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Abstract

The theoretical description of the Standard Model of Particle Physics (SM) is based on a
product of three symmetry group factors, SU(3)× SU(2)× U(1), corresponding to three of
the four fundamental interactions. These are the weak, the strong and the electromagnetic
interactions. Gravity is not included in the SM. In addition, it describes the elementary
fermionic matter in terms of five different representations of that group. For large energies, it
can be embedded in a single group with fewer representations for the SM particles in the
context of Grand Unified Theories (GUT) like SO(10). Moreover, in the SM the five fermion
representations each come in three flavours which differ only by their masses. These as well
as the mixing between the different flavours are parametrised by the Yukawa matrices.
In this thesis we present models based on a Pati-Salam (PS) symmetric GUT which

generate the Yukawa matrices dynamically. The PS group is only a semi-simple group and
thus it does not achieve complete unification. Still, it can be embedded in SO(10). The
breaking of PS down to the SM allows for multiple intermediate symmetries at various scales.
In the first class of models, we assume complete unification of all three gauge couplings

at the GUT scale. Moreover, we restrict ourselves to a setup where all additional fields
can be embedded in small representations of SO(10). Finally, we allow all of these fields to
appear in three copies similar to the SM fermions. We then study the possible ranges for the
intermediate scales.
In the second class of models we focus on the flavour aspects and present two approaches

to generate the Yukawa matrices dynamically. In both cases we consider gauged flavour
symmetries which are broken by vacuum expectation values of additional scalar “flavon”
fields.
In the first approach, the Yukawa matrices are generated using non-renormalisable terms,

i.e. allowing for multiple insertions of these flavons. Here, we consider the special case that
the SM Higgs field exists in three generations and transforms similarly to the SM fermions
under the flavour gauge group. This motivates us to consider also flavon representations being
larger than the commonly used fundamental one. We present particular models containing
flavons which transform solely in the decuplet or triplet representation, respectively.
In the second approach we introduce additional fermionic fields that communicate the

breaking of the flavour symmetry to the SM fermions. These extra fermions violate funda-
mental properties of the SM such as the pure left-chiral couplings of the weak gauge bosons.
We study how large such effects can be and to what extent they may be observable in current
or future experiments.
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Zusammenfassung

Die theoretische Beschreibung des Standardmodells der Teilchenphysik (SM) basiert auf
einem Produkt von drei Symmetriegruppen, SU(3)× SU(2)× U(1), die drei der vier fun-
damentalen Wechselwirkungen entsprechen. Diese sind die starke, die schwache und die
elektromagnetische Wechselwirkung. Die Gravitation wird im SM nicht betrachtet. Zusätzlich
beschreibt das SM die elementaren fermionischen Teilchen basierend auf fünf unterschiedlichen
Darstellungen dieser Gruppe. In sogenannten

”
Großen Vereinheitlichten Theorien“ (GUT)

kann das SM bei hohen Energien in einer einfachen Symmetriegruppe, wie beispielsweise der
SO(10), mit einer einer einzigen Darstellung der Fermionen eingebettet werden. Des Weiteren
kommen alle Darstellungen der Fermionen des Standardmodells in drei Generationen vor, den
sogenannten

”
Flavours“, die sich lediglich durch ihre Massen unterscheiden. Diese Massen

sowie die Mischung zwischen den unterschiedlichen Flavours werden im Standardmodell über
die Yukawa-Matrizen parametrisiert.
In dieser Arbeit werden Modelle auf Basis einer Pati-Salam (PS) symmetrischen GUT

betrachtet, die die Yukawa-Matrizen dynamisch erzeugen. Die PS-Gruppe ist lediglich eine
halbeinfache Gruppe und erreicht somit selbst keine vollständige Vereinheitlichung. Aller-
dings erlaubt PS eine weitere Einbettung in eine SO(10)-Theorie. Zusätzlich besitzt PS die
Möglichkeit mehrerer intermediärer Symmetrien bei der Reduktion auf die Symmetriegruppe
des Standardmodells.
In der ersten Klasse von Modellen wird eine vollständige Vereinheitlichung aller drei

Eichkopplungen an der GUT-Skala angenommen. Außerdem beschränkt sich der Ansatz auf
zusätzliche Felder, die eine weitere Einbettung in die SO(10) ermöglichen. Schließlich wird
all diesen Feldern erlaubt, in drei Generationen im Niederenergiespektrum vorhanden zu sein.
Unter diesen Annahmen werden die möglichen Energiebereiche der intermediären Skalen
betrachtet.
Die zweite Klasse an Modellen konzentriert sich auf den Flavour-Sektor und präsentiert

zwei Ansätze zur expliziten Realisierung der Yukawa-Matrizen. In beiden Fällen wird die
Flavour-Symmetrie als geeicht betrachtet und von Vakuumerwartungswerten von zusätzlichen
skalaren Feldern, den sogenannten Flavonen, gebrochen.
Im ersten Ansatz wird die Yukawa-Matrix mittels nicht renormierbarer Terme erzeugt.

Hier betrachten wir den speziellen Fall, dass auch das SM Higgs-Boson in drei Generationen
vorkommt und sich ähnlich der Fermionen unter der Flavour-Symmetrie transformiert. Ein
solcher Ansatz legt eine Betrachtung von größeren Darstellungen als der üblicherweise
betrachteten fundamentalen Darstellung für die Flavonen nahe. Es werden zwei spezielle
Modelle präsentiert, welche einerseits lediglich die fundamentale Triplet-Darstellung sowie
andererseits ausschließlich die Dekuplett-Darstellung verwenden.
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Im zweiten Ansatz wird die Brechung der Flavour-Symmetrie über zusätzlich eingeführte
fermionische Partner vermittelt. Diese zusätzlichen Fermionen verletzen grundlegende Eigen-
schaften des Standardmodells, wie zum Beispiel die Tatsache, dass die schwachen Eichbosonen
nur an linkshändige Fermionen koppeln. In diesem Modell wird betrachtet, wie groß sol-
che Verletzungen sein können und in welchem Ausmaß diese in aktuellen oder zukünftigen
Experimenten beobachtbar sind.
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Introduction

The Standard Model of particle physics (SM) developed in the late 60’s has been proven
to be a very predictive theory. Measurements have shown that it is also an extremely precise
description of particle physics. Nonetheless, already since its formulation there have been
efforts to find a unification of the independent SM interactions to a Grand Unified Theory
(GUT). This is mainly theoretically motivated as it may simplify the structure and solve
some theoretical issues of the SM like neutrino masses and charge quantisation. The first
ideas of such a unification were proposed by Georgi and Glashow [1] as well as Fritzsch and
Minkowski [2] in the early 70’s. Such GUTs provide a description of particle physics by
only a single basic interaction at high energies. Back then, people assumed only a single
new energy scale (the GUT scale) to be present where all interactions should unify. This
was motivated by the fact that the energy dependent gauge couplings approach each other
with increasing energy and seemed to meet at roughly 1016GeV. Additionally, it kept the
theory predictive as intermediate scales would introduce additional parameters which are
not constrained by experimental data. However, this assumption becomes more and more
questionable as hints for intermediate scales have appeared; moreover single scale unification
has issues on its own. One of these hints is the right-handed neutrino scale usually introduced
to explain the smallness of the SM neutrino masses which have been experimentally suggested
in the late 70’s and were established until 2002 [3–5]. The flavour structure, which is often
not considered in unified theories, may also introduce various additional scales in a GUT
framework.

One aim of this thesis is to address the question of multiple scales, especially in the context
of embedding flavour, in GUTs. Since a theory of flavour depends significantly on the chosen
GUT we limit ourselves to the Pati-Salam symmetry (PS) [6, 7]. The PS symmetry itself does
not achieve full unification but qualifies as an intermediate theory which is complex enough
to feature a great variety of interesting aspects while still not being completely arbitrary. A
second question we intend to address in this thesis is the general embedding of flavour in
GUTs based on the PS symmetry.

Throughout this thesis, we are mainly interested in depicting possible routes of going
beyond the SM. Thus, we are not limited by the loss of predictive power we encounter when
giving up the concept of a single unification scale. We do not aim for explaining specific
measurements or finding the theory of everything. Rather we want to shed some light on
potential implications arising when combining flavour and GUT physics. Thus we deliberately
keep the presented models rather unconstrained to not exclude interesting effects right from
the beginning.
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We are often working in a supersymmetric framework as GUT physics suggest to introduce
Supersymmetry (SUSY) [8–10]. In addition, it usually simplifies the model building process
which is another reason to consider SUSY. Nevertheless, we also study non-supersymmetric
realisations of our models. In the last model we give up the concept of SUSY to explicitly
deduce flavour effects.

Organisation of the thesis

We have divided this thesis into two parts. The first part gives a general overview of the
topic of GUTs (Chapter 1) and presents the different aspects of flavour (Chapter 2). We also
provide some basic theoretical tools here, needed later on in this thesis. In the second part
we study explicit models realising the embedding of flavour in Pati-Salam GUTs. This part
is split into three chapters, corresponding to the different aspects and models. The essential
results thereof have been published in [A-C].
In Chapter 3 we consider how to generally break the Pati-Salam symmetry to the SM

via intermediate scales. Basing our model on simple assumptions, we set up a framework
achieving such a breaking while guaranteeing gauge coupling unification (GCU). As we stick
to a simple construction principle, we are able to deduce general features present in various
explicit realisations. Here, we perform a detailed discussion in the framework of SUSY from
which we deduce a non-supersymmetric case. Having constructed a fundamental framework,
we take a look at the realisation of flavour in such a model. This we do using two different
approaches.
In the first setup (Chapter 4), we consider a single SU(3) flavour symmetry, broken by

scalar fields (flavons) acquiring vacuum expectation values (vevs) at a high scale. The Yukawa
structure is realised by higher dimensional operators, containing multiple insertions of the
flavon vevs. This we do considering different representations for the flavon fields. Motivated
by matter-Higgs unification we demand the SM Higgs boson to appear in three generations,
transforming identically to the SM fermions under the flavour gauge group. As we only
consider the model at a very high energy scale, we restrict ourselves to the supersymmetric
realisation.
In the second ansatz presented in Chapter 5 we generate the Yukawa matrices at rather

low energies by means of a renormalisable potential. This setup is an adaption of an idea
by Grinstein, Redi, Villadoro [11] to the framework of Pati-Salam GUTs. Here, the Yukawa
structure is generated by integrating out fermionic messenger fields which couple the flavons
to the SM fermions, thereby mediating the flavour symmetry breaking. We consider the
model in a non-supersymmetric framework, as we intend to explore possible flavour effects of
the model without specifying a SUSY breaking sector. Nevertheless, we also comment on
how to supersymmetrise the setup.
We conclude the thesis with a short general summary and give an outlook on further ideas

in Chapter 6. A few appendices give some details on the calculation and basic concepts used.
We again split this appendix into three different parts, corresponding to the chapters of the
main part of the thesis.



Part I.

General Overview & Theoretical
Background
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Chapter 1

Grand Unified Theories

In this chapter we introduce the concept of Grand Unified Theories (GUTs). Since these
constitute an extension of the Standard Model of Particle Physics (SM), we first give a basic
overview of the SM. Afterwards, we briefly comment on especially theoretical issues of the
SM which motivate to consider GUTs. As GUTs are usually considered within the framework
of Supersymmetry (SUSY), we present a short overview of its features relevant for this thesis.
Having set the stage, we give a historically motivated introduction to GUTs.

1.1. Selected Aspects of the Standard Model

The SM describes the particle interaction based on only a few simple symmetry principles.
The framework behind is a quantum field theory in which the fundamental interactions are
represented by gauge symmetries and the force carriers are the corresponding gauge bosons [12].
The particles are described by fields transforming non-trivially under these symmetries. The
SM includes three of the four fundamental forces which are the electromagnetic, the weak
and the strong force; there is so far no theory of gravity compatible with a gauged quantum
field theory. A detailed review on theoretical aspects and the experimental status of the SM
can be found in References [13–15] and references therein.

Gauge Symmetry

The gauge symmetry of the SM is a direct product of gauge groups associated with the
strong and the electroweak interactions.
The strong interaction is responsible for the formation of hadrons. It is represented by

an unbroken colour gauge group SU(3)c. The mediators of the strong interaction are the
gluons Ga which are embedded in the adjoint (octet) representation of SU(3)c. So far
only particles invariant under the SU(3)c symmetry (colour singlets) have been directly
measured in experiments. This fact is described by the concept of confinement and related
to the observation that for large scales (small energies) the coupling is non-perturbative (see
e.g. [16, 17]).
The second part of the SM are the electroweak interactions which are a combination of

the electromagnetic and the weak interactions. The weak interactions are responsible for
weak decays, e.g. the β-decay. The electroweak interactions are represented by a direct
product of the group SU(2)w of the weak interactions and the hypercharge U(1)Y , resulting

5



1. Grand Unified Theories

quarks leptons

(3,2)1/6


u
d


L


c
s


L


t
b


L

(1,2)−1/2


νe
e


L


νµ
y


L


ντ
τ


L

(3,1)2/3 uR cR tR

(3,1)−1/3 dR sR bR (1,1)−1 eR µR τR

Table 1.1.: Fermion content of the SM. The first column shows the representations under the
SM gauge group which is given in the standard way as (SU(3)c, SU(2)w)U(1)Y .

in the gauge group SU(2)w × U(1)Y . This group gets spontaneously broken within the SM
to the electromagnetic U(1)em by the Higgs mechanism. The mediators of the electroweak
interactions are before symmetry breaking the three SU(2) gauge bosons W a and the
hypercharge boson B. In the broken phase they are redefined to the massive charged W± as
well as the neutral Z0 bosons and the massless photon γ.

Summing up, the full gauge group of the SM is given by

GSM = SU(3)c × SU(2)w × U(1)Y . (1.1)

Particle Content

In the SM, the fermions are embedded in the fundamental representations of the gauge
group factors discussed above. They can be separated in two classes, the quarks and the
leptons. Quarks transform in the triplet representation under the strong interactions whereas
leptons are colour singlets. The charged leptons and quarks come in pairs of left- and right-
handed fermions. The neutral leptons, the neutrinos, are purely left-handed. All left-handed
fields are combined in doublets of the weak interaction. We note that we do not consider
right-handed neutrinos as part of the SM.
The fermion content of the SM including their transformation properties under GSM are

given in Table 1.1. We note that there are two different ways of defining the hypercharge in
the literature that differ by a factor of 2, as a U(1)-charge is only defined up to a general
rescaling. In the following, we will label the left-handed doublet by QL (LL), which may
be any quark (lepton) of the first row as well as the singlets by UR, DR and ER, which
correspond to the up-, down-type quarks and leptons of the second and third row of Table 1.1,
respectively.

The SM Lagrangian

The SM Lagrangian can be divided in three parts and is given by

LSM = Lkin + LYuk + Vscalar , (1.2)

where Lkin is the kinetic part, LYuk contains the Yukawa interactions and Vscalar is the scalar
potential. The first two of them are essential for the concept of flavour and will be discussed
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1.2. Reasons for going Beyond the SM

in more detail in the next chapter. The scalar potential is briefly discussed below. For
completeness, we state all parts of the SM Lagrangian in shorthand notation here;

Lkin =


ΨL,R /DΨL,R +
1

4


F a
µνF

aµν +
 /Dϕ2 , (1.2a)

LYuk =


YΨ ΨL ϕΨR , (1.2b)

Vscalar = µ2ϕ†ϕ+ λ

ϕ†ϕ
2
, (1.2c)

where the covariant derivative /D and the field strength tensor F a
µν are given by

/D = γµDµ = γµ


i∂µ −

12
a=1

gataAa
µ


, (1.3a)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + ga fabcAb

µA
c
ν , (1.3b)

and a, b, c run from 1 to 12. Here, ΨL (ΨR) may be any of the left- (right-)handed fermion
fields QL, LL (UR, DR, ER) and ϕ is the scalar Higgs field. Aµ denotes the vector containing
the gauge fields (Ga

µ, W
a
µ , Bµ), g consists of the coupling constants (gs, g, g

′) and ta is the
vector of the generators (T a, τa, Y ).

Higgs Mechanism

The Higgs mechanism of the SM is responsible for the symmetry breaking and the masses
of the gauge bosons [18–20].
The scalar potential Vscalar is invariant under the product group SU(2)w ×U(1)Y , however,

its ground state is not. The vacuum expectations value (vev) of the scalar field ϕ can be
calculated to v =


−µ2/λ, where the parameter µ2 must be negative. Moreover, the scalar

potential is still invariant under a change of the complex phase of the scalar field ϕ. Thus,
the ground state spontaneously breaks the symmetry down to U(1)em which is still a good
symmetry of the ground state.
The Higgs mechanism results in mass terms for the gauge boson from the kinetic Lagrangian

due to this breaking. The Goldstone bosons of the broken symmetry become the longitudinal
modes of the massive gauge bosons. Thus, only a single neutral scalar field, the Higgs boson,
is a physical particle. It has been observed quite recently by the ATLAS and CMS experiment
at the LHC at CERN [21, 22]. In addition, the Higgs boson generates masses for the fermions
due to the Yukawa part of the Lagrangian.

1.2. Reasons for going Beyond the SM

Although the SM is a very predictive and accurate theory (see e.g. [23]), there are in
particular theoretical reasons to consider models beyond the Standard Model (BSM). In the
following, we briefly discuss some of these issues. A more detailed discussion, especially on
how to solve the shortcomings discussed below, can be found in [24–26] and will be addressed
throughout this thesis.

7



1. Grand Unified Theories

Neutrino Masses

The SM itself does not contain right-handed neutrinos which results in exactly massless
neutrinos. However, recent measurements have shown that neutrinos mix and thus at least
two of them have to have non-vanishing masses (cf. Section 2.2). Therefore, some mechanism
to generate these masses has to be introduced. A detailed discussion on such mechanisms is
given in Section 2.3.

Gauge Coupling Unification

The gauge couplings themselves are not constant but rather change with energy. This
change in energy is explained in the framework of renormalisation [27, 28]. It can be calculated
in good approximation from knowing solely the fermion content of the theory. Considering
the behaviour of the three gauge couplings of the SM, we find that they approach each other
with increasing energy. They nearly meet close to the Planck scale which motivates to unify
the gauge symmetries at this scale. In the minimal supersymmetric extension of the SM
they actually meet within uncertainties at the so-called GUT scale MGUT ≈ 1016GeV (see
e.g. [29, 30]). The unification of the gauge couplings will be discussed within an explicit
model in Chapter 3.

Origin of Flavour

The SM contains three generations of quarks and leptons that differ solely by their masses.
The relations between these are parametrised by the Yukawa matrices but not explained.
The Yukawa matrices feature 13 of the 19 free parameters of the SM without neutrino masses
and mixing. Including these adds another 7 or 9 Yukawa parameter, depending on whether
neutrinos are Dirac or Majorana particles. To reduce these parameters one might consider
BSM theories to find a guiding principle based on symmetry arguments. The framework of
unification reduces the Yukawa sector but does not address this subject in general. However,
it gives room for interesting flavour models as discussed in the main part of this thesis.

Charge Quantisation

An important feature of nature is the equality of the absolute value of the electron and
proton charge, i.e. neutral atoms. The charge of the electron is historically defined by the
elementary charge Qe = −e. As the proton (uud) and the (neutral) neutron (udd) are
composite particles of up- and down-type quarks, this equality leads to fractional charges
Qd = −1/3 e and Qu = +2/3 e for the quarks.
This charge assignment is not determined from first principles in the SM. It can be traced

back to the fact that the hypercharge of the fermions cannot be completely fixed. However,
most GUTs do provide an explanation for this issue as they embed the U(1)Y into a non-
abelian group. In these GUTs, all gauge transformations and charges of the fermions are
completely fixed.

Hierarchy Problems

In gauge theories, the mass m of a scalar particle is not protected by any symmetry. Thus,
there is no natural scale for the mass parameter m2

0 of the theory. In the SM, this problem

8



1.3. Supersymmetry

affects the electroweak symmetry breaking Higgs since it is the only scalar in the theory.
Calculating radiative corrections to the Higgs mass, we get a quadratic divergence which can
be renormalised by an ultraviolet cutoff parameter Λ. Hence, the renormalised mass is given
by

m2 = m2
0 + aΛ2 + . . . , (1.4)

where a is a calculable value. Here, m is the experimentally observable mass of the scalar
which is physical and has to be independent under renormalisation. However, since m0 and
Λ are both unphysical parameters we can choose them such that we get the measured value
for m. Thus, if there is no new physics and gravity is turned off at any high scale, there is no
problem at all. However, if we introduce a new physics scale such as a GUT scale or consider
gravity which introduces the Planck scale, Λ becomes a physical parameter. Thus, we have a
fine-tuning problem as the scales of m and Λ differ by many orders of magnitude (m≪ Λ).
The level of fine-tuning needed to cancel the scale of Λ by m0 is often called naturalness.
Thus, this problem of the SM including higher scale physics is often referred to as naturalness
problem.
In the literature one sometimes finds another hierarchy problem, namely in the Yukawa

sector of the SM. As there are large hierarchies between the masses (cf. Section 2.2), also
the Yukawa couplings have to feature these hierarchies. These are given by the mass ratios
and are as large as 106.

There are additional aspect that are not explained by the SM. Examples are dark matter,
dark energy, baryon-asymmetry, gravitation, inflation and many more which are not relevant
for this thesis and will not be discussed here.

1.3. Supersymmetry

Most GUTs are constructed within the framework of Supersymmetry. The main reason
for that is the naturalness problem which we encounter when introducing additional scales
to the SM (cf. discussions above). SUSY provides a solution to this problem as we outline
below. Another motivation for SUSY is the fact that it is the only possible extension of the
Poincaré algebra in four dimensions which the SM, as well as all other quantum field theories,
are based on. As such, it is an extension of the space-time symmetry that relates bosons and
fermions.
In the following, we take a look at the main features of SUSY. We will not give an

introduction or complete discussion of SUSY here but only discuss aspects relevant for this
work. The main aspects of SUSY are nowadays textbook knowledge and can be found in
e.g. [31–34].

Solution to the Naturalness Problem

Supersymmetry introduces a scalar field for each of the SM fermions and vice versa which
are the so-called superpartners. In exact SUSY, the SM fields and their superpartners have

9



1. Grand Unified Theories

equal mass and cancel the contribution of the fermions to the running of the SM Higgs mass
parameter. Thus, additional fermions with masses above the SUSY scale do not contribute
to the naturalness problem.
Due to the large top Yukawa coupling, the contribution of the top quark to the naturalness

problem is the most important one in the SM. This contribution gets not cancelled exactly
by the superpartner of the top as it has not been found yet 1. Hence, we still encounter a
logarithmic divergence which sometimes is called the “little hierarchy problem”.

Superpotential

An additional advantage of supersymmetry is the superfield formalism which includes the
superpotential W . The scalar potential of the theory can be derived from a superpotential
with mass dimension up to three. Hence, the number of allowed terms and their invariant
structures is limited compared to the non-SUSY case2.
The scalar potential of the theory is given by

L =
F i
2 + 1

2
|Da|2 , (1.5)

where the F-terms follow from the superpotential W and the D-terms are determined purely
from the gauge symmetry and the contained superfield content ϕi. They are given by

Da = ga

i

ϕ∗
i T

a ϕi and F i = −

∂W

∂ϕi

∗

. (1.6)

(Accidental) SUSY Breaking

Supersymmetry is spontaneously broken if one of the F- or D-terms has a non-vanishing
ground state. In order to ensure the validity of SUSY down to some low scale, we have to
verify this for any GUT breaking vev of the high scale. Otherwise SUSY would be broken
accidentally.
In addition, SUSY can be broken softly, i.e. by so-called soft-breaking terms which are

introduced in the effective Lagrangian by hand [35]. This is often realised by breaking SUSY
spontaneously in a hidden sector. However, the mechanism of SUSY breaking and the mass
structure of the superpartner is not relevant for this work. Hence, we will not discuss the
SUSY-breaking any further.

Two Higgs Doublets

As the superpotential has to be holomorphic, we are not allowed to use the complex
conjugate Higgs field to generate masses for the up-quark sector (cf. Section 2.1.2). Hence,
we have to introduce an additional Higgs field which results in a two Higgs doublet model
of Type II (cf. e.g. [36, 37]). In general, the two doublets get different vevs vu and vd.
Nevertheless, the Higgs sector has to reproduce the masses of the electroweak gauge bosons.
From the kinetic terms of the two Higgs fields one can read off that both vevs contribute

1Neither have any other superpartner been observed (see “Problems of SUSY”).
2However, the soft sector needed to break SUSY introduces a lot of additional terms and structures.
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quadratically to the gauge boson masses. Thus, they have to add up quadratically to the
square of the SM vev v. The ratio of these two vevs is commonly denoted by tan β,

tan β =
vu
vd

with v2u + v2d = v2 . (1.7)

Nonrenormalisation Theorem

The nonrenormalisation theorem states that the parameters of the superpotential do not
receive renormalisation corrections [8, 38]. It is a consequence of the condition that the
superpotential is holomorphic. This theorem is of particular interest for couplings with
positive mass dimension as they may encounter a naturalness problem. However, this does
not imply that SUSY needs not be renormalised at all, as field renormalisation is still present.

Problems of SUSY

One of the main issues of SUSY is the fact that despite extensive searches no superpartner
has been observed so far. The most recent lower bounds on the SUSY scale come from
the LHC and are in the range of a few TeV (e.g. [15, 39–41]). However, these searches are
all based on simplifying conditions and specific models. Thus, the general bound is lower.
Nevertheless, due to the large number of free parameters in the soft breaking sector, SUSY
cannot be excluded easily and for special parameter points even much lower SUSY scales are
still conceivable.
An additional shortcoming is the so-called µ problem. The µ parameter is the residual

mass parameter of the electroweak symmetry breaking Higgs. Although it does not receive
renormalisation corrections its size still lacks in motivation. As it is the only scale in the
theory one would expect it to be near the Planck scale rather than in the electroweak regime.
This is however a purely theoretical problem and may or may not be seen as such.

1.4. Roadmap to Unification

As we have discussed in Section 1.1, the SM combines two interactions to a more fundamental
one and thus links phenomena that for a long time seemed to be unrelated. Hence, it seems
to be natural to search for a unification principle of the SM interactions to correlate the
different gauge sectors of the SM. Another motivation comes from the fact that the gauge
couplings (strong, weak and hypercharge) approach each other at large energies. In the
simplest of the supersymmetric extensions, the Minimal Supersymmetric SM (MSSM) (see
e.g. [33, 34]), all three gauge couplings unify at roughly MGUT ≈ 1016GeV which is not far
below the Planck scale3.
Since the SM is extremely successful in predicting low energy data up to several TeV [23],

it should be the low energy effective theory of the unified model. Thus, a unifying gauge
group has to have the SM as a subgroup, GGUT ⊃ GSM. The number of good quantum
numbers of the theory corresponds to the number of diagonal generators which is the rank
of a group. The SM gauge group GSM has rank 4 and thus, the unifying group has to

3We use MPlanck = 1018.2 GeV ≈ 1.6 · 1018 GeV.
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1. Grand Unified Theories

have rank(GGUT) ≥ 4. There are only a few groups fulfilling these constraints which are
not merely trivial extensions, i.e. additional group factors multiplied to GSM. The only
possible rank 4 group is SU(5). At rank 5 the groups mainly considered are SO(10) and
SU(4)× SU(2)× SU(2). At rank 6 and 8, there are the exceptional groups E6 and E8 which
are usually discussed as GUT, especial in the context of string theory. In this context, also
even larger groups such as SO(32) are discussed. One can consider different or larger groups
but for multiple reasons (especially simplicity) they have not been discussed extensively so
far. Most of the groups mentioned before will be outlined in the following, especially SU(5)
as it may be seen as prototype. In the presentation of the GUTs we follow the historical
development. A review on GUTs can be found in e.g. [42, 43]

1.4.1. SU(5) à la Georgi and Glashow

The smallest group unifying all SM gauge factors is SU(5). It was first discussed by Georgi
and Glashow in 1974 [1]. The embedding of the SM gauge group in SU(5) can easily be
seen when constructing the generators of SU(5) explicitly. Therefore, we choose the basis
such that the first generators can be represented as direct product of the SU(3)c and SU(2)w
generators, 

SU(5)


=̂


SU(3)c 0

0 SU(2)w


. (1.8)

By this construction principle we can identify 11 of the 24 generators Li of SU(5) with the
SM ones (T 1...8 and τ 1...3),

L1...8 =


T 1...8 0
0 02×2


and L9...11 =


03×3 0
0 τ 1...3


, (1.9)

were we have used a shorthand notation to display the 5× 5 matrices L. The hypercharge
has to be diagonal in this basis as it is the fourth good quantum number. As the rank of
SU(5) is four it is (up to normalisation) fixed to match

Y ∼ L12 =
1√
15

diag (−2 , −2 , −2 , 3 , 3) . (1.10)

The remaining 12 generators are the off-diagonal generators X and Y ,

L13...18 =

 03×3 X 0
X† 0 0
0 0 0

 and L19...24 =

 03×3 0 Y
0 0 0
Y † 0 0

 . (1.11)

These gauge bosons transform non trivially under both SU(3)c and SU(2)w, and thus mediate
new transitions like proton decay. These will be discussed later in this section.
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1.4. Roadmap to Unification

Unifying the Fermions

In order to combine different fermion representations we have to ensure equal chirality for
them. We know that a charged conjugated right-handed fermion transforms left-handed and
vice versa,

(fR)
c ∼ fL , (1.12)

where f represents any fermionic field. Hence, we can write the complete SM fermion content
as left-handed fermions. Next, we consider the branching rules of SU(5) to the SM gauge
group [42]. The smallest representations containing all of the SM representations are 5 and
10,

5 → (3,1)1/3 + (1,2)−1/2 and 10 → (3,2)1/6 + (3,1)−2/3 + (1,1)1 . (1.13)

Hence, we can combine the lepton doublet with the charge conjugated down quark singlet
to an anti-fundamental representation. The charge conjugated up quark singlet, the quark
doublet and the charge conjugated lepton singlet fit together into a decuplet representation
of SU(5). This defines the embedding of the SM quarks which we give for the first generation
for explicitness,

ψ =

(d1R)

c , (d2R)
c , (d3R)

c , νL , eL

, (1.14a)

χ =


0 (u3R)

c −(u2R)
c −u1L −d1L

−(u3R)
c 0 (u1R)

c −u2L −d2L
(u2R)

c −(u1R)
c 0 −u3L −d3L

u1L u2L u3L 0 −ecR
d1L d2L d3L ecR 0

 , (1.14b)

where the superscript on the quarks are colour indices.
After the breaking of SU(5) down to the SM, the generator L12 corresponds to an unbroken

U(1) which is identified with the hypercharge. Thus, the U(1) charges of the SM fermions are
fixed by L12. However, these charges do not match the hypercharges historically considered
in the SM. Thus, a factor of 5/3 is introduced to match the SM hypercharge. The charge
operator for the electric charge can be calculated following the Gell-Mann-Nishijima formula
to

Q = T3 + Y =
1

2
L11 +

1

2


5

3
L12 = diag


−1

3
,−1

3
,−1

3
, 1, 0


. (1.15)

We note that the charge operator is defined for the fundamental representation and its SU(2)
components have to be multiplied by an epsilon tensor when applying it to the 5.

Higgs Embedding & SU(5) Breaking

The electroweak symmetry breaking Higgs has to be embedded in SU(5), i.e. we need a
representation that couples to the Yukawa terms ΨΨ, Ψχ and/or χχ. Thus, it has to be
part of the product 5× 5, 5× 10 or 10× 10. The decomposition of these tensor products
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1. Grand Unified Theories

can be found in [42]. The smallest representation which is able to provide an electroweak
breaking Higgs doublet is the fundamental quintuplet 5. To be compatible with SUSY, we
in addition have to introduce the conjugate representation 5. These are the Higgs fields
originally considered by Georgi and Glashow. Alternatively, it is possible to embed the Higgs
doublet in a pair of 45 and 45. The up- (down-)type Higgs Hu (Hd) is contained in the 5
and 45 (5 and 45). In any case, the Yukawa interaction is given by4

LYuk = Y D ψHd χ+ Y U χHuχ+ h.c. . (1.16)

In addition to the embedding of the electroweak Higgs we have to introduce Higgs fields
breaking SU(5) down to the SM in the first place. For this, we have to assign a vev to the
SM singlet component of an SU(5) representation. A common way to achieve a breaking of
SU(5) is to use the adjoint 24 representation. The next larger possible representation is the
75.

The SU(5) model constructed so far treats each generation of fermions separately, similar
to the SM. The role of flavour symmetries in GUTs will be discussed in the next chapter.

Problems of SU(5)

There are two unsolved issues in the simplest SU(5) model presented here, both related to
proton decay. First of all, the additional gauge bosons X and Y introduce proton decay in the
theory. Naturally one would assume masses of the order of the GUT scale for those. Naively
calculating the proton decay rate using this assumption, one starts to get in tension with the
current bound on proton lifetime from Super-Kamiokande which is 8.2× 1033 years [44, 45].
The second and more severe problem is the doublet-triplet splitting problem. The fun-

damental representation containing the electroweak symmetry breaking Higgs decomposes
into the Higgs doublet and an additional triplet. These triplets again allow for rapid proton
decay if they couple to the SM fermions and have masses around the electroweak scale. The
doublet however has to be light as it plays the role of the electroweak Higgs. Thus, we are
left with the problem of splitting up the masses and/or couplings of different components of
the fundamental representation over several orders of magnitude.

1.4.2. Complete Unification in SO(10)

One of the most common symmetries unifying the gauge sector of the SM is SO(10). It
was first discussed by Fritzsch and Minkowski in 1974 [2]. Its attractiveness lies in the fact
that it is the smallest group unifying both gauge interactions and fermion spectrum. Its rank
is 5 and thus larger than that of the SM or SU(5). Thus, it contains SU(5) × U(1) as a
subgroup. All fermions fit into the 16 which is the fundamental representation of SO(10).
Its branching to SU(5) and further to the SM is given by

16
SU(5)−−−→ 10−1 + 53 + 1−5 (1.17a)

SM−−−→ (3,2)1/6 + (3,1)1/3 + (3,1)−2/3 + (1,2)−1/2 + (1,1)1 + (1,1)0 . (1.17b)

4Note that the invariant structure and the resulting low energy Yukawa terms clearly depend on the choice
of Higgs representation.
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In addition to the SM fermions it contains a singlet under the complete SM gauge group
(1,1)0. This singlet is a good candidate for a right-handed neutrino.

The electroweak symmetry breaking Higgs is contained in a 10 which splits up into
5 + 5 under SU(5). Again, the larger representation for the electroweak Higgs leads to
coloured scalars which have to be made artificially massive. Another possibility to include the
electroweak Higgs in SO(10) is to embed it in a 120 or 126. These are all the possibilities for
a standard Higgs since we want to construct a renormalisable gauge invariant Yukawa term.

Taking a look at the breaking of SO(10) we recognise directly that one possibility is to first
break it to SU(5), as it is a subgroup that contains the SM. Such a breaking can be realised by
assigning a vev to the adjoint 45 representation which contains an SU(5) singlet. Moreover,
the 45 contains a 24 under SU(5) which can be used to break SU(5). This further breaking
can be realised at the same scale as the SO(10) breaking or at a lower scale, depending on
whether the Higgs potential splits up these two vevs. Another way of breaking SU(5) itself
can be achieved by a vev of the singlet component of 16 or 126. These representations can
also break SO(10) directly down to the SM gauge group. An orthogonal way of breaking
SO(10) is to assign a vev to a 54 which breaks SO(10) to SO(6)× SO(4) [42]. This is the
relevant breaking path for this work which therefore is discussed in more detail in the next
section.

1.4.3. Pati-Salam: an Alternative Route

For discussing unification nowadays one often considers SO(10) to be broken down to the SM
through SU(5). However, there is an additional possibility to break SO(10) to SO(6)×SO(4)
which is clearly also a subgroup. It is not trivial to see, that this group also contains the SM.
Thus, it is more common to consider the product group SU(4)× SU(2)× SU(2) which is
locally isomorphic (i.e. has the same algebra) to SO(6) × SO(4) as can be seen from the
corresponding Dynkin diagram [42]. Using these groups, it is easy to see that SU(3)c is
contained in SU(4) and one of the two SU(2) factors may serve as SU(2)w. The U(1)Y is
embedded in a combination of the diagonal generators of SU(4) and the remaining SU(2),
which we from now on label by SU(2)′. As there is no overlap between the two possible
breaking paths, they can be considered orthogonal.

Independent from the breaking of SO(10) this symmetry group was first considered as
an extension of the SM by Pati and Salam in 1974 in a bottom-up approach [6, 7]. In their
model they toke lepton number to be a fourth colour which unifies quarks and leptons to
SU(4). In addition, they considered the model to be a left-right symmetric extension of
the SM and included the additional SU(2)′. To ensure left-right symmetry and reduce the
number of individual gauge couplings they considered an additional Z2 symmetry. Such a
Z2 factor is also present in the breaking of SO(10). Unlike in this thesis, it is not always
considered to be part of the PS symmetry.

To sum up, the gauge symmetry of Pati-Salam (PS) models is given by

GPS = SU(4)× SU(2)× SU(2)′ × Z2 . (1.18)
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Different Labelling of PS

The product groups of the PS symmetry are often labelled with the indices L,R and C;

GPS = SU(4)C × SU(2)L × SU(2)R × ZLR , (1.19)

where the subscripts denote colour and left- and right-chirality. This is often used as the left-
(right-)handed SM fermions transform solely under SU(2)L(R). However, for this thesis such a
labelling is ambiguous as we discuss a model in which left- (right-)handed fermions transform
non trivially under SU(2)R(L), respectively, in Chapter 5. On the other hand, we consider
the Z2 to be exact at the PS scale. It interchanges the SU(2) and SU(2)′ representations as
well as conjugates the SU(4). Thus, the Z2 guarantees the equality of left- and right-handed
isospin as long as it is unbroken and may be seen as explicit left-right symmetry. Therefore
it is often labelled as ZLR. Nevertheless, throughout the rest of this work we will consider
the PS symmetry as defined in (1.18).

Fermion Representation

The embedding of the fermions in PS follows directly from the fermion embedding of
SO(10). There, we have embedded the fermions in the 16 which decomposes to PS and
further to the SM like

16
PS−−→ (4,2,1) + (4,1,2) (1.20a)

SM−−−→ (3,2)1/6 + (1,2)−1/2 + (3,1)1/3 + (3,1)−2/3 + (1,1)1 + (1,1)0 . (1.20b)

As we consider lepton number as fourth colour, we combine the SU(2) quark and fermion
doublets into a (4,2,1), denoted by ΨL. Again, we consider only the left-handed fields to be
in line with SUSY. The remaining fields, the charge conjugated quarks together with the
charge conjugated electron and a right-handed anti-neutrino, are unified to ΨR, transforming
as (4,1,2). Summing up, the fermions are embedded in PS as

ΨL =


u1L u2L u3L νL
d1L d2L d3L eL


and ΨR =


u1R u2R u3R νR
d1R d2R d3R eR

c

, (1.21)

where 1, 2, 3 are again colour indices and we show the first generation for definiteness.
Depending on the explicit realisation of the Z2 symmetry, these two multiplets can be

considered as a single reducible representation ΨL ⊕ΨR. This Z2 is naturally realised in a
model motivated by SO(10) as each SO(10) representation decomposes in a Z2 symmetric
sum.

