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Abstract

Non-leptonic B decays are with their rich phenomenology ideally suited to study the quark
flavour sector of the Standard Model (SM) of particle physics. They have been measured
extensively at collider experiments. On the theoretical side their description is complicated
due the appearance of strong interactions ranging from short- to long-distance physics scales.
QCD factorization (QCDF) is a model-independent framework that disentangles such short-
distance and long-distance effects in the heavy-mass limit. It allows one to systematically
calculate transition amplitudes to leading power in ΛQCD/mb in a perturbative expansion in
the strong coupling. QCDF has already been successfully applied to non-leptonic two-body
decays. In contrast, for non-leptonic three-body decays no genuine QCD-based description
has been developed so far. In this work we consider two applications of QCDF.
First, we evaluate the perturbative vertex corrections to the colour-allowed tree topology

of the decay B̄0 → D+π− to next-to-next-to leading order accuracy. The calculation is tech-
nically challenging and involves the reduction of several thousand scalar two-loop two-scale
integrals to master integrals which have to be evaluated thereafter. For the reduction we
apply the Laporta algorithm and for evaluating the master integrals we use common methods
like differential equations and Mellin Barnes representations. In addition, we apply a novel
approach to obtain analytical results for all master integrals in a canonical basis. As the
decay B̄0 → D+π− is dominated by SM physics a comparison of theoretically calculated
observables with experimental data allows us to estimate the size of the neglected power
corrections that arise in QCDF due to the finite mass of the b quark.
In the second part of the thesis we apply QCDF to non-leptonic three-body decays such

as B+ → π+π−π+. As the kinematics of three-body decays is not fixed in contrast to two-
body decays, the final-state particles populate a kinematic phase space (the Dalitz plot). We
identify special kinematic configurations as regions in the Dalitz plot. Adopting the well-
established factorization properties of non-leptonic two-body decays, we employ different
descriptions in the central region and in the edges of the Dalitz plot. In contrast to the two-
body case, this requires introducing generalized non-perturbative quantities such as B → ππ
form factor and two-pion distribution amplitudes. We evaluate the transition amplitudes in
the different regions to leading power in ΛQCD/mb and to leading order in the strong coupling.
Finally, we investigate the prospects of a matching of the descriptions in both regions for a
physical value of the b-quark mass.
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Zusammenfassung

Nicht-leptonische B Zerfälle besitzen ein breites Spektrum an phänomenologischen Obser-
vablen um den Quarkflavoursektor des Standardmodels (SM) der Teilchenphysik zu un-
tersuchen. Deshalb wurden (und werden) diese Zerfälle an Beschleunigern sehr intensiv
gemessen. Jedoch ist ihre theoretische Beschreibung aufgrund des Auftretens von starken
Wechselwirkungen, die sich über physikalische Skalen von kurzer bis langer Reichweite er-
strecken, sehr anspruchsvoll. Eine Modell-unabhängige Herangehensweise, um Effekte dieser
sich über große Skalen erstreckenden Wechselwirkungen zu entkoppeln, stellt im Grenzfall
einer unendlich schweren Masse des b Quarks die Methode der QCD Faktorisierung (QCDF)
dar. QCDF ermöglicht eine systematische Berechnung der Übergangsamplituden zu führen-
der Ordnung in ΛQCD/mb in einer perturbativen Entwicklung in der starken Kopplung.
QCDF wurde schon erfolgreich auf nicht-leptonische Zweikörperzerfälle angewandt. Für
nicht-leptonische Dreikörperzerfälle hingegen exisiert derzeit keine generische QCD basierte
Beschreibung. In dieser Arbeit werden zwei Anwendungen von QCDF betrachtet.

Im ersten Teil werden zuerst die perturbativen Vertexkorrekturen zur farberlaubten Tree
Topologie zum Zerfall B̄0 → D+π− zur zweiten Ordnung berechnet. Diese technisch an-
spruchsvolle Berechnung beinhalted das Reduzieren einiger Tausender skalarer Zweiloop-
Integrale zu Masterintegralen, die im Anschluss berechnet werden müssen. Für die Re-
duzierung wird der Laporta Algorithmus verwendet. Die Berechnung der Masterintegrale
kann unter Zuhilfenahme von allgemein gebräuchlich Methoden, wie die der Differential-
gleichungen oder Mellin-Barnes-Darstellungen, durchgeführt werden. Zusätzlich werden die
Masterintegrale mit einer neue Methode berechnet, durch die für alle Integrale analytische
Ergebnisse in einer kanonischen Basis gefunden werden können. Im Zerfall B̄0 → D+π−

sind keine dominanten Beiträge zu erwarten, die nicht vom SM beschrieben werden. Des-
halb erlaubt dieser Zerfall durch einen Vergleich von theoretisch berechneten Observablen
mit den experimentell gemessenen Größen eine Abschätzung der Größenordung der Korrek-
turen, welche in QCDF aufgrund der endlichen Masse des b Quarks enstehen.

Im zweiten Teil der Arbeit wird die Methode der QCDF auf nicht-leptonische Dreikör-
perzerfälle, insbesondere den Zerfall B+ → π+π−π+, angewandt. Da im Gegensatz zu
Zweikörperzerfällen die Kinematik von Dreikörperzerfällen nicht eindeutig bestimmt ist, be-
setzen die Mesonen im Endzustand einen kinematischen Phasenraum, der im Dalitz-Plot
dargestellt werden kann. Die möglichen kinematischen Konfigurationen der Zerfallsprodukte
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können in verschiedenen Regionen des Dalitz-Plots identifiziert werden. Unter der Verwen-
dung der Faktorisierungseigenschaften von nicht-leptonischen Zweikörperproblemen können
die zentrale Region und die Ränder im Dalitz Polt unterschiedlich beschrieben werden. Im
Gegensatz zur Beschreibung von Zweikörperzerfällen ist es hierbei notwendig, generalisierte
nicht-perturbative Größen einzuführen, wie die B → ππ Formfaktoren und die Zwei-Pion-
Verteilungsamplituden. Die Übergangsamplituden in den verschiedenen Regionen werden
zur führenden Ordnung in ΛQCD/mb und in der starken Kopplung berechnet. Abschließend
wird untersucht, ob ein Zusammenführen (“Matching”) der Beschreibungen beider Regionen
für eine physikalische Masse des b Quarks möglich ist.
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Introduction

Over the last decades the Standard Model (SM) of particle physics has proven to be a
successful theory describing the interactions between all particles known to date. The six
quarks and leptons are grouped into three families such that the families are identical,
except for a strong hierarchy in the quark and lepton masses with increasing family number.
The SM covers the electromagnetic, strong and weak interactions, which are mediated by
gauge bosons. The last missing ingredient to complete the particle content of the SM is
the Higgs boson. Its interactions with the quarks and leptons are described by the Yukawa
sector of the SM. By spontaneous symmetry breaking the Higgs field obtains a non-vanishing
vacuum expectation value which couples to the fermions and the heavy gauge bosons and
consequently gives masses to these particles. A Higgs boson was finally discovered in 2012 by
the ATLAS [1] and CMS [2] experiment at the Large Hadron Collider (LHC). Its quantum
numbers are compatible with the SM Higgs boson [3, 4]. Englert and Higgs who had proposed
this particle as early as 1964 were awarded the Nobel prize in 2013.
However, there still remain open questions that cannot be answered within the SM, such

as dark matter, dark energy or the observed baryon asymmetry in the universe. The latter
is significantly larger than the baryon asymmetry calculated from the measured CP (charge
conjugation and parity) asymmetry in weak decays. Another puzzle of the SM is the origin
of the quark and lepton mass hierarchy. This concerns the flavour sector of the SM that
describes the mixing of the quark and lepton flavours induced by weak interactions and the
associated CP violation.
Flavour physics started to develop after the discovery of parity violation in weak decays

in 1957 [5, 6], which gave a better understanding of weak interactions of the three quarks
known at that time. In 1964 it was further discovered that the combined CP symmetry is
not conserved either [7]. A possible theoretical explanation for this phenomenon was the
existence of three additional quark flavours and hence, a third family1. The top quark was
the last of the three quark to be discovered in 1995 at Fermilab [8]. The mixing of the six
quarks is described by the Cabbibo-Kobayashi-Maskawa (CKM) matrix [9, 10]. In the SM
it is a unitary 3×3 matrix. The values for the entries are not predicted by the SM but must

1There were also other indications for the existence of at least a fourth quark like for instance the discrepancy
of the theoretical and experimental branching ratio for the decay KL → µµ, which could be explained
by the contribution of an additional quark flavour.
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be extracted from a comparison of theoretically calculated observables with experimental
data. A discovery of deviations from unitarity of the CKM matrix would be a clear sign of
physics beyond the SM. The lepton flavour sector in the SM including neutrino masses2 has
a similar structure. Charged lepton flavour violation is predicted to be negligibly small and
has not been observed yet.
Decays of heavy mesons, which are bound states of a light and a much heavier quark, are

among the primary objects to study quark flavour in high-energy physics. They yield a broad
spectrum of observables for investigating the CKM structure of the SM. In particular, we are
interested in non-leptonic two-body and three-body decays of B mesons, which constitute a
large portion of the branching fraction. They allow for CP studies including the extraction
of the CKM angles α, β, γ [11–13]. In most cases three-body decays proceed dominantly
via quasi-two-body final states as intermediate resonances, however, in some decay channels
the contributions from the non-resonant three-particle states seems to be rather large [14].
The study of the interference pattern of the resonances in Dalitz plots also allows to infer
information on the strong resonances, such as masses, widths and quantum numbers [15].
The searches for physics beyond the SM, also called “new physics”, can be divided into

two classes: On the one hand, there are the direct searches for new particles which may be
produced on-shell in collider experiments; on the other hand, there are the indirect searches
that look for the impact of new, heavy virtual particles on SM observables. For latter searches
(precision) calculations of SM observables are essential to be sensitive to possible deviations
when comparing to experimental data. In the last two decades non-leptonic two-body B
decays have been studied extensively in e+e− collider experiments like CLEO, Babar and
Belle. In addition, the LHCb experiment, which is located at the pp storage ring LHC, has
started to collect data in 2010. Recently, also a sizable amount of observables from branching
ratios and CP asymmetries from Dalitz plot analyses of several non-leptonic three-body B
decay channels (cf. [16–20]) has become available, raising the interest in these decays, and
more is expected to come in the next run of LHC [21] and from Belle II [22].
However, the theoretical description of this kind of decays is complicated due to the

purely hadronic environment, entailing QCD effects from many widely separated scales.
Non-leptonic two-body B decays have already been extensively studied in the literature. In
a first approach, known as naive factorization, the hadronic matrix elements are expressed as
products of a decay constant and a form factor, see e.g. [23]. At the present day, the two main
approaches to these decays are flavour symmetries of the light quarks [24] and factorization
frameworks such as perturbative QCD (pQCD) [25] and QCD factorization (QCDF) [26–28].
The latter is a model-independent framework that systematically disentangles perturbative
from non-perturbative effects in the heavy-mass limit. It has proven successful in several
applications [26, 27].
The theoretical description of non-leptonic three-body decays, on the other hand, is still

in the stage of modeling. Common methods, reflecting the state of the art, are the isobar
model [29, 30] and the K-matrix formalism [31]. In these approaches resonances are modeled,
for example by Breit-Wigner distributions, and the non-resonant contributions are often

2The discovery of neutrino oscillations has shown that, in contrast to the SM prediction, neutrinos have
small but non-vanishing masses. Nowadays, massive neutrinos are often considered as a trivial extension
of the SM.
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described by an empirical distribution in order to reproduce the full range of the phase
space (cf. [32]). Flavour symmetry relations of three-body decays have been studied in order
to obtain new constraints on SM parameters [33, 34]. Studies in a factorization framework
have been performed. In [35–37] the matrix elements were factorized naively, but no attempt
was made to discuss the breakdown of factorization in the regions of phase space where they
are not expected to apply. In a recent work relying on pQCD [38] experimental values for
branching ratios and CP violation could be reproduced [39]. However, if the conceptual
issues of pQCD [40, 41] cannot be resolved, the predictive power of this approach is limited.
In the future also the Miranda procedure could become interesting, which is a novel model-
independent approach that directly accesses CP violation by significance analyses of density
populations in the Dalitz plot [42, 43]. However, for a quantitative approach a QCD based
description of the Dalitz distribution as well as the phase information on the amplitudes is
indispensable.

In this work we consider two different applications of QCDF. In the first part we calculate
the two-loop correction to the heavy-to-heavy decay B̄0 → D+π− in QCDF. In QCDF, next-
to-leading order (NLO) corrections to both, heavy-to-heavy [27] and heavy-to-light [26, 44]
transitions have been known since more than a decade. More recently, also next-to-next-to-
leading order (NNLO) results for heavy-to-light decays have become available [45–48]. In
the heavy-quark limit, the decay amplitude for B̄0 → D+π− is given by [27]

⟨D+π−|Qi|B̄0⟩ =

j

FB→D
j (m2

π)

 1

0

du Tij(u)Φπ(u) , (1)

where Qi are the operators from the effective Hamiltonian that describe the underlying weak
decay. The FB→D

j form factors and the pion light-cone distribution amplitude (LCDA)
Φπ(u), with momentum fractions u and 1 − u shared among the pion constituents, are
the non-perturbative inputs. The hard-scattering kernels Tij(u) on the other hand can be
evaluated in a perturbative expansion in the strong coupling. They give rise to a perturbative
contribution a1 which in naive factorization simply has the value a1 = 1 [23]. QCDF predicts
that for the set B̄0 → D(∗)L with L = {π, ρ, K}, a1 only mildly depends on the light meson
L which can be seen from the quasi-universality of a1. As an example the results for a1 to
NLO accuracy are given below where light meson LCDA has been expanded in Gegenbauer
moments up to the first moment αL

1 [27]

|a1(B̄0 → DL)| = (1.055+0.019
−0.017)− (0.013+0.011

−0.006)α
L
1 ,

|a1(B̄0 → D∗L)| = (1.054+0.018
−0.017)− (0.015+0.013

−0.007)α
L
1 . (2)

In case of π and ρ we have α
π(ρ)
1 = 0 and for the kaon |αK

1 | < 1 is assumed [27]. One finds a
quasi-universal value |a1| ≃ 1.05. For the decays B̄0 → D(∗)L with L = {π, K}, values for
a1 have been recently extracted from experimental data [49] and here, the favored central
value is |a1| ≃ 0.95, with errors in individual channels at the 10-20%-level.

