets. In comparison to the tracking algorithms that have been

presented before, the output of the GM-PHD are not tracks, but Gaussian sums that represent

the scalar PHD function. Thus, an additional track extraction algorithm is necessary to process

the GM-PHD output to tracks. In this thesis such an algorithm is presented in Section 5.2.8.

Since the GM-PHD filter is the algorithm of choice for this thesis, it merits a more detailed

introduction. In the next section, the mathematical formulation of the PHD recursion and the

GM-PHD filter are introduced.

4.1. Probability Hypothesis Density Filter

At first, a more formal definition of the intensity or PHD is in order. The state of a single target

at time step k is defined by its position xk in the single target state space E . A multiple target

state at time step k is given by the set

Xk =
{
xk,1, ...,xk,M(k)

}
∈ F(E) , (4.1)

where M(k) is the number of targets at time step k and F(E) is the set that comprises all finite

subsets of E . The counting measure

NXk(S) =
∑
x∈Xk

1S(x) = |Xk ∩ S| , (4.2)

where 1S(x) = 1,if x ∈ S and 0 otherwise returns the number of elements of Xk that are in S.

Here S is a Borel subset of the single target state space E [81].

In the random finite set framework for target tracking, the number and state of targets at time

step k are represented by a random finite set Ξk. Similarly as above, for the random finite set a

random counting measure NΞk(S) is defined [81, Sec. IIIA]. This measure is a random variable.
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The expectation of this random variable [81, eq. (14)]

VΞk(S) = E [NΞk(S)] =

∫ ( ∑
x∈Xk

1S(x)

)
PΞk(dX) (4.3)

is the expected number of targets in S. The integral of equation (4.3) is a Lebesque integral that

is defined in the random finite set theory [81, Appendix B]. The density of VΞk(S) is precisely

the intensity or PHD of the random finite set Ξk. Thus, the expectation and intensity measure of

equation (4.3) can also be expressed as

E [NΞk(S)] =

∫
S
vk(x) dx = expected nb. of targets in S at time index k . (4.4)

This illustration clearly shows that the intensity vk(x) is not a probability density function. In

particular, the integral over the entire state space is not equal to one, but the total expected

number of targets.

As equation (4.3) shows, the PHD vk(x) is defined by the corresponding random finite set

Ξk. For Poisson RFSs, a recursion of the PHD that does not require a prior evaluation of the

probability distribution of Ξk has been found [81]. This is the PHD filter.

Over time the PHD filter is provided with measurements or detections. At each time step

k, there are a total of Nz,k detections and zk,p denotes the pth vector valued measurement.

Assembled into sets, the measurements are given by

Zk =
{
zk,1, ..., zk,Nz,k

}
. (4.5)

These measurements may be due to false alarms or targets.

The PHD filter requires the definition of a single target measurement and state transition

model similar to that of other tracking algorithms. The measurement for a target with state xk a

time step k is modeled as random variable Z(k)|X(k). The probability density function of the

measurement is denoted as

fZ(k)|X(k)(zk|xk) . (4.6)

The target dynamics are captured by the state transition probability density

fX(k)|X(k−1)(xk|xk−1) (4.7)

i.e. the probability density of the target state at time k given the state xk−1 at the previous time

step. The probability that a target with state x at time step k still exists at time step k + 1 is

the survival probability pS,k(x). New targets may appear within the target state space. The

appearance of new targets is modeled by the birth intensity γk(x), i.e new targets are more likely

to appear where γk(x) assumes high values. Depending on the location of the target within the
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4.2. Gaussian Mixture Probability Hypothesis Density Filter

taret state space, the probability of detection is pD,k(x).The intensity of false alarms is given by

κk(z) and is a function of the coordinate of the measurement.

Similarly to other target tracking algorithms, the PHD recursion also includes a prediction and

update step. A major difference is that the PHD filter predicts and updates the target intensity

which is not a probability density function. Given the intensity vk−1(x) at time step k − 1, the

predicted PHD at time step k is given by [80, eq. (14)]

vk|k−1(x) =

∫
E
pS,k(ζ)fX(k)|X(k−1)(x|ζ)vk−1(ζ) d ζ + γk(x) . (4.8)

In equation (4.8) the first summand represents the PHD of surviving targets and the second

summand γk(x) stands for birth targets. The domain of the integration in the first summand is

the entire target state space E . The integrand is the product of the survival probability, the state

transition density and the PHD at time step k − 1. In the update step the measurements are

processed according to

vk(x) = [1− pD,k(x)] vk|k−1(x)

+
∑
z∈Zk

pD,k(x)fZ(k)|X(k)(z|x)vk|k−1(x)

κk(z) +
∫
E pD,k(ξ)fZ(k)|X(k)(z|ξ)vk|k−1(ξ) d ξ

. (4.9)

to yield the updated posterior intensity. This equation is also the sum of two parts. The first

part accounts for the proportion of the intensity that is propagated even in the absence of any

detection. It is weighted by 1 − pD,k(x), i.e. the probability that a target with state x is not

detected. The second part of the equation is itself a sum with one summand for every element

of Zk, i.e. detection. These summands are basically the normalized product of the predicted

intensity, the probability of detection and the likelihood function. Due to these summands, the

intensity is augmented in regions where target detections occur.

The PHD recursion also allows for spawning targets [80], i.e. the creation of new targets from

existing targets. For clarity and since spawning is not used in this thesis, it has been omitted in

the presentation of the PHD.

4.2. Gaussian Mixture Probability Hypothesis Density Filter

For linear Gaussian target dynamics and measurements, a closed form for the PHD recursion, the

Gaussian Mixture Probability Hypothesis Density Filter (GM-PHD) has been derived in [80]. For

nonlinear target motion and measurement models, a linearizion similar to that of the extended

Kalman filter (EKF) can be used. In this section, the GM-PHD is presented for this linearized
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form. The target dynamics and the measurement equations are modeled as nonlinear functions

xk = φk(xk−1,νk−1) (4.10)

zk = hk(xk, εk) , (4.11)

where xk is the state of the target at time step k that is derived from the state xk−1 at the

preceding time step and process noise νk with the deterministic, nonlinear state propagation

function φk. The measurement zk is related to the target state and measurement noise εk via

the nonlinear measurement function hk. The covariance matrix of the process noise is Qk−1 and

the measurement noise covariance matrix is Rk.

The GM-PHD filter propagates the posterior multi-target intensity, also denoted as probability

hypothesis density (PHD) in time. The PHD is a function of the target state and gives the density

of the number of expected targets at a point in the target state space. Hence, an integral over an

area of the target state space yields the number of expected target in that area. In the Gaussian

mixture implementation of this filter, the PHD at time step k is given by the Gaussian mixture

vk(x) =

Jk∑
i=1

w
(i)
k f

(
x;m

(i)
k ,P

(i)
k

)
(4.12)

of Jk components, where

f
(
x;m

(i)
k ,P

(i)
k

)
=

1

(2π)
Nx
2 |P(i)

k |
1
2

e
− 1

2 (x−m(i)
k )T

[
P

(i)
k

]−1
(x−m(i)

k )
(4.13)

is the probability density function for a normal random variable with mean m
(i)
k and covariance

matrix P
(i)
k [46, Sec. 3.2.3, p. 88]. Each Gaussian component i is weighted with w

(i)
k and

parameterized by its mean m
(i)
k and covariance P

(i)
k . At this point, one should note that the

sum of the weights w
(i)
k is not 1, since vk(x) is not a probability density. Based on the intensity

function at time step k − 1, the prediciton

vk|k−1(x) = vS,k|k−1(x) + γk(x) (4.14)

of the intensity at time step k is found. It is a sum of two terms that represent surviving targets

and the birth targets respectively. The first summand which represents surviving targets is the

Gaussian mixture

vS,k|k−1(x) = pS,k

Jk−1∑
j=1

w
(i)
k−1f

(
x;m

(j)
S,k|k−1,P

(j)
S,k|k−1

)
. (4.15)

This Gaussian mixture is parameterized by the means m
(j)
S,k|k−1 and the covariance matrices

P
(j)
S,k|k−1. The means are found directly with the nonlinear state propagation function according

62



4.2. Gaussian Mixture Probability Hypothesis Density Filter

to

m
(j)
S,k|k−1 = φk(m

(j)
k−1,0) . (4.16)

The covariance matrices of the predicted mixture are given by

P
(j)
S,k|k−1 = G

(j)
k−1Qk−1

[
G

(j)
k−1

]T
+ F

(j)
k−1P

(j)
k−1

[
F

(j)
k−1

]T
, (4.17)

where

F
(j)
k−1 =

∂φk(x,0)

∂x

∣∣∣∣
x=m

(j)
k−1

(4.18)

G
(j)
k−1 =

∂φk(m
(j)
k−1,ν)

∂ν

∣∣∣∣∣
ν=0

(4.19)

are Jacobians of the state propagation function. The equations for the prediction of a single

component of the Gaussian mixture are are identical to those of an extended Kalman filter.

The second summand of equation (4.14) – the birth intensity – is also a Gaussian mixture

γk(x) =

Jγ,k∑
i=1

w
(i)
γ,kf(x;m

(i)
γ,k,P

(i)
γ,k) . (4.20)

The number of elements Jγ,k of this mixture, their means and their covariance matrices have to

be set by the user of the GM-PHD filter.

After the prediction step, the two terms of equation (4.14) can be combined to the Gaussian

sum

vk|k−1(x) =

Jk−1∑
i=1

w
(i)
k|k−1

(
x;m

(i)
k|k−1,P

(i)
k|k−1

)
(4.21)

of the predicted components. In the update step, the GM-PHD filter processes the set of

measurements Zk. The updated intensity function is given by

vk(x) = (1− pD,k)vk|k−1(x) +
∑
z∈Zk

vD,k(x; z) , (4.22)

where the first summand accounts for the PHD that is due to the possibility that targets might

not be detected. Thus, the Gaussian components of this term are due to the missed detection

assumption. The second part of the sum adds a new PHD component for every possible pairing

of predicted components and detections, thus generating NzJk−1 new components. Consequently,

this part of the updated intensity is due to the detections. For every detection with measurement

z the sum of the new components is

vD,k(x; z) =

Jk|k−1∑
j=1

w
(j)
k (z)f

(
x;m

(j)
k|k(z),P

(j)
k|k

)
. (4.23)
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The mean and covariance of the new components is determined with

η
(j)
k|k−1 = hk(m

(j)
k|k−1,0) (4.24)

m
(j)
k|k(z) = m

(j)
k|k−1 + K

(j)
k (z − η(j)

k|k−1) (4.25)

P
(j)
k|k = [I−K

(j)
k H

(j)
k ]P

(j)
k|k−1 (4.26)

S
(j)
k = H

(j)
k P

(j)
k|k−1

[
H

(j)
k

]T
+ U

(j)
k Rε,k

[
U

(j)
k

]T
(4.27)

K
(j)
k = P

(j)
k|k−1

[
H

(j)
k

]T
(S

(j)
k )−1 (4.28)

in an identical fashion as in the extended Kalman filter. Here η
(j)
k|k−1 is the predicted measurement

and K
(j)
k the Kalman filter gain and H

(j)
k and U

(j)
k are the Jacobi matrices

H
(j)
k =

∂hk(x,0)

∂x

∣∣∣∣
x=m

(j)

k|k−1

(4.29)

U
(j)
k =

∂hk(m
(j)
k|k−1, ε)

∂ε

∣∣∣∣∣∣
ε=0

. (4.30)

The weights of the new components are determined with

w̆
(j)
k (z) = pD,kw

(j)
k|k−1f

(
z;η

(j)
k|k−1,S

(j)
k

)
(4.31)

w
(j)
k (z) =

w̆
(j)
k (z)

κk(z) +
∑Jk|k−1

i=1 w̆
(i)
k (z)

. (4.32)

With respect to the weight equations it can be observed that the total new weight due to one

detection is equal to 1 in the absence of false alarms, i.e. if κk(z) = 0. The higher the product

w
(j)
k|k−1f

(
z;η

(j)
k|k−1,S

(j)
k

)
of the prior weight and the likelihood of a component, the higher is its

share of the new weight. If the detection is possibly a false alarm, then the weight of the new

components is reduced. If the false alarm intensity is very high, almost no new weight might be

added.

The number of components at time step k is in the order of Jk−1 |Zk|, the number of components

at the previous time steps times the number of detections at the current time step [80, p. 4097].

In order to limit the number of components a merging and pruning step is necessary. In this step,

similar components are merged to one with combined weight and components of insignificant

weight are deleted.
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moving target tracking algorithm

Historically, algorithms have first been developed for tracking airborne targets. Ground moving

target tracking has become an important technique and research field since the introduction of

GMTI sensors [13]. In principle, identical or similar algorithms as for airborne target tracking

are applicable for ground target tracking. On the other hand, there are important differences in

the tasks which have to be considered [13, Sec, 2.1]. First, the movement of ground targets is

restricted to the two dimensional surface, while airborne targets can move in a three dimensional

space. Second, the movement of ground targets is less predictable as they can accelerate, stop or

reverse direction. In contrast, airborne targets are restricted by the flight dynamics, i.e. their

velocity cannot fall below a minimum value. On the other hand, a lot of ground targets are

confined to roads or are prohibited from entering unsuitable terrain. Third, ground targets can

be obscured by vegetation or the terrain, i.e. there might be locations at which they cannot be

detected. Furthermore, the ground clutter impedes the detection of ground targets if their radial

velocity with respect to the radar system is below a minimum value.

These distinctive features have motivated substantial research on ground moving target tracking.

In [32] an IMM algorithm is employed to take into account that target motion is mostly restricted

to roads and to model target obscuration. A similar approach is used in [33] to track targets that

temporarily come to a halt in order to avoid detection. Starting with [37] the clutter notch is

modeled by providing the tracking algorithm with a reduced detection probability for targets

with a low radial velocity. In [78] the target location is predicted using road map information.

A different approach of including road and terrain map information is the use of maps of the

’hospitality for maneuver’ [31].

In most publications on GMTT idealized models for the measurement process are employed.

Sometimes, the Doppler measurement is not used [26, eq. 8], [57, eq. (38)]. While simplifications

are well founded for the investigation of specific aspects, they prevent the direct application

of these algorithms to real measurement data. Furthermore, the application of many tracking

algorithms demand the cumbersome evaluation of Jacobians of the measurement function which

are also not given in literature. Thus, in short, there is no functional complete implementation of

a ground moving target tracking algorithm available in literature.

The aim of this chapter is to close this gap and to provide a reference implementation of a

ground moving target tracking algorithm.
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5.1. Basic design choices

For the implementation of the reference algorithm, design choices must be made. The principal

goal has been to design an algorithm which is successful at tracking ground moving targets with

experimental data. Evidently, different design choices might lead to algorithms with different

performance properties. Of the following implementation, some design choices can be easily

changed if it is desired.

Various types of tracking algorithms are available, e.g. the PDAF or JPDAF, multiple hypothesis

tracking algorithms, the GM-PHD and the GMC-PHD. Among these, the GM-PHD algorithm

was chosen due to its reported computational efficiency, elegant mathematical derivation and

relatively simple implementation. However, its original form of [80] must be extended by an

additional track extraction algorithm. For linear target dynamics and measurement models, the

core prediction and update equations of the GM-PHD are identical to those of the Kalman filter.

Nonlinearities can be treated by an extended Kalman filter (EKF) or unscented Kalman filter

(UKF) like modification. As the measurement process of GMTI is nonlinear, it is clear that either

the EKF or UKF version has to be used. Since the nonlinearities are fairly mild, the EKF version

was selected.

In tracking targets, the choice has to be made between representing the target state in sensor

coordinates [44, Sec. 3.3] or in Cartesian coordinates. The use of sensor coordinates has the

advantage that no conversion of the measurements is required. The severe disadvantage is that

the state propagation becomes nonlinear: A target that moves along a straight line in our world

does not move along a line in the sensor coordinates. Furthermore, for a moving platform the

conversion between the sensor coordinates and the Cartesian coordinates becomes time dependent,

making the interpretation of the tracking results difficult. Thus, a Cartesian coordinate system is

preferable for GMTT and chosen for the reference implementation.

The target state space can comprise position and velocity only or additionally an acceleration

state. These states are per dimension, i.e. for a state space with a two dimensional location

component, the total state space dimension is 4 without acceleration and 6 with acceleration. For

a state space with a three dimensional location component, the total dimension is 6 or 9. For

state space models with an acceleration state, the Singer model [69], [7, Sec. 4.2.1] is the most

common choice for a state propagation model. If no acceleration state is used, then a constant

velocity (CV) target model can be used [7, Sec. 4.2.2]. According to [7, Sec. 4.2.1] the use of an

acceleration state is not advantageous, if the target velocity is not measured or if acceleration is

only correlated over very short time steps. In the reference implementation no acceleration state

is used, as it was assumed that the correlation time of acceleration of ground moving targets is

small.

In ground moving target tracking, the position of the target is constrained to the earth’s surface.

As the location of a point on a surface can be given in two dimensions, a state space with a two

dimensional location component is sufficient for fully specifying the three dimensional position

of the target. In order to do so, a suitable conversion from three dimensional coordinates to
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two dimensional coordinates and vice versa is needed. In the reference implementation, a two

dimensional location coordinate is used and a conversion of tracking results to three dimensions

is presented.

Furthermore, the measurement space needs to be determined. Similarly to the state space, the

measurements may be given in Cartesian coordinates or sensor coordinates [44, Sec. 3.1 & Sec.

3.2], [7, p. 178]. In sensor coordinates, it is mostly very reasonable to model the measurement

noise as Gaussian. In Cartesian coordinates, the Gaussian approximation is less appropriate,

however it might still be justified. On the other hand, the observation model may become highly

nonlinear for measurements in sensor coordinates. This may lead to divergence of the tracking

algorithm if the tracking is initiated for off the true target position [7, p. 165 to 166]. Thus, for

the reference algorithm the measurements are converted to the Cartesian space. This has the

additional advantage of allowing a representation of the measurement in the space in which the

tracking is performed.

In ground moving target detection, the target detection probability depends strongly on the

location of the target. In this reference implementation, the probability of detection is determined

by means of modeling the measurement noise of the radar system. This provides a link to the

radar signal processing.

In the following, the reference implementation of the tracking algorithm according to these

design choices is presented in detail. Section 5.2 presents modifications to the GM-PHD algorithm

that are not specific to GMTT. Ground moving target tracking specific adaptations are presented

in Section 5.3.

5.2. Modifications of the standard GM-PHD filter

In order to apply the GM-PHD algorithm of [80] for ground moving target tracking, some

modifications of the algorithm have been necessary. These are not specific to ground target

tracking and could also be useful in other tracking scenarios. A flow chart of the algorithm is

given in Figure 5.1.

5.2.1. State dependent detection probability

The original article [80] already accounts for state dependent detection probability by modeling

the probability of detections as a Gaussian sum. However, this approach may lead to negative

components and increases the overall number of components. Thus, in an approximation it is

resorted to using a constant value of the detection probability for entire PHD sum components.
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Figure 5.1.: Flow chart of the GM-PHD filter. Dashed lines indicate information flow related
to target detections and solid lines indicate information flow related to components
of the Gaussian mixture of the filter. Blocks of the update step that generate
Gaussian sum components due to a missed detection assumption are colored light
blue ( ). Update step blocks that generate new components for every association
between predictions and detections are colored green ( ).
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The update equations (4.31) and (4.32) are replaced by

w̆
(j)
k (z) = w

(j)
k|k−1f

(
z;η

(j)
k|k−1,S

(j)
k

)
(5.1)

w
(j)
k (z) =

p
(j)
D,kw̆

(j)
k (z)

κk(z) +
∑Jk|k−1

i=1 p
(i)
D,kw̆

(i)
k (z)

, (5.2)

where the probability detection is computed with

p
(j)
D,k = pD,k(m

(j)
k ) (5.3)

for the updated state m
(j)
k . This is possible since the updated location does not depend on the

detection probability. In equation (5.2), f(z;m,S) denotes the probability density function of a

normal random vector with mean m and covariance matrix S.

5.2.2. Association between detections and components

Without additional measures the number of newly created components in one GM-PHD recursion

step is NzJk|k−1. Most of these new components will result from combinations of detections and

prediction components that have a great distance. Thus, these components will exhibit very

low weights and be removed in the pruning step. To increase the computational speed of the

algorithm, it is thus advisable to prevent the creation of these components. To this end, the

algorithm has been modified to associate measurements with prediction components. The first

condition is that the detections lies within a gate around the predicted measurement as expressed

with

‖wTnorm

(
zk,p − η(j)

k|k−1

)
‖ ≤ tgating , (5.4)

where wnorm is a normalization vector. Additionally, for the weights of the new components

given by equation (5.2) an upper bound can be derived. This upper bound is found based on the

inequalities1

w
(j)
k (z) =

p
(j)
D,kw̆

(j)
k (z)

κk(z) +
∑Jk|k−1

i=1 p
(i)
D,kw̆

(i)
k (z)

(5.5)

≤
p

(j)
D,kw̆

(j)
k (z)

κk(z) + p
(j)
D,kw̆

(j)
k (z)

(5.6)

≤ w̆
(j)
k (z)

κk(z) + w̆
(j)
k (z)

. (5.7)

1Here, the inequality of equation (5.6) is valid, since compared to equation (5.5) positive terms are removed from

the denominator. The inequality of equation (5.7) can be derived starting from the inequality p
(j)
D,kκk(z) +

p
(j)
D,kw̆

(j)
k (z) ≤ κk(z) + p

(j)
D,kw̆

(j)
k (z) which is valid for 0 ≤ p(j)D,k ≤ 1.
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The upper bound for the weight of the new Gaussian mixture compnonent with index (j) at time

step k is given by

w
(j)
ub,k(z) =

w̆
(j)
k (z)

κk(z) + w̆
(j)
k (z)

, (5.8)

where w̆
(j)
k (z) is defined in equation (5.1). The computation of this upper bound does not

require the evaluation of the probability of detection which may save a considerable amount

of computation time. Thus, the second condition for the association of a measurement with a

prediction component is

w
(j)
ub,k(z) > tpruning , (5.9)

i.e. that the maximum possible weight of a newly created component is larger than the pruning

threshold tpruning.

