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Abstract

Model-driven engineering (MDE) has become a widespread approach for developing
software in many application domains. Models are primary development documents in
MDE and subject to continuous evolution. Models therefore have many versions and
variants during system lifetime. Thus, the specification and recognition of changes in
models is the key to understand and manage the evolution of a model-based system.

However, currently available model versioning tools operate on low-level, sometimes
tool-specific model representations which can be considered as an implementation of the
abstract syntax graph (ASG) of a model. Moreover, primitive graph edit operations
are used to specify model changes. This leads to two serious problems: Firstly, the
resulting model differences are hard to understand for normal tool users who are not
familiar with the internal, graph-based representation of models and the related types
of nodes and edges which are usually defined by a meta-model. Secondly, generic graph
operations lead to further problems in change propagation scenarios since they can
violate consistency constraints in ASGs. In the worst case, which particularly applies
to all kinds of visual models, the synthesized result can no longer be opened in standard
visual editors and must be corrected based on the serialized data format (e.g. XML)
by using low-level textual editors, which is obviously a tedious task prone to errors.

Model differences should therefore be based on edit operations which are understand-
able for modelers and which preserve elementary consistency constraints in the sense
that models remain displayable in visual editors. Edit operations which are offered as
editing commands in standard editors or modern refactoring tools are examples of this.
The tight integration of editing and versioning tools requires consistent specifications
of edit operations; this integration is a largely open problem. The main objective of
this thesis is to provide a solution for this problem and to systematically lift model
versioning concepts, algorithms and tools to a higher level of abstraction.

The central idea is to formally specify the available edit operations for a given type
of models as transformation rules using the model transformation language Henshin
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which is based on graph transformation concepts. These formal specifications are au-
tomatically transformed into recognition rules being used by a lifting algorithm which
recognizes edit operations in a low-level difference of two model versions. The approach
has been implemented and evaluated in a framework which is known as SiLift and which
is based on the widely used Eclipse Modeling Project.



Kurzfassung

Modellbasierte Softwareentwicklung ist in einigen Domänen inzwischen gängige Praxis.
Modelle sind hier primäre Artefakte. Sie entwickeln sich daher ständig weiter und
existieren im Laufe ihrer Evolution in zahlreichen Versionen und Varianten. Die Spezi-
fikation und Erkennung von Änderungen an Modellen sind somit fundamentale Voraus-
setzung, um die Evolution modellbasierter Systeme zu verstehen und zu kontrollieren.

Derzeitig verfügbare Werkzeuge des Versions- und Variantenmanagements für Mo-
delle arbeiten jedoch auf systemnahen, fallweise werkzeugspezifischen Repräsentatio-
nen von Modellen, letzten Endes einer Implementierung des abstrakten Syntaxgraphen
(ASG) eines Modells. Ferner werden primitive Graphoperationen zur Beschreibung von
Änderungen an Modellen unterstellt. Dies führt zu zwei wesentlichen Problemen: Zum
einen ist die Darstellung solcher “low-level” Änderungen meist unverständlich, ohne
Kenntnisse der internen, ASG-basierten Repräsentation der Modelle teilweise sogar
unmöglich. Zum anderen birgt die Anwendung von low-level Änderungen im Rahmen
der Propagation von Änderungen die Gefahr der Synthetisierung inkonsistenter Mo-
delle. Im schlimmsten Fall kann ein Modell so inkorrekt werden, dass es nicht mehr
mit Standard-Modelleditoren verarbeitet werden kann. Dies gilt insbesondere für vi-
suelle Modelle, welche in diesem Fall nur noch mit einfachen textuellen Editoren auf
Basis der Repräsentation des serialisierten Datenformats (z.B. XML) bearbeitet und
korrigiert werden können.

Modelldifferenzen sollten daher auf für den Benutzer verständlichen, konsistenzer-
haltenden Editieroperationen basieren, wie sie bspw. von Modelleditoren oder mod-
ernen Refactoring-Werkzeugen angeboten werden. Zur Erkennung derartiger Editier-
operationen existieren bislang nur erste Ansätze. Die enge Integration von Editier-
und Differenzwerkzeugen erfordert konsistente Spezifikationen der Editieroperationen;
diese Integration ist ein offenes wissenschaftliches Problem. Ziel dieser Arbeit ist es,
dieses Integrationsproblem zu lösen und die Versionierungskonzepte, -algorithmen und
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-werkzeuge von einem derzeit systemnahen Niveau auf ein möglichst hohes, benutzer-
nahes Abstraktionsniveau anzuheben.

Kernidee des im Rahmen dieser Dissertation entwickelten Ansatzes ist es, die für
einen Modelltyp verfügbaren Editieroperationen formal zu spezifizieren. Hierzu wird
die Graphersetzungs- und Modelltransformationssprache Henshin genutzt. Editier-
regeln werden automatisiert in Erkennungsregeln übersetzt, welche zur Erkennung von
Editieroperationen in low-level Differenzen genutzt werden. Eine Referenzimplemen-
tierung des Ansatzes ist im Rahmen des Eclipse-basierten Frameworks SiLift verfügbar
und wurde in zahlreichen Fallstudien evaluiert.
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CHAPTER1

Introduction

1.1 Model-driven Engineering

Modeling has a long tradition in software engineering in order to deal with the com-
plexity of large-scale software systems. Many modeling languages, notations and tech-
niques such as state charts, markov chains, data flow diagrams, Petri nets etc. have
been proposed for different purposes, a brief historical perspective is given in [170]. A
classification criterion for models in software engineering is whether they are used in a
descriptive or prescriptive way [168].

Descriptive modeling is in line with the frequently cited notion of a model accord-
ing to Stachowiak [227]. A descriptive model serves as an abstract representation of
an original (mapping feature) and thereby reflects a subset of its properties (reduc-
tion feature) which are considered as relevant for some specific purpose (pragmatical
feature). An original can be, for instance, an already existing system, a development
process being applied in a running project, etc. Thus, descriptive models in software
engineering usually capture some knowledge for the purpose of documentation, facili-
tate the effective communication of information to project stakeholders, or enable the
analysis of certain quality attributes of a system or process.

Most of the models used in software engineering are prescriptive. Here, Stachowiak’s
definition is extended to allow an original not yet to be existent [153]. Prescriptive
models are used as a specification of sth. to be created (e.g. a software system), or sth.
to be performed or executed (e.g. a development process). They serve as a construction
plan, provide instructions to some activity, are used to simulate a system before it actu-
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2 Chapter 1. Introduction

ally exists or allow us to forecast critical non-functional properties such as performance
or security.

Models as primary development artifacts. Model-driven engineering (MDE),
also known as model-driven development (MDD), is a software development method-
ology which has recently gained a lot of interest in many application domains. The
core idea is to use prescriptive models as a construction plan of a system to be created.
Most often, a variety of models (or sub-models) is used to describe different structural
and behavioral aspects of a system. Most of these aspects or “views” are typically
specified using a dedicated modeling language which abstracts from the underlying
implementation technology and which is intended to be much closer to the problem
domain than classical general purpose programming languages [222]. In contrast to
their traditional usage as design blueprints or sketches, models in MDE are rather used
to generate various types of development artifacts, notably source code, configuration
files, test data or other types of models. Consequently, model transformers or compilers
generate machine code from models in one or several steps. Models with well-defined
execution semantics can also be interpreted directly in a runtime environment. Ideally,
developers will no longer see the compiled intermediate models or the final code. Thus,
compared to traditional code-centric development, MDE has the potential to increase
development productivity, to achieve a higher degree of portability across different
runtime environments and to synthesize software which is “correct by construction”
through the use of (certified) code generators. Moreover, the use of models enables the
application of supplementary quality assurance techniques such as model checking or
model-based testing.

Model-driven engineering and its variations. Different approaches to MDE vary
substantially with respect to the adopted modeling languages and notations, the trans-
formation chains being used to convert abstract models into executable programs, and
the degree to which traditional code-centric development techniques shall be replaced.
The latter aspect is sometimes used to distinguish model-driven from model-based en-
gineering (MBE); while MDE aims at generating most parts of a system, the degree of
automation is typically much lower in MBE. Nonetheless, models still play an important
role in the development process.

The most prominent MDE variant is probably the Model Driven Architecture (MDA)
[47, 194] initiative as promoted by the Object Management Group (OMG). MDA may
be defined as the realization of MDE principles around a set of OMG standards like
MOF, XMI, OCL, UML and QVT [48]. Moreover, MDA introduces a set of standard
notions which are widely adopted by the MDE community. In particular, a dedi-
cated runtime environment and related implementation technologies are referred to
as platform. Consequently, abstract analysis models which are typically created in
early development phases are referred to as platform-independent models. Design-level
models which can be used to generate executable implementation artifacts are called
platform-specific models.
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There are several other approaches to MDE, all of them having a slightly different
focus. In particular, many approaches, e.g. [117, 135], promote the use of domain-
specific modeling languages (DSMLs). DSMLs have a small scope and formalize the key
concepts of a particular domain of interest; developers use DSMLs to build applications
using elements which directly represent concepts of a certain problem space.

Conclusions. While the specific characteristics of different MDE variants are largely
irrelevant within the scope of this thesis, we can conclude that this development
methodology comes with two important characteristics: Firstly, models are systemati-
cally used as primary development artifacts throughout the engineering lifecycle. Sec-
ondly, MDE typically involves a multitude of different modeling languages being used
for different purposes. The latter one significantly distinguishes MDE from computer-
aided software engineering (CASE) in the 1980s. Early CASE tools were rarely adopted
in practice for several reasons, one of them was that they didn’t support specific appli-
cation domains effectively because their “one-size-fits-all” visual representations were
too generic [215].

1.2 Model Evolution, Version and Variant

Management

Complex software systems are subject to continuous change and heavily evolve during
all stages of their lifecycle. Traditionally, software evolution is considered as a phe-
nomenon which can be observed for software systems being operated for a long period
of time [160]. During operation and maintenance, new requirements emerge when a
system is used, errors must be corrected, and non-functional properties such as relia-
bility or performance must be improved [44]. Using platform-independent models as
primary development artifacts reduces adaptive maintenance cost caused by the evo-
lution of platforms, but does not prevent the models being subject to all other kinds
of maintenance. When requirements change, models must change, too. Models of soft-
ware systems therefore have many versions during system lifetime. Typically, several
versions of a model have been rolled-out to customers and evolve as variants in parallel
branches. Thus, there is not “the one and only” latest version of a model, but a number
of evolving parallel branches.

Besides the traditional, “long-term meaning” of evolution, development artifacts in-
volved in modern software development are subject to evolution from the early be-
ginning as it is common practice to iteratively develop large software systems [159].
Iterative development helps to break down the whole system functionality into smaller,
manageable increments and allows a developer to take advantage of what has been
learned during earlier iterations [39]. Thus, software development can be seen as an
evolutionary process, too [115]. The principle of iterative development obviously also
applies to models. Moreover, models of large and complex systems must be collabora-
tively developed in teams [113]. Collaborative work is usually supported by an opti-
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mistic versioning approach based on local workspaces and a central repository, which
leads to another form of parallel evolution of model variants which have to be finally
consolidated.

As a consequence, models of a model-based system typically have many versions
during their lifetime. Two versions of a model can be a revision or a variant of one
another. A version v2 is a revision of a version v1 if v2 was declared to be the successor
of v1. Revision v2 is typically produced by incrementally changing v1. Thus, the
chronological evolution of a model is represented by a sequence of revisions. Two
versions of a model are variants of each other if they model the same system (or aspect
of a system) in different ways. Consequently, variants coexist for some period of time.
Parallel development leads to variants residing in local workspaces which are intended
to be continuously integrated into consolidated versions. Long-living variants coexist
and evolve independently of each other in parallel development branches. Thus, each
branch has its own history of successive revisions. In this context, the term variant is
often used as an abstraction that represents the complete branch including its sequence
of revisions.

Traditionally, software configuration management (SCM) is the discipline of manag-
ing the evolution of large and complex software systems [77, 243]. As a support disci-
pline for project management, SCM activities such as change control, status accounting,
reviews and audits are tightly integrated into the project management process. Thus,
strict procedures define when to perform a change, the corresponding change requests
and their current implementation status are clearly documented. From a software de-
velopment point of view, SCM introduces system building as well as version and variant
management into the development process, the latter one is addressed in this thesis.
Version and variant management helps to maintain overview in large software systems
(or system families) evolving into many revisions and variants, and to coordinate devel-
opers working in teams [243]. Essential tool support is provided by version management
systems, which are also known as versioning, version control or revision control systems.
Besides basic storage services including the management of successor relationships be-
tween revisions, users and user permissions, and other administrative data, version
control systems essentially rely on a set of tool functions which are commonly referred
to as differencing and merging of documents. Conventional version management sys-
tems such as CVS [105], Subversion [76] or Git [165] provide these services only for
textual documents. Text-based services work satisfactorily for all kinds of textual doc-
uments such as source code, build scripts or requirements specifications. Developers are
used to edit these documents in their textual representation, and line-based differences
between versions of these documents can be easily understood.

However, with the advent of model-driven engineering, visual models became an-
other, non-textual type of documents which are an integral part of the software and
which therefore have to be put under version control, too. At first sight, it appears
to be a straightforward solution to store visual models in some textual representa-
tion, for example based on the XML Metadata Interchange (XMI) [196] standard, and
to use a conventional version management system for software models. All the well-
known services such as check-in/out to workspaces, retrieval of old versions, transport
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of documents via networks, notification, tagging etc. can readily be reused. Everything
works fine in this approach, except model differencing, patching and merging. Despite
a decade of research in the field of model version and variant management, there is
still a substantial lack of basic tool functions for comparing and reliably merging mod-
els. Available tools are not nearly as mature and widely applicable as their traditional
counterparts. This is frequently being reported as one of the biggest obstacles in the
practical application of the MDE paradigm [25, 40, 41, 42, 98]. Consequently, model
evolution and model versioning are identified as one of the key challenges in MDE. For
instance, the research roadmap in [108] identifies model manipulation and management
as one of three major challenges that must be tackled in order to fully realize the MDE
vision of software development. Van der Straeten et al. [248] additionally mention
model evolution, inconsistency management and collaborative work.

1.3 Problem Motivation

Basic services of tools supporting version management include comparison, merging,
and patching of models. Conceptually, these services are based on several notions,
the most fundamental one being a difference (or delta). Comprehensive conceptual
frameworks for versioning have been developed in the context of source code versioning
[77, 180]. These frameworks define a directed delta (or difference) as a sequence of
(elementary) edit steps s1. . . sm which, when applied to a document version v1, yields
another version v2. An edit step invokes an edit operation and supplies appropriate
actual parameters.

These definitions leave open how documents are represented conceptually and which
edit operations are available for modifying a document. A classical approach is to
use textual representations of documents and text editing operations [210, 241]. It
has often been suggested to conceptually represent source code as abstract syntax tree
(AST) and to use elementary tree editing operations in edit steps, which enables syn-
tactic differencing [268] and usually leads to a better conflict detection compared with
textual merging [67]. More advanced approaches propose to use non-elementary trans-
formations such as refactorings as edit operations for ASTs. Directed deltas based on
complex edit operations enable “structural merging” [180] which exploits the semantics
of complex restructurings of object-oriented programs [84, 164]. While the advantages
of structural merging are undisputed, appropriate tool support is difficult to implement
and hard to find in practice [99].

The above considerations also apply to models. It is state of the art to consider mod-
els conceptually as abstract syntax graphs (ASG) and to use primitive graph operations
such as creating/deleting single nodes/edges as edit operations for ASGs. Primitive
graph editing operations are generic in the sense that they can operate on arbitrary
ASGs. Generic operations are an attractive solution as they are easy to implement and
can be used to modify models of any type. However, from a tool user’s point of view,
the use of primitive edit operations causes several serious problems.

Most notably, describing model changes based on primitive graph operations leads
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to low-level differences which are hard to understand for normal tool users. They
are usually not familiar with the ASG-based representation of models and the related
types of nodes and edges which are typically defined by a meta-model. Such “meta-
model based difference reports” are not intuitive and rather confusing for modelers [25].
This problem is further aggravated by the fact that versioning tools work on internal
representations of models which can normally be considered as implementations of
abstract syntax graphs. Internal representations of models depend on the technologies
being used to implement difference tools, notably the specific programming language
and, where applicable, modeling frameworks such as the Eclipse Modeling Framework
(EMF) [88]. The according “design-level meta-models” are often tool-specific and can
deviate from standard meta-models as, for instance, defined by the OMG.

Generic graph operations lead to further problems in patching or merging scenarios as
they can violate consistency constraints in ASGs. In the worst case, which particularly
applies to all kinds of visual models, the synthesized result can no longer be opened
in standard visual editors and must be corrected based on the serialized data format
(e.g. XML) by using low-level textual editors, which is obviously a tedious task prone
to errors.

Difference tools for models should therefore be based on edit operations which are
understandable for modelers and which preserve elementary consistency constraints in
the sense that models remain displayable in visual editors. Edit operations which are
offered as editing commands in standard editors are an example of this. If available,
the set of edit operations should further include complex edit operations which are
meaningful from a user’s point of view, e.g. complex edit operations being offered
by modern refactoring tools. We generally refer to these kinds of edit operations as
user-level edit operations. These edit operations are high-level in the sense that they
usually comprise several low-level modifications of an ASG. User-level edit operations
are consistency-preserving in the sense that they transform a model from one displayable
state into another.

Although it is commonly accepted that model versioning tools must be specifically
tailored to each modeling language and usage scenario, the set of available edit opera-
tions is an important variation point which has received little attention in the literature.
In this regard, it is a largely open problem how to use high-level edit operations to cal-
culate, present and handle model differences in the context of model version and variant
management. Moreover, the tight integration of editing and versioning tools requires
consistent specifications of edit operations; this integration is another open problem.
Both problems are addressed in this thesis, the main objectives and contributions are
briefly summarized in the following section.

1.4 Contributions

The main problem addressed in this thesis is a significant deficiency of currently avail-
able versioning tools for models; they present and handle differences in terms of low-
level changes related to internal, sometimes tool-specific representations of models. This
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problem is tackled by systematically lifting model versioning concepts, techniques and
tools for the calculation and propagation of model changes to a higher level of abstrac-
tion based on user-level edit operations (s. Figure 1.1). We use model transformation
rules implemented in Henshin [34] in order to specify edit operations in a precise and
meaningful way. Such specifications of edit operations play two different roles:

• A descriptive role as a means to describe the observed difference between two
versions, notably past changes in the history of a model.

• A prescriptive role, i.e. as specification of modifications to be performed on an
existing model version, notably to propagate changes from one model version to
another.

Difference 
calculation

Propagation of 
model changes

Difference 
calculation

Propagation of 
model changes

User-level 
edit operations 

Primitive graph 
edit operations

Level of abstraction

Model versioning concepts, techniques and toolsEdit operations

Figure 1.1: Overview of the approach and thesis objective

As a second problem, this thesis addresses the huge challenge that high-quality dif-
ference tools for models must be specifically engineered for each modeling language
and, more often than not, be adapted to other tools, application scenarios and user
preferences. Methods for developing customized difference tools for models with lim-
ited implementation effort are therefore a primary concern. Difference tools for models
are, arguably, a product family, thus it makes sense to apply development methods
for software product lines. In this regard, we basically support variability in two main
dimensions:

1. The model type (or modeling language), notably the set of edit operations available
to modify instances of this type.

2. The tool functionality being offered to detect and handle errors and conflicts when
propagating model changes from one version to another.

Now that we have presented a high-level overview of the approach and the thesis
objective, we outline the contributions of this thesis in greater detail.
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Contribution 1: Semantic lifting of model differences. The first contribution of
this thesis is a rule-based approach to the semantic lifting of low-level model differences
obtained from state-of-the-art model comparison tools, which cover only the first two
processing steps of the model differencing pipeline shown in the lower part of Figure 1.2.
Low-level differences are transformed into representations of user-level edit operations
in a fully automated way. Since the execution of an edit operation leads to a well-
defined change pattern on an ASG, we use the Henshin transformation engine to find
instances of these patterns and to finally group the low-level changes involved in a
change pattern to a so-called semantic change set. The transformation rules, called
recognition rules, which are necessary to semantically lift a low-level difference are
automatically derived from the edit rules implementing the available edit operations
(s. upper part of Figure 1.2).

Contribution 2: Generation of edit scripts. As a second contribution, we define
an extended kind of directed delta to which we refer to as edit script. While a directed
delta is a sequence of elementary edit steps, an edit script is a complex data structure
which contains (a) the involved Henshin rules serving as implementations of edit opera-
tions, (b) representations of the detected edit operation invocations, including mappings
of the parameters to objects in the low-level difference, and (c) representations of de-
pendencies between edit steps. Each dependency is annotated with information about
its reason, e.g. one step produces data used by the later step. From a conceptual point
of view, an edit script is a partially ordered set of edit steps. The partial order expresses
that an edit step es1 must be executed before edit step es2 if es1 < es2.

We present a technique which, given a set of edit rules which adheres to certain
correctness criteria, converts a semantically lifted difference into an executable edit
script.

Contribution 3: Consistency-preserving edit scripts. A consistency-preserving
edit script is a special kind of edit script which, when being applied as patch to a model,
prevents inconsistencies in the patched model. More precisely, a patched model is guar-
anteed to meet the consistency constraints required by the standard (visual) editor of an
MDE development environment. The key idea is to use only consistency-preserving edit
operations (CPEOs) on models, which obviously depend on the modeling language and
the effective consistency level required by standard editors. To that end, we present a
method and semi-automated approach for creating complete sets of CPEOs for a given
modeling language and MDE environment. An brief overview is shown in the upper
part of Figure 1.2.

Contribution 4: Controlled propagation of model changes. Another contri-
bution of this thesis is a method and graphical user interface (GUI) which enables
developers to apply consistency-preserving edit scripts to a target model in a con-
trolled, interactive way. Various types of errors are handled and developers are enabled
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Figure 1.2: Overview of the model differencing tool chain and related meta-tools

to manually intervene. The solution is based on the principle of document patching
and covers normal as well as more advanced patching scenarios.

A specific variant of this concept provides a completely new approach to update
workspace copies of models. It differs methodologically and technically from previous
approaches based on 3-way merging. From the point of view of a tool user, the GUI
is less complex than GUIs of interactive 3-way merge tools, and the user interaction
concept does not force a user to mentally return to the common base version. From
the point of view of a tool chain configurator, an interactive workspace update tool can
be integrated into an existing MDE tool environment with minimal effort.

Contribution 5: A generic model versioning framework. Finally, all of the
proposed concepts are integrated in a versatile framework for implementing a family of
model difference tools that cover a broad range of use cases, modeling languages, user
requirements and application contexts. The design of this framework is driven by basic
principles known from the field of software product line engineering [202]. Its scope is
formally documented in a variability model which is the result of a detailed analysis of
our problem domain. In the solution space, we identify a set of reusable components
and describe how they can be composed to create individual tools and tool functions.
Domain features are mapped to components or configuration artifacts being used to
adapt a particular component. Difference tool development (or tailoring) thus becomes
a semi-automated and guided engineering process.

A reference implementation of the proposed framework on top of the widely used
Eclipse Modeling Project (EMP) demonstrates the technical feasibility of the approach.
The implementation is known as the SiLift model versioning framework [247] and has
been developed in a sub-project of the larger and substantially older SiDiff project
[246]. During the last years, a considerable amount of individual difference tools and
tool components based on SiLift has been developed; we use several of them to evaluate
key concepts of our approach in different case studies and experiments.
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1.5 Thesis-related List of Publications

The following papers related to this thesis have been published in publication outlets
with scientific quality assurance (listed in chronological order):
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in model versioning.” In: 28th IEEE/ACM International Conference on Automated
Software (ASE), Silicon Valley, CA, USA. IEEE, 2013, pp. 191–201.

[7] Timo Kehrer. “Generierung konsistenzerhaltender Editierskripte im Kontext der Mod-
ellversionierung.” In: Software Engineering 2014, Fachtagung des GI-Fachbereichs Soft-
waretechnik, Kiel, Germany. Vol. 227. LNI. GI, 2014, pp. 57–58.

[8] Timo Kehrer, Udo Kelter, and Dennis Reuling. “Workspace updates of visual models.”
In: ACM/IEEE International Conference on Automated Software Engineering (ASE),
Vasteras, Sweden. ACM, 2014, pp. 827–830.

[9] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. “Propagation of Software Model
Changes in the Context of Industrial Plant Automation.” In: Automatisierungstechnik
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Preserving Edit Operations for MDE Tools.” In: Proceedings of the Demonstrations
Track of the ACM/IEEE 17th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS), Valencia, Spain. Vol. 1255. CEUR Workshop
Proceedings. 2014.
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[11] Timo Kehrer, Christopher Pietsch, Udo Kelter, Daniel Strüber, and Steffen Vau-
pel. “An Adaptable Tool Environment for High-level Differencing of Textual Mod-
els.” In: Proceedings of the Workshop on Models and Evolution (ME) co-located with
ACM/IEEE 18th International Conference on Model Driven Engineering Languages
and Systems (MoDELS), Ottawa, Canada. accepted publication. 2015.

A subset of the key ideas and concepts developed in this thesis are presented in [1, 3,
4, 6, 7, 8, 9]. Note that [2, 5, 10] report on techniques that have been collaboratively
developed in the SiDiff project; several of these techniques are tightly integrated into
the model versioning framework developed in the context of this thesis.

Moreover, the author presented the SiLift framework and tool suite at the following
conference events:

[12] Timo Kehrer. Henshin and SiDiff: Specifying and Recognizing Model Changes Based
on Edit Operations. Tutorial at SPP1593 Workshop on Managed Software Evolution
(WMSE) co-located with Software Engineering 2013, Aachen, Germany. 2013.

[13] Thorsten Arendt, Timo Kehrer, and Gabriele Taentzer. Understanding Complex Chan-
ges and Improving the Quality of UML and Domain-Specific Models. Tutorial at the
ACM/IEEE 16th International Conference on Model Driven Engineering Languages
and Systems (MoDELS), Miami, FL, USA. 2013.

In addition to our own experiments which have been conducted to evaluate the con-
tributions of this thesis, we showcased the flexibility of our approach and the benefits
of semantically lifted differences in several collaborative research activities. These co-
operations led to peer-reviewed publications [14, 15, 16, 17, 18, 19], the article [20] has
been submitted for publication.

[14] Hamed Shariat Yazdi, Pit Pietsch, Timo Kehrer, and Udo Kelter. “Statistical Analysis
of Changes for Synthesizing Realistic Test Models.” In: Software Engineering 2013:
Fachtagung des GI-Fachbereichs Softwaretechnik, Aachen. Vol. 213. LNI. GI, 2013,
pp. 225–238.

[15] Timo Kehrer, Pit Pietsch, Hamed Shariat Yazdi, and Udo Kelter. “Detection of High-
Level Changes in Evolving Java Software.” In: Softwaretechnik-Trends 33.2 (2013).

[16] Hamed Shariat Yazdi, Pit Pietsch, Timo Kehrer, and Udo Kelter. “Synthesizing Real-
istic Test Models.” In: Computer Science–Research and Development (CSRD) (2014),
pp. 1–23.

[17] Hamed Shariat Yazdi, Mahnaz Mirbolouki, Pit Pietsch, Timo Kehrer, and Udo Kel-
ter. “Analysis and Prediction of Design Model Evolution Using Time Series.” In:
Advanced Information Systems Engineering Workshops - CAiSE 2014 International
Workshops, Thessaloniki, Greece. Vol. 178. Lecture Notes in Business Information
Processing. Springer, 2014, pp. 1–15.

[18] Sinem Getir, Michaela Rindt, and Timo Kehrer. “A Generic Framework for Analyzing
Model Co-Evolution.” In: Proceedings of the Workshop on Models and Evolution (ME)
co-located with ACM/IEEE 17th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS), Valencia, Spain. 2014, pp. 12–21.
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[19] Birgit Vogel-Heuser, Jens Folmer, Matthias Kowal, Ina Schaefer, Sascha Lity, Alexan-
der Fay, Winfried Lamersdorf, Timo Kehrer, Matthias Tichy, and Bernhard Beckert.
“Selected Challenges of Software Evolution for Automated Production Systems.” In:
Proceedings of the 13th IEEE International Conference on Industrial Informatics (IN-
DIN), Cambridge, UK. accepted publication. 2015.

[20] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and Andy
Schürr. “Reasoning about Product-Line Evolution using Complex Differences on Fea-
ture Models.” In: Automated Software Engineering (2015). submitted for publication.

1.6 Thesis Outline

The thesis is structured to step-wise motivate, elaborate and finally evaluate the pro-
posed approach. A brief overview of each chapter is given in the remainder of this
section.

Chapter 2: Model Version and Variant Management. In this chapter, we
introduce a set of selected model versioning scenarios. Some of the scenarios will
be illustrated by sample models serving as running examples throughout the thesis.
Subsequently, we apply a feature-oriented analysis to the domain of model version and
variant management. A feature diagram formally documents the tool functions being
required in our versioning scenarios and identifies major variation points. Next, we
give an overview of the state of the art on how to implement these tool functions. The
chapter concludes with a discussion of major challenges and open problems. Parts of
this chapter have been published in [2, 4, 8, 9].

Chapter 3: Representation and Editing of Models. In this chapter, we in-
troduce our conceptual notion of an abstract syntax graph (ASG) which is formally
considered as typed, attributed, directed graph. A meta-model defines the allowed
types of nodes and edges of an ASG and is formally treated as a distinguished graph
called type graph. Based on these fundamental definitions for representing models as
graphs, we introduce the notion of model consistency being relevant in the context of
our problem domain. Finally, we present our approach to formally specify edit opera-
tions on models using the graph rewriting and model transformation language Henshin.
We briefly introduce the underlying foundations, including static analysis techniques,
being required in terms of this thesis.

Chapter 4: Semantic Lifting of Model Differences. In this chapter, we present
our approach to semantically lifting low-level model differences being obtained from
currently available model differencing tools to high-level model differences which are
based on user-level edit operations. Therefore, we first introduce our representation of
low-level differences serving as basis for the definition of semantic change sets. Next,
we present our approach to specify instances of semantic change sets by so-called recog-
nition rules. A recognition rule is basically a specification of a certain change pattern
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which has to be found on a low-level difference representation; it can be automatically
derived from its corresponding edit rule which serves as formal specification of a user-
level edit operation. Thereafter, we present our overall strategy for the application of
recognition rules. The chapter closes with a discussion of the general restrictions of our
approach to operation recognition. The chapter is a revised and substantially extended
version of [1].

Chapter 5: Generation of Edit Scripts. Semantically lifting a low-level difference
is helpful for understanding model changes, but not sufficient for replaying them as an
executable difference in change propagation scenarios. In this chapter, we define an
extended kind of directed delta to which we refer to as edit script. A semantically
lifted difference must be further processed to become an executable edit script. The
additional detection of actual parameters and dependencies between edit steps will be
explained in this chapter. The chapter is a revised version of [6].

Chapter 6: Propagation of Changes based on Consistency-preserving Edit
Scripts. In this chapter, we present our approach to the controlled propagation of
model changes which is based on the principle of document patching. Changes which
are to be propagated are basically expressed as a consistency-preserving edit script
obtained from the original and the revised version of a model. This edit script can
be further processed to become a patch which is finally distributed and applied to a
target model. Concerning the patch application, we define two basic variants of a patch
operator; the variation point is whether the original model and the target model of a
patching scenario are revisions of a common base model or not. We present a set of
analysis procedures for the detection of different kinds of errors and conflicts. Finally,
we present our approach to the interactive application of patches which enables tool
users to handle the detected errors and conflicts. Parts of this chapter have been
published in [4, 8, 9].

Chapter 7: Creation of a Set of Consistency-preserving Edit Rules. Our
approach to model differencing and change propagation is adapted to a given modeling
language by providing edit rules for this language, each edit rule is a formal specification
of an edit operation available for this language. In general, this set of edit rules must be
properly designed and meet certain correctness criteria. In this chapter, we clarify these
criteria and identify requirements for a set of mandatory edit rules; these rules must be
provided in order to guarantee that correct edit scripts are generated. While complete
sets of mandatory edit rules can be easily defined based on primitive graph operations,
engineering a mandatory set of consistency-preserving edit rules (CPERs) is much more
challenging. Therefore, this chapter introduces a semi-automated approach to create a
complete set of CPERs for a given modeling language. Early ideas have been presented
in [5, 10], the fundamentals presented in this chapter provide a significant improvement
over this previous work.
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Chapter 8: A Generic Model Versioning Framework. In this chapter, we
present SiLift, a generic framework for building highly customized differencing and
patching tools for models which are based on the concepts developed in this thesis.
According to basic principles of Software Product Line Engineering (SPLE), we choose
a compositional approach in order to represent the required variability in the technical
solution space. Most of the user-visible features are mapped to distinct implementa-
tion artifacts which can be flexibly composed to form a particular tool configuration.
Thereby, solution space variability in SiLift is primarily represented on the architec-
tural level, i.e. we identify a set of software components as re-usable implementation
artifacts, some of these components can be adapted by additional configuration data.
We finally give a brief overview of our prototypical implementation of the framework
based on the widely used Eclipse Modeling Project (EMP). Parts of this chapter have
been published in [3, 8].

Chapter 9: Evaluation. In this chapter, we evaluate our approach from two differ-
ent perspectives: From the point of view of a tool chain configurator, the evaluation
should show the suitability of the proposed framework. From the point of view of a
model versioning tool user, we are mainly interested in certain quality aspects of differ-
ent tool functions. Concerning the first perspective, we outline the configuration effort
to implement of a set of example applications that have been used in different case
studies, most of them have been conducted in collaborative works presented in [11, 13,
14, 15, 16, 17, 18, 19, 20]. W.r.t. the second perspective, we conducted several exper-
iments assessing selected quality aspects for a set of representative tool configurations
and data sets. A subset of the experimental results has been published in [6, 8].

Chapter 10: Related Work. In this chapter, other work which is closely related
to ours will be investigated in detail. A special emphasis is put on generic approaches
which, similar to our approach, can be adapted to a broad range of different modeling
languages. Concerning language-specific approaches which cannot be transferred to
other modeling (sub-) languages, we review those approaches being related the con-
tributions of this thesis. In this regard, we identified two directions; the detection of
complex edit operations and semantic differencing. Furthermore, we give an overview
of available model repositories. The chapter closes with a review of approaches from
other domains being closely related to a subset of the problems addressed in this thesis.

Chapter 11: Conclusions and Future Work. This chapter concludes the thesis
with a summary and an outlook on possible future work and research directions.



CHAPTER2
Model Version and Variant Management

A number of development tasks are involved in the management of versions and vari-
ants of models, a brief overview is given in Section 2.1. While these development tasks
can be basically supported by a set of similar tools, each task comes with its specific
requirements. Section 2.2 presents the results of analyzing the commonalities and vari-
abilities of the required tool functionality. The state of the art on how to implement the
most basic tool functions is summarized in Section 2.3. We conclude with a discussion
of major challenges and open problems in Section 2.4.

2.1 Motivating Scenarios

Development tasks being involved in the version and variant management of models are
basically the same as for the versioning of traditional software development documents.
The most important scenarios in which these tasks typically occur are briefly outlined
in the remainder of this section. Some of the scenarios will be illustrated by sample
models serving as running examples throughout the thesis.

2.1.1 SC1: Understanding Model Changes

The evolution of a model-based system can only be controlled effectively if changes
between versions of a model are well-understood. Precise and meaningful descriptions
of model changes serve as an indispensable basis for many tasks being directly or
indirectly associated with version and variant management, e.g. for tracing changes in

15
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models to change requests or bug fixes, documenting design decisions, analyzing the
history of a model, or to simply review recent changes in a model.

To that end, users compare models because they basically wish to know which model
elements were added, removed, or modified. They are further interested in complex
restructurings and the rationale of each of the applied changes. The result of a com-
parison, i.e. a difference, should thus deliver a specification of how to convert the first
model into the second one in a step-wise manner. Each edit step should describe a
model modification that is meaningful from a modeler’s point of view. If we compare
the model versions v1 and v2 of the following Examples 2.1 and 2.2, a description of the
observed difference between these revisions should be similar to the editing sequences
listed in the examples.

Example 2.1 (Sample modification of a UML class diagram)
Figure 2.1 shows two revisions of a simple UML class diagram. Base version v1 has
been edited to become the revised version v2 as follows:

1. The navigability of association worksFor has been restricted to one end, indicated
by adding an arrowhead1.

2. A generalization relationship has been created such that class Developer special-
izes class Person.

3. Similar to step 2, another generalization relationship has been created such that
class Manager specializes class Person.

4. Finally, the model has been refactored using the well-known refactoring operation
pullUpAttribute [107]. Here, the attribute name has been pulled up along the
generalization relationships created in steps 2 and 3.

Figure 2.1: Sample modification of a UML class diagram: Original version v1 and its
revision v2

1We assume the usual UML presentation option here that an association without arrowheads is
navigable in both directions.
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Example 2.2 (Sample refactoring of a UML state chart)
Figure 2.2 shows two revisions of a UML state chart modeling a simple telephone
object as described in [190]. Note that both revisions specify the same behavior, while
the readability has been significantly improved in version v2; the states modeling the
behavior of the phone when it is in use are grouped into a composite state called Active.
Thus, transitions hangup which have to be specified for several simple states in version
v1 are replaced by a single transition in version v2. This modification can be achieved
in one user-level editing step to which we refer to as extractCompositeState, inspired by
the refactoring catalogue presented in [231].

Figure 2.2: Sample refactoring of a UML state chart taken from [231]
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2.1.2 SC2: Updating a Copy of an Original Model

Several copies of a model often reside at different locations. In the case of executable
models, for instance, these copies reside in several environments or hosts, where the
same application is installed. If a new release is rolled-out, all copies must be updated.
One option is to distribute the complete new model. Another solution is to only deliver
a change description that has to be applied in order to update a copy of an original
model. Such a change description is commonly referred to as patch, the document
to which the patch shall be applied is called target document in this case. The main
advantage of propagating only the changes instead of delivering a complete model is
the reduction of the amount of data to be distributed because patches can be more
compact than entire models.

A similar scenario is the delta storage of a revision history in a repository. Instead
of separately storing each new revision of a document, only the changes w.r.t. the
preceding revision are stored in the repository. If required, a particular revision can
be restored by applying a sequence of patches. Delta storage typically reduces space
consumption to a small percentage of the full storage needs [128].

The most important characteristic of this scenario is that the patch is always applied
to a copy of the original version.

2.1.3 SC3: Cherrypicking Changes

While several version models have been proposed in the literature, the mainstream of
versioning systems is based on organizing versions in a directed acyclic graph which is
commonly known as version graph [77]. “Cherrypicking” [76] assumes an organization
in which a version graph is composed of parallel branches, where each of these branches
consists of a sequence of revisions, basically as shown in Figure 2.3, where symbolic
version identifiers are chosen according to the numbering scheme in CVS [105]. Spe-
cial relationships between versions 1.2 and 1.2.2.1 as well as 1.4 and 1.4.2.1 identify
the origin of a new branch. These relationships are typically referred to as offspring
relationships, while the relationships within a branch are called successor relationships
[77]. The sample revision graph in Figure 2.3 consists of three parallel branches; the
main development branch, which is usually called trunk, a feature branch, in which a
dedicated, yet instable, feature is being developed, and a release branch. In our feature
branch, a bug has been fixed from revision 1.2.2.5 to revision 1.2.2.6. Most likely, this
bug also exists in the trunk and the release branch. Thus, the respective bugfix has to
be replicated in the latest versions of these branches.

This use case of replicating (or backporting) bug fixes from one branch to one or
several others is a frequent reason for cherrypicking changes. [76] presents several other
situations in which certain changes have to be propagated from one branch to another.
Note that propagating changes from one branch to another does not mean that these
branches are joined (or merged), each of them continues to exist.

In general, we use the term “cherrypicking” whenever changes which occurred be-
tween two revisions of one development branch shall be applied to a target model in
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Figure 2.3: Example: Basic principle of “cherrypicking changes”

another branch. The original model and the target model are usually not identical, but
they are managed in a common repository and can be traced back to a common base
version.

2.1.4 SC4: Propagation of Changes in a Product Family

Development tasks of this type occurred in two of our projects. The first one deals
with mechatronic components in the automotive domain whose embedded software
is generated from large models developed in ASCET [100] or Matlab/Simulink [176].
Each component has many variants, typically between 10 and 50, one for each type of
vehicle in which the component is integrated. The second project deals with model-
based software development for plant automation using various diagram types of the
SysML [191]. There are many copies of the plant, each with a local copy of the models.
Local adjustments during operation and maintenance lead to local changes.

Both projects have several commonalities. Each variant develops rather autonomously
and is assigned to a different responsible developer. This autonomy is the main reason
why methods known from product line engineering, which develop and maintain all
variants centrally, are not accepted although the variants are quite similar. Nonethe-
less, an improvement in one variant, e.g. a bug-fix or a new feature, usually has to be
propagated to some or all other variants [103]. Moreover, local changes in one variant
are often unanticipated changes [66]; they cannot be foreseen during the initial develop-
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ment of a system and, as such, cannot be accommodated in the design, which is usually
a basic prerequisite for successfully establishing an SPL.
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Figure 2.4: Parallel evolution of variants according to [253]

A typical example from the automation engineering domain is shown in Figure 2.4.
The example is based on [253] and shows a parallel evolution of two variants of a model
of a software module. Initially, the module has only one variant, called A. Its revision
A1.1 serves as template for the development of variant B which henceforth evolves in
parallel to variant A. At some point in time during the operation of variant B, a design
mistake is detected and corrected. This mistake also occurs in variant A and must, of
course, also be corrected in variant A. Thus, the corrective changes applied to variant
B must be propagated to variant A.

Superficially, the propagation of such improvements is similar to the cherrypicking
scenario: An improvement is represented as a patch which is created by comparing
revisions in the original variant and which is to be applied to one or several target
models. However, several conditions are different from cherrypicking.

• The variants are often managed in different repositories. Thus, in contrast to the
cherrypicking scenario, the original and the target model do not have a common
base version.

• The person responsible for a target variant, i.e. the patch applier, must be able to
check whether the changes are appropriate and permitted in this variant and, if
necessary, to adapt the patch. In a cherrypicking scenario, both involved branches
are typically maintained by the same person and the developer which applies the
patch is assumed to be familiar with both branches. In the maintenance of large
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product families, the roles of patch creator and patch applier are typically assigned
to different persons.

• The patch should not contain changes which occurred “accidentally” between
check-out and check-in in the workspace where the improvement was imple-
mented, i.e changes which are not related to the intended improvement. In this
scenario, the patch applier is assumed to be incapable to identify superfluous
parts in the patch.

Original
model
(B1.1)

Create patch

[contains
irrelevant 
changes]

[else]

Patch creator
(responsible for variant A)

Patch applier
(responsible for variant B)

Changed
model
(B2.0)

Target
model
(A1.1)

Patched
target model

(A2.0)

Apply patch

Remove
irrelevant changes

Figure 2.5: Propagation of changes in variants of a product family

We conclude that the patch creator must ensure that the patch does not contain
changes which occurred at the same time as the improvement, but are not related to
the intended improvement. Such irrelevant changes must be removed from the patch
by the patch creator. The patch applier is responsible for a target variant and must
be able to check whether the changes are appropriate and permitted in this variant. If
necessary, the patch applier must adapt the patch, the target model, or both. A basic
work flow of engineering tasks related to change propagation in product family variants
is shown in Figure 2.5. In this work flow, the step Apply patch includes the adaptation
of the patch and the target model.

Example 2.3 (Propagation of changes in variants of a UML class diagram)
The left side of Figure 2.6 shows two versions of a class diagram of a sample flight
ticketing system. They are revisions of a variant A of the system. The original version
on top of Figure 2.6 has been modified to become the changed version on the bottom
as follows:

1. Class Schedule has been extracted from class Flight following the well-known
refactoring extractClass [107].

2. The data type of the attribute price has been changed from int to float.

3. A new attribute birthday has been added to class Passenger.
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Figure 2.6: Original, changed and target model of a patching example

In our example, we assume another variant B of our system, the model shown on
the right side of Figure 2.6 has the role of the target model. The task to be carried
out is to repeat the changes between the original and changed model in the target
model. The details and intricacies of this task are analysed in Section 2.2. Please
note that even in this small example several independent problems have been resolved
between the original and the changed version of variant A. The first change represents a
typical structural refactoring, while the second change fixes a bug and the third change
introduces a new feature.

2.1.5 SC5: Workspace Updates of Models

Large models are typically developed in teams. A pessimistic approach to support
collaborative work is to avoid parallel modifications of the same model following the
lock-modify-unlock paradigm [76] In practice, however, locking often leads to adminis-
trative problems [28]. Moreover, pessimistic versioning leads to a phenomenon known
as “sequential parallelism”, i.e. semantic interferences between changes performed by
different developers cannot be avoided and are likely to be unnoticed [238].

Thus, optimistic versioning is the common approach for supporting collaborative
work in development projects. A central feature of optimistic versioning is a service
which updates modified copies of documents in a workspace. An update propagates
parallel changes which were made by other developers and which were checked-in into
the repository. If several developers modify copies of a model then this can lead to
incompatible changes. Such situations are commonly referred to as conflicts [180].

Example 2.4 (Concurrent modification of a model)
Figure 2.7 shows an example of a workspace update scenario which is based on an exam-
ple presented in [60]. The base version vb has been checked out into two workspaces and
modified to versions v1 and v2, respectively. From vb to v1, the operation Ticket.getInfo
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Figure 2.7: Example scenario of a concurrent modification of a model based on [60]

has been renamed, a new class Person and an attribute Person.name have been in-
troduced, and the attribute Exhibition.artist has been deleted. From vb to v2, the
operationTicket.getInfo has been renamed, a new attribute Customer.name has been
introduced, and the redundant attribute artist has been pulled up to the common
superclass Event. Version v1 was then checked-in into the repository. The changes
between vb and v1 shall be propagated to v2. In this example, three conflicts arise:

1 The operation Ticket.getInfo was renamed concurrently.

2 The attribute name was introduced twice.

3 The attribute artist within the inheritance hierarchy of the class Event is not
defined uniformly.
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Many conflicts can be resolved by choosing one of the alternatives. For example, in
conflict 1 , one can adopt one of the renamings and cancel the other one. Some conflicts
cannot be resolved in this way, but only by restarting development work related to the
part of the model which is affected by the conflict. In case of conflict 3 , for instance,
one has to rethink what the attribute artist actually means. This can even lead to the
decision that both conflicting changes are cancelled and a completely new solution is
devised creatively, i.e. one does not follow a standardized pattern at all.

2.2 A Feature-oriented Domain Analysis

Model-driven engineering strongly depends on sophisticated tool support, which applies
in particular to the domain of model version and variant management. Difference tools
for models are, arguably, a product family, i.e. they share a set of common features,
while each application scenario comes with a set of individual requirements.

In this section, we present the results of applying a feature-oriented analysis to the
domain of model version and variant management. Special emphasis is put on the
scenarios presented in Section 2.1. The results are formally documented in the feature
diagram shown in Figure 2.8. A FODA-like feature diagram [133] as shown in Figure 2.8
is basically a tree with additional cross-tree constraints. It represents the set of domain
features as nodes and contains further notational constructs to denote different kinds of
logical constraints, namely feature dependencies and mutual exclusions, among those
features.

The features of Figure 2.8 define common and variable parts of the individual mem-
bers of a family of model difference tools. On the one hand, these features denote a set
of “user-visible” tool functions. We focus here on the calculation and propagation of
model changes. These functions and their distinguishing characteristics are considered
in sections 2.2.2 to 2.2.6. Note that we deliberately leave open whether these functions
are realized as standalone tools or whether they are integrated in other tools such as
a version control system. On the other hand, the modeling language, notably the way
how instances of a model type are edited in a particular MDE development environ-
ment, is another important variation point for the construction of difference tools for
models. Thus, the feature Modeling Language and its (indirect) sub-features do not
directly refer to a certain tool function. They rather represent domain abstractions
and important characteristics of an MDE environment having a strong impact on the
design of difference tools for models of this particular type (s. Section 2.2.1).

Please note that complementary features of a version control system, such as ver-
sion space organization, repository architecture, identification of configuration items,
baselining and tagging etc. are out of the scope of our domain analysis. Thorough
analyses of these repository characteristics can be found in [28, 65].
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2.2.1 Modeling Languages and MDE Development
Environments

In contrast to many other sciences and engineering disciplines, where models are often
some kind of physical objects, models in software engineering are conceptual models
being intangible artifacts. To allow developers to work with models, a modeling lan-
guage is required in which they can formally write down a model. A modeling language
is an artificially constructed language which is used to precisely describe the instances
of a specific type of model. The concrete syntax of a modeling language defines a set
of symbols, while the abstract syntax defines how these symbols may be combined to
formulate semantically correct models. In some cases, a modeling language has a for-
mal semantics. Frequently, however, there is no formal semantics and the meaning of
a model is mainly defined by transformations to platform-specific models or code.

Definition of modeling languages. Textual languages are typically specified by a
context-free grammar. The abstract syntax of visual modeling languages is usually de-
fined by a meta-model, which basically defines the allowed types of nodes and edges of
an ASG. Widely adopted standards, such as the UML Infrastructure Specification [189]
defined by the OMG, provide an object-oriented approach to meta-modeling, i.e. meta-
models are defined using data modeling techniques known from object-oriented analysis
and design. The concrete set of available data modeling concepts is defined by a so-
called meta-metamodel. One widely adopted standard is OMG’s Meta-Object Facility
(MOF) [193] specification with its compliance levels Complete MOF (CMOF) and Es-
sential MOF (EMOF).

Note that grammars define both abstract and concrete syntax of a textual language,
while the concrete syntax of visual languages must be defined by an additional rela-
tionship that specifies how to map ASG elements onto graphical symbols. From a tool
construction point of view, however, meta-models are very attractive as they provide
data models for the representation of models of a particular model type. In fact, gram-
mars can be converted to meta-models (and vice versa), basic mapping procedures
can be found in [23]. Several optimizations have been proposed in order to get more
“user-friendly” [262] or “meaningful” [45] meta-models.

Representations of a model. From a tooling point of view, we consider a model
as an editable document which typically exists in several representations that can be
roughly categorized into physical, internal and external representations.

MDE tools are basically faced with one or several models which are represented as
contents of persistent storage media (physical representation) or as runtime objects
(internal representation). Persistent storage media include XML files, proprietary file
formats, and relational databases. In order to be processed by tools, persistent rep-
resentations of models must be “loaded”, i.e. they must be converted into an internal
representation consisting of runtime objects. The internal representation can have the
same structure as the persistent representation, e.g. some textual format, but often it is



26 Chapter 2. Model Version and Variant Management

Model Version 
and Variant 

Management

Visual

Textual

Modeling
Language

Difference
Calculation

Standard
Editor

User-level
Edit Operations

Elementary

Complex

Refactoring

Evolutionary

Difference
Presentation

Change
Propagation

Error and Conflict
Detection

Editing of
Patches

Non-
interactive

Consistency-
preservation

Blind Overwriting
of Changes

Wrongly Chosen
Arguments

Failure of
Edit Steps

Missing
Arguments

Unfulfilled
Application
Conditions

Error and Conflict
Handling

Interactive

Difference
Tool

Functions

Integrated Parallel Display

Interactive List of Edit Steps

Unified Diagram

Textual Notation

exclude

require

exclude

require

Mandatory feature or-groupxor-group (alternative)Optional feature

Figure 2.8: Results of a feature-oriented domain analysis

converted into a tree or graph structure which can be considered as an implementation
of an ASG.

Developers are faced with the external representation of a model in some modeling
tool, notably editors in which models are interactively created and modified. A model
can be processed in different editors, where each editor comes with its own external
representation. We distinguish between textual and visual editors. Usually, an MDE
development environment provides a dedicated editor being used to edit models of
a particular type. We refer to this editor as standard editor. As we will see in the
remainder of this section, the standard editor plays an important role in the design of
difference tools for models since it determines the level of consistency being required
to externally display models.
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Consistency of models. Many MDE tools are developed for single tasks like, e.g.,
transforming, editing, or refactoring of models. Thus, models are frequently exchanged
in a series of tools. All of these tools of an MDE tool chain have different requirements
on the consistency of the models to be processed. Code generators or interpreters, for
instance, are very restrictive as they require “perfectly” consistent models having well-
defined semantics. On the contrary, models are often not perfectly consistent during
editing processes. The level of consistency being relevant in our context is defined by
the standard editors of a development environment; as long as they can load a model,
one can at least manually improve the consistency of a model. The minimal level of
consistency always includes conditions required to produce external representations of
models, which will be analyzed in more detail in the remainder of this section.

Perfect vs. effective consistency. Analogously to other kinds of textual develop-
ment documents, textual models can be loaded and edited in common text editors even
if the ASG being represented by a document is seriously incorrect.

The situation is quite different for visual editors. Here, essential parts of an ASG
are represented externally as graphical objects, which is only possible if the ASG meets
certain basic consistency constraints. Dangling edges, for instance, usually have to be
strictly avoided. Moreover, some ASG elements can only be externally represented if
they form a coherent ASG fragment, which is usually expressed by multiplicity con-
straints in a meta-model. For example, associations in a UML class diagram cannot be
visualized without their respective association ends.

Meta-models such as the UML Superstructure Specification typically define further
advanced well-formedness rules. In the context of MOF-based meta-models, these
rules are usually expressed using the Object Constraint Language (OCL) [195]. For
example, final states in UML state machines must not have an outgoing transition (s.
well-formedness rule (a) in Table 2.1). The degree of consistency achieved by these
constraints can be called “perfect” because models meeting these constraints can be
interpreted or correctly translated to source code.

