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Abstract

Heavy meson decays are of significant importance for testing the Standard Model of
particle physics. They provide possibilities to determine its parameters from experi-
mental data and give hints to physics beyond the Standard Model. In order to exploit
the provided data, a deep theoretical understanding of these decays is mandatory. The
thesis is devoted to a thorough theoretical analysis of selected aspects of heavy meson
flavor physics with the focus on the perturbative QCD effects.

The first part of the thesis is dedicated to the evaluation of leptonic decay constants.
Decay constants constitute hadronic quantities, which parametrize transitions of a sin-
gle meson to the QCD vacuum that are mediated by a local flavor current. They
contain the only hadronic information in leptonic weak decays and enter as input pa-
rameters into the description of non-leptonic heavy meson decays and mixing processes.
We apply the method of QCD sum rules to estimate the decay constants of vector
and pseudoscalar heavy-light mesons in their ground state. This method includes the
operator product expansion (OPE), which allows for a systematic implementation of
perturbative corrections. We calculate perturbative QCD corrections to the leading
term of the OPE with next-to-leading order accuracy. To this end, we construct a
computation routine for one- and two-loop topologies and present the computational
techniques in detail. The effects of SU(3)-flavor violation are also taken into account
by including corrections of the strange quark mass. Our results gain highest precision
within this approach by including all known perturbative contributions and new cor-
rections to the quark-condensate contribution in the vector-meson channel for the first
time.

In the second part we extend the QCD sum rule method, in which, in addition to the
ground state contribution, excited states are also included. We present a statistical
analysis to determine the decay constants of the first radially excited states of heavy-
light mesons.

The final part of the thesis discusses inclusive weak decays of heavy hadrons. We apply
the OPE within the heavy quark effective theory (HQET) to determine the total decay
rate of such decays. We compute the radiative correction to the coefficient function
of the power-suppressed chromomagnetic operator with next-to-leading accuracy. This
correction is computed analytically and was up to now unknown. For this purpose, we
perform a QCD-HQET-matching calculation and build a computational environment
for on-shell two- and three-loop Feynman graphs. For phenomenological applications
we also present moments of differential distributions. As a final statement, the influence
on the CKM matrix entry |Vcb| due to the new correction term is estimated.





Zusammenfassung

Die Zerfälle von schweren Mesonen stellen einen wichtigen Bestandteil zur Verifikation
des Standardmodells der Teilchenphysik dar. Mit diesen Zerfällen lassen sich bestimmte
Parameter des Standardmodells experimentell überprüfen und können damit Hinweise
auf Phänomene jenseits des Standardmodells geben. Zur Auswertung der experi-
mentellen Daten ist ein grundlegendes Verständnis der betrachteten Zerfälle notwendig.
In dieser Arbeit werden ausgewählte Aspekte der Flavourphysik mit schweren Meso-
nen betrachtet, wobei die theoretische Analyse von perturbativen QCD-Effekten im
Vordergrund steht.

Der erste Teil dieser Arbeit widmet sich der Bestimmung von leptonischen Zerfallskon-
stanten. Diese sind hadronische Matrixelemente, welche durch einen lokalen Flavour-
strom Übergänge zwischen einem Mesonen und dem QCD-Vakuum vermitteln. Für
leptonische Zerfälle beschreiben die Zerfallskonstanten hadronische Effekte. Sie finden
ebenso Anwendung bei der Beschreibung von nicht-leptonischen Zerfällen und hadro-
nischen Mischungsprozessen. Um die Zerfallskonstanten von vektoriellen und pseu-
doskalaren Mesonen in ihrem Grundzustand zu bestimmen, wird die Methode der
QCD Summenregeln angewendet. Diese Methode ermöglicht eine systematische Imple-
mentierung von perturbativen Korrekturen mit Hilfe der Operatorproduktentwicklung
(OPE). In dieser Arbeit wird eine Berechnungsroutine für Ein- und Zweischleifeninte-
grale verwendet, um den führenden Term der OPE und die nächstführende Ordnung
um die starke Kopplung zu berechnen. Des Weiteren werden Korrekturen betrachtet,
welche von der Masse des Strange Quarks abhängen. Diese führen zur Brechung der
SU(3)-Flavoursymmetrie. Im Rahmen der Methode werden Zerfallskonstanten mit der
derzeit höchsten Präzision bestimmt, da alle bekannten perturbativen Beiträge und
neue Korrekturen zum Quarkkondensat für Vektormesonen mitberücksichtigt werden.

Im zweiten Teil wird die Methode der QCD Summenregeln erweitert, um Aussagen jen-
seits der Grundzustandsmesonen treffen zu können. Zu diesem Zweck wird eine statis-
tische Analyse verwendet um die Zerfallskonstanten der radial angeregten Zustände
von schweren Mesonen zu bestimmen.

Im letzten Teil werden inklusive Zerfälle von schweren Hadronen betrachtet. Dazu
dient die OPE im Rahmen der Heavy Quark Effective Theory (HQET) als mathema-
tisches Konstrukt zur Parametrisierung der totalen Zerfallsbreiten solcher Zerfälle. In
dieser Arbeit wird die Strahlungskorrektur als Koeffizientenfunktion des zugehörigen
massenunterdrückten chromomagnetischen Operators bestimmt und die Korrektur in
analytischer Form in nächstführender Ordnung um die starke Kopplung zum ersten
Mal berechnet. Die Berechnung wird mit Hilfe eines QCD-HQET-Vergleich (Match-
ing) durchgeführt. Hierfür wurde ein Berechnungschema zur Bestimmung von Zwei-



und Dreischleifen-Feynmandiagrammen mit dem externen Impuls auf der Massenschale
entwickelt. Als Ergebnis werden die totalen Zerfallsbreiten sowie die Momente der
differentiellen Zerfallsbreiten angegeben, welche für phenomenologische Anwendungen
interessant sind. Diese Korrekturen haben Auswirkungen auf den Wert des CKM-
Matrixelements |Vcb|, die abschließend diskutiert werden.
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Chapter 1

Introduction

In the second half of the 20th century the knowledge about physics has reached a new
milestone. As a collaborative work of many scientists the Standard Model (SM) of
elementary particle physics was developed. The SM is a quantum field theory, which
includes a multitude of elementary particles as building blocks of matter, and describes
three of the four fundamental forces of nature: the electromagnetic, the weak and the
strong force. Its success is based on a large number of measurements as a confirmation
of the theory’s predictions.

The first steps towards the final description of the SM started in the 1950’s with Yang’s
and Mills’ work in extending gauge invariance from local to non-local (non-commuting)
transformations [1]. This achievement laid the foundations for the unification of electro-
magnetic and weak interactions, which was developed about ten years later by Glashow
[2]. At the same time, three individual groups published a formalism that refers to the
generation of mass of the weak gauge bosons [3, 4, 5], the Higgs mechanism. A few
years later Weinberg and Salam included the Higgs mechanism to the existing theories,
which gave the electroweak theory its modern form [6, 7]. ’t Hooft and Veltman finally
proved that arising divergencies within this theory could be removed by the process of
renormalization [8]. This last step enabled precise calculations of particle properties
in perturbation theory. The third force is described by the theory of strong interac-
tions, the Quantum Chromodynamics (QCD). It was initiated by many scientists in the
1960’s such as Gell-Mann, Nishijima, Ne’eman and Zweig, to name only a few. QCD
describes the interaction of quarks and gluons inside of hadrons.

Throughout the 1950’s and 60’s, improvements in collider experiments led to a large
variety of observed particles. It became evident that they were built by smaller yet
invisible constituents. A notable puzzle in that time was the measured lifetime of
“strange” particles. Their lifetimes were much larger as one would have expected for
strong and electromagnetic decays. Therefore, in 1953 Gell-Mann introduced an addi-
tional quantum number, the strangeness, which is carried by strange quarks [9]. With
this new quantum number, the puzzle about longer lifetimes could be resolved, and
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it also explained the appearance of pairs of strange particles in strong interactions.
In 1964 the discovery of the Ω-baryon state |Ω〉 = |sss〉 confirmed the existence of
the postulated quark [10]. The existence of a baryon with three identical quarks and
parallel spins also indicated the necessity of another quantum number, since otherwise
the Pauli exclusion principle would be violated. This new quantum number was later
referred to as color. Electron-positron annihilation in collision experiments also showed
that there are exactly three states of this quantum number. Along with Zweig, Gell-
Mann explained all known quarks as building blocks of hadrons and carriers of color
[11, 12]. The next apparent problem was the mismatch between the predicted and
measured branching fraction of neutral kaon decays into muons (K0 → µ+µ−) [13]. In
the 1970’s this discrepancy was solved by Glashow, Iliopoulos and Maiani by introduc-
ing a fourth quark flavor, the charm quark [14]. All contributing effects to the neutral
kaon decay result in a significant reduction of the predicted branching fraction, which
is compatible to the experimental value. In 1974 the discovery of the J/ψ-particle (cc̄)

confirmed the existence of the proposed charm quark [15, 16].
The observation of K0

L → π+π− by Cronin and Fitch [17] has lead to another extension
of the quark family, a third generation (set) of quark pairs, yielding six quark flavors
in total. An explanation for the long-living K0

L decaying into two pions was found in
the CP violation of weak decays. CP denotes the combination of two discrete symme-
tries, namely the symmetry under charge conjugation transformation C, transforming
a particle into its antiparticle, and the symmetry under parity inversion, which lead
to the mirror image of a physical system. In theory at least three quark-flavor gener-
ations allow CP-violating decays and, hence, the search for the two postulated quarks
was initiated [18]. The confirmation of the third and final generation started in 1977
with the discovery of the bottom quark by the E288 collaboration [19]. In 1995 the
top-quark was discovered by the CDF and D0 collaboration [20, 21], which concluded
the quark family1. Kobayashi and Maskawa identified the additional phase parameter
in the three-generational theory as the source for observed CP-violation. The final con-
firmation of the phase parameter was provided by the BaBar and Belle collaboration
in 2001 for the evidence of CP-violation in the B0 system [23, 24]. An integral part
of the SM are also the mixing properties between individual quark flavor, as accumu-
lated in a 3× 3 matrix (CKM matrix) [25, 18]. This matrix is named after its founders
Cabibbo, Kobayashi and Maskawa. Besides, there are three lepton generations that are
also characterized by their flavor. Precision measurements of the Z-boson give hints
to the number of flavor-generations. Due to the large mass of the Z-boson, it decays

1A fourth generation is excluded by LHC and Tevatron Higgs data and electroweak precision data
[22].
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into all kinds of lepton flavor pairs. Its total width strongly indicates the existence of
just three lepton flavors with light neutrinos [26].

Recently, the last missing particle of the SM, the Higgs boson, was discovered at the
Large Hadron Collider at CERN [27, 28].

Despite the success of the SM, it is still not a complete theory. An outstanding puzzle
is the missing explanation regarding the number and the given arrangement of funda-
mental particles. Hence, one can examine this established model for problems, which
exceed its scope of application. A selection of such unanswered questions and others
that are based on evidence from experimental observations, are the following:

• Neutrino masses. Neutrinos are considered as massless in the SM. But in 1998
and 2002, the Super-Kamiokande and SNO experiments provided evidence that
neutrinos have a small mass due to the relative abundance of atmospheric electron
and muon neutrinos [29, 30]. These measurements confirmed the oscillation of
neutrinos, changing from one lepton flavor to another. Only massive particles
are capable in performing such flavor oscillations.

• Number of free parameters. The SM has 19 independent free parameters in total.
However, the SM cannot give any insights into their values. Instead, they can
only be extracted from specific particle processes.

• Embedding general relativity. No theory of gravity is included in the SM. Still, it
is unclear how to reconcile the concept of general relativity and renormalizable
quantum field theories.

• Baryon-Asymmetry. The common expectation is that matter and anti-matter
should have been created in equal amount at the Big Bang [31]. After the uni-
verse’s “cool-down” both forms of matter would have annihilated completely, if
the CP-symmetry were preserved. The principles of CP violation based on the
SM cannot explain the imbalance of matter and anti-matter [32]. However, from
observations we know that CP-violating effects within the SM are too small and
new sources of CP violation are necessary to explain the distinct amount of resid-
ual matter.

• Dark matter and energy. From cosmological observations we know that our uni-
verse is not build up by the visible matter. The dynamics of the universe infer
the existence of dark matter (unobserved non-luminous matter) and dark energy
(hypothetical form of energy with negative pressure and repulsive gravity).
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On the basis of these puzzles, there are good reasons to investigate the applicability of
the SM and strive for concepts towards a more universal theory. Hence, a deep under-
standing of this theory is essential. Common strategies for testing the SM are direct
and indirect searches for discrepancies between theory predictions and experimental
measurements. Both possibilities imply the extension to new physics models beyond
the SM (BSM). The direct search includes the production of new particles, which have
not been discovered yet. The indirect way is built on precision determination of SM
parameters to find deviations between the theoretical description and experimental
data at the quantum level. Heavy unknown particles may contribute via underlying
virtual effects that influence the SM predictions.

In light of these indirect searches, the phenomenological aspects of weak decays are a
rich resource for understanding the nature of elementary particle interactions. The key
experiments started more than hundred years ago measuring the energy and momen-
tum spectra for β- and µ-decays at low momentum transfer [33]. Nowadays precision
measurements of various weak decays of heavy mesons are used to determine SM pa-
rameters. Moreover, they are also the most promising probe for BSM physics. But
in order to measure the underlying weak effects, it is crucial to have a thorough un-
derstanding of the phenomenology of the strong-interactions as well. The decays of B
mesons have some specific properties, which are beneficial for the theoretical descrip-
tion. Heavy-light B mesons consist of a heavy bottom and a light quark q = {u, d, s}.
To some extent these arguments also hold for D mesons, including a heavy charm
quark. The structure of charged-current interaction, which are relevant for this thesis,
gives rise to three classes of weak B decays:

1. The first class encompasses the leptonic decays of B mesons. Here the valence
quarks annihilate and produce a dilepton pair in the final state. As an example,
one can consider the decay of B → τ ν̄τ , shown in Fig. 1.1(a). At lowest order in
the electroweak theory, the decay width is

Γ(B → τ ν̄τ ) =
G2
F

8π
f 2
B|Vbq|2m2

τmB

(
1− m2

τ

m2
B

)2

, (1.1)

where GF is the Fermi constant, mτ and mB are the masses of the tau-lepton and
the B mesons, respectively, Vbq is the b→ q transition CKM matrix element and
fB is the decay constant of the B meson. The latter quantity characterizes the
meson-to-vacuum transition and contains all information in the realm of strong-
interaction effects.
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B

W τ

ντ

b

q

(a)

W

e

νe

b

q

c

B D,Xc

(b)

W

e

b

q

c

B D

π

(c)

Figure 1.1: Examples of (a) leptonic B → τ ν̄τ , (b) exclusive (inclusive) semileptonic
B → Deν̄e (B → Xceν̄e) and (c) hadronic B → Dπ decays of B mesons.

2. The second class consists of semileptonic decays, in which both leptons and
hadrons are in the final state. For exclusive decays, the decay width can be
formulated in terms of invariant form factors, which depend on the momentum
transfer q2 between the initial and final meson. For inclusive decays, where we
sum over all possible final state mesons, one can apply the heavy quark expan-
sion (HQE) to decompose the decay width, see also Fig. 1.1 (b). The formal
description of the semileptonic inclusive decay width is

Γ(B → Xqeν̄e) = Γ(b→ qeν̄e) +
1

mb

∆Γ(1) +
1

m2
b

∆Γ(2) + . . . . (1.2)

Here we consider the B meson decaying into a hadron state, which includes a
light quark q, and a dilepton pair, see Fig. 1.1 (c). At leading order the hadronic
decay width can be expressed in terms of the partonic width. All other contri-
butions are power-suppressed correction terms.

3. The third class considers the decay of B meson into hadrons. The theoretical
formalism for processes of this kind is the most recent and the least developed
one. Two-body hadronic decays are studied, e.g. in Ref. [34], and studies of
three-body hadronic decays are ongoing [35].

In the following, we will focus on the QCD effects of the first two classes.
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The structure of this thesis can be outlined as follows: Chapter 2 is dedicated to the
SM of particle physics. We outline some basic features of this theory with respect
to the gauge symmetry properties and particle content. Further, we discuss the elec-
troweak theory, quark-flavor mixing, fundamentals of the QCD and perturbative QCD
in electron-positron annihilation. In the chapters 3 – 5 we investigate the decay con-
stants of heavy-light mesons, including either a bottom or a charm quark, by using the
method of QCD sum rules. We set focus on the perturbative structure of the formalized
sum rules and give analytical results for the NLO radiative corrections to the leading
OPE contribution. The calculational strategies and tools for computing the resulting
master integrals are introduced and discussed. We also perform a detailed numerical
study to give updated estimations of the decay constants. Finally, the method itself
is tested and compared to alternative versions based on QCD sum rules. Chapter 6
presents the first step for extending the previous study to the extraction of the de-
cay constants of heavy-light mesons beyond their ground state. In our formalism we
add the first radial-excited state of the mesons and estimate the decay constants with
various strategies within the method of QCD sum rules. The chapters 7 and 8 are
dedicated to inclusive semileptonic B decays. We use the heavy quark expansion to
expand the total decay rate in powers of 1/mQ and separate the series term-wise into
perturbative and non-perturbative expressions. Analytical results for leading power
and power-suppressed terms with NLO accuracy are given and strategies for extract-
ing the relevant contributions as well as calculating all master integrals are discussed.
The latter terms have not been known yet. A brief discussion on the influence of the
new correction term on Vcb is also presented. In Appendix B selected intermediate and
final results are collected. We also give extended details regarding some basic facts,
which are useful for the understanding of this thesis.



Chapter 2

The Standard Model

In this chapter we outline the concept of the Standard Model. A detailed review on
theoretical aspects and the experimental status is given in Refs. [36, 37, 38].

2.1 Outline of the Standard Model

Particle Content and Fundamental Forces

The Standard Model is built up from a multiude of elementary particles. The spec-
trum of particles includes 12 fermions (six leptons and six quarks), twelve gauge bosons
(three weak bosons, eight gluons and the photon) and a Higgs boson (see Tabs. 2.1
and 2.2). Fermions are of spin 1/2 and classified into three generations. Only the
particles in the first generation build up stable matter. The known particles in the
lepton sector are the electron e−, the muon µ− and the tau-lepton τ−. Their electric
charge is Q = −1 in units of the elementary charge. Each lepton has a correspond-
ing neutrino νe, νµ and ντ that is electrically neutral. In the quark sector there are
six flavors of quarks divided into up-type quarks u (up), c (charm) and t (top) with
fractional charge Q = 2/3 and down-type quarks d (down), s (strange) and b (bot-
tom) with Q = −1/3. Note that for each particle there exists an antiparticle with the
same mass but opposite quantum numbers. The masses of quarks and leptons have
a hierarchical structure, which extends over several magnitudes – as shown in Tab. 2.2.

All fermions are subject to three types of interactions (electromagnetic, weak and
strong). Each type of interaction is mediated by its gauge bosons with spin 1. The
photon couples to electric-charged particles mediating the electromagnetic interaction.
Charged W± and neutral Z bosons couple to fermions. Strong interactions are medi-
ated by eight gluons between color-charged particles. Apart from quarks gluons also
carry color, which allows for their mutual interaction. The massive Higgs boson has
spin 0 and results from spontaneous symmetry breaking of the SM Lagrangian. Due
to this breaking mechanism other elementary particles acquire their masses. In the
following, we discuss the quantum field theories, in which the particle of the SM are
embedded as quantized fields.
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Force Mediator Affected Particles Gauge Theory

Electromagnetic Photon γ Charged particles QED
EWT

Weak W± and Z-boson All fermions

Strong Gluon g Quarks QCD

Table 2.1: The fundamental forces in nature are described by gauge theories: Quantum
electrodynamics (QED), electroweak theory (EWT) – a unification of electromagnetic
and weak interaction, Quantum Chromodynamics (QCD).

Gauge Symmetry

The simplest description of a gauge theory is based on U(1) gauge symmetry. To this
end, we consider the Lagrangian for free fermion fields ψ:

Lfree = ψ̄(i/∂ −m)ψ . (2.1)

This Lagrangian is invariant under global U(1) transformations:

ψ → eiQθψ , ψ̄ → e−iQθψ̄ , (2.2)

where θ is a real constant and Q is the generator of the U(1) group. If one promotes
local dependence to the phase parameter θ = θ(x), the Lagrangian for free fermions
is no longer invariant under such local phase transformations, which are also called
gauge transformations. Invariance of gauge transformations can be achieved by using
the covariant derivative

Dµ = ∂µ − igQAµ . (2.3)

The covariant derivative includes the coupling constant g and the gauge field Aµ(x),
transforming as

Aµ(x)→ Aµ(x) +
1

g
∂µθ(x) . (2.4)

We finally obtain the U(1) gauge-invariant Lagrangian for fermions

L = ψ̄(x)(i /D −m)ψ(x)− 1

4
FµνF

µν . (2.5)
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Here, we added the kinetic term that includes the field strength tensor

Fµν = ∂µAν − ∂νAµ = − i
g

[Dµ, Dν ] . (2.6)

Note that the resulting Lagrangian describes the Quantum electrodynamics (QED),
which is the relativistic quantum field theory of electromagnetism. In this case the
generator is the electric charge operator Q and g the elementary charge. The eigenval-
ues of Q are −1 (+1) for electrons (positrons).

Yang and Mills extended gauge invariance by including local non-abelian (non-commuting)
transformations of the SU(2) group [1], which can be generalized to SU(n). Transfor-
mations of a SU(n) gauge group have n2−1 generatorsTa. They obey the commutation
relations

[Ta,Tb] = fabcTc , (2.7)

where fabc are the structure constants of the group. The Lagrangian of a general non-
abelian gauge theory with Ψ a multiplet of fermion fields ψi (i = 1, . . . , n), has the
form

LYM = Ψ̄(i /D−m)Ψ− 1

4
F a
µνF

µν
a , (2.8)

where

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν = − i

g
[Dµ,Dν ] , (2.9)

Dµ = ∂µI + igTaAaµ . (2.10)

Here, g is the coupling constant. Eq. (2.8) is now gauge-invariant under rotations in
ψi space:

Ψ→ eiT
aθaΨ , Ψ̄→ Ψ̄e−iT

aθa . (2.11)

The gauge symmetry of the SM is a combination of three gauge groups

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (2.12)

These symmetries are reflected in an overall invariance of the SM Lagrangian with
regard to transformations within the symmetry groups. The U(1)Y is associated with
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the weak hypercharge (Y ). The SU(2)L symmetry is given for left-handed (two-
component) field operators and SU(3)C denotes the transformation invariance in color
space. We leave the discussion of the SU(2)L and SU(3)C group to the Sects. 2.2 and
2.4.

Higgs Mechanism

In the previous discussion we did not mention any mass terms of gauge bosons such
as M2AµA

µ, since they would break gauge invariance. This means that gauge bosons
must be massless to guarantee an unbroken theory. In QED and the theory of strong
interactions this setup is valid due to massless photons and gluons as mediators, see
also Sect. 2.4. However, it is experimentally confirmed that the weak gauge bosons
W± and Z are massive. For this purpose, the Higgs mechanism is introduced. It is
a description for breaking the gauge symmetry SU(2)L ⊗ U(1)Y spontaneously and
provides gauge-invariant mass terms for gauge bosons. One acquires a scalar Higgs
field Φ, which is a SU(2) complex doublet with four real degrees of freedom interacting
with all gauge bosons of the SU(2)L and U(1)Y symmetry groups. By using a distinct
minimum of the Higgs potential, the vacuum expectation value (vev) of Φ, this leads to
the spontaneous symmetry breaking of the ground-state. The Higgs mechanism also
implies the existence of the so-called Goldstone bosons. They are determined by the
number of minima of the Higgs potential. In this case there are three such bosons.
The Goldstone bosons become the longitudinal modes ofW± and Z and generate their
masses. The Higgs mechanism finally leads to

SU(3)C ⊗ SU(2)L ⊗ U(1)Y → SU(3)C ⊗ U(1)EM . (2.13)

with two remaining gauge symmetries. In addition, the fermions with SU(2) interac-
tions are massless before spontaneous symmetry breaking. This symmetry breaking
mechanism also generates fermion masses, see also next section.
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Fermions 1st Generation 2nd Generation 3rd Generation Masses [MeV]

Leptons e µ τ 0.511 106 1777

νe νµ ντ <2×10−6 <0.19 <18.2

Quarks u c t 2.3 1275 173210

d s b 4.8 95 4180

Table 2.2: List of Standard Model particles (without antiparticles) and their masses.
The presented quark masses are in MS scheme at the renormalization scale µ = 2GeV
for {u, d, s} and µ = mc, mb, mt for {c, b, t} [36].

2.2 Fundamentals of the Electroweak Theory

The electroweak theory is a unified description of electromagnetism and weak inter-
actions. It is based on the product of gauge symmetry groups SU(2)L ⊗ U(1)Y . The
corresponding gauge bosons are W a

µ = {W+,W 0,W−} of weak isospin from SU(2)L
and Bµ is the boson field of weak hypercharge from U(1)Y . We can divide the La-
grangian into four terms:

LEWT = LGauge + LHiggs + LFermion + LYukawa , (2.14)

Each of the above terms is invariant under transformations of the Standard Model
symmetry group GSM. The gauge sector describes the mutual interaction between the
gauge bosons W a

µ and Bµ:

LGauge = −1

4
[W a

µνW
µν
a +BµνB

µν ] . (2.15)

with the field strength tensors W a
µν and Bµν . The Lagrangian of the Higgs doublet Φ

is given by

LHiggs = (DµΦ)†(DµΦ)−
(
µ2Φ†aΦ

a + λ(Φ†aΦ
a)2
)
, (2.16)

where the covariant derivative is Dµ = ∂µ − igW a
µT

a − ig′Y Bµ. Here, g an g′ are
the SU(2)L and U(1)Y gauge couplings, T a and Y are the generators of the SU(2)L
and U(1)Y gauge groups. The first term of Eq. (2.16) contains the coupling of the
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Higgs field to the gauge bosons. From this follows that the rotated gauge bosons with
diagonalized mass terms that are

Zµ := cos θwW
3
µ − sin θwBµ , (2.17)

W±
µ :=

1√
2

(W 1
µ ∓ iW 2

µ)2 , (2.18)

Aµ := sin θwW
3
µ + cos θwBµ . (2.19)

Here, we introduce the Weinberg angle, which can be expressed in terms of the cou-
pling constants according to tan θw = g′/g. The masses of the boson fields are
mZ = mW/ cos θw and mA = 0. Hence, the photon is massless. The kinetic term
of fermions reads

LFermion = Q̄i
L(i /D)Qi

L + ūiR(i /D)uiR + d̄iR(i /D)diR + L̄iL(i /D)LiL + ēiR(i /D)eiR , (2.20)

where the index i denotes the three generations of SU(2) doublet pairs of either quarks
or leptons. The right-handed SU(2) singlets are labelled by the first-generation particle,
see Tab. 2.3. Mass terms of fermion fields are generated through the coupling to the
Higgs field. This is the so-called Yukawa interaction. In the following we restrict ourself
to the quark sector. However, in general the lepton terms have an analogous structure.
The Yukawa term of quarks is given by

LYukawa = −Y d
ijQ̄

iΦdjR − Y u
ij Q̄

i(iσ2Φ∗)ujR + h.c. . (2.21)

In the equation above, we introduce 3× 3 Yukawa matrices Y u
ij and Y d

ij . After sponta-
neous symmetry breaking, one obtains the quark mass terms as

Lmass = −md
j d̄
j
Ld

j
R −mu

j ū
j
Lu

j
R + h.c. . (2.22)

after diagonalizing the Yukawa matrices. The parameters md
j and mu

j are the diagonal
elements of the diagonalized Yukawa matrices

Md = U †dYdVd , Mu = U †uYuVu , (2.23)

where Uu, Ud, Vu and Vd as unitary matrices. In order to diagonalize the Yukawa
matrices we change from the original flavor basis to the mass basis by dR → Vd dR,
uR → Vu uR, uL → Uu uL and dL → Ud dL. This change of basis also affects the
kinetic term, whereas the other terms in the elecroweak Lagrangian, see Eq. (2.14),
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are invariant. Hence, the symmetry-broken Lagrangian in the mass-basis is

L(broken, mass-basis)
EWT =−md

j

(
d̄jLd

j
R + d̄jRd

j
L

)
−mu

j

(
ūjLu

j
R + ūjRu

j
L

)
+

e

sin θw
ZµJ

µ
Z + eAµJ

µ
EM

+
e√

2 sin θw

[
W+
µ ū

i
Lγ

µ(VCKM)ijdjL +W−
µ d̄

i
Lγ

µ(V †CKM)ijujL

]
+ . . .

(2.24)

Here, we use the electromagnetic coupling strength e = g sin θw = g′ cos θw and the
neutral currents JµZ and JµEM describing the coupling to the Z boson and the photon
with

JµZ =
1

cos θw

(∑
i

ψ̄Li γ
µT 3ψLi − sin2 θwJ

µ
EM

)
, (2.25)

JµEM =
∑
i

Qi

(
ψ̄Li γ

µψLi + ψ̄Ri γ
µψRi

)
, (2.26)

where ψLi and ψRi are the left- and right-handed fermion fields. In Eq. 2.26 we also use
the Gell-Mann–Nishijima formula Qi = T 3 +Y . The Lagrangian in the mass basis now
has flavor mixing terms describing the coupling to the charged W± bosons. Moreover,
the mixing effects are determined by a single unitary matrix

VCKM := U †uUd , (2.27)

the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the next section the CKM matrix
is described in more detail.
To summarize Eq. (2.24), we have formalized a unified theory including the electromag-
netic and electroweak interactions. Three gauge bosons, W± and Z, became massive
by spontaneous symmetry breaking whereas one boson, the photon, is massless. All
mass terms (for gauge bosons and fermions) are gauge-invariant under the SM gauge
group transformations.
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Leptons (SU(3)C , SU(2)L)U(1)Y

LiL

 e

νe


L

 µ

νµ


L

 τ

ντ


L

(1,2)− 1
2

eiR eR µR τR (1,1)−1

Quarks (SU(3)C , SU(2)L)U(1)Y

QiL

 u

d


L

 c

s


L

 t

b


L

(3,2) 1
6

uiR

diR

uR

dR

cR

sR

tR

bR

(3,1) 2
3

(3,1)− 1
3

Table 2.3: Fermion fields in the SM Lagrangian. The final column shows the represen-
tation under the SM gauge group GSM.

2.3 The CKM Quark-Mixing Matrix

In the previous section we showed that flavor-changingW±-transitions are accompanied
by the mixing matrix VCKM. By construction, it is a 3 × 3 unitary matrix with four
independent physical parameters [36]: three Euler angles θ12, θ23, θ13 and one complex
phase factor e−iδ. Due to this phase δ the matrix VCKM is a source of CP violation.
From experiments we know that the entries of the CKM matrix have a hierarchical
structure with the largest values along the diagonal entries. This hierarchy implies a
preference for transitions within generations (CKM-favored) while cross-generational
flavor transitions are disfavored (CKM-suppressed). One common representation of
the CKM matrix is the Wolfenstein parametrization in terms of four parameters: λ,
A, ρ and η [39]. The expanded form in terms of

λ = sin θ12 , (2.28)
Aλ2 = sin θ23 , (2.29)

Aλ3(ρ− iη) = sin θ13 e
−iδ . (2.30)
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is

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (2.31)

From measurements we know that λ ' 0.23 (and A, ρ, η = O(1)), which manifests the
aforementioned hierarchy. The current CKM entries are [36]

|VCKM|

=


|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =


0.97425± 0.00022 0.2252± 0.0009 0.00389± 0.00044

0.230± 0.011 1.023± 0.036 0.00406± 0.0013

0.0084± 0.0006 0.0387± 0.0021 0.88± 0.07

 .

(2.32)

The numbers show that unitarity holds within the stated uncertainties. Furthermore,
unitarity also implies that the rows of VCKM are orthonormal, as are the columns; that
is ∑

i

VijV
∗
ik = δjk (i, k = 1, 2, 3) . (2.33)

A standard choice is the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (2.34)

where each term is of the same magnitude O(λ3). Dividing by the best measured com-
bination of CKM elements VcdV ∗cb leads to the common normalized unitarity relation.
Eq. (2.34) can also be graphically represented as a triangle in the complex plane shown
in Fig. 2.1(a) . Current measurements give strong constraints on the shape of this
(normalized) unitarity triangle, see Fig. 2.1(b).
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Figure 2.1: The unitarity triangle of Eq. (2.34) is shown on the right-hand side. All
edges of the triangle are divided by VcdV ∗cb and, hence, the bottom edge is normalized to
1. The right-hand side shows the precision flavor measurements collected and mapped
to the normalized unitarity triangle [40].

2.4 Fundamentals of QCD

Quantum Chromodynamics describes strong interactions between color-charged parti-
cles, namely quarks and gluons. It is subject to the SU(3)C gauge symmetry group.
In QCD each quark with color i = 1, 2, 3 and flavor q is described by a quark field
operator ψiq. For simplification one can adopt a vector notation in the fundamental
representation of the SU(3)C color space, i.e. ψTq := (ψ1

q , ψ
2
q , ψ

3
q ). The corresponding

QCD Lagrangian can be divided into two parts, which are each invariant under local
gauge transformations of SU(3)C :

LQCD = Lquark + Lgauge . (2.35)

The first term describes the propagation of quarks and their interaction with gluons

Lquark =
∑
q

ψ̄q
(
i /D −mq

)
ψq , (2.36)
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where the covariant derivative reads Dµ := ∂µ − igsGµ(x). Here, quark-gluon interac-
tions are encoded in the coupling to the gauge field Gµ = Ga

µt
a, a = 1, . . . , 8 describing

the eight gluons. The parameter gs denotes the strong coupling. The gauge-invariant
kinetic term for the gluon fields is determined through the corresponding field strength
tensor

Gµν(x) = taGa
µν(x) :=

i

gs
[Dµ, Dν ] . (2.37)

We end up with the final form of the kinetic term

Lgauge = −1

4
Gµν
a G

a
µν . (2.38)

The QCD has a non-abelian gauge structure, i.e. the generators ta of its gauge group
do not commute. They satisfy the commutation relation[

ta, tb
]

= ifabctc , (2.39)

where fabc is the SU(3)C structure contant. In other words, gluons are also color
charged and, hence, the kinetic term Lgauge also generates three- and four-gluon inter-
action terms. Note that additional terms must be added, which are related to the fact
that massless gluons have only two polarization states, whereas the gluon fields have
four degrees of freedom. To this end, a gauge-fixing term Lgf = − 1

2ξ
(∂µGµ)(∂νGν) (in

Feynman gauge ξ = 1) has to be added to subtract the additional (unphysical) degrees
of freedom. Moreover, gluonic loop-diagrams are also possible in QCD, which require
Faddeev-Popov ghost fields for proper quantization of gauge fields [41].
Apart from the general structure of the QCD Lagrangian that determines the dynam-
ics of strong-interacting processes, we should consider the coupling constant of the
strong interaction which differ from particles interacting either electromagnetically or
weakly. Due to the additional contributions from gluon self-interaction the leading
order coefficient of the β-function1 results in

β0 =
11

3
NC −

2

3
nf . (2.40)

One obtains a negative β-function for three colors NC = 3 and six (active) quark
flavors nf = 6 in maximum (see also Eq. (A.19)). As a consequence, the strong

1The β-function is defined in Eq. (A.19).
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coupling constant is

αs(q
2) =

g2
s(q

2)

4π
, (2.41)

which decreases for increasing momentum scales q2. It also changes more drastically
compared to the electromagnetic coupling constant. In the limit q2 →∞, the coupling
vanishes and reveals that color-charged particles are asymptotically free. We can now
rescale αs by solving the renormalization-group equation (RGE), see Appendix A.3.
To leading order we obtain

αs(q
2) =

4π

β0 ln
(

q2

Λ2
QCD

) . (2.42)

The scale-dependence of αs has been confirmed by measurements (see Fig. 2.2). At a
the scale ΛQCD ∼ 200−300 MeV the coupling diverges and perturbation theory breaks
down. From experiments we know that bound (color singlet) states, the so-called
hadron states, exist in this regime. The spacial size of such states is about 10−15 m
(∼ 1/ΛQCD). One can show that just specific combinations of quarks q and antiquarks
q̄ are allowed and stable enough to form such singlet state, namely the quark-antiquark
(meson) |M〉 = 1√

3
|q̄αqα〉 and triple-quark (baryon) state |B〉 = 1√

6
εαβγ|qαqβqγ〉, where

εαβγ is the total antisymmetric tensor. The formation of quarks to hadrons and the
non-observability of free quarks is commonly known as the confinement principle.

Figure 2.2: Summary of measurements of the strong coupling αs as a function of the
momentum scale Q and the state-of-the-art value of αs(MZ) [36].
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2.5 Classification of Heavy-light Mesons

A specific type of mesons are heavy-light mesons, which are relevant for this thesis.
They are built up by a heavy quark Q and a light valence quark q. The mass of the
heavy quark is much larger compared to the hadronization scale (mQ � ΛQCD), whereas
quarks are light if their mass is much smaller than this scale (mq � ΛQCD). Mesons can
be classified by the quantum numbers of the heavy and light degrees of freedom, e.g.
their flavor, spin and parity. Characteristics, which are not related to the heavy quark,
are defined as light degrees of freedom and vice versa. The essential degrees of freedom
in a meson system are combined to the quantum numbers of the valence quarks. The
quantum numbers result from the summed total angular momentum operator of the
heavy JQ and light quark Jq, respectively,

J = JQ + Jq . (2.43)

The numbers j, jQ and jq are the eigenvalues of J2, J2
Q and J2

q in the meson state.
Since J and JQ are conserved operators, Jq is also separately conserved. Hence, meson
states can be characterized by the quantum numbers resulting from the operators of
both quarks (JQ, Jq). The short-handed notation JP (spin-parity) combines the total
angular momentum and the parity P of the particle.