5.2.3. Merging with the Kullback-Leibler divergence

The merging method as presented in the original paper on GM-PHD [80, Table II] may lead to

merging of components with very different density functions. This is due to the fact that it uses

the Mahalanobis distance as measure for the similarity between the components. The distance

between two components i and j, where component i has the smaller weight is

dmahalanobis,i,j =
(
m

(i)
k −m

(j)
k

)T [
P

(i)
k

]−1 (
m

(i)
k −m

(j)
k

)
. (5.10)

Thus, only the covariance matrix of the component with the smaller weight is taken into account.

If the covariance matrix of this component is very ’large’, then in this scheme it can be merged

although the intensities of those components are very dissimilar.

The merging step is modified to use instead the symmetrized Kullback-Leibler divergence

dKL,i,j =
1

2

[
tr

([
P

(i)
k

]−1

P
(j)
k

)
+ tr

([
P

(j)
k

]−1

P
(i)
k

)]
+

1

2
(m

(i)
k −m

(j)
k )T · (

[
P

(j)
k

]−1

+
[
P

(i)
k

]−1

)

· (m(i)
k −m

(j)
k )−Ndim of state (5.11)

(for Gaussian distributions) as distance measure. It measures the similarity between the densities

of both components taking into account both covariance matrices.

The difference between those distances is illustrated by Figure 5.2. It shows two cases of merging

two Gaussian sum components. In one case – Subfigure 5.2a – the Gaussians are relatively similar.

As a result the single merged Gaussian approximates the sum of the original components well. In

the second case – Subfigure 5.2b – the Gaussians are very different. Thus, the single Gaussian

that is obtained through merging does not approximate the sum of the two Gaussians at all.

In both cases, the Mahalanobis distance is identical; it has a value of 2.7778. On the other
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5.2. Modifications of the standard GM-PHD filter

(a) Case 1: Similar Gaussians (b) Case 2: Dissimilar Gaussians

Figure 5.2.: Two cases with two different Gaussian sum components each. In both cases
the Mahalanobis distance is identical whereas the symmetrized Kullback-Leibler
divergence is different.

hand, the symmetrized Kullback-Leibeler divergence is only 2.7778 in case 1 while it is 272.3924

in case 2. Hence, the symmetrized Kullback-Leibler divergence enables to distinguish between

cases where merging is appropriate and where it is not. Consequently, the symmetrized Kullback-

Leibler divergence rather than the Mahalanobis distance is used in the merging step of this

implementation of the GM-PHD filter.

5.2.4. Ancestor relation

In the GM-PHD, at time step k a new Gaussian sum component is created for every possible

combination of detections to components at time step k − 1 and to new birth components.

Additionally, new components are formed for the missed detection assumption. Seen inversely,

components at time step k − 1 generate offspring components at time step k. Thus, there exists

and offspring/ancestor relation between components of different time steps. The GM-PHD

algorithm has been extended to recursively save the ancestor to descendant relations.

Figure 5.3 illustrates the ancestor relation by visualizing the different steps of a single GM-PHD

recursion step and an overview of multiple GM-PHD recursion steps: Subfigure 5.3a shows that

birth components are added in the prediction step, that new components are created due to

incoming detections, that some components are deleted in the pruning step and that others are

combined during the merging step. By tracing back the links from the right to the left, the

ancestor relations are found. A component may have zero, one or multiple offspring components

and inversely a component may have one or more ancestors. In some cases, the only ancestor is a

birth component, i.e. in fact there exists no true ancestor. If a component has multiple ancestors,

then a link strength for each ancestor is computed. For a specific ancestor this link strength is the

ratio of the total weight of its post pruning components that contribute to the descendant to the

total weight of the descendant. Subfigure 5.3b shows multiple steps of the GM-PHD genealogy.
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5. Ground moving target tracking algorithm

(a) Illustration of a single GM-PHD recursion step. In this example there exist three Gaussian sum
components at time step k − 1. Two detections are made at time step k. At time step k, 12
components are created during the update step, eight components remain after pruning and three
components remain after merging. The birth component and its descendants (up to post pruning)
are shown in gray.

(b) Illustration of multiple GM-PHD recursion steps. Each circle represents one posteror Gaussian sum
component with enclosed index number. Dashed errors indicate when a birth component is among
the ancestors. For components whose fingerprints are given in Table 5.1, the weight of each ancestor
is indicated.

Figure 5.3.: Visualization of the PHD recursion with an example.
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5.2. Modifications of the standard GM-PHD filter

For a subset of the genealogy numbers at the arrows between ancestors and descendants indicate

the link strength.

The number of ancestors for component i at time step k is denoted N
(i)
A,k and the indices of

the ancestors at the preceding time step k − 1 are denoted by a
(i)
k =

[
a

(i)
k,1, ..., a

(i)

k,N
(i)
A,k

]T

. As

Figure 5.3 shows, every ancestor might contribute to a new post merging component via multiple

posterior components, e.g. the missed detection assumption update and several detection update

components. The number of posterior components derived from ancestor j that are merged to

the post merging component i shall be denoted by N
(i)
p,k,j . The indices of these components shall

be given by p
(i)
A,k,j = [p

(i)
A,k,j,1, ..., p

(i)

A,k,j,N
(i)
p,k,j

]T . The link strength between an ancestor j and the

post merging component i is then defined as the sum

w
(i)
A,k,j =

∑
l∈p(i)A,k,j

w
(l)
k (5.12)

over the weights of all components given by the vector p
(i)
A,k,j . Combined for all ancestors, the

link strength of component i is written as

w
(i)
A,k = [w

(i)
A,k,1, .., w

(i)

A,k,N
(i)
A,k

]T . (5.13)

Finally, for the post merging component i the weight is distributed according

N
(i)
A,k∑
n=1

w
(i)
A,k,n + w

(i)
birth,k = w

(i)
ancestors,k + w

(i)
birth,k = w̃

(i)
k , (5.14)

between true ancestors and birth terms. If no birth components contribute to component i, then

w
(i)
birth,k is zero. The extended version of the GM-PHD filter saves the vectors a

(i)
k and w

(i)
A,k.

5.2.5. Immediate deletion of missed detection birth component descendants

The number, placement, covariance matrices and weights of the birth components can be set

independently for every time step. Through the update with measurements, they enable the

generation of new components that are not descendants of components at the preceding time

steps. In conjunction with the track extraction algorithm of Section 5.2.8 this is equivalent to the

generation of new tracks.

A prerequisite for this capability is that the updated weight of a birth component (see equations

(4.32) and (5.2)) is sufficiently high to survive the pruning step. If the influence of other

components is negligible, this leads to the requirement of

w
(j)
k|k−1N

(
z;η

(j)
k|k−1,S

(j)
k

)
pD,k >

1

κk(z)

(
1

tpruning
− 1

)
(5.15)
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for the product of detection probability, prior weight and value of the likelihood function.

Birth components should always be available when previously unobserved targets are likely

to appear, e.g. if an area is observed for the first time or at the start of the tracking algorithm.

Additionally, scenarios in which new targets can appear at all times in the tracking area are

possible.

The most simple solution is to place one birth component with a large covariance matrix in the

middle of the tracking area. Then the value of the likelihood function will be almost constant

for all detections. Furthermore, in this case the measurement accuracy is much higher than the

accuracy of the birth component. Hence, after the update step the state of the component will

be almost entirely be defined by the measurement.

Additionally to birth components descendants that are due to detections, there are also the

descendants due to the missed detection assumption. This signifies, that independently of the

detections, intensity due to the birth process will build up in the tracking algorithm. This has

to be taken into account when configuring the birth intensity, i.e. the birth intensity should be

smaller in areas where already birth intensity due to previous time steps is present.

Thus, even though the evolution of the missed detection part of the birth intensity is deter-

ministic, it makes designing the birth intensity γk(x) more difficult. As a remedy, the GM-PHD

algorithm has been extended to enable the deletion of the missed detection birth components at

every time step. If this deletion is performed, the birth intensity can be configured independently

for every time step according to the requirements of the respective time step.

5.2.6. Component fingerprints

For some analyses of the GM-PHD result it can be desirable to have a measure for how closely two

components of the GM-PHD recursion at different or identical time steps are related. For example

a component at time step k1 could be a direct descendant of a component at time step k0 without

any other ancestors or contributions of birth components. In that case, these components have a

very close relation. Two components at the same time step k1 might share common ancestors at

preceding time steps which also leads to a relation between these components.

In order to capture these relations, the events that a post merging component i receives weight

through a birth component (i.e. w
(i)
birth,k > 0) are numbered consecutively. Via its ancestors

the weight of a component can ultimately be traced back to the birth events. The distribution

of a component’s weight between birth events is characteristic of the component. Thus, in the

following this distribution will be called ’fingerprint’.

Let the total number of birth events up to and including time step k be denoted by Nbirths,k.

The fingerprint of a component with index i at time step k is given by a (sparse) Nbirths,k × 1

vector q
(i)
k . The element indices of this vector correspond to the birth event indices and the

entries give the weight associated with the respective birth event.

The fingerprint of the components is performed recursively by merging the fingerprints of

the components’ ancestors and the birth fingerprint. For a birth event at time step k the birth
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Table 5.1.: Fingerprints associated with the components of Figure 5.3

Time Comp. Fingerprint

1 1 [1 0]T

1 2 [0 1]T

2 1 [0.7 0 0.3]T = 0.7 [1 0 0]T + 0.3 [0 0 1]T

2 2 [0 1 0]T

2 3 [0 1 0]T

3 1 [0.7 0 0.3]T

3 2 [0.7 0 0.3]T

3 3 [0.7 0 0.3]T

3 4 [0 1 0]T

3 5 [0 1 0]T

4 1 [0.35 0 0.15 0.5]T =
0.5[0.7 0 0.3 0]T + 0.5 [0 0 0 1]T

4 2 [0.7 0 0.3 0]T

4 3 [0 1 0 0]T

5 1 [0 0 0 0 1 0]T

5 2 [0.315 0 0.135 0.25 0 0.3]T =
0.5 [0.35 0 0.15 0.5 0 0]T +
0.2 [0.7 0 0.3 0 0 0]T + 0.3 [0 0 0 0 0 1]T

5 3 [0 1 0 0 0 0]T

6 1 [0 0 0 0 1 0]T

6 2 [0.315 0 0.135 0.25 0 0.3]T

6 3 [0 1 0 0 0 0]T

fingerprint is given by the Nbirths,k × 1 vector q
(i)
birth,k whose elements are zero except the element

at position given by the index of the birth element which is set to 1. In the first step of the

computation of the fingerprint, the fingerprint vectors of the components at time step k − 1 are

extended from the length Nbirths,k−1 to Nbirths,k by padding ∆Nbirths,k zeros, i.e. for the n-th

ancestor of component i at time step k

q̃
(i)
k,n =

 q
(j)
k−1

∣∣∣
j=a

(i)
k,n

0∆Nbirths,k×1

 . (5.16)

Then the fingerprint vector of component i is found as the weighted average

q
(i)
k =

N
(i)
A,k∑
n=1

w
(i)
A,k,n

w̃
(i)
k

q̃
(i)
k,n +

w
(i)
birth,k

w̃
(i)
k

q
(i)
birth,k . (5.17)

The degree of relation between two components can be found by forming the correlation between

their fingerprint vectors. If it is determined for components of different time steps, then the shorter

fingerprint vector is zero padded. A correlation value of 1 signifies that the two components are
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5. Ground moving target tracking algorithm

very closely related while a value of 0 indicates no relation at all. To illustrate this point, the

example of Figure 5.3 is reused. The birth events are numbered from one to six. Table 5.1 gives

the resulting fingerprints associated with the different components.

5.2.7. Visualization of the GM-PHD filter results

In some occasions it is advisable to directly visualize the GM-PHD filter result without passing

through a track extraction step.. Two dimensional GM-PHD results can be visualized by plotting

lines between all components and their respective ancestors. The link strength between component

i of time step k and its n-th ancestor of time step k−1 is given by the proportion of the contribution

of the n-th ancestor to the total component weight

wlink,k,n(i) =
w

(i)
A,k,n

w̃
(i)
k

. (5.18)

As this link strength lies between 0 and 1 it can be interpreted as transparency value for the

plotted line, e.g. a link with a small value of wlink,k,n(i) will be almost invisible. Additionally to

choosing the transparency of the line, its basic color defined by its red, green and blue (RGB)

color components can be chosen. One option is to base the line color on the fingerprint of the

more recent component of the two components that are linked by a line. To this end, the element

values of the fingerprint vector are interpreted as weights for the color contributions in a mixture

of RGB colors. If the RGB values of the mixture colors are defined by the lines of the Nbirths,k× 3

matrix Acolor,k, then the color

c̃
(i)
rgb,k = [Acolor,k]

T
q

(i)
k . (5.19)

is generated with the fingerprint. This corresponds to projecting the high dimensional fingerprint

to a 3 dimensional space which can be displayed as color value. In order to perform a normalization

with respect to the saturation and brightness of the color, c̃
(i)
rgb,k is converted to the HSV color

space [74], value and hue are set to 1 and the color is converted back to the RGB color space.

The matrix Acolor,k can be generated by sampling independently from a uniform distribution

between 0 and 1. For obtaining a consistent color for display at different time steps k, it can be

constructed recursively according to

Acolor,k =

[
Acolor,k−1

∆Acolor,k

]
. (5.20)

If the final length of the fingerprints is known it can also be generated by selecting submatrices of

a previously generated matrix. An example of this visualization technique is given in Section 6.3.
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5.2.8. Track extraction

Unlike classical tracking algorithms such as the probabilistic data association filter (PDAF) or

multiple hypotheses tracking (MHT) the GM-PHD filter does not yield a list of tracks with

unique identifiers. Instead, the result of the GM-PHD is a Gaussian sum representation of the

evolution of the posterior target intensity vk(x), k = 0, ...,K − 1. Fortunately the Gaussian

sum representation in combination with the saving of the ancestor relation as introduced above

provides for a simple method of extracting tracks based on the GM-PHD result:

Based on the saved ancestor relation, for every Gaussian sum components its descendants are

determined. For existing tracks, the component with the largest weight is chosen for continuing the

track. Existing tracks are stopped if they have no descendants or if the weight of the descendants

is below a threshold. Descendants that are not attributed to existing tracks start new tracks if

their weight exceeds a threshold. As a result, each track is continuous in time and Gaussian sum

components may only be attributed to a single track.

An extracted track is defined by a list of Gaussian sum components identifiers. In this list each

component is identified by the time step and the index number within the Gaussian sum. E.g., a

track with id 1 is given by the list T1 = {(1, 1), (2, 4), (3, 3)}. Based on the list, the state and the

state covariance matrix are defined for all time steps of the track duration.

5.3. Ground moving target tracking specific adaptations of the

GM-PHD

The target dynamics and measurement model enter the definition of the EKF version of the

GM-PHD filter via generic models and the Jacobian matrices of these models. In order to apply

the algorithm to any specific tracking task, the definition of these models and the derivation of

the Jacobians are required. These are related to the definition of the measurement and target

state space. The definition of the state propagation, measurement model and related Jacobians is

not specific to the use of a GM-PHD algorithm, e.g. they could be reused if the GM-PHD filter

were replaced by an MHT algorithm.

5.3.1. Definition of the target state space

As our world has 3 spatial dimensions, a 3 dimensional coordinate system is required for fully

specifying the location of a tracked target. However, if an object or target is known to be

constrained to a surface, for example the earth’s surface, two dimensions are sufficient.

This motivates the use of a two dimensional coordinate system for specifying the location of a

ground target in the tracking algorithm. Its definition is linked to functions that map from 2

dimensions to 3 dimensions and vice versa. For transforming the location, the mapping functions

are denoted by f2←3
p for converting from 3D coordinates to 2D coordinates and by f3←2

p for

converting from 2D to 3D coordinates.
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Predict Update

Measurement
conversion

Geolocation

Detection and pa-
rameter estimation

Radar
raw data

Track
extraction

Conversion
to 3D

Display
of tracks

Display of raw
track results

or

Initialize

Figure 5.4.: Overview of the processing from the radar raw data to the display of tracks. Blocks
related to radar signal processing and the conversion of detections are colored
green ( ), blocks that belong to the GM-PHD tracking algorithm are shown in
red ( ) and display blocks are colored blue ( ). Information flow related to
detections is represented by a dashed line, information flow related to Gaussian
mixture components is shown by a solid black line. Information flow in the form of
extracted tracks is shown by a gray, solid line.
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Additionally, the tracking algorithm shall track the velocity of the target, resulting in a four

dimensional state vector

xS =

[
xP2

vP2

]
=


xP2

1

xP2
2

vP2
1

vP2
2

 =


xS1
xS2
xS3
xS4

 (5.21)

where xP2 and vP2 give the position and target component of the track state in the surface’s

coordinate system. The superscript S indicates that a variable is given with respect to the target

state space.

The mapping functions for the location also define the transformation of the velocity state

of a tracked target at given location. For example, as can be found with the chain rule by

differentiating,

f3←2
v (xE ,vE) =

∂f3←2
p

∂xE

(
xE
)
vE (5.22)

maps a velocity vector from 2 to 3 dimensions. The mapping of the entire state vector is denoted

by f3←2
s . The conversion functions may depend on a parameter vector θconv.

Conversion of the tracking result to ENU coordinates In the GM-PHD algorithm the tracking

result is the Gaussian sum of equation (4.12). Extracted tracks consist of sequences of Gaussian

sum components. In both cases, the tracking result is either given by or derived from the sequences

m
(j)
k and P

(j)
k .

These sequences are given in the track coordinate system S. Often, it is desirable to represent

the result with respect to the ENU coordinate system. To this end, the mapping functions that

have been introduced above are used. The mean of the ENU location for component j at time

step k is given by

m
E,(j)
p,k = f3←2

p

(
m

(j)
p,k

)
(5.23)

and the velocity vector in ENU coordinates is

m
E,(j)
v,k = f3←2

v

(
m

(j)
p,k,m

(j)
v,k

)
. (5.24)

Here, m
(j)
p,k and m

(j)
v,k are defined by the partitioning

m
(j)
k =

[
m

(j)
p,k

m
(j)
v,k

]
(5.25)

of the original state vector into a location and a velocity component. The entire, converted six
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dimensional state vector that comprises both three dimensional location and three dimensional

velocity is obtained by

m
S3,(j)
k = f3←2

s

(
m

(j)
k

)
. (5.26)

The covariance matrix of the converted state is of the dimension 6× 6. For component j at time

step k it is given by

P
S3,(j)
k =

∂f3←2
s

∂θs

(
m

(j)
k

)
R

(j)
s,k

[
∂f3←2

s

∂θs

(
m

(j)
k

)]T

. (5.27)

Here
∂f3←2

s

∂θs
is the Jacobian of f3←2

s with respect to the vector

θs =

[
xS

θconv

]
(5.28)

that comprises the target state and the parameter vector θconv that contains parameters for

the conversion from 2 to 3 dimensions. The covariance matrix R
(j)
s,k is a block diagonal matrix

comprising the error covariance matrix P
(j)
k of the tracking error and the error covariance matrix

Rconv of the conversion parameters.

Conversion between tracking state space and full 3D Cartesian state After these general

considerations, a specific mapping between the 2 and 3 dimensional coordinate system must be

chosen. The tracking algorithm is developed first for the most simple case, i.e. that – in the area

of interest – the earth’s surface can already be well approximated by a plane.

Then the two dimensional coordinate system spans this plane. Its relation to the 3 dimensional

coordinate system is defined by its origin xEP3,origin and the two orthogonal vectors of unit length,

eEP3,1 and eEP3,2 which define the coordinate axes. The conversion from a 2 to 3 dimensional

location coordinate is given by

f3←2
p (xP2) = xEP3,origin + TE←P2xP2 (5.29)

where the multiplication with the matrix

TE←P2 = TE←P3 TD3←D2 (5.30)

adds an additional dimension and performs a rotation. Here

TD3←D2 =

 1 0

0 1

0 0

 (5.31)
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and

TE←P3 =
[
eEP3,1 eEP3,2 eEP3,3

]
. (5.32)

The inverse mapping is a projection onto the plane and is defined by

f2←3
p (xE) = TP2←E (xE − xEP,origin

)
(5.33)

where

TE←P2 = TE←P3 TD3←D2 (5.34)

and

TD2←D3 =

[
1 0 0

0 1 0

]
. (5.35)

From these definition and with (5.22) follow the expression for the conversion of the velocity

vectors

f2←3
v (xE ,vE) = TP2←EvE (5.36)

and

f3←2
v (xE ,vE) = TE←P2vP2 (5.37)

5.3.2. State propagation

The state propagation of an object is governed by the classical equations of motion. These lead

to the linear state propagation function

φk(xk−1,νk−1) = Fkxk−1 + νk−1 (5.38)

where

Fk =

[
1 ∆tk

0 1

]
⊗ I2 (5.39)

and where ∆tk = tk − tk−1. Here, the Kronecker multiplication (denoted by ⊗) with an identity

matrix I2 of dimension 2× 2 expands the motion equations from one spatial dimension to two

spatial dimensions.
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The process noise term νk−1 is Gaussian with process noise covariance matrix [4, Sec. 6.2.2]

Qpn,k−1 = σ2
a∆t2k

[
1
3∆t2k

1
2∆tk

1
2∆tk 1

]
⊗ I2 (5.40)

(5.41)

Here σa is the standard deviation of the white noise acceleration time series of the target. The

choice of a variance for the acceleration is equivalent to a series of standard deviations of velocity

changes σv,k = σa∆tk.

5.3.3. Definition of the measurement space

As stated in Chapter 3 each detection is associated with a measurement of target range, target

DOA and target Doppler frequency. It is possible to formulate the extended Kalman filter version

of the GM-PHD directly with this measurement set. However, in this case the linearization that is

performed in the extended Kalman filter may have particularly negative effects. This is due to the

state update, which is a weighted difference of the true measurement and predicted measurement

(see equation (4.25)). The weighting is performed by multiplication with the Kalman gain matrix

K
(j)
k which is computed with the Jacobian of the measurement function at the predicted target

state (see equations (4.28), (4.27) and (4.29)). In particular during track initialization, the

predicted state may differ strongly from the true target state. Thus, it is advisable to choose a

measurement set for which the gain and hence measurement matrix do not depend strongly on

the target state.