However, typical visual editors do not enforce these advanced constraints. Firstly,
the advanced well-formedness rules are not required for displaying a model visually, i.e.
a model violating these well-formedness rules can nonetheless be displayed. Secondly,
some of these constraints, e.g. the well-formedness rules (g)-(j) listed by Table 2.1, are
hard to enforce after each editing command. Enforcing such constraints would make
editing very clumsy since transitions between perfectly consistent states of a model can
be quite complex.

We have analyzed two leading visual editors for UML models, Papyrus [93] and
MagicDraw [187], concerning the set of advanced constraints enforced by them. Table
2.1 shows the results of this analysis for selected well-formedness rules of the UML
Superstructure Specification [190]. It turns out that Papyrus does not seem to enforce
any advanced well-formedness rule and that MagicDraw enforces only a subset of these
rules. In fact, almost all advanced well-formedness rules which are actually enforced
restrict the cardinality of certain element sets and could be also specified as multiplicity
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Well-formedness rule Papy-
rus

Magic-
Draw

(a) A final state cannot have any outgoing transitions. 7 3

(b) A final state cannot have regions. 7 3

(c) A final state has no entry behavior. 7 3

(d) A final state has no exit behavior. 7 3

(e) An initial vertex can have at most one outgoing transition. 7 3

(f) History vertices can have at most one outgoing transition. 7 3

(g) A join vertex must have at least two incoming transitions and exactly
one outgoing transition.

7 7

(h) All transitions incoming a join vertex must originate in different regions
of an orthogonal state.

7 7

(i) A fork vertex must have at least two outgoing transitions and exactly
one incoming transition.

7 7

(j) All transitions outgoing a fork vertex must target states in different
regions of an orthogonal state.

7 7

(k) The outgoing transition from an initial vertex may have no trigger or
guard.

7 7

(l) A region can have at most one initial vertex. 7 3

(m) A region can have at most one deep history vertex. 7 3

(n) A region can have at most one shallow history vertex. 7 3

(o) Only submachine states can have connection point references. - 3

(p) The connection point references used as destinations/sources of transi-
tions associated with a submachine state must be defined as entry/exit
points in the submachine state machine.

- 7

(q) All the members of a namespace are distinguishable within it. 7 3

3: enforced 7: not enforced - not supported

Table 2.1: Implementation of selected advanced well-formedness rules of the UML Su-
perstructure Specification v. 2.4.1 in visual UML editors Papyrus (version
0.10.1) and MagicDraw (Personal Edition version 17.0.3)

constraints. The only counterexample revealed by our analysis is the well-formedness
rule (q) which applies to UML state machines in the sense that each state machine
must have a unique name within its defining package.

Another general finding is that comprehensive standards such as the UML Super-
structure Specification are only partially implemented by available modeling editors
[97]. Well-formedness rules which are related to non-implemented parts of a standard
meta-model are not enforced by the editor environment as a matter of fact. For exam-
ple, the well-formedness rules (o) and (p) listed by Table 2.1 are not enforced by Papyrus
as the state machine diagram editor does not support connection point references at
all.

We conclude that typical visual editors support only a reduced level of consistency,
which we will refer to as effective consistency level, and that the effective consistency
can be typically expressed by using multiplicity constraints (in addition to the basic
consistency constraints).
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2.2.2 User-level Edit Operations

Previous requirements analyses with industrial partners, e.g. as collected in a cooper-
ation with ETAS GmbH [216], have virtually always led to the requirement that users
should be able to configure the result of differencing tools if there are meaningful al-
ternatives. The most important variation point is the set of edit operations which are
available to modify models of a particular type. Edit operations occur in the descrip-
tions of model differences, are offered as editing commands in editors etc. As usual,
one should distinguish three aspects of an operation, namely i) the operation signature
including the operation name and a list of formal parameters, ii) the operation specifi-
cation which (formally or informally) specifies the effect of executing the operation and
the conditions under which the operation can be applied, and iii) the implementation
of the operation.

Operations can only be implemented if a (runtime-) representation of models is avail-
able. In this section, we will abstract from representation details and consider a model
as an encapsulated data object which is accessible via an interface which defines a set
of edit operations. All edit operations must be applicable to a model of the given model
type in a meaningful way, i.e. their effect must be understandable by tool users. Under-
standability usually implies that an edit operation must transform a model from one
consistent, editable state into another. This requirement obviously strongly depends
on the properties of the standard editor. We refer to these kinds of edit operations as
user-level edit operations. The set of user-level edit operations can be classified into
elementary and complex edit operations.

Elementary edit operations. Elementary operations are the smallest edit oper-
ations from a user’s point of view, i.e. they cannot be split into smaller operations
being applicable to a model in a meaningful way. Edit operations restrictNavigability

and createGeneralization of Example 2.1 are examples of this. The set of elementary
edit operations roughly corresponds to the set of basic editing commands as offered
by a standard modeling editor, but can also include operations which are not offered
as editing commands. As shown in Figure 2.8, the availability of a complete set of
elementary edit operations is mandatory such that every model modification can be
expressed using edit operations available in this set.

Complex edit operations. Complex edit operations are typically composed of el-
ementary edit operations. They are rarely offered as editing commands by standard
editors but rather provided by complementary tools such as modern refactoring envi-
ronments [35]. Moreover, [233] shows how GMF-generated editors can be extended by
complex edit operations. In contrast to elementary edit operations, the availability of
complex edit operations represents an optional feature for the design of model differ-
ence tools (s. Figure 2.8). In principle, one can construct arbitrarily many complex edit
operations from elementary ones. However, most of them are not useful for our aim to
make evolution of models better understandable. An important criterion for selecting
a complex operation is that it is easier to understand than the single contained elemen-



30 Chapter 2. Model Version and Variant Management

tary edit operations. This criterion depends obviously a lot on the modelling language
and in addition on design and usage rules and patterns, which may be project-specific.
We can roughly distinguish two types of complex edit operations:

• Refactorings: Many complex edit operations are known as refactorings. Roughly
speaking, refactorings are syntactic changes which do not change the meaning of
the model. In cases, where a modeling language has a formal semantics, one can
formally prove that a refactoring does not change the meaning of models. They
are frequently applied in model quality management, which is an integral part of
process models in many application domains. Edit operations pullUpAttribute and
extractCompositeState are examples of this. Further suggestions for refactorings
can typically be found in style guides and related publications, see e.g. [107, 231].

• Evolutionary edit operations: Edit operations which are not refactorings lead
to “real” changes; they are called evolutionary. Many evolutionary edit operations
facilitate frequently recurring editing tasks, e.g. moving a set of elements to a
different subsystem or composite state, generating getters and setters for class
attributes in an object-oriented design model etc. It is largely a matter of user
preferences which evolutionary edit operations are considered useful as a means
to better understanding model changes.

Further classification criteria for complex operations typically depend on the mod-
eling language and particular use case. In the context of documenting the evolution
of feature models, for instance, we have classified edit operations w.r.t. their effect on
the set of valid feature combinations (s. Section 9.2.3), inspired by the edit categories
proposed by Thüm et al. [239].

2.2.3 Difference Calculation and Presentation

A difference (or delta) can be informally defined as a description of how two models
differ from each other. Given two models A and B of the same type, then a difference
can be considered as a specification of how model A can be edited in a step-wise manner
to become model B. Differences are calculated for various reasons, e.g., to explain the
changes between two model versions (SC1), to describe the changes which are to be
propagated from one variant to another (SC2-4), or to describe the repository changes
which are to be propagated to a local workspace version (SC5). Thus, the calculation
of a difference is one of the most basic tool functions in model version and variant
management.

Difference presentation. In most of the scenarios presented in Section 2.1, in par-
ticular in SC1, SC4 and SC5, tool users are also interested in how a difference is being
presented. A detailed analysis of this variation point can be found in [136], the available
alternatives are summarized in Figure 2.8. A widely used presentation technique is to
show both model versions side by side in an integrated parallel display. The unified
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diagram combines two versions of a visual model in a single diagram, elements which
are common in both model versions are shown only once. However, a model difference
displayed in a unified diagram or in an integrated parallel display only shows which
model elements are common or specific. Elementary edit steps can be implicitly derived
from this information, while complex edit operations cannot be presented (cf. exclude
relationships in Figure 2.8). A textual notation is more flexible in the sense that com-
plex edit operations can be also presented. However, differences should be explained
in terms of their external representation, i.e. visual models should be shown in their
graphical syntax instead of some textual notation [25]. Thus, the interactive list of edit
steps is an attractive presentation technique for both visual and textual models, espe-
cially when complex edit operations have to be presented. This interactive technique
can be seen as a hybrid form of a textual notation and an integrated parallel display.
A control window displays a list of edit steps. Selecting an edit step in the control win-
dow causes that arguments of this edit step to be highlighted in the respective external
model representations which can be shown in a standard editor.

Executable differences. A requirement that applies to all scenarios in which changes
shall be propagated (SC2-5) is that a calculated difference must be executable2. A
difference is called executable if it comprises all necessary information such that the
step-wise transformation from a model A to its revision B can be automated. In par-
ticular, an executable difference specifies a (partial) order in which the edit steps have
to be executed. In our Example 2.1, generalization relationships between classes Devel-
oper and Person as well as Manager and Person have to be created before the common
attribute name can be pulled up. Dependencies between edit steps are a phenomenon
which does not occur in classical difference tools for texts and needs to be specifically
addressed for visual models.

Tool users may be explicitly interested in dependencies between edit steps in scenarios
SC3-5. Here, the application of an edit step can fail, dependent edit steps thus cannot
be executed, too (cf. Section 2.2.4). Since the number of transitively dependent edit
steps can be large, a user should be supported to find out which are root causes of the
problem, i.e. which edit steps are required for (or depend on) some other edit step, and
what is the reason for a dependency.

2.2.4 Change Propagation

There are a couple of versioning scenarios in which changes shall be propagated from
one model variant to another. We informally refer to these changes as patch which is
to be applied to a target model. As we have seen for scenario SC4, a patch must be
sometimes edited by the patch creator before it is distributed to the patch applier, e.g.
when unnecessary parts shall be removed from a patch. Ideally, this task is supported

2Please note that the requirement that calculated model differences must be executable in some cases
is a technical requirement which is therefore not included in the diagram of user-visible features
presented in Figure 2.8.
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by a dedicated tool function (s. optional feature Editing of Patches in Figure 2.8).
When a patch is to be applied to a given target model, one has to resolve all refer-

ences to model elements which occur as arguments of edit steps. References to model
elements are data values which are usable for identifying model elements, e.g. path
names, persistent identifiers or other data which “describe” elements within a model.
Some realizations of references are reliable, i.e. if a model element can be located it
is the right one, and if no related model element is found, then the referenced model
element does not exist in the model. If only our simplest change propagation scenario
SC2, the patching of a copy of the original model, needs to be supported, one can
easily find reliable realizations of references. If everything is organized properly the
resolution of references will never fail, and the patch can be applied without errors.
Each edit step can be successfully executed on the intermediate state produced by the
preceding edit steps. This observation does no longer hold if the patch is applied to
another model different from the original version, e.g. a different variant (SC3-4) or a
modified workspace copy (SC5). These change propagation scenarios potentially may
lead to different kinds of errors and conflicts.

2.2.5 Errors and Conflicts

In this section, we analyze potential errors and conflicts which can occur when changes
are to be propagated to a target model which differs from the original version from
which the changes have been derived. Depending on the concrete application scenario,
a patch application tool must offer different tool functions to properly detect these
errors and conflicts (s. feature Error and Conflict Detection in Figure 2.8). We briefly
sketch how each of these problems can be handled. Most often, a particular problem
can be solved in an interactive or non-interactive way (s. alternatives Interactive and
Non-interactive for the variation point Error and Conflict Handling in Figure 2.8).

We begin with errors, namely the failure of edit steps and wrongly chosen arguments,
that can arise for our patching scenarios SC3 and SC4, respectively. These errors, in
particular the failure of edit steps, can also occur as effects of conflicting modifications
in the workspace update scenario (SC5). Here, another problem that can occur when
repository changes are propagated to a local workspace version is that local modifica-
tions will be blindly overwritten.

Failure of Edit Steps

There are two main reasons why edit steps can fail; missing arguments and unfulfilled
application conditions.

Missing arguments. Obviously, an edit step fails if a referenced element used as an
argument cannot be resolved in the target model. In such a case, we have to distinguish
whether reliable references or unreliable references on model elements are used:

1. If a reliable realization of references is used and if a search for a referenced model
element fails, then the referenced model element does not exist at all in the target
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model. Two reactions are possible in this situation: (a) The user intervenes
and creates the missing model elements, and (b) the involved edit step and all
dependent edit steps are not performed on the target model.

2. If an unreliable realization of references is used, then a search for a referenced
model element can fail for two reasons; the element actually does not exist, or
the element exists but the resolution procedure is unable to detect it. If the
element actually does not exist, then the same reactions (a) and (b) as in case
1 are possible. If it exists, then the user can intervene and manually specify the
correct model element.

In terms of our change propagation examples in Section 2.1, the problem of missing
arguments occurs several times. For instance, the first change in the patching sce-
nario of Example 2.3, the extraction of the class Schedule from class Flight, cannot be
performed in the target model in the same way as in the original model because the
attributes boarding and gate are missing. In the workspace update scenario, missing
arguments typically occur if elements have been deleted in the workspace version. In
our Example 2.4, operation deleteAttribute(Exhibition.artist) fails because in v2 Exhibition
does not contain an attribute artist.

In the examples above, missing arguments do not exist at all in the target model. The
reference resolution will fail, regardless of a reliable or unreliable realization of references
is used. Missing arguments caused by unreliable references obviously depend a lot on
the implementation of a reference resolution procedure. In our patching Example 2.3,
for instance, the resolution of class Ticket in variant B might fail if fully qualified
names are used to identify model elements; the classes Ticket and Voucher obviously
have different names, although they represent the same concepts in the original and
target model of our example.

Unfulfilled application conditions. Unfulfilled application conditions of an edit
operation used in an edit step are another reason why the execution of an edit step
can fail. The third change of Example 2.3, the creation of the attribute birthday in
class Person, is an example of this. This edit step can be successfully applied to the
target model (assuming that Person has been identified as context for this change), at
least if only syntactic consistency is required. However, this change leads to a violation
of a constraint for design-level class models; the name of an attribute must be unique
within the inheritance closure of its containing class. If this consistency constraint is
explicitly checked by an application condition, the edit operation cannot be executed
successfully.

In the workspace update scenario, this check can fail if local changes invalidate a
precondition. In our Example 2.4, the edit step createAttribute(Person.name) fails because
subclass Customer has already an attribute name.
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Wrongly Chosen Arguments

So far, we have considered errors due to missing arguments, i.e. references to model
elements which cannot be resolved in the target model. If unreliable references are
used, we also have to consider the case of wrongly chosen arguments. If the search for
a referenced model element succeeds, the found model element can actually be a wrong
element; using this element as operation argument, the edit step would be performed
at a wrong “position” in the target model. The only viable solution is to warn the user
about potentially wrong arguments and to ask for a manual inspection.

For example, in case of our second change of Example 2.3, changing the type of the
attribute price, it might be unclear where to perform it because this attribute occurs
twice in the target model.

Blind Overwriting of Local Changes

In the workspace update scenario, the failure of edit steps is only one possible effect
of conflicting modifications. For example, in conflict (1) of Example 2.4, the name of
a model element was changed both in the repository and in the workspace version.
The edit operation renameOperation(Ticket.getInfo, “getTInfo”) will not fail, but would
overwrite the change in the local workspace version. Of course, this cannot be allowed,
and the user should be informed and warned about this conflict. More generally, a
service is necessary which determines for each model element modified by an executable
edit step whether it shall be considered as changed in v2 compared to vb. If so, the
problem must be identified and handled somehow. A user can skip the respective edit
step, take back the effect of this edit step later on or deliberately overwrite the local
changes.

2.2.6 Consistency-preservation

Our analysis has shown that the propagation of changes to a given target model can
fail for various reasons. It is no option to give up then and do nothing, the user must
be enabled to analyze and resolve the problems somehow. The only solution is often
to modify the target model, e.g. by creating missing model elements or modifying it
in a way that a precondition of an edit step is fulfilled. Because the application of a
patch can fail at any point of time, we conclude that the target model must be in a
consistent, editable state after each successfully executed edit operation. In Figure 2.8,
this requirement is represented by the mandatory feature Consistency-preservation of
a change propagation tool.

This requirement holds both for textual and visual models. In the former case, it is
typically fulfilled in a trivial way because even severely corrupted textual models can
be corrected using standard text editors. In contrast to this, visual models are usually
edited in their graphical representation, which can only be generated if the ASG which
represents a model meets certain minimal consistency constraints. While it is possible in
principle to represent ASGs textually, even if seriously incorrect, most users are either
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incapable or unwilling to modify visual models in a textual representation. To that
end, situations in which models cannot be edited using standard visual editors must
be strictly avoided. The preservation of additional consistency constraints is desirable
but not essentially required.

2.3 State of the Art

Version and variant management has been extensively researched since the advent of
the first version control systems, e.g. SCCS [210] and RCS [241], in the 1970s and early
1980s. Besides basic storage services, version control systems essentially rely on a set of
tool functions which are commonly referred to as differencing, patching and merging.
We briefly describe and characterize these tool functions based on their input and
output parameters. Here, we abstract from any technical details, notably the model
representation. Thus, we consider each of these functions as an algebraic operator
and state some basic properties which we expect from these operators, inspired by
approaches from the related domain of model management [64, 179]. In the following,
Model, Difference and Matching serve as basic data types; m1,m2, . . . ,mn are assumed
to be models of the same type. If there is no confusion, indices are omitted.

The calculation of a difference between two versions of a model is the most funda-
mental function in model version and variant management:

diff : Model × Model → Difference

A difference ∆m1→m2 between two models m1 and m2 is a specification of how to
transform m1 into m2. In the literature, this notion of a difference is usually referred
to as asymmetric difference because ∆m1→m2 specifies changes only in one direction,
i.e. from m1 to m2. In order to specify the changes from m2 back to m1, a different
asymmetric difference is required. In other words, the diff operator is not commutative:

diff(m1,m2) 6= diff(m2,m1)

Please note that a directed delta as defined in [77] (cf. Section 1.3) is a special kind of
asymmetric difference.

In contrast, a symmetric difference between two models m1 and m2 identifies all
elements which are specific to m1 and m2, respectively [77]. Applying notions from set
theory loosely, a symmetric difference betweenm1 andm2 may be written asm1 ∆m2 =
(m1 ∪ m2) \ (m1 ∩ m2), where (m1 ∩ m2) denotes corresponding elements which are
considered “the same” inm1 andm2, respectively. Such a relationship is usually referred
to as matching and typically determined by a match operator:

match : Model × Model → Matching

Matching a model with itself should produce an identity relationship. Moreover, the
match operator should be commutative, i.e. the order in which two models m1 and m2

are passed to a match operator should be irrelevant:
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match(m1,m2) = match(m2,m1)

Obviously, symmetric differences can be easily derived from a given matching. To
that end, many matching algorithms are actually called difference algorithms, e.g.,
LaDiff [70], MH-Diff [69], XyDiff [75], X-Diff [258], SiDiff [138], DSMDiff [162], UMLD-
iff [264], iDiff [185] or GenericDiff [267] to name some of them. However, within the
scope of this thesis, we consequently refer to these algorithms as matching algorithms
(cf. Section 2.3.1).

A patch operator applies a difference to a target model in order to generate a revised
model:

patch : Model × Difference → Model

The difference which is to be applied as patch is usually obtained by comparing an
original model m1 with a revised version m2. In this case, we expect that the calculated
difference applied to m1 reconstructs m2:

patch(m1, diff(m1,m2)) = m2

Note that patches can also be created using other methods, e.g. manually or by logging
edit operations in syntax-based editors in closed development environments (s. Sec-
tion 2.3.2). Nonetheless, the resulting difference must have the above mentioned prop-
erty.

Merging refers to the process of combining two models of the same type into a single
unified model. As a first significant characteristic, we can distinguish 2-way merging
and 3-way merging. Whereas the former one tries to combine two models without any
further information, the latter one tries to combine two models which are based on a
common ancestor revision:

2-way-merge : Model × Model → Model

3-way-merge : Model × Model × Model → Model

Both 2-way merging and 3-way merging should be commutative, i.e. the order in which
two models m1 and m2 which are to be merged (with respect to a common ancestor
m0) are passed to a merge operator should be irrelevant:

2-way-merge(m1,m2) = 2-way-merge(m2,m1)
3-way-merge(m1,m2,m0) = 3-way-merge(m2,m1,m0)

Finally, merging should be idempotent, i.e. merging a model m with itself (with respect
to a common ancestor m0) should yield the same model m:

2-way-merge(m,m) = m
3-way-merge(m,m,m0) = m
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In the remainder of this section, we give a brief overview of the state of the art on
how to implement these version and variant management operators. We begin with
the matching operator in Section 2.3.1, the calculation of a difference is addressed in
Section 2.3.2. Different approaches to model merging are considered in Section 2.3.3,
while Section 2.3.4 finally distinguishes patching from traditional 3-way merging.

Please note that the signatures of concrete implementations of our version and man-
agement operators might slightly differ from the above definitions. For example, some
approaches require additional input parameters such as configuration data or meta-
data from external resources. Such parameters are deliberately omitted from the above
definitions in order to be as general as possible.

2.3.1 Matching Algorithms

The calculation of a matching is a fundamental utility function to identify occurrences
of the same conceptual model element in different versions of a model.

Line-based processing of textual documents. A traditional approach in the con-
text of source code versioning is to treat the documents which are to be compared as
plain text, i.e. as a sequence of lines of characters. Most often, a line is considered as
an atomic unit of comparison, i.e. two lines of text are considered to be equal if and if
only the lines are identical. A common approach to determine the corresponding lines
of texts in two documents is to compute a longest common subsequence [46] among the
sequentially arranged lines of text. The computation of a longest common subsequence
can also be considered as a solution to the string-to-string correction problem [257];
it directly delivers how one document can be transformed into another by applying a
minimal number of line deletions and insertions. Further string-to-string correction al-
gorithms which are based on different kinds of edit operations have been proposed in the
literature. In particular, the original string-to-string correction problem as formulated
in [257] also permits a change operation, [242] additionally covers block moves.

However, it is commonly agreed that comparing textual representations of visual
models does not produce usable results [41, 63] and that models should be compared
on the basis of their conceptual graph-based representation, which is usually referred
to as structural matching.

Structural matching. Many graph matching algorithms have been proposed in the
traditional computer science literature, a survey can be found in [78]. At first sight,
some of them seem to be appropriate for structural model matching, in particular those
which generalize the basic principles of the line-based approach to arbitrary graphs. For
instance, the idea of computing an LCS can be generalized to the computation of a
maximum common subgraph, where either the number of common nodes or the number
of common edges is maximized. Assuming a set of primitive graph edit operations
and a cost function that assigns editing costs to these operations, one can also try
to determine minimal edit distances, which is commonly referred to as error-tolerant
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graph matching [68], or, in the special case of trees, as the tree-to-tree correction
problem [236]. However, virtually all of these problems are known to be NP-complete
or NP-hard. Efficient algorithms are only available for special kinds of graphs such as
ordered trees.

Besides performance problems, several conceptual problems arise when generic graph
or tree matching algorithms shall be applied to models or other kinds of structured
documents [106, 162, 198]. The main problem is that types of model elements and
their conceptual properties are often neglected, which usually leads to a high false
positive rate, e.g. if i) two model elements paired by a correspondence are actually
not “the same” from a user’s point of view, or ii) two model elements paired by a
correspondence have different types, which usually leads to technical problems when a
matching is to be further processed in a differencing pipeline or any other tool chain.

Thus, more practical approaches are based on heuristics which are specifically tailored
to a dedicated document type. Amongst others, structural matching algorithms being
based on language-specific heuristics have been proposed for hierarchically structured
documents such as Latex documents [69, 70], XML documents [75, 258] or program
source code [104, 185]. Domain-specific approaches have been developed in the context
of schema matching [206] and ontology matching [256].

In general, most of the proposed heuristics are not directly applicable to models.
Nonetheless, techniques being specifically designed for model matching are often in-
spired by the basic ideas of the proposed heuristics such as a type-specific notion of
similarity between model elements, the use of signatures in order to (uniquely) char-
acterize a model element or the integration of external resources into the matching
process, e.g. lexical databases that provide additional information about semantically
related terms and synonyms. A large number of approaches for comparing models were
proposed recently (see [106, 146, 223] for surveys), which can roughly be divided into
two categories; language-specific approaches and generic approaches. Language-specific
approaches, as e.g. proposed for class diagrams [264], state charts [184], architectural
diagrams [142, 171] etc., can only be applied to models of one specific type and will
not be discussed in any further detail here. On the contrary, generic approaches can,
if supplied with appropriate configuration data, be applied to models of many types.
Configurations can be rather complex; in extreme cases, a configuration is written in a
domain-specific language for configuring custom matching rules and policies [148].

Signature-based matching. Signature-based approaches [162, 198, 207, 224] match
only elements which are “identical” in the sense that they have the same signature. The
signature of a model element is a highly specific value that characterizes this element.
Signatures can incorporate conceptual properties, e.g. the fully qualified name of an
element, or technical properties such as persistent identifiers of model elements. If
persistent identifiers are unique, the matching procedure is often called UUID-based
[22] or static identity-based matching3 [146]. The matching algorithm is fairly

3 In the literature, UUID-based and signature-based approaches to model matching are sometimes
treated as separate categories. The reason for this is that, in general, a signature-based matcher has
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simple and very efficient: For each model, the signatures of all elements are computed
and then sorted. A parallel scan through both sorted sets finds all signatures which
occur in both sets. If such a pair of signatures is found and if both signatures are
unique in their sets, a correspondence of the involved model elements is produced. No
correspondence is typically produced in case of duplicates, i.e. if a signature occurs two
or more times in the same model. The execution time is in the order of O(n ∗ log(n)),
the most dominant part being the sorting of the signature values.

Similarity-based matching. Similarity-based matching algorithms [63, 138, 162,
209, 267] try to match the mutually most similar, but not necessarily equal model ele-
ments. The configuration data defines, for each model element type, a set of properties
which are relevant for the similarity and, for each property, a function which computes
the similarity of two values of this property. Another function is needed which computes
the overall similarity of two model elements. Matching two sets of model elements on
the basis of similarities basically involves 3 steps:

1. The similarity of each pair of model elements is computed. An iterative calcula-
tion of similarities of all pairs of model elements allows to propagate similarities,
i.e. the similarity of the “neighborhood” of two compared model elements can
be “added” to their basic similarity, which is generally referred to as “similarity
flooding” [178].

2. Whenever a similarity exceeds a threshold, both elements involved are considered
as candidates for a correspondence between them. For each model element, all
candidates in the other model are collected in a preference list. This list is sorted
by the similarity of the candidates.

3. A matching is finally computed on the basis of these preference lists. For example,
[267] constructs a bipartite graph from the preference lists and selects an opti-
mal matching using a stable-marriage algorithm which is known as Gale-Shapley
algorithm [109].

Steps 1 and 3 can be extremely time-consuming if large sets of model elements are
to be matched, which motivates approaches that deviate from the general proceeding
described above.

The approaches presented in [63, 266], for instance, avoid to globally search for pairs
of mutually most similar model elements and rather apply a top-down local matching
strategy which exploits the usual tree-like containment structure of models. A tree
is spanned by the compositional structures defined by the corresponding meta-model.
The model (or diagram) is the root of the tree, and root nodes are matched first. Then,
for each pair of corresponding elements, the sets of their direct children are matched,
and so on recursively. Matching is performed “locally” in the sense that only locally

to deal with duplicate signatures, while UUIDs are unique. This distinction is of minor importance
here.
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accessible data can be used to decide about correspondences and that only children
of corresponding parents can be matched. This strategy is very efficient because only
small sets of direct children have to be compared. However, it cannot detect moved
model elements, i.e. it cannot match elements whose parents are not in a correspondence
relationship.

The iterative matcher of the SiDiff framework can be configured such that the com-
putation of similarities and the generation of correspondences are not strictly separated
[138]. The iterative, incremental matching can be regarded as a generalization of sim-
ilarity propagation, since correspondences can be produced during the propagation
process. This option is very useful if elements of some dedicated types can be matched
reliably very early. One example are start states in UML state charts, which are only
defined once per region and which cannot be moved from one region to another. Corre-
spondences between these elements may serve as “anchor points” for the propagation of
similarities with the effect that the similarity flooding process usually converges much
faster towards some stable result [2].

A similar performance optimization is pursued by the combination of a signature-
and similarity-based approach [2, 162]: At first, a signature-based matcher is used to
establish an initial set of correspondences. Subsequently, a similarity-based matcher
deals with all remaining elements that have not been matched by the signature matcher.

Finally, the search space for the compute-intensive calculation of similarities can be
reduced by preselecting promising matching candidates. The initial set of candidates
of a model element can be usually restricted to all elements of the same type in the
other model. There are further approaches to candidates initialization, e.g. a high-
dimensional search tree as presented in [245].

2.3.2 Calculation of a Difference

Two main approaches to obtain a difference between two models have been proposed in
the literature; logging, which is also known as operation-based differencing, and state-
based comparison.

Logging of editing commands. A first approach based on logging is [164] and dates
back to 1992; this approach assumed an object-oriented database management system
(ooDBMS) to be used for storing documents, and each edit command to be executed as
a transaction on the object base. The obvious idea was to exploit the logging facilities
of the ooDBMS to generate change logs. The same basic idea was later adapted to
change logs maintained in syntax-based editors, e.g. Fujaba [218, 219] and elsewhere
[58, 62, 125, 143, 144].

Logging-based approaches have the big advantage that logs can be obtained directly
on the level of user editing commands. However, they are bound to the fixed set of edit
operations being offered by the editing environment. Moreover, documents must not
be modified by tools which do not carefully maintain the change logs, change logs must
never be deleted etc.; thus logging-based approaches imply closed environments, they
are not applicable if models shall be exchanged across tool boundaries [154]. Moreover,
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these approaches cannot compare models which are not revisions of each other, e.g.
re-engineered models or the result of model transformations.

Another disadvantage is that a log produced by a user can contain tentative editing
steps which are later corrected or which are a suboptimal approach for the desired
editing effect. A trivial example are edit operations that cancel each other out. [57]
reports about an experiment in which several users had to perform the same change
in a model; very different paths to achieve the same effect were observed. Logs of edit
commands are therefore not necessarily a good description of the intended changes, i.e.
the logs must be optimized [101]. Moreover, change logs are often produced on the
level of internal edit operations or basic storage operations [212].

State-based comparison of models. State-based methods for model differencing
are only based on the state of the models which are to be compared. Virtually all of
them, see [106, 223, 229] for surveys, have a similar processing pipeline like the basic
differencing pipeline (steps 1 and 2) shown in Figure 1.2:

1. Initially, a matching procedure searches for pairs of corresponding model elements
which are considered “the same” in both models.

2. Subsequently, a low-level difference is derived; elements not involved in a cor-
respondence are considered to be deleted or created, each non-identical local
property of corresponding elements is considered to be updated.

As a consequence, the obtained differences can only be explained in terms of prim-
itive edit operations on the internal model representation. The UNIX diff utility,
for instance, considers all lines of text which are not included in the longest common
subsequence to be deleted or inserted. State-based approaches to model differencing
conceptually consider models as graphs and explain a difference in terms of primitive
graph editing operations, i.e. they basically report insertions and deletions of nodes
and edges, respectively.

In contrast to textual editing, graph-based edit operations can depend on one an-
other. For example, a node has to be first created before it can be connected to other
nodes via edges. If only primitive edit operations are available for modifying an ASG,
dependencies between edit steps do not have to be explicitly calculated. All edit steps
can be applied in a standardized order; insertions are performed first, followed by up-
date operations and finally deletions (cf. [22]).

If a matching is being determined by computing a minimal edit distance (s. Sec-
tion 2.3.1), the above pipeline steps 1 and 2 cannot be clearly separated, as a sequence
of elementary edit steps is usually delivered as a direct result of the matching algorithm.

2.3.3 Model Merging

Most currently available merge tools are based on the principle of 3-way merging.
In particular, virtually all existing approaches for updating workspaces of models are
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based on this principle. The main challenges in 3-way merging are conflict detection
and conflict resolution. Many approaches for these problems have been proposed in
the literature; surveys can be found in [28, 106, 180]. The proposed approaches can be
roughly categorized into state-based merging and operation-based merging.

Figure 2.9: State-based (left) vs. operation-based merging (right)

State-based merging. State-based merging is the dominant approach in the field
of classical versioning systems. Merging procedures such as rcsmerge, SVN update

etc. are typically based on an adaptation of the diff3 utility distributed with the
UNIX diffutils package [169]. diff3 merges two versions v1 and v2 with respect to a
third version vb, assuming vb is the common ancestor version of v1 and v2. First of
all, longest common subsequences are determined along three ways as shown on the
left side of Figure 2.9; between vb and v1, between vb and v2, and between v1 and v2,
indicated as symmetric differences in Figure 2.9. While symmetric differences vb ∆ v1
and vb ∆ v2 are explicitly calculated using the UNIX diff utility, v1 ∆ v2 is implicitly
derived assuming transitivity of correspondences. Such a “diff3 parse” [141] determines
the segments of lines that are (a) the same in all three versions, (b) the same in two
versions, or (c) different in all three versions.

The merge result is well-defined for all segments of type (a) and for all segments of
type (b) where either v1 or v2 is the differing version. In the latter case, the segment of
lines that differs from vb is included in the merge result vm. All other cases indicate a
conflict. Conflicts resulting from line segments which are different in all three versions,
i.e. segments of type (c), are called overlaps. In case of conflicts, the default behavior of
diff3 is to include all possible variants into the final merge result, separated by special
conflict markers. If diff3 is adapted in the context of a version control system, non-
overlapping conflicts are usually suppressed. In case of overlaps, only the segments of
v1 and v2 are included as possible variants into the final merge result, the third variant
originating from the common base version is usually omitted.

The basic principle of state-based merging has later been adopted to tree-based rep-
resentations of different kinds of documents [31, 163] and to merge models based on
their ASG representation, see e.g. [260]. Thus, the detection of conflicts is shifted
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from a pure textual to a syntactical level. A key feature of syntactical merging is to
avoid “pseudo-conflicts” that arise from different formattings of textual representations.
Moreover, sophisticated merge procedures taking the conceptual structure of the under-
lying documents into account are also capable of detecting language-specific conflicts
which are known as static semantic conflicts [180], context-sensitive conflicts [260], or
violations [60]. Conflict 2 of Example 2.4 presented in Section 2.1.5 is an example
of this. Some approaches go one step further and aim at the detection of behavioral
conflicts. To that end, reasoning techniques which are based on denotational semantics,
program slicing or program dependence graphs have been applied to behavioral conflict
analysis in the context of software merging [180, 225, 238]. Some of these techniques
have been also adopted for model merging [27], which is, however, only possible for
modeling languages with well-defined behavioral semantics.

2-way merging is obviously state-based and can be considered as special case of 3-
way merging. However, the notion of a merge conflict varies significantly between both
variants. While behavioral and static semantic conflicts can be sensibly transferred to
2-way merging [204, 213], the traditional notion of an overlapping change is obviously
not applicable without having a common ancestor version.

Operation-based merging. The principle of operation-based merging has first been
proposed in [164] and is illustrated on the right side of Figure 2.9. Here, two asymmetric
differences ∆vb→v1 and ∆vb→v2 from the common base version v0 to v1 and v2 are
computed. These differences are analyzed for conflicting edit steps, then conflicts are
resolved, and finally a merged version vm is generated. In [164], the term conflict
refers to directly contradicting edit steps, i.e. two operation invocations which do not
commute. [164] leaves open how documents are represented internally and how edit
operations are implemented. The basic proceeding may be applied to any abstract data
type, provided that there is a decision procedure for testing the commutativity of two
operation invocations.

The asymmetric differences ∆vb→v1 and ∆vb→v2 do not necessarily have to be ob-
tained by logging editing commands, but can also be calculated by a comparison of
vb against v1 and v2. If only primitive edit operations such as inserting/elements and
changing their basic properties are supported, as e.g. in [22, 63, 161], the boundary
between state-based and operation-based merging somewhat disappears, because the
changes induced by these primitive edit operations are also implicitly derived from the
symmetric differences vb ∆ v1 and vb ∆ v2 of Figure 2.9 (left). In [180], the special
flavour of operation-based merging which is based on primitive edit operations is also
referred to as change-based merging. Although not intended (and actually not needed
because all operations of a data type are assumed to maintain its data type invari-
ants) in [164], the merge result obtained by a change-based (operation-based) merging
procedure can be checked for violations of consistency constraints [60, 235].
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Handling of Conflicts

Both for state-based and operation-based approaches we can further distinguish whether
conflicts are resolved interactively or non-interactively. In the former case, merge de-
cisions are delegated to the user during the merge process. In operation-based and
change-based merging, the user can deliberately skip an edit step involved in a conflict
[145, 164]. Moreover, 2-way merging is, in general, a highly interactive process [106].
Classical merge techniques known from RCS or SVN are non-interactive. This leads
to the problem of what to do in case of conflicts. Two common solutions have already
been implicitly addressed with the description of the diff3 utility: Firstly, in the case
of overlaps, all possible variants and some additional conflict markers are included in
a preliminary merge result which has to be post-processed by the developer. Secondly,
in the case of conflicts that result from non-overlapping changes, the variant that has
been changed is being preferred. These basic principles, namely the creation of a unified
document and automated conflict resolution, have been also adopted for models.

Creation of a unified document. A unified document [186, 198] is a “brute force”
merger of v1 and v2 in the sense that all information contained in both versions is
united. In case of conflict 1 of Example 2.4, i.e. competing name changes, both
names are shown side by side at this model element. Deleted model elements are not
deleted, but only marked as deleted. These simple examples show that even if a unified
document looks very similar to an original model it is actually a new type of model with
a different meta-model which represents information about local differences between v1
and v2. In some cases, the graphical representation must be changed, too. As a result
of this, several additional non-trivial new tools or tool modifications are needed for
displaying and editing unified documents, for resolving conflicts and for converting the
preliminary merge result into the original modeling language.

A similar approach in which overlay techniques are used to show parallel changes
has been proposed in [177]. The approach presented in [55, 261] proposes to represent
information about changes and conflicts in a unified diagram referred to as “tentative
merge” using stereotypes and tagged values, i.e. by using UML profiles. This avoids
some of the problems mentioned above, but creates new problems in case of DSMLs
such as SysML [191] or MARTE [192], which are defined as profiles, too.

In sum, the unified document has an attractive GUI if differences are small. Larger
differences will mostly overload the graphical representation. Complex edit operations
with many parameters can only represented graphically by using an own node which
is connected to other nodes which serve as arguments. Dependencies between changes
are hard to represent.

Automated conflict resolution. One simple heuristic for taking standardized merge
decisions is to assign the least priority to deletions [95]. If basic graph operations are
used, anything which existed in v1 or v2 remains and it is impossible to identify the
cancelled deletions in the merge result, unless the relevant information is conveyed us-
ing other means. This approach fails completely if edit operations are more complex
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and replace graph fragments, i.e. they both delete and create nodes and/or edges of an
ASG.

Another approach, which is proposed in [73], is to define conflict resolution patterns
for pairs of conflicting edit operations. This leads to a very high specification effort
for realistic modeling languages because there are many pairs of edit operations which
potentially cause a conflict and for each such pair a solution must be developed. More-
over, it is unlikely that a conflict resolution pattern always guesses right what the user
actually wants.

2.3.4 Patching vs. 3-Way Merging

The principle of document patching is sketched in Figure 2.10. Initially, a document
version v0 is compared with another document version v1. v0 is referred to as original
document of the patch, v1 as changed document. The resulting patch ∆v0→v1 represents
the changes between v0 and v1, it is a specification of how v0 must be changed in oder
to produce v1. Patching in a narrow sense is the final step of repeating the changes
specified in the patch on the target document vt, which in general resides in a different
repository.

Figure 2.10: Basic principle of document patching

Misleadingly, patching is often referred to as “merging”, where merging is used in the
sense of 3-way merging. However, patching differs from 3-way merging by the absence
of a common base version. Versions v0 and vt are, in general, unrelated and managed
in different repositories. Thus, traditional notions of a merge conflict (s. Section 2.3.3)
cannot be applied immediately. Moreover, existing 3-way merge tools for models assume
that all involved versions reside in one repository. They do not need to address the
problems related to transferring and executing a patch on a different host.

Text-based patching. The combination of the UNIX standard tools diff and patch

can be used to propagate changes if models are represented as textual files. The basic
proceeding is as follows: First, a patch file is created by applying diff to the origin and
the changed version of a document. A patch file represents an asymmetric difference
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between the original and the changed version. It basically consists of a set of “hunks”
[169], each hunk represents an edit step of the difference. A hunk describes which
changes, i.e. insertions and deletions of lines of text, should be made to a certain block
of text. In so-called “normal” patches [169], text blocks are identified by absolute
line numbers in the base version. patch takes the patch file as input and applies the
contained changes to the target document, producing a patched version which is put
in place of the target document.

This traditional usage of patch is well-suited to apply differences to a copy of an
original file as in scenario SC2 of Section 2.1. However, in scenarios SC4 and SC5 we
have to apply a patch to a target model which differs from the original model. Even
if the same model element appears in the original and the target model and if it is
represented by the same block of text lines in both versions, these blocks can have
different positions in both files. Absolute line number are thus no reliable identifiers
for model elements.

The diff/patch tools offer a feature to cope with the problem of relocated text
blocks. diff can add a specified number of context lines at each hunk of a patch. Such
patches are commonly referred to as “context” patches. patch can be instructed to
exploit these context lines when searching for the correct place to apply a hunk: rather
than using the absolute line numbers, it searches for the context lines in the target file.
If a context cannot be found, the respective hunk is put out to a reject file, i.e. patch
can (partially) fail now.

There are two options to deal with this problem of non-applicable (or partly applica-
ble) patches: Firstly, a patch can be adapted using any standard text editor, which is
not a very attractive option for several reasons. A second option is to apply the patch
and to reasonably ignore up to a specified number of context lines which are to be
matched in the target document. However, the “fuzzification” of a patch application
comes with a certain degree of uncertainty, i.e. a change might be applied at a wrong
“position” in the target document. Thus, the result of the patch application has to be
double-checked manually. While this approach is feasible in the case of textual docu-
ments, it is hardly applicable to visual models: At worst, the application of a patch
can make a model so incorrect that it can no longer be processed by standard model
editors.

ASG-based patching. In contrast to model merging, there are only a few approaches
which directly address the patching of models.

The approach presented in [74] considers the application of a patch as one model
transformation and aims at using a model transformation system (ATL) [131] as a
technology to execute patches. The transformation which implements a patch is me-
chanically derived from the difference between two models. If a patch shall be applied to
a model different from the original model, a so-called weaving model must be supplied,
which is basically a matching between original and target model. It seems as though
an application of a patch will never fail. Users are not supported in case of errors,
e.g. violations of consistency constraints or references resolved wrongly. The controlled
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editing of patches is not supported. The same observations apply to any approach
based on the principle that a complete patch is implemented by one, possibly huge
transformation rule: Model transformation systems were not designed to support the
independent execution of parts of a transformation rule, the order in which primitive
change actions of a rule are executed is unknown and cannot be influenced.

EPatch [85], which is available as part of the EMFCompare project [86] appears to
support only our first application scenario, the patching of the original model using
low-level changes. It is based on Xtext [92] and relies on persistent identifiers of model
elements, which are pathnames derived from XMI identifiers. EMFCompare itself does
not offer a patching facility.

2.4 Conclusions

Effective model version and variant management strongly depends on sophisticated
tools supporting a variety of different scenarios. An important variation point in the
design of versioning tools for models is whether models are externally represented and
edited in a textual or visual editor, which in turn depends a lot on the modeling
language. Traditional approaches to model versioning can be conveniently applied to
all kinds of textual models. It is worth here to briefly recall why these tools have been
successfully applied to all kinds of textual documents, notably source code, in the past:

(i) For the purpose of comparing, patching and merging, the documents can be
regarded as pure texts without syntactic constraints. A simple text thus can be
regarded as a low-level implementation of a source program, which is intended to
represent a syntax tree.

(ii) Programmers are able and used to modify this low-level representation of a syntax
tree when they actually want to change the syntax tree. For example, adding a
line somewhere in the text can conceptually mean to insert a statement in a
sequence of statements contained in the body of a method.

(iii) Representations of differences, conflicts or rejected edit steps of a patch on some
output media can be constructed easily in the textual format with which the user
is familiar.

(iv) Syntax errors produced by merging or patching can be removed manually by
normal text editors.

These favorable and oftentimes simplifying conditions (i) - (iv) are no longer true in
the case of visual models:

(i) Each model type has its own syntactic constraints which must be taken into
account by difference functions.

(ii) The set of available user-level edit operations which shall be used to describe and
specify model changes strongly depends on the model type.
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(iii) Visual representations of differences, conflict resolution dialogues and further user
interactions should be adapted to each model type, i.e. they should be based on
the familiar representations of models.

(iv) Merge and patching results must conform to the effective consistency level im-
posed by model editors, there are no commonly used “low-level editors” which
can remove significant syntax errors.

We conclude that each model type requires model management tools and difference
functions being specifically tailored for each modeling language, development process,
MDE environment, and individual user preferences. To that end, much research has
been stimulated in the last decade in order to provide fundamental difference functions
in the same quality as for textual documents. While sophisticated model matchers
are becoming available and are actually used in industrial practice [216], differencing,
patching and merge tools for visual models are not nearly as mature and widely used
as their traditional counterparts for textual documents. The main deficiencies will be
briefly summarized in the remainder of this section.

Understandability of low-level differences. State-based difference tools for mod-
els deliver poor results if applied to visual models. The main reason for that is that
differences are based on primitive edit operations on the ASG instead of describing
changes in terms of user-level edit operations.

Edit operations which appear to be elementary from a user’s point of view can lead
to many low-level changes on the ASG. For example, the creation of a generalization
relationship in a UML class diagram leads to the creation of a node of type Gener-
alization and three edges connecting this node to ASG nodes representing super- and
subclass of the generalization relationship (cf. Figure 3.3). This simple example shows
already that model differences can be hard to understand for modelers who are not
familiar with meta-modeling and the related internal representation of models in terms
of an ASG.

There are several other examples where a seemingly simple change in the exter-
nal representation of visual models causes significant structural changes on the ASG;
restricting the navigability of an association to one end (s. Figure 4.1), dragging an
association end to another class, or changing the text which represents the multiplicity
of an association end, a parameter list, or a list of stereotypes; [137] discusses further
examples in state machines and similar types of models.

The above problems are mainly caused by different internal and external represen-
tations of models; the problem thus depends to some extent on presentation options of
graphical modeling tools and might disappear, or be completely different, in a textual
representation of models such as the Human-Usable Textual Notation (HUTN) [188]
proposed by the OMG.

Restructurings caused by complex edit operations inherently lead to a large number
of changes and are therefore another reason why low-level differences can become very
confusing. For example, the extraction of a composite state in a UML state chart results
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in many changes of the ASG which depend on the actual invocation parameters. In
terms of our Example 2.2, these changes can be briefly summarized as follows:

• A new composite state called Active is created and embedded into the state
machine.

• Several simple states (DialTone, Dialing, Invalid, Connecting, Busy, Ringing,
and Talking) and the respective transitions between them are moved to the new
composite state.

• Transition lift is conceptually split into two transitions; one from state Idle to the
new composite state Active, and another one from the new initial state of Active
to DialTone.

• Finally, transitions hangup originating from simple states DialTone, Dialing, In-
valid, Connecting, Busy, Ringing, and Talking are folded to a top-level transition
from Active to Idle.

Please note that each of the above change descriptions, which are still rather concep-
tually oriented, leads to a large number of low-level changes if we compare the ASGs
of model versions v1 and v2 of Example 2.2.

Violation of the effective consistency level. The basic procedures of 3-way merg-
ing (s. Figure 2.9) and patching (s. Figure 2.10) do not depend on whether edit opera-
tions preserve the consistency of models. Most approaches to 3-way merging of models
use primitive graph operations [22, 63], which can violate consistency constraints in
ASGs. For example, creating a Generalization object without connecting it to nodes of
type Class by edges general and specific leads to an inconsistent model which cannot be
processed by code generators and, much worse, which cannot be visualized graphically
or even textually. This causes serious problems in 3-way merging or patching scenar-
ios: Conflict resolution in 3-way merging requires some edit steps involved in conflicts
to be excluded from the final merge result; edit steps in patches cannot be executed
if a referenced model element was deleted from the target model. Ultimately, only a
subset of the edit steps contained in a directed delta is actually executed in these cases.
Consequently, it is not guaranteed that the merge result can be displayed graphically.

This problem re-appears in the presentation of conflicts and user dialogues for resolv-
ing conflicts. Both must use a tree representation of models (as e.g. in [86, 161]), which
is not very user-friendly and likely to cause mistakes. The problem to re-establish the
consistency of a merged model using a tree representation is additional work imposed
on users. In some common cases, e.g. the representation of associations between classes,
a very good comprehension of the meta-model is needed, which can hardly be assumed
for average users.
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Complexity of merge tools. In principle, some sophisticated approaches to 3-way
merging can be applied to combine visual models without violating the effective level
of consistency. In particular, operation-based merging can be performed on the basis
of user-level edit operations preserving the effective level of consistency. However, tools
being based on this concept are hard to implement and difficult to use for the following
reasons:

In principle, each edit step of ∆vb→v1 can be in conflict with each edit step of ∆vb→v2 ;
either of them cannot be included in the merge result. Thus, the analysis, representation
and resolution of conflicts is often very complex. A complete representation of all
relevant information in 3-way merging comprises (a) the two asymmetric differences
∆vb→v1 and ∆vb→v2 , (b) the model versions vb, v1 and v2, and (c) all conflicts and
their interrelations.

3-way merging forces a user to mentally return to the revision vb and to partly or
even completely repeat their own work since the last update. This repetition of work
can be very tedious if there are many edit steps. If a conflict occurs in the middle of
a long sequence of edit steps the current state of the model can be unclear. Repeating
all edit steps between vb and v2 allows users to skip single, own edit steps which are in
conflict with changes between vb and v1. This seems like a method for easy resolving
conflicts with almost no effort. However, simply skipping own operations is mostly
no acceptable solution. Experiences reported in [261] indicate that complex conflicts
cannot be resolved in this way. A solution must often incorporate both changes, i.e. the
effect of the skipped edit step must be manually re-established in a slightly modified
form. Conflict 3 of our Example 2.4 is an example of this.

In fact, as revealed by the study conducted by Estublier et al. [99], structural and
semantically enhanced 3-way merging techniques in the field of source code versioning
had little to no impact on the industrial practice and were never adopted by commer-
cial versioning systems. As argued in [99], the reasons of this can lie in the level of
complexity required to master an idea or in the level of effort required by a customer
to use a particular feature. According to our own experience with an early prototype
of a 3-way merge tool [217], we believe that the same observations most likely apply to
models, although there is yet no empirical evidence for this assumption.

Substantial lack of patch tools. Finally, Section 2.3.4 reveals that there is a sub-
stantial lack of patch tools for models. Tools available are not nearly as mature and
flexible as the widely used UNIX standard tools diff and patch. In particular, the de-
tection and handling of errors in the application of patches is not supported. Thus,
existing approaches seem to support only the trivial patching scenario SC2. Moreover,
conflict handling techniques, as proposed in the context of 3-way merging, can not be
simply adopted for model patching due to the lack of a common base version.



CHAPTER3

Representation and Editing of Models

Edit operations on models can only be specified precisely if a (runtime-) representation
of models is available. To that end, the concept of meta-modeling has been established
in the MDE community. A meta-model is basically a data model of the conceptual
contents of a given class of models which is commonly referred to as model type or
modeling language (cf. Section 2.2.1). Meta-models and ASGs can be implemented in
various technical frameworks (cf. Section 8.3). In this section, we abstract from these
technological details. To that end, Section 3.1 introduces our conceptual notion of an
ASG which is formally considered as typed, attributed, directed graph. A meta-model
defines the allowed types of nodes and edges of an ASG and is formally treated as a
distinguished graph called type graph. All concepts can be transferred to technologies
and frameworks which are based on the essential MOF (EMOF) standard being defined
as part of the OMG MOF 2.0 specification [193].

In this thesis, we focus on monolithic models (or sub-models) which are usually
treated as self-contained development documents by standard editors. In this regard,
a model is typically considered to be syntactically consistent if it conforms to its meta-
model (or a subset of a meta-model). Beyond basic typing correctness as defined in
Section 3.1, models usually must meet a set of additional consistency constraints which
will be considered in Section 3.2.

Our notion of a graph introduced in Section 3.1 is compatible with the graph model
of the model transformation language and system Henshin [34]. Henshin is based on
graph transformation concepts and is used in our approach to precisely specify the
available edit operations for a given modeling language. Section 3.3 introduces the
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basic principles of our rule-based approach to the specification of edit operations and
briefly reviews the basic concepts of the Henshin model transformation language.