Yet it is interesting to go beyond NLO in B → Dπ transitions: Since the contribution
at NLO is colour suppressed and appears alongside small Wilson coefficients, the NNLO
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corrections may be comparable in size3. We calculate these and check whether there still
exits a quasi-universal value. Moreover, since there is neither a colour-suppressed tree ampli-
tude nor penguin contributions, and spectator scattering and weak annihilation are power-
suppressed [27], we have only the vertex kernels to the colour-allowed tree amplitude. A
precise theory prediction of this single contribution, together with comparison to experimen-
tal data, might give a reliable estimate of the size of power corrections in QCDF.
The second part is concerned with a new application of QCDF. We outline a new method

based on QCDF for the description of three-body and quasi-two-body decays. To set up the
method we focus on the decay B+ → π+π−π+. We start by identifying the different regions
in the Dalitz plot, in which the well-established factorization properties of two-body decays
apply to three-body decays. In the heavy-quark limit, we discuss how to compute the central
region of the Dalitz plot as well as its edges. We will see that the methods and the theoretical
inputs to be used are different in the different regions: While the center can be described
in terms of regular from factors and pion distributions, the description at the edges requires
introducing generalized versions of these hadronic matrix elements. As an application, we
consider the B+ → ρ0π+ branching ratio by integrating the differential rate around the ρ
resonance. Finally, we reconstruct the full Dalitz plot by matching the descriptions of these
different regions.
This work is structured as follows: In Chap. 1 we give an introduction to the description of

exclusive non-leptonic B decays. We present the basic concepts of QCDF and briefly discuss
the application of QCDF for B → Dπ and for non-leptonic three-body decays. Moreover,
we comment on the two main alternative approaches, flavour symmetries and pQCD. The
further work is then divided into two parts which deal with two different applications of
QCDF. The calculation of the two-loop correction to the decay B̄0 → D+π− in QCDF is
topic of Part I. In Chap. 2 we give a brief introduction to Soft Collinear Effective Theory
(SCET). Moreover, we derive a master formula for the hard scattering kernels by performing
a matching from QCD to SCET. In Chap. 3 we present the calculational techniques for the
two-loop Feynman diagrams that enter the master formula. They consist of the reduction of
the two-loop integrals to master integrals by the Laporta algorithm and the reduction of the
Dirac structures to a set of known operators. The evaluation of the two-loop two-scale master
integrals is presented in Chap. 4. Here, we show several computation techniques including
a new method which allows us to obtain the results for all master integrals analytically in a
canonical basis. The result for the two-loop amplitude is presented and discussed in Chap. 5.
Part II is discussed in Chap. 6, where we investigate the application of QCDF to the decay
B+ → π+π−π+. Adopting the factorization properties of non-leptonic two-body decays, we
construct factorization formulae for the three-body transition amplitude in different regions
of the Dalitz plot. We evaluate the amplitudes to leading order in the strong coupling and
to leading power in the heavy-quark mass. In addition, we investigate a possible merging of
the descriptions in these different regions and check the “goodness” of the matching for the
physical value of the b-quark mass (compared to the heavy-mass limit). Finally we conclude
with a summary and an outlook to future work in Chap. 7.

3Note, that this does not imply a breakdown of perturbation theory, as was already pointed out for two-loop
corrections to the colour-suppressed tree-amplitude in B → ππ decays in [47, 45, 46].
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Chapter 1

Exclusive Non-leptonic B Decays

In this chapter we provide the basics for the two applications of QCD factorization (QCDF)
which follow later in Part I and II of this thesis. We give a brief introduction to QCDF and
present the factorization formula for non-leptonic two-body B decays, which disentangles
perturbative from non-perturbative effects in the heavy-mass limit. Moreover, we review the
decays B → Dπ in QCDF and briefly discuss the applicability of QCDF to non-leptonic
three-body B decays. At the end of this chapter, we comment in short on alternative ap-
proaches and present the effective Hamiltonians that describe the underlying weak transitions
for the decays B → Dπ and B → πππ.

1.1. QCD Factorization

QCDF has been developed in 1999 by Beneke, Buchalla, Neubert and Sachrajda [26, 27].
They provided the first systematic description of non-leptonic two-body B decays by a neat
merging of two theoretical approaches: factorization in hard exclusive processes for large
momentum transfer [50, 51] on the one hand and the heavy quark expansion [52] on the
other hand. We briefly explain the basic ideas in the following.
Weak decays of heavy mesons involve three fundamental scales: the weak scale MW , the b

quark massmb and the QCD scale ΛQCD ∼ 0.5 GeV, where quarks and gluons hadronize. We
remark that MW ≫ mb ≫ ΛQCD. QCD effects which vary over the range of these different
scales complicate the evaluation of the decays. One has to get a handle on these effects in
order to identify perturbative and nonperturbative contributions to the decay amplitude. We
start by considering particles which are much heavier than the B-meson mass like the massive
gauge bosons W and Z, and the top quark. Effects of these particles can be absorbed into
short-distance coefficients Ci, which are referred to as the Wilson coefficients. The transition
amplitude then takes the form

A(B →M1M2) =
GF√
2


i

λiCi(µ)⟨M1M2|Qi|B⟩(µ) , (1.1)

1



1. Exclusive Non-leptonic B Decays

where GF is the Fermi constant and λi are CKM parameters. The weak interaction is de-
scribed by local four-fermion operators Qi. The scale µ is a specific scale, usually denoted
as factorization or renormalization scale, which is sizably larger than ΛQCD. The Wilson
coefficients contain the effects above µ and are therefore calculable as perturbative expan-
sions in the strong coupling αs. They can also be regarded as effective coupling constants
which indicate the strength of the different contributions of the local operators. The matrix
elements of the latter, in contrast, depend on the physics below the scales µ. Note that their
scale dependence is such that it compensates the one of the Wilson coefficients, since the
amplitude (1.1) is independent on the factorization scale.
At leading power in 1/MW , Eq. (1.1) is equivalent to the full SM amplitude with the only

difference that the gauge bosons W and Z, and the top quark do not appear as dynamical
degrees of freedom anymore. This corresponds to integrating out these heavy particles on
the level of the Lagrangian and thus Eq. (1.1) can also be considered as the amplitude cor-
responding to an effective theory which for µ & mb has five dynamical (active) flavours. The
Wilson coefficients are usually obtained by a matching of the full theory to the effective one
at the weak scale. By applying the renormalization group equation they are then evolved
down to an arbitrary scale µ ≫ ΛQCD such that they are still accessible in perturbation
theory. The matrix elements ⟨M1M2|Qi|B⟩ on the other hand cannot be evaluated straight-
forwardly due to the appearance of strong interactions at scales of order ΛQCD. However, in
QCDF they can be reduced to simpler objects. The factorization properties rely on the fact
that the mass of the b quark is heavy compared to the typical hadronic scale. By choosing
µ ∼ O(mb) in Eq. (1.1)1 the hadronic matrix elements do not depend on virtualities larger
thanmb, which then can be seen as the hard scale of the process. Performing an expansion of
the amplitude in powers of ΛQCD/mb a systematic separation of soft scales of O(ΛQCD) and
hard scales can be achieved by power counting. In the heavy-quark limit, i.e. for mb →∞,
perturbative and non-perturbative effects are disentangled and the matrix elements can be
expressed in terms of hadronic functions and hard scattering kernels. The former are non-
perturbative but universal objects (like form factors and meson distribution amplitudes)
and can be obtained using other techniques (see Sec. 1.1.1). In contrast, the hard scattering
kernels are process specific and contain the effects from short-distances. Thus, they only
depend on the large scale mb and are calculable in perturbation theory. At leading power in
ΛQCD/mb and leading order in αs QCDF reproduces naive factorization. Note that this is
not necessarily the case for other factorization approaches (see e.g. Sec. 1.2).
QCDF has been successfully applied to many non-leptonic two-body B meson decays such

as B → ππ, B → Dπ and B → Kπ [26, 27]. Below, we present the general factorization
formula for these decays.

1.1.1. Factorization Formula for Two-body Decays

The leading Fock state of the B mesons consists of a b quark with mass mb and a much
lighter u or d quark2. In the heavy-quark limit almost the total momentum is carried by the

1The exact choice will be specified in Chap. 5.
2Note that assuming SU(3) flavour symmetry, one could also take Bs mesons into consideration, which have
a strange quark as light partner of the b quark. However, this is not of any concern for our applications.
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1.1. QCD Factorization

heavy b quark while the light spectator quark has only a residual momentum of order ΛQCD.
Thus, we approximate mb ≃ mB, where mB is the mass of the B meson.
The factorization properties of the matrix elements ⟨M1M2|Qi|B⟩ depend on the invariant

masses m of the final states. A final state meson is taken to be light (compared to mB) if
m ∼ O(ΛQCD). On the other hand, a meson is considered as heavy if its mass scales
with mB in the heavy-quark limit, i.e. the ratio m/mB remains fixed for mB → ∞. In
this sense the B meson is heavy and mesons like the pion are light. A problem arises in
the classification of D mesons, which consist of a charm quark and a light u or d quark.
The mass mc of the charm roughly scales as


mBΛQCD. Since we have the hierarchy of

scales ΛQCD ≪

mBΛQCD ≪ mB, it is neither heavy nor light. In this work mc and

correspondingly D mesons are regarded as heavy. The case, in which mc is treated as a light
quark, can be adopted from B → ππ decays [45–47].
In [27] factorization has been studied for the cases that both final state mesons are light

and that one meson is heavy and the other one is light, which we call a heavy-light final
state in the following. The corresponding factorization formulae in the heavy-quark limit
read3

⟨M1M2|Qi|B⟩ =

j

FB→M1
j (m2

2)

 1

0

du T I
ij(u)ΦM2(u) + (M1 ↔M2)

+

 1

0

dξ du dv T II
i (ξ, u, v)ΦB(ξ)ΦM1(v)ΦM2(u) , (1.2)

if M1 and M2 are both light,blablablablabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

⟨M1M2|Qi|B⟩ =

j

FB→M1
j (m2

2)

 1

0

du T I
ij(u)ΦM2(u) ,+(M1 ↔M2) (1.3)

if M1 is heavy and M2 is light. Here F
B→M1
j denotes the B →M1 form factors and v, u and

ξ are the momentum fractions of the constituents of the mesons M1,2 and B, respectively,
which are described by the light-cone distribution amplitudes (LCDAs) ΦM1,2 and ΦB. The
T I
ij and T II

i are the hard scattering kernels corresponding to the operators Qi. For a finite
B-meson mass, Eqs. (1.2) and (1.3) receive corrections, which are suppressed by powers of
ΛQCD/mB.
The first (second) term in Eq. (1.2) describes the interactions where the spectator quark of

the B meson goes to the meson M1 (M2). Hard interactions involving the spectator quark,
in short “spectator interactions”, cannot be reduced to FB→M form factors and are collected
in the last term in Eq. (1.2).
In the case of M1 being heavy (cf. Eq. (1.3)) the contribution from the light meson re-

ceiving the spectator quark does not factorize anymore but fortunately is power suppressed.
Also spectator interactions only arise beyond leading power. Last but not least, there are
contributions to both final state configurations, in which the two final state mesons M1 and
M2 emerge from the weakly annihilating constituents of the B meson. These as well are

3Note that we have suppressed the µ-dependence of the matrix elements in the notation.
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1. Exclusive Non-leptonic B Decays

power suppressed. We will discuss all these power corrections in more detail in Sec. 1.1.2
for the decays B → Dπ. Note that an essential condition for factorization to apply is that
the contributions from the endpoint regions u ∼ ΛQCD/mB and ū ∼ ΛQCD/mB in Eqs. (1.2)
and (1.3) must also be power suppressed. Otherwise endpoint divergences arise, i.e. the
convolution of the hard scattering kernels with the LCDAs will diverge at the integration
borders. This is a sign that no clear separation of long-distance and short-distance physics
has been performed. We will use this fact in the discussion of three-body decays in Part
II of this thesis. Next, we identify the perturbative and non-perturbative contributions in
Eqs. (1.2) and (1.3).

Non-perturbative Parameters

The scalar B →M form factors FB→M
+ (q2) and FB→M

0 (q2) are defined in the decomposition
of the matrix elements ⟨M(p′)|c̄Γ b|B̄(p)⟩, where q = p − p′ and p and p′ are the momenta
of the B meson and the meson M , respectively, and Γ is a Dirac matrix. For instance for
a pesudoscalar meson P the decomposition of the matrix element with the vector current
Γ = γµ reads [53]

⟨P (p′)|c̄γµb|B̄(p)⟩ = FB→P
+ (q2)(pµ + p′µ) +


FB→P
0 (q2)− FB→P

+ (q2)
 m2

B −m2
P

q2
qµ . (1.4)

It is convenient to consider physical form factors, which contain effects from soft and hard
gluons and therefore do not correspond to purely non-perturbative objects. This allows one
to obtain the form factors experimentally by comparison to semi-leptonic decay rates or,
on theory side, from lattice QCD [54] and QCD sum rule [55] calculations. Working with
the physical form factor will not spoil factorization when omitting the corresponding hard
contributions from the hard scattering kernel.
The LCDAs ΦM are non-perturbative quantities. For a light pesudoscalar meson P , like

the pion, its leading-twist expression is defined as follows4

⟨P (q)|d̄(y)α[y, x]u(x)β|0⟩|(x−y)2=0 =
ifP
4

(/qγ5)βα

 1

0

du ei(ūqx+uqy)ΦP (u, µ) , (1.5)

where q is the momentum of the meson, fP the P meson decay constant and we use the
abbreviation ū ≡ 1−u. α, β are Dirac indices and µ is the renormalization scale of the non-
local operator. The LCDA ΦP is a colour singlet and is normalized to

 1

0
duΦP (u, µ) = 1.

Note that the Wilson line [y, x] renders the operator gauge invariant. The LCDAs are
universal objects that can be probed experimentally e.g. in γγ∗ → π processes in the case of
the pion. A theoretical description is given by the Gegenbauer expansion (see Eq. (5.29)).
The leading term of this expansion coincides with the asymptotic limit of the LCDAs, which
are defined by taking the renormalization scale to infinity

ΦP (u, µ)
µ→∞
= 6uū . (1.6)

4The subleading-twists are power suppressed.

4



1.1. QCD Factorization

For convenience we will use the definition of the leading-twist LCDA in momentum space
and substitute

ū(uq)αaΓ(u . . . )αβ v(ūq)βb −→
ifP
4Nc

 1

0

duΦP (u, µ)(/qγ5)βαΓ(u, . . . )αa,βb , (1.7)

where a, b are colour indices and Nc denotes the number of colours (in our applications
we have Nc = 3). The quark and the antiquark spinors with momenta uq and ūq, respec-
tively, form the leading Fock states of the pseudoscalar meson. Note that for longitudinally
polarized vector mesons V Eq. (1.7) modifies to [27]

ū(uq)αaΓ(u . . . )αβ v(ūq)βb −→ −
ifV
4Nc

 1

0

duΦV (u, µ)/qβαΓ(u, . . . )αa,βb , (1.8)

whereas the normalization and the asymptotic limit are the same as the one for the LCDAs
of pesudoscalar mesons.
LCDAs for pseudoscalar heavy mesons like the B meson are defined in a similar expan-

sion [27], but are less understood theoretically and experimentally (see e.g. [56]).

Perturbative Parameters

At leading power the infrared (IR) contributions of the amplitude match those of the form
factors and the LCDAs. This means that the hard scattering kernels T I,II are IR finite and
indeed only receive contributions from short-distances above the scale mB. Considering that
αs(mb) ≃ 0.22 is still rather small, a perturbative expansion in the strong coupling at the
scale µ = mb is expected to be well-behaved. Thus, the kernels T I,II can be evaluated in a
perturbative series

T = T (0) + αsT
(1) + α2

sT
(2) +O(α3

s) . (1.9)

We shall remember that when using physical form factors the corresponding hard contribu-
tions have to be removed from the hard kernels as mentioned before.
In the following, we discuss the decays B → Dπ within the framework of QCDF.

