
Statistical Analysis and Simulation of
Design Models Evolution

DISSERTATION

zur Erlangung des Grades

Doktor der Naturwissenschaften (rer. nat.)

vorgelegt von

eingereicht bei
der Naturwissenschaftlich-Technischen Fakultät

der Universität Siegen

Siegen, 2015

M.Sc. Hamed Shariat Yazdi

1. Gutachter: Prof. Dr. Udo Kelter (Universität Siegen).

2. Gutachter: Prof. Dr. Lefteris Angelis (Aristotle University of Thessaloniki).

Tag der mündlichen Prüfung: 21.08.2015.

iii

I would like to dedicate my dissertation to my parents

Houshang Shariat Yazdi and Akram Samsami

and to my brothers

Ali Shariat Yazdi and Reza Shariat Yazdi

without whom none of my success would be possible.

v

Acknowledgements

Many great and wonderful people have supported me to accomplish my PhD education.
First of all, this work owes its success to my family. I would like to gratefully acknowledge
my parents, Houshang and Akram, as well as my brothers, Ali and Reza. They always
have strongly supported me by any means they could.

I would like to thank my PhD supervisors Prof. Dr. Udo Kelter, chair of the Software
Engineering Group at the University of Siegen, and Prof. Dr. Lefteris Angelis, chair of
Statistics and Information Systems Group and Deputy Head of Department of Informat-
ics at the Aristotle University of Thessaloniki. I am very thankful for their continuous
support, constructive feedback and fruitful discussions.

I also would like to thank Prof. Dr. Madjid Fathi, chair of the Institute of Knowledge-
Based Systems and Knowledge Management at the University of Siegen, for his support
and encouragement during my education in Siegen. He has always offered his help and
support generously.

I have had a memorable time in the Software Engineering Group at the University of
Siegen. I am very thankful to all of my colleagues and friends who have always supported
me in different ways. My thanks to my friend Dr. Stefan Berlik for his support, help and
very interesting discussions. I would like to thank my other friends and colleagues: Pit
Pietsch, Timo Kehrer, Frank Schuh, Mike Schmidt, Dr. Sven Wenzel, Michaela Rindt,
Dennis Reuling, Christopher Pietsch, Viktor Dück and Roswitha Eifler. Timo Kehrer,
Pit Pietsch and Frank Schuh have always been ready to help.

Last but not least, I would like to thank my friends Mr. Mehdi Bohlouli and his
wife Mrs. Dr. Sanaz Mohammad Hassani for their encouragement and strong support,
specially during difficulties.

May, 2015
Siegen, Germany
Hamed Shariat Yazdi

vii

Abstract

Tools, algorithms and methods in the context of Model-Driven Engineering (MDE) have
to be assessed, evaluated and tested with regard to different aspects such as correctness,
quality, scalability and efficiency. Unfortunately, appropriate test models are scarcely
available and those which are accessible often lack desired properties. Therefore, one
needs to resort to artificially generated test models in practice.

Many services and features of model versioning systems are motivated from the col-
laborative development paradigm. Testing such services does not require single models,
but rather pairs of models, one being derived from the other one by applying a known
sequence of edit steps. The edit operations used to modify the models should be the
same as in usual development environments, e.g. adding, deleting and changing of model
elements in visual model editors. Existing model generators are motivated from the test-
ing of model transformation engines, they do not consider the true nature of evolution in
which models are evolved through iterative editing steps. They provide no or very little
control over the generation process and they can generate only single models rather than
model histories. Moreover, the generation of stochastic and other properties of interest
also are not supported in the existing approaches.

Furthermore, blindly generating models through random application of edit opera-
tions does not yield useful models, since the generated models are not (stochastically)
realistic and do not reflect true properties of evolution in real software systems. Unfor-
tunately, little is known about how models of real software systems evolve over time,
what are the properties and characteristics of evolution, how one can mathematically
formulate the evolution and simulate it.

To address the previous problems, we introduce a new general approach which facil-
itates generating (stochastically) realistic test models for model differencing tools and
tools for analyzing model histories. We propose a model generator which addresses
the above deficiencies and generates or modifies models by applying proper edit opera-
tions. Fine control mechanisms for the generation process are devised and the generator
supports stochastic and other properties of interest in the generated models. It also
can generate histories, i.e. related sequences, of models. Moreover, in our approach
we provide a methodological framework for capturing, mathematically representing and
simulating the evolution of real design models. The proposed framework is able to cap-
ture the evolution in terms of edit operations applied between revisions. Mathematically,
the representation of evolution is based on different statistical distributions as well as
different time series models. Forecasting, simulation and generation of stochastically

ix

realistic test models are discussed in detail. As an application, the framework is applied
to the evolution of design models obtained from sample a set of carefully selected Java
systems.

In order to study the the evolution of design models, we analyzed 9 major Java
projects which have at least 100 revisions. We reverse engineered the design models
from the Java source code and compared consecutive revisions of the design models.
The observed changes were expressed in terms of two sets of edit operations. The first
set consists of 75 low-level graph edit operations, e.g. add, delete, etc. of nodes and
edges of the abstract syntax graph of the models. The second set consists of 188 high-
level (user-level) edit operations which are more meaningful from a developer’s point of
view and are frequently found in visual model editors. A high-level operation typically
comprises several low-level operations and is considered as one user action.

In our approach, we mathematically formulated the pairwise evolution, i.e. changes
between each two subsequent revisions, using statistical models (distributions). In this
regard, we initially considered many distributions which could be promising in modeling
the frequencies of the observed low-level and high-level changes. Six distributions were
very successful in modeling the changes and able to model the evolution with very good
rates of success. To simulate the pairwise evolution, we studied random variate gener-
ation algorithms of our successful distributions in detail. For four of our distributions
which no tailored algorithms existed, we indirectly generated their random variates.

The chronological (historical) evolution of design models was modeled using three
kinds of time series models, namely ARMA, GARCH and mixed ARMA-GARCH. The
comparative performance of the time series models for handling the dynamics of evolution
as well as accuracies of their forecasts was deeply studied. Roughly speaking, our studies
show that mixed ARMA-GARCH models are superior to other models. Moreover, we
discuss the simulation aspects of our proposed time series models in detail.

The knowledge gained through statistical analysis of the evolution was then used
in our test model generator in order to generate more realistic test models for model
differencing, model versioning, history analysis tools, etc.

Kurzfassung

Im Kontext der modellgetriebenen Entwicklung müssen Werkzeuge, Algorithmen und
Methoden bewertet, evaluiert und getestet werden. Dabei spielen verschiedene Aspekte
wie Korrektheit, Qualität, Skalierbarkeit und Effizienz eine große Rolle. Problematisch
dabei ist, dass geeignete Testmodelle nur spärlich verfügbar sind. Verfügbare Modelle
weisen darüber hinaus die für Evaluationszwecke gewünschten Eigenschaften oft nicht
auf. Aus diesem Grund muss in der Praxis auf künstlich erzeugte Testmodelle zurückge-
griffen werden.

Viele der Funktionalitäten von Modellversionierungssystemen sind motiviert von den
Paradigmen der kollaborativen (Software) Entwicklung. Für das Testen derartiger Funk-
tionalitäten braucht man keine einzelnen Modelle, sondern Paare von Modellen, bei de-
nen das Zweite durch Anwendungen einer bekannten Sequenz von Editierschritten auf
das Erste erzeugt wird. Die genutzten Editieroperationen sollten dabei die gleichen sein,
die bei den typischen Entwicklungsumgebungen angewendet werden, beispielsweise das
Hinzufügen, Löschen oder Verändern von Modellelementen in visuellen Editoren. Der-
zeit existierende Modellgeneratoren sind motiviert durch das Testen von Modelltrans-
formationsumgebungen. Dabei berücksichtigen sie nicht die wahre Natur der (Software)
Evolution, bei der die Modelle iterativ durch die kontrollierte Anwendung einzelner Edi-
tierschritte verändert werden. Dabei bieten sie nur wenig Kontrolle über den Prozess
der Generierung und sie können nur einzelne Modelle, aber keine Modellhistorien, erzeu-
gen. Darüber hinaus werden gewünschte Eigenschaften, beispielsweise eine stochastisch
kontrollierte Erzeugung, von den derzeit existierenden Ansätzen nicht unterstützt.

Aufgrund der (blinden) zufallsgesteuerten Anwendungen von Editieroperationen wer-
den keine brauchbaren, (stochastisch) realistischen Modelle generiert. Dadurch repräsen-
tieren sie keine Eigenschaften von Evolutionen in echten Systemen. Leider gibt es wenig
wissenschaftliche Erkenntnis darüber, wie Modelle in realen Systemen evolvieren, was
die Eigenschaften und Charakteristika einer solchen Evolution sind und wie man diese
mathematisch formulieren und simulieren kann.

Um die zuvor genannten Probleme zu adressieren, stellen wir einen allgemeinen An-
satz zur (stochastischen) Generierung realer Testmodelle zur Verwendung in Differenz-
werkzeugen und Historienanalysen vor. Unser Generator generiert oder modifiziert Mo-
delle durch geeignete Anwendung von Editieroperationen. Sowohl feine Kontrollmecha-
nismen für den Generierungsprozess als auch die Unterstützung von stochastischen und
anderen interessanten Eigenschaften in den generierten Modellen zeichnen den Generator

xi

aus. Zusätzlich kann dieser Historien, d.h. abhängige/zusammenhängende Änderungs-
sequenzen, von Modellen generieren. Unser Ansatz bietet eine methodische Umgebung
für das Aufzeichnen, die mathematische Repräsentation als auch das Simulieren von
Evolutionen realer Modelle. Die vorgestellte Umgebung kann die Evolution in Form von
Editieroperationen, angewandt zwischen Revisionen, erfassen. Die mathematische Re-
präsentation der Evolution basiert sowohl auf verschiedenen stochastischen Verteilungen
als auch unterschiedlichen Modellen von Zeitreihen. Das Vorhersagen, Simulieren und
Generieren von stochastisch realistischen Testmodellen wird im Detail diskutiert. Als
praktische Anwendung setzen wir unsere Umgebung im Rahmen einer Modellevolution
von sorgfältig ausgewählten Java-Systemen ein.

Im Rahmen dieser Arbeit wurde die Evolution von Design Modellen auf Basis von
neun Open-Source Java Projekten analysiert. Für jedes Projekt lagen mindestens 100
Revisionen vor, aus deren Quelltexten Design Modelle nachkonstruiert wurden. Die dabei
gefunden Änderungen konnten anhand zwei verschiedener Mengen von Editieroperatio-
nen beschrieben werden. Die erste Menge besteht aus 75 einfachen Graph-Operationen.
Beispiele dafür sind das Hinzufügen, Löschen, etc. einzelner Knoten und Kanten im
abstrakten Syntax-Graphen der Modelle. Die zweite Menge enthält 188 komplexe Edi-
tieroperationen. Komplexe Editieroperationen haben für Entwickler eine höhere Aussa-
gekraft, da sie auf dem gewohnten Abstraktionsniveau des Entwicklers angesiedelt und
oftmals in visuellen Modelleditoren zu finden sind. Typischerweise besteht eine komplexe
Editieroperation dabei aus mehreren einfachen Operationen, wobei die Ausführung der
komplexen Operation immer als eine einzelne Aktion angesehen wird. Um die schrittwei-
se Evolution, also die Veränderung aufeinanderfolgender Revisionen, zu analysieren be-
trachteten wir verschiedene statistische Modelle (Distributionen). Von allen betrachteten
Distributionen erwiesen sich sechs als sehr erfolgreich dabei die beobachteten Verände-
rungen und die Evolution der Modelle auf Basis einfacher und komplexer Editieropera-
tionen zu beschreiben. Um die Evolution weiter simulieren zu können, betrachteten wir
Algorithmen für die Erstellung von Zufallsvariaten der erfolgreichen Distributionen. Für
vier der Distributionen, für die keine derartigen Algorithmen verfügbar waren, wurden
die Zufallsvariate indirekt abgeleitet.

Die chronologische (historische) Evolution von Modellen wurde auf Basis von drei
Zeitreihen nachgebildet, konkret ARMA, GARCH und einer Mischung aus ARMA-
GARCH. Sowohl deren Leistungsfähigkeit, Evolutionsdynamik darstellen zu können, als
auch die Genauigkeit von Vorhersagen wurden im Detail analysiert und gegenüberge-
stellt. Grob gesagt zeigen unsere Ergebnisse, dass ARMA-GARCH Modelle besser als
die übrigen geeignet sind. Zusätzlich diskutieren wir ausführlich die Simulationsmöglich-
keiten aller vorgestellten Zeitreihen.

Die Ergebnisse unserer statistischen Analysen der Evolution haben wir dann in unse-
rem Testmodell Generator eingesetzt. So konnten wir realistische Testmodelle generieren,
die für Modelldifferenz-, Versionierungs- und Historienanalysewerkzeuge u.s.w. verwen-
det werden können.

Contents

Abstract ix

Kurzfassung xi

Contents xiii

List of Figures xvii

List of Tables xx

List of Algorithms xxi

I Introduction and Preliminaries 1

1 Introduction 3
1.1 Introduction . 3
1.2 Research Goals and Contributions . 5
1.3 Dissertation Structure . 8
1.4 Publications Associated to this Dissertation 10

2 Preliminaries and Background 13
2.1 A Glimpse into the Model-Driven Engineering World 13

2.1.1 Model-Driven Architecture . 15
2.1.2 Models and Meta-Models . 16
2.1.3 Abstraction Layers and Meta Object Facility 18
2.1.4 UML, XMI and OCL . 19
2.1.5 Model Transformations and QVT 21
2.1.6 Model Versioning . 23

2.2 Graph Representation of Models . 26
2.3 Model Differencing . 27

2.3.1 Model Differencing Concepts . 28
2.3.2 Model Differencing Approaches . 31
2.3.3 Generic Model Differencing Approaches 32

xiii

2.4 Difference Computation In This Dissertation 33
2.4.1 SiDiff Differences Computation Engine 34
2.4.2 SiLift Semantic Difference Lifting Engine 39

2.5 Summary . 43

II Generating Test Models 45

3 Controlled Generation of Models with Defined Properties 47
3.1 Introduction and Background . 48
3.2 Existing Approaches for Generating Models 50

3.2.1 Direct Non-formal Approaches . 51
3.2.2 Direct Formal Approaches . 58
3.2.3 Indirect Approaches . 59
3.2.4 Summary of the Reviewed Literature 64

3.3 SiDiff Model Generator . 65
3.3.1 Requirements . 66
3.3.2 Overview . 68
3.3.3 Main Usage Scenarios . 70
3.3.4 Interpretation Modes . 70
3.3.5 Model Modification Process . 71
3.3.6 Edit Operations of Models . 73

3.4 Controlling the Generation Process . 74
3.4.1 Model Properties in the Generation Process 74
3.4.2 Selection Policies . 77
3.4.3 Decision Tables . 79

3.5 Evaluation . 81
3.6 Summary . 83

IIIAnalysis of Design Models Evolution 85

4 Capturing the Evolution of Design Models 87
4.1 Motivation . 87
4.2 Structural Differencing of Models . 88

4.2.1 Representation and Editing of Models 88
4.2.2 Differencing of Models . 88
4.2.3 Difference Calculation Using the SiDiff/SiLift Framework 89

4.3 Application to Evolving Java-based Systems 90
4.3.1 Example . 91
4.3.2 Representation of Java Projects as Models 91
4.3.3 Low-level Changes . 93
4.3.4 High-Level Changes . 94

4.4 Selection of Sample Projects and the Data Sets 99

4.5 Summary . 100

5 Statistical Analysis and Simulation of Design Models Changes 103
5.1 Statistical Models for Describing Changes 104

5.1.1 Mathematical Requirements . 105
5.1.2 Discrete Pareto Distribution and Power Law 106
5.1.3 Beta Binomial Distribution . 108
5.1.4 Yule, Waring and Beta-Negative Binomial Distributions 108
5.1.5 Generalized Poisson Distributions 111

5.2 Analysis of Changes and Results . 112
5.2.1 Analysis of Low-Level Changes . 113

5.2.1.1 Discrete Pareto Distribution 113
5.2.1.2 Beta Binomial Distribution 114
5.2.1.3 Yule Distribution . 115
5.2.1.4 Waring Distribution . 115
5.2.1.5 Beta-Negative Binomial Distribution 117
5.2.1.6 Generalized Poisson Distribution 118

5.2.2 Analysis of High-Level Changes . 119
5.2.3 Conclusion of Analyses . 121
5.2.4 Threats to the Validity of Analyses 122

5.3 Generating Random Variates of the Proposed Distributions 124
5.3.1 Introduction to Random Variate Generation 124
5.3.2 Random Variates of the Discrete Pareto Distribution 127
5.3.3 Random Variates of the Yule, Waring and Beta-Negative Binomial

Distributions . 127
5.3.3.1 Random Variates of the Beta Distribution 129
5.3.3.2 Random Variates of the Negative Binomial Distribution . 130

5.3.4 Random Variates of the Beta Binomial Distribution 135
5.3.5 Random Variates of the Generalized Poisson Distribution 136
5.3.6 Summary of Random Variate Generations 137

5.4 Related Works . 139
5.5 Summary . 143

6 Time Series Analysis and Simulation of Design Models Evolution 145
6.1 Time Series . 146

6.1.1 Stationary Time Series . 147
6.1.2 General Linear Process and the Wold Decomposition Theorem . . 148
6.1.3 ARMA, GARCH and ARMA-GARCH Models 150

6.1.3.1 ARMA and ARIMA Models 151
6.1.3.2 ARCH and GARCH Models 152
6.1.3.3 ARMA-GARCH Models 154

6.1.4 Methodology for Time Series Modeling 155
6.1.4.1 Methodology of ARMA and ARIMA Models 155
6.1.4.2 Methodology of GARCH Models 157

6.1.4.3 Methodology of ARMA-GARCH Models 158
6.1.5 Accuracy of Forecasts . 159

6.2 Modeling the Evolution . 160
6.2.1 Data Description and Transformation 160
6.2.2 Time Series Models of Evolution 164
6.2.3 Estimation and Diagnostics of the Time Series Models 169

6.3 Assessing the Time Series Models . 173
6.3.1 Comparing ARMA and ARMA-GARCH Models 174
6.3.2 Forecasting Performance of the Time Series Models 175

6.3.2.1 Accuracies of Forecasts 175
6.3.2.2 Comparing Accuracies of Forecasts 176

6.4 Simulation of Model Evolution . 178
6.4.1 General Considerations for Simulation 180
6.4.2 Simulating Sequences of the Proposed Time Series Model 181

6.4.2.1 Random Variates of the Normal Distribution 181
6.4.2.2 Initial Conditions in the Simulation of the Time Series

Models . 181
6.4.3 Generating More Realistic Model Histories 183

6.5 Threats to the Validity of Analyses . 187
6.5.1 Accuracy in the Measurement of Changes 187
6.5.2 Best Model Selection Strategy . 188
6.5.3 Forecasting Performance of the Time Series Models 188
6.5.4 External Validity . 190
6.5.5 Validity of the Simulation . 191

6.6 Related Works . 192
6.7 Summary and Conclusion . 194

IVConclusions and Outlook 199

7 Conclusions and Outlook 201
7.1 Summary and Conclusion . 201
7.2 Outlook and Future Research Directions 204

References 207

List of Figures

2.1 The OMG four layer of abstraction in modeling (Adapted from [Ameller,
2009, Stahl et al., 2006]). 18

2.2 Taxonomy of UML diagrams (Adapted from [OMG, 2012b]). 20
2.3 Model transformation (Adapted from [Czarnecki and Helsen, 2006]). 22
2.4 Graph representation of models (Adapted from [Wenzel et al., 2007]). 27
2.5 Conceptual categorization of elements in two models (Adapted from [Kolovos

et al., 2006]). 30
2.6 Classification of model differencing approaches. 31
2.7 The metamodel of the difference algorithm used in SiDiff (Adapted from

[Kelter et al., 2005]). 35
2.8 Editing of model M1 into M2 (Adapted from [Kehrer et al., 2011]). 40
2.9 Excerpt of UML2 metamodel implemented in EMF (Adapted from [Kehrer

et al., 2011]). 41
2.10 Internal representation of restricting the association end WorksFor (Adapted

from [Kehrer et al., 2011]). 42
2.11 Recognition rule of restricting the association end (Adapted from [Kehrer

et al., 2011]). 43

3.1 Categorization of model generating approaches. 50
3.2 Example of contradicting constraints in a metamodel (Adapted from [Cabot

et al., 2008]). 68
3.3 The SiDiff Model Generator - Overview. 69
3.4 SMG - Model modification process. 72
3.5 SMG metamodel of the edit operations - Simplified core. 73
3.6 Selection probabilities of individuals - RWSP vs LRSP with α = 0.5 and

α = 1.5 . 78
3.7 Selection probabilities of the individuals - RWSP vs NLRSP with α = 0.2

and α = 0.6 . 79

4.1 Coarse-grained structure of a model differencing pipeline (Adapted from
[Kehrer et al., 2013a]). 89

4.2 Excerpt from a sample Java program - Original version rn and its revision
rn+1. 91

xvii

4.3 Excerpt of our metamodel for class diagrams of Java source code. 92
4.4 ASG representations of our sample revisions rn and rn+1. 94
4.5 Creation of a class in different contexts. 96
4.6 Move operation shifting a field from one class to another. 97
4.7 Set operation adding a “neighbour” to an existing object. 97
4.8 Add/remove operations modifying non-containment references. 98
4.9 Change operation modifying a non-containment reference. 98
4.10 High-level changes for our running example. 99

5.1 Histogram of the frequencies of addition of methods for HSQLDB. 104
5.2 PDF-plot of the discrete Pareto distribution for different ρ. 107
5.3 CDF-plot of the discrete Pareto distribution for different ρ. 107
5.4 PDF-plot of the beta binomial distribution BetaBino (α, 0.5, 20) for different

α. 109
5.5 PDF-plot of the beta binomial distribution BetaBino (0.5, β, 20) for different β.109
5.6 PDF-plot of the Waring distribution Waring (b, 25) for different b. 110
5.7 PDF-plot of the Waring distribution Waring (5, n) for different n. 110
5.8 PDF-plot of the beta negative binomial distribution BNB (α, 3, 20) for differ-

ent α. 111
5.9 PDF-plot of the beta negative binomial distribution BNB (5, β, 20) for differ-

ent β. 111
5.10 PDF-plot of the generalized Poisson distribution GenPois (µ, 0.5) for different

µ. 112
5.11 PDF-plot of the generalized Poisson distribution GenPois (3.0, λ) for different

λ. 112
5.12 Probability plot of JFreeChart: addition of methods, the discrete Pareto

distribution. 114
5.13 The CDF plot of the HSQLDB project: reference change of methods, the

Yule distribution (Brown: observed probabilities, Red: fitted model). 115
5.14 Plot of the fitted Waring distribution to the histogram of addition of methods

in Maven. 116
5.15 P-Value plot of the whole DataVision project when the Waring distribution

is used. 117
5.16 Plot of the fitted beta-negative binomial distribution to the histogram of

addition of parameters in CheckStyle. 117
5.17 P-Value plot of the whole Struts project when the BNB distribution is used. . 118
5.18 P-Value plot of the whole JFreeChart project when the generalized Poisson

distribution is used. 119

6.1 ASM project - Total number of changes in the hold-out set. For better
visibility, the y-axis is limited to 130 and bigger values are not shown. 161

6.2 Project Struts - Empirical variance of low-level changes as a function of sam-
ple size (revisions). 162

6.3 ASM project - Fully transformed series using BCDM transformation. 163

6.4 Project Jameleon - ACF plot of the squared high-level changes. 167
6.5 Project HSQLDB - Kurtosis box-plot of the standardized residuals of candi-

date models (the y-axis is limited to 8). 171
6.6 Project ASM - Three simulated changes using initial conditions from the

beginning of measured low-level changes. 185
6.7 Project ASM - Three simulated changes using initial conditions from the end

of measured low-level changes. 186
6.8 Residuals of the best model selected using BIC - High-level changes of ASM. 189

List of Tables

2.1 Orthogonal classifications of model transformations with examples (Adapted
from [Mens and Van Gorp, 2006]). 23

2.2 Criteria for comparing classes (Adapted from [Treude et al., 2007]). 36

3.1 Fulfilling criteria of C1 to C6 - Summary of the related literature. 64
3.2 Runtime evaluation of SMG - Creation and modification times. 82
3.3 Qualitative evaluation of SMG - Observed frequencies of the created elements

vs the specified ones. 83

4.1 Low-level changes in our running example. 95
4.2 High-level edit operations - summary. 95
4.3 Selected Projects. 101

5.1 Success rates of each distribution for modeling high-level changes of each
sample project. 120

5.2 Success rates for each category of high-level changes. 121

6.1 Properties of time series models. 150
6.2 Box-Cox transformation - Optimum values of λ and the maximum of the

corresponding logarithm-likelihood function. 163
6.3 Jarque-Bera test of normality for the transformed data. 164
6.4 Project summary - Basic statistics (based on the hold-out set). 165
6.5 Engle’s ARCH test of heteroscedasticity (� : Significant at 0.05). 168
6.6 Percent of candidate models in candidate sets of M1 and M2 with normal

residuals (NC: Not Considered). 170
6.7 All projects - Selected time series model. 173
6.8 Normalized mean squared error of forecasts for all projects. 176
6.9 Comparison of the forecasting performance of ARMA and mixed ARMA-

GARCH models (� : Significant at 0.05). 179
6.10 Low-Level changes - p-values of the Ljung-Box test of correlation on residuals

of the selected models. 196
6.11 High-Level changes - p-values of the Ljung-Box test of correlation on residuals

of the selected models. 197

xx

List of Algorithms

1 General acceptance-rejection method for generating a random variate of
the density function f (x). 127

2 Generating a random variate of the discrete Pareto distribution. 128
3 Generating a random variate of the beta-negative binomial distribution

BNB (α, β, n). 129
4 Generating a random variate of the Beta (α, β) distribution. 130
5 Generating a random variate of the negative binomial distribution NegBino (n, p).131
6 Generating a random variate of the Poisson distribution. 132
7 Generating a random variate of the gamma distribution Gamma (α, β)

when 0 < α < 1. 133
8 Generating a random variate of the gamma distribution Gamma (α, β)

when α ≥ 1. 134
9 Generating a random variate of the gamma distribution Gamma (α, β). . . 135
10 Generating a random variate of the geometric distribution Geom (p). . . . 135
11 Generating a random variate of the beta binomial distribution BetaBino (α, β, n).136
12 Generating a random variate of the binomial distribution Bino (p, n). . . . 137
13 Generating a random variate of the generalized Poisson distribution GenPois (µ, λ).138

14 The Polar method for generating two iid random variates of the normal
distribution N

(
0, σ2). 182

xxi

Part I

Introduction and Preliminaries

1

CHAPTER 1
Introduction

1.1 Introduction

The development of software systems has always experienced increase in abstraction
levels, from handling and modeling of problems to implementing solutions. Historically,
the development has shifted from low level machine code to structural programming
practices, to object-oriented programming, to domain specific languages, and finally
to model-driven approaches [Ameller, 2009]. Model-Driven Engineering (MDE) can be
considered the top most in the abstraction hierarchy [Stahl et al., 2006]. In MDE,
systems and phenomena of interest are handled and implemented as models. “A model
captures a view of a system. It is an abstraction of the system, with a certain purpose.
This purpose determines what is to be included in the model and what is irrelevant.
Thus the model completely describes those aspects of the system that are relevant to
the purpose of the model, at the appropriate level of detail” [OMG, 2012b].

As name suggests, models are the main artifacts in MDE and all tools, algorithms
and methods are built upon the concept of models. In addition to have a better way of
modeling real world systems, MDE promises to increase productivity through separation
of business logic from implementation [Selic, 2003, Stahl et al., 2006]. As models of
business logic evolve to accommodate changing requirements of the business, models
of implementation independently evolve to cope with technological changes. In such
a separation, business models can be transformed to implementation models and the
implementation models themselves, can be transformed to executable code. Generally,
the models which are independent of any technical or implementation-specific issues
are referred to as Platform-Independent Models (PIM). In contrast Platform-Specific
models (PSM) are bounded to implementation-related or technological issues. A model
transformation can transform a PIM to another PIM or PSM. Similarly, a PSM can be
transformed to another PSM or to code. Model transformations are intrinsic nature of
MDE which increase productivity [Sendall and Kozaczynski, 2003].

3

In addition to evolving models resulted from changes in technologies or business
logic, the shift of development from the code level to the model level results in versions
of models which evolve over time. The development is a repetitive and incremental
process in which software artifacts are developed over time. The situation becomes
more complex when software developers collaborate to implement MDE solutions based
on models. Traditional collaborative development environments are mostly based on
repositories and are code-centric. To support collaborative work, such repositories allow
developers to compute differences between various versions of code. If conflicts between
versions are detected, the conflicts can be resolved and the code can be merged. To
bring similar functionality to MDE, in addition to suitable model repositories, proper
model differencing and model versioning tools are needed [Mens et al., 2005]. In this
regard, much research effort have been put in the fields of model versioning and model
differencing [Kolovos et al., 2009, Stephan and Cordy, 2013, Brosch et al., 2012].

In MDE generally, and in the domain of model transformation, model differencing
and model versioning specifically, test models are of great importance. Test models
are used to assess different aspects of algorithms, tools and methods e.g., correctness,
scalability and efficiency. The requirements of test models usually depend on the nature
of processes or tools being tested and are not necessarily the same for all tools. For
instance model repositories or model search engines, might need large or huge models
for testing their efficiency, scalability and performance. As another example, other
tools such as model differencing, model versioning, model tracing and history analysis
tools need pairs or sequences of models in which changes between models are precisely
documented.

Although the use of test models in MDE seems trivial, in practice various problems
arise. The biggest obstacle is that test models are quite scarce and meager existing
ones often lack desired properties. To overcome these problems, artificial test models
have been employed [Wu et al., 2012]. The majority of existing approaches (see Section
3.2) are motivated from the domain of model transformation testing. Roughly speaking,
the typical approach in model transformation testing is to generate test models which
contain model elements suitable for testing a model transformation engine. Such ele-
ments are those whose existence or properties are useful for testing particular aspects of
a transformation.

In collaborative development paradigm, in contrast to model transformation, dif-
ferent versions of models are considered. Developers usually edit and modify models
in graphical model editors. Typical model editors represent models as abstract syntax
graphs in which, generally speaking, nodes represent model elements and edges represent
relationships between elements (see Section 2.2). In such a graph, nodes and edges are
typed and can contain attributes. The edit operations for such a representation are, in
their lowest level, graph edit operations [Kehrer et al., 2013d,a], e.g. adding, deleting or
modifying nodes and edges as well as their types or attributes. Although low-level edit
operations are correct, they are difficult to comprehend by human developers who are
used to working on higher abstraction levels. In addition to low-level graph edit opera-
tions, one can consider high-level edit operations which are more developer-friendly and

4

are usually found in graphical model editors [Kehrer et al., 2011]. A high-level operation
can comprise of few to many low-level operations which can be regarded as a whole.
For example, in UML class diagrams (see Section 2.1.4), if one deletes a class, all of its
attributes and methods will be simultaneously deleted. Such high-level operations are
also of special interest in development environments and for developers who are used to
working in graphical model editors.

To support collaborative development in MDE, differences of models should be com-
puted, possible conflicts should be resolved, and finally the conflicts should be merged
into a new consolidated model. Therefore, typical existing model generation approaches
which are motivated from the domain of model transformation are not quite useful for
testing of model differencing and model merging approaches, since the generation of
models is not based on edit operations (see Sections 3.1 and 3.2). To be useful in the di-
rection of model differencing and model merging, a generator should resemble the natural
process of editing of models in which a new version is obtained by modifying an existing
model using properly defined edit operations (either low-level or high-level). Similarly,
the same argument holds valid when we consider, model tracing, history analysis and
difference presentation tools.

Moreover, if such a suitable generator exists, simply generating models based on ran-
dom application of edit operations is of little value in many applications1. For instance,
to test model differencing and model merging approaches, kinds, frequencies and order
of the applied edit operations as well as where they are applied, are important factors. In
this regard, it is quite essential that the generation process is finely under control and the
generated test models resemble a realistic modification process that one observes in real
world. Unfortunately, little is known about how real software models change and evolve
over time and what are their characteristics or mathematical properties [Shariat Yazdi
et al., 2013, 2014a]. Therefore, generating realistic test models which resemble the real
world model evolution is a challenge [Shariat Yazdi et al., 2014b].

1.2 Research Goals and Contributions

With the sketch of situation presented earlier, we can concretely state the following main
problems:

• In the domain of model differencing and model versioning, test models are quite
scarce and the meager existing ones often lack desired properties.

1 As a concrete example, we can mention the QuDiMo porject, Qualitätsoptimierte Differenzen für
Modelle (Quality Optimized Differences for Models) [Pietsch and Shariat Yazdi, 2011], which was sup-
ported by the German Research Foundation (DFG). QuDiMo aimed at optimizing the existing model
differencing algorithms in daily collaborative environments. Optimization needed realistic sets of bench-
marks to be available. Such real standard benchmarks were proven to be impossible to obtain and
therefore had to be artificially generated. Artificial benchmarks must be realistic in the sense that they
must exhibit real (stochastic) properties one observes in models of real software systems. Considering
design models of software systems, such properties have not been studied, mathematically formulated or
regenerated.

5

• The existing model generation approaches are motivated from the domain of model
transformation, and are not suitable for model differencing, model versioning tools,
etc. They do not generate or modify models based on application of edit operations.

• To be useful, the generated test models should resemble realistic evolution (changes)
one observes in models of real software systems.

• Little is known about how real software models evolve over time, which charac-
teristics or mathematical properties they have and how one can mathematically
formulate and simulate them.

In short, we can say that there is much need for artificial models which are realistic in
the sense that they resemble true evolution of real software models.

To address the previous problems we propose a new general approach which generates
realistic test models for model differencing, model versioning, history analysis tools, etc.
In this regard, we propose a new model generator which generates models using edit
operations. The generation process is finely under control. Moreover, the generator
supports stochastic and other properties of interest in the generated models and can
generate pairs or sequences of models.

To capture, analyze, mathematically formulate and simulate the evolution of design
models, we propose a methodological framework. The evolution is captured in terms of
applied edit operation between revisions of models and it is mathematically formulated
using many statistical distributions as well as different time series models. Forecasting,
simulation and generation of stochastically realistic test models are discussed in detail.
To test the framework, we applied it to the evolution of design models obtained from
sample a set of carefully selected Java systems.

More concretely, the contributions of this dissertation are as follows:

1. We present a model generator which generates models by application of (specified)
edit operations. The models generated this way are appropriate for evaluating
model differencing, model versioning, model tracing, history analysis tools etc.
Contrary to existing approaches, the generator is finely configurable and the gen-
eration process is under control. This is achieved by providing different controlling
mechanisms which will be described in detail later in Chapter 3. Generation of
simple or complex structures is supported by providing appropriate low-level and
high-level edit operations. More importantly, in contrast to the existing gener-
ators, our generator supports stochastic properties of interest in the generated
models. This allows pairs or sequences of models which exhibit stochastic or other
properties of interest, be finely generated.

2. In order to study real evolution and generate realistic test models, we captured the
changes of typical real software systems at the level of their design models2. In this

2 Simplified class diagrams are also used in the analysis and definition phase of software projects. In
this work, we will always refer to the more detailed class diagrams as used in the design phase, which
are translated into source code in many MDE methods.

6

regard, we used complete (revisions) history of nine typical real Java systems and
we reverse engineered their design models by parsing their source code. The evolu-
tion (changes) was captured by counting occurrences of edit operations which were
applied between revisions of design models. The investigated edit operations were
not only low-level graph edit operations, but also high-level (developer-friendly)
ones, defined on design models. In this way, we modeled the evolution at two
abstraction levels. The first level is expressed in terms of 75 low-level graph edit
operations and the second level considers the evolution in terms of 188 high-level
(developer-friendly) edit operations. These two levels of abstraction are the basis
for our analysis of evolution in this dissertation. Our approach can be used and
adapted to study other types of models than design models.

3. To better understand the evolution of design models and to mathematically for-
mulate it, we studied the evolution (changes) separately in terms of the applied
low-level and high-level edit operations between revisions. For each edit operation,
we considered sets of changes between subsequent revisions (pairwise evolution)
and we employed many (sixty) statistical models, i.e. distributions, which seemed
to be promising in modeling them. We showed that six distributions were able to
model both the low-level and high-level changes with very good rates of success
(often more than 90%). To regenerate the evolution in artificial models, one needs
to know how random variates of these distributions are generated. We studied ran-
dom variate generation methods of these distributions in detail and we provided
the required theoretical background. For four of the distributions, there were no
direct method for generation of their random variates. In this regard, we indirectly
generated their random variates.

4. The historical evolutions of design models are also deeply studied. The historical
evolution chronologically considers the sequence of changes between revisions. To
analyze the historical evolution, we again considered the changes both in terms
of low-level and high-level edit operations. We employed three categories of time
series models. More precisely, we employed ARMA, GARCH and mixed ARMA-
GARCH models in this regard. We studied and compared the performance of
time series models, both to assess their suitability for capturing the stochastic
properties of evolution, and to properly forecast future changes. We also studied
how the proposed time series models are simulated, i.e. how valid sequences of them
are reproduced, and how the initial conditions affect the generated sequences. The
simulated sequences were used to generate histories of test models which have
similar stochastic properties as real software systems.

Parts of the contributions of this dissertation which mentioned earlier was achieved as
the result of effective teamwork. First, our model generator [Shariat Yazdi and Pietsch,
2011] was collaboratively developed by Hamed Shariat Yazdi, Pit Pietsch, Michaela
Rindt, Tim Sollbach, Davy Franck Wanmeni, Thi Minh Hoa Nguyen, Petrissa Roth
and Andre Bertels. However, detailed configuration and fine control over the generation
process, support for stochastic properties and model histories, mathematical modeling

7

of the system etc. are the contribution of the author of this dissertation himself. Second,
capturing the evolution of design models in terms of low-level and high-level changes is
the result of collaborative work of Hamed Shariat Yazdi and Timo Kehrer. In this regard
the author used the SiLift semantic lifting engine [Kehrer, 2015]. SiLift was developed
under the MOCA project by Timo Keher, Kristopher Born et al., and was funded by
the German Research Foundation (DFG) [Kelter et al., 2015].

The author (Hamed Shariat Yazdi) will use the “we” pronoun throughout this dis-
sertation, but all of contributions and materials presented in this work, except the pre-
viously mentioned collaborative works, originated from the work of the author solely by
himself.

1.3 Dissertation Structure

As we now know the contribution of this dissertation, the contents are organized as
follows.

In Chapter 2, we provide the preliminaries and background of Model-Driven Engi-
neering (MDE) and associated important concepts and materials. The beginning parts
of this chapter is mainly suitable for new comers into MDE and briefly provides neces-
sary information to understand and follow the presented research in this dissertation. In
Section 2.1, we review what MDE is and how it is used. We cover the concepts of models,
metamodels and abstraction levels in MDE. We see what we mean by model transforma-
tion, model differencing and model versioning. The readers who are familiar with MDE,
can skip basic materials there. In Section 2.2, we see that models can be presented as
typed graphs. Such a representation is suitable in computation of differences between
models which is the topic of Section 2.3. As we told, in this dissertation, differences
between revisions of design models are computed at low-level graph edit operations as
well as high-level developer-friendly edit operations. How such differences are computed
is discussed in detail in Section 2.4 by providing illustrative examples.

Our proposed model generator is presented in Chapter 3. In this regard in Section 3.1,
based on the reviewed literature, we propose fundamental criteria that a generator must
meet. We reviewed the existing approaches in the field of model generation in Section
3.2, and we investigated whether the existing generators meet our criteria. We show that
existing generators do not have fine control mechanisms, they do not support stochastic
or other properties of interest in generated models and none are suitable for generation of
model histories. In Section 3.3, we present our model generator and its usage scenarios.
Moreover, we discuss how models are generated and how edit operations are performed
on models. Section 3.4 presents the controlling mechanisms of the generator. There, we
discuss how specified properties of interest, such as stochastic properties, are created in
the generated models. The chapter ends with an evaluation of the generator in Section
3.5.

Chapter 4 discusses how evolution of software design models should be captured. In
Section 4.1, we show that evolution of design models cannot be properly expressed in
terms of changes in values of static software metrics. Instead, we will see that evolution

8

is more precisely expressed in terms of applied edit operations between revisions. In
Section 4.2, we introduce a difference derivation pipeline which can properly capture the
evolution in terms of applied edit operations. There, we consider low-level graph edit
operations as well as high-level developer-friendly operations. Based on these two sets of
edit operations, we model the evolution at two abstraction levels. To capture the evolu-
tion of design models, we show how our approach is applied to Java systems in Section
4.3. There, we provide our metamodel of Java design models. Providing an explanatory
example in Java, we show how changes between design models are computed. Consid-
ering low-level edit operations on our metamodel, we show that the evolution of Java
design models can be expressed in terms of 75 low-level difference metrics. Employing
high-level edit operations, we express the evolution in terms of 188 high-level difference
metrics. The sets of computed low-level and high-level difference metrics are the data
sets of our analyses in later chapters, where we mathematically model the evolution.
How our sample sets of real Java systems are selected for the analyses, is discussed in
Section 4.4.

Chapter 5 is devoted to mathematically model and simulate the design model evolu-
tions of Java systems. In this chapter we study the evolution as the amount of changes be-
tween subsequent revisions of models (pairwise evolution), without considering chronol-
ogy of changes. In Section 5.1, we show that histograms of changes are typically skewed
with heavy tails. There, we introduce six statistical models (distributions) which were
the most successful ones from our long list of sixty candidates. In Section 5.2, we present
the results of our analyses on the sets of low-level and high-level difference metrics. We
show that the proposed distributions are quite successful in modeling different low-level
and high-level metrics with very good success rates. Therefore, they can be employed to
model the evolution. To simulate the evolution, one needs to properly generate random
variates of the proposed distributions. Section 5.3 is devoted to random variate genera-
tion of the distributions. There, we provide the required algorithms in detail. For four
of the proposed distributions, there is no tailored algorithm for generating their random
variates. Therefore, we indirectly generated their random variates. We employed statis-
tical properties of the distributions in order to generate their random variates. Finally,
the related works are presented in Section 5.4.

In Chapter 6, we study the chronological properties of the design model evolution.
As in the previous chapter, we consider the evolution separately based on low-level and
high-level difference metrics. To chronologically model the evolution, we employed time
series models which intrinsically consider time dependency properties of changes. Such
properties are quite important when histories of test models should be generated. The
histories of test models should resemble the time-dependent properties of real software
models. To this aim, we provide the mathematical foundation of our approach in Section
6.1. There, we consider ARMA, GARCH and mixed ARMA-GARCH models, and we
discuss how and why such models are suitable. We provide detailed methodology of those
models and we discuss their forecasts’ accuracies. In Section 6.2, we model the evolution
of design models using our proposed time series models. We show that chronological
evolution can be modeled by ARMA and mixed ARMA-GARCH models. In Section 6.3,

9

we compare the two successful categories of models, i.e. ARMA against mixed ARMA-
GARCH. In this regard, we study which one better handles the dynamic characteristics
of changes and which one better forecasts the future changes. To generate more realistic
model histories, we need to simulate sequences of proposed time series models. In Section
6.4, we study the simulation aspects of the proposed time series models and we show
how such sequences are used in our model generator to generate histories. The chapter
closes with a threat to the validity analysis and a review of the related works in Sections
6.5 and 6.6 respectively.

The dissertation ends with a conclusion and an outlook in Chapter 7.

1.4 Publications Associated to this Dissertation

There are currently eight publications associated to this work. Two of them are sub-
mitted to renowned journals (one is in the review process). Others are submitted to
either renowned conferences or noted workshops. The fifth publication in our list, i.e.
[Shariat Yazdi et al., 2013], received the Best Paper Award of Software Engineering
Conference of 2013 (SE2013) in Germany.

1. Hamed Shariat Yazdi, Lefteris Angelis, Timo Kehrer and Udo Kelter. A Time
Series Framework for Simulating the Evolution of Software Design Models Towards
Generating Realistic Test Models, [Submitted to a Journal], 2015.

2. Hamed Shariat Yazdi, Mahnaz Mirbolouki, Pit Pietsch, Timo Kehrer and Udo
Kelter. Analysis and Prediction of Design Model Evolution Using Time Series.
Workshops of the 26th International Conference on Advanced Information Systems
Engineering - (CAiSE 2014 Workshop), pages 1-15, Thessaloniki, Greece, June
2014 ([Shariat Yazdi et al., 2014a]).

3. Hamed Shariat Yazdi, Pit Pietsch, Timo Kehrer and Udo Kelter. Synthesizing
Realistic Test Models. Journal of Computer Science - Research and Development,
pages 1-23, Springer, 2014 ([Shariat Yazdi et al., 2014b]).

4. Timo Kehrer, Pit Pietsch, Hamed Shariat Yazdi and Udo Kelter. Detection of
High-Level Changes in Evolving Java Software. Softwaretechnik-Trends, volume
33, number 2, 2013 ([Kehrer et al., 2013c]).

5. Hamed Shariat Yazdi, Pit Pietsch, Timo Kehrer and Udo Kelter. Statistical Analy-
sis of Changes for Synthesizing Realistic Test Models. Best Paper Award of SE2013,
In Multi-conference Software Engineering 2013 (SE2013), Gesellschaft für Infor-
matik (GI), pages 225-238, Aachen, Germany, 2013 ([Shariat Yazdi et al., 2013]).

6. Pit Pietsch, Hamed Shariat Yazdi, Timo Kehrer and Udo Kelter. Assessing the
Quality of Model Differencing Engines. In Comparison and Versioning of Software
Models 2012 (CVSM2012), Essen, Germany, 2012 ([Pietsch et al., 2012b]).

10

7. Pit Pietsch, Hamed Shariat Yazdi and Udo Kelter. Controlled Generation of Mod-
els with Defined Properties. In Software Engineering Conference 2012 (SE2012),
pages 95-106, Berlin, Germany, 2012 ([Pietsch et al., 2012a]).

8. Pit Pietsch, Hamed Shariat Yazdi and Udo Kelter. Generating Realistic Test
Models for Model Processing Tools. In Proceedings of the 26th IEEE and ACM
International Conference on Automated Software Engineering (ASE2011), pages
620-623, Lawrence, KA, USA, 2011 ([Pietsch et al., 2011]).

11

CHAPTER 2
Preliminaries and Background

The purpose of this chapter is to provide the preliminaries and the required background
for this research. In this chapter we focus on relevant material from Model-Driven Engi-
neering (MDE). In this regard, we give an overview of MDE by providing the definitions
and describing the necessary concepts and techniques. The presented materials in this
chapter is not intended to be either exhaustive or comprehensive. MDE is a mature field
with enormous research materials, technologies and tools. There have been numerous
books and papers dedicated to each particular aspect of MDE which is out of scope
of this dissertation. In this chapter we just concentrate on fundamental requirements
which are necessary for this research. The beginning parts of this chapter is purposely
written to provide the basic concepts for newcomers to MDE.

The chapter is organized as follows. Section 2.1 provides a glimpse into MDE by
providing basic definitions and concepts. We review what a model means and which
standards and technologies are available in MDE. We also review model transformation,
model versioning and the associated concepts. Section 2.2 explains how models can be
principally regarded as graphs in the mathematical sense. There, we review that what
are low-level and high-level differences between models and how they relate to the graph
representation of models. Once the relationship of models and graphs are explained,
Section 2.3 clarifies how models can be compared and their differences can be computed.
In the end, in Section 2.4, we explain two tools, SiDiff and SiLift, which we use in this
research for computing the low-level and high-level changes respectively.

2.1 A Glimpse into the Model-Driven Engineering World

Since the advent of computer, historically, the way we develop our programs on comput-
ers have been changed considerably [Ameller, 2009]. The old days were mostly dominated
by the low-level programming languages which were near to the machine language, and
were mostly restricted to machine specifications. By the invent of compilers, those were

13

promoted to high-level programming languages which are usually referred as the third
level programming languages1 e.g. C or Fortran. The high-level programming languages
elevated the abstraction levels, eliminated platform-specific considerations and delivered
greater flexibility. Developing object-oriented programming features was another step
toward more abstraction in this regard. Although the newer technologies in third gen-
eration programming languages, e.g. Java EE2 and .NET, are used widely in practice,
there are still many problems which limits their usability. Fast growth of the complex-
ity of a platform which is hard to handle by such languages, and optimally deploying
a large-scale system with too many components are two examples of these problems
[Schmidt, 2006]. Moreover, using such languages to model concepts of a specific domain
was tedious and inefficient.

The move toward more abstraction has continued by the domain specific languages
(DSL) [Fowler and Parsons, 2010] which are usually referred to as fourth generation
languages [Selic, 2008]. The main aim of DSL is providing more productivity by deliv-
ering faster and more robust solutions for the domain of interest by providing tailored
and customized notions, tools, constructs and algorithms for that domain [Mernik et al.,
2005]. Moreover, DSL also simplify and increase the involvement of non-programmer
domain experts and promote the quality of solutions and products [Voelter and et al,
2013]. The Structured Query Language (SQL) for data base queries, Matlab [Math-
Works Company, 2013] and Mathematica [Wolfram Research Inc., 2014] languages for
modeling and mathematical analyses are typical good examples of DSL. Although DSL
have many benefits, they also have some drawbacks, for instance their development is
hard which requires both the domain and the programming knowledge, causing higher
costs [Mernik et al., 2005].

Model-Driven Engineering (MDE) [Stahl et al., 2006] can be considered as the latest
approach in the continuous effort for supporting more abstraction. As the title suggests,
models are the most centric artifacts in the development process instead of source pro-
grams [Selic, 2003]. Models can reflect real world concepts and entities in a simplified
manner. They can also be formal specification of a system in a higher abstraction level.

MDE promises to be the solution to the inability of the third generation programming
languages to cope with the increasing complexity of systems and to their ineffectiveness
with regard to capturing and modeling the domain knowledge [Schmidt, 2006]. Specified
models provide more flexibility in the sense that the design of the systems or solutions
are independent of the underlying technologies or implementations. Therefore under-
stating, modification and maintenance of specified models can be done more efficiently
[Selic, 2003]. MDE brings the benefits of automation in software engineering and boosts
productivity [Selic, 2003]. The long time productivity will be also improved by capturing
the system through higher level models which are less sensitive to the personnel changes,
requirement changes and variation in development or deployment platforms [Atkinson
and Kuhne, 2003].

1 The machine and the assembly languages are usually referred to as the first and the second gener-
ations respectively [Ameller, 2009].

2 Java Enterprise Edition, formerly known as J2EE.

14

Furthermore, MDE models are not just used for documentation of a system, rather
code can be automatically generated out of them. For this purpose, high-level models
of a system are typically transformed into platform-specific models which in the end
are transformed into executable code. This process requires model transformation ap-
proaches and technologies which allow such features. Model transformation is the key
element in MDE [Sendall and Kozaczynski, 2003] and we will cover it in more detail in
Section 2.1.5.

Ambiguity of Concepts Although MDE aims and goals are more or less well known
in the literature, the term itself seems to be mixed up with Model-Driven Development
(MDD) andModel-Driven Architecture (MDA) and they are more or less interchangeably
used. “Model-Driven Development is simply the notion that we can construct a model
of a system that we can then transform into the real thing.” [Mellor et al., 2003]. This
definition is quite broad and the development in the third generation languages can be
typically regarded as MDD [Ameller, 2009]. MDA is a set of standards from the Object
Management Group (OMG) in the field of MDE. OMG is a nonprofit international
organization which is formed by many3 academic institutions, companies, vendors and
end-users with the aim of defining global technological standards4.

The MDA intention is to separate the specification of a system and its functionality
from the implementation aspects on a specific platform, letting the specification and
functionalists (a) to evolve separately from technological changes in that platform and
(b) to be easily deployed to other platforms [OMG, 2001]. “The MDA set of standards
includes the representation and exchange of models in a variety of modeling languages,
the transformation of models, the production of stakeholder documentation, and the
execution of models. MDA models can represent systems at any level of abstraction
or from different viewpoints, ranging from enterprise architectures to technology imple-
mentations” [OMG, 2014]. Regarding MDE, “It is important to note that MDE does
not define any particular approach; instead, MDE itself is a paradigm that is addressed
by [different] approaches, while being independent of language or technology” [Saraiva,
2013]. This gives a broader meaning to MDE comparing to the MDA which is a specific
standard offered by OMG. According to [Ameller, 2009], we can therefore consider this
loose mathematical relationship between them: MDA ⊂ MDD ⊂ MDE, although they
are interchangeably used in the literature as mentioned before. In the next section, we
give more information about MDA which is a widely used accepted standard.

2.1.1 Model-Driven Architecture

As we discussed earlier, MDA is the OMG standard and approach to MDE. It includes
associated technologies and techniques which address those standards, such as UML,
mapping functions, executable models etc. MDA is aimed to support the representation
of a system, using linked models, at any abstraction level from different viewpoints

3 At the time of writing this dissertation, more than 280 members http://www.omg.org/.
4 Including: Unified Modeling Language (UML) and XML Metadata Interchange (XMI).

15

http://www.omg.org/

[Mellor et al., 2004]. The models used in MDA can be used for modeling real world
entities, system specifications as well as technological artifacts [OMG, 2014]. Moreover,
MDA is also very concerned in transformation of models to other models, each capturing
different aspects of the system with a different level of abstraction, expressed by possibly
different languages.

In the rapidly changing world, business logic and software technologies are indepen-
dently and quickly evolved and developed. Thus software solutions should be developed
in a way that the business solution is quite independent of the implementation platform
[Stahl et al., 2006]. In this regard, MDA in its core is formed by three levels of Platform-
Independent Models, Platform-Specific Models and the source code [Kleppe et al., 2003].
“[A Platform-Independent Model (PIM) is] formal specifications of the structure and
function of the system that abstracts away technical details” [OMG, 2001]. It does not
consider or include any detail or technical issues of a specific platform such as the im-
plementation language or database technologies. This gives the flexibility of defining
and modeling a system independent of any technological issues or implementation spec-
ifications. A Platform-Specific Model (PSM) is defined in terms of, and bounded to a
specific platform [OMG, 2014]. A PSM will use the concepts and mechanisms of the
target platform. “A platform is a software infrastructure implemented with a specific
technology (Unix platform, CORBA platform, Windows platform) on specified hardware
technology” [OMG, 2001]. The concept of platform is therefore highly dependent on the
context, and a PSM is bounded to the specification and characteristics of the associated
platform [Brown et al., 2005].

As mentioned above, separation of PIM as the overall design of the system from
PSM which is bounded to technological specifications, can address the parallel evolution
of business logic and the runtime/execution platforms. This requires that a PIM can
be transformed into a PSM and the PSM is then translated into the executable code.
The business solution can be developed independently of any technological or imple-
mentation considerations, and then it is deployed into different platforms, e.g. Linux or
Windows using Java or C#, employing different database technologies. We cover the
transformation of models in more detail in Section 2.1.5.

2.1.2 Models and Meta-Models

As we discussed in Section 2.1, models are the primary artifacts in the MDE world.
In MDE, a model might represent a real world entity or a system as in other fields of
science or engineering, although it is not only limited to that. In the MDA approach, a
model is a selective set of information which represent some aspects of the system such
as structure, behavior etc. [OMG, 2001, 2014]. The model is then somehow related to
the systems either directly or implicitly. A model can be regarded as a set of statements
about the system which could be evaluated as true or false and when all of the statements
are true, we can regard the model to be correct [Seidewitz, 2003]. There are different
benefits, gained by using models in the MDA approach [OMG, 2014, Brown et al., 2005]:

• Models can be used to facilitate team work through well defined terms and nota-

16

tions, managed and shared semantics of the systems as well as different libraries,
rules and reusable processes.

• Automated transformation of the models will help to derive new artifacts and
new implementations in a consistent manner. This will increase productivity by
reducing the cost of realization, design and maintenance efforts.

• Analytics, statistics and various data analyses can be done on data and semantics
which are captured in models.

• Models can be executed and simulations can be performed by realizing the design
with minimum technical details.

• Different information such as acquisition of specifications and processes as well as
documentation can be derived from models.

• Models provide a structural presentation of knowledge for unstructured informa-
tion.

Although the above list provides the benefits of using models, the following key
characteristics should be satisfactorily met in order a model to be useful in practice
[Selic, 2003]:

• Abstraction. The model should be a proper abstraction of the system, removing
the unnecessary details with respect to the view point of interest.

• Understandability. The model should be understandable by hiding unnecessary
details and by conveying the complexity of the system with much little information.

• Accuracy. This characteristic means that a model should correctly reflect the
interesting features or views of the system.

• Predictiveness. This means that the model can be correctly used to predict the
interesting features of the system either through experiments or some kind of formal
analysis.

• Inexpensiveness. The constructed model should be more affordable to build and
analyzed than the original system.

The above requirements impose that the models should be expressed in a consistent
manner. Models which consists of many elements should be defined using a well defined
language. The language should state if an element is legitimate within the model. It
should also clearly describe the relationship of the model elements with respect to each
other. Moreover, it should be suitable for computer processing [Kleppe et al., 2003]. The
language should consist of syntax, semantics, notions, terms and structures which are
well defined and understood by domain experts and stakeholders [OMG, 2014, Mellor
et al., 2003]. Such a language is referred to as a metamodel. We say that a model
conforms to a metamodel when all elements and relationships are legitimate based on

17

the rules in the metamodel [OMG, 2014]. The relationship of a metamodel to a model
can be regarded as the class-instance relationship in which every model can be regarded
as an instance of the metamodel [Stahl et al., 2006]. Metamodels define a clear and an
unambiguous way of describing the semantics of the models, allowing automation, model
transformation as well as analysis [Brown et al., 2005].

2.1.3 Abstraction Layers and Meta Object Facility

As we discussed in Section 2.1.2, a metamodel describes a modeling language, its se-
mantics and syntax. A metamodel is principally a model itself, this requires that the
metamodel should also be described by another metamodel, say meta-metamodel. The-
oretically, this concept can be expanded in a similar way, but it can not be handled in
practice. Therefore, the model to metamodel relationship is quite relative and a model
can be a metamodel in the hierarchy [Stahl et al., 2006]. To be practical, OMG has
defined four hierarchical layers of modeling which are denoted by M0, M1, M2 and M3,
depicted in Figure 2.1 [Atkinson and Kuhne, 2003].

M3: Meta-Metamodel

M2: Metamodel

M1: Model

M0: Instances

Describes

Describes

Describes Instance of

Instance of

Instance of

Describes Instance of

MOF
(Meta Object Facility)

UML Metamodel

UML Models

Code

Describes

Describes Instance of

Instance of

Instance of

Describes Instance of

Describes

M3

M2

M1

M0

Figure 2.1: The OMG four layer of abstraction in modeling (Adapted from [Ameller,
2009, Stahl et al., 2006]).

Each layer in the hierarchy is an instance of the immediate level above it except the
topmost level. At the lowest level, i.e. M0, the user data exists which should be processed,
handled or modeled by the application, e.g. information in a database or instances of an
object-oriented system at run-time [Mellor et al., 2004]. The M1 level holds the models
of the user data (user models), the concept at M1 level classifies the instances of M0
level and elements in the M0 level are all valid and feasible instances of the M1 level

18

[Kleppe et al., 2003]. M1 for instance, can hold the classes of an object-oriented system
or tables in a rational database [Mellor et al., 2004]. The M2 level holds the metamodel
of the models in the M1 level which is a well defined language that describes the models.
As an example, UML Classes and Attributes are defined in the M2 level while instances
of them are existing in the M1 level. Finally, M3 is the topmost level, usually referred
to as meta-metamodel, which describes the metamodel, semantic and relationships of
its elements.

According to OMG standards, the M3 level is designed to be reflexive, i.e. it is
described by its own, and is called Meta Object Facility (MOF) [OMG, 2005a]. MOF
is a standard language which is used to define all other languages and metamodels in
MDA [Kleppe et al., 2003]. It clarifies how sets of metamodels should be formed in order
to properly define the models of interest. MOF provides semantics which allow various
technological mappings. It is a common framework where different technologies can be
combined together [Frankel, 2003]. The MOF is also designed to be not only small, but
also extendable by the means of inheritance and composition in order to richly support
other constructs [OMG, 2005a].

The Eclipse Modeling Framework (EMF) is the most famous implementation of MOF.
The earlier implementation of EMF employed a subset of MOF which was the most rele-
vant for practical issues. Due to this effort, in the newer OMG standards for MOF, that
subset of MOF was classified as Essential MOF or simply EMOF [Stahl et al., 2006].
EMF allows the modeling be practically done through graphical tools and code genera-
tion facility. EMF principally unifies Java, XML and UML into a practical framework
for code generation. The developers can define their models in any of the aforemen-
tioned languages and the other two as well as the implementation classes are generated
automatically through EMF [Steinberg et al., 2009]. The meta-metamodel of EMF is re-
ferred to as Ecore which is self describing and is used to define models in EMF. In EMF,
models are used to generate Java code and they can be serialized using XMI standard
(see Section 2.1.4).

2.1.4 UML, XMI and OCL

As we discussed in Section 2.1.3, MOF is an OMG standard and language to define the
metamodels. MOF is not the only standard of OMG, there are other standards such as
Unified Modeling Language (UML), and XML5 Metadata Interchange (XMI) as well as
Object Constraint Language (OCL) which are used frequently in MDA. Here we review
them quickly as we refer to them in this dissertation.

UML “The Unified Modeling Language, is a general-purpose modeling language with
a semantic specification, a graphical notation, an interchange format, and a repository
query interface” [OMG, 2005b]. Historically, UML has emerged in the 90’s as the succes-
sor of object-oriented design and analysis and later standardized by OMG [Fowler, 2004,
Frankel, 2003]. UML is the most famous modeling language which is located at the M2

5 Extensible Markup Language.

19

level [Kleppe et al., 2003]. The UML metamodel is expressed by MOF which describes
the structural and behavioral characteristics of UML [Mellor et al., 2004]. The latest
version of the UML has 13 types of diagrams as depicted in Figure 2.2 [OMG, 2012b].
The diagrams are typically divided into two categories of structural and behavioral di-
agrams. The structural diagrams can be used to model the static structure of objects
in a system which are not changing with time while the behavioral diagrams capture
the dynamic, i.e. time variant, behaviors of objects in a system, e.g. activities. Class
diagrams can be considered among the most popular UML diagrams in the domain of
software engineering.