So far we can conclude that PS is in some sense opposite to SU(5) as it combines all
fermions in a single multiplet but merely reduces the gauge symmetry to a product group
with two independent gauge couplings. As such, it is natural to consider it as intermediate
step, similar to SU(5). Since the breaking of PS (Chapter 3) as well as the Yukawa sector of
the theory (Chapter 4 and Chapter 5) are the main part of this thesis, we discuss these in
detail later on.
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1.4.4. Larger Groups

An even larger group as the already unifying gauge group SO(10) is the exceptional Lie
group E6. It has rank 6 and contains SO(10)× U(1) and therefore also all groups discussed
above as a subgroup. A different breaking path to the SM is via the so-called trinification
SU(3)× SU(3)× SU(3). The fundamental representation of E6 is 27. Its branching rule to
SO(10) is given by 27 → 16+10+1. The 16 may contain the SM fermions as discussed above.
In addition, the 10 contains a pair of electroweak Higgs doublets. Thus, the fundamental
representation can contain all SM fermions as well as the MSSM Higgs fields if we are in a
supersymmetric framework. This is usually referred to as matter-Higgs unification. Moreover,
it contains a right-handed neutrino candidate and an additional electroweak singlet. Thus, it
has generated quite some interest in the late 80’s. Another reason why one started to discuss
E6 models was the arise of string theory. Here, some versions of N = 8 supergravity in five
dimensions lead to a Planck scale E6 local gauge symmetry [46–48].
String theory and supergravity also motivated the consideration of the groups SO(32)

and the exceptional group E8. E8 × E8 is one of the two emerging gauge groups from
heterotic string models while the other is SO(32) [49]. Moreover, E8 contains E6×SU(3) as a
subgroup. However, models based on E8 have the significant problem that E8 contains solely
self-conjugate representations and thus features only vector-like theories. Hence, they need to
be uplifted to an at least five dimensional theory in order to break it in such a way that the low
energy effective theory has the chiral fermions we observe in nature. Because of its E6×SU(3)
subgroup one has also tried to connect the SU(3) with a flavour symmetry [42, 50].
Nowadays there is only little interest in the exceptional groups in particle physics apart

from string theory. Nevertheless, we will take the fact that E6 combines the MSSM Higgs
scalar with the fermions as motivation to consider three generations of the MSSM Higgs in
Chapter 3 and 4. In such models, the MSSM Higgs may be subject to flavour similar to the
SM fermions. An example of this kind is considered in Chapter 4.
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Chapter 2

Flavour Symmetries
Standard Model and Beyond

As mentioned in the last chapter, the concept of flavour is an important part of the SM
and flavour symmetries provide a good starting point when going beyond. In this chapter we
introduce the different aspects of flavour in the SM and how to implement them in Grand
Unified Theories. We discuss quark and lepton flavour as there is plenty of space for relating
both sectors in GUTs.
To start with, we comment on the different notions of flavour in the SM and give a brief

introduction on the flavour sector and flavour symmetries of the SM. Moreover, we discuss
the differences between quark and lepton flavour symmetries. In the second part we consider
the issues of flavour in GUTs and give a short overview on how to correlate quark and lepton
flavour. More details can be found in References [51, 52] and references therein.

2.1. The Concept of Flavour

The notion of flavour usually summarises all effects dealing with masses and mixing of
quarks and leptons in the SM and beyond. In the SM, all these effects are parametrised
by the Yukawa matrices and thus the flavour sector is synonymous to the Yukawa sector.
However, there is no unique definition of flavour. Depending on the fields it may solely refer
to a “sub-sector” (e.g. quarks, leptons, generations) of the one stated above.
Historically, Gell-Mann and Fritzsch introduced the notion of flavour to organise the

“particle-zoo” observed by experiments in the mid-20th century [15, 53]. Gell-Mann introduced
an additional flavour (strangeness) to the already known concept of isospin (up and down
flavour) and grouped the mesons and baryons in representations of SU(3), forming the
so-called “eightfold-way”[54–56]. This work paved the way for the introduction of the quark
model. Such a definition of flavour in the quark sector can be easily extended to the six quark
flavours (up, down, strange, charm, bottom and top flavour). However, a combination of all
quarks into a single representations of a flavour group (such as SU(6)) is not reasonable.
In the lepton sector, a definition of flavour similar to the quark sector is possible. As

neutrinos and charged leptons differ vastly in their masses one often distinguishes between
charged-lepton and neutrino flavour.
For the purposes of GUT model building it is convenient to define flavour as the generation

index of quarks and leptons, often referred to as “family”. This provides an orthogonal way
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of correlating the SM fermion content. In the context of BSM physics, flavour symmetries
are commonly called horizontal whereas GUT symmetries are vertical, in line with the usual
visualisation of the SM fermion content (cf. Table 1.1). Throughout this thesis, the flavour
sector will denote the whole sector of fermion masses and mixing whereas flavour symmetries
always act on the three generations of fermions.

2.1.1. Flavour Symmetries

Similar to the meaning of flavour there is no unique definition of flavour symmetries in
particle physics. In the SM, the flavour symmetry if often defined as the symmetry of the
Lagrangian without the Yukawa interactions. It is a symmetry orthogonal to the gauge
symmetry. Therefore we consider the kinetic sector of the fermions in the SM which is given
by

Lkin = i Q
i

L
/DQi

L + i U
i

R
/DU i

R + i D
i

R
/DDi

R + i L
i

L
/DLi

L + i E
i

R
/DEi

R , (2.1)

where /D is the covariant derivative and contains the gauge fields and the superscripts i = 1, 2, 3
denotes the three generations of fermions (cf. (1.2a) and following discussions). These terms
provide the coupling of the fermions to the gauge bosons. Considering the symmetries of
these terms, we can easily deduce that an SU(3) rotation as well as a phase shift, which
corresponds to a U(1) symmetry, on each of the SM building blocks (QL, UR, DR, LL and
ER) leaves the kinetic Lagrangian invariant. Thus, we end up with a flavour symmetry of
the SM given by1

GSM
F = U(3)QL

× U(3)DR
× U(3)UR

× U(3)LL
× U(3)ER

, (2.2)

which is the maximal symmetry of the kinetic Lagrangian. However, often a smaller symmetry
than this is considered to be the flavour symmetry of the SM; the flavour symmetry as
defined above is split up in a “pure” flavour part which is broken by the Yukawa interactions
and an accidental part which is still a good symmetry of the full Lagrangian. Examples of
such accidental symmetries are U(1)B, U(1)Le × U(1)Lµ × U(1)Lτ or U(1)B−L. As flavour
symmetry is often considered either in the quark or the lepton sector, we discuss both sectors
separately.

Quark Sector

Considering only the part of the kinetic Lagrangian (1.2a) containing the quarks, the
maximal flavour symmetry is given by U(3)QL

× U(3)DR
× U(3)UR

. The quarks all have a
non-vanishing mass and mix with each other. The only symmetry preserved by the Yukawa
matrices is the baryon number U(1)B. It is a diagonal U(1) that can be factored out of any
of the three U(3) factors. Thus, the resulting pure flavour symmetry of the quark sector is
given by

GQ
F = SU(3)× U(3)× U(3) . (2.3)

1Note that U(3) = SU(3)× U(1).
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Lepton Sector

In the lepton sector the situation is different. Here, individual lepton number is a good
quantum number up to high energies. However, it is broken by the masses and mixing of the
neutrinos. Depending on the nature of neutrino masses (Dirac or Majorana) even total lepton
number may not be a good symmetry of the Lagrangian. Considering the SM without neutrino
mass and mixing, the maximal flavour symmetry is U(3)LL

×U(3)ER
. After inserting Yukawa

couplings, the remaining symmetry is individual lepton number U(1)Le × U(1)Lµ × U(1)Lτ .
One of the U(1) factors corresponding to the total lepton number can be factored out but
not the whole accidental symmetry, as U(1) × U(1) × U(1) is not a normal subgroup of
U(3)× U(3). Thus, the Yukawa couplings break the lepton flavour symmetry to

GL
F = SU(3)× U(3)

YL−−−→ U(1)× U(1) . (2.4)

As a consequence one cannot gauge the lepton flavour symmetry GL
F, as this would result in

at least two massless gauge bosons which are phenomenologically excluded.
However, since the discovery of neutrino mixing, massless neutrinos are phenomenologically

excluded [5, 15]. Thus, we have to add either right-handed partners or a Majorana mass term
for the left-handed SM neutrinos. Right-handed neutrinos introduce an additional U(3)NR

to
the lepton flavour symmetry when they are included in the SM fermion content. If neutrinos
are pure Dirac particles, individual lepton number is no longer an accidental symmetry of the
Lagrangian as neutrinos mix. Hence, the situation is similar to the quark sector. If neutrinos
are Majorana fermions, they violate lepton number and there is no symmetry left in the
lepton sector. Therefore, the resulting pure flavour symmetry of the lepton sector depends
strongly on the implementation of neutrino masses.

GUTs

The definition of the flavour symmetry may also vary in each explicit BSM model. If
one considers a unification of the fermions, the maximal flavour symmetry can change as
additional relations may exist. An explicit choice of symmetry often depends on the aim
of the model. Different realisations of the flavour sector in a PS symmetric GUT will be
discussed in this thesis. In Chapter 4 we take the flavour symmetry to be SU(3) whereas we
use the maximally possible flavour symmetry SU(3)× SU(3) in Chapter 5.

2.1.2. Yukawa Sector

In the SM, the pure flavour symmetry is broken completely by the Yukawa couplings. These
introduce masses for the fermions and allow for a mixing among the different generations. In
addition, we include a mass term for the SM neutrinos without specifying it further as it
is needed for neutrino mixing. We discuss possible ways of generating such a term and the
experimental evidence for neutrino mixing in Section 2.3.1. Here, we start with a detailed
discussion of the quark Yukawa sector and afterwards comment on lepton mixing.
The SM quark Yukawa sector is given by

LYuk = Y ij
u Q

i

L
ϕU j

R + Y ij
d Q

i

L ϕD
j
R + h.c. , (2.5)
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where Yu and Yd are arbitrary 3× 3 matrices (cf. (1.2b) and following discussions). They can
be diagonalised by a bi-unitary transformation which we parametrise as2

Ŷu = Vu Yu U †
u and Ŷd = Vd Yd U †

d . (2.6)

Inserting these transformations in the Yukawa Lagrangian (2.5), we use the freedom of
rotating the fermion fields in any basis to write the Lagrangian in a diagonal basis. After this
rotation we are in the mass-basis where each of the so defined fermion fields has a distinct
mass. If we redefine our fermion fields, we have to do this consistently in all parts of the
Lagrangian, especially in the gauge kinetic term given in (2.1). This we have to consider
after the SU(2) symmetry breaking since the masses are generated by inserting the Higgs vev
that breaks SU(2)× U(1)Y → U(1)em. In the broken phase, the first term of (2.1) leads to

Lkin ⊃ i QL /DQL (2.7a)

⊃ g

UL /W

+
DL +DL /W

−
UL + UL /W 0UL +DL /W 0DL


(2.7b)

= g

U ′

L /W
+ Vu V†

d  
≡VCKM

D′
L +D′

L /W
− Vd V†

u  
=V †

CKM

D′
L + U ′

L /W 0 U ′
L +D′

L /W 0D′
L


, (2.7c)

where we have defined VCKM = Vu V†
d and the (un)primed quarks denote the (flavour) mass

basis. The other parts of the kinetic Lagrangian are left unchanged by these transformations.
We find, that changing the basis from the flavour eigenbasis, i.e. diagonal coupling to the
gauge bosons, to the mass eigenbasis, i.e. diagonal mass matrix, induces a mixing matrix
among the different generations, i.e. among the different flavour. This mixing is parametrised
by the Cabibbo-Kobayashi-Maskawa matrix VCKM [57, 58]. We note that the rotations of the
right-handed quarks Uu,d are unphysical in the SM framework. This may not be the case in
unified theories as they allow for right-handed gauge bosons. In such a setup, a generally
non-trivial mixing matrix UCKM = U †

u Ud is present (cf. Chapter 5).
A similar result can be found in the lepton sector if and only if one includes a mass term

for the neutrinos. The mixing matrix in the lepton sector is the Pontecorvo-Maki-Nakagawa-
Sakata matrix3 UPMNS [59–61]

Representation of the Mixing Matrices

The CKM matrix is often given in terms of the so-called Wolfenstein parameters [62] which
are historically motivated but are of no further importance for this thesis. The global fit to
the CKM matrix in the SM framework is performed with respect to these parameters [63, 64].
Still, there are multiple ways to represent both the quark and neutrino mixing matrix in
literature. Throughout this thesis, we parametrise all mixing matrices by three mixing angles
and one Dirac phase, defined by

V (θ12, θ23, θ13, δ13) =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

 , (2.8)

2Throughout the thesis, hatted quantities denote diagonal matrices.
3We note that the PMNS matrix is defined analogue to the CKM matrix. The difference in notation (VCKM

and UPMNS) is for historical reasons only.
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where cαβ = cos(θαβ) and sαβ = sin(θαβ). In general, if right handed neutrinos are Majorana
fermions, the PMNS matrix can also contain Majorana phases (see e.g. [51]), which will not
be discussed here.

2.2. Structure of Masses and Mixing in the SM

We know from experiment that the quark and lepton mixing and mass patterns are very
different [15]. In the quark sector, there is a strong hierarchy among the different generations
(e.g. mt/mu ∼ 7× 105) but only a weak hierarchy regarding the up- and down-type quarks of
the same generation (e.g. mt/mb ∼ 40). This is different in the lepton sector. Here, we again
find a strong hierarchy in the charged lepton sector (e.g. mτ/me ∼ 3.7× 104), whereas the
mass pattern of the neutrinos is still not completely determined. Nonetheless, there exists
an upper limit on neutrino masses from cosmology which is in the eV range [65] and thus
there is a very large hierarchy between neutrino masses and all other fermion masses (e.g.
mν/mt < 10−11), in particular charged leptons.

Neutrino Sector

First hints on neutrino masses came already from the Homestake experiment, which
measured only one third of the expected neutrinos coming from the sun [3, 66]. An explanation
for this deficit was given by the theory of neutrino oscillations developed by Pontecorvo in
1957 and later on independently by Maki, Nakagawa and Sakata in 1962 [59–61, 67, 68].
Additional experiments such as (Super-)Kamiokande (SK) [4, 69], SAGE [70, 71], or GALLEX
[72] where set up and measured a similar deficit. The first experiment able to observe the
appearance of µ neutrinos was SNO in 2002 [5, 73], which confirmed the theory of neutrino
oscillations. These experiments have measured the so-called solar angle θ12. In addition,
experiments to determine the atmospheric angle θ23 and the reactor angle θ13 where build.
The atmospheric angle was already observed by SK in 1998 [74]. The reactor angle was for a
long time believed to be zero in line with the favoured description of the PMNS matrix by a
tri-bimaximal mixing pattern. However, it has been measured quite recently (2012) to be
non-zero by the experiments Daya Bay, Reno and Double Chooz [75–77].
Besides the mixing angles also the mass-squared differences ∆m2

12 and |∆m23|2 have been
measured. However, the ordering of m2 and m3 as well as the absolute mass scale are yet
undetermined. This leaves two different orderings; normal (m2 < m3) and inverted (m3 > m2).
On the other hand, the absolute mass scale of neutrinos is yet unknown. Thus, also the
quasi degenerate case is possible, if m1,m2,m3 ≫ ∆m2

12, |∆m23|2. The current upper bound
on the sum of the three neutrino masses, which is roughly of the order of eV, comes from
astrophysical considerations. On the other hand, there are experiments trying to determine
neutrino masses from neutrinoless double-beta decay [78–81] or by measuring the endpoint of
the beta decay spectrum [82]. Both give bounds on a specific combination of mass eigenstates
and PMNS elements.

The current best fit values for the quark and lepton masses as well as for the neutrino
mass differences are shown in Table 2.1.
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Fermion Masses

up-type down-type

mu mc mt md ms mb

[MeV] [GeV] [GeV] [MeV] [MeV] [GeV]

2.3+0.7
−0.5 1.275± 0.025 160+5

−4 4.8+0.5
−0.3 95± 5 4.18± 0.03

leptons neutrinos

e µ τ
3

i=1 νi ∆m2
21 |∆m2

23|
[MeV] [MeV] [GeV] [ eV] [10−5 eV] [10−3 eV]

0.511 150.7 1.886 < 2 7.54+0.26
−0.22 2.43+0.06

−0.10

Table 2.1.: Masses of the SM fermions as given in [15]. For the leptons we do not state an
uncertainty as they are known very precisely.

Mixing Matrices

By looking at the measured values for the mixing matrices one finds a nearly diagonal
matrix in the quark sector with small off-diagonal elements [63, 64] whereas the neutrino
mixing matrix is in first approximation democratic [83–85], i.e. all elements are of equal size.
Because of the large mass differences in the charged and neutral sector, flavour transitions
between the charged leptons have not been observed so far. The different structures of the
quark and lepton mixing are so far not understood. Two approaches on how to generate
both sectors in a coherent framework will be discussed in Chapter 4 and Chapter 5.

Structure of UPMNS

The structure of the PMNS matrix is, although measured experimentally, so far not
understood theoretically4. There are different approaches on explaining the PMNS matrix,
starting from special matrices related to underlying symmetries. The most famous of these is
the tri-bimaximal mixing matrix5

UTBM =




2
3


1
3 0

−


1
6


1
3


1
2

1
6 −


1
3


1
2

 , (2.9)

predicting sin2 (θ12) = 1/3, sin2 (θ23) = 1/2 and θ13 = 0. Other structures which are often used
are bi-maximal, bi-trimaximal or golden-ratio. An overview on the theory of neutrino masses
and mixing as well as the (current) experimental status is given in e.g. [51, 86, 87].

The current best fit values for the quark and lepton mixing are shown in Table 2.2.

4The same is also true for the CKM matrix.
5Although exact tri-bimaximal mixing is nowadays experimentally excluded it provides a good first ansatz
for lepton mixing.
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Mixing Parameters

quarks
sin θ12 sin θ23 sin θ13 δ13

[◦]

0.2255± 0.0005 0.0417± 0.0006 0.00363± 0.00012 69.4± 3.4

leptons
sin2 θ12 sin2 θ23 sin2 θ13 δ13

[ ◦]

0.304± 0.012
(NO) 0.451± 0.001

0.0219+0.0010
−0.0011 251+67

−59(IO) 0.577+0.027
−0.035

Table 2.2.: Quark and lepton mixing parameters. The CKM parameters are taken from UTfit
[63], the PMNS parameters are shown for normal (NO) and inverse ordering (IO)
as given by νfit [83].

2.3. Theory of Neutrino Masses

The SM was developed for massless neutrinos and thus without an implementation of a
mechanism for generating neutrino masses. In the SM neutrinos are purely left-handed as
they have been introduced to cure the problem of a continuous spectrum in the beta decay,
which is a weak decay. As right-handed neutrinos are strictly speaking not part of the SM,
no renormalisable neutrino mass term is possible. However, they are often considered to be a
trivial extension, as they are not observable by present experiments anyway. As discussed
above, there is experimental evidence that at least two of those have a small but non-vanishing
mass. Thus, a mechanism for generating neutrino masses has to be implemented in the SM
and theories beyond.
One possible way of implementing the masses is simply to introduce right-handed neutrinos

and write down a Yukawa coupling term. These Yukawa matrices must have extremely small
eigenvalues, which is why this setup appears disfavoured. However, it may suffice to introduce
right-handed neutrinos as they are singlets under the complete SM gauge group. As such,
they may be their own anti-particles and allow for a Majorana mass term. Together with
the Dirac mass, this Majorana mass introduces a see-saw mechanism which is described in
the following. In addition to the standard see-saw mechanism (see-saw Type I), we consider
the double see-saw and a see-saw with single right-handed neutrino dominance in order to
generate a phenomenologically valid flavour structure for the SM neutrinos.

2.3.1. See-Saw Mechanism

The see-saw mechanism provides an explanation for light masses of neutral fields. It was
first introduced in the late 70’s [88–90] and is mainly discussed in the context of neutrinos.
There are three commonly used realisations for SM neutrinos (Type I to III) leading to similar
results. Here, we explain the Type I and only comment on Type II and III.
The basic principle of the see-saw mechanism is to introduce some heavy partners for the

SM neutrino which through their coupling effectively generate a light mass for the latter. In
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Type I, the heavy partner is the right-handed neutrino NR
6, which features a Dirac mass term

together with the SM neutrinos via the Higgs mechanism, similar to the other fermions. In
addition, the right-handed neutrino is allowed to have a Majorana mass M . The Lagrangian
of the see-saw mechanism is given by

Lsee-saw = Yν ϕ νLNR +M NRNR + h.c. . (2.10)

After inserting the Higgs vev which is of the order of the electroweak scale, we can write
m = Yν v. Since the Majorana mass M is not protected by any symmetry it may be much
larger than the electroweak scale, m ≫ M . In fact, the natural scale for M would be the
scale where this term can be generated dynamically or the largest allowed scale in the theory
which usually is of the order of MPlanck.

The mass matrix of the neutrino components following from (2.10) takes the form

Mν =


0 m
mT M


. (2.11)

In the case of large hierarchies m≪M , the mass matrix can be diagonalised to leading order
in m/M ,

M̂ν ≈


−mM−1mT 0
0 M


. (2.12)

This mass matrix now features a light left-handed Majorana neutrino and its heavy right-
handed partner. The diagonalisation of the mass matrix is equivalent to integrating out the
heavy right-handed neutrinos.
Taking the Yukawa coupling to be of order one, the Majorana scale M has to be roughly

M ∼ 1014GeV to generate neutrinos in the eV range. Nevertheless, this scale is not fixed as
neither the masses of the SM neutrinos are known nor do the Yukawa couplings have to be of
order one7. The number of right-handed partners is in principle arbitrary but we have to
include more than one as we have to generate at least two massive SM neutrinos. Thus, a
mass matrix with rank 2 or larger is required. Most GUTs favour three generations as they
are unified with the SM particle content, e.g. form SU(2)′ doublets with ER.
The Type II and Type III see-saw are similar to the one described above. Yet, the

heavy partner is either a scalar (Type II) or a fermionic (Type III) triplet under SU(2).
Diagrammatically, all three types of see-saw are shown in Figure 2.1. As mentioned before
we restrict ourselves to the Type I see-saw in this thesis and will not give more details on the
other Types.

2.3.2. Double See-Saw

In the previous section we considered a way of generating light neutrino masses by
integrating out heavy right-handed partners. This mechanism together with the Majorana

6We denote the right-handed neutrino by NR rather than νR to indicate that it is a heavy fermion.
7The top Yukawa is the only Yukawa coupling of order one in the SM.
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Φ Φ

νL νL

singlet

(a) Type I

ΦνL

νL Φ

triplet

(b) Type II

Φ Φ

νL νL

triplet

(c) Type III

Figure 2.1.: Diagrammatic representation of the three (main) types of the see-saw mechanism.

mass matrix provides an additional flavour structure. Nevertheless, if the neutrino Dirac
matrix features large hierarchies, the Majorana matrix has to compensate it as neutrinos
maximally feature a small hierarchy. This is the case in many GUTs where the Dirac matrix
of the neutrinos is proportional to the up-type quarks. From (2.12) we can read off that
the Majorana matrix is multiplied by m2 and thus must feature twice the hierarchy present
in the Dirac matrix. In the GUT case, its smallest eigenvalue is of order of 10−12 and thus
of similar size as a potential pure Dirac neutrino Yukawa coupling. Hence, such a setup is
disfavoured as well.
A solution of this problem is to introduce a double see-saw as discussed in e.g. [91, 92]. In

this setup, the Majorana mass matrix M itself is generated by a see-saw mechanism. It can
be realised if the right-handed neutrinos have no Majorana mass term but couple to a set of
singlets S with a massive coupling MNS. These singlets then possess a large Majorana mass
MS. The corresponding Lagrangian is

Ldouble = Yν ϕ νLNR +MNS NR S +MS S S + h.c. , (2.13)

and the resulting mass matrix is given by

Mν =

 0 m 0
mT 0 MNS

0 MT
NS MS

 . (2.14)

If we assume MS ≫MNS, we can integrate out the heavy singlets resulting in an effective
Majorana mass for the right-handed neutrinos of the form

M ∼MNS M
−1
S MT

NS , (2.15)

where MNS and MS are allowed to be matrices in flavour space and M should still be larger
then the Dirac mass m. At this stage, we are left with a see-saw mechanism similar to the one
discussed above. After performing the second see-saw, i.e. integrating out the right-handed
neutrinos NR, the effective SM neutrino mass matrix can be written as

Mν = mMT
NS

−1
MS MNS

−1
mT . (2.16)

In such a setup, MNS may at least partially cancel the hierarchy present in m. As a special
case one could assume a symmetry that enforces m ≡ MNS. The complete neutrino mass
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and mixing is then encoded in MS, as m and MNS exactly cancel each other. We note that
the mixing may still be affected by the lepton Yukawa matrix.

In many GUTs a different motivation for a double see-saw is present as NR is no longer
a singlet under all symmetries and one needs to generate the Majorana mass term M
dynamically. This is often done similar to the double see-saw mechanism. One example will
be presented in Chapter 5.

Looking at the scales needed to realise a double see-saw we find one particularly interesting
case, using only scales present in most GUTs; the additional singlets S get masses of the order
of the Planck scale while the Dirac massMNS is of order of the GUT scale (MGUT ∼ 1016GeV).
Such a setup results in an effective right-handed neutrino scale in the favoured region of
MNR

∼ 1014GeV.

2.3.3. Sequential Right-Handed Neutrino Dominance

Another ansatz to reproduce phenomenological valid neutrino structures is the mechanism
of Sequential Right-Handed Neutrino Dominance (SRHND) [93–97]. In this setup, the flavour
structure is generated sequentially by integrating out hierarchical right-handed neutrinos.
The easiest formulation of the mechanism is in a basis where the right-handed neutrinos are
diagonal. In this basis, we can write the matrices defined in (2.11) as

M ≡

 Y 0 0
0 X 0
0 0 X ′

 and m ≡

 0 a a′

e b b′

f c c′

 , (2.17)

where we only consider the special case of a vanishing (1, 1) entry in m. After integrating
out the right-handed neutrinos we get a sequential dominance in the resulting light neutrino
mass matrix if the conditions

e2, f 2, |ef |
Y

≫ |xy|
X

≫ |x′y′|
X ′ (2.18)

are fulfilled, where x, y ∈ a, b, c and x′, y′ ∈ a′, b′, c′. Each light neutrino mass is determined
by a single right-handed neutrino and the dominant contribution to the structure of the
neutrino matrix comes from the lightest neutrino Y . The resulting light mass matrix is given
by

mν ≈

 a2

X
ab
X

ac
X

∗ b2

X
+ e2

Y
bc
X
+ ef

Y

∗ ∗ c2

X
+ f2

Y

 . (2.19)

The resulting mass eigenvalues are

m1 ∼ O

x′y′

X ′


, m2 ≈

a2

Xs212
, m3 ≈

e2 + f 2

Y
, (2.20)
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where s12 = sin (θ12) is defined by the mixing angels which can be calculated to leading order
in m2/m3 to

tan (θ23) ≈
e

f
, tan (θ12) ≈

a

b c23 − c s23
, tan (θ13) ≈

a(e b+ f c)

(e2 + f 2)3/2
Y

X
. (2.21)

We note that we have assumed the Yukawa matrix to be real. The complete calculation for
complex Yukawa matrices as well as different realisations of SRHND are discussed in [93–97].

2.4. Flavour in GUTs

In the earliest GUTs flavour was discussed similar to the SM case by just a triplication of
the particle content. Not much has changed since then, yet people started to consider the
flavour symmetry as additional orthogonal symmetry. It can be realised by many different
discrete as well as continuous groups like A4, S3, ∆(96), PSL2(7), SO(3) or SU(3) just to
name some of them. A recent review of different choices can be found in e.g. [98]. There have
also been efforts to further unify the flavour and the gauge symmetry, for example in E8 or
SO(32) (see e.g. [42, 50]) or by certain string theories and the compactification of multiple
dimensions. A review on string theory is given in e.g. [99–101].
Anyhow, GUTs have a large impact on flavour physics independent on whether flavour

symmetry is unified with the gauge couplings or not. They relate different sectors of the SM
like quarks and leptons and may thus reduce the maximal flavour symmetry of the kinetic
Lagrangian. Moreover, GUTs relate the Yukawa structure of the SM among themselves
and the three (or counting neutrinos four) independent Yukawa matrices may be reduced.
This is however only true for a minimal setup. In the SM the representation of the Higgs
is unambiguously assigned by the fermion representations. As the representations for the
fermions are larger in GUTs, additional Higgs structures are allowed. These are usually not
aligned and thus disentangle the Yukawa matrices again. Hence, the explicit flavour structure
of a GUT is strictly model-dependent.
Another way to discuss the flavour structure in GUTs is to consider a bottom up approach.

As a consequence of quantum field theory, the Yukawa couplings are energy-dependent.
Therefore, the corresponding renormalisation group equation has to be solved in order to
deduces the Yukawa matrices at the GUT scale (see e.g. [102, 103]). One can then attempt to
approximate the resulting mass ratio at the GUT scale by group theoretical factors arising for
different Higgs representations. This is based on the assumption that the next relevant scale
for flavour physic is the GUT scale and thus the SM running is valid at all scales. Although
this assumption may be questionable it provides at least some predictive power and generates
mass relations at the GUT scale. The most prominent example for such a mass relation is
the approximation

3me ≈ md , mµ ≈ 3ms , mτ ≈ mb , (2.22)

identified and implemented in SU(5) by Georgi and Jarlskog [104]. As it is a bottom up
approach, it is nevertheless applicable to any GUT. A similar relation for the up-sector is
not reasonable as neutrino masses are of different scale and not fully determined yet.
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In the following, we give a brief overview of the flavour structure of PS-GUTs in general.
More details can be found in Chapter 4 and Chapter 5 where we explicitly construct a possible
flavour sector within a PS framework.

2.4.1. Flavour in Pati-Salam

In PS symmetric models, the maximal flavour symmetry of the kinetic Lagrangian is
reduced since the fermions are unified into the representations ΨL and ΨR. Hence, the
maximal flavour symmetry of the gauge kinetic terms is U(3) × U(3). Since U(1)B−L is
included in SU(4) it does not contribute to the starting U(3) × U(3) symmetry and thus
must not to be removed when defining the “pure” flavour symmetry. However, as long as
we do not include a Majorana mass term for the right handed neutrinos we still encounter
one U(1) factor that is unbroken by the Yukawa matrices. This can be regarded as fermion
number and is a generalisation of baryon and lepton number. Therefore, the maximal “pure”
flavour symmetry of PS is

GPS
F = SU(3)× SU(3)× U(1) . (2.23)

Another unification happens in the Yukawa sector. As we are left with only two multiplets
we have in general only a single Yukawa matrix. Nevertheless, if the SU(2)′ is broken at some
large scale, the running of the Yukawa couplings for the up and down sector may separate
the Yukawa couplings at the electroweak scale. The same may be true for the quark and
lepton sector below the scale where SU(4) is broken. In a non-minimal setup, additional
Higgs representations may introduce variations in the different Yukawa sectors. Such a setup
is explicitly given in Chapter 5. Nevertheless, we are confronted with a strongly hierarchical
Dirac mass structure for the neutrinos as it is related to the quark sector. How we can
account for such a structure by introducing double see-saw or SRHND was discussed in the
previous section.
Moreover, the misalignment UCKM in the right-handed fermions is physical in a PS symmet-

ric setup. Such a mixing is similar to the one we have encountered in the SM (cf. Section 2.1.2)
but only relevant here as the right-handed quarks couple to the charged SU(2)′ gauge bosons.
The same arguments apply in the lepton sector.

One Feasible Flavour Structure

Finally we give an example of an explicit implementation of a double see-saw in PS. It
was shown, that a tri-bimaximal mixing matrix in the neutrino sector fits current neutrino
data quite well if corrections from the charged lepton sector proportional to VCKM are present
[105, 106]. This may be the case in PS if the basis is chosen such that the complete quark
mixing is encoded in the down type Yukawa matrix. Hence also the charged lepton sector
features a CKM-like rotation of the mass eigenstates. Here, we follow the ansatz of a tri-
bimaximal Majorana matrix. In addition, PS relates the neutrinos and the up-type quarks.
Thus, the Dirac matrices for the complete lepton sector is fixed in PS symmetric theories
up to overall coefficients. Now we have the problem, that the neutrino Yukawa matrix is
hierarchic and thus does not commute with UTBM . This can be solved by a double see-saw.
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Hence, if we assume the Yukawa structure as

Yl = Yd = VCKM Ŷl , Yν = Yu ≡MNS and Sν = UTBM M̂ , (2.24)

we end up with a good first approximation of the flavour sector.

Having outlined the basic principles of the SM and Grand Unified Theories as well as the
concept of flavour, we now present explicit models addressing the aspect of implementing
flavour in a PS-symmetric GUT framework.
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Explicit Models of Flavour in Pati-Salam
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Chapter 3

Pati-Salam Symmetry Breaking
and

Gauge Coupling Unification

Starting from a Pati-Salam symmetric setup, we study in this chapter the possibility for
complete Gauge Coupling Unification (GCU) where all the SM gauge couplings coincide at
some large energy scale. Following the arguments of unification we put a completely unified
theory near or even at the Planck scale. In addition, we allow for multiple intermediate
scales which may be useful when considering flavour structures in Grand Unified Theories.
This we study for supersymmetric as well as non-supersymmetric setups. We will be mainly
concerned with the SUSY setup as it simplifies the model and is strongly motivated in the
context of GUTs (see Section 3.6). We assume SUSY to be realised above a few TeV. To
start with, we consider the various breaking paths from PS down to the SM. The breaking
should be achieved by a Higgs mechanism already seeded at the scale of exact PS symmetry,
i.e. generated by a PS symmetric superpotential. Depending on the hierarchies between the
symmetry breaking vevs, the breaking features different intermediate scales. According to
these hierarchies we construct classes of models which realise these different breaking paths.

For this purpose we study an explicit realisation for a conceivable supersymmetric scalar
sector including all symmetry breaking Higgs fields. From this superpotential we construct the
mass matrix of the additional superfields and discuss the resulting mass structure. Making
use of the latter we assign the superfields to the different intermediate breaking scales.
Adopting these assignments we briefly discuss the various intermediate unification conditions
before actually performing the GCU analysis. This we do by a semi-analytic scan over the
discrete set of configurations possible in the model classes constructed before. Afterwards,
we also consider the non-supersymmetric GCU, keeping the assumptions derived in the
supersymmetric case. We conclude the chapter with a summary of our findings.

The main results of this chapter have already been published in Reference [A].
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3. PS-Breaking and Gauge Coupling Unification

3.1. Intermediate Symmetries and Scales

The PS symmetry is an interesting intermediate symmetry en route to complete GCU.
It may be valid up to the Planck scale where gravitation is strong and thus a perturbative
quantum field theory is unlikely to be an appropriate description. Thus, we do not specify
the final GUT symmetry or the mechanism of breaking it any further. Rather we start with
a PS symmetry which we assume to be valid up to the scale of GCU.

Multiple Subgroups

In addition, PS need not be broken to the SM in a single step but can exhibit a variety of
breaking paths with multiple intermediate scales. In the setup discussed here, the symmetry
breaking is generated by a Higgs mechanism similar to the SM. More explicitly, we introduce
scalar fields S transforming in a PS representation that features a singlet component in its
branching to the unbroken subgroup. We assign a vev to these fields denoted by ⟨S⟩ which is
assumed to be aligned along the distinct direction invariant under the unbroken symmetry.
Within a simple such setup, we consider all of these paths of breaking PS to its continuous
subgroups.

As discussed in Section 1.4.3, the SU(4) part of PS unifies quarks and leptons. Thus, it
obviously contains the colour SU(3)c of the SM. Moreover, it contains U(1)B−L with charges
corresponding to the difference between baryon number B and lepton number L. The SU(2)′

of PS is an analogue of the weak SU(2)w of the SM which groups together UR and DR as
well as NR and ER (cf. Section 1.4.3). It can be broken to U(1)′ which may be seen as
right-handed isospin. A subgroup of the product U(1)B−L × U(1)′ is the SM hypercharge
U(1)Y .

In order to generate a breaking to these subgroups we need three different vevs which we
will specify later on. These are sufficient to realise all possible breaking paths of the PS
symmetry to subgroups being or containing factors of the SM gauge group. The resulting
partial breaking structures are,

SU(4)
⟨Σ⟩−−→ SU(3)c × U(1)B−L , (3.1a)

SU(2)′
⟨T ′⟩−−→ U(1)′ , (3.1b)

SU(4)× SU(2)′
⟨Φ′⟩−−→ SU(3)c × U(1)Y , (3.1c)

SU(4)× U(1)′
⟨Φ′⟩−−→ SU(3)c × U(1)Y , (3.1d)

U(1)B−L × SU(2)′
⟨Φ′⟩−−→ U(1)Y , (3.1e)

U(1)B−L × U(1)′
⟨Φ′⟩−−→ U(1)Y , (3.1f)

SU(2)× U(1)Y
⟨h⟩−→ U(1)em , (3.1g)

where we have also listed the electroweak symmetry breaking for completeness.
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SU(4)×SU(2)×SU(2)×Z

SU(4) ×SU(2)×U(1)

SU(3)c ×SU(2)w×U(1)Y

SU(3)c× ×SU(2) × SU(2) ×ZU(1)U

SU(3)c×SU(2)×U(1) ×U(1)B-LSU(3)c×SU(2)×U(1) ×U(1)

B-L

'

2

2

'

'''

Figure 3.1.: Graphical illustration of the different breaking paths depending on the different
classes. Class B is shown in red, C in green and D in blue. For clarity, the other
classes are not explicitly shown but can easily be constructed.

In this setup, ⟨Σ⟩ and ⟨T ′⟩ break only one part (SU(4) or SU(2)′ respectively), while ⟨Φ′⟩
is able to break PS directly to the SM. Thus, we can either use solely ⟨Φ′⟩ or a combination
of two or more of these vevs. As we are interested in multi-step breaking and for reasons
that are discussed when considering the explicit superpotential, we discard the breaking with
only ⟨Φ′⟩.