1.1.2. B → Dπ in QCDF

We consider the following set of weak decays B → Dπ which at parton level are all described
by a b → cūd transition: B̄0 → D+π−, B̄0 → D0π0 and B− → D0π−. The corresponding
decay amplitudes can be decomposed into the flavour topologies depicted in Fig. 1.1: (a)
commonly is referred to as colour-allowed or tree topology, (b) as colour-suppressed topology,
and (c) is denoted as weak annihilation topology. In the decay B̄0 → D+π− the pion can be
directly created by the weak current or both final states can emerge from the weak annihila-
tion of the two constituents of the B̄0 meson. Thus, B̄0 → D+π− receives contributions from
the topologies (a) and (c). From similar considerations one finds that the flavour structure
in the decay B− → D0π− is given by the topologies (a) and (b), and in B̄0 → D0π0 by (b)
and (c).
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1. Exclusive Non-leptonic B Decays

(a)

ud

b

q

c

q

(b)

uc

b

q

d

q

(c)

q

c

b

d q

u

Figure 1.1. – The basic quark topologies (a), (b) and (c) show the flavour flows for B → Dπ decays with
q = u, d. Quarks grouped together in pairs form mesons. The black squares denote the
different effective vertices from the weak interaction. B̄0 → D+π− receives contributions
from (a) and (c), B− → D0π− from (a) and (b), and B̄0 → D0π0 from (b) and (c).

QCDF for non-leptonic two-body B decays has been discussed in the previous section. The
B meson in our case decays into a heavy D meson and a light pion. A consequence of the
factorization properties for a heavy-light final state is that the tree topology can be factorized
in the heavy-quark limit (cf. Eq. (1.3)), whereas perturbative and nonperturbative effects
cannot be disentangled in the contributions from the colour-suppressed topology. This can
be understood by a rather simple argument known as colour-transparency, which had been
used to justify naive factorization.
Without loss of generality we consider the decay of the B meson in its rest frame where

both final state particles decay back-to-back with large energies. The pion has a small
invariant mass and therefore gets highly boosted, while the rather heavy D meson is less
boosted. In the tree topology the pion is created by the weak current moving away from
the interaction point with high velocity. Thus, in a first approximation it can be considered
as colour singlet which cannot be resolved by soft gluons emitted from the heavy B and
D mesons. Soft gluon interactions between the B and D mesons, on the other hand, do
not cause a problem since they can be absorbed in the FB→D form factor. Hence, the tree
topology can be decomposed into a FB→D form factor and a compound object describing
the fast moving pion.
From the above considerations it is evident that factorization does not work for the colour-

suppressed topology. This time the D meson emerges from the weak interaction. Since its
velocity is small soft gluon exchanges with the B meson and the pion will occur making a
clear separation of perturbative and nonperturbative effects impossible. It was shown that
in the heavy-quark limit this contributions is power suppressed in comparison to the leading
amplitude [27]. However, rather large deviations for the scaling occur for a finite b quark
mass. Thus, QCDF is expected to be more accurate in the description of decays where the
colour-suppressed topology does not arise, like e.g. in B̄0 → D+π−.
Next, we consider the weak annihilation topology. The constituents of the B meson weakly

annihilate to a cū (cd̄) pair in the case of the B̄0 (B−) meson. Two additional quarks which
are needed to form the final state mesons emerge from a gluon in a quark-antiquark-pair
(q̄q) production. The hard part of this topology would contribute to the hard scattering
kernel T II , whereas the soft part would spoil factorization. However, in any case the weak
annihilation topology is power suppressed compared to the leading amplitude [27].
The last category that remains to be discussed are the hard spectator interactions in the
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1.1. QCD Factorization

FB→D
j

B

D

Tij

Φπ
π

Figure 1.2. – Schematic visualization of the factorization formula for the decay B̄0 → D+π−.

tree topology5. As already mentioned in the previous section, in the heavy-quark limit the
heavy b quark carries almost the total momentum of the B meson, and the spectator quark
has momentum of order ΛQCD and is thus treated as soft. The same considerations apply for
the heavy D meson and we assign the momentum fraction v̄ ∼ ΛQCD/mB to its soft quark6.
Due to momentum conservation it is forbidden that a soft quark emits a hard gluon without
a significant change of momentum of order of mB (the hard scale). Thus, after the hard
interaction the spectator quark carries momentum of order mB and is then absorbed into
the D meson. The latter gets a contribution from the endpoint region of v̄ ∼ O(1), meaning
that the heavy c quark carries almost no momentum. This configuration is highly unlikely
and one can show that it is power suppressed relative to the tree topology [27].
We summarize that the tree topology can be factorized in the heavy-quark limit and the

colour-suppressed and the weak annihilation topology are power suppressed, as are inter-
actions with the spectator quark. In the following, we focus on the decay B̄0 → D+π−

which only receives contributions from vertex corrections of the tree topology at leading
power. Moreover, the flavour structure of the tree topology does not allow for contributions
of penguin operators which could provide a source of new physics in form of new heavy
particles running in the loop. Thus, new physics effects are expected to be negligibly small
and this decay is dominated by SM physics. By calculating the vertex corrections to NNLO
accuracy one can estimate the size of the power corrections and provide a reasonable test
of the framework of QCDF (see Sec. 5.5). In the heavy-quark limit the B̄0 → D+π− decay
amplitude takes the form (cf. Eq. (1.3)

⟨D+π−|Qi|B̄0⟩ =

j

FB→D
j (m2

π)

 1

0

du T I
ij(u)Φπ(u) , (1.10)

where FB→D
j are the B → D form factors and Φπ is the pion LCDA. The T I

ij are the
hard scattering kernels corresponding to the local four-fermion operators Qi, which will be
specified in Sec. 1.3. Eq. (1.10) does not contain spectator interactions. Thus, we will drop

5Note that in principle only the interactions between the constituents of the pion and the spectator quark
have to be considered since the interactions involving the b and c quark are part of the physical form
factor.

6From the view of power counting we take mD ≃ mB .
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1. Exclusive Non-leptonic B Decays

the index “I” in what follows and do not draw the spectator quark in the Feynman diagrams
in Chap. 2. A graphical illustration of Eq. (1.10) is given in Fig. 1.2. Next, we briefly discuss
the application of QCDF to non-leptonic three-body B decays.

1.1.3. QCDF for Three-body Decays

The factorization properties in QCDF depend on the final states, as we have seen in the case
of non-leptonic two-body decays. Thus, we restrict ourselves to the analysis of B decays to
three pesudoscalar light mesons in this thesis, to be specific to the decay B+ → π+π−π+.
Note that most of the discussion also applies to final states involving different final-state
pions or even kaons, like e.g. B → Kππ or B → KKK.

In contrast to two-body decays the kinetic energy can be arbitrarily distributed among the
three final-state mesons resulting in a kinematic phase space for three-body decays. In the
different regions of the phase space factorization properties similar to two-body decays apply
and the amplitude might be factorized into regular form factors and LCDAs. However, as
non-leptonic three-body B decays proceed dominantly through intermediate quasi-two body
states we expect resonances to appear in certain corners of the phase space7. In these regions
the non-perturbative quantities in the factorized amplitude have to be generalized: beside
B → π form factors and pion LCDAs, one encounters generalized B → ππ form factors
and two-pion light cone distribution amplitudes (2π-LCDAs), which in general cannot be
factorized further. The B → ππ form factor and the 2π-LCDA have been discussed in the
literature (see e.g. [57–68]) and are still subject of current studies [69, 70].

We will apply QCDF to non-leptonic three-body B decays in Part II of this thesis and
construct factorization formulae analogous to Eqs. (1.2) and (1.3). In the last part of this
chapter we comment on alternative approaches and present the effective weak Hamiltonians
that describe the decays B̄0 → D+π− and B+ → π+π−π+.

1.2. Alternative Approaches

Besides QCDF, the most famous approaches to study non-leptonic two-body B decays are
perturbative QCD and flavour symmetries, which we briefly describe below. Note that these
frameworks have also been used in the study of non-leptonic three-body B decays.

Perturbative QCD

Perturbative QCD (pQCD) [71–73], also known as kT factorization, is similar to QCDF
at first glance. The amplitudes of two-body decays are expressed as convolutions of hard
scattering kernels and meson wave functions. However, there are major differences: First, the
separation of effects from different scales is not performed systematically by power counting
as in QCDF, but long-distance effects are assumed to be suppressed by Sudakov form factors.
Second, as a consequence of the Sudakov effects, the dynamics from hard gluon exchanges

7Their exact location and shape depends on the specific decay.
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1.3. Effective Hamiltonian for Weak Decays

dominates and the meson wave functions are accessible in perturbation theory. Third, in
contrast to QCDF, naive factorization is not recovered in any limit.
It should be mentioned that in [40] the authors have found sizable contributions from long-

distance effects that were supposed to be Sudakov suppressed. Doubts about inconsistencies
in pQCD have also been raised in [41].
Nevertheless, NLO corrections in pQCD have been available for some years (cf. [74, 75]).

This framework has also been adopted to non-leptonic three-body decays [38, 39]. Here,
the decay amplitudes are written in terms of hard scattering kernels and two-meson wave
functions. NLO corrections are not yet available.

Flavour Symmetries

The approximate symmetries of the light quark flavours u, d and s can be used in order
to relate observables from different decay amplitudes. SU(3) flavour symmetries of two-
body decays have already been studied in the 80’s [24, 76] and later analyses also concern
isospin [77] and U-spin (see e.g. [78]). From the symmetry relations one can infer information
on CP violation [79] and on the weak angles [80] and it is possible to probe new physics [81].
Recently, flavour symmetries have been used in combination with QCDF. For instance

in [34] the study of SU(3) and U -spin breaking effects in different decay channels was found
to give a measure on the size of non-factorizable contributions to the decay amplitude.
Moreover, symmetry relations of the light quarks have also been found for three-body de-
cays [33, 34].

1.3. Effective Hamiltonian for Weak Decays

We have argued in Sec. 1.1, that the physics at the weak scale does not couple to the dynamics
at the scale mB since MW ≫ mB ≫ ΛQCD. Thus, effects of particles with masses at and
above the electroweak scale can be absorbed into short-distance coefficients and we work in
the effective five flavour theory where the top quark and the heavy bosons are integrated out.
The decays B → Dπ and B → πππ proceed by the underlying weak transitions b → cūd
and b → qq̄d with q = u, d, respectively. The b → qq̄d transition is described by the weak
effective Hamiltonian [82, 28]

Heff =
GF√
2


p=u,c

λp


C1Qp

1 + C2Qp
2 +


i=3,...,6

CiQi


+ h.c. , (1.11)

whereas the weak effective Hamiltonian for the b→ cūd transition is more simple [82, 28]

Heff =
GF√
2
λp (C1Qp

1 + C2Qp
2) + h.c. , with p = c . (1.12)

Here and above, we have λp = VpbV
∗
pd and λt = −λu − λc. The effective local four-fermion

current-current operators in the Chetyrkin-Misiak-Münz (CMM) basis [83] read

Qp
1 = p̄γµ(1− γ5)TAb d̄γµ(1− γ5)TAu , (1.13)

Qp
2 = p̄γµ(1− γ5)b d̄γµ(1− γ5)u , (1.14)
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1. Exclusive Non-leptonic B Decays

where TA are generators of the SU(3) colour gauge group. Qp
1 is referred to as the colour octet

operator and Qp
2 as the colour singlet operator. The use of the CMM basis allows a consistent

treatment of γ5 in the naive dimensional regularization scheme with anticommuting γ5. The
QCD penguin operators Q3, . . . , Q6 are defined as follows8

Q3 = d̄γµ(1− γ5)b


q=u,d,s,c,b

q̄γµ(1− γ5)q , (1.15)

Q4 = d̄γµ(1− γ5)TAb


q=u,d,s,c,b

q̄γµ(1− γ5)TAq , (1.16)

Q5 = d̄γµ(1− γ5)b


q=u,d,s,c,b

q̄γµ(1 + γ5)q , (1.17)

Q6 = d̄γµ(1− γ5)TAb


q=u,d,s,c,b

q̄γµ(1 + γ5)T
Aq . (1.18)

Note that they do not arise in the description of B → Dπ decays as they do not involve
flavour transitions in both currents. The values for the Wilson coefficients C1, . . . C6 can be
found in [28] up to NLO accuracy. For the calculation of the two-loop transition amplitude
of the decay B̄0 → D+π− we further need the NNLO expressions for C1 and C2, which can be
obtained from [84, 85]. Moreover, as we perform the evaluation in dimensional regularization,
the operators Qc

1 and Qc
2 are supplemented by evanescent operators [84]

E
(1)
1 =


c̄γµγνγρ(1− γ5)TAb

 
ūγµγνγρ(1− γ5)TAd


− 16Qc

1 , (1.19)

E
(1)
2 = [c̄γµγνγρ(1− γ5)b] [ūγµγνγρ(1− γ5)d]− 16Qc

2 , (1.20)

E
(2)
1 =


c̄γµγνγργσγλ(1− γ5)TAb

 
ūγµγνγργσγλ(1− γ5)TAd


− 20E

(1)
1 − 256Qc

1 , (1.21)

E
(2)
1 =


c̄γµγνγργσγλ(1− γ5)b


[ūγµγνγργσγλ(1− γ5)d]− 20E

(1)
2 − 256Qc

2 . (1.22)

These are unphysical operators that vanish in d = 4 dimensions. However, they have to be
taken under consideration, since they mix with the physical operators under renormalization.
At two loops the set of operators given in Eqs. (1.13), (1.14) and (1.19)-(1.22) closes under
renormalization and thus will be sufficient for our two-loop calculation.

Finally, we have provided the basic framework for the two applications of QCDF. In the
next four chapters (Part I) we consider the first application, which is the calculation of the
NNLO vertex corrections to the decay B̄0 → D+π− in QCDF. Then we apply QCDF to the
decay B+ → π+π−π+ in Chap. 6 (Part II).

8At leading order in αs the only contributions to the decay B → πππ come from operators where the
quark-antiquark pair is either ūu or d̄d.
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NNLO corrections to the decay
B → Dπ
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Chapter 2

Soft Collinear Effective Theory and

Matching

We provide a brief introduction to Soft Collinear Effective Theory (SCET) and present the
leading power SCET Lagrangian for collinear and soft fields. Heavy quarks are described
in the framework of Heavy Quark Effective Theory. Moreover, we present the kinematics of
B̄0 → D+π− and briefly discuss this decay within SCET. In the last part of this chapter we
derive a master formula for the hard scattering kernels, which enter the factorization formula
Eq. (1.10), in terms of bare amplitudes and renormalization factors up to two-loop accuracy
by performing a matching of QCD to SCET.

2.1. Introduction to SCET

Soft Collinear Effective Theory (SCET) was developed in the beginning of this century [86–
88]. It provides a good description for physical processes involving jets of light hadrons, as
well as hard exclusive decays of heavy mesons with at least one light but energetic meson
in the final state. The effective theory is constructed in a systematic expansion in inverse
powers of the large scale of the process (e.g. the jet energy or the final-state energy) and
separates low-energy contributions from high-energy ones. This expansion is valid up to a
certain momentum cut-off and correctly reproduces the infrared behaviour of the process.
Effects of scales above this cut-off are absorbed into short-distance coefficients. Note that
the systematic expansion in the large energy leads to a non-local theory. Hence, SCET is
technically more challenging than QCD. For a good introduction to SCET see [89, 90].