To this end, the DOA and range measurements are converted to a two dimensional measurement

of the target location component of the target state space. Step I of this conversion is already

given in Section 3.3.1 where the geolocation of a detection on a planar surface is described. Thus,

a 3 dimensional ENU coordinate for the location of the detection is obtained. In step II the ENU

coordinate is converted to a plane surface coordinate (see Section A.5.7)

x̂
P2,(j)
tgt,k = fP2←E

(
x̂
E,(j)
tgt,k ;xEP,origin,γ

E←P3
)
. (5.42)

The concatenation of both functions yields the function fP2←ur such that the estimate in plane

coordinates is given by (see Section A.5.9)

x̂
P2,(j)
tgt,k = fP2←ur

(
û

(j)
k , r̂

(j)
k , x̂Eant,k, ê

E
ant,k,1,n

E
plane, d

E
plane

)
. (5.43)

Furthermore, the velocity measurement of Section 3.3.2 is employed. The entire measurement
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vector is then given by (see Section A.5.1)

z
(j)
k =

[
x̂
P2,(j)
tgt,k

v
(j)
t,pl,k

]
= fM←urv

(
û

(j)
k .r̂

(j)
k , v

(j)
rad,k, x̂

E
ant,k, ê

E
ant,k,1,n

E
plane, d

E
plane

)
. (5.44)

5.3.4. Definition of the observation process

In the extended Kalman filter version of the GM-PHD, the vector valued function hk defines how

a target state is converted to a synthetic measurement. It also specifies in what way a noise term

ε corrupts the measurement. The Jacobians of this function with respect to the target state and

the noise term,

H
(j)
k =

∂hk(x,0)

∂x

∣∣∣∣
x=m

(j)

k|k−1

(5.45)

U
(j)
k =

∂hk(m
(j)
k|k−1, ε)

∂ε

∣∣∣∣∣∣
ε=0

, (5.46)

are employed in the update step of this tracking filter. Thus, it is necessary, to define hk and to

find expressions for the respective Jacobians.

At this point it is pertinent to define the noise terms that should be considered. First of all,

there are the noise terms that are directly related to each detection, i.e. the measurement noise of

the DOA estimate εu, the measurement noise of the range estimate εr and the measurement noise

of the estimate of the radial velocity εv. These errors are specific for each detection. Secondly,

there are the measurement errors with respect to the antenna location εEp,ant, the antenna velocity

εEv,ant and the antenna attitude εA←Eyp which are identical for all detections of one time step. All

of these measurement noise terms are combined into the vector

ε =[εu εr εv ε
E
p,ant ε

E
v,ant ε

A←E
yp ]T . (5.47)

The covariance matrix Rε,k of these measurement errors is time step dependent.

Observation function including the noise term

For incorporating all of these noise terms in the synthetic measurement (two dimensional position

and a velocity term), it is computed in two steps. In the first step, the track state is converted to

the DOA, range and radial velocity measurement without adding any measurement error. The

track state xS is converted to the 3D target location and velocity variables xE and vE . Then,

the difference between the target location

∆xE = xE − xEant (5.48)
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can be used to determine the range

r = ‖∆xE‖ (5.49)

to the target and the direction vector in ENU coordinates

uE =
∆xE

‖∆xE‖ (5.50)

The radial velocity of the target is given by

vrad =
[
uEat

]T (
vEtgt − vEant

)
. (5.51)

The orientation of the x-axis of the antenna coordinate system and hence the orientation of the

linear array is given by

eEant,1 = TE←A

 1

0

0

 , (5.52)

where

TE←A = Tinv
Euler(γ

A←E
ypr ) (5.53)

is the Euler rotation matrix. With γA←Eypr = [γyaw γpitch γroll]
T

and the definition of the inverse

Euler rotation matrix of A.7.1, the expression of equation (5.52) can be expanded to

eEant,1 = Ty(−γyaw)Tp(−γpitch)Tr(−γroll)

 1

0

0



=

 cos (γyaw) cos (γpitch)

sin (γyaw) cos (γpitch)

− sin (γpitch)

 . (5.54)

The directional cosine of the target direction vector with respect to the linear antenna is given by

uA1 =
[
eEant,1

]T
uE . (5.55)

These equations show that the roll angle of the antenna attitude is not required for computing

the orientation of the antenna’s x-axis. Thus, the vector

γA←Eyp = [γyaw γpitch]
T

(5.56)

is introduced that contains only the the yaw and roll angle. All measurements are combined into
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the vector

zurv =

 uA1
r

vrad

 . (5.57)

In function form, the computation of the radar measurement is given by (see Sections A.5.10 and

A.3.1)

zurv = furv←S (xE ,vE ;xEant,v
E
ant,γ

A←E
yp

)
. (5.58)

In the second step, the synthetic measurement of DOA range and radial velocity is converted

to the track measurement with function fM←urv which has already been defined above. In this

step, the measurement noise is added to the parameters

z = fM←urv
(
u+ εu, r + εr, vrad + εv,x

E
ant + εEp,ant,

vEant + εEv,ant,γ
A←E
yp + εyp,ant,n

E
plane, d

E
plane

)
. (5.59)

Both steps combined are given in function form in Section A.5.3 as

z = fM←Sε

(
xS ;xEant,v

E
ant,γ

A←E
yp , ε

)
. (5.60)

With this function, it is possible to define the observation function by (see Section A.5.2)

hk(xS , ε) = fM←Sε

(
xS ; x̂Eant,k, v̂

E
ant,k, γ̂

A←E
yp,k , ε

)
. (5.61)

Observation function in the absence of noise

Since the Jacobian of the observation function with respect to the target state is computed for a

zero noise vector, it is useful to find a simplified expression of fM←Sε for ε = 0.

This is particularly easy in the case of the location measurement. In the absence of noise, it is

simply given by the first two elements of the track state vector. The velocity measurement is

found according to its definition in equation (3.60) as the scalar product between the normalized

projection of the direction vector on the surface plane and the target velocity vector. The

normalized projection vector is given by

uEat,p,n =
PEplane∆xEat

‖PEplane∆xEat‖
=

∆xEat,p

‖∆xEat,p‖
(5.62)

and the scalar product is

vt,pl =
[
uEat,p,n

]T
vE . (5.63)
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The results are arranged into the measurement vector

z =

 xS1
xS2
vt,pl

 . (5.64)

The function form is given in Section A.5.4. It defines hk for the special case of a zero noise term

by (see Section A.5.2

hk(xS ,0) = fM←S0

(
xS ; x̂Eant,k, v̂

E
ant,k, γ̂

A←E
yp,k

)
(5.65)

5.3.5. Jacobians of the observation process

The computation of the Jacobian

U
(j)
k =

∂hk(m
(j)
k|k−1, ε)

∂ε

∣∣∣∣∣∣
ε=0

(5.66)

is required for implementing the GM-PHD tracking algorithm. It requires a tedious but straight

forward application of rules of differentiation, in particular the chain rule. The order in which

different elements for its computation should be computed is

1. Jacobian of the 3D geolocation based on range-DOA measurement, see Section A.1.2

2. Jacobian of the conversion from 3 to 2 dimensions, see Section A.6.1

3. Jacobian of the measurable velocity component in the tracking plane based on range, DOA,

radial velocity measurement, see Section A.2.2

4. Jacobian of the track measurement as function of the track state with respect to the noise

vector ε, see Section A.6.4

This computation of the Jacobian is summarized as matrix valued function fM←SJ,ε and given in

Appendix A.6.4. With this definition, the Jacobian is

U
(j)
k = fM←SJ,ε

(
m

(j)
k|k−1; x̂Eant,k, v̂

E
ant,k, γ̂

A←E
yp,k ,0

)
. (5.67)

Additionally, the computation of the Jacobian of the observation function

H
(j)
k =

∂hk(x,0)

∂x

∣∣∣∣
x=m

(j)

k|k−1

(5.68)

with respect to the track state is required. In order to compute this Jacobian, the more simple

definition hk for the noise free case (see Section A.5.2) is used. Its derivation is straight forward

86



5.3. Ground moving target tracking specific adaptations of the GM-PHD

and the resulting Jacobian is given as matrix valued function fM←SJ,0 in Section A.6.5. Thus, the

measurement matrix is given by

H
(j)
k = fM←SJ,0

(
m

(j)
k|k−1; x̂Eant,k, v̂

E
ant,k, γ̂

A←E
yp,k

)
. (5.69)

5.3.6. Modeling of the state dependent probability of detection

As evident in equation (5.3), the GM-PHD tracking filter requires an expression for the state

dependent probability of detection in order to determine pD,k(m
(j)
k ), the probability of detection

of the GM-PHD element with index j at time k. The ’true’ probability of detection depends

on the radar system, the detection algorithm, the radar cross section of the target, the target

parameters and the clutter environment. However, as assumptions must be made for modeling the

radar cross section and the clutter environment, the modeled detection probability will necessarily

diverge from the ’true’ solution. Furthermore, it is extremely important that the expression

for detection probability is numerically efficient since it must be computed for every updated

track state – before pruning and merging. Thus, it may be pertinent to use approximations that

decrease the accuracy but increase the speed of computation.

Signal and clutter model based evaluation of the detection probability

The GMTI of this thesis employs the AMF test (see equation (3.32) and (3.33)). The evaluation

of the detection probability of the AMF test involves a numerical integration [64, equation

(34)]. As an approximation, the detection probability of a GLRT can be used. This substitution

corresponds to neglecting the loss of detection probability that occurs due to imperfect learning

of the clutter and noise covariance matrix. The probability of detection of a GLRT is directly

related to the SCNR that is obtained after filtering of the signal. For a Swerling I target model,

the probability of detection simply is p
1/rscnr
fa , where pfa is the desired false alarm probability and

rscnr is the clutter to noise ratio.

The clutter to noise ratio depends on the target signal power, the clutter and noise covariance

matrix and the mismatch between the target steering vector and the true target model vector.

Due to the use of adjacent bin post Doppler processing, the interference covariance matrix is a

function of the target location in range and Doppler.

By principle it is impossible to ’know’ the true clutter and noise covariance matrix. Only an

approximation can be obtained either by learning from the received radar data or by theoretical

modeling. Regardless of how the interference covariance matrix is obtained, the process of

determining the SCNR and hence the detection probability is similar:

(a) The tracking algorithm computes the state of the updated Gaussian sum components m
(j)
k ,

j = 1...Nk.

(b) The corresponding range, Doppler and direction of arrival values for all predicted sum

components are determined, yielding u
(j)
k , r

(j)
k and f

(j)
k .
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(c) The interference covariance matrix R̃
(j)
q,k is determined – either by learning from radar data

or model based. The covariance matrix depends on the location of the target in range and

Doppler.

(d) The steering vector ṽ
(j)
s,k is constructed. For adjacent bin post Doppler processing, it is a

function of the target’s Doppler frequency.

(e) A model vector ṽ
(j)
t,k for the target signal is constructed. It is a function of the target signal

direction of arrival and Doppler frequency.

(f) The expected signal power P
(j)
t,k is determined by multiplication of the target signal SNR of

equation (2.5) with the noise power.

(g) The previously computed variables are used to determine the SCNR r
(j)
scnr,k and the proba-

bility of detection.

Model based determination of the clutter covariance matrix If the tracking algorithm does

not have access to the interference covariance matrices that are learned in the detection step, the

covariance matrices can alternatively be determined by modeling. This can be performed with

a clutter model such as given in [83, Sec. 2.6.1, eq. (61)]. The determination and subsequent

inversion of the clutter covariance matrices are computationally demanding. The number of

interference covariance matrices that have to be computed and inverted scales linearly with the

number of posterior components of the Gaussian sum. Thus, especially for large numbers of

components this might lead to excessive run times for the tracking algorithm.

For a significantly faster but approximative approach the clutter covariance matrices are only

computed for a single bin post Doppler detector. Thus, there arises a difference between the

actual detector and the one which is modeled for determining the clutter covariance matrix. The

benefit of this approach is that single bin post Doppler covariance matrices can be obtained in a

particularly efficient manner for entire range lines. Furthermore, inverting single bin covariance

matrices is faster. Another speed up is obtained by determining the covariance matrices only for

specific range lines as shown in Figure 5.5. For targets that lie outside of these range lines, the

closest clutter covariance matrix is then chosen. Due to these modifications the computational

load becomes independent of the actual number of Gaussian sum components.

Model based evaluation of the detection probability

An alternative to determining the probability of detection based on the SNCR (hence a complete

clutter and signal model), is to use a simplified model for the probability of detection. Such a

model has been proposed in [36, Sec. 4.1]. In this model the detection probability is determined

by two parameters: A maximum detection probability outside of the clutter region and the

minimum detectable velocity (MDV). If the target velocity falls below the MDV, the probability

of detection reduces exponentially.
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Figure 5.5.: Theoretical clutter power versus range and Doppler frequency. The range-Doppler
bins for which the clutter covariance matrices are computed are indicated schemati-
cally by the squares. For a target that lies at an arbitrary location in the range
Doppler map, the clutter covariance matrix of the closest range (for which the
matrices are computed) substitutes for characterizing the clutter at the target
location. This is shown exemplary for two targets whose locations in the range
Doppler map are shown by circles in blue and white. The Doppler and range gates
from which the clutter matrices are taken for these targets are indicated in the
corresponding colors.

This approach of determining the detection probability offers the advantage of using ’negative’

sensor information and is computationally fast. Still, in this reference implementation of the

tracking algorithm the SCNR based approach has been chosen since it shows a clearer link to the

radar signal processing. Provided that the clutter covariance matrix is determined from the radar

data, it is likely that it is also more accurate.

5.3.7. An expression for the false alarm probability

The GM-PHD algorithm also requires the definition of the intensity of the random finite set of

false alarms κk(z). The intensity of false alarms gives the density of the expected number of false

alarms in the track measurement space. Thus, the integral over the entire measurement space
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yields the total expected number of false alarms, i.e.

NfalseAlarm =

∫
x

∫
y

∫
vpl

κ(z) d vt,pl dxd y (5.70)

Since target detections and hence false alarms are possible only in a region of the target state

space, it is clear that the integral can in fact be limited to this region.

As the detections are made in the range/Doppler domain, it is easier to define the intensity

in the original radar measurement space. It can then be converted to the track measurement

space. In the original radar measurement space, all false alarms lie between rmin and rmax, the

minimum and maximum range for which the data is recorded, the directional cosine values lie

between umin,k and umax,k and the radial velocity estimate is in between vrad,min,k and vrad,max,k.

Within these bounds, the false alarm intensity is set to a constant since the detector employs

a constant false alarm (CFAR) test. Thus, the false alarm intensity in the radar measurement

space is given by

κurv(zurv) =


NfalseAlarm

∆r∆u∆vrad
, if rmin < r < rmax

and umin,k < u < umax,k

and vrad,min,k < vrad < vrad,max,k

0 , otherwise

(5.71)

where

∆r = rmax − rmin

∆u = vrad,max,k − vrad,min,k (5.72)

∆vrad = vrad,max,k − vrad,min,k . (5.73)

The integral over the intensity with respect to the radar measurement space also yields the

total expected number of false alarms.

NfalseAlarm =

∫
u

∫
r

∫
vrad

κurv(zurv) d vrad d r du . (5.74)

The track measurement can be converted to the radar measurement with (see Section A.5.11)

furv←M (z,xEant,v
E
ant,γ

A←E
yp

)
. (5.75)

With this conversion and the identities (5.70) and (5.74), the rule of substitution provides the

expression

κ (z) = κurv(furv←M (z, ...))

∣∣∣∣∣det

(
∂furv←M

∂z
(z, ...)

)∣∣∣∣∣ (5.76)
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for the conversion from the false alarm intensity with respect to the radar measurement to the

false alarm intensity with respect to the track measurement. An expression for the Jacobian
∂furv←M

∂z (z, ...) of furv←M (z,xEant,v
E
ant,γ

A←E
yp

)
is given in Section A.6.7 by

furv←M
J

(
z,xEant,v

E
ant,γ

A←E
yp

)
. (5.77)

5.4. Use of a digital elevation model
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Figure 5.6.: Mapping between 2D and 3D coordinate systems

In the preceding sections, the tracking algorithm was designed for scenarios in which the

earth’s surface could be approximated by a plane. Now, the tracking algorithm is extended

to incorporate a digital elevation model. This requires a modification of the mapping between

the two dimensional tracking coordinate system P2 and the three dimensional ENU coordinate

system E . The modified mapping is visualized in Figure 5.6: For the conversion of a location

from E to P2, the three dimensional target position is projected onto the x-y plane of the ENU

coordinate system. For the inverse mapping, the z coordinate is found by interpolating with the

DEM. Likewise, for the conversion of the velocity vector from 3D to 2D the target velocity is

projected on the x-y plane of the ENU coordinate system. For the conversion of the velocity

vector from 2D to 3D, the tangent plane of the DEM at the location of the target is used.
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5.4.1. Conversion from an ENU state to a track state

Since the conversion from ENU coordinates to the tracking coordinate system is a simple projection,

the mapping functions are given by the matrix multiplications

f2←3
p,dem(xE ,vE) = T2←3xE (5.78)

and

f2←3
v,dem(xE ,vE) = T2←3vE . (5.79)

5.4.2. Conversion from a track state to an ENU state

The track state location is converted to an ENU location by

f3←2
p,dem

(
xP2

p ,θdem

)
=

[
xP2

fbilin

(
xP2,θdem

) ] , (5.80)

where fbilin is a function that performs a bilinar interpolation (see Appendix A.7.3). The velocity

conversion is given by

f3←2
v,dem(xS ,θdem) =

∂f3←2
dem

∂xE12
(xP2,θdem)vP2 . (5.81)

Here, the computation of the Jacobian
∂f3←2

p,dem

∂xE12
(xP2,θdem)vP2 is given in Appendix A.9.1 Both

conversions combined yield the function

f3←2
s (xS ,θdem) =

[
f3←2

p,dem(xP2,θdem)

f3←2
v,dem(xS ,θdem)

]
. (5.82)

5.4.3. Error propagation

The computation of the error covariance matrix of the ENU location and velocity state according

to equation (5.27) requires the Jacobian of f3←2
s with respect to θs. This variable comprises the

full track state and error terms of the digital elevation model. Without the introduction of errors

due to the DEM, the resulting covariance matrix is singular. Since the elevation coordinate is

found with a bilinear interpolation, only the errors of the four edges of the quadrant where the

interpolation occurs are relevant. The computation of the Jacobian is given in Appendix A.9.

The error covariance matrix of θs is of the form

R
(j)
s,k =

[
P

(j)
k 04×4

04×4 Rdem

]
, (5.83)

where Rdem is the error covariance matrix of the four elevation values.
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In this chapter, the functionality of the reference implementation of the ground moving target

tracking algorithm is tested with simulated data sets. The input to the tracking algorithm shall

be similar to the input that it receives from real data sets. In order to generate this input, a

simulator has been implemented.

6.1. Simulation of ground moving target detections by an

airborne radar

As input, the simulator requires the motion model of the antenna, the steering of the antenna

over time and radar parameters. It can simulate detections that originate from an arbitrary

number of targets with arbitrary paths and RCS values. Additionally, false alarms are generated

according to a user defined false alarm rate. It also corrupts the true motion parameters of the

antenna with noise in order to simulate estimates of the antenna position, antenna velocity and

attitude. The steps that are necessary for the data simulation are listed in Table 6.1.

Setup of simulations with linear antenna motion For a scenario with linear antenna motion,

the position and velocity vector of the antenna is defined by its Cartesian position xEant,sc,0 at

time 0 and the velocity vector vEant,sc,0. The antenna attitude is determined by the Euler angles

γA←Eypr,sc,0 =

 γA←Eyaw,sc,0

γA←Epitch,sc,0

γA←Eroll,sc,0

. With these parameters the antenna location versus time is given by

xEant,k = xEant,sc,0 + vEant,sc,0tk , (6.1)

where

tk = t0 + k ∆t (6.2)

is the vector that gives the recording time for CPI k. The antenna velocity is

vEant,k = vEant,sc,0 (6.3)
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Table 6.1.: Steps for data simulation

1. Determine the antenna position, velocity and attitude

2. Determine the target position, velocity and RCS

3. Determine direction vector pointing from the antenna to the target both in the ENU coordinate
system and in the antenna coordinate system, compute the range to the target, angle with which
the target signal impinges on the antenna and target Doppler frequency

4. Use the radar equation to determine the expected rx power (Swerling I),

5. Determine clutter covariance matrix at target range Doppler by employing the clutter model

6. Draw a sample from the clutter and noise covariance matrix

7. Generate the DOA vector for the target

8. Draw the target amplitude from a complex normal distribution with the expected target power
that has been determined before

9. Generate Nchannel × 1 target signal vector

10. Compute the test variable for the AMF

11. Compare the test variable with detection threshold

12. If the target is detected:

• Perform the DOA estimation

• Generate range and radial velocity estimates. They are generated by adding Gaussian noise
to the true values.

• Estimate the target signal amplitude

13. Determine the number of false alarm as realization of a Poisson distributed random variable. The
expected number of false alarms is determined with the false alarm rate.

14. Determine range, vrad and directional cosine of the false alarms according to the uniform distribution.

15. Determine the clutter and noise covariance matrix at the location of the false alarm.

16. Draw samples of the clutter and noise random variable and compute the test variable until the
detection threshold is exceeded.

17. Determine the same estimates for this sample as for simulated target detections
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and the attitude of the antenna is

γA←Eypr,k = γA←Eypr,sc,0 (6.4)

For the output, the true platform location, velocity and attitude are corrupted with noise in order

to simulate the measurement errors by the inertial measurement unit (IMU) of the platform.

x̂Eant = xEant,k + nx,k

v̂Eant,k = vEant,k + nv,k

γ̂A←Eypr,k = γA←Eypr,k + nγ,k

(6.5)

where the noise terms obey normal distributions with covariance matrices REx,ant, REv,ant and Rγ

respectively.

Choice of the antenna attitude Euler angles For the simulation, it is adequate to determine

these angles by first defining the attitude of the carrier platform and the attitude of the antenna

with respect to the platform.