Various Breaking Paths

As we are interested in a multi-step breaking of the PS symmetry, we include more than
one of these vevs in our model. If these are of a similar scale, we break the symmetry
by different vevs but effectively still generate only a single-scale breaking. Allowing for
hierarchies between these vevs results in a multi-scale breaking of the PS symmetry in which
the scales are defined by the vevs. Depending on the ordering of these vevs we generate all
possible breaking paths which we depict in Figure 3.1.
Here, the scale ⟨Φ′⟩ must always be smaller than or equal to the other (two) scales since it

breaks PS completely. Thus, we can construct six classes of PS models differentiated by their
hierarchy patterns. We denote them as follows:

class A: ⟨Φ′⟩ ∼ ⟨T ′⟩ ∼ ⟨Σ⟩ (one scale),

class B: ⟨Φ′⟩ ≪ ⟨T ′⟩ ≪ ⟨Σ⟩ (three scales),

class C: ⟨Φ′⟩ ≪ ⟨Σ⟩ ≪ ⟨T ′⟩ (three scales),

class D: ⟨Φ′⟩ ≪ ⟨T ′⟩ ∼ ⟨Σ⟩ (two scales),

class E: ⟨Φ′⟩ ≪ ⟨Σ⟩ and ⟨T ′⟩ = 0 (two scales),

class F: ⟨Φ′⟩ ≪ ⟨T ′⟩ and ⟨Σ⟩ = 0 (two scales).
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3. PS-Breaking and Gauge Coupling Unification

Again, class A is of minor interest as it features only a single scale. However, we include
it as a limiting case. Class D also represents a limiting case which we will not discuss in
detail. The symmetry breaking chains associated to these classes are shown in Figure 3.1 (see
also [107]). The intermediate scales corresponding to these breaking steps, will be constrained
by the condition of GCU later in this chapter.
The vevs ⟨Φ′⟩ and ⟨T ′⟩ are of particular interest for flavor physics as they break the SU(2)′

symmetry. As long as the right-handed SM fermions are paired up in SU(2)′ doublets, there
are no terms that distinguish right-handed up- from down-type quarks, which however is
required for the presence of mixing (cf. Section 2.1.2). Therefore, the maximal energy scale
below which flavour mixing appears in the renormalisable part of the effective theory is given
by either ⟨Φ′⟩ or ⟨T ′⟩. On the other hand, both ⟨Σ⟩ and ⟨Φ′⟩ separate quarks from leptons.
We only expect a direct relation between quark and lepton flavour mixing in classes where
SU(2)′ is broken above the breaking of SU(4), i.e. in classes C and F where ⟨Σ⟩ < ⟨T ′⟩.
In this chapter we mainly consider a supersymmetric setup. This introduces an additional

scale in our model, the SUSY breaking scale MSUSY. We assume SUSY to be broken softly
by terms in the TeV range. As we are only interested in the high energy behaviour of the
model, we do not consider this breaking any further.

3.2. Particle Content and VEV Structure

Getting our motivation from complete GCU we confine ourselves to a set of Higgs fields
compatible with a unifying theory. The smallest possibility containing PS is SO(10), which is
why we choose only Higgs fields fitting in the lowest dimensional representations of SO(10).
We find that these can be even further combined to the fundamental and adjoint representation
of E6 if we allow for additional singlets. The maximal particle content considered in this
chapter is shown in Table 3.1.

Multiplicity of the Particles

In an E6 GUT, the SM fermions are contained in the fundamental 27 representation. As
discussed in Section 1.4, this representation additionally contains two SM doublets that
qualify for the MSSM Higgs fields. However, in a non-supersymmetric setup they cannot
be combined as they have a different spin, 0 for the scalars and 1/2 for the fermions. In a
supersymmetric theory both scalars and fermions are contained in chiral superfields which
allows for matter-Higgs unification. Such a situation would imply that some scalars occur in
three copies just like the SM fermions. In particular the electroweak breaking Higgs field is
one of these scalars. To be inclusive, we allow all fields considered in this chapter to come in
three generations. We do this independently of their grouping in E6 representations as some
of them may get GUT-scale masses by the breaking of the unified group which we do not
consider. As we are interested in a renormalisable effective theory realised below the GUT
scale, such fields are effectively not present. Therefore, we allow all fields to appear once,
as three copies or not at all. In general, other multiplicities of fields are feasible. However,
these are less motivated and including only the mentioned multiplicities already results in a
rich variety of intermediate scales. Moreover, achieving GCU becomes more constrained if
we include more fields in the theory as the gauge couplings approach the non-perturbative
regime for lower energies (cf. Section 3.5 and discussions in Section 3.6 and Section 3.7).
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3.2. Particle Content and VEV Structure

Field

SU(4), SU(2), SU(2)′


SO(10) E6

Σ (15,1,1)
 45


78

T ⊕ T ′ (1,3,1)⊕ (1,1,3)
E (6,2,2)

Φ⊕ Φ
′

(4,2,1)⊕ (4,1,2) 16

Φ⊕ Φ′ (4,2,1)⊕ (4,1,2) 16

S78 (1,1,1) 1

ΨL ⊕ΨR (4,2,1)⊕ (4,1,2) 16
 27

h (1,2,2)


10
F (6,1,1)

S27 (1,1,1) 1

Table 3.1.: Chiral superfield multiplets of the PS models considered in this model. The fields
are classified by their gauge-group quantum numbers; the discrete Z2 symmetry
renders the multiplets left-right symmetric and thus irreducible. Conjugated
quantities are additional degrees of freedom. All fields listed above may come in
three generations, except for ΨL/R which is always present in three generations.

Due to the ambiguity in the multiplicity of the fields, we may further categorise models
constructed along these lines. Each model type may fit into any of the above classes. It
contains the three generations of MSSM matter1 superfields ΨL/R together with the following
extra superfields;

Type m (Minimal Model): Within a given class, the minimal model is the one with minimal
field content that realises the corresponding symmetry-breaking chain. In classes A to
D, this model contains a single copy of each of the multiplets Φ, Σ and T . In classes E
(F) the multiplet T (Σ) is omitted. We do not include the multiplet h in the spectrum
as the pair of MSSM Higgs doublets may be contained in Φ (see Section 3.4).

Type s (SO(10)-like Model): In this model type, the PS multiplets can be unified in
complete SO(10) representations. All multiplets listed in Table 3.1 are present as a
single copy except for the matter multiplets ΨL/R.

Type e (E6-like Model): In this type of model all fields of Table 3.1 are present. The
multiplets h, F and S27 appear in three copies since they combine with the matter
multiplets. For the other multiplets we set the multiplicity to one.

Type g (Generic Model): Here we classify all models that do not qualify as either of the
above three types. We will denote these models by their class and a unique number.
The numbering scheme is outlined in Appendix A.1.

1Containing all of the SM fermions, we consider only ΨL and ΨR as matter superfields.

39



3. PS-Breaking and Gauge Coupling Unification

VEV Structure

With this Higgs content we can accomplish all of the breaking paths given in (3.1). We
first take a look at the scalar fields that ought to get a vev. As the adjoint representation of
SU(N) is able to break SU(N) → SU(N − 1)×U(1), we choose Σ and T to lie in the adjoint
of SU(4) and SU(2)′, respectively, while transforming trivially under all other gauge group
factors. They get a vev in the τ 3 and T 15 direction, respectively, where we use the common
basis for SU(2) and SU(4) constructed by generalising the Gell-Mann matrices (cf. [108]).
On the other hand, the fundamental representation of both SU(4) and SU(2)′ will lead to a
similar breaking but without maintaining the U(1) factor. Yet, a U(1) corresponding to the
hypercharge can be conserved if we consider a bifundamental representation (fundamental

in both, SU(4) and SU(2)′). Therefore, Φ′ and Φ
′
transform (anti-) fundamental under

SU(4) and SU(2)′ simultaneously. They receive vevs in the right-handed neutrino directions
and are thus able to break the complete PS symmetry down to the SM. Nevertheless, it is
not sufficient to consider vevs for only Φ′ and Φ

′
if we want to break the symmetry at the

renormalisable level (see (3.6) and discussions below). The vevs are assigned in the following
way, where we only display the relevant subspaces:

⟨Φ′⟩ =


0 0 0 vΦ
0 0 0 0

T

, ⟨Φ′⟩ =


0 0 0 vΦ
0 0 0 0


, (3.2a)

⟨T ′⟩ =

vT 0
0 −vT


, (3.2b)

⟨Σ⟩ = 2
√
6


vΣ 0 0 0
0 vΣ 0 0
0 0 vΣ 0
0 0 0 −3vΣ

 . (3.2c)

Discussion of the Particle Content

In addition to these Higgs fields which are needed to break PS, we now introduce further
fields which complete our field content. The matter fields of the SM (or rather of the
MSSM) are contained in the multiplets ΨL/R (cf. Section 1.4.3). There are three copies
of this representation to account for the three SM generations, each one including a right-
handed neutrino superfield. The other supermultiplets contain the MSSM Higgs bidoublet,
various new Higgs superfields and extra “exotic” matter. We now take a closer look at these
superfields:

1. h directly qualifies as MSSM Higgs bidoublet as it decomposes into two doublets with
hypercharge ±1/2.

2. Σ and T (′) are chiral multiplets in the adjoint representation. They have the same
quantum numbers as the vector (gauge) superfields of SU(4) and SU(2)(′), respectively.
As such, they feature colour octet and weak triplet states.

3. Φ(′) and Φ
(′)

are extra multiplets with matter quantum numbers and their charge-
conjugated images, respectively. Therefore, they decompose in quark-like (|B−L| = 1/3)
and lepton-like (|B − L| = 1) superfields.
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4. All fields contained in E and F are coloured. They decompose into triplets and anti-
triplets under SU(3)c. Hence, they can be viewed as vector-like quarks and their
scalar superpartners. Depending on their couplings, they may behave as leptoquarks
or diquarks as they have B−L charge ±2/3. The multiplet F has both leptoquark
and diquark couplings and thus can violate baryon number (cf. Section 3.4.3). For
the multiplet E this is not possible. The superfield Σ also provides vector-like quark
and antiquark superfields but with B−L charge ±4/3. They feature merely leptoquark
couplings to the MSSM matter fields at the renormalisable level and hence conserve
baryon number.

5. The singlet fields S78 and S27 (and any further singlet fields that originate from SO(10)
or E6 singlets) can couple to any gauge-invariant quadratic polynomial. In addition,

the superfields Σ, Φ
′
, Φ′ and T ′ contain singlet components with respect to the SM

gauge group, which we use to break the symmetry as mentioned above.

3.3. Superpotential and Higgs Mechanism

From the field content given in Table 3.1 we can now construct the most general renormal-
isable superpotential. In order to realise the different breaking paths we may set some of the
vevs or couplings to zero. We split up the superpotential in several parts which allows us to
include subsets of the fields present in the model;

W = WΦ/Σ/T +Wh/F +WE +WS +WYukawa . (3.3)

The main part, including all fields needed to break PS, is given within WΦ/Σ/T . It generates
the Higgs potential for all steps in the staged Higgs mechanism. It consists of fields that
are allowed to get a vev only. We may set some terms to zero in order to obtain a minimal
superpotential in the classes E and F where not all of these fields should get a vev.
The superpotential Wh/F is present in the models that contain the fields h and/or F .

Similarly, the field E comes with the terms WE. The potential WS contains all interactions
of the singlets with the other Higgs fields. In each term, S indicates an arbitrary linear
combination of all PS singlets present in the model.
If the superfields h and/or F are present, the superpotential WYukawa is possible. This part,

which is the only renormalisable superpotential involving two matter superfields, implicitly
contains generation indices. Analogously, generation indices are implied for all superfields
that occur in more than one copy. We note that the Yukawa coupling Y is symmetric and
universal across leptons, neutrinos, up- and down-type quarks. We will comment on the
flavour sector in Section 3.4.4.

WΦ/Σ/T =−mΦ


ΦΦ + Φ

′
Φ′


− 1
2
mΣ Σ2 + 1

3
lΣ Σ3 + lΣΦ


ΦΣΦ + Φ

′
ΣΦ′


− 1

2
mT


T 2 + T ′2


+ lTΦ


ΦT Φ + Φ

′
T ′ Φ′


(3.4a)
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3. PS-Breaking and Gauge Coupling Unification

Wh/F =− 1
2
mh h

2 − 1
2
mF F

2 + lhΦ h

ΦΦ′ + Φ

′
Φ


+ lFΦ F (ΦΦ + Φ′ Φ′) + lF Φ̄ F

ΦΦ + Φ

′
Φ

′


+ lΣF F ΣF + lTh h (T + T ′) h (3.4b)

WE =− 1
2
mE E

2 + lTE E (T + T ′) E

+ lΣE E ΣE + lFEh F E h (3.4c)

WS =− 1
2
mS S

2 + 1
3
lS S

3

+ sΦ S

ΦΦ + Φ

′
Φ′

+ sT S


T 2 + T ′2+ sΣ S Σ2

+ sh S h
2 + sF S F

2 + sE S E
2 (3.4d)

WYukawa =Y ΨL hΨR + YF F (ΨL ΨL +ΨRΨR) (3.4e)

From this superpotential we now calculate the F-terms of SUSY. In addition, we need to
construct the D-terms for the spectrum given in Table 3.1. Having both, we can deduce the
complete renormalisable scalar potential of our model (cf. Section 1.3). We have explicitly
done this for the case of each field being present once and omitting the Yukawa-Lagrangian
LYuk. In general, we may also calculate non-renormalisable contributions to the superpotential
and thus also to the scalar potential. However, as the renormalisable part suffices to generate
the various breaking paths discussed above, we do not include them at this point. Nonetheless,
they may become relevant in particular when considering the flavour sector of a given model
(cf. Chapter 4).

We stated before, that the fields Σ, T ′ and Φ′ ⊕ Φ
′
qualify as Higgs fields breaking PS

stepwise. Thus, we have to show, that the scalar potential has a local minimum for the vev
structure given in (3.2). In addition, we have to guarantee that supersymmetry is maintained
at each breaking step (see Section 1.3). Therefore, we have to verify that all F- and D-terms
vanish [31, 32] after inserting the vevs.

The ground-state values of the D-terms are zero if and only if the vevs of mutually conjugate
fields exist simultaneously and coincide in value. For T and Σ the D-terms automatically
vanish since their generators are traceless. Therefore, we must have ⟨Φ′⟩ = ⟨Φ′⟩:

vΦ ≡ vΦ. (3.5)

Having verified the vanishing of the D-term, we now scrutinise the F-terms. Inserting the
vevs, we obtain the necessary and sufficient conditions

0 = FΦ4 = vΦ (mΦ − 3 lΣΦ vΣ − lTΦ vT ) , (3.6a)

0 = 6FΣ15 =


3
8


8 vΣ (mΣ − 4 lΣ vΣ)− lΣΦ v

2
Φ


, (3.6b)

0 = FT ′
3
= mT vT − lTΦv

2
Φ , (3.6c)

0 = FS = sΦ v
2
Φ + sΣ v

2
Σ + sT v

2
T . (3.6d)
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We choose to solve these equations with respect to the mass parameters of Φ, T and Σ as
well as for one of the singlet couplings. This is simpler than solving for the vevs as those
appear quadratically. It is nevertheless equivalent since we do not know the mass parameters
which would determine the vevs in a top-down approach. We obtain

mΦ = lΣΦ vΣ + lTΦ vT , (3.7a)

mT =
lTΦ v

2
Φ

vT
, (3.7b)

mΣ =
lΣΦ v

2
Φ

8 vΣ
+ 4 lΣ vΣ , (3.7c)

sΦ = −sΣ v
2
Σ + sT v

2
T

v2Φ
. (3.7d)

Inserting those relations in the superpotential and setting the fields to their ground-state
values, we have verified that these vev configurations minimise the scalar potential while
maintaining supersymmetry. Thus, depending on their mutual hierarchy they realise the
symmetry-breaking chains of the model classes A to D.
For the model classes E and F, we assume a vanishing vev of T or Σ, respectively.

Nevertheless, PS symmetry is broken completely down to the SM gauge symmetry. We find,
that for a vanishing vev the corresponding multiplet must not couple to Φ′ or Φ

′
. Otherwise

SUSY is accidentally broken, as either FT ′ or FΣ does not vanish. This can be realised by
entirely omitting the multiplet or by setting lΣΦ (lTΦ) to zero, which may be realised by
additional symmetries.
For the renormalisable superpotential discussed here it is not allowed to set vΣ and vT

to zero simultaneously. Looking at (3.6a) we find that in this case the solution of the
minimisation condition would be vΦ ≡ 0 and we would generate no breaking at all. In
addition, it is not possible to set vΦ = 0 as in this case (3.6c) would demand vT ≡ 0 and
thus SU(2)′ would remain unbroken. This is not true for vΣ as the superpotential contains
a trilinear term for Σ. Such a term is not possible for T ′ as SU(2) has no cubic invariant.
Moreover, Φ′ has to participate in the breaking as it is the only field breaking U(1)′×U(1)B−L

down to hypercharge in our setup.

3.4. Spectra and Phenomenology

The setup described above introduces a great variety of spectra for PS models. In this work,
we are not aiming to set up benchmark models but rather to explore the main characteristics.
Thus, a qualitative understanding of the spectra will be sufficient for our purposes. We focus
on the different scales of the model and assign different types of fields and physics to those.
In addition, the setup provides interesting phenomenological consequences which will be
discussed afterwards.

3.4.1. Mass Matrix

Having verified that SUSY remains unbroken down to the TeV scale where soft-breaking
terms appear, we have determined the mass matrix of the scalar fields in the PS broken
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3. PS-Breaking and Gauge Coupling Unification

phase, i.e. inserting the minimisation conditions and vevs. We have then calculated the
corresponding mass eigenvalues, neglecting all remaining bilinear mass terms mi. The
calculation is analogue to the mass calculation in Reference [D], where we only considered a
subset of the full superpotential given in (3.4). The full mass matrices in the broken phase
are given in Appendix A.2. As mentioned before, we do not intend to derive quantitative
results here. From the mass matrices given in Appendix A.2 we may obtain such quantitative
results by fixing the parameters contained in the superpotential (3.4). However, as we are
mainly interested in the running of the gauge couplings, where these parameters enter only
logarithmically, we do not gain anything of such a specification of the model. Instead of
calculating the masses explicitly, we assign mass scales to the individual unbroken (i.e. SM)
multiplets which we parametrise by the vevs and their hierarchy. In Table 3.2, we list the
results for all fields and the interesting model classes B, C, E and F. The classes A and D
are limiting cases and are therefore not listed separately. They can be deduced from the
other cases by setting all three vevs to a single vev vPS (class A) or by setting vT = vΣ = vPS
(class D).

We should keep in mind that Table 3.2 refers only to the mass contributions that result
from symmetry breaking. All superfields may carry an individual PS-symmetric bilinear
superpotential term mi, except for the matter multiplets which are chiral fields. These
mass terms are either completely arbitrary or fixed by the conditions that determine the
vacuum expectation values (see (3.7)). As we include supersymmetry, they may be light
without causing naturalness problems [8, 38]. Furthermore, a vev in any PS singlet field may
contribute a similar term, again unrestricted by symmetries. To get a handle on these scales
we implicitly assume that the sum of all these mass terms is either negligible or of the order
of the GUT scale, which is the largest scale in the setup. With respect to GCU, the second
possibility is equivalent to omitting the field completely.
On the other hand, given only the renormalisable Lagrangian terms of (3.4) there exist

classes for which some of the fields E, Σ and T do not receive a mass from PS and subsequent
symmetry breaking. For these fields, either the bilinear mass term or effective masses induced
by higher-dimensional operators play an important role and must be included as independent
parameters. From a phenomenological point of view we are mainly interested in the lowest
possible mass for each of those fields. We discuss this issue at the beginning of Section 3.6.

Additional Intermediate Mass Scale

While most multiplets acquire masses proportional to either one of the symmetry-breaking
scales vT , vΣ, vΦ, there are various cases where the mass becomes proportional to a ratio
of vΦ and one or both of the vevs vΣ and vT . For large hierarchies, these masses can be
significantly smaller than vΦ. In other words, there is an extra see-saw effect, unrelated to the
well-known neutrino see-saw [109–111]. We denote this induced mass scale by MIND in order
to distinguish it from the right-handed see-saw scale. It is located below the scale where
PS is completely broken and we limit it for practical reason to be above or at the SUSY
scale. Such an intermediate scale appears naturally in models with multiple scales where the
trilinear coupling of the symmetry breaking field is absent [109]. A generic expression is

MIND ∼ v2Φ
vΣ + vT

. (3.8)
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field (SU(3)c, SU(2)L)Y class B class C class E class F
vT ≪ vΣ vΣ ≪ vT vT =0 Σ=0

Σ (8,1)0 vΣ vΣ vΣ —

E (3/3,2)±5/6 — — — —

E (3/3,2)±1/6 — — — —

Φ/Φ (3/3,2)±1/6 vΣ vT vΣ vT

Φ′/Φ
′

(3/3,1)±2/3 vΣ vΣ vΣ vΦ

Σ (3/3,1)±2/3 vΣ vΣ vΣ —

Φ′/Φ
′

(3/3,1)±1/3 vΣ vT vΣ vT

F (3/3,1)±1/3
v2Φ
vΣ

v2Φ
vT

v2Φ
vΣ

v2Φ
vT

T (1,3)0
v2Φ
vT

v2Φ
vT

—
v2Φ
vT

Φ/Φ (1,2)±1/2 vT vT vΦ vT

h (1,2)±1/2
v2Φ
vT

v2Φ
vT

vΦ
v2Φ
vT

Φ′/Φ
′

(1,1)±1 vT vT vΦ vT

T ′ (1,1)±1 vT vT — vT

T ′ (1,1)0 vΦ vT — vΦ

Σ (1,1)0 vΣ vT vΣ —

Φ′/Φ
′

(1,1)0 vΦ vΣ vΦ
v2Φ
vT

S27/S78 (1,1)0
v2Σ
vT

v3Σ
v2T

— —

S27/S78 (1,1)0
v2Σ
vT

v3Σ
v2T

vΦ
v2Φ
vT

Table 3.2.: Mass hierarchy of the scalar fields in the different classes of the complete model. If
none is shown, there is no contribution from the vev and the hierarchy is undefined.
Classes A and D are limiting cases of B and C. Class A can be reached if one
sets all vevs equal to a single vev vPS and class D if one just sets vΣ = vT = vPS.
The fields are ordered such that those which mix are grouped together. Thus, the
mass eigenstates are a linear combination of the listed fields. Massless components
which are the Goldstone bosons are not considered here explicitly.
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3. PS-Breaking and Gauge Coupling Unification

Depending on the model class, some of the multiplets F , h, or T become associated with
MIND. In class F this applies also to the singlet part of T ′ (cf. Table 3.2). We thus get “light”
supermultiplets consisting of scalars and fermions which may be coloured, charged or neutral,
and acquire a mass that does not coincide with any of the symmetry-breaking scales. If the
hierarchy between the vevs is strong, MIND may be sufficiently low to become relevant for
collider phenomenology. In model classes B, C and F, it provides a µ term for h and may
thus be related to electroweak symmetry breaking. In any case, the threshold MIND must be
taken into account in the renormalisation-group running of the gauge couplings.

Goldstone Bosons

Not all of the scalar fields are physical; since the broken symmetries are gauged, nine of
the scalar fields are Goldstone bosons that provide the longitudinal modes of the massive PS
gauge bosons that are integrated out in the breaking to the SM gauge group. Six of them
(GB1..6) are related to SU(4) → SU(3)c × U(1)B−L, two additional ones (GB7,8) implement
SU(2)′ → U(1)′ and the last one (GB9) comes from the breaking of the U(1) subgroups
U(1)B−L ⊗ U(1)′ → U(1)Y . We identify these Goldstone bosons as

GB1,2,3 = −i

√
3

2

vΦ
vΣ

Φ′
3 − i

√
3

2

vΦ
vΣ

Φ′∗
3 + Σ3 + Σ∗

3 , (3.9a)

GB4,5,6 = i

√
3

2

vΦ
vΣ

Φ′∗
3 + i

√
3

2

vΦ
vΣ

Φ
′
3 + Σ3 + Σ∗

3 , (3.9b)

GB7 = T ′
11
+ T ′∗

11
− i√

2

vΦ
vT

Φ
′
11
− i√

2

vΦ
vT

Φ′∗
11
, (3.9c)

GB8 = T ′
1−1

+ T ′∗
1−1

+
i√
2

vΦ
vT

Φ′
1−1

+
i√
2

vΦ
vT

Φ′∗
1−1

, (3.9d)

GB9 = Im

Φ′

10


− Im


Φ

′
10


. (3.9e)

Here, 3 and 3 are the (3,1)2/3 and (3,1)−2/3 components of the Higgs fields Φ′, Φ
′
and Σ,

respectively. For vanishing vevs, the corresponding fields do not mix into the Goldstone
bosons. Thus, if vΣ = 0 (vT = 0), the Goldstone bosons GB1..6 (GB7,8) are only mixtures of

the field Φ′ and Φ
′
.

SM Singlets

The most complicated mass matrix belongs to the SM singlets that are contained in the
various PS multiplets. Even if we do not consider PS singlets there are still five SM singlets
which mix non-trivially. Generally, their masses cannot be calculated in closed analytical
form. To get a handle on these particles, we computed the dependence on the different scales
numerically. Starting with one of the patterns of hierarchical scales introduced in the different
classes above, we find additional scales and new hierarchy patterns which do not coincide
with MIND. These may have interesting consequences for flavor and Higgs physics. However,
as singlets do not contribute to the running of the gauge couplings at leading-logarithmic
level, we do not attempt a detailed discussion of the singlet sector in this work.
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3.4.2. The MSSM Higgs

Apart from the matter fields and Goldstone bosons, the spectrum must provide the Higgs
bidoublet of the MSSM that is responsible for electroweak symmetry breaking. This multiplet
should either be massless or have a suppressed mass compared to the scales of the model
which may coincide with MSUSY. Mass terms are provided by soft-SUSY breaking parameters
and the µ term which mixes both doublets. We note that the µ term may result from the vev
of one of the electroweak singlets in the model, i.e. the model may implement a NMSSM-type
solution for the µ problem [112, 113].
The obvious candidate for the MSSM Higgs bidoublet is the superfield h as mentioned while

introducing the particle content. A further candidate for the pair of electroweak symmetry
breaking doublets is provided by the multiplets Φ and Φ, each containing one doublet. With
respect to the SM gauge symmetry they have the same quantum numbers as h. We note
that they do not couple to ΨLΨR at the renormalisable level. Although they are not in
a bidoublet representation of PS, we will group and denote them collectively as hΦ in the
following. They are of particular interest as they are physical scalar fields while their Z2

partners, the right-handed doublets in Φ′ and Φ
′
, serve as Goldstone bosons and are thus

unphysical. Therefore, they are protected against a mass term down to the scale where the Z2

symmetry is broken, which coincides with the SU(2)′ breaking in our setup. Their squared
mass matrix can be calculated to be

M2
(1,2) =


m2

h + l2hΦ v
2
Φ (lTΦ vT −mh) lhΦ vΦ

(lTΦ vT −mh) lhΦ vΦ l2hΦ v
2
Φ + l2TΦ v

2
T


. (3.10)

This fields hΦ are of special interest in class E where vΦ is the only SU(2)′ breaking vev as
vT = 0. In this case, both bidoublets get masses and a mixing term only proportional to the
coupling lhΦ. By forbidding the coupling of Φ and h, the bidoublets hΦ are massless while
h still gets a mass from its bilinear mh. Hence both fields are maximally split. With this
coupling present, the situation becomes more complicated. Now, both fields get a contribution
to their mass of the order lhΦ vΦ. For mh = 0 we reach the other limit, where both mass
eigenvalues are degenerate and of order vΦ.
In each of the other classes, hΦ gets a mass term proportional to vT and mixes with h

proportional to vΦ. Thus, the diagonalisation of the mass matrix results in a see-saw like
mass pattern where the lighter bidoublet gets a mass proportional to the induced see-saw
scale MIND. In the limit vΦ ≪ vT , we obtain the approximate eigenvalue structure

µ ≈ mh +
l2hΦ
lTΦ

v2Φ
vT

and m′
hΦ

≈ lTΦ vT , (3.11a)

where we allow for the bilinear mh as an independent contribution to the µ term, not directly
related to PS breaking. Both contributions to the µ term may be as low as the TeV scale
where soft-breaking terms come into play. In these setups, the electroweak hierarchy may be
generated at least partly by a high-energy hierarchy in the PS symmetry-breaking chain.
In short, in various classes of PS models the MSSM Higgs bidoublet may be naturally light

or actually originate from the superfields Φ, which reduces the minimal set of scalars. This
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3. PS-Breaking and Gauge Coupling Unification

scenario would also lead to a model where the both SU(2)′ as well as SU(2) are broken by
a single GUT field2. In other words, the MSSM Higgs bidoublet (in particular, the Higgs
boson that has been observed) may belong to either h or hΦ, or be a mixture of both.

3.4.3. The Multiplet F

The mass of the multiplet F is generically see-saw suppressed and thus comparatively light.
This appears as a common feature of all model classes with more than one scale. It can
couple to the matter fields via WYukawa. This leads to an effective superpotential of the form

Weff ∼ F3 (QLQL + U c
RR

c
R +Dc

RN
c
R) + F3 (QL LL + U c

RD
c
R) . (3.12)

As we easily see from this superpotential, the possible Yukawa couplings provide both diquark
and leptoquark couplings, explicitly breaking baryon number in the low-energy theory. In
fact, F is the analogue of the coloured Higgs field which in SU(5) GUT models induces rapid
proton decay unless it is very heavy (see Section 1.4.1 and 1.4.2).
However, in PS models the Yukawa matrices YF and Y are not related. Hence there is

no doublet-triplet splitting problem [114, 115]. By omitting the coupling of F to Ψ, proton
decay is not present in our setup up to the unification scale. Here, it might again be possible,
e.g. in SO(10). The coupling may be forbidden for instance by a flavor symmetry or by an
appropriate discrete quantum number.
If the F multiplet is sufficiently light, it may provide detectable new particles at colliders.

Without the Yukawa coupling YF there is no immediate decay to MSSM matter fields but
other terms in the Lagrangian provide indirect decay channels. In this situation, the particles
(colour-triplet scalars and fermionic superpartners) may be long-lived and become rather
narrow as resonances.

3.4.4. Matter Couplings

In this part of the thesis we are not aiming at describing the flavour sector. Nevertheless,
we will give a short motivation for possible realisations of the flavour sector in this model
without going into details. For a detailed analysis of the flavour sector in PS models we refer
to later chapters.
The renormalisable superpotential contains terms that couple h to matter fields Ψ. Thus,

after electroweak symmetry breaking, matter fields can get masses via the vev of h. However,
PS allows only for a single Yukawa coupling as discussed in Section 2.4.1. This gives strict
constraints on the flavour structure of our model. Nevertheless, there is no reason for flavor
physics to originate solely from the renormalisable superpotential. In particular, if hΦ turns
out to be the MSSM Higgs, flavour physics has to arise purely from non-renormalisable
operators.
In Chapter 4 we will give explicit examples of such a realisation from higher dimensional

operators in a similar framework. Also adding additional fermionic degrees of freedom
may strongly affect the flavour sector. One realisation of such a setup will be presented in
Chapter 5.

2Remember, Φ and Φ′ are related due to the Z2 symmetry at the GUT scale.
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3.5. Unification Conditions

As long as we stay within the framework described above, we may still consider non-
renormalisable operators to parametrise the flavour structure. The generated terms are
suppressed by a scale Λ which may coincide with one of the scales in our model. For
instance, if we consider dimension-four terms in the superpotential, we identify the following
interactions that can affect matter-Higgs Yukawa couplings in the low-energy effective theory,

WNLO
Yukawa =

YhΣ
Λ

ΨL hΣΨR +
YΦ
Λ

ΨL


ΦΦ′ + ΦΦ

′

ΨR

+
YEF

Λ
ΨLE F ΨR . (3.13)

There are additional couplings to gauge singlets which may also be flavour dependent. Overall
there is great freedom in assigning masses and generating hierarchies in the mass and mixing
parameters.

Neutrino Mass

As a left-right-symmetric extension of the SM, the model presented here contains right-
handed neutrinos. Moreover, it generates a neutrino Yukawa coupling related to the up-type
quarks. Hence, the model features Dirac mass terms for the neutrinos which are however not
consistent with the neutrino phenomenology. Furthermore, the extra fields that are present
in our setup are able to induce any of the three neutrino see-saw mechanisms [90, 116] which
may account for the neutrino mass and mixing structure as explained in Section 2.3.1. The
field Φ′ provides a vev that can couple to right-handed neutrinos generating a Majorana
mass term proportional to vΦ. However, such a mass term requires the introduction of
non-renormalisable operators which is beyond the scope of this thesis. Combined with the
Dirac mass this results in a type I see-saw. The field T contains SU(2)-triplet scalars and
their fermionic superpartner and may thus induce a type II or type III see-saw mechanism.
Again, we refer to later chapters for a more detailed study on neutrino masses and mixing.

3.5. Unification Conditions

Within the framework of multi-scale breaking of the PS symmetry (class A-F), we impose
unification conditions on the gauge couplings to constrain the scales present in the model.
As stated above, we require complete unification of all gauge couplings at the unification
scale MGUT. This is equivalent to require a complete unification to a gauge group containing
SO(10). The unification scale itself is not fixed but depends on the spectrum and the
intermediate scales. For each of the intermediate scales we state the corresponding matching
conditions. At these scales the spectrum generally changes, i.e. particles are integrated out.
We work to leading-logarithmic level only, where matching conditions depend solely on the
spectra. At next-to-leading order, the superpotential parameters enter the running. However,
given the great freedom in choosing a model in the first place, there is little to be gained
from including such effects in our framework.
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3. PS-Breaking and Gauge Coupling Unification

Running of the Couplings

Abelian gauge couplings do exhibit discontinuous behaviour as an artefact of different
normalisation conventions in the various energy regimes. Non-abelian gauge couplings are
always continuous. The running of a gauge coupling between fixed scales µ1 and µ2 is given
to leading-logarithmic order by

1

αi (µ2)
=

1

αi (µ1)
− bi

2 π
ln


µ2

µ1


. (3.14)

Here, the bi are group theoretical factors that can be calculated from the representations of
the “active” particles3 [117]. Hence, we have to consider the evolution of the gauge couplings
iteratively, starting from MZ where the gauge couplings are measured all the way up to the
GUT scale. Inserting the intermediate mass scales, the complete running is a sum of multiple
terms. For instance in class B we have

1

αi (MGUT))
=

1

αi (MZ)
− b

(1)
i

2 π
ln


MSUSY

MZ


− b

(2)
i

2π
ln


MIND

MSUSY


− b

(3)
i

2π
ln


vΦ

MIND


− b

(4)
i

2 π
ln


vT
vΦ


− b

(5)
i

2π
ln


vΣ
vT


− b

(6)
i

2 π
ln


MGUT

vΣ


. (3.15)

Here, MIND denotes the additional see-saw induces scale introduced in (3.8). As this scale
depends on the numerical values of superpotential parameters which we do not fix, we
treat it as a free parameter. We show later that this assumption does not influence the
results significantly. Distinguishing different model classes with their corresponding hierarchy
patterns, we have to appropriately adapt the ordering of scales and the definition of the b

(n)
i .

The calculation of the coefficients in this formula is straightforward and can be found in
Appendix A.4. We note that the running of the couplings in (3.15) does not depend on
the assumption of SUSY. The supersymmetric and non-supersymmetric frameworks differ
only by their particle content which in the SUSY case simplifies the form of the β-function
(cf. (A.20) and (A.21)).

For simplicity, we always assume that all masses of the particles coincide with one of the
scales mentioned above. This is a legitimate assumption as order-one prefactors in the mass
terms would only enter logarithmically in the running of the couplings (3.15), which is a
minor uncertainty. It is based on the assumption that no further hierarchies from couplings
become relevant here and all additional fields are integrated out at their “natural” mass scale
which we have determined in the previous section (cf. Table 3.2). As we have no information
on possible hierarchies in the couplings, considering those would only lead to a wider range
of possibilities. Thus, we do not investigate this any further.

Matching Conditions

Regarding U(1) couplings with their normalisation ambiguity, we have to explicitly consider
the unification condition for

U(1)′ ⊗ U(1)B−L
⟨Φ⟩−−−→ U(1)Y . (3.16)

3“Active” refers to particles which have a mass smaller than the energy scale considered and thus may be
generated as real particles.
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To define the strength of the hypercharge gauge coupling, we explicitly calculate the
unbroken direction and identify the charges Q′ and QB−L in SU(2)′ and SU(4), respectively.
This results in a relation between the group generators and therefore between charges and
couplings. From the usual definition for the hypercharge4

Y =
B − L

2
+ τ ′3 , (3.17)

we obtain5

α−1
Y (vΦ) =

2
3
α−1
B−L (vΦ) + α−1

1′ (vΦ) . (3.18)

The charges QU(1)′ and QB−L are fixed by their embedding in the non-abelian groups.
For the non-abelian symmetry breaking steps, the unification conditions just depend on

the breaking pattern, i.e.

GUT
⟨X⟩−−−→ SU(4) ⊗ SU(2) ⊗ SU(2)′ , (3.19a)

SU(4)
⟨Σ⟩−−−→ SU(3)c ⊗ U(1)B−L , (3.19b)

SU(2)′
⟨T ′⟩−−−→ U(1)′ , (3.19c)

where the GUT group may be any group containing SO(10). These three breaking patterns
result in the matching conditions

α−1
4 (MGUT) = α−1

2 (MGUT) = α−1
2′ (MGUT) ≡ α−1

GUT (MGUT) , (3.20a)

α−1
3 (vΣ) = α−1

B−L (vΣ) ≡ α−1
4 (vΣ) , (3.20b)

α−1
1′ (vT ) = α−1

2′ (vT ) = α−1
2 (vT ) , (3.20c)

respectively. In the classes where one of the breaking steps is absent, the corresponding
conditions apply at the next lower scale. In class E and F, we have to substitute αB-L = α4

or α1′ = α′
2 in (3.18), respectively.

Next to the unification and matching conditions we have the additional constraint that the
mass scales are properly ordered. For class B we have:

MSUSY ≤ MIND ≤ vΦ ≤ vT ≤ vΣ ≤ MGUT ≲ MPlanck . (3.21)

Furthermore, the coupling strengths αi have to be sufficiently small and positive at all mass
scales as we want to stay within the perturbative regime.
Counting the number of conditions and free parameters (scales), we observe that the models

are still under-constrained. Hence, we can derive constraints for the mass scales and exclude
particular models but not fix all scales completely. Nevertheless, imposing unification does
restrict the model parameter space significantly as we will show in the following sections.

4We do not rescale U(1) in order to match the SU(5) normalisation, as is often done in the literature.
5We label the gauge coupling by a subscript corresponding uniquely to the gauge factor (e.g. α3) instead of
the usual SM notation (e.g. αs).
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3.6. Unification within Supersymmetry

In this section, we explicitly study the unification properties of the model classes defined in
Section 3.1. Therefore, we define for each relevant class (B, C, E and F) a set of configurations.
This set is constructed following the three basic assumptions:

1. The number of superfield generations (0,1,3) is independently varied for each of the

fields h, F , Φ(′) ⊕ Φ
(′)
, Σ, E, T ⊕ T ′. Remember, that Φ and Φ cannot be varied

independently as both are needed for the PS breaking.

2. Each field is associated to its “natural” mass scale as discussed in Section 3.4. Alter-
natively, we can set the masses of the fields to the GUT scale which is equivalent to
omitting them.