We remark that in the description of exclusive non-leptonic B decays SCET is a tool to
prove QCDF in the heavy-quark limit. Factorization in SCET manifests itself on the level
of the Lagrangian and is therefore valid to any order in perturbation theory. In contrast,
factorization in QCDF is based on the analysis of momentum regions in Feynman diagrams
at a given order in perturbation theory.

In the following, we discuss the scaling of certain fields in terms of the expansion parameter

13



2. Soft Collinear Effective Theory and Matching

of the theory. Moreover, we present the leading power SCET Lagrangian, which is suitable
to describe the decay B̄0 → D+π−. Heavy Quark Effective Theory (HQET) [91] is a natural
part of SCET and heavy quarks thus will be described in HQET.

2.1.1. Scaling of the Fields

Power counting is performed in the expansion parameter λ of the effective theory, which
explicitly depends on the physical process. For B decays λ ∼ ΛQCD/E, where E ≫ ΛQCD

is a large scale (typically of order mB) and ΛQCD is the typical hadronic scale. Fields and
single components of the momenta scale differently with the large scale. To see their explicit
scaling behaviour, we define two light-like vectors nµ

+ and nµ
− which obey

n2
± = 0 , n+ · n− = 2 . (2.1)

Furthermore, we introduce a time-like vector

vµ =
1

2
(nµ

+ + nµ
−) , v2 = 1 , (2.2)

which will be used later to describe the velocity of the B meson in its rest frame. Any
four-vector pµ can be decomposed in terms of light-cone coordinates according to

pµ = (n+ · p)
nµ
−

2
+ (n− · p)

nµ
+

2
+ pµ⊥ ≡ pµ+ + pµ− + pµ⊥ , (2.3)

where the index ⊥ denotes the components perpendicular to n+ and n−. The scaling of
the different light-cone components pµ = (pµ+, p

µ
−, p

µ
⊥) can be expressed in terms of the

expansion parameter λ. For exclusive decays, such as B → Dπ, the relevant degrees of
freedom are collinear Fourier modes (corresponding to the scaling pµ ∼ (λ2, 1, λ)) to describe
the partons of the light energetic final-state mesons, and soft modes (corresponding to the
scaling pµ ∼ (λ, λ, λ)) for the soft partons inside the heavy mesons1. To obtain the scaling
behaviour of quark and gluon fields when restricted to collinear and soft modes, we first
consider a spinor ψc in full QCD that describes massless quarks with collinear momentum
and decompose it into two-component spinors

ψc = ξ(x) + η(x) , (2.4)

where

ξ = P+ψc =
/n+/n−

4
ψc , η = P−ψc =

/n−/n+

4
ψc . (2.5)

P± are projectors, i.e. P 2
± = P± and P+ + P− = 1. The spinors (2.5) satisfy the conditions

/n+ξ = 0 and /n−η = 0. Their scaling can be found by analyzing the two-point correlation
function of collinear fields

⟨0|T{ψ̄c,α(x), ψc,β(y)}|0⟩ =


d4p

(2π)4

i/pαβ
p2 + iϵ

e−ip(x−y) , (2.6)

1The theory for the description of exclusive decays is commonly referred to as SCETII. Fields and momenta
with a different scaling behaviour are used in the description of inclusive decays, where the corresponding
theory is denotes as SCETI.
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2.1. Introduction to SCET

where α and β denote the Dirac indices. Since ψc only contain collinear Fourier modes the
integration measure d4p = 1

2
dp+dp−dp

2
⊥ scales as λ4 and pµ ∼ (λ2, 1, λ). Projecting on the

two-component spinors one finds that ξ ∼ λ and η ∼ λ2. Hence, η is suppressed by a factor
λ with respect to ξ. In a similar manner, the scalings of qs, which is the full QCD quark field
restricted to soft Fourier modes, and the soft and collinear gauge fields Aµ

c and Aµ
s can be

obtained. One finds qs ∼ λ3/2 and the gauge fields scale like their corresponding momenta,
i.e. Aµ

c ∼ (λ2, 1, λ) and Aµ
s ∼ (λ, λ, λ).

2.1.2. Leading Power SCET Lagrangian

The derivation of the SCET Lagrangian for collinear and soft quarks interacting with
collinear and soft gluons is rather involved. Here, we only outline the most important
steps towards the leading power Lagrangian. For details see e.g. [88, 89].
We consider the QCD Lagrangian for massless quarks and gluons which are restricted to

soft and collinear momenta and decompose the full QCD spinor into a soft and a collinear
component, and similarly the full QCD gluon field Aµ = Aµ

c + Aµ
s

LQCD = ψ̄i /Dψ − 1

4
(F a)µν(F

a)µν

= (q̄s + ψ̄c)(i/∂ + g /Ac + g /As)(qs + ψc)−
1

4
(F a)µν(F

a)µν . (2.7)

First, we focus on the collinear sector of this Lagrangian, which is given by

LQCD
c = ψ̄ci /Dcψc + (F a

c )µν(F
a
c )

µν . (2.8)

Here, Dµ
c = ∂µ − igAµ

c and (F a
c )

µν = ∂µAν
c − ∂νAµ

c − ig [Aµ
c , A

ν
c ] are the collinear covariant

derivative and the collinear field strength tensor, respectively. We proceed by splitting the
four-spinor ψc into a large (ξ ∼ λ) and a small (η ∼ λ2) component and expand the Dirac
matrix γµ in terms of light-cone coordinates. Using the relations /n+ξ = /n−η = 0 and

ξ̄ /Dc⊥ξ = η̄ /Dc⊥η = 02 the Lagrangian becomes

LQCD
c = ξ̄ i(n+ ·Dc)

/n−

2
ξ + η̄ i(n− ·Dc)

/n+

2
η̄ + η̄i /Dc⊥ξ + ξ̄i /Dc⊥η + (Fc)µν(Fc)

µν . (2.9)

We further remove the small component η from the Lagrangian by solving the classical
equations of motion δLQCD

q /δη̄ = 0 and δLQCD
q /δη = 0, which results then read

η = − /
n−

2

1

in− ·Dc

i /Dc⊥ξ , η̄ = −ξ̄/i←−D c⊥
/n−

2

1

in− ·
←−
D c

. (2.10)

Inserting these expressions back into Eq. (2.9), one obtains after a few simplifications

Lc = ξ̄
/n−

2
i(n+ ·Dc) ξ + ξ̄

/n−

2
i /Dc⊥

1

in− ·Dc

i /Dc⊥ξ + (Fc)µν(Fc)
µν . (2.11)

2This is consequence of {/n±, /Dc⊥} = 0.
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2. Soft Collinear Effective Theory and Matching

This Lagrangian is exact to all orders in λ and is equivalent to the QCD Lagrangian Eq. (2.8),
but boosted to a reference frame where all fields are collinear3. Hence, a collinear sector in
which the quark and gluon fields are restricted to collinear Fourier modes is equivalent to
full QCD restricted to only soft momenta and then boosted. We will make use of this fact
in the explicit calculation of the two-loop colour octet hard scattering kernels in Sec. 5.1.
Next, we consider the soft sector of Eq. (2.7). It is simply given by the Lagrangian

Ls = q̄si /Dsqs + (Fs)µν(Fs)
µν , (2.12)

where Dµ
s = ∂µ − igAµ

s and (F a
s )

µν = ∂µAν
s − ∂νAµ

s − ig [Aµ
s , A

ν
s ] are the soft covariant

derivative and soft field strength tensor, respectively. It is exact to all orders in λ and thus,
also the soft sector when restricted to soft fields is equivalent to full QCD restricted to soft
momenta.
Finally, there are also interactions between the two sectors. Soft and collinear fields cannot

couple directly as such interactions would result in highly off-shell momenta and therefore
are absorbed in the short distance coefficients of the effective theory. However, there is an
additional long-distance mode which scales like pµ ∼ (λ2, λ, λ3/2) and is commonly referred
to as soft-collinear or “messenger” mode. Although such fields do not appear as external legs
they need to be included in the effective theory, since they can interact separately with the
soft and collinear fields without changing their scaling properties. The soft-collinear sector
is described by the soft-collinear Lagrangian Lsc. Its derivation proceeds analogously to the
collinear sector, splitting the soft-collinear spinor qsc into a large (∼ λ2) and a small (∼ λ5/2)
component and removing the small component from the Lagrangian. The result has a similar
structure as Lc. Since the explicit form of Lsc is not relevant for this work we refrain from
specifying it and refer to [89] for a definition. The leading power interaction term consists
of collinear and soft quarks and gluon fields coupling to a soft-collinear gauge field Asc. It
has to be expanded in λ for obtaining a Lagrangian with a single and homogeneous scaling
behaviour. To this point, we have omitted the dependence on position and considered all
fields as local. We do not go into further details here as they are not relevant for this
work, but just mention that in interactions with collinear and soft fields the light-cone
components of Asc(x) scale differently. At leading power one finds Asc(x) = Asc(x−) +O(λ)
in collinear interactions4. The soft-collinear gauge field has to be evaluated at the position
xµ− = (x·n−)n

µ
+/2, whereas all collinear fields remain at the position x. Similar, in interaction

with soft fields Asc(x) = Asc(x+) +O(λ) is the leading component. Hence, the requirement
of a homogeneous scaling leads to the non-local nature of SCET. The final leading power
interaction term reads

L(0)
int,s,c = q̄s(x)

/n+

2
g/n− · Asc(x+)qs(x) + ξ̄(x)

/n−

2
g/n+ · Asc(x−)ξ(x) + pure gluon terms .

(2.13)

So far, we have only considered the massless case. Particles with masses of order ΛQCD

can be included in above considerations by adding suitable mass terms. In contrast, effects

3Note that the factor n− ·Dc in the denominator only becomes meaningful after introducing Wilson lines
in SCET.

4This expansion is also referred to as multipole expansion.
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2.1. Introduction to SCET

of heavy quarks, which cannot be described by collinear and soft fields since their mass m
is much larger than ΛQCD, are described by the HQET Lagrangian [91] and short distance
coefficients. Taken into account that interactions of heavy quarks with collinear fields only
arise at subleading power, as they put the quark highly off-shell, the HQET Lagrangian
reads

LHQET = h̄v(iv ·Ds)hv +O (1/m) . (2.14)

The field hv describes a heavy quark moving with velocity v and satisfies /vhv = hv. It scales
like a soft quark field and the leading power interaction to soft-collinear fields takes the form

L(0)
int,HQET = h̄v(x)

/n+·v
2
gn− · Asc(x+)hv(x).

Putting all pieces together, the leading power SCET Lagrangian reads

LSCET = Lc + Ls + Lsc + LHQET + L(0)
int,s,c + L(0)

int,HQET . (2.15)

Note that for processes which involve two different heavy quarks a second heavy-quark
Lagrangian and a corresponding interaction term to the soft-collinear gluon field can be
added. It turns out, however, that by performing suitable field redefinitions the leading
power interaction terms vanish. To see this, we first consider the heavy-quark Lagrangian
LHQET and introduce Wilson lines in HQET. They arise from the fact that attachments of
soft gluons to a heavy quark are not power-suppressed. These interactions therefore need to
be resummed and as a result we obtain a Wilson line Sv(x) = P exp(ig

 0

−∞ ds v ·As(x+vs)),

where P is the path-ordered exponential. TheWilson line has the properties S†
vSv = SvS

†
v = 1

and (more importantly) S†
viv · DsSv = iv · ∂. By a suitable field redefinition hv(x) =

Sv(x)h
(0)
v (x) we find that at leading power LHQET transforms to the free-particle heavy-

quark Lagrangian LHQET = h
(0)
v iv · ∂h(0)v + O (1/m). The soft gluons do not couple to

the “sterile” fields h
(0)
v anymore but only interact with the Wilson lines. Whereas this

decoupling affects for instance the normalization of heavy-to-heavy form factors at zero recoil
in HQET [92, 93], one finds that suitable field redefinitions of the soft and collinear fields,
which involve soft-collinear Wilson lines, remove the leading power interactions between
these fields [88]. Hence, at leading power all interaction terms in Eq. (2.15) can be dropped.
This decoupling of soft and collinear interactions results in factorization of many physical
processes at leading power provided that external operators do not reintroduce soft-collinear
fields. In contrast, the existence of these interactions at subleading power usually implies
a breakdown of factorization. Next, we present the kinematics of B̄0 → D+π− and briefly
discuss this decay within SCET.

2.1.3. B → Dπ in SCET

The decay B̄0 → D+π− is mediated at parton level by the process b→ cūd. The kinematics
of the latter are shown in the tree-level Feynman diagram depicted in Fig. 2.1. All external
momenta are taken to be incoming here and throughout the rest of this work. The b and the
c quark are considered to be massive, while we treat the light d and u quark as massless. q4
and q3 denote the momenta of the b and the c quark, respectively, which fulfill the on-shell
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2. Soft Collinear Effective Theory and Matching

ū d

b c

q1 q2

q4 q3

Figure 2.1. – The tree-level Feynman diagram for the b → cūd transition in full (five flavour) QCD:
the black square represents the vertex of the effective weak interaction. q4 and q3 are the
momenta of the quark lines with masses mb and mc, respectively. q1+ q2 = q where q is the
momentum of the pion. All momenta are taken to be incoming.

constraints q24,3 = m2
b,c. The constituents of the pion share the momentum q with q1 = uq

and q2 = (1−u)q ≡ ūq, with u ∈ [0, 1] being the momentum fraction of the quarks inside the
pion entering Eq. (1.10) in a convolution of the hard scattering kernel and the pion LCDA.
The pion has a small invariant mass q2 ∼ Λ2

QCD. Note that for practical purpose we can set
q2 = 0 in the calculation of the QCD Feynman diagrams.
We choose a reference frame such that the heavy b quark within the B meson moves with

velocity qb = mbv + k, where k is a residual momentum of order ΛQCD and v is the velocity
of the B meson5. The b quark can then be described by the HQET Lagrangian Eq. (2.14).
In the B meson rest frame the pion and the D meson travel back-to-back, carrying an
energy E = mB/2 each. The invariant mass of the pion is of order Λ2

QCD and we define the
expansion parameter λ = ΛQCD/E. We further choose a reference frame such that the fast
pion moves in the light-cone direction n+ and assign a collinear momentum qµ ∼ (λ2, 1, λ)
to it. The leading Fock states of the pion can be described by the collinear Lagrangian
Eq. (2.11). As they nearly move in the same direction we describe them by the same type
of collinear SCET field χ, which satisfies the equations of motion /n+χ = 0 and χ̄/n+ = 0. In
the derivation of the factorization formula Eq. (1.10) the charm quark and consequently the
D meson were assumed to be heavy. Hence, we approximate the D meson by another heavy
meson moving with velocity v′. We can then describe the charm quark with momentum
qc = mcv

′+k′, where k′ is another residual momentum, by the HQET Lagrangian Eq. (2.14)
with the substitution v → v′. Since mc/mb ∼ O(1) we find that v · v′ ∼ O(1).
The tree-level operators for the corresponding heavy-to-heavy transition have been worked

out in [88]. For the calculation of the two-loop Feynman diagrams shown in Figs. 2.4 and 2.5
the basis has to be extended to include evanescent operators, which have been defined in [47]
for heavy-to-light transitions, and operators with a different chirality, to take into account
the non-vanishing mass of the charm quark. The complete basis is presented in the next
section in Eqs. (2.18)-(2.23).
Moreover, it was shown in [88] that in the leading power B̄0 → D+π− transition soft and

collinear interactions decouple to all orders in perturbation theory. The leading power decay
amplitude can be described by a B → D form factor and a pion LCDA, reproducing the
QCD factorization formula (1.10) in the large energy limit6. Hence, at a certain scale called,

5In the explicit calculation of the Feynman diagrams we use on-shell momenta and set kµ = 0.
6This is not a complete proof of factorization, as it is not shown that the convolution integrals


duT (u)Φ(u)

exist to all orders in perturbation theory.
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2.2. Derivation of the Master Formula

the matching scale (which lies below the momentum cut-off upon which the effective theory
is valid), the decay amplitudes in QCDF and SCET are equivalent in the heavy-quark limit7

and we can perform a matching of QCD onto SCET. From this a master formula for the
hard scattering kernels can be extracted. This is the topic of the next section.