Excited meson states have larger masses than their ground-state but the same quark-
flavor content as well as spin-parity. In non-relativistic quark models, one can dis-
tinguish between radial and orbitally excited states following the principles of the
Schrödinger equation in a central potential, c.f. the hydrogen atom. In QCD hadrons
form a relativistic bound of the valence quarks and, hence, we characterize all reso-
nances with the same flavor content and JP , but larger masses as radial excitations of
their ground state.

2.6 Perturbative QCD: e+e− → hadrons

In the previous section, basic aspects of QCD are presented. We note that there are
two specific regimes to distinguish, which depend on the momentum scale of the strong
coupling. For large momentum-transfer we know that the coupling decreases and at
some point the approximation of processes by essentially free quarks is reasonable.
This is a characteristic feature of QCD, which is called asymptotic freedom. In the
regime of asymptotic freedom quark-gluon interactions are of short-distances and a
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perturbative treatment in terms of αs(q2) is justified. If q2 approaches the hadronic
scale, the coupling diverges and signalizes the hadronization process of quarks. In this
regime non-perturbative methods are necessary. A prominent phenomenological setup
for testing QCD is e+e− annihilation at high energies, which provides virtual photons of
high momenta. For q2 � Λ2

QCD these photons are a source for perturbatively interacting
quark-antiquark pairs within QCD. A fundamental experimental observable is the total
cross section σtot(s) depending on the squared center-of-mass energy s = (pe+ + pe−)2.
This corresponds to the virtuality of the photon that produces a hadronic state at an
average distance of O(1/

√
s). For

√
s� ΛQCD the cross-section for hadron production

can be reliably estimated by the sum of quark-antiquark cross-sections of all flavors
with masses mq �

√
s [42]

σe
+e−→h

tot (s) =
∑

q=u,d,s,...

σe
+e−→qq̄(s) . (2.44)

The detection of high-energetic back-to-back hadron jets in collider experiments initi-
ated from quark-antiquark pairs provides an indication for the reliability of a free-quark
approximation. The total cross section is defined by

σe
+e−→h

tot (s) =
1

2s

∑
n

|〈e+e−|T̂ |hn〉|2 . (2.45)

Here, we introduce the sum over all possible hadronic states |hn〉. From unitarity of
the scattering matrix Ŝ = 1 + iT̂ follows the optical theorem

2 Im T̂ = T̂ †T̂ , (2.46)

where T̂ is the transition operator describing the interaction part of the annihilation
process. We are now able to rewrite Eq. (2.45) as

σe
+e−→h

tot (s) =
1

s
× Im 〈e+e−|T̂ |e+e−〉 (2.47)

= −(4παem)2

s2
ψ̄eγ

µψe(Im Πµν(q))ψ̄eγ
νψe

∣∣∣
q2=s>0

, (2.48)

with ψe as the spinor of an electron and αem as the electromagnetic coupling constant.
The non-trivial kernel of the last equation is the correlation function or correlator
which describes the dynamics of jem → h → jem transitions. Πµν has no hadrons in
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the initial and final states and, hence, it is given by the vacuum expectation value

Πµν(q) = i

∫
d4x eiqx〈0|T

{
jem
µ (x)jem

ν (0)
}
|0〉 = (qµqν − q2gµν)Π(q2) . (2.49)

The correlation function depends on just one invariant amplitude Π(q2), since the
current operator jem

µ =
∑

iQiq̄iγµqi is conserved, where we sum over all quark flavors
with charge Qi . In the limit of high center-of-mass energy (

√
s→ ΛQCD) one can argue

that the free quarks are only subject to ordinary QED interactions. The calculation
of Π(q2) is identical to the cross section calculation of muon-pair production in e+e−

annihilation. Thus, in this limit we obtain

σe
+e−→h

tot (s) = NC
4πα2

em

3s

nf∑
i

Q2
i . (2.50)

The number of active quark flavors nf is determined by the threshold energy. Later
on we will also see that experiments determine the color factor as NC = 3. Using the
normalization condition σe+e−→µ+µ−(s) = 4πα2

em/(3s) one can define the ratio

R(s) =
σe

+e−→h
tot (s)

σe+e−→µ+µ−(s)
→ 3

nf∑
i

Q2
i . (2.51)

Experimental measurements of the R-ratio show that the plateaus are well described
by the high-energy approximation, see Fig. 2.3. This behavior confirms the description
of the hadronic picture by quark-gluon interactions, the quark-hadron duality [43]. In
the vicinity of resonance peaks, i.e. at the threshold of bound states such as ρ, J/ψ
or Υ, the theoretical description does not directly reflect the spectrum. However, the
quark picture is still in good agreement if the R-ratio is averaged over the resonance
region. For more precision of the predicted spectrum one has to consider correction
terms. They can be of perturbative nature around the high-energy scales, but we
can also include effects that scale close to ΛQCD, namely soft quark-interactions, where
perturbation theory breaks down. These correction terms can be treated systematically
by the operator product expansion (OPE). As a part of the thesis, this expansion
method will be elaborated in Chap. 3 in the context of QCD sum rules for heavy
meson productions from certain interpolating quark currents. The key point of the
evaluation of R(s) is to relate the correlation function Π(q2) in the regime of spacelike
q2 < 0 to timelike q2 = s > 0 in terms of a dispersion relation. Based on this idea, the
picture of free quarks can be connected to the actual hadronic spectrum. The next-
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Figure 2.3: World data on the ratio R(s) = σe
+e−→h

tot (s)/(σe
+e−→µ+µ−(s)). The green

(dashed) line shows the approximation at high threshold limit. The red (solid) line is
the three-loop perturbative QCD prediction [36].

to-leading order contribution from an additional gluon radiation modifies the ratio to
[44]

R(s, q2)→ 3

nf∑
i

Q2
i

(
1 +

αs(q
2)

π

)
. (2.52)

The radiative correction to the ratio improves its agreement between the theoretical
description and experiment.



Chapter 3

Applications of QCD Sum Rules to
Leptonic Decay Constants

Matrix elements of interpolating quark currents between the QCD vacuum and a one-
meson state give rise to the simplest non-perturbative hadronic matrix elements in
flavor physics. These matrix elements are parametrized in terms of the decay constant
fH of the meson H. The following chapter is dedicated to the evaluation of decay
constants of heavy-light mesons in particular.

A reliable method to approach non-perturbative QCD quantities was established by
Shifman, Vainshtein and Zakharov in 1979 [45], the so-called SVZ- or QCD sum rules.
Decay constants enter in various processes. They contain information on the hadronic
dynamics in decay or scattering processes. In case of weak leptonic decays such as
Ds → µνµ and B → τντ all information on QCD dynamics is encoded in fD(s)

and fB,
respectively. In 2012/13 the LHCb and CMS collaboration published the first evidence
of Bs(d) → µ+µ− [46, 47, 48]. This leptonic flavor-changing neutral current (FCNC)
decay channel is an essential probe to BSM physics, on the other hand a strong test of
the SM requiring very accurate determinations of fBs(d) . Apart from the interest on the
experimental side, many high precision predictions of B and D meson decay constants
are available. There are many computations within lattice QCD [49, 50, 51, 52] as well
as predictions based on the sum rules method [53, 54, 55]. A profound understanding
of vector mesons such as B∗ and D∗ are also desirable. QCD processes including B∗

cannot be measured directly as it decays predominately via electromagnetic interac-
tion B∗ → Bγ. An important application of fB∗ (fD∗) is their use in determining the
BB∗π (DD∗π) strong coupling constants [56]. Furthermore, the deviation of fB∗(D∗)
compared to fB(D) give a measure for heavy-quark spin symmetry violation, whereas
ratios of fBs(Ds) and fB(D) determine the violation of the SU(3)fl symmetry.

In continuum QCD the hadronic decay constants can be determined via the method of
QCD sum rules. This method is based on the OPE of two-point correlation functions,
including quark currents of a specific spin-parity. Correlation functions also obey a
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hadronic dispersion relation [57, 58]. Then both representations are matched assuming
quark-hadron duality [59, 60]. The OPE is a double expansion in the difference of
the heavy quark mass and the transfer momentum (m2

Q − q2)−1 as well as the strong
coupling αs. As such, it is also a local expansion around small spatial-time distances
x = 0 separating short- and long-distance effects at a specified scale. Short-distance
interactions are incorporated in coefficient functions (Wilson coefficients) that are sub-
ject to QCD perturbation theory. Effects of long-distance interactions are expressed
via non-perturbative quantities, so-called condensates, which describe fluctuations of
the QCD vacuum. In addition to evaluations within full QCD, other approaches ex-
ist, using the heavy-quark expansion [61] or heavy-quark effective theory (HQET)
[62, 63, 64]. Radiative corrections to the leading contribution in the OPE (PT part) at
next-to-leading order (NLO) were computed in Ref. [65, 66]. At this level of accuracy,
the decay constants of heavy-light mesons were also estimated, e.g. in [67]. Another
substantial refinement of the correlation function was obtained by Chetyrkin and Stein-
hauser, who computed the next-to-next-to-leading order (NNLO) contribution of the
PT part in a semi-numerical way [68]. While the perturbative QCD corrections to the
quark condensate in the pseudoscalar two-point correlation function are known [53],
we obtain such corrections for the vector correlation function for the first time [A1].

We investigate the QCD sum rules for heavy-light bottom and charmed meson decay
constants. In chapters 3-5 the following aspects will be presented:

• In this chapter we recapitulate the basics about QCD sum rules in the con-
text of decay constants, starting with the description of two-point correlation
functions. We also reparametrize the sum rules to a special form suited for a
1/mQ-expansion. This allows us to assess the infinite quark mass limit of the ra-
tios fH∗/fH , and the corresponding heavy-quark corrections that explicitly break
the heavy-quark spin symmetry.

• Chapter 4 presents the analytic calculation of the PT part for the vector and
pseudoscalar meson channel with NLO accuracy. To this end, we also discuss
how to compute the required master integrals.

• In chapter 5 the numerical analysis is carried out give central values of vector
and pseudoscalar B(D) meson decay constants and their upper bounds. The
accuracy of the sum rules for vector meson decay constants has been upgraded
by including perturbative corrections to the quark condensate, which we present
in Refs. [A1, 69]. At the same time, we give a major update to the pseudoscalar
counterpart.
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In order to scale the systematic uncertainty of our method, we employ certain
modifications of the sum rules with different weights in the dispersion integrals
and their power moments.

The main results of these chapters have also been published in Ref. [A1].

3.1 Two-Point Correlation Function

We consider the two-point correlation function, a time-ordered product of interpolating
quark-current operators, jΓ(x) = q̄ΓQ(x), at two space-time points. The currents
include quantized field operators of the heavy and light quark, with Q = {b, c} and
q = {u, d, s}, and a certain Dirac gamma structure Γ. In the following, all color indices
are implied in field operators and omitted for the sake of brevity. At first, we choose
such a current that the quark content and quantum numbers match the vector meson
H∗ = {B∗, D∗}, i.e. jµ(x) = q̄γµQ(x). The corresponding correlation function is
formally defined in momentum space as

Πµν(q) = i

∫
d4x eiqx〈0|T

{
jµ(x), j†ν(0)

}
|0〉 (3.1)

=
(
qµqν − q2gµν

)
Π̃t(q

2) + qµqνΠl(q
2) , (3.2)

where the kinematical structure of Πµν(q) is decomposed into the transverse (t) and
longitudinal (l) components. These components are multiplied by the invariant ampli-
tudes Π̃t(q

2) and Πl(q
2). To avoid a kinematical singularity, we redefine the transverse

invariant amplitudes as

Πt(q
2) ≡ q2Π̃t(q

2) . (3.3)

The correlation function for pseudoscalar heavy-light currents reads

Π5(q) = i

∫
d4x eiqx〈0|T

{
j5(x), j†5(0)

}
|0〉 , (3.4)

where the interpolating current is j5 = (mQ+mq)q̄iγ5Q. Decay constants are defined as
transitions from QCD vacuum to a single hadronic state (on its mass-shell p2 = m2

H∗)
that are mediated by the interpolating currents:

mH∗fH∗εµ(λ)e−ipx ≡ 〈0|q̄γµQ(x)|H∗(p, λ)〉 , (3.5)
m2
HfHe

−ipx ≡ 〈0|q̄γ5Q(x)|H(p)〉 . (3.6)

In Eq. (3.5) the four-vector εµ is the polarization vector for polarization λ = 0,±1 of
the H∗-meson.
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3.2 Hadronic Representation

In the domain of q2 ≥ m2
Q the correlation functions cannot be computed analytically

due to arising divergences, which can be interpreted as the formation of hadrons. Hence,
we need to quantify the hadronic content of Πµν and Π5. A more detailed description is
also presented in Appendix B.1. To determine the correlation functions in this domain,
we insert the unity operator between the interpolating quark-current operators of (3.1)
and (3.4). The unity operator is as a complete set of hadronic Fock states∫∑

dτh|h(ph)〉〈h(ph)| = 1h , (3.7)

which matches the quantum numbers of either H∗ and H, respectively, and

dτh =
d4ph
(2π)3

(2π)4θ(p0
h)δ(p

2
h −m2

h) , (3.8)

is the Lorentz invariant phase-space. Here, pµh is the four-momentum and mh the mass
of the hadron h. By inserting Eq. (3.7) into the correlation function (3.1) we obtain
the hadronic sum

Π(had)
µν (q2) =

〈0|q̄γµQ|H∗〉〈H∗|Q̄γνq|0〉
m2
H∗ − q2

+

∫∑
dτh
〈0|q̄γµQ|h(ph)〉〈h(ph)|Q̄γνq|0〉

p2
h − q2

. (3.9)

This sum is separated into the H∗ resonance and the continuum states |h(ph)〉. Note
that this relation also contains the imaginary offset −iε implicitly, but it is neglected
for reasons of clarity. The right-hand side of Eq. (3.9) characterizes a spectrum of
hadronic particles on their mass-shell. To this end, we use the spectral representation
[70] as a function of the threshold energy s = q2:

ρhµν(s)θ(q0) =
∑
h6=H∗

(2π)3δ(s−m2
h)δ

(4)(q − ph)〈0|jµ(0)|h(ph)〉〈h(ph)|jν(0)†|0〉 (3.10)

to rewrite Eq. (3.9) as

Π(had)
µν (q2) =

〈0|q̄γµQ|H∗〉〈H∗|Q̄γνq|0〉
m2
H∗ − q2

+

∫
ds
ρhµν(s)

s− q2
. (3.11)

One can also derive the result by using the optical theorem [69], which follows from
the unitarity of the scattering matrix, see Fig. 3.1, in conjunction with dispersion
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relations. In Eq. (3.11) the sum over all possible hadronic states also implies summing
over all polarization states, i.e.

∑
λ εµ(~q, λ)ε∗ν(~q, λ) = −

(
gµν − qµqν

p2
h

)
. Hence, in case of

vector particles with spin-parity 1−, just the transverse component of Πµν is relevant.
Inserting the hadronic matrix elements at the ground states, which are related to the
decay constants as defined in Eqs. (3.5) and (3.6), we find the transverse (t) and
pseudoscalar (5) component of the spectral density:

ρt(s) ≡
1

π
Im Πt(s) = m2

H∗f
2
H∗δ(s−m2

H∗) + ρht (s)θ(s− (mH +mP )2) , (3.12)

ρ5(s) ≡ 1

π
Im Π5(s) = m4

Hf
2
Hδ(s−m2

H) + ρh5(s)θ(s− (mH∗ +mP )2) . (3.13)

The ground state meson is approximated by a delta function, whereas excited and
multiparticle states are absorbed into the continuum spectral density. The continuum
spectrum starts with a two-particle configuration, a heavy ground-state meson and the
lightest pseudoscalar meson (π or K) depending on the flavor content of H(∗), e.g. the
B∗(s) resonance is followed by the threshold of Bπ (BK). Note that in the pseudoscalar
meson channel, there is a energy gap between the ground state and the lowest threshold
of the continuum state. This clean separation between H and the residual spectrum
leads to an enhanced extraction quality of fH . In the D∗ channel the threshold of HP
lies below and in the B∗ case almost overlaps with the ground state resonance.

In the next section we will discuss dispersion relations that relate the imaginary part
of the correlator to the spectral function in (3.10).

h
h h = Im Π

Figure 3.1: Schematic representation of the optical theorem.

3.3 Dispersion Relation
It has been proven by Källén and Lehmann [57, 58] that two-point functions obey dis-
persion relations, which follows from the analyticity properties of these functions. The
given invariant amplitude Π(q2) ≡ Πt(5)(q

2) is an analytic function in the pertrubative
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domain of q2 � m2
Q. To relate this domain to the hadronic one with physical poles

beyond the threshold s = q2 ≥ m2
Q, we introduce Cauchy’s integral formula

Π(q2) =
1

2πi

∮
C

ds
Π(s)

s− q2
. (3.14)

According to this formula, the function’s value on the integration contour is related to
values within the closed contour C, see Fig. 3.2. In this case, the chosen integration
contour describes a closed loop with a branch cut starting at the threshold of the
first hadronic state. In the last section we have pointed out that the branch point is
determined by the ground-state meson mass m2

H(∗) . The contour C (dashed line) is
divided into four sections: CR + C+ + Cε + C−. In the limit R → ∞ and ε+ → 0,
integrals along Cε and CR vanish. Thus

Π(q2) =
1

2πi

∫ ∞
m2
Q

ds
Π(s+ iε+)− Π(s− iε+)

s− q2
. (3.15)

Using Schwarz’s reflection principle [71], one obtains the spectral density

ρ(s) ≡ 1

π
Im Π(s) = lim

ε+→0

1

2πi

[
Π(s+ iε+)− Π(s− iε+)

]
. (3.16)

The dispersion relation of Eq. (3.15) thus takes the form

Π(q2) =

∫ ∞
m2
Q

ds
ρ(s)

s− q2
. (3.17)

A more detailed description of the dispersion relation in (3.17) is given in Appendix
B.2. Note that Eq. (3.15) is valid only if the integrand of Π(q2) converges fast enough.
In general, this is not the case. As a result, a subtraction polynomial of order n is
required, which includes the value of the integral at an arbitrary point q2

0 within the
analytic region [72, 73]:

Π(q2) = (q2 − q2
0)n
∫ ∞
m2
Q

ds
ρ(s)

(s− q2
0)n(s− q2)

+
n−1∑
k=0

(q2 − q2
0)k

k!
Π(k)(q2

0) . (3.18)
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Im

Re

C+

C−
Cε

ε+

CRC

q2

q2

Figure 3.2: Complex continuation of Π(q2) by means of Cauchy’s residue theorem. The
chosen loop contour is given by the dashed line. Here the branch cut, starting at the
threshold s = m2

H(∗) , indicates the physical states.

The invariant amplitudes of Eqs. (3.3) and (3.4) require two substraction terms. It
follows the double-substracted dispersion relation

Πt(5)(q
2)− Πt(5)(0)− q2

(dΠt(5)(q
2)

dq2

)∣∣∣
q2=0

=
(q2)2

π

∫ ∞
m2
Q

ds
Im Πt(5)(s)

s2(s− q2)
. (3.19)

We leave the discussion of how to treat the subtraction terms to Sec. 3.5.

3.4 Operator Product Expansion

Using dispersion relations we are able to link the hadronic representation of the cor-
relation function to the domain for q2 � m2

Q, where short-distance quark-antiquark
fluctuations dominate. In the latter domain the exponential phases in the integrals of
Eqs. (3.1) and (3.4) are fast oscillating. This behavior allows a systematic treatment
of the correlation functions Πt(q

2) and Π5(q2) in terms of 1/(m2
Q − q2) by using OPE.

The OPE is a series of perturbative coefficient functions and local operators, which
lead to non-perturbative matrix elements. At leading order only perturbative loop
contributions arise. Local operators of higher dimension are suppressed by powers of
1/(m2

Q−q2) and start with the dimension-3 operator q̄q. The latter leads to the leading
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condensate contribution, the quark condensate. As a physical picture, this condensate
describes the interaction with background quarks and gluons of the QCD vacuum, in-
teracting at typical scale of ∼ ΛQCD. Thus, the correlation functions can be expressed
as

Π
(OPE)
t(5) (q2) =

∑
d

C
t(5)
d (q2, µf )〈0|Od|0〉(µf ) = C0 + C3〈O3〉+ C4〈O4〉+ . (3.20)

The coefficient functions Ct(5)
d can be determined in perturbative calculations and,

hence, enable the following perturbative series

C
t(5)
d (q2, µf ) =

∞∑
n=0

c
t(5)
d,n (q2, µf )α

n
s (µf ) , (3.21)

where we order by the mass-dimension d. The operators Od(µf ) are Lorentz and gauge-
invariant local operators and are constructed from contracted quark and gluon fields
in Π

(OPE)
t(5) (q2). The coefficient functions are suppressed by powers of(

m2
Q − q2

)−n
,

where n ≥ 1 according to the mass-dimension of the local operators. Hence, we trun-
cate the expansion at some order, but we keep in mind that contributions of higher
dimensional operators are missing. Within the OPE the separation between the effec-
tive long- and short-distance region introduces the factorization scale µf . Interactions
with momentum transfer of q2 > µ2

f are incorporated in Cd(q2) and q2 < µ2
f are included

in the vacuum expectation values of local operators (vacuum condensates). The con-
densates cannot be calculated analytically. However, they are universal inputs, which
can be determined from experimental measurements, see Ref. [74].

The complete set of operators for mesonic systems up to dimension six is given in Tab.
3.1. Other operators up to mass dimension six can be reduced to this set of operators
via equation of motion. Note that we do not include the three gluon operator with
d = 6 into consideration, since it typically leads to small contributions for the consid-
ered problems. The corresponding Feynman graphs to these operators are shown in
Fig. 3.4. Other condensate contributions of d ≥ 6 are neglected.

The unit operator is the operator of the lowest dimension, and it is associated with
the perturbative contribution C0(q2) = Π(pert)(q2), which includes quark or quark-
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Local Operator Description

O0 = 1 Leading power operator

O3 = q̄q Quark condensate

O4 = Ga
µνG

aµν Gluon condensate

O5 = q̄σµν
λa
2
Gaµνq Quark-gluon / Mixed condensate

O6 = (q̄Γrq)(q̄Γsq) Four-quark condensate

Table 3.1: Table of local operators in the OPE. The operator Ga
µν denotes a gluon field

strength tensor with the color index a, the anti-symmetric tensor inO5 is σµν = i
2
[γµ, γν ]

and λa are the Gell-Mann matrices. The local operator O6 includes combinations of
Lorentz and color matrices, collectively expressed as Γr and Γs.

gluon loops. We refer to this contribution as the perturbation theory (PT) part. In
the timelike momentum-transfer region, the correlation function (3.2) can be treated
perturbatively due to the asymptotic freedom of quarks. In first approximation this
implies contractions of quark fields to free-quark propagators (see Fig. 3.3 (a)). Radia-
tive corrections at NLO in αs to the PT part are two-loop diagrams with two different
topologies. All contributing two-loop diagrams are shown in Figs. 3.3 (b)-(d). In this
thesis, we compute the NLO corrections, whereas higher order corrections at NNLO
were determined in [75], assuming one massive and one massless quark. We denote the
spectral function of the PT contribution in the OPE as

ρ
(pert)
t(5) (s) ≡ 1

π
Im Π

(pert,LO)
t(5) (s) (3.22)

= ρ
(pert)
t(5) (s) +

(αs
π

)
ρ

(pert,NLO)
t(5) (s) +

(αs
π

)2

ρ
(pert,NNLO)
t(5) (s) , (3.23)

which includes the NLO and NNLO terms. This form of the PT part is now suited for
the dispersion relation in Eq. (3.18). In case of vector and pseudoscalar mesons the
leading order terms are

ρ
(pert,LO)
t (s) =

1

8π2
s
(

1− m2
Q

s

)2(
2 +

m2
Q

s

)
, (3.24)

ρ
(pert,LO)
5 (s) =

3

8π2
m2
Q s
(

1− m2
Q

s

)2

(3.25)
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: LO contribution (a), NLO corrections (b), (c) and (d), and a selection
of NNLO corrections (e), (f) of the PT part C0. Wavy lines denote the external
interpolating currents, thick (thin) solid lines are massive (light) quark propagators
and curled lines are gluon propagators.

for mq = 0. Taking the limit s → ∞, one can easily see that two subtractions terms
are necessary to ensure proper convergence of the dispersion integral in Eq. (3.17).
Choosing the subtraction point q2

0 = 0, the correlation function reads

Π
(pert)
t(5) (q2) = (q2)2

∫ ∞
(mQ+mq)2

ds
ρ

(pert)
t(5) (s)

s2(s− q2)
+ Π

(pert)
t(5) (q2)

∣∣∣
q2
0=0

+ q2
dΠ

(pert)
t(5) (q2)

dq2

∣∣∣
q2
0=0

.

The explicit computation of the LO and NLO corrections to ρ(pert)
t(5) will be discussed

in detail in Chap. 4. Furthermore, we explain the basics about the calculation of
Feynman integrals.

The leading order process originates from a simple heavy-light quark loop, whereas
higher order terms include additional gluon-exchange and quark-loop pair production.
All corrections up to NLO are analytically known [65, 66]. The NNLO corrections
stem from semi-numerical computations at the low and high energy region using con-
formal mapping and Padé approximation [75]. The authors of Ref. [75] made the
Mathematica package Rvs.m available for public usage. Exemplary, we also calcu-
late the tree-level quark condensate contribution below. More complicated contribu-
tions stemming from higher dimensional operators are elaborated in [69]. Note that
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NLO corrections for the pseudoscalar-current have been known for a long time [62, 53],
whereas the quark-condensate term in the vector-current correlator has been deter-
mined recently [A1]. In order to assess the coefficient functions of local operators with
d ≥ 3, we expand the external light background quark fields locally around x = 0

assuming the Fock-Schwinger -gauge, xµAµ = 0, [76]:

q(x) = q(0) + xµ
−→
Dµq(0) +O(x2) . (3.26)

To this end, the momenta of external vacuum fields are regarded as small compared to
the momenta of propagating virtual quarks. We apply Wick’s theorem in the correla-
tion function to compute the quark condensate contribution. The contracted internal
heavy quarks lead to the following tensorial condensate contribution in case of a inter-
polating vector current:

Π〈q̄q〉µν (q2) = i

∫
d4x eiqx〈0|

{
. . .+ q̄(x)γµQ(x)Q̄(0)γνq(0) + . . .

}
|0〉

= i

∫
d4x eiqx〈0|

{
q̄α(x)[γµS

(0)
Q (x, 0)γν ]αβ q

β(0)
}
|0〉 . (3.27)

In the second line of (3.27) we use

S
ij,(0)
Q (x, y) = Qi(x)Q̄j(y) = 〈0|T

{
Qi(x)Q̄j(y)

}
|0〉

= δij
∫

d4k

i(2π)4

/k +mQ

m2
Q − k2

e−ik(x−y) , (3.28)

which denotes the leading order heavy quark propagator with explicit imposed color
indices. Due to the condition mQ � ΛQCD, the heavy quark fields do not form non-
perturbative vacuum fluctuations. Thus, any contributions proportional to 〈QQ̄〉 will
be neglected in our calculation. If we use the light-quark-field expansion in (3.26) as
well as the matrix elements

〈0|q̄αi (0)qβj (0)|0〉 =
1

12
δαβδij〈q̄q〉 , (3.29)

〈0|q̄αi (0)
←−
Dµq

β
j (0)|0〉 =

imq

48
δij(γµ)βα〈q̄q〉 , (3.30)
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we obtain the leading quark condensate contribution

Π〈q̄q〉µν (q2) =
1

4

∫
d4x

∫
d4k

(2π)4
ei(q−k)xTr

[
γµ

/k +mQ

m2
Q − k2

γν

]
〈qq̄〉 . (3.31)

Eq. (3.30) drops out in case of vanishing light quark masses. Hence, the integrated
result of (3.31) for massless light quarks is

Π〈q̄q〉µν (q2) =
mQ

m2
Q − q2

gµν〈qq̄〉 (3.32)

and the corresponding transverse mode reads

Π
〈q̄q〉
t (q2) =

−mQ

m2
Q − q2

〈qq̄〉 . (3.33)

All relevant condensate contributions of dimension d ≤ 6 are summed up in the con-
densate term

Π
(cond)
t(5) (q2) = Π

〈q̄q〉
t(5)(q

2) + Π
〈GG〉
t(5) (q2) + Π

〈q̄Gq〉
t(5) (q2) + Π

〈q̄qq̄q〉
t(5) (q2) . (3.34)

Here, we introduce the notation {〈O3〉, 〈O4〉, 〈O5〉, 〈O6〉} = {〈q̄q〉, 〈ḠG〉, 〈q̄Gq〉, 〈q̄qq̄q〉}.
Explicit expressions of all terms in (3.34) are given in Appendix B.5. The LO coef-
ficient functions of the gluon, quark-gluon (mixed) and four-quark condensates are
known [45, 67, 77] and sufficient for the purpose of this thesis.

Light Quark Mass Corrections

In case of non-strange heavy-light mesons we neglect the masses of up and down-
quarks. They are numerically small compared to all other relevant energy-momentum
scales. However, for the description of strange mesons, we take the strange quark
mass into account. We refrain from using the full mass-dependence, and instead keep
only expansion terms of the light-quark mass. The corresponding quark currents are
jµ = s̄γµQ and j5 = (mQ+ms)s̄iγ5Q. Both functions can be expanded in ms according
to

Π
(OPE)
t(5) (q2,mQ,ms) =Πt(5)(q

2,mQ, 0)

+ms Π
(1)
t(5)(q

2,mQ, 0) +m2
s Π

(2)
t(5)(q

2,mQ, 0) +O(m3
s) . (3.35)
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Despite the violation of SU(3)fl-symmetry due to massive light-quarks in the PT part,
we also must change the quark condensate for strange quarks: 〈q̄q〉 is replaced by 〈s̄s〉,
which is suppressed by ∼ 20% in comparison to the massless case [78]. We truncate the
mass expansion at O(m2

s) and O(αsms) in the PT part. In the condensate contribu-
tions only the leading mass corrections O(ms) are taken into account, which stem from
the first order expansion term in the local expansion of Eq. (3.26), see also [69]. As
a result, we keep just small mass contributions of the same magnitude, see Appendix
B.4. The pseudoscalar correlator Π5(q2) also has the prefactor (mQ+mq)

2, which arises
from the RGE invariant quark-current j5 as stated above. We retain this prefactor in
our calculation.

Computational strategies about the calculation of Π
(1)
t(5) and Π

(2)
t(5) are discussed in Chap.

4.

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Leading order condensate contributions included in the coefficient functions
Cd: (a) C3 quark; (b) C5 quark-gluon (mixed); (c), (d) and (e) C4 gluon; (f) C6 four-
quark condensate. Wavy lines denote the external interpolating currents, thick (thin)
solid lines are massive (light) quark propagators and curled lines are gluon propagators.
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3.5 Quark-Hadron Duality and Borel Transformation

Before we obtain the sum rules for fH(∗) , there are still two issues, which have not been
discussed yet. At first, it is still unclear, how to interpret the hadronic representation,
since the spectral densities in Eqs. (3.12) and (3.13) are mainly unknown. Secondly,
the substraction polynomial (3.18) are necessary to avoid divergent dispersion inte-
grals, which should vanish or be more specified. These issues will be discussed in the
following.

We describe the correlation function for two different domains, resulting in the following
representations for Πt(5)(q

2):

Π
(had)
t (q2) =

m2
H∗f

2
H∗

m2
H∗ − q2

+

∫ ∞
sh0

ds
ρht (s)

s− q2
, (3.36)

Π
(had)
5 (q2) =

m4
Hf

2
H

m2
H − q2

+

∫ ∞
sh0

ds
ρh5(s)

s− q2
, (3.37)

Π
(OPE)
t(5) (q2) = (q2)2

∫ ∞
(mQ+mq)2

ds
ρ

(pert)
t(5) (s)

s2(s− q2)
+ subtr. polynomial + Π

(cond)
t(5) (q2) , (3.38)

where ρht and ρh5 are unknown quantities. Nevertheless, one can estimate the unknown
spectral integrals by applying the so-called quark-hadron duality. An introduction to
this concept and its phenomenology are discussed in Refs. [59, 60] as well as [43] in
the context of inclusive, inelastic electron scattering. The quark-hadron duality allows
to bridge a gap between theoretical predictions and experimental cross sections. It
allows to equate certain inclusive particle interactions with perturbative calculations,
if a reasonable energy average is used. This statement can be adapted to our problem
as well. For deep Euclidean processes (q2 → −∞) all condensates are suppressed.
From this follows the global quark-hadron duality approximation

Π(had)(q2) ≈ Π(pert)(q2) . (3.39)

Note that both spectral functions need to have the same power asymptotics in the limit
s→∞ to ensure the approximation in (3.39) is valid, i.e.

ρht(5)(s)→ ρ
(pert)
t(5) (s) . (3.40)

However, ρht(5)(s) still could oscillate around this limit. A more stringent condition
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ρ(s)
s

s

ρ
(Pert)
t(5) (s)ρht(5)(s)

m2
H(∗) sH

(∗)
0sh0(mQ +mq)2

Figure 3.5: Illustration of the semi-local duality. The hadronic continuum spectrum is
fitted by the perturbative correlation function.

ρht(5)(s) ' ρ
(pert)
t(5) (s) for threshold values larger than a specific effective threshold is

the local quark-hadron duality. We use instead a combination of both conditions
at sufficiently large Q2 = −q2, which postulates a weaker condition than the local
approximation. It is the semi-local quark-hadron duality, which is defined as∫ ∞

sh0

ds
ρht(5)(s)

s− q2
'
∫ ∞
sH

(∗)
0

ds
ρ

(pert)
t(5) (s)

s− q2
. (3.41)

Above, the duality-threshold parameter sH(∗)
0 is introduced, which has to be externally

determined. It does not necessarily coincide with sh0 (see Fig. 3.5). Furthermore, it is
useful to apply a Borel transformation to the correlation functions:

Π(M2) ≡ BM2

{
Π(q2)

}
= lim
−q2, n→∞
−q2/n=M2

(−q2)n+1

n!

(
d

dq2

)n
Π(q2) . (3.42)

Two special cases are relevant to transform the complete sum rules in Eqs. (3.36)-(3.38):

BM2

{(
− q2

)k
ln
(−q2

µ2

)}
= −k! ·M2k , (3.43)

BM2

{
1

(s− q2)k

}
=

 1
(k−1)!

· 1
M2(k−1) e

−s/M2 if k > 0,

0 if k < 0
(3.44)
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for integer values of k. This procedure has two advantages: The subtraction terms,
which are still unknown are cancelled. In additon, this allows us to control the conver-
gence of the OPE.
The final (Borel) sum rule of the vector-meson decay constant now yields in conjunction
with the quark-hadron duality approximation to

f 2
H∗ =

em
2
H∗/M

2

m2
H∗

{
Π

(pert)
t (M2, sH

∗

0 ) + Π
(cond)
t (M2)

}
, (3.45)

and analogously for the pseudoscalar meson channel

f 2
H =

em
2
H/M

2

m4
H

{
Π

(pert)
5 (M2, sH0 ) + Π

(cond)
5 (M2)

}
. (3.46)

In the above equations we use the shorthand notation

Π
(pert)
t(5) (M2, sH

(∗)

0 ) =

∫ sH
(∗)

0

(mQ+mq)2

ds e−s/M
2

ρ
(pert)
t(5) (s) . (3.47)

All results including perturbative as well as condensate contributions are given in
Appendix B.5. Note that the Borel parameter M2 must be chosen carefully because
of two reasons. On one hand, the continuum states have to be sufficiently suppressed.
On the other hand, the leading OPE expressions, especially the PT part, which is very
accurately determined, should keep a great influence. An explicit discussion concerning
a proper choice of M2 is deferred to the numerical analysis of fB∗ in chapter 5.1.
The final sum rule for decay constants of vector mesons is

f 2
H∗m

2
H∗ =

1

8π2
em

2
H∗/M

2

∫ sH
∗

0

m2
Q

ds s (2 + z)(1− z)2e−s/M
2

+
[
−mQ〈q̄q〉 −

1

12
〈GG〉+

m2
0m

3
Q

4M4
〈q̄q〉

− 32παsrvac
81M2

(
1 +

m2
Q

M2
− m4

Q

8M4

)
〈q̄q〉

]
e−m

2
Q/M

2

,

(3.48)

with only leading order expressions in αs and neglected light quark mass. In case of
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pseudoscalar mesons the sum rule is

f 2
Hm

2
H =

1

8π2

(m2
Q

m2
H

)
em

2
H∗/M

2

∫ sH0

m2
Q

ds s (1− z)2e−s/M
2

+
[
−mQ〈q̄q〉+

1

12
〈GG〉 − m2

0m
3
Q

2M2

(
1− m2

Q

2M2

)
〈q̄q〉

− 16παsrvacm
2
Q

27M2

(
1− m2

Q

4M2
− m4

Q

12M4

)
〈q̄q〉

]
e−m

2
Q/M

2

.