The position and attitude of the carrier platform is equivalent to the position and attitude

of the body fixed (BF) coordinate system [21, Sec. 4.2.6]. For an airplane, the origin of the

BF coordinate system is located the center of gravity of the platform, its x-axis points into the

direction of the noise of the plane, its y-axis is parallel to the right wing and its z-axis points to

the bottom of the plane (see [21, Fig. 4.8]). In general, the attitude of an airplane cannot be

determined based on its velocity vector. However, as a first approximation for a non maneuvering

airplane it is reasonable to assume that the normalized velocity vector coincides with the x-axis

of the BF coordinate system. Furthermore, one may assume as approximation that the wing is

parallel to the ground.

While this approximation is not aerodynamically exact, it enables to configure the platform

attitude based solely on the velocity vector and ground plane. In this configuration, the basis

vectors of the BF coordinate system in the ENU system are found with

eEbf,sc,0,1 =
vEant,sc,0

‖vEant,sc0‖
,

eEbf,sc,0,2 = eEbf0,1 × nEplane ,

eEbf,sc,0,3 = eEbf0,1 × eEbf,sc,0,2

and

TE←bf
sc,0 =

[
eEbf,sc,0,1 e

E
bf,sc,0,3 e

E
bf0,3

]
. (6.6)
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is the rotation matrix. The orientation of the antenna with respect to the platforms BF coordinate

system is defined by

γA←bf
yaw = Φant,yaw (6.7)

γA←bf
pitch = Φant,pitch (6.8)

γA←bf
roll = −π

2
+ Φant,dep (6.9)

γA←bf
ypr =

 γA←bf
yaw

γA←bf
pitch

γA←bf
roll

 (6.10)

TA←bf
sc,0 = TEuler

(
γA←bf

ypr

)
, (6.11)

where Φant,dep is the depression angle of the antenna. A typical value for this parameter is

15◦/180◦π rad. If the antenna is mounted along the principal axis of the carrier platform, then

Φant,yaw and Φant,pitch are both zero. For a forward looking antenna, ΦantYaw = −π2 . Both

definitions can be combined to the yield the attitude of the antenna

TA←Esc,0 = TA←bf
sc,0

[
TE←bf

sc,0

]−1
(6.12)

as a rotation matrix and in Euler angles

γA←Eypr,sc,0 = fγ←TEuler

(
TA←Esc,0

)
. (6.13)

6.2. Tracking results with simulated scenarios

This Section presents tracking results with three simulated scenarios. All scenarios share a

common, linear flight path that is simulated as described in Section 6.2. Table 6.2 gives the

parameters for the simulation of the antenna flight path and Table 6.3 presents parameters of the

simulated radar system and of the radar signal processing. The scenarios differ in the path of the

single, simulated ground truth vehicle.

In all three scenarios, the antenna is electronically steered exactly towards the location of the

target, mimicking a radar mode in which the target has been acquired and periodically revisited.

This type of steering is made possible in the simulation by using the true ground target location

for defining the steering direction.

The recording geometries of the scenarios are shown in Figures 6.1, 6.2 and 6.3. Figures 6.4,

6.5 and 6.6 present various aspects of each scenario:

(a) the geolocated detections and the ground truth

(b) the extracted track or tracks

(c) the true target SNR and SCNR
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6.2. Tracking results with simulated scenarios

Table 6.2.: Antenna attitude and motion parameters

Parameter name Value Unit

position at recording start (x) 7000 m
position at recording start (y) 0 m
position at recording start (z) 2000 m
velocity (x) -80 m/s
velocity (y) 0 m/s
velocity (z) 0 m/s
depression angle 12 deg
yaw angle 0 deg
pitch angle 0 deg
postion error std. deviation (x) 0.08 m
postion error std. deviation (y) 0.08 m
postion error std. deviation (z) 0.08 m
velocity error std. deviation (x) 0.1 m/s
velocity error std. deviation (y) 0.1 m/s
velocity error std. deviation (z) 0.1 m/s
depression angle error std. deviation 0.1 rad
yaw angle error std. deviation 0.1 rad
roll angle error std. deviation 0.1 rad

(d) the true target component of the radial velocity and the target component of the radial

velocity that is derived from the extracted track or tracks

(e) the true probability of detection and the probability of detection that the tracking algorithm

reconstructs for the tracked target. Timesteps at which the target is not detected are

highlighted with a red marker.

(f) the track weight

The true target SCNR and SNR is computed based on parameters that are only available in

the simulations. It is not made accessible to the tracking algorithm. Likewise, the true target

component of the radial velocity and the detection probability are computed with data that is

only available in a simulation. Additionally, Subfigure (d) plots the target component of the

radial velocity that is reconstructed from the tracking result. This is the radial velocity that the

tracking algorithm “believes” the target to have. Likewise, Subfigure (e) also plots the probability

of detection that the tracking algorithm attributes to the tracked target.

6.2.1. Scenario 1

In scenario 1 the target moves along a curved path. In this Scenario, the tracking algorithm

succeeds almost perfectly in tracking the target. At 60 s into the simulation the radial velocity

of the target is close to 0 due to the observation geometry. This leads to a decreased expected
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6. Tracking results with simulated data

Table 6.3.: Radar, recording and processing parameters

Parameter name Value Unit

nb. of pulses per CPI 128 unitless
pulse repetition frequency 4000 Hz
wavelength of center frequency 0.03 m
revisit interval 1 s
nb. of transmit elements 48 unitless
nb. of receive elements per subarray 16 unitless
subarray 1 location (x-coordinate) 0.25 m
subarray 2 location (x-coordinate) 0 m
subarray 3 location (x-coordinate) -0.25 m
antenna width 0.15 m
range resolution 7.5238 m
desired false alarm rate for the detection test 10−6 unitless
minimum range 6 km
maximum range 10 km

Figure 6.1.: Flight path and path of the ground vehicle for scenario 1. The footprint and
attitude of the antenna and the location of the ground target is shown for a specific
timestep.
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6.2. Tracking results with simulated scenarios

SCNR of the target. As a result, the probability of detection around time step 60 drops sharply.

The tracking algorithm models this drop relatively well and thus the track does not break.

Overall the tracking algorithm captures the probability of detection well. However, between

seconds 150 and 160 of the simulation the tracking algorithm underestimates the probability of

detection. This seems to be due to the fact that the algorithm also computes a radial velocity

which is slightly inferior to the true value. As the true value of the radial velocity is close to

velocities at which the detection probability drops sharply, even a small deviation in radial velocity

signifies a large deviation in detection probability.

6.2.2. Scenario 2

Figure 6.2.: Flight path and path of the ground vehicle for scenario 2. The footprint and
attitude of the antenna and the location of the ground target is shown for a specific
timestep.

In scenario 2 the target path is parallel to the path of the antenna. During the simulation the

target component of the target’s radial velocity increases starting from −10 m/s. At 90 s into the

experiment the target component of the radial velocity is approximatively 0 m/s. Thus, around
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6. Tracking results with simulated data

this time the SCNR decreases and detections are missed. Due to the fact that the target does

not change course or its velocity while it cannot be observed, the track covers the true radial

velocity and probability of detection perfectly. Thus, the track is successfully maintained despite

the period without observation.

6.2.3. Scenario 3

Figure 6.3.: Flight path and path of the ground vehicle for scenario 3. The footprint and
attitude of the antenna and the location of the ground target is shown for a specific
timestep.

In scenario 3 the target moves on a straight line which is perpendicular to the flight path.

Between seconds 60 and 80 of the simulation the target comes to a complete stop before continuing

into the same direction. The stop manifests itself in the drop of the radial velocity to zero in

Subfigure 6.6d. As the deceleration and acceleration occurs rapidly, this stop is not visible as an

area without detections in Figure 6.6a. Due to the stop of the target it is not detectable between

seconds 60 and 80 of the experiment.

At the beginning of the simulation a target track is established. This tracks breaks at the stop
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Figure 6.4.: Aspects of scenario 1
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(e) Target detection probability vs. time
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Figure 6.5.: Aspects of scenario 2
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(e) Target detection probability vs. time
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Figure 6.6.: Aspects of scenario 3

103



6. Tracking results with simulated data

of the target. After the target resumes its course the target is picked up with a new track. The

combination of Figures 6.6d and 6.6e explains why this track breakage occurs: The deceleration

of the target is at first correctly captured by the tracking algorithm down to a radial velocity

of 2.5 m/s. Up to this point the target is detectable. As the target decelerates further, it is no

longer detected. Hence, the tracking algorithm cannot update the track state to a lower target

velocity. As a result, it still assumes a high detection probability. In the absence of detections,

the target track breaks.

6.3. Example of the direct visualization of GM-PHD filter

results
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Figure 6.7.: A visualization of the GM-PHD filter result of Scenario 3 based on fingerprints
prior to track extraction. The subfigures (a), (b) and (c) have been generated with
three different matrices Acolor.

In Section 5.2.7 a method for visualizing the output of the GM-PHD filter prior to track

extraction was presented. At that point, no example could be given since the simulation had not

been presented. Figure 6.7 shows three different visualization of Scenario 3 with that method.

The difference between the subfigures lies in the matrix Acolor which is used for converting the
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6.4. Summary

fingerprint value to a RGB color. For each subfigure, this matrix was randomly generated. In

subfigures 6.7a and 6.7c the track breakage that occurs within this scenario is well visible at

y ≈ 9000 m. However for the choice of Acolor in subfigure 6.7b the track before and after the

breakage receive the same coloring.

This example shows that the coloring depends strongly on the matrix Acolor that is used. This

cannot be avoided, since a high dimensional fingerprint is converted to a single color value. In

particular, the fact that two GM-PHD components receive the same color, does not signify that

the fingerprints are almost identical. However, for analysis of the GM-PHD result this method is

still highly useful, since the display is not affected by the track extraction step. To counter the

problem that dissimilar components might receive the same coloring, it is useful to display the

same result with different realizations of the coloring matrix.

6.4. Summary

From the simulations, one can conclude that the tracking algorithm is functional in the presented

scenarios. Track breakage does however occur, if the the target changes its velocity while it cannot

be observed, as in scenario 3. If the target continues to move on an approximatively straight line

during a loss of observation as in scenario 1, the tracking algorithm can recover the track once

the target becomes again visible.
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7. Experimental results

Despite the large amount of publications on ground moving target tracking with airborne radar –

to the knowledge of this author – there exists no openly available publication with experimental

tracking results. However, in this field experimental results are severely needed. Published

extension to standard algorithms are only verified with simulations. However, only the application

to experimental data sets will reveal the problems that are encountered in target tracking.

7.1. Acquisition of the dataset

Thus, we designed an experiment in order to acquire airborne radar data especially for verifying

ground moving target tracking algorithms. To this end, the experimental radar PAMIR of

Fraunhofer FHR was employed [9]. PAMIR is a multichannel phased array radar. The fact

that it has multiple channels is crucial for ground moving target tracking as this enables the

detection of slowly moving ground targets. Furthermore, multiple channels enable the estimation

of the direction of arrival of signals that are backscattered by the targets. Another important

capability that was used in this experiment is the Scan-MTI mode of PAMIR. In this mode, the

antenna beam periodically sweeps a range of angles that is determined during the design of the

experiment. At each angle, two distinct carrier frequencies were used for recording data of two

coherent processing intervals.

As carrier platform for the experimental radar, a Transall airplane was used. The radar system

was mounted in the rear door of the Transall – the door that is also used by parachutist. The fact

that the system was mounted in the door limited the maximum flight altitude to about 3000 m

above sea level. The larger the distance to the radar, the longer is the radar “shadow” that is

cast by an object. Thus, at large ranges, buildings and vegetation easily obscure moving objects.

Thus, at the design phase of the experiment, it was deemed that targets at ranges between 6 km

and 10 km range to the radar should be observed. Also, a larger swath would have resulted in a

data rate beyond the recording capabilities of the PAMIR system.

While flying on a straight line, an area to the side of the platform can be observed. This area

moves with the same velocity as the platform. For scanning a angles between ±30◦ degree, the

longest extension of this area in flight direction is about 10 km. For a platform velocity of 100 m/s,

a target at this range can thus be observed for about 100 s. At shorter ranges, the observation

time is smaller.

PAMIR is also equipped with a camera that points broadside. Photos were taken at intervals
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7. Experimental results

(a) PAMIR mounted in the carrier platform
Transall

(b) Area of interest. Source: Openstreetmap

(c) VW Transporter (d) VW Golf

(e) View 1 (f) View 2

Figure 7.1.: Acquisiton of experimental data: Carrier platform, area of interest, reference
vechicles and aerial views
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7.1. Acquisition of the dataset

Table 7.1.: Recording parameters of the experimental data acquisition

Parameter name Value Unit

Pulse repetition frequency 6002.4 Hz
Sample frequency 25 MHz
Carrier frequency (local 1) 8.73 GHz
Carrier frequency (local 2) 10.17 GHz
Scan angles 75 to 105 deg
Looks per scan 28 unitless
Pulses per CPI 128 unitless
Scan duration 1.19 s
Number of subarrays 3 unitless
Phase center spacing 26.56 cm
Antenna length 79.68 cm
Antenna width 15 cm
Height over ground 2600 m
Minimum recorded range 6145 m
Maximum recorded range 9869 m

of 9 s. During the experiment, a ground truth scenario was created with two GPS equipped

reference vehicles and a bicycle. Staff of Fraunhofer FHR and Fraunhofer FKIE assisted in the

ground truth scenario, for communication with the carrier platform, as drivers or assistants to

the drivers. The vehicles operated in a previously defined area of interest. In order to obtain a

long, continuous observation of these vehicles, a circular flight path around the ground truth area

was chose. The radius of the circle was approximately 7 km. Due to wind drift and since a the

autopilot does not allow for an automatic configuration of circular flight paths, the true platform

track deviated from the circular path. As a result, the area of interest was outside of the scanned

interval during two periods during the recording.

Figure 7.1 shows various aspects of the data acquisition – the PAMIR system mounted in

the Transall (Figure 7.1a), a map of the area of interest (Figures 7.1b), photos of the reference

vehicles (Figure 7.1c and 7.1d) and two aerial photographs that were taken during the recording.

Table 7.1 lists recording parameters.

Table 7.2.: Radar processing parameters

Parameter name Value

FFT window Taylor window, -50 dB
Number of training samples 120
Number of guard gates 30
Number of adjacent Doppler bins 2
Detection threshold 14 dB
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7. Experimental results

(a) Range-Doppler map of the receive data (b) Range-Doppler map after compensation for
the J-hook

(c) Range-Doppler map of the test variable (d) Geolocated detections and 3dB antenna
footprint

Figure 7.2.: Range-Doppler maps and geolocated detections
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7.1. Acquisition of the dataset

(a) All detections

(b) Detections exceeding minimum distance to the clutter ridge

Figure 7.4.: Geolocated detections of the entire recording. The color of the detection plots
indicates the estimate of the radial velocity. Source of the road map data: Open-
streetmap
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(a) All detections

(b) Detections exceeding minimum distance to the clutter ridge

Figure 7.5.: Detections of the recording up to time step 6000. In Figure 7.5a all detections are
plotted whereas detections with a distance of less than 1.5 m/s to the clutter ridge
are not displayed in Figure 7.5b. The color of the detection plots indicates the
estimate of the radial velocity. Source of the road map data: Openstreetmap
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7.2. Target detections

7.2. Target detections

The duration of the recording was 494 seconds. During this time data for a total of 23200 CPIs

was recorded, i.e 11600 for each center frequency. About 414 entire scans, each comprising 28

different look directions and 56 CPIs were completed. The total data set size is about 17 GByte.

The received data was processed as outlined in Chapter 3. Figure 7.2 visualizes the different

processing steps with data of look 4603 and local 1. This CPI was chosen for the example because

two ground reference vehicles were detected in this CPI. In principle the processing and the results

are similar to other CPIs of the recording. In Subfigure 7.2a the range-Doppler representation of

this CPI is shown. In the center of this Figure the clutter band is visible, i.e. signal energy that

is due to backscattering by the stationary ground. Circles indicate where energy due to the GPS

equipped ground vehicles is possible. The positions of these circles has been computed based

on the GPS data. As the bicycle (target 3) was not in the antenna beam, no signal for target 3

is expected. Subfigure 7.2b shows the range-Doppler representation after shifting the clutter

centroid to 0 Hz. The expected locations of the targets have been adjusted accordingly. This is

the data that was used for learning the clutter and noise covariance matrix. Subfigure 7.2c shows

the test variable normalized by the detection threshold. Detections are marked by crosses. Indeed

at the range-Doppler location of the reference vehicles two detections occur. The geolocated

detections are plotted in Subfigure 7.2d. Here, the location of the reference vehicles is marked

as well. It is visible that the detections are correctly located at the position of the vehicles.

Additionally, in this Figure, the 3 dB antenna footprint is shown.

For a detection threshold of 19 dB a total of 157007 detections occured, i.e. on average 6.7

detections per CPI. After the removal from detections whose DOA estimates did not placed them

in the main lobe area, 151147 detections remained.

Due to the fact that the PAMIR pattern was not tapered, the side lobes are relatively high

in relation to the main lobe. Thus, large stationary scatterers (clutter discretes) with signals

impinging from the side lobes are wrongly positioned in the main beam area. At the expense

of also removing detections of moving targets, these detections can be discarded. The removal

is performed by only retaining detections with a minimum distance to the clutter ridge. After

discarding detections with a distance of less than 1.5 m/s, 107719 detections remained.

Figure 7.4 shows geolocated detections for the entire recording. Subfigure 7.4a all detections

are shown, whereas only detections with a minimum distance of 1.5 m/s to the clutter ridge are

plotted in Subfigure 7.4b. Figure 7.5 shows a zoom on a part of the observed area and detections

only up to the time step 6000. In Subfigure 7.5a all detections are displayed, whereas in Subfigure

7.5b detections that are likely due to clutter discretes have been discarded. It is apparent, that

especially in the center of the area, a lot of detections have been removed. These detections are

due to strong returns by buildings that are misplaced due to the DOA estimation ambiguity.

Figure 7.3 plots the number of detections versus the detection threshold and the distance of

the detections to the clutter ridge. Subfigure 7.3a shows that the number of detections decreases

rapidly if the detection threshold is raised above 19 dB. For almost none of the detections does the

113



7. Experimental results

test variable exceed a value of 35 dB. In the histogram of Subfigure 7.3b there is a peak at a zero

distance to the clutter ridge. This peak is likely due to clutter discretes that are falsely detected.

The width of this peak was instrumental in selecting the threshold for removing detections that

are likely due to clutter.

7.3. Tracking results

Table 7.3.: Parameterization of the tracking algorithm

Parameter name Value

Detection threshold 18.7955
Target survival probability 0.951/28

Acceleration standard deviation 3 m/s2

Merging threshold 100
Truncation threshold 10−4

Gating threshold 300
Association threshold 10−4

Birth particle weight 100
Birth particle location std. deviation 8000 m
Birth particle velocity std. deviation 120 m/s
Antenna location error std. deviation (all coordinates) 0.08 m
Antenna velocity error std. deviation (all coordinates) 0.1 m/s
Antenna attitude error std. deviation (all angles) 0°
DOA estimation error std. deviation 0.0022
Range estimation errror std. deviation 10 m
Radial velocity estimation error std. deviation 2.5 m/s

Figures 7.6 and 7.7 show tracking results for part of the observed area at time step 3000 and

time step 6000 of the dataset. These time steps correspond to second 64 and 128, respectively,

of the data set. For each of these time steps two plots of tracks are shown: In the first plot,

tracks with a minimum length of 2 seconds are displayed, in the second plot tracks must have a

minimum length of 10 seconds for display.

The plots requiring only a length of 2 seconds for display show a lot of false tracks. These

false tracks are mainly due to clutter discrete detections, in particular clutter discretes that lie in

the antenna side lobes. For example, in Subfigure 7.6a clusters of this kind of false tracks can

be found around the location (0,-700) and (-500,-1500). In the Figures that require a minimum

track length of 10 seconds for track display, only a few of these false tracks remain, for example

at (0,-700) in Subfigure 7.6b and at (100,-800) in Subfigure 7.7b.

The remainder of the tracks is largely located on roads, indicating that these are not false

tracks but indeed correctly tracked targets. An interesting question is, how many vehicles are

missed, i.e. for how many vehicles no tracks have been generated. However, as no ground truth

apart from the ground truth vehicles is avaialbe, this question cannot be answered here.
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(a) Track length exceeding 2 seconds

(b) Track length exceeding 10 seconds

Figure 7.6.: Tracking results for time steps 1 to 3000. The color for the display of each track is
chosen arbitrarily. Source of the road map data: Openstreetmap
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(a) Track length exceeding 2 seconds

(b) Track length exceeding 10 seconds

Figure 7.7.: Tracking results up to time step 6000. The color for the display of each track is
chosen arbitrarily. Source of the road map data: Openstreetmap
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Figure 7.8.: Display of an area where a great number of track breakages occur. The minimum
track length for display is 10 s. The color for the display of each track is chosen
arbitrarily. Source of the road map data: Openstreetmap

Figure 7.9.: Tracking results for the village of Oedingen. Two observations can be made here.
Within the village, a lot of track breakage occurs, possibly due to obscuration.
Furthermore, there are track breakages at the road curve at location (-500 m,
-3200 m). The minimum track length for display is 5 s. The color for the display of
each track is chosen arbitrarily. Source of the road map data: Openstreetmap
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Figures 7.6 and 7.7 also indicate the paths of the GPS equipped vehicles (thick, gray lines) and

the bicycle. In Subfigure 7.7b is is well visible that both ground truth vehicles are tracked. The

bicycle is also tracked for a part of its path.

Figures 7.8 and 7.9 show situations in which the tracking results are not satisfactory. In

Figure 7.8 a high number of track breakages occur. This is probably due to dense forests along

both sides of the road at around (-350,-200). Thus, at this location no detections occur and the

tracking algorithm cannot continue the track. As the tracked targets are road targets, the use

of road map information might potentially alleviate this problem. The same Figure also shows

false tracks at about (200 m, 50 m) and at (100 m,-100 m) that are due to detections of clutter

discretes. Figure 7.9 shows tracking results for the area of the village of Oedingen. Probably

due to obscuration of targets in the village, tracks of vehicles that enter the village are lost.