2.2. Derivation of the Master Formula

We have seen in Chap. 1.1 that the hard scattering kernel can be calculated perturbatively
in an expansion in the strong coupling αs. For convenience we modify Eq. (1.9) and take
out an explicit factor 1/(4π) for each loop. The hard scattering kernel for the colour octet
and colour singlet operators is then given by an expansion of the form

T = T (0) +
αs

4π
T (1) +

αs

4π

2
T (2) +O(α3

s) . (2.16)

Here, we derive the expressions for T (0,1,2) in terms of bare amplitudes and renormalization
factors by performing a matching of QCD to SCET. The reasons for this matching are
twofold: First, the degrees of freedom of the decay are naturally described within SCET.
Second, in the matching many “factorizable” Feynman diagrams cancel (see Sec. 2.2.2 for
the proper definition of the diagrams).

2.2.1. Matching

The QCD amplitude for the b → cūd transition, which underlies the decay B̄0 → D+π−

at parton level, is described by the weak effective Hamiltonian given in Sec. 1.3. The
contributing operators are the QCD current-current operators Qc

1 and Qc
2 (see Eqs. (1.13)

and (1.14)). We will omit the superscript “c” on these operators throughout Part I of this
thesis. At the matching scale, the amplitudes in full QCD and in SCET are made equal
by adjusting the corresponding hard coefficients. The renormalized matrix elements of the
QCD operators Qi can then be expressed as a linear combination of a suitable basis of SCET
operators at leading power8

⟨Qi⟩ =

a

[Hia⟨Oa⟩+H ′
ia⟨O′

a⟩] . (2.17)

Here, Hia and H ′
ia are the matching coefficients, which by construction are finite in ϵ. The

basis of SCET operators is given by

O1 =χ̄
/n−

2
(1− γ5)χ h̄v′/n+(1− γ5)hv , (2.18)

O2 =χ̄
/n−

2
(1− γ5)γα⊥γβ⊥χ h̄v′/n+(1− γ5)γ⊥,βγ⊥,αhv , (2.19)

O3 =χ̄
/n−

2
(1− γ5)γα⊥γβ⊥γγ⊥γδ⊥χ h̄v′/n+(1− γ5)γ⊥,δγ⊥,γγ⊥,βγ⊥,αhv (2.20)

7Note that even though the hard fluctuations of the heavy b quark are integrated out, the energy E is still
of the order mB .

8 We use the same convention as in [47].
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and

O′
1 =χ̄

/n−

2
(1− γ5)χ h̄v′/n+(1 + γ5)hv , (2.21)

O′
2 =χ̄

/n−

2
(1− γ5)γα⊥γβ⊥χ h̄v′/n+(1 + γ5)γ⊥,αγ⊥,βhv , (2.22)

O′
3 =χ̄

/n−

2
(1− γ5)γα⊥γβ⊥γγ⊥γδ⊥χ h̄v′/n+(1 + γ5)γ⊥,αγ⊥,βγ⊥,γγ⊥,δhv . (2.23)

For simplicity the Wilson lines in the operators (2.18)-(2.23) have been suppressed. Since the
latter are non-local on the light-cone9, the full notation would be χ̄(tn−)[. . . ]χ(0). Therefore,
the coefficients Hia are also functions of the variable t and Eq. (2.17) must be interpreted as
a convolution product. The operators Eqs. (2.18)-(2.23) are all colour singlets. In that way
we have already take into account that the contributions of the colour octet operators vanish
when projected onto the pion, which is a colour singlet state. Moreover, all operators with
index a > 1 are evanescent, i.e. they vanish in d = 4. Note that the evanescence of these
operators can be shown by reducing them to the 16 bilinear covariants in d = 4 dimensions.
For technical details on the operators see [91, 94].
Eq. (2.17) is the matching relation from full (five flavour) QCD to SCET with three active

light flavours. Thus, ⟨Qi⟩ can be evaluated in a perturbative expansion in terms of both,
the matching coefficients and SCET operators on the one hand and the QCD amplitudes on
the other hand. We work in dimensional regularization and evaluate the one- and two-loop
amplitudes in the on-shell subtraction scheme. The renormalization of the strong coupling
is performed in the MS scheme. We first consider the expansion of ⟨Qi⟩ in terms of QCD
amplitudes in the following.

QCD Side

The expression for the renormalized matrix elements of the operators Qi (1.13) and (1.14)
up to the two-loop accuracy reads

⟨Qi⟩ =

A

(0)
ia +

αs

4π


A

(1)
ia + Z

(1)
extA

(0)
ia + Z

(1)
ij A

(0)
ja


+
αs

4π

2 
A

(2)
ia + Z

(1)
ij A

(1)
ja + Z

(2)
ij A

(0)
ja + Z

(1)
extA

(1)
ia + Z

(2)
extA

(0)
ia + Z

(1)
extZ

(1)
ij A

(0)
ja

+ (−i)δm(1)
b A

∗(1)
ia + (−i)δm(1)

c A
∗∗(1)
ia + Z(1)

α A
(1)
ia


+O


α3
s


⟨Oa⟩(0)

+ (A↔ A′)⟨O′
a⟩(0) . (2.24)

Here, a sum over a is understood with a = 1, 2, 3 and αs is the MS strong coupling con-
stant with five light flavours. The index i denotes the physical operators only (e.g. i = 1, 2)
whereas j includes also evanescent operators (i.e. j = 1, . . . , 6) (see Sec. 1.3 for the defi-
nition of the evanescent operators). The A(l) are the bare l-loop on-shell amplitudes (the
corresponding Feynman diagrams up to two loops are given in Sec. 2.2.2). A∗(1) (A∗∗(1))

9The non-locality is a result of the momentum distribution of the quarks forming the leading Fock states
of the pion LCDA.
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is the one-loop bare amplitude with a b (c) quark mass insertion on the heavy b (c) line.
The primed amplitudes are defined analogously. Z, Zext and Zα are renormalization factors
from operator renormalization, self-energy renormalization of all external legs and coupling
renormalization, respectively. They are defined in a perturbative expansion

Z = 1 +
∞
k=1

αk
s

(4π)k
Z(k) . (2.25)

Their explicit one-loop expressions are given in Sec. 5.1. The renormalization is performed
such that matrix elements of evanescent operators vanish also beyond tree level. However,
evanescent operators cannot be neglected right from the beginning as they yield physical
contributions as intermediate states in the products Z

(1)
ij A

(0,1)
ja and Z

(2)
ij A

(0)
ja . Note that we

have already substituted the SCET operators Oa and O′
a in Eq. (2.24), since at tree-level

their matrix elements are equivalent to the corresponding QCD operators, which are given
by the operators in Eqs. (2.18)-(2.23), except that all fields are QCD fields.

SCET Side

Similar to the QCD case, we can write down the expression for the renormalized matrix
elements of the SCET operators Eqs. (2.18)-(2.20). We find

⟨Oa⟩ =

δab +

α̂s

4π


M

(1)
ab + Y

(1)
ext δab + Y

(1)
ab


+


α̂s

4π

2 
M

(2)
ab + Y

(1)
extM

(1)
ab + Y (1)

ac M
(1)
cb + Ẑ(1)

α M
(1)
ab + Y

(2)
ext δab

+ Y
(1)
ext Y

(1)
ab + Y

(2)
ab


+O


α̂3
s


⟨Ob⟩(0) , (2.26)

where a = 1, 2, 3 and a sum over b = 1, 2, 3 is understood. α̂s is the strong coupling constant
in the MS scheme for three light flavours andM (l) are the bare l-loop SCET amplitudes. Y

(l)
ext,

Y (l) and Ẑ
(l)
α are the l-loop wave-function, operator and coupling renormalization constants,

respectively. They are defined in a perturbative expansion analogous to Eq. (2.25) except
that the strong coupling has only three light flavours. Note that there are no mass counter
term insertions with the b and c quarks, since the latter are treated as heavy quarks and
thus do not appear as dynamical fields anymore. The expression for the primed operators
Eqs. (2.21)-(2.23) is given by substituting M →M ′ and O → O′ in Eq. (2.26).
Eq. (2.26) can be simplified by a large amount. In dimensional regularization the on-shell

renormalization constants Yext are equal to unity and the bare on-shell amplitudes are zero,
since they contain only scaleless integrals, which vanish in dimensional regularization. We
thus arrive at the following simplified expression of Eq. (2.26)

⟨Oa⟩ =

δab +

α̂s

4π
Y

(1)
ab +


α̂s

4π

2

Y
(2)
ab +O


α̂3
s


⟨Ob⟩(0) , (2.27)

which for the primed operators takes a similar form. The Y (1,2) can be obtained from
Eq. (2.26) by using another regulator than dimensional regularization for handling the IR
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2. Soft Collinear Effective Theory and Matching

divergences. We remark that since we will evaluate the one- and two-loop amplitudes in the
on-shell subtraction scheme, the quantities H(l), A(l) and the hard scattering kernels T (l),
to be defined later, depend on the momentum fraction u of the pion (as do the correspon-
ding primed quantities). Whenever they appear along a renormalization factor Y (l) such as

Y
(1)
ac H

(1)
cb we must keep in mind that these expressions must be interpreted as a convolution

product
 1

0
du′ Y

(1)
ac (u, u′)H

(1)
cb (u′).

Hard Scattering Kernels

For relating the matching coefficients H and H ′ in Eq. (2.17) to the hard scattering kernels

we follow [47] and introduce two QCD operators Q(′)QCD = [q̄
/n−
2
(1−γ5)q][c̄ /n+(1∓γ5)b]. The

renormalized operators are then made equivalent to the renormalized SCET operators O1

and O′
1 by adjusting the corresponding hard coefficients. For the renormalized light-to-light

current we make the ansatz
q̄
/n−

2
(1− γ5)q


= Cq̄q


χ̄
/n−

2
(1− γ5)χ


. (2.28)

The matching coefficient Cq̄q is expressed as perturbative expansion in the five flavour cou-
pling (see Eq. (2.44) for the conversion of the three flavour to the five flavour coupling).

It receives a correction at O(α2
s) only, i.e. C

(1)
q̄q = 0, since at one loop only scaleless inte-

grals contribute. The heavy-to-heavy currents with different chiralities mix in the matching.
Thus, we make the ansatz

c̄ /n+(1− γ5)b

= CLL

FF


h̄v′/n+(1− γ5)hv


+ CLR

FF


h̄v′/n+(1 + γ5)hv


, (2.29)

c̄ /n+(1 + γ5)b

= CRL

FF


h̄v′/n+(1− γ5)hv


+ CRR

FF


h̄v′/n+(1 + γ5)hv


. (2.30)

The matching coefficients CFF are also given in an expansion in the five flavour coupling. For
the diagonal coefficients we have CLL,RR

FF = 1+O(αs). In contrast, the non-diagonal matching
coefficients that induce the chirality mixing only arise beyond tree level, i.e. CLR,LR

FF = O(αs).
The explicit one-loop expressions for the heavy-to-heavy coefficients are give in Sec. 5.1. One
finds at this order 

CLL
FF

(1)
=

CRR

FF

(1) ≡ C
D(1)
FF , (2.31)

CLR
FF

(1)
=

CRL

FF

(1) ≡ C
ND(1)
FF . (2.32)

Finally, we obtain

QQCD =


q̄
/n−

2
(1− γ5)q


c̄ /n+(1− γ5)b


= Cq̄qC

LL
FFO1 + Cq̄qC

LR
FFO′

1 , (2.33)

Q′QCD =


q̄
/n−

2
(1− γ5)q


c̄ /n+(1 + γ5)b


= Cq̄qC

RL
FFO1 + Cq̄qC

RR
FFO′

1 . (2.34)
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2.2. Derivation of the Master Formula

By construction QQCD and Q′QCD factorize into a light-to-light and a heavy-to-heavy cur-
rent and the matrix element of these operators is the product of a light-cone distribution
amplitude and the full QCD form factor with the corresponding helicity structure10.

We now consider the two hard scattering kernels T̂i and T̂
′
i that are defined in following

expression

⟨Qi⟩ = T̂i⟨QQCD⟩+ T̂ ′
i ⟨Q

′QCD⟩+

a>1

[Hia⟨Oa⟩+H ′
ia⟨O′

a⟩] . (2.35)

Comparing Eqs. (2.17) and (2.35) T̂i and T̂
′
i can then be related to the matching coefficients

as follows 
T̂i
T̂ ′
i


=


Cq̄qC

LL
FF Cq̄qC

RL
FF

Cq̄qC
LR
FF Cq̄qC

RR
FF

−1
Hi1

H ′
i1


. (2.36)

Plugging in the matching coefficients as expansions in the five flavour coupling αs, the
matrix can be inverted and we obtain the following expressions for the one- and two-loop
hard scattering kernels

T̂i = H
(0)
i1 +

αs

4π


H

(1)
i1 − CD(1)

FF H
(0)
i1 − CND(1)

FF H
′(0)
i1


+
αs

4π

2 
C

D(1)
FF

2
H

(0)
i1 +


C

ND(1)
FF

2
H

(0)
i1 − CLL(2)

FF H
(0)
i1 − C(2)

q̄q H
(0)
i1 − CD(1)

FF H
(1)
i1

+H
(2)
i1 − CLR(2)

FF H
′(0)
i1 + 2C

D(1)
FF C

ND(1)
FF H

′(0)
i1 − CND(1)

FF H
′(1)
i1


+O(α3

s) , (2.37)

T̂ ′
i = H

′(0)
i1 +

αs

4π


H

′(1)
i1 − CD(1)

FF H
′(0)
i1 − CND(1)

FF H
(0)
i1


+
αs

4π

2 
− CND(1)

FF H
(0)
i1 − CD(1)

FF H
′(0)
i1 +H

′(1)
i1 + 2C

D(1)
FF C

ND(1)
FF H

(0)
i1 − CRL(2)

FF H
(0)
i1

− CND(1)
FF H

(1)
i1 +


C

D(1)
FF

2
H

′(0)
i1 +


C

ND(1)
FF

2
H

′(0)
i1 − C(2)

q̄q H
′(0)
i1 − CRR(2)

FF H
′(0)
i1

− CD(1)
FF H

′(1)
i1 +H

′(2)
i1


+O(α3

s) . (2.38)

Before deriving the explicit expressions for T1,2 in terms of bare amplitudes and renormaliza-
tion factors up to two-loop accuracy, we present the Feynman diagrams that contribute to
the bare QCD amplitudes A(l) and A′(l) in Eq. (2.24).