3.1 Graph-based Representation of Models

Figure 3.1 informally introduces the graph model being applied in this thesis. As usual
in object-oriented modeling, graphs can be used at two levels which are commonly
known as instance level (or object level) and type level. An (instance) graph basically
consists of two disjoint sets containing the nodes and edges of the graph. Altogether,
the nodes and edges are referred to as the elements of the graph. An edge is a directed
connection between two nodes, which are called the source and target nodes of the edge.
A type graph declares the available types of nodes and edges in an instance graph and
thereby defines the allowed instance structures of graphs being typed over a fixed type
graph. A type graph is a special graph which may contain further notational constructs
to define type hierarchies, containment structures, and to declare types of edges which
shall be conceptually regarded as bidirectional edges in an ASG. Moreover, multiplicities
can be attached to edge types in order to restrict the allowed instance structures. Both
type graphs and instance graphs may be attributed. Attributes defined by a type graph
have to be considered as attribute declarations; we specify a name and a data type for
a certain attribute. In an instance graph, we may assign any value from the data type’s
range of possible values to this attribute.

Figure 3.1: Attributed, directed graphs being typed over a fixed type graph with inher-
itance, containment, opposites and multiplicities
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Please note that the graph model of Figure 3.1 also serves as a data model for the
representation of graphs. In order to be precise, we will introduce formal definitions
for representing MDE models as graphs in the remainder of this section. The mapping
of the data model of Figure 3.1 to this “semantic domain” is mostly straightforward,
hints will be given in case of ambiguities.

3.1.1 Graphs and Graph Mappings

Formally, we consider a graph as a directed multigraph in which source and target
nodes of an edge are defined by dedicated functions.

Definition 3.1 (Graph)
A graph G is a 4-tuple G = (GN , GE, srcG, tgtG) which consists of a set GN of nodes, a
set GE of edges, as well as source and target functions srcG, tgtG : GE → GN . If any of
the functions srcG and tgtG is a partial function, we say that G is a partial graph (or
graph fragment) which intuitively differs from a graph in that it has so-called dangling
edges.

We use an object-oriented infix notation to refer to the source and target nodes of an
edge e ∈ GE, i.e. we write e.src instead of srcG(e) and e.tgt instead of tgtG(e), respec-
tively (note that we omit indices for srcG and tgtG in the object-oriented notation). In
addition, we use functions in, out : GN → P(GE) to refer to incoming and outgoing
edges of a particular node. For each n ∈ GN ,

• the set of incoming edges is defined by

in(n) = {e ∈ GE | e.tgt = n}. (3.1.1)

• the set of outgoing edges is defined by

out(n) = {e ∈ GE | e.src = n}, (3.1.2)

Definition 3.2 (Graph mapping)
Given two graphs G and H, a pair of functions (fN , fE) with fN : GN → HN and
fE : GE → HE forms a (total) graph mapping f : G → H. A mapping is edge-
preserving if it maps the nodes and edges of G to those of H in a structure-compatible
way, i.e. for each edge eG ∈ GE there is a corresponding edge eH = fE(eG) ∈ HE such
that

• eG.src is mapped to eH .src, and

• eG.tgt is mapped to eH .tgt.

An edge-preserving graph mapping is usually called graph (homo-)morphism. If the
mapping is injective, the morphism is called a graph monomorphism; each node/edge in
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G is mapped to a distinct node/edge in H, whereas H may have additional nodes/edges.
If the mapping is bijective, the morphism is called a graph isomorphism.

We write G  H if if mappings fN and fE are allowed to be partial. Notations
dom(f) and ran(f) are used to refer to the domain and range of a partial mapping.
The mapping f is a partial graph morphism if dom(f) = (dom(fN), dom(fE)) is a
graph.

Basic binary operations known from set theory can be applied to graphs if there is a
precise specification which elements of the input graphs are to be considered “identical”.
Such a precise specification can be, for instance, provided by a partial injective mapping.

Definition 3.3 (Intersection, union and difference of graphs)
Let G and H be graphs and f : G  H be a partial injective mapping, then the
“identical” elements of G and H are defined as follows:

• nG = nH with nG ∈ GN and nH ∈ HN ⇔ f(nG) = nH

• eG = eH with eG ∈ GE and eH ∈ HE ⇔ f(eG) = eH

Thereupon, the intersection, union and difference of G and H are defined component-
wise for the sets of nodes and edges, respectively:

G ∪H := (G ∪H)N = GN ∪HN and (G ∪H)E = GE ∪HE

G ∩H := (G ∩H)N = GN ∩HN and (G ∩H)E = GE ∩HE

G \H := (G\H)N = {n | (n ∈ GN)∧ (n /∈ HN)} and (G\H)E = {e | (e ∈ GE)∧ (e /∈
HE)}

The result of the above operations is well-defined if G ∩ H is a graph. In this case,
G ∪H constitutes a graph, too, while G \H may result in a graph fragment.

Further operations which can be derived from the basic operations above are defined
as usual. In particular G ⊆ H denotes that G is a subgraph of H. In this case, the
mapping f is an inclusion. Having defined the subgraph relationship, we can finally
introduce our notion of a boundary graph which we will need later in this thesis.

Definition 3.4 (Boundary graph)
Let G be a graph, then the boundary graph of a fragment F ⊆ G is the smallest graph
B ⊆ G completing F to a graph.

3.1.2 Meta-models as Type Graphs

In MDE, the allowed types of nodes and edges are defined by a meta-model: Types
of nodes are specified by classes, while types of edges are specified by association rela-
tionships between classes. In this context, classes (associations) are often called meta-
classes (meta-associations) to point out that they are used here for the purpose of
language engineering, in contrast to their traditional usage in application engineering.
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A meta-model can be formally treated as a distinguished graph called type graph
whose nodes and edges represent node types and edge types, respectively [79]. MOF-
based meta-models use several concepts which are known from object-oriented analysis
and design, notably inheritance, containment, bidirectional associations and multiplic-
ities1. To that end, we adopt here the approach presented in [51] which introduces
so-called type graphs with inheritance and containment. Our formalization of multi-
plicities is based on [96].

Definition 3.5 (Type graph)
A type graph TG = (T, I, A,C,OE,mult) consists of a graph T = (TN , TE, srcT , tgtT )
representing the node types and edge types defined by a meta-model. In addition, TG
consists of the following components:

I ⊆ TN × TN is an acyclic relation that formalizes the inheritance relationships defined
by a meta-model. For each x, y ∈ TN and (x, y) ∈ I, x refers to the subtype and
y to the supertype induced by an inheritance relationship.

A ⊆ TN identifies abstract node types in the inheritance hierarchy.

C ⊆ TE introduces a distinguished kind of edge type called containment edge type in
order to represent meta-associations that are declared to be composite relations.

OE ⊆ TE × TE is a binary relation being introduced in order to represent bidirectional
meta-associations with the help of opposite edge types, i.e. pairs of edge types
(et1, et2) with et1.srcT = et2.tgtT and et2.tgtT = et1.srcT . The relation OE is
anti-reflexive and symmetric. Furthermore, OE is unique, i.e. each edge in a type
graph can have at most one opposite edge.

mult : TE →Mult denotes a function that maps each edge type to a multiplicity in-
variant. The range Mult denotes the set of multiplicities, and a multiplicity is a
pair [lb, ub] ∈ N× (N ∪ {∗}) with lb ≤ ub or ub = ∗.

Multiplicities. Please note that a multiplicity attached to an edge type refers to
the target end of an edge type, i.e. it specifies the number (more precisely, an integer
interval defined by lower and upper bounds lb and ub, respectively) of nodes which may
be connected to one source node via edges of a certain edge type. Given an edge type
et ∈ TE, we write et.lb and et.ub to refer to the lower bound and upper bound defined
by mult(et). In contrast to [96], multiplicities that refer to the source end of an edge
type are not allowed here.

1Note that we deliberately abstained from formalizing some MOF concepts such as property re-
definition, property subsetting and association specialization for two reasons. Firstly, the OMG
standard [193] lacks a precise semantics for some aspects of these concepts, especially w.r.t. their
interrelations [24, 52]. Secondly, these concepts are of minor practical importance since they are
typically not supported by available reference implementations of the MOF standard (cf. Section
8.3).
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mult abbr. many required bounded fixed

0..1 X
0..x X X
0..* * X
1..1 1 X X X
1..x X X X
1..* X X
x..x x X X X X
x..y X X X
x..* X X

1 < x < y < ∗

Table 3.1: Multiplicity properties of different multiplicity invariants.

It is often useful to classify edge types according to the upper bound (ub) and lower
bound (lb) of its multiplicity invariant. An edge type et ∈ TE is called

• required if et.lb > 0

• bounded if et.ub 6= ∗

• fixed if et.lb = e.ub

• many if (et.ub > 1) or et.ub = ∗.

Note that these properties are not mutually exclusive, i.e. an edge type can have sev-
eral of these properties. Table 3.1 illustrates these properties for different multiplicity
invariants.

Please also note that upper bounds of multiplicities are represented as Integer values
in our data model of Figure 3.1. The special symbol ∗, which is used to specify an
unbounded multiplicity (¬bounded), is represented as negative Integer value.

Super- and subtypes. We use functions super, allsuper, sub, allsub : TN → P(TN)
to refer to the supertypes and subtypes of a node type. For each x ∈ TN ,

• the set of direct supertypes is defined by

super(x) = {y ∈ TN | (x, y) ∈ I}, (3.1.3)

• the set of all supertypes is defined by

allsuper(x) = {y ∈ TN | (x, y) ∈ I+}, (3.1.4)

• the set of direct subtypes is defined by

sub(x) = {y ∈ TN | (y, x) ∈ I}, (3.1.5)
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• the set of all subtypes is defined by

allsub(x) = {y ∈ TN | (y, x) ∈ I+}, (3.1.6)

where I+ is the transitive closure of the inheritance relation I. Obviously, we have
super(x) ⊆ allsuper(x) and sub(x) ⊆ allsub(x).

Furthermore, we use functions srcI , tgtI : TE → P(TN) which, given an edge type
et ∈ TE, deliver the source (target) node type et.src (et.tgt) of et and all subtypes of
et.src (et.tgt). For each et ∈ TE, we have

srcI(et) = {et.src} ∪ allsub(et.src), (3.1.7)

and
tgtI(et) = {et.tgt} ∪ allsub(et.tgt). (3.1.8)

We write et.srcI (et.tgtI) when using function srcI (tgtI) in an infix notation.
Moreover, we use functions inI , outI : TN → P(TE) to refer to all incoming and

outgoing edge types (including inherited edge types) of a particular node type. For
each nt ∈ TN , we have

inI(nt) = in(nt) ∪
( ⋃
nt′∈allsuper(nt)

in(nt′)
)
, (3.1.9)

and
outI(nt) = out(nt) ∪

( ⋃
nt′∈allsuper(nt)

out(nt′)
)
. (3.1.10)

Finally, we slightly adapt the usual notion of a path in a directed graph to type
graphs. When we say that there is a path (et1, et2, ..., etn) of edge types in a type
graph, we mean that there would be a path in the corresponding flattened type graph.

3.1.3 Models as Typed Graphs

We formalize the typing relation between models and meta-models, which is often
called instanceOf-relation, by a special graph morphism relating a typed graph with its
associated type graph.

Definition 3.6 (Typed graph and typing morphism)
An instance graph G is typed over a fixed type graph TG if there is a typing re-
lation typeG : G → T which maps the nodes and edges of G to those of T in a
structure-compatible way, i.e. for each edge eG ∈ GE there is a corresponding edge
eT = typeG(eG) ∈ TE such that

• eG.src is mapped to eT .src or any subtype x ∈ allsub(eT .src), and

• eG.tgt is mapped to eT .tgt or any subtype x ∈ allsub(eT .tgt).

The relation typeG is called typing morphism.
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A typing relation associates each node and each edge of a typed graph with exactly
one type to which we refer to as node type and edge type, respectively. For brevity,
we write n.type instead of typeG(n) to refer to the node type of a node n ∈ GN .
Analogously, e.type refers to the edge type of an edge e ∈ GE. We adapt our basic
definition of a graph mapping to typed graphs. In particular, we distinguish between
type-preserving and type-compatible mappings of typed graphs. The latter notion is
based on the object-oriented principle of polymorphism.

Definition 3.7 (Type-preserving and type-compatible mapping)
Let G and H be graphs which are typed over the same type graph TG, then a mapping
f : G→ H is called type-preserving if it maps the nodes and edges of G to those of H
such that

(1) n.type = fN(n).type for each (n, fN(n)) ∈ fN , and

(2) e.type = fE(e).type for each (e, fE(e)) ∈ fE.

The mapping f is called type-compatible if it allows types of nodes in G to be more
general than types of the corresponding nodes in H. To that end, the above condition
(1) is relaxed such that only one of the following conditions must hold:

• n.type = fN(n).type, or

• n.type ∈ allsuper(fN(n).type).

An edge e with e.type ∈ C, where C ⊆ TE denotes the containment edge types
defined by the type graph, is called containment edge. Its source and target nodes are
referred to as parent (or container) and child, respectively. Typed graphs are called
rooted, if there is a distinguished node, the root node, which contains (transitively) all
other nodes of the graph. The target node of a non-containment edge, i.e. an edge e
with e.type /∈ C, is called neighbor of the respective source node e.src.

Sets of incoming and outgoing edges of a particular node in a typed graph can be
partitioned by edge types. Consequently, functions in and out according to (3.1.1) and
(3.1.2) are redefined for typed graphs. Let G be an instance graph over a type graph
TG, then we have functions in, out : GN × TE → P(GE) with the following semantics:
For a node n ∈ GN ,

• the set of outgoing edges of a particular type et ∈ TE is defined by

out(n, et) = {e ∈ GE | e.src = n ∧ e.type = et}, (3.1.11)

• the set of incoming edges of a particular type et ∈ TE is defined by

in(n, et) = {e ∈ GE | e.tgt = n ∧ e.type = et}. (3.1.12)
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3.1.4 Attributed Graphs

As shown in Figure 3.1, nodes in an instance graph may have attributes. Each attribute
can be assigned a data value from the domain of possible values defined by the data
type of the attribute declaration to which this attribute refers to. Our formal notion
of an attributed graph is based on [122]. Here, type graphs and instance graphs are
modeled as a pair AG = (G,A) of a graph G and a data type algebra A. A data type
is formally represented by a data sort defined by the algebra, while data values are
represented by elements of the carrier set of a data sort.

In an instance graph, data values are represented as nodes which are referred to as
value nodes in order to distinguish them from ordinary object nodes. Object nodes are
linked to value nodes by attributes, i.e. an attribute is a special edge connecting an ob-
ject node with a value node. Value nodes must not have outgoing edges. Furthermore,
only nodes may have attributes, i.e. edges cannot be linked to value nodes.

The same principle can be applied to type graphs. Here, data types are represented
as nodes of a type graph, and ordinary node types can be linked to data types by
special edge types representing attribute declarations. Finally, the typing morphism
of Definition 3.6 can be extended to an attributed graph morphism in order to define
typed attributed graphs, a formal treatment can be found in [122].

Please note that our notion of a typed attributed graph can be regarded as a special
kind of an ordinary typed graph. For simplicity, we assume attributes to be single-
valued, null-values are not allowed (cf. Figure 3.1), which is the usual case in common
meta-models and modeling frameworks. Formally, a multiplicity of [1..1] is implicitly
assigned to each attribute declaration in a type graph. Concerning the approach pre-
sented in this thesis, this simplification is without loss of generality; all concepts can
be easily transferred to multi-valued attributes.

3.1.5 Visual Representation of Type and Instance Graphs

In this section, we illustrate how to formally treat meta-models and models as defined
in the context of OMG-related standards. Thereby, we introduce the visual syntax used
in this thesis in order to externally represent type and instance graphs in a compact
manner.

Example 3.1 (UML meta-model of class diagrams as type graph)
Meta-models as defined in the context of the OMG can be translated to our notion of
a type graph in a straightforward way. The left part of Figure 3.2 shows an excerpt of
the UML meta-model for class diagrams as defined in the UML Superstructure Speci-
fication [190]. On the right, we illustrate how this excerpt is mapped to an attributed
type graph with inheritance, containment, opposites and multiplicities. Basically, each
meta-class is represented by a node in the corresponding type graph. Each unidirec-
tional meta-association corresponds to a normal edge in the type graph. Bidirectional
meta-associations are modeled by two separate edges that are declared to be opposite
to each other (cf. opposite relation OE). Node and edge types are shown as rectangles,
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Figure 3.2: Subset of the UML meta-model as type graph with inheritance, contain-
ment, opposites and multiplicities: UML-like syntax (left) vs. formal syntax
(right)

a data type DT being used by an attribute declaration a : DT is shown as ellipse.
Multiplicity invariants are shown in the usual UML-like [lb..ub] notation; 1 and ∗ are
used as shorthand notations for [1..1] and [0..∗]. Inheritance relationships, abstract
types, and containment edge types are defined by relation I as well as sets A and C,
respectively.

In the remainder of this thesis, we will use the more compact UML-like syntax. In
particular, attribute declarations are shown as an integral part of the definition of a
node type, and pairs of edge types being opposite to each other are shown as one visual
edge without arrowheads.

Example 3.2 (ASG representation of a UML class diagram as typed graph)
Figure 3.3 shows parts of the ASG representation of our class diagram example of Fig-
ure 2.1, namely the classes Person and Developer as well as the generalization relation-
ship between these classes. We use here the concrete syntax of UML object diagrams;
the notation n : T represents a node n of type T ; n is used as symbolic identifier (which
can actually be omitted) and T refers to a node type of the corresponding type graph.
Edge types are attached to edges without the use of symbolic identifiers. On the left,
the notation a = v is used to express that a value v is assigned to attribute a. On the
right, the formal representation is shown with attribute values being modeled as value
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nodes of the graph.
In the remainder of this thesis, we will use the UML-like syntax on the left where

attribute values are modeled inside a dedicated compartment of object nodes. For the
sake of readability, we also indicate containment edges in an ASG using the UML-like
syntax, i.e. a diamond is attached to the source end of a containment edge.

Figure 3.3: ASG representation of a sample UML class diagram as typed graph: UML-
like syntax (left) vs. formal syntax (right)

3.2 Consistency of Models

A model is considered (syntactically) consistent if it is properly typed (s. Section 3.1.3),
and if it meets additional consistency constraints which will be considered in the re-
mainder of this section. In general, we distinguish among basic consistency constraints,
multiplicity invariants and further, “arbitrary” well-formedness rules. In accordance
with the requirements revealed by our domain analysis (cf. Section 2.2), our main
objective is to identify those conditions which are required to produce external rep-
resentations of models. In turn, these conditions obviously depend on the properties
of standard editors of an MDE environment. In order to formally document these
properties, we finally introduce our notion of an effective meta-model.

Basic consistency constraints. Basic consistency constraints correspond to funda-
mental conditions imposed by EMOF-based modeling frameworks. A formal treatment
of basic consistency constraints can be found in [51]; they can be summarized as follows:

• at-most-one-container and no-containment-cycles: The concept of contain-
ment leads to two constraints to which we refer to as at-most-one-container and
no-containment-cycles : Each ASG node must have at most one container and
cycles of containment edges must not occur.
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• no-parallel-edges: A consistent ASG must further adhere to the no-parallel-
edges constraint, i.e. it must not contain two edges of the same type linking the
same source and target node. The reason behind this constraint is that ASGs are
typically implemented by a set of objects and references between them. Main-
stream object-oriented languages do not assign internal identifiers to references
(we cannot reference a reference). Consequently, two references of the same type
linking the same source and target object cannot be uniquely distinguished.

• all-opposite-edges: For every pair of edge types (et1,et2) that are declared to
be opposite to each other, the all-opposite-edges constraint must be satisfied by
an ASG: For all edges of type et1 there must be also an edge of type et2 linking
the same nodes in the opposite direction.

Multiplicity invariants. Multiplicity invariants define another kind of consistency
constraint which restricts the allowed instance structures in an ASG. Although they are
typically not enforced by standard modeling frameworks such as EMF, many of them
are required for generating external representations of visual models in standard editors.
A multiplicity attached to an edge type refers to its target end (s. Definition 3.5) and
specifies the number of nodes which may be connected to a source node via edges of
the given edge type. In other words; for each node in an ASG, a multiplicity invariant
restricts the number of outgoing edges of a particular type:

Let G be a model represented as ASG being typed over a type graph TG, then for
each edge type et ∈ TG and for each node n ∈ GN two conditions must hold to which
we refer to as no-lower-bound-violation and no-upper-bound-violation, i.e.

et.lb ≤ |outet(n)| ≤ et.ub or et.ub = ∗, (3.2.1)

where |outet(n)| denotes the cardinality of the set of edges of type et outgoing from
node n.

In particular, edge types having multiplicity property required lead to mandatory
neighbors and mandatory children [224]: Let et ∈ TE be an edge type with multiplicity
property required (i.e. et.lb > 0). Then, in an instance graph G, each node n ∈ GN of
type et.src (or any of its subtypes in allsub(et.src)) must be connected to a number of
et.lb nodes of type et.tgt (or any of its subtypes in allsub(et.tgt)) via edges of type et. If
et is a non-containment edge type, we refer to these nodes as mandatory neighbors of
n. Otherwise, if et is a containment edge type, we say that node n has et.lb mandatory
children.

Well-formedness rules. Meta-models such as the UML Superstructure Specifica-
tion [190] typically define further advanced well-formedness rules beyond basic con-
sistency constraints and multiplicity invariants. For example, Table 2.1 lists several
well-formedness rules for UML state machines which are specified in natural language.
In the context of MOF-based meta-models, formal specifications of these rules are usu-
ally expressed using the Object Constraint Language (OCL) [195]. Figure 3.4 shows
OCL expressions for well-formedness rules (a), (b) and (q) of Table 2.1.
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Additional well-formedness rules:

context FinalState

inv (a): self.outgoing->size() = 0

inv (b): self.region->size() = 0

context Region

inv (q): self.subvertex->forAll( memb |

self.subvertex->excluding(memb)->forAll(other |

memb.name <> other.name))

Figure 3.4: Effective meta-model of simple UML state machines according to typical
visual UML editors

Effective level of consistency and effective meta-models. The degree of con-
sistency achieved by satisfying all of the above mentioned constraints can be called
“perfect” because models meeting these constraints can be interpreted or correctly
translated to source code. However, as analyzed in Section 2.2.6, typical visual editors
do not enforce all consistency constraints. In particular, only a small subset of the
well-formedness rules is actually required. The effective level of consistency can be
represented by starting from the perfect meta-model and by dropping all constraints
except the relevant ones. Moreover, certain multiplicity invariants may be relaxed. We
will refer to the resulting meta-model as the effective meta-model of a dedicated editing
environment.

Definition 3.8 (Effective meta-model)
An effective meta-model precisely defines the effective level of consistency which is
required by standard editors in order to generate an external representation of an
ASG. An effective meta-model may differ from its corresponding perfect (or standard)
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meta-model in two aspects; an effective meta-model may i) contain only a subset of the
set of well-formedness rules defined by the standard meta-model, and ii) multiplicity
invariants may be relaxed, i.e. lower bounds may be decreased while upper bounds may
be increased.

Example 3.3 (Effective meta-model of UML state machines)
As an example, the effective meta-model of UML state machines according to typical
visual UML editors is shown in Figure 3.4. Note that only a subset of the set of well-
formedness rules defined by the UML Superstructure Specification is explicitly listed.
Here, none of the multiplicity invariants has been relaxed as the specified lower bounds
are of particular importance: Transitions can only be visually displayed if they are
properly connected with their mandatory neighbors of type Vertex; regions of a state
machine are typically used as “canvas” in visual editors, thus a StateMachine node has
one mandatory child of type Region.

Based on our notion of an effective meta-model, consistency of models can be finally
defined according to Definition 3.9.

Definition 3.9 (Consistency of models)
A model is consistent if it is properly typed, adheres to all basic consistency constraints,
and satisfies all multiplicity invariants and well-formedness rules defined by the effective
meta-model.

3.3 Rule-based Specification of Edit Operations

Meta-models are just data models of models and do not directly specify editing behav-
ior. One obvious option to modify a model is to use primitive graph editing operations
such as creating/deleting a node/edge of an ASG or setting an attribute value. These
edit operations are atomic insofar as they are the smallest possible changes of an ASG.
Primitive edit operations are generic because they have arguments which designate
types, i.e. they can operate on ASGs with arbitrary meta-models.

In simple cases, an elementary user-level edit operation (cf. Section 2.2.2) can be
implemented by one primitive operation on an ASG. However, many elementary edit
operations can only be implemented by grouping several primitive ASG operations in a
single transaction. For example, creating a generalization relationship in a UML class
diagram boils down to four primitive graph operations: The creation of a node of type
Generalization and the creation of three edges which connect the Generalization node
to Class nodes via edges of type general, specific and generalization (cf. Figure 3.3).

An important characteristic that distinguishes user-level operations from primitive
operations on an ASG is that their effect always leads to a consistent state of an ASG,
i.e. an external representation can be created in a standard editor (cf. Definition 3.9).
Thus, from a technical point of view, we refer to such an operation as consistency-
preserving edit operation (CPEO). Please note that primitive edit operations are, in
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general, not consistency-preserving. For example, if only a subset of the above prim-
itive edit operations is executed, the effect might lead to a “dangling generalization
relationship” in the visual representation of a class diagram. Typical visual editors will
not create a diagram representation at all (s. Section 2.2.1)

Definition 3.10 (Consistency-preserving edit operation)
A consistency-preserving edit operation (CPEO) is an edit operation that can be applied
to any consistent model and, if executed successfully, transforms the model into another
consistent model.

Obviously, the effect of complex edit operations such as refactorings or other high-
level evolutionary operations (cf. Section 2.2.2) cannot be achieved by single primitive
edit operations, too. We can conclude that implementations of user-level edit opera-
tions depend on the effective meta-model of a given modeling language, i.e. they are
not generic but have to be individually engineered for each modeling language and
editing environment. To that end, user-level edit operations have to be specified in a
suitable way. Section 3.3.1 shows how edit operations can be informally specified in
an intuitive way. Section 3.3.2 explains how edit operations can be implemented based
on the model transformation language Henshin. Henshin is based on graph transfor-
mation concepts [94] which can be exploited to reason about potential conflicts and
dependencies between edit operations as illustrated in Section 3.3.3.

3.3.1 Informal Specifications of Edit Operations

Informally, edit operations can be specified using natural language. Such specifications
can be illustrated using the concrete syntax of the given modeling language. If required,
the concrete syntax can be enriched with additional notational constructs in order to
clarify the semantics of edit operations. Two examples of this for UML class diagrams
are shown in Figure 3.5. The left side of such a specification defines the context in
which an edit operation can be applied. The right side represents the new state of the
diagram after the edit operation has been applied. An application of the operation
can be thought of as replacing the diagram pattern on the left side with that on the
right. Figure 3.5 (a) serves as an informal specification of the edit operation createGen-

eralization(C1,C2) that establishes a generalization relationship between classes C1 and
C2 such that C2 becomes the superclass of C1.

Another example is the refactoring operation pullUpAttribute(a) shown in Figure 3.5 (b).
In contrast to createGeneralization(C1,C2), pullUpAttribute(p) specifies a variable change
pattern on UML class diagrams. It is variable in the sense that it is applied to all com-
mon attributes in the set of all direct subclasses of a class. The term “common” here
means that all attributes must have the same name and the same UML data type. To
that end, pullUpAttribute(a) is defined to take one dedicated attribute a as input which
is bound to class CS and which is to be “pulled up” to the superclass of CS (called CG

in Figure 3.5). Moreover, an arbitrary number of common attributes is to be deleted
from all other direct subclasses of CG (indicated as CS0..n).
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pullUpAttribute(a)createGeneralization(C1,C2)

Figure 3.5: Informal specifications of edit operations on UML class diagrams

3.3.2 Implementing Edit Operations in Henshin

In-place model transformations are well-suited to define model refactorings, see e.g. [49,
147, 175, 181, 203, 231]. Of course, other edit operations can be specified by in-place
model transformations as well, as shown e.g. in [233]. We use the model transformation
language Henshin [34] for this purpose. This enables us to specify and at the same time
implement edit operations as declarative transformation rules, to which we refer as edit
rules. Arguably, model transformation rules are “executable specifications”, the usual
distinction between specification and implementation does not apply here.

Roughly spoken, a Henshin rule specifies i) the conditions under which the rule is
applicable and ii) a set of change actions which are to be performed on a model when
the rule is applied. Each change action corresponds to a primitive graph operation,
i.e. the creation/deletion of a node/edge in the ASG, or the change of an attribute
value. Please note that we introduce Henshin here as a visual language for the formal
specification of graph transformation rules. Abstract syntax and execution semantics
of Henshin rules are based on graph transformation concepts [94].

Definition 3.11 (Henshin transformation rule)
A Henshin transformation rule r is defined on the ASG and consists of the following
components:

L The left-hand side is a graph pattern which specifies the pattern that has to be
found in a model for applying r. L may include checks of attribute values which
are specified by constants or variables.

R The right-hand side specifies a graph pattern which replaces L if r is applied. R
may include changes of attribute values specified by expressions including declared
variables.

Cxtr is the intersection of L and R. It identifies that part which shall remain un-
changed when r is applied.

r : L R is used as a shorthand notation for the above components. The arrow
symbolizes a partial injective mapping from L to R which is type- and edge-
preserving, i.e. a subgraph of L is mapped to R.
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PACr, NACr are sets of positive and negative application conditions; each condition
c ∈ PACr ∪NACr is an extension of L. In general, conditions c are not graphs,
but graph fragments. They also may contain attribute conditions over declared
variables.

In addition, we use the following notations for components which are implicitly de-
fined by the partial injective mapping r : L R:

Delr = L \R is the fragment of L which is to be deleted when r is applied.

Crer = R \ L is the fragment of R which is to be created when r is applied.

Note that in general, Delr and Crer are not graphs, but just fragments. We introduce
boundary graphs BDel and BCre completing Delr and Crer to graphs:

BDel ⊆ L is the boundary graph for Delr.

BCre ⊆ R is the boundary graph for Crer.

Analogously to BDel and BCre above, we introduce boundary graphs for application
conditions. Given a condition c ∈ PACr∪NACr, then Bc refers to the boundary graph
completing c to a graph. Note that an application condition c ∈ PACr ∪NACr can be
translated to a postcondition of the same rule r if its boundary graph Bc is preserved
by rule r [94].

Application of Henshin rules. The left-hand side of a rule r can have several
matches (“occurrences”) in a model M . A match is an injective mapping m : L →
M assigning a concrete value to each declared variable. Moreover, m must be edge-
preserving and type-compatible, i.e. the type of a node in a rule graph (or rule graph
fragment) may be more general than the type of the corresponding model node. Note
that rule graphs and rule graph fragments used in the left-hand side or in application
conditions may contain nodes which are typed over abstract node types. In contrast,
nodes which are to be created must be concretely typed.

A rule r is applicable at match m if m can be extended such that each pac ∈ PACr

can be matched and no nac ∈ NACr can be matched. In order to guarantee that
an application of r is free of side effects, we additionally require the so-called dangling
condition of the double-pushout approach (DPO) to algebraic graph transformation [94]
to be fulfilled; each edge in M which is incident to a deleted node in m(Delr) must have
an origin in Delr. This means that the context of a node which is to be deleted must
be specified completely. Thus, dangling edges are not deleted implicitly, as opposed to
the single-pushout approach (SPO) to algebraic graph transformation (cf. [211]).

The effects of applying an applicable rule r using match m in M can be described as
follows (a full treatment can be found in [94]):

1. The fragment m(Delr) ⊆M is deleted from M .



68 Chapter 3. Representation and Editing of Models

2. The fragment Crer is inserted intoM as a fresh copy and connected withm(Cxtr).

3. Attribute values are changed according to defined expressions.

We write M1
r,m,n
=⇒ M2 to express that model M1 is transformed into model M2 by

applying rule r using match m. The Co-match n : R→M2 shows how the right-hand
side is part of model M2.

Visual syntax of the Henshin transformation language. Henshin offers an intu-
itive visual syntax to specify model patterns to be found and preserved, to be deleted,
to be created, to be required and to be forbidden [34]. The idea is to integrate all
components of a transformation rule r in a unified diagram such that the effect of
r can be easily seen. Context elements in Cxtr are colored in grey and annotated
with the stereotype preserve, elements in Delr are colored in red and annotated with
the stereotype delete, elements in Crer are colored in green and annotated with the
stereotype create. A positive application condition pac ∈ PAC is specified as a model
pattern which is annotated with the stereotype require, while a negative application
condition nac ∈ NAC is specified as a model pattern annotated with the stereotype
forbid. Application conditions of the same type are distinguished using symbolic iden-
tifiers attached to the elements of the respective model patterns, i.e. elements sharing
the same identifier belong to the same application condition.

Example 3.4 (Implementing edit operation createGeneralization in Henshin)
As an example, edit rule createGeneralization(c1, c2, gen) is shown in Figure 3.6. The
example illustrates that a Henshin rule can define variables serving as input or output
parameters. Here, input parameters c1 and c2 determine sub- and superclass between
which a generalization relationship is to be created. The created node of type Gener-
alization is returned as output parameter gen when the rule is applied.

Rule createGeneralization(c1, c2, gen)

«preserve»
c1:Class

«preserve»
c2:Class

«create»
gen:Generalization

generalization

general
«create»

specific«create»
«create»

Figure 3.6: Implementing edit operation createGeneralization(c1, c2, gen) in Henshin
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Rule schemes. Although “simple” Henshin transformation rules can combine a num-
ber of primitive graph operations into one transaction, the variability which is described
by our informal specification of the edit operation pullUpAttribute of Figure 3.5 cannot
be formally specified on that basis. We need an additional concept to express recurring
model patterns, which we call multi-object structures.

Henshin offers so-called “nested rules” (a.k.a. rule schemes or interaction schemes)
to specify transformations of multi-object structures which are based on the concept of
amalgamation [50]. A rule scheme contains a kernel rule and an arbitrary number of
multi-rules. A kernel rule is a simple transformation rule which can be equipped with
a set of multi-rules which include the kernel rule. Each multi-rule specifies one multi-
object structure and its transformation. A rule scheme is applied as follows: The kernel
rule is applied once. This match is used as a common partial match for each multi-rule,
which are matched as often as possible. Thus, multi-object structure transformations
are performed as often as corresponding structures occur in a given model.

Rule pullUpAttribute(p, g, n)

«preserve»
cs:Class

«preserve»
cg:Class

«preserve»
p:Property

name=n

«preserve»
g:Generalization

«forbid#nac1»
:Property

name=n

«preserve»
t:Type

«preserve*»
g_m:Generalization

«preserve*»
cs_m:Class

«delete*»
p_m:Property

name=n

class
«delete*»

general
«preserve»

type

«preserve»

ownedAttribute

«create»

specific

«preserve*»

ownedAttribute«forbid#nac1»

general
«preserve*»

specific

«preserve»

ownedAttribute
«delete»

generalization
«preserve*»

class

«create»

generalization
«preserve»

ownedAttribute

«delete*»

class
«delete»

type

«delete*»

Figure 3.7: Refactoring pullUpAttribute(p,g,n) as rule scheme

Example 3.5 (Refactoring pullUpAttribute as rule scheme)
The effect of the refactoring operation pullUpAttribute can be achieved by a rule scheme,
the basic idea is shown in [34] for a simplified UML meta-model; its kernel rule moves
one of the “redundant” attributes to the common superclass, one multi-rule is needed
to delete the remaining attributes from all sibling classes in the inheritance tree. The
rule scheme pullUpAttribute(p,g,n) shown in Figure 3.7 adopts this basic principle, while
all type definitions are based on the UML Superstructure Specification [190]. Note that
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in the visual syntax of the Henshin transformation language, all multi-rule elements are
indicated by the star symbol * and rendered as stacked rectangles.
The kernel rule takes three parameters p, g, and n as input. Note that p and g are object
parameters which are to be bound to ASG nodes, while n is a value parameter which is to
be bound to a primitive data value. Property p with name n is the attribute which shall
be pulled up from class cs to superclass cg, but only if cg does not yet own an attribute
with name n (s. nac1 in Figure 3.7). As UML classes may have multiple superclasses,
the concrete superclass cg of cs is determined by the generalization relationship g given
as input parameter. Variables cs, cg and t are bound implicitly when the kernel rule is
applied. All attributes named n having the same type t as p are deleted from all other
direct subclasses of cg by applying the multi-rule as often as possible. Variables cs m,
cg m and p m are bound implicitly when the multi-rule is applied.

3.3.3 Potential Conflicts and Dependencies

A set of transformation rules can be statically analyzed for potential conflicts and
dependencies using the technique of critical pair analysis (CPA). Critical pair analysis
has been initially developed in the context of term rewriting and is used there to check
if a term rewriting system is confluent [37]. The theory of critical pairs and confluence
has been transferred to transformation systems for typed attributed graphs [94, 122].
A critical pair provides a minimal example of a conflicting situation, or of a situation
in which two rule applications depend on each other.

Two rule applications G
r1,m1,n1

=⇒ G1 and G
r2,m2,n2

=⇒ G2 are in conflict if the first rule
application invalidates the second one. There are four reasons why rule applications
can be conflicting:

• delete/use: The application of rule r1 deletes a model element that is used by
the match of r2 including its PACs.

• change/use: The application of rule r1 changes the value of an attribute that is
used by the match of r2 including its PACs.

• create/forbid: The application of rule r1 creates a model element that a NAC
of r2 forbids.

• change/forbid: The application of rule r1 changes the value of an attribute that
is checked by a NAC of r2.

Two subsequent rule applications G1
r1,m1,n1

=⇒ G2 and G2
r2,m2,n2

=⇒ G3 are dependent
on one another if the first rule application enables the second one. The following four
kinds of dependencies are possible if a rule r2 is applied after a rule r1:

• create/use: The application of rule r1 produces a model element that is used
by the match of r2 including its PACs.

• change/use: The application of rule r1 changes the value of an attribute that is
used by the match of r2 including its PACs.
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• delete/forbid: The application of rule r1 deletes a model element that a NAC
of r2 forbids.

• change/forbid: The application of rule r1 changes the value of an attribute that
is checked by a NAC of r2.

Definition 3.12 (Critical pair)
A critical pair is a pair of rule applications that are conflicting (dependent) in a minimal
context. A critical pair represents a potential conflict (potential dependency) between
two rules. If there is no potential conflict (potential dependency) between two rules,
they are said to be parallel independent (sequentially independent).

Without considering application conditions, minimal critical graphs to which two
rules r1 and r2 can be applied in a conflicting way are computed by overlapping L1

(the left-hand side of rule r1) with L2 (the left-hand side of rule r2) in all possible
type- and structure-compatible ways. Each critical graph G together with conflicting
rule applications G

r1,mG,nG1=⇒ G1 and G
r2,mG,nG2=⇒ G2 constitutes a critical pair which

represents a potential conflict between the two rules r1 and r2.

deleteGeneralization:

LHS RHS LHS RHS

pushDownAttribute (kernel rule):

delete/use conflict
(critical graph):

Figure 3.8: Potential delete/use conflict between edit rules deleteGeneralization and push-

DownAttribute.

Example 3.6 (Potential delete/use conflict)
Figure 3.8 shows transformation rules implementing edit operations deleteGeneralization

and pushDownAttribute. These rules are inverse to our edit rules of figures 3.6 and 3.7,
respectively. Note that only the kernel rule of pushDownAttribute is shown in Figure 3.8.
In contrast to the visual syntax offered by Henshin, left-hand side (LHS) and right-
hand side (RHS) of a rule are shown separately in Figure 3.8 in order to indicate which
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components have to be overlapped by the CPA (colored in light green). For each of the
rules, the partial mapping between LHS and RHS is symbolized by identifiers attached
to nodes, mappings between edges are given implicitly by their corresponding source
and target nodes. The same identifiers are used to show the minimal critical graph in
which deleteGeneralization and pushDownAttribute are conflicting. The conflict is indicated
by elements in the critical graph which are colored in dark green: deleteGeneralization

deletes the generalization relationship (represented by node 3 and its incident edges)
between classes 2 and 1 which is required by pushDownAttribute to push down attribute
7 from class 1 to 2.

Minimal context graphs such that two rules r1 and r2 can be applied in a way that
the application of r2 depends on the application of r1 are computed by overlapping R1

(the right-hand side of rule r1) with L2 (the left-hand side of rule r2) in all possible
type- and structure-compatible ways (again, without considering application condi-
tions). Each critical graph G2 together with sequentially dependent rule applications

G1
r1,mG1,nG2=⇒ G2 and G2

r2,mG2,nG3=⇒ G3 constitutes a critical pair which represents a
potential dependency between the two rules r1 and r2.

Example 3.7 (Potential create/use dependency)
A minimal example in which edit rules createGeneralization and pullUpAttribute may de-
pend on one another is shown in Figure 3.9. Again, only the kernel rule of pullUpAttribute
is shown here. As indicated by the minimal critical graph, the generalization relation-
ship (represented by node 3 and its incident edges) between classes 2 and 1 has to be
created by rule createGeneralization before attribute 7 can be pulled up from 2 to 1.

createGeneralization:

RHSLHS RHSLHS

pullUpAttribute (kernel rule):

create/use dependency
(critical graph):

Figure 3.9: Potential create/use dependency between edit rules createGeneralization and
pullUpAttribute
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We will later see in Chapter 5 how we utilize the critical pair analysis in the context
of edit script generation. Basically, all pairs of edit rules are statically analyzed for
potential dependencies in order to reduce the set of candidate edit steps that have to
be checked for actual dependencies in a model difference.





CHAPTER4

Semantic Lifting of Model Differences

In this chapter, we introduce our approach to the semantic lifting of model differences.
We begin with a motivating example which will serve as running example throughout
the chapter.

Motivating example. Section 2.4 has outlined several reasons for the low quality of
model differences being delivered by currently available ASG-based differencing tools.
The biggest problem is that the external and internal representations of a model and
related changes can differ quite substantially. Reconsider our example of Figure 2.1. If
available difference tools compare versions v1 and v2 of our sample class diagram, they
will find the following set of low-level changes as a result of the first edit step which
restricts the navigability of association worksFor in one direction.

• Reference ownedAttribute from class Person to property employer has been re-
moved.

• Reference ownedEnd from association worksFor to property employer has been
added.

• Reference class from property employer to class Person has been removed.

• Reference owningAssociation from property employer to association worksFor has
been added.

75
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The reason why difference tools report these low-level changes can be explained by
considering the UML meta-model [190]. The excerpt in Figure 3.2 shows all type
definitions which are relevant for our example, namely the three meta-classes Class,
Association and Property, together with their various relations. As we can see in
Figure 3.2, properties being association ends (called memberEnd in the UML) may be
owned by classes (via ownedAttribute) or associations (via ownedEnd). An association
end is navigable if it is owned by a class1. To restrict the navigability of an association
to one end, the corresponding edit operation restrictNavigability(p1) can be informally
specified as shown in the upper part of Figure 4.1. Variable p1 serves as input parameter
which shall be bound to the association end to be restricted in navigability. Variables a,
p2, C1, and C2 will be automatically bound to the association, the opposite association
end and the adjacent classes.

restrictNavigability(p1)

Rule restrictNavigability(p1)

«preserve»
p1:Property

«require»
C1:Class

«preserve»
C2:Class

«require»
p2:Property

«preserve»
a:Association

ownedAttribute
«delete»

association
«require»

owningAssociation
«create»

memberEnd
«require»

association
«preserve»

type
«require»

type
«require»

class
«delete»ownedAttribute

«require» class
«require»

memberEnd
«preserve»

ownedEnd
«create»

«preserve»«require»

«require»
«require»

«require» «require»

«delete»
«delete»

«create»

«create»

«require»

«preserve»
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Figure 4.1: Edit operation restrictNavigability: Informal and formal specification

Although the edit operation appears to be rather simple, the necessary changes to
the ASG are quite complex, as shown by edit rule restrictNavigability(p1) in the lower
part of Figure 4.1. Property p1 representing the association end to be restricted in
navigability, its owning class C2 as well as the association a having p1 as member end
have to be found. After the rule application, the matched property p1 is no longer

1 The UML meta-model specifies a second option how association ends can be marked as navigable.
With this option, an association end is navigable if it is a navigableOwnedEnd which is owned by
the association. In this thesis, we follow the more common interpretation and assume navigable
ends to be owned by classes and non-navigable ends to be owned by associations.



4.1. Low-level Differences 77

connected to class C2, but belongs to the association. Note that a positive application
condition (graph pattern annotated with “stereotype” required in Figure 4.1) ensures
that there is a property p2 which represents the opposite association end of p1 and
which is navigable from C1 to C2.

The effects of applying this rule to the base version v1 of Example 2.1 correspond
to the set of low-level changes listed above. Initially, property employer is owned by
class Person, the ownership changes to association worksFor. Thus, ASG edges of type
ownedAttribute and class are deleted, edges of type ownedEnd and owningAssociation
are created. Obviously, these low-level changes are not understandable for normal tool
users who are not familiar with meta-modeling and the related internal representation
of models in terms of an ASG.

The approach in a nutshell. The example shows that a potentially large unstruc-
tured set of low-level changes should be grouped in such a way that model differences
are explained in terms of user-level edit operations. We use the term semantic lifting
of differences to refer to this transformation of low-level changes to more conceptual
descriptions of model modifications. In this chapter, we present a technique for design-
ing and implementing tool components which can semantically lift model differences.
We assume the usual structure of state-based differencing algorithms as shown in Fig-
ure 1.2: Initially, a matching algorithm identifies corresponding model elements and
relations in both models, i.e. corresponding nodes and edges in their ASGs. The low-
level difference derived from a matching is further processed by a “semantic lifting”
component which identifies sets of low-level changes (called semantic change sets) that
implement an edit operation. In our approach, difference information is structurally
represented on the level of the ASG. Thus, finding groups of related low-level changes
is basically a pattern matching problem. We assume a matching engine being part of
an interpreter for Henshin transformation rules to be readily available in order to solve
this problem. The main task to adapt a semantic lifting component to a given modeling
language is thus to “program” recognition rules which find groups of related low-level
changes and which annotate these groups accordingly. In accordance with MDE prin-
ciples, we automatically derive these rules from their corresponding edit rules rather
than to manually program them. The effort required to configure a semantic lifting
component is significantly reduced in this way.

The rest of this chapter is structured as follows. In Section 4.1 we introduce our
representation of model differences which is later extended by the definition of semantic
change sets. Section 4.2 presents our approach to specify instances of semantic change
sets by recognition rules, while Section 4.3 explains how recognition rules are to be
executed. Finally, Section 4.4 discusses restrictions of our approach.

4.1 Low-level Differences

State-based differencing of two models A and B starts by looking for the “same parts”
in A and B (s. Figure 1.2). The result of this first processing step of a model differencing
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pipeline is commonly referred to as model matching.

Definition 4.1 (Model matching)
Let A and B be models which are represented as ASGs being typed over the same
type graph TG, then a matching between A and B is a partial, injective, edge- and
type-preserving mapping MA,B : A  B identifying the nodes and edges which are
considered to be “the same” in A and B. A pair of elements (a, b) ∈ MA,B is called a
correspondence, the elements a and b are said to correspond to each other.

There are various methods to identify corresponding model elements, a brief overview
is given in Section 2.3.1. Please note that most matching algorithms which have been
specifically designed for the comparison of models deliver only correspondences between
the nodes of two ASGs, their edges are not explicitly matched. In such a case, two edges
can be considered as corresponding if they have the same type and if their source and
target nodes are corresponding. This derivation of correspondences between edges is
unique if both A and B adhere to the no-parallel-edges constraint (s. Section 3.2), which
we assume here in any event.

Matching algorithms are largely out of the scope of this thesis. In principle, any of the
available model matchers can be adopted, as long as it fulfills some basic requirements
which follow directly from Definition 4.1:

• A first requirement is that the matcher must deliver one-to-one correspondences
(matchings are injective). There are only a few model matching approaches, e.g.
[152], which potentially deliver one-to-many or many-to-many correspondences
and which therefore cannot be adopted.

• Secondly, due to our design decision to use Henshin as a specification language
for implementing edit operations, we require a matching to be type-preserving,
i.e. corresponding elements must have the same type. The reason behind this
constraint is that Henshin rules do not allow a re-typing of graph elements.

Note that the use of consistency-preserving edit operations leads to further require-
ments which will be discussed in Chapter 7.

Low-level changes. Given two models A and B and a matching MA,B : A B, one
can derive a directed delta from A to B as follows (cf. Section 2.3.2): Each element of
A (or B) not involved in a correspondence leads to a change action which deletes (or
creates) this element. Each non-identical attribute value of two corresponding nodes
yields a change action overwriting this attribute with the value in model B. Each
change action in such a directed delta corresponds to a low-level change which can be
observed between the models (the modification could actually have been caused in a
different way). We refer to these low-level changes and the corresponding matching as
low-level difference δA,B.
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Definition 4.2 (Low-level model difference)
A low-level difference δA,B = (MA,B, C) is a description of how two models A and B
differ in terms of their ASGs. It consists of a matching MA,B and a set C of low-level
changes from A to B which can be uniquely derived from MA,B:

• For each node nA ∈ (A \ B), there is a distinct change rmvnA
∈ C representing

the deletion of nA.

• For each node nB ∈ (B \ A), there is a distinct change addnB
∈ C representing

the creation of nB.

• For each edge eA ∈ (A \ B), there is a distinct change rmveA ∈ C representing
the deletion of eA.

• For each edge eB ∈ (B \A), there is a distinct change addeB ∈ C representing the
creation of eB.

• For each pair of corresponding nodes (nA, nB) ∈ MA,B and for each pair of at-
tributes (nA.a, nB.a) sharing the same attribute declaration a : DT , there is a
distinct change avcnA,nB ,a ∈ C if and only if nA.a 6= nB.a. The change avcnA,nB ,a

represents the respective attribute value change.

Graph-based representation of low-level differences. Definition 4.2 leaves open
how a low-level difference is represented. In order to be further processable in the model
transformation system Henshin, we choose a graph-based approach for this purpose.
Figure 4.2 introduces our difference model which defines the conceptual types and which
can be formalized as a type graph in a straightforward way. Two models A and B that
are being compared are conceptually represented as typed graphs over a fixed type
graph derived from the common meta-model of A and B. Their difference consists of a
set of correspondences representing the common parts of A and B, and a set of changes
from model A to model B. A correspondence links a node of model A to a node of
model B (s. invariant iv1 in Figure 4.2). Correspondences between edges are given
implicitly by their corresponding source and target nodes. We distinguish the following
types of changes:

• A change of type AddNode represents the insertion of a new node, i.e. a node
that is contained in model B but does not have a corresponding node in model
A (s. invariant iv2). Analogously, changes of type AddEdge represent edges that
have been inserted (s. invariant iv4).

• Changes of types RemoveNode and RemoveEdge represent the inverse of changes
of types AddNode and AddEdge, respectively.

• An AttributeValueChange represents a value change of an attribute of corre-
sponding nodes (s. invariant iv6).
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inv iv5:
diff.modelA.nodes->contains(self.src) and
diff.modelA.nodes->contains(self.tgt)

inv iv4:
diff.modelB.nodes->contains(self.src) and
diff.modelB.nodes->contains(self.tgt)

inv iv3:
diff.modelA.nodes->contains(self.node)

inv iv2:
diff.modelB.nodes->contains(self.node)

inv iv1:
diff.modelA.nodes->contains(self.nodeA) and
diff.modelB.nodes->contains(self.nodeB)

inv iv6:
diff.correspondences->exists(c:Correspondence |
   c.nodeA = self.nodeA and
   c.nodeB = self.nodeB

Figure 4.2: Graph-based representation of low-level differences

We introduce the following notation to describe a change c in a compact manner:

c = 〈changeType, context〉 (4.1.1)

The changeType denotes the type of change, i.e. the concrete subclass of Change, while
the context denotes the set of ASG elements to which the change has been applied.

Example 4.1 (Low-level Changes)
In terms of our running example of Figure 2.1, restricting the navigability of associ-
ation end employer leads to the following four low-level changes which were already
introduced informally in the introductory part of this chapter.
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rn1 = 〈”RemoveEdge”,
{src = ”Person”, tgt = ”employer”, type = ”ownedAttribute”}〉

rn2 = 〈”AddEdge”,
{src = ”worksFor”, tgt = ”employer”, type = ”ownedEnd”}〉

rn3 = 〈”RemoveEdge”,
{src = ”employer”, tgt = ”Person”, type = ”class”}〉

rn4 = 〈”AddEdge”,
{src = ”employer”, tgt = ”worksFor”, type = ”owningAssociation”}〉

Changes rn1 and rn2 represent the “move” of property employer from class Person
to association worksFor. Changes rn3 and rn4 are typical examples of conceptually
irrelevant pseudo changes [140]; rn3 results from the fact that the edge of type class
is a redundant information here. Change rn4 occurs since edge types ownedEnd and
owningAssociation are defined as opposite to each other (s. Figure 3.2).