Diagram

Behavior
Diagram

Structure
Diagram

Profile
Diagram

Class
Diagram

Composite Structure
Diagram

Component
Diagram

Deployment
Diagram

Object
Diagram

Package
Diagram

Activity
Diagram

Interaction
Diagram

Use Case
Diagram

State Machine
Diagram

Sequence
Diagram

Communication
Diagram

Interaction Overview
Diagram

Timing
Diagram

Figure 2.2: Taxonomy of UML diagrams (Adapted from [OMG, 2012b]).

XMI The XML Metadata Interchange is another OMG standard for data access which
is used for interoperability of metamodels and models between different domains [Mellor
et al., 2004]. It allows the definition, interchange and manipulation of different models
and metamodels which are conforming to MOF. XMI is based on XML which allows
a model to be encoded in an XML document. The advantages of XMI are that, it
is (a) based on XML which supports many document types (b) independent of any
platform and (c) well documented and has very good tool support [Alanen and Porres,
2005]. Although the platform independence of XMI is an advantage, in some cases it has
shortcomings. For example, if two tools are encoding a model in XMI but they use two
different versions of UML diagrams, the interchange is not possible [Alanen and Porres,
2014].

20

OCL The Object Constraint Language is a textual modeling language which is bounded
to UML models and can add constraints on models and queries regarding models [OMG,
2012a]. Such constraints rely on types of the models (defined in UML) and they enforce
data integrity [Warmer and Kleppe, 2003]. OCL is just a pure specification language.
In other words OCL constraints have no influence on current state of models, i.e. they
can be evaluated but cannot alter the existing state of models directly [OMG, 2012a].
Moreover, OCL is a typed language where each expression conforms to a type and it is
not possible to compare expressions with different types, e.g. an integer with a string. As
an example of an OCL constraint, a class which contains information about a product
requires that its ID is positive. As another example, the class which is used to model a
bank transaction for selling that product, requires to check whether the bank account
of the seller and the buyer are different. Such constraints which clarify the relationship
and expected behavior of the models, cannot be handled by class diagrams alone and
are expressed by OCL constraints.

2.1.5 Model Transformations and QVT

As we discussed in Section 2.1.1, MDA is essentially formed by three elements of PIM,
PSM and code in its core. A PIM is independent of any platform and models the overall
functionality and specification of the system without considering any issues regarding
the implementation. Conversely, a PSM is bounded to technical and specific aspects
of the platform of interest. The aim of designing a system as a PIM is to increase the
productivity and handling the challenges and changes in the real business system by
disregarding technical details of the implementation platform [Sendall and Kozaczynski,
2003]. This approach will reduce the time to the market, can use the domain expert
knowledge more efficiently by eliminating the implementation considerations, and finally
provides grater flexibility by allowing PIMs to be portable.

Although we mentioned that PIM increases productivity, without any implementa-
tion they are not fully useful. A PIM should be able to be transformed into code to
be executable. To this end, a PIM should first be transformed into a PSM which later,
through another transformation, is transformed into executable code on the specified
platform [Kleppe et al., 2003]. Transformations play a crucial role in MDE, allowing
the realization of a metamodel, i.e. models of a metamodel, be transformed to models
conforming to another metamodel. Formally, “a transformation is the automatic gener-
ation of a target model from a source model, according to a transformation definition.
A transformation definition is a set of transformation rules that together describe how a
model in the source language can be transformed into a model in the target language. A
transformation rule is a description of how one or more constructs in the source language
can be transformed into one or more constructs in the target language” [Kleppe et al.,
2003]. Figure 2.3 shows the basic concept of a model transformation [Czarnecki and
Helsen, 2006].

Transformation of a model to another one requires that the semantics and syntax
of two models are clearly described by the metamodels [Sendall and Kozaczynski, 2003,
Mellor et al., 2004]. The tools for transformations, usually allow transformations by:

21

Source Metamodel

Transformation
Engine

Target Metamodel

Source Model Target Model

Transformation DefinitionRefers to

Conforms to

Reads Writes

Refers to

Conforms toExecutes

Figure 2.3: Model transformation (Adapted from [Czarnecki and Helsen, 2006]).

(a) direct manipulation of models (b) transformation via another tool by exporting the
model in an intermediate representation, like XMI standard, and (c) a transformation
language which supports different constructs and rules [Sendall and Kozaczynski, 2003].

Since the programs are also modeling the system at the code level, they can be
regarded as models too and model transformations will be considered not only from
an abstract model to another abstract one, but also to more concrete ones at the code
level [Mens and Van Gorp, 2006, Czarnecki and Helsen, 2006]. Generally, the model
transformation approaches can be categorized into model to model (M2M) and model
to code (M2C) approaches and M2C can be regarded as a special case of M2M provided
that the metamodel of the target language is available [Czarnecki and Helsen, 2003]. The
generated code of from a M2C is then used by the associated compiler to be translated
into executable program.

If the transformation is performed between two models which are specified in the
same modeling language (metamodel) then it is called an endogenous transformation,
also known as rephrasing, otherwise it is an exogenous transformation which is also
known as translation. Transformation of high-level abstract models into concrete ones,
e.g. code generation, is of the translation type. Refactoring and optimization of software
models for improving their internal structure or their operational qualities are examples
of rephrasing.

The other orthogonal classification for transformations is based on the fact that
source and target models reside at the same or at different abstraction levels. If both lay
on the same level, it is refereed to as a horizontal transformation, otherwise it is called
a vertical transformation [Mens and Van Gorp, 2006, Sendall and Kozaczynski, 2003].
Refactoring of models can also be regarded as a horizontal transformation since it does
not affect the abstraction level of models. Refinements, where in each step the model
is refined by adding more implementation-oriented issues, can be regarded as a vertical
transformation. Table 2.1 shows these two orthogonal classifications.

QVT Query / View / Transformation (QVT) is the OMG standard for the transfor-
mation of models whose languages are defined with MOF [OMG, 2011]. QVT consists
of languages for creating views on the models, querying the models and for writing the
model transformations [Kleppe et al., 2003]. A view is a particular perspective of the

22

Horizontal Vertical

Endogenous Refactoring Formal refinement
Exogenous Refactoring Code generation

Table 2.1: Orthogonal classifications of model transformations with examples (Adapted
from [Mens and Van Gorp, 2006]).

system which is modeled or is a model which is derived from the original model by
considering some aspects or elements of interests [Brown, 2004, OMG, 2001].

2.1.6 Model Versioning

The collaborative development of software systems, traditionally, has been highly depen-
dent on version control systems (VCS) which allow team development work by (a) keep-
ing the log of changes on software artifacts (mostly codes), (b) concurrent development,
(c) branching support, (d) attached annotations and comments on the performed changes
and (e) distributed development by eliminating physical location barrier.

There are two types of VCS, centralized version control systems (CVCS) and dis-
tributed version control systems (DVCS) [Otte, 2009]. In a CVCS there is a central
repository which is basically a server that stores histories of software artifacts which are
known as revisions. A revision is a snapshot of the artifact in time which is addition-
ally labeled with a revision number (typically an integer) and some metadata including
the comments on the revision. Typically, a user first checks out the latest or a specific
revision out of the repository as a local copy, modifies it and commits it back to the
repository. For such activity, the user needs a network connection. In contrast, in a
DVCS there is no central repository and each user has a complete local repository which
can deploy on the network as a remote repository, letting others to clone it. Once a
new user clones it, he/she can develop further, and meanwhile fetches new changes from
the first user, or pushes his/her changes to the first repository. Alternatively, the new
user can publish his/her own repository as a completely standalone remote repository
and a similar story happens again to this new repository in which other interested users
might clone and use it. Subversion (SVN) and Git are two typical examples of CVCS
and DVCS respectively [Pilato et al., 2008, Loeliger and McCullough, 2012].

Since both CVCS and DVCS support parallel development paradigm, artifacts are
highly probable to be modified and touched by different developers in parallel, which
often cause conflicts. One solution is to avoid any conflict by locking the artifact until
the modification is over by the user, and freeing it for further modification by others.
The locking approach has the drawback that other users have to wait till the artifact
is released which causes delay in collaborative work specially when the user forgets or,
e.g. due to unexpected connection problems, is unable to unlock the artifact. Such
approach is usually referred to as the pessimistic approach which is frequent in CVCS.
The optimistic approach allows a copy of the artifact to be modified, and then the

23

changes are merged with another state of the artifact caused by another modification.
Therefore, it is prerequisite that the concurrent changes on artifacts are managed and the
conflicts are appropriately resolved [Brosch, 2012]. Typically, such a resolution requires
that different changes are merged together in a new artifact [Barrett et al., 2008]. The
merge process requires that two artifacts are first compared, conflicts are detected and
resolved, and finally they are merged into a new artifact [Altmanninger et al., 2009].

Since the focus of the development has shifted from code to models in MDE, it is quite
essential that models are also supported by VCS in order to flourish the collaborative
work. Such VCS should allow concurrent modification of models by different developers
and should support the collaborative development by merging the performed changes into
a consolidated final model [Brosch et al., 2010, 2012]. Two dimensions can be considered
for merging of the software artifacts [Brosch et al., 2012]. The first dimension is that how
the artifacts are presented. Text based representations and graph based representations,
which implicitly includes tree based representations, are the most common approaches.
The second dimension, which is orthogonal to the first one, is that how changes are
identified, represented and finally merged.

Regarding the first dimension, unfortunately, text based versioning systems are not
able to handle models appropriately even if they are represented by a textual format like
XMI [Kelter et al., 2005]. Such approaches do not consider the semantic and syntax of
models, therefore text based merging leads to invalid or awkward results [Barrett et al.,
2008]. For instance, when two identical models are stored in different order in their
textual presentation, a so-called “pseudo difference” is reported. The only advantages
of text based merging are their speed and simplicity. The other approach is to use
the graph based merging algorithms which principally considers the software artifacts
as a structured presentation, e.g. trees or graphs, and then compares and merges them
[Brosch et al., 2012]. Such approaches have more power in detection and merging of
changes and can detect both the syntactic and semantic changes [Mens, 2002].

Regarding the second dimension, i.e. how changes are identified and merged, the two
possibilities are: state based and operation based merging [Brosch et al., 2012]. In a
state based merging, two states of a model, i.e. versions, are compared, differences be-
tween them are computed, and finally they are merged together into a new model. The
comparison of two states requires that a matching function first determines which ele-
ments in two states can be regarded as corresponding, i.e. presenting the same entity in
two models, and then based on this information the changes and conflicts are computed
and resolved. Identical elements are ideal for establishing a correspondence, although
in practice more advanced techniques are used to establish the correspondence for non-
identical elements which are similar and can be regarded as corresponding. The accuracy
of the matching function has a direct influence on the merging quality afterward. The
matching of elements in two models is principally a graph isomorphism problem which
is shown to be NP hard [Khuller and Raghavachari, 1996, Jungnickel, 2006]. In the
case that non-identical elements are matched, fine grained differences between the cor-
respondent elements are calculated by a difference function which is later used to detect
and resolve conflicts [Brosch et al., 2012]. For an operation based merging, the applied

24

sequences of operations to the models are important rather their states. Such operations
are recorded by the editor and they usually comprise of atomic as well as composite op-
erations. The recorded operations are then purified for removing invalid or unnecessary
operations, e.g. an update operation on a model element which will be later removed.
Later the purified operations are used in the merging step. The operation based merging
generally has a better performance comparing to the state based merging regarding the
time and the accuracy, although it is tightly dependent to the corresponding editor.

Regarding the merging, there are three possibilities for merging two states of an
artifact. Suppose that a base modelM0 is checked out from a repository and is modified
independently in parallel by two developers. If the applied sets of changes are denoted
by C1 and C2 respectively, M1 is the first version which is obtained by application of C1
to M0 and M2 is the second version which is obtained by application of C2. Without
loosing the generality, assume that the commit time of these two models are t1 and t2
respectively and t1 < t2. Suppose that at the time of t2, the commit will trigger a conflict
between versions M1 and M2 which should be resolved and the applied changes should
be merged. There are three possibilities for merging the applied changes in M1 and M2:
raw merging, two way merging and three way merging [Mens, 2002, Altmanninger et al.,
2009].

A raw merging will apply the changes C1 to the M0 in order to obtain M1 and then
applies C2 to M1 to obtain the merged version of M3 [Barrett et al., 2008]. This process
might fail since C2 might need something which C1 has already modified. No reordering
of changes in sets C1 and C2 is devised in raw merging. A two way merging just considers
the differences of M1 and M2 and it disregards the base model M0. The algorithm then
tries to merge changes in sets C1 and C2 in a proper way to obtain the merged model
of M3. Disregarding the base model of M0 in the two way merging approach has the
drawback that it is not possible to determine if an element is added e.g. inM1 or deleted
in M2, or if an element is modified in one version or in both [Altmanninger et al., 2009].
As its name suggests, a three way merging additionally takes the base model of M0 into
account. By comparing the base model with the two versions, it is possible to detect
more changes and conflicts comparing to the two way merging [Brosch et al., 2012].

Summing up our discussions, model versioning is an expanding domain in collabo-
rative development in the field of MDE and current VCS should satisfactorily support
model merging. The graph based merging algorithms are superior to their text based
counterparts, since the syntactic and the semantics conflicts can be detected and re-
solved more efficiently. For graph representation of models, the state based merging
approaches usually have to first establish a correspondence relationship between ele-
ments of two models which can be regarded as the same entity. Then, a difference
function computes the changes, and the conflicts in the computed changes are finally
resolved and used in the merging step. Lastly, the three way merging is more robust in
detecting the changes and resolving the conflicts than a two way merging.

25

2.2 Graph Representation of Models

Since the models and metamodels defined by OMG standards have typically elements
which are connected to each others through connections, it is a common practice to
represent models and metamodels using graphs. Such a graph representation of a model
is a typed attributed graph which is known as abstract syntax graph (ASG) [Kehrer et al.,
2013d,a]. The elements in the metamodel of the given model, define the types of the
nodes and edges in the ASG presentation of a model. Moreover, the metamodel defines
the well-formedness of models with respect to the legitimate structure and permissible
values of the attributes e.g. multiplicity constraints. The following definition clarifies
how models are represented as graphs.

Definition 2.1 (Graph Representation of a Model [Wenzel, 2010]). Let M be a model,
the directed graph representation of M is the ordered list of G = (V,E, TV , TE) in
which V = {v1, v2, . . . , vn} is the set of typed vertices representing the elements of M ,
E = {e1, e2, . . . , em} ⊆ V × V × TE is the set of typed directed edges which express the
relationships among the model elements and, TV , TE are the sets of types for vertices
and edges respectively, where TV ∩ TE = ∅.

Principally, the model elements and their relationships are modified by the devel-
opers, i.e. not only elements of a model are edited by the developers, but also the
relationships between them are modified. For instance, the association or composition
relationships as well as their corresponding multiplicities can be modified. This requires
that both the elements and their relationships, which are depicted by edges in a model,
should be represented as nodes in the graph representation. Moreover, such nodes in the
graph representation should also have attributes which principally reflect the attributes
of the corresponding elements or relationships in the model, e.g. name, visibility, multi-
plicity etc. Therefore, the graph representation of a model have nodes which are typed
and attributed. In this way, it is legitimate to ask what is the type of a node in the graph
representation and what are its attributes. Figure 2.4 depicts the above representation
[Wenzel et al., 2007].

Although the previous discussion sketches the big picture for representing a model as
a graph, the mapping of model elements to graphs is not unique and should be defined
based on the semantics of the metamodel [Wenzel, 2010]. Since model elements may
contain other model elements, e.g. a class which contains attributes and operations,
one common approach is to consider the “containment type” TC for edges in the graph
representation. The containment edges are directed edges from the container vertex
towards the contained vertices. Edges that are not of type containment, are regarded as
“reference type” TR. Additionally, we have TE = TC ∪ TR and TC ∩ TR = ∅. Another
approach is to consider the metaclasses as the vertex types and the metaassociations as
the edge types in the graph representation. The attributes in a graph are derived from the
attributes of the metaclasses. Generally, the mapping strategy should be unambiguous
and reproducible. The interested readers will find a deeper discussion in [Wenzel, 2010].

26

Figure 2.4: Graph representation of models (Adapted from [Wenzel et al., 2007]).

Although, the metamodel describes the relationships between model elements, it does
not define how these models should be modified and edited [Kehrer et al., 2013a]. Since
the models are represented as graphs, basic graph editing operations can be applied on
such a representation. The basic graph edit operations are creating, deleting, moving and
changing of elements, attributes and references [Kehrer et al., 2013d]. The computed
differences in the state-of-the-art tools, are principally reported in terms of these low-level
graph editing operations (see Section 2.4). Although such low-level changes reported
on the graph representation of models fully capture the applied changes between two
models, they are difficult to comprehend by developers who are used to working on a
higher abstraction level when they edit the models through graphical editors. In this
regard, such low-level graph edit operations should be semantically lifted to into high-
level changes which are easier to understand. To this aim, low-level operations are
grouped together in order to form more complex and at the same time more human
friendly operations. As an example, a deletion of a class from a package will cause many
low-level deletions of other model elements such as attributes and methods within the
deleted class, but from a developer’s point of view it is just a simple deletion of a class.
We investigate this issue more in Section 2.4.

2.3 Model Differencing

As we talked earlier in Section 2.1.6, collaborative software development needs that
software artifacts are properly supported by VCS. Since in MDE the main artifacts
are models, this imposes that models are properly supported by versioning systems. It
means that models should be compared, their conflicts should be derived and resolved
and finally they should be merged into a consolidated final model. The process of
comparing the models, requires that differences between models are accordingly defined,
efficiently computed and properly visualized [Lin et al., 2004]. Model differencing is

27

not motivated solely by model versioning and model merging. It also plays a crucial
role in other activities such as model transformation testing, model comprehension,
inconsistency detection and software evolution analysis [Selonen, 2007, Lin et al., 2004,
Kolovos et al., 2006].

In model transformation testing, it is desired to test and evaluate a transformation
to see if it is correct and if it satisfies its intent and design purpose. In addition to
formal proofs and methods, the testing can be accomplished by checking the output
of the transformation through computing and analyzing the difference of the output
model from the expected ideal model. Model comprehension is usually achieved by
transient views on parts of the system which allow investigating different parts of the
system from different points of view. Model differencing supports this by showing the
changes and differences between such views, highlighting different aspects of the system.
Inconsistencies between models or different versions of a model, can be also supported
by model differencing in which differences between corresponding model elements can be
detected, e.g. abstract class vs concrete class. Evolution of models and tracing of model
elements [Wenzel and Kelter, 2008, Wenzel, 2010] through the development life cycle of
software systems are other applications of model differencing.

Model differencing is quite mature and there has been much research done on it6

[Kolovos et al., 2009, Stephan and Cordy, 2013, 2012, University of Siegen, 2014]. The
aim of this section is to declare the basic concepts and review the most important
aspects of model differencing which we need for better comprehension of the coming
sections, without going too deep into the model differencing itself. In Section 2.3.1 we
will cover the concepts and definitions in model differencing. Sections 2.3.2 and 2.3.3
review different model differencing approaches

2.3.1 Model Differencing Concepts

Model differencing principally considers two models which should be compared and dif-
ferences between them should be computed. The models should not necessarily be related
to each other, but in practice it is mostly so. It is quite frequent that the models are
revisions of each other, i.e. they have a predecessor-successor relationship in a repository
or stem form a common ancestor (see Section 2.1.6).

Differences are computed by identifying the common elements between two models.
This means that there should be a matching algorithm which establishes a correspon-
dence relationship to the common elements of the two models. An element of the first
model M1 is said to be corresponding to an element in the second model M2, if they
represent the same entity in both models [Wenzel, 2010]. Two corresponding elements
are not necessarily identical, since they might have been modified. The set of all corre-
sponding elements of two models is referred to as a matching.

6 At the time of writing this dissertation, there is a comprehensive collection of research materials
and papers (currently 450 in total) regarding the model differencing and model versioning at [University
of Siegen, 2014].

28

An asymmetric difference7 or simply a difference between two models of M1 and M2
is the set of changes which are applied to M1 in order to yield M2, provided that they
are executed without any error [Kelter and Schmidt, 2008, Wenzel, 2010]. The set of
changes are expressed in terms of edit operations. Edit operations are those operations
which are defined or specified to alter models of a specific type. They principally clarify
how models of that type should be modified [Pietsch et al., 2012a]. As an example,
consider the edit operation of createState(name) which is used to create a state
with a specified name in statechart diagrams. The edit operations are therefore, type-
specific and are not necessarily the same for models of another type. An edit step or
an invocation of an edit operation is an edit operation with concrete arguments. With
the above information, an asymmetric difference is a sequence of invocations of edit
operations which is also referred to as a patch. Therefore, an asymmetric difference, i.e.
a patch, can also be applied or executed on model M1 in order to get model M2.

Since we have to first find the matching of two models in order to derive their
differences, the elements of two models can be conceptually categorized based on the
fact that they are in a matching or not [Kolovos et al., 2006], i.e. if for an element in
the first model a corresponding element in the second model exists or not. The element
in the first model for which a corresponding element in the second model exists, might
conform or might not conform to the second element. We refer to these two types of
elements as corresponding conforming and corresponding non-conforming respectively.
Similarly, the elements in the first model for which there is no correspondence in the
second model can be divided in two groups: elements that are included in the domain of
comparison operations and elements which are excluded from it. We respectively refer
to them as non-corresponding comparison-inclusive and non-corresponding comparison-
exclusive elements. Figure 2.5 shows this categorization more clearly. Here conformance
is another constraint on correspondences. For instance, if two classes within an already
matched packages have the same name but one is abstract and the other is concrete, are
corresponding but not conforming. The concept of conformance is quite dependent to
the semantics and types of the models.

As [Kolovos et al., 2006] describes, corresponding conforming elements means that
the matching algorithm has correctly established a correspondence between models. On
the contrary, corresponding non-conforming elements might indicate that the established
correspondence is wrong. Non-corresponding comparison-inclusive elements in the first
model might indicate that the differencing is incomplete, since they have not been in the
calculated matching, either intentionally or unintentionally. They might also indicate
that the matching is wrong. Non-corresponding comparison-exclusive elements might
indicate that the comparison operation is incomplete or intentionally disregards them.

As discussed earlier, finding the matching between two models is principally a graph
7 Considering the problem of displaying differences of two models, a common approach is that the

differences of two models are created and displayed based on the common parts. In this context, a
symmetric difference is defined as the matching set and two inserting transformations which allow non-
common elements are added to the common parts [Kelter and Schmidt, 2008]. Presentation of differences
is not of our interest and is not covered in this dissertation, but the interested readers will find more
information in [Kolovos et al., 2009, Stephan and Cordy, 2012, 2013].

29

Model Elements

Corresponding

Corresponding
Non-conforming

Corresponding
Conforming

Non-corresponding

Non-corresponding
Comparison-exclusive

Non-corresponding
Comparison-inclusive

Figure 2.5: Conceptual categorization of elements in two models (Adapted from [Kolovos
et al., 2006]).

isomorphism problem which is NP hard and is therefore very computation-expensive
[Read and Corneil, 1977]. Once the matching is computed, the elements which do not
belong to the matching or which are not identical in both model are basically regarded
as bases for deriving the differences.

Although establishing correct correspondences between model plays a crucial role in
properly deriving the difference between models, valid differences between models are
not unique. For instance, in the case we have two models which are revisions of each
other, it can be argued that all elements of the first version are principally deleted from
it and then all elements in the second version are added [Wenzel, 2010]. Since it is often
the case that such interpretations are not happening in daily practices, we should detect
the common parts of two models and try to derive their differences upon it.

The way we find the common parts of models is also dependent on how models
are presented. As mentioned in Section 2.1.6, textual presentation of models are not a
suitable basis for deriving the changes. The text based differencing algorithms typically
use the longest common subsequence (LCS) algorithm [Cormen et al., 2009] in order to
compare lines of text files. GNU8 diff and diff3, are among the most famous text
based comparison programs which work in this way [MacKenzie et al., 2002]. Text based
comparison methods typically compare text files line by line and the lines which are not
identical are considered to be added or deleted.

Comparing models which are already serialized into text forms, e.g. using XMI stan-
dard, by text based algorithms is erroneous [Kelter et al., 2005, Wenzel et al., 2007].
Such approaches do not take the semantics and structures of the models into account,
e.g. if an element is stored in a different position in the text representation a difference is
reported which is conceptually wrong. Therefore the state-of-the-art model differencing
tools use the abstract syntax graphs of the models in order to compare them [Kehrer
et al., 2012b]. Principally they consider models as graphs (see Section 2.2), in which
nodes represent elements within the model and the edges represent the relationships and
references between them [Brosch et al., 2012].

8 GNU is a Unix-like operating system which just consists of free software.

30

2.3.2 Model Differencing Approaches

As discussed in Section 2.1.6, model differencing is prerequisite for model versioning.
Merging of models requires that first the differences between them are computed. There
are two model versioning approaches: state based and operation based merging. Princi-
pally, the same also applies when we consider the model differencing stand alone.

In operation based differencing9, the differences of models are computed through the
history of applied edit operations on models which are recorded by the editors in which
the models are modified [Kehrer et al., 2012b]. This approach is quite fast and accurate
since there is no need to compare the models and the relationships between the elements
of the original and the resulting models are already known through the applied edit
operations [Altmanninger et al., 2009]. It additionally allows more complex operations
to be defined and the order of modifications to be retrieved [Brosch et al., 2012]. These
advantages come with the big price of tight dependency to the corresponding editor.
Models which are developed by other means are not supported.

A state based differencing does not require any protocol of the applied changes.
It principally compares two states of the models for deriving the differences in which
difference computation is done through identifying common parts of the models. State
based differencing can be further divided into model-type-specific and generic approaches
[Kehrer et al., 2012b].

Model-type-specific differencing approaches are tailored to a specific type of models
and cannot handle models of other types. For instance, [Nejati et al., 2007] addresses
the problem of matching and merging statecharts and [Xing and Stroulia, 2005] deals
with the detection of structural changes in the design models of object-oriented software
systems. Generic differencing approaches on the other hand, deal with models of differ-
ent types. Such approaches principally consist of algorithms which are configurable and
can be adapted to different model types. Figure 2.6 shows the classification of model
differencing approaches.

Differencing
Approches

State Based
Differencing

Generic
Differencing

Model-type-specific
Differencing

Operation Based
Differencing

Figure 2.6: Classification of model differencing approaches.

Since operation based and model-type-specific approaches do not coincide with the
9 Also known as the logging based differencing [Kehrer et al., 2012b].

31

contribution and research goals of this dissertation, they are not explained any further
but the interested readers will find more information in [Kolovos et al., 2009, Stephan
and Cordy, 2012, 2013, Brosch et al., 2012]. In the next sections we will study generic
approaches in more details which are related to this dissertation.

2.3.3 Generic Model Differencing Approaches

In generic model differencing approaches, establishing correspondences and forming the
matching is typically controlled by configurations which specify which characteristics
of model elements are more relevant for a matching. Obviously the quality of correct
matchings has a direct influence on the derived differences. Establishing correct match-
ings highly depends on the characteristics of the models and their types, and it is quite
variant between models [Kehrer et al., 2012b]. Generic approaches try to establish cor-
rect matchings by adapting their matching strategies through taking characteristics,
types and semantics of models into account.

There are different strategies for matching of elements between two models [Kolovos
et al., 2009, Kehrer et al., 2012b]: static ID based matching, signature based matching
and similarity based matching.

Static ID Based Matching In this approach, it is assumed that any model element
has a unique persistent identifier, e.g. a UUID10. The unique IDs are then used to form
the matching of two models which is quite fast and straightforward. Moreover, this
approach does not need any user configuration [Kolovos et al., 2009]. One drawback of
this approach is that the models of interest might not be revisions of each other, i.e. they
might be developed independently. The other drawback is that the models might not
have persistent identifiers at all, since they are created by a tool which does not support
it or by two incompatible tools. Moreover, it is quite debatable that if an element with
a persistent ID has changed so considerably, that we can any more regard it the same
original element.

Signature Based Matching This approach uses signatures of model elements to
establish correspondences and form the matching. A signature of a model element is
principally a label which is created by using different properties of the element as well
as of the model [Wenzel, 2010]. For instance in class diagrams, a typical simple example
of forming a signature for an element is to use its name in conjunction with its parent
element, recursively going to the root. But generally if names are used in forming a
signature, the renamed elements will not be detected.

Since computing the signatures is deterministic, equal elements will have equal signa-
tures. But in practice, not all of relative properties and characteristics of model elements
are taken into account. Therefore, there can be more elements with the same signature
[Wenzel, 2010]. Ideally, a good strategy for forming signatures should reduce the possi-

10 Universally Unique Identifier.

32

bility of having identical signatures for different model elements. Moreover, it is quite
typical to have a hash function to form signatures in practice [Kehrer et al., 2012b].

Similarity Based Matching The similarity based matching approaches consider the
similarities of model elements for establishing correspondences. The similarities are
computed using a specified function, which principally considers different features and
properties of model elements. Defining similarity function and choosing relevant prop-
erties are usually heuristics and dependent on the types and the semantics of models.
For instance, classes with similar names are more probable to be similar than the classes
that are both abstract [Kolovos et al., 2009].

In ID based and signature based matching approaches, the elements are either
matched or not matched. However in similarity based matchings, the similarities are
first computed and presented as numeric values, typically in the interval of [0, 1]. A
similarity of zero means that the models have no similarity at all based on the specified
properties in the similarity function, while a value of one means that they are identi-
cal. One strategy is to match elements with the highest similarities. Another strategy
is that if the similarities are greater that a threshold, then the elements are matched.
Since not all properties are equally relevant in computing the similarities, the similarity
based approaches are additionally provided with configuration files in order to properly
adjust the matching step. In such configurations typically one can assign weights to the
relevant properties. More weight shows that the respective property is more relevant in
computing the similarities.

2.4 Difference Computation In This Dissertation

In Section 2.3, we talked about the general approaches that exist for model differencing.
Principally, in the absence of unique IDs in models, static ID based matchings strate-
gies cannot be used. Instead, the correspondences between model elements should be
established using similarity based matchings.

In this dissertation we just deal with design models of Java software systems which
are obtained by reverse engineering the source code (see Chapter 4). Since these design
models lack persistent identifiers, only similarity based matching strategies can be used
to form the matchings and to compute the differences. In this regard, we chose the
SiDiff Model Differencing Framework [Kelter et al., 2005, Kehrer et al., 2012b] which
uses similarity matching strategy for computing the differences. We should mention that
other differencing tools are also available [Kolovos et al., 2009, Stephan and Cordy, 2012,
2013]. As long as a differencing tool can compute the changes between design models
of software systems, it can be used instead of SiDiff in practice. As we compute the
changes with SiDiff, it is enlightening that we take a deeper look at how it computes the
differences. In this regard, we investigate SiDiff in detail in Section 2.4.1.

Since the changes reported by SiDiff and other differencing tools are principally low-
level changes which are expressed in terms of graph edit operations (see Section 2.2), they
are difficult to be processed by humans who are used to think of model modification at

33

a higher level of abstraction. In this regard, we used the SiLift Semantic Lifting Engine
[Kehrer et al., 2011] to elevate the low-level changes into high-level ones. Section 2.4.2
will describe SiLift in more details. The notions presented in this section will be further
employed in Chapter 4 where we use SiDiff and SiLift to compute the low-level and
high-level changes in design models of Java systems.

2.4.1 SiDiff Differences Computation Engine

SiDiff is a generic differencing framework, initially developed to compare different types
of UML diagrams [Kelter et al., 2005]. Later, SiDiff has evolved into a tool that can prin-
cipally compare any two models whose metamodel is expressed in EMF Ecore [Kehrer
et al., 2013b]. In SiDiff, the existence of persistent identifiers for elements of a diagram
is not required. SiDiff supports both of the signature and similarity based matching
approaches.

The computation of differences of two documents principally starts with loading the
documents and transforming them into an internal format [Pietsch, 2009]. In the first
implementation, the authors used an internal metamodel and the engine derived differ-
ences between instances of that metamodel. Although in the current version SiDiff uses
EMF Ecore [Steinberg et al., 2009], it is enlightening to review the older implementation
for better comprehension, since the basic concepts are the same.

The metamodel used in [Kelter et al., 2005] is depicted in Figure 2.7. The root
element is a Document which can contain many Elements. An Element is typed, it may
contain other Elements and may have References to other Elements. Elements have also
Attributes. By this approach they could handle other model types encoded in XMI than
the UML models, although in the current implementation the relationships between
model elements are principally described by EMF Ecore.

Once the models of the two documents are created, SiDiff computes their differences
in two steps. In the beginning, SiDiff tries to find the elements in the first model which
have a corresponding element in the second one, this step is referred to as the matching
step. The matching process is highly configurable and is based on the similarities be-
tween model elements; neither existence of persistent identifiers for model elements nor
uniqueness of their names are necessarily required. In the second step, the differences
between the documents is calculated based on the matching which was found earlier.
The computed differences can be used for graphically representing the differences or can
be used in other tools for further processing, as in Section 2.4.2 in which the changes
are semantically lifted to obtain more abstract high-level changes. Now we take a closer
look at how the matching is done and what kinds of differences are reported by SiDiff.

The Matching Algorithm Because of the hierarchical structure of the metamodel,
the instances have a tree like structure in which nodes may contain other nodes. For in-
stance, packages contain classes, while classes contain attributes and operations. There-
fore, the matching process between two elements can be done when their possible sub-
elements are matched. In SiDiff, the matching process is done in two steps of bottom-up

34

Figure 2.7: The metamodel of the difference algorithm used in SiDiff (Adapted from
[Kelter et al., 2005]).

and top-down directions which are alternatively executed till all elements in the docu-
ments are processed.

(1) Bottom-Up: In this step, first all elements in the leaves which have similar types
are compared. Those elements in the fist document who have just unique corre-
spondences in the second document are matched. If there are elements with more
possible candidates, then no match is established since the similarity may change
in next iterations when more elements are compared. Between two elements of
the same type, the matching is established when the similarity is greater than a
specified threshold. After matching the leaves, the process continues to the top
of the tree. When two non-leave elements are matched, the algorithm switches
to top-down mode in order to propagate this knowledge to match the unresolved
children or to update the similarity values of previously matched elements.

(2) Top-Down: In this step, the last match from the bottom-up phase is used to
match the children of the matched elements. The fact that parent elements are
matched will aid to designate the destiny of unmatched sub-elements or to improve
the similarity value of already matched children from the bottom-up phase. The
new matching information as well as similarity values propagates further down-
wards. The algorithm switches back to bottom-up mode when no new match is
possible.

The algorithm terminates when there is no more element to compare in the bottom-up
phase. The models without an intrinsic tree like structure, may contain cycles due to the

35

Node Type=Class, Threshold=0.5
Criterion Weight
Similar value for attribute name 0.35
Equal value for attribute visibility 0.05
Equal value for attribute isAbstract 0.05
Similar set of sub elements of type attribute 0.20
Similar set of sub elements of type operations 0.20
Similar elements following incoming generalizations 0.05
Similar elements following outgoing generalizations 0.05
Match parent element 0.05

Table 2.2: Criteria for comparing classes (Adapted from [Treude et al., 2007]).

dependencies between model elements. To handle cycles, the algorithm iterates through
the cycle till no new match can be found.

Similarity Computation As mentioned earlier, the model elements with the same
type should be compared. The similarity between elements is calculated based on the
characteristics and features of the elements. In the case that the computed similarity it
is greater than a specified threshold, the elements are matched. This requires that for
each model element type, a similarity function is defined which considers some criteria
on the structure, parts and properties of elements of that type. From the domain expert
point of view, these criteria are relevant for considering instances of that type similar.

Formally, let C be the set of criteria for elements of type T and ei, ej be two elements
of the type T . The similarity between the two elements is denoted by sim (ei, ej) and is
defined by:

sim (ei, ej) =
∑
c∈C

wc . cmpc (ei, ej)

where cmpc is the compare function for criterion c and wc is the weight of the function,
contributing in the similarity. The similarity function is a weighted arithmetic mean in
which the weights are normalized, i.e.

∑
cwc = 1. The higher value for a weight indicates

that its corresponding criterion is of more importance when calculating the similarity.
The range of the similarity function is the interval of [0, 1] where 0 means no similarity
and 1 means the most similar, i.e. identical.

As a simple example of the above explanation, similarity of local attributes like
names or similarity of neighboring nodes, e.g. referenced nodes, can be regarded as two
criteria for computing the similarity between two classes in UML class diagrams. Table
2.2 shows a sample of the criteria and their assigned weights used in SiDiff to match
elements of type Class in UML class diagrams.

36

Matching Speed-up In the matching step of SiDiff, basically all elements in the two
models should be compared. This principally results to an O

(
n2) run-time complexity

which becomes quite time-expensive when n, the number of model elements in each
document11, increases. To tackle this problem, SiDiff uses a pre-phase of early matching
based on the hashes of model elements. It matches those elements which have unique
identical hashes [Kelter et al., 2005]. Hashes are calculated based on the name and
the path of model elements within the document, their sub-elements and in the case
that they refer to other elements, the referenced elements. The creation of hashes are
done when parsing the XMI files of two documents for forming the appropriate data
structures, i.e. models, in the memory. The complexity of determining the hashes is of
O (n) and finding the elements with equal hashes is of O (n log2 (n)) [Treude et al., 2007].
This considerably reduces the run-time of the matching phase.

Additionally, [Treude et al., 2007] have improved the main matching algorithm by
proposing the Similarity Search Sparse Vector Tree, shortly abbreviated as S3V tree.
The S3V tree is a high dimensional balanced search tree which speeds up the matching
phase. Once the elements of one model are stored in the tree, for a given element in
the other model, the most appropriate candidates, i.e. the most similar elements, can
be found quite efficiently. The search strategy is to avoid the linear search in all model
elements of the same type and to discover the most appropriate candidates which lay
within a neighborhood of the given element. The neighborhood of an element is defined
based on the Euclidean distance and is principally a ball of radius r, having as center
the element.

The basic idea of an S3V tree is to partition the n-dimensional search space into
disjoint cells. It is similar to the LSD (local split decision) tree presented in [Henrich
et al., 1989]. A n-dimensional cell, known as an n-cell, is principally the sub-space
defined by I = I1× I2×· · ·× In where Ii = [ai, bi] ⊂ R, ai ≤ bi; i = 1, . . . , n. A S3V tree
stores the data points which lay in an n-cell, in an associated container called a bucket.
To form the tree and to present the elements as points in the Euclidean space, each
model element is mapped to a numerical vector and is then stored on the tree. A vector
consists of the numerical values of the measured characteristics defined for being used in
the matching step. For instance in UML class diagrams, the number of attributes and
methods of a class can be used in such a vector.

In a S3V tree, each node is either a directory node or a bucket node. A directory
node contains:

• Information about the boundaries of an n-cell, i.e. the intervals of Ii = [ai, bi] ⊂ R;
i = 1, . . . , n.

• The dimension d (1 ≤ d ≤ n), where a split in the interval Id should occur. It
divides the current n-cell into two sub-spaces at the dth dimension. The current
cell is therefore will be divided into two disjoint sub-cells at the next level in the
tree.

11 For simplicity, we assumed each model have n elements.

37

• The position pd (ad ≤ pd ≤ bd), where the interval Id is split into two sub-intervals
of [ad, pd] and [pd, bd] 12.

In the beginning, the elements of one model, say the second model, are stored in
trees. For each model element type there will be one tree which stores the elements of
that type. For searching the neighboring elements of a given element in the first model,
a range query is started. First, based on the element type of the given model, the
appropriate tree is selected. The search starts from the root of the tree and according to
the splitting dimensions and splitting positions, it is then followed downward the tree,
provided that there is an intersection between the range query and the intervals defined
by sub-trees. Once the bucket nodes are reached the elements in the bucket which lay
in the neighborhood of the given element are returned as the most similar elements in
the second model. It should be mentioned that the construction of the tree is done
systematically and in a way that the tree is balanced.

Reported Differences As mentioned before, after establishing the correspondence,
the elements which are not contained in the set of matching or are not identical within
the matching, are basically the elements which have to be considered in differences.
SiDiff reports the following differences when comparing two models [Kelter et al., 2005,
Treude et al., 2007]:

• Structural Changes: The elements which are not reported in the matching, are
considered to be structural differences. This consists of additions and deletions of
model elements.

• Attribute Change: For two corresponding elements, an attribute change is re-
ported when there is a change in the value of their attributes. For instance, a class
is renamed or its visibility is changed.

• Reference Change: When two corresponding elements have two different refer-
ences pointing to two different targets, a reference change is reported. For example,
a method has a new return type.

• Moves: If two corresponding elements have two different parents, a move is re-
ported. For example a class is moved to a new package in UML class diagrams.

In Chapter 4, differences between design models of our sample Java software systems
are computed in terms of the above low-level changes. The aforementioned reported
changes by SiDiff are principally the basic graph edit operation as we described in Section
2.2.

12 For simplicity, the sub-intervals are shown by closed ends. But since the cells should be disjoint at
pd, in practice one end is considered to be open.

38

2.4.2 SiLift Semantic Difference Lifting Engine

As we saw earlier in Sections 2.2 and 2.4.1, the computed difference between models are
expressed in terms of basic graph edit operations. Although these low-level operations are
conceptually correct and can completely capture the differences between models, they
are difficult to comprehend by human developers who are used to working on higher
abstraction levels. In existing tools and editors13, models are graphically represented
and the developers are used to working and modifying the models from this perspective.
Such approaches keep internal representations of models out of the sight. This not only
provides better comprehension and flexibility, but also hides the complexity of internal
presentations and lets the developers work on a conceptual higher abstraction level.

Although the state-of-the-art tools let the users work at a higher abstraction level,
model modifications are internally represented in terms of low-level changes. Addition-
ally, the diversity of tools and model types results in various internal representations
which make the situation even more complex, since the reported low-level changes are
then, not only dependent on model types and internal representations but also on the
supported edit operations. Therefore, it is required that meaningful changes are speci-
fied in a higher abstraction level. Such conceptual high-level operations must correctly
reflect the way that models are edited by users and, model editing and versioning tools
must support these kind of high-level edit operations [Kehrer et al., 2012c].

The above discussion leads to the questions whether it is possible to properly cat-
egorize and group the low-level operations into more conceptual high-level ones. This
has led to research attempts of semantically lifting the low-level operations into more
abstract high-level operations [Kehrer et al., 2011, Langer et al., 2013]. As a simple ex-
ample of such a high-level operation, we consider the deletion of a package in UML class
diagrams. Once the package is deleted, all of its contents are simultaneously deleted.
This results in many deletions of classes, interfaces, relationships, etc. that are reported
in terms of many low-level graph edit operations defined on the abstract syntax graph
representation of the model.

In the rest of this section, we first review how models are typically edited and what is
a high-level change. In this regard, we provide an example. Later, we discuss how SiLift
copes with the problem of semantically lifting low-level changes into high-level ones.

Editing of Models As we described earlier, even simple conceptual high-level editing
operations provided by model editors and related tools, typically consists of many low-
level tool-dependent operations. Such low-level operations are dependent on the internal
representation of models as well as technologies used. In state-of-the-art tools, the
internal representation is typically an implementation of the abstract syntax graph of
the model (see Section 2.2). Therefore, the basic graph edit operations are supported as
low-level operations in such tools and the conceptual changes are expressed in terms of
these low-level edit operations.

13 To name a few: IBM Rational Rose, ArgoUML, Papyrus, Sparx Enterprise Architect and Magic-
Draw.

39

M1

M2

Figure 2.8: Editing of model M1 into M2 (Adapted from [Kehrer et al., 2011]).

In order to better comprehend what does a high-level edit operation consists of, we
explore an example provided in [Kehrer et al., 2011]. In this example, it is assumed that
the internal representation is based on the EMF Ecore. Figure 2.8 shows a UML2 model
of M1 which has been modified into model M2. The following changes have occurred:

1. The association end of WorksFor is restricted14 towards class Person.

2. A refactoring of pullUpAttribute has been applied. Therefore, the common at-
tribute, i.e. name, of classes Developer and Manager has been moved to their
parent class of Person.

In order to better comprehend the low-level changes caused by the previous con-
ceptual changes, we need to know how the model is represented internally. Figure 2.9
shows an excerpt of the EMF Ecore implementation of classes and associations in UML2.
Here, classes and associations are expressed via Class and Association respectively.
Association ends are expressed via Property. In this excerpt, association ends can
belong to classes via ownedAttribute or to associations via ownedEnd. In our sce-
nario, it is assumed that navigable ends are owned by classes via ownedAttribute
and non-navigable ends are owned by an associations via ownedEnd.

14 For model M1 of this example, it is assumed that in the absence of arrow heads for the association
worksFor, the association is directed in both directions from Company toward Person and vice versa.
Here restricting the navigability means that, the association is modified to be just one way from Company
to Person in M2.

40

Figure 2.9: Excerpt of UML2 metamodel implemented in EMF (Adapted from [Kehrer
et al., 2011]).

Using the previous metamodel, the high-level edit operation of restricting the asso-
ciation end of WorksFor toward the class Person is depicted by Figure 2.1015. This
conceptual operation is internally expressed via the following low-level changes:

• The reference of ownedAttribute from the class Person to the property employer
has been removed.

• The reference of class from the property employer to the class Person has
been removed.

• The reference of ownedEnd from the association worksFor to the property employer
has been added.

• The reference of owningAssociation from the property employer to the as-
sociation worksFor has been added.

Similarly, the refactoring of “pullUpAttribute” causes even more low-level changes.
Moreover, in this refactoring the number of child classes that have the common property,
is not fixed and might change from one application to another.

It should be mentioned that using the low-level graph edit operations, in addition
of being hard to comprehend, brings the inconsistency problem into the scene [Kehrer
et al., 2013a,b]. It is then quite possible to have a bunch of low-level operations that
violate the consistency of a model. For instance, in our previous example of Figure
2.10, it is possible to create a property without creation of the necessary references.
Such inconsistent models cannot be processed neither by tool editors nor by model
transformation engines and code generators. Therefore, it is necessary that such low-level
operations are correctly identified and properly grouped together to form the high-level
edit operations. Such operations are conceptually applied from the users’ perspective
and are consistency-preserving. In the next section, we describe the SiLift approach for
conceptually lifting the low-level changes to high-level ones.

15 In the picture, the green color shows addition and the red color shows the deletion.

41

Figure 2.10: Internal representation of restricting the association end WorksFor
(Adapted from [Kehrer et al., 2011]).

SiLift As we described earlier, conceptual high-level changes are more descriptive than
low-level edit operations. Moreover, they are also consistency-preserving. When we com-
pare two models, the changes can be expressed either via low-level graph edit operations
or high-level conceptual operations. The detection of low-level changes can be done us-
ing generic model differencing engines as described in Section 2.3.3. Once the low-level
changes are correctly detected, they should be investigated and appropriately grouped
in a way that high-level changes can be recognized. In other terms, low-level changes
should be semantically lifted to identify high-level changes.

For detection of low-level changes in this dissertation we used the SiDiff model dif-
ferencing framework which was described in detail in Section 2.4.1. For post processing
the low-level changes and detecting high-level changes we used the SiLift semantic lifting
engine [Kehrer et al., 2011]. To detect patterns in low-level changes, SiLift internally
uses Henshin. Henshin is an in-place16 model transformation engine [Arendt et al., 2010].
The Henshin transformation language uses pattern-based rules on low-level changes. A
rule consists of a left hand side graph (LHSG) and a right hand side graph (RHSG).
These graphs are model patterns expressed in terms of underlying internal structure.
Furthermore, a rule consists of attributes, parameters and application conditions. Ap-
plication conditions are logical conditions which should be met in order to apply a rule.
They control the existence (positive application conditions) or absence (negative applica-
tion conditions) of other specific patterns in a model in addition to the original patterns
of interest, e.g. if a node additionally has an outgoing or an incoming edge. Once an
LHSG is found and the application conditions are met, the LHSG is transformed to the
RHSG based on the transformation defined in the rule.

Since the recognition of high-level changes basically is a pattern matching in low-
16 In-place model transformation engines work on the given model directly without creating any copy

of it.

42

Rule restrictNavigability(p1)

«preserve»
p1:Property

«require»
C1:Class

«preserve»
C2:Class

«require»
p2:Property

«preserve»
a:Association

ownedAttribute

association

owningAssociation

memberEnd

association

type type

class
ownedAttribute

class

memberEnd
«preserve»

ownedEnd

«preserve»«require»«require»

«require»«require»
«require»«require»

«require»«require» «require»«require»

«delete»«delete»
«delete»«delete»

«create»

«create»

«require»«require» «preserve»«preserve»

Figure 2.11: Recognition rule of restricting the association end (Adapted from [Kehrer
et al., 2011]).

level changes, in order to detect high-level changes, SiLift has transformed edit rules
of Henshin into recognition rules. In a recognition rule, the appropriate pattern of a
high-level change is defined in terms of low-level changes [Kehrer et al., 2013a]. Henshin
finds the defined patterns of low-level changes in the computed differences of two models
in order to detect the corresponding high-level changes. For better comprehension of
such rules, we provide the recognition rule of our previous example [Kehrer et al., 2011].
Figure 2.11 demonstrates the recognition rule of restricting the association end in our
previous example. The “stereotype” of «preserve» represents the model elements
which are present in both LHSG and RHSG. Such elements form the core of the pattern
which should be found. The stereotype of «require» has a similar role to «preserve»
in the sense that the elements should be present in both LHSG and RHSG but they are
not considered as the core of the pattern (positive application condition). The stereotype
of «delete» represents the elements which are deleted from the LHSG. Similarly, the
stereotype of «create» represents the elements which should have been created in
RHSG. In the core pattern, the values of c2, a and p1 are the parameters of the rule
which are bounded to the appropriate class, association and property respectively. Once
the above pattern is found in the low-level changes, SiLift reports the high-level change
of restricting the association end from model M1 to M2.

2.5 Summary

In this chapter we reviewed the basic or the most important concepts in the field of
MDE. In this regard, we learned that MDE increases productivity by elevating the
level of abstraction and separation of business logic development from the underlying
technological requirements for its implementation.

43

In MDE, models are primary artifacts. The semantics and syntax of a model is
defined in the (immediate) upper level in the abstraction hierarchy. Such a model in the
upper level which defines the relationships in models of the lower level is referred to as a
metamodel. The model to metamodel relationship is a relative relationship, i.e. a model
conforming to a metamodel can be itself be a metamodel for models in its (immediate)
lower level. Such hierarchical relationships allow a system of interest be handled from
its abstraction at the top, to its implementation at the bottom. In OMG standards, the
level of abstraction is limited to four levels where the topmost level is self descriptive.

Model transformations let the models to be transformed to other models or to code
for execution. In this regard, a PIM (platform-independent model) can be transformed to
another PIM or to a PSM (platform-specific model), defined on the platform of interest
for implementation.

Since models are the main artifacts, the collaborative development of models requires
that they are properly handled by model versioning systems. A model versioning system
allows a consolidated model be created from different versions in the collaborative de-
velopment environment. In this regard, it is essential that differences between versions
of a model are properly detected, resolved and merged.

Model differencing approaches address the previous issue by comparing models. First,
corresponding elements between two models are detected and based on them differences
are computed. The typical approach in model versioning and models differencing is
to regard models as typed graphs. This way a proper difference between two model
can be computed. The differences between models are basically expressed in terms of
basic graph edit operations. Although such operations are correct, they are too detailed
to be comprehended by developers who use to working on a higher abstraction level.
Therefore, such low-level graph edit operations are semantically lifted to more abstract
edit operations which are referred to as high-level operations.

Since in this dissertation we are dealing with design models of Java software systems,
we reviewed how low-level and high-level changes between such design models are com-
puted. In this regard, we reviewed the SiDiff model differencing and the SiLift semantic
lifting engines in more details by providing a detailed example.

44

Part II

Generating Test Models

45

CHAPTER 3
Controlled Generation of Models

with Defined Properties

In this chapter, we focus on how we can generate models which have more realistic
properties and how one can finely control the generation process of such models. The
controlling mechanisms offered in this chapter allow models with various specified prop-
erties to be generated.

In this regard, we first review the related works with particular attention to the
approaches and algorithms proposed to generate models. We present a set of criteria
which we have collected from different research works and we investigate whether such
criteria are met in the existing approaches. Most of these criteria are of great importance
for generating test models for model differencing, model merging tools etc. We found
out that almost all of the approaches and algorithms in the related works lack three
important criteria of our list.

More specifically, the state-of-the-art model generation algorithms and methods, have
very limited controlling mechanism on the generation process of models, resulting the
generated models be of limited use. It is also not easy to define and create arbitrary com-
plex structures of interest in the generated models. Moreover, they have not addressed
how stochastic properties of the generated models should be handled or recreated. Such
criteria are of great importance when generating test models for model differencing,
model versioning and model analyzing tools.

The identified deficiencies are then addressed in this chapter, by proposing a tool
which offers fine tuning mechanisms to control the generation process of models. The
proposed approach additionally addresses how test models with specific complex struc-
tures and stochastic properties can be generated.

The rest of this chapter is organized as follows. Section 3.1 provides an introduction
to the topic and presents the criteria which should be met by artificial model generators.
Section 3.2 will review the related works in detail. We will investigate which of those
criteria is met by any of the current state-of-the-art approaches in the field of model

47

generation. The shortcomings in the existing approaches are identified, and then are ad-
dressed in Section 3.3. In this regard, Section 3.3 is completely devoted to our approach
for generating artificial models. There, we will introduce The SiDiff Model Generator
tool. We will review the general features of the tool and where it can be used. We will
also describe how models are modified by the tool and how new models are generated.
The identified deficiencies in the existing approaches, i.e. controlling of the generation
process and statistical properties of the generated models are addressed in detail in Sec-
tion 3.4. Performance evaluation of the model generator is provided in Section 3.5. The
chapter ends with a summary of the presented materials in Section 3.6.

3.1 Introduction and Background
As discussed in Chapter 1, MDE approaches, algorithms and tools have to be validated,
checked and evaluated from different aspects such as quality, efficiency and scalability.
Model transformation, model differencing, model versioning and merging tools are just
few of many where test models are of much need.

Unfortunately appropriate test models are not readily available since they are quite
scarce and more importantly they often lack the desired properties and features. Manu-
ally generating many test models is very tedious and even sometimes impossible. There-
fore, some test model generators have been proposed in recent years, each offering a
variety of features. It is well established that generating of models is a challenging task
and the existing algorithms and methods have tackled different aspects of this.

In this section we first consider the most fundamental criteria which should be met
by a typical model generator. The list of criteria has been formed by the studying the
state-of-the-art literature in the field of model generation (see Section 3.2). The list
is relatively comprehensive, i.e. it can be applied to various model generators, although
possibly with just few exceptions. Such a list lets us study different aspects of the existing
model generators and assists us to highlight possible deficiencies in the field. We first
present the list and then we discuss what each criterion is intended for. Typically a
model generator should address the following criteria:

C1 The artificially generated models must be valid and consistent with respect to their
corresponding metamodel.

C2 The generated models should fulfill the requirements which are additionally ex-
pressed in terms of OCL constraints. For instance uniqueness of names or bounds
on numerical values are two frequent constraints of these types.

C3 There should be a capability for creating valid complex structure within models.
Such complex structure have to be formed with respect to the metamodel. They
are usually formed by possibly combining model elements or by modifying model
elements through permissible edit operations defined for modifying them. As a
simple example, in the UML class diagrams one can consider the creation of an
association which is composed of a node, two association ends and some edges.

48

C4 The generation of the models should be under control, i.e. the generator should
provide some mechanisms in order to let the user control the generation process.

C5 In order to obtain realistic models, a model generator should have the capability of
generating models with desirable statistical properties. For instance the frequency
or distribution of different model elements and their internal relationship should
be under control and should typically resemble real properties one observes in true
software systems.

C6 Considering a set of time-variant related models, i.e. model histories, one should
also be able to control the amount as well as the characteristics of changes between
subsequent models.

C7 To be useful in the domain of model differencing and model versioning etc., a model
generator should be able to generate differences between models (see Section 2.3.1).

Before moving to the next section, we discuss why such constraints are important.
The first criterion is principally the most essential one in our list. If generated models
are not conforming to their metamodel, they are not useful at all, since they are not valid
constructs according to the metamodel, violating the most fundamental assumption in
MDE (see Section 2.1).

Although OCL is not the only option to express other constraints of interests on
the generated models, it is widely used and many MDE tools and approaches employ
it (see Section 2.1.4). Therefore, supporting OCL constraints is of particular attention
in the field, although very limited subsets of it have been covered in all of the existing
approaches (see Section 3.2).

Creating complex structures of interest is also quite important, specially in the field
of model transformation. Such complex structures are formed with different intentions
in mind. For instance, in model transformation testing, the complex structures are
formed based on the aspects of the transformation which should be tested [Fleurey
et al., 2004, Baudry et al., 2006, Brottier et al., 2006]. However, in model differencing
and merging the editing steps, i.e. the differences, which results in simple or complex
structures are more useful. This way, the changes between models can be derived and
different versions of models can be merged into a unified version [Brosch et al., 2012,
Kolovos et al., 2009]. Thus, our criterion of C7 is quite essential in model differencing
and versioning tools. Moreover, the generation of models should be under control. This
helps different properties and characteristics of interest to be created on demand [Pietsch
et al., 2012a, Baudry et al., 2006].

In many of the testing scenarios specially in model versioning, differencing and merg-
ing tools, it is quite essential that the generated models represent the required stochastic
properties [Shariat Yazdi et al., 2014b, 2013]. This is also true when we consider model
histories where each model is derived from its predecessor by some modification. Such
changes are not independent of each other and the artificially generated model histories
should additionally reflect the real properties of changes one observes in true software
models [Shariat Yazdi et al., 2014a].

49

In Section 3.2, we will see that the state-of-the-art works do not meet some of the
above criteria. Specially, C7 is not met by any of the existing approaches. Moreover,
the proper controlling mechanisms (C4) for generating models, stochastic properties of
the generated models (C5) and model histories (C6) are not addressed by them. These
three criteria are principally the points that this dissertation is going to contribute.

3.2 Existing Approaches for Generating Models

In this section, we try to address the existing related works in the field of generating test
models for MDE tools. To the best of our knowledge, there is just one survey which to
some extend has a similar intention [Wu et al., 2012]. In this survey, the authors were
interested to see where the generated models are used, which criteria are used to select
model instances and which tools are there to produce models.

Using relevant keywords, the authors used a systematic way to find papers. This
means that some of the reported papers in that survey are not completely in the direction
of our research interests. Rather, we are more interested to see how models are generated
and which algorithms and methods are proposed in this regard. More importantly, we
will investigate the state-of-the-art works in order to see if the presented approaches and
algorithms fulfill the criteria of C1 to C7 mentioned earlier in Section 3.1. Since C7, i.e.
support for the generation of differences, is not met by any of the existing approaches,
we will not report it in the coming sections when we review each of the related works,
item by item. The interested reader will get other useful information by studying the
work presented in [Wu et al., 2012].

By studying the related literature, we can categorize the proposed approaches and
algorithms into two main categories. The first category consists of approaches and
algorithms which directly try to generate models. Such approaches can be further divided
into approaches which use non-formal methods and the approaches which use formal
methods. The second category for generating models consists of the approaches that
indirectly generate models. Figure 3.1 shows this categorization more clearly.

Model Generating
Approaches

Direct
Approaches

Direct Formal
Approaches

Direct Non-formal
Approaches

Indirect
Approaches

Figure 3.1: Categorization of model generating approaches.

50

We present the related literature based on this categorization. To this aim, Section
3.2.1 reviews the approaches that directly generate test models using non-formal meth-
ods, while Section 3.2.2 presents the approaches which use formal methods. Section
3.2.3 is devoted to the approaches which indirectly generate models. In each section, the
related literature are presented in the chronological order. Reviewing of related works
ends with a summary of our findings in Section 3.2.4, highlighting the deficiencies in the
existing approaches which is addressed by this dissertation.

The reader who is just interested in the results and summary of our literature review,
might directly refer to Section 3.2.4 and skip detailed discussions in Sections 3.2.1 to
3.2.3.

3.2.1 Direct Non-formal Approaches

In direct non-formal approaches, models are generated using algorithms and methods
which are not rooted in formal foundations such as graph grammars [Ehrig et al., 2009].
In these approaches, the generation of models are mostly motivated by the application
domain. For instance approaches of [Fleurey et al., 2004, Brottier et al., 2006] are mo-
tivated from the field of model transformation testing while [Pietsch et al., 2012a] is
motivated from model differencing and model versioning. In this section we chrono-
logically review related works and we investigate which of our criteria is met by each
approach.

Approach of [Fleurey et al., 2004] In this paper, the authors generally address the
problem of testing in MDE. They also coarsely cover the testing of model transformation
and point to the test models generation problem from this perspective. In this work, no
practical implementation is provided and the authors just highlight some general aspects
when considering testing of transformations and test models generation. The concepts
presented in this work are used in other works to generate models, e.g. [Brottier et al.,
2006, Wang et al., 2008].

In this work, the authors suggest to specify parts of the metamodel which is more im-
portant from the testing point of view. Such subset of the original metamodel is referred
to as the “effective metamodel”. They suggest to use partitioning of the metamodel
based on the interesting aspects in the transformation program which should be covered
and tested.1 For the specified partitioning, appropriate values are assigned. The values
are chosen in a way that help with testing purposes, for example values of type String
are typically chosen to be an empty and a non-empty arbitrary strings. Combinations of
some of those partitioning with their associated values, are referred to as “model frag-
ments”. The model fragments which are essential and should be be covered for testing,
are referred to as “covering items”.

1 To understand what is a partitioning in practice, please refer to the description of the approach of
[Brottier et al., 2006], in which the authors partially implement the concepts presented in the work of
[Fleurey et al., 2004]. Moreover, a detailed and step by step implementation of ideas presented here is
discussed in [Wang et al., 2008].