2.2.2. Perturbative Contributions

We present the QCD Feynman diagrams that contribute to the amplitudes A(l) and A′(l) up
to two-loop accuracy. In the following we will only consider A(l), but the same considerations
apply for the primed amplitudes.

10Using Eqs. (2.1), (B.21) and (B.24) one can show that the identity

q̄γµ(1 ∓ γ5)q


c̄ γµ(1 − γ5)b


=

q̄
/n−
2 (1∓ γ5)q


c̄ /n+(1− γ5)b


holds at leading power.
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2. Soft Collinear Effective Theory and Matching

Figure 2.2. – “Factorizable” one-loop diagrams contributing to A(1)f . The first diagram is part of A(1)fh

and the second one contributes to A(1)fl.

Figure 2.3. – “Non-factorizable” vertex corrections contributing to A(1)nf .

For performing the matching it is convenient to split the amplitudes into a “factorizable” (f)
and a “non-factorizable” (nf) part

A(l) = A(l)f + A(l)nf . (2.39)

All Feynman diagrams where the heavy-to-heavy current factorizes from the light-to-light
current are collected in A(l)f . The contributions, where both currents are connected by a
hard gluon exchange are part of A(l)nf . Note that we have adopted the notation from [27] and
have used quotation marks in order to distinguish from the factorizable and non-factorizable
contributions to the decay amplitude Eq. (1.1). We further divide the “factorizable” ampli-
tude as follows

A(l)f = A(l)fh + A(l)fl + A(l)fhl . (2.40)

Here, A(1)fh and A(1)lf contain all Feynman diagrams where the hard gluon is exchanged only
between the two heavy or the two light quarks, respectively. All Feynman diagrams with
hard gluon interactions between the two heavy quarks and between the two light quarks are
described by A(l)fhl11 The corresponding one- and two-loop Feynman diagrams are presented
below.

Tree-level and One-loop

The tree-level bare amplitude A(0) is given by the single Feynman diagram depicted in
Fig. 2.1. In the following we omit the arrows and the inscriptions on the fermion lines.

The set of Feynman diagrams describing the one-loop bare amplitude A(1) is shown in
Figs. 2.2 and 2.3. The diagrams in Fig. 2.2 belong to the “factorizable” amplitude A(1)f .
The first (second) diagram is the single contribution to A(1)fh (A(1)fl). In Fig. 2.3 we find
the “non-factorizable” vertex corrections which constitute A(1)nf .

11The only contribution to A(l)fhl up to two-loop accuracy is the last diagram shown in Fig. 2.6.
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1a1 a

c

2 a

c

3 a1a 2a 3a

b c d b d bc

4 a 5 a 64 a a 7 a4a 4 a5a 6a 7a

b b b b

8a

b c d

9a

b

10a

b c d

11a

b

12a

b c d

13a

b c d

14a

b c d

15a

b c d

16a

b c d

18a

b c d

19a

b c d

17a

b c d

Figure 2.4. – First part of the two-loop Feynman diagrams contributing to A(2)nf (pictures adopted
from [27]). The curly lines denote gluon propagators.
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2. Soft Collinear Effective Theory and Matching

Figure 2.5. – Second part of the two-loop Feynman diagrams contributing to A(2)nf . Gluons, massless
u, d, s quarks and the massive charm and bottom run in the fermion loop.

bla

Figure 2.6. – The “factorizable” two-loop diagrams which constitute to A(2)f : Gluons and the quarks u,
d, s, c, and b run in the fermion loop.

Two-loop

The “non-factorizable” bare amplitudeA(2)nf consists of the 66 diagrams depicted in Figs. 2.4
and 2.5. The “factorizable” two-loop diagrams contributing to the bare amplitude are shown
in Fig. 2.6. We proceed with the derivation of the tree-level and one-loop matching relations.

2.2.3. Tree-level and One-loop

For performing the matching we have to compensate for the difference in dynamical flavours
on the QCD and on the SCET side. Therefore, we convert the three flavour coupling constant
to the five flavour one as described in the following12.

12Note that the calculation follows similar lines, if instead one converts the five flavour to the three flavour
coupling.
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2.2. Derivation of the Master Formula

The relation between the five flavour (αs) and the four flavour (α
(4)
s ) coupling constants

can be expressed as

αs = ξ45α
(4)
s . (2.41)

Here, ξ45 is four-to-five flavour conversion factor which can be written as an expansion in
the five flavour coupling

ξ45 = 1 + αsξ
(1)
45 +O


α2
s


. (2.42)

Inserting this in Eq. (2.41) one obtains

α(4)
s = αs − ξ(1)45 α

2
s +O(α3

s) . (2.43)

Analogously, one can derive a relation between the four flavour and the three flavour coupling,
which is denoted by α̂s, with the four-to-three flavour conversion factor ξ34. The final
expression for converting the three flavour to the five flavour coupling constant is given by

α̂s = αs +

−ξ(1)34 − ξ(1)45


α2
s +O(α3

s) . (2.44)

At tree level the matching relations Eqs. (2.33) and (2.34) for the QCD and SCET currents
are simply given by

⟨QQCD⟩(0) = ⟨O1⟩(0) , (2.45)

⟨Q′QCD⟩(0) = ⟨O′
1⟩(0) . (2.46)

Comparing Eqs. (2.17) and (2.24) we obtain H
(0)
i1 = A

(0)
i1 and H

′(0)
i1 = A

′(0)
i1 . However, the

contribution of A
′(0)
i1 and hence H

′(0)
i1 vanishes since at tree level, the QCD operators Qi

cannot mix with O′
1, which has a different Dirac structure. The tree-level matrix element

of the colour octet operator Q1 is zero when projected onto the singlet operator O1, i.e.
H

(0)
11 = A

(0)
11 = 0. From Eq. (2.36) we further obtain T̂

(0)
2 = H

(0)
21 and T̂

′(0)
2 = H

′(0)
21 . With

A
(0)
21 = H

(0)
21 = 1, the result for the tree-level hard scattering kernels is given by

T̂
(0)
1 = 0 , T̂

′(0)
1 = 0 , (2.47)

T̂
(0)
2 = 1 , T̂

′(0)
2 = 0 . (2.48)

Hence, the tree-level hard scattering kernel is independent of the momentum fraction u of
the pion. In the factorization formula (1.10) the integration over u simply yields the pion
decay constant fπ, which is multiplied by a B → D form factor. We find that at leading
order in αs and at leading power in ΛQCD/mB the factorization formula (1.10) reproduces
the result of the naive factorization, as anticipated in Sec. 1.1.
Next, we derive the expressions for the one-loop hard scattering kernels. At this order

α̂s = αs (see Eq. (2.44)) and hence there do not appear conversion factors ξ45 and ξ34 in the
one-loop matching. The one-loop expression for the QCD amplitude can be extracted from
Eq. (2.24)

⟨Qi⟩(1) =

A

(1)
ia + Z

(1)
extA

(0)
ia + Z

(1)
ij A

(0)
ja


⟨Oa⟩(0) + (A↔ A′)⟨O′

a⟩(0) . (2.49)
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From the matching relation Eq. (2.17) we also find

⟨Qi⟩(1) = H
(1)
ib ⟨Ob⟩(0) +H

(0)
ic ⟨Oc⟩(1) + (H ↔ H ′,O ↔ O′) . (2.50)

The one-loop matrix element of the SCET operators can be obtained from Eq. (2.27)

⟨Oc⟩(1) = Y
(1)
cb ⟨Ob⟩(0) , ⟨O′

c⟩(1) = Y
(1)
cb ⟨O′

b⟩(0) , (2.51)

and we arrive at

⟨Qi⟩(1) = H
(1)
ib ⟨Ob⟩(0) +H

(0)
ic Y

(1)
cb ⟨Ob⟩(0) + (H ↔ H ′,O ↔ O′) . (2.52)

We remark that only b = 1, 1′ contribute since the tree-level matrix elements of the evanescent
operators vanish in d = 4 dimensions.
First, we consider the matrix element of the colour singlet operator Q2. At this point it

is convenient to bring the corresponding hard scattering kernels T̂2 and T̂ ′
2 into play. Their

one-loop expressions can be extracted from Eqs. (2.37) and (2.38). For the colour singlet
kernel they read

T̂
(1)
2 = H

(1)
21 − CD(1)

FF , T̂
′(1)
2 = H

′(1)
21 − CND(1)

FF , (2.53)

and Eq. (2.52) takes the form (with H
′(0)
2c = 0)

⟨Q2⟩(1) =

T̂

(1)
2 + C

D(1)
FF + Y

(1)
11


⟨O1⟩(0) +


T̂

′(1)
2 + C

ND(1)
FF


⟨O′

1⟩(0) . (2.54)

Next, we consider the operatorQQCD which has the same colour structure asQ2. Its one-loop
matrix element can be extracted from the matching relation Eq. (2.33)

⟨QQCD⟩(1) =

C

D(1)
FF + Y

(1)
11


⟨O1⟩(0) + C

ND(1)
FF ⟨O′

1⟩(0) , (2.55)

where we have used Eq. (2.51) and CLR,LR
FF = O(αs). On the other hand, ⟨QQCD⟩(1) can be

expressed in terms of QCD amplitudes. By definition QQCD factorizes into a heavy-to-heavy
and a light-to-light current and thus its one-loop matrix element reads

⟨QQCD⟩(1) =

A

(1)fh
21 +


Z

(1)
hh + Z

(1)fh
ext


A

(0)
21 + A

(1)fl
21 +


Z

(1)
BL + Z

(1)fl
ext


A

(0)
21


⟨O1⟩(0)

+ (A↔ A′)⟨O′
1⟩(0) . (2.56)

Here, Zhh is the renormalization constant for the heavy-to-heavy QCD current and ZBL

is the well known ERBL kernel for massless quarks which are separated by a light-like
distance [50, 51]. Note that the heavy-to-heavy vector and axial vector currents are conserved
and thus ZhhA21 = 1 to all orders in perturbation theory. The one-loop ERBL kernel vanishes
when convoluted with the on-shell amplitude A

(0)
21 , which is just a constant. The amplitudes

A(1)fh and A(1)fl with A(1)fh + A(1)fl = A(1)f are defined in Fig. 2.2. The wave function
renormalization constant for the heavy-to-heavy (light-to-light) current Z

(1)fh
ext (Z

(1)fl
ext ) by

definition factorizes for all loops

Z
(l)
ext = Z

(l)fh
ext + Z

(l)fl
ext . (2.57)
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The simplified version of Eq. (2.56) then reads

⟨QQCD⟩(1) =

A

(1)f
21 + Z

(1)
extA

(0)
21


⟨O1⟩(0) + (A↔ A′)⟨O′

1⟩(0) . (2.58)

We remark that the corresponding expression for the one-loop matrix element of the primed
operatorQ′QCD is not independent of Eq. (2.58) and thus does not yield any new information.

By equating Eqs. (2.55) and (2.58), we can extract an expression each for C
D(1)
FF and C

ND(1)
FF

in terms of bare QCD amplitudes and renormalization factors, which can be substituted in
Eq. (2.54). In a comparison of the coefficients proportional O1 in Eqs. (2.54) and (2.49)
the “factorizable” contribution A(1)f cancels on each side of the equation and we obtain the
simple result for the hard kernel

T̂
(1)
2 = A

(1)nf
21 + Z

(1)
2j A

(0)
j1 . (2.59)

The amplitude A
(1)nf
21 vanishes when projected onto the singlet operator O1. Moreover,

A
(0)
j1 = 0 for j ̸= 2 and Z

(1)
22 = 0, which can be seen in the explicit expression of Z(1) given in

Eq. (5.2). Thus, T̂
(1)
2 is equal to zero. Similar considerations can be applied for the primed

one-loop kernel and we find that T̂
′(1)
2 vanishes as well. Hence, at one-loop the colour singlet

hard scattering kernels vanishes.
Let us in the following consider the contribution of the colour octet operator Q1. The

one-loop expressions for T̂1 and T̂ ′
1 can be obtained from Eqs. (2.37) and (2.38) and read

T̂
(1)
1 = H

(1)
11 , T̂

′(1)
1 = H

′(1)
11 . (2.60)

Eq. (2.52) then simplifies to (considering that H
(0)
1c = H

′(0)
1c = 0)

⟨Q1⟩(1) = T̂
(1)
1 ⟨O1⟩(0) + (T̂ ′

1)
(1)⟨O′

1⟩(0) . (2.61)

Comparing this expression with Eq. (2.49) we find (with A
(0)
11 = A

′(0)
11 = 0)

T̂
(1)
1 = A

(1)
11 + Z

(1)
1j A

(0)
j1 , T̂

′(1)
1 = A

′(1)
11 + Z

(1)
1j A

′(0)
j1 . (2.62)

The diagrams contributing to the “factorizable” amplitudes A(1)f and A′(1)f are shown in
Fig. 2.2. The first diagram vanishes for the insertion of the Q1 when projected onto the
singlet SCET operator. The second diagram does not contribute either, since it is a scaleless
diagram and thus vanishes in dimensional regularization. Hence, only the “non-factorizable”
diagrams shown in Fig. 2.3 survive. The final results for the one-loop hard scattering kernels
then read

T̂
(1)
1 =


A

(1)nf
11 + Z

(1)
1j A

(0)
j1


, T̂

′(1)
1 =


A

′(1)nf
11 + Z

(1)
1j A

′(0)
j1


, (2.63)

T̂
(1)
2 = 0 , T̂

′(1)
2 = 0 . (2.64)

We shall remember that in the convolution of Z(1) with the tree-level QCD amplitudes
evanescent operators appear.
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2.2.4. Two-loop

At two-loop accuracy we obtain a contribution from the conversion of the three-flavour to
the five-flavour coupling (2.44). Whereas Eq. (2.24) remains the same, namely

⟨Qi⟩(2) =

A

(2)
ia + Z

(1)
ij A

(1)
ja + Z

(2)
ij A

(0)
ja + Z

(1)
extA

(1)
ia + Z

(2)
extA

(0)
ia + Z

(1)
extZ

(1)
ij A

(0)
ja

+ (−i)δm(1)
b A

∗(1)
ia + (−i)δm(1)

c A
∗∗(1)
ia + Z(1)

α A
(1)
ia


⟨Oa⟩(0)

+ (A↔ A′)⟨O′
a⟩(0) , (2.65)

the two-loop the SCET matrix element in Eq. (2.27) acquires an additional contribution

⟨Oa⟩(2) =

Y

(2)
ab −


ξ
(1)
34 + ξ

(1)
45


Y

(1)
ab


⟨Ob⟩(0) . (2.66)

A similar modification applies to the matrix elements of the primed operators. Next, we
write down an expression for Qi from the matching relation Eq. (2.17)

⟨Qi⟩(2) =

H

(2)
ia +H

(1)
i1 Y

(1)
1a +


b̸=1

H
(1)
ib Y

(1)
ba +H

(0)
ib


Y

(2)
ba −


ξ
(1)
34 + ξ

(1)
45


Y

(1)
ba


⟨Oa⟩(0)

+ (H ↔ H ′)⟨O′
a⟩(0) (2.67)

In the following, we focus on the contribution of the colour singlet operator. From Eqs. (2.37)
and (2.38) we obtain the two-loop expressions for the hard kernels

T̂
(2)
2 = H

(2)
21 − CLL(2)