Let us now consider the second edit step of our Example 2.1. Here, the creation of
a generalization relationship between classes Developer and Person leads to low-level
changes cgd1, cgd2 and cgd3, which can be easily derived from the ASG representation
shown in Figure 3.3. Note that we use the notation Developer → Person as a symbolic
reference to the “anonymous” node of type Generalization. Again, the pseudo change
which represents the creation of edge generalization being opposite to the edge of type
specific is deliberately omitted here.

cgd1 = 〈”AddNode”,
{obj = ”Developer → Person”}〉

cgd2 = 〈”AddEdge”,
{src = ”Developer → Person”, tgt = ”Person”, type = ”general”}〉

cgd3 = 〈”AddEdge”,
{src = ”Developer”, tgt = ”Developer → Person”, type = ”specific”}〉

Analogously to cgd1, cgd2 and cgd3, we obtain low-level changes cgm1, cgm2 and
cgm3 for the third edit step of Example 2.1, the creation of a generalization relationship
between classes Manager and Person.

cgm1 = 〈”AddNode”,
{obj = ”Manager → Person”}〉

cgm2 = 〈”AddEdge”,
{src = ”Manager → Person”, tgt = ”Person”, type = ”general”}〉

cgm3 = 〈”AddEdge”,
{src = ”Manager”, tgt = ”Manager → Person”, type = ”specific”}〉

Finally, let us consider the fourth edit step of Example 2.1. Here, the attribute name
is moved from subclasses Developer and Manager to their superclass Person by means
of the well-known refactoring operation pullUpAttribute [107]. Let us assume that our
matching contains correspondences between all classes in v1 and v2 having equal names,
and a correspondence between the attributes Manager.name in v1 and Person.name in
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v2. The following low-level changes are derived then. We omit several low-level changes
which are pseudo changes. They are similar to those which occurred in the previous
edit steps.

pua1 = 〈”RemoveNode”,
{obj = ”Developer.name”}〉

pua2 = 〈”RemoveEdge”,
{src = ”Manager”, tgt = ”Manager.name”, type = ”ownedAttribute”}〉

pua3 = 〈”AddEdge”,
{src = ”Person”, tgt = ”Person.name”, type = ”ownedAttribute”}〉

Change pua1 represents the deletion of the attribute Developer.name, while changes
pua2 and pua3 represent the move of attribute Manager.name from class Manager to
class Person.

4.2 Semantic Change Sets

Our example has already shown that user-level edit operations often lead to many low-
level changes which are hard to understand for normal users. This problem is further
aggravated by the fact that the set of low-level changes can be listed in an arbitrary
order and that low-level changes stemming from different edit operations can be mixed
randomly. The objective of semantically lifting a model difference is thus to partition
the set of low-level changes into subsets, each subset containing the changes belonging
to exactly one application of an edit operation. We call these subsets semantic change
sets. A difference in which the set of low-level changes is partitioned into semantic
change sets is called a semantically lifted difference.

Definition 4.3 (Semantically lifted difference and semantic change sets)
A semantically lifted difference ∆A,B = (δA,B, CS) is a description of how two models
A and B differ in terms of semantic change sets. It consists of a low-level difference
δA,B = (MA,B, C) and a set of semantic change sets CS = {cs1, ..., csn} with n ∈ N and
the following properties:

• n ≤ |C|, where |C| is the overall number of low-level changes,

• csi ⊆ C for all i, 1 ≤ i ≤ n,

•
⋃n

i=1 csi = C, and

• csi ∩ csj = ∅ for all 1 ≤ i < j ≤ n.

Example 4.2 (Semantic change sets)
In our example of Figure 2.1, the set of all change sets is
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CS1 = {{rn1, rn2, rn3, rn4},
{cgd1, cgd2, cgd3},
{cgm1, cgm2, cgm3},
{pua1, pua2, pua3}}.

The first change set contains the result of the edit operation restrictNavigability, the
second and third change set are results of edit operation createGeneralization in different
contexts, and the last one contains the result of edit operation pullUpAttribute. As
already mentioned, we omit several pseudo changes here for the sake of readability.

Representation of semantic change sets. In order to represent semantic change
sets, we must extend our difference model of Figure 4.2. These extensions are shown in
Figure 4.3. Nodes of type Change, which represent the low-level changes, are grouped by
SemanticChangeSet nodes, each of these nodes represents the effect of an edit operation
application. The name of a change set corresponds to the name of the respective edit
operation.

Figure 4.3: Difference model extension: Representation of semantic change sets

4.2.1 Rule-based Specification of Semantic Change Sets

The application of a specific type of edit operation results in a change pattern on
our graph-based difference representation which is characteristic of this type of edit
operation. Thus, we can make use of Henshin transformation rules

1. to specify change patterns that have to be recognized in a graph-based difference
representation and

2. to specify how to group low-level differences contained in a change pattern.

A transformation rule which handles a specific type of edit operation is referred to
as change set recognition rule, or recognition rule, for short. Basically, the LHS of
a recognition rule specifies an instance of a change pattern which is characteristic of
the handled type of edit operation (1.). The RHS is responsible for extending the
difference with a semantic change set node which groups the low-level changes related
to the change pattern (2.).
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Example 4.3 (Change set recognition rule rr-restrictNavigability)
As an example, an excerpt of the recognition rule rr-restrictNavigability recognizing edit
operation restrictNavigability is depicted in Figure 4.4. Although the concrete identifier
names are technically irrelevant here, we use the variable names of Figure 4.1 to build
identifier names. That way, rule graph elements in rr-restrictNavigability can be mentally
related to those of the corresponding edit rule restrictNavigability.

Rule rr-restrictNavigability

«preserve»
B.p1:Property

«preserve»
A.p1:Property

«preserve»
:Correspondence

«preserve»
A.C2:Class

«preserve»
B.a:Association

«preserve»
:RemoveEdge

«preserve»
:AddEdge

«preserve»
:Difference

«create»
:SemanticChangeSet
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Figure 4.4: Recognition rule rr-restrictNavigability

Our sample recognition rule rr-restrictNavigability contains four change patterns (two
remove edge patterns and two add edge patterns) representing changes rn1 to rn4
(s. Example 4.1). Figure 4.4 shows patterns for changes rn1 and rn2 only. They can
be easily identified in Figure 4.4 by means of their respective change types and contexts.

A SemanticChangeSet node is created by each application of rr-restrictNavigability; this
node groups all related low-level changes. Additionally, the created change set will be
inserted into the difference representation.

Certain elements being part of contexts of low-level changes, notably elements which
are to be preserved by an edit rule, are searched on the original model version A and
the revised version B. As these elements are to be considered the same in A and
B, they are linked by correspondences in the difference representation. As we can
see in Figure 4.4, an instance of such a correspondence pattern occurs for property
p1 which is moved from association a to class C2. Please note that, according to our
difference representation introduced in Figure 4.2, no direct correspondence mappings
are established between preserved edges in the difference representation. Corresponding
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edges are identified by their context, i.e. corresponding source and target nodes. In
Figure 4.4, we generally omitted edges of type owningAssociation, association and
class for the sake of readability.

As we can see in Figure 4.4, application conditions specified by an edit rule are also
translated to the corresponding recognition rule. Application conditions that are to
be interpreted as precondition must be fulfilled on model version A, while application
conditions that are to be interpreted as postcondition of an edit rule must be fulfilled on
model version B. As explained in Section 3.3.2, certain application conditions can be
checked before or after the application of an edit rule; this is possible, if the boundary
elements of the application condition are preserved by the rule. An application condi-
tion which can be interpreted as pre- and postcondition can be checked by a recognition
rule in three different ways: It can be checked to be fulfilled i) on the original model
version A, ii) on the revised model version B, or iii) on both model versions. In such
a case, a concrete interpretation has to be chosen which meets the desired user prefer-
ences. In our example, the application condition is to be interpreted as postcondition;
a navigability restriction in one direction, i.e. for an association end p1 at class C1, shall
only be detected if the opposite end p2 at class C2 is still navigable.

4.2.2 Generation of Recognition Rules

Change set recognition rules are getting complex very quickly. However, they are very
schematic and can be automatically generated from their corresponding edit rule. The
basic principle of this transformation is presented as function editR2recognR in
Algorithm 1. Let er be the edit rule which serves as input parameter and which will
be transformed to a corresponding recognition rule rr (s. line 2 in Algorithm 1). The
name of rr corresponds to that of er supplemented with a prefix “rr-” (line 3).

The further translation proceeds in three steps (lines 5-7): First, the context of the
edit rule is translated. Next, all application conditions are translated to application
conditions being checked by the recognition rule. Finally, change actions are translated
such that low-level change patterns are created for each change action, and low-level
changes are grouped to semantic change sets.

Algorithm 1 Edit rule to recognition rule translation (main program)
1: function editR2recognR(Rule er) : Rule
2: Rule rr = new Rule();
3: rr.name = “rr-”◦ er.name;
4: . Delegate further translation to subroutines
5: translateContext(er, rr);
6: translateApplicationConditions(er, rr);
7: translateChangeActions(er, rr);
8: return rr;
9: end function
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Context translation. The translation of the context of an edit rule er to a recogni-
tion rule rr is illustrated by function translateContext(Rule er, Rule rr) (s. Al-
gorithm 2). We start with the translation of the nodes which are to be preserved by er
and which are boundary nodes to edge deletion or creation actions:

(lines 5-7): Boundary nodes to edge deletions must occur in model version A, but not
necessarily in version B. Thus, we search for them in model version A.

(lines 8-10): Boundary nodes to edge creations must occur in model version B, but
not necessarily in version A. Thus, we search for them in model version B.

(lines 11-13): Preserved nodes which are boundary to edge deletions and edge cre-
ations must occur in model versions A and B and have to be connected by a
correspondence link in our difference representation.

Nodes which are to be preserved by er and which are neither boundary to edge deletions
nor to edge creations can be conceptually treated like nodes of a positive application
condition. Therefore, the translation proceeds similar to PAC nodes as explained below
and is not explicitly shown in Algorithm 2. The same applies to context edges, i.e. edges
which are to be preserved by er; they can be conceptually treated like PAC edges as
explained below.

Algorithm 2 Context translation
1: function translateContext(Rule er, Rule rr)
2: . Translation of context nodes
3: for all Node ner ∈ Cxter do
4: Node nA, nB ;
5: if ner ∈ BDeler then . ner must occur in model version A
6: nA = translateToCxt(rr, “A”, ner)
7: end if
8: if ner ∈ BCreer then . ner must occur in model version B
9: nB = translateToCxt(rr, “B”, ner)

10: end if
11: if ner ∈ BDeler ∧ ner ∈ BCreer then . ner must occur in versions A and B
12: createCorrespondencePattern(nA, nB)
13: end if
14: end for
15: return ;
16: end function

Note that subroutines translateToCxt(Rule rr, String version, Node ner) and
createCorrespondencePattern(Node nrrA , Node nrrB) are not explained in de-
tail here but can be implemented straightforward according to the explanation of the
example recognition rule of Figure 4.4.

Application condition translation. Application conditions of edit rule er are
translated to application conditions being checked by the recognition rule rr as il-
lustrated by function translateApplicationConditions(Rule er, Rule rr) of Al-
gorithm 3. For each application condition cer of er we first create an empty application
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condition crr in rr (line 3). Next, we translate each node of the edit rule application
condition to a corresponding node of the recognition rule application condition (lines
5-7).

Algorithm 3 Translation of application conditions
1: function translateApplicationConditions(Rule er, Rule rr)
2: for all ApplicationCondition cer ∈ PACer ∪NACer do
3: ApplicationCondition crr = new ApplicationCondition(rr);
4: . Translate “normal” nodes
5: for all Node n ∈ cer do
6: translateToAC(crr, n);
7: end for
8: . Create “missing” boundary nodes
9: for all Node b ∈ Bc do

10: if isToBeFullfilledOnA(cer) and ¬(b ∈ BDeler ) then
11: Node nB = traceB(b);
12: Node nA = translateToAC(crr, b);
13: createCorrespondencePattern(nA, nB);
14: end if
15: end for
16: for all Node b ∈ Bc do
17: if isToBeFullfilledOnB(cer) and ¬(b ∈ BCreer ) then
18: Node nA = traceA(b);
19: Node nB = translateToAC(crr, b);
20: createCorrespondencePattern(nA, nB);
21: end if
22: end for
23: . Translate edges
24: for all Edge e ∈ Bc do
25: translateToAC(crr,e)
26: end for
27: end for
28: return ;
29: end function

Further on, we check whether nodes of crr have to be created in the case of “missing”
boundary nodes: Given a boundary node b ∈ Bcer for the edit rule application condition
cer, the corresponding boundary node for crr is missing if the condition must be fulfilled
on model version A but the node b is not searched in version A (line 10). Obviously, the
translated node nB, which is obtained via subroutine called traceB in Algorithm 3 (s.
line 11), cannot serve as boundary node for the recognition rule application condition
in this case because it is to be searched in model version B. Instead, crr is extended
by translating b to node nA ∈ crr (line 12), and linking the created node nA via a
correspondence pattern with nB (line 13). Analogously, a boundary node b ∈ Bcer is
also missing if the application condition must be fulfilled on model version B but node b
is not searched in this version (line 17). In this case, the translated application condition
crr is extended (lines 18-20) according to the same principle as for missing boundary
nodes in A. Finally, we translate each edge of the edit rule application condition to a
corresponding edge of the recognition rule application condition in a straightforward
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way (lines 24-26).

All subroutines used in Algorithm 3 are not discussed here in further detail. Subrou-
tine translateToAC(ApplicationCondition crr, Node ner) is basically a simple copy
operation, similar to translateToCxt used in Algorithm 2. The utility functions
traceA(Node ner) and traceB(Node ner) require that trace links between edit rule
and recognition rule elements are explicitly managed (s. Section 5.2); the implementa-
tion of the look-up procedure is straightforward. The interpretation of an application
condition is obtained by utility functions isToBeFullfilledOnA(ApplicationCon-
dition cer) and isToBeFullfilledOnB(ApplicationCondition cer). In our imple-
mentation, this interpretation is attached as annotation to the respective edit rule
application condition (s. Section 8.3.3).

Algorithm 4 Translation of change actions
1: function translateChangeActions(Rule er, Rule rr)
2: Node cs = new Node(Crerr, “SemanticChangeSet”);
3: cs.name = er.name;
4: . Create low-level change patterns and specify grouping of changes
5: for all Node n ∈ Deler do
6: RemoveNodePattern p = createRemoveNodePattern(rr, n);
7: linkChangeToChangeSet(p, cs);
8: end for
9: for all Edge e ∈ Deler do

10: RemoveEdgePattern p = createRemoveEdgePattern(rr, e);
11: linkChangeToChangeSet(p, cs);
12: end for
13: for all Node n ∈ Creer do
14: AddNodePattern p = createAddNodePattern(rr, n);
15: linkChangeToChangeSet(p, cs);
16: end for
17: for all Edge e ∈ Creer do
18: AddEdgePattern p = createAddEdgePattern(rr, e);
19: linkChangeToChangeSet(p, cs);
20: end for
21: for all Node n ∈ Cxter do
22: for all Attribute a of n do
23: if nL.a 6= nR.a then
24: AttributeValueChangePattern p= createAttributeValueChangePattern(rr,

e);
25: linkChangeToChangeSet(p, cs);
26: end if
27: end for
28: end for
29: return ;
30: end function

Translation of change actions. The translation of change actions of an edit rule
er to a recognition rule rr is illustrated by function translateChangeActions
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(s. Algorithm 4). We begin with the creation of a Node cs ∈ Crerr representing the
semantic change set which is to be created by rr (lines 2-3)

Subsequently, a low-level change pattern has to be found by a recognition rule for each
change action which is defined by the corresponding edit rule. All subroutines creating
instances of the respective low-level change patterns are not explained in detail here.
They can be implemented straightforward according to the explanation of Example 4.3.
Change patterns which do not occur at all in our example can be easily derived from
the difference model of Figure 4.2. In case of an attribute value change action (s. lines
21-28), nL and nR refer to LHS and RHS representations of a context node n.

For each change action being translated, the SemanticChangeSet node cs is linked
with all Change nodes being part of change pattern instances; these links are created
by the subroutine linkChangeToChangeSet(ChangePattern p, Node cs).

4.2.3 Non-static Change Patterns

So far, we have considered edit operations which result in static change patterns, i.e.
each edit operation can be specified by one transformation rule. However, there are
also edit operations resulting in non-static change patterns. The refactoring operation
pullUpAttribute is an example of this; it is applied to all common attributes in the set of
all direct subclasses of a given class. Since the number of common attributes and the
number of subclasses can vary, we need a concept to capture this variability.

Analogously to the implementation of multi-object structures in edit rules (s. Sec-
tion 3.3.2), we adopt the concept of amalgamation to handle non-static change patterns
in recognition rules. To that end, our procedure for recognition rule generation is ex-
tended by the function editRS2RecognRS(RuleScheme ers). A sketch of this func-
tion is listed in Algorithm 5. Parameter ers denotes the editing rule scheme and variable
rrs denotes the recognition rule scheme which is to be created. The kernel rule of ers
is transformed to the kernel rule of rrs according to the function editR2RecognR
introduced in Section 4.2.2 (s. line 4). In the same way, each multi-rule of ers is
transformed to a multi-rule of rrs properly embedding the kernel rule of rrs into each
multi-rule (lines 5-8).

Algorithm 5 Translation of rule schemes
1: function editRS2RecognRS(RuleScheme ers) : RuleScheme
2: RuleScheme rrs = new RuleScheme();
3: rrs.name = “rr-”◦ ers.name;
4: rrs.kernel = editR2RecognR(ers.kernel);
5: for all Rule em ∈ ers.multi do
6: Rule rm = editR2RecognR(em);
7: add(rrs.multi, rm);
8: embedKernel(rrs, rm, em);
9: end for

10: return rrs;
11: end function
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4.3 Edit Operation Recognition

Section 4.2 introduced our notion of a semantic change set and how change set recog-
nition rules are derived from their corresponding edit rules. In this section, we explain
how recognition rules are applied to a given low-level difference.

4.3.1 Rule Application Strategy

It is easy to see that all pairs of change set recognition rules are both sequentially and
parallel independent: On the one hand, the change pattern that has to be found by
a recognition rule, i.e. its left-hand side as well as sets of positive and negative ap-
plication conditions, refers to the graph-based representation of a low-level difference
which is to be semantically lifted. On the other hand, this low-level difference repre-
sentation is not modified by a recognition rule which, if being applied successfully, only
creates additional semantic change sets and leaves the low-level difference representa-
tion untouched. Consequently, the sequential order in which we apply the change set
recognition rules is irrelevant. Additionally, recognition rules can be applied to a given
difference representation at all possible matches in parallel.

However, the above rule application strategy can lead to too many change sets, i.e.
there can be false positives. As an example, we extend our set of edit operations de-
fined for UML class models by two further edit operations, namely the edit operation
deleteAttribute, which removes an attribute from a class, and the edit operation moveAt-

tribute, which moves an attribute from one class into another. In our running example
of Figure 2.1, the recognition rules for deleteAttribute and moveAttribute will find the ad-
ditional potential change sets {pua1} and {pua2, pua3}, respectively (s. Example 4.1).
In sum, all five recognition rules together will find the following change sets:

PCS1 = CS1 ∪ {{pua1}, {pua2, pua3}},

CS1 (s. Example 4.2) contains the change sets which represent the edit operations
that have been actually applied. The change sets contained in PCS1 are not mutually
disjoint, therefore some of them must be discarded.

In general, let δA,B = (MA,B, C) be a given low-level difference according to Defini-
tion 4.2, and PCSC be the set of potential change sets which are created by applying
all recognition rules on δA,B as often as possible. Thus, we have

∀p ∈ PCSC : p ⊆ C.

If some potential change sets overlap, i.e.

∃p, q ∈ PCSC : p ∩ q 6= ∅,

then PCSC must be postprocessed as described in the next section.
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4.3.2 Postprocessing

The goal of the postprocessing phase is to determine a subset of set PCSC of poten-
tial change sets which conforms to the conditions for sets of semantic change sets (s.
Definition 4.3). The postprocessing of PCSC results in a set partitioning problem,
which is basically an optimization problem. Due to the lack of a clear optimization
criterion [201], we assume that reporting a minimal number of edit steps reflects the
user perception of a model difference most adequately. Thus, we are looking for a set
PCSmin ⊆ PCSC of potential change sets such that the following conditions hold for
PCSmin = {p1, ..., pk}:

• pi ∩ pj = ∅ for all 1 ≤ i < j ≤ k,

•
⋃k

i=1 pi = C, and

• k is minimal.

We employ the following heuristics in order to efficiently reduce PCSC and finally
determine PCSmin:

Firstly, we are looking for change sets that do not overlap with other change sets.
Such change sets are very frequent. They must obviously be included in PCSmin and
do not have to be dealt with further. In our example, this is the case for change set
{rn1, rn2, rn3, rn4}.

Secondly, we search for each change set p which properly includes smaller change
sets q1 . . . qm which do not overlap with any other change set not included in p. In this
case, change sets q1 . . . qm will be discarded and are not included in PCSmin because,
generally, an edit operation which covers a larger change set is preferred over edit
operations which cover a smaller, included set of changes. In our running example,
the change set {pua1, pua2, pua3} representing the “pullUpAttribute” refactoring will
thus be preferred over the smaller change sets {pua1} and {pua2, pua3}, which can
be discarded. These cases occur whenever a single operation is composed of a set of
smaller operations or a core operation has one or more extensions.

In the special case where two change sets p and q are identical in the sense that they
cover the same low-level changes, we prefer the change set representing the invocation
of the “more specific” edit operation. An edit rule r1 is considered to be more specific
than edit rule r2 if

1. the number of application conditions specified by r1 is higher than the number of
application conditions defined by r2,

2. the types of rule nodes of r1 are more specific than types of rule nodes of r2
(we employ the well-known object-oriented metric “Depth in Inheritance Tree”
(DIT) [71] and summarize DIT-values for the types of all rule nodes of r1 and r2,
respectively),

3. the number of formal parameters specified by r1 is higher than the number of
formal parameters defined by r2.
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Note that conditions 1-3 are tested in sequential order, each condition is tested in
mutual direction (r1 against r2 and vice versa). If none of the conditions evaluates to
true, one of the change sets p, q will be selected randomly. This default processing can
be overridden by manually assigning priority values to edit rules (s. Section 8.3.3).

Finally, the remaining change sets are partially overlapping. This reduced set parti-
tioning problem has to be solved by combinatorial optimization. Our practical evalu-
ation has shown that these cases are hypothetically as long as the set of available edit
operations consists of elementary operations as they are offered by typical editors for
graphical modeling.

4.4 Restrictions of the Approach

The information which can be exploited by our approach to operation detection is
“restricted” to the information which is provided by a low-level difference, namely the
model states A and B and the low-level changes which are observable based on these
model versions and a given matching (s. Section 4.1). Thus, some editing effects may
be transient in the sense that they are no longer visible at the end of a sequence of edit
steps. Section 4.4.1 clarifies our notion of a transient effect and the resulting restrictions
w.r.t. to the recognition of edit operations. Section 4.4.2 discusses the practical impact
of transient effects.

4.4.1 Transient Effects

If a sequence of operation invocations was applied to a model and one operation invoca-
tion removes effects of an earlier one, we can observe two types of phenomena: Firstly,
this effect does not appear in terms of low-level changes in a difference at all. Secondly,
this transient effect leads to transient elements, i.e. nodes and edges of an ASG, that
are neither contained in the original model version A, nor in the revised model version
B. We can further distinguish two kinds of transient elements:

• Positive transient elements are created by one edit step and deleted in a
subsequent edit step of an editing process.

• Negative transient elements are deleted by one edit step and re-created in a
subsequent edit step.

Definition 4.4 (Transient effects)

A sequential pair of rule applications t1 = M1
r1,m1,n1

=⇒ M2 and t2 = M2
r2,m2,n2

=⇒ M3
leads to positive transient elements if n1(Crer1) ∩m2(Delr2) 6= ∅. The sequence t1; t2
leads to negative transient elements if m1(Delr1)∩n2(Crer2) 6= ∅. Effects of sequential
rule applications leading to transient elements are called transient effects.
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Consequences. Transient effects lead to rule applications which cannot be detected
by our approach to operation recognition. Consider a sequence of edit rule applications
t1 = M1

r1,m1,n1
=⇒ M2, t2 = M2

r2,m2,n2
=⇒ M3 and t3 = M3

r3,m3,n3
=⇒ M4. Let us assume that

an effect of t1 causes an application condition of t2 to be fulfilled, while this effect is later
on removed by rule application t3. In such a case, none of the three rule applications
t1, t2 and t3 will be recognized by our operation detection approach for two reasons:

1. Unobservable low-level changes: The rule applications t1 and t3 can not be
recognized because a recognition rule finds a match only if the difference contains
all low-level changes which are specified as change actions by the correspond-
ing edit rule. This restriction caused by unobservable low-level changes occurs
regardless of whether the transient effect causes positive or negative transient
elements.

2. Transiently fulfilled application conditions: Rule application t2 can not be
recognized because one of its application conditions is only transiently fulfilled.
A recognition rule, however, finds a match only if all application conditions are
fulfilled either on the original model version A, or on the revised version B;
application conditions that are to be interpreted as preconditions must be fulfilled
on model version A, while application conditions that are to be interpreted as
postconditions must be fulfilled on model version B (s. Section 4.2).

If t1 and t3 cause positive transient elements that are required to extend m2 such
that a pac ∈ PACr2 can be matched, then this pac is only transiently fulfilled. If
t1 and t3 cause negative transient elements which must not occur in M1 such that
a nac ∈ NACt2 is fulfilled at match m2, then this nac is only transiently fulfilled.

4.4.2 Discussion

Transient effects which are not observable in a difference are welcome when an operation
invocation is taken back completely, e.g., when a typical undo command was executed
within an editing environment.

It is not desired, and not harmful either, if complex operation invocations interfere;
in such situations, the compound effect can typically be represented by an alternative
difference, notably a difference using elementary edit operations. Assume, for example,
a three level inheritance hierarchy as shown in Figure 4.5). Starting from the base
version v1, we first pull up attribute name from class Developer to class Person (as in
our running example). Next, the attribute is pulled up from Person to Entity. The
second edit step leads to a transient effect: The creation of the containment edge from
class Person to attribute name is not observable in the low-level difference δv1,v2 . Thus,
none of the two refactorings can be recognized. However, the same effect can also be
described by one single attribute movement which directly shifts the attribute name
from class Developer to class Entity.

From an editing point of view, we call such a transient effect avoidable, because the
same effect can be reached without causing transient elements. From an operation
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Editing sequence with 
transient effect

Observable edit step:

move attribute name
from Developer to Entity

pull up attribute name

pull up attribute name

Figure 4.5: Example of a transient effect leading to unobservable low-level changes
(right) and how this transient effect can be avoided (left)

recognition point of view, we call the transient effect erasable.

Transiently fulfilled application conditions are usually a good hint to not report the
respective operation invocation which is missed due to the transient effect. Consider
the example shown in Figure 4.6. On the right, we can see an editing sequence which,
starting from the base model v1, yields model version v2 and which causes transiently
fulfilled application conditions. Firstly, we introduce generalization relationships such
that class Person becomes the common superclass of Developer and Manager. Sec-
ondly, the common attribute name is pulled up. In addition to our running example of
Figure 2.1, the generalization relationships are finally deleted. Obviously, the operation
contract for the refactoring pullUpAttribute is only fulfilled transiently on model version
v′1. It is neither fulfilled on model version v1, nor on model version v2. Thus, alterna-
tive edit steps, namely an attribute movement together with an attribute deletion, are
reported by the operation detection algorithm2. Thus, the transient effect is erasable.

To sum up, transient effects are usually not harmful w.r.t. to our approach to edit op-
eration recognition, provided that the effect of an operation sequence causing transient

2The given matching Mv1,v2 : v1  v2 determines which edit operations are actually detected in
this example. If none of the name attributes are in a correspondence relationship, two attribute
deletions and one creation are reported.
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Editing sequence with transiently 
fullfilled application condition
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- move attribute name
  from Developer to Person

- delete attribute name
  from Manager

create generalization
relationships

delete generalization
relationships

pull up attribute name

Figure 4.6: Example of a transient effect leading to a transiently fulfilled application
condition (right) and how this transient effect can be avoided (left)

effects can be summarized by an alternative editing sequence. This is not absolutely
necessary if differences are lifted for the sake of understandability, e.g. when certain
evolution steps shall be documented. However, if we must guarantee a complete lifting
of low-level differences, as it is the case for the generation of edit scripts (s. Chapter 5),
the edit rule set for a given model type must be properly designed (s. Chapter 7).





CHAPTER5
Generation of Edit Scripts

Chapter 4 addressed the question how to recognize executions of edit operations in a
given low-level difference. However, this technique identifies edit operation executions
only. This is useful for understanding changes, but not sufficient for replaying them in
a change propagation scenario. In the latter case, the difference must be executable.
Section 5.1 introduces our notion of an executable difference to which we refer to as
edit script. Given a semantically lifted difference, edit scripts are generated in two
subsequent processing steps of the differencing tool chain presented in Figure 1.2. The
retrieval of actual edit operation parameters is described in Section 5.3, the analysis of
dependencies between edit steps is considered in Section 5.4. A basic prerequisite for
both processing steps is that trace links between edit and recognition rule elements are
available. To that end, Section 5.2 precisely describes the tracing information being
obtained from our recognition rule generation algorithm.

5.1 Edit Scripts

An edit script is a special kind of asymmetric difference which, in contrast to directed
deltas according to [77, 180], additionally comprises information about dependencies of
edit steps. In general, two edit steps depend on one another if they can be executed
in one order and not in the other order, or lead to a different effect if executed in the
reverse order, i.e. they do not commute. Section 5.4 will later show how to utilize
critical pairs for the analysis of dependencies.

97
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Definition 5.1 (Edit script)
Let A and B be models which are represented as ASGs being typed over the same type
graph TG, then an edit script ∆A⇒B = (S,D) is an executable specification of how
model A can be edited in a step-wise manner to become model B. It comprises the
following information:

S is a set of edit steps, each edit step invokes an edit operation and supplies appro-
priate actual parameters. Each edit operation must be applicable to models of
type TG.

D ⊆ S × S is an acyclic relation that identifies pairs of edit steps which directly de-
pend on each other. For each s1, s2 ∈ S and (s1, s2) ∈ D, we say that s2 directly
depends on s1; when ∆A⇒B is applied, s1 has to be executed first.

The transitive closure D+ forms a binary partial order relation on S.

Note that Definition 5.1 leaves open which edit operations are available for modifying
a model of a certain type. If edit scripts are used to propagate model changes, a
particular requirement of our approach to model patching is that each edit operation
used in an edit step must guarantee that the modified model remains displayable and
thus editable in a standard editor for this model type (s. Chapter 6). We refer to this
special kind of edit script as consistency-preserving edit script.

Definition 5.2 (Consistency-preserving edit script)
A consistency-preserving edit script ∆A⇒B = (S,D) is an edit script in which each edit
step s ∈ S refers to a consistency-preserving edit operation.

∆v1⇒v2
:

e1: restrictNavigability(in : “worksFor”, “employer”)

e2: createGeneralization(in : “Developer”, “Person”; out : “Developer → Person”)

e3: createGeneralization(in : “Developer”, “Person”; out : “Manager → Person”)

e4: pullUpAttribute(in : “name”, “Developer → Person”)

e2 ← e4

e3 ← e4

Figure 5.1: Edit script ∆v1⇒v2 for Example 2.1 synthesized in a textual notation

Example 5.1 (Edit script obtained from two revisions of a UML class diagram)
Figure 5.1 shows a consistency-preserving edit script ∆v1⇒v2 obtained from model ver-
sions v1 and v2 of our Example 2.1, synthesized in a textual notation. Edit steps
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e1 to e4 are numbered as in Figure 2.1 and dependencies between them are explicitly
listed: Generalization relationships “Developer → Person” and “Manager → Person”
must first be created (e2 and e3) before attribute name can be pulled up (e4). Note
that we use symbolic identifiers to refer to model elements used as arguments of for-
mal parameters, input and output parameters are indicated by key words in and out,
respectively.

The conceptual data structure which is used to represent operation invocations, their
invocation arguments and dependencies between operation invocations is shown in Fig-
ure 5.2. Note that an instance of this data structure is populated in a step-wise manner
(s. Figure 1.2):

1. Initially, for each semantic change set which has been identified during operation
recognition, an OperationInvocation that represents the invocation of a certain
edit operation is being created (not shown in Figure 1.2). For our running exam-
ple, four operation invocations are created; two of them, namely createGeneraliza-

tion and pullUpAttribute, are shown in Figure 5.4.

2. Next, a complete operation invocation must be constructed, i.e. each formal pa-
rameter of an edit operation has to be bound to a concrete value.

3. Finally all operation invocations have to be analyzed for sequential dependencies.

Steps 2 (parameter retrieval) and 3 (dependency analysis) are explained in the remainder
of this section. Note that these steps do not depend on each other; they can be
performed in any order, symbolized by the parallel processing in Figure 1.2.

Figure 5.2: Conceptual data structure for the representation of edit scripts



100 Chapter 5. Generation of Edit Scripts

5.2 Prerequisite: Tracing of Edit Rule Elements

During the translation of an edit rule to a recognition rule, trace links are established
between edit rule elements and their respective recognition rule counterparts. These
trace links are managed persistently. The set of trace links can be formally defined as
a binary relation on the overall set of distinct graph elements defined by er and rr,
respectively. Therefore, we will first introduce some basic notions to refer to sets of
distinct graph elements defined by a Henshin rule.

Let r be a Henshin transformation rule according to Definition 3.11, then

⋃
NACr =

|NACr|⋃
i=1

naci (5.2.1)

refers to the set of distinct graph elements being defined by negative application con-
ditions of r. Analogously, ⋃

PACr =

|PACr|⋃
i=1

paci (5.2.2)

denotes the set of all distinct graph elements being defined by positive application
conditions of r. Thereupon, the set of all distinct graph elements being defined by the
components of r can be defined as

Er = Lr ∪Rr ∪
(⋃

NACr

)
∪
(⋃

PACr

)
. (5.2.3)

Definition 5.3 (Trace relation and trace mappings)
Let er be an edit rule and rr its corresponding recognition rule, then the set of trace
links being established during the translation of er to rr forms a binary relation T ⊆
Eer×Err, where Eer and Err are defined according to (5.2.3). A trace link is represented
by a pair of graph elements (eer, err) ∈ T . The trace relation can be partitioned to form
a pair of partial mappings (tA, tB):

• tA : (Eer \ Creer) Err

• tB : (Eer \Deler) Err

Elements that have to be found on an original model version A (cf. Section 4.2.2)
are mapped by tA, while elements that have to be found on the revised version B are
mapped by tB. Note that these mappings can be utilized to implement the subroutines
traceA(Node ner) and traceB(Node ner) of Algorithm 3.

Example 5.2 (Trace links between edit and recognition rule elements)
Consider the example shown in Figure 5.3. On top, the kernel part of edit rule
pullUpAttribute (cf. Section 3.3.2) is shown, while the corresponding recognition rule
rr pullUpAttribute is shown in the middle of Figure 5.3. Note that we generally omitted
edges of type class and generalization for the sake of readability. Trace links between
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edit rule nodes and their respective recognition rule counterparts are indicated by dot-
ted arrows in Figure 5.3. Note that trace links between edges are omitted for the sake of
readability, they are implicitly given by traces between source and target nodes. Trace
links illustrate how context, application conditions and change actions of an edit rule
are translated to the respective recognition rule. Please note that NAC nac1 is to be
interpreted as postcondition here. The same interpretation is chosen for node g which
is to be preserved by the edit rule pullUpAttribute and which is neither boundary to edge
deletions nor to edge creations. Thus, node g together with its incident edges can be
conceptually considered as positive application condition (s. Section 4.2.2), which is to
be interpreted as postcondition here: A pullUpAttribute operation shall be detected only
if class cg, to which the attribute p is moved, is still a superclass of cs.

5.3 Retrieval of Actual Parameters

The parameter retrieval step in our differencing pipeline of Figure 1.2 has to bind actual
parameters, i.e. operation arguments, to each formal parameter declared by the invoked
edit operations. We illustrate the general proceeding for edit steps e2 and e4 of our
sample edit script of Figure 5.1.

Value parameters can be retrieved by analyzing a match of the recognition rule.
Each concrete value can be located in the revised model; it is bound to the respective
recognition rule parameter. In our example, parameter n is a value parameter. The
concrete value is ”name”. The respective value parameter binding is shown in Figure 5.4.
It illustrates that value parameters are bound to the String representation of primitive
data values.

In order to retrieve the actual values of object parameters, the occurrences of edit
rule nodes in model versions A and B of a difference can be utilized. These occurrences
are identified by composing two mappings which are illustrated in Figure 5.3:

1. The trace links, labeled tA and tB, between edit rule nodes and recognition rule
nodes, which are created and maintained statically for all pairs of edit and recog-
nition rules (cf. Section 5.2).

2. The matches of recognition rule nodes, labeled m, which are created during op-
eration detection, i.e. when recognition rules are applied to a concrete low-level
difference.

Thus, edit rule node occurrences in model version A of a difference are identified by
the mapping oA = m ◦ tA, while edit rule node occurrences in model version B of a
difference are identified by the mapping oB = m ◦ tB. Two node occurrences, namely
oB(gen) = m(tB(gen)) and oB(g) = m(tB(g)), are explicitly shown for our running
example in Figure 5.4, while the recognition rules themselves are omitted in this figure.

Having these edit rule node occurrences at hand, object parameter bindings can be
created for formal parameters, e.g. gen of createGeneralization and g of pullUpAttribute. In
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Rule rr_pullUpAttribute(n)
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«preserve»
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Figure 5.3: Relations between edit rule, recognition rule, and the occurrence of the
semantic change set pullUpAttribute in the low-level difference δv1,v2 of Ex-
ample 2.1

the same way, object parameter bindings are created for all other formal parameters
of the example rules, namely c1, c2, and p. Note that variables cg and cs are note
declared as formal parameters by rule pullUpAttribute and thus no parameter bindings
are created.

The concrete node which is bound to a formal object parameter can be located in the
original model version A, or in the revised model B (referred to as actualA and actualB
in Figure 5.2). Nodes being created exist only in model B, e.g. our created node of type
Generalization of Figure 5.4. Nodes which are deleted exist only in the original model A.
All other arguments have representations in both model versions, the respective nodes
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Rule pullUpAttribute(p, g, n)

«preserve»
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«preserve»
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«forbid#nac1»
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«preserve»
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«preserve»
c1:Class

«preserve»
c2:Class

«create»
gen:Generalization

generalization «create»

general
«create»

specific«create»

Potential
dependency:

create/useE
d

it
 R

u
le

s
D

iff
e
re

n
c
e

Edit rule node
occurrence

Potential
dependency

Legend:

Figure 5.4: Extraction of an edit script for our example difference (excerpt)

are in a correspondence relationship. Nodes representing classes Person and Developer
as well as attribute name are examples of this. Note that correspondence relationships
between these elements and edges of type actualB are omitted in Figure 5.4 for the
sake of readability.

Actual parameters can be used as input and/or output parameters (s. Section 3.3.2).
For example, parameter g is an input parameter of operation pullUpAttribute. It deter-
mines the generalization along which the attribute represented by property p is to be
pulled up. Parameter gen of createGeneralization is an output parameter; it returns the
created node of type Generalization. An element used as actual output parameter of one
operation invocation can also be used as actual input parameter of a second operation
invocation. Such a case leads to a sequential dependency between both invocations.

5.4 Dependency Analysis

Sequential dependencies between edit operation invocations which are caused by input
and output arguments are obvious. In the excerpt shown in Figure 5.4, the invocation of
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pullUpAttribute sequentially depends on the creation of a generalization relationship by
operation createGeneralization. However, not all model elements affected by an operation
invocation are necessarily provided as operation arguments. Moreover, dependencies
can also be caused by application conditions of edit rules. Thus, a complete dependency
analysis cannot be reduced to the analysis of input and output arguments.

Obviously, testing all combinations of pairs of edit steps for dependencies is infeasible.
Instead, we utilize our rule-based implementation of edit operations in Henshin in
order to provide an efficient dependency analysis. To reduce the set of candidates for
dependencies that have to be checked, all pairs of edit rules are statically analyzed for
potential dependencies by using critical pairs.

Potential dependencies. As explained in Section 3.3.3, there are four possible kinds
of dependencies if a rule r2 is applied after a rule r1; create/use, change/use, delete/-
forbid and change/forbid.

In addition, the application of rule r2 can have effects that would prevent r1 from
being successfully applied after r2. According to the theory of algebraic graph trans-
formation, these cases are referred to as conflicts of kinds delete/use, change/use, cre-
ate/forbid, and change/forbid (cf. Section 3.3.3). As opposed to graph transformation
theory, we treat these cases here as dependencies, too. In our context of edit script
generation, a dependency relation shows how a conflict between two rule applications
can be resolved by applying the rules in a specific order. Consequently, we refer to these
kinds of dependencies as use/delete, use/change, forbid/create, and forbid/change in
order to indicate which of the two rules has to be applied first.

Table 5.1 shows an overview of all kinds of potential dependencies. Note that rule r2
potentially depends on r1, i.e., if the potential dependency becomes an actual one, then
r1 has to be applied before r2. All these different kinds of potential dependencies define
partial mappings between rules r1 and r2 in the sense that a rule element is mapped
to another one if the first one is dependent on the second one. These partial mappings
are called potential dependency mappings, since they do not necessarily occur in actual
rule applications.

Context/PAC NAC

Nodes/Edges Attributes Nodes/Edges Attributes

create/use change/use delete/forbid change/forbid

use/delete use/change forbid/create forbid/change

Dependency relationship: r2 → r1
Order of application: r1; r2

Table 5.1: Possible kinds of dependencies in the context of edit script generation

Actual dependencies. The set of potential dependencies allows us to analyze actual
dependencies of operation invocations efficiently. Section 5.4.1 explains our analysis
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procedures for dependencies of kind create/use and use/delete, while delete/forbid and
forbid/create dependencies are considered in Section 5.4.2.

Please note that dependencies which are caused by attribute changes are not dis-
cussed here in detail. The analysis proceeds almost analogously to the analysis of
dependencies being caused by the creation (deletion) of structural graph elements.
Analysis procedures for dependencies of kind change/use (use/change) include checks
for create/use (use/delete) dependencies being caused by the creation (deletion) of
edges to value nodes. Analysis procedures for dependencies of kind change/forbid (for-
bid/change) include checks for delete/forbid (forbid/create) dependencies being caused
by the creation (deletion) of edges to value nodes.

5.4.1 Dependencies of Kind create/use and use/delete

Dependencies of kind create/use and use/delete are the most common kinds of depen-
dencies. They typically occur when models are built (create/use) or reduced (use/delete)
in a step-wise manner. We illustrate the analysis procedure using the sample editing
sequences of Figure 5.5. A create/use dependency occurs in the editing sequence create-

Generalization;pullUpAttribute from left to right, while a use/delete dependency occurs for
the application of inverse edit rules pushDownAttribute and deleteGeneralization in reverse
order.

createGeneralization pullUpAttribute

(a)  create/use

pushDownAttributedeleteGeneralization

(b)  use/delete

Figure 5.5: Sample editing sequence leading (a) to a create/use dependency, and (b) to
a use/delete dependency in reverse order. Solid arrows represent edit steps,
while dotted arrows express dependencies.

Dependencies of kind create/use. In general, a potential dependency of kind
create/use between a critical pair of rules is an actual one between the applications of
these rules if the minimal rule application of a critical pair can be embedded into the
actual model changes: Given two rule applications M1

r1,m1,n1
=⇒ M2 and M2

r2,m2,n2
=⇒ M3,

they are actually in a create/use dependency if there are at least two elements e1 ∈ r1
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and e2 ∈ r2 such that there is a potential dependency mapping from e2 to e1 and
n1(e1) = m2(e2).

The application of this basic principle is illustrated in Figure 5.4. A potential depen-
dency mapping of kind create/use is indicated by a dashed arrow in the upper part of
Figure 5.4; the generalization gen has to be created first, potentially by an application of
createGeneralization, before it can be used as required generalization g by pullUpAttribute.
In order to test the above condition, we utilize again the occurrences of edit rule nodes
in the graph-based representation of a low-level difference δA,B. In our example, the ap-
plications of createGeneralization and pullUpAttribute are actually dependent because gen
of createGeneralization and g of pullUpAttribute are mapped to the same model element,
i.e. we have oB(gen) = oB(g).

Dependencies of kind use/delete. The “embedding condition” for dependencies
of kind use/delete is similar to the condition for dependencies of kind create/use: Given

two rule applications M1
r1,m1,n1

=⇒ M2 and M2
r2,m2,n2

=⇒ M3, they are actually dependent
in terms of a use/delete dependency if there are at least two elements e1 ∈ r1 and e2 ∈ r2
such that there is a potential dependency mapping from e2 to e1 and m1(e1) = m2(e2).
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Figure 5.6: Example: Detection of dependencies of kind use/delete

A potential dependency mapping of kind use/delete is indicated by a dashed arrow
in the upper part of Figure 5.6. The lower part shows ASG representations of model
versions v2 and v1 of Figure 5.5. Note that we consider the sample editing sequence of
Figure 5.5 from right to left, i.e. version v2 is the original model while v1 is the revised
model of the difference calculation. Here, generalization g has to be used by pushDow-

nAttribute before being deleted, potentially as generalization gen of deleteGeneralization.
Testing the above condition proceeds analogously to dependencies of kind create/use.
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In our example, the applications of pushDownAttribute and deleteGeneralization are actu-
ally dependent because gen of deleteGeneralization and g of pushDownAttribute are mapped
to the same model element, i.e. we have oA(gen) = oA(g).

5.4.2 Dependencies of Kind delete/forbid and forbid/create

Dependencies of kind delete/forbid and forbid/create typically occur if complex edit
rules define negative application conditions as part of their operation contract. In order
to illustrate our analysis procedure, we use editing sequences on a sample feature model
to keep the example as small as possible (s. Figure 5.7).

From left to right, we apply the refactoring inlineOrGroup such that features F2 and
F3 become two separate optional features. Next, we convert feature F3 to a mandatory
feature by applying edit operation setFeatureMandatory. The second step depends on the
first one because we cannot convert a feature which is part of a group. A forbid/create
dependency occurs for the application of inverse edit operations extractOrGroup and
setFeatureOptional in reverse order. Here, solitary feature F3 can only be converted to
an optional feature as long as it is a solitary feature. Thus, operation setFeatureOptional

has to be applied first, i.e. the second step extractOrGroup sequentially depends on the
first one because it would prevent setFeatureOptional from being successfully applied.

inlineOrGroup setFeatureMandatory

(a)  delete/forbid

setFeatureOptionalextractOrGroup

(b)  forbid/create

F1

F2 F3

F1

F2 F3

F1

F2 F3

Figure 5.7: Sample editing sequence leading (a) to a delete/forbid dependency, and (b)
to a forbid/create dependency in reverse order. Solid arrows represent edit
steps, while dotted arrows express dependencies.

The detection of dependencies of kind delete/forbid and forbid/create differs from
our previous cases of Section 5.4.1 because there are no occurrences of NAC elements
in a low-level difference that can be utilized for that purpose. In the remainder of
this section, we illustrate the analysis procedures to detect these kinds of dependencies
using the sample editing sequences of Figure 5.7. To understand the Henshin rules
implementing the edit operations which are used in our example of Figure 5.7 better,
an excerpt of the meta-model for feature diagrams over which these rules are typed
is shown in Figure 5.8: A FeatureModel basically serves as container. It contains a
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distinguished Feature called root feature, which represents the root of a feature hierar-
chy. A feature contains an arbitrary number of child features such that features can be
organized in a tree structure. A feature has a name and can be mandatory or optional,
depending on the value of attribute mandatory. Features can be grouped and a Group
comprises at least two features. Alternative groups are distinguished from or-groups
by the value of the attribute groupType. The respective data type, called GroupType,
is an enumeration type that defines two literals. Cross-tree relations and several invari-
ants are omitted in Figure 5.8 as they are irrelevant for our running example. A full
version of this meta-model for feature diagrams can be found in [20].

Figure 5.8: Subset of the meta-model for feature diagrams introduced in [20]

Dependencies of kind delete/forbid. In general, our approach to operation recog-
nition implies that a NAC must be fulfilled on the original model version A or on the
revised version B. Otherwise, the NAC is only transiently fulfilled and an application
of a rule that specifies this NAC cannot be recognized by our operation detection ap-
proach at all (s. Section 4.4). W.r.t. to the occurrence of actual dependencies of kind
delete/forbid, we can conclude from this principal restriction that an actual delete/for-
bid dependency can only be found in a difference if

• an element which is being deleted such that a potential delete/forbid dependency
becomes an actual one must be contained by the original model version A, and

• the NAC which causes the potential dependency has to be fulfilled on the revised
model version B.

In other words, the above conditions state that we have an actual delete/forbid depen-
dency only if a NAC is fulfilled on the revised model version B but not on the original
version A.

Thus, the idea here is to search on model version A for a particular NAC pattern
which does not exist on version B. If such a NAC pattern is found, we can conclude
that certain elements of this pattern must have been deleted such that the NAC is
fulfilled on version B. This proceeding is illustrated in Figure 5.9. On top, we have
edit rules implementing the edit operations inlineOrGroup and setFeatureMandatory. A
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potential dependency mapping of kind delete/forbid is indicated by a dashed arrow.
ASG representations of our sample model versions v1 and v2 of Figure 5.7 are shown
in the lower part of Figure 5.9. The corresponding recognition rules as well as repre-
sentations of correspondences, low-level changes, semantic change sets and operation
invocations of our difference are omitted for the sake of readability.
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Figure 5.9: Example: Detection of dependencies of kind delete/forbid

In general, let r1, r2 be edit rules for which applications have been recognized in a
given low-level difference δA,B. Let further nac ∈ NACr2 be a negative application
condition which potentially causes a delete/forbid dependency w.r.t. rule r1 such that
r1 has to be applied before r2, i.e. r2 potentially depends on r1. The actual dependency
analysis proceeds in four sequential steps:

1. For each occurrence oB(n) of a boundary node n of nac in the revised model B,
we try to find the corresponding node of oB(n) in the original model version A. In
order to find such a corresponding node in A, we utilize the inverse mapping M−1

A,B

of matching MA,B. If a corresponding node can be found for each occurrence of
all boundary nodes of nac, we proceed with step 2.
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In our example of Figure 5.9, there is only one boundary node f of NAC isSolitary,
occurrence oB(f) refers to the ASG node representing feature F3 in version v2.
We obtain the corresponding node of oB(f) in version v1 as M−1

v1,v2
(oB(f)).

2. The NAC pattern nac together with all its boundary nodes is translated to a
temporary rule tmp. This temporary rule serves as a pattern specification which
has to be found on model versionA. Therefore, it contains only elements which are
to be found and preserved. Similar to the translation of edit rules to recognition
rules, this transformation leads to a trace mapping ttmp : (nac∪Bnac)→ Cxttmp.

3. Subsequently, we try to find all matches of temporary rule tmp in model A.
Thereby, all boundary node occurrences in model A which have been obtained in
step 1 serve as pre-match for this pattern matching procedure. The pre-match is
denoted by a partial mapping ptmp : Ltmp  A. If there is at least one complete
match mtmp : Ltmp → A, we proceed with step 4.

In our example, pre-match ptmp maps the temporary rule node f tmp to the ASG
node representing feature F3 in version v1. This partial match can be extended
to a complete match mtmp as shown in Figure 5.9.

4. Finally, for each match mtmp : Ltmp → A, the test for an actual dependency
proceeds similar to the analysis of actual dependencies of kind create/use and
use/delete: A potential dependency mapping between rule elements e2 ∈ r2 and
e1 ∈ r1 becomes an actual one between the applications of these rules if e1 and e2
are mapped to the same element in model A, i.e. we have oA(e1) = mtmp(ttmp(e2)).

In our example, the applications of setFeatureMandatory and inlineOrGroup are actu-
ally dependent because the NAC node of type Group of setFeatureMandatory and
node g of inlineOrGroup are mapped to the same model element in version v1.

Dependencies of kind forbid/create. Similar to the analysis of dependencies of
kind delete/forbid, we can conclude from principal restrictions of our approach to op-
eration detection that an actual forbid/create dependency can only be found in a dif-
ference if a NAC is fulfilled on the original model version A but not on the revised
version B. Thus, the idea here is to search on model version B for a particular NAC
pattern which does not exist on version A. If such a NAC pattern is found, we can
conclude that certain elements of this pattern must have been created since the NAC
is fulfilled on version A. This proceeding is illustrated in Figure 5.10. On top, we
have edit rules implementing the edit operations setFeatureOptional and extractOrGroup.
A potential dependency mapping of kind forbid/create is indicated by a dashed arrow.
ASG representations of our sample model versions v1 and v2 of Figure 5.7 are shown
in the lower part of Figure 5.10. Note that we consider the sample editing sequence
of Figure 5.7 from right to left, i.e. version v2 is the original model while v1 is the
revised model of the difference calculation. Again, the corresponding recognition rules
as well as representations of correspondences, low-level changes, semantic change sets
and operation invocations of our difference are omitted for the sake of readability.
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Figure 5.10: Example: Detection of dependencies of kind forbid/create

In general, let r1, r2 be edit rules for which applications have been recognized in a
given low-level difference δA,B. Let further nac ∈ NACr1 be a negative application
condition which is potentially invalidated by rule r1 such that r1 has to be applied
before r2, i.e. r2 potentially depends on r1. The actual dependency analysis proceeds
in four sequential steps:

1. For each occurrence oA(n) of a boundary node n of nac in the original model A,
we try to find the corresponding node of oA(n) in the revised model B utilizing
matching MA,B. If a corresponding node can be found for each occurrence of all
boundary nodes of nac, we proceed with step 2.

In our example of Figure 5.10, there is only one boundary node f of NAC isSolitary,
occurrence oA(f) refers to the ASG node representing feature F3 in version v2.
We obtain the corresponding node of oA(f) in version v1 as Mv2,v1(oA(f)).