(3.49)

3.6 Sum rules in the Infinite Heavy-Quark-Mass limit

Nonrelativistic versions of sum rules were investigated long time ago by Shuryak [61].
Later on the sum rules method was used in the framework of HQET to evaluate
hadronic observables around the threshold region ω0 = q2 − m2

Q � m2
Q. Here, di-

vergent terms arise, namely large logarithms ∼ log
(mQ
µ

)
, when naively expanding with

respect to inverse quark masses in the OPE. These logarithmic terms can be resummed
systematically [62]. In the standard form, as presented in Eqs. (3.45) and (3.46), the
Borel sum rules are not suited for an expansion around 1/mQ since the free parameters
s0 andM2 have no explicit mQ-dependence. Therefore, we introduce a new set of mass
dependent variables:

m2
H(∗) = (mQ + Λ̄)2 , M2 = 2mQτ , (3.50)

sH
(∗)

0 = (mQ + ω0)2 ' m2
Q + 2mQω0 . (3.51)

Using this reparametrization, the sum rule for the heavy-light vector meson decay
constant transforms to

f 2
H∗mH∗

(mH∗

mQ

)
e
− Λ̄
τ
− Λ̄2

2mQτ

=
τ 3

π2

∫ ω0
τ

0

dz e−z

(
z2

1 + 2zτ
mQ

)(
2 +

1

1 + 2zτ
mQ

)
×
{

1 +
2αs
π

[
ln
(mQ

2τ

)
+

3

2
+

2π2

9
− ln(z)

+
2

3
KT
(2zτ

mQ

)]}
− 〈qq̄〉(mQ)

{
1 +

2αs
3π

(
3 +

( 2τ

mQ

)∫ ∞
0

dz
e−z

(1 + 2zτ
mQ

)2

)}
− 〈GG〉

12mQ

+
m2

0〈qq̄〉
16τ 2

+
παsrvac〈qq̄〉2

162τ 3

{
1− 16τ

mQ

− 32τ 2

m2
Q

}
, (3.52)
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where radiative corrections of O(α2
s) are neglected. The function Kt(x) reads

KT (x) = 2 Li2(−x) + ln(x) ln(1 + x) +
x

(3 + 2x)
ln(x)

+
(1 + 2x)(2 + x)(1 + x)

(3 + 2x)x2
ln(1 + x) +

6x2 + 3x− 8

4(3 + 2x)x
− 9

4
, (3.53)

which vanishes in the limit mQ →∞ (x→ 0) according to

KT (x)→ 4

3
x ln(x)− 29

18
x+O(x2) . (3.54)

For simplicity we use the renormalization-group-invariant heavy-quark pole mass to
express the sum rule. It is also more convenient for the matching with HQET. In
(3.52) the logarithmic enhancement has been singled out, whereas the quark conden-
sate still has an intrinsic divergence. The corresponding HQ sum rule formula in the
pseudoscalar channel is given in Appendix B.6. For neglected radiative corrections, we
obtain the well-known asymptotic scaling law [79]:

fH = fH∗ =
f̂√
mH

, (3.55)

where the rescaled decay constant f̂ is introduced. The sum rule of the rescaled decay
constant reads

f̂ = e
Λ̄
2τ

(
3τ 3

π2

∫ ω0
τ

0

dz z2e−z − 〈qq̄〉+
m2

0〈qq̄〉
16τ 2

+
παsrvac〈qq̄〉2

162τ 3

)1/2

. (3.56)

It includes all LO contributions of operators of dimension d ≤ 6 except the gluon
condensate terms, which enters the sum rule at 1/mQ-level.

Effects of Heavy-Quark Spin Symmetry Violation

The ratio of Eqs. (3.52) and (B.57) at the heavy quark limit leads to the heavy-quark
symmetry relation with NLO accuracy

fH∗

fH
= 1− 2

3

(αs
π

)
. (3.57)
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It also follows from the matching calculation between HQET and full QCD heavy-light
currents [79, 80]. The expression of finite-mass sum rules also allows us to estimate the
first power suppression and to compare with the HQET relation in [62] according to

fH∗

fH
=
[
1− 2

3

(αs
π

)]{
1 +

∆

mQ

}
. (3.58)

Setting the pole mass of the b-quark atmQ = 4.6GeV, this corresponds to ∆ ∼ 200 MeV
at the heavy-quark limit fH∗/fH = 1. In the next chapter we also estimate ∆ from the
results of our sum rules.

Effects of Heavy-Quark Flavor Symmetry Violation

Aside from ratios of mesons with the same flavor content, we determine ratios with
mixed flavors as well. Concerning this matter, there also exist HQET estimates includ-
ing two-loop radiative and no inverse heavy-mass corrections [79]:

fB
fD

=

√
mD

mB

(αs(mc)

αs(mb)

)6/25(
1 + 0.894

αs(mc)− αs(mb)

π

)
' 0.69 . (3.59)

In the final section of this chapter we compare this relation to our determined ratio
value.





Chapter 4

Perturbative Corrections to the
Two-Point Correlation Functions

We analytically compute the absorptive part of the leading term in the OPE with
NLO accuracy, see the correlation function in Eq. (3.20). From OPE we obtain the
perturbative series

ρ
(pert)
t(5) (s) =

1

π
Im Π

(pert)
t(5) (s) = ρ

(pert,LO)
t(5) (s) +

αs
π
ρ

(pert,NLO)
t(5) (s) . (4.1)

Note that the above equation implicitly contains the Heaviside function θ(s − (mQ +

mq)
2), which defines the physical cut in the perturbative regime. In the first step of our

calculation the light quark is treated as massless, mq = 0. Further, we will also perform
a small mass expansion and include the leading contributions that arise from the light
quark mass. From Wick’s theorem all relevant Feynman diagrams are determined: a
simple quark-loop contributes at LO and three two-loop diagrams contribute at NLO.
For simplification we use the results from Π5 to determine the transverse invariant
amplitude Πt. Solving Eq. (3.2) for Πt, we find

Πt =
1

(1− d)

[
gµν − qµqν

q2

]
Πµν (4.2)

=
1

(1− d)

[
Πµ
µ −

(mQ +mq)
2

q2
Π5

]
. (4.3)

Here, we use the equation of motion ∂µjµ = (mQ +mq)j5 in tensorial correlation func-
tion Πµν .

In order to compute the spectral function ρ(pert)
t(5) it is necessary to determine the imag-

inary part of scalar Feynman integrals. For this purpose, we discuss definitions of such
integrals within dimensional regularization and give explicit results of one-loop spec-
tral functions, which are required in the following calculations. More details about the
integration within dimensional regulatization are also given in Appendix A.1 and A.2.
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Functions

4.1 Essentials for Loop Computation

Feynman integrals can be analytically computed with various parametrization tech-
niques such as Feynman parametrization [81, 82]. We present these integrals in “Eu-
clidean” dependence, e.g. momenta in the denominator have a sign −k2, to avoid
complex-valued powers of (−1), when shifting from Minkowskian to Euclidean coordi-
nates. This convention also leads to positive spectral functions. We neglect the small
offset ε+ in the complex plane −k2 → −k2 − iε+, but take it implicitly into account.
For a better overview the shorthand notation for integrations over the momentum q is
used: ∫

q

≡
∫

d4q

(2π)4i
. (4.4)

We also redefine the integration measure into a d(= 4−2ε) dimensional object according
to dimensional regularization in the MS scheme notation∫

q

→
∫
µ̄2 ddq

(2π)di
,

where the scale parameter µ̄2 ≡
(
µ2eγE

4π

)ε preserves the dimensionality of the integral.
Furthermore, µ̄2 prevents a proliferation of the Euler’s constant and 4π.

General One-Loop Master Formula

One-loop scalar integrals with two different masses m1 and m2 are∫
k

1

[m2
1 − (q − k)2]α[m2

2 − k2]β
≡ 1

(4π)
d
2

× V (α, β, q2)

=
Γ(α + β − d/2)

Γ(α)Γ(β)

∫ 1

0

dx
xα−1x̄β−1

Λα+β−d/2 (4.5)

using Feynman parametrization. Here, we introduce the abbreviation

Λ ≡ m2
1x+m2

2x̄− q2xx̄ . (4.6)
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In this thesis we consider special cases such as the massless (m1 = m2 = 0) and the
single-mass case (m1 = m, m2 = 0). If both masses are zero, Eq. (4.5) leads to

I(α, β, q2) ≡ V (α, β, q2)
∣∣∣
m1=m2=0

= G(α, β)× [−q2]d/2−α−β . (4.7)

The dimensionless function G(α, β) is a product of gamma functions and can be written
as

G(α, β) =
Γ(−d/2 + α + β)

Γ(α)Γ(β)

∫ 1

0

dx xd/2−β−1x̄d/2−β−1 (4.8)

=
Γ(−d/2 + α + β)Γ(d/2− α)Γ(d/2− β)

Γ(α)Γ(β)Γ(d− α− β)
(4.9)

= g(α, β)× 1

ε
. (4.10)

In the last line we separate the pole term, which yields to the finite function g(α, β).
The common notation of g(1, 1) is G. Another important case is the massive tadpole
integral

T (α;m2) ≡ V (0, β, q2)
∣∣∣
m1=0,m2=m

=

∫
ddk

iπd/2
1

[m2 − k2]α
=

Γ(α− d/2)

Γ(α)
× [m2]d/2−α .

(4.11)

Apart from the above results of one-loop integrals V (α, β, q2), we also require their
imaginary part. This issue will be discussed in the next section.

One-Loop Spectral Function with One Mass

The Feynman integral in (4.5) is a function of q2. We consider the case with one
massive (m2 = m) and one massless propagator (m1 = 0). The integrand of (4.5)
has a cut along the positive half-axis according to [q2x − m2] > 0, starting with the
branching point at the origin q2x − m2 = 0. The analytic continuation leads from
negative ([q2x−m2] < 0) to positive values along the contour

t(φ) ≡ −[sx−m2]e−iφ (s ≡ |q2|) . (4.12)
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We obtain the discontinuity relation from the difference t(π+πiε+) and t(−π−πiε+):

Disc
[ 1

[m2 − q2x]γ

]
= 2i Im

[ 1

[m2 − q2x]γ

]
=
[ 1

tγ(−π[1 + iε+])
− 1

tγ(π[1 + iε+])

]
= lim

ε+→0

[ 1

[sx−m2]γ
eiγ[π+ε+] − 1

[sx−m2]γ
e−iγ[π+ε+]

]
θ(sx−m2)

= 2πi
sin(πγ)

π
× θ(sx−m2)

[sx−m2]γ

=
2πi

[sx−m2]γ
× θ(sx−m2)

Γ(γ)Γ(1− γ)
, (4.13)

where γ is a arbitrary exponent and the functional identity

sin(πx) =
π

Γ(x)Γ(1− x)

is used. From Eq. (4.13) follows the spectral function (z ≡ m2
Q/s)

ρ(α, β, z) ≡ 1

π
Im
[
V (α, β, q2)

]∣∣∣
m1=0,m2=m

=
1

Γ(α)Γ(β)Γ(1 + d/2− α− β)

∫ 1

z

dx x̄d/2−β−1xβ−1(sx−m2)d/2−α−β

=
Γ(d

2
− β)

Γ(α)Γ(β)Γ(1 + d− α− 2β)
s
d
2
−α−βzβ−1(1− z)d−α−2β

×2F1

(
1− β, d

2
− (α + β + 1); 1 + d− α− 2β;

z − 1

z

)
.

(4.14)

Here, we introduced the ordinary hypergeometric function:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt tb−1(1− t)c−b−1(1− tz)−a (4.15)

and Re(c) > Re(b) > 0, |arg(1 − z)| < π. In order to Laurent-expand the hyperge-
ometric function in terms of ε, we use the Mathematica package HypExp [83]. This
approach can easily be employed in the generic one-loop massless case (m1 = m2 = 0).
The massless one-loop spectral function yields

ρ̂(α, β, s) ≡ 1

π
Im[I(α, β, q2)] = G(α, β) · s−ε · sin(πε)

π
= g(α, β) · s−ε . (4.16)
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For computations of diagrams beyond the one-loop level we define two-loop integrals
with a single mass and arbitrary powers in the denominator as∫

q

∫
k

1

[m2 − (p− q)2]α[m2 − (p− k)2]β[−k2]δ[−q2]ρ[−(q − k)2]σ

≡ 1

(4π)d
V (α, β, δ, ρ, σ; p2) . (4.17)

The corresponding two-loop spectral function shall be defined as

ρV (α, β, δ, ρ, σ; s) ≡ 1

π
Im
[
V (α, β, δ, ρ, σ; p2)

]
. (4.18)

Due to the complexity of two-loop integrations it is often useful to reexpress these
integrals by simpler integrals if possible. We will discuss a strategy about how to
obtain the simplest set of integrals for a specific topology of integrals in the next
section.

Integration By Parts
If the number of different Feynman integrals is large, it is reasonable to derive some
recurrence relations for a given topology of integrals to reduce the number of resulting
integrals to a minimum. A common approach to obtain such relations is provided by
the method of integration by parts (IBP) [84]. The minimal set of integrals are built up
by irreducible master integrals or masters, which are simpler to compute than integrals
of the original set. In order to demonstrate this method we consider a massless two-loop
integral

V (n1, n2, n3, n4, n5) =

∫
k

∫
q

I(p, q, k) I(p, q, k) ≡ 1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

, (4.19)

where D1 ≡ −(p − q)2, D2 ≡ −(p − k)2, D3 ≡ −k2, D4 ≡ −q2 and D5 ≡ −(q − k)2,
see also Fig. 4.1. The basic idea of IBP includes the vanishing surface terms within
dimensional regularization∫

k

∫
q

∂

∂qµ
I(p, q, k) =

∫
k

∫
q

∂

∂kµ
I(p, q, k) = 0 , (4.20)

if the integrand is derived with respect to the integration momenta. From differentia-
tion with respect to qµ in Eq. (4.20) we obtain

∂

∂qµ
I(p, q, k) =

[
(−n1)

2(p− q)µ
D1

+ (−n4)
−qµ
D4

+ (−n5)
−2(q − k)µ

D5

]
× I(p, q, k) .

(4.21)
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For the purpose of (4.19), we evaluate three reduction relations, using the notation of
increasing and lowering operators, e.g. 4+5−×V (n1, n2, n3, n4, n5) = V (n1, n2, n3, n4 +

1, n5 − 1):

∂

∂qµ
(q − k)µ × I(p, q, k)

=
[
D − n1 − n4 − 2n5 − n1 1

+
(
5− − 2−

)
− n4 4

+
(
5− − 3−

)]
× I , (4.22)

∂

∂qµ
(p− q)µ × I(p, q, k)

=
[
2n1 + n4 − n5 −D + n4 4+

(
p2 + 1−

)
+ n5 5

+
(
1− − 2−

)]
× I , (4.23)

∂

∂qµ
qµ × I(p, q, k)

=
[
D − n1 − 2n2 − n5 − n1 1−

(
p2 + 4+

)
+ n5 5

−
(
3+ − 4+

)]
× I . (4.24)

Furthermore, it is useful to reexpress the scalar products into linear expressions of
inverse propagators Di:

2(q − k)(p− q) = D1 −D2+D5 , 2(q − k)q = D3 −D4 −D5 ,

2(p− q)q = D1 +D4 + p2 . (4.25)

If we successively use the relations (4.22) to (4.24), we find

V (1, 1, 1, 1, 1)

=
1

D − 4

[
V (2, 1, 1, 1, 0) + V (1, 1, 1, 2, 0)− V (2, 0, 1, 1, 1)− V (1, 1, 0, 2, 1)

]
,

=
2

D − 4

[
V (2, 1, 1, 1, 0)− V (2, 0, 1, 1, 1)

]
,

=
1

D − 4

[2(D − 3)

p2
V (1, 1, 1, 1, 0) +

2(3D − 10)(3D − 8)

(D − 4)p4
V (0, 1, 0, 1, 1)

]
(4.26)

In the first and second line of the above equation the recurrence relation in Eq. (4.22)
and some symmetry properties

V (2, 1, 1, 1, 0) = V (1, 1, 1, 2, 0) , V (2, 0, 1, 1, 1) = V (1, 1, 0, 2, 1)

allow us to express V (1, 1, 1, 1, 1) with five propagators via two integrals with only four
propagators. The other two relations in (4.23) and (4.24) provide a simplification of



4.1. Essentials for Loop Computation 49

the remaining integrals into terms of master integrals, which are given by V (1, 1, 1, 1, 0)

and V (0, 1, 0, 1, 1). In general, one has to determine all possible IBP relations for a
given topology of Feynman integrals to find the set of master integrals. In the massless
two-loop case there are six relations corresponding to the derivatives

∂

∂kµ
kµ, qµ

∂

∂kµ
,

∂

∂qµ
qµ, kµ

∂

∂qµ
, pµ

∂

∂kµ
pµ

∂

∂qµ

that we apply on the integrand of Eq. (4.19). These relations lead to a linear combi-
nation in terms of master integrals for V (n1, n2, n3, n4, n5). Nowadays many programs
are available for solving IBP reduction problems for various classes of integrals. In this
thesis the Mathematica package LiteRed is used to build up the IBP reduction rules
and obtain the master integrals. For a detailed description of LiteRed we refer to
Refs. [85] and [86]. In order to obtain the reduction rules we define a specific two-
loop diagram, which has the corresponding complexity and includes all integrals of the
given problem. Based on Eq. (4.19) we choose a basis Ds with 5 linear independent
denominators Dα:

Ds =
{
D1, D2, D3, D4, D5

}
.

Having solved the reduction problem, the number of master integrals reduces to the
formula stated above. The set of masters is

MIs =
{
V (1, 1, 1, 1, 0), V (0, 1, 0, 1, 1)

}
(4.27)

for the given typology in (4.19).
The analytic computation of relevant master integrals for ρ(pert)

t(5) (s) is performed and
explained in the following sections and Appendix B.3.

Cutkosky Rules

The discontinuity of a scalar propagator is related to the imaginary part by

Im
{ 1

m2 − p2 − iε+

}
=

1

2i

( 1

m2 − p2 − iε+
− 1

m2 − p2 + iε+

)
= πδ(m2 − p2) . (4.28)

We explicitly write the small imaginary offset iε+ in the complex plane since it deter-
mines the sign of the delta distribution. In the same manner, one can also determine
the imaginary part for a Feynman integral. As an example, we consider a one-loop
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Basis of two-loop topology

p

(a) Two-loop basis for LiteRed

Feynman graphs of master integrals

(b) V (2, 1, 1, 1, 0) (c) V (2, 0, 1, 1, 1)

(d) V (0, 1, 0, 1, 1) (e) V (1, 1, 1, 1, 0)

Figure 4.1: Basis to generate IBP identities for massless two-loop Feynman integrals
is shown in (a). The reduced integrals (b), (c) and two master integrals after IBP
reduction (d), (e). A dotted line denotes an additional power of the propagator.

integral with a single mass:

Π(p2) =

∫
k

1

[m2 − k2 − iε+]

1

[m2 − (p− k)2 − iε+]

=

∫
k

(
Î(k0)− iπ

k0

δ(ωk − k0)
)

×
(
Î(k0 − p0)− iπ

k0 − p0

δ(ωk−p − k0 + p0)
)
θ(k0)θ(k0 − p0)
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=

∫
k

( 1

m2 − k2
× iπ

k0 − p0

δ(ωk−p − k0 + p0) +
1

m2 − (k − p)2
× iπ

k0

δ(ωk − p0)
)
,

where Î(k0) ≡ 1
ωk−k0−iε+ −

1
ωk+k0−iε+ and ωk ≡

√
~k2 +m2. Products of delta distribu-

tions vanish in the second line of the above equation. Moreover, the integrands Î(k0)

and Î(k0 − p0) have their poles on the lower half of the complex plane. The closed
integration contour can go along the upper complex plane, which is singularity-free. As
a result, the integral along this contour is zero. We now use the discontinuity relation
in Eq. (4.28) to calculate the imaginary part of the Feynman integral:

Im Π(p2)

=

∫
k

(
πδ(m2 − k2)

iπ

k0 − p0

δ(ωk−p − k0 + p0) + πδ(m2 − (k − p)2)
iπ

k0

δ(ωk − p0)
)

=
1

2i

∫
k

(
(2πi) δ(m2 − k2)× (2πi) δ(m2 − (k − p)2)

)
. (4.29)

Hence, the imaginary part of one-loop integrals can be instantly evaluated by replacing
the propagators by on-shell delta distributions,

1

m2 − k2
→ (2πi) δ(m2 − k2)θ(k0 −m0) , (4.30)

1

m2 − (k − p)2
→ (2πi) δ(m2 − (k − p)2)θ((k0 − p0)−m0) (4.31)

and introduce the prefactor 1
2i
. Here, we also add the terms θ(k0−m0) and θ((k0−p0)−

m0) to guarantee positive energy components along the given propagating direction.
Eq. (4.14) can easily be confirmed by these substitutions. In general they also work for
any loop integrals, known as Cutkosky (cutting) rules [87]. For amplitudes with more
than one loop it is necessary to perform all possible cuts and sum over them. Cutted
lines indicate the transition from virtual to on-shell particles. We will use the cutting
rules in this thesis in order to calculate the most complicated integrals.

4.2 Leading Order Contribution

The PT part of the two-point correlator with either tensor or pseudoscalar structure
at LO is given by

Π
(pert,LO)
µν(5) (p2) = −

∫
k

Tr{Γν(5)Sij(p− k,mQ)Γµ(5)Sji(k, 0)} , (4.32)
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where we introduced Γµ = γµ and Γ5 = iγ5. This integral is a simple quark-antiquark
loop with the massive Sij(p − k,m) and massless Sij(k, 0) bare fermion propagator.
SU(3) color indices are denoted by i, j. A minus sign arises because of the fermionic
loop configuration. The resulting spectral functions are

ρ
(pert,LO)
t (s) =

2

3
(1− z)(2 + z)ρ(1, 1; z) , (4.33)

ρ
(pert,LO)
5 (s) = 2(1− z)ρ(1, 1; z) . (4.34)

The strategy for computation is to substitute mixed scalar products of q and k in the
numerator of (4.32) by inverse scalar propagators [m2−k2] and [−(q−k)2] and to then
perform the discontinuity cuts. Note that both LO spectral functions include no poles
because the preformed cuts reduce divergences of the form 1/εn to 1/εn−1 and, hence,
by one order.

4.3 Next-to-Leading Order Contribution

NLO corrections to the correlation functions result from three Feynman graphs. The
most complicated topology at this level of complexity is the scalar “fish”-type diagram
including 5 propagators, see Eq. (4.17). This topology is used to define the basis,
which is necessary to obtain the IBP reduction rules with LiteRed. We end up with
5 masters, i.e. any (non-vanishing) integrals as defined in Eq. (4.17) can be reduced
to these five integrals. One of the masters is a product of two massive tadpoles and
therefore has a vanishing imaginary part. We start with radiative corrections on the
massless and massive quark line. The full quark propagator is given by

S̃ij(k,m) = i

∫
ddx e−ikx〈0|T

{
ψi(x)ψ̄j(0)ei

∫
ddxLI(x)

}
|0〉

=
δij

[S(k,m)]−1 − Σ(k,m) + δm

= δij

(
S(k,m) + S(k,m)Σ(k,m)S(k,m) +O(α2

s)
)

(4.35)

where [S(k,m)]−1 = /k −m is the inverse bare propagator, Σ(k,m) is the one-particle
irreducible (1PI) self-energy and δm denotes the mass counterterm. From this follows
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that the correlation functions at NLO level are:

Π
(pert,NLO)
µν(5) (p2)

∣∣∣
SEmq

= −
∫
k

Tr
{

Γν(5)Sli(p− k,mQ)Γµ(5)Sij(k, 0)(iΣjr(k, 0))Srl(k, 0)
}
,

(4.36)

Π
(pert,NLO)
µν(5) (p2)

∣∣∣
SEmQ

= −
∫
k

Tr
{

Γν(5)Sli(p− k,mQ)(iΣij(p− k,mQ))Sjr(p− k,mQ)

× Γµ(5)Srl(k, 0)
}
. (4.37)

The massive 1PI self-energy Σ(p,m) reads

iΣij(p,m) = (−i)g2
sCF δij ×

∫
q

γµ(/q +m)γµ

[m2 − q2][−(p− q)2]
. (4.38)

Here, we introduce the coupling g2
s = αs(4π). From Dirac and IBP reduction we find

the absorptive part

ρ
(pert,NLO)
t (s)

∣∣∣
SEmq

=− 4

3ε
(1− z)(ρV (0, 1, 0, 1, 1) + szρV (0, 2, 0, 1, 1)) +O(ε0) (4.39)

ρ
(pert,NLO)
5 (s)

∣∣∣
SEmq

=− 4

ε
(ρV (0, 1, 0, 1, 1) + szρV (0, 2, 0, 1, 1)) +O(ε0) (4.40)

ρ
(pert,NLO)
t (s)

∣∣∣
SEmQ

=
8

3ε
(1− z)(ρV (0, 1, 0, 1, 1) + szρV (0, 2, 0, 1, 1))

+ 2
(1− z)(1 + 3z)

z
ρV (1, 1, 0, 1, 0) +O(ε0) (4.41)

ρ
(pert,NLO)
5 (s)

∣∣∣
SEmQ

=
8

ε
(ρV (0, 1, 0, 1, 1) + szρV (0, 2, 0, 1, 1))

+ 6

(
1

z
− 3

)
ρV (1, 1, 0, 1, 0) +O(ε0) , (4.42)

where only the pole terms are presented. The self-energy contribution with correction
on the massless (massive) line can be reduced to two (three) masters. The third
contribution arises from the fish-type diagram, which has maximum complexity at
NLO level. From IBP reduction we find 4 masters. The explicit two-point function
formula reads

Π
(pert,NLO)
µν(5) (p2)

∣∣∣
fish

= −
∫
k

∫
q

Tr{Γν(5)Sij(p− q,mQ)(igsT
a
jlγα)Sln(p− k,mQ)Γµ(5)Snr(k, 0)

(igsT
b
rsγβ)Srs(q, 0)Dαβ

ab (q − k, 0)} . (4.43)
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As a result, we obtain the following spectral functions

ρ
(pert,NLO)
t (s)

∣∣∣
fish

=− 4(z − 1)

9z ε

(
sz(5z + 3)ρV (0, 2, 0, 1, 1) + 3

(
szρV (1, 1, 1, 1, 0)

+ (z + 1)ρV (1, 1, 0, 1, 0)
)

+ 17zρV (0, 1, 0, 1, 1)
)

+
4

9zε
(1− z)(5− z)ρV (1, 1, 0, 1, 0) +O(ε0) ,

ρ
(pert,NLO)
5 (s)

∣∣∣
fish

=− 4

z ε

(
sz(3z + 1)ρV (0, 2, 0, 1, 1) + szρV (1, 1, 1, 1, 0)

+ (1 + z)ρV (1, 1, 0, 1, 0) + 7zρV (0, 1, 0, 1, 1)
)

− 4

zε
(1− z)ρV (1, 1, 0, 1, 0) +O(ε0) .

Adding up all three spectral functions of NLO level

ρ
(pert,NLO)
t(5) (s) = ρ

(pert,NLO)
t(5) (s)

∣∣∣
SEmq

+ ρ
(pert,NLO)
t(5) (s)

∣∣∣
SEmQ

+ ρ
(pert,NLO)
t(5) (s)

∣∣∣
fish

(4.44)

leads to a simple pole expression. It is sufficient to renormalize the bare quark mass
within a suitable renormalization scheme, since we choose a renormalization-group-
invariant current operator. In the pole mass scheme mpole

Q = ZOS
m mbare

Q we find

ρ
(pert,LO)
t (s) =

2

3
(1− z)2(2 + z)

ρ
(pert,NLO)
t (s)

∣∣∣
mQ@pole

=
(

1− 5

2
z +

2

3
z2 +

5

6
z3 +

1

3
z(−5− 4z + 5z2) log(z)

− 1

3
(1− z)2(4 + 5z) log(1− z)

+
2

3
(1− z)2(2 + z)

[
log
( z

1− z
)

log(1− z)− 2 Li2

(
− z

1− z
)])

.

(4.45)

In the case of pseudoscalar current operators the corresponding spectral function reads

ρ
(pert,LO)
5 (s) = 2(1− z)2

ρ
(pert,NLO)
5 (s)

∣∣∣
mQ@pole

= (1− z)
(9

2
(1− z) + (3− z)(1− 2z) log(z)

−(1− z)(5− 2z) log(1− z)

+2(1− z) log(z) log(1− z) + 4(1− z)Li2(z)
)
, (4.46)
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which is in agreement with [75] and [88]. In the MS scheme of the quark mass mQ the
spectral functions ρt(5) obtain additional terms from the pole-to-MS-mass conversion
formula, see Eq. (A.33). Note that PT contributions at NNLO level are also computed
in the pole mass scheme of the heavy quark [75]. Therefore additional terms ∆ρ

(pert)
t(5) (s)

are required that stems from the pole-to-MS-mass expansion in Eq. (A.44). The LO
and NLO terms contribute to ∆ρ

(pert)
t(5) (s) up to O(α2

s). We present the additional
terms in Appendix B.4, where both contributions are denoted by ∆1,2ρ

(pert,NNLO)
t(5) (s).

The overall spectral function in the MS scheme reads

ρ
(pert)
t(5) (s) =ρ

(pert)
t(5) (s)

∣∣∣
mQ@pole

+ ∆ρ
(pert)
t(5) (s) (4.47)

=ρ
(pert)
t(5) (s)

∣∣∣
mQ@pole

+
(αs
π

)
∆ρ

(pert,NLO)
t(5) (s)

+
(αs
π

)2

∆1ρ
(pert,NNLO)
t(5) (s) +

(αs
π

)2

∆2ρ
(pert,NNLO)
t(5) (s) . (4.48)

At NLO level we find

∆ρ
(pert,NLO)
t (s) = −z(1− z2)

(
3 log

( µ2

m2
Q

)
+ 4

)
, (4.49)

∆ρ
(pert,NLO)
5 (s) = (1− 3z)

(
3 log

( µ2

m2
Q

)
+ 4

)
. (4.50)

4.4 Light-Quark Mass Corrections

In the previous sections of this chapter all calculations were performed with vanishing
light-quark mass. If we consider the strange quark as the light partner in the heavy-
light meson system, the light-quark mass contributions must be included since radiative
corrections of O(α2

s) are of the same magnitude as the strange quark mass (ms) con-
tributions of O(msαs). The light-quark mass corrections to the spectral function can
be assessed with preceding methods and results of Sects. 4.2 and 4.3. We start with
Eq. (4.32) and replace the massless propagator by the mass-expanded one:

Sji(k, 0)→ Sji(k,ms) = (−i) /k +ms

m2
s − k2

= (−i)
[ /k

−k2
+ms

1

−k2
−m2

s

/k

[−k2]2

]
+O(m3

s) .

(4.51)
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Expansion terms of order m3
s and higher are neglected at LO in αs. From Eq. (4.51)

we promote the PT part by two additional terms with one additional power in the
massless propagator. At NLO level we retain only the linear term in ms. Note that
all contributions from mass corrections are determined by the set of masters as in the
massless light-quark computation. We denote the mass corrections by δρt(5)(s), which
should be added to the yet known results:

ρ
(pert)
t(5) (s) = ρ

(pert)
t(5) (s)

∣∣∣
ms=0

+ δρ
(pert,ms)
t(5) (s) . (4.52)

The explicit expressions to the LO contributions are

δρ
(pert,LO,ms)
t (s) = −2

3

[
2msmQ(4− z)ρ(1, 1) +m2

s(2 + z)
(
ρ(1, 1) + s(1− z)ρ(1, 2)

)]
= −2

3

[
2msmQ(4− z)(1− z) + 2m2

s(2 + z)
]
, (4.53)

δρ
(pert,LO,ms)
5 (s) = 4msmQρ(1, 1)− 2m2

s

(
s(1− z)ρ(1, 2) + ρ(1, 1)

)
= 4
(
msmQ(1− z)−m2

s

)
. (4.54)

Mass correction terms to the NLO contribution δρ(pert,NLO,ms)
t(5) are given in Appendix

B.4. The strange quark mass is renormalized in the MS scheme to remove the extra
mass pole ms = ZMS

m mbare
s .



Chapter 5

Decay Constants of B and D Mesons
from QCD Sum Rules

In this chapter we perform the numerical evaluation of decay constants for heavy-
light bottom and charmed vector mesons H∗ = {B∗, B∗s , D∗, D∗s} and, analogously,
for the corresponding pseudoscalar meson channel H = {B,Bs, D,Ds}. As an ex-
ample, a detailed discussion of fB∗ will be presented. We also determine the HQ and
SU(3)fl-violation by means of various ratios of decay constants. In the end, we perform
estimations with alternative versions of sum rules to test the consistency of the given
sum rules framework.

Before we start the analysis, some prerequisites need to be discussed concerning the
adopted QCD parameters, see Tab. 5.1, and method-based variables, i.e. the Borel
parameter, the renormalization scale and the duality-threshold.

5.1 Numerical analysis of Borel sum rules

Setup and Input Parameters

For correlation functions of highly virtual quarks, which are involved in our computa-
tion, we use quark masses in the MS scheme. Note that the integrated spectral function
shows an improved convergence behavior if MS masses are used instead of pole masses.
This issue has already been pointed out in [53]. Currently, there is a good agreement
between various lattice and continuum-QCD determinations of b and c quark masses.
Hence, we use the averaged MS masses from PDG [36]. In particular, the heavy quark
mass extractions from QCD quarkonium sum rules [89, 90] are in good agreement with
our selected value. Regarding the strange quark mass, we double the theoretical un-
certainty to retain conservative uncertainties for the sum rule predictions [91, 92, 93].
However, one needs to have in mind that recent lattice determinations state higher
accuracy.
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The quark condensate density is determined according to the Gell-Mann-Oakes-Renner
(GMOR) relation that relates 〈q̄q〉 via chiral symmetry breaking in QCD to physical
quantities of the π-meson:

〈q̄q〉(2 GeV) =
m2
πf

2
π

2(mu +md)
. (5.1)

In Ref. [94] there is a discussion of how to determine 〈q̄q〉 in a precise manner. The au-
thors also use the strange quark mass as a further input [95]. Besides SU(3)fl symmetry
violation in the OPE, which originates from the quark mass difference ms − mu,d, it
also arises from the difference between strange and non-strange quark-condensate den-
sities. Regarding the condensate ratio we adopt a rather broad interval from Ref. [78].
All condensate densities of higher dimensionality d = 4, 5, 6 are also provided in [78],
where we follow the standard notation: The quark-gluon and gluon-gluon condensate
are parametrized as

〈GG〉 ≡ αs
π
〈0|Ga

µνG
aµν |0〉 and 〈q̄Gq〉 ≡ 〈0|gsq̄σµνtaGa

µνq|0〉 = m2
0〈q̄q〉 , (5.2)

respectively. We introduced the mass parameter m0 in the quark-gluon condensate
term. It is numerically accessible via sum rule techniques at baryonic resonances.
Furthermore, following [45], the four-quark condensate density is factorized with an
intermediate vacuum insertion into the square of the ordinary quark condensate:

〈q̄Γαqq̄Γβq〉 = rvac〈q̄q〉2 , (5.3)

where Γα and Γβ are Dirac matrices. Here, the additional coefficient rvac denotes the
deviation from the original expression due to the factorization procedure.

Note that all parameters, which were introduced, have a specific renormalization scale
dependence. Quark masses, OPE coefficient functions and vacuum expectation values
of local operators are multiplicable renormalizable by means of

m(µm) =

(
αs(µm)

αs(µ′m)

)γm
m(µ′m) , (5.4)

〈Od〉(µf ) =

(
αs(µf )

αs(µ′f )

)γOd

Cd(µf , µ
′
f )〈Od〉(µ′f ) . (5.5)

At leading order the strong coupling satisfies the scaling behavior as described in Eq.
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(A.38). It is also related to the beta-function by the renormalization-group equation,
see Eq. (A.19),. The anomalous dimension of the running quark mass (see Eq. (A.36))
is known up to the four-loop order [96], where the first coefficient is γ(0)

m = 4 as dis-
cussed in Sect. A.3. From Eq. (5.1) follows γq̄q = −4 for the quark condensate. The
anomalous dimension of the gluon condensate and the parameter m2

0 are γ(0)
GG = 0 and

γ
(0)
m0 = 4, respectively. In case of the quark-gluon and four-quark condensate we ne-

glect any scale dependence and take their densities m2
0〈q̄q〉 and αsrvac〈q̄q〉2 at a low

scale (µ = 1 GeV). The strong coupling is perturbatively expanded up to O(α3
s), start-

ing at the Z-boson mass [36]. We employ the Mathematica package RunDec [68] to
perform the running of the strong coupling and the quark masses with four-loop ac-
curacy. For simplification we adopt a uniform scale dependence, µ = µm = µf for all
scale-dependent expressions. Moderate adjustments of individual scales do no affect
the numerical results significantly.
In order to evaluate the decay constants fH∗ and fH in Eqs. (3.45) and (3.46), we still
require a more elaborate discussion regarding the method-based parameters. These
parameters are, to wit the renormalization scale µ, the Borel parameter M2 and the
effective thresholds sH(∗)

0 . The latter is an intrinsic method-inherent quantity, the other
two appear either due to truncation of the perturbative series or after the Borel trans-
formation. To provide reliable predictions it is reasonable to choose specific restrictions,
for which the sum rules show apparent stability under variations of input parameters.
First, we should select the renormalization scale µ in the vicinity of typical momentum
transfers of a given process to prevent large logarithmic terms. From other studies [97]
it is reasonable to choose the following scaling relation as a directive:

µ ∼
√
m2
H(∗) −m2

Q ∼
√

2mQΛQCD . (5.6)

As a result, we find that µ is close to the scales mQ and M , which defines the typical
virtualities of the correlation function. Hence, the default scale is fixed at µ = 3 GeV
(µ = 1.5 GeV) in case of b (c)-quark systems: This scale configuration also retains
a reasonable hierarchy of LO, NLO and NNLO contributions in the PT part of the
OPE. The scale dependence of our sum rules is estimated by varying µ within distinct
intervals as shown in Tab. 5.2 and 5.3.
Another free parameter is the duality-threshold sH

(∗)
0 . It can be fixed to the experi-

mental ground-state meson mass through the ratios of Eqs. (3.45) and (3.46). The
vector and pseudoscalar sum rules have the form

Πt(M
2, sH

∗

0 ) = m2
H∗f

2
H∗e

−
m2
H∗
M2 , (5.7)
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Π5(M2, sH0 ) =
m4
H

m2
Q

f 2
He
−m

2
H

M2 , (5.8)

where Πt(5)(M
2, sH

(∗)
0 ) denotes the Borel-transformed OPE of the correlation functions.