FF − C(2)
q̄q , (2.68)

T̂
′(2)
2 = H

′(2)
21 − CRL(2)

FF . (2.69)

Here, we have made use of Eq. (2.53) and the fact that the one-loop colour singlet kernels

T
(1)
2 and T

′(1)
2 are zero. From these equations we can extract expressions for H

(2)
21 and H

′(2)
21

and substitute them in Eq. (2.67), which then reads

⟨Q2⟩(2) =

T̂

(2)
2 + C

(2)
q̄q + C

LL(2)
FF + Y

(2)
11 −


ξ
(1)
34 + ξ

(1)
45


Y

(1)
11 +H

(1)
21 Y

(1)
11 +


b̸=1

H
(1)
2b Y

(1)
b1


⟨O1⟩(0)

+

T̂

′(2)
2 + C

RL(2)
FF +H

′(1)
21 Y

(1)
11 +


b̸=1

(H ′
2b)

(1)Y
(1)
b1


⟨O′

1⟩(0) . (2.70)

Next, we consider the two-loop matrix element of QQCD, which in terms of QCD amplitudes
is given by

⟨QQCD⟩(2) =

A

(2)f
21 +


Z

(1)
hh + Z

(1)
BL + Z

(1)
ext


A

(1)f
21 +


Z

(2)
hh + Z

(2)
BL + Z

(2)
ext


A

(0)
21

+ Z
(1)
hh Z

(1)
BLA

(0)
21 + Z

(1)
ext


Z

(1)
hh + Z

(1)
BL


A

(0)
21 + Z(1)

α A
(1)f
21

+ (−i)δm(1)
b A

∗(1)f
21 + (−i)δm(1)

c A
∗∗(1)f
21


⟨O1⟩(0)

+ (A↔ A′)⟨O′
1⟩(0) . (2.71)
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2.2. Derivation of the Master Formula

This expression can be simplified considering that Z
(2,1)
hh A

(0)
21 and Z

(1)
hhA

(1)(f)
21 vanish, as the

heavy-to-heavy current is conserved. Moreover, the convolution of the ERBL kernel with an
expression which is a constant in u yields zero. Hence, Z

(2,1)
BL A

(0)
21 = 0 as well as Z

(1)
BLA

(1)f
21

(Two diagrams contribute to A
(1)f
21 (see Fig. 2.2), the first is a constant with respect to u

and second is a scaleless integral vanishing in dimensional regularization). Eq. (2.71) then
takes the form

⟨QQCD⟩(2) =

A

(2)f
21 + Z

(1)
extA

(1)f
21 + Z

(2)
extA

(0)
21 + Z(1)

α A
(1)f
21

+ (−i)δm(1)
b A

∗(1)f
21 + (−i)δm(1)

c A
∗∗(1)f
21


⟨O1⟩(0)

+ (A↔ A′)⟨O′
1⟩(0) (2.72)

On the other hand, ⟨QQCD⟩(2) can be obtained from the relation (2.33)

⟨QQCD⟩(2) =

C

(2)
q̄q + C

LL(2)
FF + C

D(1)
FF Y

(1)
11 + Y

(2)
11 −


ξ
(1)
34 + ξ

(1)
45


Y

(1)
11


⟨O1⟩(0)

+

C

LR(2)
FF + C

ND(1)
FF Y

(1)
11


⟨O′

1⟩(0) . (2.73)

By equating Eqs. (2.72) and (2.73) we can extract an expression for C
(2)
q̄q and substitute in

Eq. (2.70). A comparison of the coefficients proportional to ⟨O1⟩(0) in Eqs. (2.70) and (2.65)
then yields

T̂
(2)
2 = A

(2)
21 − A(2)f

21 + Z
(1)
ext


A

(1)
21 − A(1)f

21


+ Z(1)

α


A

(1)
21 − A(1)f

21


+ Z

(1)
2j A

(1)
j1 + Z

(2)
2j A

(0)
j1

+ (−i)δm(1)
b


A

∗(1)
21 − A∗(1)f

21


+ (−i)δm(1)

c


A

∗∗(1)
21 − A∗∗(1)f

21


+ Z

(1)
extZ

(1)
2j A

(0)
j1

− Y (1)
11


−CD(1)

FF +H
(1)
21


−

b̸=1

H
(1)
2b Y

(1)
b1 . (2.74)

We find that the “factorizable” one-loop amplitudes cancel and the one-loop “non-factorizable”
amplitudes with and without mass insertion are zero. Moreover, the last three terms vanish
since either A

(0)
j1 or Z

(1)
2j is zero and T̂

(1)
2 = −CD(1)

FF +H
(1)
21 = 0, as well as H

(1)
2b = 0 with b > 1,

which can be seen by an explicit calculation. Finally, we arrive at the simple result

T̂
(2)
2 =


A

(2)nf
21 + Z

(1)
2j A

(1)
j1 + Z

(2)
2j A

(0)
j1


. (2.75)

The derivation for T̂
′(2)
2 follows the same lines. But instead of Eqs. (2.71) and (2.73) we

use the corresponding equations for the primed operator Q′QCD to extract an expression
for C

RL(2)
FF . The final result has the same form as T̂

(2)
2 and is given by Eq. (2.75) replacing

A↔ A′.
At last, we derive the two-loop contribution of the colour octet operator. From Eqs. (2.37)

and (2.38) we obtain an expression for two-loop hard scattering kernels

T̂
(2)
1 = −CD(1)

FF H
(1)
11 − CND(1)

FF H
′(1)
11 +H

(2)
11 , (2.76)

T̂
′(2)
1 = −CND(1)

FF H
(1)
11 − CD(1)

FF H
′(1)
11 +H

′(2)
11 . (2.77)
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From these we extract H
(2)
11 and H

′(2)
11 and insert them into Eq. (2.67), which using Eq. (2.60),

takes the form

⟨Q1⟩(2) =

T̂

(2)
1 + T̂

(1)
1


C

D(1)
FF + Y

(1)
11


+ T̂

′(1)
1 C

ND(1)
FF +


b̸=1

H
(1)
1b Y

(1)
b1


⟨O1⟩(0)

+

T̂

′(2)
2 + T̂

′(1)
1


C

D(1)
FF + Y

(1)
11


+ T̂

(1)
1 C

ND(1)
FF +


b̸=1

H
′(1)
1b Y

(1)
b1


⟨O′

1⟩(0) . (2.78)

A comparison of this equation with Eq. (2.65) yields

T̂
(2)
1 = A

(2)
11 + Z

(1)
1j A

(1)
j1 + Z

(2)
1j A

(0)
j1 + (−i)δm(1)

b A
∗(1)
11 + (−i)δm(1)

c A
∗∗(1)
11 + Z(1)

α A
(1)
11

+ Z
(1)
extA

(1)
11 + Z

(1)
extZ

(1)
1j A

(0)
j1 −


C

D(1)
FF + Y

(1)
11


T̂

(1)
1 − CND(1)

FF T̂
(1)
1 −


b̸=1

H
(1)
1b Y

(1)
b1 . (2.79)

For the colour singlet operator, all one-loop “factorizable” amplitudes with and without mass
insertion are zero (see discussion for the one-loop kernels). Moreover, the “factorizable” two-

loop amplitudes A
(2)f
11 (see Fig. 2.6) are zero, since the corresponding diagrams are either

scaleless and vanish in dimensional regularization or they do not yield a contribution to the
colour singlet SCET operator. With Z

(1)
1j A

(0)
j1 = T̂

(1)
1 − A

(1)nf
11 (Eq. (2.64)) we obtain the

following expression for the two-loop octet hard scattering kernel

T̂
(2)
1 = A

(2)nf
11 + Z

(1)
1j A

(1)
j1 + Z

(2)
1j A

(0)
j1 + Z(1)

α A
(1)nf
11 + (−i)δm(1)

b A
∗(1)nf
11 + (−i)δm(1)

c A
∗∗(1)nf
11

− T̂ (1)
1


C

D(1)
FF + Y

(1)
11 − Z(1)

ext


− CND(1)

FF T̂
′(1)
1 −


b̸=1

H
(1)
1b Y

(1)
b1 . (2.80)

The quantities Y
(1)
b1 and H

(1)
1b are explained in more detail in Sec. 5.1. Similarly, one can

derive the expression for the primed kernel T̂
′(2)
1 . The result is given by Eq. (2.80) with the

replacement (A↔ A′, H ↔ H ′, T ↔ T ′).
We remark that Eqs. (2.75) and (2.80) have a structure similar to the corresponding

expressions for the two-loop hard scattering kernels for the decay B → ππ, which are given
in Eq. (24) in [47]13. The main differences are the additional mass counter term in Eq. (2.80),

which arises from the massive charm quark, and the off-diagonal element C
ND(1)
FF T̂

′(1)
1 , which

is a result of the mixing of the heavy-to-heavy currents with different chiralities.
Since the two-loop amplitudes A(2)nf in Eqs. (2.75) and (2.80) are technically the most

challenging contributions to the hard kernels, we proceed with their evaluation in the next
two chapters. The renormalization factors and matching coefficients will be discussed in
Sec. 5.1, as well as the results for the hard scattering kernels.

13Note that for the colour singlet kernel Eq. (24) in [47] reduces to Eq. (2.75).
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Chapter 3

Simplification of the Two-loop Amplitudes

In this chapter, we present the calculational techniques and tools that we use for the evalua-
tion of the two-loop two-scale Feynman integrals shown in Figs. 2.4 and 2.5. First, all tensor
integrals are decomposed into scalar ones and tensorial structures by applying the Passarino-
Veltman decomposition. The subsequent calculation is then divided into two parts: the
evaluation of the scalar integrals on the one hand and on the other hand the reduction of
the strings of Dirac γ-matrices which are contracted with the tensorial structures to a set of
known operators.

We use the Laporta algorithm which is based on integration by part identities to reduce
the large number of integrals to a set of a few rather simple ones, the master integrals. The
evaluation of the latter is topic of Chap. 4. Finally, we briefly comment on the reduction of
the γ-matrices to the operator basis given in Eqs. (2.18)-(2.23).

3.1. Passarino-Veltman Decomposition

Most of the techniques that we use for the evaluation of the two-loop two-scale Feynman
integrals have been worked out for scalar integrals. Therefore, we first reduce all tenso-
rial integrals to scalar ones. A well-known procedure for performing this reduction is the
Passarino-Veltman (PV) decomposition [95] which will be explained below1.

In QCD, by definition, all tensor integrals stemming from multi-loop Feynman integrals
are Lorentz invariant quantities. One may easily check that the two-loop integrals shown
in Figs. 2.4 and 2.5 carry at most four Lorentz indices. For simplicity we consider in the
following an integral with m internal loops and two Lorentz indices (µ, ν) that depends on
two external independent on-shell momenta q1 and q2

Iµν(q1, q2) =


ddk1 . . . d

dkm
kµi k

ν
j

Ea1
1 . . . Ean

n

. (3.1)

1In the amplitude, there also appear scalar integrals that will not change during this decomposition.
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3. Simplification of the Two-loop Amplitudes

Here, ki,j are the loop momenta and the indices i, j run from 1 to m. The al are positive
integers and the El denote the denominators of the Feynman propagators (or just propagators
for short). The explicit expression for the propagators is given by El = p2l−m2

l+iη, where pl is
the off-shell momentum flowing in the internal line l and ml is the mass of the corresponding
line (p2l ̸= m2

l ). The pl can be expressed as linear combinations of q1, q2 and the loop
momenta ki. The small imaginary part iη, η > 0, indicates the location of the poles of the
propagator in the complex plane. For compactness of notation we will omit the iη description
in the following. In the final results displayed in this chapter we anyway find that iη can be
safely dropped.
We further assume that the integral (3.1) is symmetric in µ and ν. After integrating over

all loop momenta, the result only depends on the external momenta q1 and q2 as well as the
initial Lorentz structure. Hence, we construct the following ansatz for the decomposition

Iµν(q1, q2) =q
µ
1 q

ν
1C1 + qµ1 q

ν
2C2 + qµ2 q

ν
1C3 + qµ2 q

ν
2C4 + gµνC5 . (3.2)

The Ck are linear combinations of scalar loop integrals and only depend on the Lorentz
invariant combinations of the external momenta (q21 = m2

1, q
2
2 = m2

2, q1 · q2). All information
about the Lorentz structure of Iµν(q1, q2) is now contained in the four-vectors qµr q

ν
r′ and the

symmetric tensor gµν . The explicit form of the scalar loop integrals will be addressed in
the next section. Multiplying Eq. (3.2) by qµr q

ν
r′ and gµν , respectively, the tensor integral

on the left hand side reduces to a scalar integral, denoted by I1, . . . , I5 for the five different
equations. We obtain a set of five independent equations that suffices to determine the five
unknown coefficients C1−5 in terms of the scalar integrals I1, . . . , I5.

As an example we consider the decomposition of the one-loop integral

Iµν(p) =


ddk

(2π)d
kµkν

[(p− k)2 −m2] k2
, (3.3)

where k is the loop momentum and p the on-shell external momentum with p2 = m2. For
this integral the ansatz (3.2) simplifies to

Iµν(p) = pµpνC1(m
2) + gµνC2(m

2) . (3.4)

Multiplying Eq. (3.4) by pµpν and gµν , respectively, we obtain two equations
ddk

(2π)d
(k · p)(k · p)

[(p− k)2 −m2] k2
≡ I1 =


p2
2
C1(m

2) + p2C2(m
2) , (3.5)

ddk

(2π)d
(k · k)

[(p− k)2 −m2] k2
≡ I2 = p2C1(m

2) + dC2(m
2) , (3.6)

from which we can extract the coefficients

C1(m
2) =

d

(d− 1)m4
I1 −

1

(d− 1)m2
I2 , (3.7)

C2(m
2) = − 1

(d− 1)m2
I1 +

1

(d− 1)
I2 . (3.8)

34



3.2. Scalar Integrals

Note that Eq. (3.2) is only based on Lorentz invariance and thus this general ansatz is
independent of the number of loop momenta and propagators. Moreover, it can easily be
extended to integrals with a different Lorentz structure and an arbitrary number of external
momenta.