2. The NAC pattern nac together with all its boundary nodes is translated to a
temporary rule tmp. This temporary rule serves as a pattern specification which
has to be found on model B. Therefore, it contains only elements which are



112 Chapter 5. Generation of Edit Scripts

to be found and preserved. The transformation leads to a trace mapping ttmp :
(nac ∪Bnac)→ Cxttmp.

3. Subsequently, we try to find all matches of temporary rule tmp in model B.
Thereby, all boundary node occurrences in model B which have been obtained in
step 1 serve as pre-match for this pattern matching procedure. The pre-match is
denoted by a partial mapping ptmp : Ltmp  B. If there is at least one complete
match mtmp : Ltmp → B, we proceed with step 4.

In our example, pre-match ptmp maps the temporary rule node f tmp to the ASG
node representing feature F3 in version v1. This partial match can be extended
to a complete match mtmp as shown in Figure 5.10.

4. Finally, for each match mtmp : Ltmp → B, the test for an actual dependency
proceeds as usual: A potential dependency mapping between rule elements e2 ∈ r2
and e1 ∈ r1 becomes an actual one between the applications of these rules if e1
and e2 are mapped to the same element in model B, i.e. we have oB(e2) =
mtmp(ttmp(e1)).

In our example, the applications of extractOrGroup and setFeatureOptional are ac-
tually dependent because the NAC node of type Group of setFeatureOptional and
node g of extractOrGroup are mapped to the same model element in version v1.



CHAPTER6

Propagation of Changes based on
Consistency-preserving Edit Scripts

Section 2.1 describes several versioning scenarios (SC2-5) which can be informally de-
scribed as the propagation of model changes from one version of a model to another. We
support these development tasks adopting the principle of document patching. Changes
which are to be propagated are expressed as an edit script. We define two basic variants
of a patch operator to which we refer to as patch and update, respectively.

Our patch operator is defined as usual and applies an edit script to a target model in
order to generate a revised version of this model:

patch : Model × EditScript → Model

The basic principle of patching a model by applying an edit script is illustrated in
Figure 6.1(a). Edit script ∆v0⇒v1 specifies changes between an original model v0 and
its revision v1. It is to be executed on a target model v2. This proceeding can be
applied to scenarios SC2-4, while Figure 6.1(a) illustrates the most general case where
versions v0/v1 and v2 are unrelated and managed in different repositories. Please note
that references to model elements in an edit script ∆v0⇒v1 are initially, when ∆v0⇒v1 is
being created, references to elements of the original model v0. Depending on the imple-
mentation of an argument resolution procedure (s. Section 6.2), v0 must be available at
the patch appliers site and serves as additional input parameter of our patch operator:

patch : Model × Model × EditScript → Model

113
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Note that this second variant of our patch operator is not shown in Figure 6.1(a).
We consider the updating of workspace copies (scenario SC5) as a special, extended

form of model patching:

update : Model × Model × EditScript → Model

As illustrated in Figure 6.1(b), the target model is the workspace version v2 of a model,
edit script ∆v0⇒v1 specifies the repository changes between versions v0 and v1 which
are to be propagated to v2. Additionally, update takes the base version v0 as input in
order to determine for each model element in v2 being modified by the application of
∆v0⇒v1 whether it shall be considered as changed compared to v0 . If so, a warning
against blindly overwriting local workspace changes is issued.

Figure 6.1: Propagation of model changes based on edit scripts: Patching (a) with and
(b) without common base version

In order to understand the effects of an edit script, a user must be able to mentally
execute each step in the edit script in any order compatible with its partial order. The
effect of edit operations can be explained on the basis of the external representation
of models. This implies that each edit step leads to a correct, displayable intermediate
model. In other words, each edit operation used in an edit step must guarantee that
the modified model remains consistent in the sense that it can be displayed and further
edited. Thus, one key idea of our approach to propagate model changes is to use
consistency-preserving edit scripts as a basis for model patching. We use the approach
presented in Chapter 5 to create an initial version of an edit script and assume the
edit script generation algorithm to be configured by a complete set of consistency-
preserving edit rules1. Section 6.1 describes how to use and distribute edit scripts as
model patches and how to modify edit scripts in a controlled way. Error and conflict
detection procedures are discussed in Section 6.2, while Section 6.3 finally presents a
method and graphical user interface which enables developers to apply consistency-
preserving edit scripts to a target model in a controlled, interactive way.

1 Note that a semi-automated approach to create a complete set of consistency-preserving edit rules
for a given modeling language will be presented in Chapter 7.
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6.1 Using Edit Scripts as Model Patches

A consistency-preserving edit script serves as initial version of a patch. As revealed by
our domain analysis in Chapter 2, this initial version of the edit script must sometimes
be reduced to a subset of edit steps which are considered as relevant by the patch
creator. In case of scenario SC4, for instance, edit steps which are not related to the
improvement which is to be propagated must be excluded from the edit script before
it is distributed to the patch applier (s. Section 2.1.4). Thus, edit scripts become an
editable document which must be represented in a suitable way. Section 6.1.1 presents
an extension of our conceptual data model for the representation of edit scripts. Our
approach to the guided editing of edit scripts is introduced in Section 6.1.2. Finally,
the modified edit script must be prepared to be used by the patch applier at the patch
applier’s site. Depending on the application scenario, the edit script must be distributed
with or without the original model and with or without implementations of the used
CPEOs (s. Section 6.1.3).

6.1.1 Representation of Edit Scripts

A basic conceptual data model for the representation of edit scripts has been already
introduced in Section 5.1. If edit scripts shall be used as patches, some further infor-
mation is required. To that end, Figure 6.2 presents an extension of our data model of
Figure 5.2 and serves as a central design artifact for patch tool implementors.

Figure 6.2: Representation of edit scripts being used as patches

In contrast to Figure 5.2, signatures of edit operations are also represented. Thus,
proper CPEO implementations can be reliably selected at the patch applier’s site,
as we assume signatures of edit operations to be unique within the set of available
operations for a given model type. As shown in Figure 6.2, an edit operation declares
a set of formal parameters which are bound to actual parameters, i.e. arguments, of
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an operation invocation. Moreover, output arguments of one edit step which are used
in another sequentially dependent one are mapped onto each other via an instance of
ParameterMapping. Thus, an edit script basically becomes a data flow graph of edit
steps. Consequently, references to model elements in the revised model v1 of the two
model versions v0 and v1 of which an edit script ∆v0⇒v1 has been created can be omitted.
Finally, a boolean-valued attribute apply is added to class OperationInvocation. Thus,
each edit step in an edit script can be “masked” (apply=false), i.e. the respective edit
step is to be skipped when the edit script is applied. From a patch creator’s point of
view, the edit step (and all its dependent edit steps) is “logically” deleted from the edit
script, but the deletion can be reverted in a patch editor (cf. Section 6.1.2). Masked
edit steps can be “physically” deleted when the edit script is distributed to the patch
applier’s site (cf. Section 6.1.3).

Figure 6.3 illustrates how the excerpt of the edit script of Figure 5.4 is converted to
an initial version of an edit script which can be used as patch. Note that we omitted
types of formal parameters for the sake of readability.

Figure 6.3: Excerpt of a sample edit script serving as initial version of a patch
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6.1.2 Guided Editing of an Initial Version of an Edit Script

The manual modification of an edit script is a challenge because edit steps can depend
on one another. Thus, a modified edit script cannot be executed successfully if an edit
step is deleted without deleting all dependent edit steps. Consequently, edit scripts
must be modified with caution. This should be supported by a dedicated “patch edi-
tor”. Such an editor must present an edit script in a user-readable way. A particular
challenge is the presentation of operation arguments which are references to “nameless”
model elements, i.e. elements which have no user-readable identifier. Visual modeling
languages such as the UML define many anonymous elements, e.g. pseudo-states in
state charts, input pins of an action node in activity diagrams, etc. The only viable
solution to show these arguments to a user is to use the visual representation of these
model elements.

Figure 6.4 shows the graphical user interface of our patch editor. It is based on the
difference presentation concept which is commonly known as interactive list of edit steps
(s. Section 2.2.3). We choose this presentation technique because of its flexibility: Edit
steps which are executions of complex edit operations can be interactively inspected.
Moreover, the original model and the changed model are displayed in two separate
native editor windows on the right. Thus, models are displayed in the notation users
are familiar with. The example in Figure 6.4 shows two revisions of a class diagram
(modeled in EMF Ecore) which correspond to the original and the changed version of
Example 2.3.

Figure 6.4: Guided editing of edit scripts

The control window on the left-hand side of the patch editor contains a list presenting
the edit steps contained in the edit script. The order in which they are presented is
consistent with the partial order which is specified by dependencies between the edit
steps. Dependencies can be also examined in detail. Our example actually contains
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only one sequential dependency; the attribute birthday must first be created before its
datatype can be set to EFloat.

Moreover, operation arguments are shown for each edit step. Object parameter val-
ues are marked as input and output arguments. Output parameters which are mapped
to input parameters of dependent edit steps are indicated separately, e.g. the attribute
birthday which is created in one edit step and used in a subsequent one of our exam-
ple. If an item of the control window is selected, the referenced model elements are
focused and highlighted in the appropriate editor window; each operation argument
can be selected individually. If a complete edit step is selected then all involved model
arguments are highlighted.

The patch creator can remove individual edit steps from the edit script. Edit steps
which depend on the removed one are removed implicitly; the user is made aware of
these deletions. In our Example 2.3, we assume that original and target model are
revisions of a system variant A which is supposed to manage the flight scheduling at
the airport. The edit step extractClass(“Schedule”, Flight.gate, Flight.boarding) is removed
from the edit script because it refactors parts of the original model, namely departure
gate and the boarding time, which are highly specific to this special variant of the
model. In this case, no dependent edit steps are removed implicitly.

6.1.3 Distribution of Edit Scripts

Typically, different hosts are used for the creation and editing of a patch on the one
hand, and for the application of the patch on the other hand. Thus, in addition to the
edit script itself, implementations of all CPEOs which are used by edit steps contained
by the edit script must be available in the tool environment of the patch applier.
Consequently, implementations of the required CPEOs are distributed together with
the edit script. While we use Henshin rules for that purpose in our practical work,
our approach to model patching does not depend on this choice; any other in-place
model transformation technology could be used as well to implement edit operations.
We only assume that each edit operation has an interface specifying all semantically
relevant input and output parameters as well as an implementation and that a suitable
transformation engine is available in the tool environment of the patch applier.

Before an edit script is finally distributed to a patch applier, references to elements
of the original model can be “symbolized” [149], e.g. using path names or persistent
identifiers. Thus, the edit script can be distributed without the original model. In
some cases, however, the complete original model is required by the patch applier,
e.g. to establish reliable correspondences between the original and the target model as
explained in the following section.

6.2 Error and Conflict Detection

The application of an edit script proceeds basically as shown in Figure 6.1. A basic
prerequisite is to resolve all references to model elements which occur as arguments of



6.2. Error and Conflict Detection 119

edit steps (cf. Section 2.2.4).

Resolution of operation arguments. References to model elements in an edit
script are initially, when an edit script is being created, references to elements of the
original model (s. Section 6.1.1). Resolving these references at the patch applier’s site
means to find corresponding elements in the target model. In simple cases, in particular
in case of scenario SC2, surrogates such as persistent identifiers can be used to reliably
identify model elements.

If no reliable references are available, our approach is to compute a matching between
the original model v0 and the target model v2 by using the matcher of a model com-
parison tool. The resulting matching defines for each element of v0 its corresponding
element in v2. Of course, the original model v0 must be available on the site where the
edit script is applied. This can be achieved by either automatically producing a local
backup copy whenever a model is checked out or checked in (e.g. in case of scenario
SC5) or by distributing the original model together with the edit script (scenarios SC3
and SC4).

The following preparations are performed when the process of patching (updating)
v2 by edit script ∆v0⇒v1 is started and before any interaction with the user:

1. A matching Mv0,v2 : v0  v2 between v0 and v2 is computed.

2. Some arguments of edit steps in ∆v0⇒v1 are references to model elements in v0.
If such a model element e0 in v0 corresponds to e2 in v2, then the argument in
the edit step is resolved to e2. Otherwise the argument cannot be resolved and a
missing argument error is flagged. The detection of wrongly chosen arguments,
i.e. false positives being produced by a matcher, is discussed in Section 6.2.1.

3. If a workspace copy is to be updated, for each operation argument in v2 a check
is performed whether it shall be flagged as modified. Section 6.2.2 will describe
how this check can be performed and, if necessary, be configured for a particular
modeling language.

6.2.1 Detection of Wrongly Chosen Arguments

Virtually no matcher is free from matching errors [146]; the likelihood of errors depends
on the characteristics of models and other factors. We have to distinguish two types of
matching errors:

1. False negatives: A suitable model element exists but is not found. In this case,
the reference must be resolved manually; the patch applier selects the resolving
model element.

2. False positives: They lead, if undetected, to wrong operation arguments. The
wrong correspondence must be deleted manually and the reference has to be
resolved manually.
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False negatives always force the patch applier to deal with the problem. False pos-
itives are more harmful because they are hard to detect: Without any further in-
formation, the patch applier can only detect them by manually checking all resolved
references, which can be very tedious. Tool support can be provided by meta-data
about the correspondences which have been established by the matcher. The SiDiff
matching engine, for instance, delivers for each correspondence a value which estimates
the reliability of this correspondence [259]. Section 6.3 will show how this information
is displayed to a patch applier.

6.2.2 Warnings against Blind Overwriting of Local Changes

Section 2.4 has analyzed several reasons for the complexity of 3-way merge tools. Thus,
a basic design decision of our approach to updating workspace copies is to avoid the
calculation of a complete edit script ∆v0⇒v2 which leads to a complex analysis, repre-
sentation and resolution of conflicts in classical operation-based merging. Instead, we
install a rather simple warning mechanism against blindly overwriting local changes at
the workspace site. Thus, the user interface of an interactive update tool, which will
be presented in Section 6.3.2, is less complex than GUIs of interactive 3-way merge
tools, and the user interaction concept does not force a user to mentally return to the
common base version. The idea is to perform a check for each model element in v2
being used as operation argument in ∆v0⇒v1 whether this element shall be flagged as
modified against version v0. In the remainder of this section, we present three different
approaches to the detection of modified arguments.

Change-based detection of modified arguments. A straightforward way to per-
form a modification check is to compute a low-level difference δv0,v2 between the base
version v0 and the revised workspace version v2. An operation argument is considered
to be modified if it is part of a change context, see (4.1.1) in Section 4.1, of δv0,v2 .

Such a change-based detection of modified operation arguments is generic in the
sense that it works for any model type, the only configuration parameter is the meta-
model of this model type. On the contrary, the modification check is restricted to
detect conflicting situations being caused by local changes only. In our Example 2.4
of scenario SC5, for instance, the check is sufficient for detecting the concurrent name
change of operation Ticket.getInfo (conflict 1 ). However, it fails to reveal that per-
forming the edit step createSubclass(SoccerMatch, Event) on v2 potentially leads to an
inconsistent definition of the attribute artist within the inheritance hierarchy of class
Event (conflict 3 ). For the detection of this “semantic conflict”, changes affecting local
properties of class Event are irrelevant. Instead, we are rather interested in whether
new attributes or associations have been added to class Event which will be implicitly
inherited by all of its subclasses, in particular the new subclass SoccerMatch being
created by createSubclass(Event, “SoccerMatch”).

The example shows that sophisticated conditions under which an operation argument
shall be flagged as modified must take the semantics (in the sense of meaning [121])
of the underlying model type and the way how instances of this type are edited into
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account. To this end, we present two additional approaches which can be configured
for a given model type and the set of available edit operations.

Signature-based detection of modified arguments. Signature-based detection
of modified arguments is based on the principle of signature-based matching (cf. Sec-
tion 2.3.1). For each model element in v2 against v0, a signature value is computed. A
model element in v2 is flagged as modified if the signature values of this element and
the corresponding element in v0 differ. In practice, a signature value is typically a hash
value which incorporates many other values.

We adopt here the approach which is used to configure the signature-based matcher
of the SiDiff matching pipeline [2]. A basic configuration defines for each relevant type,
i.e. each node type declared by the meta-model, a list of data items to be incorporated
in the signature. Data items can be local properties, properties at remote nodes which
are specified using a path language, or signature values of remote nodes. The path
language is similar to XPath [263] and defines axes parent, children and neighbors to
locate an ASG node (or sets of nodes) relative to some other. We extend this basic
configuration mechanism such that several signature variants can be specified for a
particular node type, while each variant is valid in a specific context. A context is
defined by a formal parameter exposed by an edit operation signature.

Technically, the signature-generation is performed by iteratively annotating the nodes
of an ASG. Path expressions are evaluated by a generic path engine that exploits
the reflection mechanism of the underlying modeling framework. An annotation is a
key-value pair being attached to a node by the configurable model annotator. The
annotation key SIGNATURE serves as pre-defined keyword; the value of this annotation
will be finally incorporated in the hash value that represents the signature of a node.

Example 6.1 (Signature-based detection of modified arguments)
The pseudo code fragment shown in Listing 6.1 illustrates how the SiDiff annotation
procedure and signature generation can be configured for UML class diagrams.

The imperative section (lines 1 and 2) specifies that an ASG shall be traversed two
times in a top-down manner, following its containment structure. In the first traversal,
an annotation at key PATH is to be attached to each node of the ASG. In the second
traversal, each node is to be annotated with an annotation value which is later accessible
by key SIGNATURE.

The subsequent declarative section defines how the annotation values are to be de-
rived from specific element properties or other annotations:

For all nodes of type Element, which is a common supertype of all node types defined
by the UML superstructure, the value to be annotated at key PATH is to be computed
by concatenating the PATH annotation of the parent node and the name of the concrete
type of a node (lines 6-8). This PATH value is the only value which is to be incorporated
into the signature for nodes of type NamedElement (s. lines 9-11). The signature is
valid in any context, i.e. for each formal object parameter of type Element or one of
its subtypes. Lines 14-17 show that annotation specifications can be overridden for
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1 traverse top−down ”PATH” ;
2 traverse top−down ”SIGNATURE” ;
3

4 // Basic annotat ions
5 NodeType Element
6 annotation :
7 key = PATH,
8 value = ( s e l f . parent .PATH) ◦ ( s e l f . type . name ) ;
9 annotation :

10 key = SIGNATURE,
11 value = s e l f .PATH;
12

13 // Overr ide PATH annotat ion f o r NamedElements
14 NodeType NamedElement
15 annotation :
16 key = PATH,
17 value = ( s e l f . parent .PATH) ◦ ( s e l f . name ) ;
18

19 // S ignature being v a l i d in a s p e c i f i c context
20 NodeType Class
21 annotation :
22 context = c r e a t e S u b c l a s s ( superClass , name ) : : superClass ,
23 key = SIGNATURE,
24 value = ( s e l f . ne ighbors .PATH) ◦ ( s e l f . c h i l d r e n .PATH) ;

Listing 6.1: Sample configuration of a signature-based detection of modified arguments
in UML class diagrams

subtypes of Element; for all nodes of type NamedElement, the value of PATH is to be
computed by concatenating the parent PATH and the value of the local attribute name.
The signature configuration is inherited from type Element. Lines 20-24 illustrate how
to specify a signature which is only valid in a certain context. This signature shall be
used to perform the modification check when a node of type Class occurs as argument
superClass of operation createSubclass(superClass, name). This specific signature value is
computed by concatenating PATH annotations of all neighbors and all children of a
particular Class node.

Comparison-based detection of modified arguments. Defining a specific signa-
ture for each formal parameter being exposed by edit operations is a powerful mecha-
nism to configure the detection of modified operation arguments. However, signature
specifications might still be too coarse-grained to express certain “conflict patterns”,
as we can only integrate values of all nodes being collected via a specific ASG axis in a
uniform way. Moreover, we cannot exploit information about corresponding elements
in v2 and v0, e.g. to express that classes c in v0 and c′ in v2 are associated to “the same”
set of classes, while these classes do not necessarily share the same signature values.

Thus, the basic idea is to exploit the comparison facilities of a similarity based
matcher and to use comparison heuristics in order to configure a check for modified
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operation arguments. Adopting the SiDiff approach to similarity-based matching, the
configuration data defines, for each node type defined by a meta-model, a set of prop-
erties which are relevant for the similarity and, for each property, a compare function
which computes the similarity of two values of this property [2]. A compare function
takes two nodes of the same type as input and returns a value between 0 and 1, where
0 means “no similarity” and 1 means that the two nodes are identical w.r.t. to the con-
sidered property. Let A and B be two models being typed over the same type graph,
then a compare function for a property p is defined as

comparep : AN ×BN → [0, 1] (6.2.1)

with [0, 1] = {x ∈ R | 0 ≤ x ≤ 1}.
While a similarity-based matcher generally computes the overall similarity of two

elements (cf. Section 2.3.1), which is defined in SiDiff as the weighted arithmetic mean
of the similarities of all relevant properties [138], we are only interested in the fact
whether an element has been modified or not. To that end, we define another function
that converts the result of a compare function into a boolean value (true = “modified”,
false = “unmodified”) in a straightforward way:

convert : [1, 0]→ B, with convert(x) =

{
false, if x = 1

true, if x 6= 1.
(6.2.2)

Finally, an element e2 in v2 is considered to be modified against its corresponding
element e0 in v0 if any of its properties being considered as relevant has been modified:

Mode0,e2 =
∧
p∈P

convert(comparep(e0, e2)) (6.2.3)

where P is the set of relevant properties and comparep is the selected compare function
for property p.

Example 6.2 (Comparison-based detection of modified arguments)
Table 6.1 shows a fine-grained configuration for a comparison-based check of UML
classes against modification. Similar to the signature-based configuration, a context
can be defined in which a certain check is to be performed. Here, the check shall
only be performed if a class occurs as parameter superClass of the operation create-

Sublass(superClass,name). Properties being relevant in this context are summarized by
column 3. Consequently, a modified argument flag will be issued for conflict 3 of Ex-
ample 2.4 because class Event has different attributes in v0 and v2. No warning will be
generated in case of a local property change such as a simple change of a class name,
turning a class into an abstract class, etc.

6.3 Interactive Application of Edit Scripts

Our analysis in Section 2.2 has shown that the application of a patch on a given target
model can fail for various reasons, a user must be enabled to analyze and resolve
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NodeType Context Criterion

Class createSubclass(superClass,name)::superClass Attributes match
Operations match
Associated classes match
Generalization targets match

Table 6.1: Sample configuration of a comparison-based detection of modified arguments
in UML class diagrams

the problems somehow. The only solution is often to modify the target model, e.g.
by creating missing model elements or modifying it in a way that a precondition of
an edit step is fulfilled. In this section, we present a graphical user interface (GUI)
design which enables developers to apply consistency-preserving edit scripts to a target
model in a controlled, interactive way. We begin with traditional patching scenarios in
which original and target model are unrelated and do not have a common base version
(s. Section 6.3.1). Extensions to the basic GUI which specifically address the updating
of workspace copies are described in Section 6.3.2.

6.3.1 Patch Application without Common Base Version

When the operation arguments have been determined initially, an edit script can be
interactively applied. The graphical user interface of our interactive patching tool is
shown in Figure 6.5. It is partitioned into four subwindows:

• The top left subwindow shows the edit script which is to be applied. The edit
steps are ordered in an arbitrary order which is consistent with the partial order
of the script. Dependencies can be shown if desired, and successfully executed or
ignored edit steps can be hidden.

• The top right subwindow shows the current state of the target model in a standard
editor for this modeling language.

• The bottom left subwindow shows a status protocol of executed edit steps.

• The bottom right subwindow is a property editor which shows details of the
currently selected edit step. Details of report entries of the status protocol shown
in the bottom left subwindow can also be inspected in the properties view.

An edit script can be applied on the target model step by step. If desired, all edit
steps which are principally applicable can be executed automatically. Moreover, the
GUI enables developers to control the effects of each step, the intermediate state of the
target model and arguments of edit steps can be modified at any time.

Figure 6.5 shows an intermediate state of applying the edit script of our running
example of scenario SC4. Note that the initial edit script obtained from a comparison
of the original and the changed version of our sample flight ticketing system has been
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Figure 6.5: Graphical user interface of an interactive patch application tool

edited by the patch creator as described in Section 6.1.2, i.e. the edit step that extracts
the class Schedule has been removed. Two edit steps, namely the edit steps labeled
as 2 and 3 introducing the attribute birthday in class Passenger have been already
executed.

Two kinds of warnings can be generated as a result of the execution of edit steps:

1. If the reliability of a correspondence used to resolve an operation argument is
below a given threshold the user is warned.

In our example, the reliability of the correspondence which has been established
between the class Passenger of the original model and the class Passenger of
the target model is estimated with a bad value of about 44% (s. bottom right
subwindow).

2. CPEOs as assumed by our approach preserve the degree of consistency according
to the effective meta-model, which guarantees that the target model remains dis-
playable in a standard editor. Additionally, the modified target model is validated
against the perfect meta-model after the execution of each edit step. Validation
errors are a second kind of warning that can be generated as a result of the
execution of an edit step.

In our example, the name of the attribute birthday is not unique within the
inheritance closure of class Passenger; the execution report finally reports one
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validation error which can be inspected in the properties details view. The prob-
lem reported here can be solved by declaring the respective edit step to be skipped
such that the attribute birthday will not be created at all. Analogously to the
editing of edit scripts by a patch creator (s. Section 6.1.2), the exclusion of an
edit step causes all dependent edit steps to be excluded from the execution of the
edit script. All these edit steps are “marked” not to be executed by the patch
engine. They are not completely deleted from the patch but can be re-activated
on demand.

As shown in Figure 6.5, edit step 1 of our edit script initially can not be executed
at all. A closer inspection of the arguments of this edit step using the property editor
reveals that one operation argument could not be found during reference resolution,
namely the attribute price whose datatype shall be changed to EFloat. This is due
to an ambiguity which could not be resolved by the matcher; while the attribute price
occurs once in the original model, there are two occurrences of the “identical” attribute
price in the target model. Thus, no correspondence was established by the matcher.
Missing operation arguments have to be selected by the user. If required, missing model
elements can be created in the standard editor and afterwards be selected as operation
arguments. In our example, the attribute price could be pulled up [107] to the common
superclass Ticket and subsequently be selected as operation argument.

6.3.2 Updating Workspace Copies by Patching

The GUI of a tool which implements our approach to update workspace copies by
patching is an extension of the basic patch application GUI introduced in the previous
section. Analogously to the patch application without common base version, the GUI is
partitioned into four subwindows and enables developers to execute an edit script step
by step on the workspace model v2, to control the effects of each step, and to modify
the intermediate state of the target model at any time. The only extension w.r.t. to the
basic patch application GUI is that another kind of warning is flagged which prevents
workspace changes from being blindly overridden.

Figure 6.6 shows an intermediate state of performing a workspace update for our
Example 2.4 in an interactive way. A screencast that demonstrates how to use the
tool in this scenario can be found at the SiLift website2. In the intermediate state of
Figure 6.6, two repository changes which are represented by edit steps labeled as 1 and
2 have been successfully applied to the workspace model. Note that edit step 1 has been
applied first since edit step 2 depends on edit step 1. In Figure 6.6, this dependency is
visually indicated as follows: The tree item representing edit step 2 has been expanded
such that all edit steps to which edit step 2 has a direct dependency (which is only step
1) are shown.

As a result of edit step 1, a validation error against the perfect consistency is flagged
as a warning. This indicates conflicting situation 2 of Example 2.4. Thus, attribute

2http://pi.informatik.uni-siegen.de/Projekte/SiLift/ase2014.php

http://pi.informatik.uni-siegen.de/Projekte/SiLift/ase2014.php
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Figure 6.6: Graphical user interface of an interactive workspace update tool

Customer.name has been manually deleted such that attribute name is uniquely defined
within the inheritance hierarchy of class Person.

A warning against blindly overwriting local changes has been initially attached to edit
step 3. This warning represents conflicting situation 1 of Example 2.4. The conflict
has been resolved by choosing the workspace alternative of the concurrent name change,
i.e. edit step 3 has been skipped, as indicated in Figure 6.6. Thus, the name of operation
Ticket.getInfo is finally changed to “getTicketInfo”.

The remaining edit steps 0 and 4 represent consequences of the conflicting situation
3 of Example 2.4 for which a developer finally has to find a creative solution (cf.

Section 2.1.5).

• Edit step 4 cannot be performed because attribute Exhibition.artist serving as
argument of this edit step could not be resolved in the target model. The reason
for this is that it has been pulled up to class Event in the workspace model.

• Edit step 0 leads to a warning against blindly overwriting local changes if the check
procedure is configured according to the sample signature-based configuration of
Example 6.1: The new subclass of Event called SoccerMatch, which is to be
created by edit step 0, implicitly inherits the attribute artist which has been
pulled up to class Event.





CHAPTER7
Creation of a Set of Consistency-preserving
Edit Rules

Our approach to model differencing is adapted to a given modeling language by pro-
viding edit rules for this language. This set of edit rules must be properly designed and
meet certain correctness criteria to which we refer to as soundness and completeness of
a set of edit rules. Section 7.1 clarifies these criteria and thus identifies requirements
for a set of mandatory edit rules ; these rules must be provided in order to guarantee
that correct edit scripts are generated. While complete sets of mandatory rules can
be easily defined based on primitive graph operations, engineering a mandatory set
of consistency-preserving edit rules (CPERs) is much more challenging. Moreover, in
contrast to primitive graph edit operations, CPERs are not generic, but have to be
individually engineered for a given modeling language and the effective meta-model
of a standard model editor for this language. A general process for creating a set of
CPERs is shown in Figure 7.1:

Step 1: We assume that the effective level of consistency which is to be preserved by
CPERs is expressed by an effective meta-model (cf. Section 3.2). The effective
meta-model is typically constructed by creating a copy of a standard (or perfect)
meta-model and dropping all consistency constraints except the relevant ones.

Step 2: Comprehensive languages such as the UML lead to large sets of CPERs, even
if the required degree of consistency is reduced to the effective meta-model. The
manual specification of such sets of edit rules is very tedious and prone to errors.
To that end, we propose a semi-automated approach to derive a mandatory set of

129
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CPERs for a given meta-model. The idea is to generate as many rules as possible,
the effective meta-model serves as input of this generation process. Basic design
decisions concerning our approach to generate CPERs are discussed in Section
7.2, while Section 7.3 presents a precise specification of a CPER generation algo-
rithm. Our approach is constructive in the sense that it ensures the completeness
(s. Section 7.4) and soundness (s. Section 7.5) of a generated rule set which thus
serves as an initial version of a set of mandatory edit rules. Since our technique
to operation detection starts from a given matching, the properties of the model
matcher which is used in the first step of our differencing pipeline of Figure 1.2
must be, in general, consistent with the edit rules which are used by the opera-
tion recognition in the third step of the pipeline. Thus, Section 7.6 discusses the
requirements which result from our generated CPERs.
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Figure 7.1: Process for creating a set of consistency-preserving edit rules

Step 3: The level of consistency which is guaranteed to be preserved by generated
rules includes a restricted set of multiplicity invariants and all basic consistency-
constraints except no-containment-cycles. Moreover, our approach is not yet
capable of interpreting additional well-formedness rules attached to a given meta-
model. In order to deal with these restrictions, the generated set of edit rules may
have to be manually adapted in an additional post-processing step (s. Section 7.7).
Typically, some of the generated edit rules have to be merged or complemented
by additional application conditions.

Step 4: Obviously, the set of semantically rich complex edit rules which are optional
but considered useful for a given modeling language has to be engineered man-
ually. Complex edit rules are compositions of mandatory or other complex edit
rules. We support two kinds of compositions; the sequential composition of edit
rules, i.e. an application of the composite rule has the same effect as applying its
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components in sequence, and the composition of edit rules to amalgamated rules
(cf. Section 3.3.2). Complex edit rules are optional extensions of the mandatory
rule set. They are consistency-preserving by construction.

7.1 Mandatory Edit Rules

Edit scripts generated with our approach are correct only if all change actions observed
in a low-level difference are grouped to semantic change sets during operation recog-
nition. To this end, a set of edit rules must be (a) complete in the sense that every
(consistency-preserving) modification of a model can be expressed using edit rules avail-
able in this set, and (b) sound in the sense that every modification can be expressed
without causing transient effects.

Definition 7.1 (Completeness of a set of edit rules)
Let L(TG) be the set of models (or “language”) induced by a type graph TG, then a set
R of edit rules typed over TG is complete if and only if R has the following properties:

(1) instance-generating: Every consistent model M ∈ L(TG) can be constructed
starting from the empty model ε by exclusively using edit rules available in R.

(2) instance-deleting: Every consistent model M ∈ L(TG) can be reduced to the
empty model ε by exclusively using edit rules available in R.

In addition to the completeness criteria of Definition 7.1, our method of operation
recognition requires any model modification to be expressible without transient model
elements. Given a model M being modified by a sequence of rule applications, then for
all sequential pairs of rule applications t1 = M1

r1,m1,n1
=⇒ M2 and t2 = M2

r2,m2,n2
=⇒ M3

within this sequence, one of the following conditions must hold (1) t1 and t2 do not
produce transient effects at all; otherwise (2) t1 and t2 must be inverse to each other,
or (3) the transient effect is avoidable in the sense that there is a rule application

t3 = M1
r3,m3,n3

=⇒ M3 yielding the same result as the sequence t1; t2. Consequently, the
set R of edit rules must be properly designed.

Definition 7.2 (Soundness of a set of edit rules)
Let L(TG) be the set of models induced by a type graph TG, then a set R of edit
rules typed over TG is called sound if for all pairs (r1, r2) of rules r1, r2 ∈ R, one of the
following statements is true:

(1) Applying r2 after r1 cannot lead to transient effects at all, i.e. for all models
M ∈ L(TG) and for all elements ec, ed ∈ M , an element ec created by r1 cannot
be deleted by r2, and an element ed deleted by r1 cannot be re-created by r2.

(2) Rules r1 and r2 are inverse to each other, i.e. for each action a ∈ r1 there has to
be a corresponding inverse action a−1 ∈ r2 such that a−1 reverses the effect of a:
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For each create node (edge) action there has to be a delete node (edge) action of
the same type and for each attribute value change action there has to be again a
value change action of the same attribute.

(3) A potential transient effect is avoidable, i.e. there is a rule r3 ∈ R summarizing
all effects of applying first r1 and then r2 in a suitable dependency relation.
Furthermore, r3 summarizes all pre-conditions of r1 and r2.

In a first approximation, a minimal set of edit rules which is sound and complete
constitutes a set of mandatory edit rules which is required by our approach; every model
modification can be expressed using edit rules available in this set and without causing
transient effects.

However, an additional requirement for generating correct edit scripts is that the
properties of the model matcher which is used in the first step of our differencing
pipeline of Figure 1.2 must be consistent with the set of mandatory edit rules. The
reason for this general requirement is that, given two models A and B which are to
be compared with each other, the matcher determines the corresponding elements of
A and B. In a difference derived from a model matching, corresponding elements will
not be considered as deleted or created. Thus, given a matching MA,B : A B and a
mandatory edit rule set R, we have to find a transformation sequence

t1 = A
r1,m1,n1

=⇒ A1, ..., tq = Aq−1
rq ,mq ,nq

=⇒ B with

ri ∈ R and mi(Delri)∩ dom(MA,B) = ∅ for all i ∈ {1, ..., q}, i.e. corresponding elements
must be preserved instead of being deleted and later on re-created.

The properties which are expected from a model matcher can only be specified pre-
cisely, if precise specifications of our mandatory edit rules are readily available. Thus,
we will discuss this requirement for our generated CPERs in more detail later, after
having clarified the design and generation of CPERs.

7.2 Basic Design Decisions

In this section, we present basic design decisions concerning our approach to generate
CPERs. We define four kinds of edit rules to which we refer as creation, deletion, move
and change rules. We informally describe the design of each of these kinds of edit rules,
details of our rule generation procedure will be presented in Section 7.3.

Creation and deletion rules. In order to minimize the number of potential tran-
sient effects, a basic design decision of our approach is that a mandatory rule set R
must be instance-generating by exclusively using creation rules available in this set. A
creation rule r is an edit rule which is implemented by creation actions only, i.e. we
have Delr = ∅. Creation rules can be further classified into two kinds of rules:
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• Node creation rules basically create a new ASG node and connect it immedi-
ately to its container. All direct and indirect mandatory children are also cre-
ated, i.e. we create a minimal subtree. Moreover, each node in this tree structure
is immediately connected to its mandatory neighbors. Mandatory children and
neighbors finally lead to a minimal graph pattern being created in a single step.
This pattern is minimal in the sense that there is no smaller graph pattern which
can be created in a consistency-preserving edit step.

• Edge creation rules create a new non-containment edge in the ASG.

For each creation rule r there must be an inverse deletion rule r−1 (with Crer−1 = ∅)
such that R is instance-deleting. Consequently, deletion rules can be classified into two
kinds of rules:

• Node deletion rules basically delete an ASG node together with its containment
edge. All direct and indirect mandatory children are also deleted, i.e. we delete
a minimal subtree. Moreover, each node in this tree structure is disconnected
from its mandatory neighbors. Mandatory children and neighbors finally lead to
a minimal graph pattern being deleted in a single step. This pattern is minimal
in the sense that there is no smaller graph pattern which can be deleted in a
consistency-preserving edit step.

• Edge deletion rules delete a non-containment from the ASG.

Note that the creation rules described above differ significantly from their primitive
counterparts: Consistency-preserving node creations (deletions) usually comprise a set
of primitive ASG operations in order to create (delete) minimal graph patterns: Nodes
are only created (deleted) together with an incoming containment edge, all direct and
indirect mandatory children are also created (deleted), and each node in such a mini-
mal subtree is immediately connected to (disconnected from) its mandatory neighbors.
Moreover, attribute values of created nodes are also set within a node creation rule since
we conceptually treat them like mandatory neighbors. Consistency-preserving edge cre-
ations (deletions) are only defined for non-containment edge types; containment edges
can only be created (deleted) together with the contained node1.

Move and change rules. Mainly for reasons of convenience, the set of generated
CPERs should also contain the following kinds of edit rules:

• Move rules that shift an ASG node to another container, i.e. rules that summarize
the deletion and creation of a containment edge of a particular type referencing
a particular child node.

• Change rules “exchanging” the target node of a non-containment edge, i.e. rules
that summarize the deletion and creation of a non-containment edge (or an edge
to a data node) of a particular type originating from a particular source node.

1Move rules provide another option for the deletion and creation of containment edges; they will be
introduced later in this section.
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Note that the effect of move and change rules can also be achieved by using creation
and deletion rules, however very inconveniently. Relocations of ASG nodes which are
performed by move rules can be achieved by deleting the node which is to be moved
and by re-creating this node as a child node of the new parent. Exchanging the target
node of a non-containment edge can be achieved by a sequence of edge deletions and
creations. However, descriptions of model modifications based on such sequences of
deletions and creations are very inconvenient if reported to difference tool users. This
inconvenience is further aggravated by the fact that consistency-preserving creation
(deletion) rules often lead to the creation (deletion) of larger fragments of an ASG.

7.3 Generation of Consistency-preserving Edit

Rules

How instances of a meta-class can be edited depends on their context in the ASG and the
mandatory or optional parts of this context as defined by the respective meta-model.
To that end, our CPERs are determined by the occurrence of specific meta-model
patterns. The idea is to associate to a particular meta-model pattern a CPER that
modifies an instance of this pattern under certain conditions.

We support a restricted set of multiplicity invariants which will be clarified in Sec-
tion 7.3.1. Subsequently, we describe how to generate a set R with

R = RCre ∪RDel ∪RChn ∪RMov

of consistency-preserving edit rules. The generation of creation and deletion rules lead-
ing to rule sets RCre and RDel is addressed in Section 7.3.2, while the generation of
change and move rules leading to rule sets RChn and RMov is covered by Section 7.3.3.
In addition to restricted multiplicity invariants, generated CPERs preserve basic con-
sistency constraints by construction (s. Section 7.3.4).

7.3.1 Preparations and Prerequisites

In this section, we clarify the conditions which must be fulfilled before the CPER
generation (step 2 in Figure 7.2) starts. This set of conditions finally leads to our
notion of a type graph with restricted multiplicities. If any of these conditions is violated,
certain multiplicity constraints must be relaxed (step 1 in Figure 7.2). Consequently,
the set of generated edit rules must be post-processed manually in step 3 of the overall
process for creating a set of consistency-preserving edit rules shown in Figure 7.1.

Multiplicity patterns. In general, we support a restricted set of multiplicity pat-
terns, i.e. combinations of multiplicities at edge types being declared as opposite to
each other. An overview is shown in Figure 7.3. For containment edge types, we
support multiplicity patterns MP2 ([0..1] to [k..l]) and MP3 ([1..1] to [k..l]). Pattern
MP1 ([0..∗] to [k..l]) is not possible due to the at-most-one-container constraint. For



7.3. Generation of Consistency-preserving Edit Rules 135

Adapt

Effective
Meta-model

Meta-model
with restricted 
multiplicities

[adjust]

[else]
Generate

Generated 
Edit Rules

1

2

Figure 7.2: Edit rule generation process

non-containment edge types, we support multiplicity patterns MP1 and MP2. Pattern
MP3 is not supported since we would have to create (delete) a pair of nodes which
mutually are mandatory neighbors to each other in a single step. As we will see in Sec-
tion 7.3.2, this case is not supported by our node creation (deletion) rules. Definition
7.3 summarizes the conditions for a type graph in which all multiplicity patterns are
properly defined.

(not supported)

Figure 7.3: Supported combinations of multiplicity invariants (multiplicity patterns)

Definition 7.3 (Properly defined multiplicity patterns)
Given a type graph TG = (T, I, A, C,OE,mult), multiplicity patterns in TG are prop-
erly defined if we have one of the following combinations of multiplicity invariants for
all pairs of opposite edge types (eti, etj) ∈ OE:

• If eti ∈ C and etj /∈ C, we have

MP2: mult(eti) = [0..1] and mult(etj) = [k..l], or

MP3: mult(eti) = [1..1] and mult(etj) = [k..l].

• If eti /∈ C and etj /∈ C, we have

MP1: mult(eti) = [0..∗] and mult(etj) = [k..l] (or vice versa), or
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MP2: mult(eti) = [0..1] and mult(etj) = [k..l] (or vice versa).

Concerning multiplicities at the opposite end of edge types for which no opposite edge
type is explicitly specified by the meta-model, we choose “default” interpretations which
are commonly used in modeling frameworks such as EMF [88, 228]: If a containment
edge type has no opposite edge type, then the multiplicity invariant at the opposite end
is conceptually considered as [0..1]. If a non-containment edge type has no opposite
edge type, then the multiplicity invariant at the opposite end is conceptually considered
as [0..∗]. Both interpretations are also illustrated in Figure 7.3.

Multiplicities at containment edge types. Consider the sample meta-model pat-
tern of Figure 7.4. The containment edge type b has a multiplicity with property
required, i.e. k > 0. Moreover, the target node type B of b has two subtypes, namely
C and D. Assume that we have k = 2. Then, in a consistent instance graph, a node
of type A must have two mandatory children, which can be achieved in three different
ways; i) both child nodes are of type C, ii) both child nodes are of type D, or iii) one
child node is of type C and the other one of type D. The number of possible valid
instance structures grows combinatorially with the lower bound k and the number of
(indirect) subtypes of B.

Figure 7.4: Example of an unsupported multiplicity at containment edge types

Since our node creation rules are designed to create all (indirect) mandatory children
of a node which is to be created (cf. Section 7.3.2), a dedicated variant of a node creation
rule would be required for each of these possible instance structures. The reason for this
is that all nodes which are to be created by a Henshin rule must be concretely typed (s.
Section 3.3.2). Thus, we currently do not support multiplicities with property required
for containment edge types of which the target node type has subtypes.

Note that multiplicities having property required are not a problem for non-containment
edge types of which the target node type has subtypes. They do not lead to a large num-
ber of variants of edit rules since edit rules which create instances of non-containment
edge types always assume that the target node of the non-containment edge which is to
be created already exists. In the respective edit rules, these target nodes can be typed
over the general node type, even if this node type is abstract.

Definition 7.4 (Properly defined multiplicities at containment edge types)
Let TG = (T, I, A, C,OE,mult) be a type graph according to Definition 3.5. Multi-
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plicities at containment edge types in TG are properly defined, if all containment edge
types which have a target node type that has subtypes specify a multiplicity [0..∗]:

For all etc ∈ C : sub(etc.tgt) 6= ∅ =⇒ mult(etc) = [0..∗]

Minimal subtree definitions. As already mentioned in Section 7.2, all direct and
indirect mandatory children of a node are also created (deleted) by our node creation
(deletion) rules. In other words, we create (delete) a tree structure which can be
considered as minimal subtree w.r.t. the containment hierarchy of the model in which
this tree structure is created (deleted). Definition 7.5 introduces our notion of a minimal
subtree definition in a meta-model represented as type graph.

Definition 7.5 (Minimal subtree definition)
Let TG = (T, I, A,C,OE,mult) be a type graph according to Definition 3.5. A sub-
graph MSD ⊆ T is called a minimal subtree definition if there is a distinct node type
r ∈MSDN such that the following three conditions hold:

(1) Node type r is (transitively) connected to all other node types in MSD (given
by the set MC = MSDN \ {r}) via containment edge types having multiplicity
property required.

(2) There is no other node type c /∈ MC to which r is (transitively) connected via
containment edge types having multiplicity property required.

(3) There is no other node type p ∈ (TN \MSDN) which is connected to r via a
containment edge type having multiplicity property required.

Let MSDTG be the set of all minimal subtree definitions induced by TG, then the
function msd : TN → P(MSDTG) identifies for each node type nt ∈ TN the set of
minimal subtree definitions of which nt is a part of.

Remark. Note that the set MC of Definition 7.5 may be the empty set, i.e. we consider
a single node type which adheres to conditions (1), (2) and (3) as the smallest minimal
subtree definition.

Minimal subtrees have to be properly defined. Thus, some combinations of multi-
plicities in certain meta-model patterns are not supported by our edit rule generation
procedure. In the following, we describe these unsupported meta-model patterns and
briefly outline the reasons why they are not supported:

• We do not allow cyclic containment structures in which each containment edge
type has a multiplicity property required. This restriction includes containment
loop edge types having a multiplicity property required. In other words, minimal
subtree definitions must form a directed acyclic graph (DAG).

Cyclic containment structures in meta-models as described above may lead to
type graphs which are not finitely satisfiable [234]. They are problematic for our
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CPER generation because the procedure that supplements a basic node creation
rule such that mandatory children are also created (s. Section 7.3.2) then runs
into an endless loop.

• Moreover, we do not allow non-containment edge types which connect node types
being part of the same minimal subtree definition and which have a multiplicity
property required. Note that this restriction includes non-containment loop edge
types having a multiplicity property required.

Meta-model patterns as described above lead to valid instance graphs in which a
node may have a mandatory neighbor which is part of the same minimal subtree.
Such instance structures can only be created in a consistency-preserving way if
the subtree is created and its nodes are connected in a single edit step. This is
not possible with our node creation rules since we assume that all mandatory
neighbors of a node which is to be created already exist (s. Section 7.3.2)

Definition 7.6 summarizes the conditions for a type graph in which all minimal subtree
definitions are properly defined.

Definition 7.6 (Properly defined minimal subtree definitions)
Let TG = (T, I, A, C,OE,mult) be a type graph according to Definition 3.5. MSDTG

refers to the set of all minimal subtree definitions induced by TG, and msd : TN →
P(MSDTG) identifies for each node type nt ∈ TN the set of minimal subtree definitions
of which nt is a part of (s. Definition 7.5). Let further msdI : TN → P(MSDTG) be
a function which is an extended variant of msd in that it identifies for each node type
nt ∈ TN the set of minimal subtree definitions of which nt or any of its subtypes is a
part of, i.e.

msdI(nt) = msd(nt) ∪
(⋃

nt′∈allsub(nt)msd(nt′)
)

Minimal subtree definitions are properly defined if TG adheres to the following two
conditions:

(1) For each cycle of containment edge types (et1, et2, ..., etn), i.e. eti ∈ C and
1 ≤ i ≤ n, there must be at least one edge type eti ∈ {et1, et2, ..., etn} with
eti.lb = 0.

(2) For each non-containment edge type et ∈ TE (et /∈ C) with et.lb > 0, we have
msdI(et.src) ∩msdI(et.tgt) = ∅.

Relationships between atomic subtree definitions. Furthermore, we do not al-
low certain cyclic relationships between minimal subtree definitions. Examples serving
as minimal representatives of these unsupported meta-model patterns are illustrated
by cases (C.i) and (C.ii) in Figure 7.5. MSD1 and MSD2 are meant to represent mini-
mal subtree definitions which, in general, may include several node types. Connections
which are visually represented as dashed non-containment edge types are meant to be
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a path (et1, et2, ..., etn) of an arbitrary number of non-containment edge types in which
each edge type has a multiplicity property required. Connections which are visually rep-
resented as containment edge types are meant to be a path which consists of a single
containment edge type.

• Meta-model pattern (C.i) may lead to valid instance graph structures in which we
have a cyclic relationship between mandatory neighbors. Such instance structures
cannot be created by our CPERs because mandatory neighbors are intended to
be created independently of each other.

• Meta-model pattern (C.ii) may lead to valid instance graph structures in which a
node serves as parent and mandatory neighbor of its child node. These instance
structures cannot be created with our CPERs because they are intended to be
matched injectively.

Definition 7.7 summarizes the conditions for a type graph in which all cyclic relation-
ships between minimal subtree definitions are properly defined.

Definition 7.7 (Properly defined cyclic relationships between minimal subtree defini-
tions)
Let TG = (T, I, A, C,OE,mult) be a type graph according to Definition 3.5. Let
further MSDTG refer to the set of all minimal subtree definitions in TG. Cyclic re-
lationships between minimal subtree definitions are properly defined if TG adheres to
the following two conditions:

(1) For each pair (MSDi,MSDj) of minimal subtree definitions (MSDi,MSDj ∈
MSDTG, i 6= j) and for each pair (ncpij, ncpji) where

– ncpij is a path (etij,1, ..., etij,n) of non-containment edge types with n ≥ 1
and etij,1.srcI ∩MSDi 6= ∅ and etij,n.tgtI ∩MSDj 6= ∅,

– ncpji is a path (etji,1, ..., etji,m) of non-containment edge types with m ≥ 1
and etji,1.srcI ∩MSDj 6= ∅ and etji,m.tgtI ∩MSDi 6= ∅,

there is at least one edge type et ∈ ({etij,1, ..., etij,n} ∪ {etji,1, ..., etji,m}) with
et.lb = 0.

(2) For each pair (MSDi,MSDj) of minimal subtree definitions (MSDi,MSDj ∈
MSDTG, i 6= j) and for each pair (ncp, c) where

– ncp is a path (et1, ..., etn) of non-containment edge types with n ≥ 1 and
et1.srcI ∩MSDi 6= ∅ and etn.tgtI ∩MSDj 6= ∅,

– c is a containment edge type with c.srcI∩MSDj 6= ∅ and c.tgtI∩MSDi 6= ∅,
there is at least one edge type et ∈ {et1, ..., etn} with et.lb = 0.

Finally, we do not allow certain parallel relationships between minimal subtree defi-
nitions. Examples serving as minimal representatives of these unsupported meta-model
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Unsupported cyclic relationships Unsupported parallel relationships Special case of

(supported)

MSD1 MSD1 MSD MSD1

MSD2 MSD2 MSD2

Figure 7.5: Unsupported relationships between minimal subtree definitions

patterns are illustrated by cases (P.i) and (P.ii) in Figure 7.5. Note that for (P.i) we
do not support the general case but a restricted variant called (P.i’) of this meta-model
pattern. Again, MSD, MSD1 and MSD2 represent a minimal subtree definitions which,
in general, may include several node types. In contrast, A and B refer to ordinary
node types. Connections which are visually represented as dashed non-containment
edge types are meant to be a path (et1, et2, ..., etn) of an arbitrary number of non-
containment edge types in which each edge type has a multiplicity property required.
Connections which are visually represented as ordinary non-containment edge types are
meant to be a path which consists of a single non-containment edge type. Connections
which are visually represented as containment edge types are meant to be a path which
consists of a single containment edge type.

• Parallel relationships as illustrated by case (P.i) of Figure 7.5 are currently not
supported since they would lead to a huge number of CPERs. Assume that we
have two “parallel” edge types having lower bounds lb1, lb2 with 0 < lb1 ≤ lb2.
In an instance graph, due to the no-parallel-edges constraint, we need at least lb2
nodes being connected as mandatory neighbors such that lower bounds lb1 and
lb2 are fulfilled. We may also have lb1 + lb2 distinct nodes serving as mandatory
neighbors. In addition, we may have any number k with lb2 < k < lb1 + lb2
of distinct nodes serving as mandatory neighbors. Thus, we already have lb1 +
1 variants of different valid instance structures for two “parallel” edge types.
Obviously, the number of possible combinations is much higher if we have more
than two “parallel” edge types.

Since our node creation rules are intended to be matched injectively, a dedicated
variant of a node creation rule would be required to create each of these possible
instance structures2 (cf. Section 7.3.2). Thus, we only support a restricted variant
of this meta-model pattern, namely two required parallel edge types having lower
bounds lb1 = lb2 = 1 (s. case (P.i’) in Figure 7.5). In order to support the
special case (P.i’), only two variants of a node creation rule are required: One
to fulfill the lower bounds with a single mandatory neighbor and one to fulfill
the lower bounds with two distinct mandatory neighbors. Experience shows that

2The same argument applies to node deletion rules.
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this special case is the only one that occurs frequently in effective meta-models,
e.g. in terms of node types which are represented as visual edges in the external
representation. The definition of the two parallel edge types source and target
from Transition to Vertex in the meta-model for simple UML state machines of
Figure 3.4 is an example of this.