3. Each configuration has to have at least one pair of “light” MSSM Higgs candidates (see
Section 3.4.2).

Following this construction principle we end up with a set of 828 distinct configurations.
These are not equally distributed among the four classes as by construction in some classes
more fields have to be present; e.g. class B requires at least one generation of Σ and T while
one of them may be absent in class E and F, respectively. Additionally, class E allows for
configurations in which the MSSM Higgs bidoublet is contained in Φ instead of h as we
will discuss below. Thus, class E features 324 configurations whereas class F features only
216 and class B and C 144 each. We assign a discrete label to each of these configurations
following the naming convention given in Appendix A.1.
For each of these so constructed configurations, we numerically calculate the allowed range

of mass scales where the GCU conditions (3.18), (3.20) and (3.21) can be fulfilled. As we are
not able to fix all scales, we do this by varying two of the scales independently and solving the
complete set of equations and inequalities for the remaining scales. If we find no solution for a
particular configuration, we do not consider it any further. For the remaining configurations,
we obtain model-specific relations between the mass scales. As a result, we can express those
scales as functions of one or two independent mass parameters that we have chosen as input.
For all numerical results, we fix the common soft SUSY-breaking scale at

MSUSY = 2.5 TeV ≈ 103.4 GeV . (3.22)

We have also considered a lower SUSY-breaking scale of MSUSY = 250 GeV which is dis-
favoured by LHC data [15, 40, 41]; it turns out, that the unification conditions are generically
easier to satisfy for larger values of the soft SUSY-breaking scale.
With these conventions in mind, our scan will be exhaustive as we scan over a discrete

set of configurations. At this point, we change our notation from vevs to mass scales (see
Appendix A.3) since we are now dealing with mass scales rather then vev structures or specific
mass eigenvalues.

Extra Mass Parameters

Considering the second construction principle stated above, we find that in some classes
the fields E, Σ and T do not obtain a mass term from symmetry breaking. Thus, we have to
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assign their masses which are generally free parameter to one of the scales by hand. To get
a handle on these masses, we have considered all possibilities for assigning the mass scales
of these superfields to the mass scales in our framework. This we have done by imposing
GCU with those fields assigned to any of the scales and determining their lowest possible
numerical value. As a result, we can exclude the possibility that these extra scales are at the
lower end of the spectrum. More specifically, in all model classes we find a lower bound for
the coloured multiplet E of about mE ≳ 108 GeV. Similar results apply to Σ and T , if we
do not consider lowering the GUT scale below about 1016 GeV. For definiteness, we fix their
mass scales whenever they are undetermined at MPS for the scan over the configurations.
As stated in point three, we need to provide at least one candidate pair of electroweak

Higgs bosons. These have to be effectively massless in our setup, i.e. have masses dominated
by soft SUSY breaking terms at or below the SUSY scale. Possible candidates and their
masses have been discussed in Section 3.4.2. For the scan, we consider the SM running of
the gauge couplings up to the SUSY scale, i.e. including only a single Higgs doublet in the
spectrum, and add the additional “massless” doublets at MSUSY. This we motivate by the
non-observation of additional Higgs bosons by the LHC (see e.g. [37, 118]) and our ignorance
on the soft-SUSY breaking sector.
In addition, we have checked to what extent hΦ may serve as low energy MSSM-like Higgs.

Therefore, we have considered whether their mass scale given in Table 3.2 may coincide
with the SUSY scale. This is only possible in class E where vT = 0, as otherwise SU(2)′

would remain unbroken down to the electroweak scale. Thus, we must include at least one
generation of h in classes B, C and F.

3.6.1. General Overview

Before discussing the various classes of models in more detail we summarise some generic
features and specific observations gained by studying all 828 configurations. A statistical
summary of the following discussions is given in Table 3.3.

Successful GCU

Successful GCU is possible in roughly half of the models. Except for class E, all such
configurations allow for a unification scale of MGUT > 1016 GeV and are thus favoured by
the non-observation of proton decay. In class E this is true for half of them.
In contrast to classes C, E and F, the allowed ranges in class B are rather constrained.

This allows us to fix the scales for at least some of the configurations in a semi-quantitative
way. In classes C, E and F such a fixing is only possible if we constrain one more scale by
hand.

New Light Particles

An important aspect of the models is the possibility of light (multi TeV) new scalars and
fermions. Such particles may be within the reach of future collider experiments. Therefore,
we have to study the bounds on the lowest scale of the model which is by definition MIND.
On the other hand, we demand complete unification near the Planck scale in order to be not
ruled out by the bound on the proton life time (cf. Section 1.4). We find 114 configurations
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class B class C class E class F


scanned 144 144 324 216 828

GCU 18 57 254 29 358

MGUT > 1016GeV 18 57 131 29 235

MIND < 10TeV & MGUT > 1016GeV 8 34 72 0 114

multiple light Higgs 1 18 225 0 239

MLR < 100TeV 0 0 108 0 108

1012GeV < MNR
< 1014GeV 16 42 123 3 184

MIND ∈ [0.1, 10]
v2Φ

vΣ+vT
14 20 203 26 263

Table 3.3.: The Number of configurations fulfilling certain conditions within the SUSY
framework.

that satisfy these conditions of which most (72) are categorised as class E. As such, they
contain only light colour triplets F . In the other classes, also the SU(2) triplets T may
get masses in the TeV-range. However, these are quite constrained by the requirement of
GCU. 34 of the aforementioned models are categorised as class C and support only one light
generation of T . In class B only a few models fulfil these conditions, again with only one
generation of T , and none of them belongs to class F. We may generalise this observation
to the statement that SU(2) triplets T , if present in the intermediate range, rarely get low
mass and tend to be associated with lower GUT scales.
Light colour triplets F are on the contrary a quite common feature of the models. In

class E they are actually allowed over a large mass range for the GUT scale. In classes B and
C, we may have colour triplets around some 100 TeV as long as there is only one generation
of light SU(2) triplets. In class F, the lowest mass scale and thus also the colour triplets are
generically heavier (cf. Section 3.6.3).
We illustrate the possibility of light particles in Figure 3.2, where we show the lowest

possible scale with respect to their multiplicity6. The figure displays a considerable fraction
of configurations where new matter is possible at the lowest scales (green squares), so we
should be prepared to observe exotic particles or at least their trace in precision observables
at collider experiments.

Multiple Light Higgs

One key feature of our setup is the possibility of having up to six SU(2) scalar bidoublets
(h and hΦ) massless at the SUSY scale. For 239 configurations we find more than one Higgs
bidoublet near the electroweak scale most of which fall in class E. Also in class C we find a
handful of configurations with multiple Higgs. In class B is a single configuration possible and
none in class F. It is interesting to note that in class E most successful configurations have

6Keep in mind that the SU(2) triplets T are not light in class E (cf. Table 3.2).
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Figure 3.2.: Graphical illustration of the lowest new mass scale, depending on the multiplicity
in the low-energy spectrum. We vary the number of low-lying SU(2) triplets T
(x axis) and low-lying colour triplets F (y axis), independently6. The colours
indicate the lowest mass scale, ranging from green (SUSY scale) to red (Planck
scale). White squares correspond to configurations not leading to GCU or which
are inconsistent with the class definitions.

more than one light bidoublet. This is because h and hΦ are taken as degenerate in mass. A
more detailed discussion will follow when we look explicitly at class E (cf. Section 3.6.2).

Left-Right Symmetry Scale

Our setup allows for rather light left-right symmetry-breaking scales. In class E, this scale
is directly related to ⟨Φ′⟩ as it is the only SU(2)′ breaking vev present. Thus, such a light
LR scale may lead to an imprint on flavour precision observables due to right handed W ′

and Z ′ gauge bosons. We find 108 configurations with MLR < 105 GeV in class E.
In class F, the LR-breaking scale is bounded form below by MPS > 1016.4 GeV. This is

due to the fact that the left-right symmetry is already broken by the vev of the field T ′ which
is the larges vev in this class. Similar arguments apply for class C. However, here the lower
bound is reduced to MPS > 1010.6 GeV. Nevertheless, the corresponding LR gauge bosons
are still beyond the reach of current and future collider experiments. The bound is even lower
in class B, as the vev of T ′ is no longer the largest of the vevs. Still, the LR scale cannot
be below the limit of MLR > 106.2 GeV and thus there is little hope of seeing effects of the
corresponding gauge bosons in future experiments.

Right- Handed Neutrino Scale

Another observable of interest is the preferred mass range for right-handed neutrinos.
Many see-saw models favour it to be in the range of MNR

∼ 1014GeV, well below the GUT
scale (cf. Section 2.3). In our setup, the Majorana mass parameter is not fixed at the
GUT scale but should rather be of the order ⟨Φ′⟩ where all symmetries that protect this
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3. PS-Breaking and Gauge Coupling Unification

term are broken. Scanning all configurations with respect to this scale, we find 184 with
1012 GeV ≲ MNR

≲ 1014 GeV. Actually, in classes B and C three-quarters and in class E
still half of all successful models fall in this category. Only in class F this scale is typically
higher; only 10 percent of the models allow for a neutrino scale in this range.

Scales Fixed by GCU

Although the constraints on the mass scales from GCU are in general quite weak, they
pin down all scales to a narrow range for a few configurations. The most obvious case is
the standard SO(10) coupling unification at the GUT scale, i.e. all vevs are located at
MGUT. This well-studied model is contained in our scan as a limiting case. We reproduce
the observation that for this case the only light multiplet is the MSSM Higgs h. However, we
also find a few configurations where the scales are essentially fixed but the spectrum and
unification pattern is different. Those are all classified as class E and will be discussed later.

Correlated MIND

So far, we always considered MIND to be a free parameter. To be more restrictive on this
scale, which is not a fundamental one, we impose the bound

MIND ∈ [0.1, 10]
v2Φ

vΣ + vT
. (3.23)

While this does not significantly reduce the number of allowed models it drastically reduces
the configurations with TeV-scale new particles. Most of the models still allowing TeV-scale
new particles belong to class E. In this class, still one quarters of all models allow for coloured
triplets below about 10 TeV.
It also affects the preferred neutrino scale. In class B and E the number is reduced to

three-quarters of those allowing for 1012 GeV ≲ MNR
≲ 1014 GeV in the general case. In

class C this is even reduced to 30 percent and class F now features no more configuration
with such a preferred neutrino scale.

Moreover, the number of configurations with multiple generations of MSSM Higgs bosons
is reduced by 20 percent in class E. With this constrained, there are only four configurations
with more then one generation not belonging to class E; one in class B and three belonging
to class C.
From these considerations we may conclude that takingMIND as free parameter is reasonable

and does not drastically change our results.

3.6.2. Class E: vT = 0 and vΣ ̸= 0

From the general overview presented so far we can conclude that class E contains the
largest set of configurations with phenomenologically interesting features. In this class, the
ordering of new thresholds is in ascending order: the scale of soft SUSY breaking MSUSY,
the see-saw induced scale MIND, the left-right unification scale MLR, the scale where PS
symmetry emerges MPS and the scale of complete gauge-coupling unification MGUT.

E : MSUSY ≤MIND ≤MLR ≤MPS ≤MGUT (3.24)
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Two of these scales can be regarded as free parameters; we take the lowest (MIND) and
highest (MGUT) free scale for that purpose. The other scales are then fixed by the matching
and unification conditions if they can be satisfied at all.
Our basic setup features 324 configurations in class E. For 254 of these it is possible to

implement GCU of which 131 allow for a scale MGUT > 1016 GeV and 76 are able to produce
GCU at the Planck scale.
As discussed before, in class E the superfield h is not necessarily contained in the spectrum

(cf. end of Section 3.6), as we take hϕ to be massless. We find 77 configurations leading to
GCU in which the MSSM-like Higgs is hΦ. As mentioned above, most of the configurations
have more than one bidoublet massless at the SUSY scale. Only 29 feature exactly one.
There are roughly 50 configurations with two, three or six bidoublets each and 81 with 4.
Zero or five are generally excluded by our setup. We also find that a larger number of light
bidoublets is correlated with a lower GUT scale. Especially in the case of six bidoublets we
find that the maximal value for the GUT scale is limited to MGUT < 1016 GeV.
We note that in some configurations of class E the see-saw scale MIND is of no phenomeno-

logical relevance as they do not contain the coloured superfield F (cf. Table 3.2). Thus, we
should break down the model space according to the multiplicity of the F multiplet: zero on
the one hand (no see-saw scale), one or three on the other hand.
If there is no field F , the lowest-lying threshold above the SUSY scale is the scale of

left-right unification MLR. It turns out that for some configurations this scale can be as low
as the SUSY scale. At the other end of the spectrum, the complete unification scale MGUT

can vary in the range between 109 GeV and 1019 GeV. It is not constrained by the low LR
scales mentioned above.
In the cases of one or three generations of F , the induced see-saw scale MIND can be as

low as the soft SUSY-breaking scale, independent of the GUT scale. The upper bound for
the see-saw scale is only fixed by the requirement that it is the lowest-lying scale and is
approximately MIND ≲ 1016 GeV. Thus, many models feature a nearly degenerate unification
near the Planck scale.
As mentioned before, there are configurations fixing all scales. These possess three

generations of h, Φ, T and one generation of Σ. The multiplicity of E is not fixed. For three
generations of E also one or zero generations of T are possible. In these configurations the
LR scale is fixed at MLR = 7× 103 GeV and the PS scale at MPS = 109 GeV, which is also
approximately the GUT scale.
We now consider in somewhat more detail the three particular model types described in

Section 3.2.

Type Em: Minimal Model

In class E, the minimal model is the standard MSSM without Higgs7, supplemented only
by the additional fields Φ and Σ above their respective thresholds. Looking at Table 3.2, we
see that this setup does not provide an induced see-saw scale. Hence, the sub-unification
scales depend only on one free parameter which we take to be MGUT. Figure 3.3(a) shows
the variation of the two other scales, and for comparison MGUT itself, as a function of MGUT.

7The electroweak breaking Higgs is contained in Φ.
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(a) Possible variation of scales leading to GCU.
The GUT scale is shown in black, the PS scale in
blue and the LR scale in red. An induced scale is
not present in this type. The black dots indicate
the scales for the exemplary plot shown in (b).
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(b) Exemplary running of the gauge couplings for
complete unification at MGUT = 1018 GeV. The
kink in the running corresponds to the SUSY scale.
The hypercharge coupling is shown in red, the B-L
coupling in green, the weak coupling in blue and
the strong coupling in black.

Figure 3.3.: Variation of the unification scales and exemplary running of the gauge couplings
for the type Em.

For the value of MGUT ≈ 3 × 1016 GeV all scales approximately coincide. This is the
minimal MGUT value for which GCU is possible in this setup. For this particular parameter
point, the GUT symmetry (e.g., SO(10)) directly breaks down to the MSSM by virtue of
vΣ = vΦ, so this is actually the standard SO(10) scenario. If we request a larger GUT scale,
the PS scale decreases but never drops below MPS ≳ 1014 GeV. The left-right unification
scale can vary in the range of 1011 GeV ≲MLR ≲ 1016 GeV. This includes the favoured mass
range for right-handed neutrinos. A sample unification plot is given in Figure 3.3(b).

Type Es: SO(10)-like Models

We now turn to a model with complete SO(10) representations below the GUT scale. With
this spectrum we can vary independently MIND and MGUT within a certain range.
It turns out thatMGUT cannot reach the Planck scale in this type of model. The maximally

allowed value for MGUT depends on MIND and decreases with increasing MIND. The value of
MIND, and thus the mass of the colour-triplet fields F , can be as low as the soft SUSY-breaking
scale.
Another important difference is that the scales approach each other with increasing MGUT.

In Figure 3.4(a) we plot the variation of the sub-unification scales as function of MGUT

for three fixed values of MIND (solid MIND = 103.4 GeV, dashed MIND = 105.4 GeV and
dotted MIND = 107.4 GeV). Furthermore, we again shown an exemplary unification plot in
Figure 3.4(b). The black lines corresponding toMGUT lay on top of each other, as the different
choices for MIND solely change the allowed range where MGUT may be varied. For the lowest
value of MIND it is possible to have GCU without any sub-unification at MGUT ≈ 1016.4 GeV.
For larger MIND we see a gap opening between MLR and MPS. However, it is still possible to
achieve MPS =MGUT.
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(a) Possible variation of scales leading to GCU. The
GUT scale is shown in black, the PS scale in blue and
the LR scale in red. The variation in the IND scale is
illustrated for discrete choices of MIND: 10

3.4 GeV
(solid), 105.4 GeV (dashed) and 107.4 GeV (dotted).
The black dots indicate the scales for the exemplary
plot shown in (b)
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(b) Exemplary running of the gauge couplings for
complete unification at MGUT = 1015.1 GeV. The
hypercharge coupling is shown in red, the B-L cou-
pling in green, the weak coupling in blue and, the
strong coupling in black.

Figure 3.4.: Variation of the unification scales and exemplary running of the gauge couplings
for the type Es.

Type Ee: E6-inspired Models

In model of type Ee, we demand three generations of the “MSSM-like” Higgs field h and
the coloured field F . Thus, we are able to combine those with the matter fields to a complete
27 representation under E6 for each generation. In this scenario, GCU is possible over a wide
range of mass scales.

Like in the SO(10) inspired type Es discussed above, the separation between the sub-
unification scales decreases with increasing scale MGUT. Over the whole range of MIND it is
possible to have PS unification coincide with the complete GCU (MPS =MGUT). Complete
unification at a single scale is possible for MGUT ≈ 1016.4 GeV if the scale of light triplets
is equal to the soft SUSY-breaking scale, MF = MSUSY = 2.5 × 103 GeV. This is the well
known SU(5) limiting case since all fields of the low energy spectrum can be grouped to
complete SU(5) representations.

Compared to the previous two model types, the gauge coupling at the unification point
α−1
GUT is significantly lower and in some cases approaches the non-perturbative regime. In

Figure 3.5 we show the variation of scales and an exemplary unification plot.

3.6.3. Class F: vT ̸= 0 and vΣ = 0

This class has a more restricted phenomenology than the other classes. Nevertheless,
it contains some models that exhibit GCU. In class-F models, SU(2)′ and thus the LR
symmetry is broken above the scale where SU(4) reduces to colour. We therefore might
expect tighter relations between lepton- and quark-flavour mixing. The relevant scales of this
class are, in ascending order: the see-saw induced scale MIND, the quark-lepton unification

59



3. PS-Breaking and Gauge Coupling Unification

13 14 15 16 17 18

4

6

8

10

12

14

16

18

LogHML @GeVD

L
o
g
HM
L
@G

eV
D

(a) Possible variation of scales leading to GCU.
The GUT scale is shown in black, the PS scale in
blue and the LR scale in red. The variation in
the IND scale is illustrated for discrete choices of
MIND: 10

7.4 GeV (solid), 105.4 GeV (dashed) and
107.4 GeV (dotted). The black dots indicate the
scales for the exemplary plot shown in (b).
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(b) Exemplary running of the gauge couplings for
complete unification at MGUT = 1015.1 GeV. The
hypercharge coupling is shown in red, the B-L cou-
pling in green, the weak coupling in blue and the
strong coupling in black.

Figure 3.5.: Variation of the unification scales and exemplary running of the gauge couplings
for the type Ee.

scale MQL, the PS scale MPS and the unification scale MGUT.

F : MSUSY ≤MIND ≤MQL ≤MPS ≤MGUT (3.25)

Again, we take MIND and MGUT as free scales and vary these. Table 3.2 indicates that all
models in this class do have the additional see-saw scale MIND as T ′ and thus T is always
included. The intermediate scales tend to be higher than in class E.
Out of the 216 configurations of class F only 29 configurations are consistent with GCU.

In all cases, MGUT can be as large as the Planck scale.
As discussed in the general overview, light degrees of freedom are not possible in this

class. The minimal value of MIND is strongly dependent on the number of SU(2) triplets.
In the case of three triplets it is strictly larger than 1016 GeV. Thus, we look at the
configurations with only one generation of T . In these configurations, MIND has to be larger
than MIND ≳ 106 GeV. The lower bound is realised for three generations of F and rises if a
fewer number of fields F are included.
We conclude that in class F the extra fields may play a role for flavor physics in an

intermediate energy range but are unlikely to be observable at collider experiments. We now
again take a look at the predefined models stated in Section 3.2.

Type Fm: Minimal Model

The minimal model of class F contains the superfields Φ and T (′) in addition to the MSSM
matter spectrum.
In models of this type, the lowest possible see-saw mass value is MIND ≈ 1012GeV and the

LR scale is bounded from below by MLR ≳ 1015GeV. Thus these are ruled out, since the
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3.6. Unification within Supersymmetry

mass of the electroweak symmetry breaking Higgs hΦ is associated to the LR scale. As it does
not include a light Higgs candidate, it is not contained in the scan and the general overview.
A next to minimal setup explicitly including one generation of h is not able to produce GCU.

Type Fs/Fe

A model of type Fs is not consistent with GCU. This is because α−1
3 grows to fast and

overshoots α−1
2 before the condition (3.17) for a possible QL scale can be fulfilled. Likewise,

a model of type Fe consistent with GCU is not possible.

Model F189: Flavour-Symmetry Inspired Model

In the absence of the previous types we take a look at a configuration which might be viewed
as E6-inspired. However, instead of the three generations of h we include only a single and
assume that the other two bidoublets get GUT scale masses by some unspecified mechanism.
Such a setup is realised in model F1898. For this setup, unification is possible over a wide range
of mass scales. There is a strong correlation of MIND and MGUT. Thus, we can choose the
only relevant free parameter to be MIND. It can vary between 107 GeV ≲MIND ≲ 1016 GeV.
For its largest allowed value all scales are approximately equal which is the SO(10) limiting
case. Conversely, the lowest possible MIND value corresponds to GUT unification near the
Planck scale. In any case, the QL, the PS and the GUT scales are nearly degenerate. Thus,
we do not show a plot of the variation of the scales or a sample unification plot.

As mentioned above, there is no possible configuration leading to GCU with three genera-
tions of the field h.

3.6.4. Classes A to D: vT ̸= 0 and vΣ ̸= 0

In the classes A to D, we effectively combine model classes E and F. There are five different
scales in class B and C, two of which are fixed by requiring GCU. For concreteness, we also
fix MGUT = 1018.2 GeV, i.e. we assume complete unification at the Planck scale. Still, we
can choose two parameters independently and obtain allowed and forbidden regions but no
one-to-one correspondences. In addition to MIND, we chose (for technical reasons) MQL as
free scale in class C although it is not the largest free scale. In class B we vary MIND and
MPS in line with the former setups. As mentioned earlier, class A and D represent limiting
cases and are thus not discussed in detail. The ordering of scales in the other two scenarios is

B : MSUSY ≤MIND ≤MU1 ≤MLR ≤MPS ≤MGUT ≡MPlanck , (3.26)

C : MSUSY ≤MIND ≤MU1 ≤MQL ≤MPS ≤MGUT ≡MPlanck , (3.27)

whereMU1 indicates the mass scale where the extra U(1) groups break down to hypercharge.
This is the natural scale for a Majorana mass term of the right-handed neutrinos as such a term
breaks both B − L and right-handed isospin. Further below this scale is the induced see-saw
scale MIND which we again constrain to be above the soft SUSY breaking scale MSUSY. The
labels LR and QL refer to SU(2)′ (left-right) and SU(4) (quark-lepton) symmetry breaking,
respectively.

8For the meaning of the label numbering the models we refer to Appendix A.1.
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Of the 144 configurations in classes B and C, 18 (B) and 57 (C) are consistent with
GCU. We again observe that the number of T generations has a strong impact on the lowest
mass scale. If there is only one generation of T , the value of MIND can approach the SUSY
scale independently of the number of F in both classes. The situation differs drastically
when considering three generations of T . Here, the minimal value for MIND additionally
depends crucial on the number of generations of the field F . In class C, it ranges from
MIND ≳ 1015 GeV (no F ) down to MIND ≳ 106 GeV (three F generations). In class B the
situation is even worse. Here GCU is not possible with less than three generations of the
field F . Even in this case its lowest value MIND ≳ 1010GeV is above the corresponding one
of class C.

Type Bm/Cm: Minimal Model

In the minimal model, there is a single generation of each of the fields Φ, T (′) and Σ. For
both Bm and Cm GCU is possible. However, the lowest scale is limited to rather high values
of MIND ≳ 1013 GeV (type Bm) and MIND ≳ 1010 GeV (type Cm), respectively. Since we
again do not explicitly add an electroweak symmetry breaking Higgs, both minimal setups
are ruled out. Again, they are not in the scan and overview as they do not feature a light
Higgs candidate. Moreover, if we explicitly include one generation of h, GCU can no longer
be achieved.

Types Bs/Cs and Be/Ce

Again, these setups do not allow for GCU.

Class-B/C Models with MIND < 10TeV

We may ask for configurations which results in setups where the see-saw scale is suffi-
ciently low (say MIND < 10 TeV) so that the new particles can have an impact on collider
phenomenology. We find 8 (34) models where this is possible within class B (C). One
configuration within class B is model B199, where we consider three copies of h, F and Σ,
one generation of Φ and T and no multiplet E. In class C there is a similar model C211,
which has the same spectrum, but three copies of Φ. The corresponding plots are shown in
Figures 3.6, 3.7.

3.7. Unification Without Supersymmetry

We now turn to scenarios without supersymmetry. Here, the same classes of models
as in the supersymmetric case are considered, omitting the fermionic superpartners of the
additional multiplets. The same is done with the fermionic superpartners of matter and
gauge fields. Here, it is not our aim to present a detailed analysis, as we have done in the
SUSY case, but rather to provide an insight into the GCU of non-supersymmetric PS models.
Hence, we do not construct a scalar potential for the fields given in Table 3.1, which would
contain more free parameters and terms, and derive the corresponding masses for the scalar
fields from it here. Instead, we assume that the masses of all scalar fields coincide with
those of the corresponding superfields as mentioned in Section 3.4. Also we do not discuss
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(a) Possible variation of scales leading to GCU. The
PS scale is shown in black, the LR scale in blue
and the MSSM scale in red. The variation in the
IND scale is illustrated for discrete choices of MIND:
104 GeV (solid), 107 GeV (dashed) and 1010 GeV
(dotted). The black dots indicate the scales for the
exemplary plot shown in (b).
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(b) Exemplary running of the gauge couplings for
complete unification at MGUT = 1018.2 GeV. The
hypercharge coupling is shown in red, the U(1)′

coupling in brown, the B-L coupling in green, the
weak coupling in blue and the strong coupling in
black.

Figure 3.6.: Variation of the unification scales and exemplary running of the gauge couplings
for the type B199.
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(a) Possible variation of scales leading to GCU. The
QL scale is shown in black, the PS scale in blue
and the MSSM scale in red. The variation in the
IND scale is illustrated for discrete choices of MIND:
104 GeV (solid), 107 GeV (dashed) and 1010 GeV
(dotted). The black dots indicate the scales for the
exemplary plot shown in (b).
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(b) Exemplary running of the gauge couplings for
complete unification at MGUT = 1018.2 GeV. The
hypercharge coupling is shown in red, the U(1)′ in
brown, the B-L in green, the weak in blue and the
strong coupling in black.

Figure 3.7.: Variation of the unification scales and exemplary running of the gauge couplings
for the type C211.
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any aspects of naturalness inevitably appearing when multiple scalar fields have masses at
different scales. Furthermore, the meaning of scales and symmetry breaking patterns do
not need be changed as they do not depend on the assumption of SUSY. Similarly, the
unification conditions themselves are equal in both cases. Only the coefficients of the running
couplings are adapted to the non-supersymmetric case as explained in Appendix A.4. The
aforementioned assumptions may be ad hoc but allow us to compare supersymmetric and
non-supersymmetric models in a meaningful way.
Next to the adjustments mentioned so far we have to adopt the GUT-scale fixing of the

classes B and C. The value of MGUT = 1018.2 GeV which we used to fix an additional scale
in the SUSY classes B and C allows only for one configuration (class C) that satisfies GCU
in the non-SUSY case. Thus, we lower the GUT-scale fixing to MGUT ≡ 1016 GeV as we
generally find lower mass thresholds than in the supersymmetric case. Lowering this scale
further would allow for GCU in even more configurations but is disfavoured by the proton
lifetime.

Successful GCU

We study the same set of 828 configurations constructed in the previous section with the
assumptions stated above. Again, more than half of the configurations allow for GCU. As in
the SUSY case, most of them belong to class E. Classes B and C are still disfavoured but not
excluded. However, now also most configurations of class F satisfy the condition of GCU. In
any case lower GUT scales tend to be favoured.

New Light Scalar Particles

In the non-SUSY setup the possible light SU(2) or colour triplets are pure scalar fields.
These may be stable, if we do not assume any additional couplings to the SM fermions.

Similar to the SUSY case, we find quite a range for light colour triplets F in the TeV-range,
most of which belong to class E. There is also quite some range for light colour triplets
accompanied by one generation of light T in class F. However, this lowers the maximally
allowed GUT scale to MGUT ≲ 1016GeV in most of the cases. In class E three generations
of F are preferred while class F has an equal number of configurations with one and three
generations.
Moreover, we find that three generations of light ( TeV-range) SU(2) triplets T are excluded.

In particular, in class F the lower bound for those is MT ≳ 108 GeV. In class C, the bound
becomes 1011 GeV and in class B there is no GCU at all.

Multiple Light Higgs

In models of class E we find roughly one third of configurations in which the MSSM Higgs
is not part of h but rather of the multiplet hΦ (see Section 3.4.2). Similar to the SUSY case
it is very unlikely or even impossible to find more than one generation of light bidoublets in
class C or B, respectively. Also for class E we find similar result as in the SUSY case. Again,
most configurations prefer four generations, one, two and three are equally likely and six are
disfavoured. In contrast to the previous considerations there are now plenty of configurations
of class F with three generations of bidoublets h. However, one is still favoured here. Again
we observe that increasing the multiplicity of bidoublets lowers the maximal unification scale.
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Right-Handed Neutrino Scale

Similar to the SUSY models we observe a LR symmetry breaking scale roughly around
MLR ∼ 1013 GeV in a large fraction of the successful configurations. To be precise, most
of the configurations in class B, C and E feature such a neutrino scale. In class F still 60
percent allow for neutrinos in the range 1012GeV < MNR

< 1014GeV. Nevertheless, there are
configurations where this scale can be much lower and even reaches down to below 100 TeV
in some cases.

Correlated MIND

Again, we find that constraining the induced scale MIND does not change the results very
much. Thus, we see our assumptions justified to include this scale as a free parameter in our
scans.

Scales Fixed by GCU

In the non-supersymmetric case we again find in all classes some configurations in which
all mass scales are “exactly” fixed. This usually corresponds to degenerate mass scales. A
common scale for such classes is MGUT ≈ 1014 GeV.

Gauge Coupling at MGUT

A general feature of non-SUSY spectra is the fact that the high-energy effective values of
the gauge couplings are larger than in the SUSY case. This is due to the lower number of
fields that contribute to the running of the gauge-couplings.

An overview of the non-supersymmetric statistics can be found in Table 3.4. We now
consider the classes separately. However, we will not repeat a discussion as detailed as the
one in the SUSY section but only give a short specific overview for each class. In addition we
present for each class one selected configuration that we find denotative.

3.7.1. Class E

Again, class E features most allowed configurations which is why we start our discussion
with it. For class E it is possible to implement GCU in 230 configurations, of which only
23 provide a complete unification near the Planck scale. Similar to the supersymmetric
case, we find 88 configurations where the electroweak symmetry breaking Higgs is provided
by Φ. On the other hand, an interesting possibility is the existence of three generations
of h (type Ee) although there is no direct relation to E6 unification without SUSY. Such
configurations are allowed by the constraint of GCU whereby the GUT scale can vary between
1014 GeV ≲MGUT ≲ 1017 GeV. One possible configuration exhibits three generations of F ,
one of Σ and Φ each and no fields E or T . For this special configuration the variation of the
scales and a unification plot is shown in Figure 3.8. We find, that the variation of the LR
scale strongly depends on the GUT scale. The PS scale varies only weakly and is always
close to the GUT scale.
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3. PS-Breaking and Gauge Coupling Unification

class B class C class E class F


scanned 144 144 324 216 828

GCU 10 30 230 201 471

MGUT > 1016GeV 10 30 111 16 167

MIND < 10TeV & MGUT > 1016GeV 1 8 110 16 135

multiple light Higgs 0 3 171 67 241

MLR < 100TeV 0 0 136 0 136

1012GeV < MNR
< 1014GeV 9 30 211 126 376

MIND ∈ [0.1, 10]
v2Φ

vΣ+vT
10 12 201 93 342

Table 3.4.: The Number of configurations fulfilling certain conditions within the non-SUSY
framework.

3.7.2. Class F

In class F there are now plenty of configurations leading to successful GCU. In general
we find that there is not much room for scale variation. The GUT scale can be as large as
MGUT ≈ 1017 GeV. The scales MQL, MPS and MGUT are close to each other since the lightest
of these scales is fixed to be larger thanMQL ≳ 1013 GeV. However, the induced see-saw scale
can be as light as the SUSY scale. There are also configurations with GCU where all scales
are essentially fixed and not far from the GUT scale. Those lead to MGUT ≈ 2× 1014 GeV
which is rather low.

One exemplary configuration leading to GCU above 1016 GeV is model F213. Here, we have
three generations of F and one of T . These scalar particles can be rather light, potentially as
low as the SUSY scale. In addition, this model contains three generations of the fields Φ and
Σ and one generation of E. We show the possible scale variation and a sample unification
plot for this model in Figure 3.9.

3.7.3. Class A to D

The classes A to D are still disfavoured. Nevertheless, we find 30 (10) configurations
allowing for GCU in class C (B). However, this requires to lower the scale of complete
unification which we fix in these classes to MGUT = 1016 GeV. In class C, the QL scale
emerges typically close the PS scale. Likewise, the PS scale can become as large as the GUT
scale such that the energy range with pure PS symmetry may vanish.

Looking at the possibility of three Higgs generations, we do not find any configurations
in class B and only a few in class C. On the other hand, these model classes favour three
generations of Φ.
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(a) Possible variation of scales leading to GCU. The
GUT scale is shown in black, the PS scale in blue and
the LR scale in red. The variation in the IND scale
is illustrated for discrete choices of MIND: 10

4 GeV
(solid), 107 GeV (dashed) and 1010 GeV (dotted).
The black dots indicate the scales for the exemplary
plot shown in (b).
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(b) Exemplary running of the gauge couplings for
complete unification at MGUT = 1015.8 GeV. The
hypercharge coupling is shown in red, the B-L cou-
pling in green, the weak coupling in blue and the
strong coupling in black.

Figure 3.8.: Variation of the unification scales and exemplary running of the gauge couplings
for the non-SUSY type Ee.
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(a) Possible variation of scales leading to GCU. The
GUT scale is shown in black, the PS scale in blue and
the QL scale in red. The variation in the IND scale
is illustrated for discrete choices of MIND: 10

4 GeV
(solid), 108.5 GeV (dashed) and 1013 GeV (dotted).
The black dots indicate the scales for the exemplary
plot shown in (b).

(b) Exemplary running of the gauge couplings for
complete unification at MGUT = 1016.5 GeV. The
hypercharge coupling is shown in red, the U(1)′

coupling in brown, the weak coupling in blue and
the strong coupling in black.

Figure 3.9.: Variation of the unification scales and exemplary running of the gauge couplings
for the type non-SUSY F213.
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(a) Possible variation of scales leading to GCU. The
PS scale is shown in black, the LR scale in blue
and the MSSM scale in red. The variation in the
IND scale is illustrated for discrete choices of MIND:
104 GeV (solid), 105 GeV (dashed) and 106 GeV
(dotted). The black dots indicate the scales for the
exemplary plot shown in (b).
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(b) Exemplary running of the gauge couplings for
complete unification at MGUT = 1016 GeV. The
hypercharge coupling is shown in red, the U(1)′

coupling in brown, the B-L coupling in green, the
weak coupling in blue and the strong coupling in
black.

Figure 3.10.: Variation of the unification scales and exemplary running of the gauge couplings
for the non-SUSY type B53.
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(a) Possible variation of scales leading to GCU. The
QL scale is shown in black, the PS scale in blue
and the MSSM scale in red. The variation in the
IND scale is illustrated for discrete choices of MIND:
104 GeV (solid), 107 GeV (dashed) and 1010 GeV
(dotted). The black dots indicate the scales for the
exemplary plot shown in (b).
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(b) Exemplary running of the gauge couplings for
complete unification at MGUT = 1016 GeV. The
hypercharge coupling is shown in red, the U(1) cou-
pling in brown, the B-L coupling in green, the weak
coupling in blue and the strong coupling in black.

Figure 3.11.: Variation of the unification scales and exemplary running of the gauge couplings
for the non-SUSY type C45.
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3.8. Summary

In Figure 3.10 and Figure 3.11, we display the scale relations and gauge-coupling unification
for two distinct models; B53 and C45. The former contains three generations of F which can
be as light as a few TeV. In addition it contains three generations of E and one generation of
all other fields. We find quite some range for scale variation here. For the largest value of the
PS scale (MPS ≈ 1015) we find a degeneracy of all lower scales. Model C45 also features new
particles at the TeV scale. Here we include three generations of Φ and Σ and one generation
of all other fields. We again find quite some space to vary the scales.

3.8. Summary

In this chapter we have presented a survey of models with respect to gauge coupling
unification that contains multiple intermediate scales. These correspond to left-right symmetry,
quark-lepton unification, Pati-Salam symmetry and complete gauge coupling unification (e.g.
SO(10)) as well as an additional induced scale. The order of these scales depends on the
hierarchy of the PS breaking vevs, where we have identified four interesting classes. We have
studied supersymmetric models in detail and also considered non-supersymmetric models
which we have deduced from the former ones.

We have obtained our set of configurations following simple construction principles which
allow for only a small set of PS multiplets consistent with unification à la SO(10) or E6.
For these we have limited ourselves to the smallest representations. Moreover, we did not
demand all fields to be present in the low-energy theory. On the other hand, we have allowed
all of them to appear in three generations similar to the fermion fields. We have allowed
for multiple breaking paths (classes) leading to different intermediate scales with varying
interpretations.

The constraints imposed from gauge coupling unification are not sufficient to fix all scales
to numerical predictions. Instead, we have deduced characteristic patterns of scales in the
models and correlated them to specific choices for the particle content and classes.

For a large fraction of these configurations we find the possibility for gauge coupling
unification with additional intermediate scales. In general, the supersymmetric setup allows
for larger variations of the scales, especially when asking for a complete unification above
MGUT > 1016GeV. Nevertheless, the non-supersymmetric setup allows for more configura-
tions. In particular, the possibility of breaking the left-right symmetry above the quark-lepton
symmetry opens up. This breaking path is strongly constrained in the SUSY setup.

In a wide range of supersymmetric models complete gauge coupling unification can be
pushed up to the Planck scale. This fact, together with the properties of PS symmetry,
significantly reduces the tension that the non-observation of proton decay can put on GUT
model building. In the non-supersymmetric case we are way more constrained but still find
quite a range of models with GUT scales above 1016GeV.