51

The suggested strategy is to use covering items as well as other model fragments to
instantiate the test models. To this aim, covering items should be instantiated first and
then this partially generated model is completed in order to make it conforming to the
metamodel. Not all of covering items are expected to be in one generated model, so they
can be covered in a new model or can be added to the same model. This has effects on
the properties of the generated models and can be controlled by user through specifying
size, minimum and maximum number of model elements or covering items. Another
issue affecting the property of the generated models is the order in which covering items
and model elements are instantiated. To this aim, they suggest to use the Bacteriologic
approach2 to generate various test models.

Although the approach presented by [Fleurey et al., 2004] has not been implemented,
it can be judged if it covers our criteria. By this approach, the created models will most
likely be valid according to the metamodel, so C1 is covered. The OCL constraints,
i.e. C2, are not addressed and therefore we assume that they are not covered. Creating
complex structures can be supported through covering items and how they are formed
and linked. Due to this, not every arbitrary detailed complex structures can be created
and C3 is partially supported. The generation process can be just controlled via defining
how the covering items are present in the generated test models, so C4 is just quite
limitedly supported. Controlling statistical properties and generating model histories
are not covered, so C5 and C6 are disregarded.

Approach of [Baudry et al., 2006] The authors discuss some challenges with re-
spect to testing of model transformations and highlight different issues for developing
techniques of such testings. For testing a transformation, they believe that each class of
the input metamodel should be instantiated at least once in a model of the generated test
sets. Regarding attributes in the generated models, they think that some representative
values should be employed in the generated models. This line of thought is actually
similar to the partitioning approach introduced in [Fleurey et al., 2004]. More com-
plex structures and properties are obtained from combining these simpler partitioning
strategies and the concept of model fragments.

The authors reported to have developed a tool that automatically generates test
models. The generated test models were expected to satisfy some criteria which they
defined for testing of their transformation. The authors did not mention the criteria
explicitly but they mentioned that those criteria are black-box criteria which should
cover some structures of interest in the source metamodel of a transformation (see Section
2.1.5). In order to cover those criteria, they reported that their generation algorithm
has the following variation points: (a) it is possible to choose values of properties form
a particular range, (b) it is possible to choose whether the instantiated model fragments
go to one test model or to a newly generated test model, and (c) it is possible to decide
how to build new model elements in order to complete the partially generated model
conforming to the metamodel.

2 Bacteriologic approach is a kind of genetic algorithms [Michalewicz, 1996, Sivanandam and Deepa,
2008].

52

In this work, the generated test models are conforming to the metamodel, thus C1
is satisfied. The authors refer to OCL constraints from transformation specification
point of view. They are not considered in the generated test models, so C2 is not
addressed. Generation of complex structures is similar to the partitioning approach, so
C3 is partially fulfilled. The generation of test models is controlled by the previously
mentioned variation points, so C4 is partially satisfied. Stochastic properties of the
generated test models and model histories are not addressed, thus C5 and C6 are not
satisfied.

Approach of [Brottier et al., 2006] The focus of the work is about generating
test models for evaluation of model transformations. This work can be regarded as a
restricted practical implementation suggested by [Fleurey et al., 2004].

In the beginning, the effective metamodel has to be specified. The effective meta-
model is a subset of the given metamodel which is considered to be more relevant for the
testing scenario. In the next step, the effective metamodel is partitioned into disjoint
subsets provided that the union of the subsets is the effective metamodel. Such parti-
tioning is interesting from the testing point of view and the instances of them should be
generated in the test models [Fleurey et al., 2004]. Model fragments are formed by com-
bining some of the partitions, they show possible structures whose instances are required
to be present in the generated models. The algorithm then tries to generate instances
of model fragments and completes them in order to build valid instances of the given
metamodel.

In their approach, they partitioned the elements in the effective metamodel whose
types were primitive, e.g. attributes with the String or Integer type. As an example,
strings were typically partitioned to an empty and a non-empty random strings3. Later,
the model fragments were formed by combining such partitions, their instances were
created and finally the created instances were completed to be conforming to the meta-
model. The generated test models are strongly dependent on the partitioning strategy
as well as the way model fragments are formed and completed.

To control the generation process, they defined some variation points in the algo-
rithm. The maximum and minimum number of model fragments to be used and also
the strategies of using the existing fragments or creating new ones, are two examples of
such variation points in their approach.

In their work criterion C1 is covered, i.e. models are correct based on their meta
model, but C2 is not met and the generated models do not satisfy OCL constraints.
Regarding the complex data structures, the user has the possibility to define model
partitioning and model fragments in a way that some complex structures are created,
although with limitations. Therefore, criterion C3 is not fully met by their model
fragments approach and not all complex edit operations are achievable there. Controlling
the generation process is done via variation points defined in the algorithm, so C4 is

3 Although the union of such partitioning, does not produce all possible strings, from the practical
point of view, the model fragments which can be formed by them are sufficient for testing purposes
[Fleurey et al., 2004].

53

supported. Neither statistical properties (C5) nor model histories (C6) are covered by
that approach.

Approach of [Lamari, 2007] This work is a conceptual discussion about generating
test models for model transformation tools. In this regard, the author discusses about
verification of model transformations. In such verifications, the aim is to verify if a
transformation satisfies its specified requirements.

The author suggests black-box testing based on the partitioning method. The par-
titioning method discussed in this work is principally the method discussed in [Fleurey
et al., 2004]. Since no issue regarding the implementation is addressed in this work, it
is not possible to verify our criteria of C1-C6 directly. Therefore, we can assume that
the same argument we had for [Fleurey et al., 2004], holds here as well.

Approach of [Wang et al., 2008] This work can be regarded as a practical imple-
mentation of the partitioning approach introduced by [Fleurey et al., 2004] for testing
model transformations. In this work the authors describe their implementation in detail.

As we explained earlier, [Brottier et al., 2006] had already implemented the parti-
tioning approach of [Fleurey et al., 2004]. The novelty of this work in comparison to
the implementation done by [Brottier et al., 2006] is that here the authors obtain the
effective metamodel automatically from the transformation rules. In addition, they con-
sider the model transformation when deriving the covering items. More precisely, they
automatically derive the appropriate values for partitions from the “Tefkat” transforma-
tion code. Tefkat is a declarative transformation language. The values are derived by
analyzing the transformation rules, e.g. when there is an assignment of a constant value
or a comparison involving constants, such constants can be used as candidate values for
testing. Such values are combined with the values which are derived automatically from
the effective metamodels. This set of values is then used to form the covering items
which are finally covered in the generated test models.

The generated test models are conforming to the input metamodel of the transfor-
mation, so C1 is supported. OCL constraints are not discussed, so C2 is disregarded.
Complex structures in the generated test models are created via the covering items, so
due to our previous discussions C3 is partially supported. The algorithm does not have
much control on the generation of the test models, except through the way that covering
items are instantiated and delivered in the test models. Therefore, C4 is just partially
supported. No stochastic properties of the generated items and no model histories are
considered, so C5 and C6 are not fulfilled.

Approach of [Mougenot et al., 2009] This approach mainly concerns about uni-
formly generation of huge test models based on a given metamodel. To uniformly gen-
erate test models, they employed the Boltzmann method. The Boltzmann method is
reported to be able to uniformly create tree structures with a linear run-time complex-
ity. Here, the uniformity means that for a tree of given size (size is the number of nodes

54

in the tree), the method is capable of uniformly generating all tree structures of that
size, i.e. each of those trees will be generated with the same probability.

To generate the models, the metamodel has to be transformed into a tree structure.
The rules of the tree grammar for the Boltzmann method consist of two binary operator
of union and product, and one unary operator for creating sequences of elements with
arbitrary size. A union generates either of two elements while the product produces both
of them. Moreover, in addition to an empty element type, two more element types are
considered. The first group is elements with “leafs” type and the second one is “nodes
with arbitrary types“. Using the previously mentioned rules and types, binary as well
as general trees can be generated by the Boltzmann method. The generator rules are
parametrized. The parameters of a rule are computed by solving their corresponding
system of polynomial equations which delivers the probability of applying each generator
rule. For each of the rules, the probability of applying that rule is calculated in a way
that trees are uniformly generated.

The process of transforming a metamodel into a tree is not complete, i.e. not every
model element can be transformed into a tree, therefore they just consider the core of
the metamodel for transformation. The reason for this is that metamodels are more
expressive than trees. The transformation of a metamodel is done in three steps. Con-
tainment relationships were transformed first, followed by inheritance relationships in
the second step. Therefore, other types of relationships are not considered. The last step
considered the cardinalities. The required attribute values such are names, visibilities
etc. were randomly generated.

In this approach there can be the cases that some elements in the metamodel are
not transformed to the tree representation and therefore cannot be instantiated. By this
approach C1, i.e. correct instances of the metamodel is met. OCL constraints is not
considered, so C2 is disregarded. In this approach, no complex structures are supported
and C3 also is not met. Regarding controlling the generation of test models, since the
aim of this approach is uniformly creating models, there is no control on the fine-grained
generation process and therefore C4 is not regarded. From the statistical properties,
just uniform generation of all trees with the same size is supported, thus C5 is not
satisfied and there is no control on the generation of specific elements of interest and
their frequencies. Additionally model histories are not supported by this approach (C6).

Approach of [Pietsch et al., 2011, 2012a] These works are the contribution of
the author of this dissertation for generation of more realistic test models and address
the deficiencies in the field. They are also the basis for the materials presented in this
chapter. The details of the approach is presented in Sections 3.3 to 3.5. But in order to
compare all approaches, we review them briefly here.

We were interested to generate test models for MDE tools and editors, specially in the
framework of model differencing and model versioning. The work is principally based on
the theoretical background presented earlier in Sections 2.2 to 2.4. The basic idea is that
the models have abstract syntax graph (ASG) representations. Such representations are
extensively employed by many tools (see Section 2.4). In ASG representation, models

55

are considered as attributed typed graphs. ASG representation principally imposes the
legitimate operations that can be used to alter models. As stated earlier, the basic graph
edit operations are creating, deleting, moving and changing of elements, attributes and
references.

As discussed in Section 2.4, these low-level graph edit operations can be combined
together in order to form more complex high-level edit operations. The low-level and
high-level edit operations are then used in order to modify a base model in order to
derive new models. The base model can be an empty or a non-empty model. In each
modification step, the consistency of the model to the metamodel as well as the spec-
ified OCL constraints is preserved. The modification of models is controlled through
different fine control mechanisms. More importantly, the model modification through
edit operations allows that stochastic properties of model elements to be under control.
Additionally, generating model histories is also possible by this approach.

To summarize this work, the generated models conform to their metamodel, so C1
is fulfilled. Due to the complexity of OCL in general, OCL constraints are not fully
supported, so C2 is partially fulfilled. Generation of arbitrary complex structure are
handled through defining appropriate high-level edit operations that create those struc-
tures in models, so C3 is fully supported. The generation of models is supported through
different controlling mechanisms. Thus, fine control of generation process is fulfilled and
C4 is supported. The special treatment of model generation through edit operations
allows the stochastic properties of a model to be under control. Additionally, this way,
model histories can be also generated. Therefore, both of C5 and C6 are fulfilled.

Approach of [Laurent et al., 2013] This research work is concerned with generat-
ing processes (behavioral) models. Such test models are reported to be used in different
domains, e.g. in business, software and medical fields. Generation of process models
was motivated by replicating operations which are performed by modelers when creat-
ing them. Such operations are typically high-level operations which preserve work-flow
patterns in the models.

The generation of process models is done by employing multi-objective genetic algo-
rithms. Genetic algorithms are heuristic search methods. They scan the search space for
the optimum or near to optimum point of the specified objectives. They are successfully
used in domains where it is quite hard or impossible to find the optimum point due to
complexity of the problem or the search space. Genetic algorithms are motivated by
the natural evolution in which a population is evolved one generation after the other.
In each step the best members of the population survive and the least elite ones are
eliminated [Michalewicz, 1996, Reeves and Rowe, 2002]. The evolution occurs through
exchanging of individuals’ genes as well as mutation in the genes.

In the fist step of a genetic algorithm, a collection of initial individuals are created
(usually randomly) and is refereed to as the “population”. The properties of interest are
encoded in vectors as “genes”. In each iteration of the algorithm, these genes can be
inherited, combined or mutated through the “inheritance”, “crossover” and “mutation”
operations respectively. The algorithm selects “fittest individuals” of the population in

56

each iteration and tries to generate new individuals by performing previously mentioned
operations on their genes. The selection of the fittest ones, is based on a “fitness func-
tion” which evaluates the individuals’ “fitness” with respect to objectives of interest.
There are different selection strategies that can be applied in practice. The purpose of
performing gene operations is to cover and scan the search space as well as improving
the optimum point, through exchanging of information in genes. The stopping condition
of the algorithm is usually when there is no better improvement in the optimum point
after a specified number of iterations.

In the work of [Laurent et al., 2013], three objectives are defined for generation:
(a) size of the process i.e. how many nodes it has, (b) the number of each element, and
(c) constraints on the static structure of the process, e.g. the number of outgoing edges
for a “ForkNode”. The initial population were made of a simple process, i.e. the one
with just two start and end nodes, and some user-defined processes. For altering the
models, they used just mutation operations. Their set of mutation operations consisted
of 18 high-level change patterns which were defined on processes. For having more
control on the generation processes, they assigned probabilities to change patterns. The
pattern with higher probability were more likely to be applied than a pattern with a
lower probability. Such probabilities have consequences on the final generated processes.
This concept is similar to our work presented earlier in [Pietsch et al., 2011, 2012a], in
which the model generation is stochastically controlled through assigned probabilities to
edit operations of models (see Section 3.4.1)4.

In the presented approach, the correctness of the generated processes according to
their metamodel is satisfied and C1 is fulfilled. Supporting OCL constraints is not
covered in this work, so C2 is not addressed. Complex edit operations are supported
by change patterns which were applied to the processes during their generation, so C3
is supported. Controlling the generation process is defined by probabilities assigned to
the change patterns, so C4 and C5 are both fulfilled. The generation of model histories
is not considered and C6 is disregarded.

Approach of [Xiao et al., 2014] The authors tried to generate large test models
for scalability and performance evaluation of model transformations in industrial appli-
cations. Their approach is to randomly generate test models which are conforming to
the input metamodel of the transformation. To achieve that, their algorithm is divided
in four phases.

The first phase is to define a configuration model. In such configuration the user
specifies the configuration needed to guide the generation process. For example, the
user defines the meta-classes whose instances are roots in the model and if there is a
unique root. Roots are the starting points in the generation process. Moreover, other
constraints such as default range constraints, element range constraints, attributes range
constraints, total size of the model etc., are defined. Such constraints define default or
required values when instances of a meta-element are generated.

4 The work of [Laurent et al., 2013] is presented later than the concepts of this chapter [Pietsch et al.,
2011, 2012a], so the problems which this chapter addresses were not solved before this dissertation.

57

In the second phase, the model elements and their attributes with required values are
generated based on the configuration model. The third phase is devoted to generation
of all relationships between previously generated model elements. The last phase is the
validation phase. In this phase other user-defined constraints as well as OCL constraints
are evaluated against the generated test models. Their approach cannot handle such
constraints in the generation phase and they have to be evaluated afterward. If such
constraints are valid, the generated model is returned otherwise appropriate errors are
reported.

Conformity of the generated test models to their metamodel is supported in this
approach, thus C1 is fulfilled. The validity of OCL constraits and other user-defined
constraints are checked after the models are generated and they are not considered with-
ing the generation process, so C2 is not supported. Supporting the complex structures
is not done and C3 is disregarded. The generation process is configured by specifying
range constraints and total size of the models so C4 is partially supported. Since the
generation process is random and no other stochastic properties are supported, C5 is
not fulfilled. Model histories are not considered and C6 is not fulfilled.

3.2.2 Direct Formal Approaches

This category considers the methods of generating test models which have roots in for-
mal and mathematical foundations. Such approaches are not quite frequent. Although
the mathematical foundation of formal methods provides very precise framework for gen-
erating models, they are still not capable of handling common difficulties in generating
models. For instance, it is not possible to appropriately handle OCL constraints and the
generation process can hardly be controlled. In this section we just found three related
works. Since they are principally the same idea developed and elaborated over time, we
present all of them under one approach.

Approach of [Ehrig et al., 2006, 2009, Taentzer, 2012] In this approach graph
grammars have been employed to generate instances of a given metamodel. In the latest
publication, theoretical aspects of graph grammars are discussed while in the earlier
publications, the generation algorithm and its implementation are covered. In graph
grammars, an input graph is modified, i.e. transformed, to an output graph based on
sets of defined rules. A rule is a mapping between two graph structures, known as left-
hand side (LHSG) and right-hand side graphs (RHSG) of the rule. Whenever the LHSG
of a rule is found within the given input graph, the input graph is transformed to the
output graph in accordance to the rule’s RHSG.

For having more control over the transformation, “application conditions” are de-
fined. The application conditions are sets of conditionals which should be met before
the transformation can be performed. They principally check whether some specific
patterns of interest are un/available in input and output graphs.

In this approach, the metamodel is first transformed into a typed graph. Then
appropriate rules were defined for transformation of the graph. The rules were defined

58

in three layers and applied one layer after the other. The approach should be started
from an empty graph and then the three layers of rules be applied to it. The layer 1
rules create instances of each class in the corresponding metamodel. The rules of layer
1 are applied as often as desired. It means that the number of application of these rules
have to be defined by the user. Typically, the users specify how many of each rule in
layer 1 should be applied. Such numbers can also be randomly set.

In layers 2 and 3, the rules create links between the already created instances of
the classes in the metamodel. Layer 2 rules are responsible for creation of associations
with 1-multiplicity restriction. As an example, a rule searches for patterns of two nodes
without a direct association and connects them by creating an association between them.
Another example is to find one node, creating a new node and then connecting them.
These rules should be applied as long as the multiplicity constraints are satisfied and the
rules can be applied. Layer 3 rules, create associations with 0..n-multiplicities. These
rules can be applied arbitrarily often, since such multiplicities are optional. For creating
attribute values, they used a post processing step, in which values are created once the
instances of the metamodel are created. OCL constraints are hardly supported.

By this approach the correctness of generated instance is guaranteed, so C1 is satis-
fied. The OCL constraints are not completely and directly employed in their approach,
so C2 is partially fulfilled. The creation of complex structures is not supported and C3
is not met. Generation control of the test models are just restricted to the number of
rules which are applied in layers 1 and 3, so C4 is just partially supported. Neither con-
trolling statistical properties of the generated instances nor generation of model histories
are covered in their approach, so C5 and C6 are not met.

3.2.3 Indirect Approaches

Opposed to the approaches mentioned in Sections 3.2.1 and 3.2.2, which directly generate
test models, indirect approaches generate models by employing other tools. Roughly
speaking, first the metamodel and user requirements of generation are translated into
equivalent specifications of a tool. The tool then finds an answer which satisfies the
specifications. Later, the answer is translated back to its equivalent model.

A very famous tool which is extensively used in this regard is “Alloy” [Jackson, 2002,
Jackson et al., 2014]. Alloy is an “SAT” solver which finds instances of an SAT problem,
i.e. solutions which satisfy the specified constraints in an SAT problem [Milicevic et al.,
2014]. SAT is the abbreviation of the “Propositional Satisfiability Problem” which is
shortened to “Satisfiability” or simply SAT. In an SAT problem, we are interested to see
if there is a solution for a Boolean formula which results in the formula to be evaluated
to True [De Moura and Bjørner, 2011]. If so, the formula is said to be satisfiable,
otherwise it is said to be unsatisfiable. A Boolean formula is a propositional logic formula
which is formed from Boolean variables related to each other with the propositional
operators of ¬,∧,∨,=⇒, ⇐⇒ and parentheses. SAT solvers typically work with the
Conjunctive Normal Form (CNF) of logical formulas which is shown to be efficient in
their automatic evaluation. A CNF form of a formula is its reformulating in terms of
conjunction (AND) of clauses, in which a clause is a disjunction (OR) of literals, and a

59

literal is a Boolean variable or its negation (NOT). In other words, a CNF form is an
AND combination of ORs. In a broader sense, Satisfiability Modulo Theories (SMT)
additionally considers other constraints in SAT problems, such as arithmetic constraints
and bit vectors. Therefore more extensive types of problems are addressed by SMT and
SMT solvers [Barrett et al., 2009]. A SMT problem is typically reformulated in terms
of an SAT problem and then its satisfiability is checked.

In the coming approaches which we describe in this section, typically, the metamodel
as well as other related constraints are first translated into the common constraints
language of Alloy5. Later, the Alloy Analyzer forms a CNF formula from the specified
constraints and solves it in order to find a solution which satisfies the constraints. If there
is no solution, the problem is unsatisfiable and the specified constraints are contradicting.
Once a solution is found, it is then translated back into a model. The model which is
generated in this way satisfies the original specification. In the case that more than one
solution exists, the Alloy Analyzer can deliver other solutions as well. Therefore, more
than one model can be generated which satisfies the original specifications.

Generally, the basic problem of such approaches are the difficulties in translation of
original specification into their equivalent counterparts in Alloy. Such difficulties arise
because Alloy and similar SAT solvers are quite different in nature in comparison to the
metamodel constraints and the generation requirements [Sen et al., 2009]. Moreover,
translating the specification into Alloy, finding their solution by the Alloy Analyzer and
translating the solution back to a model is very time consuming. There is also no control
on how other solutions of specifications are found by Alloy and therefore their models
counterparts will miss some desired properties, e.g. stochastic properties.

Now we take a closer look at the indirect approaches, and we evaluate our criteria
against them.

Approach of [McQuillan and Power, 2008] The authors were interested to de-
velop a language-independent metrics-specific metamodel for metrics tools. The problem
is reported to be originated from the variety of software metrics which are addressed or
proposed in literature. Such metrics are not only reported to be quite diverse, but also in
some cases incomplete, ambiguous and disputable which make developing and updating
metrics tools to be frustrating. To address the problem, the authors proposed a MOF-
compliant metamodel for handling different metrics. The metamodel is quite general
and independent of any languages or model element types. This way they managed to
define software metrics in a standard and unambiguous manner. The metrics metamodel
was then used to develop different metrics tools.

In order to generate instances of the metamodel and test their metrics tools, they
used Alloy. In this regard, they first translated the metrics metamodel as well as its asso-
ciated OCL constraints into the Alloy constraint language. The Alloy Analyzer was then
invoked in order to test the well-formedness of the metamodel and its OCL constraints,
i.e. if the metamodel as well as OCL specifications are fulfilled. The analyzer delivered

5 Two typical kinds of constraints in Alloy are: (a) Facts, which are always true for whole specifi-
cations and (b) Predicats, which are parametrized formulas that are locally applied and evaluated.

60

solutions of the specified constraints. The Alloy solutions were then transformed back
into models.

In this approach the generated models are conforming to the metric metamodel and
C1 is fulfilled. Regrading OCL constraints, the authors used very restricted subset
of OCL constraints in their approach, so C2 is partially supported. Creating complex
structures, i.e. C3 within models in not relevant in this work. Controlling the generation
of models is not possible through Alloy, so C4 is not fulfilled. Controlling the stochastic
properties of the generated models, i.e. metrics, as well as model histories are also not
relevant in this approach, so C5 and C6 are not relevant here.

Approach of [McGill et al., 2009] The authors were interested in generation of
ORM (Object-Role Modeling) models for testing the tools that generate codes from
such models. ORM models are widely used in information systems and databases to
conceptually model a system and perform queries on it [Halpin, 2006]. ORM allows
mapping between conceptual and logical levels through natural languages and intuitive
diagrams.

The authors mention two difficulties of generating ORM models: first, the validity
of the generated models in the ORM metamodel and second, producing reasonable-sized
test suites that cover wide range of ORM features for testing purposes. For generating
test models, they developed a tool called “ATIG”. ATIG takes a set of ORM features
which should be present in the generated models. The set of features is an encoded
subset of the ORM metamodel which are more relevant for the testing purposes. The
tool then generates a set of models that exhibit different combination of such features,
known as “test plans”. Combining the features, i.e. producing test plans, are done by a
tool called “Jenny”.

To find an instance, i.e. a model, that satisfies a specified combination of features,
they used Alloy. They alternatively used Jenny and Alloy to prune the combinations
until the Alloy Analyzer is able to find an instance which satisfies the combination. Once
an instance is found, ATIG translates it to an ORM model.

In this approach, the generated models are correct according the subset of ORM
metamodel which is used for testing, so C1 is partially supported. OCL constraints are
not relevant in this work, thus C2 is not considered. Complex structures is generated
through combination of features. Although combination should be pruned to find valid
instances, we can assume that C3 is partially fulfilled. Since Alloy is used to find
instances, there is no control on the way the instance is generated. Therefore, the
process of generating the ORM models is not under control and C4 is not satisfied.
The stochastic features of the generated models and model histories are not regarded,
therefore C5 and C6 are not satisfied.

Approach of [Sen et al., 2009] The authors have considered generating of test
models for testing of model transformation. The generation strategy is based on con-
straint satisfaction. Such approach is reported to simultaneously satisfy the metamodel
constraints as well as testing requirements. To this aim, they developed a tool called

61

“Cartier” that translates the EMF-based input metamodel of the transformation into
constraint language of Alloy.

Once Cartier translated the metamodel into the Alloy language, the Alloy Analyzer
solves it in order to find a satisfiable solution. Cartier then translates the Alloy solutions
back to the instances of the metamodel and delivers them as test models. Since Alloy
can deliver more than one solution of the constraints, the generated models are the
corresponding test models of such solutions. The translation of the metamodel to Alloy
is based on the partitioning and model fragments concepts presented in [Fleurey et al.,
2004]. Regarding the OCL constraints, they have to be manually translated into Alloy.
It is reported that not all OCL constraints can be transformed to Alloy since their
languages are not designed with the same intention in mind.

In this approach, the generated test models are conforming to the input metamodel of
the transformation, so C1 is satisfied. Since not all of OCL constraints are expressible
in the Alloy constraint language, C2 is partially supported. Complex structures of
interest are supported by the concept of model fragments and partitioning, so C3 is
partially fulfilled. Since Alloy solutions are used to generate test models, controlling the
generation process is not possible, so C4 is not fulfilled. Statistical properties of the
generated test models and model histories are not considered, so C5 and C6 are not
covered.

Approach of [Williams and Poulding, 2011] The authors were interested to
generate instances of a metamodel. The metamodel was not directly given, rather the
metamodel was generated from the grammar of a language which was defined in “Xtext”.
Xtext6 is a framework which allows specification and generation of general programming
as well as domain specific languages. It provides a complete infrastructure for developing
languages such as parser, linker, compiler or interpreter. It is also fully integrated into
the Eclipse IDE.

Once the grammar of the language is specified, Xtext produces a metamodel of the
grammar. This way instances of the language grammar will be models conforming to
the generated metamodel. In order to generate the instances of the language, they em-
ployed the “Grammatical Evolution” (GE) algorithm. GE can be regarded as a genetic
algorithm which is tailored to produce instances of a grammar, i.e. programs. To this
aim, they encoded the grammar rules (phenotype) into GE algorithm codes (genotype)
using sequences of integers (codon). Each integer in the sequence was correspondent
to a production rule in the grammar. The mapping started from the first production
rule of the grammar. Lets assume that the rule has n non-terminal options which can
be chosen and continued in the next step. The modulo operation of the first codon c1
to n, i.e. “c1 mod n”, was used to choose the next rule in the grammar. The process
continues similarly for the next rule, using the second codon c2 in the sequence. The
choose of a terminal out of n terminals was done similarly. The number of codons, i.e.
the length of genotype was specified by the user. The mutation and crossover operators
were used to generate new models randomly from the set of population.

6 http://eclipse.org/Xtext

62

http://eclipse.org/Xtext

The objective function of the GE algorithm was planned to be used to control the
properties of the generated models. For instance one function might just give random
models while another might impose that generated models are distinct and not similar.
Unfortunately the objective functions were not defined and the authors reported them
as the work which should be done.

Once an instance of the grammar was produced by the GE algorithm, it was trans-
formed to its corresponding model element in the metamodel. Xtext allows generation of
metamodels conforming to EMF-Ecore. Their transformation did not support assigning
values to the attributes of the generated models.

Since the models are generated from the instances of the grammar, they are con-
forming to the corresponding metamodel of the grammar. Therefore, C1 is supported.
OCL constraints are not discussed, so C2 is disregarded. Support for complex struc-
tures are not considered and C3 is not fulfilled. Since the number of codons are limited
and specified by the user, it is not guaranteed that models with big sizes are generated.
Additionally, covering all of the grammar rules is not possible this way, so some model
elements and structures might not be produced. Thus, we conclude that the generation
of models are quite limited and there is no control on the generation process, so C4 is
not satisfied. Stochastic properties of the generated models and model histories are not
considered, so C5 and C6 are not satisfied.

Approach of [Svendsen et al., 2012] In this work, authors were interested to
generate train station models. The train stations were modeled by “Train Control Lan-
guage” (TCL). TCL is a domain-specific modeling language which allows modeling of
train stations. It supports configuration and code generation for controlling the signaling
systems of stations.

Due to the special usage of train station models, it is required that the generated mod-
els have special properties which is more or less related to the way they are graphically
presented. This needs other extra characteristics which should be met by the generated
models. The authors used constraint language of Alloy to express the required specifi-
cation as well as the metamodel of the train stations. Alloy Analyzer was then used to
find solutions of the specified constraints. The solutions were then translated back to
train station models presented to user as diagrams.

In this work, the generated models are correct based on the metamodel, so C1
is fulfilled. Although some user specification are covered in this work, they are not
expressed in OCL constraints and therefore C2 is not supported. Complex structures
of the stations is not possible by Alloy, so C3 is not fulfilled. Controlling the generation
of models is not considered, so C4 is not regarded. The stochastic properties of the
generated models and model histories does not seem to be relevant in this work, so C5
and C6 are no relevant here.

63

3.2.4 Summary of the Reviewed Literature

Before moving to the next section, we try to summarize the outcomes of the studied
related literature. In addition to studying the approaches proposed in the related works,
we have investigated them to see whether they fulfill the criteria of C1-C7 mentioned
in Section 3.1. Table 3.1 summarizes the results of our findings regarding fulfilling the
aforementioned criteria.

Approaches C1 C2 C3 C4 C5 C6 C7

[Fleurey et al., 2004] 3 7 ≈ ≈ 7 7 7

[Baudry et al., 2006] 3 7 ≈ ≈ 7 7 7

[Brottier et al., 2006] 3 7 ≈ ≈ 7 7 7

[Lamari, 2007] 3 7 ≈ ≈ 7 7 7

[Wang et al., 2008] 3 7 ≈ ≈ 7 7 7

[Mougenot et al., 2009] 3 7 7 7 7 7 7

[Laurent et al., 2013] 3 7 3 3 3 7 7

[Xiao et al., 2014] 3 7 7 ≈ 7 7 7

[Ehrig et al., 2006, 2009] 3 ≈ 7 ≈ 7 7 7

[McQuillan and Power, 2008] 3 ≈ − 7 − − −
[McGill et al., 2009] ≈ 7 ≈ 7 7 7 7

[Sen et al., 2009] 3 ≈ ≈ 7 7 7 7

[Williams and Poulding, 2011] 3 7 7 7 7 7 7

[Svendsen et al., 2012] 3 7 7 7 − − −
3 Fulfilled 7 Not Fulfilled
≈ Partially Fulfilled − Not Relevant

Table 3.1: Fulfilling criteria of C1 to C6 - Summary of the related literature.

As shown, all of the approaches have fulfilled criterion C1, i.e. their generated models
are conformal to the corresponding metamodel. Just the approach of [McGill et al., 2009]
has considered a subset of the initial metamodel, but the generated models were also
conforming to the subset.

Regarding extra constraints on models which are expressed in OCL (C2), just three
approaches handle them partially. The main reason is the difficulty of satisfying OCL
constraints when valid instance models should be generated. [Ehrig et al., 2006, 2009]
checked the satisfaction of OCL constraints as a post-processing step when instances were
already generated. Contrary, [McQuillan and Power, 2008, Sen et al., 2009] considered
satisfying OCL constraints in the generation process. In this regard, they translated
OCL constraints to the constraints language of Alloy and let the Alloy Analyzer to find
instances which satisfy OCL as well as metamodel constraints. This approach has been
partially successful since the translation of OCL constraints to the Alloy constraints is
not easy due to the fact they have been designed and developed with different aims in
mind.

64

Creating complex structures of interest (C3) is partially supported in the existing
approaches. The support is mostly dominated by the approaches for testing model
transformations. In this regard, a common practice is the partitioning approach which
is initially suggested by [Fleurey et al., 2004]. In this approach, the generated complex
structures are limited to the combination of instances of the metamodel partitions. This
way, just limited structures are supported and generation of arbitrary complex structures
are not possible.

Controlling the generation process (C4) in the approaches motivated by [Fleurey
et al., 2004], is mostly limited to covering items, how and how many of them are combined
together. Therefore, the controlling mechanisms for the generation process are often
limited. Regarding the indirect approaches discussed in Section 3.2.3, the Alloy Analyzer
just delivers valid instances and the user has no control on how instances are generated.
Generally, controlling the generation process in quite limited in the related works.

Generating models with desired statistical properties (C5) is just addressed in two
approaches. [Mougenot et al., 2009] generated huge models in which all possible struc-
tures within a model of a given fixed size are uniformly generated. This approach is very
rigid and does not allow statistical properties of interest to be created in the generated
models. [Laurent et al., 2013] generated process models using genetic algorithms. In
their approach generation were controlled by assigning probabilities to the change pat-
terns which basically acted as the mutation operators to alter the models. Moreover,
the existing approaches have not considered the generation of model histories (C6) and
the related challenges.

The last but not least, none of the existing approaches are useful in the domain of
model differencing and model versioning, since they are unable to produce difference
which can be applied between models (see Section 2.3.1). Therefore criterion of C7 is
not supported at all.

3.3 SiDiff Model Generator

As we saw in the previous section, the state-of-the-art tools and methods for generating
test models, do not fulfill four of our criteria. The first one is that none of existing
generator support generating of differences which is mostly suitable in the domain of
model differencing and model versioning (C7). The second one is limited or improper
controlling mechanisms to let users to control the generation process of models (C4).

The thrid one is that almost none of the proposed methods takes the stochastic
properties of generated model elements into account (C5). Just one of the existing
approaches ([Mougenot et al., 2009]) considers limited generation of model elements
uniformly. Although this approach is good for some purposes, it is not appropriate to
consider the uniform distribution in other applications. Particularly, in the field of model
differencing and model versioning such assumption does not hold, e.g. in class diagrams
we will show that the distributions of model elements are highly skewed (see Chapter 5)
and generating test models for model differencing and model versioning tools just with
the uniform distribution is quite of little value.

65

The last criterion which was not considered was that none of the current approaches
take the generation of model histories into account (C6). Model histories are very
essential in model versioning and model differencing tools. They are used in model
repositories as well as model evolution analysis and presentation tools. Therefore it is
quite essential that we cover these four criteria by our generator.

In this regard we introduce the SiDiff Model Generator (SMG) which addresses the
shortcomings mentioned earlier. In the first step, Section 3.3.1 provides basic require-
ments which are needed for following the material in subsequent sections. Section 3.3.2
provides an overview of SMG. Section 3.3.3 describes the scenarios where SMG can be
employed to generate test models. Section 3.3.4 discusses how probabilities of model
elements are interpreted. Section 3.3.5 explains how models are modified and generated
and finally Section 3.3.6 explains how models are edited and which edit operations can
be applied to models.

Handling three criteria of C4 to C6 are discussed in detail in Section 3.4. The
evaluation of SMG is presented in Section 3.5. The chapter ends with a summary in
Section 3.6.

3.3.1 Requirements

Before introducing the SMG in the next section, we take some assumptions that will be
valid through the rest of the chapter. Moreover, in order to better express the concepts
and ideas, we also provide the necessary definitions7.

Assumption 1. Models are typed with respect to a metamodel, i.e. each model element
has a type in its metamodel.

The previous assumption is based on the fact that our intention is to produce models
conforming to a given metamodel.

Definition 3.1 (Edit Operations). Suppose that a metamodel is given. For each model
element type in the metamodel, there is a set of operations that are defined on that type
and are used to modify the instances of that type. Moreover, there are edit operations
which are composed of simpler operations and modify elements with different types in
one step.

As we know, the abstract syntax graph representation imposes the basic edit oper-
ation on models. The basic graph edit operations are creating, deleting, moving and
changing of elements, attributes and references [Kehrer et al., 2013d]. As we discussed
in Section 2.4.2, such operations are considered as low-level edit operations. We argued
that these low-level operations can be combined together to form high-level edit oper-
ations [Kehrer et al., 2011]. Later in Section 3.3.6, we will see that SMG can support
both the low-level and high-level edit operations for modifying models.

7 Few concepts have been briefly reviewed in Section 2.3, but for the sake of clarity we formally
introduce them here in detail.

66

Definition 3.2 (Edit Step). An edit step is a edit operation supplied with its concrete
arguments that can be executed on a model. An edit step is also referred to as the
“Invocation of an Edit Operation”.

As an example, one can consider UML class diagrams in which creating a class with
a given name within a parent package, can be done for instance by executing an edit step
of createNamedClass(Name,ParentPackage) on the desired package (instance of
the model type), where Name and ParentPackage are concretely specified. Another
example can be deleting a state in state chart diagrams by deleteState(State).

Definition 3.3 (Base Model). A base model is an instance of a given metamodel which
is regarded as the starting point in the modification process through execution of edit
steps. A base model can also be an empty model with no model elements.

Definition 3.4 (Derived Model). A derived model is the resulting model after executing
one or more edit steps on a base model. The derived model is regarded as the successor
version of the base model.

Definition 3.5 (Patch). A patch is a sequence of edit steps which are to be applied to
a base model.

A patch is also referred to as an asymmetric difference (see Section 2.3.1 as well as
[Kelter and Schmidt, 2008, Wenzel, 2010]). In this chapter from now on, we use the
terms of “patch” and “difference” interchangeably.

Another important issue which should be clarified is that the set of constraints on the
metamodel might be contradicting. The set of constraints on the metamodel principally
consists of intrinsic constraints of the metamodel as well as user-defined OCL constraints.
The interesting question is that whether constraints of a metamodel can be satisfied in
instances or not. We have the following definition:

Definition 3.6 (Realizability of a Metamodel). We say a metamodel is realizable, when
there is an instance of it which satisfies all constraints of the metamodel.

The satisfiability of metamodels constraints has been studied in the literature so far,
for example [Cabot et al., 2008]. It is not difficult to establish contradicting constraints,
although in many practical applications it might not always be the case. To clarify the
problem, consider Figure 3.2 in which a simple class diagram is depicted.

There are two classes of Paper and Researcher in the diagram. The association of
Writes imposes that a Paper has at most two Researchers as authors while at the same
time the association of Reviews requires that a Paper is refereed by exactly three distinct
Researchers. The previous constraints on the number of Papers and Researchers, math-
ematically translates to the following system of equations which has just two solutions
of either zero or infinity for both variables:{

|Researcher| ≤ 2 |Paper|
|Researcher| = 3 |Paper|

67

Figure 3.2: Example of contradicting constraints in a metamodel (Adapted from [Cabot
et al., 2008]).

Although the satisfiability of constraints has been studied so far, it is not quite clear
what is the solution region for a realizable metamodel. Due to this fact, there might
be cases in which the solution region is so limited and just quite limited number of
instances will satisfy the metamodel constraints. For a base model, this means that
probably just a limited subset of the whole possible patches yield valid derived models
which satisfy all constraints of the metamodel. Moreover, since edit steps might refer
to model elements with specific types or to their positions in the base model, not every
specified edit operation can be executed at a specific state of a model.

Since the previously discussed issues are out of the scope of this dissertation and since
the contribution of this chapter is to propose fine control mechanisms for the generation
of models, we make another assumption as follows:

Assumption 2. The metamodel is realizable and the solution space of its constraints is
diverse enough that lets edit steps be executed with satisfactorily number of times and
orders without going into an invalid derived model.

Before going to the next section, we provide two more definitions which are required
later in the subsequent sections. They will help us to express the ideas more easily.

Definition 3.7 (ContextType). A ContextType is an element of the metamodel.

Definition 3.8 (Context). A Context is an instance of a given ContextType, i.e. a
model element which has the type of “ContextType” in the metamodel.

3.3.2 Overview

The SiDiff Model Generator (SMG) is a model generator which is designed to address
the shortcomings in the state-of-the-art approaches of generating models. It fulfills the
criteriaC1 toC7mentioned in Section 3.1. Specially, criterion ofC7 which is generating
differences between models is fully supported.

SMG is capable of creating new models from scratch or modifying existing models.
In both cases the derived model is guaranteed to be correct according to its metamodel
(C1). It also satisfies OCL constraints, although due to the complexity of such con-
straints only a subset of it is supported, therefore C2 is also partially fulfilled. SMG
supports complex as well as elementary edit operations on models (C3). Complex edit

68

operations can be arbitrarily defined. Each complex edit operation can be a collection
of simple or other complex operations. This provides much flexibilities in modifying
models.

SMG provides different controlling mechanism to direct and control the generation
process (C4). In the modification process of the base model, the frequencies of the
edit operations or their distributions are also under control (C5). This concept is also
extended when a sequence of related models, i.e. model histories are going to be created
(C6). Such features, give SMG the ability to mimic and replicate the evolution of models
(see Chapter 5 and Chapter 6).

Base Model

Metamodel

Operation Set

Stochastic
Configuration

OCL Constraints

Output
Model(s)

Difference(s)

Matching(s)

Model
Generator

Stochastic
Controller

Operation
Interperator

Validator

Figure 3.3: The SiDiff Model Generator - Overview.

Figure 3.3 gives an overview of the SMG and its components as well as its inputs and
outputs. As input, SMG takes a base model in addition to its corresponding metamodel.
Other OCL constraints are also given to the system to prevent undesired properties
within the derived model(s). The set of legitimate edit operations which are defined
based on the metamodel, is also given to the system. Based on the set of edit operations,
a configuration file for controlling the modification process is provided to the system.

SMG has four main components. The Stochastic Controller is responsible for invo-
cations of edit operations based on the stochastic configuration file. An edit operation is
selected from the defined set of edit operations and its arguments are either selected from
other model elements in a controlled manner, or created on demand. This component
plays an important role in realistic modification of the base model. We will cover this
in detail in Section 3.4. The Operation Interpreter is responsible for applying a selected
edit operation to the input model, in other words it invokes an edit operation. In the
end, the Validator checks the validity of the modified model. All of these components are
glued together via the Model Generator which is their common communication interface.

As its primary artifacts, SMG generates differences between models, fulfilling crite-

69

rion of C7. As resulting products of the generated differences, SMG additionally delivers
a derived model or a set of derived models, i.e. model histories. Another output is the
Matching (see Section 2.3.1) between model elements in the base and derived models,
showing their correspondences. A protocol of the applied edit operations is also pro-
duced as a Patch that allows recreation of the derived model from the base model at any
time. If a model history is created, the corresponding patches and matchings between
each two subsequently generated models are also generated.

It should be mentioned that for any provided metamodel, there is out of the box
support for automatic creation of set of edit operations and an automatic stochastic
configuration file. Although both provide a fast setup for the system, they do not
deliver good quality derived models and should be tailored by the user.

3.3.3 Main Usage Scenarios

Before mentioning the usage scenarios of SMG, it is good to make it clear that the
SMG’s foremost products are patches or differences which are applicable to the given
base model. The derived models are by-products, although from the user perspective
they might be more important. In this regard, the generated patches are only applicable
to the same base model which they are at first intended for. The only exception is when
the base model is an empty model. SMG can be used in four main usage scenarios:

U1 Creating new models from scratch.

U2 Modifying existing models in a controlled manner.

U3 Creating a set of models with similar properties.

U4 Creating model histories.

Use case U1 is achieved by generating various patches which are applicable to an
empty model. Use case U2 is achieved by repeatedly controlled creation of edit opera-
tions based on the current state of the model and applying them. Use caseU3 principally
can be achieved when the set of applied edit operations are chosen in a systematic man-
ner. For instance they can be chosen based on specific statistical distributions.

At the first sight, the use case U4 might seem to be a special case of the use case
U3 in which a model history is created by repeatedly applying the edit operations with
the same properties. But this is not the case, since there are some properties that are
related to the model history which cannot be controlled by just repeatedly considering
the use case U3, for instance life time of model elements within a history.

3.3.4 Interpretation Modes

As we mentioned in Section 3.3.2, SMG supports criterion C5, i.e. it allows the control
over the frequencies or distributions of the created differences. In this regard, two
interpretation modes for the frequencies of the generated differences are considered,
each having its own application.

70

Literal Interpretation Mode: In this mode, both the number and the kind of edit
operations which should be generated are given to the system via a configuration file.
Such specification is considered to be literal, i.e. the edit operations are generated exactly
as they are specified. The Stochastic Controller is responsible for doing the rest, i.e.
both where the operations are applied and which parameters they need, are handled in
a stochastic way based on the configuration file. In this mode, the size of the generated
difference is implicitly defined and is equal to the sum of the number of specified edit
operations.

As an example, in the UML class diagrams, one can consider the operation of
createNamedClass(Name) which is specified in a configuration file to be generated
five times. In this case, the derived model will have exactly five more classes compared
to the base model. Where these classes are created or which names they will have is
decided by the Stochastic Controller.

In this mode a user can specify the quantitative properties of the derived model.
This mode is more suitable when one tries to verbatim replicate an observed model
evolution which is obtained for example by studying model modifications in real software
repositories. Another application can be to generate test models for model merging tools.

Stochastic Interpretation Mode: In this mode, Probability Mass Functions (PMF)
of edit operations are specified in the configuration file for the system. Contrary to the
Literal Interpretation Mode, the size of the difference should be explicitly specified. If
the specified probabilities do not sum to 100%, they are automatically normalized by
dividing them to the sum.

In this mode the specified size of the difference and PMF of edit operations are two
important factors which affect the properties of derived models. The derived models
approximately exhibit the specified probabilities. When the specified distributions are
skewed with heavy tails, execution of more edit operations yields better results. Like the
literal interpretation mode, parameters of the edit operations are selected or generated
with the help of the Stochastic Controller. This mode is more suitable for creating sets
of differences with similar properties with possibly varying sizes.

3.3.5 Model Modification Process

As discussed in Section 3.3.1, for each ContextType we have a set of edit operations
which are applicable to the Contexts with that type. The model modification process
consists of five successive steps in which in each step, the selection is done with the help
of the Stochastic Controller (see Section 3.3.2):

S1- A ContextType is selected.

S2- An Edit Operation is selected.

S3- A Context is selected.

S4- Other Parameters of the edit operation are selected and/or created.

71

S5- The operation is executed on the base model.

In the first step in the modification process, a ContextType is selected in step S1.
Once a ContextType is selected, an edit operations from the set of available operation
for that ContextType, is selected in step S2. The selected operation will be applied to
a Context with the type of already selected ContextType. The selection of the Context
is done in step S3. Other required parameters for the selected edit operation is either
selected or created in step S4. Figure 3.4 depicts the modification process.

Figure 3.4: SMG - Model modification process.

It should be mentioned that in the previous five steps, step S1 i.e. selection of
ContextTypes might be disregarded in some usage scenarios. This case happens when
the set of edit operations consists of high-level edit operations that are not solely defined
on one specific ContextType, rather they are defined to act on two or more different
ContextTypes. In such cases the selection of a ContextType is not meaningful any
more. Moreover, in step S3 two or more Contexts should be selected accordingly.

Possible Problems in the Modification Process In the model modification pro-
cess some situations might arise that prevent the whole process to be accomplished
successfully. For instance in step S3 there might be no model elements available for
selection in the current state of the model that have the type of ContextType. Another
problem might arise for instance in step S4 where the operation refers to some other
model elements as its parameters who are currently unavailable. As shown in Figure 3.4,
these problems might be solved by a backtracking mechanism which it is usually time ex-
pensive. In order to prevent such blocking situations and avoid expensive backtrackings,
the concept of Index Maps is devised [Pietsch et al., 2011].

Index maps are initially formed according to the given metamodel, the set of edit
operations and the base model. They keep track of the current state of the model as
well as those operations that can be successfully executed on the current state. After
each successful execution of an edit step, they are updated automatically for the next

72

selection round. Based on the knowledge in the index maps, the Stochastic Controller
filters out those cases which will be unsuccessful in the current state of the model.

3.3.6 Edit Operations of Models

SMG supports different edit operations on model. The set of edit operation are domain
specific and are defined based on the provided metamodel. Figure 3.5 depicts the core
part of the metamodel used to define sets of edit operations. A set of edit operations,
i.e. “OperationSet”, consists of different operations. An operation can be a “Simple
Operation” or a “Complex Operation”. There are four kinds of simple edit operations,
Add, Delete, Move and Update.

A complex operation consists of simple or possibly other complex operations. In
complex operations the information about already performed operations are accessed
through “Links”. A link has a source and a target, which allows the access to the
“Parameters” of previously executed operation.

As an example consider createNamedClass(Name,ParentPackage) which is a
complex edit operation in the context of UML class diagrams. This operation is used
to create a class with a given name in a parent package. The operation consists of
two simple operations: createClass and updateClassName and one link. The link
forwards the result of the createClass operation, i.e. the previously created class, as
an input parameter to updateClassName operation.

Figure 3.5: SMG metamodel of the edit operations - Simplified core.

As we discussed in Section 2.4.2, simple abstract syntax graph edit operations are
not necessarily consistency-preserving, i.e. execution of such edit steps might lead to an

73

inconsistent state in a model. Therefore, it is desired that models are edited through
consistency-preserving edit operations (CPEOs) that lead to the derived models which
are consistent. A CPEO typically consists of simple edit operations.

Manually specifying all CPEOs for a model is a tedious and error-prone task. A
method for automatically generating CPEOs has been proposed in [Rindt et al., 2014]. In
this regard, the authors proposed an EMF-based tool called “SERGe”. SERGe analyzes
the elements of the metamodel and their relationships to derive CPEOs. Since SERGe
principally considers the same set of basic graph edit operations, the resulting CPEOs
can be used in the SMG to specify high-level complex edit operations.

3.4 Controlling the Generation Process

In the review of related works (Section 3.2), we showed that the current state-of-the-art
approaches do not meet criteria of C4 to C6. In other words, the current approaches
are not flexible enough for fine controlling the generation process of models. Moreover,
the stochastic properties of generated models have not been considered so far and the
generation of model histories is not possible.

SMG supports criteria C4 to C6 through its Stochastic Controller module (see Sec-
tion 3.3.2). It provides fine control mechanisms for the generation process. It also
supports generating of realistic models, i.e. the models which have similar statistical
properties as true software models. This is accomplished through controlling the stochas-
tic properties of the generated differences. Moreover, the SMG supports the generation
of model histories in which again the stochastic properties of changes between model
revisions can be controlled.

Fine control mechanisms of SMG allow the modification of models resemble the real
modification process as much as possible. As an example of such processes, one can
consider few scattered modifications to a base model in order to simulate a debugging
activity. In contrast, adding some new model elements close to each other can resemble
implementation of new features.

In this section, we describe the contribution of this research work for addressing the
previously mentioned drawbacks in the existing approaches. To this aim, we first describe
new concepts regarding the qualitative and qualitative aspects of generated differences
in Section 3.4.1. How operations and model elements are selected in the modification
process is explained in Section 3.4.2. Decision Tables which are used to configure SMG
are discussed in Section 3.4.3.

3.4.1 Model Properties in the Generation Process

Frequencies and distributions of edit operations (see Section 3.3.4) are principally re-
garded as the quantitative aspects of the generated differences. There are also qualitative
properties for the generated differences. In this section, we first define required concepts
and later we show that how the Stochastic Controller handles such properties.

74

Definition 3.9 (Effective Properties). The effective properties of an individual regard-
ing a definite purpose, are those properties which have a role regarding that purpose.

As an example, consider the selection (purpose) of a class (individual) in the UML
class diagrams based on the metrics of number of attributes and/or number of methods
(effective properties). Another example can be the number of modifications an element
has already experienced for selecting that element. Also consider the case when an
interface is going to be renamed, the effective property can be if its has already been
renamed or not, i.e. the number of renames.

Regarding the effective properties, two cases are possible:

Case-1 Effective properties of elements are known.

Case-2 Effective properties are not known, e.g. because they are so complex and
multifarious or they haven’t been studied thoroughly.

In the first case, the domain expert has the opportunity to adjust the Stochastic
Controller based on the known effective properties in order to control the quality of the
generated differences. In the second case, which is more frequent, some other tools are
provided that let a domain expert control the selection process and overcome typical
limitations. Both cases will be described in detail in the following.

Definition 3.10 (Fitness Value). The fitness value of an individual is an indicator value
which shows the aptness of the individual for a definite purpose. It can be regarded as
the value of a function that maps some/all of effective properties of the individual to
numerical values.

For instance, consider a function that sums the number of attributes and number of
methods for a class and the result is used whether to select the class or not. As another
example, one can select an element based on the number of modifications that have
already been applied to that element.

In Case-1 where the effective properties are known and the fitness values can be
calculated, it might be possible to obtain a probability distribution function. For in-
stance, how much is the probability that a class gets a new attribute based on its
number of attributes. Such information will let us invoke the appropriate number
of createClassAttribute(TargetClass,Name,Type,Visibility) edit oper-
ation to create an attribute. When the range of fitness values is finite, it is a special case
in which the probability mass functions can be calculated by calculating the correspond-
ing frequencies. The Stochastic Controller can be adjusted accordingly to produce edit
operations based on the derived distribution.

Moreover, the fitness value(s) of each model element is calculated and the element
is annotated by the value(s). The annotations then can be explicitly used to select the
model elements or prevent redundant operations such as renaming an element twice or
deleting a newly created element. For evaluating model comparison algorithms, such
kind of operations has no value and cannot be traced.

75

The fitness values of model elements can be updated immediately after any successful
execution of an edit step or they can be calculated in the beginning and are not updated
during the whole modification process. Such a decision has a direct effect on the quality
of the derived model.

In Case-2, where the effective properties and their probability distribution functions
are not known or are too difficult to obtain, one can do the selections randomly based on
the uniform distribution, although it is quite an oversimplification of the situation. For
this purpose, Selection Policies are devised which principally work based on the concept
of fitness values and give the user the ability to finely control the selection process. For
detailed information please refer to Section 3.4.2.

As discussed earlier, SMG can be used to generate model histories (Section 3.3.3).
In this case, there are some properties which are related to the history as the whole and
cannot be obtained by just simply applying consequent differences to a given base model.
For instance, consider the life time expectation of model elements within a history. The
number of modification for model elements through the history and their corresponding
distributions over the whole history are other examples. SMG is capable of handling
these complex scenarios with the help of the fitness values.

To close this section, we will point to another issue which will affect the quality of
derived models. As mentioned in Section 3.3.5, the model modification process is done
in five steps, the selection of Edit Operations and Contexts have been discussed so far.
The selection of ContextTypes also has a direct effect on the quality of delivered models.
An example will narrate the story much easier.

Consider the UML class diagrams. Suppose a base model with two packages P1 and
P2 and five classes C1 to C5 are given. Also suppose that just two edit operation are
provided, createNamedClass and createClassAttribute.8 The first function is
defined on packages, i.e. when ContextType=Package and the second one when Con-
textType=Class. For simplification suppose that Contexts are selected randomly based
on the uniform random distribution. Also suppose that we are going to invoke the edit
operations just four times, with the frequencies of two for each edit operation.

Now suppose that we assign 99.99% as the probability of selecting ContextType=Packge
and just 0.01% for selecting ContextType=Class. In this situation, with a great likeli-
hood the two invocations of createNamedClass will be executed before the other one,
causing two new classes, say C6 and C7, are created first. Then createClassAttribute
will be invoked two times in which all classes will have equal chance of being selected
(each 1/7) in order to have a new attribute.

Conversely suppose that we assign 0.01% when ContextType=Package and 99.99%
when ContextType=Class. In this situation, createClassAttribute will be most
likely executed two times before the other edit operation, causing the attributes appear
within already existing classes (C1 to C5). Later two new classes appear most likely
with no attributes. To sum up, the way ContextTypes are selected also has a direct
effect on the quality of delivered models.

8 For simplification, we have omitted the associated parameters of the edit operations.

76

3.4.2 Selection Policies

Up to now, we have discussed the model modification process and the quantitative
and qualitative properties in the generation process. In the model modification process,
ContextTypes, Edit Operations, Contexts and Parameters have to be selected. To select,
the concept of Selection Policies are introduced in this section. Selection Policies are
adjustable tools which enable us to do the selections in a controller manner. These
tools principally work based on the notion of fitness values (see Section 3.4.1). Selection
policies have already been used in the field of Genetic Algorithms [Michalewicz, 1996,
Reeves and Rowe, 2002, Sivanandam and Deepa, 2008, Pohlheim, 2006].

From now on we will assume that the fitness values which are used, are bounded
and nonnegative. In our usage scenario of model modification, this will be a consistent
assumption. Currently five different kinds of selection policies are implemented in the
Stochastic Controller: Random, Roulette Wheel, Simple Ranking, Linear Ranking and
Nonlinear Ranking.

Random Selection Policy (RSP) The Random Selection Policy is based on the
uniform distribution function as its names implies. Every individual will have an equal
chance for being selected.

Roulette Wheel Selection Policy (RWSP) In Roulette Wheel Selection Policy, the
selection probability of each individual is proportional to its fitness value. An individual
with a bigger fitness value will have more chance for being selected. After each selection
round, if the fitness values of the individuals are updated increasingly, there is risk that
the most fitted individuals, i.e. with the highest fitness values, take dominance in the
selection process. This effect can be intensified after each round of selection.

Simple Ranking Selection Policy (SRSP) As mentioned in the RWSP, there is
a risk that the most fitted individuals overwhelm the selection process. To avoid such
effect, one can sort the individuals based on their fitness values in a non-decreasing
order and use the rank (order index) of the individuals as the new fitness values for
the selection process. In this selection policy, another problem might arise when there
are too many individuals participating in the selection, since the lowest fitted ones will
have very small chance of being selected. To solve this, Linear and Nonlinear Ranking
Selection Policies are advised which principally work on an extend concept of the SRSP.

Linear Ranking Selection Policy (LRSP) Let n individuals participate in the
selection process and they are already sorted non-decreasingly based on their fitness
values. The new rank (fitness value) of the i-th individual is calculated as follows:

RLRSP (i, n) = 1
n

(
α+ 2 (1− α) i− 1

n− 1

)
(3.1)

where 1 ≤ i ≤ n and α ∈ [0, 2], α ∈ R. “α” is called the selection pressure and three
cases can be considered for it:

77

a) α = 1, in this case all individuals will have equal probabilities of 1/n for being
selected.

b) α < 1, in this case those individuals in the beginning of the initially sorted list will
get lower probabilities of selection comparing to the ones in the end of the list.

c) α > 1, this case is the reverse of the previous case, i.e. the individuals in the
beginning of the sorted list will get more change of being selected.

Figure 3.6 will show the LRSP when α < 1 and α > 1 in contrast to the RWSP.
Both are applied to the same individuals.

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3
α=0.5

α=0.5 RWSP

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3
α=1.5

α=1.5 RWSP

Figure 3.6: Selection probabilities of individuals - RWSP vs LRSP with α = 0.5 and
α = 1.5 .

Nonlinear Ranking Selection Policy (NLRSP) Suppose as the LRSP, n individu-
als are again sorted non-decreasingly. The new rank (fitness value) for the i-th individual
is defined as:

RNLRSP (i, n) = xi−1∑n
j=1 x

j−1 (3.2)

in which x is the positive root of the following equation:

(β − n) xn−1 + β xn−2 + · · ·+ β x+ β = 0

where β ∈ [1, n− 2] is the selection pressure and we assume that n ≥ 3. The root of the
previous equation can be computed for instance by the Bisection or the Newton-Raphson
methods [Burden and Faires, 2000, Kaw and Kalu, 2008].

78

If we consider the linear transformation of α = (β − 1) / (n− 3), then α ∈ [0, 1] will
be our new selection pressure which is better matched to the presentation of the LRSP.

When α tends to 1, the selection probabilities of the individuals, i.e. their new ranks,
increases in a nonlinear way, but when α tends to 0 then probabilities of selection for
the individuals tend to become equal and when α = 0 then all of them will have equal
chance of being selected. Figure 3.7 shows the NLRSP in contrast to the RWSP when
both applied to the same individuals.

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5
α=0.2

α=0.2 RWSP

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5
α=0.6

α=0.6 RWSP

Figure 3.7: Selection probabilities of the individuals - RWSP vs NLRSP with α = 0.2
and α = 0.6 .

It should be mentioned that when there are big number of individuals participating
in the NLRSP, even moderate selection pressure will have great impacts to those indi-
viduals in the end of the sorted list, i.e. just very few of them in the end will get the
most of selection likelihood whereas others get almost nothing. In this regard maybe
some smaller values for the selection pressure are more favorable. Lastly, when using
Equations of (3.1) and (3.2), there is no need to normalize the values of rankings, since∑n

i=1RLRSP (i, n) =
∑n

i=1RNLRSP (i, n) = 1.

3.4.3 Decision Tables

So far, we have discussed the model modification process, quantitative and qualitative
properties in the generation process as well as the selection policies. We have not dis-
cussed how a model is modified in a controlled manner. In this regard, we introduce the
concepts of Decision Tables and Configuration Files in this section.

Suppose that the base model M is given in which we try to modify it in a controlled
manner to get the derived model ofM ′. ADecision Table (DT) can be roughly considered

79

as a map that tells the Stochastic Controller how to modify M in order to eventuate in
M ′. This concept can be generalized to the creation of model histories. Let n revisions
(n ≥ 2) be needed in the model history and let 1 ≤ i < n. DTi is a map that tells
the system how to modify the model in revision i in order to obtain its successor in
revision i + 1. Decision tables are highly configurable and are given to the system via
the Configuration Files. Each decision table roughly contains the following items:

Item-1 A list of ContextTypes, in which each ContextType has a corresponding prob-
ability for being selected, and a selection policy for selecting one of them.