Furthermore, at about (-500 m,-3200 m) several tracks are lost at the turn of the road. Again, road

information might alleviate the problem of keeping track of vehicles on the curving road. However,

no easy solution for tracking vehicles in the village with numerous obscuration is evident.

This section has presented the acquisition of an experimental radar data set that is well suited

for ground moving target tracking. The functionality of this thesis’ tracking algorithm has been

shown with this data set. Two examples of non satisfactory tracking results have been given,

providing incentives for further research.
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measurement error covariance matrix

As tracks are constructed based on parameter estimates, an accurate modeling of estimation

errors is of great importance. It is known that the estimation accuracy of detection parameters

is related to the SCNR of the received signal, i.e. it is signal dependent [72, Sec. 18.10]. In

ground moving target tracking, the clutter power depends strongly on the location of the target

in the range Doppler map. Furthermore, the power of the received signal depends on the radar

cross section of the target which varies considerably between targets and as a function of the

illumination angle. These two effects – the RCS variability and the clutter power variability –

lead to a wide range of possible SCNR values for target detections. Hence it is to be expected

that there is also a very wide range of target dependent measurement accuracies.

Some papers by Koch, Klemm and Nickel model the accuracy of the Doppler and DOA

measurements for ground moving target tracking. In [37, Sec. 6.1] the accuracy is a function of

the position of the detected target relative to the main beam. The highest accuracy is assumed in

the center of the main beam where the expected signal power of the target is highest. In [35] and

[38] the accuracy of the DOA and Doppler estimates is modeled more precisely. The modeling

is based on an approach which is presented in [54] and which has been later refined in [55]. In

this technique, the DOA and Doppler estimates are obtained by adaptive monopulse. The error

covariance matrix of these measurements are then used as input for the tracking algorithm. The

detection threshold is considered in the determination of the covariance matrix. Furthermore,

the measurement error covariance matrix is computed based on the estimated clutter and noise

covariance matrix. It is shown via Monte Carlo simulations that the use of the adaptive monopulse

error covariance matrix improves the root mean square error of the tracking result. Furthermore,

the tracking algorithm’s estimates of the track state error covariance matrix are greatly improved.

For an airborne target tracking application another approach to modeling the estimation accuracy

is presented in [79]. Here, the variance of the direction of arrival estimate is inversely scaled by

the signal power or instantaneous SNR. However, no results in how far this modeling improves

the tracking performance are given.

The approach of [35] and [38] requires complicated, numerical evaluations of the covariance

matrix of the monopulse estimator. Furthermore, these works do not validate with experimental

data sets whether the modeling of the estimation error is appropriate and no experimental tracking

results are given.
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Here, a much simpler approach for modeling the DOA estimation error is presented. Experi-

mental radar data in combination with target ground truth information is used to validate the

DOA error modeling. Finally, experimental tracking results will be presented.

The proposed approach involves estimating the signal amplitude, the signal DOA and the

clutter and noise covariance matrix during the radar signal processing. These estimates are then

inserted into an expression of the Cramer-Rao bound of the DOA estimate. This expression of the

Cramer-Rao bound is normally only valid for known target parameters. By inserting estimates

instead, a signal adaptive estimate of the measurement error variance is found.

This chapter is organized as follows: First, a model for the DOA estimation error is presented.

Second, this model is validated with an experimental data set. Third, the inclusion of the

DOA measurement error model in the tracking algorithm of Chapter 5 is discussed. Monte

Carlo simulation results for the tracking performance gains are given. Fourth, tracking results

with experimental data results are presented for the algorithm that incorporates the proposed

measurement error model and for various cases of tracking with standard error modeling.

8.1. Proposed model for the direction of arrival measurement

error

As stated in Section 3.2.3, the information for estimating the DOA for detection p at time step k

is the Nchan × 1 data vector ysb,k,p at the range Doppler gate of the detection and the covariance

matrix estimate R̂q,sb,k,p that is associated with the detection. The data vector is modeled as

ysb,k,p = αt,k,pe
jφt,k,pd (ut,k,p) + qsb,k,p , (8.1)

where αt,k,p is the real target amplitude, φt,k,p is the target phase, ut,k,p is the directional cosine

of the target and qsb,k,p is the clutter and noise signal at the target’s range Doppler gate. The

clutter and noise covariance matrix is Rq,sb,k,p. According to Section 3.2.3, the DOA estimate is

given by

ûk,p = arg max
u


∣∣∣∣d(u)H

[
R̂q,sb,k,p

]−1

ysb,k,p

∣∣∣∣2
d(u)H

[
R̂q,sb,k,p

]−1

d(u)

 . (8.2)

It is well known that the Cramer-Rao bound (CRB) gives the best possible performance for

any unbiased estimator. Thus, investigating the CRB is the first step towards analyzing the

estimation accuracy. The CRB of the target parameters is given by the inverse of the Fisher

information matrix. For interferences that obey a Gaussian distribution an analytical expression

of the Fisher information matrix and its inverse can be found. In particular, the CRB for the

estimate of the directional cosine is a function of the true target directional cosine u, the target
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signal amplitude α and the interference covariance matrix Rq, i.e. [19, Sec. VII.B]

σ2
u,crb(u, α,Rq) =

1

2 |α|2
pcrb(u,Rq)

qcrb(u,Rq)
(8.3)

with

pcrb(u,Rq) = d(u)
H

R−1
q d(u) ,

qcrb(u,Rq) = d(u)
H

R−1
q d(u)du(u)HR−1

q du(u)

−
∣∣du(u)HR−1

q d(u)
∣∣2 , (8.4)

where du(u) is the derivative of the DOA vector with respect to u. Clearly, equations (8.3)

and (8.4) show that the CRB is inversely proportional to the target power, i.e. the square of

the amplitude. Thus, the CRB indicates that having estimates of α and the clutter and noise

covariance matrix will help to identify those detections where the estimation accuracy may be

particularly good and those where the estimation accuracy is low.

For this reason, the expression for the CRB shall serve for estimating the variance of the DOA

estimate: First, for each detection the signal amplitude is estimated as

α̂k,p =

∣∣∣∣d(ûk,p)
H
[
R̂q,sb,k,p

]−1

ysb,k,p

∣∣∣∣
d(ûk,p)H

[
R̂q,sb,k,p

]−1

d(ûk,p)
. (8.5)

Second, the estimate for the variance of directional cosine estimate is

σ̂2
u,k,p = σ2

u,crb

(
ûk,p, α̂k,p, R̂q,sb,k,p

)
. (8.6)

This is the proposed model for the DOA estimation error. This model is justified by the fact

that for sufficiently high SNR values the maximum likelihood variance approaches the CRB. A

significant contribution of this work, is to validate the proposed measurement accuracy model

with experimental data.

8.2. Experimental validation of the direction of arrival

measurment error model

To this end, the ground truth data shall be used to identify detections that are caused by the

ground reference vehicles. An association of a detection to a specific ground reference vehicle

shall be made, if the vehicle has been illuminated by the radar at the time step of the detection

and if the range and Doppler measurements of the detection agree closely with the range and

Doppler value that are obtained with the GPS information. If multiple detections fulfill these
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8. Tracking with signal adaptive measurement error covariance matrix

(a) Time steps 1 to 6000

(b) Time steps 6001 to 11600

Figure 8.1.: Association of detections with ground truth targets (data of local 1). Detection
plots that have been associated with the Volkswagen Transporter are colored
blue whereas detection plots that have been associated with the Volkswagen Golf
passenger car are colored green. Detection plots that are most likely due to false
alarms or targets of opportunity are colored red.
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(a) Time steps 1 to 6000

(b) Time steps 6001 to 11600

Figure 8.2.: Association of detections with ground truth targets (data of local 2). Detection
plots that have been associated with the Volkswagen Transporter are colored
blue whereas detection plots that have been associated with the Volkswagen Golf
passenger car are colored green. Detection plots that are most likely due to false
alarms or targets of opportunity are colored red.
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criteria, the ’closest’ detection shall be associated.

For each of the associated detections, the directional cosine will also be determined by using

the position and attitude information of the platform and the GPS position information of the

ground truth vehicles. Due to the high precision of the position and attitude data, it is expected

that this measurement is in general much more precise than the radar based estimate of the

DOA cosine. Thus, the deviation between both estimates can mostly be considered as error of

the radar data based estimate of the directional cosine. A comparison of the DOA measurement

error to the estimated error variance will show whether the proposed model captures the error

distribution correctly.

8.2.1. Association between detections and ground reference vehicles

This method of associating detections, requires GPS derived estimates of the vehicle position and

velocity. The estimates for the position and velocity of ground reference vehicle ν at time step k

are denoted x̂Egps,ν(k) and v̂Egps,k,ν . The subscript “gps” indicates, that these estimates have been

obtained via the vehicle’s GPS device. Combined with the platform location and velocity at time

step k, these estimates enable to compute estimates of the target range, the direction vector in

ENU coordinates, the directional cosine and the target’s radial velcoity.

r̂gps,k,ν = ‖x̂Egps,k,ν − x̂Eant,k‖ ,

ûEgps,k,ν =
x̂Egps,k,ν − x̂Eant,k

r̂gps,k,ν
,

ûgps,k,ν =
[
uEgps,ν(k)

]T
ûEant,k ,

v̂rad,gps,k,ν =
[
ûEgps,k,ν

]T (
v̂Egps,k,ν − v̂Eant,k

)
. (8.7)

The computation of these variables is also given by the function furv←E which is given in

Section A.3.1  ûgps,k,ν

r̂gps,k,ν

v̂rad,gps,k,ν

 = furv←E
(
x̂Egps,k,ν , v̂

E
gps,k,ν ; x̂Eant,k, v̂

E
ant,k, γ̂

A←E
yp,k

)
. (8.8)

The distance between target ν and detection p at time step k is defined as

dp,k,ν =

√(
r̂gps,k,ν − r̂k,p

σassoc,r

)2

+

(
v̂rad,gps,k,ν − v̂rad,k,p

σassoc,v

)2

, (8.9)

where the range difference between the estimates is normalized by σassoc,r and the velocity

difference is normalized with σassoc,v. The index of the detection that is associated with ground
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reference vehicle ν at time step k is given by

p(k, ν) =

 argmin
p

dp,ν(k) , if tgt. ν detectable and min
p

dp,ν(k) < dmax

not defined , otherwise
. (8.10)

8.2.2. Deviation of the radar and GPS based DOA measurements

At time steps where an association can be performed, two different directional cosine estimates

are available for each target. One based on the GPS data of the ground reference vehicles and

another one based on the radar data. The radar data based DOA estimate for target ν at time

step k is

ûradar,k,ν =

{
ûk,p(k,ν) , if valid detection available

not defined , otherwise
. (8.11)

The GPS based DOA measurement is found as in equations (8.7) and (8.8). Thus, the deviation

between both measurements is

∆ûk,ν =

{
ûradar,k,ν − ûgps,k,ν , if valid detection available

not defined , otherwise
. (8.12)

8.2.3. Variance of the deviation between the DOA estimates

The proposed model of equation (8.6) for the radar based DOA estimation variance leads to the

model

σ̂2
∆u,k,ν = σ̂2

radar,k,ν + σ2
gps,k,ν . (8.13)

of the variance of the deviation between the radar and GPS based DOA measurements. Via the

variance σ2
gps,k,ν it takes into account that the GPS measurements itself are not error free. The

variance term for the radar based DOA estimate is given by the error model of equation (8.6)

σ̂2
radar,k,ν =

{
σ̂2
u,k,p(k,ν) , if valid detection available

not defined , otherwise
. (8.14)

The variance of the GPS based measurement is determined by making use of the function furv←E
J

of Section A.3.2. This function computes the Jacobian of the DOA, range and radial velocity

measurement with respect to the parameter vector

Φ =
[[
xEant

]T [
vEant

]T [
γA←Eyp

]T [
xE
]T [

vE
]T ]T

. (8.15)
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For target ν at time step k the Jacobian is given by

Jurv←E
k,ν = furv←E

J

(
x̂Egps,k,ν , v̂

E
gps,k,ν ; x̂Eant,k, v̂

E
ant,k, γ̂

A←E
yp,k

)
(8.16)

Based on this result, the Jacobian of the directional cosine with respect to the parameter vector is

Ju←E
k,ν = [0 0 1] Jurv←E

k,ν . (8.17)

With

Rgps,k,ν = diag
[
REx,ant,k,R

E
v,ant,k,Ryp,k,R

E
x,gps,k,ν ,R

E
v,gps,k,ν

]
(8.18)

for the covariance matrix of the parameter vector Φ the variance of the GPS based estimate of

the directional cosine is

σ2
gps,k,ν = Ju←E

k,ν Rgps,k,ν

[
Ju←E
k,ν

]
. (8.19)

8.2.4. Experimental results

The association of detections to ground reference vehicles was performed for the data set that

has been presented in Chapter 7. Figures 8.1 and 8.2 visualize which detections where tagged

as having originated from the ground reference vehicles. In comparison to the Chapter 7, the

detection threshold has been set to a lower value. Figures 8.3 and 8.4 show results that have been

obtained with data from local 1 and local 2 respectively. In each of these Figures the left column

presents results for ground reference vehicle 1 and the right column is for vehicle 2.

The DOA estimate is sensitive to phase offsets in the data of different receive channels. This is

due to the fact that a non adaptive DOA vector is used for the direction of arrival estimation.

In order to mitigate this problem, the phase offset between the channels was estimated from

the received radar data and corrected. Despite this calibration procedure, a small bias in the

DOA estimation remained for the experimental data set. This bias was estimated by forming

the average over ∆ûk,ν of equation (8.12) for both targets (ν = 1, 2). The average was then

substracted from the estimates ûradar,k,ν and ûk,p(k,ν). In the following, all results are given for

DOA estimates after bias removal.

Subfigures (a) and (b) of Figures 8.3 and 8.4 plot ∆ûk,ν of equation (8.12) and the estimated

standard deviation σ̂∆u,k,ν of equation (8.13) versus time. These variables can only be plotted for

time steps where a ground truth to detection association has been made. Furthermore, no data

for the observation time steps intervals [1 150] and [7191 7623+150] was used. The data of the

first 150 time steps (corresponds to 6.4 s) has been discarded since the IMU output of PAMIR is

inaccurate at the beginning of the recording. The data of the second interval has been excluded

due to a GPS outage during the interval [7191 7623]. Additional 150 time steps are allowed as

settle in time for the IMU.
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Figure 8.3.: Detection metrics for results with data of local 1
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Figure 8.4.: Detection metrics for results with data of local 2
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These Figures show that the DOA estimates deviation is indeed centered exactly at 0. Most

notably, there is no time dependent bias of the DOA deviation. Furthermore, small values of the

modeled standard deviation do indeed coincide with small deviations between the DOA estimates.

For example, in Figure 8.3a the DOA deviations are much smaller between time steps 6000 and

7000 (where the modeled standard deviation is small) than at time steps 8000 to 11000 (where

the modeled standard deviation is large).

Subfigures (c) and (d) shed further light on this point. Here, the detections are sorted by

increasing values of the modeled standard deviation σ̂2
∆u,k,ν . For both targets and data of both

locals the likely magnitudes of the DOA measurement deviations are well predicted by the modeled

standard deviation. If a small standard deviation is estimated, then the actual measurement

deviations are indeed small. If a large standard deviation is computed, then large deviations occur.

A comparison of σ̂2
∆u,k,ν with σ2

gps,k,ν reveals that the deviation between the DOA measurements

is mainly due to GPS and antenna attitude measurement errors for the best estimates. For most

other estimates, the deviation between the DOA measurements is mainly caused by the radar

data based DOA estimation. Thus, it is mostly correct to also call the deviation the radar data

based “DOA measurement error”.

In most target tracking algorithms it is assumed that the measurement errors obey a Gaussian

distribution. Thus, it is pertinent to check in how far the deviation obeys a Guassian distribution.

Subfigures (e) and (f) plot the histograms of the normalized DOA estimation deviation

∆ûnorm,k,ν =
∆ûk,ν√
σ̂2

ave,ν

(8.20)

where

σ̂2
ave,ν =

1

|Mass,ν |
∑

k∈Mass,ν

|∆ûk,ν |2 (8.21)

is the estimated standard deviation of this estimate. Here, Mass,ν is the set of time steps for

which an association has been made, i.e. for which ∆ûk,ν is defined. Subfigures (g) and (h) plot

the adaptively normalized deviation

∆ûadapt,k,ν =
∆ûk,ν√
σ̂2

∆u,k,ν

. (8.22)

For the adaptive normalization the proposed method of modeling the DOA estimation error

variance is used. A comparison of the histograms of the two differently normalized deviations of

equations (8.20) and (8.22) shows that the adaptively normalized deviations fit a Gaussian normal

density much more closely. Thus, a tracking algorithm that uses the adaptive DOA measurement

error variance will have a better error modeling.
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8. Tracking with signal adaptive measurement error covariance matrix

8.3. Tracking with measurement covariance matrix adaptation

In order to process detections into tracks, the GM-PHD filter (as other tracking algorithms)

requires the covariance matrix of the measurement errors. This covariance matrix has an important

influence on the tracking result as it determines how strongly incoming measurements update

the target state. In the standard extended Kalman filter version of the GM-PHD filter, the

measurement error is modeled by a time step dependent random variable εk with time step

dependent covariance matrix Rε,k.

In the type of tracking application that is investigated here, additional signal information is

used to construct error covariance matrices that depend on the detection. For detection with index

p this covariance matrix is denoted Rε,k,p. The goal of employing an adapted covariance matrix

is to more accurately capture the error properties in order to increase the tracking performance.

To employ the signal adapted covariance matrix in the the GM-PHD algorithm, equation (4.27)

is exchanged with

S
(j)
k,p = H

(j)
k P

(j)
k|k−1

[
H

(j)
k

]T
+ U

(j)
k Rε,k,p

[
U

(j)
k

]T
(8.23)

and the thus obtained algorithm is a MCMA GM-PHD filter. The covariance matrix is given by

Rε,k,p =

[
σ̂2
u,k,p 0T

0 Rε̃

]
, (8.24)

where σ̂2
u,k,p is the modeled variance of the DOA estimation error and Rε̃ is the covariance matrix

of all other error terms.

8.4. Simulation results

The performance of the MCMA GM-PHD algorithm has been analyzed by Monte Carlo simulations.

For comparison of the results, the standard GM-PHD algorithm has been used as well. It is

identical to the MCMA GM-PHD except that σ̂2
u,k,p in equation (8.24) is replaced by a constant

value σ2
u,std.

The measurement simulator can model arbitrary platform flight paths and arbitrary target

ground paths. The radar system is modeled in accordance with the parameters (e.g. antenna

length, antenna pattern) of the system PAMIR of FHR [9, 11]. In order to generate the detections

and measurements, the radar equation is used to determine the received clutter and signal power.

These values are used to construct the single bin post Doppler received signals for clutter and for

every target. A Rayleigh fluctuation model is assumed for the target signal strength (Swerling I).

If the received signal passes the detection test, the DOA estimate is obtained with a maximum

likelihood estimator.

A Monte Carlo simulation has been conducted for the scenario which is visualized in Figure 8.5.
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Parameter name Value

Center frequency 8.74 GHz
PRF 6000 Hz
Pulses per CPI 128
Antenna element spacing 0.2656 m
Number of channels 3
Platform velocity 100 m/s
False alarm probability 10−6

Target SNR (Doppler) 21.5 dB to 23.5 dB
CNR at target Doppler bin 1.2 dB to 9.7 dB
Average DOA error at 7000 m 10.5 m
σR 10 m
σv 0.5 m/s
σyaw 2/60 deg
σpitch, σroll 1/60 deg
σeast, σnorth 0.08 m
σup 0.1 m

Table 8.1.: Simulation parameters

In this scenario a Rayleigh-target moves with a constant velocity of 10 m/s along a curved path.

The platform moves along the x-axis (east) at y = 0 with a velocity of 100 m/s and the starting

x, y and z coordinates are -3000 m, 0 m and 2000 m, respectively. The antenna is steered to the

location of the target with a revisit time of 1 s.

The parameters of the simulation are given in Table 8.1. As the signal to noise ratio (SNR)

of the target varies during the simulation, the range of the SNR values assumed during the

simulation is given. Likewise, the clutter to noise ratio (CNR) values vary strongly as a function

of the target position and target radial velocity.

In the tracking algorithms, the same measurement variances are used as for the simulation.

Additionally, the tracking algorithm without amplitude information needs a setting for the

variance σ2
u,std of the DOA estimation. Here, the investigation was conducted for three different

values of σ2
u,std: in case 1, σu,std is set to about five times the average DOA estimation variance

σu,ave of this scenario, in the second case σu,std = σu,ave and in the third case σu,std = 1
2σu,ave . It

is important to note that in real tracking scenarios a mismatch like in case 1 or 3 is more realistic

as the average DOA estimation accuracy is unknown. On the other hand, the tracking algorithm

with amplitude information does not require a choice of σu,std as it is determined adaptively

according to equation (8.6).

Figure 8.5 shows a tracking result for one run of the Monte Carlo simulation for the standard

algorithm (case 1) and tracking with MCMA. It is apparent that tracking with MCMA follows

the curved path more closely than the standard algorithm.

Figure 8.6 plots the position state error, i.e the distance between mean of the track and the

target ground truth location. It has been established with 100 Monte Carlo runs versus time

for the different tracking setups. Overall, the state error is lowest for the tracking with MCMA.
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8. Tracking with signal adaptive measurement error covariance matrix

Figure 8.5.: Simulated ground truth path, detections of one Monte Carlo run, track with MCMA
and standard tracking for case 1. Note the different scaling of the x- and y-axes.

Figure 8.6.: State error vs. time for tracking with and without amplitude information averaged
over 100 Monte Carlo simulation runs.
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It is remarkable that – even though it has been provided with precise information about the

average DOA estimation error – the performance of the standard algorithm in case 2 is slightly

inferior to tracking with MCMA. This is likely due to the fact that the target return amplitude

fluctuates according to the Rayleigh model leading to strong variations in the DOA estimation

accuracy. Even for an almost optimal choice of σ2
u,std as in case 2, tracking without MCMA

cannot account for these variations. Furthermore Figure 8.6 suggests that choosing a variance

value which is too optimistic as in case 3 has no negative effect on the tracking performance.