We focused on models with intermediate scales which are well below the GUT scale and can
be associated to quark-lepton or left-right symmetry breaking. As such, they are important
for the generation of the flavour sector and decouple the issues of flavour from gauge coupling
unification. Although we have not discussed the flavour sector in this chapter, this fact may

69



3. PS-Breaking and Gauge Coupling Unification

be useful for models where we construct the flavour sector explicitly. We will come back to
this issue in the following chapters.
As an extra feature, the different stages of gauge symmetry breaking can yield the generation

of a small see-saw like suppressed mass scale. The masses of certain particles, including
SM-like Higgs doublets and new exotic (s)quarks, are determined by this scale and may thus
be accessible at colliders. On the other hand, SU(2)′ triplets tend to raise the left-right-
symmetry scale above the scale of quark-lepton unification and may thus enforce a direct
relation between quark and lepton flavour physics.
Another generic property of the models under consideration is that the scale of left-right

symmetry breaking, naturally associated with the generation of neutrino masses, is within an
intermediate mass range. A neutrino mass scale significantly below the GUT scale is favoured
by numerical estimates of see-saw mechanisms that explain the smallness of the observed
neutrino masses. We will make use of this option in the following chapters.
In addition, we encounter configurations which allow for a multi-Higgs doublet model at

the low scale. Furthermore, the observable Higgs doublet need not be a member of a (1,2,2)
representation as often assumed, but can also originate from a (4,2,1) + c.c. representation,
i.e. behave as a scalar lepton. The effective µ term, which sets the scale for low-energy Higgs
physics, can be naturally suppressed due to the newly introduces see-saw like mass scale.
The possibility of three generations of h will be discussed explicitly in the next chapter when
we construct a realisation of flavour through non-renormalisable terms.
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Chapter 4

Effective Theory of Flavour
High-Energy Yukawa Generation

In this chapter we discuss one possible way of including a theory of flavour in a Pati-Salam
symmetric Grand Unified Theory. Within this framework we introduce a gauged flavour
symmetry which is spontaneously broken at a high scale by vacuum expectation values of
scalar fields, the so-called flavons. The flavons couple to the SM Yukawa sector through
non-renormalisable operators. The SM flavour hierarchies are generated by multiple insertions
of the flavons. Thus, we do not restrict ourselves to renormalisable operators like we did in
the previous chapter.
Such a setup was first discussed by Froggatt and Nielsen in 1979 [119], where the flavour

symmetry was a simple U(1)FN. Since then this concept has been extended to non-abelian
flavour symmetries and has been widely discussed in the literature. In this chapter we
consider a single SU(3)F flavour symmetry. Similar models have already been studied for
example in [51, 120–125]. However, the key feature of our model is that we consider three
Higgs generations transforming non-trivially under the flavour symmetry. Such a model is in
line with a further unification of all low energy representations à la E6 as discussed in the
previous chapter.
We start the chapter by setting the stage for the model. Then, we discuss an explicit

realisation with triplet flavons. Afterwards we consider larger representations for the flavons
to see if the setup can be simplified. As a result, we study a realisation with decuplet flavons.
We conclude the chapter with a short summary and address several aspects of the model
which we find relevant to discuss further in future studies.
The main results of this chapter have already been published in Reference [B].

4.1. Model Framework

As discussed above, the complete gauge symmetry we start with is

SU(4)× SU(2)× SU(2)′ × Z2 × SU(3)F . (4.1)

Here, we consider solely a supersymmetric setup, as SUSY provides many simplifying features
when considering GUT models (cf. Section 1.3).

We study the particular case of three Higgs generations[126–128] which can be associated
with a flavour symmetry [129–131]. This structure may arise in a supersymmetric GUT where
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4. Effective Theory of Flavour

electroweak Higgs and matter fields are unified in a single representation [48, 132]. The three
generations of Higgs bidoublets transforms as fundamental triplet under the gauged SU(3)F
symmetry similar to the matter fields. Next to the MSSM particle content with enlarged
Higgs sector, we introduce new scalar fields transforming solely under the flavour symmetry.
These acquire vevs at some high scale thereby breaking the flavour symmetry completely.

Relation to the Model Scan

The models presented in this chapter are an extension for a subset of models considered
in Chapter 3 that explicitly construct a phenomenologically viable flavour sector. Here, we
study the special case of three generations of the MSSM Higgs bidoublet h transforming in
the fundamental representation of the flavour symmetry. Such an assumption is supported
by the scan where we found plenty of such configurations consistent with complete gauge
coupling unification. Moreover, we include only additional superfields that transform trivially
under the PS symmetry and therefore do not spoil the unification properties. As we use only
a part of the particle content introduced in Table 3.1, we assume the remaining fields not to
couple to the flavour sector. This can be achieved for example by introducing an additional
(discrete) symmetry.

We consider the PS symmetry to be valid at an arbitrary but large GUT scale, which is
(at least partially) broken in the large energy region. In this chapter we do not construct
such a breaking explicitly but refer to the considerations of the previous chapter. As already
discussed there, a renormalisable setup may not be sufficient to generate the observed
flavour structure in PS models (cf. Section 3.4.4). Therefore, we drop the assumption of
renormalisability in this chapter and particularly make use of non-renormalisable terms. In
Chapter 5, we again constrain ourselves to renormalisable terms and show that a viable
flavour sector can be generated when introducing additional fermionic fields.

General Flavour Structure

The model is an effective theory expanded in some large but unspecified mass scale M .
Hence, we have to additionally take into account all non-renormalisable terms which are not
forbidden by symmetry or by explicit constraints on the low-energy effective theory. This
allows in general mass terms for those components of the flavon superfields that are not
absorbed as Goldstone bosons into massive flavour-gauge bosons. Generically, we denote the
ratio of any flavon vev ⟨ϕ⟩ and the expansion scale M by ϵ;

ϵ =
⟨ϕ⟩
M

. (4.2)

We assume that ϵ distinguishes the up- from the down sector (ϵd ̸= ϵu) and also allow for a
third distinct expansion parameter ϵν in the neutrino sector. Such differences are expected in
the effective superpotential as a consequence of the breaking of the PS gauge symmetry, in
particular from the left-right symmetry breaking. Here, we do not consider this breaking any
further. General considerations on PS breaking can be found in the previous chapter.
The aim of this setup is to generate the hierarchies of the Yukawa matrices in powers of ϵ

and thus from multiple insertions of flavons ϕ. The vev of a single flavon should not contain
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4.1. Model Framework

an inner hierarchy, i.e. the components of the vev should either be zero or of similar size.
However, in contrast to the simplest ansatz of Froggatt and Nielsen, the different flavons
may have hierarchical vevs, i.e. ⟨ϕ′⟩ ≫ ⟨ϕ⟩. Such hierarchies are necessary to generate a
successive breaking of the flavour symmetry. In addition, they simplify the structure of the
model as lower dimensional operators suffice to generate the hierarchical pattern.
A qualitative picture of the scales in the model is shown in Figure 4.1 where explicit values

are for illustrative purpose only and should not be taken at face value.
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Figure 4.1.: Visualisation of the scales of the model (Numerical values for illustrative purposes
only).

With these basic building blocks at hand we intend to reproduce the low-energy flavour
structure of the SM. Here, we are interested in the general structure of the Yukawa matrices
rather then their explicit values. Effective Yukawa matrices exhibiting the hierarchical
structure

Yu,d ≈

 0 O

ϵ3u,d


O

ϵ3u,d


O

ϵ3u,d


O

ϵ2u,d


O

ϵ2u,d


O

ϵ3u,d


O

ϵ2u,d


O (1)

 yt,b , (4.3)

with ϵu ≈ 0.05 and ϵd ≈ 0.15 can accommodate the observed CKM matrix and the quark-mass
hierarchies [133]. This structure of the Yukawa matrices should hold at the unification scale
and hence, we may generate it by the vevs of the flavon fields. In order to compare (4.3)
with the SM Yukawa matrices we have to calculate their evolution with energy corresponding
to the renormalisation group equations from the GUT scale down to the electroweak scale.
Such a discussion is beyond the scope of this work as we are only interested in approximate
structures. More details on the energy behaviour of the Yukawa couplings can be found in
e.g. [102, 103].
As discussed in Section 2.3, the structure of the lepton mixing matrix UPMNS is strongly

affected by right-handed neutrinos due to the see-saw mechanism. Therefore, one possibility
to account for the neutrino sector is to generate a Majorana mass matrix for the right-handed
neutrinos. For the Yukawa structure given above, sequential right-handed neutrino dominance
(SRHND) [95] is able to implement a phenomenologically viable PMNS mixing matrix and
mass hierarchy in the neutrino sector [51]. A short introduction in this mechanism and
conditions of applicability can be found in Section 2.3.3. The main concept is that a single
right-handed neutrino gives the main contribution to the 23 block, while a second right-handed
neutrino is required to give subdominant contributions to generate the full effective neutrino
mass matrix.

Trivial Yukawa Structure

Before considering explicit realisations of such a model, we discuss one particularly im-
portant operator occurring generically in any such construction. The appearance of this
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operator is a direct consequence of the fact that we consider the Higgs bidoublet to transform
as flavour triplet. It will be relevant for later discussions as it is one major reason to study
non-fundamental flavon representations.
Starting with the gauge symmetry (including flavour) of (4.1), we identify a single renor-

malisable dimension 3 Yukawa term in the superpotential1,

Y0 = εijk ΨL,i ΨR,j hk , (4.4)

where εijk is the three dimensional Levi-Civita-Tensor. This term is special in the sense that
no insertion of a flavon vev is needed. It is similar to the usual MSSM Yukawa term but with
an anti-symmetric Yukawa matrix. Thus, it generates a coupling that is non-diagonal among
the lepton and quark generations. This results in a Yukawa structure with one vanishing and
two degenerate entries. It cannot be the dominant contribution to the Yukawa matrix as
phenomenologically the top mass is dominating. Taking a look at (4.3), we find that in our
setup it has to be suppressed at least by a factor ϵ3 with respect to the top Yukawa coupling.
Such a problematic operator has already been noticed in setups with flavour singlet Higgs

fields where the flavour symmetry is SO(3) and hΨLΨR itself may form an invariant operator.
This effect has encouraged many authors to consider the larger group SU(3) where such a
term is no longer invariant. For general reviews on such models for different discrete and
continuous symmetries see [51, 87, 98, 134]. Avoiding this difficulty in an analogue manner
is not possible as SU(3) is the largest group with triplet representations2. Hence we take a
different ansatz and consider larger flavon representations which may reflect the structure of
the effective Yukawa term. In any such case, we still have to forbid the operator Y0 but may
potentially suppress or even forbid its reoccurrence at higher orders.

4.2. A Triplet-Flavon Model

To start with, we first consider the simplest non-trivial flavour embedding of the flavons
ϕ, the (anti-)triplet representations. Thus, the flavons transform similar to the matter and
Higgs multiplets Ψ and h. A similar setup has been discussed e.g. in [120–122], however,
there the Higgs bidoublet was SU(3)F blind.

4.2.1. Setup of the Model

Particle Content

In this chapter we break the flavour symmetry successively and thus introduce two flavons
ϕ3 and ϕ23. As these flavons should get vevs at some high energy scale we have to ensure
that they do not accidentally break SUSY (cf. Section 1.3). Concerning the vanishing of the
D-terms, which is also-called D-term flatness, the simplest way of achieving this is to introduce
their conjugate partners and assign equal vevs to them. A discussion on the vanishing of the
F-terms is postponed to later studies concerning the scalar potential as we do not consider

1We count the dimension in terms of the superpotential, where a dimension 3 term is renormalisable and
terms with mass dimension 4 and higher are non-renormalisable.

2Although a fourth generation is not finally excluded there is no evidence for such a scenario
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Field SU(3)F PS U(1) Z3 ZMP
2

ΨL 3 (4, 2, 1) 1 0 −
ΨR 3 (4, 1, 2) 1 0 −
h 3 (1, 2, 2) 1 0 +

ϕ3 3 (1, 1, 1) −3 −1 +

ϕ3 3 (1, 1, 1) −1 0 +
ϕ23 3 (1, 1, 1) 0 1 +

ϕ23 3 (1, 1, 1) −1 1 +

Φ′ 1 (4, 1, 2) 6 0 +

Table 4.1.: Transformation properties of the matter, Higgs and flavon superfields responsible
for the flavour structure in the flavon triplet model.

the potential generating the flavon vevs here. In order to generate Majorana mass terms
for the right-handed neutrinos we enlarge the spectrum by a PS-breaking multiplet Φ′ as
introduced in the previous chapter. We list the fields and quantum numbers that are relevant
for the present discussion in Table 4.1.
The spectrum is completed by further superfields which restore the Z2 left-right symmetry,

cancel the SU(4) gauge anomaly and implement symmetry breaking down to the MSSM.
This can be done in a similar manner as discussed in the general PS-breaking model of
Chapter 3. Since these superfields do not affect the flavour structure we do not list them
explicitly.
Furthermore, we observe that the particle content of Table 4.1, including all PS breaking

fields, exhibits a SU(3)F gauge anomaly. This anomaly can be cancelled by additional fields
that do not contribute to the matter flavour structure. For instance, these can be the fields
ϕ10 and ϕ6 which transform as 10 and 6, respectively, and are PS-singlets. We expect such
or similar fields to be introduced in the context of vacuum alignment of the flavon vevs [135].
However, we do not consider the scalar potential here but just state the vev structure we use.

Additional Symmetries

The setup discussed so far still allows for Yukawa terms which are inconsistent with the
observed structure of masses and mixing. Therefore, we supplement the gauge symmetry by
a U(1)×Z3 symmetry and assign specific charges to the fields, such that unwanted terms are
forbidden3. The corresponding quantum numbers are also given in Table 4.1. Furthermore,
we impose a ZMP

2 symmetry similar to matter parity.

VEV Structure

In our setup, the flavour symmetry is broken in two steps. First, we break SU(3)F down
to SU(2)F by a vev of the flavon field ϕ3. Then, the field ϕ23 further breaks the remaining

3To avoid an extra Goldstone boson, the U(1) may be considered to be gauged. Alternatively we may
reduce it to a discrete ZN sub-symmetry as described in Appendix B.2.
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flavour symmetry. The flavons ϕi are labelled by the directions in flavour space in which
their vevs are aligned. The mutually conjugated fields have to have equal vevs in order to
guarantee exact D-term flatness (cf. Section1.3). For the sake of simplicity, we align the
“MSSM-Higgs” vev along the third component in flavour space. Collecting all flavour-breaking
Higgs fields, we assume the vacuum structure

⟨ϕ3⟩ ∼ ⟨ϕ3⟩ ∼M

0 , 0 , 3

√
ϵ

, (4.5a)

⟨ϕ23⟩ ∼ ⟨ϕ23⟩ ∼M ( 0 , ϵ , ϵ ) , (4.5b)

⟨Φ′⟩ ∼ Mν , (4.5c)

⟨h⟩ = ( 0 , 0 , 1) vMSSM . (4.5d)

4.2.2. Operator Analysis

We now generate all possible interactions of matter with Higgs and flavon fields that yield
contributions to the low-energy flavour sector. These operators are constructed in the PS
symmetric phase, i.e. they are invariant under the complete gauge symmetry as well as
the extra U(1)× Z3 symmetry. They are not limited by the condition of renormalisability
as we consider an effective theory. After the breaking of the PS and flavour symmetry,
these operators effectively generate the low-energy Yukawa matrices obtained in the MSSM
framework. Here, we are going to reproduce the structure of (4.3) and a Majorana matrix
consistent with SRHND (cf. Section 2.3.3).
Before considering the allowed operators we take a look at the lower dimensional ones

which have to be forbidden. As already mentioned in the discussion of the general framework
of the model we find the operator Y0 which is generically present in any setup. We choose to
eliminate this term by the extra U(1) symmetry introduced above. At dimension 4, there is
no SU(3)F invariant that can generate a Yukawa operator. At dimension 5 we find that all
potential operators are proportional to Y0. They take the form

ϕϕ

M2
Y0, (4.6)

which, after symmetry breaking, would re-introduce Y0 with a parametric suppression less
than or equal to ϵ2. We forbid all of them using the extra symmetry stated above.

Yukawa Structure

We finally identify an operator4 that should give the dominant contribution to the Yukawa
matrices at dimension 6;

Wlead =
1

M3
(h ϕ3)(ΨL ϕ3)(ΨR ϕ3) . (4.7)

This term generates the Yukawa coupling for the third generation only. However, at the same
order a second operator,

W(23) =
1

M3
(hϕ23)(ΨL ϕ23)(ΨR ϕ23) , (4.8)

4The notation is such, that a pair of fields should be contracted with a δji and likewise a triple with εijk.
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is able to generate the 2-3-block of the Yukawa matrix. It is important to note that as long
as there are only two distinct flavon fields involved the universal term Y0 is not generated at
this order. Such terms vanishes by antisymmetry; e.g.

(ϕ23 ϕ23 ϕ23)Y0 = (ϕ3 ϕ3 ϕ23)Y0 ≡ 0 . (4.9)

The coupling and mixing of the first generation is derived from even higher order operators.
This is consistent with the hierarchy pattern of the Yukawa matrices. In our setup, operators
of dimension 7 and 8 are excluded as consequence of the extra symmetry. Therefore, all
sub-leading operators are at least of dimension 9. The corresponding superpotential reads:

Wsub =
1

M6


ϕ23 ϕ23

2
(hϕ23)(ϕ23ΨLΨR) +


ϕ23 ϕ3

2
(hϕ3)(ϕ23ΨL ΨR)

+

ϕ23 ϕ23

3
(hΨL ΨR) +


ϕ23 ϕ3

3
(hΨL ΨR)

+

ϕ23 ϕ3

2
(ΨL ϕ3)(hϕ23ΨR) +


ϕ23 ϕ23

2
(ΨL ϕ23)(hϕ23ΨR)

+

ϕ23 ϕ23

2
(ΨR ϕ23)(hϕ23ΨL) +


ϕ23 ϕ3

2
(ΨR ϕ3)(hϕ23ΨL)


. (4.10)

In summary, we obtain the following hierarchical structure of the low-energy effective
Yukawa matrices, given at first relevant order in ϵ and neglecting all factors of order one:

Yu/ν ≈

 0 ϵ3u ϵ3u
ϵ3u ϵ2u ϵ2u
ϵ3u ϵ2u 1

 ϵu , Yd/l ≈

 0 ϵ3d ϵ3d
ϵ3d ϵ2d ϵ2d
ϵ3d ϵ2d 1

 ϵd . (4.11)

Higher dimensional operators contribute at most at similar or even higher order. These
contributions can be neglected as we do not consider order one coefficients anyway. For the
(1, 1)-element we have tested that it is equal to zero up to corrections of order O (ϵ7).

Majorana Sector

We now turn to the neutrino sector and the PMNS matrix. The interplay between the
Yukawa and Majorana mass matrices is capable of producing a non-hierarchical pattern in
the neutrino sector as discussed above.
From the field content and the assignment of quantum numbers given in Table 4.1 we

infer all allowed operators that generate a right-handed neutrino Majorana mass up to
dimension 12;

WMaj =
1

M9
Φ′2
 
ϕ3 ϕ23

3 
ΨR ϕ3

2
+ (ϕ3 ϕ23)


ϕ3 ϕ3

2 
ΨR ϕ23

2
+

ϕ3 ϕ3

3 
ΨR ϕ3

2
+ (ϕ3 ϕ3)


ϕ3 ϕ23

2
(ΨR ϕ3)(ΨR ϕ23) +


ϕ3 ϕ23

2
(ϕ23 ϕ3ΨR)

2

. (4.12)

Inserting the vacuum alignment given in (4.5), the effective Majorana mass matrix takes the
form

MRR =

 3

ϵ8ν 0 0
0 ϵ2ν ϵ2ν
0 ϵ2ν 1

 3

ϵ8ν

⟨Φ′⟩2
M

. (4.13)
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This Majorana mass matrix is diagonal up to corrections of order ϵ2ν . Furthermore, the
right-handed neutrino mass eigenstates are hierarchical (ϵ3ν : ϵ2ν : 1). If we allow for a new
expansion parameter ϵν ≲ ϵ2u, we fulfil the requirements for SRHND (cf. Section 2.3.3) and
the effective PMNS matrix exhibits large mixing angles. For special choices of the order-one
coefficients specific mixing patterns, e.g. tri-bimaximal and golden-ratio, are possible. We
have checked numerically that realistic neutrino mixing parameters as well as masses can be
obtained.

To conclude, we have shown that a model with flavons and Higgs fields transforming as
flavour triplets together with the extra symmetries listed in Table 4.1 is able to qualitatively
explain the observed SM flavour structure.

4.3. Larger Flavon Representations

As we have seen in the previous section it is possible to set up a model with triplet flavons
that qualitatively reproduces the correct structure of the fermion mass matrices. However, to
achieve this we had to eliminate formally leading order terms in the superpotential which
would have generated an unwanted flavour structure. Hence, the leading contribution to the
effective Yukawa matrices is given by dimension 6 operators, i.e. by terms containing three
flavon fields. Although such a scenario is perfectly possible, the assignment of extra quantum
numbers may be considered ad-hoc and unnatural.
This issue can be traced back to the appearance of the operator Y0 (cf. (4.4)). As discussed

above, this motivates us to consider larger flavon representations. In the effective theory,
a generic Yukawa coupling takes the form Y hΨLΨR. The prefactor Y has to transform
according to one of the terms in the reduction of the tensor product

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8′ ⊕ 10. (4.14)

The simplest possibility for Y is the vev of a single flavon field which transforms according
to either the singlet, octet or anti-decuplet representations of SU(3)F . However, this will
only be a viable assumption for the leading contribution. Additional corrections need not
involve a single flavon but may also adopt products of flavons. This is also true for further
representations that are not contained in the reduction.
The singlet representation is of no interest since it generates only the unwanted structure

of the operator Y0. The triplet representation has been discussed above. We now turn to the
next larger representations.

The Sextet Representation

The sextet is a symmetric two index tensor in SU(3)F . It can be constructed as the
symmetric part of two fundamental triplets, 6ij = (3i ⊗ 3j)sym. As it does not appear
in the decomposition of the product (4.14), the leading Yukawa operator has to have
at least dimension 5. It contains a pair of sextet and anti-sextet coupled to a singlet
and is thus proportional to Y0. This operator has to be suppressed by extra quantum
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numbers. A second invariant at this order (combination via 8) does not help either. A
hierarchical SU(3)F → SU(2)F breaking chain can be generated by dimension 6 operators
and perturbations are introduced at higher order. In essence, a model of this kind is similar
to the triplet model, so we do not develop it any further.

The Octet Representation

The octet is the adjoint representation of SU(3)F and as such real. It can be coupled to
the product of three triplets in two different ways as there are two octets in the corresponding
reduction (cf. (4.14)). Both operators do not produce a pattern which can be expressed as
single dominant entry responsible for the mass of the third generation.
There exist further insertions of octet flavons at each order as the product of two octets

contains a singlet as well as an octet. Each dimension which allows for an even number of
octets in the product contains the invariant operator Y0. These terms have to be suppressed.
On the other hand, there are no terms that generate a phenomenologically viable pattern
directly. Therefore such a flavon representation can be added to generate corrections to a
leading structure but does not constitute a useful ansatz by itself.

The Decuplet Representation

The decuplet representation of SU(3)F is much more promising. It is a natural choice
since it is the symmetric product of three triplets, 10ijk = (3i ⊗ 3j ⊗ 3k)sym. As such, it
has the same structure as the leading contribution of the triplet model. By assuming a
vev in a component with maximum weight we generate a leading Yukawa term for just the
third generation at dimension 4. Corrections proportional to Y0 occur in the expansion
of higher-dimensional operators where they can easily be further suppressed by imposing
additional symmetries. In the following section, we build a model based on this representation
which results in a viable phenomenology.

Larger Representations

We may consider also larger SU(3)F representations such as 15 and 15′. However, all
higher-dimensional multiplets can only occur combined to a lower-dimensional representation
in order to couple to the Yukawa operator as they are not part of the reduction given
in (4.14). As we have already found a promising representation that may generate the
dominant contributions at leading order, we do not follow this path any further.

4.4. Flavon Decuplet Model

In this section, we present a model based on decuplet flavons which should be seen as
a proof of principle. Similar to the triplet case we keep the discussion at a qualitative
level and consider only possible hierarchical patterns of the model. Our guiding principle is
simplicity. Thus, we allow only for decuplet flavons and require the Yukawa and Majorana
mass matrix to be determined solely by operators proportional to the SM Yukawa operator
or the simplest Majorana mass term, respectively. Many variations of the details (like vev
directions, (discrete) global symmetries or charges) are possible. We briefly comment on
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Field SU(3)F PS Z4 ZMP
2

ΨL 3 (4, 2, 1) 1 −
ΨR 3 (4, 1, 2) 1 −
h 3 (1, 2, 2) 1 +

ϕ3 10 (1, 1, 1) 1 +
ϕ2 10 (1, 1, 1) 1 +

ϕ3 10 (1, 1, 1) 3 +

ϕ2 10 (1, 1, 1) 0 +

Φ′ 3 (4, 1, 2) 1 +

Table 4.2.: Transformation properties of the matter, Higgs and flavon superfields in the flavon
decuplet model.

this issue at the end of this section. Such variations may be useful or even necessary when
studying the potential of the flavons or performing actual fits to flavour observables. Such
considerations are however beyond the scope of this work.

4.4.1. Setup of the Model

Particle Content

Similar to the triplet model we assign matter and Higgs fields to the triplet representation
of SU(3)F . The flavour breaking flavons ϕi=2,3 are now considered to be in the (anti-)decuplet
representation. For each field ϕi we introduce a conjugate field ϕi which receives an equal vev
to achieve exact D-term flatness. The PS-breaking multiplet Φ′ which gives rise to Majorana
masses for the right-handed neutrinos transforms also in the flavour triplet representation.
The field content relevant for the flavour structure together with its transformations is given
in Table 4.2. Similar to the triplet model we do not discuss the precise dynamics of PS and
flavour-symmetry breaking and omit extra fields that restore left-right symmetry and cancel
gauge anomaly contributions.

Additional Symmetries

By construction we encounter Yukawa operators that are not consistent with the measured
flavour structure. The most prominent one is Y0. These are excluded by introducing the
additional discrete global Z4 symmetry. Moreover, we impose a ZMP

2 symmetry which is
similar to matter parity.

VEV Structure

The flavour symmetry is again broken in two steps by hierarchical vevs for ϕ3 and ϕ2. First,
ϕ3 breaks SU(3)F to SU(2)F giving rise to masses for the third generation. In a second step,
ϕ2 will break SU(2)F . This generates masses for the second generation and introduces a
mixing between both. In contrast to the triplet case it is not trivial to see whether a rotation
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of the second vev in the (2, 2, 2)-component only is possible here. Thus, we allow for vevs in
each tensor-component whose indices are all larger than one. A further study of the flavon
potential may give a conclusive answer on possible vev alignments. The masses of the first
generation and the large Cabibbo angle are generated by higher order corrections. We align
the electroweak breaking Higgs vev along the flavour diagonal direction. In summary, the
vev structure is given by:

⟨ϕ3⟩333 = ⟨ϕ3⟩333 ∼ ϵ , (4.15a)

⟨ϕ2⟩ijk = ⟨ϕ2⟩ijk ∼ ϵ3 with i, j, k ≥ 2 , (4.15b)

⟨h⟩ = (1, 1, 1) vMSSM , (4.15c)

⟨Φ′⟩ = (0, 0, 1) vΦ . (4.15d)

4.4.2. Operator Analysis

We now explicitly construct the operators generating the Yukawa and Majorana mass
matrices. Again, we are aiming at hierarchical structures rather than fits to flavour observables.
Therefore, we confine ourselves on generating the Yukawa structure given in (4.3) and a
hierarchical Majorana mass matrix compatible with SRHND.

Yukawa Structure

Looking at the Yukawa potential, we find that Y0 is forbidden by the Z4 symmetry. The
leading terms that do contribute have dimension 4. They take the simple form (suppressing
all flavour indices):

Wlead ∼ 1

M
ϕ3ΨLΨR h+

1

M
ϕ2ΨL ΨR h . (4.16)

The invariant structure for the dimension 4 operator is trivial. For operators of multiple
insertion of decuplet flavons the contractions are non-trivial and can no longer be expressed
in a short-hand notation as it was possible in the triplet case. We comment on this issue
in the Appendix B.1 where we introduce the formalism to generate the SU(3)F invariants
used here. Neglecting these issues we can write the sub-leading terms of dimension 5 without
flavour indices as

Wdim5 =
1

M2


hϕ3 ϕ2ΨL ΨR + hϕ2 ϕ2ΨL ΨR


. (4.17)

Already at this level we are able to generates a Yukawa matrix consistent with the one given
in (4.3). As mentioned above, ϵ should differ in the up and down sector. We obtain

Yu/ν ∼

 0 ϵ3u ϵ3u
ϵ3u ϵ2u ϵ2u
ϵ3u ϵ2u 1

 ϵu and Yd/l ∼

 0 ϵ3d ϵ3d
ϵ3d ϵ2d ϵ2d
ϵ3d ϵ2d 1

 ϵd . (4.18)

For completeness we list also the next order in the expansion, namely the dimension 6
operators

Wdim6 =
hΨL ΨR

M3


ϕ3 ϕ3 ϕ3 + ϕ3 ϕ3 ϕ3 + ϕ2 ϕ3 ϕ3 + ϕ2 ϕ2ϕ3 + ϕ3 ϕ2 ϕ2 + ϕ2 ϕ2 ϕ2


. (4.19)
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These terms would yield a subdominant contribution of the order of

Y f
sub ∼

ϵ6 ϵ8 ϵ6

ϵ8 ϵ6 ϵ6

ϵ6 ϵ6 ϵ2

 ϵ . (4.20)

With suitable order-one coefficients inserted in (4.18), we obtain a phenomenologically viable
flavour structure in the quark and charged lepton sector.

Majorana Sector

After constructing the Yukawa sector we have to show that the setup can generate a
Majorana mass matrix for the right-handed neutrinos capable of implementing sequential
dominance (cf. [121] and Section 2.3.3). With the field content given in Table 4.2 we can
construct the following superpotential where we consider terms up to dimension 7,

WMaj ∼
1

M
(ΨR Φ′)

2

1 +

1

M2


ϕ3 ϕ3 + ϕ2 ϕ3 + ϕ2 ϕ2


+

1

M3


ϕ3 ϕ2 ϕ3 + ϕ2 ϕ3ϕ2


. (4.21)

From this superpotential we obtain a Majorana mass matrix for the right-handed neutrinos
which takes the form

MMaj ∼

ϵ6ν ϵ7ν ϵ5ν
ϵ7ν ϵ4ν ϵ4ν
ϵ5ν ϵ4ν 1

 MNR
. (4.22)

This matrix is diagonal up to small corrections and exhibits a hierarchical pattern with
eigenvalues of order ϵ6ν : ϵ4ν : 1. Looking at the conditions for sequential dominance (2.18)
we find that in contrast to the triplet model we only need a mild hierarchy in the expansion
parameters; ϵν < ϵu. Inserting order-one coefficients and allowing for CP-violating phases it is
possible to fit neutrino observables. We have verified this by (naively) scanning a small part of
the parameter space where we have already found allowed regions. However, we do not provide
explicit results here as the model is too unconstrained to allow for predictive conclusions.
In addition, we have not included effects such as running and threshold corrections in our
considerations.
To summarise, we may state that the general ansatz for a decuplet model looks very simple

and appealing. However, the complications may be hidden in the more complicated flavon
potential of the model which we assume to generate the vev structure discussed above. Hence,
we briefly comment on some variations which could be relevant if one wants to be more
specific.

4.4.3. Possible Variations

We now give a short overview of possible variations that we have identified while constructing
the model. We have chosen the vevs for the flavons such that they look particularly simple.
This may however not be the best configuration when considering an explicit potential for
the flavons.
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4.5. Summary

As mentioned above, we have numerically checked whether the proposed neutrino structure
of the model is qualitatively able to generate the measured neutrino masses and mixing
structure. We found that the special configuration

⟨ϕ2⟩222 = −2 ϵ3 , ⟨ϕ2⟩322 = ϵ3 , ⟨ϕ2⟩332 = 0 , ⟨ϕ2⟩333 = ϵ3 , (4.23)

results in a fine-tuning among the elements of the Yukawa matrices which improves the scan
in the neutrino parameter performed in order to test the Yukawa structure.
Also the alignment of the electroweak breaking Higgs vev appears somewhat unmotivated

at first sight. However, we have chosen it such that it simplifies the generation of the mass
for the first generation and the Cabibbo angle. Nevertheless, it is also possible to align the
vev along a single direction in flavour space while extending the field content and/or the
additional symmetry.
For reasons of unification it would be appealing to have Φ′ transforming as a singlet under

the flavour symmetry. However, this is not possible if we stick to our simple ansatz and do
not include flavons transforming in different representations. This can be understood by
noticing that there exist no invariant product of two triplets together with any number of
(anti-) decuplets.

4.5. Summary

In this chapter we have presented a model that implements flavour in a Pati-Salam
symmetric Grand Unified Theory through vevs of flavour breaking flavons. We have worked
in a framework with a MSSM Higgs bidoublet which transforms non-trivially under the
flavour gauge group. We have assumed a gauged SU(3)F flavour symmetry that is broken
spontaneously at some high scale below the unification scale. The flavour sector has been
expanded in powers of these hierarchical vevs resulting in the observed SM hierarchies.
The simplest such setup adopts flavons which transform in the fundamental (triplet)

representation of SU(3)F . We have explicitly constructed such a model to show that it
is possible to reproduce the low energy flavour structure. However, we have focused on
hierarchical structures only. Thus, our work should be seen as proof of principle rather than
as concrete model of flavour.
Due to the general structure of the setup the MSSM Yukawa operator forms a flavour

invariant by itself. This leads to some complications in constructing a model based on triplet
flavons. Thus we have investigated if larger representations of SU(3)F may reduce these
complications and adopt for the particular structure of the Yukawa operator containing three
triplets. Here, we have found the decuplet as the natural candidate.
Thus, we have additionally constructed an explicit realisation with solely decuplet flavons.

Again, we kept our discussions at the level of a “proof on principle model”. Nevertheless we
have briefly commented on variations of our “simplest” setup. As the successful construction
with decuplet flavons requires less terms and a smaller additional symmetry, we consider this
solution to be more attractive.
A generic feature of the models discussed here is the occurrence of additional MSSM Higgs

fields with flavour quantum numbers. Such a configuration is consistent with gauge coupling
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unification as shown in Chapter 3. Thus, dedicated collider searches as well as an extended
study of multi Higgs doublet models are definitely worth pursuing. Moreover, it would be
interesting to study the Higgs potential and the impact of multiple Higgs generations and
their mixing on flavour data.
As a further step it would be very interesting to study which vev-patterns can be achieved

by scalar potentials involving representations larger than the fundamental one. This can be
done in a general study or explicitly for the setup described above. With this knowledge,
one can study if non-fundamental representations are also useful in other flavour setups, e.g.
other GUTs or flavour symmetries. A possible next step would be to generate benchmark
models following the setups presented here to compare with flavour observables.
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Chapter 5

Gauged Flavour Symmetry
Low-Energy Yukawa Generation

In this chapter we consider a different method of implementing flavour in a Pati-Salam
symmetric Grand Unified Theory. The ansatz is based on a work of Grinstein, Redi and
Villadoro (GRV) from 2010 [11]. Similar to the model constructed in the previous chapter we
consider a gauged flavour symmetry which we extend to SU(3)I × SU(3)II . However, in this
setup we allow only for renormalisable operators in the Lagrangian and communicate the
flavour symmetry breaking through additional fermionic fields. As we intend to study effects
on the low energy observables without considering a soft-SUSY breaking sector, we focus on
a non-supersymmetric setup. We note that we do not follow the ansatz of Minimal Flavour
Violation (MFV) [136–138] in this model although we find that the flavour violating effects
are in some sense minimal.

We start our discussion with a short motivation of the model where we briefly sketch the
idea of Grinstein et al. Afterwards, we present the basic setup of the model and highlight
the differences with respect to their work. We then focus on the quark sector of the model
as this results in the most stringent constraints. Here, we discuss the approximate flavour
structure which follows from integrating out the fermionic partners. As this generates large
deviations for the parameters related to the third generation, we analytically calculate the
basis transformations leading to the mass eigenstates. This transformation we calculate
up to quadratic order in the introduced flavour scale M . Thus, we are able to determine
additional flavour effects which we scrutinise subsequently. Afterwards, we briefly discuss
possible realisations of flavour in the lepton sector and their importance for gauge anomaly
cancellation.

To be able to quantitatively probe the low energy flavour effects we then perform a
systematical, yet not exhaustive scan over the model parameter space. Based on this scan we
illustrate the effects on several flavour observables. Finally, we briefly comment on how to
supersymmetrise the model. We conclude this chapter with a short summary and an outlook
on further aspects of the model which are left for further studies.

The main results of this chapter are published in Reference [C].
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5.1. Motivation

In 2010, Grinstein, Redi and Villadoro presented a way of gauging flavour by introducing a
minimal set of additional fermionic fields [11]. In their work, they considered the maximal
quark flavour symmetry of the gauge kinetic term in the SM, GF = SU(3)QL

× SU(3)UR
×

SU(3)DR
(cf. Section 2.1.1). The symmetry is broken by two flavons Su and Sd which

transform as bitriplet under SU(3)QL
× SU(3)UR

and SU(3)QL
× SU(3)DR

, respectively.
Gauging the flavour symmetry in the SM results in gauge anomalies which get cancelled in
their setup by introducing one additional fermionic partner for each quark. These fermions
couple to Su and Sd, thereby communicating the breaking of the flavour symmetry to the
SM fermions. They acquire masses proportional to the flavon vevs and may be integrated
out at leading order. This results in an effective Yukawa coupling of the form

Yu ∼ M

⟨Su⟩
and Yd ∼

M

⟨Sd⟩
, (5.1)

where M is an additional mass scale. This scale is introduced into the model by hand and is
associated to the breaking of the flavour symmetry. Form this effective Yukawa coupling one
can easily see that the additional fermions feature an inverse hierarchy, i.e. the top partner
has lowest mass. Thus, indirect flavour bounds of the light quarks (e.g. from K −K mixing)
can be naturally fulfilled in this framework.
The effects on flavour observables are controlled by the flavour symmetry breaking scale M

in this model. It may well be as low as the TeV-scale which allows for interesting new physics,
mainly from t− t′ mixing and flavour gauge bosons. Most of the flavour effects decouple for
large values of M , however, the mixing of the right-handed fermions is not directly related
to M . Thus some residual effects may be visible in flavour precision observables.
In their setup, Grinstein et al. have solely focused on the quark sector. However, their

idea has been extended to SU(5) [139], left-right symmetry [140, 141] and supersymmetric
theories [142]. In addition, Feldmann gave an outline on how to extend the idea to a PS
GUT in the Appendix of his SU(5) realisation [139]. Picking up this idea we show in this
chapter how a GRV-like setup can be realised in a PS-symmetric theory.