Item-2 For each ContextType, a list of defined edit operations for that type as well as a
selection policy for selecting an operation out of the list. Each edit operation is
accompanied with (a) its selection probabilities and (b) number of frequencies.
The case (a) is only active in the stochastic interpretation mode, and the case
(b) is only enabled in the literal interpretation mode (see Section 3.3.4).

Item-3 For each Edit Operation, a selection policy that selects a Context for that
operation. The Context should be of type ContextType.

Item-4 Selection policies for selecting parameter values of edit operations.

Decision tables are provided to the system via a configuration file. In order to have
a better comprehension of the previously presented concepts, we provide a “conceptual”
configuration file in Listing 3.1. The configuration file shows how the materials that are
presented up to now are mixed together in order to configure the system. The file is in
the XML format but for the sake of clarification, some parts are omitted or simplified9.

Considering the specification of decision tables, the above configuration file is inter-
preted as follows: Item-1 corresponds to < SPCT > which is a Selection Policy for
ContextTypes followed by < CT > tags specifying the ContextTypes themselves.

For each < CT > tag, i.e. for each ContextType, there are different edit operations
which are defined for that type. Such operations are denoted by < O > tags. For
selecting an Operation from the set of defined edit operations, a Selection Policy is
defined through < SPO > tags (Item-2). For each Operation, there is a Selection
Policy which specifies how Contexts of the previously selected ContextTypes are selected
(Item-3). The Selection Policy for Contexts are denoted by < SPC > tags. Selection
Policies of Parameters for each edit operation (Item-4) is omitted from the configuration
file for simplicity, but principally the same concepts presented earlier are applied.

For each edit operation which is denoted by < O > , we have the name of that
operation as well as p̂ that assigns the probability of selection for that operation, this

9 In this configuration file, the following abbreviations are used:
DT=Decision Table, CT=ContextType, C=Context, O=Operation, SP=Selection Policy,
SPCT=Selection Policy for ContextTypes, SPC=Selection Policy for Contexts, SPO=Selection
Policy for Operations, RWSP=Roulette Wheel SP, SRSP=Simple Ranking SP, LRSP=Linear Ranking
SP, NLRSP=Nonlinear Ranking SP, p̂=Selection Probabilities (PMF), f̃=Frequency of an Edit
Operation, α=Selection Pressure for LRSP and NLRSP.

80

Listing 3.1 Sample conceptual configuration file of SMG.

<DT >
<SPCT Name=“RWSP” UpdateMode=“Fix” />
<CT Name=“UMLPackage” p̂=“20”>

<SPO Name=“RWSP” UpdateMode=“Fix”>
<O Name=“createInterface” p̂=“1” f̃=“2” />

<SPC Name=“NLRSP” α =“0.8” UpdateMode=“Dynamic” />
</O>
<O Name=“createClass” p̂=“20” f̃=“3” >

<SPC Name=“NLRSP” α =“0.6” UpdateMode=“Dynamic” />
</O>
...

</CT>
<CT Name=“UMLClass” p̂=“1”>

<SPO Name=“RWSP” UpdateMode=“Fix” />
<O Name=“createAttribute” p̂=“1” f̃=“5”>

<SPC Name=“LRSP” α =“0.8” UpdateMode=“Dynamic” />
</O>
<O Name=“createMethod” p̂=“1” f̃=“5”>

<SPC Name=“LRSP” α =“0.8” UpdateMode=“Dynamic” />
</O>
...

</CT>
...

</DT>

value is only active in the stochastic interpretation mode. There is also a f̃ value which
specifies the frequency of that operation which is only enabled in the literal interpretation
mode (see Section 3.3.4).

In the above configuration file, we have the possibility to update fitness values of
individuals after each successful execution of an edit step (UpdateMode=Dynamic) or
not updating them for the whole modification process (UpdateMode=Fix). As discussed
earlier in Section 3.4.1, this will affect the qualitative properties of the produced mod-
els.

3.5 Evaluation

In this section we provide an evaluation for SMG. The results are obtained by taking an
average over five executions. The executions were run on an Apple MacBook Pro with

81

2.66GHz Intel Core i7 processor with 4GB of RAM.

Performance Evaluation For evaluating the SMG performance, at first the configu-
ration file consisted of only creation operations for generating UML class diagrams with
the sizes of 100, 1000, 5000 and 10000 elements. To estimate the modification times of
models, we applied all available edit operations with the same probabilities. On each
generated model we applied three different number of edit operations, proportional to
the total number of model elements in the initially generated models. The total number
of applied edit operations were set at 25%, 50% and 75% of the total number of elements
available in the model. For instance if the model consists of 1000 elements then 250, 500
and 750 edit operations were applied to it.

Table 3.2 shows the run-time performance of SMG with the above settings. SMG
performance is good in practice. The times are given in seconds and they do not include
times for loading and serialization.

#Elem. in Base Model (NEBM) 100 1000 5000 10000

Creation Time (second) 0.03 0.52 10.77 55.47

Modification Time (second)
#Edit Operations =
xy% of NEBM

25% 0.02 0.36 9.43 50.31
50% 0.03 0.70 19.95 117.21
75% 0.02 1.04 35.76 249.59

Table 3.2: Runtime evaluation of SMG - Creation and modification times.

Qualitative Evaluation In order to evaluate SMG for the quality of generated mod-
els, we used the frequencies of model elements available in a real project. In this regard,
we used the frequencies of available model elements in a real software system. The spec-
ified probabilities of edit operations in Table 3.3 are given based on our observation of
the repository of the ASM project10 (see Section 4.4). Again we created models with
sizes of 100, 1000, 5000 and 10000 elements with those specified probabilities.

As shown, the frequencies of the delivered model elements are not quite close to
the specified ones for small models. This behavior is intrinsic characteristic of statis-
tics and probabilities and the reason of it is the fact that the specified frequencies are
quite skewed. For skewed distributions execution of more edit operations provide better
approximations. For non-skewed ones, smaller number of executions yields also good
results. In this particular case, for models with the size of 1000 and more, the approxi-
mations are satisfactorily close to the specified ones.

10 The ASM project available at http://asm.ow2.org/, is a general purpose framework for analysis
and manipulation of Java bytecodes.

82

http://asm.ow2.org/

Edit Operation Spec. Freq. 100 1000 5000 10000

createPackage 0.64% 3.33% 0.42% 0.84% 0.50%
createClass 4.20% 5.56% 3.85% 4.27% 4.19%
createInterface 0.60% 0.00% 0.73% 0.49% 0.59%
createAttribute 11.50% 12.22% 12.50% 11.64% 11.25%
createMethod 28.83% 11.11% 25.46% 27.96% 29.54%
createParameter 51.83% 62.22% 55.00% 51.97% 51.68%
createAssociation 2.40% 5.56% 2.08% 2.83% 2.25%

Table 3.3: Qualitative evaluation of SMG - Observed frequencies of the created elements
vs the specified ones.

3.6 Summary
In this chapter we focused on generating test models for model differencing, model
versioning and history analysis tools. In this regard, we studied the state-of-the-art
approaches in the field of test models generation. The approaches can be categorized to
direct and indirect approaches. In indirect approaches, the original metamodel should
be translated into constraints of a SAT solver (usually Alloy) and the solution is then
translated back to an equivalent model. The problem is that such approaches are slow
and there is no control over the generation process.

The majority of the existing direct approaches were motivated from the domain of
model transformation testing. There, partitioning of a metamodel to subsets which are
more appropriate for a testing scenario and combining instances of those partitions in
test models, is a common approach. On the contrary, in the domain of model differencing
and model versioning which typically deal with problems resulting from the collaborative
development paradigm, finding proper differences between models and merging different
versions of models are of great importance. Different versions of models result from
modifying models by applying edit operations which are supported by common model
editors. Typical editors usually have an internal implementation of the abstract syntax
graph representation of models and their edit operations are principally the basic graph
edit operations. Therefore, a suitable generator should principally mimic the editing
process of models using graph edit operations.

Additionally, the generated test models should exhibit realistic properties. Therefore
it is essential that the process of applying edit operations to be under control and the
generated models have desired properties. In this regard, this chapter contributed to
the generation of more realistic test models for model differencing, model versioning and
model analysis tools. The proposed generator generates models by controlled applica-
tion of edit operations. More importantly, it supports the stochastic properties in the
generated models. It is also capable of generating more complex test models like model
histories where the properties of model elements and their modifications should be under
control. Finally, in addition to the basic edit operations, the proposed generator sup-

83

ports more complex edit operations, which helps it to create more complex structures in
the generated models.

84

Part III

Analysis of Design Models
Evolution

85

CHAPTER 4
Capturing the Evolution of

Design Models

In this chapter, we present our approach to capture the evolution of software systems
based on their structural changes. The approach is generic in the sense that it can be
adapted to other model types than design models. Here, we illustrate the approach by
an application to our design-level representation of Java systems, but the process can be
readily adapted to the design models of other object-oriented languages. The chapter is
organized as follows: first, we motivate the requirement for capturing structural changes
in Section 4.1. Next, the structural model differencing framework which is used in our
approach is introduced in Section 4.2. We showcase its application to design models of
Java systems in Section 4.3. Finally in Section 4.4, we discuss how our sample set of real
Java systems was selected. The sample set is used to study the evolution of software
systems at the abstraction level of design models. The computed differences between
design models and the resulting difference metrics that we measure in this chapter are
the basis for our statistical analyses of evolution in Chapters 5 and 6.

4.1 Motivation

The evolution of a model typically leads to a sequence of revisions in which revision rn+1
replaces its predecessor revision rn. Thus, a basic prerequisite to analyze the evolution
of a model is to capture the changes between rn and rn+1 in a suitable way. State-of-
the-art approaches1 to understand the evolution of models of software systems are based
on software metrics [Lanza and Marinescu, 2006, Fenton and Bieman, 2014] and similar
static attributes; the extent of the changes between two revisions of a software system is
expressed as differences of metrics values, and further statistical analyses are based on

1 See Chapter 5 for more information.

87

these differences. Unfortunately, such approaches do not reflect the dynamic nature of
changes well.

The static metric Number of Methods (NOM) of classes is an example of this: if 5
existing methods are deleted, 6 new methods are added and 3 methods are moved to
another class between two subsequent revisions we will observe an increase of one in this
metric, although the actual amount of change is much larger.

This error can be avoided by first computing a precise specification of all changes
between two revisions, i.e. a difference, and then computing difference metrics [Wenzel,
2010]. In our above example we would use the difference metrics NOM-Deleted, NOM-
Added and NOM-Moved in which we get 14=(5+6+3) changes in total rather than an
increase by 1 in the static metric NOM. In other words, we have to count the structural
changes that can be observed between subsequent revisions of a system, where each
change represents the invocation of an edit operation which is applicable on the given
model type.

As we discussed in Section 2.3.1, textual differences consisting of insertions and
deletions of lines of source code will not be a basis for computing meaningful difference
metrics, because they lack the appropriate level of abstraction. Instead, models should
be represented in their natural graph-like way.

4.2 Structural Differencing of Models

4.2.1 Representation and Editing of Models

Structural changes in models can only be specified precisely if a (runtime-) representation
of models is available. To that end, we follow the common MDE approach (see Section
2.2) and consider models conceptually as abstract syntax graphs (ASG). Types of nodes
and edges of the ASG are specified by a corresponding metamodel (as an example see
the one shown in Figure 2.4).

Based on our discussions in Section 2.4, two different levels of abstraction can be
considered for computing model changes, each level is based on a specific set of edit
operation definitions. The first set of edit operations consists of low-level graph mod-
ifications, i.e. generic graph operations such as creating/deleting single nodes/edges of
an ASG and changing their attribute values. The second set of edit operations con-
tains high-level (or user-level) edit operations, including model refactorings, which are
applicable to a given model type from a user’s point of view.

4.2.2 Differencing of Models

Based on our previous discussions in Sections 2.3 and 2.4, Figure 4.1 shows the structure
of a model differencing tool chain which is able to produce differences on both levels of
abstraction.

In the initial matching phase, correspondences between elements which are considered
to be “the same” in both versions of a model are identified. A low-level difference is then
derived from this matching.

88

Matching
Difference
Derivation

Semantic
Lifting

Model
Revision r

Model
Revision r

Matching
Configuration

Edit
Operations

Correspondences
Low-Level
Changes

High-Level
Changes

n

n+1

Figure 4.1: Coarse-grained structure of a model differencing pipeline (Adapted from
[Kehrer et al., 2013a]).

Since such low-level differences captures the changes between two models on the level
of the ASG, they are often hard to comprehend for model developers who are used to
thinking on the abstraction level of the conceptual edit operations available in model
editors. To that end, low-level differences can be semantically lifted to high-level (or
developer-friendly) differences in an additional processing step (see Section 2.4.2). Each
high-level change represents the invocation of a conceptual edit operation (referred to as
high-level edit operation in this dissertation) which is applicable for a given model type.
An important characteristic of high-level edit operations is that they are not generic,
but have to be individually engineered for a given model type. Such high-level edit
operations oftentimes lead to several low-level changes when applied to a model. In case
of complex edit operations such as refactorings, the number of low-level changes induced
by the application of such an operation can be very large.

4.2.3 Difference Calculation Using the SiDiff/SiLift Framework

The difference between two versions of a model can generally be computed by any state-
of-the-art model comparison tool (see Section 2.3 and see [Kolovos et al., 2009, Stephan
and Cordy, 2013, 2012] for surveys on different approaches and tools), as long as the
approach can be adapted to the given model type. The SiDiff/SiLift framework [Kehrer
et al., 2012b,a] is well-suited for this purpose (see Section 2.4). Every processing step
of the difference calculation pipeline shown in Figure 4.1 can be tailored to the specific
characteristics of a given modeling language. The matching configuration is written in a
domain-specific language which provides various strategies for the identification of cor-
responding elements. Edit operations are specified using the Henshin language [Arendt
et al., 2010], a model transformation language which is based on graph transformation
concepts (see Sections 2.1.5 and 2.4.2).

The implementation of the conceptual differencing pipeline of Figure 4.1 within the
SiDiff/SiLift framework is based on the Eclipse Modeling Framework (EMF) [Steinberg

89

et al., 2009]. EMF uses Ecore, which is basically a structural data modeling language, for
the definition of meta-models. Ecore supports all concepts being used in common MDE
metamodels, e.g. the definition of containment structures, inheritance relations between
type definitions etc. It is based on object-oriented principles, thus the implementation
of ASGs is straightforward; nodes of an ASG are represented by (runtime-) objects,
while edges are represented as references between those objects. An interpreter for the
Henshin transformation language that targets EMF models is readily available.

In this work, using the SiDiff engine, we use five different kinds of low-level edit
operations to express the low-level changes between two revisions rn and rn+1 (see Figure
4.1):

• Additions: An element is inserted in rn+1.

• Deletions: An element is removed from rn.

• Moves: An element is moved to a different position, i.e. the parent element is
changed in rn+1.

• Attribute Changes: An attribute of a model element is changed in rn+1, e.g. its
name or visibility is changed.

• Reference Changes: A reference of an element is changed, e.g. a method now
has a different return type.

As mentioned, the high-level changes have to be specifically tailored for each model
type. In section 4.3.4 we show how high-level changes are specified on design model
representation of Java systems (provided in Section 4.3.2).

4.3 Application to Evolving Java-based Systems
In this work, we reverse-engineered Java software systems and derived “design-level”
class diagrams2 out of them. In order to compute the changes between subsequent
revisions, these class diagrams were compared using the model differencing techniques
provided by the SiDiff/SiLift framework.

Section 4.3.1 introduces an example of two successive versions of a sample Java
program serving as running example throughout this section. An overview of our model-
based representation of Java projects is given in Section 4.3.2. Subsequently, we give
a brief overview of the configuration of our model differencing pipeline which we used
for calculating low-level and high-level changes between revisions of design-level Java
models: different types of low-level changes are considered in Section 4.3.3, while Section
4.3.4 summarizes available edit operations for the detection of high-level changes in
design models of our Java systems.

2 Simplified class diagrams are also used in the analysis and definition phase of a project. In this
work, we will always refer to the more detailed class diagrams as used in the design phase, which are
translated into source code in many MDE methods.

90

Java code - revision rn
package Geometry;

class Circle{

// Fields
int id;
double radius;

// Methods
double circumference(){

// ...
// ...

}

double area(){
// ...
// ...

}

}

Java code - revision rn+1
package Geometry;

abstract class Figure{
int id;
class Fraction{

int numerator;
int denominator;

}
}

class Circle extends Figure{
// Methods
Fraction fRadius;
Fraction getCircumference(){

// ...
}
Fraction getArea(){

// ...
}

}

Figure 4.2: Excerpt from a sample Java program - Original version rn and its revision
rn+1.

4.3.1 Example

Figure 4.2 shows two revisions of a sample Java program. Version rn has been modified
to become version rn+1 based on the following intentions:

• The field id has been extracted to a new superclass Figure in order to be reusable
by other figure classes.

• Instead of using floating point real number representations, a new data type
Fraction is introduced. The data type is defined as an inner class of class
Figure.

• The names of field radius as well as methods circumference and area have
been changed due to project-specific style guides and general Java coding conven-
tions.

4.3.2 Representation of Java Projects as Models

An excerpt of our metamodel for design-level Java models is shown in Figure 4.3. The
complete metamodel consists of 15 different element types and is available in [Website,
2015].

91

Fi
gu

re
4.
3:

Ex
ce
rp
t
of

ou
r
m
et
am

od
el

fo
r
cl
as
s
di
ag
ra
m
s
of

Ja
va

so
ur
ce

co
de
.

92

The root element of every model is a project (JProject). Each project can contain
a number of packages (JPackage), which in turn can form nested hierarchies. Pack-
ages can contain classes (JClass) and interfaces (JInterface). Interfaces contain only
methods (JMethod) and constants (JConstant), whereas classes can additionally con-
tain attributes (JField). Naturally, methods can have parameters (JParameter).

The seven element types omitted in Figure 4.3 represent constructs which are specific
to the Java programming language: Primitive types of Java are modeled as simple
types (JSimpleType), arrays are represented as special elements (JArrayType). The
concept of generics in the Java programming language is modeled by three element types
(JGenericType, JTemplateBinding and JTemplateWrapper). Finally, enumerations are
represented by two different element types (JEnumeration and JEnumerationLiteral).

ASG representations of our sample revisions rn and rn+1 of Figure 4.2 are shown in
Figure 4.4. Some details, e.g. certain attribute values of ASG objects, are omitted for
the sake of readability.

4.3.3 Low-level Changes

As explained in Section 4.2, low-level changes can be derived from a given matching in a
generic way. The only component in our differencing pipeline which needs to be adapted
to design-level models of Java programs is the matcher being used in the differencing
pipeline (see Figure 4.1).

In our case, the reverse-engineered models do not have persistent identifiers; there-
fore matching approaches based on unique identifiers cannot be used (see Section 2.3.2).
Because of this, we used the similarity-based matching algorithm provided by the SiD-
iff model differencing framework [Kehrer et al., 2012b]. We carefully configured the
matching engine such that only “correct” correspondences between our design-level class
diagrams were computed.

Low-level Changes in our Example Table 4.1 lists the low-level changes for our
running example of Figure 4.2. We assume here that elements having the same name in
both versions are matched. In addition, the matching contains correspondences for the
renamed field radius (named fRadius in revision rn+1) as well as for the renamed
methods circumference and area (named getCircumference and getArea in
revision rn+1).

Low-level Difference Metrics Since the SiDiff/SiLift framework (Section 4.2.3) re-
ports 5 different kinds of low-level edit operations, for each of our 15 element types of
our metamodel and for each of these 5 kinds of low-level edit operations, we finally define
specific difference metrics, namely the number of occurrences of these edit operations on
model elements of this type in a low-level difference. Thus, we obtain a total number of
75 (=15×5) low-level difference metrics.

93

rn

n+1r

Figure 4.4: ASG representations of our sample revisions rn and rn+1.

4.3.4 High-Level Changes

As explained in Section 4.2, the set of high-level edit operations to be detected has to be
defined individually for each modeling language. Exact specifications for all operations
defined for our Java class diagrams can be found at the accompanying website [Website,

94

Low-level Op. Kind Elem. Type Element

Addition JClass Figure
Addition JClass Fraction
Addition JField numerator
Addition JField denominator
Reference Change JClass Circle
Move JField id
Attribute Change JField radius
Attribute Change JMethod circumference
Attribute Change JMethod area
Reference Change JField radius
Reference Change JMethod circumference
Reference Change JMethod area

Table 4.1: Low-level changes in our running example.

2015]. In sum, we specified a total number of 188 high-level edit operations in design
models of Java systems. Table 4.2 provides a summary of the specified high-level edit
operations. As shown in the table, the 188 high-level edit operations can be roughly
classified into six kinds of edit edit operations which will be explained in the remainder
of this section.

Each edit operation has been implemented in a Henshin transformation rule [Arendt
et al., 2010]. We illustrate a set of selected edit operations in terms of the Henshin visual
syntax, which is very intuitive. As introduced earlier in Section 2.4.2, a rule is defined
on the ASG and specifies model patterns which have to be found and preserved, to be
deleted or to be created, using the “stereotypes” preserve, delete and create, respectively.
In addition, one can specify model patterns which are forbidden and which prevent a
rule from being applied (stereotype forbid). The examples show that a Henshin rule can
define formal parameters. Thus, the context in which a rule is applied can be determined
by actual parameters which are passed to a rule.

Kinds of High-Level Edit Operations Specified Num.

Create 22
Delete 22
Move 12
Set/Unset 85
Modify Non-Containment References 35
Refactorings 12

Table 4.2: High-level edit operations - summary.

95

Create and Delete Operations We identified 22 create operations, the operations
to create a new class shown in Figure 4.5 are examples of this. The number of create
operations is slightly higher than the number of the low-level addition counterparts
because we clearly distinguish the context in which an element is created. As illustrated
in Figure 4.5, we have two operations creating a class in different contexts; the left one
creates a nested class in an already existing class, the operation on the right creates a
class in a package.

«preserve»
c:JClass

«preserve*»

«create»
:JClass

isAbstract=a
name=n

innerClassifiers superClass
«create»«create» «create*»«create*»

classes

«preserve*»

«create»
:JClass

isAbstract=a
name=n

superClass
«create»«create» «create*»«create*»

«preserve»
p:JPackage s*:JClasss*:JClass

Rule CREATE_JClass_IN_JClass(c, n, a, s*, ...) Rule CREATE_JClass_IN_JPackage(p, n, a, s*, ...)

Figure 4.5: Creation of a class in different contexts.

The example shows that high-level edit operations can have several parameters, only
a subset of them is shown in Figure 4.5. For example, the context in which a class is
to be created is passed to the create operations shown in Figure 4.5; the first operation
creates a new class in a given class c, while the second one creates a new class in a
package p. In addition, the name n of the new class and a boolean value a assigned to
attribute isAbstract are passed to both create operations. If desired, an existing class
can be assigned as superclass to the new class which is to be created, indicated by the
optional multi-object s* in both rules.

For each of the 22 create operations, we specified an inverse delete operation deleting
an object of a particular type in a specific context.

Move Operations Move operations are similar to our low-level move operations,
i.e. they shift a selected object to a different parent. Similar to our create and delete
operations, the old and the new parent context is explicitly specified. The operation
shown in Figure 4.6, for instance, moves a field from one class to another.

Note that the number of high-level move operations is slightly lower than the total
number of low-level move operations because some movements, e.g. moving parameters
between methods, are possible, but not meaningful from a user’s point of view. Such
move operations are thus excluded from the overall set of high-level operations.

96

Rule MOVE_JField_FROM_JClass_TO_JClass(c_from, c_to, f)

«preserve»
f:JField

«preserve»
c_from:JClass

«preserve»
c_to:JClass

fields fields
«delete»«delete» «create»«create»

Figure 4.6: Move operation shifting a field from one class to another.

Set/Unset Operations The 15 low-level attribute changes expand to 85 concrete set
operations which provide dedicated access to each local attribute for all types of elements.
While our low-level change operations only report that an attribute of a certain element
has been changed, a high-level set operation explicitly states which attribute is to be
changed.

If there is at most one outgoing reference of a particular type for a particular ASG
object, then references of this type can be handled similar to attributes. An example
is shown in Figure 4.7. The operation modifies a method such that an exception that
might be thrown by this method is being declared. The creation of such a reference
is conceptually treated as set operation. The negative application condition (NAC)
of «forbid» in Figure 4.7 prevents the operation from being successfully executed if
method m already has an outgoing reference of type raisedException (we assume here
that a method can declare only one type raised exception). An inverse operation to
a set operation deletes a reference of this type and is considered as unset operation.
Obviously, the NAC can be omitted for unset operations.

Rule SET_REFERENCE_JMethod_TGT_JClass(m, c)

«preserve»
m:JMethod

«preserve»
c:JClass

«forbid»
:JClass

raisedExceptionraisedException
«create»«create»«forbid»«forbid»

Figure 4.7: Set operation adding a “neighbour” to an existing object.

97

Operations modifying Non-Containment References Finally, the 15 low-level
reference change operations unfold to 35 operations which are denoted as modifying
non-containment references. Examples include the addition (removal) of an interface
to (from) the set of interfaces being implemented by a particular class, as illustrated in
Figure 4.8. We refer to the respective edit operations as add and remove operations
since we conceptually add (remove) an object to (from) a collection of objects.

Rule ADD_JClass_TGT_JInterface(c, i)

«preserve»
c:JClass

«preserve»
i:JInterface

Rule REMOVE_JClass_TGT_JInterface(c, i)

«preserve»
c:JClass

«preserve»
i:JInterface

implementedInterfaces implementedInterfaces
«create»«create» «delete»«delete»

Figure 4.8: Add/remove operations modifying non-containment references.

Further examples of operations modifying non-containment references are change
operations such as the example shown in Figure 4.9: This operation changes the current
type of a given field f to a new type t_new.

Rule CHANGE_REFERENCE_JField_TGT_JType(f, t_new)

«preserve»
f:JField

«preserve»
t_old:JType

«preserve»
t_new:JType

typetype
«delete»«delete» «create»«create»

Figure 4.9: Change operation modifying a non-containment reference.

Refactorings Additionally, we chose the well-known catalog of object-oriented refac-
toring operations [Fowler et al., 1999] and selected 12 refactorings which are adaptable
to design-level class diagrams. For some of these refactorings, the actual size of the sets

98

of observed changes in a difference can even vary between occurrences of the same edit
operation. The refactoring “pullUpField” and “pullUpMethod” are two examples; both
edit operations are applied to all common fields/methods in the set of all direct subclasses
of a given class.

High-level Changes for our Example Figure 4.10 lists the high-level changes which
occur in our running example of Figure 4.2, assuming the same correspondences as in
Section 4.3.3. Note that some arguments in high-level edit operation invocations are
omitted due to space limitations.

createSuperclass(geometry, Circle, "Figure", true, ...)
CREATE_JClass_IN_JClass(Figure, "Fraction", false, ...)
CREATE_JField_IN_JClass(Fraction, "numerator", int, ...)
CREATE_JField_IN_JClass(Fraction, "denominator", int, ...)
pullUpField(id)
SET_ATTRIBUTE_JField_name(radius, "fRadius")
SET_ATTRIBUTE_JMethod_name(circumference,"getCircumference")
SET_ATTRIBUTE_JMethod_name(area, "getArea")
CHANGE_REF._JField_TGT_JType(radius, Fraction)
CHANGE_REF._JMethod_TGT_JType(circumference, Fraction)
CHANGE_REF._JMethod_TGT_JType(area, Fraction)

Figure 4.10: High-level changes for our running example.

High-level Difference Metrics Quantitative measurements of high-level changes can
be easily obtained by counting the occurrences of the high-level edit operations on the
computed differences between two model revisions.

4.4 Selection of Sample Projects and the Data Sets

In the previous sections we showed how the evolution of software systems can be captured
at the abstraction level of design models. We discussed two sets of changes that can be
detected between revisions of software models. One is the set of low-level edit operations
which are basic graph edit operations defined on design models, and the second set
contains high-level edit operations which are usually implemented by many low-level edit
operations. In this section we discuss how our sample software systems were selected for
the measurement of low-level and high-level changes and what are our data sets for our
analyses in Chapters 5 and 6.

Obviously, a quantitative study of the evolution must be based on typical, repre-
sentative projects. We selected our sample projects according to the following main
criteria:

99

C1: The projects must be written in Java programming language, be actively used by
end users and be open-source.

C2: The projects must have been actively developed over a long period of time in order
to let us study their evolutions appropriately.

C3: All projects must be non-trivial systems which contain at least 100 model elements,
preferably more. This requirement excludes trivial small projects.

C4: The selected projects must be typical Java software systems from different appli-
cation domains.

We found out that the projects reported in the Helix Software Evolution Data Set
(HDS) [Vasa et al., 2010] fulfill these four requirements. We randomly selected nine
projects from the HDS. Table 4.3 shows the basic information about our sample projects.
All revisions of each project were checked out from the respective repositories and reverse
engineered into design models. For each project, using the methodology described in
Section 4.3, we computed the low-level and the high-level changes between all of its
subsequent revisions.

Since the version control systems (VCSs) used by our sample projects are source
code centric and are not exclusively used for models, there are cases where the changes
in the source code does not influence the reverse engineered design models, which are at a
higher abstraction level. There are also cases where other parts of the systems other than
source code are modified and committed to the VCSs. Such changes are not reflected in
design models, either. All resulting model versions which turned out to be identical to
their predecessor are disregarded in our analysis. We considered only differences where
there is at least one change between the compared design models. Using this approach,
3809 design models were considered.

Finally, the measured 75 low-level and 188 high-level difference metrics between
revisions of models are our data sets for our statistical and time series analyses in the
coming chapters.

4.5 Summary

In this chapter we learned that the evolution of software systems at the abstraction level
of design models cannot be properly captured by measuring the changes between static
software metrics. Therefore, we employed difference metrics which are more appropriate
in this regard.

Measuring the evolution of design models in terms of difference metrics requires
that the differences between models are properly computed. In this regard we used the
SiDiff/SiLift model differencing pipeline and we measured the differences of models at
two abstraction levels. The first level is reported in terms of the applied low-level edit
operations defined on design models. Such operations are basic graph edit operations
which are difficult to work with, by developers who are used to working on model editors

100

N
am

e
D
es
cr
ip
ti
on

#
R
ev
.
in

V
C
S

#
M
od

el
R
ev
.

M
in

#
E
le
m
.

M
ea
n
#
E
le
m
.

M
ax

#
E
le
m
.

A
SM

By
te

co
de

m
an

ip
ul
at
io
n
fra

m
ew

or
k

14
48

26
0

78
1

36
35

52
64

C
he

ck
St
yl
e

C
od

e
fo
rm

at
tin

g
to
ol

25
86

10
11

38
8

31
81

57
91

D
at
aV

isi
on

R
ep

or
tin

g
to
ol

15
3

29
54

31
55

20
56

40
Fr
ee
M
ar
ke
r

Te
m
pl
at
e
en

gi
ne

lib
ra
ry

11
93

34
0

58
25

68
95

77
29

H
SQ

LD
B

SQ
L
re
la
tio

na
ld

at
ab

as
e
en

gi
ne

38
10

96
1

17
52

0
22

87
3

26
59

1
Ja

m
el
eo
n

A
ut
om

at
ed

te
st
in
g
fra

m
ew

or
k

17
72

28
5

22
76

31
39

39
54

JF
re
eC

ha
rt

Li
br
ar
y
fo
r
cr
ea
tin

g
ch
ar
ts

22
70

36
6

18
30

2
21

58
3

24
61

4
M
av
en

Pr
oj
ec
t
m
an

ag
em

en
t
to
ol

93
43

78
1

11
50

37
86

59
10

St
ru
ts

W
eb

ap
pl
ic
at
io
n
fra

m
ew

or
k
fo
r
Ja
va

EE
42

42
73

7
75

7
43

23
63

83

Ta
bl
e
4.
3:

Se
le
ct
ed

Pr
oj
ec
ts
.

101

that support more user-friendly operations. Therefore, the set of low-level changes were
semantically lifted to high-level operations. High-level operations typically comprise of
many low-level operations.

The way low-level and high-level changes are computed was discussed in detail by
providing a working example in Java. In Short, we measured 75 low-level and 188
high-level difference metrics on design models of real Java systems. To this aim, we
selected 9 typical Java systems and we used them as the sample set of our analyses
in this dissertation. We checked out source code of the systems from their respective
repositories and we reversed engineered the code of subsequent revisions into design
model representations. The evolution of design models of Java systems was measured
by low-level and high-level metrics on our sample set. The measured metrics were used
in the coming chapters as the basis for analyzing the evolution of Java systems at the
abstraction level of design models.

102

CHAPTER 5
Statistical Analysis and

Simulation of Design Models
Changes

As we discussed in Chapter 1, one of our goals in this dissertation was to statistically
study the evolution of design models. The evolution of design models was captured
through analysis of changes between revision models of our sample software systems.
This has led to sets of evolution measurements which were captured in two levels of
low-level and high-level changes (see Chapter 4). Such an analysis of the changes not
only allows us to better understand the evolution of software systems at the abstraction
level of design models, but also let us generate more realistic test models for model
differencing, mode versioning and model processing tools (see Chapter 3).

In this regard, in this chapter we focus on statistically studying the evolution of
software systems by analyzing the evolution of both low-level and high-level changes. In
Section 5.1 we introduce mathematical requirements and statistical models, i.e. distri-
butions, which are used to study the evolution. The results of the analysis for low-level
and high-level changes are separately and in detail presented in Section 5.2. The anal-
ysis of changes shows that the proposed statistical distribution in Section 5.1 are quite
suitable to mathematically model both of low-level and high-level changes. Therefore,
such statistical models can be used to replicate the real observed changes and create
more realistic test models. In order to use these statistical distributions in our model
generator, we studied how random variates of these distributions can be generated in
Section 5.3. This chapter ends with a comparison with the related works in Section 5.4
and a chapter summary in Section 5.5.

103

5.1 Statistical Models for Describing Changes
The previous chapter described how the sample projects were selected and how our
data sets of low-level and high-level changes have been computed. Our goal is to find
statistical models, i.e. distributions, which correctly model the changes observed in our
sample data sets. The main challenge for such distributions are large changes: they do
happen, but their probabilities are quite small. Suitable distributions must therefore be
skewed and asymmetric with heavy tails.

As an example, consider Figure 5.1 which depicts the histogram of the frequencies
of additions of methods for the HSQLDB project. The y-axis of the histogram is on the
logarithmic scale for better comprehension. Most differences between HSQLDB revisions
contain only a small number of additions of methods. However, there are also few
differences which contain a large number of additions of methods. To be more specific,
the history of the HSQLDB project has two revisions with 864 and 1094 additions of
methods.

0 200 400 600 800 1000

1

10

100

1000

lo
g-

sc
al

e

Figure 5.1: Histogram of the frequencies of addition of methods for HSQLDB.

Generally, for distributions with heavy tails, the probability ratio between an out-
come with a small probability and an outcome with a big probability is very large. This
is not happening for distributions without heavy tails, e.g. the normal distribution [Bilar,
2008b,a].

Many continuous and discrete univariate distributions are known [Johnson et al.,
1994, 2005, Wimmer and Altmann, 1999, Krishnamoorthy, 2006, Walck, 2007, Forbes
et al., 2011]. We tested the adequacy of 60 distributions1 which could be promising2.
For the selection of these distribution, we considered the shapes of the histograms of

1 See [Website, 2015], for the full list of the tested distributions.
2 Some of these distributions are famous and were also quite successful in other fields of research,

e.g. binomial, Poisson, gamma and chi-squared distributions.

104

the data as well as the shapes of the probability distribution functions of the candidate
distributions. The main feature of the data is that heavy tail histograms as well as the
histograms with short tails are both observable. From our candidate distributions, only
six discrete distributions which also support heavy tails performed acceptable, although
with different levels of success (see Section 5.2). These six are the discrete Pareto
distribution of the power law family, the beta binomial distribution, the generalized
Poisson distribution and finally the Yule, the Waring and the beta-negative binomial
distributions from the family of the hypergeometric distributions [Johnson et al., 1992].

It should be noted that in the related literature, there are some similar concepts
which are used in other research works and usually the terms and definitions of the
employed methods and distributions have been used ambiguously making them difficult
to differentiate. In order to make our proposed results reproducible for other researchers
and avoid the ambiguity, we tried to summarize the mathematical infrastructure needed
to replicate the results presented in this chapter.

In Section 5.1.1 we briefly provide the mathematical requirements which are fre-
quently used throughout the chapter. Section 5.1.2 provides more information about
the discrete Pareto distribution. Section 5.1.3 introduces the beta binomial distribution
while Section 5.1.4 gives the formal definition of the Yule, the Waring and the beta-
negative binomial distributions as well as their relationships to some other distributions
that we use later in Section 5.3 for generating their random variates. Finally, in Section
5.1.5 the generalized Poisson distribution is presented.

5.1.1 Mathematical Requirements

In this section we briefly introduce some mathematical functions and definitions which
we use frequently in the rest of the chapter. We do not go further into details but the
interested reader might refer to [Erdelyi et al., 1955, Gradshteyn and Ryzhik, 2007, Olver
et al., 2010, Wimmer and Altmann, 1999, Johnson et al., 2005] for more information.

Required Mathematical Functions:

The gamma function is defined as:

Γ (a) =
∫ ∞

0
ta−1e−tdt, Re (a) > 0 .

in which Re (a) indicates the real part of a. When a is a positive integer we have:
Γ (a) = (a− 1)! .

The beta function is defined by:

B (a, b) =
∫ 1

0
ta−1(1− t)b−1dt

= Γ (a) Γ (b)
Γ (a+ b) , Re (a) > 0, Re (b) > 0 .

105

The ascending factorial3 is denoted by x(n) and is defined as4:

x(n) = x (x+ 1) (x+ 2) · · · (x+ n− 1)

= Γ (x+ n)
Γ (x) , x ∈ R, n ∈ N and x(0) = 1 .

where R and N indicate the sets of real and natural numbers respectively.
The Riemann zeta function5 ζ(s) is defined by:

ζ (s) =
∞∑
j=1

1
js
, Re (s) > 1 . (5.1)

and its derivative, i.e. ζ ′(s) is given by:

ζ
′ (s) = −

∞∑
j=1

ln (j)
js

= −
∞∑
j=2

ln (j)
js

, Re (s) > 1 . (5.2)

Fundamental notions of probability distributions:

Suppose that there is a finite population and consider just two outcomes: success
with the probability of p and failure with the probability of 1− p. A Bernoulli trial is a
random experiment in which trials are independently done with two possible outcomes
of success and failure. The distribution of a Bernoulli trial is denoted by Bernoulli (p).

In a Bernoulli trial, the probability of k successes in n draws without replacement is
classically called the hypergeometric distribution. When the same is done with replace-
ment it is called the binomial distribution and is denoted by Bino (n, p). In the first case
the draws are dependent, while in the latter case they are independent. In a Bernoulli
trial, the distribution of the number of failures before n successes happen is called the
negative binomial distribution. This distribution is denoted by NegBino (n, p). For more
information about the binomial and the negative distributions please respectively see
Equation (5.14) in Section 5.3.4 and Equation (5.12) in Section 5.3.3.2.

Throughout this chapter we use “PDF” and “CDF” as the abbreviation for the
Probability Density Function and the Cumulative Distribution Function respectively.

5.1.2 Discrete Pareto Distribution and Power Law

Considering the function y = f(x), it is said that y obeys power law to x when y
is proportional to x−α. Such relations, which have different applications, have been

3 Similarly the descending factorial is also defined.
4 There is also another symbol for the ascending factorial that is used in the related literature. It is

called the Pochhammer symbol and is usually denoted by (x)n. It is also used as descending factorial in
some cases, so caution is advised.

5 The Riemann zeta function is a special case of the Hurwitz zeta function and the latter is itself a
special case of the Lerch transcendent function.

106

observed in linguistics, biology, geography, economics, finance, physics and also computer
science, e.g. the size of computer files, grid complex networks, the Internet and web pages
hit rates (see [Newman, 2005, Mitzenmacher, 2004, Ilijašic and Saitta, 2010, Adamic and
Huberman, 2002, Gabaix, 2009]). Formally we have:

Definition 5.1 (Power Law). A function y = f (x) is said to obey power law to x when
f(x) is proportional to some power of x, i.e. y = c xα in which α is called the power law
exponent or scaling parameter and c is a constant.

The discrete Pareto distribution6 that is used throughout this chapter is of the power
law family and is based on the Riemann zeta function introduced earlier [Erdelyi et al.,
1955, Gradshteyn and Ryzhik, 2007, Olver et al., 2010]. It takes a real value ρ > 0 as
the shape parameter.

Definition 5.2 (Discrete Pareto Distribution). The PDF of the discrete Pareto distri-
bution with shape parameter of ρ is given by [Johnson et al., 2005]:

P [X = x] = x−s

ζ (s) = x−(ρ+1)

ζ (ρ+ 1) , (5.3)

x = 1, 2, · · · .

where ρ = s− 1 > 0 and ρ ∈ R.

For demonstration, Figures 5.2 and 5.3 provide the PDF and the CDF plots of the
discrete Pareto distribution for different values of ρ.

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

● ρ=0.5 ■ ρ=1 ◆ ρ=2

Figure 5.2: PDF-plot of the discrete
Pareto distribution for different ρ.

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

● ρ=0.5 ■ ρ=1 ◆ ρ=2

Figure 5.3: CDF-plot of the discrete
Pareto distribution for different ρ.

To estimate the parameter of ρ in (5.3), suppose that N dependent random variates
xi of the discrete Pareto distribution are given. Using (5.1) and (5.2), ρ̂, the estimator of

6 Sometimes is also referred to as the Zipf distribution, the Riemann zeta distribution or the zeta
distribution.

107

ρ, which is obtained by the maximum likelihood estimation method satisfies the following
relation:

1
N

N∑
i=1

ln (xi) = −ζ
′ (ρ̂+ 1)

ζ (ρ̂+ 1) (5.4)

[Johnson et al., 2005] provides more information for the solution of (5.4) as well as
an alternative poorer estimation for the parameter ρ in (5.3). Moreover, the discrete
Pareto distribution can also be obtained from the general Lerch distribution7 [Wimmer
and Altmann, 1999]. [Zörnig and Altmann, 1995] have provided moments of the general
Lerch distribution as well as estimation of its parameters.

5.1.3 Beta Binomial Distribution

As we saw in Section 5.1.1, the binomial distribution is the distribution of successes in
n draws of a Bernoulli trial with success probability of p. When the probability of the
Bernoulli trials, i.e. p, is not fixed and is changing according to the beta distribution8 of
Beta (α, β), we have a beta binomial distribution.

Definition 5.3 (Beta Binomial Distribution). The beta binomial distribution with
shape parameters of α, β and n is denoted by BetaBino (α, β, n) and its PDF is given
by [Wimmer and Altmann, 1999]:

P [X = x] =
(
n

x

)
B (α+ x, n+ β − x)

B (α, β)

= Γ (n+ 1) Γ (α+ β) Γ (α+ x) Γ (β + n− x)
Γ (α) Γ (β) Γ (x+ 1) Γ (n− x+ 1) Γ (α+ β + n) ,

x ∈{0, 1, . . . , n} , α > 0, β > 0 and α, β ∈ R.

(5.5)

To better comprehend the distribution shape, Figures 5.4 and 5.5 shows the PDF of
the beta binomial distribution for different values of the shape parameters α and β.

5.1.4 Yule, Waring and Beta-Negative Binomial Distributions

Before going into details, we briefly introduce the Yule, Waring and beta-negative bino-
mial distributions, which are all discrete distributions. The Yule distribution, which has
applications in the taxonomy of species in biology, has just one parameter b, which is a
positive real. The Waring distribution, which yields the Yule distribution as a special
case, has two real parameters, b > 0 and n > 0. Both of the Yule and the Waring dis-
tributions have been generalized ([Irwin, 1975]) to a hypergeometric distribution called
the generalized Waring or the beta-negative binomial distribution9 [Johnson et al., 2005,

7 The general Lerch distribution is defined based on the Lerch transcendent function. The Lerch
transcendent function gives the Riemann zeta function as its special case.

8 Beta distribution is introduced by Equation (5.11) in Section 5.3.3.1.
9 When its support is shifted, it is referred to as the beta-Pascal distribution.

108

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

■

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■

■

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆

◆
◆

◆

◆

◆

◆

◆

0 5 10 15 20
0.00

0.05

0.10

0.15

● α=0.1 ■ α=0.5 ◆ α=3

Figure 5.4: PDF-plot of the beta bino-
mial distribution BetaBino (α, 0.5, 20) for
different α.

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆

◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

● β=1 ■ β=5 ◆ β=10

Figure 5.5: PDF-plot of the beta bino-
mial distribution BetaBino (0.5, β, 20) for
different β.

Wimmer and Altmann, 1999]. The distribution has three parameters, α, β and n which
are positive reals.

Definition 5.4 (Yule Distribution). The Yule distribution with shape parameter of b
(denoted by Yule (b)) is specified by the following PDF [Wimmer and Altmann, 1999]:

P [X = x] = b B (b+ 1, x+ 1)

= b x!
(b+ 1)(x+1) ,

10

x = 0, 1, 2, · · · , b > 0 and b ∈ R.

(5.6)

Definition 5.5 (Waring Distribution). The PDF of the Waring distribution with shape
parameters of b and n (denoted by Waring (b, n)) is given by [Wimmer and Altmann,
1999, Johnson et al., 2005]:

P [X = x] = B (n+ x, b+ 1)
B (n, b)

= b n(x)

(b+ n)(x+1) ,

x = 0, 1, 2, · · · , b > 0, n ≥ 0 and b, n ∈ R.

(5.7)

According to (5.6) and (5.7), it is easy to see that the Yule distribution is a special
case of the Waring distribution when we set n = 1. Figures 5.6 and 5.7 depict the PDF
plot of the Waring distribution with different shape parameters of b and n.

10 The denominator is expressed in ascending factorial notation (see Section 5.1.1).

109

● ●

■

■
■

■
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆

◆

◆

◆
◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

● b=1 ■ b=4 ◆ b=8

Figure 5.6: PDF-plot of the Waring distri-
bution Waring (b, 25) for different b.

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■

■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆
◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

● n=5 ■ n=10 ◆ n=20

Figure 5.7: PDF-plot of the Waring distri-
bution Waring (5, n) for different n.

As we mentioned earlier, the beta-negative binomial distribution is an extension to
the Yule and the Waring distributions. This distribution can also be obtained from
the negative binomial distribution NegBino (n, p) (see Section 5.1.1 and Equation (5.12)
in Section 5.3.3.2) when the probability of success in the Bernoulli trials, p, changes
between different experiments and is distributed according to the continuous univariate
beta distribution, i.e. p ∼ Beta (α, β) [Wimmer and Altmann, 1999, Johnson et al., 2005].
The beta distribution is defined on the interval of [0, 1] with two shape parameters of
α and β. For more information about the beta distribution please see Section 5.3.3.1
(Equation (5.11)).

Definition 5.6 (Beta-Negative Binomial Distribution). The generalized Waring or the
beta-negative binomial distribution with shape parameters of α, β and n, is denoted by
BNB (α, β, n) and its PDF is specified by [Wimmer and Altmann, 1999, Johnson et al.,
2005]):

P [X = x] = α(n)β(x)n(x)

x! (α+ β)(n) (α+ β + n)(x)

= Γ (α+ n) Γ (β + x) Γ (α+ β) Γ (n+ x)
Γ (α) Γ (β) Γ (n) Γ (x+ 1) Γ (α+ β + n+ x) ,

x = 0,1, 2, · · · , α > 0, β > 0, n > 0 and α, β, n ∈ R .

(5.8)

In Equation (5.8), by setting n = 1 and changing β by n and α by b, i.e. BNB (b, n, 1),
we obtain the Waring distribution. Similarly by setting n = 1, β = 1 and changing α by
b, i.e. BNB (b, 1, 1), we get the Yule distribution ([Wimmer and Altmann, 1999]). [Irwin,
1975] has deeply studied the generalized Waring distribution including its limiting cases,
special cases, moments etc. Figures 5.8 and 5.9 show the PDF plots of the beta-negative
binomial distribution for different values of α and β.

110

For more information about the moments of the beta-negative binomial, the Waring
and the Yule distributions, please refer to [Wimmer and Altmann, 1999, Johnson et al.,
2005].

● ●■

■

■

■
■ ■

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

0 5 10 15 20 25
0.00

0.02

0.04

0.06

0.08

0.10

● α=1 ■ α=5 ◆ α=10

Figure 5.8: PDF-plot of the beta nega-
tive binomial distribution BNB (α, 3, 20)
for different α.

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■
■ ■

■
■

■
■

■
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆
◆

◆
◆ ◆

0 5 10 15 20 25
0.00

0.05

0.10

0.15

● β=0.5 ■ β=1.5 ◆ β=3

Figure 5.9: PDF-plot of the beta nega-
tive binomial distribution BNB (5, β, 20)
for different β.

5.1.5 Generalized Poisson Distributions

The Poisson distribution plays an important role in statistics and in modeling of random
systems [Cogdell, 2004]. We assume, actually with some simplification, that there are
some events happening independently at a constant rate of µ in time. The probability
of observing exactly x events in a given period of time obeys the Poisson distribution
[Walck, 2007]. The probability density function of the Poisson distribution with shape
parameter µ (denoted by Pois (µ)) is defined as follows [Forbes et al., 2011, Wimmer
and Altmann, 1999]:

P [X = x] = µxe−µ

x! ,

x = 0, 1, 2, · · · , µ > 0 and µ ∈ R.
(5.9)

[Consul and Jain, 1973] has generalized the Poisson distribution which has an extra
shape parameter. The distribution is reported to have a very close fit to the Poisson,
binomial and negative binomial distributions. It is also reported that it covers heavy
tails distributions.

Definition 5.7 (Generalized Poisson Distribution). The generalized Poisson distribu-
tion with shape parameters of µ and λ is denoted by GenPois (µ, λ) and its PDF is given
by [Consul and Jain, 1973, Devroye, 1989]:

P [X = x] = µ (λx+ µ)x−1e−(λx+µ)

x! ,

x = 0, 1, 2, · · · , µ > 0, 0 ≤ λ ≤ 1 and µ, λ ∈ R.
(5.10)

111

In the case that λ = 0, i.e. GenPois (µ, 0), we get the Poisson distribution Pois (µ).
To have an idea how the generalized Poisson distribution looks like, Figures 5.10 and
5.11 show the PDF of the distribution for different values of the shape parameters µ and
λ.

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■
■

■
■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■◆ ◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

● μ=0.75 ■ μ=2 ◆ μ=5

Figure 5.10: PDF-plot of the generalized
Poisson distribution GenPois (µ, 0.5) for
different µ.

●

●

● ●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

■

■

■ ■
■

■
■

■
■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

● λ=0.1 ■ λ=0.5 ◆ λ=0.9

Figure 5.11: PDF-plot of the generalized
Poisson distribution GenPois (3.0, λ) for
different λ.

5.2 Analysis of Changes and Results

Up to now, we have introduced the low-level and high-level changes between design
models of Java software systems in Chapter 4. We have also provided the statistical
distributions for analyzing the changes in Section 5.1. As discussed in Section 4.4, our
data sets were the measurements of 75 low-level and 188 high-level difference metrics on
the design models histories of 9 Java software systems. More formally, for each project
p let Lp,m denote the set of computed frequencies of the low-level metric m between
revisions of p. Similarly by Hp,m we denote the set of measurements of the high-level
metric of m on the project p.

To decide whether or not a distribution D fits to a data set (Lp,m or Hp,m), the null
and alternative hypotheses, i.e. H0 and Ha, are defined as follows:

H0: The data set obeys the distribution D.

Ha: The data set does not obey the distribution D.

Different methods exist for fitting distributions and estimating parameters. Two
commonly used are the method of moments and the maximum-likelihood estimation
method (MLE) [Wackerly et al., 2007, Bohm and Zech, 2010]. The former tries to
estimate the parameters using the observed moments of the sample, by equating them to
the population moments and solving the equations for the parameters. The MLE method

112

estimates the parameters by trying to maximize the logarithm of the likelihood function.
The moments and/or the maximum-likelihood estimations of the discussed distribution
are provided in detail in the accompanying website of the dissertation [Website, 2015].
In this chapter the MLE method is employed and the calculations are performed using
the Wolfram Mathematica® 9.0.1 computational engine [Wolfram Research Inc., 2014].

Due to the discrete nature of the difference metrics and the six distributions, the
Pearson’s chi-square test was used [NIST, 2013] (see Section 5.2.4 for detailed discussion
about the power of the Pearson’s test against other alternative tests). The significance
level was set to 0.05 for the test in our analysis. At first the parameters of the candidate
distribution D were estimated, then the p-value of the Pearson’s chi-square statistic was
calculated in order to decide whether to reject H0 in favor of Ha or not.

For the 60 distributions that were initially tested, totally 40500 (60 × 9 × 5 × 15)11

fittings were considered for low-level changes and 101520 (60× 9× 188)12 for high-level
ones. From those, just the results for the six proposed distributions are covered in detail
here, separately for low-level and high-level edit operations. In the rest of this section
only successfully accomplished fittings are reported, i.e. when we were able to decide
whether to reject H0 or not; our summaries of the results are based on such successfully
accomplished fittings. There were cases where the computed difference metrics were zero
for all revisions and no fittings were possible; they are not considered in our analysis.

Since there are too many (188) high-level operations we cannot publish detailed in-
dividual results of their analysis. Hence, we have grouped them into 6 categories namely
Create, Delete, Move, Set/Unset, Modifying Non-Containment Reference and complex
high-level operations, i.e. Refactorings (see Section 4.3). We provide only the summary
of our findings for each category. Details about the fittings of the six distributions on all
188 high-level operations are available on the accompanying website of the dissertation
[Website, 2015].

5.2.1 Analysis of Low-Level Changes

In this section we provide the results of the fittings of our six candidate distributions on
low-level changes in detail.

5.2.1.1 Discrete Pareto Distribution

Since the support of the discrete Pareto distribution consists of positive integers, the
fittings are done on the shifted data which are obtained by adding +1 to members of
our data sets. The shift brings the data in the domain of this distribution.

Totally 294 successful fittings were performed for low-level operations for the discrete
Pareto distribution. H0 was not rejected 157 times, so the non-rejection ratio is about
53%.

The discrete Pareto distribution is most successful in describing changes of packages
and interfaces, but with lower success rate for additions of new packages. It has generally

11 60 distributions, 9 projects, 5 low-level operations, 15 model element types.
12 60 distributions, 9 projects, 188 high-level operations.

113

a moderate rate of success in describing changes of classes and performs worse when fields
are considered. The discrete Pareto distribution is not successful in describing changes
of methods and parameters due to a success rates of under 30%. Changes of array types
could be fully modeled by this distribution. Additions and deletions of other element
types could also be described with moderate success. Figure 5.12 shows one probability
plot13 of the observed and the fitted probabilities for the JFreeChart project for the
difference metric additions of methods. The plot is near to the ideal dashed line, so we
constitute a good approximation although H0 is rejected. Here, the p-value of the test
was slightly lower than our significance level.

●

●

●

●

●
●

●
●
●
●
●●

●
●●

●●
●●●●

●●●●
●●
●●●●
●●●●
●●●●
●●●●
●●● ●

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.12: Probability plot of JFreeChart: addition of methods, the discrete Pareto
distribution.

5.2.1.2 Beta Binomial Distribution

For the beta binomial distribution, H0 was not rejected 199 out of 294 times, which gives
a non-rejection rate of almost 68%. This distribution shows a considerable improvement
comparing to the discrete Pareto distribution whose success rate is at 54%.

The beta binomial distribution is fully successful in describing different changes on
packages and interfaces. Regarding classes, it is just completely successful on modeling
moves and updates. Addition, deletion and reference changes of classes is just modeled
around one third of the times. Considering fields, it was just successful on modeling
the moves but other change types were modeled at most half of the times. Changes on
methods and parameters were modeled with various success rates of around 10% to 75%.
For other model elements, all types of changes except additions were fully captured by

13 The probability plot depicts the cumulative distribution functions (ranging from 0 to 1) of two
data sets or distributions against each other in order to visually assess their closeness.

114

this distribution. Generally additions, except for packages and interfaces, were not quite
successfully modeled by this distribution.

5.2.1.3 Yule Distribution

From the 294 fittings of the Yule distribution, H0 was rejected in favor of Ha 180
times, giving a non-rejection rate of almost 39% which makes this distribution the least
successful one.

The Yule distribution was fully successful in describing moves, reference change and
update on packages and interfaces; but for additions and deletions this rate drops to less
than 50%. For classes, fields, methods and parameters it performs weakly most of the
time, rarely reaching 50% of success. Describing additions of elements is only moder-
ately successful, while deletions of elements are better modeled compared to additions.
Nevertheless, the Yule distribution performs worse than the discrete Pareto distribution
for both kinds of edit operations. Figure 5.13 shows the CDF14 plot of the observed
probabilities and the fitted model, for reference changes of methods in the HSQLDB
project. There are large differences between the observed probabilities (brown lines)
and those which are obtained by the fitted distribution (red lines), which indicates that
the fitting is bad and H0 is strongly rejected.

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.13: The CDF plot of the HSQLDB project: reference change of methods, the
Yule distribution (Brown: observed probabilities, Red: fitted model).

5.2.1.4 Waring Distribution

For the Waring distribution, H0 was not rejected 252 out of 294 times, which gives a
very good non-rejection rate of 86%.

14 CDF: Cumulative Distribution Function.

115

The Waring distribution was fully successful in describing changes of packages and
interfaces. For classes it was successful almost 70% of the times or more and this rate
is even higher with 90% and more when fields are considered. For changes on methods
we get good success rates between 45% to 90%. Figure 5.14 shows the fitted Waring
distribution to the histogram of additions of methods in the Maven project. As shown,
the Waring distribution successfully models the changes. For changes on parameters,
this distribution performs also well. The exceptions are reference updates for which it
has only a success rate of 25%. It was fully successful in describing changes of array
types, constants, simple types, generic types and the other elements (see Section 4.3.2).

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

Figure 5.14: Plot of the fitted Waring distribution to the histogram of addition of meth-
ods in Maven.

Figure 5.15 shows the p-value plot of the DataVision project which shows that the
distribution was almost fully successful in describing all kinds of changes on all element
types except for reference changes of parameters (row=4, column=6). Colors in the
plots are used as follows: Black cells express that either all values of difference metrics
were 0 or that the distribution could not be fitted because either the data did not fulfill
the requirements of the distribution or parameters could not be estimated. The first
case happens most of the time, while the second case occurs very rarely15. White cells
indicate that the calculated p-value was less than the specified significance level, i.e. H0
was rejected. Finally, when the calculated p-value was above the significance level, i.e.
H0 was not rejected, the cell is colored. The more intense the color of the cell, the higher
the p-value.

15 To be more precise, almost 0.02% of all possible fittings.

116

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

Note: The rows correspond to change types: 1. Additions, 2. Deletions, 3. Moves, 4. Reference
Changes, 5. Attribute Updates.
The columns correspond to the element types: 1. Packages, 2. Interfaces, 3. Classes, 4. Fields, 5.
Methods, 6. Parameters, 7. Projects, 8. Array Types, 9. Constants, 10. Simple Types, 11. Generic
Types, 12. Template Wrappers, 13. Template Bindings, 14. Enumerations and 15. Enumeration
Literals.

Figure 5.15: P-Value plot of the whole DataVision project when the Waring distribution
is used.

5.2.1.5 Beta-Negative Binomial Distribution

For the beta-negative binomial distribution, H0 was rejected 34 out of 294 times in favor
of Ha, yielding an 88% non-rejection rate, which is a slight improvement to the Waring
distribution.

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.16: Plot of the fitted beta-negative binomial distribution to the histogram of
addition of parameters in CheckStyle.

The beta-negative binomial and the Waring distributions performed almost identi-
cal for the difference metrics over the 15 element types. Like the Waring distribution,

117

the beta-negative binomial distribution is not successful in modeling reference changes
for parameters with a success rate of only about 25%. Figure 5.16 shows the fitted
beta-negative binomial distribution to the histogram of additions of parameters in the
CheckStyle project. It can be seen that the predicted and observed probabilities com-
pletely overlap. Figure 5.17 shows the p-value plot of the Struts project which is almost
fully statistically modeled by the beta-negative binomial distribution. In this particular
example, only reference changes of interfaces could not be modeled (row=4, column=3).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

Note: The rows correspond to change types: 1. Additions, 2. Deletions, 3. Moves, 4. Reference
Changes, 5. Attribute Updates.
The columns correspond to the element types: 1. Packages, 2. Interfaces, 3. Classes, 4. Fields, 5.
Methods, 6. Parameters, 7. Projects, 8. Array Types, 9. Constants, 10. Simple Types, 11. Generic
Types, 12. Template Wrappers, 13. Template Bindings, 14. Enumerations and 15. Enumeration
Literals.

Figure 5.17: P-Value plot of the whole Struts project when the BNB distribution is used.

5.2.1.6 Generalized Poisson Distribution

For the generalized Poisson distribution, H0 was not rejected 244 out of 294 times
which gives a success rate of around 83%. This is an slight decrease in comparison
of the Waring distribution. The performance of this distribution is around 5% less
than the beta-negative binomial distribution. Comparing to the Yule and the discrete
Pareto distributions, this distribution is performing better with around 44% and 30%
respectively.

The generalized Poisson distribution is completely successful in describing all types of
changes on packages and interfaces. It is also completely successful in describing moves
and updates on classes and fields. Regarding classes, fields, methods and parameters, it
performs around 60% or more in describing additions, deletions and reference updates.
For parameters, the success ratio is various from 20% to 90%. In particular, this distri-
bution has a similar deficiency like the other distributions in describing reference update
of parameters with around 20% of success rate. Figure 5.18 shows the p-value plot of
the JFreeChart project. As shown, the generalized Poisson distribution generally has
not been successful in describing different types of changes on parameters. Considering
other model elements, this distribution is performing very good and almost captures all
types of changes.

118

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

Note: The rows correspond to change types: 1. Additions, 2. Deletions, 3. Moves, 4. Reference
Changes, 5. Attribute Updates.
The columns correspond to the element types: 1. Packages, 2. Interfaces, 3. Classes, 4. Fields, 5.
Methods, 6. Parameters, 7. Projects, 8. Array Types, 9. Constants, 10. Simple Types, 11. Generic
Types, 12. Template Wrappers, 13. Template Bindings, 14. Enumerations and 15. Enumeration
Literals.