• Parallel relationships as illustrated by case (P.ii) of Figure 7.5 may lead to valid
instance structures in which a node being part of a minimal subtree instance of
MSD2 is a (indirect) child node and mandatory neighbor of another node or of
two nodes being part of the same minimal subtree instance of MSD1.

Such instance structures cannot be created with our CPERs: On the one hand,
a parent node must be created first before the child node can be created in a
subsequent edit step. On the other hand, the child node serving as mandatory
neighbor must be created before it can be connected. This leads to a cyclic
dependency of the respective rule applications.

Definition 7.8 summarizes the conditions for a type graph in which all parallel relation-
ships between minimal subtree definitions are properly defined.

Definition 7.8 (Properly defined parallel relationships between minimal subtree defi-
nitions)
Let TG = (T, I, A, C,OE,mult) be a type graph according to Definition 3.5. Let
further MSDTG refer to the set of all minimal subtree definitions in TG. Parallel re-
lationships between minimal subtree definitions are properly defined if TG adheres to
the following two conditions:

(1) For each pair (MSD,nt) with MSD ∈ MSDTG, nt ∈ TN and for each pair
(eti, etj) where

– eti ∈ TE is a non-containment edge type (eti /∈ C) with eti.srcI ∩MSD 6= ∅
and nt ∈ eti.tgtI ,

– etj ∈ TE is a non-containment edge type (etj /∈ C) with etj.srcI ∩MSD 6= ∅
and nt ∈ etj.tgtI ,

the multiplicity combination (eti.lb > 0 ∧ etj.lb > 0) implies that we have

– eti.lb = etj.lb = 1, and

– eti.src = etj.src, and

– there is no non-containment edge type etz ∈ TE (etz /∈ C, etz 6= eti, etz 6= etj)
with (etz.srcI ∩MSD 6= ∅) ∧ (nt ∈ etz.tgtI) ∧ (etz.lb > 0).

(2) For each pair (MSDi,MSDj) of minimal subtree definitions (MSDi,MSDj ∈
MSDTG, i 6= j) and for each pair (ncp, c) where

– ncp is a path (et1, ..., etn) of non-containment edge types with n ≥ 1 and
et1.srcI ∩MSDi 6= ∅ and etn.tgtI ∩MSDj 6= ∅,
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– c ∈ C is a containment edge type with c.srcI ∩ MSDi 6= ∅ and c.tgtI ∩
MSDj 6= ∅,

there is at least one edge type et ∈ {et1, ..., etn} with et.lb = 0.

Type graph with restricted multiplicities. We formally treat an effective meta-
model that adheres to the above conditions as a special kind of type graph to which we
refer as type graph with restricted multiplicities. Definition 7.9 summarizes the above
conditions.

Definition 7.9 (Type graph with restricted multiplicities)
A type graph with restricted multiplicities TGrmult = (T, I, A, C,OE,mult) is a type
graph according to Definition 3.5 which adheres to the following additional conditions:

(1) Multiplicity patterns are properly defined according to Definition 7.3.

(2) Multiplicities at containment edge types are properly defined according to Defi-
nition 7.4.

(3) Minimal subtrees are defined properly according to Definition 7.6.

(4) Cyclic relationships between minimal subtree definitions are defined properly ac-
cording to Definition 7.7.

(5) Parallel relationships between minimal subtree definitions are defined properly
according to Definition 7.8.

Example 7.1 (Meta-model of UML state machines as type graph with restricted mul-
tiplicities)
Reconsider the meta-model of simple UML state machines of Figure 3.4 without well-
formedness rules formulated in OCL. Note that conditions (1), (2), (3), (4) and (5) of
Definition 7.9 are fulfilled, i.e. the meta-model can be formally represented as a type
graph with restricted multiplicities.

7.3.2 Generation of Creation and Deletion Rules

In the following, we describe how creation and deletion rules are to be derived for cer-
tain meta-model patterns. We begin with the generation of basic node creation/deletion
rules. Subsequently, we show how these basic node creation/deletion rules are to be
supplemented such that i) mandatory children are created (deleted) and ii) all created
(deleted) nodes are connected to (disconnected from) their mandatory neighbors in a
single step. Finally, we consider the generation of edge creation/deletion rules. Ac-
cording to our design principles of Section 7.2, a general policy is that for each node
creation rule an inverse node deletion rule, and for each edge creation rule an inverse
edge deletion rule is to be generated.
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Basic root node creation/deletion rules. For any non-abstract node type B that
has no incoming containment edge types and no supertype with incoming containment
edge types (s. meta-model pattern P0 in Figure 7.6), a basic root node creation rule of
the form create B is derived; it simply creates a single root node of type B. Moreover,
a deletion rule of the form delete B being inverse to create B is to be derived for each
occurrence of meta-model pattern P0.

«create»
r:B

«delete»
r:Bcreate_B(out: r) delete_B(in: r)

Figure 7.6: Generation of basic root node creation and deletion rules

Basic non-root node creation/deletion rules. In our notion of a graph with
containment, each node which is not a root node of a model has a unique container from
which it is referenced by an incoming containment edge. Rules of the form create B* b

(delete B* b) are the most basic rules for creating (deleting) a non-root node of a specific
type. We derive these rules for meta-model pattern P1 of Figure 7.7 in which B refers
to a non-abstract node type defined by the given meta-model. Note that the notation
B* means that we derive these rules for node type B and any of its subtypes given
by allsub(B). If b has an associated opposite edge type a, this requires a consistent
handling of opposite edges, i.e. edges of types b and a are created and deleted in pairs.
If b does not define an opposite edge type, we basically derive the same rules, except
that there is no opposite edge which is to be created (deleted). For brevity, we omit
this special variant in Figure 7.7.

«preserve»
p:A

«create»

«forbid#ub»
c_1:B

«forbid#ub»
c_l:B

«preserve»
p:A

«require#lb»
c_1:B

«require#lb»
c_k:B

b

b

create_B*_b(in: p; out: c) delete_B*_b(in: p,c)

b

b
a

b

a

b
l-times k-timesc:B* c:B*

«delete»

Figure 7.7: Generation of basic non-root node creation and deletion rules

If containment edge type b specifies a multiplicity with property bounded, i.e. l 6= ∗, a
non-root node creation rule is only applicable to a model M at match m if the selected
parent node m(p) has at most l − 1 outgoing edges of type b. To that end, create B* b

is supplemented by NAC ub which forbids the existence of l outgoing edges of type b
for parent node p. We refer to this NAC as upper bound check.
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Analogously, if containment edge type b specifies a multiplicity with property re-
quired, i.e. k > 1, rule delete B* b is only applicable to a model M at match m if the
selected parent node m(p) has at least k+1 outgoing edges of type b. Thus, delete B* b

is supplemented by PAC lb to which we refer to as lower bound check.

Supplementing the creation of mandatory children. After basic node creation
rules have been generated for all occurrences of meta-model patterns P0 and P1, these
basic rules are supplemented such that mandatory children of created nodes are created,
too. We refer to these rules as mc-supplemented node creation rules.

Algorithm 6 Supplementing the creation of mandatory children
1: function supplementMcCreations(Rule r)
2: NodeSet NCre = {n ∈ RN | n ∈ Crer}; . all nodes to be created by r : L R
3: NodeSet N ′

Cre = NCre; . “new” nodes to be created by r : L R
4: repeat
5: for all Node n ∈ N ′

Cre do
6: supplementMcCreation(r, n); . s. Figure 7.8
7: NodeSet N ′′

Cre = {n ∈ RN | n ∈ Crer}; . temporary variable N ′′
Cre

8: N ′
Cre = N ′′

Cre \NCre; . update N ′
Cre

9: NCre = N ′′
Cre ; . update NCre

10: end for
11: until N ′

Cre 6= ∅
12: return ;
13: end function

Function supplementMcCreations listed in Algorithm 6 illustrates how to sup-
plement a node creation rule referred to as r. First, variable NCre is initialized to refer
to the set of nodes which are to be created by r (line 2). The same set of rule nodes,
which (at this point of time) contains only a single node, is assigned to variable N ′Cre

(line 3). As a node can recursively have (indirect) mandatory children and our intention
is to create all of them by a single rule application, rule r will be iteratively refined
(lines 4-11): In each iteration, we generate additional change actions for the creation
of mandatory children. Thus, each iteration potentially leads to new nodes which are
to be created by r, these nodes are maintained by the set N ′Cre.

The supplementation is delegated to subroutine supplementMcCreation(Rule r,
Node n) whose implementation is straightforward and illustrated in Figure 7.8. The
type of node n is referred to as B. A supplementation is to be performed for each
outgoing containment edge type c of B which has a multiplicity property required and
which references a concrete node type C (s. meta-model pattern P2). Then, rule r is
refined such that all mandatory children mc 1, ..., mc k of n are to be created, too.
Additionally, created nodes mc 1, ..., mc k are immediately connected to their parent n

via the respective containment edges of type c. Opposite edges are created if necessary.
In Figure 7.8, we omit the special variant where containment edge type c does not
define an opposite edge type b and thus no consistent handling of opposite edges is
required.
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«create»
n:B

«create»
mc_1:C

«create»
mc_k:C

b

b

c

c

«create»
n:B

r (.... out: ..., n) r (.... out: ..., n, mc_1, ..., mc_k)

k-times

Figure 7.8: Supplementing the creation of mandatory children

Supplementing the deletion of mandatory children. The same supplemen-
tary procedure has to be applied to all basic node deletion rules since nodes are
to be deleted together with their mandatory children. The respective function sup-
plementMcDeletions(Rule r) and subroutine supplementMcDeletion(Rule r,
Node n) can be implemented according to the same principle. We refer to these rules
as mc-supplemented node deletion rules.

Lemma 7.1 (Termination of mandatory children supplementation)
Let TGrmult = (T, I, A, C,OE,mult) be a type graph with restricted multiplicities
according to Definition 7.9. Let further RCre and RDel be sets of node creation and
node deletion rules generated for all occurrences of meta-model patterns P0 and P1 in
TGrmult. Then, our mc-supplementary procedures terminate when being applied to
rules in RCre and RDel, respectively:

(1) Procedure supplementMcCreations(Rule r) terminates for each creation rule
rCre ∈ RCre provided as input argument.

(2) Procedure supplementMcDeletions(Rule r) terminates for each deletion rule
rDel ∈ RDel provided as input argument.

Proof.

(1) The procedure supplementMcCreation(Rule r) sketched in Algorithm 6 ter-
minates if the recurrent supplementation of mandatory children which are to be
created by rule r ∈ RCre (lines 4-11) terminates. An endless loop is only possible
if the meta-model contains a cycle of containment edge types having multiplicity
property required. This contradicts condition (1) of Definition 7.6.

(2) Follows directly from the proof of (1) and the design principle that there is an
inverse deletion rule r−1 ∈ RDel for each creation rule r ∈ RCre.
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Supplementing the connection of mandatory neighbors. As node creation
rules are intended to preserve multiplicity invariants defined by the effective meta-
model, each created node must be immediately connected to its mandatory neighbors.

Algorithm 7 Supplementing the connection of mandatory neighbors
1: function supplementMnConnections(Rule r, TGrmult)
2: NodeSet NCre = {n ∈ RN | n ∈ Crer}; . all nodes to be created by r : L R
3: for all Node n ∈ NCre do
4: for all EdgeType et ∈ allout(n.type) do
5: if et /∈ TGrmult.C and et.lb > 0 then . required non-containment edge type
6: supplementMnConnection(r, n, et); . s. Figure 7.9
7: end if
8: end for
9: end for

10: return ;
11: end function

Function supplementMnConnections(Rule r, TGrmult) listed in Algorithm 7 il-
lustrates how to supplement the connection of mandatory neighbors. We assume here
that mc-supplementation has been already performed, i.e. the function takes an mc-
supplemented rule r ∈ RCre as input. The corresponding type graph with restricted
multiplicities TGrmult = (T, I, A, C,OE,mult) is provided as additional input. Ini-
tially, variable NCre is initialized to refer to the set of nodes which are to be created by
r (line 2). For each node n which is to be created by r (line 3) and for each outgoing
edge type et of the node type of n (including inherited outgoing edge types, s. line 4),
we check whether mandatory neighbors have to be connected. This is the case if et is
a non-containment edge type and has a multiplicity property required (line 5).

«create»
n:B

«preserve»

«preserve»

«fb.#ub_1»
:B

b
b

b

c

c

b

«fb.#ub_k»
:Bmn_k:C

mn_1:C

«create»
n:B

«preserve»

«preserve»
b

c

c

b

mn_k:C

mn_1:C

«create»
n:B

«create»
n:B

r (in: ...; out: ..., n) r (in: ..., mn_1,...,mn_k; out: ..., n)

k-timesk-times

k-times

Figure 7.9: Supplementing the connection of mandatory neighbors
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The supplementation is delegated to subroutine supplementMnConnection(Rule
r, Node n, EdgeType c) whose pattern-based implementation is illustrated in Figure 7.9.
A supplementation is to be performed for meta-model patterns P3 and P4. Note that
mandatory neighbors mn 1, ..., mn k have to be provided as additional input parameters
of the creation rule. Again, opposite edges are created in pairs. If edge type c does not
define an opposite edge type, we derive the same rule as in the case of P3, except the
consistent handling of opposites (not shown in Figure 7.9). If an opposite edge of type
b is to be created and if b specifies a multiplicity [0..1] (s. pattern P4), then for each
mandatory neighbor mn i (with i ∈ 1, ..., k) a NAC ub i prevents that mn i is already
connected via an edge of type b.

As a final post-processing step, we check whether additional variants of a rule which
has been supplemented by function supplementMnConnections have to be created.
This is the case if TGrmult defines “parallel” edge types according to the supported case
(P.i’) of Figure 7.5: Initially, this case results in an mc/mn-supplemented creation rule
which contains a rule pattern as illustrated on the left side of Figure 7.10: A node of
type B, which is to be created, is to be connected to mandatory neighbors of type C
via two different types of non-containment edges c1 and c2. The additional rule variant
which is to be created for this rule pattern is illustrated on the right side of Figure 7.10.
Note that only those parts are shown which differ from the initial variant on the left.

«create»
:B

«preserve»
mn_1:C

«preserve»
mn_2:C

«create»
:B

«preserve»
mn:C

«create»

c1

c2
«create»

Generate
Variant

r (in: ..., mn_1,mn_2; out: ...) r_v(in: ..., mn; out: ...)

c1

c2

Figure 7.10: Generation of rule variants in the case of “parallel” relationships to manda-
tory neighbors

Supplementing the disconnection of mandatory neighbors. Analogously to
node creations, a node which is to be deleted by a deletion rule must be disconnected
from its mandatory neighbors by the same rule. The respective supplementary function
supplementMnDisconnections(Rule r), which is to be applied to all node deletion
rules in RDel, can be implemented according to the same principle as our procedure for
supplementing the creation of edges to mandatory neighbors.

Lemma 7.2 (Creation of minimal graph patterns)
Let L(TGrmult) be the set of valid models induced by a type graph with restricted
multiplicities TGrmult. For every consistent model M1 ∈ L(TGrmult) and for every ap-

plication M1
rCre=⇒M2 of a mc/mn-supplemented creation rule rCre ∈ RCre transforming

M1 into a consistent model M2 ∈ L(TGrmult), the following conditions hold for the

graph fragment F which is created by M1
rCre=⇒M2:
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(1) The created graph fragment F is minimal in the sense that there is no true sub-
fragment F ′ ⊂ F which can be created starting from M1 such that the resulting
model M ′

2 is a consistent model.

(2) If there is a fragment F ′′ with F ′′∩F 6= ∅ which can be created starting from M1

such that the resulting model M ′′
2 is a consistent model, then there is also a rule

r′′Cre to perform the transformation M1

r′′Cre=⇒M ′′
2 . In other words, all variants of a

minimal pattern can be created.

Proof.

(1) There are the following possibilities to reduce a fragment F being created by

M1
rCre=⇒M2 to a subfragment F ′ ⊂ F :

1. We can omit the creation of one of the containment edges in F . According
to our mc-supplementary procedure, we know that each containment edge
which is created by the application of rCre is used for connecting a manda-
tory child which is also created. If one of these connections is missing, the
no-lower-bound-violation condition is violated for at least one lower bound
defined by a containment edge type in TGrmult.

2. We can omit the creation of one of the non-containment edges in F . Accord-
ing to our mn-supplementary procedure, we know that each non-containment
edge which is created by the application of rCre is used for connecting a
mandatory neighbor. If one of these connections is missing, the no-lower-
bound-violation condition is violated for at least one lower bound defined by
a non-containment edge type in TGrmult.

3. We can omit the creation of one of the nodes in F . Since our rule graphs are
always connected, we also have to omit the creation of the corresponding
containment edge in order to prevent dangling containment edges in the
model, which in turn leads to case 1.

(2) For the proof of (2), we have to investigate what we can say about the relation
between F and F ′′. We consider the creation of minimal subtrees first, then we
investigate possible variants of how mandatory neighbors can be connected.

1. Concerning the creation of a minimal subtree, we know that each (indirect)
mandatory child of the root node of this subtree must be represented by
a distinct node. This follows directly from the at-most-one-container con-
straint. From this fact and from (1), we can conclude that there must be
a bijective mapping mT : T → T ′′ between minimal subtrees T ⊆ F and
T ′′ ⊆ F ′′, respectively. Provided that the mapping mT is type-preserving, T ′′

can be created by the same rule rCre. Another variant for creating a mini-
mal subtree such that mT is not type-preserving is only possible if TGrmult

contains required containment edge types referencing a node type which has
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subtypes. This contradicts our assumption that multiplicities at contain-
ment edge types are properly defined according to Definition 7.4.

2. From 1., we know that created minimal subtrees T ⊆ F and T ′′ ⊆ F ′′ are
unique up to isomorphism. The possibilities of how nodes in T and T ′′ can
be connected to mandatory neighbors can be classified as follows:

– Each mandatory neighbor is represented by a distinct node in M1. In
this case, there is a bijective mapping mB : BT → BT ′′ between the
boundary graphs BT ⊇ F and BT ′′ ⊇ F ′′, respectively. Obviously,
the mapping mB must be type-compatible. Since we use the most gen-
eral types for connecting mandatory neighbors in our mn-supplemented
rules, connecting all mandatory neighbors of T ′′ can be achieved by the
same rule rCre.

– How can we deviate from the above pattern that each mandatory neigh-
bor is represented by a distinct node? Connecting one node via multiple
non-containment edges of the same type is not possible since this leads
to a violation of the no-parallel-edges constraint. Thus, a deviation is
only possible if TGrmult defines at least two required non-containment
edge types which are “parallel” in the sense that they originate from the
same minimal subtree definition and have the same target node type. In
general, this contradicts our assumption that all parallel relationships
between minimal subtree definitions are properly defined according to
Definition 7.8. Variants resulting from the special case that we have two
parallel edge types where each of these edge types defines a lower bound
of 1 are generated.

Properties (1) and (2) of Lemma 7.2 also hold for our mc/mn-supplemented deletion
rules. The respective lemma (and its proof) is omitted here, it follows directly from
Lemma 7.2 and the design principle that there is an inverse deletion rule r−1 ∈ RDel

for each creation rule r ∈ RCre.

Edge creation/deletion rules. If a non-containment edge type b does not have a
fixed multiplicity, then rules for creating and deleting an edge of this type are derived
(s. meta-model patterns P5 and P6 in Figure 7.11). Such a rule of the form create b

(delete b) takes two parameters as input: In case of create b, nodes s and t identify the
source and target node between which an edge of type b is to be created. In case of
delete b, source node s and target node t uniquely identify an edge of type b between s

and t which is to be deleted. If necessary, opposite edges of type a are created (deleted)
consistently (in Figure 7.11, we again omit the special variant of P5 in which edge type
b does not have an opposite edge type and thus no consistent handling of opposite
edges is required).

NAC parallel (s. edge creation rules derived for meta-model patterns P5 and P6), to
which we refer as parallel edge check, prevents modifications of an ASG which lead to a
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Figure 7.11: Generation of edge creation and deletion rules

violation of the no-parallel-edges constraint, i.e. it prevents an edge creation rule from
being applied to a model M at match m if m(s) is already linked with m(t) via an edge
of type b. Due to the consistent handling of opposite edges, parallel edge checks are
only required in one direction. Note that parallel edge checks can be omitted in case
of edge types b that do not have a multiplicity property many because parallel edges
will be implicitly prevented by the upper bound check (s. below).

Edge creation rules derived for meta-model patterns P5 and P6 are supplemented
by an upper bound check to ensure the no-upper-bound-violation condition specified by
upper bound l of the multiplicity invariant for edge type b (s. NACs ub and ub b in
Figure 7.11). In case of pattern P6, we have an additional NAC called ub a which ensures
that node t is not yet connected via an edge of type a which has an upper bound of 1.
While upper bound checks can be obviously omitted for inverse edge deletion rules, a
lower bound check has to be inserted to ensure the no-lower-bound-violation condition
for lower bound k of edge type b.

If the edge types b in the meta-model patterns P5 and P6 are loop edges, i.e. we have
A = B, then we derive a second variant for the respective edge creation (deletion) rules
in which rule edges of type a (and opposite edges of type b) are loop edges, too (not
shown in Figure 7.11).

Example 7.2 (Creation and deletion rules for simple state machines)
Figure 7.12 illustrates a subset of creation and deletion rules generated for our state
machine meta-model of Figure 3.4. In sum, we get the following rules:

Firstly, we get the root node creation rule create StateMachine and its inverse deletion
rule delete StateMachine. Both rules are supplemented such that a mandatory child of
type Region is created (deleted).

Moreover, we have basic non-root node creation rules, i.e. create FinalState subvertex,
create State subvertex, create Region region and create Region subregion. For each of these
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Rule delete_Transition_transition(Selected, ToBeDeleted)

«preserve»
Selected:Region

«delete»
ToBeDeleted:Transition

transition
«delete»

Rule delete_StateMachine(ToBeDeleted)

«delete»
ToBeDeleted:StateMachine

«delete»
Child:Region

region

«delete»

Rule delete_Region_region(Selected, ToBeDeleted)

«preserve»
Selected:StateMachine

«delete»
ToBeDeleted:Region

«require#lb0»
:Region

region

«delete»

region

«require#lb0»

Rule create_Transition_transition(Selected, Existing, Existing1, Trigger, Guard, Effect, New)

«preserve»
Selected:Region
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Existing:Vertex
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Existing1:Vertex
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New:Transition

trigger=Trigger
guard=Guard
effect=Effect

transition
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outgoing
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Rule create_StateMachine(New, Child)
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Child:Region
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Rule create_Region_region(Selected, New)
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Selected:StateMachine

«create»
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:Vertex
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source

incoming

target

«delete»

«delete»
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Rule create_Transition_transition_1(Selected, Existing, Trigger, Guard, Effect, New)

«preserve»
Selected:Region

«preserve»
Existing:Vertex

«create»
New:Transition

trigger=Trigger
guard=Guard
effect=Effect

source

«create»

target

«create»

outgoing

«create»

incoming

«create»transition
«create»

Rule delete_Transition_transition_1(Selected, ToBeDeleted)

«preserve»
Existing:Vertex

«delete»

«delete»

«delete»

«preserve»
Selected:Region

«delete»
ToBeDeleted:Transition

transition
«delete»

source

target

outgoing

incoming

«delete»

Figure 7.12: Subset of generated creation and deletion rules for UML state machines

basic creation rules, we have a corresponding deletion rule, i.e. delete FinalState subvertex,
delete State subvertex, delete Region region and delete Region subregion. Note that region is
the only containment edge type of our sample meta-model that specifies a multiplicity
(namely [1..*]) which is relevant w.r.t. to basic consistency constraint no-lower-bound-
violation. Consequently, a lower bound check is generated for delete Region region.

Rule create Transition transition requires the source and target states which are to
be connected by the transition as input arguments and immediately connects these
mandatory neighbors to the created transition. Due to the parallel edge types source
and target which both have a multiplicity [1..1] (s. Figure 3.4), we get a second
variant of this rule: create Transition transition 1. This variant creates edges of types
source and target referencing the same Vertex node, i.e. it creates a “loop transition”
in the visual representation of a state machine. Analogously, we get two deletion
rules delete Transition transition and delete Transition transition 1 being inverse to the cor-
responding creation rules.

Note that the examples in Figure 7.12 illustrate that attribute declarations are con-
ceptually handled as special edge types with a fixed multiplicity of [1..1]. Thus, attribute
values are treated as “mandatory neighbors”, a concrete value has to be assigned to
each attribute of a node created by a node creation rule.
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7.3.3 Generation of Move and Change Rules

Move and change rules re-structure the relations between existing nodes of an ASG. We
derive these rules for meta-model patterns P7, P8, and P9 as illustrated in Figure 7.13.
Move and change rules do not require an inverse generation as they are inverse to
themselves. Note that the generation of edit rules changing attribute values of ASG
nodes is straightforward and will therefore not be discussed here in detail. Conceptually,
attribute declarations can be regarded as special edge types with multiplicity [1..1]
(cf. Section 3.1). Thus, attribute declarations basically lead to the same kind of edit
rules as non-containment edge types with a fixed multiplicity (s. change rules derived
for meta-model pattern P8).

move_B_b(in: c,p_old,p_new)

«preserve»

«require#lb»

«require#lb»

«preserve»

«preserve»
c:B

«forbid#ub»

«forbid#ub»

c_old_1:B

c_old_k:B

p_old:A p_new:A

c_new_l:B

c_new_1:B

change_A_b(in: s,t_old,t_new)

«preserve»
s:A

«preserve» «preserve»
t_new:Bt_old:B

b a

b

ba

b

b

b a a
bb

«preserve»
s:A

«preserve» «preserve»
t_new:Bt_old:B

b a ba

«forbid#ub»
:A

a

l-timesk-times

Figure 7.13: Generation of move and change rules

Move node. If a containment edge type b does not have a fixed multiplicity, then a
move rule of the form move B b for moving an instance of the respective target node type
B is generated (s. meta-model pattern P7 in Figure 7.13). Such a move rule changes the
container of a selected ASG node of type B (or any subtype of B) and takes three input
arguments; node c which is to be moved and nodes p old and p new representing its old
and new container. Lower and upper bound checks are inserted to ensure no-lower-
bound-violation and no-upper-bound-violation conditions. If containment edge type b
has an opposite edge type a, then the respective edges of these types are created and
deleted in pairs.
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Change edge. For each non-containment edge type b which does not have a fixed
multiplicity, a change rule of the form change A b is derived (s. patterns P8 and P9).
Such a change rule takes three input arguments; node s of type A (or any subtype of A)
which is the source of an edge of type b, and nodes t old and t new representing its old
and new target node. Note that no lower and upper bound checks are needed for edge
type b since the number of edges of type b outgoing from node a is not changed. If edge
type b has an opposite edge type a, then the respective edges of these types are created
and deleted in pairs. If the opposite edge type a specifies an upper bound of 1 (s. pattern
P9), then an upper bound check is generated to ensure the no-upper-bound-violation
constraint for the new target node t new.

Example 7.3 (Move and change rules for simple state machines)
Figure 7.14 illustrates a subset of move and change rules generated for our in state
machine meta-model of Figure 3.4.

We get move rules move Region region, move Region subregion, move Transition transition

and move Vertex subvertex. A lower bound check for rule move Region subregion prevents
a violation of multiplicity invariant [1..∗] specified by containment edge type region,
while all other move rules are constructed analogously to move Vertex subvertex.

Furthermore, we get change rules change Transition source and change Transition target

(s. Figure 7.14) for non-containment edge types source and target which both specify
a fixed multiplicity of [1..1].

«preserve»
Selected:Vertex

«preserve»
OldParent:Region

«preserve»
NewParent:Region

subvertex
«delete»

subvertex
«create»

Rule move_Region_region_(Selected, OldParent, NewParent)

«preserve»
Selected:Region

«preserve»
OldParent:StateMachine

«preserve»
NewParent:StateMachine

«require#lb0»
:Region

region

«require#lb0»
region
«create»

region
«delete»

Rule change_Transition_source(Selected, OldTarget, NewTarget)

«preserve»
Selected:Transition

«preserve»
OldTarget:Vertex

«preserve»
NewTarget:Vertex

source

«create»
outgoing

«create»
outgoing

«delete»

source
«delete»

Rule change_Transition_target(Selected, OldTarget, NewTarget)

«preserve»
Selected:Transition

target

«create»
incoming

«create»
incoming

«delete»

target
«delete»

«preserve»
OldTarget:Vertex

«preserve»
NewTarget:Vertex

Rule move_Vertex_subvertex(Selected, OldParent, NewParent)

Figure 7.14: Subset of generated move and change rules for UML state machines

7.3.4 Consistency-preservation of Generated Rules

Now that we have precisely described our procedure for generating CPERs, we can
finally conclude to which extent we can guarantee the preservation of the consistency
of a model to which these rules are applied. Note that ASGs resulting from rule-based
transformations of typed graphs are guaranteed to be correctly typed in general [94],
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thus we will only consider the preservation of further basic consistency constraints and
multiplicity invariants (s. Section 3.2).

Creation and deletion rules. Given a type graph with restricted multiplicities
TGrmult, then creation and deletion rules derived from TGrmult preserve all basic con-
sistency constraints and all multiplicity invariants w.r.t. TGrmult:

• at-most-one-container and no-containment-cycles: The containment-related con-
straints at-most-one-container and no-containment-cycles cannot be violated by
edge creation rules because they are only generated for non-containment edges.
Moreover, these constraints cannot be violated by node creation rules because we
create and delete containment edges only together with the contained node.

• no-parallel-edges: In case of containment edges, the no-parallel-edges constraint
is implied by the at-most-one-container constraint. In case of non-containment
edges, parallel edge checks of edge creation rules prevent modifications of an ASG
leading to a violation of the no-parallel-edges constraint.

• all-opposite-edges: The all-opposite-edges constraint cannot be violated because
we create and delete opposite edges in pairs.

• no-lower-bound-violation: Lower bound violations caused by basic node deletion
rules and edge deletion rules are prevented by lower bound checks. According to
Lemma 7.2, we know that mc/mn-supplemented rules create and delete minimal
patterns, i.e. they cannot lead to lower bound violations, too.

• no-upper-bound-violation: Upper bound violations can only be caused by non-
root node creation rules and edge creation rules. We prevent such violations by
upper bound checks.

Move and change rules. Given a type graph with restricted multiplicities TGrmult,
then move and change rules derived from TGrmult preserve all multiplicity invari-
ants w.r.t. TGrmult as well as basic consistency constraints at-most-one-container, no-
parallel-edges, and all-opposite-edges:

• at-most-one-container: Constraint at-most-one-container cannot be violated by
move rules because they only change the container of a given node.

• no-parallel-edges: In case of containment edges, the no-parallel-edges constraint
is implied by the at-most-one-container constraint. In case of non-containment
edges, parallel edge checks of change rules prevent modifications of an ASG which
lead to a violation of the no-parallel-edges constraint.

• all-opposite-edges: The all-opposite-edges constraint cannot be violated because
we create and delete opposite edges in pairs.
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• no-lower-bound-violation: Change rules cannot violate lower bounds since the
number of edges of a particular type outgoing from a particular node is not
affected. Lower bound violations caused by move rules are prevented by lower
bound checks.

• no-upper-bound-violation: Change rules cannot violate upper bounds since the
number of edges of a particular type outgoing from a particular node is not
affected. Upper bound violations caused by move rules are prevented by upper
bound checks.

7.4 Completeness of the Generated Edit Rule Set

With respect to completeness, we have to show that the set of generated edit rules fulfills
conditions (1) and (2) of Definition 7.1, i.e. edit rules have to be instance-generating
and instance-deleting.

Instance generation. For condition (1) of Definition 7.1, we have to show that
the set RCre ⊆ R of creation rules is instance-generating. To that end, we will first
show how a model being represented as TGrmult-typed graph can be conceptually split
into smaller “partitions” which we will later utilize for proving the instance-generating
property of rule set RCre.

Definition 7.10 (Conceptual splitting of a TGrmult-typed graph)
Let M be a consistent model which is represented as ASG being typed over a type
graph with restricted multiplicities TGrmult. M can be conceptually split into a 4-tuple
P = (SR,NR,MP,NC) where SR, NR, MP and NC refer to the following sets of
graph fragments:

SR ⊆ P(MN) is the set of all root node fragments. A root node fragment sr ∈ SR
consists of a root node r ∈ MN which does neither have mandatory children nor
mandatory neighbors. Please note that r, although being a single node, is treated
as fragment sr = {r} here for the sake of homogeneity w.r.t. fragment sets NR,
MP and NC.

NR ⊆ P(MN ∪ME) is the set of all non-root node fragments. A non-root node frag-
ment nr ∈ NR consists of a non-root node n together with its incoming con-
tainment edge e ∈ in(n). If e has an opposite edge then it is included in nr,
too. Moreover, n is not contained in a minimal pattern, i.e. it does neither have
mandatory children nor mandatory neighbors.

MP ⊆ P(MN ∪ME) is the set of all minimal graph patterns, each pattern mp ∈MP
cannot be reduced to a smaller pattern without violating lower bounds defined
by multiplicity invariants of TGrmult.
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NC ⊆ P(ME) is the set of all non-containment edge fragments, each fragment nc ∈ NC
consists of a non-containment edge e which is not part of a minimal pattern
mp ∈MP . If e has an opposite edge then it is included in nc, too.

Example 7.4 (Conceptual splitting of a sample ASG representation)
Figure 7.15 shows parts of the sample state machine of Figure 2.2 in its abstract syntax.
The excerpt contains states Idle and Active as well as transitions lift and hangup
between Idle and Active. Substates of composite state Active and transitions between
them are omitted. We have three minimal patterns, labeled mp1−3 in Figure 7.15. and
three non-root node fragments referred to as nr1−3. Sets SR and NC are empty

The example illustrates that minimal patterns differ from simple non-root node frag-
ments (or single root nodes) in the sense that they cover at least one node which has
mandatory children or neighbors. Minimal pattern mp1 covers the root node of type
StateMachine together with its mandatory child of type Region and the respective con-
tainment edge. Minimal pattern mp2 covers the node of type Transition representing
transition lift. It has two mandatory neighbors, the non-containment edges connecting
these neighbors are also covered by mp2. Since the Transition node is not a root node,
the containment edge connecting the node with its parent node of type Region is also
covered by mp2. The structure of the minimal pattern mp3 is similar to mp2.

Figure 7.15: Conceptual splitting of a sample ASG representation
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Lemma 7.3 (Partitioning property of a conceptual splitting)
Let M be a consistent model which is represented as ASG being typed over a type
graph with restricted multiplicities TGrmult. A splitting P = (SR,NR,MP,NC) can
be constructed such that the set FP = {F1, F2, ..., Fn} = SR ∪NR ∪MP ∪NC of all
fragments of P adheres to the following two conditions:

(1)
⋃n

i=1 Fi = M , i.e. the fragments induced by splitting P cover the complete model
M , and

(2) Fi ∩ Fj = ∅ for all 1 ≤ i < j ≤ n, i.e. the fragments induced by splitting P are
pairwise disjoint.

Proof.

(1) Assume that there is a node n ∈MN which is not covered by one of our fragments
in FP . We know that n cannot be a “single” root node (a root node which has
neither mandatory children nor mandatory neighbors), otherwise it would be
contained by a fragment sr ∈ SR. We also know that n cannot be part of
a minimal pattern, otherwise it would be contained by a pattern mp ∈ MP .
Finally, if n is a “single” non-root node and it is not contained by a fragment
nr ∈ NR, then n has no container node at all which contradicts our assumption
that M represents a consistent model.

Analogously, assume that there is an edge e ∈ ME which is not covered by one
of our fragments in FP . We know that e cannot be part of a minimal pattern,
otherwise it would be contained by a pattern mp ∈MP . Further on, e cannot be
a non-containment edge, otherwise it would be contained by a fragment nc ∈ NC.
We also know that e cannot be part of the tree-structure of M , otherwise e would
be contained by a fragment nr ∈ NR. Finally, e can only be a containment edge
being part of a containment-cycle in M , which again contradicts our assumption
that M represents a consistent model.

(2) While the condition that fragments Fi, Fj ∈ FP are disjoint is obvious for al-
most all possible pairs of fragments, we have to clarify this condition for minimal
patterns, i.e. we have to show that mpi ∩mpj = ∅ for all mpi,mpj ∈MP .

Concerning the nodes which are covered by a minimal pattern, we know that these
nodes are forming a tree structure, i.e. we have a subtree root (which does not
necessarily have to be a root node of model M) together with direct and indirect
mandatory children. Mandatory neighbors of these nodes are not included in a
minimal pattern, but only the non-containment edges indicating the mandatory
neighbors. Thus, two patterns mpi and mpj do not overlap in their node sets.

Consequently, two patternsmpi andmpj do not overlap in their sets of containment-
edges. Otherwise, the at-most-one-container constraint would be violated which
contradicts our assumption that M is a consistent model.



158 Chapter 7. Creation of a Set of Consistency-preserving Edit Rules

Finally, two patterns mpi and mpj do not overlap in their non-containment edge
sets indicating mandatory neighbors because each mandatory neighbor is indi-
cated by a distinct non-containment edge or a pair of non-containment edges
being opposite to each other: The situation that two minimal patterns “share”
the same non-containment edges indicating mandatory neighbors would only be
possible if we have a meta-model that specifies i) edge types et1 and et2 being
opposite to each other and ii) both et1 and et2 have a multiplicity with property
required, which contradicts condition (1) of Definition 7.7.

Theorem 7.1 (Instance-generation with CPERs)
Let TGrmult be a type graph with restricted multiplicities. Let further RCre be the set
of creation rules derived from TGrmult. Then, every consistent model M being properly
typed over TGrmult can be constructed starting from the empty model ε by exclusively
using rules available in RCre.

Proof. Given a consistent model M being typed over TGrmult, we have to construct a
sequence of rule applications which, starting from the empty model ε, creates model M .
We know that modelM can be conceptually split into a 4-tuple P = (SR,NR,MP,NC)
according to Definition 7.10 such that the splitting fulfills the “partitioning” property
of Lemma 7.3. A derivation sequence can be constructed as follows:

1. Initially, we create all “single” root nodes identified by fragments sr ∈ SR. To
that end, we apply basic root node creation rules in any order. It is easy to see
that all fragments sr ∈ SR can be created by our basic root node creation rules
and that these rules are sequentially independent of each other.

2. Next, we create non-root nodes identified by fragments nr ∈ NR and all minimal
graph patterns mp ∈ MP . It is easy to see that non-root node fragments can
be created by our basic non-root node creation rules. From Lemma 7.2 we can
conclude that mc/mn-supplemented node creation rules lead to the creation of
minimal graph patterns and that all variants of minimal graph patterns that may
occur in a consistent TGrmult-typed graph can be created.

These rules must be applied in a suitable order as they may depend on each
other. A rule application creating fragment Fi ∈ (NR ∪MP ) depends on a rule
application creating fragment Fj ∈ (NR ∪MP ), if a boundary node of Fi (i.e.
a parent node or mandatory neighbor which is needed for creating Fi) is part of
the fragment Fj. In this case, Fj must be created first. A suitable order exists if
there are no instance structures in a consistent TGrmult-typed model leading to
cyclic dependencies between rule applications creating the respective fragments.
There are four cases which may lead to cyclic dependencies:

i) “parent/parent”: There is a node pi ∈ mpi which serves as parent for a node
nj ∈ mpj and there is also a node pj ∈ mpj which serves as mandatory
neighbor for a node ni ∈ mpi.
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ii) “neighbor/neighbor”: There is a node ni ∈ mpi which has a mandatory
neighbor mnj ∈ mpj and there is also a node nj ∈ mpj which has a manda-
tory neighbor mni ∈ mpi.

iii) “parent/neighbor”: There is a node pi ∈ mpi which serves as parent for
a node nj ∈ mpj and there is also a node mnj ∈ mpj which serves as
mandatory neighbor for a node ni ∈ mpi.

iv) “neighbor/parent”: Analogously to iii)

Case i) represents cyclic containment which is invalid in a consistent model. In-
stance structures representing case ii) are only possible if type graph TGrmult

defines a cycle of required non-containment edge types between minimal subtree
definitions. This contradicts condition (1) of Definition 7.7. Instance structures
representing cases iii) and iv) are only possible if type graph TGrmult defines a
cyclic relationship between two minimal subtree definitions MSDi and MSDj

such that MSDi is connected to MSDj via a path of required non-containment
edge types and MSDj is connected to MSDi via a containment edge type. This
contradicts condition (2) of Definition 7.7. Thus, we can conclude that cyclic de-
pendencies between the respective creation rules cannot occur and that the rules
can be applied in any order which is consistent to the partial order induced by
the boundary nodes of the fragments which are to be created.

3. Finally, we create all non-containment edges being covered by fragments nc ∈ NC
by applying edge creation rules in any order. It is easy to see that all non-
containment edges can be created by our edge creation rules and that these rules
are sequentially independent of each other.

Example 7.5 (Generation of a sample instance model with CPERs)
Consider again the ASG representation of our sample UML state machine of Fig-
ure 7.15. Fragments nr1, nr2 and nr3 can be created by non-root node creation rules
create State subvertex (nr1 and nr2) and create Region subregion (nr3). Minimal patterns
mp1, mp2 and mp3 can be created by the application of mc/mn-supplemented creation
rules create StateMachine (mp1) and create Transition transition (mp2 and mp3). Obviously,
nr1 has to be created first. Subsequently, we can create fragments nr2 and nr3 in any
order. The creation of patterns mp2 and mp3 requires fragments nr1 and nr2, while the
creation of nr3 requires only the fragment nr2 to be already created.

Remark. As already mentioned in Section 3.3, a drawback of using meta-models in order
to define the abstract syntax of a modeling language is that meta-models are declarative
and do not directly specify “editing behavior”. This problem generally re-appears when
one wants to provide a specification of how to generate the (usually infinite) set of all
valid instances that conform to a given meta-model, e.g. for the purpose of generating
test models for model processing tools [200].
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In this regard, the proof of Theorem 7.1 provides another result (which is of minor
importance in the context of this thesis): It is constructive in the sense that it implicitly
specifies a procedure of how to generate all valid instances that conform to a given
meta-model which can be formalized as a type graph with restricted multiplicities.
The generation process can be organized into three “layers”, parts of this process are
similar to the principle of instance-generating graph grammars (s. related work [96,
234] in Chapter 10):

1. Starting from the empty model, we first create an arbitrary number of single root
nodes, which results in a discrete graph. The application of root node creation
rules has to be stopped by user interaction or some termination criterion.

2. Subsequently, we create non-root nodes and minimal graph patterns. To that
end, basic node creation rules and mc/mn-supplemented node creation rules can
be applied as often as possible. Usually, the rule application process has to be
stopped by user interaction or some termination criterion.

3. Finally, edge creation rules can be applied to create optional relationships, i.e.
additional non-containment edges may be inserted as long as upper bounds are not
reached. If the meta-model specifies multiplicities with property ¬bounded (i.e.
upper bound = *), which is usually the case, the rule application process again
has to be stopped by user interaction or some suitable termination criterion.

Note that the generated instance models are consistent since they are constructed using
consistency-preserving edit rules only. Thus, instance sets generated according to the
above procedure and instance sets induced by a type graph with restricted multiplicities
are equivalent.

Instance deletion. Since deletion rules are constructed as inverse rules to creation
rules, it is obvious that every consistent model can be stepwise deleted using rules
available in RDel ∈ R. In other words, the rule set RDel is instance-deleting and thus
fulfills condition (2) of Definition 7.1.

Theorem 7.2 (Instance-deletion with CPERs)
Let TGrmult be a type graph with restricted multiplicities. Let further RDel be the set
of deletion rules derived from TGrmult. Then, every consistent model M being properly
typed over TGrmult can be reduced to the empty model ε by exclusively using edit rules
available in RDel.

Proof. Follows directly from Theorem 7.1 and the design principle that there is an
inverse deletion rule r−1 ∈ RDel for each creation rule r ∈ RCre.
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7.5 Analysis of Potential Transient Effects

So far, we have only discussed the completeness of the set of mandatory edit rules for
a given modeling language. However, our method of operation recognition additionally
requires any model modification to be expressible without causing transient effects in
order to guarantee a complete lifting of low-level differences (s. Section 4.4). Thus, a
thorough analysis of potential transient effects and how they are avoidable is given in
the remainder of this section. According to Definition 7.2, we have to show for all pairs
of generated edit rules that they (1) do not cause transient effects at all, or (2) are
inverse to each other, or (3) can be summarized by an alternative rule.

The idea is to utilize the fact that generated edit rules are very schematic and to
study potential transient effects on a per-kind basis. Table 7.1 summarizes possible
combinations of how a pair of rules of different kinds can be applied in an editing
sequence. A table entry has to be read as follows; r1 and r2 are representatives of
our four different kinds of mandatory edit rules (s. Section 7.2) and we assume that r2
is applied after r1 in an editing sequence. Node creation and edge creation rules are
summarized as creation rules, node deletion and edge deletion rules are summarized as
deletion rules. We analyze each possible combination w.r.t. potential transient effects.

r1; r2 Creation (Cre) Deletion (Del) Change (Chn) Move (Mov)

Cre (1):⊥ (2) ∨ (3):Cre’ ∨ (3):Del’ (3):Cre’ (3):Cre’
Del (2) ∨ (3):Cre’ ∨ (3):Del’ (1):⊥ (1):⊥ (1):⊥
Chn (1):⊥ (3):Del’ (2) ∨ (3):Chn’ (1):∅
Mov (1):⊥ (3):Del’ (1):∅ (2) ∨ (3):Mov’

Table 7.1: Analysis of potential transient effects in sequential applications of generated
edit rules

Entries in Table 7.1 marked as (1) represent pairs of edit rule kinds that do not
cause transient effects for all representatives of the respective kinds of edit rules. This
is possible for two reasons, which are indicated by symbols ∅ and ⊥ in Table 7.1:

∅: The respective kinds of edit rules operate on different types of ASG elements.
This is the case for change rules, which operate on non-containment edges, and
move rules, which operate on containment edges.

⊥: These kinds of rules cannot modify the same elements in one editing sequence
because the application of r1 prevents r2 from being successfully applied after r1.
In particular, an element cannot be changed or moved after it has been deleted.
Moreover, an element cannot be created or deleted twice.

Transient effects are uncritical w.r.t. our approach to operation recognition if the
application of r2 takes back all effects of the application of r1, i.e. the overall effect
is like no rule application. This is the case for edit rules being inverse to each other,
i.e. creation and deletion as well as change and move rules if applied with suitable
arguments. These entries are marked as (2) in Table 7.1.
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In the remaining cases marked as (3), transient effects are avoidable in the sense
that there is an alternative rule application summarizing all effects of applying first r1
and then r2. Please note that generated edit rules specify only elementary consistency-
checks which prevent basic consistency constraints no-lower-bound-violation and no-
upper-bound-violation from being violated (s. Section 7.3). As we assume that an edit
script ∆A⇒B transforms a model from one consistent state A into another consistent
state B and all intermediate states also represent a consistent model, application con-
ditions of these kinds cannot be fulfilled only transiently. To that end, application con-
ditions of generated edit rules and the condition that r3 summarizes all pre-conditions
of r1 and r2 (s. Definition 7.2) are sensibly omitted in the following considerations:

deletion’: If applications of change and move rules are followed by a deletion of the
modified element, the overall effect can be caused by only applying the deletion
rule, possibly with slightly modified arguments, i.e. the deletion is performed in
a different parent context.

creation’: In case of creating an element being followed by the application of a change
or move rule, the overall effect can be caused by only applying the creation op-
eration, again with possibly slightly modified arguments. Value parameters must
be adjusted according to the attribute value change caused by the application of
a change operation. Nodes which are passed as arguments to object parameters
must be selected properly according to relocations of model elements.

change’/move’: If change and move rules are applied to the same element several times
without being inverse to each other, the effect can be summarized by just applying
the last change or move rule of such an editing sequence.

As each entry of Table 7.1 has at least one of the above properties (1), (2) or (3), we
can conclude that a set of generated edit rules is sound according to Definition 7.2.

7.6 Requirements Induced by

Consistency-preserving Edit Rules

As already mentioned in Section 7.1, a set of mandatory edit rules must be consistent
with the properties of the matcher which is used in the first step of our differencing
pipeline. To that end, we have to precisely specify the properties we expect from a given
matching. These properties depend on the design of the edit rules. In this section, we
discuss this requirement for our generated CPERs.

A trivial solution is to require that, for every pair (A,B) of consistent models A and
B which are to be compared, the matcher produces a matching MA,B : A  B such
that the intersection A∩B over MA,B is guaranteed to form again a consistent model.
In this case, creation and deletion rules are sufficient to express the modification from
A to B. However, this requirement would be very restrictive, as it prevents several
kinds of edit operations to be detected by our approach to operation recognition.
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Consider Figure 7.16 which shows parts of the introductory example of Figure 2.2 in
abstract and concrete syntax:

• Firstly, assume states Idle to be corresponding, while states DialTone and Active
are not in a correspondence relationship. If A ∩ B shall be a consistent model,
then transitions lift must not correspond to each other. In this case, changes from
A to B can be explained using creation and deletion rules only, i.e. transition lift
including its various connections to Idle and DialTone is first deleted, and later
on re-created and connected to Idle and Active.

• Alternatively, the difference can be explained by a single edit step which simply
exchanges the target of transition lift from DialTone to Active by deleting and
creating edges target and incoming. In this case, transitions lift must be in a
correspondence, as shown in Figure 7.16. Note that this matching leads to an
inconsistent model A ∩ B; transition lift is missing a mandatory neighbor which
is connected via an edge of type target.

C

C

C

Correspondence

BA

Figure 7.16: Example: Intersection A ∩B over a matching MA,B : A B

The example of Figure 7.16 shows that it is useful to permit that mandatory neighbors
of ASG nodes are not corresponding.

The same observation applies to other kinds of mandatory ASG elements, notably
parent nodes which are required for all non-root nodes of an ASG3. If we allow corre-
spondences between non-root nodes having different parents, i.e. the parents are not

3The observation also applies to attribute values which are conceptually treated like mandatory
neighbors.
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corresponding, then these nodes obviously have no parent nodes in A ∩ B. However,
it is generally useful to permit correspondences between nodes having different parents
such that move operations can be detected.

As a conclusion of the above discussion, we can finally specify the properties which
we require from a model matcher:

For every pair (A,B) of consistent models A and B which are to be compared, the
matcher produces a matching MA,B : A B such that the intersection A∩B over MA,B

is a model which fulfills all basic consistency constraints. Concerning full consistency
w.r.t. the effective meta-model, the following invariants may be relaxed:

1. The no-lower-bound-violation condition induced by non-containment edge types
having property required may be violated in A∩B, i.e. the mandatory neighbors
of two corresponding nodes nA ∈ A and nB ∈ B may be not in a correspondence
relationship.

2. A non-root node may have no parent node in A ∩ B, i.e. the parent nodes of
two corresponding nodes nA ∈ A and nB ∈ B may be not in a correspondence
relationship.

Please note that, as a consequence of these relaxed consistency constraints for A∩B,
the change and move rules which are produced by our CPER generation algorithm must
be included in the set of mandatory edit rules such that every possible modification can
be expressed using CPERs. In a model difference derived from a matching, relaxation 1
leads to an exchange of a mandatory neighbor which cannot be expressed using creation
and deletion CPERs. To that end, we have introduced change edit rules summarizing
the effect in a single rule. Relaxation 2 leads to an exchange of a parent node which,
again, cannot be expressed using creation and deletion CPERs. To that end, we have
introduced move edit rules performing relocations of ASG nodes in a single edit step.

7.7 Adapting the Generated Rule Set

There are a few cases in which the generated edit rule set has to be manually adapted.
The first one has been already explained in Section 7.3.1, namely if certain multiplicity
constraints have to be relaxed in order to fulfill all conditions of a type graph with
restricted multiplicities (s. Definition 7.9). In this section, we will discuss two further
cases and present possible options of how to deal with them. Section 7.7.1 addresses
the basic consistency constraint no-containment-cycles which cannot be guaranteed to
be preserved by our move rules (s. Section 7.3.4). Options of how to support addi-
tional well-formedness rules, which are not yet interpreted by our edit rule generation
procedure, will be discussed in Section 7.7.2.

7.7.1 Handling of Cycle-capable Containment Edge Types

Cycle-capable containment edge types would be containment cycles (or containment
loops) in a flattened type graph [51]. In general, such cyclic containment structures in
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meta-models are problematic since the application of move rules can lead to contain-
ment cycles in an ASG. Thus, we cannot guarantee the preservation of basic consistency
constraint no-containment-cycles for our generated move rules (s. Section 7.3.4). In our
state machine meta-model of Figure 3.4, the edge types subvertex and subregion are
cycle-capable. Thus “arbitrary” movements of nodes of type State (resp. FinalState)
may lead to containment cycles in an ASG.

A strategy to prevent containment cycles caused by move rules is presented in [51]:
For a node which is contained by its parent via a cycle-capable containment edge, a
rule may change its parent only if the old parent and the new one are (transitively)
related via containment edges. This condition can be implemented by generating rules
that move a node only along the containment hierarchy, i.e. rules that move a node
“up” or “down”. An example is shown in Figure 7.17: The move rule moveStateUp

differs from an ordinary move rule as it specifies an additional application condition
such that the new parent Region of the State to be moved must contain its old parent
Region via containment edges of type subvertex and region. The rule moveStateDown

is constructed in a similar way.