5.2. Model Setup

The GUT symmetry considered in this model is the PS symmetry as defined in (1.18). This
reduces the maximal flavour symmetry to SU(3)I × SU(3)II for the complete SM fermion
sector1 as discussed in Section 2.4.1. The full gauge symmetry assumed in this chapter is
thus given by

G =

SU(4)× SU(2)× SU(2)′


  

Pati-Salam

×

SU(3)I × SU(3)II


  

flavour

× Z2 . (5.2)

1Note that the SU(3)3 flavour symmetry considered by Grinstein et al. was only the symmetry of the quark
sector.
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We emphasise that the Z2 symmetry now acts on both the GUT and the flavour sector. It is
realised such that a general representation R is transformed into R as

R = (ϱc, ϱ, ϱ
′)(ϱI , ϱII)

Z2−−−−→ R = (ϱc, ϱ
′, ϱ)(ϱII , ϱI) , (5.3)

where we use the shorthand notation (SU(4), SU(2), SU(2)′)(SU(3)I , SU(3)II) and ϱ denotes
the complex conjugate of the representation ϱ. As we only introduce (pseudo-) real represen-
tations of SU(2)× SU(2)′ we have dropped the complex conjugation of the corresponding

representations in R. We anticipate that the Z2 symmetry will not change the chirality of
the fields relating RL with RR.
In contrast to the models discussed in the previous chapters we do not impose supersym-

metry in our considerations.

Particle Content

The left- and right-handed SM fermions qL and qR are embedded in the (4,2,1)(3,1) and
(4,1,2)(1,3) representations of PS and flavour, respectively. Instead of qL we list qL in our
spectrum2 as it is the Z2 partner of qR and is in line with the convention for the SM Yukawa
term (cf. (1.2b)). The SM Higgs doublet h is embedded in the usual (1,2,2)(1,1) which
is similar to the models considered above but restricted to flavour singlet Higgs fields only.
This effectively realises a two Higgs doublet model (2HDM).
In order to implement the setup of Grinstein et al, we have to include the additional

fermionic fields ΩL and ΩR. These are similar to the SM fermion fields but transform solely
under SU(2)′ and have different flavour quantum numbers. However, including only these
fields is not sufficient as they do not form a pair under the Z2 symmetry. Hence, we must
additionally introduce their fermionic Z2 partners ΞR and ΞL.
We introduce two flavour symmetry breaking flavons3 S (1,1,1)(3,3) and T ′ (1,1,3)(3,3).

In addition, we have to include T (1,3,1)(3,3) which together with T ′ forms a pair under Z2.
Transforming as a triplet of SU(2), T must not break the flavour symmetry at a high scale.
The reason for including flavons that transform non-trivially under PS will be discussed
later on and is related to the fact that no flavour mixing is possible as long as PS remains
unbroken.
Besides the fields introduced above we have to add fields differentiating the lepton and

quark sector. As discussed in Section 2.3 this can be achieved by generating a Majorana mass
for the right-handed neutrinos. Hence, we include the PS breaking pair Φ and Φ′, similar to
the previous chapters. To stay within a renormalisable framework we additionally introduce
the fermionic fields ΘL and ΘR as well as the scalar fields Sν and S ′

ν .
The complete particle content of the model is summarised in Table 5.1 together with

their transformation properties under the imposed PS and flavour symmetry. Adopting
the standard left-right convention for Yukawa and mass terms, i.e. ψLψR, throughout, we

2This is different, though consistent, to the embedding used so far where we have considered ΨL ∼ qL and
ΨR ∼ qR.

3We use the terminus of flavons for scalar fields transforming non-trivially under the flavour symmetry
and imprinting the flavour structure of the fermion sector by their vevs. Thus we distinguish them from
spurions, used in a MFV analysis.
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SU(4)× SU(2)× SU(2)′ SU(3)I × SU(3)II

qL ⊕ qR (4 , 2 , 1)⊕ (4 , 1 , 2) (3 , 1)⊕ (1 , 3)

h (1 , 2 , 2) (1 , 1)

ΞL ⊕ ΩR (4 , 2 , 1)⊕ (4 , 1 , 2) (1 , 3)⊕ (3 , 1)

ΩL ⊕ ΞR (4 , 1 , 2)⊕ (4 , 2 , 1) (1 , 3)⊕ (3 , 1)

T ⊕ T ′ (1 , 3 , 1)⊕ (1 , 1 , 3) (3 , 3)⊕ (3 , 3)

S (1 , 1 , 1) (3 , 3)

ΘL ⊕ΘR (1 , 1 , 1)⊕ (1 , 1 , 1) (3 , 8)⊕ (8 , 3)

Φ⊕ Φ′ (4 , 2 , 1)⊕ (4 , 1 , 2) (8 , 1)⊕ (1 , 8)

Sν ⊕ S ′
ν (1 , 1 , 1)⊕ (1 , 1 , 1) (6 , 1)⊕ (1 , 6)

Table 5.1.: The particle content of the theory with imposed PS and flavour symmetry. Left-
and right-handed fermions ψL,R are denoted by subscripts L and R, respectively.

list the Dirac adjoint ψL rather than the left-handed field ψL. Here, we do not show the
fields necessary to break the PS symmetry as they are except for Φ(′) not relevant for our
discussions. A PS breaking setup similar to the models discussed as class E in Chapter 3 is
conceivable where we may even introduce SUSY at some high scale.

Lagrangian

We split the Lagrangian in two parts, a general piece L0
Yuk and a part containing only

couplings relevant for the neutrino sector, Lν
Yuk;

LYuk = L0
Yuk + Lν

Yuk . (5.4)

This is in line with our approach of treating the lepton sector only qualitatively. From the
fields given in Table 5.1 we can deduce the most general renormalisable Yukawa Lagrangian,
invariant under the full symmetry G:

L0
Yuk = λ qL hΩR + ΩL (κS S + κT T

′) ΩR +M ΩL qR + h.c.

+ λ ΞL h qR + ΞL (κS S + κT T ) ΞR +M qL ΞR + h.c. (5.5a)

Lν
Yuk ∼ ΘLΦ

′ΩR +ΘL Sν ΘL +ΘL S
†ΘR + h.c.

+ ΞLΦΘR +ΘR S
′
ν ΘR + h.c. . (5.5b)

As the Z2 symmetry relates the terms of the first and second line, the general Yukawa
Lagrangian L0

Yuk depends on only four independent parameters; three dimensionless couplings
λ, κS, κT and one mass scaleM . By redefining the phases of the fermions we can choose λ and
M to be real and positive. As in our considerations κS and κT appear only in combination
with the flavons which generally acquire complex vevs, their phases can be kept arbitrary
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5.2. Model Setup

at this point. For the neutrino Lagrangian Lν
Yuk we do not introduce explicit couplings as

we are only interested in the qualitative structure. Generally, the Z2 symmetry would also
relate various couplings in Lν

Yuk.

VEV Structure

The flavour structure of the SM fermions originates from vevs of the flavon fields S and T ′.
One of the two flavons would suffice to break the flavour symmetry completely. However,
phenomenologically we need to generate a difference between the up and the down-type
flavour sector. Hence, we need at least two vevs coupling differently to the up and down
sector. This is not possible if we include solely a pair of two singlets or triplets as these can
always be combined to a single vev. Different SU(2)′ representations are also not possible as
we want to preserve the structure of the Yukawa Lagrangian. Including both S and T ′, their
vevs combine to two mass matrices that differ in the up and the down sector. Therefore,
both have to get a similar vev and none may dominate over the other. The SU(2) triplet T
must not get a vev at the flavour breaking scale as it would break the electroweak symmetry.
Nevertheless, a vev at or below the electroweak scale is allowed. One may even argue that
the scalar potential induces a vev of the order ⟨T ⟩ ∼ v2/M due to a possible mixing with
the SM Higgs doublets. Phenomenologically, such a vev is rather constrained by electroweak
precision observables as it breaks custodial symmetry and thus modifies the ρ-parameter
(see e.g. [143, 144]). As it is negligible with respect to S and T ′, it does not significantly
contribute to the flavour structure and we omit it in the following.
We align the vev of T ′ along the τ3 direction of SU(2)′. To make the mass scale explicit4,

we split off theM -dependence from S and T ′. Thus, we propose the following parametrisation
of the vev structure for the charged Yukawa sector:

κS ⟨S⟩ = sM , κT ⟨T ′⟩ =

t′ 0
0 −t′


M and ⟨T ⟩ ≡ 0 , (5.6)

where t′ and s are defined as dimensionless 3× 3 matrices in flavour space. We note that we
do not aim for the construction of a scalar potential able to generate these vevs. Rather, we
assume phenomenologically interesting vev structures and postpone studies concerning scalar
potentials to later projects.
As we are aiming for a double see-saw mechanism to generate the light neutrino masses,

we assign vevs of different scales to the scalar fields Φ′ and Sν . Again, we make the mass
scale explicit and parametrise the vevs for the neutrino Majorana mass terms by

⟨Φ′⟩ = Λφ and ⟨S ′
ν⟩ ∼ ⟨Sν⟩ = Λ′ sν , (5.7)

where we introduce the new mass scales Λ and Λ′ as well as the flavour tensor structures φ
and sν .

Gauge Boson Mass

The mass of the flavour gauge bosons can be derived from the kinetic terms of the flavour
breaking fields. Therefore, they are in general proportional to the mass scale of the vevs.

4Still there is an internal hierarchy in the vevs of S and T ′
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Their masses are in general at a very high scale as we already need to break the flavour
symmetry while generating masses for the right-handed neutrinos. If a remaining part of
the symmetry is preserved, some of the flavour gauge bosons may have masses in the TeV
range. As we we do not specify the vev structure of Sν , S

′
ν and Φ′ we stick to the general

case and assume that all of the masses are related to either Λ or Λ′, depending on the explicit
realisation of the lepton sector (cf. Section 5.4). In the setup presented here, all flavour gauge
bosons have masses of order Λ′ and are not relevant for a phenomenological study. We note
that this qualitatively differs from the original idea presented by Grinstein et al.
As we invoke the PS gauge symmetry, we comment briefly on the masses of the corresponding

gauge bosons, especially the W ′± and Z ′. We do not specify at which scale SU(4) or SU(2)′

are broken. However, both breaking scales are bounded from below by the vev of Φ′ as it
breaks PS completely (cf. Section 3.1). Thus their masses are at least of order Λ.

Gauge Anomalies

In the ansatz of Grinstein et al, the additionally introduced fermions naturally cancel
the gauge anomalies arising when gauging the flavour symmetry. As we have to introduce
two additional fermionic partners for each SM fermion this is no longer guaranteed in our
setup5. The first pair (say ΞL and ΩR) cancels the anomaly while the second pair (ΩL and
ΞR) introduces a new one. However, these remaining anomalies can be absorbed as we also
introduce new fermionic degrees of freedom (ΘL and ΘR) in the neutrino sector. In particular,
this partly fixes the neutrino sector as we will show in Section 5.4.

Scales of the Model

In the model setup presented here we introduce multiple mass scales. These are themselves
only partially constrained. However, the overall ordering of the scales is fixed by the model.
In addition to the hierarchies of the mass scales, the vevs of the flavons s and t′ themselves
feature internal hierarchies.
We find that the additional flavour effects decouple for large values of the flavour scale M .

Moreover, we assume our model to be consistent with current experiments even when we
lower M down to a few TeV. In this energy regime bounds from flavour precision observables
as well as the non-observation of additional states become relevant. We do not deduce explicit
bounds on M as they would require a global analysis which is beyond the scope of this work.
In the following we simply assume M to be of the order of a few TeV.
The scales Λ and Λ′ are related to the generation of neutrino masses. They are bounded

from below by the largest eigenvalue of s and t and should themselves feature a hierarchy,
Λ ≪ Λ′. As the Majorana mass term is only invariant under the SM gauge group and not
under PS, Λ′ is bounded from above by the GUT scale. However, we do not fix the GUT
scale or any aspect of PS breaking in the first place. Various realisations have been discussed
in Chapter 3. Here, we only assume our theory to be realised well below the Planck scale.
Hence, this is the maximally allowed scale.
As discussed before, the flavour gauge bosons masses MA are in general of the order Λ′.

The additional PS gauge bosons are bounded from below by the scale Λ and may reach up to

5We note that the assumed Z2 symmetry guarantees the cancellation of PS but not flavour gauge anomalies.
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the GUT-scale, depending on the explicit realisation of the PS symmetry breaking which we
do not specify here.
We propose the hierarchy of scales depicted in Figure 5.1 where numerical values are only

given as a rough reference and should not be taken at face value.

10
3
GeV 10

10
GeV 10

18
GeV10

16
GeV

M S, T' MA ' MGUT

Figure 5.1.: Visualisation of the scales of the model (Numerical values for illustrative purposes
only).

Strictly speaking, the flavour sector deduced in this chapter receives threshold corrections
due to the multiple scale structure. However, we neglect these effects as we do not aim for a
full top-down description of the model which would explain the patterns of the flavon vevs.
For simplicity, we perform our scan using flavour parameters (e.g. fermion masses) fixed at
the Z boson mass scale.

5.3. Quark Flavour Sector

The effective quark flavour structure of the Lagrangian given in (5.5) can be calculated
by diagonalising the quark mass matrix. The full mass matrix is 9× 9 dimensional as the
three SM quarks mix with their heavy partners. As it is mainly dominated by the masses of
the heavy partners, we may formally integrate them out in order to get a first impression of
the flavour sector of the theory. Afterwards, we perform the explicit diagonalisation of the
9 × 9 mass matrix as expansion in the flavour breaking mass scale M . Having calculated
these transformation, we apply them to the gauge kinetic sector and calculate explicitly the
effective low-energy flavour sector. We note that the calculations here apply equally to the
charged lepton sector.

5.3.1. Approximate Flavour Structure

If we assume that the masses of Ω and Ξ dominate the mass matrix, the diagonalisation is
equivalent to integrating out those heavy degrees of freedom. This assumption is fulfilled if
we assume that the eigenvalues of s and t are large, i.e. s ∼ t≫ 1. We explicitly integrate
out the fields Ω and Ξ by solving their equations of motion (dropping the kinetic part);

∂LYuk

∂ΩR

!
= 0 and

∂LYuk

∂ΞR

!
= 0 . (5.8)

Substituting the resulting expressions back into the Lagrangian we find

Leff
Yuk =− λ h0u q

u
L


t−1
u + s−1


quR + h.c.

− λ h0d q
d
L


t−1
d + s−1


qdR + h.c. , (5.9)
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where we define the 3× 3 matrices

tu ≡ s+ t′ and td ≡ s− t′ . (5.10)

The effective Yukawa couplings correspond to the standard Yukawa couplings of a 2HDM
and can easily be read off from the effective Lagrangian,

Yu,d = −λ

t−1
u,d + s−1


. (5.11)

In general, we would now need to invert this equation to fix the values of the flavon vevs s
and t′. However, as (5.11) represents a set of coupled matrix equations this is nontrivial and it
is not reasonable to give an analytic expression as it is lengthy and we do not learn anything
from presenting it. Hence, we solve this equation only numerically for given matrices Yu,d.
Here it is important to note that we have to allow for a right-handed misalignment UCKM

in the SM Yukawa matrices (cf. Section 2.1.2). This mixing is physical in our setup as
the right-handed quarks couple to the charged SU(2)′ gauge bosons. Although these are
not directly observable due to the heavy SU(2)′ gauge bosons, the mixing influences the
low energy observables as we encounter right-handed quarks coupling to the SU(2) gauge
bosons (cf. (5.42c) and (5.42e)). We describe the method used to obtain numerical results
for s and t′ in Appendix C.2.
One important feature already arising at this stage is the existence of multiple solutions

for s and t′. This can be seen explicitly in the one generation case. Here, it is possible to
analytically solve (5.11) for s and t′ which are now complex numbers. For the first generation
we find6

s =
−8λ

3yu + 3yd ∓ 3


(yu − yd)
2 + 4

9
yuyd

, (5.12a)

tu =
−8λ

5yu − 3yd ± 3


(yu − yd)
2 + 4

9
yuyd

, (5.12b)

td =
−8λ

5yd − 3yu ± 3


(yu − yd)
2 + 4

9
yuyd

. (5.12c)

From these discussions we can conclude that all effects of the flavour sector are determined
by the SM Yukawa matrices (up to a finite ambiguity), allowing for an additional right-handed
misalignment UCKM. However, the model differs from MFV as the Yukawa matrices are
related to the flavon vevs (spurions) in an intricate way.

5.3.2. Diagonalising the Mass Matrix

In the previous section, we have calculated the effective Yukawa matrices based on the
assumption s, t′ ≫ 1. This assumption is not valid for the third generation as yt ∼ 1 which
results in sizeable corrections for parameters related to it. Hence, we now diagonalise the full
9× 9 mass matrix M as expansion in the flavour breaking scale M .

6We choose to present tu and td instead of t′ as it allows for a symmetric notation.
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5.3. Quark Flavour Sector

Starting from the general Lagrangian (5.5) we assign vevs to the flavour symmetry breaking
fields S and T ′ as well as the Higgs bidoublet h. This gives rise to the effective quark
Lagrangian7

Lmass =
1√
2
λ vu q

u
LΩ

u
R +M Ω

u

L tuΩ
u
R +M Ω

u

L q
u
R + h.c.

+ 1√
2
λ vu Ξ

u

L q
u
R +M Ξ

u

L sΞ
u
R +M quL Ξ

u
R + h.c. (5.13)

+ (u↔ d) .

(1) Diagonalising s

Making use of our freedom to choose a basis of the SU(3)I ×SU(3)II flavour symmetry we
can diagonalise one of the two flavon vevs. Here, we choose to diagonalise s which we denote
by ŝ. This choice of basis is valid for both, the up and the down sector of the model, as they
are correlated by the PS symmetry. For definiteness, we focus on the up sector in the rest of
this section. Similar results arise for the down sector and the corresponding expressions can
be obtained by replacing u with d. For the basis transformations it will be useful to write
the mass matrix explicitly. Therefore, we define vectors containing the left- and right-handed
fermions

Ψ
u

L(1) ≡ (quL,Ω
u

L,Ξ
u

L) and Ψu
R(1) ≡ (quR,Ω

u
R,Ξ

u
R) . (5.14)

Using these, we can write the 9× 9 mass matrix in compact form as

Mu
(1) =

 0 1λϵu 1

1 tu 0
1λϵu 0 ŝ

M , (5.15)

where each block corresponds to a 3× 3 matrix and we defined the expansion parameter

ϵu,d ≡
vu,d√
2M

≪ 1 , fulfilling ϵ2u + ϵ2d = ϵ2 =
v2

2M
. (5.16)

(2) Diagonalising tu
We now change into a basis in which tu becomes diagonal. This can be achieved by applying

two unitary 3× 3 matrices Uu and Vu, such that

t̂u = Vu tu U
†
u . (5.17)

As we do not want to alter the leading order blocks of the mass matrix we choose the
transformation to be

Ψ
u

L(2) ≡ Ψ
u

L(1) diag(1, V
†
u ,1) , Ψu

R(2) ≡ diag(Vu, Uu,1)Ψ
u
R(1) . (5.18)

7For the moment we neglect the effect on the lepton sector and any breaking of SU(4). A discussion of the
leptons will follow in Section 5.4.
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This transformations leads to the mass matrix

Mu
(2) =

 0 U †
uλϵu 1

1 t̂u 0
V †
uλϵu 0 ŝ

M . (5.19)

We note that by construction the unitary rotations Uu and Vu reappear at order ϵu only. It is
furthermore important to realise that these unitary matrices are now isospin-dependent and
differ for the up and down sector.

(3) Diagonalising Mu
(2) for ϵu = 0

If we go to the limiting case of ϵ going to zero, the three generations decouple completely.
Thus, the 9× 9 matrix becomes block diagonal in generation space and we can decompose
it into three 3 × 3 blocks, one for each generation i. These can be diagonalised by two
independent rotations. We may generalise this rotation to the three dimensional case by
defining the diagonal 3× 3 matrices

ĉx = diag(c1x, c
2
x, c

3
x) and ŝx = diag(s1x, s

2
x, s

3
x) , (5.20)

where x is either s or tu and the (co-)sines are defined as

cis =
ŝi
1 + ŝ2i

, sis =
1

1 + ŝ2i
, citu =

t̂iu
1 + t̂iu

2

, situ =
1

1 + t̂iu
2

. (5.21)

This leads in a straightforward way to the diagonalisation of Mu
(2) for ϵu = 0 by going to the

basis

Ψ
u

L(3) ≡ Ψ
u

L(2)

 ĉs 0 ŝs
0 1 0

−ŝs 0 ĉs

 , Ψu
R(3) ≡

ĉtu −ŝtu 0
ŝtu ĉtu 0
0 0 1

Ψu
R(2) . (5.22)

The full mass matrix including terms proportional to ϵu takes the form

Mu
(3) =

(−ŝsV †
u ĉtu − ĉsU

†
uŝtu)λ ϵu (−ŝsV †

u ŝtu + ĉsU
†
uĉtu)λ ϵu 0

0 ŝ−1
tu 0

(ĉsV
†
u ĉtu − ŝsU

†
uŝtu)λ ϵu (ĉsV

†
u ŝtu + ŝsU

†
uĉtu)λ ϵu ŝ−1

s

M . (5.23)

(4) Block-diagonalising Mu
(3) up to order ϵ2u

For simplicity, we reparametrise the mass matrix (5.23) to

Mu
(3) =

 auϵu buϵu 0
0 êu 0

cuϵu duϵu f̂

M , (5.24)

where au, bu, cu and du are general 3× 3 matrices whereas êu and f̂ are diagonal and positive
definite. We note that f̂ is identical for the up and the down sector as we set ⟨T ⟩ = 0.
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For the one generation case, where au . . . f are just complex numbers, we can diagonalise
the mass matrix by a bi-unitary transformation parametrised by complex three dimensional
rotations. These rotation can generally be generated by a series of three rotations about a
single axis. For technical reasons we choose to express each of these as a truncated series in
the small rotation angles which are proportional to powers of ϵ. We calculate the mixing
angles from the expressions which result when keeping terms up to the quadratic one. This
can be extended to three generations by considering 3× 3 matrices as generalised “rotation
angles”. Such a rotation block-diagonalises the mass matrix to a given order. The generalised
rotation matrices can be written as

R12(ξ) =

 1− 1
2
ξ ξ† −ξ 0

ξ† 1− 1
2
ξ† ξ 0

0 0 1

 , (5.25)

where we have chosen (α, β) = (1, 2) for definiteness. We block-diagonalise Mu
(3) up to order

ϵ3u which results in the following series of basis transformations

Ψ
u

L(4) ≡ Ψ
u

L(3) [R12(ξ
u
12)]

† [R23(ξ
u
23)]

† [R13(ξ
u
13)]

† , (5.26a)

Ψu
R(4) ≡ [R12(ζ

u
12)] [R23(ζ

u
23)] [R13(ζ

u
13)] Ψ

u
R(3) , (5.26b)

with generalised “rotation angles”. We calculate them in terms of the parameters of (5.24) to
be

ξu12 = buê
−1
u ϵu , [ξu23]ij =

−êiud†u
ij

êiu
2 − f̂j 2

ϵu , ξu13 = auc
†
uf̂

−2 ϵ2u , (5.27a)

ζu12 = a†ubuê
−2
u ϵ2u , [ζu23]ij =

−d†u
ij
f̂j

êiu
2 − f̂j 2

ϵu , ζu13 = c†uf̂
−1 ϵu , (5.27b)

where ξuαβ and ζuαβ are 3× 3 matrices. Applying the basis transformation to the mass matrix
we end up with

Mu
(4) =



au +O(ϵ2u)


1√
2
vu 0 0

0

êu +O(ϵ2u)


M 0

0 0

f̂ +O(ϵ2u)


M

 + O

ϵ3u

M , (5.28)

where for simplicity we only show the leading terms of the diagonal elements. We note that
êu and f̂ are already diagonal8 while au is a general 3× 3 matrix.

(5) The Approximate Mass Basis

For the given order in ϵ we arrived at a setup similar to the SM where we can identify the
non-diagonal up Yukawa matrix by au;

Yu ≈ au = (−ŝsV †
u ĉtu − ĉsU

†
uŝtu)λ . (5.29)

8The new misalignment from O

ϵ2u

corrections can be neglected.
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Hence, we may apply the standard diagonalisation procedure of the SM. To diagonalise au
we introduce the bi-unitary transformation

Ŷu = Uu auV†
u . (5.30)

The approximate mass basis is given by

Ψ
u

L(5) ≡ Ψ
u

L(4) diag(V†
u,1,1) , Ψu

R(5) ≡ diag(Uu,1,1)Ψ
u
R(4) . (5.31)

We note that the expression for Yu reduces to (5.11) in the case of s, tu ≫ 1;

Yu=̂ au Vu = −λ

 1√
1 + ŝ2

V †
u

t̂u
1 + t̂2u

+
ŝ√

1 + ŝ2
U †
u

1
1 + t̂2u

Vu

s, tu ≫ 1−−−−−−→ −λ

1

ŝ
+ U †

u

1

t̂u
Vu


= −λ


ŝ−1 + t−1

u


. (5.32)

We conclude this section by reminding that a similar sequence of basis transformations is
applicable to the down sector if one replaces the index u by d.

5.3.3. Gauge Kinetic Terms

Having diagonalised the mass matrix we apply the resulting transformations to the gauge
kinetic terms. This is important as only the mass eigenstates are observable in experiments.
We are mainly interested in the flavour sector and therefore consider only the gauge kinetic
terms corresponding to SU(2)× SU(2)′ as the SU(4) part is flavour blind. To be able to use
the formalism developed above, we again write the relevant gauge kinetic sector by means of
the left- and right-handed vectors ΨL and ΨR;

Lkin ⊃ ΨL(1)


g /⃗W τ⃗


KL(1)ΨL(1) + ΨR(1)


g /⃗W τ⃗


KR(1)ΨR(1)

+ ΨL(1)


g /⃗W ′τ⃗


K′

L(1)ΨL(1) + ΨR(1)


g /⃗W ′τ⃗


K′

R(1)ΨR(1)

+ ΨL(1)


1
2
gB−LQB−L /⃗BB−L


ΨL(1) + ΨR(1)


1
2
gB−LQB−L /⃗BB−L


ΨR(1) , (5.33)

where QB−L is the difference of baryon and lepton number (cf. Section 3.1). The complete
SU(2)× SU(2)′ structure is encoded in the K matrices,

KL(1) =

1 0 0
0 0 0
0 0 1

 , KR(1) =

0 0 0
0 0 0
0 0 1

 , (5.34a)

K′
L(1) =

0 0 0
0 1 0
0 0 0

 , K′
R(1) =

1 0 0
0 1 0
0 0 0

 . (5.34b)
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Here, we especially emphasise that the SU(2) gauge bosons couple to both left- and right-
handed fermions. Likewise, the SU(2)′ gauge bosons couple to both chiralities.

While breaking SU(2)′ × U(1)B−L → U(1)Y the neutral bosons W ′(3) and BB−L mix,
resulting in a massless BY and a massive Z ′. This mixing is closely related to the electroweak
symmetry breaking in the SM. The charged part of the SU(2)′ gauge bosons W ′± are defined
similarly to the SM W± bosons and also get masses from the SU(2)′ breaking. Thus we can
rewrite the gauge kinetic terms in the SU(2)′ broken phase as

Lkin ⊃ ΨL(1)


g /⃗W τ⃗


KL(1)ΨL(1) + ΨR(1)


g /⃗W τ⃗


KR(1)ΨR(1)

+ ΨL(1)


g s′W τ

3K′
L(1) +

1
2
gB−L c

′
W QB−L


/BYΨL(1)

+ ΨR(1)


g s′W τ

3K′
R(1) +

1
2
gB−L c

′
W QB−L


/BYΨR(1)

+ ΨL(1)


g /W ′±(τ 1 ± i τ 2)


K′

L(1)ΨL(1)

+ ΨR(1)


g /W ′±(τ 1 ± i τ 2)


K′

R(1)ΨR(1)

+ ΨL(1)


g c′W τ

3K′
L(1) − 1

2
gB−L s

′
W QB−L


/Z
′
ΨL(1)

+ ΨR(1)


g c′W τ

3K′
R(1) − 1

2
gB−L s

′
W QB−L


/Z
′
ΨR(1) , (5.35)

where we identify g s′W = gB−L c
′
W ≡ g′.

As discussed before, the W ′± and Z ′ gauge bosons of SU(2)′ are irrelevant for low-energy
flavour effects. Thus, we do not discus these terms further and focus on the first three lines
of (5.35) in the following. For the low-energy flavour sector we further have to perform
the electroweak symmetry breaking. After electroweak symmetry breaking and using the
standard relation g sW = g′ cW = e the relevant kinetic Lagrangian is given by

Lkin ⊃ ΨL(1)


g /W

± 
τ 1 ± i τ 2


KL(1)ΨL(1)

+ ΨR(1)


g /W

± 
τ 1 ± i τ 2


KR(1)ΨR(1)

+ ΨL(1)

g

cW


c2W τ 3KL(1) − s2W τ

3K′
L(1) − 1

2
s2WQB−L


/ZΨL(1)

+ ΨR(1)

g

cW


c2W τ 3KR(1) − s2W τ

3K′
R(1) − 1

2
s2WQB−L


/ZΨR(1)

+ ΨL(1)e


τ 3

KL(1) +K′

L(1)


+ 1

2
QB−L


/AΨL(1)

+ ΨR(1)e


τ 3

KR(1) +K′

R(1)  
≡1


+ 1

2
QB−L


/AΨR(1) . (5.36)
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For the sake of readability we explicitly split the charged part into its isospin components.
Moreover, we separate the “SM-like” terms from the specific additional contributions present
in the model. We obtain

Lkin ⊃ g Ψ
u

L(1)


1− J +

L (1)


/W

+
Ψd

L(1) + h.c.

+ g Ψ
u

R(1)


0 + J +

R (1)


/W

+
Ψd

R(1) + h.c.

+
g

cW
ΨL(1)


τ 3 − s2WQe


1− τ 3 J 0

L (1)


/ZΨL(1)

+
g

cW
ΨR(1)


−s2W Qe1+ τ 3 J 0

R(1)


/ZΨR(1)

+ eQe


ΨL(1)

/AΨL(1) + ΨR(1)
/AΨR(1)


. (5.37)

To be able to write the Lagrangian in such a short-hand notation we make use of the fact
that each fermion solely transforms under either SU(2) or SU(2)′. This results in a relation
similar to the Gell-Mann Nishijima formula [145, 146] where τ 3 is understood to act on both
SU(2) and SU(2)′;

Qe =
1
2
QB−L + τ 3 . (5.38)

In addition we have defined

J +
L (1) ≡ K′

L(1) =

J −

L (1)

†
, J 0

L (1) ≡ K′
L(1) , (5.39a)

J +
R (1) ≡ KR(1) =


J −

R (1)

†
, J 0

R(1) ≡ KR(1) , (5.39b)

which correspond to the additional contributions. For the neutral sector these are the
only matrices transforming non-trivially under basis transformations. From the last line in
(5.37) we can read off, that the coupling to the photon is diagonal and proportional to the
corresponding electric charge in all sub-spaces. Thus, we reproduce the observation that the
U(1)em remains unbroken.

Due to the isospin structure of the charged and neutral couplings, J ±
L,R and J 0

L,R transform
with up- as well as down-type transformations. We drop the indices u and d for simplicity
as J 0

L,R does not mix up- and down-type transformations. However, we note that the
contribution for the up and down sector differs in sign as we explicitly split off the τ 3 matrix
in (5.37). For J +

L,R we make the transformations explicit. The corresponding J −
L,R can then

be deduced by Hermitian conjugation of J +
L,R.
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Approximate Mass Basis

After applying all basis transformations defined in the previous section we get the following
expressions for the flavour-dependent gauge couplings

J +
L (5) =


Vu


1
2 (ξ

u
12ξ

u
12

† + ξd12ξ
d
12

†
)

V†
d −Vu ξ

d
12 Vu


ξu13 − ξd13 − ξd12ξ

d
23


−ξu12

†V†
d 1− ξu12

†ξd12 + ξu23ξ
d
23

†
ξu23

−ξu13
† + ξd13

† − ξu23
†ξu12

†

V†
d ξd23

† 1
2 (ξ

u
23

†ξu23 + ξd23
†
ξd23)

+O(ϵ3) , (5.40a)

J +
R (5) =

Uu ζ
u
13ζ

d
13

† U†
d Uu ζ

u
13ζ

d
23

† −Uu ζ
u
13

ζu23ζ
d
13

† U†
d ζu23ζ

d
23

† −ζu23
−ζd13

† U†
d −ζd23

†
1− 1

2 (ζ
u
13

†ζu13 + ζu23
†ζu23 + ζd13

†
ζd13 + ζd23

†
ζd23)

+ O(ϵ3) , (5.40b)

J 0
L(5) =

V ξ12ξ12
† V† −V ξ12 −V ξ12ξ23

−ξ12
† V† 1− ξ12

†ξ12 − ξ23ξ23
† ξ23

−ξ23
†ξ12

† V† ξ23
† ξ23

†ξ23

+O(ϵ3) , (5.40c)

J 0
R(5) =

U ζ13ζ13
† U† U ζ13ζ23

† −U ζ13
ζ23ζ13

† U† ζ23ζ23
† −ζu23

−ζ13
† U† −ζ23

† 1− ζ13
†ζ13 + ζ23

†ζ23

+ O(ϵ3). (5.40d)

We now reinsert these matrices into the gauge kinetic couplings. As we are mainly interested
in the couplings of the SM quarks qL,R(5) we present only the terms of the first 3× 3 blocks
here. As motivated above, we give the gauge kinetic Lagrangian in the form,

Lkin ⊃ g quL(5) (VCKM −∆VCKM) /W
+
qdL(5)

+ g quR(5)V
′
CKM

/W
+
qdR(5) + h.c.

+
g

cW
qL(5)


τ 3 − s2WQe


1− τ 3∆gZqLqL


/Z qL(5)

+
g

cW
qR(5)


−s2W Qe1+ τ 3∆gZqRqR


/Z qR(5) , (5.41)

where we define the extra flavour effects as ∆VCKM, V
′
CKM, ∆gZqLqL

and ∆gZqRqR
. Making

use of the definitions given in (5.27), we identify the low-energy flavour parameter to be
parametrised by

VCKM = Vu V†
d , (5.42a)

∆VCKM = 1
2
Vu


bu ê

−2
u b†u + bd ê

−2
d b†d


V†
d ϵ

2 + O

ϵ3

, (5.42b)

V ′
CKM = Uu c

†
uf̂

−2 cd Ud
† ϵ2 +O


ϵ3

, (5.42c)

∆gZqLqL
= V b ê−2 b† V† ϵ2 +O


ϵ3

, (5.42d)

∆gZqRqR
= U c†f̂−2 cU † ϵ2 +O


ϵ3

. (5.42e)

We note that the effective CKM matrix is no longer unitary, as it receives a correction ∆VCKM,
proportional to ϵ2.
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5.3.4. Higgs Coupling

From the Lagrangian (5.5) we can read off that there is no direct coupling of the Higgs boson
to a pair of SM quarks. Similar to the quark masses, this coupling is generated effectively
by the heavy quark partners. Thus, it is no longer guaranteed that the Higgs-quark-quark
coupling ghqq is proportional to the quark masses and diagonal among the generations. The
coupling can be deduced by either integrating out the heavy fermions or by explicitly applying
the basis transformations defined above to the Higgs couplings. We find, that the correction
to the quark masses and the Higgs-quark-quark coupling is of order ϵ2 and differs by a
combinatorial factor of three.
Such an effect can be understood by explicitly studying the leading order correction. The

diagrams responsible for this correction are depicted in Figure 5.2. Both lead to an effective
coupling of three Higgs bosons to the SM quarks. They provide a correction to the quark
masses if all Higgs fields acquire their vev. Furthermore, if only two of them are set to their
vev, the diagrams contribute to the Higgs-quark-quark coupling. As there are three possible
choices, this contribution picks up the combinatorial factor of three. This effect also occurs
in the SM when considering generally all possible dimension six operators [147].

h h h

qL qR ΞL qR

b b∗ a

Blubb

h h h

qL ΩR qL qR

b b∗ a

Blubb

Figure 5.2.: Leading order correction to the quark masses and the Higgs-quark-quark coupling.

We make the effect explicit by calculating the ϵ2-correction of the effective Yukawa coupling9

Y ≈ a − 1

2


b ê−2 b† a+ a c† f−2 c


ϵ2 , (5.43)

and for the Higgs-quark-quark coupling

ghqq ≈ V

a − 3

2


b ê−2 b† a+ a c† f−2 c


ϵ2

U † . (5.44)

In contrast to the Yukawa coupling, we explicitly give the Higgs-quark-quark coupling in the
mass basis. We note that the corrections to both Y and ghqq are not aligned with the leading
order piece. Thus, U and V† will not diagonalise ghqq although we may choose them such
that they diagonalise Y to arbitrary order in ϵ. Moreover, if we compare (5.43) with (5.44),
we anticipate that the diagonal ghqq couplings are reduced compared to their SM value.
Numerically, we explicitly find such an effect in our scan over model parameters, where we
exemplarily show the Higgs-top coupling in Figure 5.7(a).

9As the effect is equivalent in the up- and down-sector, we omit the subscripts u and d here.
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5.4. Lepton Sector

5.4. Lepton Sector

Having discussed the quark sector in quite some detail we now focus on the lepton sector
of the model. Here, we only give an overview of possible extensions of the quark Lagrangian
which are compatible with realistic neutrino observables. Although we have already stated
the operators generating the Majorana mass structure in (5.5b), we show which alternative
setups are feasible and briefly discuss their features in this section. In the end we recapitulate
the results obtained for the explicit lepton sector chosen in Table 5.1.
As we have seen in the previous models and also more generally in Section 2.3.1, we may

generate a phenomenologically viable structure of neutrino masses and mixing by introducing
heavy right-handed Majorana fermions. In the setup discussed here we actually have three
flavour triplets of SM neutral fermions at our disposal; the SM neutrino partner qνR as well as
its heavy partners Ων

R and Ω
ν

L. All of these may get a large Majorana mass and are allowed
to mix. We note that the neutrino components of qL, ΞL and ΞR are merely singlets in the
SM broken phase and may thus only get Majorana masses of order the electroweak scale.
We start with an effective ansatz, where we consider mass terms for each of these “heavy
neutrinos” separately. Although this is not the most general setup, we restrict ourselves
to it as we do not intend to give an exhaustive picture. Having identified one particularly
promising effective mass term we discuss two dynamical realisations of it. The first introduces
appropriate scalar fields while the second generates the corresponding mass term effectively
via some GRV-like mechanism.

5.4.1. Effective Ansatz

For the effective neutrino mass matrix it is sufficient to study the up-type component of
the Lagrangian (5.5). Additionally, we add mass terms for the three SM Singlets qνR, Ω

ν
R and

Ω
ν

L. After electroweak symmetry breaking, we can write the effective Lagrangian as

Leff
ν = λvu q

ν
L Ω

ν
R +M Ω

ν

L tuΩ
ν
R +M Ω

ν

L q
ν
R + h.c.

+ λvu Ξ
ν

L q
ν
R +M Ξ

ν

L sΞ
ν
R +M qνL Ξ

ν
R + h.c.