Figure 5.18: P-Value plot of the whole JFreeChart project when the generalized Poisson
distribution is used.

5.2.2 Analysis of High-Level Changes

In this section we present the results of our statistical analysis for the high-level changes,
first by summarizing the success rate of each distribution and later by providing more
detail about the analysis results. The summarization is based on all successful fittings
(where we can decide on the rejection ofH0), done on all high-level metrics of all projects.
Totally 554 successful fittings were performed on the high level changes. The rest were
cases where the set of computed changes were all zero, i.e. we did not detect any occur-
rences of those changes in our analysis.

For the discrete Pareto distribution, totally H0 was not rejected 69% of all cases; a
considerable improvement for this distribution compared to its application on low-level
operations. We conclude that the discrete Pareto distribution serves better to describe
high-level changes than low-level ones for which the success rate was at 53%.

Regarding the beta binomial distribution, the non-rejection rate of H0 was at 85%
which shows around 17% improvement, quite similar to the discrete Pareto distribution,
to its application to low-level changes whose success rate was at 68%. In this case, as for
the discrete Pareto distribution, we conclude that the application of the beta binomial
distribution is more promising when high-level changes are considered.
H0 was not rejected at the rate of 53% for the Yule distribution when considering

all edit operations on all sample projects. This shows an improvement of 14% compared
to low-level operations. Among all distributions, the Yule distribution also performs
the worst for both low-level and high-level operations. Its success rate is much lower
compared to its generalized counterparts, i.e. the Waring and the beta-negative binomial
distributions.

The non-rejection ratio of the null hypotheses is almost at 93% for the Waring distri-
bution, which is a good result. The Waring distribution performs very well in describing

119

Project Name Pareto Beta-Bino. Yule Waring BNB Gen. Pois.

ASM 80% 88% 57% 97% 97% 97%
CheckStyle 66% 83% 46% 85% 89% 83%
DataVision 96% 93% 89% 96% 96% 96%
FreeMarker 76% 80% 51% 94% 94% 95%
HSQLDB 57% 79% 30% 84% 91% 82%
Jameleon 74% 86% 60% 98% 96% 96%
JFreeChart 62% 92% 49% 96% 96% 96%
Maven 58% 81% 42% 93% 90% 85%
Struts 76% 81% 48% 97% 100% 92%
Average 71% 85% 53% 93% 94% 92%

Table 5.1: Success rates of each distribution for modeling high-level changes of each
sample project.

the change behavior observed in the models, almost for all defined high-level operations.
This distribution is performing almost 25% better compared to the discrete Pareto distri-
bution and 40% comparing to the Yule distribution. In comparison to the beta binomial
distribution, the Waring distribution is also superior. The success rate of this distribu-
tion is slightly higher than the generalized Poisson distribution and slightly lower than
the beta-negative binomial distribution.

For the beta-negative binomial distribution, the non-rejection ratio of the null hy-
potheses is more than 94% which is the highest rate among all distributions. The success
rate of this distribution is slightly higher than the Waring and the generalized Poisson
distributions. This distribution performs the best in describing the evolution of class
diagrams based on high-level changes.

The generalized Poisson distribution is also performing very good in describing dif-
ferent changes with a success rate of 92%. This rate is slightly lower than its competitors
of the Waring and the beta-negative binomial distributions. This distribution also per-
forms quite well in describing different high-level edit operations. Comparing to the beta
binomial distribution, it performs quite better.

Table 5.1 shows the success rates of each of these six distributions for each sample
project separately. The HSQLDB project could be weakly modeled by the discrete
Pareto distribution while the DataVision project was almost completely modeled by
this distribution. Generally the generalized Poisson, the Waring and the beta-negative
binomial distributions are the most successful distributions in our table with almost 93%
success rates.

Table 5.2 shows the success rates of each distribution when applied to each category
of high-level operations (see Section 4.3.4). As the table shows, the generalized Poisson,
the Waring and the beta-negative binomial distributions are the most successful ones
when considering each category separately. These distributions perform only weak with

120

Edit Operations Pareto Beta-Bino. Yule Waring BNB Gen. Pois.

Create 62% 71% 47% 91% 91% 87%
Delete 72% 83% 57% 92% 95% 89%
Move 69% 89% 47% 94% 97% 94%
Set/Unset 73% 89% 48% 97% 97% 95%
Mod. Non-Cont. Ref. 59% 81% 39% 85% 87% 84%
Refactorings 93% 98% 69% 100% 100% 100%

Table 5.2: Success rates for each category of high-level changes.

operations modifying non-containment references. This is due to the fact that type
changes of method parameters, which is a modification of a non-containment reference,
are modeled by these two distributions with only 33% success rate. In fact, the high-
level operation changeParameterType consists of just one low-level change. Hence
this observation is consistent with our observations for low-level changes. Therefore, for
modeling this edit operation, these three distributions should be used with caution.

All the generalized Poisson, the Waring and the beta-negative binomial distributions
were 100% successful in describing model refactorings.

5.2.3 Conclusion of Analyses

With low-level operations, as discussed in Sections 5.2.1.1 and 5.2.1.3, the discrete Pareto
distribution is to some extent successful in describing the observed changes. The Yule
distribution is not generally recommended due to its low success rates and its failure to
models most kinds of changes on various element types.

More precisely, the discrete Pareto distribution is basically good in describing changes
on packages and interfaces. It is moderately suitable for classes and fields and only very
limited suited for methods and parameters. For the rest of the element types, it performs
relatively well. When high-level operations are taken into account, the discrete Pareto
distribution performs much better (near 70%) in describing the changes.

Since the discrete Pareto distribution is of the power law family, we additionally
conclude that the “power law” is observable16 to some extent in low-level changes between
class diagrams of open-source Java systems and its presence is more apparent when high-
level operations are considered17.

The beta binomial distribution is moderately successful in describing low-level and
high-level operations. It is more powerful than the discrete Pareto and the Yule distribu-
tions and less powerful than the generalized Poisson, the Waring and the beta-negative
binomial distributions.

Considering low-level operations, the generalized Poisson, the Waring and the beta-
negative binomial distributions show much higher success rates than the other three

16 Actually based on the shifted data (see Section 5.2.1.1).
17 See [Newman, 2005], for a short summary of where else the power law is also observed.

121

distributions. All of them perform quite well at explaining the observed difference metrics
for almost all element types. Despite these successes, they are not completely successful
in predicting reference changes of parameters and therefore should be used with caution
in this specific case.

For the high-level operations the success rates of the generalized Poisson, the Waring
and the beta-negative binomial distributions even increases to almost 93%; making them
capable of statistically modeling almost any high-level edit operations in addition to low-
level ones. These distributions are very good at modeling all categories of the high-level
operations. Most of the times reaching near to 100% success rates.

Non-rejection values shows that the beta-negative binomial distribution is the most
successful one among all of our distributions. Although the beta-negative binomial
distribution is an extension to the Waring distribution and has one additional shape
parameter, this does not add much benefit to its descriptive power. Furthermore, es-
timating the parameters of the Waring distribution needs less effort and is less time
consuming.

Comprehensive information about our tests is provided in [Website, 2015]. This
includes detailed tables of the estimated parameters, the summary of the fitting results
as well as the cases of success and failure, and a complete set of p-value plots for each
distribution.

5.2.4 Threats to the Validity of Analyses

In this section we discuss threats to the validity of the presented results and analysis.

Accuracy One threat is based on the way differences between class diagrams were
computed. Model comparison algorithms can produce differences which are generally
considered sub-optimal or wrong. [Wenzel, 2010] has analyzed this error for class di-
agrams and the SiDiff differencing framework [Kehrer et al., 2012b]; the total number
of errors was typically below 2%. This very low error rate cannot have any significant
effect on the results of our analysis.

The second threat is how accurate the high-level operations are recognized. If model
elements were matched based on persistent identifiers, the operation detection could
be guaranteed to deliver correct results [Kehrer et al., 2011], i.e. all low-level changes
were grouped into high-level operations and no low-level ones remain ungrouped. As
matchings are computed based on similarity heuristics, possible “incorrect” matches can
lead to false negatives, i.e. edit operations which have actually been applied but which
were not detected. We calculated the rate of ungrouped low-level changes which was
below 0.3%, thus both of the difference derivation and semantic lifting engines in our
pipeline (see Figure 4.1 and Section 4.2) performed quite well and the results are not
distorted.

122

Power of the Pearson’s Chi-Square Test Another threat to validity can be the
power18 of the Pearson’s test for fitting the distributions and for evaluating the null and
the alternative hypotheses. One might argue that the power of this test is disputable
when samples with small sizes are considered.

To answer this, as we discussed in Section 4.4, we used four criteria to select our
sample projects for our statistical analysis (criteria C1-C4). We excluded the projects
which were not developed over a long enough period of time or had few revisions, since
this would prevent us to appropriately study the “evolution”. Therefore, the size of our
samples is not small (see Table 4.3) and the use of the Pearson’s chi-square test would
not devalue the results.

Furthermore, we should mention that other tests, e.g. discrete versions of Kolmogorov-
Smirnov (KS) and Cramér-von Mises (CVM) are also available for discrete data. The
power of these tests in comparison with the Pearson’s test for small samples can also
be of interest. It is known that the power of a test highly depends on the sample size,
the null and alternative hypotheses as well as if the hypotheses are simple or complex
[Lemeshko et al., 2007].

For small samples, Steele et al. have studied the power of six different tests (including
the Pearson’s, the KS and the CVM tests) considering uniform null distribution against
few alternative distributions (Decreasing, Step, Triangular, Platykurtic, Leptokurtic and
Bimodal) [Steele and Chaseling, 2006, Steele et al., 2007]. Generally, they conclude that
it is not possible to prefer one test to the others. Their detailed results show that
the Pearson’s test is even performing better than the others in some cases. Thus, this
additionally confirms the suitability of the Pearson’s test for our analysis even if our
sample sizes were small.

External Validity Another important question is whether our results are general-
izable. Principally, the approach of extracting the change information between two
diagrams (see processing pipeline at Figure 4.1) can be repeated on other model types
as long as the employed matching and difference derivation engines can be accordingly
adapted. Furthermore, our statistical analysis of changes are independent of any dia-
grams type and just focuses on the frequencies of detected edit operations in the com-
puted differences. However, it is unclear whether the frequencies of edit operations
in other types of diagrams exhibit the same statistical distributions. Related analyses
should be a topic of further research.

Additionally, our test data set consists of medium-sized, open-source Java software
systems. It is highly probable that our results also hold for large Java software systems
as our preliminary studies show. It is not clear whether our results also hold for closed
software systems, in particular if company-specific programming styles and design rules
are enforced.

It is also less than clear whether our results hold for other object-oriented languages,
e.g. C++ or C#. The question is whether the data model for class diagrams (see

18 Power of a test is the probability to reject the null hypothesis, when it is wrong.

123

Figure 4.3) is still appropriate. Since the concepts of object-oriented are similar in most
languages, the concept can be readily adapted.

5.3 Generating Random Variates of the Proposed
Distributions

As discussed in Sections 5.2.1 and 5.2.2, the discrete Pareto, the beta binomial, the Yule,
the Waring, the beta-negative binomial and the generalized Poisson distributions were
successful in order to statistically model the changes in the design models of software
systems. We can employ their random variates in the configuration of our model gen-
erator (SMG) in order to synthesize realistic test models (see Section 3.3). We should
note that some of the methods which will be presented in this section, have been suc-
cessfully implemented in mathematical computation engines like Matlab, R, Maple and
Mathematica as well as numerical libraries such as NAG (Numerical Algorithms Group),
RAGE (Random Variate Generator), SSJ (Stochastic Simulation in Java), GNU Ran-
dom Number Generation and www.netlib.org. To support our methodological framework
to simulate the evolution, and for the sake of self containment and clarity we provide
related algorithms in detail.

In this section we introduce and present methods and techniques that can be used in
generating random variates of each of the six proposed distributions. In Section 5.3.1,
we first provide a general overview on how random variates of arbitrary distributions are
generated. In Section 5.3.2, we introduce an algorithm for generating random variates
of the discrete Pareto distribution. Section 5.3.3 is entirely devoted to the generation of
random variates of the beta-negative binomial, the Waring and the Yule distributions.
Section 5.3.4 discusses how random variate of the beta binomial distribution is generated.
Random variate generation of the generalized Poisson distribution is discussed in Section
5.3.5. Finally, a summary about generating of random variates is provided in Section
5.3.6.

5.3.1 Introduction to Random Variate Generation

The term “Random Number Generation” (RNG) refers to methods used in producing
sequences of independent and identically distributed (iid) numbers from the uniform
distribution of U [0, 1]. Randomly generated numbers of U [0, 1] are then employed in
generating random numbers of distributions other than the uniform distribution, using
different techniques e.g. transformations. This procedure is referred to as “Random
Variate Generation” (RVG) of a given (non-uniform) distribution [Banks, 1998, Banks
et al., 2010].

Roughly speaking, the RNG methods are deterministic programs with finite set of
states including an initial state (called a seed) and a mapping (transient function) which
maps those states to themselves. The states correspond to a finite set of output symbols
that the program produces. The role of the transient function is to create the next state
based on the previous state [Banks, 1998]. Since the states are finite, the output of the

124

program is also finite and the generator repeats itself with a period. Due to this reason
these methods are usually referred to as “pseudo random number generators” since they
do not really create iid random numbers, but they try to meet the statistical requirements
for truly iid uniform random numbers as much as possible. These requirements are,
uniformity and independence of the generated numbers as well as greater repetition
periods [Banks et al., 2010, Banks, 1998].

Generating truly uniform random numbers is still an active research field and different
RNG methods have been proposed. Linear congruential method and combined linear
congruential method are frequently used and implemented ([Knuth, 1998]) and can be
also employed here. We should also note that better methods are also available. In this
section we suppose that a suitable random number generator which creates iid uniform
random numbers is available and we do not go into any further details, rather we try
to focus on generating random variates of our proposed distributions. L’Ecuyer has
studied in detail the requirements of good generators as well as different RNG methods
in [Banks, 1998, L’Ecuyer, 1994].

For generating random variates of a known distribution (other than the uniform dis-
tribution) different methods have been proposed such as inverse transform, acceptance-
rejection, composition and transformation. In this section, we introduce the inverse
transform and the acceptance-rejection methods which are used later for generating our
desirable random variates of our six distributions. Before that we provide the basic
requirements.

Suppose FX (x) = P [X ≤ x] is the cumulative distribution function (CDF) of the
random variable X for which we intend to generate its random variates. Generally, F is
a non-decreasing function and its range lies within the interval of [0, 1]. In the case that
X is a continuous random variable we have:

F (x) =
∫ x

−∞
f (z) dz

where f (x) is the density function of X. F is also continuous and strictly increasing in
this case.

If X is a discrete random variable which takes the values of x1 < x2 < · · · and if the
probability of xi is pi = P [X = xi], then we have:

F (x) =
∑
xi≤x

P [X = xi] =
∑
xi≤x

pi

The inverse of F is defined as [Banks, 1998, Devroye, 1986, Embrechts and Hofert, 2010,
Law, 2007a]:

F−1 (u) = inf {x ∈ R | u ≤ F (x)} , 0 < u < 1

and is usually referred to as the generalized inverse distribution function of X. Note
that this definition allows discontinuity and is used for both cases where X is continuous
or discrete. Additionally we have the following theorem:

125

Theorem. Let X be a random variable with cumulative distribution function of F , i.e.
X ∼ F , then we have:

1. If F is continuous, F (X) ∼ U [0, 1].

2. If U ∼ U [0, 1], F−1 (U) ∼ F .

Proof. For the proof please refer to [Embrechts and Hofert, 2010, Devroye, 1986, Ripley,
1987].

The above theorem is the infrastructure of the inverse transform method for generat-
ing random variates. In this method we generate a random number u from the uniform
distribution U [0, 1] and we try to solve the equation of x = F−1 (u). The theorem
guarantees that x is a random variate of the distribution F .

This method is very straightforward when F is continuous and F−1 exists in closed
form. Most of the time, it is difficult or even impossible to calculate F−1 in closed
form. In this situation some numerical solvers such as the Bisection, the Secant and the
Newton-Raphson methods can be employed [Devroye, 1986, Burden and Faires, 2000].
In the case that F is discrete, by considering the definition of F−1, we generate u of
U [0, 1] and we note that we should return xk ∈ {x1, x2, . . .} as the desired random
variate which satisfies the following relation:

F (xk−1) =
∑
xi<xk

pi < u ≤
∑
xi≤xk

pi = F (xk)

In other words we look for smallest k such that u ≤ F (xk).
The second method that we are going to discuss is called the acceptance-rejection

method. Suppose the f (x) is the density function of X and suppose that we have a
dominate function, say t (x), such that t (x) ≥ f (x) for all x. Intuitively in this method,
we try to generate (X,Y) points in the x-y plane in such a way that they are uniformly
scattered under the graph of t (x) and we accept X as the desired random variate of
f (x) when Y ≤ f (X) and otherwise we reject it. Therefore the rejection is proportional
to the area between f (x) and t (x) and we try to have t (x) in a way that this area
is as small as possible. Another important factor in taking t (x) is that the uniform
construction of points under it should be fast and easy [Banks, 1998, Law, 2007a]. Since
t (x) ≥ f (x) we have:

c =
∫ ∞
−∞

t (x) ≥
∫ ∞
−∞

f (x) = 1

and we assume that c is finite. Therefore if we take g (x) = f (x) /c, then g (x) is
a distribution. We should choose t (x) in a way that generating random variates of
g (x) is easy and fast. The general case of the acceptance-rejection method is given by
Algorithm 1 [Law, 2007a]. Calling the algorithm n times produces n iid random variates
of the distribution with the density function f (x).

Although the algorithm might not seem trivial on the first sight, it can be shown
that the returned values of X obey the density function f (x). Here we interpret the

126

Algorithm 1: General acceptance-rejection method for generating a random vari-
ate of the density function f (x).
1 repeat
2 Generate G, a random variate of the density function g (x) ;
3 Generate U , a random number of the uniform distribution U [0, 1]

independently of G ;
4 until U ≤ f (G) /t (G) ;
5 return X = G ;

algorithm without going into the detailed lengthy mathematics. For the formal proof of
the algorithm please refer to [Law, 2007a].

The algorithm produces a point (G,U) in the x-y plane in steps 2 and 3. The G
component of the point is generated based on the distribution g (x). We get more points
where g (x) is denser. In step 4, it checks if the generated point is suitable. In this step
the uniformly generated U is rescaled by multiplying it to the height of t (x) at point
x = G and if it is not greater than f (G), the point is accepted and its first component,
i.e. G, is returned as the random variate of the density function f (x).

It can be shown that the acceptance probability for the generated points in the
algorithm is 1/c [Law, 2007a]. Therefore it is desirable that t (x) is chosen in a way that
c (c ≥ 1) is as close as possible to 1 in order to have less points rejected in step 4. As
we discussed earlier the other goal is that the generation of random variates of g (x) is
easy and quick.

5.3.2 Random Variates of the Discrete Pareto Distribution

Here we provide the acceptance-rejection algorithm for generating random variates of
the discrete Pareto distribution which is given in [Devroye, 1986]. It is shown that if
U ∼ U [0, 1] then the density function of the random variable Y =

⌊
U
−1
s−1
⌋
is a good

dominating function19 20 for the density function of the discrete Pareto distribution (see
Equation (5.3) in Section 5.1.2). Based on this fact, Algorithm 2 generates random
variates of the discrete Pareto distribution.

5.3.3 Random Variates of the Yule, Waring and Beta-Negative
Binomial Distributions

There are well established references for statistical distributions that cover almost all of
known distributions introduced in different research fields and discuss related literature,
e.g. reference books by Johnson et al and also by Wimmer and Altmann [Forbes et al.,
2011, Johnson et al., 1992, 2005, 1997, Krishnamoorthy, 2006, Walck, 2007, Wimmer

19 ρ = s− 1 is the parameter of the discrete Pareto distribution (Equation (5.3)).
20 bxc is the floor function of x which is by definition, the largest integer not greater than x.

127

Algorithm 2: Generating a random variate of the discrete Pareto distribution.
Input: ρ > 0 ; /* shape parameter of the discrete Pareto

distribution */
Output: X ; /* a random variate of the discrete Pareto

distribution with the shape parameter ρ */

/* Initialization */
1 s← ρ+ 1 ;
2 b← 2s−1 ;
/* Generator */

3 repeat
4 Generate two independent and identically distributed uniform random

numbers U and V of U [0, 1];
5 X ←

⌊
U
−1
s−1
⌋
;

6 T ←
(
1 + 1

X

)s−1 ;
7 until X V (T−1)

b−1 ≤ T
b ;

8 return X ;

and Altmann, 1999]. The same can be said regarding simulation and random variate
generation, e.g. [Banks, 1998, Banks et al., 2010, Devroye, 1986, Law, 2007a, Fishman,
2001, Saucier, 2000, Ross, 2006, Bennett, 1995, Bratley et al., 1983, Ripley, 1987, R-
forge, 2008-2009]. There is no tailored algorithm for generating random variates of the
beta-negative binomial distribution in the previously mentioned references. The same
is true when considering all other related literature, e.g. the works of Irwin, Xekalaki,
Wang and others, which we do not cite them here. Therefore, we have to use other
statistical properties of the beta-negative binomial distribution in order to generate its
random variates.

As we explained earlier in Section 5.1.4, the beta-negative binomial distribution can
be obtained from the negative binomial distribution when the probability of success in
Bernoulli trials, i.e. p, changes according to the beta distribution. We use this fact in
order to produce random variates of the beta-negative binomial distribution21. Therefore
we need an algorithm for generating random variates of the beta distribution and also
another method for generating random variates of the negative binomial distribution.
Algorithm 3 generates random variates of the BNB (α, β, n) distribution based on this
property and the assumption that algorithms for generating random variates of the
beta and the negative binomial distributions are already provided. Furthermore, we
already mentioned that the Yule and the Waring distributions can be considered as
special cases of the beta-negative binomial distribution, so their random variates can be

21 The RVG method presented in R package of “SuppDists” uses an indirect method based on the
hypergeometric distribution which is more complicated than the one we present here.

128

directly obtained from Algorithm 3 by setting appropriate values in the corresponding
beta-negative binomial distribution (see Section 5.1.4).

Algorithm 3: Generating a random variate of the beta-negative binomial distri-
bution BNB (α, β, n).
Input: α > 0, β > 0 and n > 0 ; /* the shape parameters of the

beta-negative binomial distribution */
Output: X ; /* a random variate of the beta-negative binomial

distribution BNB (α, β, n) */

/* Generator */
1 Generate B, a random variate from the beta distribution with parameters α and
β, i.e. Beta (α, β), using Algorithm 4 ;

2 Generate X, a random variate from the negative binomial distribution with
parameters n and p = B, i.e. NegBino (n,B), using Algorithm 5 ;

3 return X ;

Unfortunately the generation of the random variates for the beta and the negative
binomial distributions are not straightforward. In Section 5.3.3.1, we first focus on gen-
erating random variates of the beta distribution. Since the random variate generation of
the negative binomial distribution is complex and is based on the random variate gener-
ation of the Poisson and the gamma distributions, we devote Section 5.3.3.2 completely
for this purpose.

5.3.3.1 Random Variates of the Beta Distribution

The PDF of the beta distribution with the shape parameters of α and β (denoted by
Beta (α, β)) is given by [Johnson et al., 1994, Forbes et al., 2011]:

P [X = x] = xα−1 (1− x)β−1

B (α, β) ,

0 ≤ x ≤ 1, α > 0, β > 0 and x, α, β ∈ R.
(5.11)

in which B (α, β) is the beta function (see Section 5.1.1).
Several methods have been proposed for generating random variates of the beta

distribution [Walck, 2007, Devroye, 1986, Law, 2007a]. The algorithm we present here
is an acceptance-rejection method proposed by [Cheng, 1978]. It is extensively used and
is easy and straightforward to be implemented. Cheng offers a basic algorithm which
generates random variates for all values of α and β. Some speedup has been gained by
altering the basic algorithm for two separate cases of min (α, β) > 1 and min (α, β) ≤ 1.
Algorithm 4 is the Cheng‘s basic algorithm which generates random variates of the beta
distribution for all values of shape parameters.

129

Algorithm 4: Generating a random variate of the Beta (α, β) distribution.
Input: α > 0 and β > 0 ; /* shape parameters of the beta

distribution */
Output: X ; /* a random variate of the beta distribution

Beta (α, β) */

/* Initialization */
1 s← α+ β ;
2 if min (α, β) ≤ 1 then
3 λ← max

(
1
α ,

1
β

)
;

4 else
5 λ←

√
s−2

2αβ−s ;
6 end
7 γ ← α+ 1

λ ;
/* Generator */

8 repeat
9 Generate U1 and U2, two independent and identically distributed uniform

random numbers of U [0, 1];
10 v ← λ ln

(
U1

1−U1

)
;

11 w ← α ev ;
12 until s ln

(
s

β+w

)
+ γ v − ln (4) ≥ ln

(
U2

1 U2
)
;

13 X ← w
β+w ;

14 return X ;

5.3.3.2 Random Variates of the Negative Binomial Distribution

The PDF of the negative binomial distribution22 with shape parameters of n and p
(denoted by NegBino (n, p)) is given by [Wimmer and Altmann, 1999, Forbes et al.,
2011]:

P [X = x] = Γ (n+ x) pn (1− p)x

Γ (n) Γ (x+ 1) ,

x = 0, 1, 2, · · ·, 0 < p < 1, n > 0 and n ∈ R.
(5.12)

When n is an integer, the density function can be expressed using the binomial

22 For the interpretation of the negative binomial distribution, please see Section 5.1.1.

130

coefficients23 as follows:

P [X = x] =
(
n+ x− 1
n− 1

)
pn (1− p)x ,

x = 0, 1,2, · · · , 0 < p < 1 and n ∈ N.
(5.13)

For generating random variates of the negative binomial distribution we use the fact
that the negative binomial distribution is obtained from the Poisson distribution when
the parameter of the Poisson distribution obeys the gamma distribution [Wimmer and
Altmann, 1999, Johnson et al., 1992, Devroye, 1986]. More formally, suppose that n and
p are parameters of the negative binomial distribution and X obeys the distribution, i.e.
X ∼ NegBino (n, p), then X ∼ Pois (µ) where µ ∼ Gamma (n, (1− p)/p).

Therefore for generating random variates of the negative binomial distribution we
should generate a random variate of the Poisson distribution when its shape parameters
is generated from the gamma distribution. Algorithm 5 generates random variates of
the negative binomial distribution using the above technique. In this section we provide
algorithms for generating random variates of the Poisson and the gamma distributions
after providing the formal definition of these two distributions.

Algorithm 5: Generating a random variate of the negative binomial distribution
NegBino (n, p).
Input: n > 0 and 0 < p < 1 ; /* shape parameters of the negative

binomial distribution */
Output: X ; /* a random variate of the negative binomial

distribution NegBino (n, p) */

/* Generator */
1 Generate G, a random variate of the gamma distribution using Algorithm 9 with
shape parameters of α = n and β = (1− p) /p, i.e. Gamma (n, (1− p) /p);

2 Generate X, a random variate of the Poisson distribution using Algorithm 6 with
shape parameter µ = G, i.e. Pois (G) ;

3 return X ;

Algorithm 6 generates random variates of the Poisson distribution [Devroye, 1986,
Banks, 1998]. The algorithm uses the following theorem which is proven in [Devroye,
1986]:

Theorem. Let U1, U2, . . . be independent and identically distributed random numbers
of the uniform distribution U [0, 1] and letX be the smallest integer such that

∏X+1
i=1 Ui <

e−µ, then X ∼ Pois (µ).

23 (
n
k

)
= n!

k!(n−k)! .

131

Algorithm 6: Generating a random variate of the Poisson distribution.
Input: µ > 0 ; /* shape parameter of the Poisson distribution

*/
Output: X ; /* a random variate of the Poisson distribution

with the parameter µ */

/* Initialization */
1 a← e−µ ;
2 P ← 1 ;
3 X ← −1 ;
/* Generator */

4 while P ≥ a do
5 Generate U , a random number of the uniform distribution U [0, 1] ;
6 P ← P U ;
7 X ← X + 1 ;
8 end
9 return X ;

The PDF of the gamma distribution, which has applications in modeling of waiting
times, with parameters of α and β (denoted by Gamma (α, β)) is given by [Johnson
et al., 1994]:

P [X = x] = (x/β)α−1 e−x/β

β Γ (α) ,

x, α, β >0 and x, α, β ∈ R.

in which α is referred to as the shape parameter and β is called the scale parameter.
Generating random variates of the gamma distribution is not quite straightforward since
there is no single algorithm that can generate random variates for all values of α and β
[Devroye, 1986, Banks, 1998].

Ahrens and Dieter have provided an acceptance-rejection method for the case 0 <
α < 1 and β = 1 [Ahrens and Dieter, 1974]. They used g (x) = xα−1/Γ (α) as the
dominating function when 0 < x ≤ 1. When x ≥ 1, they used g (x) = e−x/Γ (α). Cheng
has slightly modified the algorithm to cover all values of the scale parameter β [Banks,
1998]. Algorithm 7 delivers random variates of the gamma distribution for the case
0 < α < 1.

If α ≥ 1 we propose the Algorithm 8 by Cheng [Cheng, 1977, Banks, 1998]. He used
g (x) = λµxλ−1/

(
µ+ xλ

)2 when x > 0 as the dominating function in which λ and µ
are parameters which can be adjusted. Finally, Algorithm 9 combines these two into one
framework for generating random variates of the gamma distribution.

We should mention that when n is an integer and the negative binomial distribution is
given by Equation (5.13), other random variate generation algorithms are also available

132

Algorithm 7: Generating a random variate of the gamma distribution
Gamma (α, β) when 0 < α < 1.
Input: 0 < α < 1 and β > 0 ; /* shape parameters of the gamma

distribution */
Output: X ; /* a random variate of the gamma distribution

with the parameters of α and β using the algorithm
by Ahrens and Dieter */

/* Initialization */
1 λ← (e+ α) /e ; /* e is the base of the natural logarithm */

/* Generator */
2 while True do
3 Generate U , a random number of the uniform distribution U [0, 1] ;
4 W ← λU ;
5 if W < 1 then
6 Y ←W (1/α) ;
7 Generate V , a random number of the uniform distribution U [0, 1] ;
8 if V ≤ e−Y then
9 return X = β Y ;

10 end
11 else
12 Y ← − ln

(
λ−W
α

)
;

13 Generate V , a random number of the uniform distribution U [0, 1] ;
14 if V ≤ Y α−1 then
15 return X = β Y ;
16 end
17 end
18 end

e.g. the ones provided in [Ahrens and Dieter, 1974]. Before closing this section we provide
one of these methods which is simple and can be used when we need to generate random
variates of the negative binomial distribution with an integer parameter of n. It cannot
be used when n is a real number, in this case, as we mentioned, Algorithm 5 should be
employed.

In short, as we saw earlier if n is an integer, the PDF of the negative binomial distri-
bution can be expressed by binomial coefficients (see Equation (5.13)). It has been shown
that in this case the negative binomial distribution NegBino (n, p) is the sum of n inde-
pendent and identically distributed random variates of the geometric distribution each
with parameter p [Johnson et al., 2005]. In other word, if X1, X2, . . . , Xn

iid∼ Geom (p),
then X1 +X2 + . . .+Xn ∼ NegBino (n, p) [Law, 2007a].

The geometric distribution is the distribution of the number of failures in a sequence

133

Algorithm 8: Generating a random variate of the gamma distribution
Gamma (α, β) when α ≥ 1.
Input: α ≥ 1 and β > 0 ; /* shape parameters of the gamma

distribution */
Output: X ; /* a random variate of the gamma distribution

with the parameters of α and β using the algorithm
by Cheng */

/* Initialization */

1 λ← (2α− 1)−1/2 ;
2 µ← α− ln (4) ;
3 γ ← α+ 1/λ ;
4 δ ← 1 + ln (4.5) ;
/* Generator */

5 while True do
6 Generate U1, a random number of the uniform distribution U [0, 1] ;
7 Generate U2, a random number of the uniform distribution U [0, 1],

independently of U1;
8 V ← λ ln

(
U1

1−U1

)
;

9 Y ← α eV ;
10 Z ← U12 U2 ;
11 W ← µ+ γ V − Y ;
12 if W + δ − 4.5Z ≥ 0 then
13 return X = β Y ;
14 else
15 if W ≥ ln (Z) then
16 return X = β Y ;
17 end
18 end
19 end

134

Algorithm 9: Generating a random variate of the gamma distribution
Gamma (α, β).
Input: α > 0 and β > 0 ; /* shape parameters of the gamma

distribution */
Output: X ; /* a random variate of the gamma distribution

with the parameters of α and β */

/* Generator */
1 if α < 1 then
2 Generate G, a random variate of the gamma distribution using Algorithm 7 ;
3 else
4 Generate G, a random variate of the gamma distribution using Algorithm 8 ;
5 end
6 return X = G;

of Bernoulli trials, with the success probability p, before the first success happens. The
PDF of the geometric distribution with parameter p (denoted by Geom (p)) is given by
[Wimmer and Altmann, 1999]:

P [X = x] = p (1− p)x,
x = 0, 1, 2, · · · , 0 < p < 1 and p ∈ R.

Algorithm 10 is an inverse-transform method for generating random variates of the
geometric distribution [Law, 2007a].

Algorithm 10: Generating a random variate of the geometric distribution
Geom (p).
Input: 0 < p < 1 ; /* the probability of success in the

Bernoulli trial */
Output: X ; /* a random variate of the geometric distribution

with the parameter p */

/* Generator */
1 Generate U , a random variate of the uniform distribution U [0, 1] ;
2 X ←

⌊
ln(U)

ln(1−p)

⌋
;

3 return X ;

5.3.4 Random Variates of the Beta Binomial Distribution

A random variate generation algorithm for BetaBino (α, β, n), i.e. the beta binomial
distribution, can be designed based on the fact that the beta binomial distribution is

135

principally the binomial distribution Bino (n, p) in which the probability of its Bernoulli
trials obeys the beta distribution with shape parameters of α and β, i.e. p ∼ Beta (α, β)
[Wimmer and Altmann, 1999]. The PDF of the binomial distribution with shape pa-
rameters of n and p, i.e. Bino (n, p), is given by [Banks et al., 2010]:

P [X = x] =
(
n

x

)
px (1− p)n−x

x ∈ {0, 1, . . . , n} , 0 ≤ p ≤ 1 and x ∈ R.
(5.14)

Algorithm 11 uses the above technique to generate random variates of the beta bi-
nomial distribution of BetaBino (α, β, n). The algorithm assumes that a random variate
generator for the beta and the binomial distributions are available. The random vari-
ate generation of the beta distribution is addressed by Algorithm 4 in Section 5.3.3.1.
Regarding random variate generation of the binomial distribution, on can use the fact
that if X1, X2, . . . , Xn are independent and identically distributed random variates of
the Bernoulli trials with success probability of p, i.e. X1, X2, . . . , Xn

iid∼ Bernoulli (p),
then X1 + X2 + . . . + Xn ∼ Bino (p, n) [Law, 2007a, Banks, 1998]. Algorithm 12 uses
this property for generating random variates of the binomial distribution.

Although Algorithm 12 is simple, straightforward and frequently used in practice
(e.g. [Walck, 2007, R-forge, 2008-2009]), its execution time linearly grows with n and
for big values of n it is not quite efficient. Information about other faster but much
more complicated approaches can be found in [Kachitvichyanukul and Schmeiser, 1988,
Ahrens and Dieter, 1974, Devroye, 1986].

Algorithm 11: Generating a random variate of the beta binomial distribution
BetaBino (α, β, n).
Input: α > 0, β > 0 and n > 0 ; /* the shape parameters of the beta

binomial distribution */
Output: X ; /* a random variate of the beta binomial

distribution BetaBino (α, β, n) */

/* Generator */
1 Generate B, a random variate from the beta distribution with parameters α and
β, i.e. Beta (α, β), using Algorithm 4 ;

2 Generate X, a random variate from the binomial distribution with parameters n
and p = B, i.e. Bino (n,B), using Algorithm 12 ;

3 return X ;

5.3.5 Random Variates of the Generalized Poisson Distribution

It is reported that random variates of the generalized Poisson distribution cannot be ob-
tained through simple combination of more primitive random variates generation meth-

136

Algorithm 12: Generating a random variate of the binomial distribution
Bino (p, n).
Input: 0 ≤ p ≤ 1, n > 0 ; /* the shape parameters of the binomial

distribution */
Output: X ; /* a random variate of the binomial distribution

Bino (p, n) */

/* Initialization */
1 X ← 0;
2 i← 1;
/* Generator */

3 while i ≤ n do
/* generate B, a random variate of Bernoulli (p) */

4 Generate U , a random number of the uniform distribution U [0, 1] ;
5 if U ≤ p then
6 B ← 1 ;
7 else
8 B ← 0 ;
9 end

/* sum Bernoulli random variates to form a binomial
distribution random variate */

10 X ← X +B ;
11 i← i+ 1 ;
12 end
13 return X ;

ods of the Poisson, binomial and normal distributions. Algorithm 13 is an acceptance-
rejection method for generating random variates of the generalized Poisson distribution
and is proposed by [Devroye, 1989]. The algorithm is based on a theorem which estab-
lishes an upper bound for the PDF of the Poisson distribution (given by Equation (5.10)
in Section 5.1.5). The theorem and other technical details are discussed there as well.

5.3.6 Summary of Random Variate Generations

To sum up, in Section 5.3 we talked about how our six distributions can be success-
fully implemented and how we can generate their random variates. In this regard, we
discussed about the inverse transform and the acceptance-rejection methods which are
widely used to generate random variates. The challenge was that random variates of
none of our distributions could be easily obtained through the inverse transform method.
This is due the fact that the closed form of their inverse CDF does not exist. There-
fore, random variate generation of these distributions are typically done through the
acceptance-rejection method or by employing their specific statistical properties and

137

Algorithm 13: Generating a random variate of the generalized Poisson distribu-
tion GenPois (µ, λ).
Input: µ > 0 and λ ∈ [0, 1] ; /* shape parameters of the generalized

Poisson distribution */
Output: X ; /* a random variate of the generalized Poisson

distribution of GenPois (µ, λ) */

/* Initialization */
1 p0 ← e−µ ;
2 b← µ e2−λ−min(µ,λ)

√
2
π ;

/* Generator */
3 Generate U , a random number of the uniform distribution U [0, 1] ;
4 repeat
5 if U ≤ p0

p0+b then
6 X ← 0 ;
7 Accept← True ;
8 else
9 Generate two independent and identically distributed uniform random

numbers V and W of U [0, 1];
10 X ←

⌊ 1
W 2

⌋
;

11 Accept←
[
V b
(

1√
X
− 1√

X+1

)
≤ µ(λX+µ)X−1e−(λX+µ)

X!

]
;

12 end
13 until Accept;
14 return X ;

relationships to other distributions.
Particularly, random variates of the beta binomial, the Yule, the Waring and the

beta-negative binomial distributions could not be directly generated by tailored algo-
rithms. The reason is that the PDFs of these distributions are complex and they also
have different shape parameters which change the shape of the PDFs drastically, prevent-
ing a suitable dominating function in the acceptance-rejection method to be obtained.
Therefore, we used other statistical properties of these distributions to generate their
random variates. These properties let us generate the desired random variates, by ap-
propriately combining the random variates of simpler distributions. In that direction, we
introduced different elementary distributions as well as the appropriate algorithms for
generating their random variates24. Finally, we combined the results in order to produce
the random variates of these four distributions.

24 In the case that any of these distributions is already implemented, in practice, one can directly
plug it to other algorithms which use it.

138

5.4 Related Works

The presented results of this chapter focus on mathematically modeling the “evolution”
of design models in terms of the applied edit operations between their subsequent re-
visions. The edit operations were defined at two abstraction levels. The first level was
low-level graph edit operations and the second one was high-level (developer-friendly)
edit operations. The measurements of frequencies of applied low-level edit operations
lead to low-level difference metrics which are shown to be more appropriate than the
static metrics counterparts in the context of model differencing, model versioning and
model generation (see [Wenzel, 2010] and Chapter 4).

To best of our knowledge there is no similar work which addresses mathematical
properties of difference metrics in practice and we could not find any research work
which directly considers, how measured difference metrics on histories of real software
systems behave and which properties they show. However, there are numerous metrics
defined for software systems and obviously there are many applications for them, e.g.
there is extensive amount of research on fault prediction, estimation of the development
effort, cost estimation, quality estimation and prediction, maintenance, component fault
classification, etc. using metrics [Kitchenham, 2010, Lanza and Marinescu, 2006, Fenton
and Bieman, 2014]. The horizons even extensively broaden in combination of mining
software repositories approaches which more or less employ metrics in their works, e.g.
finding bugs, coupling components, software reuse, communication with respect to the
development process, etc. [Kagdi et al., 2007].

In this section our focus will be narrowed to reviewing those works which can be
considered more relevant to what we did in this chapter, i.e. mathematically modeling
the evolution of design models in terms of low-level and high-level edit operations. To
this aim, we categorized the most relevant works in two major categories. The first one
considers the evolution of software systems motivated from the Lehman’s laws of software
evolution [Lehman, 1980]. Lehman tried to formulate how software systems evolve and
what are their characteristics. The second category consists of the works which consider
the analysis of different metrics or different features of software systems with respect to
their mathematical properties. The proposed mathematical models were then used in
different directions, e.g. understanding software systems and their properties, estimating
development efforts, designing new languages or related virtual machines, identifying
fault prone components, etc. In each category, we review the most relevant works without
going into details of how they are used, since it would be out of our research scope.

Software Evolution The majority of the research done in this category is motivated
from the pioneering work of Lehman for formulating the evolution of software systems
[Lehman, 1980]. The laws of software evolution were themselves evolved over time
[Lehman, 1996, Lehman et al., 1997] and many researchers were interested to evalu-
ate different aspects of the laws in practice. Although our motivation is quite different,
we review few works in this area which can indirectly be considered most related to our
work. This area is a broad topic of interest on its own and the interested reader can find

139

more basic and interesting information in [Fernandez-Ramil et al., 2008, Herraiz, 2008,
Vasa, 2010, Herraiz et al., 2013].

[Vasa et al., 2007a] studied the evolution of classes and interfaces in open-source Java
systems based on static metrics of their released versions. They showed that the average
metric values are almost stable over the histories, i.e. the average size and popularity of
classes does not change much between released versions. They also analyzed which kind
of classes tend to change more. Between versions, identity of classes were established
using their fully qualified name, therefore the renamed or moved classed were missed.
The amount of change was measured based on value changes of 25 static metrics. They
showed that more complex classes, i.e. the ones with more branch counts in their code,
and more popular classes, i.e. the ones with more incoming and outgoing dependencies,
are more likely to undergo changes. This research was continued in [Vasa et al., 2007b]
and they consider additional static metrics. There, they show that the majority of
changes happen on a small portion of all classes. They also analyze the history of classes
based on a comparison between the static metric values counted in the final version of
the system and those counted in preceding versions. In this regard, they measured the
proportion of classes in the final version which were either changed or not modified since
they were created. This was done through measuring the difference between the values
of static metrics were identifiable in the final version to the earlier ones. The results show
that one third of the classes are not changed since they are created. Moreover, just small
amount of classes either change multiple times or go under substantial modification. In
this direction, more detailed results are presented in [Vasa, 2010].

In the aforementioned works, neither any advanced statistics nor our proposed sta-
tistical models were considered. Moreover, the evolution was based on static metrics
and not on difference metrics which are essential for generating models. As discussed
in Section 4.1, using the static metrics has the drawback that it might be misleading.
For instance if one measures the number of attributes in a class to be the same between
two revisions, it does not convey that there is no change on attributes. Rather, the
underlying amount of change might be considerable, e.g. 5 attributes are added, 5 are
deleted and 5 might be renamed, resulting 15 changes in total which are not reflected
by difference of zero between static metrics of NOM-Attributes between two revisions.
Additionally, those works consider the versions of software systems while in this disser-
tation finer steps, i.e. revisions are considered. The changes were also computed between
revisions rather between the final version and earlier ones.

In [Herraiz et al., 2007a], the authors considered many source codes files of FreeBSD,
a Unix-like operating system, which were developed mostly in C, C++, Java, Perl and
Python programming languages. They investigated different size and complexity metrics.
Their analysis revealed that the Pareto distribution can model the measured metrics.
The same distribution was showed to adequately model the source code file sizes using a
sample set of many available software systems in the version 5.0.2 of the Debian Linux
distribution [Herraiz et al., 2011]. The validation of the Lehman’s laws of software
evolution was the main topic of interest in [Herraiz, 2009, 2008]. There, the author
considered many software systems in FreeBSD as well as many other systems available

140

at SourceForge.net and he computed different metrics on them. The results show that
SLOC metric (Source Lines of Code) is a good indicator of software growth and size of
files in SLOC and size of software project in terms of the number of its files, follow the
Pareto distribution. Generally, it is concluded that there are cases which invalidate the
proposed laws of software evolution.

Analysis of Metrics or Properties of Software Systems The reviewed publi-
cations in this category focus on mathematically modeling the static metrics or other
features of software systems. The following works only use single system snapshots as the
base for their analysis and the topic of system evolution, i.e. changes between versions
or revisions, is not addressed at all.

[Wheeldon and Counsell, 2003] analyzed power law distributions for different forms
of object-oriented couplings in the graph structure on three Java software systems; JDK
(Java Development Kit), Apache Ant and Tomcat. The considered couplings were inher-
itance, aggregation (e.g. containment of fields, etc. by a class), interface implementation,
parameter and return types. They extracted graph structures from the source code and
computed the occurrences of the couplings. They identified that the coupling-related
metrics obey the power law.

[Marchesi et al., 2004] considered the graph representation of four large SmallTalk
projects which was principally a class-relationship representation of the systems. Simi-
larly to [Wheeldon and Counsell, 2003], in such presentation the nodes are the elements
of the systems and the edges show their interactions. They took classes as nodes and
they considered two interaction of inheritance and dependency between them. They
showed that class-relationships obey the power law.

[Potanin et al., 2005] studied the object graph of Java software systems. Using a tool,
they took 60 snapshots of 36 running programs and created object graph. Object graphs
are principally graphs where nodes are objects and edges represent their communicating
relationships. The number of incoming and outgoing references showed to follow the
power law in object graphs.

[Baxter et al., 2006] measured 17 static metrics on a sample set of Java systems. They
considered the suitability of the power law as well as the log-normal and the exponential
distributions. The analysis showed that the power law is more suitable than the others,
although there are also cases that metrics do not obey the power law.

[Collberg et al., 2007] have studied static and structural metrics of a collection of
Java jar-files for the aim of improving the design of future programming languages,
compilers or virtual machines. Their detailed results show that the distribution of some
the measured metrics are skewed with heavy tails. Except simple basic statistics, no
advanced statistical models were reported in this work.

In [Concas et al., 2006, 2007], the authors studied different metrics related to the
classes and methods of VisualWorks Smalltalk and compared them to those observed
ones in Eclipse and JDK (Java Development Kit). All of the measured distributions
showed heavy tails. They showed that majority of metrics obey the power law and the
Pareto distribution. Some of the metrics reported to obey the log-normal distribution.

141

[Ichii et al., 2008] studied software component graphs, which essentially describe
building units of a software and their relationships. The nodes in such graphs repre-
sent components, i.e. classes or interfaces, and edges represent use-relationships between
components. Using different Java software systems as the sample set, they showed the
distribution of in-degrees follows power law, but the distribution of out-degrees does not.
They speculated that the out-degrees might follow the log-normal distribution.

[Louridas et al., 2008] studied the power law on dependency graphs of different soft-
ware systems. The dependency graph between classes of Java systems, Perl packages,
shared libraries in open source Linux distributions, dynamic link libraries of Microsoft
Windows, Ruby library files and TEX modules were considered for the analysis. The
results show that the power law is more pervasive in software systems than it was ini-
tially investigated by earlier works that just considered sample projects from a specific
domain.

[Herraiz Tabernero et al., 2012] studied object-oriented static metrics on the most
recent releases of a large collection of Java systems. They considered the suitability of
the power law and the log-normal and the Pareto distributions on the metrics. Their
results showed that some of the metrics could be modeled using the power law while
others could be modeled by the Pareto distribution.

[Pani and Concas, 2012] considered five object-oriented metrics on five subsequent
versions of Eclipse. They tested the suitability of the power law as well as the log-normal
and the Pareto distributions. Roughly speaking, each metric could be fitted by at least
one of those models.

[Shatnawi and Althebyan, 2013] considered eight static metrics and they investigated
the presence of the power law on five Java systems. Five of the measured metrics showed
heavy tails and the power law was hold on them.

The previous research works just considered (definite) single versions of systems,
i.e. an snapshot of their histories, for the analysis and the history of systems were not
considered. Contrary, the following research works consider different versions of systems
and the history of the systems are considered. This issue should not be confused by
analyzing the changes between histories. Although histories are considered, the presence
of the power law or other mathematical models are just tested on each revision separately
and the changes between versions, i.e. evolution, are not considered.

[Tamai and Nakatani, 1998, Tamai, 2002, Tamai and Nakatani, 2002] studied differ-
ent object-oriented metrics on three software systems as the sample set. A heat exchange
simulation system, a cash receipts transaction management system and a security man-
agement system were considered. All of those systems were written in SmallTalk and
had 4, 4 and 14 versions respectively. They considered overall properties of systems
as well as class and methods metrics which were calculated on versions. The Poisson,
geometric and negative binomial distributions were considered to model the data and
the results showed that just the negative binomial distribution was appropriate.

[Turnu et al., 2011] studied properties of four Java software systems. Several versions
of Eclipse (12 versions), Netbeans (17 versions), JDK (Java Development Kit) (11 ver-
sions) and Java Ant (10 versions) were considered. Four properties regarding variables

142

and methods of classes were measured on them. They observed that the properties obey
the power law. Moreover, they showed that the properties can also be modeled using
the Yule process. Although they considered different versions of systems, their analysis
were done solely on each version and the results were reported to be valid on individual
revisions.

Summary As discussed, in majority of the aforementioned works the evolution was
not considered. They worked on specific versions or snapshots of the systems instead of
considering the changes between revisions or versions. Just in a few works, e.g. [Vasa
et al., 2007b, Vasa, 2010], histories of model versions were considered. In contrast, we
analyzed the revisions of systems in this dissertation. In comparison to versions, revisions
are often quite finer steps in the development process. Therefore, the changes between
revisions are better representatives for the evolution than the changes between versions.

Comparing the values of static metrics does not reflect the real amount of underlying
changes especially in the domain of models and the model-driven engineering. Therefore,
difference metrics were used in this dissertation and the evolution was measured in
terms of these metrics rather using the static metrics. Moreover, the employed metrics
by this dissertation are at two abstraction levels. The first level is based on low-level
graph edit operations and the second level is based on high-level (developer-friendly) edit
operations. For the first level we had 75, and for the second one we used 188 metrics.
These metrics are much more detailed compared to static metrics employed by other
research works.

In this dissertation, the changes were measured between subsequent revisions instead
of using the final version as the base of comparison for all other versions, as done in
[Vasa, 2010]. Such a comparison has much little benefit since much of the information
is disregarded.

Similarly to what we found out in this research, many software metrics and properties
show skewed distributions with heavy tails. We showed the presence of the power law on
majority of difference metrics. We investigated the suitability of many statistical models
on our difference metrics and we found out that the log-normal or the (continuous) Pareto
distributions are not suitable in this case, instead the discrete Pareto distribution is more
appropriate. We additionally found out that the Yule, the Waring, the beta-negative
binomial, the beta binomial and the generalized Poisson distributions can be used to
model the evolution with very good success rates. None of these distributions were used
or reported to be used in the related literature. Therefore, it might be the case that
such models are better than the existing ones in describing the properties of software
systems, albeit more investigation is required.

5.5 Summary

In this chapter we addressed the question of how design models of software systems
change and how we can mathematically model their differences. In this regard, the
changes of design models were captured at two abstraction levels. The first level ex-

143

pressed the changes in terms of 75 low-level difference metrics. The second level captured
the changes in terms of 188 high-level metrics.

We learned that the histogram of the calculated frequencies of both, the low-level
and the high-level difference metrics are usually skewed with heavy tails. Statistical
modeling of such changes was the first challenge. We tested the fitness of 60 distribu-
tions on all measured changes. Just six of those distributions were able to handle our
data acceptably, although each with a different success rate. We proposed the detailed
analysis of the changes (both low-level and high-level) using those six distributions. We
showed where each distribution was successful, where it failed and how it can be used
to statistically model the real evolutions. The negative binomial, the Waring, the beta-
negative binomial and the generalized Poisson distributions are the most successful ones.
We found out that they can describe almost any type of low-level and high-level changes
with good success rates, making them the best fitting statistical models.

The other important question addressed in this chapter is how these statistical models
can be used in practice to simulate real model evolution. The related literature did not
offer algorithms for generating random variates of the negative binomial, the Waring and
the beta-negative binomial distributions. We proposed an indirect method for generating
their random variates based on mathematical properties of these distributions. In this
regard, we also discussed the possible difficulties and the technical issues in detail.

144

CHAPTER 6
Time Series Analysis and

Simulation of Design Models
Evolution

As we discussed in Chapter 1, one contribution of this work is to mathematically model
and simulate the evolution of design models for generating more realistic model histories.
In this chapter we mathematically model and simulate the historical evolution of design
models using time series. Time series theory deals with situations in which one has
sequential measurements of interest through time. As we observed in Chapter 4, the
evolution of design models was computed based on the measured occurrences of low-
level and high-level edit operations between revisions of software design models. Such
sequential observations of the applied edit operations between revisions can be principally
modeled using time series.

As we will see later (Section 6.2), the measured evolution of our Java software systems
shows a very erratic behavior which is a hurdle to easily employ time series models.
Moreover, we will observe that the evolutions show different characteristics and they
require different remedies. In order to handle the problem, it is quite essential to have
a suitable rigid mathematical infrastructure which can be employed appropriately. In
this regard, the required mathematical infrastructure of our analysis in is provided in
Section 6.1. In Section 6.1.3, ARMA, GARCH and mixed ARMA-GARCH models
are introduced in detail. We show how and why such models work in Section 6.1.2.
Accordingly, the methodology of these time series models as well as their forecasting
accuracies are discussed in Sections 6.1.4 and 6.1.5.

Section 6.2.1 discusses characteristics of the measured evolution and how the evolu-
tion can be mathematically transformed into an appropriate form for time series analy-
sis. The transformed series were then modeled using ARMA and mixed ARMA-GARCH
models in Sections 6.2.2 and 6.2.3.

145

The assessment of the proposed time series models is discussed in Section 6.3. To this
end, a comparative study between these two kinds of time series models is presented in
Section 6.3.1. The forecasting performance of these competitive models are also discussed
in Section 6.3.2.

Section 6.4 is devoted to the simulation of the modeled evolution. General consid-
eration regarding the simulation of time series models are discussed in Section 6.4.1.
Section 6.4.2 describes how sequences of the proposed time series models are simulated
while Section 6.4.3 discusses how the simulated sequences can be used to generate more
realistic histories of design models.

The threats to the validity of our analyses are discussed in detail in Section 6.5. There
we investigate different aspects, including accuracy in the measurement of changes, selec-
tion strategy for best time series models, forecasting performance as well as simulation.
Related works are discussed in Section 6.5. The chapter ends with a summary in Section
6.7.

6.1 Time Series

In this section we provide the detailed theoretical background which is required by our
time series analysis. There are many books which address time series, but each of them
has its own perspective to the issue and each one expresses the required theory with
a different level of abstraction and application focus. This makes it quite difficult to
have a smooth and coherent theory which can be used to answer our research questions
and to justify and prove the results. In what follows we provide the detailed theoretical
background of our research. When needed, we refer the reader to the appropriate sources
ordered by their importance of the discussed issues.

In the first step, here and in Section 6.1.1, we introduce the time series models.
Section 6.1.2 discusses the general linear process and the Wold decomposition theorem
which are the fundaments of the time series models and principally explains how and
why such time series models work. Section 6.1.3 introduces ARMA, GARCH and mixed
ARMA-GARCH models which we later need for our evolution analysis. Methodology
of these time series models are discussed in detail in Section 6.1.4. Forecast accuracy of
our time series models are discussed in Section 6.1.5.

Time series are sequential measurements or observations of a phenomenon of interest
through time. A time series is usually denoted by {Xt, t ∈ T} where T is the index set
[Box et al., 2008]. The time dependency of the data gives time series a natural ordering
which is used to study them.

If the measurements are done continuously in time, they are referred to as continuous
time series, otherwise they are called discrete time series. In this work the latter case
applies. The series is usually denoted by x = xt1 , xt2 , . . . , xtN when we have N successive
observations at times t1, t2, . . . , tN . Please note that ∇ti = ti − ti−1 is not necessarily
constant, although in some applications it is assumed so.

In order to extract useful information and statistics out of the data and to discover its
underlying dynamics, time series methods are employed. These methods are also used in

146

order to forecast the future of the system. In time series methods it is usually assumed
that the data obey some underlying parametric stochastic processes (i.e. a sequence of
random variables) and the parameters are estimated in order to describe the behavior of
the system. Principally it is assumed that an observed time series of x1, x2, . . . , xN is a
sample realization from an infinite population of such time series that could have been
generated by the stochastic process {X1, X2, . . . , Xk, . . .} [Box et al., 2008, Brockwell
and Davis, 2006]. This property is used in order to create many time series realizations
all with the same stochastic behavior (see Section 6.4).

6.1.1 Stationary Time Series

In the study of time series it is assumed that some statistical properties of the series
are not changing with time, otherwise no statistical inference about the data is possible
[Kirchgässner and Wolters, 2007]. In particular it is generally assumed that the underly-
ing stochastic process is stationary, i.e. the process is in a statistical equilibrium and the
main statistical features of the series does not change with time. This allows us to sys-
tematically capture those features and to mathematically model the series [Rachev et al.,
2007]. Two classes of stationarity are defined, strictly stationary and weakly stationary.

Roughly speaking, in a strictly stationary stochastic process all statistical properties
are not affected by shifts in time, i.e. a change of the time origin, and are only dependent
on time differences. Formally, if the joint probability distributions of the observations
xt1 ,. . . ,xtn and xt1+h , . . . , xtn+h are the same for all integers h and n > 0 and for all
indices of {t1, t2, . . . , tn}, we call the process strictly stationary; i.e. (xt1 , . . . , xtn) d=(
xt1+h , . . . , xtn+h

)
[Box et al., 2008, Brockwell and Davis, 2002, Kirchgässner andWolters,

2007, Montgomery et al., 2008].
The strictly stationary condition is too tight for practical applications and therefore

the second class, weakly stationary, is used in practice. In weakly stationary processes
we focus on the properties of first and second moments, i.e. mean and variance of data
[Box et al., 2008]. The process is weakly stationary when there is no change in the trend
of the data and there is also no change in the variance of the data through time, so if
one plots them, data are fluctuating around a fixed level with a constant variation [Tsay,
2005].

A process is mean stationary if E [Xt] is constant for all t, i.e. E [Xt] = µ. Similarly,
a process is called variance stationary if Var [Xt] = σ2 is constant and finite for all t.
A covariance stationary process is a process in which Cov [Xt, Xs] is only dependent on
the distance between t and s, i.e. dependent on |s− t|, and not on the actual points.
The covariance stationarity results in the variance stationarity as the special case where
t = s. A stochastic process is weakly stationary1 when it is mean and covariance station-
ary [Kirchgässner and Wolters, 2007]. The weakly stationarity is only concerned with
the unconditional mean and unconditional variance to be constant, but the conditional
moments can vary with time which can be modeled and forecast.

1Some times is referred to as second-order stationary [Francq and Zakoian, 2010].

147

A white noise process, is an uncorrelated sequence of random variables {εt} with
mean 0 and the constant variance σ2. {εt} is weakly stationary and is denoted by {εt} ∼
WN

(
0, σ2) [Brockwell and Davis, 2002, Kirchgässner and Wolters, 2007]. Additionally

when {εt} is normally distributed it is called a Gaussian white noise [Montgomery et al.,
2008].

Depending on the shape of the data, there are some methods for transforming
non-stationary processes to stationary ones in order to stabilize their mean and their
variance, e.g. trend elimination methods, differencing, cyclic/seasonal differencing, log-
arithm and power transformations, etc.

Differencing means that we use the series of {∇xt} instead of {xt} where ∇xt =
xt − xt−1. {∇xt} usually has more stable moments. The backshift operator is defined
by Bxt = xt−1. Thus ∇xt = xt − xt−1 = (1−B)xt [Brockwell and Davis, 2002]. Powers
of B and ∇ are defined similarly: Bk xt = xt−k and ∇kxt = ∇(∇k−1xt) when k ≥ 1
and B0 xt = xt, ∇0xt = xt. With this notation, polynomials of B and ∇ are treated
like ordinary polynomials, e.g. ∇2xt = ∇(∇xt) = (1−B)(1−B)xt = (1− 2 B + B2)xt =
xt − 2xt−1 + xt−2.

6.1.2 General Linear Process and the Wold Decomposition Theorem

Before going into the detail of time series models, we briefly provide the underlying theory
which helps to grasp the concepts and materials which are provided in the following
sections. This section is devoted to the groundbreaking Wold’s theorem and the concept
of causality and invertibility in time series, which are essential to find proper solutions
for the weakly stationary time series.

A time series {xt} is said to be a linear process if for all t, it has the representation
of [Brockwell and Davis, 2002]:

xt =
∞∑

j=−∞
ψjεt−j (6.1)

where {εt} ∼WN
(
0, σ2) and {ψj} is a sequence of constants with

∑∞
j=−∞ |ψj | <∞, i.e.

the coefficients are absolutely summable2. This ensures the convergence of the infinite
sum of (6.1) [Brockwell and Davis, 2002].