Derivatives with respect to the inverse Borel parameter yield

− d

d (1/M2)
Πt

(
M2, sH

∗

0

)
= m4

H∗f
2
H∗e

−
m2
H∗
M2 , (5.9)

− d

d (1/M2)
Π5

(
M2, sH0

)
=

m6
H

m2
Q

f 2
He
−m

2
H

M2 . (5.10)

Finally, we find the meson-mass relation from our sum rules:

mSR
H(∗) =

√√√√− d
d(1/M2)

Πt(5)

(
M2, sH

(∗)
0

)
Πt(5)

(
M2, sH

(∗)
0

) . (5.11)

At first, we set up M2 and then use the experimental meson mass as reference value to
fix sH(∗)

0 . We obtained a reproduction accuracy of less than 0.5 % on the fitted meson
mass mSR

H(∗) .

Finally, we have to choose a proper Borel parameter. The actual size of our selected
“Borel window” (M2

min < M2
default < M2

max) depends on quantum numbers of the consid-
ered particle and its flavor. If the Borel parameter M2 is too small, higher dimensional
operators prevail and the OPE is heavily biased to the condensate sector. On the
other side, if M2 is set too large, contributions of continuum states are not sufficiently
suppressed compared to the ground state. Thus, a balanced range should be chosen to
guarantee reliable sum rule predictions. As a general rule, this requirement can also
be achieved if the continuum states stay below 50% of the total correlation function,
i.e.

Ω
(cont)
t(5) = 1−

Π
(pert)
t(5) (M2, s0)

Π
(pert)
t(5) (M2,∞)

< 0.5 . (5.12)

According to this statement, we constrain the Borel parameter at Mmax = 6.5 GeV
and 2.5 GeV in case of b and c-quark system, respectively. A reasonable adjustment
of the default value is located around Mdefault ∼

√
2mQτ based on the heavy-quark

limit, where τ ∼ 1 GeV � ΛQCD. The lower bound is aligned at Mmin = 4.5 GeV and
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1.5 GeV, so that the contribution of d = 4, 5, 6 condensates in total do not exceed ±5%

of the perturbative part.

From the dispersion relation of the invariant amplitude Πt(5) we can also determine a
systematic upper bound. This bound follows from the positivity of the hadronic spec-
tral density at which the quark-hadron duality approximation diminishes. In principle,
the integrated hadronic spectrum vanishes, i.e. the ground-state resonance is saturated
by the OPE of the correlation function. Earlier uses of upper bounds are elaborated in
Refs. [98] and [99]. Formally, we obtain the upper bounds for fH∗ by taking the limit
sH
∗

0 →∞:

fH∗ <

√
em

2
H∗/M

2

m2
H∗

Π
(pert+cond)
t (M2,∞) . (5.13)

In the pseudoscalar channel the limit of sH0 →∞ provides the upper bounds for fH .

In order to estimate the uncertainties of our decay constant estimations, we vary each
physical parameter separately and add them in quadrature. Correlations between these
parameters are not taken into account. As a result, the total uncertainty is considered
to be more conservative. However, the meson-mass-fixed threshold parameter shows
some correlation to the Borel parameter. We adjust sH(∗)

0 after varying M2, but we
refrain from a separate uncertainty estimation related to the choice of sH(∗)

0 . In addi-
tion, we add the total d = 4, 5, 6 condensate contribution symmetrically as an estimate
to missing operator contributions of dimension d ≤ 7. Uncertainties regarding the
strong coupling (because of inaccuracies of the boson mass MZ and higher order µ-
dependence) have been evaluated but show no numerical significance.

Results of the B∗ Meson Decay Constants

In the first part of the numerical analysis, we discuss the Borel parameterM2, the scale
µ and the effective threshold sH(∗)

0 in greater detail. We emphasize their influence on
the values of fH(∗) . Other aspects of this analysis are the behavior of the PT part in
the OPE and the hierarchy structure of the LO, NLO and NNLO contribution. Note
that the calculations lead to unreliable numerical results in the pole mass scheme due
to slow convergence of the expansion, which is discussed in [53]. This encourages an
analysis based on quark masses in the MS scheme.
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Parameters Values (comments) Reference

mb(mb) = 4.18± 0.03 GeV

Quark masses mc(mc) = 1.275± 0.025 GeV [36]

ms(2 GeV) = 95± 10 MeV (error doubled)

αs(MZ) = 0.1184± 0.0007

Strong coupling αs(3 GeV) = 0.255± 0.003 [36]

αs(1.5 GeV) = 0.353± 0.006

Quark condensate 〈q̄q〉(2GeV) = −(277+12
−10 MeV)3 (ChPT ⊕ ms) [36], [95]

〈s̄s〉/〈q̄q〉 = 0.8± 0.3

〈GG〉 = 0.012+0.006
−0.012 GeV4

Condensates m2
0 = 0.8± 0.2 GeV2 [78]

d = 4, 5, 6 〈s̄Gs〉/〈q̄Gq〉 = 〈s̄s〉/〈q̄q〉

rvac = 0.1− 1.0

mB∗ = 5.325 mB∗s = 5.415

Meson mass mB = 5.280 mBs = 5.367 [36]

[GeV] mD∗ = 2.010 mD∗s = 2.112

mD = 1.870 mDs = 1.968

Table 5.1: Input parameters as used in the numerical analysis.

We present an explicit estimation of fB∗ with the choice of all required input parameters
as described in the previous section. Note that it is unnecessary to restate detailed
discussions about each decay constant because of similar characteristics for all bottom
mesons. The numerical evaluation is performed with up-to-date accuracy for all used
coefficient functions. The renormalization scale is set to

µ ∈ [3, 5] GeV , (5.14)

whereas the “Borel window” extends

M2 ∈ [4.5, 6.5]GeV2. (5.15)

The continuum threshold parameter sB∗0 is fixed to the experimental meson mass, see
Eq. (5.11), with a deviation of less than one per mille. Hence, we find the effective
threshold sB∗0 = 34.1GeV2. Adding all individual uncertainties, which are collected in
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Tab. 5.2, we obtain the following B∗ meson decay constant

fB∗ = (210+10
−12) MeV . (5.16)

Figs. 5.2 and 5.3 show plots of the decay constant regarding the individual OPE con-
tributions and each piece of the PT part, respectively. In total, the sum rule presents
a rather insensitive renormalization scale dependence and a good stability in the vari-
ation of M2 within the selected parameter window. These facts additionally confirm
our choice of method-based parameters, which we use for extracting fB∗ . Moreover,
every condition that we impose in the previous section is fulfilled.

The most significant details about this analysis are:

• The suppression of the continuum states satisfies Ω
(cont)
t(5) = 40% and so our deter-

mination of fB∗ is based predominantly on the low threshold region.

• We find a reasonable convergence of the OPE due to the fact that the condensate
terms contribute by about 25 % to the total correlation function, and radiative
corrections converge with increasing order in αs (see Fig. 5.2). The perturbative
coefficient function amounts to 14% (NLO ) and −4% (NNLO) in comparison to
the LO term.

• If we choose the b quark mass in the pole mass scheme, we fail to present a series,
which decays sufficiently fast. Numerically the hierarchy is 71% for (NLO/LO)
and 78% for (NNLO/LO) with no sign of convergence.

• The recently evaluated NLO correction to the quark condensate [A1, 69] generates
a shift of more than −30% compared to the LO condensate contribution. This
is the reason why our predicted decay constant has a smaller value than former
determinations.

• The total error budget is dominated by the variation of a few parameters, see
Tab. 5.2. An essential source of uncertainty is the b quark mass error. It moves
the central value of fB∗ by ±5%. The variation of 〈q̄q〉 within the selected error
limits has a mild impact of a few percent. This is comparable to variations of
the combined d = 4, 5, 6 condensate contribution.

• We choose µ = 3 GeV as the default scale value. Note that the given sum rule
fails, if the traditional scale region around µ = 4 GeV is used. This behavior
of instability is imposed by the quark-gluon condensate 〈q̄Gq〉, which shifts the
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OPE into a negative direction. We see a significant sensitivity regarding the
choice of µ due to the factor m3

Q in Π
〈q̄Gq〉
t , see Eq. (B.51). Radiative corrections

to the quark-gluon condensate would cancel the leading logarithmic enhancement.
However, without these corrections the interplay of fixing sB∗0 and satisfying the
selected constraints of the Borel parameter cannot be fulfilled.

We also give an upper bound of the decay constant by integrating the sum rule over
the full range of the threshold (sB∗0 → ∞). In order to determine the bound, we
choose some specific requirements, which are also discussed in Ref. [99]: Upper bounds
become the more restrictive for small Borel parameters and large renormalization scales
as shown in Fig. 5.1. Our aim is to predict the most restrictive bound within the
selected parameter constraints. At M2 = 4.5 GeV2 the condensate contributions are
more suppressed than for the default parameter value. Therefore, the OPE converges
sufficiently fast. The renormalization scale is set to the default value µ = 3 GeV,
where we encounter good convergence of the perturbative series. NLO and NNLO
terms contribute by 17 % and −2% compared to the leading order term. The total
theoretical error reads ∆fB∗ =+12

−24, which is determined by parameter variation as
before. We finally add the upper uncertainty value to the bound estimation of Eq.
(5.17). Hence, the final upper bound is given by

fB∗ < 261 MeV . (5.17)
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Figure 5.1: Upper bound scaling with respect to the Borel parameter M2 at µ =
3, 4, 5 GeV (black solid, blue dashed, orange dash-dotted line). The green dashed line
indicates the final upper bound including the total theoretical error. The gray box
shows the selected Borel window.
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Figure 5.2: Scale dependence of the B∗ meson decay constant: The black solid-thick
line includes all contributions, the brown solid line includes the PT part at LO, the
blue dashed line includes the PT part up to NLO contribution, the orange dash-dotted
line includes the PT part up to NNLO contribution and the green dashed line includes
the PT part up to NNLO and quark condensate contribution. The gray box shows the
selected Borel window.
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Figure 5.3: B∗ meson decay constant against the Borel parameter M2: The black
solid-thick line includes all contributions, the brown solid line includes the PT part at
LO, the blue dashed line includes the PT part up to NLO contribution, the orange
dash-dotted line includes the PT part up to NNLO contribution and the green dashed
line includes the PT part up to NNLO and quark condensate contribution. The gray
box shows the selected Borel window.



66 Chapter 5. Decay Constants of B and D Mesons from QCD Sum Rules

5.2 Numerical Results of Borel Sum Rules

In the following, we present the results of heavy-light meson decay constants with
bottom and charmed flavor content. The individual uncertainties, except small ones
with a magnitude of ≤ 0.1 MeV, are listed in Tab. 5.2 and 5.3. For the total error we
add the individual uncertainties in quadrature. Our final results read

fB∗ = (210+10
−12) [261] MeV , fB = (207+17

−09) [258] MeV , (5.18)
fB∗s = (251+14

−16) [296] MeV , fBs = (242+17
−12) [285] MeV , (5.19)

fD∗ = (242+20
−12) [297] MeV , fD = (201+12

−13) [237] MeV , (5.20)
fD∗s = (293+19

−14) [347] MeV , fDs = (238+13
−23) [266] MeV , (5.21)

where the upper bounds are given in brackets. We also evaluate the ratios of vector to
pseudoscalar meson decay constants to determine the heavy-spin-symmetry violation.
These ratios are determined by dividing both sum rules and performing the analogous
uncertainty analysis as stated above:

fB∗/fB = 1.02+0.02
−0.09 , fB∗s/fBs = 1.04+0.01

−0.08 , (5.22)
fD∗/fD = 1.20+0.13

−0.07 , fD∗s/fDs = 1.24+0.13
−0.05 . (5.23)

Due to arising correlations of both sum rules, the ratios result in somewhat smaller
total uncertainties. Finally, we also obtain the ratios of strange to non-strange meson
decay constants

fBs/fB = 1.17+0.03
−0.04 , fB∗s/fB∗ = 1.20± 0.04 , (5.24)

fDs/fD = 1.18+0.04
−0.05 , fD∗s/fD∗ = 1.21± 0.05 , (5.25)

to give a measure of the SU(3)fl-breaking effects.
Note that all presented results do not include any uncertainty bounds on the quark-
hadron duality approximation. In the next section we will give a qualitative statement
by using a modified version of sum rules and by testing the consistency of the method.
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Default M2 [GeV2] Default µ [GeV]

Range (M2
min ÷M2

max) Range (µmin ÷ µmax)

5.5 3.0

(4.5÷ 6.5) (3.0÷ 5.0)

Meson f̄H(∗) [MeV] s0 [GeV2] ∆M2 ∆µ ∆mQ ∆ms ∆〈q̄q〉 ∆
〈s̄s〉
〈q̄q〉 ∆〈GG〉 ∆m2

0 ∆d456

B∗ 210.3 34.1 −1.8
+0.1

−5.3
+0.0

−8.7
+9.0 − ∓3.2 − −0.2

+0.4 ∓0.9 ±4.0

B∗s 251.4 36.3 −5.4
+3.8

−8.6
+0.0

−9.7
+9.9 ±1.5 −2.4

+2.3
+7.1
−7.3

−0.2
+0.4 ∓0.7 ±3.2

B 206.7 33.9 −4.5
+6.1

+13.0
−0.0

−7.5
+7.6 − −2.9

+2.8 − +0.1
−0.3 ∓0.3 ±0.9

Bs 241.7 35.6 −5.8
+8.1

+10.3
−0.0 ∓8.2 ±1.6 −2.2

+2.1
+6.5
−6.7 ∓0.2 ∓0.2 ±0.6

Table 5.2: Detailed results of the numerical analysis for bottom meson decay constants.
Individual uncertainty intervals ∆M2, ∆µ etc. were obtained by parameter variation.
All numbers are given in units of MeV.

Default M2 [GeV2] Default µ [GeV]

Range (M2
min ÷M2

max) Range (µmin ÷ µmax)

2.0 1.5

(1.5÷ 2.5) (1.3÷ 3.0)

Meson f̄H(∗) [MeV] s0 [GeV2] ∆M2 ∆µ ∆mQ ∆ms ∆〈q̄q〉 ∆
〈s̄s〉
〈q̄q〉 ∆〈GG〉 ∆m2

0 ∆d456

D∗ 241.9 6.2 −5.0
+3.6

+17.3
−3.9 ∓7.5 − ∓4.0 − −0.9

+1.9 ∓0.7 ±4.6

D∗s 293.3 7.4 −9.5
+10.1

+12.3
−2.3 ∓8.0 ±2.2 −2.9

+2.8
+8.6
−8.9

−0.9
+1.7 ∓0.5 ±3.8

D 201.0 5.6 −12.1
+10.7

−3.5
+1.3

−1.9
+1.6 − ∓3.0 − +0.4

−0.8 ±0.5 ±2.8

Ds 237.4 6.3 −19.3
+8.6

−9.3
+3.5

−2.1
+1.7 ±3.1 ∓2.2 +6.6

−6.9
+0.4
−0.8 ±0.4 ±2.5

Table 5.3: Detailed results of the numerical analysis for charmed meson decay con-
stants. Individual uncertainty intervals ∆M2, ∆µ etc. were obtained by parameter
variation. All numbers are given in units of MeV.
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5.3 Alternative Versions of Sum Rules

Besides the uncertainty estimates from individual shifts of the input parameters, one
should keep in mind that the quark-hadron duality approximation has not been ad-
dressed yet, which also represents a source of uncertainty. The connection to the
experiment is set since we fixed our sum rules to the experimental meson mass with
a high precision. One can also argue that the “semi-local” duality that we use here is
reasonable due to the positivity of the spectral function and its asymptotics for large
threshold values. A model-independent study of this approximation is not at hand,
and so we have to find a handle to assess the “systematic” uncertainty of the adopted
procedure. One way to check the given calculational framework is to employ an alter-
native version of QCD sum rules, which is based on the same correlation function. The
alternative versions include additional weight functions ω(s) in the spectral integral:

Πω(M2) =

∫
ds ω(s)ρ(s) e−s/M

2

. (5.26)

Further, we use power moments to control the suppression of OPE expressions and
remove subtraction terms associated to the dispersion integrals. All results of modified
QCD sum rules are listed in Tab. 5.4.

Weighted Borel Sum Rules

At first, we vary the original invariant amplitudes from Sect. 3.1 and take the combi-
nation

Π
1/s
t(5)(q

2) ≡ Πt(5)(q
2)− Πt(5)(0)

q2
, (5.27)

which is finite at the zero-recoil point (q2 = 0). Following the procedure of the preceding
Borel sum rules, the modified correlation functions read

Π
1/s,(had)
t(5) (q2) = f 2

H∗e
−m2

H∗/M
2

+

∫ ∞
(mH+mP )2

ds
ρht (s)

s
e−s/M

2

. (5.28)

The spectral integration includes an additional suppression factor of 1/s. It enhances
the low threshold region and therefore the ground-state meson resonance. We divide
the modified sum rules with the original one to obtain the meson-mass formula. In
general, the new threshold sH(∗)

0 , which is fitted to the measured meson mass, is larger
than before.
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We obtain another modification of our sum rules by differentiating the invariant am-
plitude (see Eq. (3.3) and (3.4)) with respect to (−1/M2):

Π
s,(had)
t(5) (q2) = m4

H∗f
2
H∗e

−m2
H∗/M

2

+

∫ ∞
(mH+mP )2

ds s ρht (s)e
−s/M2

. (5.29)

It follows an extra power of s in the spectral integral that shifts the sensitivity to
the continuum region. Once again, the duality-threshold is estimated by dividing the
modified sum rules with the original one, which tends to lower values compared to the
default threshold.

Excluding the First Radial Excitation

Radial excitations of heavy-light mesons could also be included as a second resonance
in the sum rule formalism. In the previous analysis we implicitly incorporated their
contributions by averaging over them as a part of the hadronic continuum, see Eqs.
(3.12) and (3.13). Formally, we separate the first radially excited state H∗′ from the
rest of the continuum spectrum as follows:

ρht (s)θ
(
s− (mH +mP )2

)
= m2

H∗′
f 2
H∗′
δ
(
s−m2

H∗′
)

+ ρ
(pert)
t (s)θ(s− sH∗

′

0 ) . (5.30)

The shape of the excited state has been reduced to a delta distribution. However, one
can also assume a Breit-Wigner ansatz to reconstruct the decay width distribution.
The corresponding spectral density in the pseudoscalar channel is given by

ρh5(s)θ
(
s− (mH∗ +mP )2

)
= m4

H′f
2
H′δ
(
s−m2

H′

)
+ ρ

(pert)
5 (s)θ(s− sH′0 ) . (5.31)

At the moment, only limited experimental data on radially excited charmed mesons are
available [36, 100]. Therefore, we rely on estimations of the mass of the excited states
in order to localize the duality-threshold. The mass difference between charmed meson
ground states and their excited resonances are about the same as for light unflavored
mesons, cf. the mass difference between the first radial excitation ρ′ = ρ(1450) and the
ground-state ρ meson. We generalize these relations for all heavy-light mesons:

mB′ −mB ' mD′ −mD ' mD′s −mDs , (5.32)
mB∗′ −mB∗ ' mD∗′ −mD∗ ' mD∗′s

−mD∗s . (5.33)

But instead of introducing the decay constants for excited states, we remove these
states from the spectral density. To this end, a linear suppression factor (mH(∗)′ − s) is
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ρ(s)

s

ρ
(Pert)
t(5) (s)

(mQ +mq)2 m
H(∗)′ − q2

Figure 5.4: Duality-improved spectral function (with suppressed first radial excitation)
normalized to s.

used. From this follows a strong diminishment in the vicinity of the excited state and
a full cancellation of the continuum spectrum, see Fig. 5.4. We multiply the invariant
amplitude Πt(5) by

(
mH(∗)′ − q2

)
to build up the corresponding sum rule. The final

Borel-transformed sum rules read

f 2
H∗ =

em
2
H∗/M

2

m2
H∗(m

2
H∗′
−m2

H∗)

[ ∫ sH
∗′

0

(mQ+mq)2

ds (mH∗′ − s)ρ
(pert)
t (s)

+
(
m2
H∗′
− d

d(−1/M2)

)
Π

(cond)
t (M2)

]
, (5.34)

f 2
H =

m2
Qe

m2
H/M

2

m4
H(m2

H′
−m2

H)

[ ∫ sH
′

0

(mQ+mq)2

ds (mH′ − s)ρ
(pert)
5 (s)

+
(
m2
H′
− d

d(−1/M2)

)
Π

(cond)
5 (M2)

]
. (5.35)

For the estimations of missing meson masses we consider the measured values mD′ =

2.55 GeV and mD∗′ = 2.60 GeV [100]. All other masses can be deduced from the
heavy-quark mass limit relation as given in Eqs. (5.32) and (5.33). Due to this large
suppression at s = m2

H(∗)′ , we are not committed to accurate experimental mass in-
put. The modified sum rule show less sensitivity to the quark-hadron duality ansatz
than before and, hence, it is reasonable to adjust the effective threshold parameter at
sH

(∗)′

0 = m2
H(∗)′ . Small variations of sH(∗)′

0 lead to minor changes in fH(∗) and, more
importantly, it reconstructs the meson mass to a high precision.
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A more detailed discussion of radially excited states and the possibility to estimate
their decay constants will be given in the next chapter.

Power Moments

In the previous section we discussed modification of Borel sum rules. Now we step aside
from Borel transformations and apply the power moments (Hilbert moments) instead,
which are are well-proven in finite-energy sum rules (FESR). The dispersion relations
to the invariant amplitudes are differentiated with respect to q2 at timelike momenta
q2

0 ≤ 0 within this method. At least two differentiations are necessary to remove two
subtraction terms, which are required to validate the dispersion integral formalism in
Eq. (3.38). In this manner, the decay constants are determined as follows

f 2
H∗ =

(m2
H∗ − q2

0)n+1

m2
H∗

Π
(n)
t (sH

∗

0 , q2
0), (5.36)

f 2
H =

(m2
H − q2

0)n+1

m4
H

Π
(n)
5 (sH0 , q

2
0) . (5.37)

In the above equations the n-th moment of the invariant amplitudes is

Π
(n)
t(5)(s

H(∗)

0 , q2
0) ≡

∫ sH
(∗)

0

(mQ+mq)2

ds
ρ

(pert)
t (s)

(s− q2
0)n+1

+
( d

dq2

)n
Π

(cond)
t(5) (q2)

∣∣∣
q2=q2

0

.

One can see that the weight function is a power suppression in the dispersion integral.
Our analysis includes a minimal number of derivatives (n = 2, , 3), which guarantee a
sufficient suppression of condensate contributions. The duality-threshold is fixed to the
ground-state meson mass. We find the meson mass by taking the ratio of the 2nd and
3rd power of the invariant amplitude. In case of bottom mesons it is sufficient to refrain
from any additional shifts (q2

0 = 0) for reasonable convergence in the perturbative series
and small condensate terms of dimension d ≥ 4. The sum rules for charmed mesons
require negative q2

0 to provide an adequate OPE hierarchy.

Numerical Results and Comments on Alternative Sum Rules

In Tab. 5.4 we present the results from modified sum rules. Note that we do not give
any uncertainties since this is a basic study. Our aim was to determine a “systematic”
error to the standard Borel sum rules by testing the consistency for other weights in
the spectral integral and by employing power moments. Using the weights ω(s) = 1/s
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or s, we find either an enhanced or reduced contribution of the hadronic continuum
within the defined acceptance criteria as discussed in Sect.5.1. We also removed the
first radial excitation by a linear suppression function ω(q2) = m2

H(∗)′ − q2. As a
result, the complete spectral density fades out except the region close to the ground-
state meson. Furthermore, we strongly loose sensitivity to the quark-hadron duality
approach. The meson mass reproduction for all mesons is of a high quality (less than
1% deviation from experimental input). Due to the selected input parameters for all
decay constants, we determine almost identical values compared to the default sum
rules estimations. In most cases the power moments method leads to slightly smaller
values (∼ 10MeV). The estimations in the pseudoscalar meson channel are reliable, i.e.
alternative methods shift the central values of fH by ±20MeV, which is compatible
within the typical sum rules uncertainty bounds. For vector mesons we approach the
limits of reasonable sum rule predictions with the given setup. In this case the default
Borel parameter should be readjusted to larger values.

Decay constant [MeV]

Method fB∗ fB∗s fB fBs fD∗ fD∗s fD fDs

Standard Borel SR 210 251 207 242 242 293 201 238

Borel SR with ω(s) = 1/s . . . . . . 211 248 . . . . . . 220 260

Borel SR with ω(s) = s 208 245 201 233 232 271 175 207

Borel SR excl. 1st radial excit. 208 249 208 242 243 290 204 239

SR with power moments 196 236 198 231 228 281 203 238

Table 5.4: Alternative versions of Borel sum rule and power moments with momentum
shift q2

0 = 0 (q2
0 = −4) GeV2 for bottom (charmed) mesons. Three dots mark a missing

prediction.
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5.4 Discussion of Results

We estimated the decay constants of heavy-light vector and pseudoscalar mesons in-
cluding bottom and charmed flavor with the method of QCD sum rules. In the vector
meson channel the QCD NLO corrections to the quark condensate were included for
the first time, which drive the theoretical uncertainties to smaller values as compared
to former estimates, see LO study in [88]. Moreover, the PT contribution with NNLO
accuracy were taken into account [90]. NLO PT corrections were confirmed and tech-
nical strategies as well as relevant tools for their computations were discussed in Chap.
4. Other condensate contributions, which arise from d ≤ 6 local operators are included
at LO level.We also determined the upper bound values and various ratios. The latter
reflect mutual QCD differences and give a measure for symmetry-violating effects. In
the following, we summarize important facts of our sum rule analysis:

• The considered heavy-light B andD meson decay constants have three key values.
fB and fB∗ are about 210 MeV, whereas their strange meson partners are centered
around 240 and 250 MeV, see Fig. 5.5. The typical relative uncertainties are
estimated at 6 − 8%. In the charmed sector the smallest decay constant is fD
at 200 MeV, fDs and fD∗ are about 240 MeV. And finally, fD∗s ranges around
290 MeV. The relative uncertainties are about 6− 10%.
Ratios of vector to pseudoscalar meson decay constants give a measure of the HQ
spin-violating effects. With included uncertainties the B meson ratios deviate by
less than 10% from the infinite heavy-quark mass limit. D meson ratios break
the HQ spin symmetry by less than 40 %. The SU(3)fl-breaking contributions
from strange to non-strange meson decay constants is about 20%.

• Theoretical errors are mainly driven by uncertainties of two sources:

1. External parameters such as the quark mass and quark condensate have an
impact on each decay constant of 8− 10MeV and 3− 10MeV, respectively,
where in the latter the conversion from massless to massive light-quark con-
densate (〈qq̄〉 → 〈ss̄〉) inflates the total error.

2. We chose rather large intervals, in which the renormalization scale µ and the
Borel parameter M2 vary. As a result of this conservative treatment, the
central values from alternative versions of QCD sum rules mostly lie within
the uncertainty intervals.

However, there is space for improvement: NLO corrections to the quark-gluon
condensate are desirable since the LO contribution leads to instabilities in the
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meson-mass reproduction, especially in the vector current channel. Improved pre-
cision of external parameters would also decrease the total error budget. Besides,
it is desirable to have the full analytic expression of NNLO PT corrections, which
would provide a better stability regarding the renormalization scale dependence.

• Modified Borel sum rules including various weight functions in the spectral in-
tegrals are in good agreement with the standard form. We also evaluated the
decay constants using power moments. The resulting predictions are consistent
to the others, which indicates a good reliability of the given sum rules. Note that
excluding the first radial excitation from the hadronic continuum pins down the
effective duality-threshold to the mass of the first radially excited state. We also
find that the sum rules are less sensitive with respect to the threshold.

• By proper reparametrization we could expand the Borel sum rules of single decay
constants and the vector to pseudoscalar ratio in terms of the inverse heavy-quark
mass. Radiative PT corrections pulled down the ratios below unity, whereas in-
verse mass corrections led to ratios above unity. We determined the leading mass
corrections ∆/mb for the B∗ to B meson decay constant ratio and evaluated the
interval ∆ ∈ [−110, 420] MeV using the b-quark pole mass. The same shift ∆

in the charmed meson channel leads to fD∗/fD = 0.86 − 1.21. Our predicted
central value hits the border of this range, which signals a deterioration of heavy
quark expansion based on the charm quark mass. Sum rule estimations in the
framework of HQET including the leading mass corrections yield to larger ratios
and a better agreement: fB∗/fB = 1.07 ± 0.02 and fD∗/fD = 1.35 ± 0.05 [79].
Numerically, the heavy-quark spin symmetry from fH∗/fH is violated by about
4-14% (12-43%) for bottom (charmed) mesons. In addition, we can also give a
measure for heavy-quark flavor violating effects by taking the ratio fB/fD. Com-
pared to the ratio fB/fD ' 0.69, which is determined by Neubert [79], our value
ranges to larger values, i.e. fB/fD ' 0.93÷1.19. We assumed no error correlation
between the individual parameter uncertainties. The discrepancy could arise due
to missing heavy quark corrections in the prediciton of Ref. [79].

• A rich resource of determinations of decay constants has been established by
mainly two research communities that either uses the method of sum rules or
lattice gauge theory. In Fig. 5.5 a selection of recent (state-of-the-art) or well-
known, reliable predictions are shown. Decay constants of pseudoscalar mesons
are well studied due to the phenomenological access. However, since the com-
putation of the missing NLO correction of the quark condensate in [A1], several
subsequent studies have been published with dedication to decay constants of
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the vector meson channel [101, 102, 103], see Fig 5.6. Estimations from lat-
tice QCD for vector heavy-light mesons also became topical in the last years.
At first, we compare our values with other QCD sum rules determinations: In
general fB and fD are center around 200 MeV, whereas fBs is slightly larger at
240MeV with typical errors of about ±20MeV [53, 104]. Due to higher preci-
sion of external parameters and in particular smaller uncertainties of the MS

quark masses, we could reduce the error interval by up to 40%. Determinations
of fB(s)

and fD(s)
from FESR [105, 106] are usually smaller than our prediction.

A comparison to recent lattice results reveals a good agreement within the un-
certainty bounds, see Fig. 5.5, 5.6 and 5.7. However, our bottom (charmed)
meson decay constants are somewhat smaller (larger) in their the central value.
Vector to pseudoscalar decay constant ratios of bottom and charmed mesons,
respectively, are close to unity and 1.20. SU(3)fl-violating effects are reflected
by about 20% shifts from unity. Our predicted ratio are in good agreement with
estimations within lattice QCD, where fB∗q /fB in [107] has a strong tendency
to values below 1. Ratios from sum rules within HQET tend to ratios above 1

[79]. Finally, one can also give predictions of fB, fD and fDs from leptonic decay
measurements. The measured decay widths of D(s) → `ν̄` [36] lead in average to
f exp.av.
D = 206.7±8.5±2.5MeV and f exp.av.

Ds
= 260.0±5.4MeV, which in the latter

signals some tension to our prediction and others. A measurement of B → τ ν̄τ
[108] yields f exp.

B = (211±22±14)MeV/(|Vub|/0.0035) including the typical CKM
coefficient from exclusive semileptonic decays. High experimental precision could
also open a possibility for an independent |Vub| determination. Moreover, one
could use CKM independent observables such as the ratio of B → π`ν̄` and
B → τ ν̄τ [109] to check QCD calculations of form factors and decay constants.
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Figure 5.5: An overview of decay constants, which were determined in this work (blue
dot on the left) compared to selected literature values based on QCD sum rules (ma-
genta squares at center-left), Lattice QCD computation (yellow checks at center-right)
and measurements with averaged CKM values (green triangle on the right). Up-
per bounds are marked by horizontal bars. The references are from left to right:
[104, 53, 104] from QCD sum rules, [51, 49, 107, 49, 50, 51, 49, 110, 107, 110] from
lattice QCD and [111] from measurements.
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Chapter 6

Decay Constants of Radially Excited
B and D Mesons from QCD Sum

Rules

Apart from ground-state mesons, the mesonic spectrum also includes a variety of ex-
cited states with equal flavor content but different masses. We refer to radial excitations
as resonances with the same spin-parity (JP ) as their ground-state. At the moment
radial excitations have been studied for compact bound meson states consisting of a
quark and anti-quark pair. In particular, charmonium states cc̄ were observed such
as excitations of J/Ψ(1S) or light unflavored mesons, ρ(1450) and ρ(1700), based on
ρ(770) [36]. In case of heavy-light mesons just a few observations of charmed reso-
nances are established, to wit excited states of D, D∗ and D∗s [36, 100, 112, 113]. In
the bottom sector many excitations of bottomonia states with total (orbital) angular
momentum J = 1 (L = 0), so-called Υ(nS), were produced and studied at electron-
positron colliders [114]. Evidence of heavy-light bottom mesons with JP = 1− beyond
the ground-state are not yet available. However, there are hints based on recent results
of the LHCb [113] and CDF [115] collaborations. Currently, many studies of excited
heavy-light resonances are based on the constituent quark model [116, 117]. Alter-
natively, some lattice QCD computations were performed regarding the properties of
excited open-charmed mesons with JP = 0−, 1− [118, 119, 120]. A topical discussion
of excitations of charmed mesons was published in connection with the semileptonic
decay B → D′`ν` [121]. Future precision measurements for decays of these kind will
require detailed characteristics of radial excitations as well.

In this chapter we present a possibility to extract the properties of radially excited
mesons by extending the method of QCD sum rules, which was used to determine the
decay constants of ground-state mesons. We consider as a study case the sum rules
for heavy-light pseudoscalar and vector mesons of charmed and bottom flavor in their
first radially excited state.