+
Λ

2
qνR xν q

ν
R +

Λ

2
Ων

R xΩ Ων
R +

Λ

2
Ω

ν

L x
′
Ω Ω

ν

L , (5.45)

where the xi are arbitrary 3 × 3 matrices and Λ is some large see-saw mass scale. For a
hierarchical mass structure we can formally integrate out the heavy degrees of freedom one
by one. We now study the effective SM neutrino mass matrix resulting from (5.45) with only
one non-vanishing xi.

xν ̸= 0

This setup would be the natural first guess. It reflects the known see-saw ansatz of neutrino
mass generation. However, in our setup the Dirac part of the neutrino mass matrix features
large hierarchies as it is related to the up-quark mass matrix. Calculating the effective
neutrino mass matrix explicitly we obtain

meff
ν ∼ M2ϵ2

Λ


s−1 + t−1

u


x−1
ν


s−1 + t−1

u

T
. (5.46)
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The term (s−1 + t−1
u ) contains a strong hierarchy as it corresponds to the up-type Yukawa

matrix (cf. (5.11)). Thus, the matrix xν has to cancel the hierarchy in the quark sector twice
in order to generate neutrino masses with only a mild hierarchy.

xΩ ̸= 0

Another ansatz is to take the neutrino part of ΩR as see-saw partner of the SM neutrino.
This is motivated by the observation that it has a non-hierarchical Dirac coupling to qνL.
Therefore, a usual type I see-saw leads to the well known effective mass for qνL. However,
there are also other couplings of qνL and Ων

R which result in additional contributions to the
effective mass. A full calculation leads to

meff
ν ∼ M2ϵ2

Λ


1 + s−1 tu


x−1
Ω


1 + s−1 tu

T
. (5.47)

We expect only a mild hierarchy in (s−1 tu) as the quark sector is strongly aligned and both
s and tu feature similar hierarchies. Numerically, we also find that its hierarchy is small
(≲ 100) for realistic values of s and tu.

x′
Ω ̸= 0

The third possible case is discussed for reasons of completeness only; it has neither a
good motivation nor does it generate an interesting effective neutrino mass. As Ω

ν

L does
not directly couple to qνL, its effect on the neutrino mass are of second order. Ω

ν

L has a
Dirac coupling to qνR and Ων

R and thus induces a see-saw mechanism including those. After
integrating out Ω

ν

L as well as Ξ
ν

L and Ξν
R, we obtain a mass structure where no entry is clearly

dominating the matrix. Only if we assume the special case of a mild hierarchy between M
and Λ (Λϵ≪M ≪ Λ) we are able to integrate out Ων

R. The effective neutrino mass results in

meff
ν ∼ ϵ2Λ t−1

u x′Ω (t−1
u )T , (5.48)

which again gives reasonable neutrino masses only for a large scale M (small ϵ) and a strong
hierarchy in x′Ω.

xΩ ∼ x′
Ω ̸= 0

For future reference, we additionally consider the case where xΩ and x′Ω are non-vanishing
and of similar size. In this case we have two separate see-saw masses in place; one involving
qνL and Ων

R, and a second one involving qνR and Ω
ν

L. This leads to effective Majorana masses
for qνL and qνR which are negligible compared to their corresponding Dirac coupling. This
coupling is generated by integrating out the pair ΞL, ΞR and is given by

mD,eff
ν ∼M ϵs−1 . (5.49)

Such a neutrino mass is phenomenologically not acceptable as it is of similar size and hierarchy
as the quark masses.

From these general discussions we conclude that the model should feature a Majorana
mass term for Ων

R alone. In the following, show how such a setup can be realised.
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5.4.2. Single Scalar extension

As the effective Majorana operator of Ων
R introduced in (5.45) is of dimensions three10

we can interpret xΩ as vev of a scalar field XΩ. This scalar has to transform non-trivially
under PS, thus breaking the symmetry completely. Looking at the PS group structure of the
Majorana operator of ΩR we find that there is only a single representation that is able to
generate a Majorana mass. As we have to project out the neutrino components, only the
symmetric part in both SU(4) and SU(2)′ may contribute. The flavour quantum numbers
are also determined as the Majorana mass term must be symmetric in ΩR. Thus XΩ has to
transform as (10,1,3)(6,1). For the sake of Z2 symmetry we have to additionally introduce
the partner X ′

Ω transforming as (10,3,1)(1,6) which must not get a vev as it would break
SU(2).
Although such a setup is phenomenologically valid it does not resolve the issue of gauge

anomaly cancellation as only scalar fields are introduced. Thus, we will not discuss this
realisation in more detail here. We note that such a setup may be useful when considering a
supersymmetric extension of the model, as in this case all superfields contribute to the gauge
anomalies.

5.4.3. GRV-like extension

Instead of introducing the Majorana mass term for Ων
R directly through a vev of a scalar

field we may also generate it similarly to the Yukawa term by introducing additional fermions.
This has the advantage that these fermions contribute to the flavour gauge anomaly and may
cancel it if chosen appropriately. The general structure of such a setup is

LMaj ∼ ΘLΦ
′ΩR +

1

2
ΘL Sν ΘL , (5.50)

where Φ′ and Sν are additional scalar fields and ΘL is the newly introduced heavy fermion.
Both scalars get a vev

⟨Φ′⟩ = Λφ and ⟨Sν⟩ = Λ′sν (5.51)

at different scales Λ ≪ Λ′ which both are large (≫M ŝ). This ansatz results in the effective
Majorana mass parameter

xΩ ∼ Λ2

Λ′ φ
T s−1

ν φ (5.52)

for Ων
R in (5.45). Thus, the setup effectively generates a double see-saw as described in

Section 2.3.2. So far we have not specified the transformation properties of ΘL, Φ
′ and Sν .

Here, several options are possible of which we will discuss three in more detail. From
these we find one that appears particularly interesting and therefore realise it in our model
setup presented above. We note that different representations introduce different invariant
structures and φ as well as sν need not be matrices in complete flavour space. We will neglect
any indices and contractions for reasons of readability in the following Lagrangians.

10As we consider a non-SUSY setup, terms up to dimension 4 are renormalisable.
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(I) Φ′ transforming as PS Singlet

The first possibility we discuss is that Φ′ transforms as a PS singlet. In such a case, ΘL

transforms as (4,1,2)(1,3), where the transformations under flavour are chosen such that
ΘL cancels the flavour gauge anomaly. Thus, it is similar to the quark fields and their partner.
The representation of ΘL also fixes the transformation of Sν and Φ′ completely. Moreover, we
have to introduce their Z2 partners as we do not want to break Z2 explicitly. The resulting
additional particle content of the neutral lepton sector is given in Table 5.2.

SU(4)× SU(2)× SU(2)′ SU(3)I × SU(3)II

ΘL ⊕ΘR (4 , 1 , 2)⊕ (4 , 2 , 1) (1 , 3)⊕ (3 , 1)

Φ⊕ Φ′ (1 , 1 , 1)⊕ (1 , 1 , 1) (3 , 3)⊕ (3 , 3)

Sν ⊕ S ′
ν (10 , 1 , 3)⊕ (10 , 3 , 1) (1 , 6)⊕ (6 , 1)

Table 5.2.: Additional particle content for the lepton sector with transformation properties
in case I.

This setup introduces the Majorana mass term for ΩR as well as a coupling of the Z2

partners where S ′
ν must not get a vev. In addition, the coupling ΞLΘRΦ is allowed which

might contribute dangerously to the quark and lepton mass matrix as it extends the fermion
mass matrix to a 12× 12 structure. Concerning the vev of Sν we find that only the neutral
component may get a non-vanishing vev and thus only the additional neutral fermion gets
massive. This leaves us with a “complete” generation of massless, charged fermions. Although
this is not a problem as such, we would have to introduce additional fields and new terms in
the Lagrangian to make these massless fields heavy. This is against our principle of simplicity
and thus we do not consider this setup any further.

(II) ΘL as PS Singlet

As only a SM neutral component of ΘL may get a Majorana mass through its coupling
to Sν we now consider ΘL to transform as a PS singlet. This implies that the PS structure
has to be implemented in Φ′ in order to generate a PS invariant term. We have already
encountered a PS scalar transforming as (4,1,2) in Chapter 3 where we introduced the
corresponding superfield to break PS completely. We have also seen that its vev may well be
in the range of 1012GeV and higher. Thus it perfectly qualifies here. However, requiring ΘL

to transform as PS singlet does not fix its flavour structure and the one of Φ′. Again we have
more than one possibility. In order to cancel the flavour gauge anomaly we need to introduce
eight fermions transforming as anti-triplet under SU(3)I as well as their Z2 partners. Thus,
we chose ΘL to transform either as (8,3) or (3,8) under flavour.

Case IIA: We start our discussion with the case that ΘL transforms as (8,3). Having fixed
the PS transformation of Φ′ and the flavour transformation of ΘL we can deduce all other
transformations, leading to the particle content given in Table 5.3.
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SU(4)× SU(2)× SU(2)′ SU(3)I × SU(3)II

ΘL ⊕ΘR (1 , 1 , 1)⊕ (1 , 1 , 1) (8 , 3)⊕ (3 , 8)

Φ⊕ Φ′ (4 , 2 , 1)⊕ (4 , 1 , 2) (3 , 3)⊕ (3 , 3)

Sν ⊕ S ′
ν (1 , 1 , 1)⊕ (1 , 1 , 1) (1 , 6)⊕ (6 , 1)

Table 5.3.: Additional particle content for the lepton sector with transformation properties
in case IIA.

This field content introduces additional terms in the Lagrangian, which are given by

L ⊃ ΘLΦ
′ΩR +ΘL Sν ΘL + ΩL Φ

′∗ΘR +ΘL S
∗ΘR

+ ΞLΦΘR +ΘR S
′
ν ΘR +ΘL Φ

∗ ΞR . (5.53)

Here, the Dirac mass term ⟨Φ′⟩∗ΩLΘR is of special interest as it generates a large mass for
ΩL and thus a large value xΩ′ . If S ′

ν acquires a vev similar to Sν , we obtain a symmetric
setup generating a Majorana mass for ΩR as well as ΩL. If S

′
ν does not acquire a vev, ΩL

is still heavy due to the Dirac coupling and results in a mass structure similar to the one
containing xΩ′ . Thus, this setup always generates an effective Lagrangian similar to (5.45)
with xΩ ∼ xΩ′ ̸= 0 which is phenomenologically excluded. However, by imposing an additional
symmetry forbidding the aforementioned Dirac term and demanding S ′

ν to receiving a large
vev, the setup generates an effective light neutrino mass matrix compatible to experimental
data. As we do not intend to introduce additional symmetries we do not study such a setup
in detail here.

Case IIB: The second possibility is to consider a setup in which ΘL transforms as (3,8).
Again, this fixes all other representations leading to the field content shown in Table 5.4.

SU(4)× SU(2)× SU(2)′ SU(3)I × SU(3)II

ΘL ⊕ΘR (1 , 1 , 1)⊕ (1 , 1 , 1) (3 , 8)⊕ (8 , 3)

Φ⊕ Φ′ (4 , 2 , 1)⊕ (4 , 1 , 2) (8 , 1)⊕ (1 , 8)

Sν ⊕ S ′
ν (1 , 1 , 1)⊕ (1 , 1 , 1) (6 , 1)⊕ (1 , 6)

Table 5.4.: Additional particle content for the lepton sector with transformation properties
in case IIB.

This field content does not allow for the problematic Dirac couplings of the setup before.
Thus, the additional terms in the Lagrangian are reduced to

L ⊃ ΘL Φ
′ ΩR +ΘL Sν ΘL +ΘL S

∗ΘR

+ ΞL ΦΘR +ΘR S
′
ν ΘR , (5.54)
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where Φ again must not get a vev. If S ′
ν does not get a vev, ΘR does not receive a large

mass in the first place. However, it forms a Dirac mass term with ΘL and thus gets massive.
In addition, this coupling generates a dangerous Dirac coupling between qνL and qνR of
the form M2Λ−1ϵ (s + tu)φ

−1 which dominates the mass matrix. Thus, such a setup is
phenomenologically not reasonable.
Nevertheless, if S ′

ν acquires a vev of similar size as Sν , ΘR is rendered heavy and the Dirac
coupling is suppressed. In this case, the flavour symmetry is broken completely at the large
scale Λ′. Such a setup reproduces the effective Lagrangian (5.45) for the case xΩ ̸= 0 and thus
generates a phenomenologically reasonable neutrino mass in the eV-range without internal
hierarchies.

5.4.4. Resulting Lepton Sector

To sum up, in order to generate a viable lepton sector we introduce one additional
fermion ΘL transforming as (1,1,1)(3,8) as well as the two scalar fields Φ′ and Sν . Further-
more, we need to include their partners to be consistent with the Z2 symmetry. The two
PS singlets Sν and S ′

ν receive a vev of the scale Λ′ whereas Φ′ acquires a vev at a lower but
still high scale Λ (cf. (5.7). These additional fields lead to the setup already given in the
Lagrangian (5.5b) and the fields displayed in Table 5.1.
However, we do not aim for an explicit construction of the full lepton sector which would

require a detailed discussion of the breaking of SU(4). Hence, we keep our presentation of
the neutrino sector at a qualitative level. The complete leptonic Lagrangian we consider is
given by

Llepton
Yuk ∼ qLH ΩR + ΩL (S + T ′) ΩR +M ΩL qR

+ ΞLH qR + ΞL (S + T ) ΞR +M qL ΞR

+ΘLΦ
′ΩR +ΘL Sν ΘL +ΘL S

†ΘR

+ ΞL ΦΘR +ΘR S
′
ν ΘR + h.c. , (5.55)

where we have neglected all couplings which we assume to be of order one. Moreover, we
implicitly consider only the leptonic components of the fields.
This Lagrangian generates the effective neutrino mass matrix

meff
ν ∼ Λ′ v2u

Λ2 φ2


1 + s−1tu


sν

1 + s−1tu

T
. (5.56)

We note that φ2 has no flavour structure as Φ′ transforms solely under SU(3)II while νL
transforms under SU(3)I . It is important to notice, that the mixing in the neutrino sector
is not fixed by the quark sector. It is rather determined by the symmetry structure of the
vev sν and may thus qualitatively deviate from the CKM matrix.
Moreover, the leptonic Lagrangian (5.55) leads to a mass matrix for the charged leptons

which is equal to the one of the down-type quarks at the GUT scale, Ye ∼ Yd. This is a
reasonable first approximation. In addition, we may induce deviations from this equality if
we allow the flavon fields S and T ′ to transform non-trivially under SU(4). The SU(4) group
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structure of the terms ΩL (S + T ′) ΩR and ΞL (S + T ) ΞR also allows S and T ′ to transform
as 15. This will not alter the quark sector but introduces a factor of −3 for the lepton sector,
as the generator breaking SU(4) is given by T 15 ∼ diag(1, 1, 1,−3). Such a setup is similar to
the ansatz of Georgi and Jarlskog [104]. Thus, if only one of the two flavons transforms as 15,
we introduce a relative factor in (5.11), which will create a deviation from the aforementioned
equivalence; e.g. for T ′ (15,1,3)(3,3) we get

Ye ∼

s+ 3 t′

−1
+ s−1 . (5.57)

Another ansatz is to split either S or T ′ in two parts, one transforming trivially and one
transforming as 15. This would generates even more variations in the lepton Yukawa matrices
as we may arbitrarily split the flavon vevs; e.g. for S ′ (1,1,1)(3,3) and S ′′ (15,1,1)(3,3)
we get

Ye ∼

(s1 − 3 s15)− t′

−1
+

s1 − 3 s15

−1
,with s1 + s15 ≡ s . (5.58)

To conclude, although we have not constructed the lepton sector in detail we find that in
general the model is capable of a phenomenologically allowed lepton sector.

5.5. Phenomenology of the Quark Sector

In the previous sections we have presented the setup of the model and calculated analytically
the resulting effects on flavour parameters. However, we are not able to solve the derived
Yukawa matrices (5.30) for s and t analytically. Thus, we are not able to parametrise the
effects by the known flavour parameters (mi and Vij). Nevertheless, it is possible to invert
the approximate formula given in (5.11) numerically. Here, we encounter the technical
complication that multiple solutions exist; two for each generation. Starting from a left-right
symmetric theory we cannot rotate the right-handed up and down sector separately. Hence,
we have to introduce the additional mixing matrix UCKM which parametrises the coupling of
the W ′± bosons to the quarks. Furthermore, the enlarged symmetry introduces additional
physical phases in the Yukawa sector.

Experimentally we have no information on UCKM nor do we know the solution which
provides an appropriate description of nature. Therefore, we choose to scan over these degrees
of freedom. In this section, we explain how this scan is performed and present the resulting
flavour effects.

5.5.1. Setup of the Scan

In principle the scan should be performed over the complete set of model parameters,
namely s, t′, λ, tan β and M . However, as s and t′ feature large hierarchies a direct scan
over these is not feasible. Thus we use an alternative ansatz and scan over “adapted flavour
parameters” which we define in the following.
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Adapted Flavour Parameters

We start our considerations with the quark masses and mixing angles as fitted in the SM
framework [15]. In addition we add mixing angles and phases for the unknown matrix UCKM

which describes the mixing of the right-handed quarks. With this input we calculate an
explicit realisation for Yu and Yd in an arbitrary basis. For a given pair of Yukawa matrices
it is possible to invert (5.11) numerically and thus derive s and t′ (see Appendix C.2). These
are however only approximate and we expect sizeable corrections for the third generation.
Nevertheless, for given values of s and t′ we can explicitly diagonalise the 9× 9 mass matrix
and calculate the derived 3× 3 Yukawa matrices. Comparing these with the input we find
that the mass and mixing angles related to the third generation are systematically to small.
Therefore, we adjust the input parameters such that the derived 3 × 3 Yukawa matrices
match the ones obtained within the SM. In the following we denote these adjusted input
parameters as adapted flavour parameters and define ranges over which we perform the scan.

Performing the Scan

Having defined the adapted flavour parameters we set the stage to perform a systematic
scan over possible flavour effects. We do not claim this scan to be exhaustive as the setup
may systematically exclude allowed regions of the parameter space. Nevertheless, it provides
an insight into the essential flavour effects of this model. The scan itself is performed using
the following steps:

1. Randomly generate a point in the space of adapted flavour parameters as well as for λ,
tan β and M . The allowed ranges are given in Appendix C.3.

2. Calculate s and t′ by inverting (5.11) using the procedure described in Appendix C.2.

3. Insert the so calculated s and t′ as well as λ, tan β andM into the full 9×9 dimensional
mass matrix and diagonalise it explicitly.

4. Deduce the effective Yukawa parameters (mi and Vij).

5. Compare these with the experimentally allowed 3σ ranges11 and save the point (s, t′, λ,
tan β, M) in case of agreement.

Following these steps, we have scanned the model parameters in the ranges λ ∈ [1, 3],
tan β ∈ [1, 15] and M ∈ [700, 2500]GeV. The scanned ranges of the adapted flavour
parameters as well as the explicit Yukawa matrices used for the scan are discussed in
Appendix C.3. The allowed ranges for the effective Yukawa parameters are given in Table 5.5
and Table 5.6.
We have generated roughly 3,000 points using the full range of adapted parameters.

However, as scanning the full parameter space of the right-handed rotations is quite inefficient,
we have also performed a scan where we have limited the right-handed rotations to be
small (Θi

R ≲ 1.5◦). This results in 30,000 additional points which differ qualitatively from

11We take the masses at mi = mi(MZ) and the experimental values for the individual CKM entries Vij (not
those obtained from additionally demanding unitarity).

108



5.5. Phenomenology of the Quark Sector

the full scan only for V ′
CKM, i.e. in the coupling of the right-handed quarks to the SM gauge

bosons. To enhance the statistics, we use the combination of both for all plots except for
those containing V ′

CKM where we use only the set of 3,000 points.

Covering the Parameter Space

We intend to vary the adapted flavour parameters in a wide range such that the model
explores the complete range of experimentally allowed Yukawa parameters. This is possible
for most of the parameters, however, not all of them are distributed equally over the allowed
range. Especially the absolute values of the CKM elements |Vtb|, |Vts|, |Vcs| and |Vcd| are more
constrained in our setup. This can be traced back to fact that the direct bounds for these
CKM elements are relatively weak while the correction ∆VCKM (related to non-unitarity) is
small. If we instead compare the covered range to the CKM elements as deduced from the fit
of the SM Wolfenstein parameters [15], we generate many points outside of the 3σ region. In
particular, we find that our |Vtb| is typically smaller. The experimental bounds we impose for
the individual CKM elements as well as the ranges deduced from the SM fit and the ranges
covered by our scan are given in Table 5.5.
The masses all cover the full allowed range. Yet we find that especially the charm mass

tends to lower values. For the light quark masses we also see a deficit (although not as
pronounced as for mc) for the largest values of the allowed ranges. We interpret these effects
as relics of our scan as the setup generally lowers the mass eigenvalues. The allowed ranges
for the masses as well as model parameters are given in Table 5.6.
An additional relic of our scan is the fact that λ does not cover the full allowed range

but rather peaks around λ = 2, which is the point we used to determine the ranges for the
adapted parameters. As we are mainly interested in this part of the parameter space we do
not expand our scan. Concerning tan β and M , we find that they are equally distributed
throughout the full allowed range.

5.5.2. Effects on the Flavour Parameter

Having checked that we are able to generate the flavour parameters of the SM we now turn
to possible effects on additional flavour observables provided by the scan discussed above.

Dependence on the Scale M

In the definition of the flavour breaking vevs (5.6) we have explicitly factored out the
dependence on the mass scale M . This is motivated by the observation, that the explicit
M -dependence of the approximate Yukawa relation (5.11) can thereby be cancelled. Thus,
we expect no explicit dependence on M in a . . . f arising when diagonalising the mass
matrix. However, there may still be an implicit M -dependence due to effects hidden in the
determination of s and t. As (5.11) is a good approximation for the first two generations
(where yu, yd ≪ 1 and thus s, t≫ 1) we expect no further M -dependence here. For the third
generation, we have explicitly checked for a possible additional M -dependence using the scan.
As a result, we find no additional dependence on M in any of the quantities; at least above a
certain threshold of roughly 1TeV. This allows us to make the dependence on the scale M
explicit throughout the model and especially in all corrections.
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|Vud| |Vus| |Vub|
experiment 0.9736 - 0.9749 0.2229 - 0.2277 0.0027 - 0.0056
unitarity 0.9739 - 0.9747 0.2235 - 0.2272 0.0031 - 0.0040
covered 0.9737 - 0.9748 0.2231 - 0.2277 0.0027 - 0.0056

|Vcd| |Vcs| |Vcb|
experiment 0.2010 - 0.2490 0.9380 - 1.0340 0.0372 - 0.0450
unitarity 0.2234 - 0.2271 0.9730 - 0.9739 0.0378 - 0.0450
covered 0.2229 - 0.2276 0.9727 - 0.9741 0.0372 - 0.0450

|Vtd| |Vts| |Vtb|
experiment 0.0066 - 0.0102 0.0319 - 0.0481 0.9250 - 1.1170
unitarity 0.0079 - 0.0099 0.0372 - 0.0438 0.9990 - 0.9993
covered 0.0066 - 0.0102 0.0355 - 0.0447 0.9711 - 0.9992

Table 5.5.: Coverage of the allowed range of flavour parameters. The first line corresponds
to the direct experimental limits we impose for the scan; the second line is the
allowed range deduced from the SM fit to the Wolfenstein parameters and the
last line corresponds to the range covered by our scan.

mu 0.5− 2.9 MeV md 1.2− 4.8 MeV λ 1.5− 2.5
mc 0.53− 0.71 GeV ms 30− 78 MeV tanβ 1− 15
mt 162− 180 GeV mb 2.78− 2.96 GeV M 750− 2500 GeV

Table 5.6.: Ranges for the quark masses and the model parameters covered by our scan.

The effects on the flavour parameters are usually proportional to ϵ2 ∝ M−2 (cf. (5.42)).
As we know the M -dependence theoretically, we may limit ourselves to an arbitrary mass
band, which we choose to be M ∈ [1, 1.2] TeV, for some of the further studies which reduces
our set to ∼ 3, 500 points. This clarifies the dependence on the other parameters of the scan
as it reduces the spread due to the variation of M . The values obtained for this mass band
may afterwards be used to extrapolate the effects to larger values of M using the explicit
M -dependence. On the contrary, we can also use the explicit M -dependence to rescale all
generated points to a single mass scale. We make use of this rescaling in the discussion
of V ′

CKM later in this section in order to increase the statistics for the small mass band.

Masses of the Additional Fermions

The masses of the heavy up-type quark partners can be read off from the diagonalised
mass matrix (5.28). A similar expression can be deduced for the down-type quark partners
by interchanging u with d. As we have explicitly factored out the flavour mass scale M it is
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(a) First solution. (b) Second solution.

Figure 5.3.: Mass ratios m̂F of the lightest additional fermionic partners with respect to
tan β. The plots show the masses of the first bottom partner in blue, the first
top partner in black and the second top and bottom partners in green. The two
solutions of (5.12) are given for each mass ratio as dashed lines in red (a) and
orange (b), respectively.

reasonable to consider only the mass ratio

m̂F =
mF

M
. (5.59)

As f̂ does not depend on isospin, we can directly infer that one set of heavy up-type partners
equals one set of down-type partners in mass (later on denoted by U ′′ and D′′, where U
(D) are any of the up-type (down-type) quarks). This we find verified by the scan where
these masses are equal at the sub-percentage level. They split up if we include a vev for the
SU(2)-breaking fields T , ⟨T ⟩ ̸= 0, whereby their difference is proportional to ⟨T ⟩.
However, we find two distinct bands of solutions for each of these mass ratios. These are

expected12 as we have already encountered two solutions while inverting the approximate
Yukawa relation for one generation (cf. (5.12)). We note that due to the 2HDM character
yu and yd are tan β-dependent in this formula. The resulting tan β-dependence of the heavy
fermion masses calculated from the one generation case fits the results of the scan reasonably
well as illustrated in Figure 5.3. Here, we have plotted the mass ratios m̂F of the four lightest
fermion partners (b′, t′, b′′ and t′′) against tan β. For clarity we have separate the two possible
solutions; the mass ratios of t′′ and b′′ are shown in green (as both equal in mass), the one
of b′ in blue and that of t′ in black. Additionally, we have plotted the tan β-dependence of
the mass ratios deduced from (5.12) where we used the SM Yukawa couplings and λ = 2 as
fixed input. In doing so, we introduce a colour coding for this and the following plots such
that masses belonging theoretically to the first (second) solution of (5.12) are given in red
(orange).

From the plot we can conclude, that the mass ratios of the additional fermions may be
of order one and thus, their masses can be in the TeV-range. However, depending on the

12In general, we would expect 8 distinct solutions, however, the effects for each generation are dominated by
their “own” multiplicity.
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5. Gauged Flavour Symmetry

(a) Zooming in on the lower edge of the standard
unitarity triangle. The blue shaded region corre-
sponds to the 1σ and 3σ ellipse of ρ and η.

(b) Absolute value of the non-unitarity measure
|ρ| with respect to tanβ in the mass band M ∈
[1,1.2] TeV. The dashed blue line indicates the
corresponding 1σ error on |ρ+ i η| in the SM.

Figure 5.4.: Non-unitarity of the CKM matrix. In red (orange) we present the non-unitarity
measure ρ for the first (second) solution of (5.12) for the third generation.

solution nature chooses we may expect either a set of three quark partners (b′, t′′ and b′′)
within a small mass range or solely the top partner t′ to appear in experiments. Thus, the two
solutions qualitatively differ in their predictions which we also see in the following discussions.

Non-Unitarity of VCKM

Due to the additional ϵ2-dependent contribution ∆VCKM to the CKM matrix the coupling
of the W± bosons to the quarks is no longer unitary. This non-unitarity can be quantified by
studying the unitarity triangles constructed from the CKM matrix. For explicitness we limit
the discussion to the “standard unitarity triangle” here. We have obtained similar results
with similar or even smaller effects for the other possible triangles.
Generically we do not expect large deviations from the SM here as we have limited the

scan points to lay within the uncertainty of the absolute values of the CKM matrix elements.
This is a simplified assumption as right-handed couplings would influence the determination
of the CKM elements from experimental measurement. To give a complete picture we would
have to redo the determination of the CKM elements in the presence of additional couplings
of right-handed quarks (V ′

CKM) and without the assumption of unitarity. However, such an
explicit fit is beyond the scope of this thesis.
To quantify the non-unitarity in the “standard” unitarity triangle we define the complex

quantity

ρ = VubV
∗
ud + VcbV

∗
cd + VtbV

∗
td

VcbV ∗
cd

, (5.60)

which is a nil test in the SM.
In Figure 5.4 we show the lower edge of the triangle for the complete set of scan points.

In addition, we present the tan β-dependence of the non-unitarity (the absolute value |ρ|)
where we limit the given points to lie in the mass band M ∈ [1, 1.2] TeV for the sake of
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(a) Influence of couplings of right-handed quarks
on the determination of Vub. The bands show
different measurements; blue: inclusive decays,
red: B → πlν, yellow: B → ρlν, green: B → τν.
The possible values deduced in the scan are shown
in black.

(b) Influence of couplings of right-handed quarks
on the determination of Vcb. The bands show
different measurements; blue: inclusive decays,
red: B → D∗lν, yellow: B → Dlν. The possible
values deduced in the scan are shown in black.

Figure 5.5.: Influence of V ′
CKM on the determination of VCKM [148]. Using the explicit M -

dependence, the possible values of the scan have been scaled to a reference scale
of M = 1TeV.

clarity. Again, we separate the points belonging to the different solutions, using the colour
code introduced above. We compare these effects with the 1σ and 3σ uncertainty on the SM
Wolfenstein parameters ρ and η, which determine the upper edge of the SM unitarity triangle.
As expected, we observe that the non-unitarity is compatible with the SM uncertainties.
Moreover, we again find that the effect depends crucially on the type of solution. This is
particularly apparent in the tan β-dependence of |ρ| (cf. Figure 5.4(b)). Here, the second
solution (orange) is basically independent of tan β whereas the first (red) is of similar size for
tan β = 1 and practically vanishes for tan β ≳ 3. Thus, the effect may be absent even for
small values of the flavour breaking mass scale M . Taking a look at the lower edge of the
unitarity triangle we find that the real part of ρ is generically positive (cf. Figure 5.4(a)).
This indicates that the effect is dominated by the reduction of Vtb which shortens the right
side of the triangle.

Right-Handed Coupling V′
CKM

In the setup introduced above, the right-handed SM fermions couple to the SM W± bosons
due to their mixing with ΞR. The coupling strength is parametrised by V ′

CKM and is given
in (5.42c). From the formula we can read off that the coupling is proportional to ϵ2 which is
also confirmed in our scan. Such a right-handed coupling is of great interest as it influences
the determination of the CKM elements in the SM; in particular in view of the tension
between the inclusive and exclusive determination of Vub and Vcb. The additional couplings
V ′
ub and V

′
cb may reduce this tension as the inclusive decay is proportional to |Vxb|2 + |V ′

xb|2,
whereas the exclusive decays are proportional to either13 of |Vxb ± V ′

xb|2 [149]. However, it

13Depending on whether the decay is mediated by axial or vector currents.
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(a) Correlation between the coupling of the Z-boson
to the left- and right-handed bottom quarks. The
dashed grey line indicates the diagonal.

(b) Dependence of
∆gZbLbL

 on tanβ. The dashed

blue line indicates the deduced SM bound at 3σ
(points below are allowed).

Figure 5.6.: Correction of the Z-boson coupling to the b quarks. In red (orange) we show the
points belonging to the first (second) solution for the mass bandM ∈ [1, 1.2] TeV.

has also been shown that V ′
CKM cannot simultaneously explain all measurements [148–151].

Still, the scan may show which measurements are “theoretically preferred” in our setup.
Using the scan, we have checked for such effects but find no conclusive answer. In Figure 5.5

we have plotted the current 1σ measurements of Vub and Vcb depending on an additional
right-handed coupling [148]. Additionally, we show points generated in the scan scaled to a
reference mass scale M = 1TeV. We find that the relative contributions of V ′

CKM are at the
percent level at most and that the scan shows no preference for any of the measurements.
Additionally, we do not see any correlation between V ′

ub and V
′
cb.

Anomalous Z Couplings

Besides the effects mentioned so far we obtain a modification of the coupling between the
Z-boson and the quarks. Similarly to the effects discussed above, we find the largest deviation
in the top quark coupling. However, the experimental constraints are quite weak here as the
Z-boson cannot decay into a pair of top quarks. Thus we focus on the coupling of the bottom
quarks to the Z-boson where the correction is still sizeable. This decay is kinematically
allowed and has been measured precisely at LEP2 to Γ(Z → bb) ≈ (375.87± 0.17)MeV [15].
In this decay, the coupling of the right- as well as left-handed b-quarks is involved. Looking
at the correlation between both we find that for large values the corrections equal each other
(cf. Figure 5.6(a)). Thus, we can use the simplifying assumption that the variation on both is
equal. Assuming furthermore that the correction to the coupling is within the experimental
uncertainty, we may limit the couplings to∆gZbLbL

 ∼ ∆gZbRbR

 ≲ 6.8× 10−4 @3σ . (5.61)

This bound reduces the number of allowed points generated in the scan by roughly 10 percent.
The excluded points all belong to the first solution of (5.12). Moreover, they are proportional
to ϵ2 and show a correlation in tan β. For larger values of either tan β or M , the effects
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(a) Dependence of the modified Higgs-top-top cou-
pling as a function of M . The SM expectation
is shown as dashed blue line. The direct error is
larger then the plotted range.

(b) Correlation between the Higgs-top-top coupling
with respect to |Vtb|. The SM point is given in blue.
The errors on both quantities are larger than the
plotted ranges.

Figure 5.7.: Correction of the Higgs-top-top coupling. In red (orange) we show the points
belonging to the first (second) solution.

decreases and thus the bound is fulfilled more often. In Figure 5.6 we show the correlation
between the left- and right-handed corrections as well as the tan β-dependence for the
aforementioned mass band M ∈ [1, 1.2] TeV. In the right plot we find that for the first
solution we are able to exclude roughly all model point for tan β ≲ 4.

Anomalous Higgs Couplings

The Higgs coupling to the top-quark ghtt may receive sizeable corrections in our setup
(cf. Section 5.3.4). However, already for the b quark as well as all lighter quarks this effect is
negligible. As the effect is due to corrections of order ϵ2 it reduces drastically for increasing
M . For small values of M , the effect is of the order of a few percent (see Figure 5.7(a)).
However, experimentally the Higgs-top-top coupling is only poorly known and has roughly
30 percent uncertainty [152, 153]. Thus, this correction will rather be important for precision
observables, where the top and the Higgs occur in loops so that indirect constraints apply.

In addition, we find a correlation of ghtt to Vtb which may be of phenomenological interest
as the top quark decays nearly instantaneously into a bottom quark and a W boson. De-
pending on the two solutions, Vtb either shows the same M -dependence (orange) or is rather
independent of M (red) (see Figure 5.7(b)). Such a correlation may enlarge the effect on e.g.
associated Higgs production gg → ttH which would be reduced in our setup.

Next to the reduction of the coupling ghqq we find a flavour changing coupling of the Higgs.
These may be relevant for flavour changing neutral currents. Here, the bounds for light
quarks are already quite severe (which may be relevant although naturally suppressed in our
setup) and those for the heavy quarks will become stricter over time. Thus, a careful study
of the FCNC effects including the Z boson couplings would be interesting but is beyond the
scope of this thesis.
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5.6. Comments on a Supersymmetric Extension

So far we have limited ourselves to the non-supersymmetric setup. This has the advantage
that we can directly deduce low-energy flavour observables without specifying the soft-
SUSY breaking sector. However, without SUSY we are left with the naturalness problem
(cf. Section 1.2). In the model presented in this chapter the situation is even worse as we
introduce multiple scales featuring large hierarchies. Thus, we have presented an effective
analysis rather than a conclusive top-down picture of the model. The task of constructing a
complete top-down model is left for future studies and should involve the introduction of
SUSY at some largish scale. Technically, the implementation of SUSY is straight forward
and can be achieved by promoting each field to a superfield and rewriting the Lagrangian in
terms of a superpotential. However, there are two subtleties in doing so which we want to
mention here.

Anomaly cancellation

Simply promoting each field to a superfield reintroduces gauge anomalies in the model.
This is due to the fermionic partners introduced for each of the scalar fields in Table 5.1
which will contribute to the anomalies. Thus, the fields that in the non-SUSY setup belong
to the scalar sector have to have a vanishing contribution to the anomaly for each factor of
the gauge group14. This is not the case in the setup proposed above as gauge anomalies in
the flavour sector remain.
One possible solution to this issue would be the introduction of a “partner” for each of the

scalar fields, thereby directly cancelling the anomaly by hand. In such a setup additional
couplings would arise which could be forbidden by global symmetries, similar to the previous
chapter. Another strategy would be to reconsider the lepton sector of the theory. In the
non-SUSY case we have chosen the additional fields for the lepton sector such that they
cancel the gauge anomaly of the quark sector. This construction strongly limited our choices.
However, in the SUSY setup it is not as simple as in the non-SUSY case to find a suitable
lepton sector.

D-Term flatness

A second problem arising in the simplest supersymmetric extension is D-term flatness.
Taking into account all fields which acquire vevs, we have to ensure that the D-terms of
all gauge vector fields vanish. Thus, we have to introduce vevs of similar hierarchy which
may cancel the D-term contribution of each other. The simplest ansatz would be to include
additional superfields receiving a similar vev in the conjugated representation. This is in
line with cancelling the gauge anomalies. Operators leading to experimentally problematic
couplings may again be forbidden by introducing a global symmetry.

Although we have outlined the principle steps needed to introduce SUSY, we will not
discuss such a setup in any detail here. This is due to the fact that we do not expect any
new insights in the model as we are no longer able to directly deduce flavour effects.

14Note that mixed anomalies do not occur in a gauge symmetry without explicit U(1) factors (cf. Ap-
pendix C.1).
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5.7. Summary

In this chapter we have presented a model of a gauged SU(3)I ×SU(3)II flavour symmetry
within a Pati-Salam Grand Unified Theory, where the Yukawa matrices are generated by
flavon vevs which occupy the lower end of the energy spectrum (reaching down to the
TeV-range). We have introduced two flavons acquiring hierarchical vev structures at similar
scales. The breaking of the flavour symmetry is mediated to the SM fermions by additionally
introduced fermionic fields. These new fermions couple to the flavons and acquire masses
proportional to their vevs. The lightest of each of these fermions is of the order of the “flavour
breaking” scale M which is introduced into the theory by hand and may well be in the
TeV-range. We have focused on a non-supersymmetric realisation and limited ourselves to
renormalisable operators of the Lagrangian. Concerning the phenomenological discussion of
the model we have concentrated on the quark sector as it features the most stringent bounds.

The model presented here provides a new ansatz of implementing flavour as it reproduces
the SM flavour sector from matrices that vastly differ from the SM Yukawa matrices. It is
thus different from the ansatz of Minimal Flavour Violation which is often implemented in
flavour models beyond the Standard Model. In our setup, we also encounter only small effects
in the flavour sector. These are determined by the SM Yukawa matrices (up to right-handed
rotations which have only minor effects on the low energy observables) which imprint their
structure on the model by fixing the form of the flavon vevs in an intricate way. However,
the effects do not depend linearly on the Yukawa matrices as it would be the case in MFV.
Still, the model is able to reproduce the SM flavour sector from 21 dimensionless parameters
and one mass scale without being in conflict with current flavour data. In addition, it gives
rise to interesting non-standard effects which could be observable in future experiments.