A linear process is called a moving average or MA (∞) if ψj = 0 for all j < 0, i.e.
if we have xt =

∑∞
j=0 ψjεt−j [Brockwell and Davis, 2002]. Moreover, when a process is

defined based on the past values of εj ’s and is independent of the future values, we call it
a causal process. Formally, we call the process {xt} causal or future-independent, if there
exists a sequence of {ψj} such that xt =

∑∞
j=0 ψjεt−j with

∑∞
j=0 |ψj | <∞ [Chan, 2010].

In other words a process is causal if it has a moving average MA (∞) presentation. The
causal property is required for the prediction of the future of stationary processes, since
the future will be just dependent to the past.

2 It causes
∑∞
j=0 ψ

2
j <∞, i.e. the absolute summability results in the square summability.

148

Using the backshift operator of B, (6.1) can be written more compactly as xt =
Ψ (B) εt, where Ψ (B) is a series in terms of B and is defined by Ψ (B) =

∑∞
j=−∞ ψj Bj .

The Ψ (B) is also referred to as a linear filter, since it is applied on the “input” series
of white noise in order to produce the “output” series of {xt}. It is shown that the
application of a linear filter to a stationary series delivers again a stationary output
series [Brockwell and Davis, 2002]. Furthermore, in the case of applying two linear
filters to a series, the application order is immaterial for the resulting series.

The groundbreaking Wold’s decomposition theorem states that any nondeterministic
stationary process {xt} has a linear process representation of [Brockwell and Davis, 2002,
Box et al., 2008]:

xt = vt +
∞∑
j=0

ψjεt−j (6.2)

where ψ0 = 1,
∑∞

j=0 ψ
2
j <∞, {εt} ∼WN

(
0, σ2), {vt} is deterministic3 and Cov [xs, vt] =

0 for all s and t. If {xt} is zero-mean stationary, then vt = 0 for all t otherwise vt = µ
where µ is the mean of the process. Assuming that Ψ (B) = 1 +

∑∞
j=1 ψj Bj , (6.2) can

be written more compactly as x̃t = Ψ (B) εt.
Let {x̃t} be the series of deviations of xt from its mean µ, i.e. x̃t = xt − µ, in other

words, the Wold’s theorem states that any zero-mean nondeterministic stationary process
has an infinite moving average MA (∞) representation, i.e. it can be written as an infinite
linear combination of white noise shocks. In order to find the Wold’s representation, we
have to fit infinite parameters of ψj ’s in (6.2) which is impossible, even when {xt} is
finite [Hamilton, 1994]. In practice, the infinite series of (6.2) is truncated after q terms
to get an approximation of the Wold’s representation [Francq and Zakoian, 2010]. The
truncated series is called a moving average process of order q and is denoted by MA (q).
It is shown that the set of all moving average processes with finite orders are dense in
the set of nondeterministic weakly stationary processes [Francq and Zakoian, 2010]. As
we will see in Section 6.1.3.1, another typical and even more parsimonious approach is to
consider the associated (backshift) series of

∑∞
j=0 ψj Bj , as the ratio of two finite order

polynomials [Hamilton, 1994]:
∞∑
j=0

ψj Bj = Θ (B)
Φ (B) = 1 + θ1 B +θ2 B2 + · · ·+ θq Bq

1− φ1 B−φ2 B2− · · · − φp Bp

We should mention that under appropriate conditions [Box et al., 2008], x̃t can be
written as a weighted sum of the past deviations of x̃j ’s plus a shock of εt, that is:

x̃t = εt +
∞∑
j=1

πj x̃t−j (6.3)

Now let Ψ (B) = 1 +
∑∞

j=1 ψj Bj and Π (B) = 1 −
∑∞

j=1 πj Bj , therefore (6.2),(6.3) can
be written in a more compact form as x̃t = Ψ (B) εt and Π (B) x̃t = εt respectively. It

3 Here deterministic means that the future of the process is completely predictable from its past
[Shumway and Stoffer, 2011].

149

Property ARMA GARCH ARMA-GARCH

Conditional Mean non-const. const. non-const.
Conditional Variance const. non-const. non-const.

Table 6.1: Properties of time series models.

can be shown that we have Ψ (B) Π (B) = 1 or equivalently we have Π (B) = Ψ (B)−1.
This allows us to derive the coefficients of π’s when we know the ψ’s and vice versa.
Therefore, having the history of each one, the history of the other one can be inferred.
Finally, we call the linear process {xt} invertible when εt’s can be expressed as linear
combination of x̃t’s, i.e. Π (B) x̃t = εt.

To sum up this section, the linear process {xt} is stationary and causal if we have∑∞
j=0 |ψj | < ∞ and is invertible if

∑∞
j=0 |πj | < ∞. The Wold’s theorem in addition to

the aforementioned conditions lets us find an appropriate parsimonious representation
(i.e. ARMA models) for weakly stationary time series (see the next section).

6.1.3 ARMA, GARCH and ARMA-GARCH Models

For studying the weakly stationary series, two classes of models, i.e. autoregressive mov-
ing average (ARMA) and autoregressive conditional heteroscedasticity (ARCH) models,
are of special interest and have been extensively employed in practice. Before going into
details of each class of models and their subfamilies, it is informative to consider their
general properties.

Let Ft be the set of all of information up to time t. ARMA time series models
are used to handle and model the conditional expectation, E [xt | Ft−1], of the series.
In ARMA models, it is assumed that the underlying process is homoscedastic i.e. its
conditional variance of Var [xt | Ft−1] is a constant and does not change with time. Such
assumption does not hold in some application domains specially in econometrics time
series where the conditional variance is volatile [Matteson and Ruppert, 2011, Cont,
2001]. When Var [xt | Ft−1] is not constant we call the series heteroscedastic. ARCH
models are introduced in order to model the heteroscedasticity effect in data. ARCH
models are later elaborated into generalized ARCH models (GARCH) which are more
parsimonious. For ARCH and GARCH models, the conditional expectation is considered
to be constant.

There are also frequent cases where both conditional mean and conditional variance
of data are not constant. Mixed ARMA-GARCH models are used to model this char-
acteristic in data. Table 6.1 depicts the previous discussion is a more compact manner
[Jasiak]. Having the previous consideration in mind, we take a deeper look at ARMA,
GARCH and mixed ARMA-GARCH models in the following sections.

150

6.1.3.1 ARMA and ARIMA Models

One of the most successful models that is used to analyze and stochastically model
weakly stationary processes is the autoregressive moving average model (ARMA) [Box
et al., 2008]. ARMA models are used to model the conditional expectation of time series.
The unconditional mean and the unconditional variance are constant in these models.
In such models, the dynamic of the system is assumed to be dependent on two factors:
previous states of the process and random disturbances in the past.

Let {xt} be a weakly stationary time series with mean of µ and let {x̃t} be the
corresponding mean-adjusted series i.e. x̃t = xt−µ. Using ARMA (p, q), with p degree of
dependency to the past observations and q degree of dependency to the past disturbances,
the current state of the model, i.e. x̃t, is defined by:

x̃t =
p∑
i=1

φi x̃t−i + εt +
q∑
i=1

θi εt−i (6.4)

where x̃t−i; i = 1, . . . , p are the past observations, εt−i; i = 1, . . . , q are the past distur-
bances, εt is the current disturbance; {εt} ∼ WN

(
0, σ2) and in practice, it is assumed

to have the standard normal distribution. By definition, we should also have φp 6= 0 and
θq 6= 0. Equation (6.4) has p+ q+2 unknowns that should be estimated from data: φi’s,
θi’s, µ and σ2

ε [Box et al., 2008]. When p = 0, we have MA (q) which is a purely moving
average model; similarly when q = 0 we get AR (p), a purely autoregressive model. Using
the backshift operator, (6.4) can be written as [Bisgaard and Kulachi, 2011, Tsay, 2005]:

Φp(B) x̃t = Θq(B) εt (6.5)

in which Φp(B) = (1 − φ1 B− · · · − φp Bp) is the autoregressive operator, a polynomial
of order p, and Θq(B) = (1 + θ1 B + · · · + θq Bq) is the moving average operator, a
polynomial of order q. As we discussed in Section 6.1.2, the ARMA representation of
(6.5) is a parsimonious approximation of Wold’s theorem given by (6.2).

We now discuss under which condition a suitable weakly stationary solution for
(6.5) exists. When one considers ARMA models of the form (6.5) three problems arise
[Shumway and Stoffer, 2011]: First: the models might have redundant parameters.
Second: stationary AR models might not be causal, i.e. they might be future dependent.
Third: MA models are not unique in such formulation, but their correlation structures
are indistinguishable, thus one cannot clearly prefer one to the others. To overcome
these problems, the weakly stationary solutions of (6.5) must be causal, invertible4 (see
Section 6.1.2) and with no common factors in AR and MA polynomials [Brockwell and
Davis, 2002, Shumway and Stoffer, 2011].

It is proven that (6.5) has a unique stationary solution if and only if Φp (B) 6= 0 for
all |B| = 1. The solution of (6.5) is causal if Φp (B) 6= 0 for all |B| ≤ 1. Similarly, the
solution of (6.5) is invertible if Θq (B) 6= 0 for all |B| ≤ 1. For the formal proofs of the

4 Here invertibility can be considered equivalently as an MA (q) model can be represented as a
AR (∞) by inverting its moving average operator.

151

stated theorems we refer the interested readers to [Brockwell and Davis, 2006]. To sum
up our discussion, (6.5) has a unique causal invertible stationary solution if the roots of
Φp (B) and Θq (B), all lie outside of the unit circle and they have no common factor.

Lastly, as discussed in Section 6.1.1, differencing5 can be used to make a series
stationary. If d times of differencing6 is used to make {xt} stationary, since ∇dx̃t = ∇dxt
for d ≥ 1, then ∇dxt can be used instead of x̃t in (6.4),(6.5) and we will have an
autoregressive integrated moving average model, denoted by ARIMA (p, d, q), which is
defined by [Box et al., 2008, Montgomery et al., 2008, Bisgaard and Kulachi, 2011]:

Φp(B) (1− B)dxt = Θq(B) εt (6.6)

6.1.3.2 ARCH and GARCH Models

Before we introduce ARCH and GARCH models, it will be explanatory to consider the
background of these models which roots in the financial econometrics. There, the study
of values of assets over time is the main focus of financial time series analysis [Tsay,
2005]. For the analysis of values of assets, their returns are usually used instead of their
prices. The log return, or simply the “return”7, of an asset is defined as rt = ln

(
Pt
Pt−1

)
=

lnPt − lnPt−1 where Pt is the price of an asset in time t. There are two reasons for
using series of returns instead of series of the prices in analysis of financial markets
[Campbell et al., 1997]: a) they are scale-free, which make them useful for investment
decisions in competitive markets and b) they have more attractive statistical properties
from theoretical and empirical points of view .

The analysis of returns has revealed statistical properties which are referred to as
stylized facts [Cont, 2001, Bollerslev et al., 1994]. Volatility clustering, absence of au-
tocorrelation, slow decay of the autocorrelation function of absolute returns and heavy
tails of (unconditional) distribution of returns are the most important stylized facts.

The autoregressive conditional heteroscedasticity (ARCH) models are introduced by
Engle [Engle, 1982] in order to deal with the stylized facts and also more importantly
to capture the heteroscedasticity effect observable in financial time series. Such models
are serially uncorrelated, have constant unconditional mean (more accurately the mean
is zero) and constant unconditional variance but a non-constant conditional variance.
Formally, let again {xt} be a time series8, an ARCH (q) model, tries to model conditional

5 There is also seasonal differencing for eliminating seasonal effects in data [Brockwell and Davis,
2002, Montgomery et al., 2008]. The seasonal differencing is not applicable to our data (see Section
6.2.1) and we do not discuss it here.

6 The value of d is usually 0, 1 or at most 2 in practice [Box et al., 2008].
7 There are also other less common definitions for return, each has applications in finance [Tsay,

2005], e.g. simple return is defined as: Rt = Pt−Pt−1
Pt−1

= Pt
Pt−1

− 1.
8 {xt} is considered to be a mean-adjusted series in practice, i.e. its mean µ is subtracted from the

series, since ARCH models are proved to have mean of zero.

152

variance of the series as a linear combination of q previous squared values of the series:

Var [xt | Ft−1] = σ2
t = ω +

q∑
i=1

αix
2
t−i (6.7)

and the series {xt} is then modeled as:

xt = σt εt (6.8)

in which εt ∼ WN
(
0, σ2), ω > 0 and αi ≥ 0 ; i = 1, . . . , q. In practice, εt is considered

to be of a standard normal distribution or a standardized Student’s t-distribution [Tsay,
2013].

The aforementioned conditions on ω and αi’s guarantees the positiveness of the
conditional variance. The ARCH (q) model with ω > 0 and αi ≥ 0 ; i = 1, . . . , q is
covariance stationary if and only if all the roots of its characteristic equation are outside
of the unit circle [Engle, 1982]. Considering (6.7) and (6.8), intuitively, when values
of |xt−i| are bigger then σ2

t is bigger and xt has more volatility. Therefore, the ARCH
models can be used to capture the heteroscedasticity effect.

The ARCH models have also some weaknesses [Tsay, 2005]. For example, the require-
ments on ω and αi’s for capturing the kurtosis of the data is complicated for models of
high orders. Additionally, the ARCH models need many terms in (6.7) in order to suffi-
ciently capture the volatility in practice. A more parsimonious class of models, known as
generalized autoregressive conditional heteroscedasticity models (GARCH), is proposed
by Bollerslev [Bollerslev, 1986] in order to answer such drawbacks. In GARCH (p, q)
models, the current conditional variance is modeled as a linear combination of q previous
squared values of the series and p previous squared values of the conditional variances:

σ2
t = ω +

q∑
i=1

αix
2
t−i +

p∑
i=1

βiσ
2
t−i (6.9)

or in terms of the backshift operator, more compactly as:

σ2
t = ω + α (B)x2

t + β (B)σ2
t (6.10)

where α (B) =
∑q

i=1 αi Bi and β (B) =
∑p

i=1 βi Bi. In GARCH models, the series is
again to be assumed to have the form of (6.8) with εt ∼ WN

(
0, σ2). The parameter

estimation of a GARCH model is addressed in [Francq and Zakoian, 2010, Enders, 2010].
It is shown [Bollerslev, 1986, Francq and Zakoian, 2010, Lindner, 2009] that the

GARCH (p, q) model defined by (6.8), (6.9) has a unique weakly stationary solution
if and only if ω > 0 and α (1) + β (1) < 1. Positiveness of the conditional variance
additionally requires that ω > 0, α1, . . . , αq > 0 and βi, . . . , βp > 0. Moreover, for
a GARCH (p, q) process, the unconditional mean is zero, the unconditional variance is
ω (1−α (1)− β (1))−1 and the covariance between two different lags is zero. In fact,
the non-constant conditional variance causes the series not to be independent, but the
constant conditional mean causes the series to be uncorrelated [Ruppert, 2011]. More

153

theoretical information about GARCH processes including their distributional properties
as well as their moments can be found in [Lindner, 2009].

It is shown that a GARCH (p, q) model can be written as a ARCH (∞) [Francq
and Zakoian, 2010] in which the weights exponentially decay for larger lags [Engle and
Bollerslev, 1986]. Thus a low order GARCH model have similar properties of high order
ARCH models with the advantage that far fewer parameters have to be estimated. This
is quite favorable since it avoids the constraints imposed by non-negativity conditions of
the conditional variance.

It is also informative to see that a GARCHmodel can be represented as an application
of ARMA model to the

{
x2} series [Bollerslev, 1986, Tsay, 2005]. In Section 6.1.4.2 we

will see that it motivates the use of ACF and PACF for determining degrees of GARCH
models [Bollerslev, 1988, Engle and Bollerslev, 1986].

Let ηt = x2
t − σ2

t , it follows that σ2
t−i = x2

t−i − ηt−i ; i = 0, . . . , p. Substituting them
in the Equation (6.9) results in:

x2
t = ω +

max(q,p)∑
i=1

(αi + βi)x2
t−i + ηt −

p∑
i=1

βi ηt−i (6.11)

in which αi = 0 for i > q and βi = 0 for i > p. It is shown that E [ηt] = 0 and
Cov [ηt, ηt−i] = 0 for i ≥ 1, The {ηt} is not necessarily an independent and iden-
tically distributed (iid) sequence. In other words, a GARCH (p, q) can be regarded
as an ARMA (max (q, p) , p) process with autoregressive coefficients of φi = αi + βi;
i = 1, . . . max (q, p) and moving average coefficients of θi = −βi; i = 1, . . . q (see Equa-
tion (6.4)) [Bollerslev, 1988].

6.1.3.3 ARMA-GARCH Models

In Sections 6.1.3.1 and 6.1.3.2 we studied ARMA and GARCH models respectively.
ARMA models were used to model the conditional mean while GARCH models were
employed to model the conditional variance in data (see Table 6.1). There are cases
when the series shows correlation both in the series itself and in the square power of
the series, i.e. both properties of ARMA and GARCH models are observable. In such
cases, the series has a non-constant conditional mean and a non-constant conditional
variance. Mixed ARMA-GARCH models are used to model both conditional mean and
conditional variance when they depend on the past [Ruppert, 2011, Rachev et al., 2007].
In mixed ARMA-GARCH models, the disturbance term (εt) in Equations (6.4),(6.5) is
not a white noise any more but in fact a GARCH process.

Formally, let {x̃t} be a mean adjusted time series, an ARMA (pA, qA)−GARCH (pG, qG)
model is defined as [Ling, 2007]:

x̃t =
p
A∑

i=1
φi x̃t−i + εt +

q
A∑
i=1

θi εt−i (6.12)

154

where
εt = σt ηt,

σ2
t = ω +

q
G∑
i=1

αix̃
2
t−i +

p
G∑

i=1
βiσ

2
t−i

(6.13)

and ηt ∼WN
(
0, σ2) which may be considered to have the standard normal distribution.

The conditions on φi’s, θi’s, ω, αi’s and βi’s are the same as the ones earlier mentioned
for ARMA and GARCH models separately. The parameters of a mixed ARMA-GARCH
model can be estimated using maximum likelihood estimation method [Francq and Za-
koian, 2004].

6.1.4 Methodology for Time Series Modeling

Up to this point, we have discussed theoretical aspects of the time series and we have
introduced ARMA, GARCH and mixed ARMA-GARCH models without showing how
they are used in practice. In this section we briefly review the methodology of these
models and we discuss technical aspects of their practical application.

6.1.4.1 Methodology of ARMA and ARIMA Models

The methodology used for studying of the ARIMA models is usually referred to as the
Box-Jenkins methodology, which we explain next9.

Phase I - Model Identification

S1 Data Preparation: In this step the original data should be investigated for ade-
quacy of use for time series analysis. Data should be transformed into a weakly
stationary series by removing any deterministic patterns such as trends, seasonal
effects, etc. The mean and the variance of the data should be stabilized usually
through employing proper transformations.

S2 Model Selection: Having a weakly stationary series, the degree of the ARMA (p, q),
i.e. p and q, should be estimated by investigating the autocorrelation function
(ACF) and the partial autocorrelation function (PACF) of the data. The candi-
dates values for p and q are suggested by examining the patterns in the ACF and
PACF and subsequently comparing them to the theoretical ones.

Now let SAR and SMA be the sets of values suggested for p and q respectively.
The set of candidate models are created as [Wei, 2006, Makridakis et al., 1998,
Bisgaard and Kulachi, 2011]:

M = {ARMA (p, q) | (p, q) ∈ SAR × SMA − {(0, 0)}} (6.14)
9 The overall structure is adjusted according to [Makridakis et al., 1998, Rachev et al., 2007].

155

Due to the estimation process of the sample ACF and PACF from the data, there
are differences in the observed patterns in the sample ACFs and PACFs in com-
parison to their theoretical counterparts. Additionally, the parameter estimation
(S3) of a time series is a computationally complex task. This is due to the fact
that parameters must fulfill the model’s constraints. Therefore, the results are
not necessarily completely equate with the theoretical discussions in order to fully
capture the dynamics of the system. In these situations, a more conservative ap-
proach is to consider more candidate models by setting SAR = {0, . . . , pmax} and
SMA = {0, . . . , qmax}. The values of pmax and qmax can be specified using sample
ACFs and PACFs considering that there are not much significant correlations after
pmax lag in ACF and qmax lag in PACF.

Phase 2 - Model Estimation and Testing

S3 Estimation: Getting M as the set of candidate models, p + q + 2 parameters for
each model should be estimated (Section 6.1.3.1). There are different methods for
the estimation of parameters. Two of them which are frequently used are non-
linear least square and maximum likelihood estimate10 (MLE) methods. The latter
is shown to be superior [Box et al., 2008].

S4 Diagnostics: After estimating the parameters of the candidate models, it should
be checked whether all relevant information of the data has been captured by a
candidate model and if the model is suitable. In this regard, the deviation of
the estimated values by the model from the real observations, i.e. the residuals of
model, should not show any systematic pattern that can be used for their prediction
[Rachev et al., 2007]. Ideal residuals are Gaussian white noise with almost no
correlation [Montgomery et al., 2008] (see Section 6.1.3).
Anderson-Darling test can be used to check the normality of residuals11. The ACF
and the PACF of the residuals as well as the Ljung-Box Q-test12 13 are used to
test whether there is correlation between the residuals [Tsay, 2005, Bisgaard and
Kulachi, 2011, Montgomery et al., 2008].
If a model is adequate in this respect, it will remain in M . If M = {} we can go to
Step S2 and try to find new candidate models or stop and concluding that there
is no suitable ARMA model capable of describing the dynamics of the data.

S5 Best Model Selection: If there is more than one candidate in M , we will have
some suitable models to describe the dynamics of the data. The superior model

10 Since in the MLE method the estimation cannot be done by solving systems of linear equations, the
surface of the likelihood function should be numerically searched for the maximum. In this regards, the
Yule-Walker and the Hannan-Rissanen algorithms [Brockwell and Davis, 2002] provide good estimation
of the parameters which can be used by the MLE method as the starting points of the numerical search.

11 Alternatively, one can use other tests such as Kolmogorov-Smirnov and Lilliefors which are less
powerful [Razali and Wah, 2011].

12 See Sections 6.1.4.2 and 6.2.2 for more information about the Ljung-Box Q-test.
13 Box-Pierce is an alternative but less powerful test in this regard [Montgomery et al., 2008].

156

in M is the one with lower Akaike information criterion (AIC)14. AIC rewards
the goodness of the fit and accuracy, and penalize the overfitting or complexity of
models [Tsay, 2005, Wei, 2006, Box et al., 2008].
There are cases where differences between AIC of models are negligible, in these
cases it might be more appropriate to have a hold-out set of the last few observa-
tions and assess the power of models by comparing the forecast for the hold-out
set with real observations in the set and take the model with finest accuracy as
the best model.

Phase 3 - Applications

S6 Forecasting and Simulation: The best model can be used to predict the future of
the system or it can be used to simulate the dynamics of the system and produce
infinite similar time series all obeying the same characteristics. Minimal mean
squared error method is frequently used in forecasting [Kirchgässner and Wolters,
2007, Montgomery et al., 2008]. More information about forecasting, calculation
of them and their errors bands are addressed in [Brockwell and Davis, 2002, 2006].

6.1.4.2 Methodology of GARCH Models

Regarding the methodology of GARCH models, the following steps are usually practiced
in the related literature. The steps are similar to the ones that we mentioned for ARMA
methodology, but in each step different criteria should be checked. At first, the data
should be transformed into weakly stationary. The next step is to detect the existence
of the heteroscedasticity effect, i.e. if the conditional variance is not constant. This can
be done using three methods.

The first simple method is to use the ACF plot of the squared series in order to
detect significant positive correlations. This is due to the fact that a GARCH (p, q) can
be written as an ARMA model of squared series as given by (6.11) (see Section 6.1.3.2).
Additionally, considering (6.7) and (6.9), the bigger values of x2

t−i will have more effect
in the variance of the series and therefore bigger magnitude for xt is expected [Ruppert,
2011]. McLeod and Li first applied this approach on the squared residuals of ARMA
models [McLeod and Li, 1983]. As the second method, the former investigation of
correlation in the squared series can be more accurately accomplished using the Ljung-
Box Q-test [Ljung and Box, 1978]. The null hypothesis of the test assumes that the first
h lags of the ACF of

{
x2
t

}
are not significantly different from zero. As the third method,

the more formal test for detecting the heteroscedasticity effect is the Engle’s ARCH test
[Engle, 1982]. We will provide detailed information about the Ljung-Box and Engle tests
in Section 6.2.2 when we apply them to our data.

After proving the existence of the heteroscedasticity effect, the next step in to de-
termine the suitable degrees for ARCH or GARCH models and form the set of possible
candidate models for capturing the effect. In the case of an ARCH model, Tsay [Tsay,

14 One can also use the Bayesian information criterion (BIC) [Schwarz, 1978]. Although in our
problem, it is not appropriate (see Section 6.5.2).

157

2005] suggests to use the PACF of the
{
x2
t

}
in order to determine the order of the model.

He uses ARMA representation of GARCH model given by (6.11). Setting p = 0, (6.11)
becomes x2

t = ω+α1x2
t−1+. . .+αqx2

t−q+ηt which is an AR (q) model of
{
x2
t

}
. Therefore,

the PACF of
{
x2
t

}
can be used to determine the order of q (see Section 6.1.4.1). He

warns that the PACF of
{
x2
t

}
might not be quite efficient since {ηt} is not identically

distributed.
In the case of GARCH models, it is pointed out that accurately determining the

degrees are difficult [Tsay, 2005]. Using the ARMA representation of a GARCH model
(6.11), Wei [Wei, 2006] argues that the ACF and PACF patterns of

{
x2
t

}
will show

patterns of exponential decay and similar techniques discussed for ARMA models can
be used to detect the proper degrees. As we mentioned in Section 6.1.3.2, a GARCH (p, q)
model can be written as an ARCH (∞). Therefore, usually several low order GARCH
models are used as candidates for capturing the heteroscedasticity in practice [Enders,
2010, Tsay, 2005]. The orders of p and q are usually two or one [Guidolin, Accessed:
July, 2014, Rossi, 2004].

The next step will be the estimation of GARCH models. The least square, maximum
likelihood and quasi-maximum likelihood methods are used for estimating the parameters
of an ARCH or a GARCH model [Francq and Zakoian, 2010, Bollerslev et al., 1994,
Enders, 2010].

The final steps are diagnosing the estimated models as well as selecting the best
model. Similar to ARMA models, the “standardized residuals” of GARCH models
should be Gaussian white noise with no correlations15. The standardized residuals of
a GARCH model are calculated by dividing the inferred residuals of the model by its
inferred conditional standard deviation [Tsay, 2005, Enders, 2010]. The Akaike (AIC)
and Bayesian (BIC) information criteria are also used to select models in practice [Tsay,
2013, Zivot and Wang, 2006, Ruppert, 2011].

6.1.4.3 Methodology of ARMA-GARCH Models

The methodology for ARMA-GARCH models are principally the same as we mentioned
for ARMA and GARCH models in Sections 6.1.4.1 and 6.1.4.2 respectively. In practice
the same steps are taken to investigate the suitability of ARMA and GARCH models
for the data and to detect the proper orders for models.

In order to estimate an ARMA-GARCH model, two methods of Maximum Likeli-
hood and Quasi-Maximum Likelihood are respectively discussed in [Francq and Zakoian,
2004] and [Francq and Zakoian, 2010]. A practical implementation for estimating the
parameters of a model is addressed in [Wurtz et al., 2006].

Similarly to GARCH models, to diagnose an estimated ARMA-GARCH model the
standardized residuals are used (see Section 6.1.4.2) and AIC and BIC are employed for
selecting the proper model.

15 In this work we considered GARCH models which have the Gaussian white noise, but as we
mentioned in Section 6.1.3.2, Student’s t-distribution is also used in other application domains especially
in the econometrics literature.

158

6.1.5 Accuracy of Forecasts

The accuracy of approximations and forecasts as well as proper measurements of errors
are of special interest. It is well established that the choice of error measures is depen-
dent on the situation, nature of the problem, the purpose of predictions as well as the
needs of decision makers [Makridakis and Hibon, 1995]. Evaluation of different error
measures, their advantages and disadvantages have been thoroughly studied in [Arm-
strong and Collopy, 1992, Makridakis and Hibon, 1995, Hyndman and Koehler, 2006].
Armstrong [Armstrong, 2001] generally recommends the error measures which are not
affected by scale, are not biased (not giving too much weight to some observations and
their forecasts) and have low sensitivity to outliers, although always a trade-off between
these incompatible goals is unavoidable [Makridakis and Hibon, 1995].

Two of the mostly used measures which are employed by academic and practitioners
are the mean absolute percentage error (MAPE) and mean squared error (MSE) [Arm-
strong, 2001]. Both methods are reported to have disadvantages that the amplitude of
the measurements are not properly considered [Armstrong and Collopy, 1992, Makri-
dakis and Hibon, 1995, Hyndman and Koehler, 2006]. Before going into more details,
we first provide the requirements.

Let x̂ be the forecast of observation x, the error is defined as e = x− x̂. The relative
error, in percent, is defined by δx = |x− x̂|/|x| × 100 where x 6= 0. The drawback of
the relative error is that it is adversely affected by small values. For instance suppose
that x = 1, x̂ = 2 and y = 100, ŷ = 101 then δx = 100% and δy = 1% although
for both the absolute error is 1. Therefore, the MAPE which is defined as MAPE =
100 (

∑n
i=1 |xi − x̂i| / |xi|) /n , is not immune to the magnitude of measurements.

Despite the interesting properties of the MSE, defined as MSE =
∑n

i=1 (xi − x̂i)2 /n,
it has the disadvantage that it is not a scale free measure which makes it inappropriate
for comparing the models on various data sets with different standard deviations and
scales [Hyndman and Koehler, 2006, Lughofer, 2011].

We now introduce the proper way of assessing the accuracy forecast for our analysis.
Both of our measured low-level and high-level changes show very volatile behavior and
the magnitude of changes for each project and within the projects are quite erratic (see
Section 6.2.1, Table 6.4 and Figure 6.1). The same issue is also reported in [Zhou et al.,
2006] when predicting highly volatile internet traffic data. A similar approach to ours is
also proposed there as well as in [Billah et al., 2006].

To solve the aforementioned problems and handle volatile data, normalized relative
error (NRE) has been introduced. Suppose that X is a set of possible outcomes for x,
then NRE (in percent) is defined as:

NRE = 100× |x− x̂|
max (X)−min (X)

Similarly for x1, x2, . . . , xn observations and their corresponding forecasts, normalized
mean squared error (NMSE) is defined16 by [Lughofer, 2011]:

16 Another way of normalizing the MSE is by dividing it to the variance of the data.

159

NMSE = 1
n

n∑
i=1

(xi − x̂i)2

(max (X)−min (X))2 (6.15)

The NRE and NMSE have the advantage of being scale free and not affected by small
measurements (not biased). Additionally both of them are more practical since they are
normalized by their ranges [Lughofer, 2011]. Equation (6.15) is used to assess the quality
of forecasts by time series models in Section 6.3.2.1. Similar to our arguments, Billah et
al [Billah et al., 2006] and Zhou et al [Zhou et al., 2006] argue that the normalized version
of MSE is much more suitable for data with high volatility and different variances.

6.2 Modeling the Evolution
In Chapter 4 we showed that the changes of design models can be represented at two
different abstraction levels of low-level and high-level changes. For low-level changes
we have 75 low-level difference metrics which are defined as the application of 5 edit
operations of addition, deletion, move, reference change and update onto 15 different
model element types (packages, interfaces, classes, etc.). For high-level changes, we
had 188 edit operations which their occurrences were considered as high-level difference
metrics. They were categorized into creates, deletes, moves, set/unset, modifying non-
containment references and refactorings.

Let lp,i be the sum of all of low-level metrics computed between design models of
revisions i and i+1 in project p. Lp, which is defined as the sequence of lp,1 , lp,2 , . . . , lp,np ,
is our data set for the analysis of the evolution of project p using low-level difference
metrics (np is the length of project p). Hp = hp,1 , hp,2 , . . . , hp,np is defined analogously
for analysis of the evolution of p, using high-level difference metrics.

Regarding the theory and methodology of time series analysis in Section 6.1.4, the
steps S4 and S5, i.e. “diagnostics” and “best model selection” are sufficient for a time
series model to be valid. But in order to check the performance of a time series model
in practice, we use “out of sample evaluation” for each proposed model. In this regard,
we partitioned our measured sequence of {x1, x2, . . . , xN} into two disjoint subsets. The
first set, called “base-set”, consists of the observations of x1 up to and including xN−6.
The second one, which is called the “hold-out” set, consists of the last six observations.
We tried to estimate our time series models on the base-set. The fitness of the proposed
models is then checked by comparing their six step forecasts with the actual observations
in the hold-out set. In Section 6.5.3 we argue why we chose a hold-out set of length six.
In what follows we report our analysis and measured statistics based on the hold-out sets
of length six. All of our analysis and calculations are done using Mathworks Matlab®

R2013b computational engine [MathWorks Company, 2013].

6.2.1 Data Description and Transformation

As mentioned earlier, our measurements are series of the total number of changes applied
between revisions of a software system p, which are calculated separately for low-level

160

(Lp) and high-level (Hp) changes. In this section we discuss general properties of our
measurements and discuss how we transform them into weakly stationary form.

Both of Lp’s and Hp’s show high volatility. In other words, in the calculated series
one obeserves both big and small changes together. As an illustration, Figure 6.1 shows
the series of low-level changes for the ASM project. Moreover, the data do not show
cyclic or seasonal patterns.

0 50 100 150 200 250
0

20

40

60

80

100

120

Figure 6.1: ASM project - Total number of changes in the hold-out set. For better
visibility, the y-axis is limited to 130 and bigger values are not shown.

Another feature is high variation in the data, i.e. the variances of the measured data
are big. For instance, Figure 6.2 shows the empirical variance of the low-level changes
as a function of sample size (revisions) for the Struts project. As shown, the variance is
erratic and it takes big values. Table 6.4 provides basic statistics about the measured
data both for low-level and high-level changes. As shown there the variance of the data
is quite big. Additionally, we observed that the distributions of our observations are not
symmetric and are skewed toward right (see Chapter 5).

Due to the aforementioned characteristics, the data are not stationary, inappropriate
for the time series analysis and therefore have to be transformed into weakly stationary
form. In order to stabilize the variance of the data, power and logarithmic transfor-
mations are typically employed. The logarithmic transformation is usually used in the
financial time series analysis (see Section 6.1.3.2).

For stabilizing the variance, we used the Box-Cox transformation (BCT) which gives
the logarithmic transformation as its special case17. BCT was proposed by Box and Cox
[Box and Cox, 1964] with regard to the analysis of linear models in order to stabilize
the variance of errors, normalize their distributions and reduce their heteroscedasticity

17 Alternative, but in our work less suitable method is the logarithmic transformation. Our exper-
iments revealed that the logarithmic transformation is not appropriate, since the residuals of the time
series models will not be normally distributed.

161

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

6000

7000

Revisions

S
am

pl
e

V
ar

ia
nc

e

Figure 6.2: Project Struts - Empirical variance of low-level changes as a function of
sample size (revisions).

18. Principally, BCT tries to transform the data in a way that the transformed data
have the normal distribution. Suppose that positive x = (x1, x2, . . . , xn) is given, the
Box-Cox transformation of xi > 0, i.e. τ (xi;λ), is defined by19:

τ (xi;λ) = x
(λ)
i =

{
xλi −1
λ , λ 6= 0

ln (xi) , λ = 0
(6.16)

where λ is the optimum transformation parameter and is obtained by maximizing the
logarithm of the likelihood function of the data, given by [Viktor, 2010, Porunov, 2010]:

f(x;λ) = −n2 ln

 n∑
i=1

(
x

(λ)
i − x̄ (λ)

)2

n

+ (λ− 1)
n∑
i=1

ln (xi)

where x̄(λ) = 1
n

∑n
i=0 x

(λ)
i .

As we mentioned in Section 6.1.3.2, in the analysis of financial time series, a very
common transformation of the series {xt} is the series of yt = ln xt − ln xt−1. In other
words, first a logarithmic transformation and then a differencing is applied [Tsay, 2005,
Enders, 2010, Hamilton, 1994]. Similarly, we successfully transformed all of our sample
data sets into weakly stationary by applying the following three step transformations
which we abbreviate it as the BCDM transformation:

18 A detailed bibliography of the research related to the Box-Cox transformation can be found in
[Sakia, 1992].

19 Non-positive data can be first shifted by adding a suitable positive number.

162

Project Low-level Changes High-Level Changes

Max Log-Like. λ Opt. Max Log-Like. λ Opt.

ASM -575.934 -0.259122 -554.641 -0.265261
CheckStyle -1899.74 -0.206358 -1785.84 -0.217717
DataVision -38.8586 -0.362303 -37.4666 -0.346967
FreeMarker -845.015 -0.073134 -820.550 -0.050067
HSQLDB -3328.74 -0.511699 -3257.16 -0.491147
Jameleon -694.797 0.073503 -686.145 0.089726
JFreeChart -971.206 -0.117241 -946.980 -0.126192
Maven -1523.80 -0.257195 -1364.48 -0.263548
Struts -1490.00 -0.221296 -1405.69 -0.226861

Table 6.2: Box-Cox transformation - Optimum values of λ and the maximum of the
corresponding logarithm-likelihood function.

(T1) A Box-Cox transformation using the optimum λ.

(T2) A Difference transformation of degree One.

(T3) The series Mean of the previous step is subtracted.

The optimum values of λ used in our BCDM transformations as well as the corresponding
maximum values of the logarithm of the likelihood function is given in Table 6.2.

0 50 100 150 200 250
-3

-2

-1

0

1

2

3

Figure 6.3: ASM project - Fully transformed series using BCDM transformation.

Figure 6.3 shows the transformed low-level changes for the ASM project. Comparing
it to Figure 6.1, apparently the variance of the data is stabilized and the series is fluctuat-

163

Project Low-level Changes High-Level Changes

p-value Stat. p-value Stat.

ASM 0.2696 2.3230 0.3020 -7.695
CheckStyle 0.5000 0.2216 0.5000 0.1211
DataVision 0.5000 0.8079 0.4436 0.9805
FreeMarker 0.5000 0.6975 0.5000 0.8083
HSQLDB <0.001 113.75 <0.001 128.65
Jameleon 0.0018 21.029 0.0029 17.904
JFreeChart 0.0304 7.1826 0.0253 7.7394
Maven 0.3623 1.9200 0.0890 4.6628
Struts 0.3151 2.1992 0.3509 1.9811

Table 6.3: Jarque-Bera test of normality for the transformed data.

ing around the mean level of zero. Thus, the transformed series is weakly stationary and
the time series analysis can be applied on it (see Section 6.1.3). Table 6.4 contains the
summary statistics for the original as well as the BCDM transformed series of low-level
and high-level changes. For all projects, the variance and higher moments (skewness
and kurtosis) of the data have been stabilized after the BCDM transformation and as
shown in the table, their calculated values are near to ones of a normal distribution. To
investigate that, we used the Jarque-Bera test of normality which considers the skewness
and kurtosis of the data [Rachev et al., 2007]. The null hypothesis of the test is that
the data obeys a normal distribution with an unknown mean and variance. As shown in
Table 6.3, the results indicate that the null hypothesis is not rejected at the significance
level of 0.01 for all projects except HSQLDB and Jameleon. Later in Section 6.2.3 we
will show that the effect of non-normality of the transformed data will degrade the time
series models with respect to the number of valid candidate models that have normal
residuals.

6.2.2 Time Series Models of Evolution

As we mentioned earlier, our main intention was to mathematically model the evolution
of software systems at the abstraction level of design models and later to use it for
generating more realistic model histories. The first step in the time series analysis is to
transform the data into weakly stationary form (see Section 6.1.4.1). We observed that
our data sets had to be transformed into weakly stationary form in order to let us study
their dynamics.

The next step (S2 in Section 6.1.4.1) is to find a set of candidate time series models
by analyzing the ACF and PACF of the data. The sample ACFs and PACFs should be
compared with the theoretical ones of ARMA models in order to find some proper candi-
date degrees for ARMA (p, q) models. For all projects, we carefully analyzed the sample

164

Project Change Type Data Kind Mean Variance Std. Dev. Skewness Kurtosis Min Max

ASM
Low Level Orig. Obser. 35.72 21455.7 146.48 10.29 127.13 1 1973

BCDM Tran. ≈ 0 1.3 1.14 0.004 2.53 -2.789 2.894

High Level Orig. Obser. 31.21 12790.8 113.096 8.64 93.99 1 1404
BCDM Trans. ≈ 0 1.26 1.121 -0.0283 2.556 -2.757 2.857

CheckStyle
Low Level Orig. Obser. 15.78 4286.44 65.47 17.55 354.81 1 1366

BCDM Tran. ≈ 0 1.280 1.131 -0.0349 3.020 -3.266 3.762

High Level Orig. Obser. 13.17 2506.91 50.07 22.104 599.24 1 1406
BCDM Trans. ≈ 0 1.205 1.098 0.006 2.948 -3.212 2.987

DataVision
Low Level Orig. Obser. 15.52 781.51 27.95 2.121 6.209 1 105

BCDM Tran. ≈ 0 1.062 1.031 -0.158 2.158 -2.102 1.576

High Level Orig. Obser. 14.04 590.54 24.301 1.996 5.533 1 86
BCDM Trans. ≈ 0 1.130 1.062 -0.152 2.057 -2.165 1.595

FreeMarker
Low Level Orig. Obser. 26.18 4747.62 68.90 7.916 80.644 1 851

BCDM Tran. ≈ 0 1.94 1.393 0.032 3.213 -4.336 4.276

High Level Orig. Obser. 22.10 2204.27 46.95 6.401 55.388 1 475
BCDM Trans. ≈ 0 2.06 1.436 0.063 3.205 -4.570 4.648

HSQLDB
Low Level Orig. Obser. 101.50 153553 391.858 12.104 162.326 8 5884

BCDM Tran. ≈ 0 0.009 0.097 0.002 4.689 -4.011 4.367

High Level Orig. Obser. 89.62 109683 331.184 14.083 222.714 8 5884
BCDM Trans. ≈ 0 0.011 0.103 -0.0285 4.795 -4.252 4.638

Jameleon
Low Level Orig. Obser. 21.35 4562.61 67.55 14.865 238.43 1 1107

BCDM Tran. ≈ 0 2.886 1.699 -0.0898 4.328 -6.765 6.777

High Level Orig. Obser. 20.25 3539.65 59.49 14.626 233.051 1 971
BCDM Trans. ≈ 0 3.197 1.788 -0.0718 4.228 -7.061 7.074

JFreeChart
Low Level Orig. Obser. 30.54 3977.07 63.06 4.542 29.465 1 599

BCDM Tran. ≈ 0 1.489 1.220 0.032 3.687 -4.148 4.141

High Level Orig. Obser. 29.23 4045.08 63.60 5.015 35.981 1 646
BCDM Trans. ≈ 0 1.481 1.217 0.0186 3.715 -4.061 4.054

Maven
Low Level Orig. Obser. 27.17 17424.6 132.002 13.649 245.783 1 2735

BCDM Tran. ≈ 0 1.299 1.140 -0.001 2.756 -3.044 3.391

High Level Orig. Obser. 16.86 3815.49 61.77 9.946 131.873 1 1063
BCDM Trans. ≈ 0 1.232 1.110 -0.015 2.622 -2.999 2.966

Struts
Low Level Orig. Obser. 21.019 3789.49 61.559 6.613 55.246 1 715

BCDM Tran. ≈ 0 1.403 1.184 0.007 2.732 -3.149 3.272

High Level Orig. Obser. 16.936 1960.51 44.28 6.236 50.263 1 487
BCDM Trans. ≈ 0 1.334 1.155 0.037 2.757 -3.075 3.248

Table 6.4: Project summary - Basic statistics (based on the hold-out set).

ACF and PACF plots of low-level and high-level changes. We investigated whether at
the significance of 0.05, the lags in the plots are significantly different from zero. For
most of our data sets it turned out that, although after the first few beginning lags the
depicted correlation in the ACFs and PACFs plots cut off to the confidence band (not
significant anymore), again they show significant differences from zero few lags later. In
other words, we conclude that both of lower and higher order ARMA models should be
taken as candidates for further analysis and the suitability of them should be further
investigated in the diagnostics step (S4 in Section 6.1.4.1). Therefore20, based on our

20 Another reason is that we want to objectively compare the effects of the transformation as well
as the best model selection strategy (using AIC or BIC) on the candidate time series models and their
residuals (see the materials later in this section and see Sections 6.2.3 and 6.5.2).

165

observations, for all sample projects except DataVision we set the pmax and qmax to 25
and we formed the set of our ARMA candidate models of M as explained by Equa-
tion (6.14) in step S2 of Section 6.1.4.1. For the DataVision project, we set pmax and
qmax to 15. The reason for that is that DataVision is the smallest project in our sample
set and it has totally 29 revisions (see Table 4.3).

The next important issue to consider, is that whether the data sets show any het-
eroscedasticity effect, i.e. if their conditional variances are not constant. Such prop-
erty was the main motivation behind the GARCH models in econometrics (see Section
6.1.3.2). In the econometrics literature, volatility clustering refers to the phenomenon
that large variation in the data is more likely followed by large variation than the small
ones [Cont, 2001]. This phenomenon does not indicate the lack of stationarity but shows
the dependence in conditional variances of the series [Ruppert, 2011]. The ARCH effect
refers to the effect of dependence of the conditional variance to its previous values [Tsay,
2005].

As we discussed in Section 6.1.4.2, there are two methods for detecting the ARCH
effect and the existence of volatility clustering in data. The first method is based on
the existence of significant autocorrelation in the squared series of

{
x2
t

}
. When there

are significant positive correlations, we can conclude that the ARCH effect exists in the
data and we can employ the GARCH models. To test for the significant correlations,
the Ljung-Box Q-test is frequently employed21 [Ljung and Box, 1978]. The test statistic
is given as:

Q (h) = n (n+ 2)
h∑
k=1

ρ̂2
k

n− k
(6.17)

in which n is the length of data and ρ̂k is the lag-k sample autocorrelation coefficient. The
test statistic has an asymptotic χ2 distribution with h degrees of freedom when the data
is serially uncorrelated. The null and alternative hypotheses are H0 : ρ1 = · · · = ρh = 0
and Ha : ρk 6= 0 for some k ∈ {1, . . . , h}; respectively.

It is shown that the power of the test is affected by the number of lags (h) used in
the calculation of the statistics. It seems that there is no common agreement on the
appropriate number of lags which should be used in the test. Tsay [Tsay, 2005] sug-
gests h = ln (n) based on simulation studies. Hyndman and Athanasopoulos [Hyndman
and Athanasopoulos, 2013] suggest h = 10 for non-seasonal data and in [MathWorks
Company, 2013] h = min (20, n− 1) is suggested.

The second method which is more formal is the Engle’s ARCH test [Engle, 1982].
Similar to Equation (6.7) in Section 6.1.3.2, when there is an autocorrelation in the
squared series, then for some αk 6= 0 we have xt2 = α0 + α1xt−12 + · · · + αhxt−h

2.
Similarly to the Ljung-Box test, the null and alternative hypothesis are defined as H0 :
α1 = · · · = αh = 0 and Ha : αk 6= 0 for some k ∈ {1, . . . , h}. The statistic of the
Engle’s ARCH test is provided in [Engle, 1982, Tsay, 2005] and is showed that have a
χ2 distribution with h degrees of freedom.

21 The other but less powerful alternative is the Box-Pierce test.

166

We might ask that for which lag of h the test is more powerful. A simple practical
procedure is suggested [MathWorks Company, 2013]. Consider ARCH (k) models with
k ∈ {1, ..., hmax}, fit them to the data and then choose the degree of the one with the
smallest AIC (Akaike information criterion), i.e. h = arg mink AIC (ARCH (k)). The
hmax is usually assumed to be at least p+ q for models of GARCH (p, q) since they are
locally as good as ARCH (p+ q) models. For both of ARCH and GARCH models we
can also consider the ACF of the squared series in order to choose the hmax.

Let us go back to our data sets, for which we wanted to check the presence of the
ARCH effect. Figure 6.4 shows the ACF plot of the squared data for the high-level
changes of the Jameleon project. At the level of 0.05, there are significant correlations
in the first, sixteenth and twenty fourth lags, indicating the existence of the ARCH
effect. All of our data sets of low-level and high-level changes except for the projects
DataVision and Struts, show similar behavior which shows the presence of the ARCH
effect.

0 5 10 15 20 25
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

S
am

pl
e

A
ut

oc
or

re
la

tio
n

Figure 6.4: Project Jameleon - ACF plot of the squared high-level changes.

In order to approve the existence of the ARCH effect, we employed the more formal
method of the Engle’s ARCH test. As we described earlier we chose hmax = 25 and we
progressively fitted the ARCH models up to the degree of hmax. The choice of 25 was
based to the fact that mostly no significant correlation was observable in the ACF plot
of the squared data sets after the twenty-fifth lag. We then computed the log-likelihoods
of the models in order to calculate their AIC values. It turned our that for all of our
data sets the ARCH (1) model delivers the best fit with the lowest AIC value. This
result was not surprising since for all of our data sets, the most significant correlation
was measured at the first lag. Therefore, for all of our data sets, the suitable lag of
the Engle’s ARCH test is h = 1. Table 6.5 shows the results of our ARCH test. The

167

Project Low-Level Changes High-Level Changes

AIC p-value Stat. AIC p-value Stat.

ASM 785.53 2.3295× 10−2 5.1464 773.36 1.0042× 10−2 6.6274
CheckStyle 3057.5 4.2400× 10−10 38.999 3000.1 4.6200× 10−10 38.830
DataVision 62.376 1.0893× 10−1 � 2.5697 68.038 1.6100× 10−1 � 1.9648
FreeMarker 1137.1 1.8400× 10−11 45.135 1158.9 5.2800× 10−13 52.100
HSQLDB -1882.7 ≈ 0 75.617 -1782.2 ≈ 0 77.296
Jameleon 1067.7 7.5100× 10−06 20.058 1095.6 3.0500× 10−06 21.782
JFreeChart 1145.2 4.4000× 10−05 16.691 1138.1 4.5800× 10−07 25.433
Maven 2385.9 9.9200× 10−06 19.527 2332.8 1.5100× 10−08 32.036
Struts 2321.7 6.4139× 10−2 � 3.4270 2284.6 1.0398× 10−1 � 2.6435

Table 6.5: Engle’s ARCH test of heteroscedasticity (� : Significant at 0.05).

“AIC” columns correspond to the ARCH (1) model which had the lowest AIC value for
all data sets. The columns “p-value” and “Stat.” show the p-values and the statistics of
the test respectively. At the significance level of 0.05, the null hypothesis of no ARCH
effect cannot be rejected for just the low-level and high-level changes of DataVision and
Struts projects22, indicating that the other data sets exhibit the ARCH effect.

Now that the presence of the ARCH effect and volatility clustering is shown by the
Engle’s ARCH test, the next step will be determining the proper order of the GARCH
models. According to that, the set of candidate models is then formed in order to
capture the heteroscedasticity effect in the data. As we showed earlier the best model
that was used in the Engle’s ARCH test was the ARCH (1) model. Our observations
also approves the presence of significant correlation in the first lag/first few lags of the
ACF plot of the squared data. Therefore we would expect that a low order GARCH
model could be used to properly model the conditional variance of our data. In this
regard we consider the GARCH models of orders of maximum two. This selection is
also strongly supported by the fact that a GARCH (p, q) model even with small orders
can be represented as an ARCH (∞) model (see Section 6.1.3.2). To see that [Guidolin,
Accessed: July, 2014, Rossi, 2004], consider the GARCH (1, 1) model with conditional
variance of σ2

t+1 = ω + αx2
t + βσ2

t . By recursively substituting the equation in itself we
obtain:

σ2
t+1 = ω

∞∑
j=0

βj + α

∞∑
j=0

βjx2
t−j + lim

j→∞
βjσ2

t−j

Since ω, α, β are positive and α+β < 1, we have 0 < β < 1. Provided that the series had
started far enough in the past we get limj→∞ β

jσ2
t−j = 0 and ω

∑∞
j=0 β

j = ω/ (1− β).
Therefore we have:

σ2
t+1 = ω

1− β + ARCH (∞)

22 The same results can be obtained by employing the Ljung-Box Q-test on the squared data.

168

in which coefficients of the ARCH model decay according to the powers of β.
To sum up our actions for forming the candidate models, based on the aforementioned

discussions, the ARMA models with degrees of up to 25 (except for the small project
of DataVision which we chose 15) and the GARCH models with degrees of up to 2 will
be the proper choices to model the evolution of design models in our sample set of Java
software systems. We observed that all our data sets (except the ones associated to
the projects DataVision and Struts) show the heteroscedasticity effect and therefore the
mixed ARMA-GARCH models should be formally used to model the evolution.

Since the ARCH effect is more significant in the first lag/first few beginning lags and
is not persistent for a long time, we are also interested to see if the heteroscedasticity
effect can satisfactorily be modeled by pure ARMA models or not, i.e. with ARMA
models that have constant variance instead of a GARCH variance. Moreover, another
interesting research question is the forecast performance of pure ARMA and the mixed
ARMA-GARCH models. In this regard, we present our findings in Section 6.3 where we
assess and compare ARMA and ARMA-GARCH models. We also discuss the forecast
performance and other aspects of the employed models there.

We are also interested to see that how many of the considered ARMA and mixed
ARMA-GARCH candidate models will pass the diagnostic tests after their parameters
are estimated. Whether the transformation has any effect in the performance of ARMA
and mixed ARMA-GARCH models and if so how such an effect will look. These issues
are covered in the next section, i.e. Section 6.2.3.

According to the above remarks, we thus considered two sets of candidate models.
The first set is the set of ARMA candidate models with degrees of up to 25. We denote
this set byM1. M1 has a total of 675 ARMAmodels. The second set of candidate models,
M2, consists of the mixed ARMA-GARCH models in which the degree of the ARMA
part is up to 25 and the degree of the conditional variance part (GARCH part23) is of
up to 2. The set M2 has totally 4050 models. Since for the small project of DataVision
we used models of up to 15 degree, the sets of M1 and M2 have 255 and 1530 models
respectively. In the next section, we will talk about the estimation of the candidate
models in sets M1 and M2 and check their adequacy for the requirements mentioned in
steps S4 and S5 of Section 6.1.4.1.

6.2.3 Estimation and Diagnostics of the Time Series Models

Up to now, we described how we examined the transformed data for forming sets of
suitable candidate models that can describe the evolution. We formed the two candidate
sets ofM1 andM2. The setM1 consists of pure ARMA models i.e. ARMA models which
have a constant variance term in their formulation. The set M2 is the set of mixed
ARMA-GARCH models, namely ARMA models with a GARCH variance formulation.

For each project p, we estimated the parameters of models in candidate sets of M1
and M2, on the data sets of low-level (Lp) and high-level changes (Hp). The estimation
was done using the maximum likelihood estimation method.

23 The GARCH part has totally 6 models.

169

Project Low-level Changes High-Level Changes

M1 M2 M1 M2

ASM 98.07% 97.51% 98.96% 98.49%
CheckStyle 33.93% 21.93% 16.74% 14.07%
DataVision 9.08% NC 8.40% NC
FreeMarker 98.67% 95.21% 99.11% 98.27%
HSQLDB 0% 0.15% 0% 0.05%
Jameleon 2.37% 3.58% 3.11% 4.47%
JFreeChart 77.04% 86.17% 86.67% 87.06%
Maven 9.93% 7.68% 4.44% 3.14%
Struts 8.89% NC 4.44% NC

Table 6.6: Percent of candidate models in candidate sets of M1 and M2 with normal
residuals (NC: Not Considered).

As we described in Section 6.1.4, the estimated time series models should be investi-
gated to see whether they meet the requirements mentioned in the ARMA and GARCH
methodologies. The first requirement is that the inferred standardized residuals of the
models should be Gaussian white noise with no correlation. The residuals should show
no systematic pattern that helps one to predict their values from their corresponding
observations.

For candidate models in sets of M1 and M2, we first inferred their standardized
residuals24. We took the significance level of 0.01 and we then filtered out the candi-
date models whose standardized residuals were not normal at that level. We used the
Anderson-Darling test of normality25. Table 6.6 shows the number of candidate models,
in percent, which met the normality requirement of their standardized residuals.

Investigating the information provided in Table 6.6, we see that the number of can-
didate models with normal residuals are just a few for projects HSQLDB and Jameleon.
In order to describe the reason of this phenomenon, we investigated descriptive statis-
tics of the transformed data sets reported in Table 6.4. We observed that for projects
HSQLDB and Jameleon, the kurtosis of the transformed data sets of low-level and high-
level changes are bigger than 4. We know that the normal distribution of N

(
µ, σ2) has

the kurtosis of 3 and greater values suggest that the transformed data sets might be no
longer normal. This is confirmed by the p-values of the Jarque-Beta test of normality
which is given in Table 6.3. Although, for both of HSQLDB and Jameleon, the normal-
ity of transformed data sets are rejected at the significance level of 0.01, the p-value for
HSQLDB is quite smaller than the p-value of the Jameleon.

24 Please see Section 6.1.4.3 to see how standardized residuals are computed for mixed ARMA-GARCH
models.

25 The Anderson-Darling test is shown to be more powerful in comparison to other alternative tests
of normality [Razali and Wah, 2011].

170

Moreover, for HSQLDB, the kurtosis of the transformed series of low-level and high-
level changes are approximately 4.7 and 4.8 while for Jameleon they are 4.3 and 4.2
respectively. Therefore, more candidate models with normal residuals are reported for
Jameleon than HSQLDB. Figure 6.5 shows the box-plot of the kurtosis of standard-
ized residuals for all candidate models of both low-level and high-level changes of the
HSQLDB project. As we see, just few models in the set of mixed ARMA-GARCH mod-
els (M2) have kurtosis near to 3 (kurtosis value of the normal distribution) and their
normality is not rejected by the Anderson-Darling test. We conclude that far from the
normality of the transformed times series have deteriorating effect on the number of
the candidate models which have normal standardized residuals. Moreover, as Figure
6.5 shows, having a GARCH variance instead of a constant variance in ARMA models,
i.e. having mixed ARMA-GARCH models, provides more flexibility that causes more
candidate models have standardized residuals with near normal distribution.

oooooo
o ooooooo

o
o
ooo
o
o
oo
o
o
oooo
oooo
o
ooooooooo
oooooo

o
o
oooo
o

o
o

o
o

oo
o

o
o
o
o

o

o

o

oo
o

o
oo
o

o

ooo
o
o

oooo
o
oooo
o
ooooooooooooooo

oo
o
o
ooo

oo

ooooo
ooooooooooooooooooooo
o
ooo
o
oo
oooooo
ooooooo
o
oo
ooooo
oo
o
o

oo
oo
oo
o
ooo
o
o
o
o
oo
oo

o
o

o

oooo
oo

o

ooo

o
o

ooo
ooo

ARMA ARMA/GARCH
Low-level

ARMA ARMA/GARCH
High-Level

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Figure 6.5: Project HSQLDB - Kurtosis box-plot of the standardized residuals of can-
didate models (the y-axis is limited to 8).

Having the candidate models with normal standard residuals, the next step is to
select the most suitable model that can capture the dynamics of the evolution. As we
described in Section S2, Akaike information criterion (AIC) can be used to select the
best model [Akaike, 1974]. AIC is defined by26:

AIC = −2 ln (Λ) + 2k (6.18)

26 In some literature, the value of AIC given in (6.18) is divided by the number of observations, e.g.
[Tsay, 2005, Kirchgässner and Wolters, 2007]. This will not harm, since the smaller of two values will
not be affected by such a rescaling [Enders, 2010].

171

in which Λ is the maximum of the likelihood function for the estimated model and k is
the number of the parameters in the estimated model. AIC can be used to compare any
models that are fitted to the same data and it does not need to test any hypothesis in
this regard. In contrast, other model comparison tests such as the Lagrange multiplier
or the Wald tests, should be just used to compare hierarchically nested models. AIC
belongs to likelihood based assessment of fitness methods which penalize the complexity
(number of parameters) of models. These methods differ in the way they penalize the
complexity of models. Another test in this class which is frequently used in the Bayesian
information criterion (BIC) [Schwarz, 1978]. We will compare the results of our analysis
using BIC in Section 6.5.2 and we show that the models which are selected based on
BIC will fail to pass the diagnostic step since they show some patterns in their residuals.

When comparing models using AIC, the model with lowest AIC value is regarded
to be better. AIC does not provide any information whether other aspects of the fitted
models are appropriate or not and they have to be tested separately. We sorted the
candidate models, whose residuals were normal, with regard to their calculated AIC
values. For each of the sample projects, we progressively selected the models with the
lowest AIC. If the model was adequate regarding the absence of the serial correlation
and absence of any observable pattern in its residuals, then the model was selected as
the most appropriate model to capture the evolution, otherwise the next model with
lower AIC value was tested and the procedure repeated. For mixed ARMA-GARCH
models, the absence of serial correlation in the squared residuals was also considered. In
practice we just needed to test very few models in the beginning of our sorted list (most
of the times the first model), since they met all the diagnostic requirements.

Table 6.7 provides the information about the selected models which best capture
the dynamics of the evolution at the low-level and high-level changes. For projects
DataVision and Struts no mixed ARMA-GARCH model were considered since they
showed no heteroscedasticity effect using the Engle’s ARCH test. Moreover, there is no
best ARMA model reported for the high-level changes of the project Maven, since the
estimated candidate models did not pass the diagnostic step.

In order to test that the correlation effect is properly captured by the selected models,
we used the Ljung-Box Q-test (see Section 6.2.2). The test statistics is given by (6.17).
As we discussed earlier, the power of the test is affected by the number of lags, h, used in
the test. In this regards h = ln (n), h = 10 and h = min (n, 20) were suggested in different
literature (n is the length of observations) [Tsay, 2005, Hyndman and Athanasopoulos,
2013, MathWorks Company, 2013].