However Figure 8.7 shows that this setting leads to a reduced average track length. This signifies

that overly optimistic settings for the estimation accuracy cause track losses in the standard

method.

An important measure for the evaluation of the tracking performance is track consistency: for

every time step, the result of the tracking algorithm is not only a target state estimate but also

the target state covariance that indicates the accuracy of the tracking result. Averaged over

several Monte Carlo simulation runs, the tracking error should be distributed with a variance that

agrees with the track covariance matrices. To investigate this, Figure 8.8 plots the normalized

Mahalanobis distance between the simulated ground truth and the track state versus time [4,

Sec. 5.4]. Ideally, the normalized Mahalanobis distance should be centered at 1 and not exit the

95% confidence region. Figure 8.8 shows that this is not achieved ideally for all tracking setups.

However, both the standard algorithm configured with the true average estimation accuracy and

tracking with MCMA yield results that lie mostly within the 95% confidence interval.

8.5. Tracking results with experimental data

Up to this point, the proposed model of the error variance has been successfully validated with

experimental data in Section 8.2 and the positive impact of its incorporation into a tracking

algorithm algorithm has been shown in Section 8.3. The goal of this section is to investigate the

effect in target tracking with experimental data. To this end, the data set that has previously been

presented in Chapter 7 and that has been used for the validation of the measurement accuracy

model is employed.

Additionally to the MCMA tracking algorithm, the standard variant was applied to the same

data for three distinct values of σ2
u,std. In the first case, σu,std is set to 3.7 × 10−4 (which

corresponds to 1 % of the antenna beam width for local 1), in the second case it is set to 18×10−4

(5 % of the beam width for local 1) and in the third case it is set to 92× 10−4 (25 % of the beam

width for local 1). Thus, in total there are four different configurations of the tracking algorithm.

In case one the configuration of the standard tracking algorithm is optimistic, i.e. the tracking

algorithm is set to assume that the DOA measurements are better than they are. In the third

case, the configuration is pessimistic – the DOA measurements are mostly better than what the

tracking algorithm believes. The second case is an intermediate configuration, neither pessimistic

nor optimistic. For later reference, these four configurations are denoted as GM-PHD-MCMA,
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8. Tracking with signal adaptive measurement error covariance matrix

Figure 8.7.: Average track length versus time.

Figure 8.8.: Mahalanobis distance between the track and ground truth averaged over the Monte
Carlo runs. The 95% confidence interval is plotted.
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GM-PHD-OPT, GM-PHD-INT and GM-PHD-PESS.

Due to platform wind drift and squint angles the ground reference vehicles were not observed

continuously. Thus, the data set is partitioned into three sub data sets. In each of these data sets

one or two of the targets are (almost) continuously within the radar scan area:

(a) Almost continuous observation of targets 1 and 2 for time steps 1 to 6000 (127 s) of the

experiment

(b) Continuous observation of target 1 for the time steps 14000 to 23200 (297 s to 492 s) of the

experiment

(c) Continuous observation of target 2 for the time steps 14000 to 21000 (297 s to 446 s) of the

experiment

Figures 8.9 and 8.10 show the tracking results for the different configurations of sub data set

(a) and Figure 8.11 shows the tracking results for sub data set (b). Figures 8.12 and 8.13 show

results for sub data set (c).

Sub data set (a) The following observations can be made: GM-PHD-MCMA tracks target 1

continuously for the complete duration of the data set. Target 2 is tracked while it is situated

in scan area of the radar. Target 3, the bicycle is also tracked during a part of sub data set.

GM-PHD-OPT experiences a track loss for target 1. Target 2 is tracked for the same amount of

time as with GM-PHD-MCMA, but the deviation from the true ground truth track is larger. The

bicycle causes a great number of very short tracks. In comparison GM-PHD-INT yields better

results. Still, a track breakage for target 1 at a different location occurs. GM-PHD-PESS also

suffers from a track breakage for target 1, again at a different location. The bicycle is tracked,

but only for a very short duration.

Sub data set (b) Sub data set (b) enables to track ground reference vehicle 1. GM-PHD-MCMA

tracks the target for the entire duration of the data set. However, at (-1700, -1400) a track

breakage occurs. GM-PHD-OPT also establishes tracks for the entire duration, but it suffers a

total of three breakages. Likewise GM-PHD-INT and GM-PHD-PESS experience three track

breakages. Furthermore, at the turns of the vehicle GM-PHD-PESS generates tracks that deviate

significantly more from the ground truth path.

Sub data set (c) This sub data set allows the tracking of ground reference vehicle 2. For

all configurations the target is only tracked up to location (-800,-2600). After the turn at this

location the radial velocity of the target decreases such that the tracking algorithm assumes

a very low detection probability. Thus, even though detections are still made, no tracks is

established anymore. No track breakages occur for the GM-PHD-MCMA and GM-PHD-OPT.

For GM-PHD-INT and GM-PHD-PESS one track breakages each occurs at roughly the same

location.
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8. Tracking with signal adaptive measurement error covariance matrix

(a) MCMA

(b) 1 % of beamwidth

Figure 8.9.: Tracking results with two different configurations – MCMA and 1 % of the beam
width – for the area with the ground truth targets up to time step 6000 (127 s).
The minimum track duration for display is 10.6 s (500 time steps). The color
for the display of each track is chosen arbitrarily. Source of the road map data:
Openstreetmap

136



8.5. Tracking results with experimental data

(a) 5 % of beamwidth

(b) 25 % of beamwidth

Figure 8.10.: Tracking results with two different configurations – 5%̇ and 25 % of the beam
width – for the area with the ground truth targets up to time step 6000 (127 s).
The minimum track duration for display is 10.6 s (500 time steps). The color
for the display of each track is chosen arbitrarily. Source of the road map data:
Openstreetmap
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(a) MCMA

(b) 1 % of beam width

(c) 5 % of beam width

(d) 25 % of beamwidth

Figure 8.11.: Tracking results of the different configurations for target 1 for timesteps 14000 to
23000. The color for the display of each track is chosen arbitrarily. Source of the
road map data: Openstreetmap
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(a) MCMA

(b) 1 % of beam width

Figure 8.12.: Tracking results for target 2 for timesteps 12000 to 19000 (255 s to 404 s) for
tracking with MCMA and a standard deviation that is set to 1 % of the beam
width. The color for the display of each track is chosen arbitrarily. Source of the
road map data: Openstreetmap
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(a) 5 % of beam width

(b) 25 % of beam width

Figure 8.13.: Tracking results for target 2 for timesteps 12000 to 19000 (255 s to 404 s) for
tracking with a standard deviation that is set to 5 % ans 25 % of the beam width.
The color for the display of each track is chosen arbitrarily. Source of the road
map data: Openstreetmap
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Discussion of experimental tracking performance The tracking results with the three sub data

sets lead to the following findings:

Standard tracking with the optimistic configuration (GM-PHD-OPT) causes very jittery tracks

when the target moves on a straight line (see Figure 8.12a). On the other hand, the pessimistic

configuration (GM-PHD-PESS) may react very slowly to turns of the target (see Figure 8.11d).

With the overly optimistic configuration track breakages occur. These were expected due

to the simulative results. They are due to the fact that incoming measurements cannot be

associated to existing tracks because the assumed accuracy is too high for both the track and the

measurement. An example of this behavior are the swarm of tracks that is generated for the bike

with GM-PHD-OPT (see Figure 8.9b). Another example is the breakage of the track of target 1

in Figure 8.10a. This breakage occurs at a time when the target is moving almost perpendicular

to the line of sight to the platform. Thus, the DOA measurement accuracy is very low and even

the intermediate configuration overestimates the measurement accuracy.

With GM-PHD-INT and GM-PHD-PESS another type of track breakages occurs frequently at

target turns (see Figure 8.10b, 8.11c, 8.11d, 8.13a, 8.13b). In these cases the tracking algorithm

attributes insufficient significance to detections that indicate a target turn. On the other hand,

with MCMA, the accuracy assumption for the existing track and the measurements are better

balanced. Thus, it performs more successful when a target changes course.
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The original question of this thesis was whether radar signal processing and target tracking can

be brought closer together in order to improve the final tracking result. Among various possible

approaches to this question, this thesis has focused on the inclusion of an improved modeling of

the direction of arrival estimation error in a tracking algorithm.

In the course of this investigation, numerous auxiliary, yet important tasks were completed: A

specifically designed experiment with an airborne radar was conducted. A reference radar signal

processing and a target tracking algorithm were implemented and documented in this thesis.

Adaptations of standard tracking algorithms to the task of ground target tracking have been

presented.

The investigation of the DOA error modeling has been based thoroughly on the experimental

data set. It has shown that a simple, easily implementable method is very effective at modeling

the DOA estimation error. Furthermore, it has shown with examples based on the experimental

data that this modeling improves the tracking performance. Results were better or as least as

good as tracking with a standard error model.

This thesis adds the first experimental verification of this error model to the body of literature.

As such, it provides a significant extensions to the investigation that has been published earlier in

[35] and [38]. Additionally, this thesis provides a treatise of the entire processing chain starting

from the raw data up to tracking results. As existing publications only treat subfields, this in

itself is an important addition to the literature.

Thus, this thesis is in general significant for any researcher in the field of ground moving target

tracking. To researchers in the field of tracking, it provides an accessible presentation of the

radar data acquisition process. To researchers in radar signal processing it details how the GMTI

results are processed in the tracking step. More particular, this thesis is relevant for any engineer

with the task of designing a ground moving target tracking algorithm. This thesis provides the

incentive to at least strongly consider the error model that has been presented here.

Of course, every body of research has its limitations. With respect to the proposed DOA

estimation error model, it is desirable to repeat an identical investigation with an even larger

experimental data set. In particular, going beyond example results, it will be desirable to quantify

the improved tracking performance with a high degree of confidence from a larger data set. More

in general, other approaches for improving the tracking performance should be investigated in

the future. These include the use of the tracking results in the clutter learning step in order

to reduce target self nulling. Another interesting research direction is to adaptively modify the
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allocated radar observation time depending on the detectability of the target. Furthermore, the

experimental results of this thesis have shown the difficulty of target tracking in an urban area.

Research into whether and how the tracking in urban areas can be improved is important. Seen

more positively: For these investigations, this thesis will provide an excellent starting point.
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A. Algorithms

This Appendix gathers functions and algorithms that are defined or used in various parts of

this thesis. Similarly to the use of variables in programming, the variable definitions shall only

be valid in the context of each algorithm. While this in some cases makes the definitions more

lengthy, it also ensures that each definition contains all equations and variables that are necessary

for implementation.

• Section A.1 presents an algorithm for determining the geolocation of a target for which the

range, directional of arrival and the prameters of a plane of which it is located are known.

The Jacobian matrix with respect to all input parameters is also provided.

• Section A.2 presents a function that determines the magnitude of the measurable component

of the velocity vector of a target that moves on a planar surface. The Jacobian matrix is

given as well.

• Section A.3 presents a function that determines the range, radial velocity and directional

cosine of a target based on the Cartesian coordiante and velocity of the target.

• Section A.4 presents a function that determines the Doppler frequency of clutter returns

as a function of range and direction of arrival. This function is used for determining the

J-hook and is important for preprocessing radar data prior to applying a STAP algorithm.

• Section A.5 presents functions that are used in the target tracking algorithm of this thesis.

The main goal is to give the definition of two functions: First, the function fM←urv that

converts a radar measurement vector to a measurement vector of the type that is passed to

the tracking algorithm. Second, the function hk that determines a synthetic measurements

based on a track state and a measurement error vector.

As Figure A.1 shows, these functions are defined with the help of various other functions.

Some of the subfunctions are very simple. Still they are given here for completeness.

Jacobian matrices of the functions that are required for the tracking algorithm are provided

in Section A.6.

• Section A.7 presents functions for computing the Euler rotation matrix or its inverse for

given yaw, pitch and roll angles. It also presents a function for performing a bilinear

interpolation
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fM←urv

fv←urv

fE←ur

fP2←ur

fE←ur f2←3
p

(a) Decomposition of the conversion of a radar measurement vector to a track measurement vector.

hk

fM←S0

f3←2
p f3←2

v

fM←Sε

fM←urv furv←S

furv←E f3←2
p f3←2

v

(b) Decomposition of the determination of the predicted measurement based on the track state.

Figure A.1.: Decomposition of the structure of the functions fM←urv and hk.
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• Section A.8 presents functions that convert a track state that comprises two location and two

velocity dimensions to a full ENU track state based on a digital elevation model. Jacobians

of the conversion with respect to the original track state and DEM parameters are given.

To facilitate implementation of the content of this Appendix in a programming language, the

order in which variable definitions are given here is the order in which they can be computed.

Expansion of vector projections In some of the algorithms the projection of a vector x on a

plane with normal vector nnorm is performed as in

xp = Pprojxorg , (A.1)

where

Pproj = I− nnorm [nnorm]
T

(A.2)

is the projection matrix. For later computations of the Jacobian of the vector xp with respect to

parameters of xorg or nnorm, the expanded form

xp =
(
I− nnorm [nnorm]

T
)
xorg

= xorg − [nnorm]
T
xorgnnorm

= xorg − ρprojnnorm , (A.3)

of the projection will be more convenient. Here

ρproj = [nnorm]
T
xorg . (A.4)

The expanded expression avoids the use of matrices for which convential Jacobians are not defined.

A.1. Geolocation of a target

A.1.1. Function for the geolocation based on target range and directional

cosine

This function determines the location of a target in Cartesian ENU coordinates based on the

range r and the directional cosine u with respect to an axis, e.g. the antenna axis. For the

geolocation it must be assumed that the target is located on a plane that is defined by its normal

vector nEplane and the distance dEplane of the plane to the origin of the coordinate system.
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Derivation Due to the given range to the target and directional cosine to the target, the target

must lie on a circle which is given in parameter form by

xphi(φ) = mEcirc + rcirce
E
circ,1 cos (φ) + rcirce

E
circ,2 sin (φ) (A.5)

where φ is the running variable, mEcirc is the center, rcirc is the radius, eEcirc,1 and eEcirc,2 are two

unit vectors that span the circle. The second constraint is that the target lies on the plane.

Combined with constraint (A.5) this yields

[
nEplane

]T
xphi(φ) = dEplane . (A.6)

Rearanging this equation obtains

[
nEplane

]T
eEcirc,1 cos (φ) +

[
nEplane

]T
eEcirc,2 sin (φ) =

dEplane −
[
nEplane

]T
mEcirc

rcirc
. (A.7)

It can be sovled particularly easily for φ if eEcirc,2 is selected such that its scalar product with

nEplane is zero. In this case, the second summand in equation (A.7) disappears and the cosine of φ

is given by

cos (φ) =
dEplane −

[
nEplane

]T
mEcirc

rcirc

[
nEplane

]T
eEcirc,1

. (A.8)

In order to obtain the desired vanishing of the second summand, the first unit vector must be

chosen such that it has the maximum correlation with the normal vector of the plane, i.e. it must

be colinear to

ẽEcirc,1 = PEcpn
E
plane , (A.9)

where PEcp is a matrix that projects into the plane of the circle. Based on this reasoning, the
algorithm for determining the geolocation is given in the following.

Notation
xEgrd,n = fE←ur

n

(
u, r,xEant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.10a)

Implementation Unit vector of the orientation of the main axis of the linear antenna

eE =

 cos (γyaw) cos (γpitch)
sin (γyaw) cos (γpitch)
− sin (γpitch)

 (A.10b)
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where the angles are given by

γA←Eyp =

[
γyaw

γpitch

]
. (A.10c)

Matrix which projects into the plane of the range cone circle:

PEcp = I− eE
[
eE
]T

(A.10d)

Scalar product between antenna main axis and normal vector of the plane:

ρen =
[
eE
]T
nEplane (A.10e)

A vector that is colinear to the first unit vector that spans the circle:

ẽEcirc,1 = PEcpn
E
plane = nEplane −

[
eE
]T
nEplanee

E (A.10f)

= nEplane − ρene
E (A.10g)

First unit vector that spans the circle:

eEcirc,1 =
PEcpn

E
plane

‖PEcpn
E
plane‖

=
ẽEcirc,1

‖ẽEcirc,1‖
(A.10h)

Second unit vector that spans the circle:

eEcirc,2 = eEcirc,1 × eE (A.10i)

Radius of the circle:
rcirc = r

√
1− u2 (A.10j)

Center of the circle:
mEcirc = xE + ureE (A.10k)

Scalar product of the normal vector of the surface plane and the first unit vector spanning the
circle:

ρnc1 =
[
nEplane

]T
eEcirc,1 =

√
1− ρ2

en (A.10l)

Cosine of the angle φ that determines the target location in ENU coordinates:

v =
dEplane −

[
nEplane

]T
mEcirc

rcircρnc1
(A.10m)

If |v| > 1 it is impossible to determine a location that is compatible with the given range and
directional cosine and lies on the surface plane.
Corresponding sine. There are in general two solutions.

w1 = +
√

1− v2 (A.10n)

w2 = −
√

1− v2 (A.10o)

(A.10p)
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Finally, the two solutions for the Cartesian ENU target coordinate:

xEgrd,n = mEcirc + rcirce
E
circ,1v + rcirce

E
circ,2wn , n = 1, 2. (A.10q)

A.1.2. Jacobian of the geolocation function

A function that computes the solutions for the geolocation of a target based on the range to the

target and a directional cosine with respect to an axis has been derived in Section A.1.1. This

function accepts several parameters. Here the Jacobian of this function with respect to the vector

Φ =
[[
xEant

]T [
γA←Eyp

]T [
nEplane

]T
dEplane [zur]

T
]T

=
[
xEant,1 x

E
ant,2 x

E
ant,3 γ

A←E
yaw γA←Epitch (A.11)

nEplane,1 n
E
plane,2 n

E
plane,3 d

E
plane u r

]T
that comprises all parameters is presented.

Notation

∂xEgr,n

∂Φ
= fE←ur

J,n

(
u, r,xEant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.12a)

Implementation First, compute all variables of Section A.1.1.
Jacobians of the function parameters with respect to the parameter vector:

∂u

∂Φ
= [ 01×9 I1×101×1]

∂r

∂Φ
= [01×10 I1×1 ]

∂xEant

∂Φ
= [I3×3 03×8]

∂γA←Eyp

∂Φ
= [02×3 I2×2 03×6]

∂nEplane

∂Φ
= [03×5 I3×3 03×3]

∂dEplane

∂Φ
= [01×8 I1×1 01×2] (A.12b)

Jacobian of the unit vector that describes the orientation of the antenna axis:

∂eE

∂Φ
=

[
03×3

∂eE

∂γyaw

∂eE

∂γpitch
03×7

]T

, (A.12c)

where

∂eE

∂γyaw
=

 − sin (γyaw) cos (γpitch)
cos (γyaw) cos (γpitch)

0

 (A.12d)
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and

∂eE

∂γpitch
=

 − cos (γyaw) sin (γpitch)
− sin (γyaw) sin (γpitch)

− cos (γpitch)

 . (A.12e)

Jacobian of the correlation between the antenna orientation vector and the normal vector of the
surface plane:

∂ρen

∂Φ
=
[
eE
]T ∂nEplane

∂Φ
+
[
nEplane

]T ∂eE
∂Φ

(A.12f)

Jacobian of the projection of the normal vector of the surface plane onto the plane of the cone
range circle

∂ẽEcirc,1

∂Φ
=
∂nEplane

∂Φ
− eE ∂ρen

∂Φ
− ρen

∂eant,1

∂Φ
(A.12g)

Jacobian of the first unit vector which spans the range cone circle

∂eEcirc,1

∂Φ
=
‖ẽEcirc,1‖

∂ẽEcirc,1
∂Φ − ẽEcirc,1

[ẽEcirc,1]
T ∂ẽ

E
circ,1
∂Φ

‖ẽEcirc,1‖

‖ẽEcirc,1‖
2 (A.12h)

Jacobian matrix of the second vector which spans the range cone circle:

∂eEcirc,2

∂Φ
=

[
∂eEcirc,2

∂Φk

]
k=1...11

(A.12i)

where
∂eEcirc,2

∂Φk
=
∂eEcirc,1

∂Φk
× eE + eEcirc,1 ×

∂eE

∂Φk
(A.12j)

is the k-th column of the Jacobian matrix.
Jacobian of the radius of the range cone circle:

∂rcirc

∂Φ
=
√

1− u2
∂r

∂Φ
− r u√

1− u2

∂u

∂Φ
(A.12k)

Jacobian of the center of the cone circle:

∂mEcirc

∂Φ
=
∂xEant

∂Φ
+ ur

∂eE

∂Φ
+ eEr

∂u

∂Φ
+ eEu

∂r

∂Φ
(A.12l)

Jacobian of the correlation between the normal vector of the surface plane and the first vector
which spans the circle:

∂ρnc1

∂Φ
= − ρen√

1− ρ2
en

∂ρen

∂Φ
(A.12m)
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Jacobian of v, the cosine of the solution for φ:

∂v

∂Φ
=
(
dEplane −

[
nEplane

]T
mEcirc

)(
− 1

rcircρ2
nc1

∂ρnc1

∂Φ
− 1

r2
circρnc1

∂rcirc

∂Φ

)
+

1

rcircρnc1

(
∂dEplane

∂Φ
−
[
nEplane

]T ∂mEcirc

∂Φ
−
[
mEcirc

]T ∂nEplane

∂Φ

)
(A.12n)

Jacobians of w1 and w2, the corresponding sine values:

∂w1

∂Φ
= − v√

1− v2

∂v

∂Φ
(A.12o)

∂w2

∂Φ
= +

v√
1− v2

∂v

∂Φ
(A.12p)

Finally, the Jacobian of the target’s Cartesian ENU coordinate:

∂xEgr,n

∂Φ
=
∂mEcirc

∂Φ

+ eEcirc,1rcirc
∂v

∂Φ
+ eEcirc,1v

∂rcirc

∂Φ
+ rcircv

∂eEcirc,1

∂Φ

+ eEcirc,2rcirc
∂wn
∂Φ

+ eEcirc,2wn
∂rcirc

∂Φ
+ rcircwn

∂eEcirc,2

∂Φ
(A.12q)

A.1.3. Function for selecting one solution of the possible target

geolocations

In general there are two solutions for the geolocation of a target. In most practial cases, one of

the solution lies in the back lobe of the antenna. As almost no energy is returned from the back

lobe, this solution can be excluded. This function returns the index of a solution which does not

lie in the antenna back lobe.