The main results of this chapter have been published in Ref. [A2].
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6.1 Including Radial Excitations in QCD Sum Rules

In the following, we adopt the same definitions of the sum rule formulas as discussed
in Chap. 3-5. The decay constant fH(∗) is defined as a transition of a one-meson state
to the QCD vacuum, which is mediated by a local quark-flavor current, see Eqs. (3.6)
and (3.5). We use an analogous definition for fH′ , fH∗′ of the radially excited states
H ′ and H∗′. Their masses are mH′ and mH∗′ , respectively. The sum rules method is
based on the evaluation of two-point correlation functions Πt(5)(q

2), see Eqs. (3.4) and
(3.3). At first, we modify the hadronic representation of the correlation functions by
separating the first radial excited state in addition to the ground-state meson of the
hadronic spectral densities. In the vector and pseudoscalar meson channel these are

ρ5(s) ≡ 1

π
Im Π5(s) =m4

Hf
2
H δ(s−m2

H) +m4
H′f

2
H′

ΓH′mH′

π[(m2
H′ − s)2 + Γ2

H′m
2
H′ ]

+ ρ̃h5(s) θ
(
s− (mH∗ +mP )2

)
, (6.1)

ρt(s) ≡
1

π
Im Πt(s) =m2

H∗f
2
H∗ δ(s−m2

H∗) +m2
H∗′f

2
H∗′

ΓH∗′mH∗′

π[(m2
H∗′
− s)2 + Γ2

H∗′
m2
H∗′

]

+ ρ̃ht (s) θ
(
s− (mH +mP )2

)
. (6.2)

Here, P is the lightest pseudoscalar meson, which is kinematically allowed, i.e. either a
pion or kaon, depending on the quark content of the initial meson H(∗)′ . We implement
ground-state mesons as delta-resonances into the spectral densities, which is a good
approximation due to their small total width from measurements. However, for the
spectral function of radially excited states a Breit-Wigner ansatz is used, including
a constant total width ΓH(∗)′ . Note that the widths of the excited resonances are
generated by their strong couplings to the continuum states. Hence, a part of the
continuum contribution is effectively included in the radially excited resonance terms
in the above spectral densities. We also investigate a energy-dependent width as a
consistency check for the constant width approximation. Both continuum spectra ρh5(t)

start at a two-hadron threshold that locate above the mass of the ground-state meson:
the decay H → H∗P (H∗ → HP ) is taken as the physical process at the threshold in
the pseudoscalar (vector) channel. In order to model the unknown hadronic sum, we
assume the semilocal quark-hadron duality approximation

ρ̃h5(s)θ
(
s− (mH∗ +mP )2

)
= ρ

(pert)
5 (s)θ

(
s− s̃H0

)
, (6.3)

ρ̃ht (s)θ
(
s− (mH +mP )2

)
= ρ

(pert)
t (s)θ

(
s− s̃H∗0

)
. (6.4)
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In the equations above, ρ(pert)
5(t) (s) is the absorptive part of the leading order contribution

in the OPE and s̃H(∗)
0 denotes the effective threshold. In addition to the duality ansatz

we use Borel transformations to control the hierarchy of the OPE. The final form of
the Borel sum rules is

f 2
Hm

4
He
−m

2
H

M2 +f 2
H′m

4
H′

∫ ∞
(mH∗+mP )2

ds
ΓH′mH′

π[(m2
H′ − s)2 + Γ2

H′m
2
H′ ]
e−

s
M2

= Π
(pert)
5 (M2, s̃H0 ) + Π

〈q̄q〉
5 (M2) + Π

〈d456〉
5 (M2) (6.5)

and

f 2
H∗m

2
H∗e

−
m2
H∗
M2 +f 2

H∗′m
2
H∗′

∫ ∞
(mH+mP )2

ds
ΓH∗′mH∗′

π[(m2
H∗′
− s)2 + Γ2

H∗′
m2
H∗′

]
e−

s
M2

= Π
(pert)
t (M2, s̃H

∗

0 ) + Π
〈q̄q〉
t (M2) + Π

〈d456〉
t (M2) . (6.6)

Eqs. (6.5) and (6.6) include the same shorthand notation for OPE expressions as we use
in Chap. 3. In the ground-state sum rules we perform the meson mass-fixing procedure
to adjust the effective threshold. This procedure is not adequate for a two state ansatz
because of two aspects: To differentiate the correlation function over (−1/M2) and
divide with the original sum rules does not result in the mass of the resonance since
a Breit-Wigner form for the first radial excitation is used. It only works if we assume
the zero-width approximation for resonances in the spectral densities ρt(5). Moreover,
the experimental mass input of radially excited mesons is very limited compared to
the ground-state resonance. Currently, only the masses of D′, D∗′ and D∗s

′ are known.
All other particles can only be estimated via symmetry relations based on the known
masses, which will be explained later on. For these estimates we are obliged to assume
conservative error intervals. Besides, despite the known masses of charmed mesons,
which are measured with 0.1% accuracy, the mass-fixing procedure does not work due
to the strong dependence of s̃H(∗)

0 on the meson mass. This leads to inaccurate fH(∗)′

determinations. To this end, we present a method that allows us to fit the first two
resonances of a meson to the corresponding correlation function and extract their decay
constants.
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6.2 Strategies and Prerequisites for the Numerical
Analysis

As an alternative to the standard meson-mass fixing approach, we introduce two more
promising procedures:

• Procedure (I): At a given Borel interval IM2 all free parameters, i.e. the decay
constants fH(∗) and fH(∗)′ and the effective threshold s̃H(∗)

0 , are fitted simultane-
ously. In particular, we minimize the squared difference (χ2-fit) between the first
two hadron states (ground- and radial-excited state) and the OPE of the corre-
lation functions for various points within IM2 . In the vector heavy-light meson
channel the minimization procedure takes the following form:

N∑
i=1

1

N

∣∣∣f 2
H∗m

2
H∗e

−
m2
H∗
M2
i + f 2

H∗′
m2
H∗′
e
−
m2

H∗′

M2
i

−
[
Π

(pert)
t (M2

i , s̃
H∗

0 ) + Π
〈q̄q〉
t (M2

i ) + Π
〈d456〉
t (M2

i )
]∣∣∣2 = χmin . (6.7)

In the equation above the Breit-Wigner width approximation is neglected for
reasons of simplicity, but included in the numerical analysis. An analogous pro-
cedure is used for the pseudoscalar meson channel:

N∑
i=1

1

N

∣∣∣f 2
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4
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2
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H′m
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−
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Π
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H
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〈q̄q〉
5 (M2

i ) + Π
〈d456〉
5 (M2

i )
]∣∣∣2 = χmin . (6.8)

• Procedure (II): In the ground-state analysis we figured out that the isolation
of the first resonance of the residual spectrum, introducing a linear suppression
factor (m2

H(∗)′ − q2) at the mass of H(∗)′ , leads to a stabilization of the sum rule
and a good extraction quality of fH(∗) . This behavior indicates a good separation
between the first two meson resonances H(∗) and H(∗)′ . We can also turn this
idea around and cancel the ground-state in order to simplify the problem to
a single decay constant fit of fH(∗)′ . For this purpose the differential operator
[d/d(1/M2) +m2

H(∗) ] is employed in Eqs. (6.5) and (6.6), respectively.

We emphasize that both procedures have distinct differences in comparison with the
standard sum rules method due to the multi-parameter fit ansatz. Therefore, we cannot
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assume that the quark-hadron duality approximation has the same reliability as be-
fore. Radial excitations also tend to mix with strong-coupled interactions (B′ → B∗π)
and, hence, less control to systematic uncertainties is expected. However, due to the
positivity of the hadronic spectral function a cancellation between the ground- and
excited states can be excluded. We will also compare predictions of the procedures (I)
and (II). A good agreement of both procedure is an indication of reliability.

We choose the same input values for the external parameters such as the quark mass
and condensate as discussed in Chap. 5. The Borel interval is selected in such a way
that the central values are close to the default values in Sect. 5.1, but it is also located
to slightly larger values of M2 for enhanced contributions of the excited states. In this
manner, we guarantee to satisfy the reliability criteria as discussed in the last chapter.
The default Borel window is IM2 = 2.5 − 3.5GeV2 (6 − 8GeV2) with variations to
Imin
M2 = 2 − 3GeV2 (5.5 − 7.5GeV2) and Imax

M2 = 3 − 4GeV2 (6.5 − 8.5GeV2) for error
estimation in the charmed (bottom) meson channel. In the hadronic part of the sum
rules we use as much input from experiments as currently available, i.e. the meson
masses of D′, D∗′ and D∗′s as well as the corresponding total width measurements. The
BaBar collaboration observed two candidates for radially excited charmed mesons, to
wit D(2550) (JP = 0−) and D∗(2600) (JP = 1−). D∗′s (2700) (JP = 1−) was observed
in several experiments [100]. The residual meson masses can either be estimated by
SU(3)fl-symmetry relations

∆SU(3)fl
≡ mD′s −mDs ' mD′ −mD (6.9)

or the heavy quark symmetry at the infinite mass limit

∆HQL ≡ m
B

(∗)′
(s)

−m
B

(∗)
(s)

' m
D

(∗)′
(s)

−m
D

(∗)
(s)

. (6.10)

The accuracy of ∆HQL for bottom mesons is expected to be higher since corrections are
of O(1/mQ). The resulting meson masses from symmetry consideration in Eqs. (6.9),
(6.10) with experimental input are

∆SU(3)fl
= {669± 8, 601± 6, 597± 4} MeV (6.11)

for the D′ − D, D∗′ − D∗ and D∗
′
s − D∗s mass shift. Based on these values we set a

averaged shift of

∆SU(3)fl
= 650± 50 (6.12)
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for all remaining unknown resonances, which includes a conservative uncertainty. The
estimated masses of excited hadrons are shown in Tab. 6.1 and compared to quark-
model estimates from Ref. [116]. Note that the recently observed B(5970) state [113] is
interpreted as an excitation of the bottom channel with spin-parity JP = 1−. Its mass
coincides with our estimate ofmB∗′ as shown in Tab. 6.1. This confirms the reliability of
the heavy-quark symmetry relations. Since we assume Breit-Wigner shaped resonances,
all measured total width information is included, whereas the unknown widths are
determined by 100± 50MeV that is in the ballpark of charmed meson measurements.
In case of excited states it is rather difficult to estimate the corresponding width due to
the fact that strong flavor-conserving decays contribute and smear over the considered
resonance. It is clear that upcoming measurements of branching fractions and total
widths of all radially excited heavy-light mesons will substantially refine the used input.

6.3 Numerical Results of Borel Sum Rules for Radial
Excitations

In Tab. 6.2 the decay constants of ground-state mesons and first radial excitations are
presented, using the methods as described above. In the first column we repeat the
results from Chap. 3 as reference values. Besides, these values are also used as input
to determine the upper bounds. These bounds are calculated in the limit s̃H(∗)

0 → ∞
within the default Borel window and default values for all other free parameters. We
add the uncertainties from parameter variations to the upper bound and present the
final value in the last column of Tab. 6.2. Our main results are computed according to
procedures (I) and (II). They are also presented with corresponding fitted thresholds,
which satisfy the defined criteria of reliability. The total error budget is examined in
more detail in Tab. 6.3. At first, we give the combined error from external parameters
(mQ, 〈qq̄〉,. . . ) and scale variation. Secondly, the Borel window is shifted by ±0.5GeV2.
Meson mass uncertainties of excited states and variations of the Breit-Wigner width
are shown in the last two columns. The mean squared fit error ∆χ2, which arises
due to the minimization of the first two resonances against the OPE expressions is
a novelty compared to the ground-state analysis. This error reflects the inaccuracy
of the duality threshold s̃H

(∗)
0 . Note that we consider a conservative estimation and

neglect correlations between individual parameters by adding them in quadrature. As
an alternative to a constant total width for the resonance shape, we also adopt an
energy-dependent width. Technically, we investigate this effect by inserting

√
sΓH(∗)′ (s)

instead of mH(∗)′ΓH(∗)′ in the Breit-Wigner ansatz of the hadronic spectral densities.
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From Refs. [122] and [123] we introduce the s-dependent width function of vector
mesons, which is given by

ΓH∗′ (s) =
ΓH∗′m

2
H∗′

s

( λ(s,m2
H ,m

2
P )

λ(m2
H∗′
,m2

H ,m
2
P )

)3/2

, (6.13)

where λ(a, b, c) = a2 + b2 + c2− 2(ab+ bc+ ac). The kinematical factor originates from
the p-wave phase space of the decay H∗′ → HP . In the pseudoscalar meson channel
the analogous formula holds. Here, the width is dominated by the H ′ → H∗P decay.
As an example we evaluate the D′s decay constant to give an impression on the sensi-
tivity of the sum rules with a threshold-dependent width. Procedure (I) leads to

fD′s = 143(±8)|∆Γ MeV (6.14)

with default input values and variations of the constant width according to 100 ±
50 MeV. Assuming a delta resonance for the excited state in the spectral density, we
find

fD′s = 128|Γ=0 MeV. (6.15)

In case of a energy-dependent width we obtain

fD′s = 148(±16)|∆Γ(s) MeV . (6.16)

Altogether this is a relative shift to the central value of about 10% with the zero width
approximation and a shift of 3% if a s-independent width is used. Finally, one can also
investigate the impact of individual OPE contributions to find the source for differences
between ground and excited states decay constants as shown in Tab. 6.4. If only the
PT part is included, the decay constants fD and fD′ show increasing values for every
additional correction terms in the PT part. However, the condensate terms lead to a
suppression of fD′ , which opens up the discrepancy between the radially excited and
ground-state meson decay constant.
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H(∗)′ mH(∗)′ [MeV] mQM

H(∗)′ [MeV] ΓH(∗)′ [MeV] Ref.

D′ 2539 ± 8 2581 130 ± 18 [36, 100]

D∗
′ 2612 ± 6 2632 93 ± 14 [36, 100]

D′s 2618 ± 50 2688 100 ± 50

D∗
′
s 2709 ± 4 2731 117 ± 13 [36]

B′ 5929 ± 50 5890 100± 50

B∗
′ 5975 ± 50 5906 100± 50

B′s 6017 ± 50 5976 100± 50

B∗
′
s 6065 ± 50 5992 100± 50

Table 6.1: Masses and corresponding quark model predictions [116] are shown in the
first two columns. The total width and mass shifts with respect to the ground-state
meson mass are given in the last two rows. Boxed values are taken from experiment,
whereas others are estimations for yet unobserved resonances.

Meson From Chap. 3 Procedure (I) Procedure (II) Upper bound

fH(∗) [MeV] fH(∗) [MeV] f
H(∗)′ [MeV] s̃H

(∗)
0 [GeV2] f

H(∗)′ [MeV] s̃H
(∗)

0 [GeV2] f
H(∗)′ [MeV]

D(′) 201+12
−13 194+6

−6 137+10
−23 7.24 138+10

−22 7.24 189

D
(′)
s 238+13

−23 230+7
−9 143+19

−31 7.48 146+12
−36 7.49 219

D∗(
′) 242+20

−12 235+25
−12 182+12

−27 7.43 183+13
−24 7.44 275

D
∗(′)
s 293+19

−14 279+21
−12 174+22

−45 7.87 178+20
−39 7.88 265

B(′) 207+17
−9 200+18

−10 163+10
−11 36.75 166+9

−10 36.78 279

B
(′)
s 242+17

−12 234+15
−11 174+19

−19 37.72 178+19
−17 37.75 320

B∗(
′) 210+10

−12 208+12
−21 163+54

−13 36.70 165+46
−12 36.71 314

B
∗(′)
s 251+14

−16 244+13
−26 190+67

−20 38.58 194+57
−18 38.61 325

Table 6.2: Decay constants of charmed and bottom mesons obtained from QCD sum
rules and the corresponding effective thresholds using two fit procedures. The last
column shows the duality-independent upper bounds.
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Meson ∆Ptr ∆M2 ∆χ2 ∆Γ ∆mH(∗)′

D′ +9
−21

(
+9
−20

)
+5
−10

(
+5
−8

)
+1
−1

(
+1
−1

)
+1
−1

(
+1
−1

)
< ±1 (< ±1)

D′s
+12
−27

(
+7
−29

)
+7
−14

(
+6
−16

)
+1
−1

(
+2
−2

)
+8
−8

(
+4
−14

)
+9
−4

(
+7
−4

)
D∗
′ +11

−24

(
+10
−22

)
+8
−12

(
+7
−10

)
+2
−2

(
+3
−3

)
+1
−1

(
+1
−1

)
< ±1 (< ±1)

D∗
′
s

+14
−34

(
+13
−31

)
+15
−29

(
+13
−23

)
+5
−5

(
+7
−7

)
+2
−2

(
+2
−2

)
< ±1 (< ±1)

B′ +7
−8

(
+7
−7

)
+5
−7

(
+5
−6

)
+1
−1

(
+2
−2

)
+4
−4

(
+4
−4

)
+2
−1

(
+1
−1

)
B′s

+11
−11

(
+9
−10

)
+8
−10

(
+7
−8

)
+2
−2

(
+3
−3

)
+11
−10

(
+11
−10

)
+9
−1

(
+10
−1

)
B∗
′ +53

−12

(
+46
−10

)
+4
−4

(
+3
−3

)
+1
−1

(
+2
−2

)
+4
−4

(
+4
−4

)
+5
−3

(
+4
−3

)
B∗
′
s

+66
−15

(
+56
−13

)
+8
−11

(
+7
−9

)
+2
−2

(
+3
−3

)
+7
−7

(
+7
−7

)
+4
−1

(
+3
−1

)
Table 6.3: Individual uncertainties for decay constants of heavy-light excited mesons
from QCD sum rules using procedure (I) ((II)). All numbers are presented in units of
MeV.

fD [MeV] fD′ [MeV] Included OPE contributions

120 123 PT (LO)

150 177 PT (LO + NLO + NNLO)

190 142 PT + 〈qq̄〉 (LO + NLO)

194 137 full precision

Table 6.4: Decay constants of D and D′ are determined according to procedure (I)
with varied OPE approximation. The parameter input is set to default values.
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QCD Sum Rules

6.4 Summary and Concluding Remarks

This project was dedicated to the determination of decay constants of first radially
excited bottom and charmed heavy-light mesons with spin-parity JP = 0− and 1−. To
this end, we constructed two procedures based on the method of QCD sum rules. In
the first procedure the ground- and radial-excited state resonances were fitted to the
OPE expressions of the corresponding two-point correlation functions. For additional
validation a single fit of the radial-excited state was performed. In this procedure the
ground-state was removed in the spectral function by a linear weight.

• Both fit approaches lead to almost identical results for decay constants of {B′, B′s,
B∗
′
, B∗

′
s } and {D′, D′s, D∗

′
, D∗

′
s }, which are centered around 160− 190MeV with

15−26 % relative uncertainty and 140−180MeV with 7−35 % relative uncertainty,
respectively, see also Fig. 6.1. The results of the double-fit procedure confirm
the ones from the ground-state analysis, which shows consistency of the sum
rules method. The central values and associated total errors from the fit method
are comparable to the results in Section 5.2. Note that the uncertainties for
pseudoscalar mesons tend to be smaller due to the choice of the Borel parameter
window IM2 : In the standard one-resonance sum rules of Chap. 3 we optimized
the free parameters to the vector channel. In this case, however, the focus is
set on pseudoscalar mesons and, hence, it is “natural” that the vector channel
predictions are less precise. Further, M2 is readjusted to larger values to enhance
the effects of excited states.

• In general, our predictions to radial excitations are smaller (up to 120MeV) than
their ground-state partners. They also have larger uncertainties, predominantly
due to the variations of external parameters such as the quark mass and the
quark condensate. Another significant source of uncertainty is the renormal-
ization scale-dependence µ, which contributes to ∆Ptr. The Borel parameter
uncertainty ∆M2 as well as changes in the width of the excited resonances also
have significant influence on the total error budget, whereas the fit procedure
∆χ2 and uncertain meson masses ∆mH′ are comparably small.

• Our results show a suppression regarding the decay constants of excited mesons
compared to their ground-state partners. The reason is the negative contribution
of condensate terms in the OPE.

• There is still room for improvement since some meson masses are determined from
heavy quark symmetry relations with conservative uncertainty estimates. Hence,
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upcoming measurement should substantially refine our method by reducing the
uncertainty ∆mH(∗)′ .

• Predictions to decay constants of radial excitations are rare. A recent deter-
mination in Ref. [118] is based on the lattice QCD. The authors of [118] find
fD′ = 117± 25 MeV, which is in good agreement with our estimation. The esti-
mate fD∗′ ∼ 300MeV from Ref. [121] is inconsistent with the uncertainty bounds
of our predicted value.
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Figure 6.1: An overview of decay constants of the first radial excitation. Central values
and uncertainties based on procedure (I) and (II), respectively, are presented by blue
dots and magenta squares, respectively. Upper bound determinations are marked by
horizontal bars. Green checks denote predictions of fD′ and fD∗′ from lattice QCD and
QCD sum rules in Ref. [118] and [121].





Chapter 7

Decay Rate of Inclusive Semileptonic
B Decays from QCD

In the search for New Physics phenomena the quark sector of the Standard Model
shows distinct potential for finding signs that go beyond the common framework. As
an example, one can consider flavor-changing s → u transitions in correspondence
to K → πeν̄e at hadron level. This kind of decay is experimentally well measured,
but the treatment on the theoretical side is rather problematic due to arising infrared
(IR) divergences in the description of light hadrons. Decays of heavy mesons, however,
reveal a different picture. The advantage of hadronic systems with heavy quark content
is the well-separated hierarchy between typical energy scales. Typical scales are the
large mass mQ of the heavy quark and the hadronic scale ΛQCD, which marks the IR
regime of QCD. If we consider the physical system at a scale around mQ, perturbative
calculation in the regime of asymptotic freedom can be performed. Such properties
allow for an efficient decomposition of certain hadronic observables via OPE into a finite
number of factorized terms, separated into coefficient functions that are well-defined in
perturbative QCD, and parameters of non-perturbative nature. The latter can either
be extracted from data or assessed with non-perturbative methods. One prominent
non-perturbative method is the technique of QCD sum rules which was used in the
previous chapters. For maximum separation of scales one should consider the heaviest
quark there is, that is the top-quark. However, top quarks do not form hadrons due
to their short lifetime and, hence, they are not suitable for our considerations. On
the other hand, the charm quark mass is probably not large enough compared to
ΛQCD. Therefore B-meson decays have just suitable properties for a proper theoretical
treatment. Such decays have been studied intensively in the last decades. The OPE
technology is applicable to b → u and b → c transitions with semileptonic or purely
hardonic final states. For definiteness, we stick to semileptonic b → c transitions,
more specifically, to inclusive decays of the form B → Xc`ν̄`, where Xc refers to every
charmed hadron state which is kinematically allowed and corresponds to the quantum
numbers of the initial state. The following considerations can immediately be applied
to heavy-to-light transitions where the mass of the light quark is usually neglected.
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Model-independent studies of inclusive semileptonic B-meson decays were started 20

years ago [124, 125, 126, 127]. Such studies are based on the OPE in the realm of heavy
quark effective theory (HQET). The main goal is to give accurate determinations of
the CKM matrix element |Vcb| (and |Vub|) from precisely measured partial decay rates
at the B factories in conjunction with a detailed theoretical description of the same
observable. Since |Vcb| also influences many rare FCNC decays such as Bs → µ+µ−

or K → πνν̄, there is a strong interest to have a comprehensive understanding of this
CKM entry in order to sharpen the sensitivity to effects beyond the Standard Model.
The key observable is the total inclusive rate of B → Xc`ν̄`, from which the OPE
allows extraction of |Vcb|. The resulting structure of the OPE is a double expansion in
the strong coupling αs and ΛQCD/mb [128]:

Γ(B → Xc`ν̄`) = Γ0|Vcb|2
[
a0

(
1− µ2

π

2m2
b

)
+ a2

µ2
G

2m2
b

+ aD
3

ρD

m3
b

+ aLS
3

ρLS

m3
b

+O
(Λ4

QCD

m4
b

)]
(7.1)

where the normalization factor is given by Γ0 ≡ G2
Fm

5
b/(192π3). In general, the co-

efficients a0 to a4 are functions of αs and the quark masses mc, mb. The parameters
µ2
π, µ2

G, ρD and ρLS are B-meson expectation values of local operators with growing
dimensionality within HQET. The numerical values of those hadronic parameters are
usually fitted from the moments of the differential decay rates with additonal infor-
mation from B → Xsγ [129]. The leading power coefficient a0 is known with NNLO
accuracy in αs [130, 131]. Due to reparametrization invariance a0 equates to the co-
efficient of µ2

π. Power corrections of O(Λ2,3
QCD/m

2,3
b ) were first studied in [126, 127],

whereas NLO corrections to µ2
π were confirmed in [132, 133]. Recently, the corrections

to µ2
G were computed in [134]. Note that the computation of differential decay rates

only allows numerical values for the total rate. To this end, in [134] the authors per-
formed the phase space integration of the triple differential rate. As for higher order
power-suppressed terms, a first study is given in [135]. At this level, the main problem
is a proliferation of non-perturbative parameters. Mass corrections of O(Λ4,5

QCD/m
4,5
b )

contain 9 and 18 new B-meson expectation values, respectively. This large number of
free parameters cannot be extracted from experiment altogether. Thus, in Ref. [135] a
special method is used to estimate these unknown parameters through combinations of
known ones of O(Λ2,3

QCD/m
2,3
b ). Current determinations of Vcb have total uncertainties

at the level of 2% and less (including 1% theoretical uncertainty). The most precise
result reads explicitly [129]

|Vcb|incl. = (42.21± 0.78)× 10−3 . (7.2)
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Thanks to the large data set from BaBar and Belle the experimental precision has
outpaced the theoretical one. The current global fit including the total rate and various
moments for the extraction of Vcb with all available data does not include analytical
NLO corrections to µ2

G yet, which are parametrically the largest missing pieces in the
analysis [129]. Aside from studies of inclusive decays, one can also choose specific
(exclusive) weak decays to determine Vcb. Prominent decay channels for this purpose
are B → D∗`ν̄` and B → D`ν̄`, which require knowledge of hadronic form factors,
determined within either lattice QCD or light-cone sum rules. The most accurate
value from exclusive decays is [136]

|Vcb|excl. = (39.04± 0.49exp ± 0.53lat ± 0.19QED)× 10−3 . (7.3)

The direct comparison between the inclusive and exclusive determination of Vcb shows
a long-standing tension of about 3σ. In this context, New Physics effects were studied
in Ref. [137] and ruled out. The remaining (obvious) way to solve the Vcb tension is
higher accuracy in measurements and theory.
To this end, we consider the NLO correction to the short-distance coefficient of the
parameter µ2

G, encoded in a2, with the full mass dependence, i.e. we consider the final
charm quark as massive. Concerning this issue, we will present the following aspects:

• Our calculation of a2 is a matching computation between QCD and HQET. Thus,
we discuss some relevant basics of HQET and show how to expand the total decay
rate in terms of 1/mQ within the effective theory (Section 7.1 & 7.2).

• We give results of all contributions relevant for a2 including their mass dependence
with respect to the ratio m2

c/m
2
b in Section 7.3.

• The Sections 7.4 and 7.5 present the numerical results for the total decay width
and some moments with typical results as well as their influence on Vcb, when the
new correction is included.

• In the final section we summarize our findings.

• Analytical results and computational strategies which lead to the final coefficent
function a2 are discussed in the next chapter and Appendix C.

The main results of Chap. 7 and 8 have also been published in Refs. [A3, A4].
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7.1 Basics of Heavy Quark Effective Theory

A heavy hadronic system, e.g. a meson with valence quarks Q and q denoting a heavy
and light quark, contains the mass of the heavy quark mQ which is by definition
much larger than ΛQCD. The momentum transfer exchanged between the heavy quark
and other light constituents in this system (sometimes also referred to as the "brown
muck") is typically of the order ΛQCD. Due to this large separation of scales the light
degrees of freedom are blind to the properties of the heavy quark. In terms of Compton
wavelengths, the wavelength of the heavy particle is ∼ 1/mQ and, hence, much smaller
than the wavelength of the light partner. In this configuration light quarks and gluons,
the light degrees of freedom, that couple to the brown muck, cannot resolve the heavy
quark. In the limit mQ → ∞ this leads to symmetries, namely the heavy quark
spin and flavor symmetry. When taking this limit, the light degrees of freedom do
not change if we modify the heavy quarks spin or flavor. Finite quark masses break
these symmetries and corrections arise at the order ΛQCD/mQ. Formally, the QCD
Lagrangian does not show a manifest spin-flavor symmetry as mQ → ∞. At first, we
have to formalize the Lagrangian in terms of a effective field theory also known as
heavy quark effective theory [138, 139, 140, 141]. We consider a heavy hadron with
momentum pH and mass mH . The main contribution to pH is given by the heavy
quark kinematics, i.e. pH = mQv+∆p, where we introduced the velocity of the hadron
v = pH/mH . The small residual momentum ∆p is related to the light degrees of
freedom and to interactions of the brown muck particles with the heavy quark. The
momentum ∆p scales as ΛQCD and therefore interactions are typically soft. One can
now relate the large part of the momentum pH on the level of quark field operators
within matrix elements over a heavy hadron. We rewrite the original field operators
Q(x) to a set of effective fields

Q(x) = e−i(mQv)x (hv(x) +Hv(x)) . (7.4)

The fast oscillating phase arising from the heavy quarks momentum is explicitly sep-
arated from the slowly (quickly) changing effective field hv (Hv). Here, hv and Hv

are the upper and lower field components of Q, which can be projected out by the
projection operators P± = (1± /v)/2 according to

hv(x) = ei(mQv)xP+Q(x) , (7.5)

Hv(x) = ei(mQv)xP−Q(x) . (7.6)
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Using the Dirac basis one can immediately see that hv corresponds to the upper two
(quark) components of Q in the rest frame of the hadron, whereas Hv characterizes the
lower two (antiquark) components for. In terms of the new field operators the QCD
Lagrangian reads

LQCD ⊃ Q̄(i /D −mQ)Q

=h̄v(ivD)hv − H̄v(ivD + 2mQ)Hv + h̄v(i /D⊥)Hv + H̄v(i /D⊥)hv . (7.7)

For convenience, we split up the covariant derivative Dµ = ∂µ − igsA
a
µT

a into its
longitudinal and transverse piece, i.e. Dµ = (vD)vµ + Dµ

⊥. Since the fields satisfy the
conditions /vhv = hv and /vHv = −Hv all mixed terms of the sort h̄vi /DHv in Eq. (7.7)
reduce to the transverse component i /D⊥, whereas even terms, e.g. h̄vi /Dhv, reduce to
the longitudinal derivative i(vD). At tree level one can now easily integrate out the
heavy degrees of freedom represented by Hv if the equation of motion (EOM)

(ivD + 2mQ)Hv − i /D⊥hv = 0 (7.8)

is used. The effective Lagrangian now reads

LHQET = h̄v(ivD)hv + h̄v i /D⊥
1

ivD + 2mQ

i /D⊥ hv , (7.9)

see also Ref. [142, 143] The first term describes the residual energy of the quark while
the second (non-local) term is the remnant of the removed antiquark. The physical
system, which satisfies the condition mQ � ivD, can now be expanded in terms of
ivD/mQ. Due to the fact that the new fields carry only the small residual momentum
∆p, we know that derivatives acting on the hv lead to powers of ∆p, which are chosen
to be much smaller than mQ. The expansion of the final HQET Lagrangian at the
second order in the heavy quark mass results in

LHQET = OV +
Oπ

2mQ

+ Cmag(µ)
OG(µ)

2mQ

+
CDOD + CSLOSL

2m2
Q

+O
(Λ3

QCD

m3
Q

)
.

In the equation above, we abbreviated various operators: OV = h̄v(ivD)hv is the
leading power operator. It is spin and flavor invariant and represents the only term
in the infinite quark mass limit. The two power-suppressed terms correspond to the
kinetic energy of the heavy quarkOπ = h̄v(iD⊥)2hv and its chromomagnetic interaction
OG = (gs/2)h̄vσµνG

µνhv, where igsGµν = [iDµ, iDν ]. The coefficient of Oπ is fixed by
reparametrization (Lorentz) invariance to the leading power term, whereas OG requires
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an additional short-distance coefficient Cmag from QCD-to-HQET matching, which
compensates the scale dependence. The latter coefficient reads

Cmag(µ) = 1 +
αs
2π

{
CF + CA

(
1 + log

( µ

mQ

))}
, (7.10)

which includes the radiative QCD corrections of the first order in αs [144, 145]. Higher
order terms are given by the Darwin term OD = h̄vgµν [[ivD, iD

µ
⊥], iDν

⊥]hv and spin-
orbit term OSL = h̄vσµν [[ivD, iD

µ
⊥], iDν

⊥]hv. The corresponding coefficient functions
CD and CSL are known up to NLO in αs [143].

7.2 Heavy Quark Expansion for the Total Decay Rate

Experimental observable of inclusive hadronic decays are basically limited to the total
decay rate and corresponding differential distributions. In case of an inclusive decay
B → Xc`ν̄` the total rate is defined as

Γ(B → Xc`ν̄`) =
1

2mB

∫
dΦ(pB; pXc , p`, pν̄)× |M|2 . (7.11)

The integrand is given by the amplitudeM = 〈Xc`ν̄|Lint|B̄〉 which describes the inter-
action process. One also integrates over the phase space Φ of all final state particles,
namely any charmed meson Xc and the dilepton pair `, ν̄. We introduced the prefactor
that stems from the normalization of the heavy meson states. In order to embed the
considered interaction, we choose the (low-energy) effective Lagrangian

Leff = −Heff = −2
√

2GFVcb[c̄γ
µPLb]× [¯̀γµPLν`] + h.c (7.12)

with PL = (1− γ5)/2. The Fermi constant GF is known with high precision from pure
leptonic weak decays. Using the unitarity property of the scattering operator

Ŝ = 1 + iT̂ = T exp
{
i

∫
dxLeff(x)

}
, (7.13)

we find the relation

T̂ †T̂ = i
(
T̂ † − T̂

)
= 2Im T̂ , (7.14)

where T̂ is the transition operator. This is the optical theorem of scattering processes.
One can now expand the exponential function in (7.13) to extract the leading contri-
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butions. Since the Lagrangian is hermitian, only higher order expressions can have
an imaginary part, starting with the second order expansion term. The leading term
reads

T̂ = i

∫
dx T {Leff(x)Leff(0)} . (7.15)

The amplitude in the definition of Γ can be identified as the matrix element of T̂ and
therefore

Γ(H → X) =
1

2mH

∑
X

∫
dΦX |M(H → X)|2

=
1

2mH

∑
X

∫
dΦX〈H|T̂ †|X〉〈X|T̂ |H〉

(∑
X

∫
dΦX |X〉〈X| = 1

)
=

1

mH

〈H|Im T̂ (H → X → H)|H〉 (7.16)

where a heavy hadron H decays inclusively. Inclusive decays describe the sum over all
possible final states which are kinematically allowed and have the quantum numbers
of the initial state. For convenience, we define a normalized transition operator T̂0 by
separating the global tree-level phase space factor and the CKM coefficient

Im T̂ =
G2
Fm

5
b

192π3
× |VqQ|2 × Im T̂0 . (7.17)

Note that the transition operator is a non-local operator of the particle fields. It is
further integrated over the whole phase space. Since all scales are involved in this
object, it is not tractable in perturbative QCD. However, rewriting the original heavy-
quark fields to effective fields within HQET singles out a large phase factor (as discussed
in the previous section). It allows us to perform an OPE in terms of the inverse quark
mass mQ with factorized short-distance effects, which are treatable in perturbation
theory, and non-perturbative properties, encoded in local operators. This expansion in
the heavy quark is a matching from QCD to HQET according to

Im T̂0 =

∫
dx e−i(mQv)xh̄v(. . . “brownmuck” . . .)hv , (7.18)

⇒ Im T̂0 = C0O0 + CV
OV
mQ

+ Cπ
Oπ

2m2
Q

+ CG
OG

2m2
Q

+O
(Λ3

QCD

m3
Q

)
. (7.19)
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The operators are ordered by their dimension starting with O0 = h̄vhv (d = 3) and
mass suppressed operators (see also in the previous section). One can determine the co-
efficients Ci by matching the corresponding matrix elements between QCD and HQET.
Later on we will describe which states should be used to single out individual coeffi-
cients. Note that after taking the hadronic matrix element, such as the heavy meson
state |H〉, the operator OV contributes to higher dimensional operators with the equa-
tion of motion. Eq. (7.19) is universal and coefficients are independent of the choice of
external states. We choose on-shell quarks and external gluons for matching to QCD.
For convenience, we also consider the local operator Q̄/vQ that is defined in full QCD
and the leading expression in HQE. This choice can be attributed to the current Q̄γµQ
being conserved from which follows the forward hadronic matrix element

〈H(p)|Q̄/vQ|H(p)〉 = 2mH (7.20)

and our HQE is normalized. To perform the substitution of the local operator in (7.19),
we also require the local expansion:

Q̄/vQ = O0 +
Oπ

2m2
Q

+ C̃G
OG

2m2
Q

+O
(Λ3

QCD

m3
Q

)
. (7.21)

The leading power expression has no radiative corrections. Substituting Eq. (7.21)
into (7.19) results in the final expansion for the transition operator

Im T̂0 = C0

[
Q̄/vQ− Oπ

2m2
Q

]
+
[
− CVCmag(µ) + CG − C̃GC0

] OG
2m2

Q

, (7.22)

where we used the equation of motion. In terms of B meson states we recover the
total decay rate with nonperturbative hadronic matrix elements. The forward B meson
matrix element of OG is commonly related to the mass splitting between the vector and
pseudoscalar meson masses. For bottom mesons the mass splitting is approximately

µ̄2
G = − 1

2mB

Cmag(µ)〈B(pB)|OG(µ)|B(pB)〉 =
3

4
(m2

B∗ −m2
B) ' 0.37 GeV2 (7.23)

with state normalization 〈B(p′B)|B(pB)〉 = 2p0
B(2π)3δ3(~pB − ~pB ′). Higher order 1/mQ

corrections in the mass splitting formula were neglected. Correspondingly, the matrix
element of the kinetic operator has the abbreviation µ2

π = − 1
2mB
〈B|Oπ|B〉. With all
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definitions stated above the total rate for semileptonic B decays now reads

Γ(B → Xcν̄``) =
G2
Fm

5
b

192π3
× |Vcb|2 ×

[
C0

(
1− µ2

π

2m2
b

)
+
(
− CV +

CG − C̃GC0

Cmag

) µ̄2
G

2m2
b

]
.

(7.24)

7.3 Coefficient Functions of HQE

The matching procedure is based on the computation of matrix elements with partonic
states (b-quarks and gluons) on the QCD and HQET side in Eq. (7.19). At NLO level
three-loop Feynman diagrams with a massive c- and b-quark arise from the matrix
element of the transition operator. In Fig. 7.1 we show typical NLO Feynman diagrams
from the leading power and power suppressed contributions of the total decay rate. A
detailed description concerning the HQE coefficients is given in the next chapter.

b b̄

c

l

ν̄

b b̄

c

l

ν̄

b b̄

Figure 7.1: Perturbation theory diagrams for the matching computation at NLO level.
Left diagram shows a contribution to the partonic rate, centered and right diagram
contributes to power corrections (insertion of a background gluon).