According to Table 4.3, 5 < ln (n) < 7 for all projects except the small project of
DataVision. Due to the previous discussions, we decided to test the correlation effect
at lags 5, 10, 15 and 20. Tables 6.10 and 6.11 provide the p-values of the Ljung-Box
test on standardized residuals as well as squared standardized residuals of the selected
models. As shown, the Ljung-Box Q-test does not show any violation of the absence
of correlation for the residuals of the selected best models. The only exception is the
residuals of the best ARMA model for the Struts project27. We will cover this issue

27 Please remind that for all projects except DataVisoin and Struts, the appropriate models are mixed

172

Project Selected Model Low-level Changes High-Level Changes

Model Degree AIC Model Degree AIC

ASM ARMA (19,20) 612.143 (17,11) 602.390
ARMA-GARCH (17,20)-(2,1) 609.423 (19,18)-(0,2) 592.601

CheckStyle ARMA (4,13) 2508.046 (13,14) 2426.410
ARMA-GARCH (17,17)-(2,1) 2468.285 (20,22)-(2,2) 2382.077

DataVision ARMA (9,14) 23.157 (9,10) 44.682
ARMA-GARCH Not Considered Not Considered

FreeMarker ARMA (19,18) 963.812 (25,21) 979.089
ARMA-GARCH (20,25)-(0,2) 959.509 (19,23)-(1,2) 969.024

Jameleon ARMA (7,17) 929.157 (18,15) 945.673
ARMA-GARCH (13,21)-(2,2) 923.938 (24,25)-(2,2) 925.236

JFreeChart ARMA (19,17) 939.431 (17,15) 928.585
ARMA-GARCH (19,17)-(2,1) 922.540 (16,20)-(1,2) 921.799

Maven ARMA (5,21) 2119.262 - -
ARMA-GARCH (23,19)-(2,1) 2114.048 (6,18)-(0,1) 2133.804

Struts ARMA (2,11) 2079.437 (6,24) 2063.681
ARMA-GARCH Not Considered Not Considered

Table 6.7: All projects - Selected time series model.

in detail in Section 6.3.1, but for now we generally conclude that the residuals of the
selected best models do not show correlation.

Before closing this section, we should be sure that the estimated ARMA models
are weakly stationary and invertible (see Section 6.1.3.1). For this, the roots of the
associated polynomials of the estimated model should lay out side of the unit circle.
This requirement is met by most of software packages which can be used to estimate
the parameters of the proposed time series models, such as Matlab and R, since they
mostly use constraint optimization methods during parameter estimation of the models
through the maximum likelihood estimation method. The same strategy also applies on
the constraints of GARCH models (see Section 6.1.3.2).

6.3 Assessing the Time Series Models

Earlier in Section 6.2.2, based on the transformed data, we employed ARMA-GARCH
models for all projects except DataVision and Struts. There, additionally we considered
ARMAmodels on those projects to see if simpler ARMAmodels are satisfactorily enough
to handle the dynamics of the design model evolution. In this section we compare these

ARMA-GARCH models and for these two projects ARMA models are considered to be appropriate.

173

two classes of models and we investigate their performance and their properties against
each other. First, in Section 6.3.1, we investigate how well each of these two classes can
properly capture the dynamics of the evolution. Later in Section 6.3.2 we investigate
the forecasting performance of the proposed ARMA and ARMA-GRACH models.

6.3.1 Comparing ARMA and ARMA-GARCH Models

In section 6.2.3 we showed that the best ARMA-GARCH models of all projects with
heteroscedasticity effect have successfully passed the diagnostic tests of having normal
residuals and their residuals did not show any correlation.

Moreover, for those projects we showed that the heteroscedasticity effect is mostly
present in the first lag or the very first few lags. The interesting research question
was that if simpler ARMA models can handle the heteroscedasticity effect and if they
successfully pass the diagnostic steps. For this purpose, here we additionally considered
ARMA models for those projects. Here, we compare the selected best ARMA models of
those projects with their mixed ARMA-GARCH counterpart models.

As shown in Tables 6.10 and 6.11, for low-level changes of the Maven project, the
null hypothesis of the Ljung-Box Q-test for the residuals is rejected at significance level
of 0.05 for lags 5 and 10, indicating that some correlation between residuals exist. Since
the null hypothesis is not rejected for lags of 15 and 20, we do not see any reason to
disregard the usability of a simpler ARMA model in this case. This belief was also
supported when we visually inspected the ACF of the residuals. However, we should
also mention that the best ARMA-GARCH model for the low-level change of Maven is
superior in this regard, removing all correlation in the residuals.

A similar story happens for the squared residuals of the best ARMA model when
we consider high-level changes of the CheckStyle project. The null hypothesis of the
Ljung-Box Q-test was rejected at lags 10, 15 and 20 at the significance level of 0.05.
Visually inspecting the ACF of the squared residuals revealed that there is significant
peak at the 10th lag which causes the null hypothesis of the test be rejected. Similarly,
the mixed ARMA-GARCH model is more superior in this case.

Before closing this section, we go back to the project Struts for which we did not
see any ARCH effect in low-level and high-level changes (see Section 6.2.2 and Table
6.5). As we saw in Section 6.2.3, the residuals for the best ARMA model of low-level
changes show correlation using the Ljung-Box Q-test for all considered lags indicating
the chosen ARMA model has correlation in its residuals. Visually investigating the ACF
of the residuals, we saw that there are significant (but quite small) correlation in the
first three lags causing the null hypothesis of the test be rejected. As we discussed
earlier, this does not much degrade the appropriateness of the selected best ARMA
model. Moreover, we additionally investigated the ability of the mixed ARMA-GARCH
models on the low-level changes of the project Struts. The residuals of the selected best
ARMA-GARCH model showed no correlation using the Ljung-Box Q-test.

Since the ARCH effect is just more significant in the first lag or the very first few
lags of the transformed data sets, we can generally conclude that simpler ARMA models
can be used more or less in practice to capture the dynamics of the evolution in design

174

models of the Java software systems. But we insist that mixed ARMA-GARCH models
are the right and more appropriate time series models to mathematically model the
evolution.

6.3.2 Forecasting Performance of the Time Series Models

The forecasting of a time series model is a topic of interest in many practical applications
and in this section we investigate the forecasting performance of the proposed time series
models.

Regarding the theory of time series (see Section 6.1), correctly performing the steps
mentioned in the methodology of time series is sufficient for a time series model to be
adequate for fulfilling the theoretical requirements and no further step is required. But in
practice, it would be quite useful if we study the forecasting performance of the models.
Although forecasting the evolution was not the main motivation behind this research
work, we believe that it would be enlightening for other researchers that we devote this
section to the study of forecasting performance of the selected time series model. In
this regard, in Section 6.3.2.1, we investigate the forecasting accuracies of the proposed
time series models based on the out of sampling technique. Later in Section 6.3.2.2, we
compare the forecasting performance of the proposed ARMA and mixed ARMA-GARCH
models.

6.3.2.1 Accuracies of Forecasts

As we discussed earlier in Section 6.1.5, due to high volatility in the measured low-
level and high-level changes, the proper way of interpreting the forecasts’ accuracy is
by considering the magnitude of changes. In this regard the normalized mean squared
errors will be more appropriate in our case (Equation (6.15)).

Based on our hold-out set (see Section 6.2), we used six step forecast of the selected
time series models as presented in Table 6.7. The forecasts were transformed back into
the original form by reversing the steps of of the BCDM transformation described in
Section 6.2.1. We used out of sampling technique, i.e. we compared the forecasts with
the actual observations in the corresponding hold-out sets using the normalized mean
squared error (NMSE) given by (6.15). Equation (6.15) needs the maximum of the
observed values in the base-set. The computed errors are reported in column “NMSE
(Max)” of the table. The errors are quite low, both for low-level and high-level changes.

Computing the NMSE using the maximum of the observations is quite legitimate,
since the measurements of the low-level and high-level changes are of high accuracy (see
Section 6.5) and the calculated maximum values are not due to measurement errors
but are due to those commits to the repositories which contain enormous amount of
changes. But one might argue that the maximum and very big observations are not
quite frequent and what would be the NMSE values if we ignore them. In this regard,
we tried to exclude big values out of our observations and see what the NMSE values
will be. We used the k-mean clustering algorithm [Gan et al., 2007] to detect not-
frequent very big changes. For low-level and high-level changes of all projects, the ratio

175

Project Selected Model Low-level Changes High-Level Changes

NMSE (Max) NMSE (Q98) NMSE (Max) NMSE (Q98)

ASM ARMA 2.0621× 10−3 9.8670× 10−2 4.2223× 10−3 9.9263× 10−2

ARMA-GARCH 2.0640× 10−3 9.8760× 10−2 4.2185× 10−3 9.9174× 10−2

CheckStyle ARMA 4.2116× 10−6 8.0324× 10−4 5.8528× 10−6 1.7497× 10−3

ARMA-GARCH 2.9310× 10−6 5.5901× 10−4 2.6559× 10−6 7.9398× 10−4

DataVision ARMA 2.9413× 10−4 2.9413× 10−4 2.1748× 10−4 2.1748× 10−4

ARMA-GARCH Not Considered Not Considered

FreeMarker ARMA 9.9039× 10−5 2.0454× 10−3 6.3575× 10−4 6.1532× 10−3

ARMA-GARCH 6.1144× 10−5 1.2628× 10−3 1.9749× 10−4 1.9114× 10−3

Jameleon ARMA 6.5411× 10−5 1.1405× 10−2 8.0775× 10−5 1.2845× 10−2

ARMA-GARCH 1.0002× 10−4 1.7439× 10−2 1.9526× 10−4 3.1051× 10−2

JFreeChart ARMA 9.3903× 10−4 5.5625× 10−3 3.2103× 10−4 2.8284× 10−3

ARMA-GARCH 2.2280× 10−4 1.3198× 10−3 4.3750× 10−4 3.8546× 10−3

Maven ARMA 3.3037× 10−3 2.6373× 10−1 - -
ARMA-GARCH 3.2770× 10−3 2.6160× 10−1 2.6088× 10−2 1.9448× 10−0

Struts ARMA 8.2014× 10−4 1.2269× 10−2 1.6722× 10−3 1.9467× 10−2

ARMA-GARCH Not Considered Not Considered

Table 6.8: Normalized mean squared error of forecasts for all projects.

of the number of the clustered outliers to the total number of observations were typically
less than 2%. Therefore we used the 0.98-quantile (Q98) of the data instead of their
maximum in (6.15). The “NMSE (Q98)” columns in Table 6.8, show the NMSE values
calculated using Q98 instead of the maximum. In either of the cases, the calculated
NMSE are quite small (typically few percent) and we conclude that the selected time
series models are providing acceptable forecasts of their corresponding hold-out sets.

6.3.2.2 Comparing Accuracies of Forecasts

In practice it is quite common, as in this work, that we have different competing models
for forecasting of the same observations. In such situations we are interested to compare
the predictive performance of two or more models, weather one is performing better than
the others or not28.

28 This notion is different from the fact that in some situations, we have two hierarchically nested
models in which one is simpler than the other and we are interested to see if the simpler model is
capable of sufficiently accounting the relevant patterns and factors in the data. We call the simpler
(restricted) model “hierarchically nested” in the complex (unrestricted) model if the complex one can
be obtained by adding some parameters to the simple one, e.g. ARMA (2, 3) is hierarchically nested in
ARMA (2, 4)−GARCH (0, 1) but not in ARMA (2, 2).

Although adding more parameters to a model causes higher values for the likelihood function, but
in a point there will be no significant improvement in the ability of the model to better capture the
characteristics of the given data set. The likelihood ratio, Lagrange multiplier and Wald tests are
frequently used in this regard which are asymptotically equivalent [Greene, 2002, Hamilton, 1994].

176

In our case, just regarding the predictive performance of the selected time series mod-
els, we are interested to see if ARMA and mixed ARMA-GARCH models are performing
equally good or not. In other words, despite the fact that the residuals of the selected
ARMA models might be correlated and not fully capture the dynamics of the data, we
will study their predictive performance with the more suitable mixed ARMA-GARCH
models. This is consistent with our previous results in Sections 6.2.2 and 6.3.1 that we
showed the ARCH effect is not persistent over a long period and therefore a simpler
ARMA models might forecast as good as a more complex ARMA-GARCH model.

To do a comparative analysis, suppose that T actual observations are given by {xt}Tt=1
and the forecasts of two competing models are denoted by {x̂1,t}Tt=1 and {x̂2,t}Tt=1. Let
{ei,t}Tt=1; i = 1, 2, be the corresponding forecasts errors with ei,t = x̂i,t−xi,t. A function
g is called a loss function if it is a function of the forecast errors, i.e. g (ei,t), and takes
value of zero when there is no error in the forecasts. Typically g is the square or the
absolute functions, where it is referred to as square-error loss function and absolute
error loss function respectively. The loss differential of two forecasts is defined as dt =
g (e1,t)− g (e2,t); t = 1, . . . , T .

In the case that the loss differential of two forecasts has zero expectation, i.e. E [dt] =
0 or equivalently E [g (e1,t)] = E [g (e2,t)], we can consider the two forecasts equally good.
The Diebold-Mariano (DM) test [Diebold and Mariano, 1995] was proposed to assess the
predictive accuracies of two forecasts. The test allows the forecasts to be non-zero in
mean, non-Gaussian as well as correlated, which makes the test very useful in practice.
Moreover, the test is a model-free test which, contrary to model-based tests, does not
need that the models generating the forecasts to be available.

Harvey et al. [Harvey et al., 1997] modified the test to address the shortcoming of the
original formulation for small sample sizes, a situation which is quite frequent in practice.
The null and alternative hypotheses of the modified Diebold-Mariano (MDM) test are
H0 : E [dt] = 0; t = 1, . . . , T and Ha : E [dt] 6= 0 respectively. If d̄ =

(∑T
t=1 dt

)
/ T is the

mean and V̂
(
d̄
)
is the estimated variance of the loss differentials, the statistics of the

test is given by:

SMDM =
√
T + 1− 2h+ h (h− 1) / T

T
SDM (6.19)

in which SDM = d̄/
√
V̂
(
d̄
)
is the statistics of the original Diebold-Mariano test and h

is the forecast horizon (h-step forecasts). The variance of the loss differentials can be
obtained by:

V̂
(
d̄
)

= 1
T

(
γ0 + 2

h−1∑
k=1

γk

)

In our case, the selected ARMA and mixed ARMA-GARCH models of low-level and high-level changes
are not hierarchically nested and these tests cannot be applied.

177

in which γk is the kth autocovariance of dt’s, estimated by:

γ̂k = 1
T

(
T∑

t=k+1

(
dt − d̄

) (
dt−k − d̄

))

The test’s statistics, SMDM, has the Student’s t-distribution with (n− 1) degree of free-
dom.

In the case that there are few observations (as in our application scenario), the
alternative powerful but simpler approach is to use the sign test [Diebold and Mariano,
1995]. The null hypothesis of test is that the median of the loss differentials are zero.
The test statistics is:

SSIGN =
T∑
t=1

I+ (dt)

where

I+ (dt) =
{

1 if dt > 0
0 otherwise

The test statistics has a binomial distribution with parameters of T as the number
of trials, and 1/2 as the success probability. The significance of the test will be obtained
from the cumulative binomial distribution. Considering large samples, the test statistics
will be (SSIGN−T/2)/

√
T/4 which asymptotically has a standard normal distribution.

It is also informative to mention that other, but less competitive, alternative tests are
also available. For more information we refer the interested readers to [Mariano, 2002].

In our application scenario, for all projects except DataVision and Struts which
did not show the heteroscedastic effect (see Section 6.2.2), we compared the forecast
accuracies of the selected ARMA and mixed ARMA-GARCH models using the sign test.
Table 6.9 presents the results of the test. As shown, the null hypothesis of the test is not
rejected in all except two cases, at the significance level of 0.05. The null hypothesis is
rejected for just low-level changes of CheckStyle and JFreeChart. Since the p-value of the
sign test is more than 0.03 for both cases, we do not see any reason to conclude that the
forecasting behavior of the ARMA and mixed ARMA-GARCH models are principally
not different. Therefore, we conclude that the predictive performance of these models are
almost the same and they are performing almost equally well. Although more complex
ARMA-GARCH models can better handle the characteristics of the evolution both for
low-level and high-level changes, they do not add much to the forecasting accuracies.
This result is justified by the fact that the ARCH effect is significant at the first lag of
the data and it is not persistent over a long period thus a mixed model will not be more
successful (see Sections 6.2.2 and 6.3.1).

6.4 Simulation of Model Evolution
As mentioned earlier, we were interested to analyze and statistically model the evolu-
tion of software systems at the abstraction level of design models. In this regard, in

178

Project Low-level Changes High-Level Changes

p-value Stat. p-value Stat.

ASM 6.8750× 10−1 2.0000× 100 6.8750× 10−1 3.0000× 100

CheckStyle 3.1250× 10−2 � 5.0000× 100 6.8750× 10−1 2.0000× 100

DataVision Not Considered Not Considered
FreeMarker 2.1875× 10−1 4.0000× 100 6.8750× 10−1 3.0000× 100

Jameleon 6.8750× 10−1 3.0000× 100 2.1875× 10−1 1.0000× 100

JFreeChart 3.1250× 10−2 � 5.0000× 100 6.8750× 10−1 3.0000× 100

Maven 6.8750× 10−1 3.0000× 100 Not Considered
Struts Not Considered Not Considered

Table 6.9: Comparison of the forecasting performance of ARMA and mixed ARMA-
GARCH models (� : Significant at 0.05).

Section 6.2, we showed that the models’ evolution can be mathematically modeled and
captured using ARMA and mixed ARMA-GARCH models. Such models can not only
be used to mathematically formulate the models’ evolution, but also to infer other useful
information about the evolution and their properties. For example, in Section 6.3.2.1 we
used the proposed time series models in order to forecast the amount of change in the
hold-out sets of our observations with good accuracies.

In many practical applications, as here in this work, it is quite essential that the
system under study can be simulated. The simulation principally imitates the operations
and properties of the system and regenerates them in order to study and infer different
aspects of interest, e.g. doing experiments, develop understanding, diagnose problems,
preparation for changes, investment, prediction etc. [Banks, 1999, Shannon, 1998]. It
is also known that the simulation and its approach is highly dependent on the scope,
application purpose, overall and specific objectives of the study, requirements of the
experiments and the needs of the decision makers [Law, 2009].

In this regard, the time series models of ARMA and mixed ARMA-GARCH models
proposed to capture and model the evolution of design models can be used in different
application scenarios such as understanding the evolution and its behavior over time
including short or long time behavior, predicting the evolution, estimating the amount
of changes and designing budget and work plans, etc. Here, in the first step, we try
to keep ourselves out of any particular application of the proposed time series models
and we try to address the question of how valid sample sequences of the proposed time
series models can be properly generated. We also discuss general considerations for
simulation. In the next step, we turn our attention into our application scenario of
generating more realistic model histories for MDE tools which is the main motivation

179

behind this research.
Considering the above orientation, in Section 6.4.1 we address general considerations

about simulation. In Section 6.4.2, we discuss how sample sequences of the proposed
time series models can be generated. In Section 6.4.3, we address how the properly
generated sample sequences can be used to generate more realistic model histories for
MDE tools. In this regard, we address how the generator can be properly configured to
generate more realistic model histories.

6.4.1 General Considerations for Simulation

When the outputs of simulations are to be analyzed, simulations are usually categorized
into two categories of finite-horizon (terminating) and steady-state (non-terminating)
simulations [Alexopoulos and Kim, 2005, Law, 2007b]. In finite-horizon simulations,
there is a condition or an event which limits the simulation run or terminates it. Typical
conditions or events are: the ones that specify when the system is cleaned out, i.e.
finished its processing, the points where there is no useful information afterward and
the ones which are set by domain experts or management [Law, 2007b]. However, in
steady-state simulations, the long time behavior and properties of a system are of special
interests; in such a simulation, the system is in an equilibrium in the long run.

In any simulation, the initial conditions used for the starting the simulation has
impacts on the behavior of the simulation. Since in steady-state simulations the long-
run behavior of the system is the main concern, often it is very favorable that the effect
of initial conditions is removed, bypassed, minimized or even that the system can be
simulated in a steady state from the beginning. This issue is usually referred to as the
problem of the initial transient in the simulation literature [Gafarian et al., 1976].

Various techniques for detecting when a simulation reaches the steady state, i.e.
equilibrium, after its warm up period have been proposed so far. Gafarian et al. [Gafarian
et al., 1978] have reviewed different commonly used methods for detecting the steady
state in computer simulations and evaluated them on a queue system. Additionally,
different start up policies, i.e. methods of selecting the initial conditions, as well as
truncation rules have been proposed in order to bypass or minimize the start up period
of a simulation for reaching its steady state. For instance different truncation rules in
which one discards the first n points in the generated sample or the selection policies for
initial conditions in which one chooses the initial conditions close to some values, e.g.
mean, are frequently used in practice.

Wilson and Pritsker did a survey on the research related to the simulation start up
problem and different selection policies and truncation rules [Wilson and Pritsker, 1978b].
Moreover, they evaluated the start up policies and truncation rules on two Markovian
queue systems in [Wilson and Pritsker, 1978a]. In the end, based on simulation require-
ments and specified research questions and goals, the interested reader can find different
techniques and methods for analyzing the simulation outputs in [Alexopoulos and Seila,
1998, Law, 1983, 2007b, Seila, 1992].

180

6.4.2 Simulating Sequences of the Proposed Time Series Model

In order to properly run a simulation based on the proposed time series methods in Sec-
tion 6.2.2, it is essential that their sample sequences can be properly generated. Sample
sequence generation of the ARMA and the mixed ARMA-GARCH models are done when
parameters of equations (6.4) as well as (6.12), (6.13) are respectively estimated29. In
this regard, two issues should be taken into account. First, principally, the formulations
require that sequences of independent and identically distributed (iid) numbers with the
normal distribution can be properly generated. Second, the sample sequence genera-
tion of ARMA and mixed ARMA-GARCH models require that some initial points are
employed in the beginning which their impacts on the generated sequences might be
regarded important based on the aims and goals of the simulation.

In this section we first address the question that how sequences of iid numbers of the
normal distribution are generated. Then, we discuss different strategies in selecting of
initial points in the simulation of the proposed time series models and their implications.

6.4.2.1 Random Variates of the Normal Distribution

As we thoroughly explained in Section 5.3.1, methods for generating iid random numbers
of a given non-uniform distribution are usually referred to as random variate generation
(RVG) methods while the generation methods of iid numbers of the uniform distribution
of U [0, 1] are reffed to as random number generation (RNG) methods. Principally,
RNG methods are first employed to generate iid sequences of U [0, 1] and the generated
numbers are then used to generate random variates of a given distribution using different
techniques such as the acceptance-rejection and the transformation methods [Banks,
1998, Devroye, 1986].

The generation of true iid uniformly distributed random numbers is still actively
studied and there have been many RNG methods available. Two methods of Linear
Congruential and Combined Linear Congruential [Banks et al., 2010, Knuth, 1998] are
popular and are frequently used in practice. We should note that better methods are also
available. Assuming that a suitable RNG method is available, the following algorithm,
called the Polar method, simultaneously generates two iid random variates of the normal
distribution N

(
µ, σ2).

The formal proof of the algorithm is given in [Knuth, 1998]. Although the Polar
method is widely used due to its simplicity and speed, more robust RVG methods for
the normal distribution are also available. In this regard, Thomas and Luk have provided
a good survey in [Thomas et al., 2007].

6.4.2.2 Initial Conditions in the Simulation of the Time Series Models

As we talked earlier in Section 6.4.1, the initial conditions used in generation of the
proposed time series models have impacts on the behavior of the generated sample

29 The same applies to sample generation of the ARCH and GARCH models given by (6.7) and (6.9)
respectively.

181

Algorithm 14: The Polar method for generating two iid random variates of the
normal distribution N

(
0, σ2).

1 repeat
2 Generate U1 and U2, two iid random numbers of the uniform distribution

U [0, 1] ;
3 V1 ← 2U1 − 1 ; V2 ← 2U2 − 1 ;
4 S ← V 2

1 + V 2
2 ;

5 until S ≤ 1;

6 X1 ← µ+ σ V1

√
−2 ln(S)

S ; X2 ← µ+ σ V2

√
−2 ln(S)

S ;
7 return (X1, X2)

sequences specially when long term behavior and properties of the simulated system is
of special interest. In our application domain of generating more realistic model histories,
it is not necessary to have a non-terminating simulation and the impact of the initial
conditions are principally desired since we want to replicate the evolution of each project
quite closely in the generated test models (see Sections 6.4.3 and 6.5.5). However, since
one of our aims is to provide a general framework for analysis, forecasting and simulation
of design models’ evolution, other researchers might need to eliminate the effect of the
initial conditions in the warm up period of their simulations. In this section we address
the important issues in this regard and we leave the application of them to the interested
readers.

For an ARMA (pA , qA) model, p = pA and for an ARMA (pA , qA)−GARCH (pG , qG)
model, p = max (pA , pG) initial points should be chosen to start the simulation. As we
talked earlier, there are methods for detecting the steady state in a simulation which are
covered in [Gafarian et al., 1978]. After detecting the steady state one can discard the
warm up period of the simulation and use the remaining for the output analysis. Such
methods are generally refereed to as the truncation methods and are covered in detail
in [Wilson and Pritsker, 1978b,a]. They are frequently used in practice, e.g. in the R
package of “fArma”.

As we also noted earlier, another approach is to use the initial conditions which
minimize or ideally remove the warm up period. In this regard, McLeod and Hipel
[McLeod and Hipel, 1978, Hipel and McLeod, 1994] have developed three procedures.
The base algorithm used for non-seasonal ARMAmodels is called WASIM-1, or Waterloo
Simulation Procedure 1. WASIM-1 principally tries to use the pure MA representation
of an ARMA model by the Wold’s theorem. Let ARMA (p, q) model is given by (6.5),
we have:

x̃t = Θq (B)
Φp (B)εt = Ψ (B) =

(
ψ0 + ψ1 B +ψ2 B2 + · · ·

)
εt (6.20)

where ψ0 = 1. In the case that an AR operator exists, the Ψ (B) in (6.20) is an infinite

182

series which is then approximated by:

Ψ (B) ≈
(
ψ0 + ψ1 B +ψ2 B2 + · · ·+ ψq′ Bq′

)
εt (6.21)

provided that ψq′+1, ψq′+2, . . . are negligible. The number of participating terms, i.e. q′,
is chosen large enough in such a way that the difference of the theoretical variance of
the ARMA model, γ0, from the approximation terms in (6.21) are less than the given
error rate of err, i.e.

γ0 −
q′∑
i=0

ψi
2 < err

The theoretical variance of γ0 can be calculated based on the pure MA presentation
using the algorithm given in [McLeod, 1975].

Now to simulate a sample sequence of length k, we first generate a sequence of white
noise with length of k + q′ as ε−q′+1 + ε−q′+2 + . . . + ε0 + ε1 + . . . + εk and then for
t = 1, . . . , r = max (p, q) we calculate x̃t as follows:

x̃t = εt + ψ1εt−1 + ψ2εt−2 + . . .+ ψq′εt−q′ (6.22)

For generating the remaining terms of x̃t; t = r+1, r+2, . . . , k, we use Equation (6.4). It
is shown that the effect of approximation by (6.21) can be kept low by using appropriate
small values for err. For pure MA (q) models, the algorithm is exact.

Regrading initial points in mixed ARMA-GARCH models (and also GARCH mod-
els), to our best knowledge, there is no tailored algorithm to address the issue. Reviewing
possible related literature, we found out that it might be be useful that the initial condi-
tions for necessary terms of conditional variances in (6.13) are set to the unconditional
variance of the model. Similarly, one can also use unconditional mean of the model
as initial values in (6.12). These remedies are also practiced in [MathWorks Company,
2013].

6.4.3 Generating More Realistic Model Histories

Up to this point, we analyzed and mathematically formulated the evolution of software
systems at the abstraction level of design models using time series. In the previous
section we discussed how one can generate valid sample sequences of the proposed time
series models and we discussed different consideration regarding simulation.

Here, we address the question how we can generate more realistic model histories for
MDE tools, by simulating the evolution of design models In this regard, as discussed in
Chapter 3, the SiDiff Model Generator (SMG) can be used. When the tool is properly
configured, it can simulate the evolution in the generated model histories. We show how
proper configurations are obtained by valid sample sequences of the proposed time series
model and how test model histories are generated in practice.

As discussed in Section 3.3.4, SMG has two interpretation modes in order to control
the frequencies or distributions of the created differences. In the Literal Interpretation

183

Mode the specified frequencies of operations were treated as exact values in which the
resulting model should exactly experience the specified number of operation applied to
it. This mode was mostly appropriate for exactly controlling the quantitative properties
of the generated models.

In the Stochastic Interpretation Mode the specified numbers of operations were
treated as probabilities. It was assumed that the provided set of edit operations (see
Figure 3.3) has a probability density function and the specified frequency of an oper-
ation is then treated as the probability of that operation. Therefore, the true size of
the difference, i.e. total number of operations which has to be applied, has to be ex-
plicitly specified. In contrast, the size of a difference is implicitly given in the literal
interpretation mode, which is the sum of the specified operations in the configuration
file.

In the case of generating model histories, the true amount of differences should be
specified for each two subsequent models which are revisions of each other. This is done
through the knowledge gained in this chapter as we modeled the total amount of changes
between subsequent revisions using time series. Since the stochastic interpretation mode
is stochastic by nature and is based on the probability of each operation in the config-
uration file, the generated frequencies of the specified operations approximately exhibit
the specified probabilities.

To produce model histories, we are required to know how big is the difference size
of each two subsequent revisions. In other words, we had to specify how many edit
operations have to be applied from revision ri to ri+1. In order to answer this question,
in Chapter 4, we modeled the evolution of real software systems at the abstraction level
of design models by calculating the changes which were applied between them. In Section
6.2.2, we showed that the evolution of real design models can be mathematically modeled
using ARMA and mixed ARMA-GARCH time series models. To regenerate the evolution
of design models we should first generate appropriate sequences of the proposed time
series models and then employ them in the stochastic interpretation mode as discussed
in what follows.

Sequences of the Time Series Models As shown in Section 6.2.2, the ARMA and
mixed ARMA-GARCH time series models presented in Table 6.7 are the most suitable
models for capturing the true evolution of our sample software systems. For each project,
the proposed time series model can be used to generate as many sample time series
sequences as needed, all exhibiting the same stochastic properties of the real evolution
of that project. This is accomplished by the techniques discussed in Section 6.4.2.

However, since we aimed at producing more realistic model histories in which the
true evolution is properly replicated, our main concern is to simulate the evolution of
each project p in a way that the generated histories resemble the evolution of p. Since
in our application scenario, MDE tools are the final recipient of the generated model
histories, the lengths of the required model histories are the terminating condition for
the simulation of evolution and we are facing a finite-horizon simulation (see Secion
6.4.1). In the case the simulated evolution should resemble the properties of p from

184

the beginning phase of development, the initial conditions should be taken from the
beginning of measured sets of low-level and high-level changes, i.e. observation sets of Lp
and Hp (see Section 6.2). Similarly, when the simulation should resemble the evolution
beyond the final revision of the project, the initial conditions should be taken from the
end of Lp and Hp sets. As we mentioned in Section 6.4.2.2, another practical approach
is using the unconditional mean and unconditional variance of the estimated time series
model of project p, as the initial conditions for the simulation. As an example, Figures
6.6 and 6.7, each show three simulated sequences of length 259 (the number of revisions
in the ASM project), from a time series model for the low-level changes of ASM. The
initial conditions are set from the beginning and the end of the measured low-level
changes respectively.

As shown in Figure 6.6, the three simulated sequences show many small changes as
well as few big changes. The simulated sequences resemble the real observed changes
for the ASM project as already shown in Figure 6.1. Similarly to the true evolution, the
simulated sequences show quite erratic behavior in the beginning part of the simulation
and as the simulation evolves, we see less erratic patterns. This is again consistent with
what we observed in real evolution of ASM in Figure 6.1.

The erratic pattern in the beginning of the simulation in Figure 6.6 is due to the fact
that we chose our initial points of the simulation from the beginning of the set of real
observed changes which they were themselves very erratic. In contrast in Figure 6.7, the
initial points are taken from the end of the set of real changes where ASM showed calm
period in its changes. Apparently, the magnitude of the simulated sequences are much
lower comparing to the case that we chose the beginning points as initial conditions.

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

Figure 6.6: Project ASM - Three simulated changes using initial conditions from the
beginning of measured low-level changes.

185

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

Figure 6.7: Project ASM - Three simulated changes using initial conditions from the
end of measured low-level changes.

Applying the Generated Sequences For both of the low-level and high-level changes,
the generated sequences of the proposed time series models specifies how many edit op-
erations should be applied between each two subsequent revisions of ri to ri+1 in total.
This does not address how many (which portion) of this total number belongs to a
specific edit operation that has to be applied between ri and ri+1. Since we modeled
the evolution of the design models as the total number of edit operations applied be-
tween each two subsequent revisions, the problem of assigning a reasonable portion of
the simulated evolution to each edit operation, can be addressed using two approaches.

The first approach considers the total frequencies of an edit operation which has
been detected between each two subsequent revisions as the probability of applying
that edit operation. The computed total frequencies are then used in order to assign a
reasonable portion of simulated time series sequences using the Roulette Wheel selection
technique [Reeves and Rowe, 2002, Michalewicz, 1996]. As explained in Section 3.4.2,
in the Roulette Wheel technique, also known as the Fitness Proportionate Selection
technique, the chance of selecting a edit operation is proportional to its assigned weight,
which is the associated total frequency in this case. The bigger the total frequency, the
higher the chance of the corresponding edit operation being selected and then applied
between ri and ri+1.

The second approximate approach is based on the theoretical distributions of edit
operations which we studied in Chapter 5. For each of the estimated distributions, the
mean of the distribution can be used as the weight in the Roulette Wheel technique.
This allows the portion of each edit operation to be proportional to the mean of its

186

corresponding distribution. This approach has the drawback that for a measured distri-
bution which exhibits heavy skewness, its mean might not be quite a suitable indicator
for its proportion.

Before closing this section, it should be reminded (see Sections 3.3.5 and 3.4) that the
creation of an “edit step” additionally requires that a Context is selected and suitable
parameters of the edit operation are either selected or generated. In other words, it
should be decided where the edit operation is going to be applied and which parameters
it should take. Although these issues require in-depth analyses on their own and are not
considered in this dissertation, various controlling mechanisms and configuration policies
which are introduced in Section 3.4.2 can be used in this regard. They allow fine tuning
of SMG when such analyses are available or when the domain expert decides to alter
the behavior of the generation process to his/her best knowledge.

6.5 Threats to the Validity of Analyses

This section is devoted to the investigation of the threats to the validity of the analysis
done in this chapter. Although some of the discussions are principally the same ones30

that we earlier discussed in Chapter 5, for the sake of self containment of the chapter, we
review them again here. In this regard, we consider the accuracy of our measurements,
best model selection strategy, forecasting performance of the proposed time series models
as well as external validity of this work.

6.5.1 Accuracy in the Measurement of Changes

The first threat to the validity of our work is that how accurate is the change detection
pipeline in Figure 4.1 and how accurate low-level and high-level changes are computed.

As we discussed in Chapter 4, low-level changes are computed through model com-
parison algorithms. These algorithms might deliver sub-optimal or wrong differences
when there are no persistent identifiers at model elements. In our analysis due to the
absence of persistent identifiers, we employed similarity based model comparison algo-
rithms. For low-level changes, Wenzel [Wenzel, 2010] has computed the error rates in
the computed differences of the similarity based algorithms, implemented in the SiDiff
model differencing engine, for class diagrams. The total error rates were typically under
2% which would not have any significant effect on the results of our analysis.

Considering high-level changes, the computed differences are guaranteed to be correct
in the case that persistent identifiers are used for matching the corresponding elements
between models [Kehrer et al., 2011]. Since the similarity comparison technique is used,
there might be incorrect matches between elements of two models which leads to false
negatives, i.e. the changes which are applied but were not detected. If all correspondences

30 Principally accuracy in the measurement of changes between design models and the external validity
of our research are the same, since the statistical analysis of Chapter 5 and the time series analysis of
this chapter used the same measurement techniques and the same sample sets of Java software systems
(Chapter 4).

187

are correctly detected, the semantic lifting engine (see Figure 4.1) will group whole low-
level changes into high-level changes and there will be no low-level changes remained
ungrouped. We computed the rate of ungrouped low-level changes at less than 0.3%.
This shows that both of the difference derivation and the semantic lifting engines have
performed quite well and the results are not twisted.

Moreover, the time series approach used in the analysis of the changes is not affected
by any possible inaccuracies in the measurement of changes. This is due to the fact that
such possible errors will not influence the transformation strategy which was used to
make the series weakly stationary. As long as the weakly stationary series is obtained,
ARMA and mixed ARMA-GARCH models can be applied to the transformed data.

6.5.2 Best Model Selection Strategy

As discussed in Section 6.1.4.1, in step S5, selection of the best model in the set of the
candidate models is done using the Akaike information criterion (AIC). As a compet-
itive approach to AIC, the other frequently used method is the Bayesian information
criterion31 (BIC) [Schwarz, 1978] which is is defined by [Wei, 2006, Box et al., 2008]:

BIC = −2 ln (Λ) + k ln(n)

in which, similarly to AIC, Λ is the maximum of the likelihood function for the estimated
model, k is the number of the parameters in the estimated model and n is the number
of observations used in the model estimation.

It is shown that BIC tends to select more parsimonious models in comparison with
AIC [Wei, 2006]. One issue of concern might be that why don’t we choose more parsi-
monious models using BIC instead of AIC.

To answer this concern, we should note that it is shown that BIC might select models
whose residuals might not be white noise [Enders, 2010]. Due to this, we additionally
tried to select the best time series models from the available set of candidates, using BIC.
Our experiences revealed that BIC selects the models whose residuals are not white noise.
For example, Figure 6.8 shows the residuals of the BIC-selected best ARMA-GARCH
model for high-level changes of the ASM project. As seen, there are observable patterns
in the residuals of the selected model which causes the model be inappropriate in the
diagnostic step (see step S4 in Section 6.1.4.1).

Considering the low-level and high-level changes of all of the sample projects, we
checked if the BIC-selected models fulfill the diagnostic requirements or not. The results
of our analysis revealed that AIC selects models much more appropriately than BIC in
our case. Therefore we conclude that AIC should be used to select time series models
which describe the evolution of design models.

6.5.3 Forecasting Performance of the Time Series Models

We studied the forecasting performance of the proposed time series models in Section
6.3.2. Here we discuss the threat to the validity of the forecasting performance of the

31 Also known as the Schwartz’s Bayesian information criterion.

188

0 50 100 150 200 250

- 2

- 1

0

1

2

Figure 6.8: Residuals of the best model selected using BIC - High-level changes of ASM.

time series models.
One threat to the validity is that why we chose the hold-out set of length six and

not more. In other words, how far can we satisfactorily forecast the future by such time
series models. The first answer is that, our main motivation was to simulate the evolution
process of the sample projects. In this regard the more observations are considered in
the estimation of the time series models, the better fit can be achieved and consequently
the more realistic simulation can be done afterward.

Second, it is shown that best optimum32 forecast of the ARMA models tends to the
unconditional mean of the process as the forecasting horizon increases [Kirchgässner and
Wolters, 2007, Hamilton, 1994]. In general [Makridakis et al., 1998], in the case that there
is no differencing used to make the series weakly stationary, i.e. having an ARIMA (p, 0, q)
process, the forecasts tend towards the unconditional mean of the process. If the series is
mean-adjusted (see Section 6.1.3.1), the forecasts tend toward zero. When a differencing
of degree one is applied to the data, i.e. having an ARIMA (p, 1, q) process, then two
cases arises. If there is no constant term in the model (i.e. the series is mean-adjusted),
following our previous discussion about the ARIMA (p, 0, q) process, the forecasts will
converge to the last observation in the series. If there is a constant in the model, the
forecasts will follow a linear trend whose slope is equal to the fitted value for that
constant. Moreover, we know that the variance of forecast errors is a monotonically
increasing function of the forecast horizon [Kirchgässner and Wolters, 2007, Hamilton,
1994]. Similarly, for the volatility of a GARCH process, it is shown that the forecasts
of conditional variance will tend toward the unconditional variance of the series [Engle
and Bollerslev, 1986].

32 The best optimum forecast is the forecast whose expected value of the squared forecasts errors is
minimized [Montgomery et al., 2008, Kirchgässner and Wolters, 2007]

189

From the above discussion, it is clear that we cannot predict far in the future since
the forecasts tend toward a specific value and the variance of errors will grow. Since in
our data sets there is no cyclic or periodic effect, it is unrealistic to consider hold-out
sets with bigger sizes.

Specifically in our data sets, the previous conclusion about the forecasting perfor-
mance of the time series models can be discussed from another perspective as follows.
As we discussed in Sections 6.1.2 and 6.1.3, a GARCH model has an ARMA represen-
tation and ARMA models were motivated from the Wold’s theorem as a parsimonious
representation. The assumptions on the ARMA models allows that an ARMA model
can be written as an MA (∞), satisfying the Wold’s representation. For our sample
projects, the ACF of the data typically showed most significant correlation in the first or
first few lags suggesting that a low order moving average model can be considered as a
candidate to capture the evolution. This was also motivated when we used BIC instead
of AIC in the selection of best time series model, although the BIC-selected models
had residuals which were slightly twisted from the assumption of the uncorrelated white
noise (see Section 6.5.2). Therefore, the most influencing term(s) in an MA model of
our data sets was the last term or were very few latest terms, which causes the behavior
of future forecasts be depended on the very few last disturbances and far forecasts are
not realistic.

6.5.4 External Validity

The next threat to validity is that how well the results of this analysis are generalizable.
This can be discussed from two points of views. First, how well the change extraction
techniques discussed in Chapter 4 can be used to compare the models of other types
than class diagrams. The pipeline of Figure 4.1 can be applied to other diagram types
as long as the model matching mechanism and the difference derivation engine can be
properly adapted to handle the model types of interest. In this work we have employed
the SiDiff/SiLift model differencing and semantic lifting frameworks. SiDiff allows fine
configuration for comparison of different model types and SiLift allows the proper com-
putation of high-level changes.

The second aspect of generalization is that if the time series approach can be em-
ployed to model and simulate the evolution for other application domains. As we dis-
cussed in Section 6.1, the time series approach of ARMA, GRACH and mixed ARMA-
GRACH models concerns the weakly stationary assumption of the observed series. Since
it is very frequent that the series is not stationary, a proper transformation should be em-
ployed to make the series weakly stationary and afterward the time series models can be
applied to the transformed series. As we saw in Section 6.2.1, our sample projects could
be successfully transformed into weakly stationary ones using the three step transforma-
tion introduced there and we could model the evolution of all projects except HSQLDB.

Although the transformation made the series stationary for HSQLDB, the trans-
formed series were not normally distributed and we showed that the kurtosis of the
transformed series were almost 4.7, much exceeding the value of 3 which is the kurtosis
of the normal distribution. This caused the residuals of the applied time series models

190

to be non-normal due to big values for their kurtosis. We conclude that although the
BCDM transformation was quite successful in other projects, another possible transfor-
mation that can solve the non-normality issue for the HSQLDB project will most likely
address the shortcoming.

One issue to consider is that our sample projects are typically medium sized open
source Java systems. As preliminary studies show, the results of this chapter will most
likely be extendable to big systems. Regarding the closed source software systems, it not
quite clear if the computed changes have similar properties to ones that we discussed
in this chapter, specially if a particular or a company-specific programming style is
practiced. But since the application of time series models is subject to the assumption
of stationarity, as we discussed earlier, in the case of a proper transformation the time
series models of ARMA and ARMA-GARCH should be readily useful and can be further
employed.

Considering other object-oriented programming languages like C++ or C#, since
the concepts of object-orientation are quite similar, the approach can be applied with-
out much effort. In this regard, the metamodel for class diagrams (shown in Figure
4.3) should be revised and the SiDiff/SiLift pipeline (Figure 4.1) for computation of
differences should be accordingly adjusted.

6.5.5 Validity of the Simulation

The validity of a simulation boils down to the defined research questions, aims and goals
of the simulation and how the outcomes of the simulation are going to be used. It is
also well established that a simulation is just an approximation to the real system which
simplifies its functionality and is a trade-off between reality and simplicity [Maria, 1997].
In this regard [Law, 2009] clearly states: “A simulation model of a complex system can
only be an approximation to the actual system, no matter how much time and money
is spent on model building. There is no such thing as absolute model validity, nor is
it even desired. Indeed, a model is supposed to be an abstraction and simplification of
reality.”.

Regarding the simulation of the evolution done in Section 6.4, different issues have
to be considered. If a steady-state, i.e. non-terminating, simulation of the proposed
time series models is needed to analyze the long time behavior of the systems, then the
effect of initial conditions should be be taken into account. In our use case of generating
more realistic models histories for MDE tools (Section 6.4.3), the simulation would be
a terminating simulation since the required length of histories is finite. The length
of simulation is depending on different factors such as the features of the tool which
should be evaluated, the aim and the purpose of the test models, the generation or the
processing time of the test models, the memory considerations etc. More specifically, in
the domain of model comparison and model versioning [Kolovos et al., 2009, Stephan and
Cordy, 2013, Brosch et al., 2012], the generated model histories can be used to simulate
different development phase of software systems. For instance, the development of a
software system is usually more erratic in the beginning of the development phase when
new features and functions are going to be implemented, and is less erratic and more

191

calm when the system in maintained afterward [Vasa et al., 2007b]. Therefore, the effect
of initial conditions used to generate sequences of the proposed time series models is
even desired.

Regarding the application of generated sequences of time series models by the SMG
in Section 6.4.3, we observed that a reasonable portion of the total number of edit
operations which should be applied between revisions of ri and ri+1, has to be assigned
to each edit operation. In this regard, we assigned the total computed frequency of
each edit operation in the life time of the project, as the weight for selecting that edit
operation by the Roulette Wheel selection technique. This is justifiable since the total
frequency of each edit operation in the life time of the project is a reasonable indicator
of how frequent that operation is. More frequent operations have higher frequencies and
more portion is assigned to them from revision ri to ri+1.

The much better approach is that if we could know how frequencies of each edit
operation evolves over time with respect to the frequencies of other operations. In other
words, it would be ideal if would could analyze the co-evolution of frequencies of all edit
operations together over time from a mathematical point of view and replicate them.
However, such in-depth analysis is not present at the moment and it can be a topic for
further research. Moreover, it is less clear where edit operations have to be applied i.e.
how a Context should be mathematically selected for applying an edit operation and
what factors influence a Context to be modified in real life. The selection or generation
of the required parameters for edit operations also have not been studied so far and
can be a topic for further research. The above issues will influence the simulation of
evolution from the perspective of generating model histories. However, as discussed
earlier, the controlling mechanism of SMG will allow a domain expert to adjust the
generation process to his/her best knowledge.

6.6 Related Works

In this chapter we focused on mathematically modeling the evolution of design models
through time and in this regard we considered three time series models. The evolution
was measured as the total number of difference metrics, done separately on low-level and
high-level metrics, which occurred between subsequent revisions. As we saw in Chapter
5, the other aspect of the evolution was the frequencies of low-level and high-level edit
operations applied between subsequent revisions of design models. There, we showed
that six discrete distributions could be used to model the frequencies.

Principally the related works regarding the statistical analysis of the evolution which
we investigated in Section 5.4, are regarded relevant to the results we presented in this
chapter. We do not repeat them again here, rather we focus on the particular aspect
of the evolution which considers the time. Therefore, the related works in this section
focus on time-dependent aspects of evolution or other properties in software systems.

The following papers used time series analysis to answer research questions in the
context of software maintenance and evolution. None of these paper addresses the topic
of this chapter, i.e. how design models of software systems evolve over a long period of

192

time, what is the proper way for simulating the evolution and which issues should be
considered when one simulates the evolution.

[Antoniol et al., 2001] presented a time series based method for monitoring and
predicting the evolution of clones, i.e. duplicated or slightly different code fragments,
in software systems. At first, clones were detected within a system based on software
metrics, namely layout, size, control flow, function calls and couplings. In the next step
the series of the average number of clones per function was modeled as time series. The
approach was tested over 27 subsequent versions of mSQL. They were able to predict
the number of clones in the next release accurately with this method.

[Fuentetaja and Bagert, 2002] applied time series analysis on growth data of released
versions of software systems. The growth was measured based on the number of modules
of the systems which were detrended using the first order difference. Their data set
consists of two software systems. By showing the presence of long-term correlations in
the data they were able to validate the third and eighth laws of software evolution33.
Caution is advised when considering the presented results though, because the systems
had less then 30 released versions, the base data was therefore limited.

[Herraiz et al., 2007b, Herraiz, 2008, 2009] used time series to analyze the growth of
open source software systems based on the simple size metric. They analyzed daily size
of FreeBSD and NetBSD kernels as well as PostgreSQL. The compared the regression
and ARIMA models on the data. They concluded that time series analysis is better for
forecasting the evolution of software projects.

[Kenmei et al., 2008] studied the frequencies of changes requests in the frame of
software maintenance. They analyzed the number of changes requests per (kilo) lines of
codes to identify trends in the patterns of change requests. Increasing trends indicate
an increase in the change requests indicating problems in the system, decreasing trends
indicate applications stability and maturity. They analyzed the times series of change re-
quests in three large-scale open source software systems, namely Eclipse, Mozilla browser
and JBoss. They used two snapshots of each system per month over a period of five
years starting from January 2002. They forecast the change requests per (kilo) lines of
code.

[Siy et al., 2008] were interested in non-numeric data in software repositories. They
used the time series segmentation technique on the changes of three open source software
systems in order to identify active developers. In time series segmentation some consec-
utive data points are considered as a single data point which represents that segment.
The optimal segmentation obtained by dynamic programming. The changes or deltas
between software revisions were defined in a broad sense such as code changes, check-in
entries in CVS log of a source file or an email message about a commit. The deltas were
put in item-sets in order to identify patterns of developer activities. In their work they
did not work on design models of software systems. Additionally since some of data are
combined together in order to form segments, details about the evolution are missing.
This makes their approach not suitable for our fine-grained analysis in order to simulate
the evolution of design models.

33 Presented in [Lehman, 1996].

193

[Raja et al., 2009] used time series approach to predict defects in histories of software
systems. They used monthly defect reports for eight open source projects and built up
time series models to predict and analyze software defects. The time period considered
for the analysis varied between 66 to 90 months. They used the last four months as
the hold-out set in order to validate the accuracies of forecasts. The results show that
ARIMA models are suitable for predicting the defects.

[Wu et al., 2010] used ARIMA time series and regression models to predict the
monthly number of bugs for the Debian distribution over a period of 13 years. They
employed the bug tracking system of Debian for this purpose. The results of their pre-
diction show that time series models outperform the regression models when 12 months
ahead are predicted. Furthermore they could show in their data, that software bug
number series are to a certain extent dependent on seasonal and cyclical factors.

In the domain of networks and web, time series models of ARMA and GARCH are
also used in forecasting quality of services (QoS) attributes for web services in [Amin
et al., 2012a,b]. The models were used to forecast the future of QoS which had high
volatile characteristics. They employed real-world data sets of web services including
response time and time between failures. The proposed time series models were able to
satisfactorily forecast the QoS and the results were reported to be used in management
of the services.

6.7 Summary and Conclusion

In this chapter we studied the evolution of model histories using time series. The evo-
lution was modeled as the sequence of total number of changes between subsequent
revisions. The evolution was also measured at two abstraction levels. The first level
considered occurrences of low-level edit operations, while the second level considered
occurrences of high-level edit operations.

To mathematically model the evolutions, we considered three classes of time series
models, namely ARMA, GARCH and mixed ARMA-GARCH models. We provided
detailed theoretical fundaments of those models and we deeply discussed the associated
methodologies for their estimation, forecasting and simulation.

We observed that evolutions, at both levels, show very erratic behavior. Such er-
ratic patterns were hurdles for time series analysis. Therefore, we proposed a suitable
transformation which could make the observed evolution stationary. We found out that
most of the projects show heteroscedastic characteristics, suggesting that mixed time
series models are more appropriate. Since the heteroscedastic effect was not strong, we
checked if simpler ARMA models could model and forecast the evolutions equally good
to more complex ARMA-GARCH models. In this regard, we meticulously compared the
associated ARMA with mixed ARMA-GARCH models. We found out the mixed model
handles the dynamics of evolution more appropriately. Regarding the forecasting capa-
bilities of two models, we found out that their forecasts accuracies are not significantly
different.

194

We also investigated how the proposed time series models can be used to simulate the
evolution of design models. We also addressed how simulated sequences of time series
models were used to generate more realistic model histories using our model generator.

195

P
ro
je
ct

M
od

el
p-
va
lu
es

of
St
an

da
rd
iz
ed

R
es
id
ua

ls
p-
va
lu
es

of
Sq

ua
re
d
St
an

da
rd
iz
ed

R
es
id
ua

ls

5
la
gs

10
la
gs

15
la
gs

20
la
gs

5
la
gs

10
la
gs

15
la
gs

20
la
gs

A
SM

A
R
M
A

9.
94

34
×

10
−

1
9.

99
74
×

10
−

1
9.

99
25
×

10
−

1
9.

99
99
×

10
−

1
7.

24
83
×

10
−

1
5.

35
56
×

10
−

1
8.

51
74
×

10
−

1
9.

38
00
×

10
−

1

A
R
M
A
-G

A
R
C
H

9.
37

09
×

10
−

1
8.

26
34
×

10
−

1
9.

28
79
×

10
−

1
9.

72
95
×

10
−

1
6.

97
55
×

10
−

1
5.

13
76
×

10
−

1
7.

00
69
×

10
−

1
5.

56
46
×

10
−

1

C
he

ck
St
yl
e

A
R
M
A

1.
00

00
×

10
0

1.
00

00
×

10
0

9.
99

93
×

10
−

1
9.

99
86
×

10
−

1
5.

83
22
×

10
−

1
5.

25
31
×

10
−

1
3.

04
60
×

10
−

1
1.

67
50
×

10
−

1

A
R
M
A
-G

A
R
C
H

9 .
98

65
×

10
−

1
9.

98
04
×

10
−

1
9.

97
69
×

10
−

1
9.

97
23
×

10
−

1
5.

88
82
×

10
−

1
6.

02
30
×

10
−

1
5.

03
80
×

10
−

1
7.

30
94
×

10
−

1

D
at
aV

isi
on

A
R
M
A

1.
70

09
×

10
−

1
1.

40
27
×

10
−

1
1.

69
18
×

10
−

1
4.

08
03
×

10
−

1
1.

23
35
×

10
−

1
3.

19
78
×

10
−

1
6.

48
50
×

10
−

1
8.

64
52
×

10
−

1

A
R
M
A
-G

A
R
C
H

N
ot

C
on

sid
er
ed

N
ot

C
on

sid
er
ed

Fr
ee
M
ar
ke
r

A
R
M
A

9.
99

16
×

10
−

1
9.

53
35
×

10
−

1
9.

91
13
×

10
−

1
9.

74
06
×

10
−

1
7.

59
92
×

10
−

1
7.

76
95
×

10
−

1
9.

13
24
×

10
−

1
9.

59
54
×

10
−

1

A
R
M
A
-G

A
R
C
H

9 .
67

33
×

10
−

1
9.

82
26
×

10
−

1
9.

97
66
×

10
−

1
9.

99
52
×

10
−

1
6.

89
94
×

10
−

1
6.

79
01
×

10
−

1
2.

84
81
×

10
−

1
4.

18
65
×

10
−

1

Ja
m
el
eo
n

A
R
M
A

9.
99

95
×

10
−

1
1.

00
00
×

10
0

1.
00

00
×

10
0

9.
98

69
×

10
−

1
8.

04
18
×

10
−

1
4.

51
86
×

10
−

1
6.

72
64
×

10
−

1
7.

81
00
×

10
−

1

A
R
M
A
-G

A
R
C
H

9 .
63

66
×

10
−

1
9.

63
16
×

10
−

1
9.

96
68
×

10
−

1
9.

98
79
×

10
−

1
7.

74
83
×

10
−

1
2.

41
93
×

10
−

1
3.

94
07
×

10
−

1
4.

76
72
×

10
−

1

JF
re
eC

ha
rt

A
R
M
A

9.
63

98
×

10
−

1
9.

97
83
×

10
−

1
9.

99
71
×

10
−

1
9.

99
49
×

10
−

1
3.

17
19
×

10
−

1
4.

65
58
×

10
−

1
3.

40
89
×

10
−

1
4.

50
01
×

10
−

1

A
R
M
A
-G

A
R
C
H

9.
23

08
×

10
−

1
9.

84
03
×

10
−

1
9.

74
76
×

10
−

1
9.

52
03
×

10
−

1
6.

13
68
×

10
−

1
6.

44
15
×

10
−

1
7.

04
65
×

10
−

1
7.

11
89
×

10
−

1

M
av
en

A
R
M
A

8.
84

42
×

10
−

3
3.

22
45
×

10
−

2
1.

45
39
×

10
−

1
3.

49
48
×

10
−

1
5.

36
26
×

10
−

1
8.

03
91
×

10
−

1
7.

69
68
×

10
−

1
8.

16
92
×

10
−

1

A
R
M
A
-G

A
R
C
H

1 .
56

67
×

10
−

1
1.

68
05
×

10
−

1
9.

27
81
×

10
−

2
2.

30
73
×

10
−

1
3.

70
16
×

10
−

1
8.

41
73
×

10
−

1
7.

08
25
×

10
−

1
6.

29
89
×

10
−

1

St
ru
ts

A
R
M
A

4.
35

39
×

10
−

4
4.

89
27
×

10
−

3
1.

42
28
×

10
−

2
3.

28
88
×

10
−

2
3.

51
53
×

10
−

1
7.

37
73
×

10
−

1
8.

61
93
×

10
−

1
8.

12
53
×

10
−

1

A
R
M
A
-G

A
R
C
H

N
ot

C
on

sid
er
ed

N
ot

C
on

sid
er
ed

Ta
bl
e
6.
10
:
Lo

w
-L
ev
el

ch
an

ge
s
-p

-v
al
ue
s
of

th
e
Lj
un

g-
Bo

x
te
st

of
co
rr
el
at
io
n
on

re
sid

ua
ls

of
th
e
se
le
ct
ed

m
od

el
s.

196

P
ro
je
ct

M
od

el
p-
va
lu
es

of
St
an

da
rd
iz
ed

R
es
id
ua

ls
p-
va
lu
es

of
Sq

ua
re
d
St
an

da
rd
iz
ed

R
es
id
ua

ls

5
la
gs

10
la
gs

15
la
gs

20
la
gs

5
la
gs

10
la
gs

15
la
gs

20
la
gs

A
SM

A
R
M
A

9.
99

96
×

10
−

1
9.

99
96
×

10
−

1
9.

98
62
×

10
−

1
9.

99
83
×

10
−

1
9.

12
68
×

10
−

1
7.

13
77
×

10
−

1
6.

95
55
×

10
−

1
8.

12
65
×

10
−

1

A
R
M
A
-G

A
R
C
H

8 .
53

04
×

10
−

1
7.

31
43
×

10
−

1
9.

19
76
×

10
−

1
9.

77
47
×

10
−

1
7.

56
89
×

10
−

1
7.

23
93
×

10
−

1
9.

34
71
×

10
−

1
7.

69
70
×

10
−

1

C
he
ck
St
yl
e

A
R
M
A

9.
87

70
×

10
−

1
9.

98
44
×

10
−

1
9.

93
90
×

10
−

1
9.

98
33
×

10
−

1
1.

05
69
×

10
−

1
7.

17
06
×

10
−

4
1.

58
41
×

10
−

3
6.

01
10
×

10
−

3

A
R
M
A
-G

A
R
C
H

9 .
96

80
×

10
−

1
9.

97
43
×

10
−

1
9.

98
35
×

10
−

1
9.

99
22
×

10
−

1
4.

66
91
×

10
−

1
6.

96
48
×

10
−

1
6.

92
11
×

10
−

1
5.

79
02
×

10
−

1

D
at
aV

isi
on

A
R
M
A

3.
40

28
×

10
−

1
2.

79
55
×

10
−

1
2.

95
32
×

10
−

1
5.

57
56
×

10
−

1
5.

90
83
×

10
−

1
7.

31
32
×

10
−

1
8.

84
16
×

10
−

1
9.

75
98
×

10
−

1

A
R
M
A
-G

A
R
C
H

N
ot

C
on

sid
er
ed

N
ot

C
on

sid
er
ed

Fr
ee
M
ar
ke
r

A
R
M
A

9.
94

76
×

10
−

1
9.

99
56
×

10
−

1
9.

99
72
×

10
−

1
9.

99
97
×

10
−

1
1.

35
59
×

10
−

1
2.

98
07
×

10
−

1
3.

81
19
×

10
−

1
4.

17
04
×

10
−

1

A
R
M
A
-G

A
R
C
H

3 .
96

29
×

10
−

1
7.

44
42
×

10
−

1
7.

97
87
×

10
−

1
7.

62
22
×

10
−

1
6.

15
99
×

10
−

1
6.

65
36
×

10
−

1
8.

60
35
×

10
−

1
8.

64
71
×

10
−

1

Ja
m
el
eo
n

A
R
M
A

9.
99

58
×

10
−

1
9.

99
78
×

10
−

1
9.

99
98
×

10
−

1
9.

99
99
×

10
−

1
5.

89
96
×

10
−

1
5.

01
61
×

10
−

2
1.

34
97
×

10
−

1
2.

86
21
×

10
−

1

A
R
M
A
-G

A
R
C
H

9.
54

35
×

10
−

1
7.

81
91
×

10
−

1
3.

16
22
×

10
−

1
4.

58
63
×

10
−

1
6.

06
55
×

10
−

1
3.

48
06
×

10
−

1
3.

16
88
×

10
−

1
1.

88
32
×

10
−

1

JF
re
eC

ha
rt

A
R
M
A

9.
71

92
×

10
−

1
9.

99
73
×

10
−

1
9.

99
97
×

10
−

1
9.

99
99
×

10
−

1
4.

51
06
×

10
−

1
4.

82
38
×

10
−

1
4.

07
36
×

10
−

1
4.

77
95
×

10
−

1

A
R
M
A
-G

A
R
C
H

9.
98

40
×

10
−

1
9.

95
04
×

10
−

1
9.

99
56
×

10
−

1
9.