Setting up the model we have followed the idea of Grinstein, Redi and Villadoro. However,
the phenomenology of the model is significantly different due to the more constrained
framework of a GUT symmetry. The flavour gauge bosons are of no phenomenological
interest as they receive masses far above the TeV scale. The embedding of the SM Higgs in
PS uplifts the setup to a two Higgs doublet model. In addition, we double the extra fermionic
fields introduced in the setup of the quark sector. Thus, they do not cancel the flavour
gauge anomalies. However, additional fermionic fields are required for the construction of a
viable lepton sector, which in turn solves the issue of flavour gauge anomalies. As we need to
distinguish the up-type from the down-type sector we need to introduce a flavon transforming
non-trivially under SU(2)′. Moreover, the Z2 symmetry requires a further coupling of the
quarks to the PS singlet flavon field. This complicates the simple relation between the flavon
vevs and the SM Yukawa matrices found by Grinstein et al. In addition, this setup leads to
an ambiguity in the determination of the flavon vevs where we find two solutions for each
generation. For this reason, we explicitly calculate the transformation to the mass basis as
an expansion in the flavour scale M . This enables us to express the effects on the flavour
couplings in this expansion. However, we are not able to parametrise the flavon vevs by SM
quantities. Thus, we have alternatively performed a scan over the parameter space of the
model in a specific (though well defined) manner. With this scan, we are able to cover most
of the experimentally allowed ranges of the quark masses and CKM matrix elements.

117



5. Gauged Flavour Symmetry

From the scan we can conclude that the effects on the flavour parameters are generically
small and compatible with the SM expectations. This smallness is due to the general setup
of the scan, as we only allow for parameter points which are consistent with the absolute
values of VCKM. As the Yukawa matrices of the quark sector are strongly aligned, the low
energy flavour phenomenology is dominated by flavour diagonal effects. This may be generally
different in the lepton sector where the mixing angles of the PMNS matrix are much larger.
Thus, a more detailed study of the lepton sector would be very interesting.

Although most effects are small, we find observables which allow to exclude some regions
of the parameter space. An example for such an effect is the coupling of the Z-boson to a
pair of bottom quarks. This coupling is incompatible with the measured branching fraction
Γ(Z → bb) for scan points belonging to the first solution with small tan β and moderated
mass scale M . As the additional fermions are allowed to have masses in the TeV-range, they
may be detectable in the next run of the LHC or future experiments. Here, we find a clear
discrimination in the aforementioned ambiguity. Depending on the solution nature chooses
we may expect either one or three lightest new fermionic partners with nearly degenerate
mass. Of special interest is also the influence of V ′

CKM (the coupling of the W bosons to
the right-handed quarks) on the determination of Vub and Vcb as there is a tension between
different experimental measurements. However, we find no conclusive solution to this state of
affairs as the effects are only at the percent level and no set of measurements is preferred by
our model.
In addition, we find that the scan is consistent with the explicit M -dependence given

in the parametrisation of the flavour effects. Thus, all effects on the flavour observables
vanish quadratically when increasing M . As the effects on most of the flavour observables
are beyond the scope of current experiments a global analysis would be needed to be able to
favour or exclude large regions of the parameter space.
Besides the discussion of the quark sector we have also sketched possible realisations of

lepton flavour in this chapter as the PS symmetry connects both sectors. We have limited
ourselves to a qualitative discussion of the lepton sector. Making use of a Majorana structure
for the right-handed neutrinos allows us to generate masses and mixing patterns which differ
from the quark sector. Due to the additionally introduced fermionic partners we identified
nine SM neutral fermions which are able to play the role of the right-handed neutrino. Hence,
we have discussed several possibilities of generating a viable neutrino flavour sector. For the
realisation of the model presented in this chapter we have chosen a setup in which one set
of the right-handed neutrino partners gets a mass at some large scale (above ∼ 1010GeV)
which in turn generates the masses and mixing of the light SM neutrinos. In addition we
have commented on variations of the setup which allow for corrections of the lepton mass
structure. However, this already requires a complete breaking of the flavour symmetry at
this scale and thus effects of flavour gauge bosons are far beyond experimental reach.
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Chapter 6

Conclusions & Outlook

In this thesis we have addressed the question of embedding a theory of flavour in the
framework of Pati-Salam symmetric Grand Unified Theories. This we have realised by
constructing three individual model setups which deal with different aspects of model building.
A detailed summary on each of the models can be found at the end of the corresponding
chapters.
Throughout this thesis we have shown that a rich variety of setups beyond the Standard

Model (SM) are possible which might help to understand the flavour sector and possible
further unification of particle interactions better. Especially if we give up the constraint
of single scale unification we found plenty of setups featuring intermediate mass scales
with phenomenologically interesting consequences (Chapter 3). Examples include scenarios
with additional coloured particles in the TeV range, Majorana mass scales in the range of
1012 − 1014GeV and/or complete unification near or at the Planck scale.

In the classes of models presented in Chapter 3 we have not been interested in an explicit
realisation of the flavour sector but have rather studied the unification behaviour of setups in
which multiple fields may occur in three copies, just like the SM fermions. This multiplicity
is motivated by the additional study presented in this thesis on the possibility of additional
fields which themselves carry flavour structure. Here, we have especially considered the case
that the electroweak symmetry breaking Higgs of the SM appears in three copies (Chapter 3)
which may transform non-trivially under the flavour gauge group (Chapter 4).

We have gauged the flavour symmetry in models constructed in Chapter 4 and Chapter 5
in order break it spontaneously by vacuum expectation values (vev) of scalar fields, the
so-called flavons. In Chapter 4 these flavon vevs are located at high energies (near the Planck
scale) and in Chapter 5 at the lower end (TeV range). For both setups we have been able to
qualitatively reproduce the observed masses and mixing structures. In Chapter 5 we have
presented a more quantitative analysis, where we have considered possible effects on the
low-energy (SM) flavour parameters.
In the first of these setups (Chapter 4) we have constructed the flavour sector according

to an idea originally presented by Froggatt and Nielsen. The second model (Chapter 5) we
have based on a work of Grinstein, Redi and Villadoro (GRV). Both of these setups have
already been studied in the literature for various extensions of the SM but not in a setup as
the one chosen here. In contrast to the already existing models we have studied in Chapter 4
the implication of considering SM Higgs fields transforming as a flavour triplet which has
motivated us to allow for non-fundamental representations of the flavons. In the model
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6. Conclusions & Outlook

presented in Chapter 5, we have presented an explicit realisation in a PS-symmetric theory
which so far was only sketched in the literature. The variations needed to realise such a
setup significantly change the low-energy effects of the model. Here, especially the effects
due to the imposed Z2 symmetry are qualitatively different as they introduce couplings of
the right-handed SM fermions to the weak gauge bosons.
Generally we have kept our considerations on a rather qualitative level. This has allowed

us to consider large model classes as we have only fixed the general framework for the models.
Hence, we have studied general features and possible effects rather than explicitly studying a
single model in great detail.

A possible next step would be to study any of the models presented in Chapter 3 and
Chapter 4 in more detail, i.e. fix the free parameters for a single model and explicitly deduce
the low-energy effects. Alternatively one could perform scans over parts of the parameter
space similar to the scan performed in Chapter 5, which would also be reasonable only for a
single setup. Such scans may allow to constrain the various parameter spaces to general robust
predictions. For this purpose it is important to perform a global fit, as various observables
which are possibly unrelated in the SM may yield constraints on a single parameter. Such
an global analysis is also very interesting for the GRV-type model presented in Chapter 5,
where we have already generated the corrections to the low-energy parameters. However, as
the current experimental data does not allow for conclusive predictions yet, we did not aim
for such an analysis in this thesis.
Another issue which was raised throughout this thesis is the general possibility of generating

vevs from scalar potentials featuring non-fundamental representations. This is needed in
Chapter 4 where the vevs of multiple fields should feature different hierarchies as well as in
Chapter 5 where each vev should have a hierarchical pattern imprinted in its matrix structure.
For both setups it is important to study which general vev structures can be achieved in the
corresponding setup.
Moreover, we have presented models motivating for an enlarged SM Higgs sector in this

thesis. In order to explicitly deduce low-energy effects in any of these models it is crucial
to understand such a sector in more detail. Again, the aspect of generating the electroweak
breaking vev in the presence of a flavour symmetry is essential for the construction of flavour
models, especially in Chapter 4.

Throughout this thesis we have shown that especially for the flavour sector GUT models
are not able to make robust and conclusive statements when considering non-minimal models,
i.e. dropping the assumption of a single scale unification and allowing for scalar fields
transforming in non-fundamental representations. We have been able to generate a rich
variety of intermediate scales and flavour aspects already for setups based on few simple
assumptions. Thus, it will be vary challenging to exclude substantial classes of models. Still,
one should keep in mind that these simple assumptions already by construction satisfy the
severe bounds coming from SM phenomenology. These are largely dominated by quark flavour
physics and electroweak precision observables. Thus, measurements form different sectors
of the SM may shed some light on possible routes beyond the SM. As the measurement of
neutrino masses itself is an effect not predicted by the SM, it will be essential to gain a
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better understanding of this sector. Also lepton flavour violation might be very important
as it is extremely suppressed in the SM but predicted by multiple models beyond the SM.
To conclude, GUTs may help to answer the question of the origin of flavour but in order
to achieve this one needs to find significant deviations form the SM predictions by future
experiments.
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Appendix A

Unification Model

A.1. Model Naming Scheme

The global naming convention is laid out at the end of Section 3.1. For all configurations of
type g we use a numerical naming scheme. The numbers follow an internal numbering given
by the structure of our Mathematica file. This file is available from the author upon request.

Table A.1 displays the connection between the multiplicities of the different fields present
below the Planck scale and the names of the models discussed in more detail in this thesis.

name #h #F #Φ(′) #Σ #E #T (′)

SUSY models: Em 0 0 1 1 0 0
Fm 0 0 1 0 0 1
Es/Fs 1 1 1 1 1 1
Ee/Fe 3 3 3 3 1 1
F189 1 3 1 1 1 1
Bm/Cm 0 0 1 1 0 1
Bs/Cs 1 1 1 1 1 1
Be/Ce 3 3 1 1 1 1
B199 3 3 1 3 0 1
C211 3 3 3 3 0 1

Non-SUSY models: E289 3 3 1 1 0 0
F213 1 3 3 3 1 1
B53 1 3 1 1 3 1
C45 1 1 3 3 1 1

Table A.1.: Particle content and multiplicities for the models discussed in this thesis.
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A. Unification Model

A.2. Mass Matrices

In Chapter 3, we have constructed the maximally allowed renormalisable superpotential
that follows from the field content given in Table 3.1. The superpotential is given by (3.3).
From this superpotential, we have calculated the minimisation conditions to be able to deduce
the full mass matrix of the setup. This we have used to assign the fields present in the
spectrum to the sub-unification scales relevant for gauge coupling unification. The results are
listed in Table 3.2. In this Appendix, we present the mass matrices for each of the unbroken
(with respect to the SM) field components and give the explicit mass eigenvalues. These
we calculate by inserting the minimisation conditions (3.7) into the Lagrangian (3.4) and
setting all fields to their ground states. Hence, the masses generally depend on the vevs of
the symmetry breaking fields, which set the scales of the model.

Mass of the octet

The mass of the colour octet contained in Σ is determined by the minimisation conditions.
It is given by

M (Σ8) =
lΣΦ v

2
Φ

vΣ
+ 4 lΣ vΣ . (A.1)

In class F, the mass of the octet is solely given by its bilinear mass term mΣ.

Mass of E

As already mentioned in Section 3.4.1, the superfield E does not receive any mass contri-
bution from the symmetry breaking. Thus, the mass of its components is solely determined
by the bilinear superpotential term:

M (E) = mE . (A.2)

Mass of the bitriplet with |Y| = 1/6

The superfields Φ and Φ contain a bitriplet with hypercharge Y = ±1/6. Similar triplets
are contained in the superfield E but do not mix, as there is no coupling between the two.
The mass of the bitriplets coming from Φ and Φ can be determined to

M


3/3,2

±1/6


= 1

3
(3 lTΦ vT + 4 lΣΦ vΣ) . (A.3)

In class E (F), the first (second) term is absent.

Mass of the triplet with |Y| = 2/3

A set of triplets with hypercharge Y = ±2/3 is contained in the superfields Φ and Φ as
well as in Σ. These triplets mix as they have identical SM representations. The resulting
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A.2. Mass Matrices

(symmetric) mass matrix is given by

M2


3/3,2

±2/3


= (A.4)

1
2
g24 v

2
Φ + 4

9
l2ΣΦ v

2
X −1

2
g24 v

2
Φ

−i(3 g24 v2Σ+2 v2X)v2Φ
3
√
3 vΣ

i√
3
g24 vΦ vΣ

⋆ 1
2
g24 v

2
Φ + 4

9
l2ΣΦ v

2
X

i√
3
g24 vΦ vΣ

−i(3 g24 v2Σ+2 v2X)v2Φ
3
√
3 vΣ

⋆ ⋆ 1
3


v2Φ
v2Σ

l2ΣΦ v
2
X + 2 g24 v

2
Σ


−2

3
g24 v

2
Σ

⋆ ⋆ ⋆ 1
3


v2Φ
v2Σ

l2ΣΦ v
2
X + 2 g24 v

2
Σ




,

where we have defined

v2X =

3 v2Φ + 4 v2Σ


. (A.5)

In class F, the mixing between the components of Φ and Σ vanishes and thus the mass matrix
splits into two 2× 2 blocks. The mass eigenvalues are given by

1√
3


0 , g4 vX ,

vΦ
vΣ

vX ,
vΦ
, vΣ

vX


. (A.6)

The eigenvalue 0 corresponds to the six charged Goldstone bosons, which get “eaten up” by
the heavy SU(4) gauge bosons.

Mass of the triplet with |Y| = ±1/3

Another set of colour triplets is contained in the superfields Φ and Φ as well as F . These
have a hypercharge of Y = ±1/3. Their mass matrix can be calculated to

M2


3/3,1

±1/3


= (A.7)

2 l2FΦv
2
Φ + 4

9
(2 lΣΦ vΣ + 3 lTΦvT )

2 −
√
2

3
vΦ (3 lFΦmF + 4 lFΦ lΣΦ vΣ + lFΦ lTΦ vT )

⋆ m2
F + 2 l2

FΦ
v2Φ


.

In the case that mF is small with respect to the vevs, the approximate eigenvalues are given
by 

mF − 3 lFΦ lFΦ v
2
Φ

2 lΣΦ vΣ + 3 lTΦ vT
, 4

3
lΣΦ vΣ + 2 lTΦ vT


. (A.8)

Mass of T

Similar to the colour octet, the mass of the SU(2) triplet T is determined by the minimisa-
tion conditions. It can be calculated to be

M (T ) =
lTΦv

2
Φ

vT
. (A.9)

In class E (vanishing vT ), it is proportional to its bilinear mass parameter mT .
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A. Unification Model

Mass of the Higgs bidoublet

The mass matrix of the MSSM Higgs bidoublet h has already been discussed in Section 3.4.2.
For completeness, we present the mass matrix only.

M2

(1,2)±1/2


=


m2

h + l2hΦ v
2
Φ (lTΦ vT −mh) lhΦ vΦ

(lTΦ vT −mh) lhΦ vΦ l2hΦ v
2
Φ + l2TΦ v

2
T


. (A.10)

Mass of the Singlets with |Y| = 1

The fields Φ′ and Φ
′
as well as T ′ contain singlets under SU(3)× SU(2) with hypercharge

Y = ±1. Their 8× 8 mass matrix can be split in 2× 2 blocks. The remaining 4× 4 structure
is given by

M2

(1,1)±1


= (A.11)

M2
vΦ

0 i g22′ vΦ vT M1 −i
√
2 l2TΦ (v2Φ + 2v2T )

vΦ
vT

1

⋆ M2
vΦ

i
√
2 l2TΦ (v2Φ + 2v2T )

vΦ
vT

1 i g22′ vΦ vT M1

⋆ ⋆ M2
vT

0

⋆ ⋆ ⋆ M2
vT

 ,

where we have defined the 2× 2 matrices

M2
vΦ

=


1
2
g22′ v

2
Φ + 2l2TΦ (v2Φ + v2T ) −1

2
g22′ v

2
Φ

−1
2
g22′ v

2
Φ

1
2
g22′ v

2
Φ + 2l2TΦ (v2Φ + v2T )


, (A.12)

M2
vT

=


1
2
g22′ v

2
T + l2TΦ


2 v2Φ +

v4Φ
v2T


−g22′ v2T

−g22′ v2T 1
2
g22′ v

2
T + l2TΦ


2 v2Φ +

v4Φ
v2T


 , (A.13)

M1 =


1 −1
−1 1


. (A.14)

In class E, the off-diagonal 2× 2 blocks vanish. In addition, the mass matrix of the singlets
formally belonging to T (lower 4× 4 block) is diagonal and determined by their bilinear mass
term mT only. The general mass eigenvalues of (A.11) are given by

0 , 0 , g2′

v2Φ + 2v2T , lTΦ

(v2Φ + 2v2T )

vT
, lTΦ

(v2Φ + 2v2T )

vT
, lTΦ

(v2Φ + 2v2T )

vT


. (A.15)

The vanishing eigenvalues are two of the Goldstone bosons of SU(2)′, which get “eaten up”
by the heavy gauge bosons.
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A.3. Vacuum Expectation Values and Mass Scales

Masses of the Singlets

As already mentioned in the main part of this thesis, the mass matrix is of the SM singlets
is very complicated. It is at least 6× 6 dimensional, as we find a singlet component in T ′, Σ,
Φ′ and Φ

′
as well as the two explicitly included singlets S27 and S78. As it is of no relevance

for the running of the gauge couplings, we have not considered it in detail. Nevertheless, we
have deduced a qualitative dependence of the masses on the vevs numerically as given in
Table 3.2. In addition, we have verified that two neutral Goldstone bosons, one related to
SU(4) and one to SU(2)′, are contained in the singlet mass matrix.

A.3. Vacuum Expectation Values and Mass Scales

In the first part of Chapter 3 we calculate the superpotential and the masses of all superfields.
Therefore we use the vevs as natural scales. Since in this part, the fields related to these vevs
are more important than the symmetry breaking associated to the vevs, we label the vevs by
their corresponding field.
In the second part, we are primarily interested in the various scales relevant for the running

of the gauge couplings. Hence, we switch our notation to the mass scales. These are labelled
by a subscript that indicates the symmetry which is broken at this stage. Nevertheless, these
are of course related to the vevs discussed above. As the vevs are associated with different
breakings, these relations depend on the individual class. We show these relations explicitly
in Table A.2.

vev class A class B class C class D class E class F

vΣ MPS MPS MQL MPS MPS —
vT MPS MLR MPS MPS — MPS

vΦ MPS MU(1) MU(1) MU(1) MLR MLR
v2Φ

vΣ+vT
MPS MIND MIND MIND MIND MIND

Table A.2.: Relations between the vevs and the symmetry breaking mass scales for the
different classes. The subscript indicate the symmetry which is broken at this
scale (PS: Pati-Salam, LR: left-right, QL: quark-lepton or U(1): remaining U(1)
factors) or refers to the induced (see-saw) scale (MIND).

A.4. Beta-Function Coefficients

As stated in (3.14), the running of the gauge couplings can be described to leading
logarithmic order by

1

αi (µ2)
=

1

αi (µ1)
− bi

2 π
ln


µ2

µ1


. (A.16)
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A. Unification Model

field PS LR SM b̃RY b̃RB−L b̃R2 b̃R3 b̃R4

h (1,2,2) (1,2,2)0 (1,2) 1
2

1
2 0 1

2 0 0

(1,2)− 1
2

1
2

1
2 0

F (6,1,1) (3,1,1) 2
3

(3,1) 1
3

1
3

4
3 0 1

2 1

(3,1,1)− 2
3

(3,1)− 1
3

1
3

4
3 0 1

2

Φ′ (4,1,2) (3,1,2)− 1
3

(3,1) 1
3

1
3

2
3 0 1

2 1

(3,1)− 2
3

4
3 0 1

2

(1,1,2)1 (1,1)1 1 2 0 0

(1,1)0 0 0 0

Φ
′

(4,1,2) (3,1,2) 1
3

(3,1) 2
3

4
3

2
3 0 1

2 1

(3,1)− 1
3

1
3 0 1

2

(1,1,2)−1 (1,1)0 0 2 0 0

(1,1)−1 1 0 0

Φ (4,2,1) (3,2,1)− 1
3

(3,2)− 1
6

1
6

2
3

3
2 1 1

(1,2,1)1 (1,2) 1
2

1
2 2 1

2 0

Φ (4,2,1) (3,2,1) 1
3

(3,2) 1
6

1
6

2
3

3
2 1 1

(1,2,1)−1 (1,2)− 1
2

1
2 2 1

2 0

Σ (15,1,1) (8,1,1)0 (8,1)0 0 0 0 3 4

(3,1,1)− 4
3

(3,1)− 2
3

4
3

16
3 0 1

2

(3,1,1) 4
3

(3,1) 2
3

4
3

16
3 0 1

2

(1,1,1)0 (1,1)0 0 0 0 0

E (6,2,2) (3,2,2) 2
3

(3,2) 5
6

25
6

16
3

3
2 1 4

(3,2) 1
6

1
6

3
2 1

(3,2,2)− 2
3

(3,2)− 1
6

1
6

16
3

3
2 1

(3,2)− 5
6

25
6

3
2 1

T ′ (1,1,3) (1,1,3)0 (1,1)1 0 0 0 0 0

(1,1)0 0 0 0 0 0

(1,1)−1 0 0 0 0 0

T (1,3,1) (1,3,1)0 (1,3)0 0 0 2 0 0

Table A.3.: Complete particle content considered in Chapter 3. Additionally we list their represen-
tations under PS (SU(4), SU(2), SU(2)′), LR (SU(3)c, SU(2), SU(2)′)U(1)B−L

and the

SM (SU(3)c, SU(2)w)U(1)Y as well as their contributions b̃Ri to the beta functions for

all intermediate gauge couplings.
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A.4. Beta-Function Coefficients

The coefficient bi can be calculated from the representation of the fields contributing at
the given mass scale [117]. Each field contributes with b̃Ri to the i th gauge coupling. For a
given set of gauge groups SU(N) with N ≥ 2, the contribution of a field with representation
R = (R1, . . . ,Rn) to the running coefficient is given by

b̃Ri = C(Ri)

k ̸=i

d(Rk) . (A.17)

where d(Ri) is the dimension and C(Ri) the Dynkin index of the representation Ri. This
index can be calculated using the representing matrices T a

R

trT a
RT

b
R = C(R) δab , (A.18)

with the convention C(N) = 1
2
for fundamental representationsN. For a U(1) the contribution

is up to a consistent rescaling:

b̃RU(1) = Q2
U(1)


k

d(Ik) . (A.19)

Table A.3 displays the contributions b̃Ri of each field as well as its complete decomposition
with respect to the subgroups of the PS symmetry. So far the considerations do not depend
on whether we are in a supersymmetric or non-supersymmetric framework. However, the full
contribution bi of a field does, as a superfield has both, fermionic and scalar components. For
the non-supersymmetric case, we have to divide the contributions into scalar and fermionic
parts:

bSMi =
2

3


Rferm.

b̃Ri +
1

3


Rscalar

b̃Ri − 11

3
C2(Gi) , (A.20)

where the last part originates from the gauge bosons. Here, C2(Gi) is the quadratic Casimir
operator which for the adjoint representation results in C2(Gi) = dim(Gi).
In the supersymmetric case this formula simplifies, as there exist a superpartner for each

scalar/fermionic field. Hence, we do not have to split the sum in such a way and (A.20)
simplifies to

bSUSY
i =


R

b̃Ri − 3C2(Gi) . (A.21)
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Appendix B

Low-Energy Flavour Model

B.1. Tensor Products of SU(3)

In Chapter 4 we need to construct SU(3) invariant structures containing non-fundamental
representations. Here we discuss how these can be generated.

Each representation of SU(3) can be expressed as tensor containing upper and lower indices
which run form 1 . . . 3. The lower (upper) indices transform like in (anti-) fundamental
representation, respectively. The basic invariant structures of SU(3) are δji , ϵijk and ϵijk.
Thus, we can construct any invariant combination of representations by combining the indices
of the representation with the basic invariant structures. As long as we compute solely
invariants of triplets this is almost trivial. In this case we can split up each of these products
in combinations of two or three representations, as each field has a single index and all have
to be contracted by the basic structures listed above. Thus, only three combinations are
possible; δji ϕ

iϕ′
j, ϵijk ϕ

iϕ′jϕ′′k and ϵijk ϕiϕ
′
jϕ

′′
k. However, we have to consider all possible

permutations, which in our case may be done by hand.

If we consider larger representations, finding all possible contractions is no longer trivial,
as these generally do not decompose into trivial structures. It is still possible to generate
invariant structures by simply combining upper and lower indices, yet these are usually not
linearly independent. Thus, we have to introduce a formalism which generates a set of linearly
independent invariants for general products of SU(3). Here, we only briefly introduce such a
formalism and exemplarily give one invariant structure. A more detailed discussion can be
found in [D], where we made use of this formalism to generate the invariants of our models
given there. The formalism is based on Young Tableaux and “bird tracks” and a detail
derivation can be found in [154].

Each operator in the Yukawa sector of the models considered in Chapter 4 consist of a
product of three triplets with various flavon fields. Thus, it is useful to first calculate the
decomposition of this product This can then later on be combined with the flavons to form an
SU(3) singlet. We calculate the product by generating the allowed Young-Tableaux, where
each box is assigned to one of the indices. From the resulting Young-Tableaux, we then
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B. Low-Energy Flavour Model

deduce which indices have to be (anti-) symmetrised. Following this procedure we find

3i ⊗ 3j ⊗ 3k = 10lmn ⊕ 8l
m ⊕ 8′l

m ⊕ 1 = (B.1a) 1

6


δilδ

j
mδ

k
n + δjl δ

k
mδ

i
n + δkl δ

i
mδ

j
n + δilδ

k
mδ

j
n + δjl δ

i
mδ

k
n + δkl δ

j
mδ

i
n


(B.1b)

+
1

2


δim ϵ

jkl + δjm ϵ
ikl


(B.1c)

+
1

2


δim ϵ

kjl + δkm ϵ
ijl


(B.1d)

+ ϵijk

3i3j3k . (B.1e)

Using this tensor product reduction, we may now calculate the invariant structures by
calculating the reduction for the product of the additional flavons. In this reduction we
then need to consider the singlet, octet and decuplet parts only. Exemplarily, we discuss
the product of a decuplet with an anti-decuplet, which is relevant to the leading correction
(4.17). Again we first construct the allowed Young-Tableaux and then (anti-) symmetrise the
corresponding indices. Here, we find

10ijk ⊗ 10
lmn

= 8b
a ⊕ 1 ⊕ . . . (B.2a)
δil δ

j
m δ

k
a δ

b
n (B.2b)

+ δil δ
j
m δ

k
n + . . .


10ijk ⊗ 10

lmn
. (B.2c)

Using (B.1) and (B.2) we can easily construct the invariant combinations of the product
3× 3× 3× 10× 10. Here, we find three independent structures. This framework can be
extended to an arbitrary product of representations. As the explicit notation is tedious and
lengthy, we will not present the details here.

B.2. From U(1) to ZN

In order to set up a phenomenologically viable model of flavour, we introduce a global U(1)
symmetry in Section 4.2. However, a broken global symmetry results in massless Goldstone
bosons which are in general phenomenologically excluded. Thus, they have to be removed
from the low energy spectrum. A possible strategy is to gauge the U(1), in which case the
Goldstone mode gets “eaten up” by the gauge boson. Another possibility is to consider only
a ZN subgroup of the global U(1). This is possible as long as the U(1) is introduced to forbid
phenomenologically problematic operators. The procedure to achieve such a reduction is
discussed in the following.
The constraints on the Lagrangian arising from a ZN and U(1) symmetry are different.

Imposing only ZN , higher order operators (more fields) are reintroduced into the theory again.
This is due to the fact that a ZN symmetry is cyclic in contrast to a U(1). However, in most
cases it is sufficient to implement a ZN , as the models are only considered to a particular
order. Higher order terms are generally suppressed and thus phenomenologically not relevant.
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B.2. From U(1) to Z(N)

Finding an appropriate N

There is no universal way of reducing a given U(1) symmetry to an appropriate ZN

subgroup, especially as the latter depends on the order to which we require the Lagrangian to
be identical. Thus, we present the generic way we use to reduce possible U(1) symmetries in
Chapter 4. For a given N , it is easy to deduce the corresponding ZN charges and afterwards
test whether the resulting theory is identical up to a certain order. Given a set of U(1)
charges QU(1), we first need to normalise these to integer values. For each field ϕ , we can
then calculate the corresponding ZN charge by

QZN
= mod


QU(1) , N


. (B.3)

Thus, we start from an “educated guess” for N and test whether the allowed operators result
in an equivalent description of the considered observables (which in the model above are the
Yukawa matrices). A good “educated guess” is to chose N such, that it exceeds the sum of
the maximal U(1) charge of all forbidden operators by one;

N ≥ max
O∈{forbidden}

QU(1)

+ 1 . (B.4)

However, one may also reconsider the original U(1) charges assigned to the fields, as ZN

generally allows for more field combinations in the Lagrangian. As there is no unique way of
assigning the charges in the first place, we will not consider this ansatz any further.

Reducing ZN to Zn × Zm

Having identified a suitable N and assigned the appropriate charges we may split the
symmetry into its Zm × Zn factors. This is possible for each N which can be written as
N = n×m with n and m coprime, i.e. having no common prime factor. The charges can be
calculated following

0 → (0, 0) , 1 →
n

2


,
m
2


, (B.5)

q →

mod


q
n
2


, n

, mod


q
m
2


,m


, N − 1 →
n

2


,
m
2


, (B.6)

where ⌊x⌋ (⌈x⌉) denote the floor (ceiling) function. We note that the charge assignment is
not unique. Using this algorithm, we may reduce the order of the ZN symmetry to a “lowest”
possible value. On the other hand, this increases the number of symmetry factors. As both
representations are equivalent, it depends on the personal choice which representation is used.

135





Appendix C

Low-Energy Flavour Symmetry

Breaking

C.1. Gauge Anomalies

A gauge anomaly is a pure quantum phenomenon. It arises if the leading order theory is
invariant under gauge transformations while loop corrections are not. Thus, the symmetry
is broken by higher order corrections, which are always present in a quantum theory. The
SM itself is free of gauge anomalies. However, if we consider extensions of the SM or gauge
additional flavour symmetry groups we have to be aware of those.
Formally, an anomaly can be calculated by evaluating the one loop Feynman diagram of

three gauge bosons with chiral fermions1 running in the loop. As it depends only on the
representations R of the fermions, it can be defined for each gauge factor by

tr

T a
R, T

b
R


T c
R


= A(R) dabc , (C.1)

where A(R) is the contribution to the gauge anomaly of representation R (of a single gauge
factor). The anomaly contribution of the fundamental representation Rf is defined to be
A(Rf ) = 1. For the theory to be anomaly free we have to demand

Ri

A(Ri) ≡ 0 , (C.2)

for each gauge group factor. From (C.1) one can conclude that gauge anomalies only arise
for SU(N) with N ≥ 3 and SO(6) (which indeed is equivalent to SU(4)).

Calculating Anomalies

Using the definition of the gauge anomalies as well as basic aspects of group theory one
can easily prove the following basic properties of anomalies for SU(N) (c.f. [108]),

A(R) = −A(R) , (C.3a)

A(R1 ⊕R2) = A(R1) + A(R2) , (C.3b)

A(R1 ⊗R2) = dim(R1)A(R2) + dim(R2)A(R1) . (C.3c)

1We note that in supersymmetric theories the fermionic partners of the scalar fields also contribute to the
gauge anomaly.
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These properties and the fact that each representation of SU(N) can be constructed from
products of the fundamental representations enable us to iteratively calculate the anomaly
of an arbitrary representation. Alternatively, one can calculate the anomaly contribution
explicitly by using the defining equation (C.1). We note that the first line in (C.3) implies
that each real representation does not contribute to the anomaly. Hence, one could avoid
anomalies by only considering vector representations such as D ⊕D.

Mixed Anomalies

For multiple group factors, the defining equation (C.1) can be generalised. In the generalised
setup, each of the TD

a may belong to an arbitrary group factor. Thus we can conclude, that a
nontrivial anomaly can only occur for 0, 2, 3 non-abelian generators. The number of abelian
generators is arbitrary. Thus, mixed anomalies occur only between abelian (usually U(1)) and
one non-abelian groups. Mixed anomalies between two non-abelian groups are not possible.
Hence, there is no mixed anomaly in PS as long as we do not consider a U(1)F flavour group.

Anomalies of SU(3) and SU(4)

In this thesis we only need the anomalies of non-trivial representations of SU(3) and SU(4).
Hence, we have listed the anomalies of the smallest representations of those in Table C.1.

SU(3) SU(4)

R 3 6 8 10 15 15′ R 4 6 10 15

A(R) 1 7 0 27 14 77 A(R) 1 0 8 0

Table C.1.: Anomaly contribution of the lowest dimensional representations of SU(3) and
SU(4).
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C.2. Calculation of S and T

As already discussed in Chapter 5, it is a not-trivial task to invert the relation between
the flavour breaking vevs s & t′ and the Yukawa matrices Yu & Yd. In this Appendix, we
present a procedure for calculating s and t′ numerically for a given set of Yu and Yd.

Inverting the approximate relation2

To start with, we develop an algorithm to deduce an analytic function for calculating s
and t′ for a given set of Yu,d. Unfortunately, the so derived formula can only been evaluated
numerically. We start from the approximate relations (5.11) in the full three generation case,

Yu = (s+ t′)−1 + s−1 , (C.4a)

Yd = (s− t′)−1 + s−1 . (C.4b)

Defining

H ≡ s−1 t′ , (C.5)

we obtain

Yu s = (1+H)−1 + 1 , (C.6a)

Yd s = (1−H)−1 + 1 . (C.6b)

Multiplying the second line with the inverse of the first, we are able to get rid of the
s-dependence;

G ≡ Yd Y
−1
u =


(1−H)−1 + 1

 
(1+H)−1 + 1

−1
. (C.7)

We now assume G to be a triangular matrix. This can always be achieved by applying a
suitable similarity transformation. For this particular case, also H has to have a triangular
form, as this property is conserved by the operations performed in (C.7). This allows us
to solve this equation explicitly for the six elements parametrising H. Thus, we are able
to give a solution for H(G) in the special case of a triangular shape. However, Yd Y

−1
u is

usually not given in triangular form. Therefore, we need to generalise this result for generic
forms of G. For this purpose we expand the function H(G) as a series in G. Due to the
Cayley-Hamilton theorem this series stops after the quadratic term 3 (for a detailed discussion
see e.g. [155, 156]). Hence, we use the ansatz

H(G) = a1+ bG+ cG2 , (C.8)

to express H(G) in a basis independent way. Here, the coefficients a, b, and c depend only
on the traces of G, G2 and G3, and are thus basis independent. We can solve this ansatz for

2This part is based on a discussion with Th. Feldmann and largely worked out by him.
3In general one can conclude from the theorem that, for each n× n matrix M , Mn can be expressed by a
polynomial


i<n xi M

i, where the xi depend solely on the traces of powers of M up to order Mn
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a, b and c in the special case of G having a triangular form. As these coefficients are basis
independent, we are able to calculate H for any form of G = Yd Y

−1
u .

So far, we are able to perform all of the calculations analytically. However, evaluating also
the resulting equation for H analytically is not reasonable. Thus we content ourselves with
the numerical evaluation. Having determined the numerical matrix H, we can use (C.6a) to
calculate s;

s = Y −1
u


(1+H)−1 + 1


. (C.9)

This allows us to calculate t′ using (C.5);

t′ = sH . (C.10)

Thus, we are able to calculate numerical expressions for s and t′ for a given set of Yukawa
matrices Yu and Yd.

Accounting for effects of the third generation

The calculation presented above is based on the validity of the approximate formula (5.11)
and thus on the assumption s, t′ ≪ 1. This is not the case for the third generation, as yt ∼ 1.
Hence, we expect sizeable corrections for all parameters related to the third generation. On
the other hand, for a numerically given set s and t′ we are able to exactly calculate the
effective Yukawa couplings by diagonalising the explicit 9 × 9 mass matrix (5.15). Thus,
we can explicitly determine the mismatch between the input Yukawa matrices Y in

u,d and the

derived effective Yukawa matrices Y eff
u,d. Here, we find that the resulting parameters of the

third generation are generally to small. Thus, we may correct for this effect by altering Y in
u,d.

However, in Section 5.5 we chose a slightly different approach and scan the parameter space
using the so-called “adapted flavour parameters”.

C.3. Scan over Flavour Parameter

As described in Section 5.5 we scan over the “adapted flavour parameters” in order to
deduce the effects on the low-energy flavour observables in our setup. In this Appendix, we
give some details on the explicit realisation of the scan.
Generally, we have varied the “adapted flavour parameters” in the 3σ-range of their

corresponding SM flavour parameters (@MZ) as given in [157]. With respect to the parameters
featuring large variations, we have enlarged the range (making use of our experiences from
fitting to the SM values). The resulting ranges are given in Table C.2. From these we
calculate the Yukawa matrices in the following explicit definition;

Yu =


1 +

1

tan2 β

√
2

246 GeV
diag


ei δ1 , ei δ2 , ei δ3


× diag (mu,mc,mt) (C.11a)

Yd =


1 + tan2 β

√
2

246 GeV
UL × diag (md,ms,mb)× UR , (C.11b)
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where we define

UL = diag

ei δ4 , ei δ5 , ei δ6


× V


θL12 , θ

L
23 , θ

L
13 , δ


× diag


ei δ7 , ei δ8 , ei δ9


(C.12a)

UR = V

θR12 , θ

R
23 , θ

R
13 , δ13


× diag


ei δ10 , ei δ11 , ei δ12


(C.12b)

In this explicit realisation, we allow for more phases δi as there are physical phases in the
model. However, this is consistent, as we scan all these phases over their full range [0, 2π].

mu [MeV] mc [ GeV] mt [ GeV] md [MeV] ms [MeV] mb [ GeV]

0.5 - 2.9 0.53 - 0.71 162 - 288 1.2 - 4.8 30 - 78 2.78 - 4.44

θL12 [
◦] θL23 [

◦] θL13 [
◦] δ

12.89 - 13.19 1.54 - 2.56 0.101 - 0.280 −1.2 - 3.6

θR12 [
◦] θR23 [

◦] θR13 [
◦] δR1..13

full 0 - 90 0 - 90 0 - 90 0 - 2π
reduced 0 - 1.6 0 - 1.6 0 - 1.6 0 - 2π

tan β ϵ−1 λ

1 - 15 3 - 10 1.5 - 3

Table C.2.: Ranges for the “Adapted Flavour Parameters” over which the scan is performed.
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