Leading Power Coefficient (Partonic Width)

The coefficient C0 up to NLO in αs reads

C0(r) = CLO
0 (r) +

(αs
π

)
CF C

NLO
0 (r) +O(α2

s) (7.25)

as a function of the mass ratio r ≡ m2
c/m

2
b . As an example, we explicitly show the

computation of the leading order contribution

CLO
0 (r) =

192π3

m5
b

Im

∫
dx eipx ū(p)γµPLS(x;mc)γνPLu(p)× Πlep

µν (x) (7.26)
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=
192π3

m5
b

Im

∫
q

Tr
[
P+γµPLS(p− q;mc)γνPL

]
× Πlep

µν (q) , (7.27)

where the external momentum fulfills the on-shell condition p = mbv. In the equation
above we introduced the bare quark propagator S(x;mc) in configuration and S(q;mc)

in momentum space. The function Πlep
µν (q) is the Fourier transform of the leptonic

tensor

Πlep
µν (q) = −

∫
l

Tr
[
γµPLS(l − q; 0)γνPLS(l; 0)

]
= (qµqν − q2gµν)Π(q2) . (7.28)

It is transverse in the massless lepton limit. The invariant amplitude Π(q2) has a single
pole according to

Π(q2) =
G

ε
×
(2

3
− 2

9
ε
)
× 1

[−q2]ε
. (7.29)

The LO coefficient of the partonic width stems from a single diagram (with two-loops
from the c-quark and both leptons), which is given by

CLO
0 = 1− 8r − 12r2 log(r) + 8r3 − r4 . (7.30)

Including radiative QCD corrections to the leading order diagram, the NLO coefficient
reads

CNLO
0 (r) =

1

2
(1− r2)×

{(25

4
− 239

3
r +

25

4
r2
)

+
(
− 17

3
+

64

3
r − 17

3
r2
)

log(1− r2)
}

(
− 20− 90r +

4

3
r2 − 17

3
r3
)
r log(r) +

(
− 36− r2

)
r2 log2(r)

4(1 + 30r2 + r4) log(1− r) log(r) + (1 + 16r2 + r4)

(
3 Li2(r)− 1

2
π2

)
+ 32r3/2(1 + r)

(
π2 − 4Li−2 + 2 log(r) log

(1 +
√
r

1−√r
))

(7.31)

where r ≡ m2
c/m

2
b . Here, we also defined the function Li−2 ≡ Li2(

√
r)−Li2(−√r). Our

result is an independent confirmation of the stated formulas in [146], which have been
determined from the differential cross-section of inclusive weak decays. In Fig. 7.2 the
normalized coefficients CLO

0 and CNLO
0 are plotted against the quark mass ratio r. A

detailed discussion of its computation is given in Ch. 8. The behavior of C0 for small
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charm-quark masses (r � 1) is

C0(r)→ 1− 8r +
(αs
π

)
CF

[25

8
− π2

2
− 34r − 12r log(r)

]
. (7.32)

Near the phase-space border (r ≈ 1) reads

C0(r)→ 2

5
(1− r)5 −

(αs
π

)
CF

3

10
(1− r)5 . (7.33)

For the computation of C0 we used on-shell charm quarks. With Eq. (A.33) one can
easily convert quark masses in the pole scheme to MS masses. Note that C0(r) changes
its dependence on r significantly, see Fig. 7.3. The relative magnitude of the NLO
contribution at a typical value of the mass ratio (r = 0.07) is

C0(0.07) = 0.6
(
1− CF

αs
π

1.31
)
, (7.34)

whereas the massless limit has the following value

C0(0) = 1− CF
αs
π

1.8 . (7.35)

Both values of C0 (and Fig. 7.2) show a similar LO and NLO contribution behavior
when normalized to their massless limit.

EOM Operator Coefficient

The coefficient of the operator OV is singled out by taking the matrix element between
on-shell b-quarks and one gluon with vanishing momentum and longitudinal polariza-
tion, i.e. Aµ = vµ(vA). Due to the structure of the covariant derivative vD, one can
also introduce an additional small momentum k, which shifts p→ p+k. By expanding
the Feynman graphs in k that are associated to the leading power coefficient, we gain
identical results if just expressions linear in kv are considered. The following form in
terms of αs is used:

CV (r) = CLO
V (r) +

(αs
π

)
CF C

NLO
V (r) +O(α2

s) , (7.36)

where the color factor at NLO is CF . The LO coefficient of the EOM operator reads

CLO
V (r) = 5− 24r − 12r2 log(r) + 24r2 − 8r3 + 3r4
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Figure 7.2: Plot of the normalized leading power coefficient (Ĉ0 ≡ C0(r)/C0(0)) against
the quark mass ratio r = m2

c/m
2
b . The blue solid (orange dashed-dotted) line denotes

the LO (NLO) contribution in the pole mass scheme.

=
1

m4
b

d

dmb

[
m5
b × CLO

0 (r)
]
. (7.37)

We also calculate the NLO coefficient:

CNLO
V (r) =(
3Li2(r)− 1

2
π2

)(
1− 16r2 − 3r4

)
− 1

24
(1− r)

(
25− 1011r − 1487r2 + 189r3

)
+

1

6
r
(
12 + 450r + 4r2 + 45r3

)
ln(r)− 1

6
(1− r)

(
11 + 11r + 83r2 − 45r3

)
ln(1− r)

+
3

2
r2
(
4 + r2

)
ln2(r) + 2

(
1− 30r2 − 3r4

)
ln(1− r) ln(r)

+ 8r3/2(1 + 3r)

(
4Li−2 − π2 − 2 ln

(
1 +
√
r

1−√r

)
ln(r)

)
. (7.38)

Around the massless charm quark limit CV reads

CV (r)→ 5− 24r +
(αs
π

)
CF

[
−25

24
− π2

2
+ 36r log(r)− 8π2r3/2

]
. (7.39)
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On the border of the phase space (r ≈ 1) the EOM coefficient function approaches
asymptotically

CV (r)→ 4(1− r)4 −
(αs
π

)
CF 3(1− r)4 . (7.40)

For a typical quark mass ratio r = 0.07 we obtain

CV (0.07) = 3.6
(
1− CF

αs
π

1.1
)
, (7.41)

while the massless limit is

CV (0) = 5
(
1− CF

αs
π

1.2
)
. (7.42)

One can see that the r-dependence of CV is similar to C0. Therefore a reasonable NLO
two-mass extrapolation based on the partonic width behavior is possible.
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Figure 7.3: Plots of the normalized leading power coefficient (Ĉ0 ≡ C0(r)/C0(0))
against the quark mass ratio r = m2

c/m
2
b . The blue solid (orange dash-dotted) line

denotes the NLO contribution in the MS scheme at µ = mb (mc). The green dashed
line shows the NLO contribution in the pole mass scheme.
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Figure 7.4: Plot of the normalized EOM coefficient (ĈV ≡ CV (r)/CV (0)) against the
quark mass ratio r = m2

c/m
2
b . The blue solid (orange dashed-dotted) line denotes the

LO (NLO) contribution in the pole mass scheme.

Chromomagnetic Operator Coefficient

Due to the structure of the operator OG = gs
2
h̄vσµνG

µνhv, the resulting coefficient
function has two color factors, namely the invariants CF and CA. The coefficient
function up to NLO is

CG(r) = CLO
G (r) +

αs
π

[
CF C

NLO,F
G (r) + CAC

NLO,A
G (r)

]
+O(α2

s) . (7.43)

The LO coefficient of the chromomagnetic operator reads

CLO
G (r) = 2× CLO

0 (r) = 2(1− 8r − 12r2 log(r) + 8r3 − r4) . (7.44)

We also calculate the NLO coefficient with full mass dependence. For brevity, only the
massless limit r → 0 results are given at this point. The fully renormalized coefficient
Cr
G = CG − C̃GC0 in this limit reads

Cr
G(r)→ 2 +

αs
π

[
CF

(
− 47

36
− 7π2

9

)
+ CA

(49

18
− π2

9

)]
. (7.45)
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Figure 7.5: Plot of the normalized chromomagnetic operator coefficient (Ĉr
G ≡

Cr
G(r)/Cr

G(0)) against the quark mass ratio r = m2
c/m

2
b . The blue solid (orange dashed-

dotted) line denotes the LO (NLO) contribution in the pole mass scheme.

The coefficient Cr
G has the asymptotics

Cr
G(r)→ 4

5
(1− r)5 +

(αs
π

)
CF (1− r)4 (7.46)

near the border of phase-space (r ≈ 1).

Renormalization Group Invariant Chromomagnetic Operator Co-
efficient

To present the final result of the chromomagnetic operator coefficient we prefer the
renormalization group (RG) invariant expression entering the HQET Lagrangian after
the use of equation of motion. This combination also determines the mass splitting in
the ground state multiplets due to spin orientation. Hence, the final coefficient is given
by

Cµ̄2
G

(r) = −CV (r) +
Cr
G(r)

Cmag(µ)
(7.47)
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after taking the heavy meson matrix element. With this combination the invariant
hadronic matrix element in the HQE reads µ̄2

G ≡ −1/(2mB)Cmag(µ)〈OG(µ)〉. If we
write the full coefficient, which is decomposed into the color structure with NLO ac-
curacy, the final expression Cµ̄2

G
to the invariant chromomagnetic moment reads

Cµ̄2
G

(r) = CLO
µ̄2
G

(r) +
αs
π

[
CFC

NLO,A

µ̄2
G

(r) + CAC
NLO,F

µ̄2
G

(r)
]

+O(α2
s) . (7.48)

At the leading order we obtain the well known result

CLO
µ̄2
G

= −3 + 8r − 24r2 − 12r2 ln(r) + 24r3 − 5r4 . (7.49)

The CA color structure coefficient at NLO reads

CNLO,A
µ̄2
G

=
1

108
(1− r)

(
156− 4081r − 354r2 − 405r3

)
+

1

9
(6Li2(r)− π2)

(
1− 6r + 24r2 − 11r3

)
− (1− r)

54r

(
15 + 20r − 196r2 − 292r3 − 27r4

)
ln(1− r)

− 1

54
r
(
786 + 972r + 131r2 − 27r3

)
ln(r)− 2

9

(
1 + 9r − 93r2 + 19r3

)
ln(1− r) ln(r)

+
1

9
r
(
9− 33r + 5r2

)
ln(r)2

+
8

3
r1/2(1− 11

3
r)

(
4Li−2 − π2 − 2 ln(r) ln

(
1 +
√
r

1−√r

))
, (7.50)

whereas the CF color structure is

CNLO,F
µ̄2
G

= − 1

216
(1− r)

(
321− 13747r + 5421r2 − 3807r3

)
+

1

18
(6Li2(r)− π2)

(
5 + 72r − 72r2 − 88r3 + 45r4

)
− (1− r)

54r

(
12− 19r + 917r2 − 1795r3 + 585r4

)
ln(1− r)

+
1

54
r
(
1500− 330r + 2668r2 − 585r3

)
ln(r)

+
2

9

(
11 + 54r − 48r2 − 94r3 + 45r4

)
ln(1− r) ln(r)

− 1

18
r
(
72 + 60r − 112r2 + 45r3

)
ln(r)2

+
32

3
(1− 4

3
r)r1/2

(
4Li−2 − π2 − 2 ln(r) ln

(
1 +
√
r

1−√r

))
. (7.51)
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In order to get an impression of the mass ratio dependence we state the massless
charm quark limit with inserted color factors CF = 4/3 and CA = 3 here, i.e.

Cµ̄2
G

(0) = −3 +
αs
π

(
94

27
− 19π2

27

)
. (7.52)

The behavior near the phase-space border is for the NLO contributions

CNLO
µ̄2
G

(r)→ 4CF (1− r)4 (7.53)

and at LO

CLO
µ̄2
G

(r)→ −4(1− r)4 . (7.54)

For a typical quark mass ratio r = 0.07, we obtain for the Cµ̄2
G
:

Cµ̄2
G

(0.07) = −2.4(1 +
αs
π

[−1.53CF + 0.36CA]) = −2.4(1− 0.96
αs
π

) (7.55)

while the massless limit reads

Cµ̄2
G

(0) = −3(1 +
αs
π

[1.33CF − 0.21CA]) = −3(1 + 1.15
αs
π

) . (7.56)

In the previous sections we have shown that the coefficient functions C0 and CV have a
similar behavior of the LO and NLO contributions when changing r. The normalized
function CLO

µ̄2
G

also has the common decay towards r = 1, whereas CNLO
µ̄2
G

is negative in
the massless limit and decays very rapidly to positive values (see also Fig. 7.6).
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Figure 7.6: Plot of the normalized RG-invariant chromomagnetic operator coefficient
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(0)) against the quark mass ratio r = m2
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7.4 The Total Width and Moments of the Differential
Distribution

The final result for the total width with power suppressed terms and NLO accuracy is

Γ/Γ̃0 =
(

1− 1.78
αs
π

)[
1− µ2

π

2m2
b

]
− 3.89

(
1− 0.92

αs
π

) µ̄2
G

2m2
b

. (7.57)

Here, we introduce the common normalization Γ̃0 = Γ0|Vcb|2×CLO
0 (r). We also compute

some relevant moments in the lepton pair invariant mass q2 analytically with full mass
dependence. The moments are defined through the relation

M̂
(n)

q2 =
1

M
(n)

parton, q2

∫
dΓ
( q2

m2
b

)n
. (7.58)
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We choose the n-th moment in q2 of the partonic rate at LO

M
(n)

parton, q2 =

∫
dΓparton ×

( q2

m2
b

)n
(7.59)

as normalization, i.e. all coefficient functions are zero except CLO
0 and higher moments

of CLO
0 . For the q2 moments up to third order we obtain with r = 0.0625:

M̂
(1)

q2 =
(

1− 1.65
αs
π

){
1− µ2

π

2m2
b

}
− 8.99

(
1− 0.68

αs
π

) µ̄2
G

2m2
b

,

M̂
(2)

q2 =
(

1− 1.56
αs
π

){
1− µ2

π

2m2
b

}
− 14.39

(
1− 0.56

αs
π

) µ̄2
G

2m2
b

,

M̂
(3)

q2 =
(

1− 1.48
αs
π

){
1− µ2

π

2m2
b

}
− 20.00

(
1− 0.47

αs
π

) µ̄2
G

2m2
b

.

Moments in the variable H = (p− q)2 −m2
c are defined as

M̂
(n)
H =

∫
dΓ

Γ0

×
((p− q)2 −m2

c

m2
b

)n
. (7.60)

We obtain the following results for moments in H up to third order using r = 0.0625:

M
(1)
H = 0.057

αs
π

{
1− µ2

π

2m2
b

}
+ 0.397

(
1− 2.304

αs
π

) µ̄2
G

2m2
b

,

M
(2)
H = 0.0058

αs
π

{
1− µ2

π

2m2
b

}
+ 0.0554

αs
π

µ̄2
G

2m2
b

,

M
(3)
H = 0.0011

αs
π

{
1− µ2

π

2m2
b

}
+ 0.0069

αs
π

µ̄2
G

2m2
b

.

7.5 Impact on CKM Matrix Element |Vcb|
An important implication of the calculations, as presented above, is the precision im-
provement of the inclusive B decay into charmed meson states and the accompanied
CKM element Vcb. Since we have the analytical result at hand, we can immediately
estimate its influence on |Vcb| in a simple manner. Assuming the shift is solely driven
by the NLO correction in the coefficient of the chromomagnetic moment we find

∆|Vcb|
|Vcb|

' −CNLO
µ̄2
G

(αs
π

)
× µ̄2

G

2m2
b

× 1

2C0(r)
. (7.61)



110 Chapter 7. Decay Rate of Inclusive Semileptonic B Decays from QCD

Here, we neglect power-suppressed terms in the denominator due to their small con-
tribution. Furthermore, we assume r = 0.0625, αs/π = 0.1 and use the mass splitting
approximation in (7.23) for µ̄2

G. With this input the relative shift is

∆|Vcb|
|Vcb|

= −0.14% (7.62)

in the value of |Vcb|. In the massless limit the new correction leads to a change of

∆|Vcb|
|Vcb|

∣∣∣∣∣
mc=0

= +0.14% . (7.63)

7.6 Discussion of Results

We apply the heavy quark expansion method to heavy hadron decays (with one heavy
quark), in order to compute analytically the leading power coefficient function and
the coefficient of the power-suppressed chromomagnetic operator. The former can
be related to the partonic decay rate, whereas the latter describes a breaking term
of spin and flavor symmetry in the realm of HQET. A prominent application of the
computed results is the precision determination of the CKM matrix element |Vcb| from
inclusive semileptonic b → c transitions. Corrections to the chromomagnetic moment
are parametrically the largest missing piece in the analysis of inclusive weak decays.
An outline of the main results is:

• The short-distance coefficients for HQE operators of dimension 3 to 5 are com-
puted up to next-to-leading order in QCD perturbation theory where the charm
quark mass was taken into account. Leptons were considered as massless. The
leading power coefficient C0 (from h̄vhv) was computed by taking on-shell b-quark
states. In order to renormalize this expression it is sufficient to multiply the bare
results (directly from diagram computation) with the on-shell renormalization
constant ZOS

2 . For convenience, we chose a specific basis to determine the co-
efficient of the chromomagnetic operator CG in the HQE. By substituting the
leading power operator for the local operator b̄/vb we ended up with the difference
of the chromomagnetic and the local operator coefficient C̃G. This combination
is easier to compute since some of the emerging divergences cancel. For the fi-
nal coefficient of the scale invariant chromomagnetic moment we also computed
the coefficient CV to the dimension-4 operator h̄vvDhv. Each coefficient was
extracted with suitable projectors reflecting the relevant structure of the corre-
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sponding operator. As a first step, we calculated the massless charm quark case,
which also provides an additional cross-check to the computation with a massive
charm quark. Both calculations yield identical results when taking the massless
limit of the result with full mass dependence.

• All necessary tools and computational environments were built up in Mathe-
matica. In the analytical calculation we used the integration-by-parts method
to reduce diagram expressions into a minimal set of master integrals. In case of
full mass dependence the absorptive part of one master integral at two-loop level
and four integrals at three-loop level are computed. In the case of a massless
charm quark just one two-loop master and three three-loop masters, respectively,
were computed.

• We give explicit expressions for the total width of semileptonic B decays into
charmed mesons and a dilepton pair. For a specific value of the mass ratio
r = m2

c/m
2
b = 0.0625 our result matches the numerical calculation as stated in

Ref. [134]. This is a powerful cross-check, since both studies were performed
independently with two different approaches. The NLO contribution of the chro-
momagnetic moment (leading power) coefficient reduces the LO one by about 9%

(18%), assuming αs/π = 0.1. It turned out that the mass dependence is strongly
affected by the charm-quark-mass scheme. If we use the charm quark mass in
the pole scheme, each coefficient shows an improved convergence behavior as a
function of r at small r.

• With analytical expressions for each coefficient function at hand, we also de-
termine certain moments of differential distributions, which is of experimental
interest. In addition to the total width we compute the moments over the invari-
ant mass-squared of the leptonic pair q2 and the partonic invariant mass-squared
(p− q)2−m2

c . We see that higher moments in q2 decrease the influence of radia-
tive corrections, whereas the power-suppressed coefficient of the chromomagnetic
moment has an overall increasing impact. Numerically the partonic moments
decrease very quickly with higher order.

• The shift of the CKM matrix element |Vcb| due to the new correction is roughly
−0.14% assuming pole masses for charm and bottom quark. The massless limit
shifts |Vcb| to positive direction by the same amount. One can compare this shift
to corrections of higher order in ΛQCD/mb. The tree-level (ΛQCD/mb)

3 contri-
bution induces a relative shift of |Vcb| of ∼ −1.4%, whereas the terms of order
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(ΛQCD/mb)
4 generate a shift of about 0.3% [135]. This means that our correc-

tion has roughly the same impact as the dimension-7 operator contribution at
tree-level. For the first time, the impact on |Vcb| is estimated due to the NLO
corrections to the chromomagnetic operator by knowing the analytical expression
with and without the charm quark mass.



Chapter 8

Technical Aspects of Perturbative
Corrections to Inclusive B-Decays

In the following, we give a detailed description of the technical aspects that pertain
to our calculation. We remind the reader on the structure of the expansion in 1/mb

and the simultaneous expansion of the coefficient functions in αs. The HQE of the
transition operator to the relevant order is given by

Im T̂0 = C0

(
O0 −

Oπ
2m2

b

)
+ CV

OV
mb

+ CG
OG
2m2

b

. (8.1)

For convenience we also consider the local operator

b̄/vb = O0 +
Oπ
2m2

b

+ C̃G
OG
2m2

b

. (8.2)

Our calculation addresses all of the above-mentioned coefficients up to NLO in αs.
These are:

1. Leading power coefficient C0,

2. Equation of motion (EOM) coefficient CV ,

3. Chromomagnetic coefficient CG,

4. Chromomagnetic coefficient of the b̄/vb operator C̃G.

We will discuss the respective details in Sects. 8.1 to 8.4.

8.1 Leading Power Coefficient (Partonic Width)

A convenient way to compute the leading power coefficient C0 is to take the imaginary
part of the transition operator T̂0 between on-shell (p = mbv) heavy quark states.
These states are unphysical since quarks are confined in hadrons, but the expansion in
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(8.1) holds on the operator level. As a consequence of this choice, the matrix elements
of all operators that emerge in the HQE vanish, except for the leading-power operator:

Im 〈b(p)|T̂0|b(p)〉 = C0 〈b(p)|h̄vhv|b(p)〉 . (8.3)

The on-shell wave-function renormalization constant of the effective quark field oper-
ator is Z̃OS

2 = 1, due to scale-free correction terms. That is

〈0|hv|b(mv + ∆p)〉 =

√
Z̃OS

2 uv(∆p) = uv(∆p) , (8.4)

where uv(∆p) is the HQET spinor [147]. The non-vanishing matrix element is

〈b(p)|h̄vhv|b(p)〉 = 2mb (8.5)

to NLO in αs. Therefore the matching formula to determine the leading power coeffi-
cient is

C0 =
1

2mb

Im 〈b(p)|T̂0|b(p)〉 . (8.6)

The perturbative series with NLO accuracy reads

C0(r) = CLO
0 (r) +

(αs
π

)
CFC

NLO
0 (r) , (8.7)

which depends on the quark mass ratio r ≡ m2
c/m

2
b . To leading order the coefficient

C0 can be extracted from one Feynman graph (see Fig. 8.1 (a)), which is given by

CLO
0 (r) =

1

2mb

Im 〈b(p)|T̂0|b(p)〉
∣∣∣
LO

=
1

Γ̂b
Im

∫
q

Tr
[
P+ × Γµνlo (p, q;mc)

]
× Πlep

µν (q) ,

(8.8)

where Γ̂b ≡ m2
b/(192π3). We explicitly separate the parton kernel function from the

leptonic part Πlep
µν , see Eq. (7.28), in the integration. The parton kernel reads

Γµνlo = γνPLS(p− q;mc)γ
µPL (8.9)

and, hence, the integration in (8.8) leads to two-loop master integrals of the sunset
type.
The NLO QCD corrections to C0 stem from four Feynman graphs as shown in Fig. 8.1
(b)-(e). These include
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(a) (b) (c) (d) (e)

Figure 8.1: Leading order Feynman graph in (a) and next-to-leading order Feynman
graphs in (b)-(e) for the leading power coefficient C0.

1. the self-energy correction to the charm-quark propagator (se),

2. the box-type correction, where a gluon line connects both heavy b-quarks (bx),

3. two radiative corrections to the b-to-c current (vx).

Note that both vertex contributions are equal. Altogether we obtain the following NLO
contribution for the leading power coefficient:

CNLO
0 (r) =

∑
j

CNLO; j
0 = CNLO; se

0 + CNLO; bx
0 + 2× CNLO; vx

0 . (8.10)

The bare contributions have the general form:

Cbare,NLO; j
0 (r) =

1

Γ̂b
Im

∫
q

∫
k

Tr
[
P+ × Γµνj (p, q, k;mc)

]
× Πlep

µν (q) , (8.11)

where the parton kernels are

Γµνse = γνPLS(p− q;mc)γ
βS(k − q;mc)γ

αDαβ(p− k)S(p− q;mc)γ
µPL , (8.12)

Γµνbx = γβS(k;mb)γ
νPLS(k − q;mc)γ

µPLS(k;mb)γ
αDαβ(p− k) , (8.13)

Γµνvx = γνPLS(p− q;mc)γ
αS(k − q;mc)γ

µPLS(k;mb)γ
αDαβ(p− k) . (8.14)

Here we use an abbreviation for the quark and the gluon propagator:

S(k;m) ≡ /k +m

k2 −m2 + i0
, (8.15)

Dαβ(k) ≡ −i
k2 + i0

[
gαβ − ξ

kαkβ
k2

]
(8.16)
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and use the Landau gauge ξ = 0. These diagrams all have a common QCD color
structure. The common color factor is∑

a,b;k,l

(ta)ik(t
b)ljδ

abδkl =
∑
a

(tata)ij = CF δij , (8.17)

where CF = 4/3 is the SU(3) Casimir invariant.
The complexity of computation for each coefficient as listed in Eq. (8.10) increases
from left to right. After the integration-by-parts reduction, we obtain eight masters
with a non-vanishing imaginary part (see Appendix C.1).
Corrections to the charm-quark propagator at NLO level have the simplest structure.
Only integrals of the sunset-type contribute. The box diagram also has factorizable
integrals built from the product of two-loop integrals of the sunset-type and a massive
one-loop tadpole. The vertex correction is the most complicated contribution to CNLO

0 .
It contains all four masters including two non-factorizable ones. In Appendix C we list
the required two- and three-loop spectral functions and comment on their calculation.
As a cross-check we also calculate C0 for a massless charm quark. The calculation sim-
plifies drastically if only the bottom quark is massive. The number of masters reduces
to three (see Appendix C.2): These are a sunset-type integral with only massless lines,
a factorizable master which is the product of a two-loop sunset integral and a massive
tadpole, and a non-factorizable master integral.
In order to renormalize the expression from direct computation of the Feynman graphs,
we perform an on-shell renormalization by multiplying the bare result of C0 with

ZOS
2 = 1− CF

αs
4π

(
3×

[1

ε
+ log

( µ2

m2
b

)]
+ 4
)
. (8.18)

We fix the scale at µ = mb for the rest of the calculation. It can be restored if
necessary due to the knowledge of the anomalous dimension. The renormalized result
of the leading power coefficient is

C0(r) = ZOS
2 × Cbare

0 (r) . (8.19)

The full analytical expression is given in Eqs. (7.30) and (7.31).
Note that we can also renormalize Cbare

0 by computing the vertex correction to the
heavy-quark current C̃NLO

0 , see also Fig. 8.2. The following combination of coefficient
functions also yields the renormalized function C0:

C0(r) = Cbare
0 − CLO

0 C̃NLO
0 . (8.20)
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v/

Figure 8.2: Vertex correction to the heavy-quark current C̃NLO
0 .

8.2 EOM Operator Coefficient

An auxiliary contribution to the chromomagnetic operator is the coefficient CV of the
operator OV = h̄v(ivD)hv. To single out CV we choose an on-shell bottom quark state
and include an additional longitudinal polarized gluon with vanishing momentum. In
this way we select the coefficient contribution from the gluon field Aµ = vµ(vA), which
is related to vD by gauge invariance. The matching relation is

Im 〈b(p)|T̂0|b(p)g(0)〉 =
CV
mQ

〈b(p)|OV |b(p)g(0)〉 . (8.21)

The perturbative series with NLO accuracy has the form

CV (r) = CLO
V (r) +

(αs
π

)
CFC

NLO
V (r) . (8.22)

The color factor of the coefficient CV at NLO level is CF due to the structure of the
corresponding Feynman graphs. At LO level CV is given by

CLO
V (r) =

1

Γ̂b

∫
q

Tr
[
P+ × Γµνlo,v(εv, p, q;mc)

]
× Πlep

µν (q) . (8.23)

The partonic kernel reads

Γµνlo,v = γνPLS(p− q;mc) (εv)/v S(p− q;mc)γ
µPL . (8.24)

Here, we insert (εv)/v to assess the longitudinal part of the background gluon insertion,
following /ε = (εv)/v + /ε⊥, see Fig. 8.3 (a). Alternatively, one can also compute
the same contribution using a small momentum expansion near the quark mass-shell
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p→ p+ (kv)v, i.e.

1

mb − /p
→ 1

mb − /p
+

1

mb − /p
(kv)/v

1

mb − /p
, (8.25)

where we keep the linear term in (kv). Radiative corrections to CV emerge from
four Feynman graphs, see Fig. 8.3 (b) to (e). The introduced background gluons are
attached to all possible spots on the graphs. Note that the two vertex corrections are
again identical.
From this follows the EOM coefficient at NLO level:

CNLO
V (r) =

∑
j

CNLO; j
V = CNLO; se

V + CNLO; bx
V + 2× CNLO; vx

V . (8.26)

NLO contributions have the general form

Cbare,NLO; j
V (r) =

1

Γ̂b

∑
n

∫
q

∫
k

Tr
[
P+ × Γ̃µνn;j(εv, p, q, k;mc)

]
× Πlep

µν (q) . (8.27)

For convenience, we introduce the fermion and gluon propagator with a gluon insertion:

Sint(q;mc) = S(q;mc)× (εv)/v × S(q;mc) and Dint(q) = D(q)× (εv)/v ×D(q) .

(8.28)

The self-energy corrections to the charm quark propagator have four insertions:

Γ̃µνse;1 = γνPLS
int(p− q;mc)γ

βS(k − q;mc)γ
αDαβ(p− k)S(p− q;mc)γ

µPL ,

...

Γ̃µνse;4 = γνPLS(p− q;mc)γ
βS(k − q;mc)γ

αDαβ(p− k)Sint(p− q;mc)γ
µPL . (8.29)

In an analogous way, we determine the contributions from the box and vertex correc-
tions, i.e.

Γ̃µνbx;1 = γβSint(k;mb)γ
νPLS(k − q;mc)γ

µPLDαβ(p− k)S(k;mb)γ
α ,

...

Γ̃µνbx;4 = γβS(k;mb)γ
νPLS(k − q;mc)γ

µPLDαβ(p− k)Sint(k;mb)γ
α , (8.30)
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and

Γ̃µνvx;1 = γνPLS
int(p− q;mc)γ

αS(k − q;mc)γ
µPLS(k;mb)γ

αDαβ(p− k) ,

...

Γ̃µνvx;4 = γνPLS(p− q;mc)γ
αS(k − q;mc)γ

µPLS(k;mb)γ
αDint

αβ(p− k) . (8.31)

We obtain the following color factors to the aforementioned contributions: All Feynman
graphs with insertions on the quark-gluon loop include the SU(3) Casimir invariant
CA. The color factor for insertions on the charm quark line in the loop yields∑

a,c;j,l,m

(ta)ij(t
b)kl(t

c)mnδ
acδjkδlm =

∑
a

(tatbta)in =
(
CF −

CA
2

)
tbδin . (8.32)

If the background gluon is attached on the gluon line in the loop, we find∑
b,c;j,k

ifabc(tb)ij(t
c)klδ

jk =
CA
2
taδil . (8.33)

Contributions which are proportional to CA cancel explicitly in total as stated in Eq.
(8.27). This is a good crosscheck for our calculation.
Here, the same topology of Feynman diagrams contributes as in the leading power
coefficient C0 and, hence, we have the same set of master integrals.

As for the leading power coefficient, the HQET spinor is free of correction terms,
whereas the QCD partner requires additional renormalization . In order to renormalize
the bare result, it is not sufficient to multiply Cbare

V by the on-shell renormalization
constant ZOS

2 . Additional divergences stem from corrections to the external bottom
quark legs including a single gluon insertion.
To determine all necessary contributions for CV we consider the skeleton expansion of
the total width. In accordance to the inclusive setup the total decay rate can be written
in terms of Green’s function, namely the quark propagator S and the 1PI kernel Λ:

Γ ∼ (ZOS
2 )−1(SΛS)R . (8.34)

For accessing the relevant Feynman graphs, we consider bare fields to write down
all contributions and perform the computation. To illustrate the general matching
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procedure we expand the Green’s functions in kv to linear order:

S = S̃(0) + S̃(1) kv

mb

= ZOS
2

P+

kv

[
1 + ∆Z

kv

mb

]
, (8.35)

Λ = Λ0 + Λ1
kv

mb

. (8.36)

Due to the operator structure of OV the transverse component of k should be neglected.
Altogether the Green’s function of the longitudinal expression of the total width reads

(ZOS
2 )−1(SΛS)R →ZOS

2 (S̃(0)Λ0S̃
(0) + (S̃(0)Λ1S̃

(0) + 2S̃(1)Λ0S̃
(0))

kv

mb

+ . . .) (8.37)

=ZOS
2

(
P+

(kv)
Λ0

P+

(kv)

)
+ ZOS

2

[
P+

(kv)
Λ1

P+

(kv)
+ 2∆Z

P+

(kv)
Λ0

P+

(kv)

]
kv

mb

+ . . . (8.38)

In Eq. (8.38) the first term yields the leading power coefficient C0, wheras the second
term contributes to CV . Here, the additional renormalization term 2∆Z Λ0 arises,
which is necessary to cancel all divergences of Cbare

V . If we expand the quark-propagator
in kv, we find

S−1 = /p+ /k −m0 − Σ(p+ k) = /p+ /k −m+ δm− Σ(p+ k) (8.39)

= −2P−m+ (P+ − P−)kv + δm−
[
Σ +

∂Σ

∂(kv)
kv +

∂2Σ

∂(kv)2
(kv)2

]∣∣∣
kv=0

. (8.40)

Here, we introduce the self-energy correction term

iΣ(p+ k) = CF
αs
π

∫
l

γα(/l +m)γα

[m2 − l2][−(l − (p+ k))2]
. (8.41)

Expanding in kv we obtain

Σ
∣∣∣
kv=0

= /vΣv + Σm =
(3

ε
+ 4
)
mb P+ = δmb P+ , (8.42)

Σ′
∣∣∣
kv=0

= /vΣ′v + Σ′m = −
(3

ε
+ 4
)
P+ , (8.43)

Σ′′
∣∣∣
kv=0

= /vΣ′′v + Σ′′m = −
(3

ε
+ 1
) 1

mb

P+ , (8.44)

where we neglect the P− component. The mass pole of the propagator is δmb = Σv +
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Σm. Besides, at NLO level the on-shell quark mass and wave function renormalization
constants are identical:

Zm = 1− Σ
∣∣
kv=0

= ZOS
2 =

1

1− Σ′
∣∣
kv=0

. (8.45)

From the second derivative of Σ with respect to kv we find

∆Z = −CF
αs
π

(3

ε
+ 1
)
. (8.46)

The renormalized EOM coefficient associated to the operator OV is given by

CV = ZOS
2 ×

(
Cbare
V + 2∆Z × CLO

0

)
. (8.47)

Alternatively, we can determine the renormalized coefficient by taking the difference of
the bare CV coefficient and the linear term of the kv-expanded heavy-quark operator

CV = ZOS
2 ×

(
Cbare
V − CLO

0 C̃NLO
V

)
(8.48)

= Cbare
V − CLO

0 C̃NLO
V − CLO

V C̃NLO
0 . (8.49)

In this manner, we also remove the additional divergence from NLO corrections to the
bottom quark legs.

(a) (b) (c) (d) (e)

Figure 8.3: Leading-order and next-leading order Feynman graph with single external
gluon insertion for CV and CG: The bubbles mark possible insertion points.
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8.3 Chromomagnetic Operator Coefficient

To determine the chromomagnetic operator coefficient we calculate the difference be-
tween the corresponding contributions from direct computation of Feynman graphs of
the operator OG and the local b̄/vb operator, see Eq. (7.22). The resulting formula is
given by

C̄G ≡ ZOS
2 Zmag ×

(
Cbare
G − Cbare

0 C̃bare
G

)
. (8.50)

Here, we introduce the renormalization constant of the chromomagnetic operator Zmag

[144, 145]. The coefficient Cbare
G stems from several Feynman graphs: We classify these

graphs into the (amputated) 1PI part C1PI
G and corrections to the external bottom

quark leg ∆ext.
G :

Cbare
G = C1PI

G + ∆ext.
G × Cbare

0 . (8.51)

In the following, we only require the corrections in the 1PI part due to the cancellation
of ∆ext.