95
10
×

10
−

1
7.

37
83
×

10
−

1
7.

97
71
×

10
−

1
7.

65
60
×

10
−

1
4.

46
95
×

10
−

1

M
av
en

A
R
M
A

N
ot

C
on

sid
er
ed

N
ot

C
on

sid
er
ed

A
R
M
A
-G

A
R
C
H

2.
21

76
×

10
−

5
5.

53
18
×

10
−

4
4.

89
40
×

10
−

3
2.

00
58
×

10
−

2
1.

07
82
×

10
−

3
7.

47
55
×

10
−

3
6.

44
20
×

10
−

3
2.

54
05
×

10
−

2

St
ru
ts

A
R
M
A

2.
82

92
×

10
−

2
9.

79
48
×

10
−

2
1.

88
05
×

10
−

1
2.

88
89
×

10
−

1
2.

57
50
×

10
−

1
6.

34
55
×

10
−

1
7.

86
41
×

10
−

1
8.

77
05
×

10
−

1

A
R
M
A
-G

A
R
C
H

N
ot

C
on

sid
er
ed

N
ot

C
on

sid
er
ed

Ta
bl
e
6.
11
:
H
ig
h-
Le

ve
lc

ha
ng

es
-p

-v
al
ue
s
of

th
e
Lj
un

g-
Bo

x
te
st

of
co
rr
el
at
io
n
on

re
sid

ua
ls

of
th
e
se
le
ct
ed

m
od

el
s.

197

Part IV

Conclusions and Outlook

199

CHAPTER 7
Conclusions and Outlook

In this chapter we summarize the results and contributions of this dissertation and
outline possible future works.

7.1 Summary and Conclusion
The motivation of this work was the need for test models in order to assess and check
algorithms, tools and methods in the domain of model differencing, model versioning,
history analysis and associated presentation tools. By studying existing approaches in
the domain of MDE, we found out that current approaches are mainly motivated from
the domain of model transformation testing and they fail to fulfill the desired properties
needed in the domain of model differencing and model versioning, which mostly deal
with problems in collaborative and iterative development environments. Particularly,
we found out that the existing approaches do not take editing of models into account.
The also have no or very little control over the generation process, specified properties
of interest cannot be fulfilled in the generated test models and none of them support
stochastic or chronological properties in the generated test models.

To address the shortcomings and generate more realistic test models, we proposed a
new framework which contributes to generation of stochastically realistic test models for
model differencing, model versioning tools, etc. In an overall view, our framework offers a
generator which generates models based on the concept of edit operations, addresses the
shortcomings in the field and can generate stochastically realistic models. The framework
captures the true evolution in design models of real software systems based on the applied
low-level and high-level edit operations between subsequent revisions. The pairwise
changes, i.e. changes between each two subsequent revisions, are modeled based on many
different statistical distributions. The chronological changes (histories) are modeled
based on different time series models, namely ARMA, GARCH and mixed ARMA-
GARCH models. The framework considers the forecasting and simulation aspects of the
mathematical models in order to generate stochastically realistic test models.

201

In more detail, we proposed an new model generator called SiDiff Model Generator
(SMG). SMG generates models based on the concept of edit operations which is more
appropriate comparing to the existing appraoches. To generate realistic test models
which consider and simulate the properties of real world evolution, one needs to know
more about characteristics and properties of evolution in real software systems and
regenerate such properties.

Unfortunately, until the contributions of this dissertation, little was known about how
models of real software systems evolve over time and which mathematical properties and
characteristics they have. The existing approaches for comprehending the evolution of
software systems are typically based on software metrics and other static properties of
the systems. In such approaches, evolution was typically modeled as differences between
measured values of static metrics in revision of software systems. As we showed, such
differences can neither fully nor correctly model the evolution, and are not suitable for
models of software systems.

In this dissertation we considered the design models of Java software systems. We
modeled the evolution of design models using the difference metrics, which were shown to
be more useful than the static metrics. The evolution was measured in terms of number
of applied edit operations between models, and in this regard two sets of edit operations
were used. The first set consist of 75 low-level graph edit operations and the second
set consider 188 high-level (developer-friendly) edit operations. Typically a high-level
edit operation consists of few to many low-level operations and represents changes at a
higher level of abstraction.

In order to study the evolution of design models, we measured the evolution on a set
of carefully selected real Java systems as the sample set. For all sample projects, the
evolution was measured in terms of both low-level and high-level difference metrics. In
the first step, we didn’t consider chronological properties of changes, i.e. we just con-
sidered the changes without explicitly counting time-dependent properties of evolution.
To model the evolution (pairwise changes) we considered sixty statistical models, i.e.
distributions, which could be promising. The typical characteristics of data were that,
there were big changes between revisions and the histograms of the changes were skewed
with heavy tails. We showed that six distributions were quite successful in modeling the
evolution and can be used to mathematically formulate the evolution.

To study the chronological properties of evolution, we used time series analysis. In
this regard, we used three categorizes of time series models, namely ARMA, GARCH
and mixed ARMA-GARCH models. We showed that the evolution could be modeled
using ARMA and mixed ARMA-GARCH models. In order to decide which one serves
better to properly handle the dynamics of evolutions, we deeply studied and compared
these two categories. We found out that although ARMA models are satisfactorily good
to handle underlying properties of evolution, mixed ARMA-GARCH models serve better
in this regard.

To simulate the evolution and generate more realistic test models, we deeply studied
how our proposed statistical models can be simulated and how their valid samples be
generated. In this regards, we presented the associated random variate generation (RVG)

202

algorithms of our successful distributions. Few distributions had complex probability
distribution functions, for which there were no tailored RVG algorithms. Therefore, we
indirectly generated their random variates. That means, instead of directly handling the
problem we generated their random variates by appropriately combining simpler RVG
algorithms. Regarding simulation of the proposed time series models, we deeply studied
different aspects and strategies for such simulations. To highlight, in the case of test
model generation, we are facing the finite-horizon simulations and we showed that initial
conditions have strong effects on the simulated sequences. We also addressed how our
simulations could be used in our model generator to generate more realistic test models.

We can shortly list our findings, contributions and results as follows:

1. In the domain of model differencing and model versioning, the need for test models
could not be fulfilled with the existing approaches which are mostly motivated
from the domain of model transformation testing. In the existing approaches, the
generation process is not finely under control and the stochastic or other properties
of interest cannot be created in the generated models.

2. Our proposed generator, SiDiff Model Generator, addresses the shortcomings in the
field. The generation process is finely under control by devising different controlling
mechanisms, e.g. selection policies, fitness values, etc. Supporting and using low-
level and high-level edit operations, simple and complex structures of interest can
be created within the generated models. The generator supports stochastic and
other properties of interest within models. Moreover, it can create realistic pairs
or sequences of models.

3. Evolution of software systems were mostly studied using static metrics and at code
level. Very little was known about the evolution of software design models, their
characteristics or mathematical properties. Static metrics are not quite suitable
when we consider models of software systems. Therefore, in this dissertation we
used difference metrics which are shown to be more appropriate. The evolution
was not only measured in terms of low-level, but also high-level metrics. To finely
capture the evolution, we used 75 low-level and 188 high-level metrics defined on
our design model representation of Java systems.

4. The evolution of design models (pairwise changes) was studied using the low-level
and high-level metrics separately. The histogram of changes are typically skewed
with heavy tails, therefore suitable statistical models should be able to handle such
properties. We investigated sixty promising distributions. Just six of them were
able to model the evolution with very good rates of success. The successful models
were the discrete Pareto, negative binomial, Yule, Waring, beta-negative binomial
and generalized Poisson distributions. For the discrete Pareto and generalized
Poisson distributions, we presented existing approaches to generate their random
variates. For the rest, we proposed indirect methods to generate their random
variates. The random variate generation algorithms were used to generate more
realistic test models.

203

5. The chronological evolution was studied using three types of time series models, i.e.
ARMA, GARCH and mixed ARMA-GARCH models. The evolution showed very
erratic behaviors and the variance of changes very not stable, thus we proposed
a transformation to stabilize the variance. For most of our sample projects, the
changes showed significant ARCH effect in the very first few lags, suggesting that
the heteroscedastic effect was present, but had no long effect. Due to this fact,
we investigated whether simpler ARMA models are satisfactorily good as mixed
ARMA-GARCH models. To this aim, we studied whether they handle dynamics
of changes or forecast future changes equally good. Although mixed models were
superior in capturing the dynamics of changes, their forecasting performance were
equally good as simpler ARMA models. To simulate the chronological evolution,
we deeply studied how valid sequences of the proposed time series models can be
properly simulated.

7.2 Outlook and Future Research Directions
In this work, we captured the evolution of Java software systems based on low-level
and high-level metrics which were defined on our design model representation of Java
systems. Furthermore, we studied the pairwise and chronological properties of evolution
using different statistical distributions and time series models. Now we sketch possible
research directions which can be further investigated.

1. Our sample sets of software systems were open source Java systems. A possible re-
search direction is to check if our results are extendable to closed source systems,
particularly when business-specific development styles and disciplines are prac-
ticed. The same can be investigated on other object-oriented systems instead of
Java. The suitability of our Java metamodel and associated sets of edit operations
should be further investigated.

2. In this work we focused on design model diagrams, one possible direction for fur-
ther research is to consider other types of diagrams such as BPMN (Business
Process Model Notation), state machine, sequence or activity diagrams. The pos-
sible metamodel and the associated sets of edit operations should be accordingly
considered and suitability of the proposed statistical models be investigated.

3. In the direction of software evolution analysis, typical approaches consider software
metrics and other static properties of systems. In that domain, we did not find
research works which consider our proposed statistical distributions to model the
changes. One possible research direction is to employ our proposed statistical mod-
els and to evaluate their appropriateness against existing approaches. In the case
of success, it might help to establish a wider application domain for these statis-
tical models in software systems. They can then capture and model the evolution
at code and higher abstraction levels, resulting a unified way of mathematically
modeling the evolution.

204

4. In the domain of software maintenance and cost estimation, the proposed statis-
tical or time series models can be further investigated. The key connection would
be to establish a suitable and meaningful relationship between the evolution of de-
sign models and the cost of software development or maintenance activities. The
proposed statistical models might be then used to infer useful information about
future coarse of a system with respect to maintenance and cost estimations.

5. Regarding the pairwise evolution of design models, we used 75 low-level and 188
high-level difference metrics. Since our set of sample Java systems consists of
just nine projects, it was not possible to investigate the shape parameters of our
proposed distributions. A possible research direction is to investigate whether
shape parameters of our distributions have meaningful properties or relationships.
In such a case, we will know more details about the evolution, its limiting conditions
and its most or least probable outcomes.

6. In this dissertation we modeled the chronological evolution as differences between
sum of all metrics for each revision. This let us study the evolution from a coarser
granularity. A more delicate approach is to study the co-evolution of metrics all
together and try to mathematically formulate it. In this regard, multivariate time
series methods might be useful. In the case of such a mathematical model can
achieved, the evolution can be finely modeled. Not only this allows us to know
how much will be the changes in the next coming revisions, but also the types
of such changes as well as the mutual effects. This provide finer flexibility and
application e.g. in estimation of cost and maintenance activities.

7. In this work, we considered the occurrences of applied edit operation between
revisions of design models and we mathematically modeled the changes. We did
not consider where the edit operation were applied and which properties of a model
element affect its destiny for being modified. If such properties are investigated, we
might be able to mathematically formulate the probability of each model element
for being modified. Such information let us find the most probable model elements
for modification. In addition to applications in prediction and maintenance, it
will let us to more finely control the generation process of test models using our
proposed generator, resulting even more realistic test models.

8. The modification of model elements by our generator requires that suitable edit
operations are equipped with suitable parameters. In this dissertation, we did
not considered the parameters of the applied edit operation between models. A
possible future work will be to consider such parameters and try to investigate and
formulate them. In conjunction to our other research directions, such information
not only has application in maintenance, but also in model differencing and model
versioning. Moreover, it will contribute to our test model generation and more
realistic test models will be achieved.

205

References

Lada A. Adamic and Bernardo A. Huberman. Zipf’s law and the internet. Glottomet-
rics, 3:143–150, 2002. URL http://www.hpl.hp.com/research/idl/papers/
ranking/adamicglottometrics.pdf.

Joachim H Ahrens and Ulrich Dieter. Computer methods for sampling from gamma,
beta, Poisson and bionomial distributions. Computing, 12(3):223–246, 1974.

Hirotugu Akaike. A new look at the statistical model identification. Automatic Control,
IEEE Transactions on, 19(6):716–723, 1974.

Marcus Alanen and Ivan Porres. Model interchange using OMG standards. In Software
Engineering and Advanced Applications, 2005. 31st EUROMICRO Conference on,
pages 450–458. IEEE, 2005.

Marcus Alanen and Ivan Porres. Model interchange using OMG standards. Technical
report, TUCS Turku Centre for Computer Science, Abo Akademi University, 2014.

Christos Alexopoulos and Seong-Hee Kim. Review of advanced methods for simulation
output analysis. In Proceedings of the 37th conference on Winter simulation, pages
188–201. Winter Simulation Conference, 2005.

Christos Alexopoulos and Andrew F Seila. Output data analysis. Handbook of Simula-
tion, pages 225–272, 1998.

Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. A survey on model ver-
sioning approaches. International Journal of Web Information Systems, 5(3):271–304,
2009.

David Ameller. Considering non-functional requirements in model-driven engineering.
Master’s thesis, Llenguatges i Sistemes Informátics (LSI), June 2009.

Ayman Amin, Alan Colman, and Lars Grunske. An approach to forecasting QoS at-
tributes of web services based on ARIMA and GARCH models. In IEEE 19th Inter-
national Conference on Web Services (ICWS), pages 74–81. IEEE, 2012a.

207

http://www.hpl.hp.com/research/idl/papers/ranking/adamicglottometrics.pdf
http://www.hpl.hp.com/research/idl/papers/ranking/adamicglottometrics.pdf

Ayman Amin, Lars Grunske, and Alan Colman. An automated approach to forecasting
qos attributes based on linear and non-linear time series modeling. In Automated
Software Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM International
Conference on, pages 130–139. IEEE, 2012b.

G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo. Modeling clones evolution through
time series. In Proc. IEEE Inter. Conf. Software Maintenance, pages 273–280, 2001.

Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. Henshin: Advanced concepts and tools for in-place EMF model transforma-
tions. In Model Driven Engineering Languages and Systems, pages 121–135. Springer,
2010.

J. Scott Armstrong. Evaluating forecasting methods. In Principles of forecasting, pages
443–472. Springer, 2001.

J Scott Armstrong and Fred Collopy. Error measures for generalizing about forecasting
methods: Empirical comparisons. International journal of forecasting, 8(1):69–80,
1992.

Colin Atkinson and Thomas Kuhne. Model-driven development: A metamodeling foun-
dation. Software, IEEE, 20(5):36–41, 2003.

Jerry Banks, editor. Handbook of Simulation: Principles, Methodology, Advances, Ap-
plication and Practice. Wiley, 1998.

Jerry Banks. Introduction to simulation. In Proceedings of the 31st conference on Winter
simulation: Simulation - A bridge to the future, volume 1, pages 7–13. ACM, 1999.

Jerry Banks, John S. Carson, Barry L. Nelson, and David M. Nicol. Discrete-Event
Systems Simulation. Pearson, 5th edition, 2010.

Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability
modulo theories. Handbook of satisfiability, 185:825–885, 2009.

Stephen Barrett, Patrice Chalin, and Greg Butler. Model merging falls short of software
engineering needs. In Proc. of the 2nd Workshop on Model-Driven Software Evolution.
Citeseer, 2008.

Benoit Baudry, Trung Dinh-Trong, Jean-Marie Mottu, Devon Simmonds, Robert France,
Sudipto Ghosh, Franck Fleurey, Yves Le Traon, et al. Model transformation testing
challenges. In ECMDA workshop on Integration of Model Driven Development and
Model Driven Testing., 2006.

Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden Smith, Matt Visser,
Hayden Melton, and Ewan Tempero. Understanding the shape of Java software. In
ACM Sigplan Notices, volume 41, pages 397–412. ACM, 2006.

208

B. S. Bennett. Simulation Fundamentals. Prentice Hall, 1st edition, 1995.

Daniel Bilar. Probability theory for networks (part 2), 2008a. URL http://cs.
wellesley.edu/~cs249B/lecture/. CS 249B: Science of Networks, Week 03,
Lecture 5.

Daniel Bilar. Scale free distributions: Pareto and Zipf, 2008b. URL http://cs.
wellesley.edu/~cs249B/lecture/. CS 249B: Science of Networks, Week 03,
Lecture 5.

Baki Billah, Maxwell L King, Ralph D Snyder, and Anne B Koehler. Exponential
smoothing model selection for forecasting. International journal of forecasting, 22(2):
239–247, 2006.

Soren Bisgaard and Murat Kulachi. Time series analysis and forecasting by example.
Wiely, 2011.

Gerhard Bohm and Günter Zech. Introduction to statistics and data analysis for physi-
cists. DESY, 2010.

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of
econometrics, 31(3):307–327, 1986.

Tim Bollerslev. On the correlation structure for the generalized autoregressive condi-
tional heteroskedastic process. Journal of Time Series Analysis, 9(2):121–131, 1988.

Tim Bollerslev, Robert F Engle, and Daniel B Nelson. ARCH models. Handbook of
econometrics, 4:2959–3038, 1994.

G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal
Statistical Society. Series B (Methodological), 26(2):pp. 211–252, 1964. ISSN 00359246.

George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time series analysis,
forecasting and control. Wiley, 4th edition, 2008.

Paul Bratley, Bennett L Fox, and Linus E Schrage. A guide to simulation. Springer-
Verlag New York, 2nd edition, 1983.

Peter J. Brockwell and Richard A. Davis. Introduction to time series and forecasting.
Springer, 2nd edition, 2002.

Peter J. Brockwell and Richard A. Davis. Time series: theory and methods. Springer,
2006.

Petra Brosch. Conflict Resolution in Model Versioning. PhD thesis, Faculty of Infor-
matics, Vienna University of Technology, 2012.

209

http://cs.wellesley.edu/~cs249B/lecture/
http://cs.wellesley.edu/~cs249B/lecture/
http://cs.wellesley.edu/~cs249B/lecture/
http://cs.wellesley.edu/~cs249B/lecture/

Petra Brosch, Gerti Kappel, Martina Seidl, Konrad Wieland, Manuel Wimmer, Horst
Kargl, and Philip Langer. Adaptable model versioning in action. Lecture Notes in
Informatics, Gesellschaft für Informatik, 161, 2010.

Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad Wieland, and Manuel
Wimmer. An introduction to model versioning. In Marco Bernardo, Vittorio Cortel-
lessa, and Alfonso Pierantonio, editors, Formal Methods for Model-Driven Engineer-
ing, volume 7320 of Lecture Notes in Computer Science, pages 336–398. Springer Berlin
Heidelberg, 2012. ISBN 978-3-642-30981-6.

E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon. Metamodel-based test
generation for model transformations: An algorithm and a tool. In 17th International
Symposium on Software Reliability Engineering, 2006. ISSRE ’06., pages 85 –94, nov.
2006.

Alan W. Brown. Model Driven Architecture: Principles and practice. Software and
Systems Modeling, 3(4):314–327, 2004.

Alan W Brown, Jim Conallen, and Dave Tropeano. Introduction: Models, Modeling,
and Model Driven Architecture (MDA). InModel-Driven Software Development, pages
1–16. Springer, 2005.

Richard L. Burden and J. Douglas Faires. Numerical analysis. Brooks Cole, 7th edition,
2000.

Jordi Cabot, Robert Clarisó, and Daniel Riera. Verification of UML/OCL class diagrams
using constraint programming. In IEEE International Conference on Software Testing
Verification and Validation Workshop, 2008 (ICSTW’08)., pages 73–80. IEEE, 2008.

John Y. Campbell, Andrew W. Lo, and A. Craig MacKinlay. The Econometrics of
Financial Markets. Princeton University Press, 1997.

Ngai Hang Chan. Time Series, Applications to Finance with R and S-Plus. Wiely, 2nd
edition, 2010.

R. C. H. Cheng. The generation of gamma variables with non-integral shape parameter.
Applied Statistics, pages 71–75, 1977.

R. C. H. Cheng. Generating beta variates with nonintegral shape parameters. Commun.
ACM, 21(4):317–322, April 1978. ISSN 0001-0782.

John R Cogdell. Modeling Random Systems. Prentice Hall, 2004.

Christian Collberg, Ginger Myles, and Michael Stepp. An empirical study of Java byte-
code programs. Software: Practice and Experience, 37(6):581–641, 2007.

Giulio Concas, Michele Marchesi, Sandro Pinna, and Nicola Serra. On the suitability
of Yule process to stochastically model some properties of object-oriented systems.
Physica A: Statistical Mechanics and its Applications, 370(2):817–831, 2006.

210

Giulio Concas, Michele Marchesi, Sandro Pinna, and Nicola Serra. Power-laws in a large
object-oriented software system. IEEE Tran. Software Engineering, 33, 2007. ISSN
0098-5589.

Prem C Consul and Gaurav C Jain. A generalization of the Poisson distribution. Tech-
nometrics, 15(4):791–799, 1973.

Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues.
Quantitative Finance, 1(2):223–236, 2001.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN
0262033844, 9780262033848.

Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-
proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques
in the Context of the Model Driven Architecture, volume 45, pages 1–17. Citeseer,
2003.

Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal, 45(3):621–645, 2006.

Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction
and applications. Communications of the ACM, 54(9):69–77, 2011.

Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

Luc Devroye. Random variate generators for the Poisson and related distributions.
Computational Statistics & Data Analysis, 8(3):247–278, 1989.

Francis X Diebold and Roberto S Mariano. Comparing predictive accuracy. Journal of
Business and Economic Statistics, 13(3):253–63, July 1995.

Karsten Ehrig, Jochen M Küster, Gabriele Taentzer, and Jessica Winkelmann. Gener-
ating instance models from meta models. In Formal Methods for Open Object-Based
Distributed Systems, pages 156–170. Springer, 2006.

Karsten Ehrig, Jochen Malte Küster, and Gabriele Taentzer. Generating instance models
from meta models. Software & Systems Modeling, 8(4):479–500, 2009.

Paul Embrechts and Marius Hofert. A note on generalized inverses. Preprint, ETH
Zurich, 2010.

Walter Enders. Applied Econometric Time Series. John Wiley & Sons, Inc., 3rd edition,
2010.

Robert F Engle. Autoregressive conditional heteroscedasticity with estimates of the
variance of united kingdom inflation. Econometrica: Journal of the Econometric
Society, pages 987–1007, 1982.

211

Robert F Engle and Tim Bollerslev. Modelling the persistence of conditional variances.
Econometric reviews, 5(1):1–50, 1986.

Arthur Erdelyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher
transcendental functions, volume 1. McGraw-Hill, 1955.

Norman Fenton and James Bieman. Software metrics: a rigorous and practical approach.
CRC Press, 2014.

Juan Fernandez-Ramil, Angela Lozano, Michel Wermelinger, and Andrea Capiluppi.
Empirical studies of open source evolution. In Software evolution, pages 263–288.
Springer, 2008.

George S. Fishman. Discrete-Event Simulation, Modeling, Programming and Analysis.
Springer, 2001.

Franck Fleurey, Jim Steel, and Benoit Baudry. Validation in model-driven engineering:
testing model transformations. In Model, Design and Validation, 2004. Proceedings.
2004 First International Workshop on, pages 29–40. IEEE, 2004.

Catherine Forbes, Merran Evans, Nicholas Hastings, and Brian Peacock. Statistical
Distributions. Wiley, 4th edition, 2011.

Martin Fowler. UML Distilled: A brief guide to the standard object modeling language.
Addison-Wesley Professional, 2nd edition, 2004.

Martin Fowler and Rebecca Parsons. Domain-specific languages. Addison-Wesley, 2010.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional, 1999. ISBN
0201485672.

Christian Francq and Jean-Michel Zakoian. Maximum likelihood estimation of pure
GARCH and ARMA-GARCH processes. Bernoulli, 10(4):605–637, 2004.

Christian Francq and Jean-Michel Zakoian. GARCH Models Structure, Statistical Infer-
ence and Financial Applications. Wiely, 2010.

David S Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.
John Wiley & Sons, 2003.

Eduardo Fuentetaja and Donald J. Bagert. Software evolution from a time series per-
spective. In ICSM, pages 226–229, 2002.

Xavier Gabaix. Power laws in economics and finance. Annual Review of Economics, Vol.
1:255–294, 2009.

212

AV Gafarian, CJ Ancker Jr, and T Morisaku. The problem of the initial transient
in digital computer simulation. In Proceedings of the 76 Bicentennial conference on
Winter simulation, pages 49–51. Winter Simulation Conference, 1976.

AV Gafarian, CJ Ancker, and T Morisaku. Evaluation of commonly used rules for
detecting “steady state” in computer simulation. Naval Research Logistics Quarterly,
25(3):511–529, 1978.

Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data clustering: theory, algorithms, and
applications, volume 20. Siam, 2007.

I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series and products. Academic
Press, 7th edition, 2007.

William H. Greene. Econometric Analysis. Prentice Hall, 5th edition, 2002.

Massimo Guidolin. Univariate volatility models: ARCH and GARCH, Accessed: July,
2014. URL http://didattica.unibocconi.eu/myigier/doc.php?idDoc=
22285&IdUte=135242&idr=14063&Tipo=m&lingua=eng.

Terry Halpin. Object-role modeling (ORM/NIAM). In Handbook on architectures of
information systems, pages 81–103. Springer, 2006.

James Douglas Hamilton. Time series analysis. Princeton University Press, 1994.

David Harvey, Stephen Leybourne, and Paul Newbold. Testing the equality of prediction
mean squared errors. International Journal of forecasting, 13(2):281–291, 1997.

Andreas Henrich, Hans-Werner Six, FemUniversit& Hagen, and Peter Widmayer. The
LSD tree: spatial access to multidimensional point and non-saint objects. 1989.

Israel Herraiz. A statistical examination of the evolution and properties of libre software.
PhD thesis, Universidad Rey Juan Carlos, 2008.

Israel Herraiz. A statistical examination of the evolution and properties of libre software.
In ICSM, pages 439–442, 2009.

Israel Herraiz, Jesus M Gonzalez-Barahona, and Gregorio Robles. Towards a theoretical
model for software growth. In Proceedings of the Fourth International Workshop on
Mining Software Repositories, page 21. IEEE Computer Society, 2007a.

Israel Herraiz, Jesus M Gonzalez-Barahona, Gregorio Robles, and Daniel M German. On
the prediction of the evolution of libre software projects. In IEEE International Con-
ference on Software Maintenance, 2007 (ICSM 2007), pages 405–414. IEEE, 2007b.

Israel Herraiz, Daniel M Germán, and Ahmed E Hassan. On the distribution of source
code file sizes. In ICSOFT (2), pages 5–14, 2011.

213

http://didattica.unibocconi.eu/myigier/doc.php?idDoc=22285&IdUte=135242&idr=14063&Tipo=m&lingua=eng
http://didattica.unibocconi.eu/myigier/doc.php?idDoc=22285&IdUte=135242&idr=14063&Tipo=m&lingua=eng

Israel Herraiz, Daniel Rodriguez, Gregorio Robles, and Jesus M Gonzalez-Barahona.
The evolution of the laws of software evolution: a discussion based on a systematic
literature review. ACM Computing Surveys (CSUR), 46(2):28, 2013.

Israel Herraiz Tabernero, Daniel Rodriguez, and Rachel Harrison. On the statistical
distribution of object-oriented system properties. 2012 3rd International Workshop
on Emerging Trends in Software Metrics (WETSoM), 2012.

Keith W Hipel and A Ian McLeod. Time series modelling of water resources and envi-
ronmental systems. Elsevier Science Publishing Co, 1994.

Rob J. Hyndman and George Athanasopoulos. Forecasting: principles and practice.
OTexts, 2013.

Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast accuracy.
International journal of forecasting, 22(4):679–688, 2006.

M. Ichii, M. Matsushita, and K. Inoue. An exploration of power-law in use-relation
of Java software systems. In 19th Australian Conference on Software Engineering
ASWEC, 2008.

Lovro Ilijašic and Lorenza Saitta. Long-tailed distributions in grid complex network. In
Proceedings of 2nd Workshop Grids Meets Autonomic Computing GMAC, USA, 2010.
ACM. ISBN 978-1-4503-0100-8.

Joseph Oscar Irwin. The generalized Waring distribution. Part I. Journal of the Royal
Statistical Society. Series A (General), 138(1):pp. 18–31, 1975. ISSN 00359238.

Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

Daniel Jackson, Aleksandar Milicevic, Joe Near, Eunsuk Kang, and Emina Torlak. Alloy:
A language and a tool for relational models. Website, 2014. URL http://alloy.
mit.edu/alloy/.

Joann Jasiak. Course in Financial Econometric. York University, Department of Eco-
nomics. URL http://dept.econ.yorku.ca/jasiakj/4140/lecture6.pdf.

Norman L. Johnson, Samuel Kotz, and Adrienne W. Kemp. Univariate discrete distri-
butions. Wiley Interscience, 2nd edition edition, 1992.

Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Continuous Univariate Distri-
butions, Volume 1 and Volume 2. Wiley, 2nd edition, 1994.

Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Discrete Multivariate Distri-
butions. A Wiley-interscience publication. Wiley, 1997.

Norman L. Johnson, Samuel Kotz, and Adrienne W. Kemp. Univariate discrete distri-
butions. Wiley Interscience, 3rd editon edition, 2005.

214

http://alloy.mit.edu/alloy/
http://alloy.mit.edu/alloy/
http://dept.econ.yorku.ca/jasiakj/4140/lecture6.pdf

Dieter Jungnickel. Graphs, networks and algorithms, volume 5. Springer, 3rd edition,
2006.

Voratas Kachitvichyanukul and Bruce W Schmeiser. Binomial random variate genera-
tion. Communications of the ACM, 31(2):216–222, 1988.

Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and taxonomy
of approaches for mining software repositories in the context of software evolution.
Journal of Software Maintenance and Evolution: Research and Practice, 19(2):77–
131, 2007. ISSN 1532-0618.

Autar Kaw and Egwu Eric Kalu. Numerical methods with applications. 1st edition, 2008.

Timo Kehrer. The SiLift Project, semantic lifting of model differences. http://pi.
informatik.uni-siegen.de/Projekte/SiLift/, 2015.

Timo Kehrer, Udo Kelter, and Gabriele Taentzer. A rule-based approach to the semantic
lifting of model differences in the context of model versioning. In Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software Engineering,
pages 163–172. IEEE Computer Society, 2011.

Timo Kehrer, Udo Kelter, Manuel Ohrndorf, and Tim Sollbach. Understanding model
evolution through semantically lifting model differences with SiLift. In 28th IEEE In-
ternational Conference on Software Maintenance (ICSM 2012), pages 638–641. IEEE,
2012a.

Timo Kehrer, Udo Kelter, Pit Pietsch, and Mike Schmidt. Adaptability of model com-
parison tools. In Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2012), ASE 2012, pages 306–309, New York,
NY, USA, 2012b. ACM.

Timo Kehrer, Udo Kelter, and Gabriele Taentzer. Integrating the specification and
recognition of changes in models. Softwaretechnik-Trends, 32(2):41–42, 2012c.

Timo Kehrer, Udo Kelter, and Gabriele Taentzer. Consistency-preserving edit scripts
in model versioning. In IEEE/ACM 28th International Conference on Automated
Software Engineering (ASE 2013), pages 191–201. IEEE, 2013a.

Timo Kehrer, Udo Kelter, and Gabriele Taentzer. Consistency-preserving edit scripts
in model versioning - technical report. Technical report, Department Elektrotech-
nik und Informatik, Universität Siegen, Germany and Fachbereich Mathematik und
Informatik, Philipps-Universität Marburg, Germany, 2013b.

Timo Kehrer, Pit Pietsch, Hamed Shariat Yazdi, and Udo Kelter. Detection of high-level
changes in evolving Java software. Softwaretechnik-Trends, 33(2), 2013c.

Timo Kehrer, Michaela Rindt, Pit Pietsch, and Udo Kelter. Generating edit operations
for profiled UML models. In ME @ MoDELS, pages 30–39. Citeseer, 2013d.

215

http://pi.informatik.uni-siegen.de/Projekte/SiLift/
http://pi.informatik.uni-siegen.de/Projekte/SiLift/

Udo Kelter and Maik Schmidt. Comparing state machines. In Proceedings of the 2008
International Workshop on Comparison and Versioning of Software Models (CVSM),
pages 1–6. ACM, 2008.

Udo Kelter, Jürgen Wehren, and Jörg Niere. A generic difference algorithm for UML
models. In Software Engineering, pages 105–116, 2005.

Udo Kelter, Gabriele Taentzer, Timo Kehrer, and Kristopher Born. The MOCA Project,
specifying and recognizing model changes based on edit operations. http://www.
dfg-spp1593.de/index.php?id=46, 2015.

Bénédicte Kenmei, Giuliano Antoniol, and Massimiliano Di Penta. Trend analysis and
issue prediction in large-scale open source systems. In CSMR, pages 73–82, 2008.

Samir Khuller and Balaji Raghavachari. Graph and network algorithms. ACM Comput-
ing Surveys, 28(1):43–45, March 1996. ISSN 0360-0300.

Gebhard Kirchgässner and Jürgen Wolters. Introduction to modern time series analysis.
Springer, 2007.

Barbara Kitchenham. What’s up with software metrics? a preliminary mapping study.
Journal of Systems and Software, 83(1):37–51, 2010.

Anneke G Kleppe, Jos B Warmer, and Wim Bast. MDA explained, the Model Driven
Architecture: Practice and promise. Addison-Wesley Professional, 2003.

Donald E Knuth. The Art of Computer Programing – Volume 2 / Seminumerical Algo-
rithms, volume 2. Addison-Wesley, 2nd edition, 1998.

Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. Model comparison: A
foundation for model composition and model transformation testing. In Proceedings
of the 2006 International Workshop on Global Integrated Model Management, pages
13–20. ACM, 2006.

Dimitrios S Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard F Paige. Dif-
ferent models for model matching: An analysis of approaches to support model dif-
ferencing. In ICSE Workshop on Comparison and Versioning of Software Models
(CVSM’09), pages 1–6. IEEE, 2009.

K. Krishnamoorthy. Handbook of Statistical Distributions with Applications. Chapman
& Hall / CRC, 2006.

Maher Lamari. Towards an automated test generation for the verification of model
transformations. In Proceedings of the 2007 ACM symposium on Applied computing,
pages 998–1005. ACM, 2007.

Philip Langer, Manuel Wimmer, Petra Brosch, Markus Herrmannsdörfer, Martina Seidl,
Konrad Wieland, and Gerti Kappel. A posteriori operation detection in evolving
software models. Journal of Systems and Software, 86(2):551–566, 2013.

216

http://www.dfg-spp1593.de/index.php?id=46
http://www.dfg-spp1593.de/index.php?id=46

Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice - Using Soft-
ware Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented
Systems. Springer, 2006. ISBN 978-3-540-24429-5.

Yoann Laurent, Reda Bendraou, and Marie-Pierre Gervais. Generation of process using
multi-objective genetic algorithm. In Proceedings of the 2013 International Conference
on Software and System Process, pages 161–165. ACM, 2013.

Averill M. Law. Statistical analysis of simulation output data. Operations Research, 31
(6):983–1029, 1983.

Averill M. Law. Simulation Modeling and Analysis. McGraw-Hill, 4th edition, 2007a.

Averill M. Law. Statistical analysis of simulation output data: the practical state of the
art. In Simulation Conference, 2007 Winter, pages 77–83. IEEE, 2007b.

Averill M. Law. How to build valid and credible simulation models. In Simulation
Conference (WSC), Proceedings of the 2009 Winter, pages 24–33. IEEE, 2009.

Pierre L’Ecuyer. Uniform random number generation. Annals of Operations Research,
53(1):77–120, 1994.

Manny M Lehman. Laws of software evolution revisited. In Software process technology,
pages 108–124. Springer, 1996.

Meir M Lehman. Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE, 68(9):1060–1076, 1980.

Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladyslaw M
Turski. Metrics and laws of software evolution-the nineties view. In Proceedings of
4th International Symposium on Software Metrics, pages 20–32. IEEE, 1997.

B Yu Lemeshko, SB Lemeshko, and SN Postovalov. The power of goodness of fit tests
for close alternatives. Measurement techniques, 50(2):132–141, 2007.

Yuehua Lin, Jing Zhang, and Jeff Gray. Model comparison: A key challenge for trans-
formation testing and version control in model driven software development. In OOP-
SLA Workshop on Best Practices for Model-Driven Software Development, volume
108, page 6, 2004.

Alexander M Lindner. Stationarity, mixing, distributional properties and moments of
GARCH(p,q) processes. In Handbook of financial time series, pages 43–69. Springer,
2009.

Shiqing Ling. Self-weighted and local quasi-maximum likelihood estimators for ARMA-
GARCH/IGARCH models. Journal of Econometrics, 140(2):849–873, 2007.

Greta M Ljung and George EP Box. On a measure of lack of fit in time series models.
Biometrika, 65(2):297–303, 1978.

217

Jon Loeliger and Matthew McCullough. Version Control with Git: Powerful tools and
techniques for collaborative software development. O’Reilly Media, Inc., 2012.

Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power laws in soft-
ware. ACM Transactions on Software Engineering and Methodology (TOSEM), 18(1):
2, 2008.

Edwin Lughofer. Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Ap-
plications. Springer-Verlag Berlin Heidelberg, 2011.

David MacKenzie, Paul Eggert, and Richard Stallman. Comparing and Merging Files
with GNU diff and patch. Network Theory Ltd., 2002.

Spyros Makridakis and Michele Hibon. Evaluating accuracy (or error) measures, 1995.

Spyros Makridakis, Steven C. Wheelwright, and Rob J. Hyndman. Forecasting methods
and applications. Wiley, 3rd edition, 1998.

Michele Marchesi, Sandro Pinna, Nicola Serra, and Stefano Tuveri. Power laws in
Smalltalk. In Proceedings of the ESUG Conference, pages 27–44. Citeseer, 2004.

Anu Maria. Introduction to modeling and simulation. In Proceedings of the 29th con-
ference on Winter simulation, pages 7–13. IEEE Computer Society, 1997.

Roberto S Mariano. Testing forecast accuracy. A companion to economic forecasting,
pages 284–298, 2002.

MathWorks Company. Matlab R2013b Documentation Center. The MathWorks In-
corporation, R2013b edition, 2013. URL http://www.mathworks.com/help/
documentation-center.html.

David S Matteson and David Ruppert. Time-series models of dynamic volatility and
correlation. Signal Processing Magazine, IEEE, 28(5):72–82, 2011.

Matthew J McGill, RE Kurt Stirewalt, and Laura K Dillon. Automated test input
generation for software that consumes ORM models. In On the Move to Meaningful
Internet Systems: OTM 2009 Workshops, pages 704–713. Springer, 2009.

Allan I McLeod and William K Li. Diagnostic checking ARMA time series models using
squared-residual autocorrelations. Journal of Time Series Analysis, 4(4):269–273,
1983.

Angus Ian McLeod and Keith William Hipel. Simulation procedures for Box-Jenkins
models. Water Resources Research, 14(5):969–975, 1978.

Ian McLeod. Derivation of the theoretical autocovariance function of autoregressive-
moving average time series. Applied Statistics, 24(2):255–256, 1975.

218

http://www.mathworks.com/help/documentation-center.html
http://www.mathworks.com/help/documentation-center.html

Jacqueline A McQuillan and James F Power. A metamodel for the measurement of
object-oriented systems: An analysis using Alloy. In 1st International Conference on
Software Testing, Verification, and Validation, pages 288–297. IEEE, 2008.

Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Model-driven development.
IEEE software, pages 14–18, 2003.

Stephen J Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled: Principles
of Model-Driven Architecture. Addison-Wesley Professional, 2004.

Tom Mens. A state-of-the-art survey on software merging. IEEE Transactions on Soft-
ware Engineering, 28(5):449–462, 2002.

Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic Notes
in Theoretical Computer Science, 152:125–142, 2006.

Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer, Robert Hirschfeld,
and Mehdi Jazayeri. Challenges in software evolution. In 8th International Workshop
on Principles of Software Evolution, pages 13–22. IEEE, 2005.

Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop domain-
specific languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 3 edition, 1996.

Aleksandar Milicevic, Joseph P Near, Eunsuk Kang, and Daniel Jackson. Alloy*: A
higher-order relational constraint solver. Technical report, Computer Science and
Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), 2014.

Michael Mitzenmacher. A brief history of generative models for power law and lognormal
distributions. Internet Mathematics, 1:226–251, 2004.

Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulachi. Introduction to Time
Series Analysis and Forecasting. Wiley, 2008.

Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michále Soria. Uniform random
generation of huge metamodel instances. In Richard Paige, Alan Hartman, and Arend
Rensink, editors, Model Driven Architecture - Foundations and Applications, volume
5562 of Lecture Notes in Computer Science, pages 130–145. Springer Berlin / Heidel-
berg, 2009.

Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook, and Pamela
Zave. Matching and merging of statecharts specifications. In Proceedings of the 29th
International Conference on Software Engineering, pages 54–64. IEEE Computer So-
ciety, 2007.

219

M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary
Physics, 46:323–351, December 2005.

NIST. NIST/SEMATECH e-Handbook of Statistical Methods. NIST (National Institute
of Standards and Technology) and SEMATECH, 2013. URL http://www.itl.
nist.gov/div898/handbook/.

Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark. NIST
handbook of mathematical functions. NIST (National Institute of Standards and Tech-
nology) and Cambridge University Press, 2010.

Object Management Group OMG. Model Driven Architecture (MDA), Document num-
ber ormsc/2001-07-01. Object Management Group, 2001. URL http://www.omg.
org/mda/.

Object Management Group OMG. Meta Object Facility (MOF) Specification, Version
1.4, formal/05-05-05. Object Management Group, 2005a.

Object Management Group OMG. Unified Modeling Language Specification Version
1.4.2, formal/05-04-01. 2005b.

Object Management Group OMG. Meta Object Facility (MOF) 2.0 Query / View /
Transformation Specification, Version 1.1. OMG White Paper, 2011.

Object Management Group OMG. Information technology - Object Management Group
Object Constraint Language (OCL) formal/2012-05-09. Object Management Group,
2012a.

Object Management Group OMG. Information technology - Object Management Group
Unified Modeling Language (OMG UML), Superstructure, formal/2012-05-07. 2012b.

Object Management Group OMG. Model-Driven Architecture (MDA) Guide, Revision
2.0, Document ormsc/2014-06-01. Object Management Group, 2014. URL http:
//www.omg.org/mda/.

Stefan Otte. Version control systems. Computer Systems and Telematics Institute of
Computer Science Freie Universität Berlin, Germany, 2009.

Filippo E Pani and Giulio Concas. Stochastic models of software development activities.
In Proceedings of International WSEAS Conference, number 7 in Recent Advances in
Computer Engineering Series. WSEAS, 2012.

Pit Pietsch. The SiDiff framework, technical report. Technical report, Universität Siegen,
Praktische Informatik, 2009. URL http://pi.informatik.uni-siegen.de/
Mitarbeiter/pietsch/publications/TechRep.pdf.

Pit Pietsch and Hamed Shariat Yazdi. The QuDiMo project. http://pi.
informatik.uni-siegen.de/qudimo/, 2011.

220

http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://www.omg.org/mda/
http://www.omg.org/mda/
http://www.omg.org/mda/
http://www.omg.org/mda/
http://pi.informatik.uni-siegen.de/Mitarbeiter/pietsch/publications/TechRep.pdf
http://pi.informatik.uni-siegen.de/Mitarbeiter/pietsch/publications/TechRep.pdf
http://pi.informatik.uni-siegen.de/qudimo/
http://pi.informatik.uni-siegen.de/qudimo/

Pit Pietsch, Hamed Shariat Yazdi, and Udo Kelter. Generating realistic test models for
model processing tools. In 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pages 620 –623, nov. 2011.

Pit Pietsch, Hamed Shariat Yazdi, and Udo Kelter. Controlled generation of models
with defined properties. In Software Engineering, pages 95–106, 2012a.

Pit Pietsch, Hamed Shariat Yazdi, Udo Kelter, and Timo Kehrer. Assessing the quality
of model differencing engines. In Comparison and Versioning of Software Models
(CVSM 2012), 2012b.

C Michael Pilato, Ben Collins-Sussman, and Brian W Fitzpatrick. Version control with
subversion. O’Reilly Media, Inc., 2008.

Hartmut Pohlheim. GEATbx: Genetic and evolutionary algorithm toolbox for use with
Matlab documentation. http://www.geatbx.com/docu/docutoc.html, version
3.80 edition, December 2006.

A. N. Porunov. Box-Cox transforamtion and the illusion of the Normality of macroeco-
nomics series. Business Informatics, 2, 2010.

Alex Potanin, James Noble, Marcus Frean, and Robert Biddle. Scale-free geometry in
oo programs. Communications of the ACM, 48(5):99–103, 2005.

Distributions Core Team R-forge. A guide on probability distributions, 2008-2009.

Svetlozar T. Rachev, Stefan Mittnik, Frank J. Fabozzi, Sergio Focardi, and Teo Jasic.
Financial Econometrics: From Basics to Advanced Modeling Techniques. John Wiley
and Sons, Inc., 2007.

Uzma Raja, David P. Hale, and Joanne E. Hale. Modeling software evolution defects: a
time series approach. Journal of Software Maintenance and Evolution: Research and
Practice, 21(1):49–71, 2009.

Nornadiah Mohd Razali and Yap Bee Wah. Power comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical
Modeling and Analytics, 2(1):21–33, 2011.

Ronald C Read and Derek G Corneil. The graph isomorphism disease. Journal of Graph
Theory, 1(4):339–363, 1977.

Colin R. Reeves and Jonathan E. Rowe. Genetic Algorithms Principles and Presentation,
A Guide to GA Theory. Kluwer Academic Publisher, 2002.

Michaela Rindt, Timo Kehrer, and Udo Kelter. Automatic generation of consistency-
preserving edit operations for mde tools. In Proceedings of the Demonstrations Track
of the ACM/IEEE 17th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2014) Valencia, Spain., 2014.

221

http://www.geatbx.com/docu/docutoc.html

Brian D. Ripley. Stochastic Simulation. Wiley, 1987.

Sheldon M. Ross. Simulation. Academic Press, 4th edition, 2006.

Eduardo Rossi. Lecture notes on GARCH models, March 2004. URL
http://economia.unipv.it/pagp/pagine_personali/erossi-old/
note32004a.pdf.

David Ruppert. Statistics and Data Analysis for Financial Engineering. Springer, 2011.

R. M. Sakia. The Box-Cox transformation technique: A review. Journal of the Royal Sta-
tistical Society. Series D (The Statistician), 41(2):pp. 169–178, 1992. ISSN 00390526.

Joao Paulo Pedro Mendes de Sousa Saraiva. Development of CMS-based web applications
with a multi-language model-driven approach. PhD thesis, Instituto Superior Tecnico,
Universidade Tecnica de Lisboa, 2013.

Richard Saucier. Computer Generation of Statistical Distributions. Army Research
Laboratory, 2000.

Douglas C Schmidt. Guest editor’s introduction: Model-driven engineering. Computer,
39(2):25–31, 2006.

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):
461–464, 1978.

Edwin Seidewitz. What models mean. IEEE Software, 20(5):26–32, 2003.

Andrew F Seila. Advanced output analysis for simulation. In Proceedings of the 24th
Conference on Winter Simulation, pages 190–197. ACM, 1992.

Bran Selic. The pragmatics of model-driven development. Software, IEEE, 20(5):19–25,
2003.

Bran Selic. Personal reflections on automation, programming culture, and model-based
software engineering. Automated Software Engineering, 15(3-4):379–391, 2008.

Petri Selonen. A review of UML model comparison approaches. In Nordic Workshop on
Model Driven Engineering, page 37, 2007.

Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. Automatic model generation strate-
gies for model transformation testing. In Theory and Practice of Model Transforma-
tions, pages 148–164. Springer, 2009.

Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and soul of
model-driven software development. IEEE Software, 20(5):42–45, 2003.

Robert E Shannon. Introduction to the art and science of simulation. In Proceedings
of the 30th Conference on Winter Simulation, pages 7–14. IEEE Computer Society
Press, 1998.

222

http://economia.unipv.it/pagp/pagine_personali/erossi-old/note32004a.pdf
http://economia.unipv.it/pagp/pagine_personali/erossi-old/note32004a.pdf

Hamed Shariat Yazdi and Pit Pietsch. The SiDiff Model Generator. http://pi.
informatik.uni-siegen.de/qudimo/smg/, 2011.

Hamed Shariat Yazdi, Pit Pietsch, Timo Kehrer, and Udo Kelter. Statistical analysis of
changes for synthesizing realistic test models. In Multi-conference Software Engineer-
ing 2013 (SE2013), pages 225–238. Gesellschaft für Informatik (GI), 2013.

Hamed Shariat Yazdi, Mahnaz Mirbolouki, Pit Pietsch, Timo Kehrer, and Udo Kelter.
Analysis and prediction of design model evolution using time series. In Advanced
Information Systems Engineering Workshops, volume 178 of Lecture Notes in Business
Information Processing, pages 1–15. Springer International Publishing, 2014a. ISBN
978-3-319-07868-7.

Hamed Shariat Yazdi, Pit Pietsch, Timo Kehrer, and Udo Kelter. Synthesizing realistic
test models. Computer Science - Research and Development, pages 1–23, 2014b.

Raed Shatnawi and Qutaibah Althebyan. An empirical study of the effect of power law
distribution on the interpretation of oo metrics. ISRN Software Engineering, 2013,
2013.

Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications:
With R Examples. Springer, 3rd edition, 2011.

S. N. Sivanandam and S. N. Deepa. Introduction to genetic algorithms. Springer, 2008.

Harvey Siy, Parvathi Chundi, Daniel J. Rosenkrantz, and Mahadevan Subramaniam. A
segmentation-based approach for temporal analysis of software version repositories.
Journal of Software Maintenance and Evolution, 20(3):199–222, 2008. ISSN 1532-
060X.

Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software De-
velopment: Technology, Engineering, Management. John Wiley & Sons, 2006. ISBN
0470025700.

Michael Steele and Janet Chaseling. Powers of discrete goodness-of-fit test statistics
for a uniform null against a selection of alternative distributions. Communications in
Statistics - Simulation and Computation, 35(4):1067–1075, 2006.

Mike Steele, Janet Chaseling, and Cameron Hurst. Comparing the simulated power of
discrete goodness-of-fit tests for small sample sizes. In 2nd International Conference on
Asian Simulation and Modeling, Towards Sustainable LIvelihood and Environment.,
2007.

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley, Boston, MA, 2nd edition, 2009. ISBN 978-0-
321-33188-5.

223

http://pi.informatik.uni-siegen.de/qudimo/smg/
http://pi.informatik.uni-siegen.de/qudimo/smg/

Matthew Stephan and James R Cordy. A survey of methods and applications of model
comparison. Technical report, Queen’s University, Ontario, Canada, 2012.

Matthew Stephan and James R Cordy. A survey of model comparison approaches and
applications. International Conference on Model-Driven Engineering and Software
Development MODELSWARD (To Appear), 2013.

Andreas Svendsen, Øystein Haugen, and Birger Møller-Pedersen. Synthesizing software
models: generating train station models automatically. In SDL 2011: Integrating
System and Software Modeling, pages 38–53. Springer, 2012.

Gabriele Taentzer. Instance generation from type graphs with arbitrary multiplicities.
Electronic Communications of the EASST, 47, 2012.

Tetsuo Tamai. Process of software evolution. In 2013 International Conference on
Cyberworlds. IEEE Computer Society, 2002.

Tetsuo Tamai and Takako Nakatani. An empirical study of object evolution processes.
In International Workshop on Principles of Software Evolution (IWPSE’98), pages
33–37, 1998.

Tetsuo Tamai and Takako Nakatani. Analysis of software evolution processes using
statistical distribution models. In Proceedings of the International Workshop on Prin-
ciples of Software Evolution, pages 120–123. ACM, 2002.

David B Thomas, Wayne Luk, Philip HW Leong, and John D Villasenor. Gaussian
random number generators. ACM Computing Surveys (CSUR), 39(4):11, 2007.

Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. Difference computation
of large models. In Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC-FSE ’07, pages 295–304, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-811-4.

Ruey S. Tsay. Analysis of financial time series. Wiley, 2nd edition, 2005.

Ruey S. Tsay. An introduction to analysis of financial data with R. Wiley, 2013.

Ivana Turnu, Giulio Concas, Michele Marchesi, Sandro Pinna, and Roberto Tonelli. A
modified Yule process to model the evolution of some object-oriented system proper-
ties. Information Sciences, 181(4):883–902, 2011.

University of Siegen. Bibliography on comparison and versioning of software models.
Online, 2014. URL http://pi.informatik.uni-siegen.de/CVSM/.

Rajesh Vasa. Growth and change dynamics in open source software systems. PhD thesis,
Swinburne University of Technology, 2010.

224

http://pi.informatik.uni-siegen.de/CVSM/

Rajesh Vasa, Jean-Guy Schneider, and Oscar Nierstrasz. The inevitable stability of
software change. In IEEE Inter. Conf. Software Maintenance, ICSM, 2007a.

Rajesh Vasa, Jean-Guy Schneider, Oscar Nierstrasz, and Clinton Woodward. On the
resilience of classes to change. ECEASST, 8, 2007b.

Rajesh Vasa, Markus Lumpe, and Allan Jones. Helix - Software Evolution Data Set,
2010. URL http://www.ict.swin.edu.au/research/projects/helix.

Viktor. The Box-Cox transforamtion. Online, March 2010. URL http://www.mql5.
com/en/articles/363.

Markus Voelter and et al. DSL Engineering Designing, Implementing and Using Domain-
Specific Languages. dslbook.org, 2013.

Dennis Wackerly, William Mendenhall, and Richard Scheaffer. Mathematical statistics
with applications. Cengage Learning, 7th edition, 2007.

Christian Walck. Handbook on statistical distributions for exprimentalists. Technical
report, Particle Physics Group, Fysikum, University of Stockholm, September 2007.

Junhua Wang, Soon-Kyeong Kim, and David Carrington. Automatic generation of test
models for model transformations. In 19th Australian Conference on Software Engi-
neering (ASWEC 2008), pages 432–440. IEEE, 2008.

Jos B Warmer and Anneke G Kleppe. The Object Constraint Language: getting your
models ready for MDA. Addison-Wesley Professional, 2003.

Website. Accompanied material and data of the thesis. http://pi.informatik.
uni-siegen.de/qudimo, 2015.

William W. S. Wei. Time series analysis, univariate and multivariate methods. Pearson,
2nd edition, 2006.

Sven Wenzel. Unique identification of elements in evolving models, towards fine-grained
tracibility in model-driven engineering. PhD thesis, Universität Siegen, 2010.

Sven Wenzel and Udo Kelter. Analyzing model evolution. In ACM/IEEE 30th Interna-
tional Conference on Software Engineering (ICSE ’08), pages 831 –834, may 2008.

Sven Wenzel, Hermann Hutter, and Udo Kelter. Tracing model elements. In IEEE In-
ternational Conference on Software Maintenance (ICSM 2007), pages 104–113. IEEE,
2007.

Richard Wheeldon and Steve Counsell. Power law distributions in class relationships.
In Proceedings of 3rd IEEE International Workshop on Source Code Analysis and
Manipulation, pages 45–54. IEEE, 2003.

225

http://www.ict.swin.edu.au/research/projects/helix
http://www.mql5.com/en/articles/363
http://www.mql5.com/en/articles/363
http://pi.informatik.uni-siegen.de/qudimo
http://pi.informatik.uni-siegen.de/qudimo

James R Williams and Simon Poulding. Generating models using metaheuristic search.
Sponsoring Institutions, page 53, 2011.

James R Wilson and A Alan B Pritsker. Evaluation of startup policies in simulation
experiments. Simulation, 31(3):79–89, 1978a.

James R Wilson and A Alan B Pritsker. A survey of research on the simulation startup
problem. Simulation, 31(2):55–58, 1978b.

Gejza Wimmer and Gabriel Altmann. Thesaurus of univariate discrete probability dis-
tributions. Stamm, 1st edition edition, 1999.

Wolfram Research Inc. Matematica 10 Language and System Documentation Center,
version 10 edition, 2014. URL http://reference.wolfram.com/language/.

Hao Wu, Rosemary Monahan, and James F Power. Metamodel instance generation: A
systematic literature review. arXiv preprint arXiv:1211.6322, 2012.

Wenjin Wu, Wen Zhang, Ye Yang, and Qing Wang. Time series analysis for bug number
prediction. In Proceedings of 2nd International Conference on Software Engineering
and Data Mining (SEDM), pages 589–596, 2010.

Diethelm Wurtz, Yohan Chalabi, and Ladislav Luksan. Parameter estimation of ARMA
models with GARCH/APARCH errors. an R and S-Plus software implementation.
Journal of Statistical Software, forthcoming, 2006.

He Xiao, Zhang Tian, Ma Zhiyi, and Shao Weizhong. Randomized model generation for
performance testing of model transformations. In Computer Software and Applications
Conference (COMPSAC), 2014 IEEE 38th Annual, pages 11–20. IEEE, 2014.

Zhenchang Xing and Eleni Stroulia. UMLDiff: An algorithm for object-oriented de-
sign differencing. In Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering, pages 54–65. ACM, 2005.

Bo Zhou, Dan He, and Zhili Sun. Traffic predictability based on ARIMA/GARCHmodel.
In 2nd Conference on Next Generation Internet Design and Engineering (NGI’06),
pages 8–pp. IEEE, 2006.

Eric Zivot and Jiahui Wang. Modelling Financial Time Series with S-Plus. Springer,
second edition, 2006.

Peter Zörnig and Gabriel Altmann. Unified representation of Zipf distributions. Com-
putational Statistics and Data Analysis, 19(4):461 – 473, 1995. ISSN 0167-9473.

226

http://reference.wolfram.com/language/

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction and Preliminaries
	Introduction
	Introduction
	Research Goals and Contributions
	Dissertation Structure
	Publications Associated to this Dissertation

	Preliminaries and Background
	A Glimpse into the Model-Driven Engineering World
	Model-Driven Architecture
	Models and Meta-Models
	Abstraction Layers and Meta Object Facility
	UML, XMI and OCL
	Model Transformations and QVT
	Model Versioning

	Graph Representation of Models
	Model Differencing
	Model Differencing Concepts
	Model Differencing Approaches
	Generic Model Differencing Approaches

	Difference Computation In This Dissertation
	SiDiff Differences Computation Engine
	SiLift Semantic Difference Lifting Engine

	Summary

	Generating Test Models
	Controlled Generation of Models with Defined Properties
	Introduction and Background
	Existing Approaches for Generating Models
	Direct Non-formal Approaches
	Direct Formal Approaches
	Indirect Approaches
	Summary of the Reviewed Literature

	SiDiff Model Generator
	Requirements
	Overview
	Main Usage Scenarios
	Interpretation Modes
	Model Modification Process
	Edit Operations of Models

	Controlling the Generation Process
	Model Properties in the Generation Process
	Selection Policies
	Decision Tables

	Evaluation
	Summary

	Analysis of Design Models Evolution
	Capturing the Evolution of Design Models
	Motivation
	Structural Differencing of Models
	Representation and Editing of Models
	Differencing of Models
	Difference Calculation Using the SiDiff/SiLift Framework

	Application to Evolving Java-based Systems
	Example
	Representation of Java Projects as Models
	Low-level Changes
	High-Level Changes

	Selection of Sample Projects and the Data Sets
	Summary

	Statistical Analysis and Simulation of Design Models Changes
	Statistical Models for Describing Changes
	Mathematical Requirements
	Discrete Pareto Distribution and Power Law
	Beta Binomial Distribution
	Yule, Waring and Beta-Negative Binomial Distributions
	Generalized Poisson Distributions

	Analysis of Changes and Results
	Analysis of Low-Level Changes
	Discrete Pareto Distribution
	Beta Binomial Distribution
	Yule Distribution
	Waring Distribution
	Beta-Negative Binomial Distribution
	Generalized Poisson Distribution

	Analysis of High-Level Changes
	Conclusion of Analyses
	Threats to the Validity of Analyses

	Generating Random Variates of the Proposed Distributions
	Introduction to Random Variate Generation
	Random Variates of the Discrete Pareto Distribution
	Random Variates of the Yule, Waring and Beta-Negative Binomial Distributions
	Random Variates of the Beta Distribution
	Random Variates of the Negative Binomial Distribution

	Random Variates of the Beta Binomial Distribution
	Random Variates of the Generalized Poisson Distribution
	Summary of Random Variate Generations

	Related Works
	Summary

	Time Series Analysis and Simulation of Design Models Evolution
	Time Series
	Stationary Time Series
	General Linear Process and the Wold Decomposition Theorem
	ARMA, GARCH and ARMA-GARCH Models
	ARMA and ARIMA Models
	ARCH and GARCH Models
	ARMA-GARCH Models

	Methodology for Time Series Modeling
	Methodology of ARMA and ARIMA Models
	Methodology of GARCH Models
	Methodology of ARMA-GARCH Models

	Accuracy of Forecasts

	Modeling the Evolution
	Data Description and Transformation
	Time Series Models of Evolution
	Estimation and Diagnostics of the Time Series Models

	Assessing the Time Series Models
	Comparing ARMA and ARMA-GARCH Models
	Forecasting Performance of the Time Series Models
	Accuracies of Forecasts
	Comparing Accuracies of Forecasts

	Simulation of Model Evolution
	General Considerations for Simulation
	Simulating Sequences of the Proposed Time Series Model
	Random Variates of the Normal Distribution
	Initial Conditions in the Simulation of the Time Series Models

	Generating More Realistic Model Histories

	Threats to the Validity of Analyses
	Accuracy in the Measurement of Changes
	Best Model Selection Strategy
	Forecasting Performance of the Time Series Models
	External Validity
	Validity of the Simulation

	Related Works
	Summary and Conclusion

	Conclusions and Outlook
	Conclusions and Outlook
	Summary and Conclusion
	Outlook and Future Research Directions

	References