Notation

ntgt,ch = f tgt,ch

(
xEgrd,1,x

E
grd,2,x

E
ant,γyrp

)
(A.13a)

where xEgrd,n, n = 1, 2 are 2 solutions.

Implementation Compute direction vectors for each solution:

uEat,n =
xEgrd,n − xEant

‖xEgrd,n − xEant‖
(A.13b)

Determine rotation matrix to antenna coordinate system:

TA←E = TEuler(γyrp) (A.13c)
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A.2. Measurable velocity component

The direction vector in antenna coordinates:

uAat,n = TA←EuEat,n (A.13d)

The vector components are denoted as

uAat,n =

 uAat,n,1

uAat,n,2

uAat,n,3

 (A.13e)

if uAat,1,3 > 0, then solution 1 is not in the back lobe, proceed to return ngrd,choice = 1, else choose
ngrd,choice = 2.

A.1.4. Function for a unique solution for the geolocation of the target

This function uses definition of Section A.1.3 to provide a unique solution for the geolocation of a
target.

Notation

xEgrd = fE←ur
(
udc, r,x

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.14a)

Implementation Compute both solutions:

xEgrd,n = fE←ur
rc,n

(
udc, r,x

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.14b)

Index of the chosen solution:

ngrd,choice = fgrd,choice(xEgrd,1,x
E
grd,2,ϑ) (A.14c)

Chosen ground location:

xEgrd = xEgrd,ngrd,choice
(A.14d)

A.2. Measurable velocity component

A.2.1. Function for the measurable velocity component of a target

constrained to a plane

The radial velocity of a target is the sum of two components – one due to the antenna velocity and

one due to the target velocity. After the geolocation of the target, it is possible to compensate for

the antenna motion component in order to determine the pure target motion component of the

radial velocity. As it is additionally known that the targets motion is constrained to a surface

plane, the scalar magnitude of one of the two velocity components that lie within this plane can

be found (see Section 3.3.2). The orientation of vector that corresponds to the scalar magnitude

is given by the projection of the line of sight between the antenna and the target onto the surface

plane. Since there are in general two solutions for the geolocation of the target, there are also
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A. Algorithms

two solutions for the target’s velocity component. In the following, the function that computes

the scalar magnitude is presented.

Notation

vt,pl,n = fv←urv
n

(
udc, r, vrad,x

E
ant,v

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.15a)

Implementation Location of the target in Cartesian ENU coordinates (n = 1, 2 is the index of
the two solutions):

xEgrd,n = fE←ur
rc,n

(
udc, r,x

E
ant, e

E ,nEplane, d
E
plane

)
(A.15b)

Matrix that projects on the surface plane:

PEplane = I− nEplane

[
nEplane

]T
(A.15c)

Difference vector between antenna and target position:

∆xEat,n = xEgrd,n − xEant (A.15d)

Range to the targets:

r = ‖∆xEat,n‖ (A.15e)

Unit vector that points to the target location:

uEat,n =
∆xEat,n

‖∆xEat,n‖
(A.15f)

Scalar product between the normal vector of the surface plane and the unit direction vector:

ρpl,at,n =
[
nEplane

]T
uEat,n (A.15g)

Projection of the unit direction vector onto the plane:

ũEat,p,n = PEplaneu
E
at,n (A.15h)

= uEat,n − ρpl,at,nn
E
plane (A.15i)

Target component of the radial velocity:

vt,rad,n = vrad +
[
uEat,n

]T
vEant (A.15j)

Measurable component of the target velocity within the plane:

vt,pl,n =
vt,rad,n

‖ũEat,p,n‖
(A.15k)
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A.2. Measurable velocity component

A.2.2. Jacobian of the meausurable velocity with respect to the ENU

parameters

In Section A.2.1 an algorithm for determining the scalar value of the measurable velocity component

of target in the surface plane was presented. Here, the Jacobian of this function with respect to

the vector

Θ =
[[
xEant

]T [
γA←Eyp

]T [
nEplane

]T
dEplane [zurv]

T
]T

=
[
xEant,1 x

E
ant,2 x

E
ant,3 γ

A←E
yaw γA←Epitch (A.16)

nEplane,1 n
E
plane,2 n

E
plane,3 d

E
plane u r vrad

]T
which comprises all input parameters is given.

Notation

∂vt,pl,n

∂Θ
= fv←urv

J,n

(
udc, r, vrad,x

E
ant,v

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.17a)

Implementation Jacobians of the input parameters with respect to the parameter vector:

∂u

∂Θ
= [ 01×9 I1×101×2]

∂r

∂Θ
= [01×10 I1×1 01×1]

∂vrad

∂Θ
= [01×11 I1×1]

∂xEant

∂Θ
= [I3×3 03×9]

∂γA←Eyp

∂Θ
= [02×3 I2×2 03×7]

∂nEplane

∂Θ
= [03×5 I3×3 03×4]

∂dEplane

∂Θ
= [01×8 I1×1 01×3] (A.17b)

Jacobian of the target location with respect to parameter vector Φ of Section A.1.2:

∂xEgr,n

∂Φ
= fE←ur

J,rc,n

(
u, r,xEant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.17c)

Jacobian of the target location with respect to parameter vector Θ:

∂xEgr,n

∂Θ
=

[
∂xEgr,n

∂Φ
03×1

]
(A.17d)

155



A. Algorithms

Determine all variables of the algorithm of Section A.2.1.
Jacobian of the difference between the target and antenna location:

∂∆xEat,n

∂Θ
=
∂xEgrd,n

∂Θ
− ∂xEant

∂Θ
(A.17e)

Jacobian of the range to the target:

∂rn
∂Θ

=

[
∆xEat,n

]T ∂∆xEat,n
∂Θ

‖∆xEat,n‖
(A.17f)

Jacobian of the unit direction vector that points from the antenna to the target:

∂uEat,n

∂ d Θ
=
‖∆xEat,n‖

∂∆xEat,n
∂ d Θ −∆xEat,n

∂‖∆xEat,n‖
∂ d Θ

‖∆xEat,n‖
2

=
rn

∂∆xEat,n
∂ d Θ −∆xEat,n

∂rn
∂ d Θ

r2
n

(A.17g)

Jacobian of the target component of the radial velocity:

∂vt,rad,n

∂Θ
=
∂v̂rad

∂ d Θ
+
[
uEat,n

]T ∂vEant

∂Θ
+
[
vEant

]T ∂uEat,n

∂Θ
(A.17h)

Jacobian of the scalar product of the direction vector and the normal vector of the surface plane:

∂ρpl,at,n

∂Θ
=
[
nEplane

]T ∂uEat,n

∂Θ
+
[
uEat,n

]T ∂nEplane

∂Θ
(A.17i)

Jacobian of the projection of the direction vector onto the surface plane:

∂ũEat,p,n

∂Θ
=
∂uEat,n

∂Θ
− nEplane

∂ρpl,at,n

∂Θ

− ρpl,at,n

∂nEplane

∂Θ
(A.17j)

Jacobian of the norm of the projection of the direction vector onto the surface plane:

∂‖ũEat,p,n‖
∂Θ

=

[
ũEat,p,n

]T ∂ũEat,p,n
∂Θ

‖ũEat,p,n‖
(A.17k)

Finally, the Jacobian of the scalar magnitude of the measurable target velocity component:

∂vt,pl,n

∂Θ
=

∂vt,rad,n
∂Θ ‖ũEat,p,n‖ − vt,rad,n

∂‖ũEat,p,n‖
∂Θ

‖ũEat,p,n‖
2 (A.17l)
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A.2.3. Determine a unique solution for the surface velocity component:

f v←urv

As there are two solutions for the geolocation of a target, there are also two solutions for the

magnitude of the measurable target velocity component. This function returns the velocity

solution which corresponds to the unique solution of Section A.1.4.

Notation

vt,pl = fv←urv
(
udc, r, vrad,x

E
ant,v

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.18a)

Implementation Compute both solutions for the velocity component

vt,pl,n = fv←urv
n

(
udc, r, vrad,x

E
ant,v

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.18b)

Compute both solutions for the geolocated target position

xEgrd,n = fE←ur
rc,n

(
udc, r,x

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.18c)

Determine which solution to choose

ngrd,choice = fgrd,choice(xEgrd,1,x
E
grd,2,ϑ) (A.18d)

Chosen ground location

vt,pl = vt,pl,ngrd,choice
(A.18e)

A.3. Range, radial velocity and directional cosine of a target

A.3.1. Function furv←E

This function determines the directional cosine, range and radial velocity of a target. It accepts

the target location and velocity in Cartesian ENU coordinates and the antenna location, velocity

and attitude as input parameters.

Notation

zurv = furv←E (xE ,vE ;xEant,v
E
ant,γ

A←E
yp

)
(A.19a)

Implementation Difference between target and antenna location:

∆xE = xE − xEant (A.19b)

Range to the target¿

r = ‖∆xE‖ (A.19c)
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Direction vector in ENU coordinates:

uE =
∆xE

‖∆xE‖ (A.19d)

Orientation of the axis of the antenna:

eE =

 cos (γyaw) cos (γpitch)
sin (γyaw) cos (γpitch)
− sin (γpitch)

 (A.19e)

where the angles are given by

γA←Eyp =

[
γyaw

γpitch

]
. (A.19f)

First component of the direction vector in antenna coordinates:

uA1 =
[
eE
]T
uE (A.19g)

Difference of target and platform velocity:

∆vE = vE − vEant (A.19h)

Radial velocity of the target :

vrad =
[
uE
]T

∆vE (A.19i)

Arrangement of directional cosine, range and radial velocity to one vector:

zurv =

 uA1
r
vrad

 (A.19j)

A.3.2. Jacobian of furv←E

Section A.3.1 presents a function for computing the directional cosine, range and radial velocity

of a target. Here, the Jacobian of this function with respect to the vector

Ψ =
[[
xEant

]T [
vEant

]T [
γA←Eyp

]T [
xE
]T [

vE
]T ]T

. (A.20)

Notation

∂zurv

∂Ψ
= furv←E

J

(
xE ,vE ;xEant,v

E
ant,γ

A←E
yp

)
(A.21a)
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A.3. Range, radial velocity and directional cosine of a target

Implementation Jacobians of the input variables with respect to the parameter vector:

∂xEant

∂Ψ
= [I3×3 03×11]

∂vEant

∂Ψ
= [03×3 I3×3 03×8]

∂γA←Eyp

∂Ψ
= [02×6 I2×2 02×6]

∂xE

∂Ψ
= [03×8 I3×3 03×3]

∂vE

∂Ψ
= [03×11 I3×3] (A.21b)

Jacobian of the orientation of the unit vector that describes the orientation of the linear antenna:

∂eE

∂Ψ
=

[
03×6

∂eE

∂γyaw

∂eE

∂γpitch
03×6

]T

(A.21c)

where

∂eE

∂γyaw
=

 − sin (γyaw) cos (γpitch)
cos (γyaw) cos (γpitch)

0

 (A.21d)

and

∂eE

∂γpitch
=

 − cos (γyaw) sin (γpitch)
− sin (γyaw) sin (γpitch)

− cos (γpitch)

 . (A.21e)

Jacobian of the difference between target and antenna location

∂∆xE

∂Ψ
=
∂xE

∂Ψ
− ∂xEant

∂Ψ
(A.21f)

Jacobian of the range to the target:

∂r

∂Ψ
=

[
∆xE

]T ∂∆xE

∂Ψ

‖∆xE‖ (A.21g)

Jacobian of the direction vector in ENU coordinates:

∂uE

∂Ψ
=
r ∂∆xE

∂Ψ −∆xE ∂r∂Ψ

r2
(A.21h)

Jacobian of the first component of the direction vector in antenna coordinates:

∂uA1
∂Ψ

=
[
eE
]T ∂uE

∂Ψ
+
[
uE
]T ∂eE

∂Ψ
(A.21i)
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Jacobian of the difference of target and platform velocity:

∂∆vE

∂Ψ
=
∂vE

∂Ψ
− ∂vEant

∂Ψ
(A.21j)

Jacobian of the radial velocity of the target:

∂vrad

∂Ψ
=
[
uE
]T ∂∆vE

∂Ψ
+
[
∆vE

]T ∂uE
∂Ψ

(A.21k)

Jacobian of the vector of directional cosine, range and radial velocity:

∂zurv

∂Ψ
=

 ∂uA1
∂Ψ
∂r
∂Ψ
∂vrad
∂Ψ

 (A.21l)

A.4. Clutter Doppler frequency versus range and directional

cosine

This function computes the Doppler frequency that corresponds to a pair of a range and a

directional cosine value for clutter returns.

Notation

fn = f f←ur
n

(
u, r,xEant,γ

A←E
yp ,nEplane, d

E
plane;λ0

)
(A.22a)

Implementation Compute the location of the clutter return in ENU coordinates

xEgrd,n = fE←ur
rc,n

(
u, r,xEant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.22b)

Compute the measruement vaiables

zurv,n =

 un
rn

vrad,n

 = furv←E (xEgrd,n,v
E ;xEant,v

E
ant,γ

A←E
yp

)
(A.22c)

Convert the radial velocity measurement to the Doppler frequency

fn = −2vrad,n

λ0
(A.22d)
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A.5. Functions that are used by the tracking algorithm

A.5. Functions that are used by the tracking algorithm

A.5.1. Radar measurement to track measurement conversion: fM←urv

This function converts the measurement vector that is determined by the radar system to the

measurement vector that is accepted by the tracking algorithm of this thesis.

Notation

z = fM←urv
(
u, r, vrad,x

E
ant,v

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.23a)

Implementation Target location on the tracking plane:

xP2
tgt = fP2←ur

(
u, r, vrad,x

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.23b)

Scalar magnitude of the measurable target velocity surface component:

vt,pl = fv←urv
(
u, r, vrad,x

E
ant,v

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.23c)

Arrangement of both variables to the track measurement vector:

z =

[
xP2

vt,pl

]
(A.23d)

A.5.2. Definition of the measurement function: hk

In nonlinear target tracking the equation

z = hk(xS , ε) (A.24)

describes how the target state xS and measurement noise ε are related to a measurement z.

Tracking with an extended Kalman filter like algorithm requires the evaluation of hk(xS ,0) (see

equation 4.24) and the Jacobian matrices ∂hk
∂x (x,0) and ∂hk

∂ε (x, ε) (see equation (4.30)). In the

following, the definition of hk is provided for the ground moving target tracking algorithm of this

thesis.

In this specific application, hk is significantly more simple for a zero noise vector than for an

arbitrary noise vector. Thus, two different definitions are provided: One for ε = 0 and one for

arbitrary ε. The definition for a zero noise vector is later used for computing the Jacobian with

respect to the track state.

The definition basically consists only of a call to one of the functions fM←S0 or fM←Sε . This

is to make the dependency of hk on time step dependent antenna parameters explicit.

Notation

z = hk(xS , ε) (A.25a)
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Implementation If the noise term is a vector of zeros:

hk(xS ,0) = fM←S0

(
xS ; x̂Eant,k, v̂

E
ant,k, γ̂

A←E
yp,k

)
(A.25b)

else:

hk(xS , ε) = fM←Sε

(
xS ; x̂Eant,k, v̂

E
ant,k, γ̂

A←E
yp,k , ε

)
(A.25c)

A.5.3. Track measurement based on target state including measurement

errors: fM←Sε

This function computes the track measurement based on the target state. It is required for

computing the Jacobian of hk with respect to the measurement vector. This Jacobian is employed

in extended Kalman filter like tracking algorithms.

In order to include radar measurements, the computation is performed in two step. In the
first step, the track state is converted to radar measurements. In the second step, the radar
measurements are converted to the track measurement. In this second step, measurement errors
are added to the input variables.

Notation

z = fM←Sε

(
xS ;xEant,v

E
ant,γ

A←E
yp , ε

)
(A.26a)

Implementation Partitioning of the error terms:

ε =[εu εr εv ε
E
p,ant ε

E
v,ant ε

A←E
yp ]T (A.26b)

Computation of the radar measurement variables (see Sec. A.5.10):

zurv = furv←S (xE ,vE ;xEant,v
E
ant,γ

A←E
yp

)
(A.26c)

Computation of the track measuremnt variables, including additional error terms (see A.5.1):

z = fM←urv
(
u+ εu, r + εr, vrad + εv,x

E
ant + εEp,ant,

vEant + εEv,ant,γ
A←E
yp + εyp,ant,n

E
plane, d

E
plane

)
(A.26d)

A.5.4. Track measurement based on the track state without effect of

measurement noise: fM←S0

This function computes the track measurement based on the track state. Unlike the function

fM←Sε it does not account for measurement error. It is used by the function hk if there is no

measurement error. Hence, it is employed in the tracking algorithm for computing the predicted

measurement and for determining the Jacobian of the measurement function with respect to the

track state.

162



A.5. Functions that are used by the tracking algorithm

Notation

z = fM←S0

(
xS ;xEant,v

E
ant,γ

A←E
yp

)
(A.27a)

Implementation Partitioning of the track state vector:

xS =

[
xP2

vP2

]
(A.27b)

Cartesian ENU target position (see Sec. A.5.5):

xE = f3←2
p

(
xP2;xEP3,origin,γ

E←P3
)

(A.27c)

Cartesian ENU target velocity (see Sec. A.5.6):

vE = f3←2
v

(
vP2;γE←P3

)
(A.27d)

Matrix that projects on the tracking plane:

PEplane = I− nEplane

[
nEplane

]T
(A.27e)

Difference vector between platform and ground position:

∆xEat = xE − xEant (A.27f)

Projection of the difference vector onto the tracking plane:

∆xEat,p = PEplane∆xEat = ∆xEat −
[
nEplane

]T
∆xEatn

E
plane (A.27g)

= ∆xEat − ρ̃pl,atn
E
plane (A.27h)

Normalized projection of the direction vector onto the plane:

uEat,p =
PEplane∆xEat

‖PEplane∆xEat‖
=

∆xEat,p

‖∆xEat,p‖
(A.27i)

Measurable velocity component:

vt,pl =
[
uEat,p

]T
vE (A.27j)

Arrange computed values into measurement vector:

z =

 xS1
xS2
vt,pl

 (A.27k)

A.5.5. Conversion of a location from 2 to 3 dimensions: f 3←2
p

Notation

xE = f3←2
p

(
xP2;xEP3,origin,γ

E←P3
)

(A.28a)
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Implementation

TE←P3 = TEuler

(
γE←P3

)
(A.28b)

TD3←D2 =

 1 0
0 1
0 0

 (A.28c)

xE = xEP3,origin + TE←P3 TD3←D2 xP2 (A.28d)

A.5.6. Conversion of a velocity vector from 2 to 3 dimensions: f 3←2
v

Notation

vE = f3←2
v

(
vP2;γE←P3

)
(A.29a)

Implementation

TE←P3 = TEuler

(
γE←P3

)
(A.29b)

TD3←D2 =

 1 0
0 1
0 0

 (A.29c)

Velocity in ENU coordinates

vE = TE←P3 TD3←D2 vP2 (A.29d)

A.5.7. Conversion of a 3d location to 2 dimensions: f 2←3

Notation

xP2 = f2←3
(
xE ;xEP,origin,γ

E←P3
)

(A.30a)

Implementation

TP3←E = Tinv
Euler

(
γE←P3

)
(A.30b)

TD2←D3 =

[
1 0 0
0 1 0

]
(A.30c)

xP2 = TD2←D3TP3←E (xE − xEP,origin

)
(A.30d)
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A.5.8. Conversion of a 3d velocity vector to 2 dimensions fP2←E

Notation

vP2 = fP2←E (vE ;γE←P3
)

(A.31a)

Implementation

TP3←E = Tinv
Euler

(
γE←P3

)
(A.31b)

TD2←D3 =

[
1 0 0
0 1 0

]
(A.31c)

vP2 = TD2←D3TP3←EvE (A.31d)

A.5.9. Locate a target in the tracking plane based on range and DOA

measurement

Notation

xP2
tgt = fP2←ur

(
u, r,xEant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.32a)

Implementation Compute the 3d geolocation (see Section A.1.4)

xEtgt = fE←ur
(
udc, r,x

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.32b)

Convert this geolocated position to the tracking plane

xP2
tgt = fP2←E (xEtgt;x

E
P,origin,γ

E←P3
)

(A.32c)

A.5.10. Radar measurements based on track state: furv←S

This function determines the radar measurement vector that is associated with the given track

state vector.

Notation

zurv = furv←S (xS ,xEant,v
E
ant,γ

A←E
yp

)
(A.33a)

Implementation Partitioning of the track state:

xS =

[
xP2

vP2

]
(A.33b)
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Cartesian ENU location:

xE = f3←2
p

(
xP2;xEP3,origin,γ

E←P3
)

(A.33c)

Cartesian ENU velocity vector:

vE = f3←2
v

(
vP2;γE←P3

)
(A.33d)

Radar measurement vector:

zurv = furv←E (xE ,vE ;xEant,v
E
ant,γ

A←E
yp

)
(A.33e)

A.5.11. Radar measurement based on track measurement: furv←M

This function determines the radar measurement vector based on the track measurement vector.