Rule moveStateDown(Selected, OldParent, NewParent)

«preserve»
Selected:State

«preserve»
NewParent:Region

«preserve»
OldParent:Region

«require»
:State

region«require»

subvertex

«delete»

subvertex«require»

subvertex

«create»

Rule moveStateUp(Selected, OldParent, NewParent)

«preserve»
Selected:State

«preserve»
OldParent:Region

«preserve»
NewParent:Region

«require»
:State

subvertex

«create»

subvertex«require»

region«require»

subvertex

«delete»

Figure 7.17: Rules moveStateUp and moveStateDown generated in addition to the basic
move rule

However, applying “moveUp” (or “moveDown”) several times in a sequence of edit
steps may lead to transient effects. Thus, in order to not violate the soundness criterion
of a mandatory set of edit rules, move rules are not replaced, but only complemented by
moveUp and moveDown rules. In addition, we extend our basic differencing pipeline
of Figure 1.2 such that the edit script generation is followed by an additional post-
processing step. Whenever a move operation is detected, we check whether this “arbi-
trary” move can be replaced by a sequence of moveUp/moveDown operations shifting
a node along the containment hierarchy. For any of the containment edges in this
path which is created by another rule application, a dependency relationship to the
respective edit step is added.
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7.7.2 Supporting Arbitrary Well-formedness Rules

The edit rule generation algorithm presented in Section 7.3 is not capable of interpret-
ing arbitrary well-formedness rules attached to a meta-model element. There are two
options how to manually deal with these well-formedness rules; i) adapting the meta-
model serving as input for or the edit rule generation (s. step 1 in Figure 7.2) or ii)
adapting the generated edit rules (s. step 3 in Figure 7.1).

Adapting the effective meta-model. For the purpose of edit rule generation, the
effective meta-model may be slightly adapted before the rule generation starts. The
basic idea is to rewrite certain well-formedness rules as multiplicity constraints which
can be interpreted by our our edit rule generator.

For example, in order to specify well-formedness constraint (a) listed in Table 2.1
(“a final state cannot have any outgoing transitions”) as a multiplicity invariant, our
state machine meta-model of Figure 3.4 can be slightly modified such that the edge
type outgoing is refined for final states, i.e. its upper bound value is set to 0. Of
course, the adapted version of an effective meta-model must be fully compatible to
the effective meta-model in the sense that each instance of the effective meta-model is
also an instance of the effective meta-model. Moreover, the rule generation algorithm
has to be slightly extended such that refined multiplicities for subtypes are properly
interpreted.

Manual adaptations of generated rules. In some exceptional cases, even an
adapted version of the effective meta-model contains a small set of well-formedness
rules which cannot be expressed or be rewritten as multiplicity constraints. Typically,
some of the generated edit rules have to be merged or complemented by additional
application conditions. A quantitative assessment of the manual effort which is needed
to adapt the generated edit rules in various case studies is given in Section 9.2.

An example of this is the well-formedness rule (q) listed in Table 2.1: “All members
of a namespace (which includes subvertices of a region in UML state machines) must be
distinguishable by their names”. Hence, a state may only be created in a region if there
is not yet another state with the same name. This precondition can be implemented
in Henshin by a negative application condition as shown in Figure 7.18. Note that the
variable Name, as a placeholder for an attribute value, appears twice in this rule.

Rule create_State_subvertex(Selected, New, Name)

«preserve»
Selected:Region

«create»
New:State

name=Name

«forbid#uniqueNames»
:State

name=Name

subvertex
«create»

subvertex

«forbid#uniqueNames»

Figure 7.18: Manually adapted edit rule create State subvertex



CHAPTER8
A Generic Model Versioning Framework

Difference tools for models must be adapted to each modeling language and usage
scenario which is to be supported. One relevant approach are individually developed
tools and algorithms which are highly optimized for a given modeling language (s. Sec-
tion 10.2). This leads to a high effort. Adaptable frameworks, which can be configured
with limited effort for a new language, are another, less costly approach.

In this section, we present SiLift, a generic framework for building highly customized
differencing and patching tools for models which are based on the concepts developed
in this thesis. The framework design is mainly driven by our domain analysis pre-
sented in Section 2.2 where variability in the problem space is modeled by the feature
diagram of Figure 2.8. According to basic principles of Software Product Line Engi-
neering (SPLE), we choose a compositional approach in order to represent the required
variability in the technical solution space; most of our user-visible features are mapped
to distinct implementation artifacts which can be flexibly composed to form a par-
ticular tool configuration. Thereby, solution space variability in SiLift is primarily
represented on the architectural level, i.e. we propose a set of software components as
compositional implementation artifacts, some of these components can be adapted by
additional configuration data.

Differencing and patching tools for models are only two examples of a comprehensive
MDE tool environment. Additional important tools are model editors, refactoring tools,
validators, search tools, clone detection tools etc., which we assume to be available in
any event. They provide several tool components, notably matchers, annotators for
model elements and model transformation systems, which can be re-used to implement
differencing and patching tools for models. Thus, another technically motivated goal
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in the design of the SiLift framework is to integrate existing components from other
MDE tools as far as possible.

The remainder of this section is structured as follows: Core components and cor-
responding feature mappings for the configuration of differencing tools are presented
in Section 8.1, the construction of highly customized patching tools is addressed in
Section 8.2. Section 8.3 finally introduces our prototypical implementation which is
based on the widely used Eclipse Modeling Project (EMP) [89]. The implementation
is publicly available as a set of Eclipse plug-ins from the SiLift update site1.

8.1 Configuration of Differencing Tools

An overview of the core components for constructing difference calculation and differ-
ence presentation tools based on the SiLift framework is shown is Figure 8.1. Note that
components which are re-usable from an existing MDE tool suite are colored in light
gray. Corresponding feature mappings are shown in Table 8.1. Note features Error and
Conflict Detection and Error and Conflict Handling are interpreted as abstract features;
they are not mapped to a concrete implementation artifact but listed in Table 8.1 for
the sake of readability.

Difference Calculator

Edit Script Generator

Difference
Derivator

Semantic
Lifter

Matcher Parameter
Retriever

Dependency
Analyzer

Low-level Difference Calculator

Difference
Presentation

GUI

Model
Editor

Recognition Rules Edit Rules

SiLift Component

Existing MDE
Tool Component

Figure 8.1: Core components for constructing a customized differencing tool

Difference calculation. A difference calculator is typically composed of several sub-
components that calculate a difference in a step-wise manner. Each sub-component
implements a particular step of our conceptual differencing pipeline of Figure 1.2. Note
that a matcher which is used by the low-level difference calculator is assumed to be

1http://pi.informatik.uni-siegen.de/Projekte/SiLift/updatesite

http://pi.informatik.uni-siegen.de/Projekte/SiLift/updatesite
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Standard Editor 3

User-level Edit Operations 3 3 3

Difference Calculation 3

Difference Presentation 3 3

Editing of Patches 3 3

Change Propagation 3

Error and Conflict Detection
Missing Arguments 3

Unfulfilled Application Conditions 3

Wrongly Chosen Arguments 3

Blind Overwriting of Changes 3

Error and Conflict Handling
Interactive 3 3

Non-interactive 3

Consistency-preservation 3 3

Table 8.1: Mapping user-visible features to implementation artifacts

available for the given modeling language. In principle, any matcher can be used, as
long as the delivered results adhere to the basic conditions as described in Section 4.1,
and as long as the properties of the matcher are consistent with the design of the
mandatory edit rules serving as input for the operation recognition (cf. Chapter 7). An
overview of the matching engines which are currently available within the SiLift tool
suite is given in Section 8.3.2. Please also note that parameter retriever and dependency
analyzer are only required if executable edit scripts are to be generated.

Difference presentation and editing of patches. Semantically lifted differences
and edit scripts are intended to be presented according to the concept of an “interactive
list of edit steps” (s. Section 2.2). The implementation of a difference presentation
GUI, which basically lists the edit steps being part of a difference, is straightforward.
The effect of an edit step is explained on the basis of the concrete syntax, original
and changed model are displayed in their standard editor. Furthermore, a difference
presentation GUI can be slightly extended to become an editing tool for the controlled
modification of patches, an example has been presented in Figure 6.4.

In principle, such a GUI component can be integrated with any model editor. We
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only require that the editor exposes an API such that external representations of model
elements, i.e. diagram elements or certain text blocks, can be highlighted. Reference
implementations based on standard Eclipse technologies for building visual and textual
model editors are briefly outlined in Section 8.3.2.

8.2 Configuration of Patching Tools

In this section, we show how to configure patching tools for models based on the SiLift
framework. We give an overview of the core components and mappings of user-visible
features in Section 8.2.1. Implementation variants of certain components are discussed
in Section 8.2.2.

8.2.1 Core Components and Feature Mappings

An overview of the core components of a patching tool and their integration into an
existing MDE tool environment is shown in Figure 8.2. Analogously to Figure 8.1,
components which are re-usable from an existing MDE tool environment are colored
in light gray. The basic functionality and high-level interfaces of each component are
described in the remainder of this section.

Batch-oriented vs. interactive patch application. Patches can be applied in an
interactive and non-interactive way; while a batch-oriented patch application is useful
for our versioning scenario SC2, more advanced scenarios SC3-5 are likely to be better
supported by an interactive patching tool. Note that the latter variant uses a patch ap-
plication GUI according to our concept presented in Section 6.3. Similar to a difference
presentation GUI, a patch application GUI is to be integrated with a standard model
editor for a given modeling language (cf. figures 6.5 and 6.6).

Patch engine. The patch engine is the central component of the core architecture of
the patching tool. The target model and the edit script to be executed as patch must
be provided as input parameters. Concrete patching tools can be built upon three basic
interfaces provided by the patch engine:

1. The execution interface offers clients the possibility to execute edit steps contained
by the edit script on the given target model. Clients can execute all applicable
edit steps at once or step by step.

2. The execution (or failure) of each edit step is logged in a patch report which is
provided to clients.

3. Finally, clients can be informed about validation errors being caused by the effect
of an executed edit step via a callback interface.
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Base Model

Patch
Engine

Target Model

Patch Application
GUI

Model 
Editor

Batch-oriented
Patch Application

Edit Script

Argument
Manager

Modification
Detector

Transformation
EngineValidator

CPEOs

Figure 8.2: Core components for constructing a customized patching tool

Argument manager. The argument manager is responsible for the initial resolution
of references to operation arguments and for calculating the reliability of an argument
resolution. Variants for implementing a modification detector are discussed in Section
8.2.2. W.r.t. user-visible features defined by the variability model in Figure 2.8, the
argument manager identifies missing operation arguments and, in case of unreliable
references to model elements, detects potentially wrongly chosen arguments (s. Ta-
ble 8.1). Variants for the implementation these services of an argument manager will
be presented in Section 8.2.2.

Furthermore, the argument manager provides an interface to complement or modify
the initial resolution of arguments. This notification interface is only required for
the construction of interactive patching tools. Here, the argument manager must be
continuously informed about manual modifications of the target model.

Transformation engine. Precondition checks and the execution of edit operations
are finally delegated to a model transformation engine. Thus, the transformation engine
is utilized for the detection of unfulfilled application conditions (s. Table 8.1). As shown
in Figure 8.2, implementations of all CPEOs used by an edit script must be available
for the transformation engine. Depending on the model transformation technology, edit
operations are either

• executed by the transformation engine directly, if imperative implementations of
CPEOs are provided, or

• by calling an appropriate interpreter, if a declarative approach to implementing
CPEOs is chosen.
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Encapsulating the concrete transformation technology has the advantage that our
patching tool architecture is not affected by possible technological restrictions.

Model validator. CPEOs preserve the degree of consistency according to the effec-
tive meta-model, i.e. they guarantee that the target model remains displayable in a
standard editor. Additionally, the modified target model is validated against the per-
fect meta-model after the execution of each edit step (s. Table 8.1). Validation errors
are a kind of warning that can be generated as a result of the execution of an edit step.
If desired, the respective edit step can be reverted.

The interface of a model validator basically defines two functions that have to be
implemented: Firstly, a validation of the current state of the target model checks
all well-formedness rules defined by the (perfect) meta-model of the given modeling
language and returns a set of all validation errors. Secondly, a simple difference operator
on sets of validation errors must be provided. Thus, the patch engine is able to compare
sets of validation errors before and after each edit step, and to properly assign the reason
for violating one or several well-formedness rules to the last edit step.

Modification detector. The modification detector is only required for the construc-
tion of a workspace update tool or, more generally, when there is a common base version
being the direct ancestor of the original model and the target model of a patching sce-
nario. It specifies the conditions when model elements shall be flagged as modified.
Each modified operation argument finally leads to a warning against blindly overwrit-
ing local changes (s. Table 8.1). Variants for the implementation of a modification
detector are discussed in Section 8.2.2.

8.2.2 Implementation Variants

While we have shown how to map user-visible features onto a set of re-usable compo-
nents in Section 8.2.1, we discuss variability in the solution space in the remainder of
this section. We present different implementation variants for two of our core compo-
nents; the argument manager and the modification detector.

Argument manager. The implementation of an argument manager strongly de-
pends on the method how references to model elements are managed in an MDE envi-
ronment, notably whether we have reliable references or not. Consequently, two possible
implementation variants of an argument manager are shown in Figure 8.3:

• If reliable references such as persistent identifiers or unique path names are avail-
able, references to elements used as arguments in an edit script can be symbolized
at the patch creator’s site (s. Section 6.1.3). These symbolic references are to be
resolved at the patch applier’s site.

• If no reliable references are available, our approach is to compute a matching
between the original model and the target model by using a model matcher (s.
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Section 6.2). Ideally, the matcher also provides information about the reliability
of correspondences.

Argument
Manager

Matching-based
Argument Manager

Symbolic Link
Resolver

Symbolic Link-based
Argument Manager

Matcher

Figure 8.3: Implementation variants of an argument manager

Modification detector. Our three approaches to detect modified operation argu-
ments in a workspace update scenario (s. Section 6.2.2) lead to implementation variants
of a modification detector as shown in Figure 8.4.

• In our simplest case, a change-based modification detector uses a low-level dif-
ference calculator to calculate a low-level difference between the common base
version and the workspace version.

• A signature-based modification detector re-uses a signature generator, e.g. as of-
fered by a signature-based matcher, and a model annotator to attach calculated
signatures to model elements in the base model and the workspace model. If the
signature generator is adaptable, then the signature configuration is provided as
input parameter

• Finally, a comparison-based modification detector uses the comparator of a similarity-
based matcher to check workspace model elements used as arguments for modifi-
cation. A set of compare functions and a comparison configuration that specifies
which compare functions to use in which context are provided as additional input
parameters.

8.3 Reference Implementation based on the Eclipse

Modeling Project

Meta-models and ASGs can be implemented in various technical frameworks. In our
reference implementation, we assume models to be implemented using the Eclipse Mod-



174 Chapter 8. A Generic Model Versioning Framework
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Figure 8.4: Implementation variants of a modification detector

eling Framework (EMF) [88]. EMF is one widely used technology which supports con-
structing runtime representations of models in the Java language. Section 8.3.1 briefly
outlines how our graph model is mapped to implementation constructs provided by
EMF. Thereupon, the implementation of the basic algorithms presented in this thesis
is straightforward and not discussed in any further detail here. Of course, all con-
cepts can be transferred to other technologies and frameworks such as Moflon [29] or
KM3 [132].

EMF itself is part of the Eclipse Modeling Project (EMP) which provides a variety
of core MDE technologies being based on EMF, e.g. generators for building visual and
textual editors, reference implementations of related OMG standards such as the Object
Constraint Language, etc. Besides numerous projects which are officially hosted as part
of the EMP, several important technologies and frameworks such as Henshin and SiDiff
are implemented on the basis of EMF. Section 8.3.2 describes the integration of the
SiLift core components into a comprehensive MDE tool environment being based on
the EMP technology stack. Meta-tool support for generating and managing edit and
recognition rules is addressed in Section 8.3.3.

8.3.1 EMF-based Implementation of Meta-models and ASGs

EMF is the de-facto reference implementation of the EMOF standard defined by the
OMG [189]. Consequently, EMF provides an object-oriented approach to model rep-
resentation, i.e. nodes and edges of an ASG are represented by runtime objects (called
EObjects in EMF) and references between them. The EMF runtime framework pro-
vides a reflective API for generic read/write access to EObjects. For typing purposes,
EMF provides Ecore, which is basically a structured data modeling language which can
be used for application and language engineering purposes. In the latter case, Ecore



8.3. Reference Implementation based on the Eclipse Modeling Project 175

models serve as design-level meta-models which can be finally translated to Java type
definitions using the built-in code generation facility of EMF.

Relation between type graphs and Ecore-based meta-models. Basically, node
types are modeled as EClasses in Ecore, and edge types are modeled as EReferences
between them. Attribute declarations are modeled as EAttributes which are an inte-
gral part of the definition of an EClass. Additional (meta-)modeling constructs, namely
eSuperTypes of EClasses, abstract EClasses, containment EReferences, pairs of ERef-
erences being declared as eOpposite to each other, and lowerBounds/upperBounds
attached to EReferences can be used to further restrict the allowed instance structures.

Figure 8.5 illustrates how Ecore (meta-)modeling constructs are related to our notion
of a type graph introduced in Section 3.1. Note that Figure 8.5 shows only a simplified
subset of the Ecore meta-model based on [228]; we focus here on the core meta-modeling
constructs and leave out EPackages, EAnnotations, EOperations etc.

Ecore meta-modelTypegraph model

Figure 8.5: Relation between our type graph model and the Ecore meta-model

Model transformation and pattern matching with Henshin. Many concepts
developed in this thesis are based on the Henshin transformation language which is
based on graph transformation concepts. Thus, it was natural for us to use the Hen-
shin transformation framework as one of the core technologies in SiLift. The Henshin
runtime environment is implemented on top of EMF and uses Ecore-based meta-models
for typing purposes. All of the Henshin runtime services are available via API. We use
the rule interpreter to execute edit operations in terms of a patching tool. The change
set recognition engine of our semantic lifter is implemented using the match finder of
the Henshin runtime.
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Please note that our consistency-preserving edit rules (and the derived recognition
rules) represent implementations of consistent EMF model transformations which be-
have like algebraic graph transformations (cf. [51]). Thus, all concepts developed in
this thesis can be applied to EMF models and the EMF-based implementation of the
Henshin interpreter.

8.3.2 Tool Integration

In this section, we outline how to integrate the SiLift core components with other
important tools and tool components being based on the EMP technology stack.

Available matching engines. The following standard model matchers are provided
as built-in components at the SiLift update site:

• A reliable UUID-based matcher which is based on XMI-IDs can be used if mod-
els are serialized in the XMI format and if persistently managed XMI-IDs are
available.

• A simple but efficient signature-based matcher which establishes correspondences
based on equal values of name attributes. Names are available for many concep-
tual model element types in typical modeling languages.

• Furthermore, we provide an adapter to the matching interface of EMF Compare
(EMFC) [63, 86]. This way, correspondences can be established by using the
generic matching engine of EMFC or any of the customized matching engines
being available as additional extensions.

• A matching adapter for the SiDiff matching engine is available upon request. The
SiDiff matching engine is not included in the product configuration provided at
the SiLift web site due to license restrictions.

Detection of modified arguments using the SiDiff signature generator. In
order to specify the conditions when operation arguments shall be flagged as modified in
a workspace update tool, we implemented a signature-based approach to modification
detection. The implementation re-uses the annotation service and signature generator
provided by the SiDiff model comparison framework. These SiDiff components are
publicly available. The SiDiff annotation service implements a visitor pattern in order
to attach arbitrary values to EObjects. A highly configurable signature generator is
one of the available visitors computing the values which are to be annotated. This way,
the modification detector can be configured according to our concept of signature-based
detection of modified arguments presented in Section 6.2.2.
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Integration with GMF-based and Xtext-based editors. GUI components of
the SiLift framework, e.g. the difference presentation GUI, are loosely coupled with
native editors via the Eclipse Selection Service. All SiLift subwindows implement the
selection provider interface and thus report which conceptual model elements are cur-
rently selected (s. Figure 8.6). The Eclipse selection service notifies registered selection
listeners about selection changes induced by a selection provider. We have implemented
two selection listeners supporting the highlighting of external representations of model
elements for two widely used technologies for developing EMF model editors:

• GMF: The Graphical Modeling Framework (GMF), which is part of the Graph-
ical Modeling Project (GMP) [90], is one widely used technology for developing
visual editors for EMF models. GMF provides generative components and a run-
time infrastructure for building visual editors. Diagram rendering in GMF is
based on the Graphical Editing Framework (GEF) [91].

Our selection listener implementation decorates shapes and connections serving
as diagram elements in a GMF-based editor. Examples of decorated diagram
elements are shown in Figure 6.4.

• Xtext: Xtext [92] is a popular framework for the definition of textual modeling
languages. Basically, Xtext adopts a grammar-based approach to language speci-
fication (s. Section 2.2.1). An Xtext grammar can be converted to an Ecore-based
meta-model. Therefore, the Xtext grammar specification language provides sev-
eral features (in addition to standard notations based on the Backus-Naur Form
(BNF) or any of its extensions) which can be used to control the meta-model
generation process.

Our selection listener implementation is based on the Eclipse marker framework
which can be used to annotate certain lines of texts (or text blocks) in all kinds of
textual Eclipse editors. In order to get the position of a conceptual model element
within the textual representation of a model, we utilize the Xtext contribution to
the EMF adapter mechanism: For each EObject which originates from a Xtext
resource, we get an adapter for this EObject providing access to the corresponding
node of the parse tree of the Xtext resource. The nodes in a parse tree provide
the required position information.

This solution is generic in the sense that it works for all GMF-based and Xtext-based
editors. If required, the element highlighting facility can be extended to support editors
which are based on other technologies as well, as long as an external interface which
can be utilized for element highlighting is available.

8.3.3 Meta-tool Support

In this section, we briefly outline the most important meta-tools and tool components
being integrated into the SiLift development environment.
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SiLift GUI component
(implements ISelectionProvider)

selection changed

notify notify

GMF decorator
(implements ISelectionListener)

Xtext document marker
(implements ISelectionListener)

GMF-based editor Xtext-based editor

create marker(s)decorate

Eclipse Selection Service

Figure 8.6: Integration of SiLift GUI components with GMF-based and Xtext-based
editors

Generation of CPERs with the SiDiff Edit Rules Generator. In Chapter 7,
we introduced a semi-automated approach to create a set of mandatory edit rules for
a given modeling language. This process, namely the task of generating an initial
set of CPERs (step 2 in Figure 7.1), is supported by the SiDiff Edit Rule Generator
(SERGe) [10]. SERGe is implemented on the basis of EMF and Henshin and derives
sets of edit rules from a given Ecore-based meta-model. If configured properly, SERGe
derives all kinds of CPERs, namely creation, deletion, move and change rules, according
to our edit rule generation procedure presented in Section 7.3.

In addition, SERGe provides ad-hoc support to generate edit rules for profiled UML
models [5]. Although profile support is yet limited to simple stereotype structures,
e.g. a UML base element may have at most one associated stereotype, standard profile
definitions such as SysML or MARTE are covered to a large extent.

Edit and recognition rule management. The manual adaptation of generated edit
rules and the construction of optional complex rules is supported by the Henshin de-
velopment environment. In particular, the Henshin IDE provides a sophisticated editor
which is based on the visual syntax of the Henshin transformation language. A technical
convention is that each Henshin rule representing and edit operation implementation
must be encapsulated by a transformation unit which represents the corresponding edit
operation interface. The reason behind this convention is that a transformation rule
treats internal variables as well as input and output parameters in a uniform way. On
the contrary, a unit may define only the externally visible formal parameters; input
parameters are mapped from the unit to their corresponding rule parameter, while out-
put parameters are mapped in the opposite direction. We provide integrated validation
and quickfixing techniques to support the development of edit operations adhering to
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these conventions.
Edit rules are statically analyzed for potential dependencies and conflicts using the

CPA extension of Henshin [53] which is based on the graph transformation environment
AGG [232]. Dedicated export and import functions translate Ecore-based meta-models
and Henshin rules to AGG and CPA results back to EMF.

If desired, additional configuration parameters can be attached to edit rules. These
annotations are to be interpreted by our procedure translating edit rules to their cor-
responding recognition rules (s. Section 4.2.2). We support the following configuration
parameters:

• Pre/Post: Each application condition can be labeled “pre” or “post” to deter-
mine whether the condition is to be interpreted as pre- or postcondition by our
edit to recognition rule translation (cf. Section 4.2.2). By default, we assume all
application conditions to be interpreted as post-conditions, i.e. they are to be
checked on the revised model version during operation detection.

• Priority: A priority value can be assigned to each edit rule. Thus, ambiguities
can be resolved if several semantic change sets contain exactly the same low-level
changes and the ambiguity can not be resolved by the postprocessing algorithm
described Section 4.3. By default, we assume a priority value of 0.

To enable a seamless translation of edit rules to recognition rules, we integrated our
transformation procedure into the build framework provided by the Eclipse IDE. This
way, recognition rules are treated as binaries, a tool chain configurator will never see the
compiled recognition rules. To support an incremental build process, each edit rule must
be defined in a separate Henshin file being available as workspace resource. Whenever
an edit rule file is being modified, our recognition rule builder will be triggered to
recompile the corresponding recognition rule.





CHAPTER9
Evaluation

In this chapter, we evaluate the approach presented in this thesis from two different
perspectives: i) From the point of view of an MDE tool chain configurator, the evalua-
tion should show the suitability of the proposed framework; ii) from the point of view
of a model versioning tool user, we are interested in certain quality aspects of individual
tools and tool functions being implemented on top of the framework. Evaluation goals
for both perspectives are presented in Section 9.1. Concerning i), the suitability of the
generic framework has been evaluated in several case studies (s. Section 9.2). Concern-
ing ii), experimental results assessing quality aspects for a set of representative tool
configurations and data sets are presented in Section 9.3.

9.1 Evaluation Goals

In this section, we present the evaluation goals related to the perspectives (tool chain
configurator vs. model versioning tool user) from which we evaluated our approach.

Suitability of the proposed framework. Concerning the suitability of the pro-
posed framework (cf. contribution 5 in Section 1.4), we identified two main evaluation
goals:

G1 (Flexibility): The evaluation should show that the framework is flexible in the sense
that it enables the construction of a family of tools that cover a broad range of
different use cases and application contexts. Flexibility includes (a) that the
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framework components are highly re-usable and (b) that the proposed methodol-
ogy mapping user-visible features to implementation components is feasible.

G2 (Adaptability): Engineering individual tools and tool functions using the SiLift
framework should be possible with moderate time and effort. This particularly
refers to the configuration of the generic tool components for a given modeling
language.

Quality aspects of individual tool functions. From the point of view of a model
versioning tool user, we are mainly interested in the evaluation of certain quality aspects
of individual tools and tool functions being implemented on top of the SiLift framework.
The framing of which quality aspects have to be evaluated is mainly driven by the claims
of thesis contributions 1 - 4 (cf. Section 1.4).

For the semantic lifting of low-level model differences, we identified the following quality
aspect:

Q1 (Understandability of model differences): Semantically lifting a low-level model dif-
ference to the level of user-level edit operations increases the understandability of
the difference.

Furthermore, we identified the following quality aspects for generated edit scripts which
are intended to be used as patches:

Q2 (Correctness of edit scripts): An edit script is correct, i.e. the application of an
edit script ∆A⇒B to model version A finally results in model version B.

Q3 (Consistency-preservation of edit scripts): Given a consistent target model to which
an edit script is applied, then each edit step is consistency-preserving, i.e. each
intermediate model version as well as final model are consistent. The minimal
level of consistency which is to be achieved is defined by the effective meta-model
of a given editing environment.

Q4 (Abstraction level of edit scripts): An edit script raises the level of abstraction, i.e.
the algorithm finds as many complex, semantically rich operations as possible.

Finally, contribution 4 provides a completely new approach to update workspace copies
which differs methodologically and technically from traditional 3-way merging. While
the reduced configuration effort and the much simpler GUI of an interactive update
tool are obvious, we identified the following quality aspect w.r.t. to our approach to
conflict detection:

Q5 (Accuracy of conflict detection): The accuracy of the conflict detection facility of
our approach should be fairly equal to traditional 3-way merging.
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9.2 Case Studies and Example Applications

Based on the SiLift framework, a set of individual tools and tool functions with different
characteristics and targeting different usage scenarios have been developed in several
case studies (s. sections 9.2.1-9.2.6). An overview of the respective tool configurations
(in terms of the selected user-visible features) is presented in Table 9.1. Language-
specific implementation variants of technical variation points as well as configuration
artifacts that have been developed to adapt generic tool components are summarized
in Table 9.2. Conclusions concerning the achievement of our main goals G1 and G2 are
drawn in Section 9.2.7. A critical discussion w.r.t. the limitations of the approach and
threats to validity is included.
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Study I
Ecore1 X X X X X
Ecore2 X X X X X X X X X
Ecore3 X X X X X X X X X X

Study II
SysML1 X X X X
SysML2 X X X X X X

Study III FM (X) X X X

Study IV
SWML1 X X X X
SWML2 X X X X

Study V JavaAST (X) X X

Study VI
SA (X) X X
FT (X) X X

Table 9.1: Feature configurations of individual tools and tool functions which have been
developed in different case studies

9.2.1 Study I: Comparison and Versioning of Ecore Models

Ecore is the most commonly used model type in the context of the Eclipse Modeling
Project. It is used for two main purposes: In the context of language engineering, it
used as a technique to define design-level meta-models (s. Section 8.3.1). In the context
of application engineering, it is used for the purpose of object-oriented modeling. The
visual diagram editor offers a concrete syntax which is similar to design-level class
diagrams known from the UML.
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Configuration Data & Implementation Variants
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SysML UUID 788/56 - EMFV Henshin Match.-based Sign.
FM Sign. 8/11 30 - - - -
SWML Sign. 29/- 5 - - - -
JavaAST Sim. 174/2 12 - - - -
SA Sign. 42/- - - - - -
FT Sign. 70/- - - - - -
1#generated/#manually specified

Table 9.2: Language-specific adaptations: Configuration of generic tool components
and implementation of technical variation points

Tool configurations. Because of its central role and the wide range of usage scenar-
ios within the EMP, we decided to develop a set of standard versioning tools adapted
to EMF Ecore. They are provided at the SiLift update site. All of the model version-
ing scenarios presented in Section 2.1 are supported by the following individual tool
configurations:

Ecore1: Concerning scenario SC1, we provide a differencing function to calculate se-
mantically lifted differences which, if desired, can be converted to executable edit
scripts to be used as patches. Differences can be visually inspected in our stan-
dard difference viewer. Moreover, edit scripts which are intended to be used as
patches can be modified in a controlled manner.

Ecore2: Traditional and advanced patching scenarios SC2-4 are supported by a patch-
ing tool which can be operated in interactive and non-interactive mode. The oper-
ation mode can be chosen at runtime (cf. Table 9.1). All types of patching-related
errors being defined by our variability model of Figure 2.8 can be handled.

Ecore3: Updating workspace copies of Ecore models is supported by an extension
of the interactive patching tool. In addition to tool configuration Ecore2, the
problem of blindly overwriting local workspace changes is also handled.

Configuration data and implementation variants. Configuration data to adapt
generic tool components are shared among tool configurations Ecore1−3. Moreover, the
same implementation variants are used for technical variation points (s. Table 9.2):
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Matcher: All standard matchers described in Section 8.3.2 can be used for Ecore mod-
els. The most suitable one can be selected at runtime, depending on the nature
of input models.

Edit rules: The edit operation detection engine has been configured with two sets of
edit rules, implementing the mandatory and optional edit rules, respectively. In
sum, we identified 148 mandatory edit rules for Ecore models, 134 of them could
be fully generated by our edit rule generator. 14 mandatory edit rules had to
be manually engineered, most of them are only slightly adapted versions of the
edit rules which were initially created by the edit rule generator. Additionally, 58
complex edit operations have been implemented manually. Most of them are taken
from the catalogue of object-oriented refactorings presented in [107]. Another
source of inspiration was the Ecore configuration of the model refactoring tool
EMFRefactor [32]. Finally, we implemented several evolutionary edit operations,
all of them are motivated by own experiences in object-oriented modeling with
Ecore.

Validator and transformation engine: Implementation variants for several core patch-
ing components could be re-used from existing MDE tools and technologies.
Consistency-checks against the perfect level of consistency are performed using
the EMF validation framework (EMFV). The Henshin runtime environment and
interpreter is used for the execution of edit operations.

Argument manager: We provide two implementations of an argument manager, the
concrete variant can be dynamically selected at runtime. The first implementation
is based on the principle of symbolic references (cf. Section 8.2.2). The second one
is matching-based and uses the SiDiff matching engine; it re-uses the configuration
data developed in [259] to estimate the reliability of a reference resolution.

Modification detector: For the interactive update tool (Ecore3), we choose a signature-
based approach to specify the conditions when model elements shall be flagged as
modified. In our own experiments conducted so far, a rather simple configuration
has been used for all types of model elements. The signature incorporates (a) the
values of all attributes attached to the respective node in the ASG, (b) the values
of all attributes attached to all directly referenced ASG nodes and (c), if available,
the element’s qualified name. This relatively simple and compact specification
has turned out to be very powerful (s. Section 9.3.3).

Example applications. Tool configuration Ecore1 has been used in several tool
demonstrations and tutorials, see e.g. [3, 12]. The interactive patching tool (Ecore2) has
been used in [4] in order to illustrate our approach to model patching. The workspace
update tool (Ecore3) has been used in a formal tool demonstration [8], a screencast of
this demonstration can be found at the SiLift website1 In addition, These configurations

1http://pi.informatik.uni-siegen.de/Projekte/SiLift/ase2014.php

http://pi.informatik.uni-siegen.de/Projekte/SiLift/ase2014.php
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of our semantic lifting engine and the edit script generation service are used in the
experiments presented in sections 9.3.1 and 9.3.2.

9.2.2 Study II: Model Variant Management in Industrial
Plant Automation

Nowadays industrial plants are software-intensive systems which are typically operated
and evolved for several decades. First research results show that the MDE paradigm
can be successfully applied to industrial plant automation in order to deal with the
complexity of evolution [19, 255]. Promising approaches are based, e.g., on the Systems
Modeling Language (SysML) [191]. SysML is defined as an extension of a subset of the
UML using the UML profile mechanism.

As already explained in Section 2.1.4, a particular challenge in the model-based en-
gineering of automation systems are model modifications during operation and mainte-
nance at a specific customer’s variant [253]. Such changes are (1) often not sufficiently
documented with respect to the original version and (2) may include changes of general
interest that need to be propagated to other variants or a centrally managed module kit
[103]. In [9], we propose a method which enables developers to conveniently propagate
changes between variants of a model.

Tool configurations. Technologically, the approach presented in [9] is based on the
principle of document patching. Thus, two kinds of individual tools have been config-
ured based on the SiLift framework:

SysML1: The differencing function has been configured to calculate executable edit
scripts which are intended to be used as patches. Patches can be visually inspected
and adapted in our standard patch editor.

SysML2: The propagation of changes to another variant or a central module kit is
supported by an interactive patching tool.

Configuration data and implementation variants. We have successfully adapted
all generic components to SysML models that have been developed with the modeling
tool Papyrus [93, 208]. We support a subset of the available element types, namely those
parts of the SysML which are visually represented in terms of block definition diagrams
(BDDs), requirement diagrams (RDs) and state charts (re-used from the UML):

Matcher: Our UUID-based matcher which is based on XMI-IDs is used for the purpose
of model matching.

Edit rules: The set of mandatory edit rules comprises 844 edit rules, 788 of them could
be generated with our edit rule generator. Most of the 56 manually engineered
edit rules deal with the handling of associations since the SysML re-uses the
rather complex specification of associations from the UML Superstructure [190].
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For example, rules for the creation (and deletion) of different kinds of binary
associations (navigable in both directions, one direction or not navigable at all)
between different kinds of stereotyped classes (e.g. blocks, requirements, etc.) had
to be implemented manually.

We left the identification of further complex edit operations for future work. One
option is to adopt well-known object-oriented refactorings which we have already
successfully used in configurations for other modeling languages, e.g. for Ecore (s.
Study I) and JavaAST (s. Study V). A second option is to identify meaningful
evolutionary operations which are specific to the domain of automation engineer-
ing. The primary source for identifying useful evolutionary edit operations are
experienced users who need to be interviewed.

Core patching components: Analogously to our adaptation to Ecore in Study I, the
EMF validation framework is used to perform consistency-checks against the per-
fect level of consistency, edit operations are executed by interpretation using the
Henshin transformation engine. The argument manager is matching-based; it
adapts the UUID-based matcher.

Example applications. We evaluated the applicability of our approach using one
of the main case studies of the DFG Priority Programme SPP1593 [116]; the Pick and
Place Unit (PPU) [254]. Experimental results of studying the evolution of a SysML
model of the PPU are presented in Section 9.3.1.

9.2.3 Study III: Documenting and Reasoning about Feature
Model Changes

In this case study, a tool for differencing feature models has been developed [20]. A
specific contribution of [20] are complex edit operations whose semantic impact on
the set of valid feature configurations can be classified semantically as refactoring,
generalization or specialization of a feature model.

Motivation and general description. When a product-line evolves in order to
react to changing requirements, the feature model which formally specifies the valid
configuration space has to be modified, too. Thus, product-line engineers are often
faced with the problems that i) feature models are changed ad-hoc without proper
documentation, and ii) the semantic impact of syntactic changes is unclear. In [20],
we propose a comprehensive approach which is based on model differencing techniques
presented in this thesis in order to tackle both challenges. For i), our approach compares
the old and new version of the diagram representation of a feature model and specifies
the changes using meaningful user-level edit operations on feature diagrams. Hence,
feature model changes are automatically detected and documented formally. For ii), we
propose an approach for reasoning about the semantic impact of diagram changes. The
idea is to statically classify the available user-level edit operations w.r.t. their effect on
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the set of valid feature combinations (s. edit categories proposed by Thüm et al. [239]):
A refactoring leaves this set unchanged, i.e., it transforms a feature diagram into a
semantically equivalent diagram. A generalization (specialization) enlarges (shrinks) the
set of valid feature combinations. If none of these categories applies, an edit operation
is classified as arbitrary edit. Thus, high-level changes being observed between two
versions of a feature diagram can be classified w.r.t. the above categories, too. Knowing
the semantic impact of feature diagram changes is very useful for further development
tasks, e.g., in the field of regression testing.

Tool configuration and adaptation to feature models. To support the above
methodology, a structural differencing tool for feature models has been implemented
on top of the SiLift framework (s. configuration FM in Table 9.1). The differencing re-
sults are visualized within a slightly modified variant of our standard difference display
GUI; additional information about the semantic impact is attached to feature diagram
changes. Yet, the feature diagram versions being compared with each other are dis-
played in the rather simple tree-based EMF editor. A full integration into a widely
used feature modeling environment such as FeatureIDE [240] has been left for future
work.

Matcher: Currently, we use a rather simple feature diagram matching strategy which
is similar to [21]. Features are matched based on their unique names. Con-
straints and groups are matched by calculating signatures that characterize these
elements: For cross-tree constraints, a signature value is computed by concate-
nating the names of the related features. Groups are enumerated within each
parent feature serving as group context.

Edit rules: The difference calculation procedure uses edit rules being implementations
of edit operations from the catalogue developed in [20]. In sum, we have 19
mandatory edit rules. In order to classify these rules according to the categories
proposed by Thüm et al. [239], a considerable large number of 11 edit rules had to
be specified manually. Most often, the generated rules had to be complemented
by additional application conditions.

Complex edit operations are primarily derived from observations in the evolution
of an existing product line. We also gathered typical editing scenarios through
expert interviews. In sum, we identified 30 complex edit rules comprising 11 refac-
torings, 8 generalization operations, 8 specialization operations and 3 arbitrary
edits.

The whole catalogue of edit operations, implementations of these edit operations in
Henshin as well as the tool itself are available at the SiLift website2.

2http://pi.informatik.uni-siegen.de/Projekte/SiLift/asejournal2014.php

http://pi.informatik.uni-siegen.de/Projekte/SiLift/asejournal2014.php
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9.2.4 Study IV: Understanding Complex Changes in
Domain-Specific Models

As already mentioned in the introductory part of this thesis, the use of domain-specific
modeling languages (DSMLs) is an important trend in MDE. In contrast to general-
purpose modeling languages such as the UML, DSMLs typically have a small scope and
formalize the key concepts of a particular domain of interest. Obviously, tool support
for the version and variant management of domain-specific models is strongly required,
too.

Example application. In [11, 13] we show how to customize our approach to sup-
port high-level model differencing for an example DSML called Simple Web Modeling
Language (SWML) [54]. SWML aims at defining platform-independent models for a
specific kind of web applications. Simple web models can be specified using either a
visual or a textual notation. In the literature, both notations are used in slightly dif-
ferent variations [54]. In our tutorial, we use the Ecore-based meta-model presented
in [33]. Concerning the specification of a textual SWML syntax, an Xtext grammar
which can be translated to the same SWML meta-model is also presented in [33].

Tool configurations and adaptation to SWML Differencing of SWML models
is supported by tool configurations SWML1 (for visual SWML models used in [13])
and SWML2 (for textual SWML models used in [11]) of Table 9.1. In both cases,
differences can be displayed in our standard difference viewer. Since there is a single
meta-model that defines the conceptual structure of visual and textual SWML models,
both tool configurations are adapted using the same configuration artifacts:

Matcher: To determine corresponding elements in SWML models, we implemented
a simple signature-based matching strategy which is similar to the one for fea-
ture models. Almost all types of elements have a name attribute whose value
can be utilized for the purpose of model matching, i.e. names are used as unique
signature-values. Nameless elements can be reliably matched based on the corre-
spondences of context elements.

Edit Rules: As shown in Table 9.2, the SWML meta-model leads to 29 mandatory
edit rules, all of them could be generated by SERGe. In addition, 5 refactoring
operations have been specified to improve the quality of SWML models if certain
bad smells are detected [33].

9.2.5 Study V: Statistical Analysis of Changes in Evolving
Software Models

Analyzing the history of a software system is a widely used method in the context of
mining software repositories. In this case study, we used our differencing functionality
as a basis for the statistical analysis of model evolution in terms of the applied edit
operations.
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Motivation and general description. Adequate test models for evaluating all
kinds of MDE tools are scarcely available in many application domains. In this re-
gard, test model generators have been proposed as a vehicle to artificially create the
required test models. Basically, a model generator such as the SiDiff Model Generator
(SMG) generates test models by modifying a base model (which may be the empty
model) using a pre-defined set of edit operations. In many cases, the applied changes
should resemble the evolution that one observes in real-world models. This information
can be obtained by statistically analyzing model histories with methods as proposed in
[14, 16, 17]. A basic prerequisite for the application of these statistical methods is to
properly capture the evolution of a model in terms of the applied edit operations.

Example application to JavaAST models. In the work presented in [14, 16, 17],
we automatically reverse-engineered nine open source Java software systems of the
“Helix-Software Evolution Data Set” [251] and derived design-level “class diagrams”
(referred to as JavaAST in Tables 9.1 and 9.2) from the Java source code. The complete
JavaAST meta-model is available at the accompanying web site3. For each pair of
revisions of the history of each of these systems, the reverse-engineered models were
compared using the following configuration [15]:

Matcher: Since the reverse-engineered models do not have persistent identifiers, we
used the similarity-based matching facility of the SiDiff framework. The configu-
ration of the matching engine is similar to an older configuration for UML class
diagrams [138].

Edit Rules: In sum, we have a total number of 188 edit rules for JavaAST models.
176 of these edit rules are mandatory edit rules, 174 of them could be generated.
Additionally, we chose the well-known catalog of object-oriented refactoring op-
erations [107] and selected 12 refactorings being applicable to design-level class
diagrams.

9.2.6 Study VI: Analyzing the Co-Evolution of Interrelated
Models

The multi-view paradigm often leads to the problem to consistently co-evolve a set
of semantically interrelated models. In this regard, our approach presented in [18]
proposes to observe the history of semantically interrelated models in order to learn
about correlating changes in the co-evolving models. The procedure is supported by
a co-evolution analysis framework whose implementation is based on SiLift; it uses
the difference calculation function to obtain the edit steps which have been applied to
evolve each of the interrelated models.

An example of two kinds of loosely coupled but semantically interrelated models are
software architecture (SA) and fault tree models (FT) [112]. To understand the seman-

3http://pi.informatik.uni-siegen.de/qudimo/smg/se2013

http://pi.informatik.uni-siegen.de/qudimo/smg/se2013
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tic relation between SA and FT models better, we adapted the difference calculation
procedure of the analysis framework to both kinds of models:

Matcher: Both for SA and for FT models, correspondences are determined using a
simple signature-based matching strategy. Similar to feature models and our
SWML configuration, correspondences between named elements are established
based on equality (and uniqueness) of names. Anonymous model elements repre-
senting relationships between named elements are matched if the related elements
are matched.

Edit Rules: As shown in Table 9.2, our current analysis procedure which has been
applied to a sample evolution of SA and FT models is based on sets of generated
edit rules only. In sum, 112 mandatory edit rules have been generated by SERGe,
42 for SA models and 70 for FT models.

9.2.7 Conclusions and Critical Discussion

Achievement of main goals. Concerning the flexibility of the proposed frame-
work (evaluation goal G1), the case studies show that an MDE tool chain configurator
can conveniently provide a set of versioning tools and differencing functions which are
specifically tailored for a certain usage scenario. Our generic integration of SiLift GUI
components with standard editors which are based on GMF, Xtext or the reflective
EMF tree editor successfully worked for all configurations. Moreover, several impor-
tant components for implementing technical variation points of our framework could
be re-used from other existing model difference tools or general MDE tools.

The most important variation point is the modeling language for which a particular
difference/versioning tool is being adapted. In this regard, the adaptability of the
framework (evaluation goal G2) has been demonstrated in several applications using
a variety of different modeling languages and sub-languages. The typical effort to
configure the generic components being used in a tool configuration ranges between
1 and 10 days, primarily depending on the size and the complexity of the (effective)
meta-model. In particular, sets of mandatory edit rules could be generated to a large
extent. An exception of this are edit operations on feature models which have been
developed in Case Study III. The reason for this is more than 50% of the generated edit
rules had to be supplemented by additional application conditions in order to statically
classify them w.r.t. their semantic impact on the set of valid feature combinations.
However, this is highly specific to this special usage scenario and does not apply to
typical versioning scenarios and modeling languages.

One limitation of our approach pertains the implementation of complex edit op-
erations: We only support edit operations which can be specified by one Henshin
transformation rule or by an interaction scheme between a kernel rule and a set of
(nested) multi-rules. Moreover, application conditions have to be specified in terms of
static graph patterns. Thus, some refactoring operations from the catalogue of object-
oriented refactorings presented in [107] could not be implemented at all.
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Threats to validity. A threat concerning the external validity of our conclusions
w.r.t. evaluation goal G1 is that the set of tool configurations being used in our example
applications represents a rather small subset of all possible configurations. Ideally,
we would have to create an individual tool or tool function for each valid feature
combination defined by our feature model (s. Figure 2.8) which formally documents
the results of our requirements analysis. However, it is obvious that implementing and
testing all possible configurations is infeasible. The issue one can argue about is that
we did not apply a systematic methodology for selecting the set of tool configurations
which have been implemented and tested (see e.g. [166, 167] for different strategies and
coverage criteria in the field of SPL testing). Instead, the selection was mainly driven
by the individual requirements of each case study. However, due to the diversity of the
conducted case studies, we are convinced that the selected sample is a representative
one.

A threat concerning the external validity of our conclusions w.r.t. evaluation goal
G2 is the selection of modeling languages for which our generic tool components have
been adapted. However, the characteristics of the supported model types and the way
how instances of these types are edited differ significantly from each other: Ecore is the
de-facto standard for object-oriented modeling within the Eclipse Modeling Project.
SysML is a visual modeling language which is a widely accepted and standardized no-
tation in the context of model-based systems engineering [255]. It re-uses large parts
of the UML and comes along with a comprehensive meta-model. Besides these stan-
dard languages, we implemented configurations for several domain-specific languages:
Feature models are a widely used approach for modeling variability in the context of
software product line engineering. SWML is a DSML that comes with a textual and
visual notation and has been used in several case studies. Software architecture models
used in [112] incorporate well-known concepts from architecture description languages
(ADLs) [237]. Fault tree models are commonly used as quality evaluation models in
safety-critical domains [118]. Thus, we are convinced that the chosen modeling lan-
guages are good representatives to show the adaptability of our approach.

9.3 Experimental Results

Table 9.3 illustrates the relations between quality aspects Q1 - Q5 as introduced in
Section 9.1 and our motivating versioning scenarios SC1 - SC5 of Section 2.1 in which
these these qualities are required. Quality aspects Q1 - Q4 have been evaluated using
test models which have been obtained from model histories provided by empirical case
studies on model evolution. The model histories gathered from these case studies per-
fectly meet our requirements since they provide a large set of test cases for differencing
EMF-based models, thus serving as realistic real-world test data. Results are presented
in Section 9.3.1 (for Q1) and Section 9.3.2 (for Q2 - Q4). Quality aspect Q5 has been
evaluated using a conflict detection benchmark (s. Section 9.3.3).
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Usage scenario

Quality aspect SC1 SC2 SC3 SC4 SC5

Q1: Understandability of model differences X X X X
Q2: Correctness of edit scripts X X X X
Q3: Consistency-preservation of edit scripts X X X X
Q4: Abstraction level of edit scripts X X X
Q5: Conflict detection X

Table 9.3: Quality aspects and related usage scenarios

9.3.1 Semantic Lifting of Model Differences

To evaluate our approach w.r.t. quality aspect Q1, we performed an experiment using
a model history from a case study for the domain of production systems in automation
engineering. Each pair of successive model revisions vn → vn+1 (in the following referred
to as evolution step) in a model history provides a test case for which both a low-level
difference δvn,vn+1 and a semantically lifted difference ∆vn,vn+1 have been calculated.

Case study. Our test data set is taken from the PPU case study [254] (cf. Sec-
tion 9.2.2). The PPU (“Pick and Place Unit”) is a laboratory plant which consists
of five main components: a stack, a crane, a stamp, a ramp and a conveyor. It can
process different kinds of workpieces. The PPU case study provides 14 so-called evolu-
tion scenarios of the PPU. Each evolution scenario describes a specific configuration of
the unit, and each configuration is documented using the SysML. Since the evolution
scenarios of the PPU have been developed in a sequential order, we have a history of
14 revisions of a SysML model of the PPU.

Test procedure and results. Each evolution step vn → vn+1 of the PPU model
history serves as a test case for the calculation of a semantically lifted difference. To
that end, our lifting engine has been adapted to SysML as shown in Table 9.2.

Basic measures for each test case4 are shown in Table 9.4: Column #Corresp. refers
to the number of correspondences in a matching Mvn,vn+1 : vn  vn+1. Column #Low-
level denotes the number of low-level changes in δvn,vn+1 derived from the matching
Mvn,vn+1 , thus indicating the extent to which the compared models differ from each
other. The number of semantic change sets in a semantically lifted difference ∆vn,vn+1

is listed in column #Change-sets.

To evaluate the extent to which semantically lifting a low-level model difference
increases the understandability of a difference, the compression factor serves as an
indicator of how much a user’s perception of a difference is improved. It is defined as
follows:

4Test cases 05→ 06 and 13→ 14 are missing due to missing SysML models for the evolution scenarios
SC06 and SC14.
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cf =
|δ|
|∆|

(9.3.1)

where |δ| refers to the number of low-level changes and |∆| denotes the number of
recognized semantic change sets. In other words, the compression factor measures how
many low-level changes are, on average, grouped by a semantic change set. As shown
in column Compression of Table 9.4, we observed compression factors between 2.00 and
3.68 for the evolving SysML models of the PPU.

Test case #Corresp. #Low-level #Change-sets Compression

SC00 → SC01 545 58 16 3.63
SC01 → SC02 545 203 86 2.36
SC02 → SC03 575 764 231 3.31
SC03 → SC04 774 6 3 2.00
SC04 → SC05 756 654 201 3.25
SC05 → SC07 904 165 102 1.62
SC07 → SC08 927 103 28 3.68
SC08 → SC09 943 298 94 3.17
SC09 → SC10 1008 367 111 3.31
SC10 → SC11 1099 83 28 2.96
SC11 → SC12 1107 436 143 3.04
SC12 → SC13 1216 95 40 2.38

Table 9.4: Experimental results for the semantic lifting of model differences

Interpretation of the results. Concerning quality aspect Q1, the compression rates
show that model differences can in fact be optimized significantly through semantically
lifting to user-level edit operations.

Although most of the specified SysML edit operations appear to be quite simple, we
measured fairly high compression rates in terms of our test cases. The high compression
rates are mainly caused by the fact that the SysML meta-model is far from being
optimized for model comparison and leads to a large number of pseudo changes. Most
parts of the change set recognition rules are involved in collecting pseudo changes which
result from the complex, often redundant structure of the SysML meta-model. Low
compression rates occur in the context of edit operations which change attribute values,
e.g. the name of a model element, which leads to one low-level change only.