G when taking the difference of (8.51) and (8.64) (see also Eq. (8.50)).
To single out CG and C̃G we choose on-shell bottom quark states and include an
additional transversely polarized gluon with momentum k. The choice of states is
associated to the structure of OG. The corresponding matching relations are

Im 〈b(p)|T̂0|b(p)g(k)〉 =
CG
m2
Q

〈b(p)|OG|b(p)g(k)〉 , (8.52)

〈b(p)|b̄/vb|b(p)g(k)〉 =
C̃G
m2
Q

〈b(p)|OG|b(p)g(k)〉 . (8.53)

Our aim is to extract expressions proportional to /ε⊥/k⊥, which is motivated by the
structure of the operator OG ∼ h̄v[γµ, γν ] [Dµ, Dν ]hv. The coefficient function of OG is
identical to the coefficient function of h̄v /A⊥/∂⊥hv due to gauge invariance.
The coefficient C1PI

G has the following structure if we use the skeleton expansion:

C1PI
G = Tr

[
P+

(
S(I) × G × S̃(II)

)
P+

]
, (8.54)

where the ε⊥ and k⊥-expanded terms are

S(I,II) = Ŝ0 + Ŝ(ε,k) + Ŝεk = S0 + S(ε,k) (/ε⊥, /k⊥) + Sεk
(
/ε⊥/k⊥

)
, (8.55)

G = ĝ0 + ĝ(ε,k) + ĝεk = g0 + g(ε,k) (/ε⊥, /k⊥) + gεk
(
/ε⊥/k⊥

)
. (8.56)
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Here, S(I,II) denote the external bottom quark legs, whereas G is the 1PI part. Relevant
contributions which are proportional to /ε⊥/k⊥ are given by

P+

(
S(I) × G × S̃(II)

)
P+

= P+

[
Ŝ0ĝ0Ŝεk + Ŝ0ĝεkŜ0 + Ŝεkĝ0Ŝ0 + ŜεĝkŜ0 + Ŝεĝ0Ŝk + Ŝ0ĝεŜk

]
P+

=
[
S0P+ĝ0P+Sεk + S0P+ĝεkP+S0 + SεkP+ĝ0P+S0

+ SεP−ĝkP+S0 + SεP−ĝ0P−Sk + S0P+ĝεP−Sk

] (
/ε⊥/k⊥

)
=
[

2S0 g0,++ Sεk︸ ︷︷ ︸
1.

+ 2Sε gk S0︸ ︷︷ ︸
2.

+S0gεkS0︸ ︷︷ ︸
3.

+Sε g0,−− Sk︸ ︷︷ ︸
4.

]
(/ε⊥/k⊥) . (8.57)

The expansion of the 1PI part reads

ĝ = ĝ0 + ĝ(ε,k) + ĝεk

= ĝ0 + ĝµ(εµ⊥, k
µ
⊥) + ĝµν ε

µ
⊥k

µ
⊥ . (8.58)

In order to determine ĝµν we consider a gluon insertion with transverse polarization and
momentum k⊥. We expand each line in k⊥ along the momentum flow in the Feynman
graph and keep the linear term.
In the following, we will discuss the individual pieces in detail (see also Fig. 8.4):

1. The first set of contributions to CG is reducible and arises from the 1PI part of
the leading power diagrams in combination with /ε⊥ and /k⊥ insertions on each
of the external bottom quark legs. Note that P+ anticommute with /ε⊥ and /k⊥.
Therefore we compute P−ĝ0P−, from which follows

g0,−− =
1

2
Tr
(
P−ĝ0P−

)
. (8.59)

2. The /ε⊥ or /k⊥ insertion is in the 1PI part. Accordingly, the structures proportional
to /ε⊥ and /k⊥, respectively, originate from the external legs. We consider the
projector combination P−ĝkP+ and P+ĝεP−. The projected kernel is

gε,k =
1

2(d− 1)
Tr
(
P+ĝ

µ
ε γµP−

)
=

1

2(d− 1)
Tr
(
P−ĝ

µ
kP+γµ

)
. (8.60)

3. We consider the combination /ε⊥/k⊥ in the 1PI part, which is the most complicated
calculation. To extract the corresponding combination we choose the projector
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1PI
ĥ0, ĝ0

k⊥ε⊥

1PI
ĥ0, ĝ0

k⊥

ε⊥

1PI
ĥ0, ĝ0

k⊥

ε⊥
1PI

ĥ0, ĝ0

k⊥ε⊥

Figure 8.4: Type of insertion diagrams that contribute to CG and C̃G. The crosses
mark insertion points and expanded propagators.

P+[γµ, γν ]P+. The normalized contribution is given by

gεk =
−1

(d− 1)(d− 2)
Tr
(
P+ĝ

µν
εk P+[γµ, γν ]

)
. (8.61)

4. The insertions of /ε⊥ and /k⊥ can also be implemented on the external legs only,
which leads to ∆ext.

G in Eq. (8.51). This case should not be considered, since
we compute the difference Cbare

G − C0C̃
NLO
G and, hence, the additional pieces of

this type cancel with the corresponding pieces in the coefficient C̃NLO
G of the b̄/vb

operator.

For example, we explicitly give a single contribution from the left-sided vertex correc-
tion in Fig. 8.3 (d) with insertion outside the loop:

Γµνvx;1 = γνPLS
int(p− q + k;mc)γ

αS(k − q;mc)γ
µPLS(k;mb)γ

αDαβ(p− k) , (8.62)

where Sint
ρ (p− q+k;mc) ≡ S(p− q+k;mc)γρS(p− q;mc). Note that by expanding the

propagator up to O(k⊥) the symmetry relation of both vertex corrections that holds in
previous cases is now broken. Therefore we have to include both vertex contributions
separately. In total there are 16 NLO Feynman graphs. The coefficient function of the
operator OG at NLO level is given by

CNLO
G (r) =

∑
j

CNLO; j
G = CNLO; se

G + CNLO; bx
G + CNLO; vx

G + CNLO; vxr
G . (8.63)
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8.4 Heavy-quark Current Operator Coefficient

Similarly to CG, we determine the coefficient C̃G of the b̄/vb operator and take only the
1PI part into account. The decomposition of C̃bare

G is

C̃bare
G = C̃1PI

G + ∆ext.
G . (8.64)

Using the skeleton expansion for the 1PI part of C̃bare
G , we obtain

C̃1PI
G = Tr

[
P+

(
S(I)
εk ×Hεk × S̃(II)

εk

)
P+

]
(8.65)

=
[

2S0 h0,++ Sεk︸ ︷︷ ︸
1.

+ 2Sε hk S0︸ ︷︷ ︸
2.

+S0hεkS0︸ ︷︷ ︸
3.

+Sε g0,−− Sk︸ ︷︷ ︸
4.

]
(/ε⊥/k⊥) , (8.66)

where the expanded kernel is

H = ĥ0 + ĥ(ε,k) + ĥεk = h0 + h(ε,k) (/ε⊥, /k⊥) + hεk
(
/ε⊥/k⊥

)
(8.67)

=
[

2S0 g0,++ Sεk︸ ︷︷ ︸
1.

+ 2Sε gk S0︸ ︷︷ ︸
2.

+S0gεkS0︸ ︷︷ ︸
3.

+Sε g0,−− Sk︸ ︷︷ ︸
4.

]
(/ε⊥/k⊥) . (8.68)

Three Feynman graphs contribute to C̃1PI
G , see in Fig. 8.4.

1. We consider an ε⊥ and k⊥ insertion on the external bottom quark legs. The 1PI
part is the simple vertex correction.

2. The background gluon is attached to one of the legs, whereas the 1PI part has a
k⊥ insertion, and vice versa.

3. Both insertions are in the 1PI part.

4. The insertions of /ε⊥ and /k⊥ on the external legs only leads to ∆ext.
G in Eq. (8.51).

This contribution cancels in Eq. (8.50).

The expansion of the 1PI piece reads

ĥ = ĥ0 + ĥ(ε,k) + ĥεk

= ĥ0 + ĥµ(εµ⊥, k
µ
⊥) + ĥµν ε

µ
⊥k

µ
⊥ . (8.69)

For the 1PI part without insertions we find

ĥ = /v +
αs
4π
CF

[
− /v
(1

ε
+ 2
)

+m
(4

ε
+ 6
)]
. (8.70)
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We consider the operator combination P−ĥP− = P−hP− for insertions outside of ĥ. It
follows that

h =
1

2
Tr
[
P−ĥP−

]
=

1

2

(
− 1 +

αs
4π
CF

[5

ε
+ 8
])
. (8.71)

The 1PI part is expanded according to

h(ε,k) = −αs
2π
CF

[1

ε
+ 2
]
. (8.72)

In order to extract the ε⊥k⊥ structure we use a specific projector

hεk =
8

(d− 1)(d− 2)
Tr
(
P+ĥ

µνP+[γµ, γν ]
)

= −αs
4π

[
6CF

(1

ε
+ 1
)

+ CA

(1

ε
+ 5
)]
.

(8.73)

The final 1PI heavy-quark operator coefficient reads

C̃1PI
G = −1

2
− 5αs

4π

[
CF

( 3

2ε
+ 2
)

+ CA

( 1

5ε
+ 1
)]
. (8.74)



Chapter 9

Summary and Discussion

This thesis is a compendium of three projects1, which are dedicated to the QCD effects
of heavy meson decays. In the first two projects the method of QCD sum rules was
used to determine non-perturbative quantities, that is the decay constants of heavy-
light mesons. The third and final project considered the calculation of perturbative
corrections in inclusive weak heavy-meson decays. The evaluation of analytical and
numerical results was performed with the software program Mathematica.

Decay Constants of Heavy-Light Mesons

We applied the method of QCD sum rules to estimate the decay constants of vec-
tor and pseudoscalar bottom and charmed mesons with light quark content (u, d, s).
Our predicted decay constants have gained state-of-the-art precision by including all
known perturbative contributions and new ones for the first time. We also calculated
perturbative corrections to the leading power contribution with NLO accuracy in the
sum rules. To this end, we constructed a computation routine for one- and two-loop
typologies and presented the computational techniques in detail. The numerical values
of all decay constants were updated, together with their upper bounds. The resulting
central values with their corresponding uncertainties from parameter variation and the
upper bounds (in brackets) are:

fB∗ = (210+10
−12) [261] MeV fB = (207+17

−09) [258] MeV

fB∗s = (251+14
−16) [296] MeV fBs = (242+17

−12) [285] MeV

fD∗ = (242+20
−12) [297] MeV fD = (201+12

−13) [237] MeV

fD∗s = (293+19
−14) [347] MeV fDs = (238+13

−23) [266] MeV

The relative uncertainties were estimated to 10% and less. Typical errors for fB(s)

and fD are about ±20 MeV in other sum rules studies [53, 104]. Our results are
1The list of resulting publications is given on page 181.
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consistent with recent predictions based on lattice QCD, see Fig. 5.5, 5.6 and 5.7.
Some measurements of leptonic decays, namely D(s) → `ν̄` and B → τ ν̄τ , also allow
determinations for decay constants. In case of fD(s)

the experimental values show
some tension to our predictions, whereas fB is consistent within the large experimental
uncertainty.
We also evaluated other versions of our sum rules to test the consistency of this method.
The other versions include certain weight functions in the OPE formalism to modify
the hierarchy of OPE contributions. Their predictions agree with the ones of standard
sum rules within the uncertainty intervals.
We finally give the ratios of vector to pseudoscalar and strange to non-strange meson
decay constants as estimates for heavy quark spin-violating effects and deviations of
the SU(3)fl symmetry. These ratios were determined by dividing both sum rules:

Heavy-Quark Spin Violation SU(3)fl Violation

fB∗

fB
= 1.02+0.02

−0.09

fB∗s
fBs

= 1.04+0.01
−0.08

fBs
fB

= 1.17+0.03
−0.04

fB∗s
fB∗

= 1.20± 0.04

fD∗

fD
= 1.20+0.13

−0.07

fD∗s
fDs

= 1.24+0.13
−0.05

fDs
fD

= 1.18+0.04
−0.05

fD∗s
fD∗

= 1.21± 0.05

The numbers show a small deviation from the heavy-quark-symmetry limit for bottom
mesons. Recently the HPQCD collaboration determined fB∗/fB = 0.941 ± 0.026 and
fB∗s/fBs = 0.953 ± 0.023 in lattice QCD [107]. Both values are consistent within
the uncertainty intervals of our predictions. Ratios of vector to pseudoscalar charmed
meson decay constants are about 20 % off the symmetry limit. This shows substantial
influence of mass corrections to this limit value.

Decay Constants of Radially Excited Mesons

In the next step we extended the QCD sum rules formalism to include radial excitations
of heavy-light mesons. In the first procedure the ground- and radially excited state
resonances were fitted to the OPE expression of the two-point correlation function.
We also performed a single fit of the radially excited state for additional validation.
Both procedures led to almost identical results. Here we only present the single fit
predictions due to the slightly smaller uncertainties:
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fB∗′ = (165+46
−12) [314] MeV fB′ = (166+9

−10) [279] MeV

fB∗s ′ = (194+57
−18) [325] MeV fB′s = (178+19

−17) [320] MeV

fD∗′ = (183+13
−24) [275] MeV fD′ = (138+10

−22) [189] MeV

fD∗s ′ = (178+20
−39) [265] MeV fD′s = (146+12

−36) [219] MeV

The fit results have smaller central values in comparsion to the ground-state decay con-
stants. Our detailed study of fD′ shows that the condensate terms lead to a suppression
of the resulting decay constants. At the moment there are only a few other studies of
radial excitations. A recent determination in lattice QCD estimates fD′ = 117±25 MeV
which is in good agreement with our value [118].

Inclusive Weak Decays of Heavy Hadrons

In the final part of this thesis we considered inclusive weak decays of heavy hadrons. We
applied the heavy quark expansion (HQE) method in the realm of heavy quark effective
theory (HQET) to determine the total decay rate of such decays. Our main goal was
to compute the radiative corrections to the coefficient function of the power-suppressed
(dimension-5) chromomagnetic operator with NLO accuracy. For definiteness we chose
inclusive semileptonic b → c transitions. At first the charm quark was treated as
massless. However, for higher precision we also computed the full mass dependence of
all necessary coefficient functions. We automatized the computation of on-shell two-
and three-loop Feynman graphs with two different masses. The normalized total decay
width for inclusive weak B decays (including the mass ratio m2

c/m
2
b = 0.07) is given by

Γ(B → Xc`ν̄`)/Γ̃0 =
(

1− 1.78
αs
π

)[
1− µ2

π

2m2
b

]
− 3.89

(
1− 0.92

αs
π

) µ̄2
G

2m2
b

.

Our result coincides with the numerical calculation in Ref. [134]. We found out that
the coefficient functions are strongly affected by the mass scheme of the charm quark.
In addition to the total width we determined the moments over the invariant mass-
squared of the leptonic pair q2 and the partonic invariant mass-squared (p− q)2 −m2

c .
Moments in q2 show a decreasing influence of radiative corrections compared to the
total width. Numerically the partonic moments diminish very quickly.
A prominent application of the computed results is the precision determination of the
CKM matrix element Vcb. Here we give the shift of |Vcb| due to the new correction. In
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case of a massive charm quark the relative shift is

∆|Vcb|
|Vcb|

= −0.14% .

This means that our corrections have roughly the same influence on Vcb as the dimension-
7 operator contribution at tree-level [135].



Appendix A

General Setup and Properties

In this chapter we briefly discuss general prerequisites and properties of the integra-
tion within dimensional regularization, which is used for the computation of Feynman
diagrams.

A.1 Regularization

We know that the lowest-order QCD calculation (at tree-level approximation) in quark-
gluon processes reproduce just parton model results. To assess the dynamical effects of
QCD it is necessary to consider radiative corrections to the tree-level amplitudes. At
high transfer energies the strong coupling constant is regarded as weak and perturbation
theory can be used. As an example for a Green’s function we show a scalar one-loop
Feynman diagram in gφ3-theory [70], which corresponds to the integral

Π(q2) = g2

∫
d4k

(2π)4

1

[−k2][−(q − k)2]
. (A.1)

The integral Π(q2) is logarithmically divergent at large and small momenta (UV & IR-
singularity). Hence, it is necessary to regularize the integration by manifesting these
singularities. From this follows that divergent integrals can be written in the terms of
convergent ones. The singular term is not defined in the physical limit, which restores
the original theory. To give the expression a physical meaning one has to perform
renormalization [8]. This issue will be discussed in Sect. A.3.

There are several methods to regularize the above integral, but some may violate
underlying physical requirements such as gauge symmetries or Lorentz invariance. In
this thesis we use dimensional regularization [148, 149, 8] as a method, which replaces
the four-dimensional space-time dimension (D = 4) to D = 4 − 2ε. Singularities
will appear as 1/ε-poles (with ε → 0) combining singularities of UV and IR nature.
Properties of the dimensional regularization will be discussed in the next section.
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A.2 Definitions and Properties of Feynman Integrals
within Dimension Regularization

Within dimensional regularization the dimensionality D can be integer, non-integer
or even a complex number. In case of a complex continuation, emerging divergences
transform into singularities in the (complex) D-plane. In practice, one changes the
integration measure for each loop integral as follows∫

d4k

(2π)4i
→ µ4−D

∫
dDk

(2π)Di
, (A.2)

with µ as an arbitrary scale that conserves the mass dimension of the integral. For
further applications, we introduce other factors within the integration measure to avoid
a proliferation of constant terms in the final result (see Sect. 4.1). The Dirac-Algebra
should also be extended to D dimensions to ensure a consistent calculation beyond the
ordinary four dimensions. At first the space-time index µ spans D− 1 components, in
case of a momentum vector that is

kµ =
(
k0, k1, . . . , kD−1

)
. (A.3)

Contracted metric tensors and Dirac matrices simplify to

gµνg
µν = D , γµγ

µ = D · 1 , (A.4)

where gµν ≡ diag(1,−1,−1,−1, . . .). Dirac matrices obey the anticommutation relation

{γµ, γν} ≡ γµγν + γνγµ = 2gµν · 1 . (A.5)

Traces of odd numbers of Dirac matrices vanish. Only An even number of matrices
contributes, e.g.

Tr [γµγν ] = Tr [γνγµ] =
1

2
Tr [{γµ, γν}] = 4gµν . (A.6)

Other trace relations of strings of Dirac matrices are given in [70]. Here, Tr[1] = 4 has
been adopted.
As dimensional regularization does not break any space-time symmetries, some inte-
gration properties are still preserved for D-dimensional integration. If f(~k) and g(~k)

are any given functions of a vector ~k and any complex numbers a and b, the following
useful properties occur:
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• Linearity ∫
dDk (af(~k) + bg(~k)) = a

∫
dDk f(~k) + b

∫
dDk g(~k) , (A.7)

• Translation invariance∫
dDk f(~k + ~p) =

∫
dDk f(~k) , (A.8)

• Scaling law ∫
dDk f(λ~k) =

1

λD

∫
dDk f(~k) (λ ∈ C) , (A.9)

• Lorentz invariance ∫
dDk f(Λ~k) =

∫
dDk f(~k) , (A.10)

where Λ is a Lorentz transformation and an element of the Lorentz group SO(1, D−1).
• Partial integration ∫

dDk
∂

∂kµ
f(~k) = 0 , (A.11)

• Isotropy ∫
dDk kµkνf(~k2) =

gµν

D

∫
dDk ~k2f(~k2) , (A.12)

Scaleless integrals have the property [150]

∫
dDk

1

[−k2]α
=


1

Γ(D2 +1)
, if α = D

2

0 , otherwise .
(A.13)

This means that any massless vacuum diagram without any scaling mass parameter
vanishes with exception for α = D/2, which also includes diagrams with detachable
scaleless subdiagrams.

A.3 Renormalization and Quark Masses

Divergencies in the QCD Lagrangian originate from loop diagrams based on bare fields.
In that way all Green’s functions are infinite. But QCD is a renormalizable theory from
which physical, finite quantities (observables) can be computed. This implies an ab-
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sorption of divergencies into QCD parameters, such as coupling constant, quark masses
and fields, in order to cancel emerging infinite expressions in the loop corrections to
Green’s functions. A relevant object for renormalization in QCD is the quark propa-
gator (two-point Green’s function)

S0(p,m0, α
0
s) = i

∫
dx eipx〈0|T

{
ψ0(x)ψ̄0(0)

}
|0〉 =

1

m0 − /p
(A.14)

where m0 and ψ0 are the bare quark mass and bare quark field operator, respectively.
α0
s denotes the bare strong coupling constant and it is also related to the gauge coupling

parameter g (motivated by the electric charge in QED) through α0
s = (g0

s)
2/4π. The

renormalized propagator is constructed as

S(p,m, αs, µ) = Z−1
2ψ · S0(p,m0, α

0
s)

= i

∫
dx eipx〈0|T

{
ψ(x)ψ̄(0)

}
|0〉 =

1

m0 − /p− Σ

=
1

m− /p− Σ− δm . (A.15)

Here, we introduce the mass counterterm δm. For renormalization of S0 we introduce
the quantities

ψ0(x) = Z
1/2
2ψ ψ , m0 = Zmmq , α0

s = µ2εZααs , (A.16)

where Z1/2
2ψ , Zm and Zα are renormalization constants to the renormalized field operator

ψ, the quark mass mq and the strong coupling αs. For convenience, the quark field
renormalization constant is defined with a square root to obtain Z2ψ for bilinear fields
in the Lagrangian. We also introduced an arbitrary momentum scale µ to generate a
dimensionless coupling. In perturbation theory, the renormalization constant has to
cancel divergencies order by order, i.e. we can expand these constants according to

Zx = 1 + Z(1)
x

αs
π

+O(α2
s) (x = {2ψ,m, αs}) . (A.17)

Observables and bare parameters are by definition independent by any renormalization
scale that is the key requirement of the renormalization group equation (RGE). The
RGE determines the scale running of QCD parameters. In case of a general physical
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quantity R, which is parametrized by m and αs, we find

0 = µ
d

dµ
R(p;m0, α

0
s) =

{
µ
∂

∂µ
+ µ

dαs
dµ

∂

∂αs
+ µ

dm

dµ

∂

∂m

}
R(p;m,αs) (A.18)

The scale dependence is given by either explicit or implicit dependence (of the pa-
rameters). Note that the momentum is an observable and therefore cannot be scale
dependent. Based on above equation we define the renormalization group functions

β(αs) ≡− µ
d

dµ

(αs
π

)
= −β0

(αs
π

)2

− β1

(αs
π

)3

+ . . . , (A.19)

γm(αs) ≡−
µ

m

d

dµ
m(µ) = γ(0)

m

(αs
π

)
+ γ(1)

m

(αs
π

)2

+ . . . = αs
∂Zm
∂αs

, (A.20)

ψ(µ)γ2ψ(αs) ≡2µ
d

dµ
ψ(µ) = −ψ(µ)

[
γ

(0)
2ψ

(αs
π

)
+ γ

(1)
2ψ

(αs
π

)2

+ . . .
]

= ψ(µ)αs
∂Z2ψ

∂αs
.

(A.21)

Here, the running coupling is related to the β-function, whereas the quark mass
and field operator are governed by the corresponding anomalous dimensions γm(αs),
γ2ψ(αs). With this function the RGE can be simplified as follows:{

µ
d

dµ
− β(αs)

∂

∂αs
− γm(αs)m

∂

∂m

}
R(p;m,αs, µ) = 0 . (A.22)

The renormalized quark propagator to the NLO level is given by the one-loop self-
energy diagram. From this diagram we calculate the expressions Z(1)

m and Z
(1)
2ψ . In

Landau gauge the self-energy contribution leads to

Σ(p2) = −g2
sCF

∫
ddk

(2π)di

γµ(/p− /k)γµ

[m2
0 − (p− k)2][−k2]

(A.23)

= m0Σm(p2) + (m0 − /p)Σp(p
2) . (A.24)

If we insert the self-energy expression in Eq. (A.15), where Σm and Σp denote the mass
and field operator renormalization, we end up with

S(p;mq, αs, µ) =
1

1− Σp

· 1

(mq − δm)
[
1− Σm

1−Σp

]
− /p

. (A.25)
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On one-loop level from this follows the renormalization constant

Z2ψ = 1 + Σp and Zm = 1− Σm . (A.26)

Performing the explicit calculations for Σp and Σm, we obtain for the infinite parts

Z
(1)
2ψ = −1

4
CF

1

ε
and Z(1)

m = −3

4
CF

1

ε
. (A.27)

In this context, we define the running MS mass

mMS(µ) ≡ (ZMS
m )−1m0 = m0

[
1 +

(αs
π

)1

ε
+O(α2

s)

]
(A.28)

where the mass renormalization constant in MS-scheme reads

ZMS
m ≡ 1−

(αs
π

)3

4
CF

1

ε
(A.29)

and analogously the field operator renormalization is defined as

ZMS
2ψ ≡ 1−

(αs
π

)1

4
CF

1

ε
. (A.30)

Another common mass definition obeys the condition S(p)|p2=m2
pole

and from Eq. (A.15)
we find

mpole = (Zpole
m )−1m0 = m0

[
1 +

(αs
π

)3

4
CF

(
1

ε
+ 4 + log

(
µ2

m2
pole

))]
+O(α2

s) .

(A.31)

At one-loop order we obtain

Zpole
m = Zpole

2ψ =1−
(αs
π

)3

4
CF

(
1

ε
+ 4 + log

(
µ2

m2
pole

))
. (A.32)

Note that for higher order renormalization Zpole
m and Zpole

2ψ are not equal anymore. The
ratio Eqs. (A.28) and (A.31) provide the relation between MS and pole mass

mpole

mMS(µ)
=
ZMS
m

Zpole
m

= 1 +
(αs
π

)
CF

[
1 +

3

4
log

(
µ2

m2
pole

)]
. (A.33)
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We will also solve the RGE for mMS(µ) to present its scale dependence. Since the bare
mass is scale-independent, we know

µ
dmMS(µ)

dµ
+ γm(αs)mMS(µ) = 0 . (A.34)

According to Eq. (A.20) the anomalous dimension of the quark mass in MS-scheme
reads

γm(αs) =
αs
π

+O(α2
s) . (A.35)

Combining Eqs. (A.34) and the β-function as defined in Eq. (A.19), this leads to the
solution of the quark mass RGE at one-loop order:

mMS(µ) = mMS(µ0) exp
{∫ αs(µ)

αs(µ0)

dαs
αs

γm(αs)

2β(αs)

}
= mMS(µ0)

(
αs(µ)

αs(µ0)

)γ(0)
m /2β0

. (A.36)

Finally, the scaling of the strong coupling can be determined if the beta function
is known. The beta function itself originates from the quark-gluon vertex at NLO
accuracy, see Ref. [81]. Here, β0 is function of the number of color NC and quark flavor
nf :

β0 =
11NC − 2nf

6
. (A.37)

From this follows in combination with Eq. (A.19)

αs(µ) =
αs(µ0)

1 + αs(µ0)β0

2
log
(
µ2

µ2
0

) . (A.38)

The starting value αs(µ0) can also be replaced by an specific scale ΛQCD, which marks
the scale at which the coupling constant diverges:

αs(µ) =
2π

β0 log
(

µ2

Λ2
QCD

) . (A.39)

From measurements we know that ΛQCD is ranged between 200 and 300 MeV [36].

Apart from basic renormalization of Green’s functions, we also require the renormal-
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ization of composite operators. These operators do not get renormalized by the renor-
malization of QCD parameters (m, αs and ψ). In the Chaps. 3 and 7 composite
operators are discussed in the context of the operator product expansion. Formally,
for two operators OA(x) and OB(0) this expansion takes the form

OA(x)OB(0) ∼
∞∑
i=1

Ci(x)Oi(0)
∣∣∣
x→0

. (A.40)

The operator product is expanded into an infinite sum of local operators Oi(0) and
coefficient functions Ci(x), which reside the spatial dependence. As an example, we
give the renormalization constant of the bi-local quark field operator Oψ̄ψ(z) ≡ ψ̄ψ.
The explicit calculation is performed by calculating Green’s functions with insertions
of the composite operator [151] . The result is

Zψ̄ψ = 1 +
3

4
CF

αs
π

1

ε
+O(αs) = Z−1

m (A.41)

where (ψ̄ψ)0 = Zψ̄ψ(ψ̄ψ). One can proof that Zψ̄ψ = Z−1
m is valid to every order in

perturbation theory. Hence, the product m(ψ̄ψ) is a renormalization group invariant
quantity.

A.4 Renormalization Group Functions

Following the definition of β(αs) and γm(αs) in Sect. A.3, we provide the solutions
to the second order in αs as presented in Ref. [53]. These solutions determine the
scale-dependence of the strong coupling and the quark masses. From Eq. A.19 we find

β0 =
11CA − 2nf

6
, β1 =

17C2
A − 5CAnf − 3CFnf

12
(A.42)

and Eq. A.20

γ(0)
m =

3

2
CF , γ(1)

m =
CF (97CA + 9CF − 10nf )

48
, (A.43)

following the notations of [53]. With all coefficient terms as stated above, we extend
the MS to pole mass relation of Eq. (A.33) to NNLO level:

mpole

mMS

(µ) = 1 +
(αs
π

)
r(1)
m +

(αs
π

)2

r(2)
m +O(α3

s) . (A.44)
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In the equation above, we introduce the coefficient functions

r(1)
m = CF +

γ
(0)
m

2
log
( µ2

m2
MS

(µ)

)
,

r(2)
m = r

(2)
m,0 −

1

2

[
γ(1)
m − CF (γ(0)

m − β0)
]

log
( µ2

m2
MS

(µ)

)
+
γ

(0)
m

8
(γ(0)
m − β0) log2

( µ2

m2
MS

(µ)

)
− γ(0)

m r(1)
m . (A.45)

The remaining constant terms read

r
(2)
m,0 =C2

F

(
7

128
− 15

8
ζ(2)− 3

4
ζ(3) + 3ζ(2) log(2)

)
+ CFnf

(
71

192
+

1

4
ζ(2)

)
+ CACF

(
1111

384
+

1

2
ζ(2) +

3

8
ζ(3)− 3

2
ζ(2) log(2)

)
+ CF

(
3

8
− 3

4
ζ(2)

)
,

(A.46)

where ζ(x) is the Riemann zeta-function.





Appendix B

OPE and Hadronic Expressions for
Two-Point Correlator

In this chapter we further discuss some basics for the sum rules of fH∗ and fH , which
we have briefly described in Chap. 3, namely the hadronic spectrum representation
and the dispersion relation. Moreover, we present the LiteRed basis and solutions
of the prototypes for the perturbative spectral functions ρpert,NLO

t and ρpert,NLO
5 . Then

we give the result of ρpert
t and ρpert

5 up to NLO in αs. In the last two sections we
present the condensate contributions and the sum rule in the heavy quark limit for
decay constants of pseudoscalar mesons.

B.1 Hadronic representation of the two-point corre-
lator

To quantify the hadronic content of Πµν of Eq. (3.2) at q2 ≥ m2
Q, we insert a full

subset of hadronic states, corresponding to the quark-flavor and quantum numbers of
the interpolating current jµ = q̄γµQ. For the sake of brevity, we assume exact hadron
states, for which the completeness relation reduces to Eq. (3.7). From this follows that
the correlation function is

Πµν(q
2) =

∑
λ,h

i

∫
d4x eiqx

[
θ(x0)〈0|jµ(x)|h(ph, λ)〉〈h(ph, λ)|j†ν(0)|0〉

+ θ(−x0)〈0|j†ν(0)|h(ph, λ)〉〈h(ph, λ)|jµ(x)|0〉
]
, (B.1)

where we expand the time-ordered product. The translation operators can be separated
from the quark-current jµ(x) = eip̂hxjµ(0)e−ip̂hx. Hence, the matrix element, describing
the vacuum-to-hadron transition, is given by

〈0|jµ(x)|h(ph, λ)〉 = 〈0|jµ(0)|h(ph, λ)〉e−iphx . (B.2)
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The conjugated partner is

〈h(ph, λ)|jµ(x)|0〉 = 〈h(ph, λ)|jµ(0)|0〉eiphx . (B.3)

Further, we include the definition of the decay constant in Eq. (3.5) and integrate over
d3x:

Πµν(q
2) =

∑
λ,h6=H

i

∫
dx0

[
θ(x0)ei(q

0−p0
h)x0 ρ̃µν(ph, λ) δ(3)(~q − ~k)

+ θ(−x0)ei(q
0+p0

h)x0 ρ̃†µν(ph, λ) δ(3)(~q + ~k)
]
. (B.4)

In the equation above, we introduced the function

ρ̃µν(ph, λ) ≡ (mH∗fH∗)
2εµ(λ)ε∗ν(λ) + 〈0|jµ(0)|h(ph, λ)〉〈h(ph, λ)|j†ν(0)|0〉

which separates the ground-state from all other hadron states. Using the integal rep-
resentation of the theta function

θ(x0) = − 1

2πi

∫
dλ

e−iλx0

λ+ iε
(B.5)

we can perform the remaining integration according to

i

∫
dx0 θ(±x0)ei(q

0∓p0
h)x0 = ∓ 1

q0 ∓
√
~q2 +m2

h ± iε
. (B.6)

Eqs. (B.5) and (B.6) lead to the propagator

1

2
√
~q2 +m2

h

[ 1

q0 +
√
~q2 +m2

h − iε
− 1

q0 −
√
~q2 +m2

h + iε

]
=

1

m2
h − q2 − iε . (B.7)

The two-point correlation now has the form

Πµν(q
2) =

(
− gµν +

qµqν
m2
H∗

)
× (mH∗fH∗)

2

m2
H∗ − q2 − iε +

∑
h6=H

ρµν(p
2
h)

p2
h − q2 − iε

=
(qµqν
q2
− gµν

)
×
{ (mH∗fH∗)

2

m2
H∗ − q2 − iε +

∑
h6=H

ρt(p
2
h)

p2
h − q2 − iε

}
+
qµqν
q2

(∑
h6=H

ρl(p
2
h)

p2
h − q2 − iε − f

2
H∗

)
, (B.8)
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where we used the CPT -invariance of QCD [152] stating that ρµν is equal to ρ†µν . For
the ground state follows |H∗〉 = |H̄∗〉 and therefore fH∗ = fH̄∗ . In the following, we
neglect the last line of (B.8) since both terms in the parenthesis have a longitudinal
structure, which does not agree to the (transverse) structure of the ground state. The
second term has also no pole and a vanishing imaginary part, for positive q2 and, hence,
it does not contribute to the spectral density.
In the general (continuum) case the sum of hadron states characterizes a spectrum of
hadronic particles on their mass-shell, i.e. the center of mass energy is s = m2

h. One
can use the Källen-Lehmann spectral representation [70] to rewrite

∑
h6=H

ρµν(p
2
h)

p2
h − q2 − iε →

∫
ds

ρhµν(s)

s− q2 − iε (s = p2
h > 0) , (B.9)

with

ρhµν(s)θ(p0) ≡
∑
h

(2π)3δ(s−m2
h)δ

(4)(p− ph)〈0|jµ(0)|h〉〈h|jν(0)†|0〉 . (B.10)

B.2 Details about the Dispersion Relation

The function Π(q2) is analytic for q2 � m2
Q, which should be related to the physical

domain (s = q2 ≥ m2
Q) via Cauchy’s integral formula

Π(q2) =
1

2πi

∮
C

ds
Π(s)

s− q2
. (B.11)

The contour C is divided into four sections (see Fig. 3.2): CR +C+ +Cε +C−. In the
limit R→∞ and ε+ → 0, integrals along Cε and CR vanish:

Π(q2) =
1

2πi

(∫
CR+Cε

ds
Π(s)

s− q2
+

∫
C++C−

ds
Π(s)

s− q2

)
(B.12)

=
1

2πi

(∮
|s|=R

ds
Π(s)

s− q2
+

∫ R

m2
Q

ds
Π(s+ iε+)− Π(s− iε+)

s− q2

)
(B.13)

= lim
R→∞

1

2πi

∫ ∞
m2
Q

ds
Π(s+ iε+)− Π(s− iε+)

s− q2
. (B.14)



144 Appendix B. OPE and Hadronic Expressions for Two-Point Correlator

In general, the condition

lim
R→∞

∮
|s|→R

ds
Π(s)

s− q2
= 0 (B.15)

is not given. To guarantee this limit, the integrand must converge according to Π(q2) ∼
1
|q2|α with α > 0. As a result the residual integral reads

Π(q2) =
1

2πi

∫ ∞
0

ds
Π(s+ iε+)− Π(s− iε+)

s− q2
. (B.16)

The Schwarz’s reflection principle states [71]: Let f be a function that is analytic in a
region S that has a segment of the real axis as part of its boundary B. If f(z) is real
whenever z is real, then the analytic continuation g of f into S∗ (the mirror image of
S with respect to the real axis) exists and is given by

g(z) = f̄(z̄), where z ∈ S∗ . (B.17)

Π(q2) is analytic in the upper complex plane and real on the axis segment q2 < m2
H(∗) ,

then we are allowed to continue the function analytically in the lower half plane as the
mirror image with respect to the real axis: Π(q2) = Π(q2). In combination with

Π(s+ iε+) = Re
{

Π(s+ iε+)
}

+ i Im
{

Π(s+ iε+)
}
, (B.18)

Π(s− iε+) = Re
{

Π(s− iε+)
}
− i Im

{
Π(s− iε+)

}
, (B.19)

this principle leads to the spectral function

ρ(s) ≡ 1

π
Im Π(s) = lim

ε+→0

1

2πi

[
Π(s+ iε+)− Π(s− iε+)

]
. (B.20)

Eq. (B.16) takes the final form

Π(q2) =

∫ ∞
m2
Q

ds
ρ(s)

s− q2
. (B.21)

B.3 LiteRed Basis and Master Integrals

In order to create the reduction rules we define a basis which resembles the two-loop
off-shell propagator with two massive and three massless lines as presented in Fig.
B.1 (a). The basis consists of the functions Dα (inverse propagators), which depend
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linearly on the scalar products determined by loop momenta q and k:

Ds =

 D1 = m2
Q − (p− q)2, D2 = m2

Q − (p− k)2,

D3 = −k2, D4 = −q2, D5 = −(q − k)2

 . (B.22)

Finally, the two-loop propagator typology is built up by five master integrals MIs (see
Fig. B.1 (b)-(d)):

MIs =
{
V (1, 1, 0, 0, 0), V (0, 1, 0, 1, 1), V (1, 1, 0, 1, 0), V (0, 2, 0, 1, 1), V (1, 1, 1, 1, 0)

}
.