Notation

zurv = furv←M (z,xEant,v
E
ant,γ

A←E
yp

)
(A.34a)

Implementation Partitioning of the track measurement:

z =

[
xP2

vt,pl

]
(A.34b)

Cartesian ENU location:

xE = f3←2
p

(
xP2;xEP3,origin,γ

E←P3
)

(A.34c)

Difference between target and antenna location:

∆xE = xE − xEant (A.34d)

Range to the target:

r = ‖∆xE‖ (A.34e)

Direction vector in ENU coordinates:

uE =
∆xE

‖∆xE‖ (A.34f)

Determine orientation of the x-axis of the antenna coordinate system:

eE =

 cos (γyaw) cos (γpitch)
sin (γyaw) cos (γpitch)
− sin (γpitch)

 (A.34g)

where the angles are given by

γA←Eyp =

[
γyaw

γpitch

]
. (A.34h)
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First component of the direction vector in antenna coordinates:

uA1 =
[
eE
]T
uE (A.34i)

Scalar product of the normal vector of the plane and line of sight vector:

ρpl,at =
[
nEplane

]T
uE (A.34j)

Projection of the antenna to target pointing vector onto the plane:

ũE = PEplaneu
E (A.34k)

= uE − ρpl,atn
E
plane (A.34l)

Target component of the radial velocity:

vt,rad = vt,pl‖ũE‖ (A.34m)

Radial velocity including antenna component:

vrad = vt,rad −
[
uE
]T
vEant (A.34n)

Arrangement of all measurements to one vector:

zurv =

 uA1
r
vrad

 (A.34o)

A.6. Jacobians of functions that are used by the tracking

algorithm

A.6.1. Jacobian of the functions that converts a 3d location to a 2d location

Jacobian of the function (see A.5.7)

f2←3
(
xE ;xEP,origin,γ

E←P3
)

(A.35)

Notation

∂xP2

∂xE
= f2←3

J,p

(
γE←P3

)
(A.36a)

Implementation Compute TD2←D3 and TP3←E of Section A.5.7

∂xP2

∂xE
= TD2←D3TP3←E (A.36b)
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A.6.2. Jacobian of the function that converts the range Doppler

measurement to a location in the tracking plane

Jacobian of the function

fP2←ur
(
u, r,xEant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.37)

with respect to the vector Φ which is defined in Section A.1.2.

Notation

∂xP2

∂Φ
=
∂fP2←ur

∂Φ

(
u, r,xEant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.38a)

Implementation Determine the Jacobian of the geolocation in 3 dimensions (see Section A.1.2)

∂xEgr

∂Φ
= fE←ur

J,rc

(
u, r,xEant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.38b)

Determine the Jacobian of the location in the tracking plane with respect to the 3d location

∂xP2

∂xE
=
∂f2←3

∂xE
(
γE←P3

)
(A.38c)

Determine the derivative with respect to Φ with the chain rule

∂xP2

∂Φ
=
∂xP2

∂xE
∂xEgr

∂Φ
(A.38d)

A.6.3. Jacobian of the function that converts the radar measurment to the

track input measurement

Jacobian of (see Section A.5.1)

fM←urv
(
u, r, vrad,x

E
ant,v

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.39)

The Jacobian is determined with respect to

θpt =

[
θ

zurv

]
(A.40)

where

θ =
[[
xEant

]T [
vEant

]T [
γA←E

]T ]T
=
[
xEant,1 x

E
ant,2 x

E
ant,3 v

E
ant,1 v

E
ant,2 v

E
ant,3 γ

A←E
yaw γA←Epitch γA←Eroll

]T
is the antenna location and attitude parameter vector.
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Notation

∂z

∂θpt
= fM←urv

J,θpt

(
u, r, vrad,x

E
ant,v

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.41a)

Implementation Compute the derivative of the location of the target in the tracking plane (see
Section A.5.9)

∂xP2

∂Φ
=
∂fP2←ur

∂Φ

(
u, r,xEant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.41b)

Use the chain rule to convert to the derivative with respect to θpt

∂xP2

∂θpt
=
∂xP2

∂Φ

∂Φ

∂θpt
(A.41c)

Determine the Jacobian of the measurable velocity with respect to Φ:

∂vt,pl,n

∂Φ
= fv←urv

J,n

(
udc, r, vrad,x

E
ant,v

E
ant,γ

A←E
yp ,nEplane, d

E
plane

)
(A.41d)

and use the chain rule to convert to a derivative with respect to θpt

∂vt,pl,n

∂θpt
=
∂vt,pl,n

∂Φ

∂Φ

∂θpt
(A.41e)

Concatanate to one matrix to obtain the Jacobian of the entire track measurement

∂z

∂θpt
=

[
∂xP2

∂θpt
∂vt,pl,n
∂θpt

]
(A.41f)

A.6.4. Jacobian of the track measurement with respect to measurement

noise

Determine the Jacobian of (see Section A.5.3)

fM←Sε

(
xS ;xEant,v

E
ant,γ

A←E
yp , ε

)
(A.42)

with respect to the noise term ε

Notation

∂z

∂ε
= fM←SJ,ε

(
xS ;xEant,v

E
ant,γ

A←E
yp , ε

)
(A.43a)

Implementation First, determine the synthetic DOA, range and radial velocity measurements
(see Section A.5.10)

zurv = furv←S (xE ,vE ;xEant,v
E
ant,γ

A←E
yp

)
(A.43b)
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Determine the Jacobian of the track measurement when determined with the synthetic radar
measurement (see Section A.6.3). The application of the chain rule shows that it is given by

∂z

∂ε
= fM←urv

J,θpt

(
u+ εu, r + εr, vrad + εv,x

E
ant + εEp,ant,

vEant + εEv,ant,γ
A←E
yp + εA←Eyp ,nEplane, d

E
plane

)
(A.43c)

A.6.5. Jacobian of the synthetic measurement with respect to the track

state in the abscence of noise

This function determines the Jacobian of the synthetic measurement with respect to the track

state in the abscene of noise (see Section A.5.4)

fM←S0

(
xS ;xEant,v

E
ant,γ

A←E
yp

)
(A.44)

Notation

∂z

∂xS
= fM←SJ,0

(
xS ;xEant,v

E
ant,γ

A←E
yp

)
(A.45)

Implementation Jacobian of the 3d target location with respect to the track state

∂xE

∂xS
=
[
TE←P3TD3←D2 03×2

]
(A.46)

Jacobian of the difference of the target and platform location

∂∆xEat

∂xS
=
∂xE

∂xS
(A.47)

Jacobian of the scalar product of the difference vector and the normal vector of the plane

∂ρ̃pl,at

∂xS
=
[
nEplane

]T ∂∆xEat

∂xS
(A.48)

Jacobian of the projection of the difference vector on the tracking plane

∂∆xEat,p

∂xS
=
∂∆xEat

∂xS
− nEplane

∂ρ̃pl,at

∂xS
(A.49)

Jacobian of the norm of the projection of the difference vector

∂‖∆xEat,p‖
∂xS

=

[
∆xEat,p

]T ∂∆xEat,p
∂xS

‖∆xEat,p‖
(A.50)
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Jacobian of the normalized projection of the differnce vector onto the plane

∂uEat,p

∂xS
=
‖∆xEat,p‖

∂∆xEat,p
xS

−∆xEat,p
∂‖∆xEat,p‖

∂xS

‖∆xEat,p‖
2 (A.51)

Jacobian of the ENU velocity with respect to the track state

∂vE

∂xS
=
[
03×2 TE←P3TD3←D2

]
(A.52)

Jacobian of the measurable plane velocity component

∂vt,pl

∂xS
=
[
uEat,p

]T ∂vE

∂xS
+
[
vE
]T ∂uEat,p

∂xS
(A.53)

Finally, the Jacobian of the track measurement

∂z

∂xS
=

 1 0 0 0

0 1 0 0
∂vt,pl
∂xS

 (A.54)

A.6.6. Jacobian of the radar measurements with respect to the track state

converts the track state to the radar measurement

Notation

= furv←S
J

(
xE ,vE ;xEant,v

E
ant,γ

A←E
yp

)
(A.55a)

converts the track state to the radar measurement

Implementation Partitioning of the track state

xS =

[
xP2

vP2

]
(A.55b)

Compute 3d ENU location

xE = f3←2
p

(
xP2;xEP3,origin,γ

E←P3
)

(A.55c)

Compute the 3d ENU velocity vector

vE = f3←2
v

(
vP2;γE←P3

)
(A.55d)

Compute the radar measurement

zurv = furv←E (xE ,vE ;xEant,v
E
ant,γ

A←E
yp

)
(A.55e)
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A.6.7. Jacobian of the radar measurement with respect to the track

measurement

Determine the Jacobian of the radar measurement with respect to the track measurement (see
Section A.5.11)

Notation

∂zurv

∂z
= furv←M

J

(
z,xEant,v

E
ant,γ

A←E
yp

)
(A.56a)

Implementation Compute variables of Section A.5.11 Jacobian of the track measurement
component vt,pl with respect to the track measurement

∂vt,pl

∂z
= [0 0 1] (A.56b)

∂xE

∂z
=
[
TE←P3TD3←D2 03×1

]
(A.56c)

Jacobian of the difference between the target and antenna location

∂∆xE

∂z
=
∂xE

∂z
(A.56d)

Jacobian of the range to the target

∂r

∂z
=

[
∆xE

]T ∂∆xE

∂z

‖∆xE‖ (A.56e)

Jacobian of the direction vector of the target

∂uE

∂z
=
r ∂∆xE

∂z −∆xE ∂r∂z
r2

(A.56f)

Derivative of the direction vector

∂uA1
∂z

=
[
eE
]T ∂uE

∂z
(A.56g)

Derivative of the correlation between the direction vector and the normal vector of the plane

∂ρpl,at

∂z
=
[
nEplane

]T ∂uE
∂z

(A.56h)

Jacobian of the projection of the direction vector onto the plane

∂ũE

∂z
=
∂uE

∂z
− ∂ρpl,at

∂z
nEplane (A.56i)
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Derivative of the norm of the projection vector

∂‖ũE‖
∂z

=

[
ũE
]T

∂ũE

∂z

‖ũE‖
(A.56j)

Derivative of the target component of the radial velocity:

∂vt,rad

∂z
= vt,pl

∂‖ũE‖
∂z

+
∂vt,pl

∂z
‖ũE‖ (A.56k)

Derivative of the radial velocity including antenna component:

∂vrad

∂z
=
∂vt,rad

∂z
−
[
vEant

]T ∂uE

∂z
(A.56l)

Arrangement of all derivatives to the Jacobi matrix

∂zurv

∂z
=

 ∂uA1
∂z
∂r
∂z
∂vrad
∂z

 (A.56m)

A.7. Other functions

A.7.1. Euler rotation matrix

The Euler rotation matrix is given in [21, Sec. 4.5, p. 116].

Notation

T = TEuler

(
γypr

)
(A.57a)

Implementation The parameter vector includes the yaw, pitch and roll angles:

γypr =

 γyaw

γpitch

γroll

 (A.57b)

Definition of the components of the Euler matrix:

Tr(γroll) =

 1 0 0
0 cos (γroll) sin (γroll)
0 − sin (γroll) cos (γroll)

 (A.57c)

Tp(γpitch) =

 cos (γpitch) 0 − sin (γpitch)
0 1 0

sin (γpitch) 0 cos (γpitch)

 (A.57d)

Ty(γyaw) =

 cos (γyaw) sin (γyaw) 0
− sin (γyaw) cos (γyaw) 0

0 0 1

 . (A.57e)
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Use the definition of the yaw, pitch and roll rotations to compute the Euler matrix:

T = Tr(γroll)Tp(γpitch)Ty(γyaw) (A.57f)

A.7.2. Inverse Euler rotation matrix

Notation

Tinv = Tinv
Euler

(
γypr

)
(A.58a)

Implementation The parameter vector includes the yaw, pitch and roll angles:

γypr =

 γyaw

γpitch

γroll

 (A.58b)

Use the definition of the yaw, pitch and roll rotations of Algorithm A.7.1 to compute the inverse
Euler matrix

Tinv = Ty(−γyaw)Tp(−γpitch)Tr(−γroll) . (A.58c)

A.7.3. Bilinear interpolation

∆ygrid

∆xgrid

∆x

∆y

(0,1) 

(0,0) 

 (1,1)

 (1,0)

Figure A.2.: One quadrant of the lattice on which the function values of g are provided. The
location at which the interpolated value is sought is highlighted by a red dot.

This function performs a bilinear interpolation: it approximates the value of a function g at a

location x2d. Functions values of g are known for a lattice with spacing ∆xgrid and ∆ygrid.
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A.8. Conversions with a digital elevation model

Notation

z = fbilin

(
x2d,θgrid

)
(A.59a)

Implementation

• Determine the quadrant where x2d is located

• Determine the location of x2d within this quadrant. The x and y location with respect to
edge (0,0) of the quadrant shall be denoted ∆x and ∆y.

• Determine the values of the function g at the edges. Denote them by

zgrid = [zgrid,0,0 zgrid,0,1 zgrid,1,0 zgrid,1,1 ]
T

(A.59b)

• Determine the elements of 4× 1 vector b which is used for computing the interpolated value

b1 = zgrid,0,0

b2 = zgrid,1,0 − zgrid,0,0

b3 = zgrid,0,1 − zgrid,0,0

b3 = zgrid,0,0 − zgrid,1,0 − zgrid,0,1 + zgrid,1,1 (A.59c)

• Compute the interpolated value

z = b1 + b2
∆x

∆xgrid
+ b3

∆y

∆ygrid
+ b4

∆x∆y

∆xgrid∆ygrid
(A.59d)

A.8. Conversions with a digital elevation model

A.8.1. Mapping from the planar location to ENU location

This function converts a two dimensional location state to a full three dimensional location by

using a digital elevation model. Basicaly, this function performs a bilinear interpolation to find

the z-coordiante of the DEM. The expanded notation inlcudes the bilinear interpolation. It is

given in order to facicilate the computation of the Jacobian matrix of this function in Section A.9.

Notation

xE = f3←2
p,dem

(
xP2,θdem

)
(A.60a)

Implementation

xE =

[
xP2

fbilin

(
xP2,θdem

) ] (A.60b)
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Expanded notation

• Compute the components of the parameter vector b of the bilinear interpolation.

b1 = zdem,0,0

b2 = zdem,1,0 − zdem,0,0

b3 = zdem,0,1 − zdem,0,0

b3 = zdem,0,0 − zdem,1,0 − zdem,0,1 + zdem,1,1 (A.60c)

• Determine the location of the xP2 within the quadrant of the DEM

∆x = mod
(
xP2

1 ,∆xdem

)
∆y = mod

(
xP2

2 ,∆ydem

)
(A.60d)

• Determine the interpolated value

xE3 = b1 + b2
∆x

∆xdem
+ b3

∆y

∆ydem
+ b4

∆x∆y

∆xdem∆ydem
(A.60e)

A.8.2. Mapping from the track velocity to ENU velocity

Using a DEM model, this function converts a two dimenensional velocity state to a three

dimensional velocity state. The expanded notation is given for the later computation of Jacobian

matrices of this functin.

Notation

vE = f3←2
v,dem(xS ,θdem) (A.61a)

Implementation Compute the Jacobian of the ENU location with respect to the location (see
Section A.9.1)

T3←2 =
∂f3←2

p,dem

∂xP2
(xP2,θdem) (A.61b)

Return value:

vE = T3←2vP2 (A.61c)

Expanded notation Jacobian of the z-component of the 3D location with respect to the 2D
location vector:

gT =

[
b2

∆xgrid
+

b4∆y

∆xgrid∆ygrid

b3
∆ygrid

+
b4∆x

∆xgrid∆ygrid

]
(A.61d)

Columns of T3←2

av,1 =

 1
0
g1

 , av,2 =

 1
0
g2

 (A.61e)
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where g1 and g2 are the elements of the vector g of equation (A.61d). Return value:

vE = av,1v
P2
1 + av,2v

P2
2 (A.61f)

A.9. Jacobians of the conversion between ENU and track

coordinate systems

In order to perform error propagation, Jacobians of the functions f3←2
p,dem, f3←2

v,dem and f3←2
s,dem

with respect to the location, velocity and DEM parameters are required. In the following, these

Jacobians are given.

A.9.1. Jacobian of the location conversion with respect to the location

Notation

T3←2
p,p =

∂f3←2
p,dem

∂xP2
(xP2,θdem) (A.62a)

Implementation

• Determine the parameters b1 to b4 that are used in the bilinear interpolation (see equa-
tion A.59c).

• Determine the positions ∆x and ∆y within the grid.

• Jacobian of the z component of the ENU coordinate

gT =
∂fbilin

∂x
(x,θgrid) =[

b2
∆xgrid

+
b4∆y

∆xgrid∆ygrid

b3
∆ygrid

+
b4∆x

∆xgrid∆ygrid

]
(A.62b)

• Jacobian of the entire ENU location vector

T3←2
p,p =

[
I2×2

gT

]
(A.62c)

A.9.2. Jacobian of the location conversion with respect to the DEM model

parameters

Notation Jacobian of the ENU location with respect the four neighboring grid points:

T3←2
p,dem =

∂f3←2
dem

∂zdem
(xP2,θdem) (A.63a)
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Implementation Jacobian of values b1 to b4 with respect to four neighboring grid points:

∂b

∂zdem
=


1 0 0 0
−1 1 0 0
−1 0 1 0

1 −1 −1 1

 . (A.63b)

Jacobian of interpolated valued with respect to parameters b1 to b4:

∂fbilin

∂b

(
xP2,θgrid

)
=

[
1

∆x

∆xdem

∆y

∆ydem

∆x∆y

∆xdem∆ydem

]
(A.63c)

Jacobian of the interpolated value with respect to the four neighboring edge points:

∂fbilin

∂z

(
xP2,θdem

)
=
∂fbilin

∂b

(
xP2,θdem

) ∂b

∂zdem
, (A.63d)

Return value:

T3←2
p,dem =

[
02×4

∂fbilin
∂z

(
xP2

p ,θdem

) ] (A.63e)

A.9.3. Jacobian of the location conversion with respect to track state and

DEM model parameters

Jacobian of f3←2
p,dem with respect to the vector

θS =

[
xS

zdem

]
(A.64)

which combines the target state and the DEM parameters.

Notation

T3←2
p,s =

∂f3←2
v,dem

∂θs
(xP2,θdem) (A.65a)

Implementation Compute the Jacobian with respect to the location (see Section A.9.1)

T3←2
p,p =

∂f3←2
p,dem

∂xP2
(xP2,θdem) (A.65b)

Compute the Jacobian with respect to the DEM model parameters (see Section A.9.2)

T3←2
p,dem =

∂f3←2
dem

∂zdem
(xP2,θdem) (A.65c)

Return value: Combine both results

T3←2
p,s =

[
T3←2

p,p 03×2 T3←2
p,dem

]
(A.65d)
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A.9.4. Jacobian of ENU velocity with resepect to the DEM parameters

Notation

T3←2
v,dem =

∂f3←2
v,dem

∂zdem
(xS ,θdem) (A.66a)

Implementation Jacobian of g with respect to the DEM parameter vector b

∂g

∂b
=

[
0 1

∆xgrid
0 ∆y

∆xgrid∆ygrid

0 0 1
∆ygrid

∆x
∆xgrid∆ygrid

]
, (A.66b)

Jacobian of av,1 and av,2 with respect to the DEM parameter vector b

∂av,1

∂b
=

[
02×4

[1 0] ∂g∂b

]
,
∂av,2

∂b
=

[
02×4

[0 1] ∂g∂b

]
(A.66c)

∂f3←2
v,dem

∂b
= vP2

1

∂av,1

∂b
+ vP2

2

∂av,2

∂b
(A.66d)

Return value (see equation (A.63b) for the computation of ∂b
∂zdem

):

T3←2
v,dem =

∂f3←2
v,dem

∂b

∂b

∂zdem
(A.66e)

A.9.5. Jacobian of ENU velocity with resepect to the track location

The Jacobian of the velocity conversion function with respect to the 2d position is found similarly
to the Jacobian with respect to the DEM parameters.

Notation

T3←2
v,p =

∂f3←2
v,dem

∂xP2
(xS ,θdem) (A.67a)

Implementation Jacobian of g with respect to the track location

∂g

∂xP2
=

[
0 b4

∆xgrid∆ygrid
b4

∆xgrid∆ygrid
0

]
(A.67b)

Jacobian of the vectors av,1 and av,2

∂av,1

∂xP2
=

[
02×2

[1 0]
T ∂g
∂xP2

]
,
∂av,2

∂xP2
=

[
02×2

[0 1]
T ∂g
∂xP2

]
(A.67c)

Return value

T3←2
v,p = vP2

1

∂av,1

∂xP2
+ vP2

2

∂av,2

∂xP2
(A.67d)
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A.9.6. Jacobian of ENU velocity with resepect to the track velocity

Notation

T3←2
v,v =

∂f3←2
v,dem

∂vP2
(xS ,θdem) (A.68a)

Implementation Return value

T3←2
v,v =

∂f3←2
p,dem

∂xP2
(xP2,θdem) (A.68b)

A.9.7. Jacobian of the ENU velocity with respect to the entire track state

and the DEM parameters

Jacobian of f3←2
v,dem with respect to the vector

θS =

[
xS

zdem

]
(A.69)

Notation

T3←2
v,θ =

∂f3←2
v,dem

∂θs
(xS ,θdem) (A.70a)

Implementation Compute the Jacobian with respect to the track location

T3←2
v,p =

∂f3←2
v,dem

∂xP2
(xS ,θdem) (A.70b)

Compute the Jacobian with respect to the track velocity

T3←2
v,v =

∂f3←2
v,dem

∂vP2
(xS ,θdem) (A.70c)

Compute the Jacobian with respect to the DEM parameters

T3←2
v,dem =

∂f3←2
v,dem

∂zdem
(xS ,θdem) (A.70d)

Return value: Combine results

T3←2
v,θ =

[
T3←2

v,p T3←2
v,v T3←2

v,dem

]
(A.70e)
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A.9. Jacobians of the conversion between ENU and track coordinate systems

A.9.8. Jacobian of entire ENU state with respect to the entire track state

and the DEM parameters

Jacobian of f3←2
s,dem with respect to the vector

θS =

[
xS

zdem

]
(A.71)

Notation

T3←2
v,θ =

∂f3←2
v,dem

∂θs
(xS ,θdem) (A.72a)

Implementation Compute the Jacobian of the ENU location with respect to the θs

T3←2
p,θ =

∂f3←2
p,dem

∂θs
(xP2,θdem) (A.72b)

Compute the Jacobian of the ENU velocity with respect to the θs

T3←2
v,θ =

∂f3←2
v,dem

∂θs
(xS ,θdem) (A.72c)

Return value: Combine Jacobians

T3←2
v,θ =

[
T3←2

p,θ

T3←2
v,θ

]
(A.72d)
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