Threats to validity. Concerning the construct validity of our results, it is debatable
whether the compression factor is adequate for assessing the understandability of a
model difference. However, it is generally assumed that the reduction of edit steps
increases the quality of a difference in the sense that it is better understandable for
tool users. Thus, the compression factor is a quantitative measure indicating how
much the number of edit steps contained by a difference can be reduced by using high-
level edit operations. On the contrary, differences are not unique, and there might
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be alternative edit steps that describe model changes in a more or less convenient way
from a user’s point view. In fact, the domain of model versioning still lacks a commonly
accepted set of quality measures for model differences [201]. We mitigate this threat
by choosing only edit operations which are offered as editing commands by the SysML
editor Papyrus for the configuration of our differencing engine used in this experiment.
We deliberately omitted complex evolutionary operations which may lead to even higher
compression rates but which might be useful only under certain conditions, e.g. in case
of project-specific style guides.

9.3.2 Generation and Application of Edit Scripts

We have evaluated our approach with respect to quality aspects Q2 - Q4 of generated
edit scripts using model histories obtained from an empirical case study on model
evolution.

Case study. The test data set being used in our experiment originates from the
GMF case study. The study was initially contributed by Herrmannsdörfer et al. [126],
and later extended by Langer et al. [157] in order to evaluate some of the contribu-
tions of his dissertation (cf. Chapter 10). They extracted the revision history of three
Ecore models defined within the GMF project, namely the Graphical Definition Meta-
model (gmfgraph), the Generator Metamodel (gmfgen), and the Mappings Metamodel
(gmfmap).

They studied the evolution of these models from GMF release 1.0 to release 2.1 cover-
ing a period of two years: Firstly, they checked-out each model version between releases
1.0 and 2.1 from the GMF Subversion repository. Secondly, they manually reverse en-
gineered the edit operations that presumably have been applied between the revisions.
The range of available edit operations includes elementary user-level operations as well
as complex refactoring operations known from object-oriented programming. Addi-
tionally, model elements were assigned persistent identifiers according to the performed
edit steps.

Evaluation setup. The tool functions which are used in this experiment have been
adapted to Ecore as shown in Table 9.2. Since all model elements in the GMF histories
have universally unique identifiers, a UUID-based matcher has been selected. The edit
operation detection engine has been configured with two sets of edit rules implement-
ing the mandatory and optional edit rules. In particular, all of the 32 complex edit
operations given in [157] are covered by our complex edit rules. For the the resolu-
tion of operation arguments in terms of the non-interactive application of edit scripts,
the matching-based argument manager which uses the UUID-based matcher for the
resolution of arguments has been selected.

Similar to the evolution of the PPU, each evolution step vn → vn+1 in the histories
of the considered GMF models provides a test case for which an edit script ∆Mn⇒Mn+1

has been extracted (we use Mn here to refer to a model version vn). Basic properties
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of each evolution scenario are shown by column two and three of Table 9.5: #Low-
level denotes the number of low-level changes in the difference δMn,Mn+1 , the number
of operation invocations contained by the extracted edit script ∆Mn⇒Mn+1 is shown by
column #Ops., which further distinguishes mandatory and optional complex operations
(#mandatory/#complex). In case of the gmfgen history, the 108 evolution scenarios
are summarized by average values.

Correctness of edit scripts (Q2). In order to assess quality attribute Q2, each edit
script ∆Mn⇒Mn+1 was applied to its original model Mn. The result of the application,
called Mn′ , was compared to Mn+1, expecting equal models Mn′ and Mn+1.

As shown by the column for test series Q2 in Table 9.5, the edit scripts which were
created in our case study are correct for all evolution scenarios.

Consistency-preservation of edit steps (Q3). The consistency-preservation of
edit steps was evaluated by applying each edit script ∆Mn⇒Mn+1 to its original model
Mn for all evolution scenarios. After each edit step, the resulting state of the model
was checked for consistency violations by applying the EMF validation rules provided
by Ecore.

Validation errors are already reported for the initial model versions of the observed
histories, i.e. before any edit script was applied. This is not very surprising, since the
applied validation rules check a model against the perfect level of consistency. Thus, the
column for test series Q3 in Table 9.5 reports the number of changes to the total amount
of validation errors which are observed for a model. For example, the initial version
of gmfmap violates the Ecore constraint that “a class that is an interface must also
be abstract” 9 times. All of these invariant violations are corrected from revision 1.49
to 1.50. Similar changes to the total amount of validation errors can be observed for
gmfgraph and gmfgen. We can conclude that none of these changes report an increase
of validation errors which results from the application of an edit operation.

Abstraction-level of edit scripts (Q4). Quality attribute Q4 can be directly mea-
sured within the edit scripts. We are interested in the recall, i.e. which fraction of
the “actually occurred” complex edit operations was detected with our approach. The
reference values were given by the manually reverse engineered GMF model histories.

We observed average recall values between 0.61 and 1.00, i.e. some complex edit
operation invocations were not found. This is due to the fact that their effect (or
precondition) was only visible (or fulfilled) in a transient intermediate state, but not
observable in the low-level difference (cf. Section 4.4). Instead, one or several operations
which summarize the effect of a complex one are reported.

An example for this can be found in the evolution of the GMF Generator Metamodel
(gmfgen). Here, the manually reversed edit sequence reports two relocations of a class
attribute; first, it is pulled up to a superclass and subsequently moved to an associated
class of this superclass. In the low-level difference, however, we can only observe a
simple attribute movement which is finally recognized by the edit script generator.
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gmfgraph

Q2 Q3 Q4

Test case #Low-level #Ops. Correct δ(#valid.-errors) Recall

1.23 → 1.24 9 2/1 X 0 -
1.24 → 1.25 4 1/0 X 0 -
1.25 → 1.26 8 1/1 X 0 -
1.26 → 1.27 10 10/0 X 0 -
1.27 → 1.28 10 10/0 X 0 -
1.28 → 1.29 14 14/0 X 14 -
1.29 → 1.30 202 55/17 X 3 0.61
1.30 → 1.31 7 4/0 X 0 -
1.31 → 1.32 6 3/0 X 0 -
1.32 → 1.33 54 16/2 X 0 -

gmfmap

Test case #Low-level #Ops. Correct δ(#valid.-errors) Recall

1.43 → 1.44 14 6/0 X 0 -
1.44 → 1.45 2 2/0 X 0 -
1.45 → 1.46 107 39/4 X 0 1.00
1.46 → 1.47 9 3/0 X 0 -
1.47 → 1.48 1 1/0 X 0 -
1.48 → 1.49 33 8/4 X 0 1.00
1.49 → 1.50 9 9/0 X 9 -
1.50 → 1.51 34 12/0 X 0 -
1.51 → 1.52 43 13/2 X 0 1.00
1.52 → 1.53 10 4/0 X 0 -
1.53 → 1.54 1 1/0 X 0 -
1.54 → 1.55 35 20/0 X 0 -
1.55 → 1.56 16 6/1 X 0 1.00
1.56 → 1.57 1 1/0 X 0 -
1.57 → 1.58 30 15/0 X 0 -

avg. values

#Low-level #Ops. Correct δ(#valid.-errors) Recall

gmfgraph 32.40 11.80/1.90 100.00% 1.70 0.61
gmfmap 23.00 9.47/0.60 99.33% 0.60 1.00
gmfgen 24.52 8.75/0.71 99.07% 0.75 0.78

Table 9.5: Experimental results for the generation and application of edit scripts

The example shows that recall values have to be interpreted with caution. In this case,
the manually reversed sequence of refactorings provides valuable information for the use
case of the original case study [126], i.e. the automation of model migration in response
to meta-model adaptation. With respect to model versioning, however, difference tool
users most likely prefer the change to be explained as simple attribute movement.

As we have shown in test series Q2 and Q3, correctness and consistency-preservation
of the extracted edit scripts were not affected by unrecognized complex operations.
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Analogously, the precision of our approach can be deduced from the assessments of
Q2 and Q3: false positives are shown to not occur because otherwise the target model
would not have been reconstructed correctly.

Threats to validity. A threat to the internal validity is the method used in test series
for Q2 to check the correctness of edit script applications: The actual result Mn′ of the
application of edit script ∆Mn⇒Mn+1 to its original model Mn needs to be compared with
the expected result Mn+1. Obviously, the UUIDs of all model elements in Mn′ which
are created by the application of ∆Mn⇒Mn+1 differ from the UUIDs assigned to the
corresponding elements in Mn+1. Consequently, meaningful UUIDs are not available
in Mn′ by construction. Thus, we used the similarity-based matching engine of the
SiDiff model comparison framework [2, 138] to check the equality of Mn′ and Mn+1.
Similarity-based matchers can produce correspondences which are generally considered
sub-optimal or wrong. However, [259] has analyzed this error for class diagrams and
the SiDiff framework; the total number of errors was typically below 2%.

9.3.3 Conflict Detection

We have chosen the Colex [56] benchmark set to evaluate the conflict detection facility
of our approach to updating workspace copies of models in collaborative development
scenarios. According to the quality aspect Q5 (s. Section 9.1), the evaluation should
show that the accuracy of the conflict detection facility of our approach is fairly equal
to traditional 3-way merging. Thus, we compare the results being obtained in our
approach with the results being expected in traditional 3-way merging for a set of
carefully selected conflict scenarios defined by the Colex benchmark set.

Evaluation setup. Colex is an open, web-based, collaborative conflict lexicon
which describes a collection of conflicting situations for UML class diagrams, state
machines and sequence diagrams. Each example scenario consists of three versions of
a model; the common base version and the two conflicting versions called left model
and right model, respectively. Each conflict is classified according to the causal conflict
categorization presented in [56], which assumes a traditional 3-way merging. Basically,
this categorization distinguishes two main causes for conflicts; overlapping changes
and violations of given specifications, e.g. operation contract violations and violations
of consistency constraints defined by a given meta-model. Overlapping changes are
further refined into contradicting changes (update/delete and update/update) and so
called equivalent changes.

Some conflicts can only be detected based on specific domain knowledge. For ex-
ample, if one modeler adds an attribute name to a class Person, and the attributes
firstName and lastName are added to the same class by a second modeler, it is a
matter of opinion whether this situation represents an equivalent change that shall be
reported as conflict. In our evaluation, we have deliberately left out 10 scenarios that
are based on domain knowledge. The remaining 33 benchmark scenarios were analyzed
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for conflicts detected by our approach, assuming the generic warning configuration de-
scribed in Section 9.2.1. For each of the scenarios, the update was simulated in the
workspace of the left model (WSleft) and in the workspace of the right model (WSright).
Detailed results of this analysis including all edit scripts serving as as patches can be
found at the accompanying web site5 of [8].

WSleft WSright

Exec. Arg. Exec. Arg.

Contradict. (update/delete) 7 1 7 1

Contradict. (update/update) 1 5 2 4

Equivalent change 6 7 7 6

Violation 5 1 6 0

Sum 19 14 22 11

Table 9.6: Kinds of conflicts in the Colex benchmark and their detection by our
approach

Comparison to 3-way merging. Table 9.6 summarizes for each kind of conflict of
the Colex benchmark which kinds of warnings or errors are reported by our approach.
All conflicts can be detected by our approach, regardless of the workspace in which
the update was performed. Most scenarios lead to similar conflict reports as in case
of traditional 3-way merging: 88% of the update/delete conflicts are detected as non-
executable operations (Exec.), mostly due to missing operation arguments. 75% of the
update/update conflicts lead to warnings due to modified operation arguments (Arg.).
92% of the violations lead to non-executable operations, most of the operations fail due
to unfulfilled application conditions. No dominating method of conflict identification
can be observed in case of equivalent changes. If equivalent changes lead to the violation
of well-formedness rules, e.g. the parallel insertion of equally named elements into the
same namespace, the resulting conflict is detected by non-executable operations. The
remaining equivalent changes lead to warnings caused by modified operation arguments.

Threats to validity. A threat to the validity of our results concerns the way in which
the accuracy of the conflict detection facility is being assessed. While all conflicts of the
selected examples can be found using our approach (which indicates a high recall), the
Colex benchmark set is generally unsuited to quantitatively evaluate the precision of
a conflict detection procedure for the following reason: Each of the examples actually
leads to a conflicting situation and many of the examples are minimal in the sense
that we have to propagate only a single edit step to the workspace version. Thus, false
positives cannot occur in these cases. In this respect, experiments with larger models
are needed to assess the precision of our conflict detection facility in a meaningful way.
However, to the best of our knowledge, Colex is the only publicly available benchmark
which enables a uniform comparison of different approaches to model merging.

5http://pi.informatik.uni-siegen.de/Projekte/SiLift/ase2014.php

http://pi.informatik.uni-siegen.de/Projekte/SiLift/ase2014.php




CHAPTER10
Related Work

A lot of research into methods and algorithms for comparison and versioning of software
models was stimulated recently; the CVSM online bibliography1 compiles about 400
publications in this field, most of them dating from 2003 or later. While the state of the
art has been already outlined in Section 2.3, approaches being closely related to ours
will be investigated in more detail in the remainder of this chapter. Generic approaches
that can be applied to many modeling languages will be discussed in Section 10.1,
while language-specific approaches which cannot be transferred to other modeling (sub-
)languages are briefly reviewed in Section 10.2. An overview of currently available model
repositories is given in Section 10.3. Section 10.4 closes with a review of approaches
from other domains being closely related to a subset of the problems addressed in this
thesis.

10.1 Generic Model Versioning

AMOR. The AMOR (“Adaptable Model Versioning”) project [26] is a cooperative
research project which particularly addresses conflict detection and conflict resolution
in the context of 3-way merging. The deficiencies inherent to this functional principle
have been already discussed in Section 2.4. Nonetheless, the project has led to a number
of publications, some of them are closely related to our work.

Brosch et al. [57, 58, 59] have addressed the specification of composite edit opera-
tions. The main goal is to provide an intuitive, yet informal, approach to specify edit

1http://pi.informatik.uni-siegen.de/CVSM
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operations based on the principle of “model transformation by example”. Their main
contribution is a development tool which is known as Operation Recorder. Within this
tool, composite operations are defined “by example”. Basically, a tool developer creates
a typical model serving as base version and edits the model to produce the effect of
the composite operation. Subsequently, the old and new model states are compared,
and the Operation Recorder derives change actions as well as pre- and postconditions
which serve as a draft of a specification of this composite operation. This draft version
of an operation specification is finally corrected and tailored by the tool developer.

Langer et al. [155, 157] use these operation specifications for detecting complex op-
erations in differences which are obtained from EMF Compare, however with different
goals and assumptions compared to ours. This approach does not intend to produce
executable edit scripts being used as patches. Consequently, the identification of ar-
guments, dependencies between operation invocations etc. are not directly addressed.
This is no problem for the goals of their approach, namely to document occurrences of
complex edit operations in order to make a difference better understandable. Moreover,
composite operation definitions are used for annotating differences and to exploit these
annotations to enable better conflict detection within 3-way merging [155]. Among the
approaches providing support for high-level differencing, the one presented by Langer is
the most similar to ours. Unlike our approach which is based on graph transformation
concepts, complex edit operations are specified in a custom transformation language.
Thus, formally reasoning about potential conflicts and dependencies or the semantic
impact of edit operations as proposed in [20] is not possible with this approach.

Moreover, Langer et al. [155, 158] propose to adopt the notion of signs and signifiers
in linguistics in order to detect language-specific conflicts in the context of 3-way merg-
ing. Two model elements which are mappings of the same original concept are supposed
to have the same signifier. The idea is to analyze the result being obtained by a 3-way
merge procedure for further conflicts which are issued as warnings. On the one hand,
concurrent signifier changes of the same element indicate a potentially contradicting
change of a model element’s meaning. On the other hand, an issue arises if two distinct
model elements in the revised versions share the same signifier, as this might indicate an
overlapping meaning of different elements in the merged model. Although being used
in a different context, [158] shares several ideas with our techniques to signature-based
and comparison-based detection of modified operation arguments. Firstly, signifiers are
similar to our notion of a model element’s signature, i.e. a signifier includes local and
non-local properties of a model element that convey its superior meaning. Secondly,
the per-type specification of signifiers for a given meta-model roughly corresponds to
our approach to configure a comparison-based detection of modified arguments. Rele-
vant properties are specified using a slightly extended form of the Epsilon Comparison
Language (ECL) [148], a DSL for developing language-specific model matching rules.
Therefore, ECL provides a set of built-in compare functions being similar to those of
the SiDiff framework. If a rule indicates a match for two model elements, the model
elements share the same signifier. To summarize, [158] presents an orthogonal exten-
sion of generic model versioning systems; although signifiers are intended to be used
in conjunction with a conventional approach to 3-way merge, there is no interaction
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with the merge operator. As contradicting signifier changes and unexpected signifier
matches are handled a posteriori, the technique can be also used as a complementary
step to our workspace update procedure.

EMF Compare. We have also analyzed EMF Compare (EMFC) [63, 86], the cur-
rently most widely used differencing engine for EMF-based models, about how it deals
with the problems addressed in this thesis. Documentation about these aspects is
scarcely available, therefore we performed several tests. EMFC produces pseudo dif-
ferences in some cases, but not always; there does not seem to be a clear strategy for
dealing with them. The change of the association navigability as in our Example 2.1, for
instance, produces two reported changes. Our hypothesis is that EMFC filters pseudo
changes being caused by the underlying EMF-based model representation. For example
creations and deletions of opposite references are reported only once.

Although language-specific edit operations cannot be recognized at all, EMFC ex-
ploits the underlying EMF model representation to partially lift model differences to
a higher level of abstraction. Deletions and creations of containment references, for
instance, are generally reported as move operations. Furthermore, deletions of subtrees
of an ASG are reported as single edit step deleting the root node of a subtree; child
nodes and all references being incident to deleted nodes are implicitly deleted, too.
While this can be useful for the purpose of documenting model changes in a compact
manner, implicit deletions are risky when changes shall be propagated to models being
different from the original one (cf. scenarios SC3-5 in Section 2.1) because it can cause
a considerably different effect which is likely to be unintended.

Nonetheless, the EMFC tooling offers several interesting features. The difference pre-
sentation GUI, for instance, enables the grouping and filtering of changes on a per-type
(additions, deletions, moves, reference changes, etc.) basis, thus providing a rudi-
mentary implementation of the idea of selectively displaying changes [269]. Moreover,
changes between visual models can be illustrated using the external diagram repre-
sentation. The available presentation technique combines concepts known from the
interactive list of edit steps and the unified diagram (s. Section 2.2.3) in a single GUI.

Interactive merging. Most approaches to 3-way merging assume that all merge de-
cisions are taken before the merge result is finally generated non-interactively. Some
approaches [87, 161, 220] deviate from this structure by enabling users to manually trig-
ger single edit steps in both asymmetric differences ∆vb→v1 and ∆vb→v2 of Figure 2.9.
After each step, the intermediate state of the model can be edited; however, the cur-
rent conflict analysis is invalidated and must be repeated. The stepwise interactive
generation of the merge result is similar to our approach to interactive patching. The
most important distinction is the more compact user interface of our approach: The
graphical user interfaces of related merge tools consist of at least six main windows and
several dialogues. In contrast to this, our interactive patch application tool displays
only one difference and one model (and additional dialogues if needed).
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Modeling of differences and patches. Most state-based differencing algorithms
use a data structure which implements both a matching between an original model A
and its revised version B as well as the changes from A to B. This data structure is
often referred to as difference model, the corresponding schema is defined using meta-
modeling techniques from modeling frameworks such as EMF. The use of a consistent
technology stack for the representation of models and model differences is similar to
our approach. However, most difference meta-models, e.g. [63, 72, 209, 235], support
only primitive graph operations for the specification of changes. The grouping low-
level changes to semantic change sets is proposed only in few approaches [149, 155].
However, these approaches are not sufficient for our purpose of model patching because
they do not address dependencies between edit steps and the identification of operation
arguments. Our approach to modeling of differences, in particular the representation
of edit scripts, is thus a significant extension over previous proposals.

10.2 Language-specific Approaches

As already explained in Section 2.3, language-specific approaches to model versioning
can only be applied to models of one specific type. This serious restriction also ap-
plies to commercial solutions that have been developed for a particular type of model,
the tools Medini unite2 and SimDiff/SimMerge3 targeting differencing and merging of
Matlab/Simulink [176] models are examples of this. We will not consider all of these
approaches in detail, but review only those language-specific approaches being closely
related to one or several contributions of this thesis. In this regard, we identified two di-
rections; language-specific approaches detecting complex edit operations, and semantic
differencing. The latter direction is an alternative, yet completely different, approach
which aims at a better understanding how two versions of a model differ from each
other.

Detection of complex edit operations. Gerth et al. [111, 154] present an ap-
proach for detecting complex edit operations in a given low-level difference between two
versions of a business process model. Analogously to our approach, correspondences
obtained in the first step of a differencing pipeline are used to identify the common
model elements in both versions. The detection of edit operations, however, proceeds
different than ours: Correspondences are enriched with the technique of so-called Sin-
gle Entry Single Exit fragments (SESE fragments) [249]. These SESE fragments are
utilized to associate certain low-level changes (called “action differences” and “frag-
ment differences” [154]) with a pre-defined edit operation which causes the appropriate
effect. SESE fragments and the resulting process model decomposition are beneficial
since complex edit operations can be detected even if their effect is only partially visible
in the low-level difference (i.e. we have a transient effect), which is not possible in our
approach. However, the operation detection can be only applied to models having the

2http://www.ikv.de/index.php/en/products/unite
3http://www.ensoftcorp.com/simdiff

http://www.ikv.de/index.php/en/products/unite
http://www.ensoftcorp.com/simdiff
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SESE property, which restricts the approach to business process models, limited forms
of activity diagrams and similar types of models.

A few publications, e.g. [110, 252] address the detection of complex edit operations on
evolving meta-models in the context of meta-model evolution and model co-evolution.
Most notably, Vermolen et al. [252] propose a meta-modeling formalism which is used
to precisely specify sets of primitive and complex edit operations on meta-models. The
basic idea is similar to ours; each edit operation leads to a well-defined pattern in a
difference which is to be detected. To that end, low-level changes in a difference are
arranged according to pre-defined normal forms such that pattern instances are finally
obvious to see. Dependencies between edit steps are established by analyzing their
pre- and postconditions. Similar to [154], the approach is also capable of detecting
edit operations leading to transient effects in an editing sequence, at least to a certain
extent. The idea is to statically define a set of typical combinations of edit operations
leading to transient effects. During operation detection, these combinations are treated
as usual. In the obtained edit script, each combination can be finally replaced by the
original operations.

Semantic differencing. Maoz et al. [172] present a technique for comparing activity
diagrams which does not deliver a complete difference, but finds only single counterex-
amples, called “diff witnesses” to the proposition that the compared activity diagrams
are equivalent. These counterexamples can be used as an additional documentation and
for testing purposes. In general, semantic approaches cannot detect syntactic differ-
ences and cannot explain which edit steps can be used to implement a desired change,
thus they are no basis for patching or 3-way merging. Moreover, semantic differencing
requires the modeling language to have formal semantics, which is often not the case,
notably with informal models used in requirements engineering. Refactorings, which
provide valuable information about the evolution of a model, cannot be detected at all
because they do not change a model’s representation the semantic domain.

Basically the same problems apply to other semantic differencing approaches that
have been proposed for class diagrams [174], feature models [102], and certain behavior
models [156]. To summarize, semantic approaches are not intended to replace but rather
to complement syntactic differencing techniques, their integration is an interesting field
for future research [173].

10.3 Model Repositories

Most of the approaches to model versioning considered so far assume models to be stored
in traditional, file-based versioning systems and typically re-implement only some basic
services such as differencing and merging. On the contrary, some approaches have pro-
posed to develop complete versioning systems which are based on alternative storage
technologies from scratch. De Lucia et al. [80] have developed a management system
called ADAMS which uses dependency links which support traceability in context-aware
change management. The system is extensible in the sense that it can be customized
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to different kinds of software artifacts. A specific extension named COMOVER [38,
81] has been developed to parse and handle models being serialized in the XMI for-
mat. Another approach which is based on the XMI standard is Odyssey-VCS [183,
199]. Its main feature is to enable a fine-grained definition of which types of model
elements are to be treated as atomic configuration items from a software configuration
management point of view. EMFStore [145], which is based on the former Sysiphus
[62] project, provides a model repository for EMF-based models. CoObRA [218, 219]
has been integrated into the Fujaba tool suite4. Oda and Saeki [197] propose to use
generative techniques in order to develop version control systems for various types of
visual models. General concepts for model repositories have also been developed in
the AMOR (Advanced Model Repository) project5, a collaborative project with part-
ners from academia and industry. Commercial modeling tools such MagicDraw6 often
provide a central repository service as additional add-on7.

Model repositories are rather complex distributed systems and often rely on client-
side installations being tightly integrated into an MDE environment. The dominant
approach to model differencing is operation-based, which is either achieved by track-
ing editing commands in standard editors of an MDE environment, or by exploiting
the logging facilities of the underlying ooDBMS. Thus, the problem of semantically
lifting low-level differences and creating executable edit scripts as addressed in this
thesis virtually disappears. However, in addition to general problems of logging-based
approaches (cf. Section 2.3.2), the obtained logs are just sequences of edit steps, i.e.
“pure” directed deltas; information about dependencies is not available and may be
difficult to detect since a precise specification of edit operations is often hidden in the
source code of model editors.

Nonetheless, model repositories also provide some advantages. Most notably, they
enable fine-grained traceability and locking of dedicated model elements. The latter
feature makes pessimistic versioning slightly more attractive. Moreover, the unit of ver-
sioning can be shifted from files, which often include a complete model, to particular
sub-models or even to single model elements. These features are largely orthogonal to
the tool functions being developed in terms of this thesis, there is no principal limita-
tion to integrate these functions with any of the available model repositories. However,
the basic storage service of these systems is specifically designed for models and does
not support the versioning of source code or other kinds of traditional development
documents, which are usually not replaced completely. Using different versioning sys-
tems for models and traditional development documents is obviously not an attractive
solution.

4http://www.fujaba.de
5http://www.model-repository.de
6http://www.nomagic.com/products/magicdraw.html
7http://www.nomagic.com/products/teamwork-server.html

http://www.fujaba.de
http://www.model-repository.de
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http://www.nomagic.com/products/teamwork-server.html
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10.4 Approaches from other Domains

In this section, we briefly review approaches from other domains being closely related
to the some of the problems addressed in this thesis.

Design decision management. Könemann [149, 150, 151] presents an approach to
the patching of models which considers the problem from a broader perspective. This
approach aims at understanding and documenting the goals and design decisions man-
ifested in the changes observed between the original and changed model. Könemann
proposes a detailed process how a raw difference is transformed into a patch. This
process combines several simple heuristics for grouping model changes and how the
patch is applied later on a target model. The process resorts several times to interac-
tive interventions of developers, e.g. in order to semantically enrich the contents of the
patch, to control the resolution of references, or to correct and to control the effects of
the application of the patch. On the one hand, the process is very flexible, in extreme
cases, the patch is actually re-implemented for the target model. On the other hand,
it is very labor-intensive since each group of related elementary modifications must be
identified and treated manually.

In contrast to Könemann’s approach, our approach is much more automated: the
lifting of raw differences is fully automated, the application of the patch requires only
limited user interaction. Our approach can exploit the additional knowledge about
complex edit operations in order to detect arguments in editing steps and to protect
against consistency violations.

Mining software repositories. A number of publications have addressed the reverse
engineering of refactorings in the context of mining repositories.

Fadhel et al. [43] propose a search-based detection of model refactorings. Given an
initial model, a revised model and a set of executable edit operations, they search for
a sequence of operation invocations that transforms the initial model into the revised
model. Due to the huge number of possible combinations of edit operation invocations,
a heuristic method is used to explore the space of possible solutions; The approach uses
a genetic algorithm that has been adapted to the problem domain: An initial population
of candidate solutions, i.e. edit operation sequences, is iteratively evolved using simple
implementations of the genetic selection, mutation and crossover operator. The fitness
of a solution is assessed by its similarity to the revised model provided as input. An
advantage of the approach is that it is able to detect sequences of complex operations
which have transient effects. The algorithm seems to be practically applicable if original
and revised model are very similar. In case of larger-scaled differences, however, the
approach most likely is faced with serious performance problems. Moreover, as in the
case of logging, the algorithm delivers pure directed deltas without any information
about actual dependencies between edit steps.

Xing et al. [265] proposes to export relevant difference information in a database
and to use queries for finding instances of refactorings. Our problem of actually anno-
tating and lifting a difference is not directly addressed, the production of information
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required to later re-execute found instances of refactorings is completely out of scope.
Furthermore, the overhead of setting up a database and creating all required indexes,
which is relevant when mining repositories, is a significant performance problem when
comparing only two models.

Further analysis procedures, e.g. [82, 83, 205], have been proposed for detecting
refactoring operations in evolving object-oriented software. The main intention is the
same as with [43, 265], namely to document potential instances of refactorings, which
shall be manually inspected or just counted.

Generation of edit operations. We are not aware of any other approaches for
constructing consistency-preserving edit operations. There are approaches to create
certain kinds of edit operations or grammars which can construct or modify graphs
or models. However, these approaches either do not support all kinds of modifications
(e.g. setting attribute values or moving elements) or they can lead to serious consistency
violations.

Edit operations on models are indirectly addressed in some approaches which aim at
generating instance models for a given meta-model. Virtually all of these approaches
are based on the idea to systematically enumerate meta-model instances. Brottier et al.
[61] describe an enumeration algorithm which is based on model fragments that must
be specified manually. Other approaches use SAT-solvers such as the Alloy Analyzer
[129] to systematically enumerate valid instances in a restricted search space. The ap-
proach of Alanen and Porres [23] assumes that a model is first converted into a string
representation, then edited using a syntax-directed editor, and finally converted back
to an ASG-based representation. Our actual problem of generating executable specifi-
cations/implementations of edit operations has been addressed only by few approaches.

In the context of engineering delta modeling languages [119], Seidl et al. [221] present
an approach to generate executable edit operations (called “delta operations”) from
EMOF-based meta-models. They support six kinds of delta operations which are sim-
ilar to ours. Set and unset operations are included as they support model element
attributes having null values. However, in contrast to our CPERs, multiplicity con-
straints in meta-models are not supported, i.e. mandatory children and neighbors are
not created (deleted) in a single transaction.

Ehrig et al. [96] deduce graph grammar rules from meta-models. The generated
set of rules is organized in three layers: Layer 1 rules create instances of meta-model
classes, Layer 2 establishes mandatory relationships between elements. In this step
additional elements are also created when necessary. Finally, Layer 3 rules establish
optional relationships. The rules are applied randomly to an empty initial model to
create a concrete instance of the meta-model. Taentzer [234] extends the approach from
restricted multiplicities to arbitrary ones. However, using the concept of layered graph
grammars obviously leads to inconsistent intermediate states because the different lay-
ers, in particular layers 1 and 2, are applied independently. Hence, the generated rules
do not implement consistency-preserving edit operations. Moreover, rules which delete
or move model elements or which change attribute values of elements are not generated
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in this approach at all.
Hoffmann and Minas [127] describe how to translate a class diagram into a so called

adaptive star grammar. They also support advanced modeling concepts of class dia-
grams, like association subsetting and redefinition. However, such grammars are only
intended to produce new models. They do not address the problem of modifying ex-
isting models, e.g. using deletions, since their rules use non-terminal symbols which do
not appear in existing models.





CHAPTER11
Conclusions and Future Work

This chapter concludes the thesis with a summary in Section 11.1, an outlook on
possible future work and research directions is given in Section 11.2.

11.1 Summary

Version management is a key functionality of software development environments. This
applies in particular to software development environments which support MDE. While
basic storage services such as storing models in files, repositories or databases are read-
ily available, it soon became obvious that functions for comparing (differencing) and
merging models are a much bigger challenge than similar, well-known functions for
textual documents, notably source code. It is commonly agreed that model version-
ing needs a structural approach to model differencing and the propagation of model
changes. Line-based approaches as used for textual software artifacts are inappropriate.
To that end, approaches to structural model versioning have started to be developed,
however, are still in their infancy. The main problem is that they are stuck in abstract
syntax structures for models and operate on low-level, sometimes tool-specific model
representations. The resulting differences, which are based on low-level edit operations
such as creating/deleting single nodes/edges of an ASG, are often hard to understand
and lead to serious consistency problems when being used for the propagation of model
changes.

To tackle these problems, we presented concepts, techniques, and tools that are
needed to systematically lift up structural model versioning to a higher level of ab-
straction. The key idea is to lift model differences to user-level edit operations, e.g.
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operations available as editing commands in standard model editors or as offered by
modern refactoring tools, such that modelers can easily recognize and manage changes.
Obviously, formalisms to define such language-specific operations and methods to rec-
ognize the resulting changes mutually depend on each other. We use model transfor-
mation rules implemented in Henshin in order to specify edit operations in a precise
and meaningful way. Our approach exploits the fact that Henshin rules are based on
graph transformation concepts. These rules are declarative enough in order to be stat-
ically analyzed, e.g. for potential conflicts and dependencies, and to be dynamically
interpreted by generic algorithms. In particular, we use the Henshin pattern matching
engine in order to find occurrences of edit operations in a given low-level difference;
change patterns to be found are specified by recognition rules which are automatically
generated from their corresponding edit rules. Of course, edit rules can be used as
executable specifications of the respective edit operations, i.e. edit scripts generated by
our approach serve as executable model transformations. This way, the same set of edit
rules can be used to specify and recognize model changes. Consequently, detectable
edit operations being reported as model changes are always kept consistent with their
executable specification.

Based on the developed foundations and technologies, another contribution of this
thesis is an approach to model patching which prevents serious inconsistencies in the
patched model: Patched models are guaranteed to meet the consistency constraints
required by the standard editor of a development environment. The key idea is to
use only consistency-preserving edit operations on models, which obviously depend
on the modeling language and the required level of consistency. Engineering a set of
executable specifications of CPEOs is supported both technically and methodologically.
The idea is to first “transform” a perfect (or standard) meta-model into an effective
meta-model which formally documents the required consistency-level of a particular
modeling environment. Edit rules being implementations of CPEOs are finally obtained
from the effective meta-model in a semi-automated way. Our approach to edit rule
generation supports basic consistency-constraints and the commonly used combinations
of multiplicity invariants.

In addition, we slightly extended our model patching facility to provide a completely
new approach to update workspace copies of models. This approach is based on the
principle of document patching and differs methodologically and technically from pre-
vious approaches based on 3-way merging. An interactive workspace update tool which
is based on our approach fulfills the same requirements than classical merge tools, some
of them in a better way: From a modeler’s point of view, the user interface is less com-
plex than GUIs of interactive 3-way merge tools, and the user interaction concept does
not force a user to mentally return to the common base version. Nonetheless, we were
able to detect almost the same conflicts, which is demonstrated by means of a model
merging benchmark. From the point of view of a tool chain maintainer, a workspace
update tool can be integrated into an existing MDE tool environment with minimal
effort.

We finally presented a generic framework supporting the planned re-use and compo-
sition of a set of configurable tool components. A subset of these components has been
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developed in terms of this thesis, while other components can be integrated and re-used
from an existing MDE environment. The framework is based on a thorough domain
analysis which conveys several requirements that arised in our industrial and academic
collaborations. We demonstrated the feasibility of the proposed approach providing
a reference implementation known as SiLift. The framework has been used to build
several individual instances of a family of difference tools covering a broad range of
different version and variant management scenarios.

The concepts and tools developed in this thesis have been evaluated in several case
studies. In addition to our own experiments, the approach has been successfully used
to solve concrete problems in other research projects dealing with model evolution,
e.g. in the context of the German priority programme on managed software evolution
[116]. Moreover, a brief overview of selected synergetic research results that have been
collaboratively achieved in the context of software evolution for automated production
systems is presented in [19]. Semantically lifting model differences to a higher level of
abstraction plays a pivotal role for many of these results.

In this thesis, we emphasized the support of visual modeling languages since they
impose the most challenging problems and requirements w.r.t. model versioning. How-
ever, we also showed that the approach is not limited to visual models but can be
applied to textual models, too. This line of research is not only of great interest for
the domain of model versioning but can be also exploited for change management of
textual artifacts, notably source code used in classical programming languages. We
are convinced that lifting low-level differences to a higher level of abstraction based on
semantically rich edit operations can be advantageously used for the versioning of all
kinds of structured documents.

11.2 Outlook

In this section, we briefly outline possible directions to future research, which can be
roughly classified into two categories:

On the one hand, our approach can be improved w.r.t. several aspects. Handling of
ordered element sets, optimizing the performance of the difference calculation, and the
integration of our tool functionality into a version control system are examples of this.
Another important aspect is to provide better meta-tool support in order to make the
configuration of individual tools which are based on our framework more user-friendly.

On the other hand, tool functions for calculating and propagating model changes
are very basic functions which are necessary in many application scenarios beyond
classic versioning. Many of them can benefit from lifting these functions from low-level
to high-level edit operations. In the context of analyzing model histories, for example,
complex edit operations can be utilized as they implicitly create tracing information, i.e.
information about successor relationships between model elements. Model co-evolution
and delta-oriented SPL engineering are further example problem domains to which our
techniques can be beneficially applied.
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Handling of ordered element sets. Currently, we assume ASGs to be typed, at-
tributed but not to be ordered graphs, which is consistent with the graph model of Hen-
shin. However, models may contain various “collections” of ordered model elements.
In some cases, the order is relevant for model versioning. For example, a parameter list
of an operation of a UML class is an ordered set of parameters. Users can re-order the
elements of a collection and insert or delete elements at a given position. Such editing
effects should be reported correctly in model differences. If differences are transformed
to edit scripts which are used as patches, elements should be arranged according to
the specified order, i.e. positions must be specified in edit scripts. These requirements
finally lead to the problems (i) to offer an approach for handling positions of inserted,
deleted or moved elements and to define appropriate consistency-preserving edit oper-
ations on ordered sets, and (ii) to actually compute the permutation of a collection.

In [134], we proposed a first approach how to deal with these problems. As we are
typically interested in the relative order in which elements are arranged to each other,
the basic idea is to introduce additional edges in an ASG indicating the relative posi-
tion of an element with respect to its predecessor/successor. Thus, re-orderings as well
as insertions and deletions at dedicated positions can be implemented as normal Hen-
shin rules. On the meta-model layer, MOF-based meta-models, in which ordered edge
types are declared by simple data values, are mapped to type graphs such that linked
list “implementations” are provided for each ordered edge type. Such a “refined” type
graph is finally implemented in EMF Ecore. As a consequence, difference tools do not
operate on instances of the original meta-model, but on a refined version. Thus, on the
instance model layer, two additional transformations are required: An input transfor-
mation supplements predecessor and successor relationships. If the processed models
are being modified, e.g. in case of patching scenarios, an output transformation ar-
ranges the order of runtime objects in terms of their original implementation structures
according to the order which is induced by the predecessor/successor relationships. The
predecessor/successor relationships are finally deleted.

However, we left an integration of the proposed approach into our model differencing
tool chain as future work, as it is faced with several challenges which have yet been
addressed only in an ad-hoc manner.

Tooling-related challenges are (a) how to synchronize instances of the refined meta-
model with instances of the original meta-model while interactively applying edit scripts,
and (b) how to simultaneously manage an original meta-model and its refined version
in a single MDE environment.

A particular conceptual problem is that edit operations on ordered element sets
can lead to unavoidable transient effects. In this regard, [134] suggests only a sim-
ple workaround mitigating this problem. The basic idea is to extend our differencing
pipeline by a feedback loop such that the information gathered during edit operation
recognition is taken into account by the creation of a low-level difference. In particular,
correspondences between elements in corresponding element lists shall be iteratively re-
moved. The iteration ends as soon as all low-level changes can be grouped to semantic
change sets, i.e. all non-erasable transient effects have been eliminated. The feedback
loop terminates as each iteration only leads to the removal of a correspondence, no
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incremental calculation of a “better” matching is being triggered. In the worst case,
none of the elements of the corresponding lists are considered to be corresponding. In
this case, we can be sure to find a trivial sequence of edit steps, i.e. all elements are
removed from the list and subsequently inserted in the correct order.

In general, the conceptual design and implementation of matching algorithms that
allow a feedback loop in the conventional processing pipeline of state-based difference
tools is worth to be investigated in more detail for several other problems. An example
of this is the problem of how to handle model matchings violating soundness criteria
being required by our approach to operation detection. These cases are hypothetical
if a reliable matcher is used, but they may occur if the matching has to be calculated
based on heuristics.

Performance optimizations. Experiences collected in the conducted case studies
and experiments show that the performance of our approach to semantic lifting de-
pends on a variety of factors, which is a general finding for rule-based model trans-
formations [244]. Runtimes are acceptable for most configurations and medium-sized
models. However, if models or complex edit rules are huge, difference calculation leads
to runtimes which are hardly acceptable in typical usage scenarios. The same problem
arises when our techniques shall be applied to structural differencing of program source
code. Our hypothesis is that the following conceptual improvements have the potential
for significant performance optimizations:

• Incremental lifting of differences: Optional complex edit rules are typically
composed of smaller mandatory or other optional rules. Nonetheless, we currently
treat such a complex rule as a single monolithic rule, which can lead to consid-
erably large edit rules for some kinds of edit operations, notably in the case of
refactorings. The generated recognition rules are treated as one monolithic rule,
too. Obviously, a recognition rule is even slightly bigger than its corresponding
edit rule as it comprises difference information and model structures (s. Chap-
ter 4). The approach is sensible from the perspective of software design; during
operation recognition, all rules can be processed in the same way, and all recogni-
tion rules can be applied to a low-level difference in parallel. From a performance
point of view, however, incrementally lifting a difference is a less costly approach.
The idea is to apply small rules first. Subsequently, composite rules are applied.
Semantic change sets which have been already created in a previous iteration
may serve as pre-match for a complex recognition rule. Thus, the depth of the
recursion of the recursive graph pattern matching algorithm that is used to find
a recognition rule match can be reduced in many cases.

• Reduction of the scope of comparison: Currently, the scope of comparison
covers complete models which are to be compared with each other. This leads to
unnecessarily large search spaces for models in which only small, typically local
parts were actually changed. However, the reduction of the scope of compari-
son is not straightforward and leads to several non-trivial requirements. Simple
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heuristics as proposed in [30], which decomposes the source code of programs on
a “per-file basis” into a set of disjoint context-free syntax trees, are hardly ap-
plicable to ASGs of models. More sophisticated strategies are required in order
to split large models into smaller, manageable parts. A particular challenge is
that the splitting strategy must be compatible to the configuration of a difference
calculation tool.

Integration into a version control system. The tool functions being developed in
the context of this thesis are independent of a particular version control system (VCS).
This is strongly required for some of our application scenarios, notably SC4, where
different variants of a model are not located in a central repository due to organizational
constraints. In other scenarios, in particular SC3 and SC5, our solutions become more
powerful from a practical point of view if they are tightly integrated into an existing
VCS. Such an integration is possible with a model repository (cf. Section 10.3) or any
of the available mainstream versioning systems such as Subversion or Git. We aim at
the integration with one of the latter ones such that all MDE and non-MDE artifacts
are managed in a single repository.

A technical challenge is that basic commands, such as SVN update, are traditionally
treated as batch procedures (cf. Section 2.3.3), while a particular feature of our approach
is to interactively control the propagation of model changes. One option is to implement
a client-side VCS adaptation layer which basically delegates to native commands, but
resorts to locally installed difference tools if needed. Another option is to use hooks
which are usually provided by complementary client VCS software. This option is
very attractive if the VCS client is integrated with a development environment as, e.g.,
Subversive1 or EGit2 which are based on Eclipse. The basic idea is to listen for certain
events in order to get noticed before a particular command is to be executed. Then,
the execution of the command can be suppressed and passed to a dedicated difference
tool instead.

Meta-tool support. Chapter 7 presents a general method and process for the cre-
ation of edit rules. However, this process resorts several times to development tasks
which have to be performed manually and typically require a lot of experience. To that
end, additional meta-tools are required in order to make the configuration of individual
tools which are based on our framework more user-friendly

Firstly, a given standard meta-model currently has to be manually edited towards
the effective meta-model serving as input for the edit rule generation. This step should
be rather performed based on in-place model transformations which are permitted in
this context.

A further important aspect is to statically check a set of edit rules for certain criteria,
notably soundness and completeness, which can yet only be guaranteed for generated

1http://eclipse.org/subversive
2http://eclipse.org/egit
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rules. However, manual adaptations to generated edit rules have to be carefully en-
gineered. This approach is often acceptable, but tedious and prone to errors in cases
where edit rules have to be manually created to a large extent or already exist. Another
problem is that the set of edit rules used to configure the operation detection engine
must be consistent with the properties of the matching produced by the matcher of a
particular differencing pipeline. This problem is not directly addressed in this thesis.
Instead, we rather rely on certain properties of the matcher. These assumptions are
reasonable, but can not be guaranteed in general, notably in the case of similarity-based
matchers. Here, consistent configurations of all components of a differencing pipeline
are strongly required.

Finally, meta-tool support shall be provided to create and manage complex edit rules.
Such a tool suite should at least offer a basic function to compose two (potentially
dependent) transformation rules to a single composite rule having the same effect as
the sequential application of its components. In this regard, the automated deduction of
composite preconditions from component preconditions is another interesting feature.
Here, we think of integrating recent advances in the field of model transformation
composition, e.g. [36, 123, 250]. Managing variability in large sets of similar complex
edit rules is another issue which needs to be addressed, the approach presented in [230]
may be useful for this.

Analysis of model histories supporting complex edit operations. The evo-
lution of a model cannot be fully understood if only information about “short-term
changes”, i.e. changes between successive revisions, is available. Typical questions
which refer to a history as a whole are: When and in which context was a model ele-
ment created? Which model elements were changed most frequently? Which groups of
model elements were modified together? Answering these questions requires to identify
long-living entities, i.e. single model elements, or groups of related model elements,
which exist almost unchanged for some time in the history of a model. Previous ap-
proaches to the analysis of model histories such as [259] support only single model
elements as long-living entities. The tracing of sets of related model elements, e.g.
all model elements involved in a bug, is only supported in the form of ad-hoc queries.
Complex edit operations, however, affect virtually always several model elements. They
implicitly create groups of model elements which are affected together by one change
and which should also be regarded as long-living entities.

Here, we aim at extending existing concepts by support for non-atomic long-living
entities in histories. The basic idea is to utilize complex operations to investigate splits
and merges of evolving model elements. For example, model elements which are deleted
by a refactoring can “re-incarnate” in other created model elements. The refactoring
pullUpAttribute in class diagrams, for instance, creates a new attribute at the superclass;
it can be considered as the successor of all deleted attributes at the subclasses. More
generally, refactorings and other kinds of complex edit operations can lead to non-trivial
structures of successor relationships between model elements which should be exploited
for the analysis of model histories.
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Supporting model co-evolution. So far, our work focuses on “monolithic” models
only. However, MDE typically involves a multitude of different models being used to
describe different aspects such as structure, behavior, performance, reliability etc. of
a system. Consequently, we have not only one model of a system but a network of
interrelated (or coupled) models, which leads to several challenging problems.

Loosely coupled models lead to a synchronization problem: Different (sub-)models,
each of them representing a dedicated view, are edited independently of each other
since they are assigned to different developers or due to the fact that a developer
concentrates on a single aspect at a specific point of time. Thus, changes in one model
must be propagated to all related models in order to keep the views synchronized and to
avoid inconsistencies. Solutions exist if the propagation is straightforward and can be
fully automated (see e.g. [114, 124]). However, there are several types of semantically
interrelated models for which no simple and straightforward co-evolution exists [112].
The only viable solution is to pre-define co-evolution rules which can be offered to
developers as possible options. A first step towards this direction is presented in [18].
In this work, we address a particular challenge domain engineers are faced with in
this context, namely to find the proper co-evolution rules for semantically interrelated
models. To that end, we developed an extensive analysis framework to learn about
co-evolution steps from a given co-evolution history and to finally predict them with
a certain degree of probability. While basic assessments show that the approach is
feasible, larger case studies are needed to evaluate how far we can push the generation
of co-evolution rules and how much training data is needed to derive appropriate co-
evolution rules.

In contrast, versioning tools for tightly coupled models are typically faced with the
huge challenge of versioning single models independently of each other. In the context
of the OMG, a standard modeling guideline for the definition of OMG-related meta-
models such as the UML [190], SysML [191] etc. is to represent all information in
a model redundancy-free and only once. Redundancy-freedom implies that if several
models contain the same information from a users’ point of view then the related data
is contained in only one model and this unique representation is referenced from other
models. For example, a state machine can be associated with as class in a class diagram;
a transition in the state machine can be triggered by a call-event which refers to an
operation of this class. This leads to the problem that our above state machine cannot
be displayed graphically in isolation without the other referenced model, in our example
the class diagram: The signature of the called operation is missing. From a users’ point
of view, this signature is a part of the state machine since it appears as part of the
standard graphical representation of the state machine. This example shows that the
notion of “a model” as defined in [190] is not identical to the notion of “a model” from
a user’s point of view. Hence, it does not support models as autonomous documents:
One cannot check out an isolated model as a workspace copy and then display and edit
this model using standard model editors. This challenge is insufficiently addressed by
the current state of the art.



11.2. Outlook 219

Integration with delta-oriented SPL engineering. Synergies can be achieved by
integrating our techniques with delta-oriented SPL engineering [130, 214]. In this ap-
proach, there is a distinguished product (called base version) of a product line, which
is a fully functional product, e.g. one with a large set of features which were tested
together. All other products are generated by patching the base version, i.e. by re-
moving, replacing or adding parts related to a particular feature. In delta-oriented
modeling [120], a delta is a specification of how to transform one valid variant (called
the source variant) of a model into a target variant. However, the manual specification
of a large set of deltas is tedious and prone to errors. Thus, a first obvious usage sce-
nario for applying our techniques is an approach to semi-automated delta extraction
[19]. With this approach, the definition of a delta is achieved in two steps: First, a
particular source variant is modified using standard editors such that it finally becomes
the desired target variant. Secondly, a delta is automatically extracted, basically by
comparing the original and the revised versions of the model. Thus, the definition of a
delta becomes much easier and far more reliable.
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[48] Jean Bézivin. “On the unification power of models.” In: Software & Systems Modeling
4.2 (2005), pp. 171–188.

[49] Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns, Gabriele Taentzer,
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and Michael Löwe. “Algebraic Approaches to Graph Transformation-Part I: Basic
Concepts and Double Pushout Approach.” In: Handbook of Graph Grammars. 1997,
pp. 163–246.

[80] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. “ADAMS:
ADvanced Artefact Management System.” In: CSMR. 2006, pp. 349–350.

[81] Andrea De Lucia, Fausto Fasano, Giuseppe Scanniello, and Genoveffa Tortora. “Con-
current fine-grained versioning of UML models.” In: Software Maintenance and Reengi-
neering, 2009. CSMR’09. 13th European Conference on. IEEE. 2009, pp. 89–98.
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[240] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake, and
Thomas Leich. “FeatureIDE: An extensible framework for feature-oriented software
development.” In: Science of Computer Programming 79 (2014), pp. 70–85.

[241] Walter F Tichy. “Design, implementation, and evaluation of a revision control system.”
In: Proceedings of the 6th international conference on Software engineering. IEEE
Computer Society Press. 1982, pp. 58–67.



236 Bibliography

[242] Walter F Tichy. “The string-to-string correction problem with block moves.” In: ACM
Transactions on Computer Systems (TOCS) 2.4 (1984), pp. 309–321.

[243] Walter F Tichy. “Tools for Software Configuration Management.” In: SCM 30 (1988),
pp. 1–20.

[244] Matthias Tichy, Christian Krause, and Grischa Liebel. “Detecting Performance Bad
Smells for Henshin Model Transformations.” In: AMT@ MoDELS 1077 (2013).

[245] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. “Difference compu-
tation of large models.” In: Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The founda-
tions of software engineering. ACM. 2007, pp. 295–304.

[246] University of Siegen, Software Engineering Group. The SiDiff Project. 2015. url:
http://www.sidiff.org.

[247] University of Siegen, Software Engineering Group. The SiLift Project. 2015. url: http:
//pi.informatik.uni-siegen.de/Projekte/SiLift.

[248] Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen. “Challenges in model-
driven software engineering.” In: Models in Software Engineering. Springer, 2009,
pp. 35–47.

[249] Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster and more focused control-
flow analysis for business process models through SESE decomposition. Springer, 2007.

[250] Bert Vanhooff, Dhouha Ayed, Stefan Van Baelen, Wouter Joosen, and Yolande Berbers.
“Uniti: A unified transformation infrastructure.” In: Model Driven Engineering Lan-
guages and Systems. Springer, 2007, pp. 31–45.

[251] Rajesh Vasa, Markus Lumpe, and Allan Jones. Helix-Software Evolution Data Set.
2010. url: http://www.ict.swin.edu.au/research/projects/helix.

[252] Sander D Vermolen, Guido Wachsmuth, and Eelco Visser. “Reconstructing complex
metamodel evolution.” In: Software Language Engineering. Springer, 2012, pp. 201–
221.

[253] Birgit Vogel-Heuser, Jens Folmer, and Christoph Legat. “Anforderungen an die Soft-
wareevolution in der Automatisierung des Maschinen- und Anlagenbaus.” In: at–Auto-
matisierungstechnik 62.3 (2014), pp. 163–174.

[254] B Vogel-Heuser, C Legat, J Folmer, and S Feldmann. Researching evolution in in-
dustrial plant automation: Scenarios and documentation of the pick and place unit.
Technical Report TUM-AIS-TR-01-14-02, Institute of Automation and Information
Systems, Technische Universität München, 2014.

[255] Valeriy Vyatkin. “Software engineering in industrial automation: State-of-the-art re-
view.” In: Industrial Informatics, IEEE Transactions on 9.3 (2013), pp. 1234–1249.

[256] Holger Wache, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt, Gerhard Schus-
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