(B.23)

The master integral V (1, 1, 0, 0, 0) represents a double massive tadpole with a vanishing
imaginary part.
Further, we find V (0, 1, 0, 1, 1) and V (0, 2, 0, 1, 1), which denote the convolution of a
massive and massless loop diagram with simple and double power on the massive quark
line. The master integral V (1, 1, 0, 1, 0) is the product of a massive tadpole and a simple
one-loop. The final integral V (1, 1, 1, 1, 0) represents a double one-loop diagram. All
masters are shown in Fig. B.1. We also present the corresponding prototypes to
determine the spectral function of the perturbative contribution. Using the notation
G(1, 1) = G/ε it follows:

ρV (0, 1, 0, 1, 1; z) =
G

ε
× ρ(1, ε; z) =

s

2

(
1− z2 + 2z log(z)

)
, (B.24)

ρV (0, 2, 0, 1, 1; z) =
G

ε
× ρ(2, ε; z) = −1 + z − log(z) , (B.25)

ρV (1, 1, 0, 1, 0; z) = V (1, 1;m2
Q)× ρ(1, 1)

= −G
ε
s1−2ε(1− z)z1−2ε − s(1− z)z

(
log(z)− 2 log(1− z)

)
, (B.26)

ρV (1, 1, 1, 1, 0; z) = 2
G

ε
z−ε × ρ(1, 1) + 2(1− z)2

(
log(z)− log(1− z)

)
= 2

G

ε
s−ε(1− z)z−2ε + 2(1− z)

(
log(z)− 2 log(1− z)

)
+ 2(1− z)2

(
log(z)− log(1− z)

)
,

(B.27)

ρV (1, 1, 0, 0, 0; z) = 0 . (B.28)
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To perform the last step in above equations we considered the following one-loop spec-
tral functions and used Eq. (4.14)

ρ(n, ε; z) =
s2−2ε−n

Γ(n)Γ(ε)Γ(5− n− 4ε)

∫ 1

z

dx xε−1x̄1−2ε(x− z)2−n−2ε (B.29)

which are finite for n = 1, 2. In Eq. (B.26) we used the one-loop on-shell integral with
one mass, see also Eq. (4.5), which results in V (1, 1;m2

Q) = Γ(1− d
2
)× (m2

Q)
d
2
−1.

Basis of two-loop topology

p

(a) Two-loop basis for LiteRed

Feynman graphs of master integrals

(b) V (0, {1, 2}, 0, 1, 1) (c) V (1, 1, 0, 1, 0)

(d) V (1, 1, 1, 1, 0)

Figure B.1: Basis to generate IBP identities with LiteRed as selected for two-loop
Feynman integrals is shown in (a). Master integrals of two-loop off-shell propagator
with non-vanishing imaginary part in (b)-(d). Massive b(c)-quark propagators denote
solid lines, whereas massless propagators are represented by dashed lines. Dotted lines
denote propagators with an additional power.
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B.4 Perturbative Spectral Function

In this section we collect the expressions for NLO contributions to the spectral function
ρ

(pert)
t(5) (s) in the MS-scheme for the heavy quark mass mQ. For the vector heavy-light

quark currents, according to our convention for the invariant amplitude Πt(q
2), we

extract the coefficient at −gµν of Πµν(q). The corresponding spectral function reads:

ρ
(pert,NLO)
t (s) =

3CF
16π2

s

[
1− 5

2
z +

2

3
z2 +

5

6
z3 +

1

3
z(−5− 4z + 5z2) log(z)

− 1

3
(1− z)2(4 + 5z) log(1− z) +

2

3
(1− z)2(2 + z)

(
2 Li2(z)

+ log(z) log(1− z)
)
− z(1− z2)

(
3 log

(
µ2

m2
Q

)
+ 4

)]
, (B.30)

where z ≡ m2
Q/s and Li2(z) = −

∫ z
0

log(1−t)
t

dt. For the pseudoscalar heavy-light quark
currents we have

ρ
(pert,NLO)
5 (s) =

3CF
16π2

(mQ +mq)
2s(1− z)

[
9

2
(1− z) + (3− z)(1− 2z) log(z)

− (1− z)(5− 2z) log(1− z) + 2(1− z)(2 Li2(z) + log(z) log(1− z))

+ (1− 3z)

(
3 log

(
µ2

m2
Q

)
+ 4

)]
. (B.31)

NNLO corrections are obtained in [75] in the pole mass scheme. Hence, to properly
apply the MS scheme for mQ to α2

s accuracy, we have to add to the corrections to the
NNLO part, which arise from expanding the pole mass in the LO and NLO contribution
in terms of MS mass. For the vector-current correlation function they are

∆1ρ
(pert,NNLO)
t (s) = − 3

8π2
sz

[
(3− 7z2)r(1)2

m − 2(1− z2)r(2)
m

]
, (B.32)

∆2ρ
(pert,NNLO)
t (s) = − 1

16π2
CF r

(1)
m s

[
− z(1− z2)

(
24 Li2(z) + 12 log(z) log(1− z)

)
− 2z

(
9 + 6z − 17z2

)
log(z) + 2(1− z)(−4 + 5z + 17z2) log(1− z)

− z(1− z)(17 + 15z)

]
, (B.33)
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respectively, and for the pseudoscalar-current correlation function:

∆1ρ
(pert,NNLO)
5 (s) =

3(mQ +mq)
2

8π2
s

[
(3− 20z + 21z2)r(1)2

m − 2(1− z)(1− 3z)r(2)
m

]
,

(B.34)

∆2ρ
(pert,NLO)
5 (s) = −3(mQ +mq)

2

8π2
CF r

(1)
m s

[
(1− z)(1− 3z)

(
4 Li2(z)

+ 2 log(z) log(1− z)
)

+ (3− 22z + 29z2 − 8z3) log(z)

− (1− z)(7− 21z + 8z2) log(1− z) +
1

2
(1− z)(15− 31z)

]
, (B.35)

where r(1,2)
m are the coefficients in the perturbative relation between the pole and MS

quark masses, given in Sect. A.4.

Light-quark mass correction terms (see Sect. 4.4), after expanding the massive propa-
gators in powers of mq, read:

δρ
(pert,LO,mq)
T (s) =

3

8π2
mq

[
2mQ(1− z)−mq(1 + z2)

]
, (B.36)

δρ
(pert,NLO,mq)
T (s) =

3

8π2
CFmqmQ

[
2(1− z) (2 Li2(z) + log(z) log(1− z))

+ (3− 4z − z2) log(z)− (1− z)(5 + z) log(1− z) +
1

2
(17− 26z + z2)

+ 3(1− 2z) log

(
µ2

m2
Q

)]
. (B.37)

The analogous corrections to the perturbative part of the pseudoscalar-current corre-
lation function are:

δρ
(pert,LO,mq)
5 (s) =

3(mQ +mq)
2

8π2

[
2(1− z)mQmq − 2m2

q

]
, (B.38)

δρ
(pert,NLO,mq)
5 (s) =

3(mQ +mq)
2

8π2
CF mQmq

[
(1− z)

(
4 Li2(z) + 2 log(z) log(1− z)

− 2(4− z) log(1− z)
)

+ 2(3− 5z + z2) log(z)

+ 2(7− 9z) + 3(2− 3z) log

(
µ2

m2
Q

)]
. (B.39)
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We include the above corrections only for the s-quark and up to the second (first)
power in ms in LO (NLO).

B.5 Condensate Contributions

We present the condensate contributions in two forms: with an explicit q2 dependence
(needed, e.g. for the power moments) and after Borel transformation.
In the correlation function of vector currents, the total contribution of the quark con-
densate is:

Π〈q̄q〉µν (q2) = 〈q̄q〉 mQ

m2
Q − q2

[
gµν

(
1− mqmQ

2(m2
Q − q2)

+
αsCF

2π
fV,1(z)

)

−qµqν
q2

αsCF
π

fV,2(z)

]
. (B.40)

with the NLO terms given by

fV,1(z) = 2− z + z (1− z)Lz −
z

z − 1

(
3 log

µ2

m2
+ 4

)
, (B.41)

fV,2(z) = 1− 2z + 2z (1− z)Lz , (B.42)

where the short-hand notations z =
m2
Q

q2 and Lz = log
(
z−1
z

)
are used. In the case of

the strange quark as light quark partner the first-order O(mq) correction is included
in (B.40). For our purpose, only the coefficient Π

〈q̄q〉
t (q2) of the full vector-current

correlation function is needed. The Borel-transformed expression of this amplitude is:

Π
〈q̄q〉
t (M2) = −mQ〈q̄q〉e−

m2
Q

M2

(
1− mqmQ

2M2
+
αsCF

2π

[
1− 3

m2
Q

M2
log
( µ2

m2
Q

)
− 4

m2
Q

M2

(B.43)

+
m2
Q

M2
e
m2
Q

M2 Γ
(
− 1,

m2
Q

M2

)])
,

with the incomplete gamma function Γ(a, z) =
∫∞
z
ta−1e−tdt. The NLO part in (B.40)

originating from one-loop diagrams has an imaginary part at q2 → s ≥ m2
Q . The

latter, in addition to the terms proportional to δ(s−m2
Q) and its derivatives, contains

also a part which does not vanish at s > m2
Q, that is proportional to θ(s − m2

Q).
Since we include the latter in the OPE spectral function involved in the quark-hadron
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duality approximation, we present also here the spectral function of the condensate
contribution:

ρ
〈q̄q〉
t (s) = −mQ〈q̄q〉

(
δ(s−m2

Q)− 1

2
mqmQδ

′(s−m2
Q) +

αsCF
2π

[
δ(s−m2

Q) (B.44)

−m2
Q

(
3 log

µ2

m2
Q

+ 4
)
δ′(s−m2

Q) +
m2
Q

s2
θ(s−m2

Q)
])

.

Here, we introduce the derivative of the Dirac delta function δ′(x−x0) = d
dx
δ(x−x0). In

the pseudoscalar-meson channel, the quark condensate contribution to the correlation
function in the same approximation reads

Π
〈q̄q〉
5 (q2) = −〈q̄q〉(mQ +mq)

2mQ

m2
Q − q2

(
1− mq

2mQ

− mqmQ

2(m2
Q − q2)

− αsCF
2π

f5(z)

)
, (B.45)

with the coefficient (see also [53])

f5(z) = 3
z

z − 1
(Lz (2− z)− 1) +

1

z − 1

(
3 log

µ2

m2
+ 7− 3Lz

)
. (B.46)

The Borel-transform of (B.45) yields:

Π
〈q̄q〉
5 (M2) = −(mQ +mq)

2mQ〈q̄q〉e−
m2
Q

M2

(
1− mq

2mQ

− mqmQ

2M2
(B.47)

− αsCF
2π

[(
3 log

µ2

m2
Q

+ 4
)m2

Q

M2
− 7− 3 log

µ2

m2
Q

+ 3Γ
(

0,
m2
Q

M2

)
e
m2
Q

M2

])
.

The spectral function derived from (B.45) reads

ρ
〈q̄q〉
5 (s) = −(mQ +mq)

2mQ〈q̄q〉
(
δ(s−m2

Q) +
αsCF

2π

[(
7 + 3 log

µ2

m2
Q

)
δ(s−m2

Q)

−m2
Q

(
4 + 3 log

µ2

m2
Q

)
δ′(s−m2

Q)− 3

s
θ(s−m2

Q)
])

. (B.48)

The expressions for d ≥ 4 condensate contributions for the vector-current correlation



B.6. Sum rules for Pseudoscalar Quark Currents in the Infinite
Heavy-Quark-Mass Limit 151

function read:

Π〈GG〉µν (q2) =
〈GG 〉

12(m2
Q − q2)

gµν , Π〈q̄Gq〉µν (q2) = − m2
0〈q̄q〉m3

Q

2(m2
Q − q2)3

gµν , (B.49)

Π〈q̄qq̄q〉µν (q2) =
8παsrvac〈q̄q〉2
81(m2

Q − q2)4

[(
9m4

Q − 16m2
Qq

2 + 4q4
)
gµν +

(
10m2

Q − 4q2
)
qµqν

]
.

(B.50)

The Borel-transformed expressions are:

Π
〈GG〉
t (M2) = −〈GG〉

12
e−

m2
Q

M2 , Π
〈q̄Gq〉
t (M2) =

m2
0〈q̄q〉m3

Q

4M4
e−

m2
Q

M2 , (B.51)

Π
〈q̄qq̄q〉
t (M2) = −32παsrvac〈q̄q〉2

81M2

(
1 +

m2
Q

M2
− m4

Q

8M4

)
e−

m2
Q

M2 . (B.52)

The corresponding condensate contributions to the correlation function with pseu-
doscalar currents are:

Π
〈GG〉
5 (q2) =

〈GG〉m2
Q

12(m2
Q − q2)

, Π
〈q̄Gq〉
5 (q2) = − m2

0〈q̄q〉m3
Q

2(m2
Q − q2)2

(
1− m2

Q

m2
Q − q2

)
, (B.53)

Π
〈q̄qq̄q〉
5 (q2) = −8παsrvac〈q̄q〉2m2

Qq
2

27(m2
Q − q2)4

(
2q2 − 3m2

Q

)
, (B.54)

yielding after Borel transformation:

Π
〈GG〉
5 (M2) =

〈GG〉m2
Q

12
e−

m2
Q

M2 , Π
〈q̄Gq〉
5 (M2) = −m

2
0〈q̄q〉m3

Q

2M2

(
1− m2

Q

2M2

)
e−

m2
Q

M2 , (B.55)

Π
〈q̄qq̄q〉
5 (M2) = −16παsrvac〈q̄q〉2m2

Q

27M2

(
1− m2

Q

4M2
− m4

Q

12M4

)
e−

m2
Q

M2 . (B.56)

B.6 Sum rules for Pseudoscalar Quark Currents in
the Infinite Heavy-Quark-Mass Limit

The rescaled sum rule in the pseudoscalar channel according to the reparametrization
rules in Eq. 3.51 is

f 2
HmH

(mH

mQ

)3

e
− Λ̄
τ
− Λ̄2

2mQτ =
3τ 3

π2

∫ ω0
τ

0

dz e−z

(
z2

1 + 2zτ
mQ

)
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×
{

1 +
2αs
π

[
log
(mQ

2τ

)
+

13

6
+

2π2

9
− log(z) +

2

3
K5

(2zτ

mQ

)]}

− 〈qq̄〉
{

1− 2αs
3π

(
− 1 + 3

2τ

mQ

∫ ∞
0

dz
e−z

1 + 2zτ
mQ

)}
+
〈GG〉
12mQ

+
m2

0〈qq̄〉
16τ 2

{
1− 4τ

mQ

}
+
παsrvac〈qq̄〉2

162τ 3

{
1 +

6τ

mQ

− 48τ 2

m2
Q

}
.

(B.57)

We introduced K5(x) which is finite in the heavy-quark limit

K5(x) = 2 Li2(−x) + log(x) log(1 + x)− x

1 + x
log(x) +

1 + x

x
log(1 + x)− 1 (B.58)

where

lim
x→0
K5(x) = −3

2
x+O(x2) . (B.59)
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List of Masters of On-Shell Two- and
Three-Loop Topology

The total width of inclusive B decays is determined by the heavy quark expansion in
Eq. (7.24). In order to calculate the leading power coefficient and coefficients of the
power-suppressed operators, we perform a matching computation as described in Chap.
8. This matching computation gives rise to two-loop Feynman diagrams including one
massive/massless charm quark and massless fermion lines at the LO level. NLO QCD
corrections arise from additional gluon loops on the leading order Feynman diagrams.
The calculation of these Feynman diagrams require a computational framework, which
reduces scalar two- and three-loop integrals with on-shell b-quarks. For this purpose,
we use LiteRed [85, 86] to determine the set of master integrals. In this section we
give the corresponding basis for a massive b- and c-quark. We also consider the case
of a massless c-quark. The results of prototypes to the given master integrals are also
presented in the final parts of Sect. C.1 and C.2. In the final section we calculate the
most difficult non-reducible prototype of this thesis.

C.1 LiteRed Basis and Master Integrals
with Two Masses

We define a basis Ds with one massive line of the mass mb, two massive line of the
mass mc and four massless lines. This basis is determined by three loop momenta q, k
and l as well as the external momentum p with the condition p2 = m2

b . Ds is illustrated
in Fig. C.1 (d) and reads in terms of inverse propagators:

Ds =


D1 = m2

c − (p− q)2, D2 = −(p− k)2,

D3 = m2
b − k2, D4 = −q2, D5 = −l2,

D6 = −(l − q)2, D7 = m2
c − (q − k)2

 . (C.1)
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We define the two-loop basis

Ds′ =

 C1 = −(p− l)2, C2 = m2
c − (p− q)2,

C3 = −q2, C4 = −l2, C5 = −(l − q)2

 , (C.2)

which is shown in Fig. C.1 (a). The IBP reduction and other symmetry relations (see
Chap. 4.1), employed by the program LiteRed, lead to eight master integrals with a
non-vanishing imaginary part for the three-loop basis. We define the scalar integral

(m2
b)

3D/2−n1−n2−n3−n4−n5−n6−n7×J(n1, n2, n3, n4, n5, n6, n7)

≡
∫
k

∫
q

∫
l

1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7

(C.3)

from which follows the set of master integrals:

MIs =


J(0, 1, 0, 0, 1, 1, 1), J(1, 0, 0, 0, 1, 1, 1), J(1, 0, 1, 0, 1, 1, 0),

J(0, 2, 0, 0, 1, 1, 1), J(2, 0, 0, 0, 1, 1, 1), J(2, 0, 1, 0, 1, 1, 0),

J(1, 0, 1, 0, 1, 1, 1), J(2, 0, 1, 0, 1, 1, 1)

 . (C.4)

In case of the two-loop basis we define

(m2
b)
D−n1−n2−n3−n4−n5 ×K(n1, n2, n3, n4, n5) ≡

∫
k

∫
q

1

Cn1
1 Cn2

2 Cn3
3 Cn4

4 Cn5
5

(C.5)

and end up with two master integrals with non-vanishing imaginary part:

MIs′ =
{
K(0, 1, 0, 1, 1), K(0, 2, 0, 1, 1)

}
. (C.6)

Here, J(0, n, 0, 0, 1, 1, 1) denotes a convolution of simple massive and massless one-loop
integrals (n = 1) including a massless propagator with second power (n = 2).
The master integrals J(n, 0, 0, 0, 1, 1, 1) and J(2, 0, 1, 0, 1, 1, 0) are the product of a
massive tadpole (either b or c-quark) and a two-loop massive-massless convolution.
The most complicated integrals J(n, 0, 1, 0, 1, 1, 1) (with n = 1, 2) are non-reducible
three-loop integrals with two different masses. Finally, K(0, n, 0, 1, 1) represents a
convolution of simple massive and massless one-loop integrals (n = 1) including a
massless propagator with second power (n = 2). As a next step we consider the
prototypes following from the imaginary part of all master integrals as stated above.



C.1. LiteRed Basis and Master Integrals
with Two Masses 155

For this purpose, we apply the one-loop spectral function from Eq. (4.14) to the
on-shell condition according to

V̂ (α, β) = V (α, β,m2
b)
∣∣∣
m1=0,m2=mc

→ ρ̂(α, β; r) =
sd/2−α−β

Γ(α)Γ(β)Γ(1 + d/2− α− β)

∫ 1

r

dx x̄d/2−β−1xβ−1(x− r)d/2−α−β .
(C.7)

where r ≡ m2
c/m

2
b . Prototypes from two- and three-loop master integrals are denoted

by

ρJ(n1, n2, n3, n4, n5, n6, n7) ≡ 1

π
× Im

{
J(n1, n2, n3, n4, n5, n6, n7)

}
(C.8)

and

ρK(n1, n2, n3, n4, n5) ≡ 1

π
× Im

{
K(n1, n2, n3, n4, n5)

}
. (C.9)

Two-Loop Prototypes

Relevant results of both two-loop finite prototypes K1 ≡ ρK(0, 1, 0, 1, 1) and K2 ≡
ρK(0, 2, 0, 1, 1) are given by

K1 =
G

ε
× ρ̂(1, ε;m2

c)

=
1

2

(
1− r2 + 2r log(r)

)
+ ε
[
4r Li2(r) +

5

4

(
1− r2

)
− 2

(
1− r2

)
log(1− r)− 2π2

3
r

− 1

2
r log2(r)− 1

2
r(2 + r) log(r)

]
(C.10)

K2 =
(
− ∂K1

∂(m2
c)

)
=
G

ε
× ρ̂(2, ε;m2

c) (C.11)

=− 1 + r − log(r) + ε
[
− 4Li2(r) + r + 4(1− r) log(1− r) +

2π2

3
− 1

+
1

2
log2(r) + (2 + r) log(r)

]
(C.12)

Three-Loop Prototypes

Here we present the three-loop on-shell prototypes. For brevity the abbreviations
M1,{1,2} ≡ ρJ({1, 2}, 0, 0, 0, 1, 1, 1), M2,{1,2} ≡ ρJ(0, {1, 2}, 0, 0, 1, 1, 1),
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M4,{1,2} ≡ ρJ({1, 2}, 0, 1, 0, 1, 1, 0) and N{1,2} ≡ ρJ({1, 2}, 0, 1, 0, 1, 1, 1) are used. In
the following only the relevant expressions in terms of ε are displayed:

M11 =V (1;m2
c)× ρ(1, ε;m2

c)

=
1

2ε
r
(
r2 − 2r log(r)− 1

)
+

1

12
r
(
− 48r Li2(r) + 9r2 − 24

(
r2 − 1

)
log(1− r)

+ 8π2r + 6 log(r)(4r + 3r log(r) + 1)− 9
)
, (C.13)

M12 =V (1;m2
c)× ρ(2, ε;m2

c) = V (1;m2
c)×

(
− ∂ρ(1, ε;mc)

∂(m2
c)

)
=

1

ε
r(−r + log(r) + 1) +

1

6
r
(

24Li2(r)− 9 log2(r)− 24 log(r)

+ 24(r − 1) log(1− r)− 4π2
)
, (C.14)

M21 =ρ(1, 2ε− 1;m2
c) =

1

12

(
6r(r + 1) log(r)− (r − 1)(r(r + 10) + 1)

)
, (C.15)

M22 =ρ(1, 2ε;m2
c)

=
1

2ε

(
r2 − 2r log(r)− 1

)
+

1

2

(
− 12r Li2(r) + 3r2 + 2r2 log(r)

− 6(r2 − 1) log(1− r) + 2π2r + r log2(r) + 4r log(r)− 3
)
, (C.16)

M41 =V (1;m2
b)× ρ(1, ε;m2

c)

=
1

2ε

(
r2 − 2r log(r)− 1

)
+

1

12

(
− 48rLi2(r) + 9r2 + 6r2 log(r)

− 24
(
r2 − 1

)
log(1− r) + 8π2r + 6r log2(r) + 24r log(r)− 9

)
, (C.17)

M42 =V (1;m2
b)× ρ(2, ε;m2

c) = V (1;mb)×
(
− ∂ρ(1, ε;mc)

∂(m2
c)

)
=

1

ε
(−r + log(r) + 1) + 4Li2(r)− 1

2
log2(r)− r log(r)− 3 log(r)

+ 4(r − 1) log(1− r)− 2π2

3
. (C.18)

Note that we refrain from computing the non-reducible three-loop in the present form.
It is more convenient to calculate the sum and difference of N1 and N2:

N± = N1 ±N2 . (C.19)
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For both prototypes we find finite expressions:

N+ =− 2(1− r)− (1 + r) log(r)

+ ε
[
2
(
5r + 2π2

√
r − 5

)
− (1 + r) log(r) + 8(1− r) log(1− r)

+
1

2
(1− r) log2(r) + 4(1 + r) log(1− r) log(r)

− 4
√
r
(

4Li−2 − π2 − 2 log(r) log
(1 +

√
r

1−√r
))]

, (C.20)

N− =− π2

3
(1− r)− (1− r) log(r) + r log2(r) + 2(1− r) log(r) log(1− r)

+ 2(1− r) Li2(r) , (C.21)

where Li−2 ≡ Li2(
√
r)− Li2(−√r). The explicit calculation of N+ and N− is presented

in Sect. C.3.
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Basis of two- and three-loop topology

p

(a) Two-loop topology

p

(b) Three-loop topology

Feynman graphs of master integrals

(c) K(0, {1, 2}, 0, 1, 1)

(d) J({1, 2}, 0, 0, 0, 1, 1, 1) (e) J(0, {1, 2}, 0, 0, 1, 1, 1)

(f) J({1, 2}, 0, 1, 0, 1, 1, 0) (g) J({1, 2}, 0, 1, 0, 1, 1, 1)

Figure C.1: Basis to generate IBP identities by LiteRed as selected for two- and
three-loop Feynman integrals are shown in (a) and (b). Master integrals of two- and
three-loop on-shell propagators (p2 = m2

b) with non-vanishing imaginary part in (c)-
(g). Massive b-quark propagators are represented as double lines. Massive c-quark
propagators denote solid lines, whereas massless propagators are represented by dashed
lines. Dotted lines denote propagators with an additional power.
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C.2 LiteRed Basis and Master Integrals
with One Mass (mc = 0)

In case of a massless c-quark we define a basis Ds” with one massive line of the mass
mb and six massless lines. This basis is determined by three loop momenta q, k and l
as well as the external momentum p, following p2 = m2

b . Ds” is illustrated in Fig. C.2
(d) and reads in terms of inverse propagators:

Ds” =


B1 = −(p− q)2, B2 = −(p− k)2,

B3 = m2
b − k2, B4 = −q2, B5 = −l2,

B6 = −(l − q)2, B7 = −(q − k)2

 . (C.22)

We define the two-loop basis

Ds′′′ =

 A1 = −(p− l)2, A2 = −(p− q)2,

A3 = −q2, A4 = −l2, A5 = −(l − q)2

 , (C.23)

which is also displayed in Fig. C.2 (a). The IBP reduction and other symmetry
relations (see Chap. 4.1) employed by LiteRed lead to eight master integrals with a
non-vanishing imaginary part for the three-loop basis. We define the scalar integral

(m2
b)

3D/2−n1−n2−n3−n4−n5−n6−n7×M(n1, n2, n3, n4, n5, n6, n7)

≡
∫
k

∫
q

∫
l

1

Bn1
1 Bn2

2 Bn3
3 Bn4

4 Bn5
5 Bn6

6 Bn7
7

(C.24)

from which follows the set of master integrals:

MIs′′ =
{
M(0, 1, 0, 0, 1, 1, 1), M(1, 0, 1, 0, 1, 1, 0), M(1, 0, 1, 0, 1, 1, 1)

}
(C.25)

In case of the two-loop basis we define

(m2
b)
D−n1−n2−n3−n4−n5 ×N(n1, n2, n3, n4, n5) ≡

∫
k

∫
q

1

An1
1 A

n2
2 A

n3
3 A

n4
4 A

n5
5

(C.26)

and end up with two masters with a non-vanishing imaginary part:

MIs′′′ =
{
N(0, 1, 0, 1, 1), N(1, 1, 1, 1, 0)

}
. (C.27)
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M(0, 1, 0, 0, 1, 1, 1) denotes a convolution of massless one-loop integrals.
M(1, 0, 1, 0, 1, 1, 0) is the product of the massive tadpole and a two-loop massive-
massless convolution. The most complicated master M(1, 0, 1, 0, 1, 1, 1) is a non-
reducible three-loop integral with one mass. N(0, 1, 0, 1, 1) also represents a convo-
lution of simple massless one-loop integrals whereas N(0, 1, 0, 1, 1) is a product of two
one-loop massless integrals. Prototypes from above master integrals are denoted by
M(. . .)→ ρM(. . .) and N(. . .)→ ρN(. . .).

C.2.1 Two-Loop Prototypes

Both two-loop prototypes K̃1 ≡ ρN(0, 1, 0, 1, 1), K̃2 ≡ ρN(1, 1, 1, 1, 0) are finite. The
relevant expressions in terms of ε are

K̃1 = 1 + 4ε , K̃2 =
2

ε
− 4π2

3
ε . (C.28)

C.2.2 Three-Loop Prototypes

Here we present the three-loop on-shell prototypes. For brevity we use the abbrevia-
tions M̃1 ≡ ρM(0, 1, 0, 0, 1, 1, 1), M̃2 ≡ ρM(1, 0, 1, 0, 1, 1, 0), and M̃4 ≡ ρM(1, 0, 1, 0, 1, 1, 1).
In the following, only the relevant expressions of the ε-expansion are displayed:

M̃1 =
1

12
+

35

72
ε , (C.29)

M̃2 = − 1

2ε
− 3

4
+
(π2

4
−13

8

)
ε , M̃4 =

1

2ε
+
(5

2
− π2

6

)
. (C.30)
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Basis of two- and three-loop topology

p

(a) Two-loop topology

p

(b) Three-loop topology

Feynman graphs of master integrals

(c) N(0, 1, 0, 1, 1) (d) N(1, 1, 1, 1, 0)

(e) M(0, 1, 0, 0, 1, 1, 1) (f) M(1, 0, 1, 0, 1, 1, 0)

(g) M(1, 0, 1, 0, 1, 1, 1)

Figure C.2: Basis to generate IBP identities by LiteRed as selected for two- and
three-loop Feynman integrals are shown in (a) and (b). Master integrals of two- and
three-loop on-shell propagators (p2 = m2

b) with non-vanishing imaginary part in (c)-
(g). Massive b-quark propagators are represented as double lines. Massive c-quark
propagators denote solid lines, whereas massless propagators are represented by dashed
lines.
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C.3 Calculation of N+ and N−

In the following, we will compute the non-reducible prototypes N+ and N−. For con-
venience, we define the three-loop integral

Ĵ(a, b, 1, 1, 1) ≡∫
k

∫
q

∫
l

1

[m2
b − (p− q)2]a[m2

c − (q − k)2]b[−(l − k)2][−(p− l)2][m2
c − k2]

(C.31)

and their corresponding spectral functions

ρĴ(a, b, 1, 1, 1) ≡ 1

2πi
Disc

(
Ĵ(a, b, 1, 1, 1)

)
. (C.32)

If we consider the sum or difference of N1 and N2, this simplifies the problem as follows

N± = ρĴ(2, 1, 1, 1, 1)± ρĴ(1, 2, 1, 1, 1)

=
G

ε
Γ
(

3− d

2

)∫
k

∫ 1

0

dx
1

Λ̃3−d/2

x± x̄
[m2

c − k2][−(p− k)2]ε
. (C.33)

The parameter Λ̃ is an abbreviation of the denominator given by

Λ̃ = m2
bx+m2

c x̄− (p− k)2xx̄ (C.34)

after Feynman parametrization. In Eq. C.33 we insert the massless one-loop integral∫
l

1

[−(l − k)2][−(p− l)2]
=

∫
l

1

[−l2][−(l − (k − p))2]
=
G

ε

1

[−(p− k)2]ε
. (C.35)

We employ the Cutkosky rules to evaluate the discontinuity of N±. To this end, we
perform the substitutions

1

m2 − p2 − iε → (−2πi)δ(p2 −m2)θ(p0) , (C.36)

1

ε
× 1

[−(p− k)2]ε
→ (−2π)

sin(πε)

πε
· 1

(p− k)2ε
θ
(
(p− k)2

)
(C.37)

and introduce the prefactor 1/(2i). We find

N+ = ρĴ(2, 1, 1, 1, 1) + ρĴ(1, 2, 1, 1, 1)
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= (2πi)2GΓ
(

3− d

2

)∫
k

∫ 1

0

dx
δ(k2 −m2

c)θ
(
(p− k)2

)
θ(k0)

Λ̃3−d/3 · (p− k)2ε
. (C.38)

We now choose the rest frame of the b-quark for brevity:

pµ =

mb

0

 , kµ =

k‖
k⊥

 =

kv
k⊥

 . (C.39)

The integration measure yields

ddk = dk0d
d−1~k = dk0k

d−2dkΩd−1 =
1

2
dk0dk

2kd−3Ωd−1 = dtdk2
⊥(k2

⊥)
d−3

2 × Ωd−1

2
,

(C.40)

where Ωd = 2πd/2/Γ(d/2). Here, we introduce the parametrization mbt = pk. The
momentum integration has limits due to the delta distribution δ(k2−m2

c) and the step
function θ(k0), i.e.

δ
(
k2 −m2

c

)
θ(k0) = δ

(
k2

0 − ~k2
⊥ −m2

c

)
θ(k0) = δ

(
[t2 −m2

c ]− ~k2
⊥

)
θ(t) , (C.41)

θ
(

(p− k)2
)

= θ
(
m2
b +m2

c − 2mb · t
)
. (C.42)

Both functions give rise to the integration limits

mc ≤ t ≤ m2
b +m2

c

2mb

. (C.43)

We rearrange the denominator Λ̃ as follows

Λ̃ = m2
bx+m2

c x̄− (m2
b +m2

c − 2tmb)xx̄

= m2
bx

2 +m2
c x̄

2 + 2tmbxx̄ = m2
b x̄

2 +m2
cx

2 + 2tmbxx̄

≡ (1− ax)(1− bx)m2
b . (C.44)

The spectral function N+ for mb = 1 and r ≡ m2
c/m

2
b reads

N+ = C0

∫ 1−m2
c

2

mc

dt

∫ 1

0

dx (t2 − r) 1
2
−ε 1

[(1− ax)(1− bx))]1+ε(1 + r − 2t)2ε
, (C.45)
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where C0 ≡ GΓ(3− d/2)Ωd−1/(2π). For further computation we also define

a ≡
√
t2 − r − (t− 1) , b ≡ −

√
t2 − r − (t− 1) , (C.46)

a ≡ 1−mc ξ , b ≡ 1−mc ξ
−1 . (C.47)

The new parameter ξ has the following properties:

ξ =
t−
√
t2 − r√
r

, ξ−1 =
t+
√
t2 − r√
r

, ξ ξ−1 = 1 . (C.48)

From this follows t =
√
r
(
ξ−1 + ξ

)
/2 and

√
t2 − r =

√
r
(
ξ−1 − ξ

)
/2 = (a − b)/2. We

do not calculate the whole integral, since only the pole and finite part are essential for
computing the coefficient functions in Eq.7.24. Double poles appear at an intermediate
level in combinations with N+ and reducible prototypes. Those prototypes can be
expanded in ε in order to obtain finite expressions. Hence, we expand N+ up to O(ε)

and get 4 individual integrals. The expanded prototype is

N+ = C0

(
N+|LO + εN+|NLO

)
= C0

∫ 1−m2
c

2

mc

dt

∫ 1

0

dx

√
t2 − r

[(1− ax)(1− bx)]
− ε

√
t2 − r

[(1− ax)(1− bx)]

×
[

log(t2 − r) + log((1− ax)(1− bx))) + log(1 + r − 2t)
]
. (C.49)

For the leading order expressions we find

N+|LO =

∫ 1−m2
c

2

mc

dt

∫ 1

0

dx

√
t2 − r

[(1− ax)(1− bx)]

=

∫
dt
(a− b

2

)∫
dx

1

[(1− ax)(1− bx)]

=

∫
dt

1

2
log
( b− 1

a− 1

)
=

∫ mc

1

dξ
dt

dξ
· (−1) log ξ =

1

2

[
1− r +

1

2
(1 + r) log(r)

]
.

(C.50)

The integration limits are 1 ≤ ξ ≤ mc. We divide the NLO expression in three parts,
i.e.

N+|NLO = N+|(1)
NLO +N+|(2)

NLO +N+|(3)
NLO . (C.51)
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For the individual terms of N+|NLO we find

N+|(1)
NLO =

∫∫
dt dx

√
t2 − r

[(1− ax)(1− bx)]
log(t2 − r)

= 2

∫ 1

mc

dξ
dt

dξ
log(ξ) log

(√
r

2
(ξ−1 − ξ)

)
, (C.52)

N+|(2)
NLO =

∫ ∫
dt dx

√
t2 − r

[(1− ax)(1− bx)]
log(1 + r − 2t)

=

∫ 1

mc

dξ
dt

dξ
log(ξ) log

(
1 + r −√r(ξ−1 + ξ)

)
, (C.53)

N+|(3)
NLO =

∫ ∫
dt dx

√
t2 − r

[(1− ax)(1− bx)]
log((1− ax)(1− bx))

=

∫ mc

1

dξ
dt

dξ
F (a, b) = tF (a, b)

∣∣∣mc
1
−
∫ mc

1

dξ t
dF (a, b)

dξ
. (C.54)
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where F (a, b) ≡
∫
dx

√
t2−r

[(1−ax)(1−bx)]
log((1 − ax)(1 − bx)). For reasons of normalization

we consider

C0

G3

(1

2

) d−4
2

= 4(1− 2ε) . (C.56)

Hence, the final result of the non-reducible prototype N+ is

N+/G
3 =4(1− 2ε)

(
N+|LO + ε×N+|NLO

)
=− 1

ε

(
2(1− r) + (1 + r) log(r)

)
+ 4
√
r

(
π2 − 4Li−2 + 2 log

(
1 +
√
r

1−√r

)
log(r)

)
+

1

2
(1− r) log2(r) + 4(1 + r) log(1− r) log(r)

− (1 + r) log(r) + 8(1− r) log(1− r)− 10(1− r) . (C.57)
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For N− we find the finite expression

N− =
2

3
(1− r)

(
3Li2(r)− 1

2
π2

)
+ r log2(r) + (1− r) (2 log(1− r)− 1) log(r) .

(C.58)
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