3.2. Scalar Integrals

The scalar loop integrals that appear as linear combinations in the coefficients Ck in Eq. (3.2)
are formally given by expressions of the form

ddk1 . . . d
dkm

K

Ea1
1 . . . Ean

n

. (3.9)

Here, K consists of products of the various possible combinations of the scalar products
(ki · kj) and (qr · kj) (or it simply is 1). For later purpose it is convenient to express the
products in terms of the propagators El. Using the on-shell conditions q2r = m2

r we can
rewrite (ki · kj) and (qr · kj) and as follows

ki · kj =
1

2


(ki + kj + p̃)2


− 1

2


k2i + k2j + p̃2 + 2kip̃+ 2kj p̃


, (3.10)

qr · kj =
1

2


(qr + kj + p̃)2 −m2

r


− 1

2


k2j + p̃2 + 2qrp̃+ 2kj p̃


. (3.11)

Here, p̃ is a linear combination of external and loop momenta chosen such that the first
bracket of the right hand side of each equation exactly matches one of the propagators El.
By successively applying replacements similar to Eqs. (3.10) and (3.11) one may be able
to express all scalar products which appear in K in terms of the propagators. However,
if the number of possible scalar products of a given Feynman integral exceeds the number
n of propagators, not all scalar products can be reduced to propagators. We write these
irreducible scalar products in form of new “propagators” which appear in the numerator
only. Thus, formally they look like propagators raised by a negative power. Hence, after
expressing all scalar products in terms of propagators Eq. (3.9) takes the form

ddk1 . . . d
dkm

1

E ã1
1 . . . E ãs

s

, s ≥ n . (3.12)

Here, the El with n < l ≤ s arise from the irreducible scalar products and thus the corre-
sponding powers ãl are negative integers. The ãl with l ≤ n are equal to the original powers
al in Eq. (3.9) or reduced by integers, if they were canceled by a corresponding expression
resulting from some scalar products.
As an example we consider the integrals I1 and I2 defined in Eqs. (3.5) and (3.6) and

reduce all scalar products which appear in the numerator to the corresponding propagators.
Using

p · k = −1

2


(p− k)2 −m2


+

1

2
k2 , (3.13)
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3. Simplification of the Two-loop Amplitudes

we can rewrite I1 and I2 as follows

I1 =


ddk

(2π)d
(k · p)(k · p)

[(p− k)2 −m2] k2

=


ddk

(2π)d


−1

2
[(p− k)2 −m2] + 1

2
[k2]
 
−1

2
[(p− k)2 −m2] + 1

2
k2


[(p− k)2 −m2] [k2]

=
1

4


ddk

(2π)d
[(p− k)2 −m2]

[k2]
+

1

4


ddk

(2π)d
[k2]

[(p− k)2 −m2]

≡ 1

4


ddk

(2π)d
1

E−1
1 E1

2

+
1

4


ddk

(2π)d
1

E1
1E

−1
2

, (3.14)

I2 =


ddk

(2π)d
(k · k)

[(p− k)2 −m2] [k2]
=


ddk

(2π)d
1

[(p− k)2 −m2]

≡


ddk

(2π)d
1

E1
1E

0
2

, (3.15)

with E1 = [(p− k)2 −m2] and E2 = [k2]. It is not necessary to introduce further propagators
since the scalar products (here k · p and k2) can be completely reduced to E1 and E2. The
results for the integrals I1 and I2 can be easily obtained. I1 receives contributions from two
integrals. The one with the denominator E−1

1 E1
2 is a scaleless integral and therefore vanishes

in dimensional regularization. With (E.1)-(E.3) we obtain

I1 =
d

4

i

(4π)d/2
Γ(−d

2
)

1

(m2)−
d
2

. (3.16)

The integral I2 is a tadpole (one-propagator integral) and can be evaluated by using Eqs. (E.1)
and (E.3)

I2 = −
i

(4π)d/2
Γ(1− d

2
)

1

(m2)1−
d
2

. (3.17)

Finally, let us introduce the terms topology and subtopology. Therefore, we consider a set
of integrals

F (a1, . . . , as) ≡

ddk1 . . . d

dkm
1

Ea1
1 . . . Ean

n Ean+1
n+1 . . . Eas

s

, s ≥ n , (3.18)

which completely determines all scalar integrals of a particular Feynman diagram. Here, the
El with n < l ≤ s are a result of the irreducible scalar products2. The topology of this set
is characterized by the integrals where all powers al (l ≤ n) take arbitrary positive values.
All integrals where some of the al (l ≤ n) are zero or negative integers, are subtopologies of
this topology. For instance the integral given in Eq. (3.3) formally belongs to the topology

F (a1, a2) =


ddk

(2π)d
1

[(p− k)2 −m2]a1
1

[k2]a2
, a1, a2 > 0 . (3.19)

2We shall remember that by construction all al with n < l ≤ s are negative integers or zero.
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3.3. Integration by Part Identities and Laporta Algorithm

However, we find that it only recieves contributions proportional to integrals I1 and I2, which
obviously can be expressed in terms of F (1,−1) and F (1, 0)

I1 =
1

4
F (1,−1) , (3.20)

I2 = F (1, 0) , (3.21)

and hence are subtoplogies of (3.19).

3.3. Integration by Part Identities and Laporta

Algorithm

In the previous section we have shown that all tensor loop-integrals can be reduced to scalar
integrals of the form (3.12) (or equivalently (3.18)). Thus, we are left with the evaluation
of these integrals. Their number is process dependent and in the case at hand exceeds
a few thousands. Therefore a straightforward calculation is not advisable. The Laporta
algorithm [96, 97] is a powerful tool to reduce this large amount of integrals to a limited
number of linear combinations of rather simple integrals, the master integrals, by exploiting
integration by part identities (IBPs) [98]. They follow from the vanishing of the surface
terms for dimensionally regularized integrals [99]3

ddk1 . . . d
dkm

(2π)dm
∂

∂kµi


ℓµ

1

Ea1
1 . . . Eas

s


= 0   .

≡ IBP(ki, ℓ) (3.22)

Here, ℓ is qr or kj. By performing the derivatives ∂/∂ki for the various ℓ one obtains a set
of linear equations for the different integrals, the IBPs. The number of independent IBPs is
given by

NIBP = m(m+Nr) , (3.23)

where Nr is the number of the independent external momenta. Reducing all scalar products
to the propagators, the IBPs (3.22) can be written as follows

k

ckF (a1 + bk,1, . . . , as + bk,s) = 0 . (3.24)

Here, the bk are integers and the coefficients ck are polynomials in the invariants of the
problem (for our two-loop integrals these are the momentum fraction u of the pion, the ratio

3For the evaluation of our two-loop Feynman integrals, it is more convenient to use the modified IBPs
ddk1 . . . d

dkm
(2π)dm

∂

∂kµi


pµl

1

Ea1
1 . . . Eas

s


= 0 .

with El = p2l −m2
l . This will simplify the explicit reduction of the numerators to the propagators.
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3. Simplification of the Two-loop Amplitudes

of the quark masses zc = m2
c/m

2
b and the dimension d). For the topology (3.19) of our

previous example there exist 1× (1 + 1) = 2 independent IBPs, which read


ddk

(2π)d
∂

∂kµ


pµ

1

Ea1
1 E

a2
2


= 0 , (3.25)

ddk

(2π)d
∂

∂kµ


kµ

1

Ea1
1 E

a2
2


= 0 . (3.26)

Explicitly performing the derivative and reducing the scalar products to the propagators
using Eq. (3.13) the identities takes the form

2a1m
2F (a1 + 1, a2) + (a1 − a2)F (a1, a2)

−a1F (a1 + 1, a2 − 1) + a2F (a1 − 1, a2 + 1) = 0 . (3.27)

(d− a1 − 2a2)F (a1, a2)− a1F (a1 + 1, a2 − 1) = 0 . (3.28)

The IBPs form a homogeneous system of linear equations. The unknowns are the integrals
F (a1, . . . as). As not all IBPs are linearly independent, the system of equations is under-
determined [97] and there exist integrals that cannot be evaluated from this system. These
are referred to as the master integrals.

Let us go back to our previous example. We have seen that the integrals I1 and I2 can
be expressed in terms of the two integrals F (1,−1) and F (1, 0) (cf. Eqs. (3.20) and (3.21)).
Now, let us evaluate I1 and I2 using a different subset {F (1,−1), F (2,−1)}. The integral
I1 remains as before but applying Eq. (3.28) with (a1, a2) = (1, 0) we find that I2 can be
expressed as follows

I2 =
1

(d− 1)
F (2,−1) . (3.29)

For consistency let us check whether this result coincides with the one given in Eq. (3.17).
F (2,−1) can be evaluated by using Eqs. (E.1)-(E.3)

F (2,−1) = (1− d) i

(4π)
d
2

Γ(1− d
2
)

1

(m2)1−
d
2

. (3.30)

We indeed find that the explicit results fulfill the relation F (2,−1) = (d− 1)F (1, 0). Thus,
both sets {F (1,−1), F (1, 0)} and {F (1,−1), F (2,−1)} allow us to determine I1 and I2.
Such irreducible integrals are referred to as the master integrals. We are free to choose
either set as basis. In this simple example the integrals in both sets are easy to calculate.
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3.4. Reduction of Dirac Matrices to Operators

The Laporta algorithm has been constructed such that all scalar integrals of a given
topology can be expressed in terms of master integrals by solving the corresponding system of
IBPs4. The procedure goes as follows. First, all IBPs from the topology and all subtologies of
the unknown integral of interest are generated. As the number of relations grows faster than
the number of unknown integrals in this system of linear equations the latter becomes over-
constrained [97]. By successively extracting integrals from certain relations and substituting
them into the remaining ones one can find an expression of the integral of interest in terms
of the master integrals. For a detailed description of the algorithm see [97]. We only remark
here that for the procedure to be applicable in practice one has to introduce an ordering for
the extractions of the integrals. Any ordering leads to the same solution, however there are
huge differences in the evaluation time. Moreover, the explicit form of the master integrals
can change for different choices of ordering and the master integrals are not unique as
already demonstrated in the previous example. It is convenient to find a set (basis) with
rather simple master integrals since their evaluation will be less complicated. Moreover, we
will see in Sec. 4.5 that a suitable choice of the basis has advantages.

The Laporta algorithm has been implemented in several computer programs. To the
present day there exist three public versions AIR [100] (Maple), FIRE [101, 102] (Mathe-
matica, C++) and Reduze [103] (C++), as well as a few private implementations. For the
reduction of the set of two-loop diagrams depicted in Figs. 2.4 and 2.5 to master integrals
we used FIRE. It can be run in the pure Laporta mode, that is the reduction to master
integrals is performed by applying the Laporta algorithm only, or can be combined with
other features. We have applied it in combination with s-bases [104–106], which is another
algorithmic approach to solve IBPs. It is implemented in the Mathematica package SBases.m
and reduces the evaluation time by a large amount. For more information on the implemen-
tation of the Laporta algorithm and of the s-bases approach we refer to [101]. As an explicit
example the reduction of diagram 14a) in Fig. 2.4 is given in App. A.

After completing the reduction of the set of Feynman diagrams in Figs. 2.4 and 2.5, we
have found 23 unknown master integrals. Their evaluation will be the topic of the next
chapter.

3.4. Reduction of Dirac Matrices to Operators

We finally consider the tensorial structures from the PV decomposition (cf. Sec. (3.1)) in-
volving the momenta q1, . . . , q4 and the symmetric tensor gµν . In the further calculation they
are contracted with the Dirac γ-matrices that arise due to the fermion propagators and the
gluon-fermion vertices. The resulting γ-structures are reduced to the operator basis given
in Eqs. (2.18)-(2.23)5. We perform the reduction in Mathematica by using simple algebraic
transformations like the Dirac algebra, on-shell conditions and applying the equations of

4The number of master integrals grows rapidly with the number of loops and legs of the corresponding
Feynman diagram [97]. If the corresponding system of IBPs becomes too large a solution by applying
the Laporta algorithm may not work in practice.

5In fact, we reduce the γ-structures to the QCD equivalent of Eqs. (2.18)-(2.23), meaning the fields are still
defined in full QCD. The explicit matching onto the SCET operators is performed in Sec. 2.2.
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3. Simplification of the Two-loop Amplitudes

motions for the spinors and finally decompose the Dirac matrices into their light-cone com-
ponents. The calculation is rather lengthy but not complicated and is briefly described in
App. B.

Using the above methods we are able to express the amplitudes A(0), A(1) and A(2)nf

as products of the operators Eqs. (2.18)-(2.23), the master integrals and some coefficients,
which are functions of the invariants of the problem. These amplitudes then enter the master
formulae for the two-loop hard scattering kernels T

(2)
1,2 given in Eqs. (2.75) and (2.80). The

results for the latter are discussed in Chap. 5. In the next chapter, we present the evaluation
of the master integrals.
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Chapter 4

Evaluation of the Master Integrals

We present the calculation of the 23 not yet known two-loop two-scale master integrals,
that we have found after the Laporta reduction in Sec. 3.3. The results for the integrals
which are simply products of one-loop integrals can be expressed analytically in terms of
hypergeometric functions. We employ differential equations to find analytical expressions
for genuine two-loop master integrals that only depend on one scale, in the case at hand
on the ratio of the heavy-quark masses zc = m2

c/m
2
b . The master integrals with three

or four external legs and involving both scales are expressed in terms of Mellin-Barnes
representations. Therefore their result is “semi-analytical”, since for reasons explained later
we perform the integrations over the Mellin-Barnes parameters only numerically. In addition,
we present a new method developed by Henn [107] which is based on solving differential
equations in a canonical basis. We apply it to obtain analytical results in terms of iterated
integrals, also for our two-scale master integrals. At the end of this chapter, we briefly
comment on the preformed cross-checks in order to validate our results.

4.1. The Master Integrals

The calculation of the set of two-loop amplitudes A(2)nf depicted in Figs. 2.4 and 2.5 yield
several master integrals. Many of those are already known from several B → ππ calcula-
tions [45–47], but we find the 23 diagrams depicted in Fig. (4.1) yet to be unknown. The
notation of the diagrams is as follows: The double (curly) line represents a propagator with
mass mb (mc) and the dashed line denotes a massless one. The dot on a line indicates a
squared propagator. q1 = uq, q2 = ūq, q3 and q4 are the incoming external momenta. Due to
the linear dependence of the momenta q1 + q2 = q = −q3 − q4 the kinematics is completely
determined by two of the on-shell conditions and one additional kinematic invariant, for
instance

q24 = m2
b , q23 = m2

c , q3 · q4 = −
1

2
(m2

b +m2
c) . (4.1)
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4. Evaluation of the Master Integrals
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Figure 4.1. – Set of master integrals obtained in the calculation of the two-loop Feynman diagrams; 1− 4
denote the incoming external momenta q1, . . . , q4. The double/curly/dashed line represents
a propagator with mass mb/mc/0. A dot on a line indicates a squared propagator.
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4.2. Feynman Parameters and Hypergeometric Functions

In the derivation of the factorization formula (1.10) the charm quark was assumed to be
heavy. Hence, the ratio mc/mb remains fixed in the heavy-quark limit and the master
integrals depend on two scales: the momentum fraction u of the quarks inside the light meson
and the ratio of the heavy-quark masses zc = m2

c/m
2
b . The exeptions areM4,5,15,16,17,19, which

only depend on zc.
In the amplitude the master integrals in Fig. (4.1) also appear in the following variations:

the mb ↔ mc flipped integrals, the u ↔ ū flipped ones, and both flipped at the same time.
In addition to the set from Fig. (4.1) we calculate the mass-flipped master integrals, denoted
by M↔, since some contain additional imaginary parts. A u↔ ū interchange does not yield
any additional imaginary part and thus, can be performed straightforwardly. We work in
dimensional regularization with d = 4 − 2ϵ dimensions and calculate all master integrals
as expansions in ϵ. The Feynman diagrams contributing to the bare two-loop amplitude
A(2)nf that enters the hard scattering kernels (2.75) and (2.80) contain up to 1/ϵ4 poles
stemming from infrared and ultraviolet regions. Thus, we investigate the factors multiplying
the master integrals in the amplitude for possible divergences in ϵ and then calculate the
master integrals up to the required order.
Below, we present four calculational techniques for the master integrals. The results for

the integrals evaluated by the first three approaches are given in App. C.

4.2. Feynman Parameters and Hypergeometric

Functions

There are simple integrals like e.g. the one-loop factorizable ones M13 and M14 that can
be evaluated by text book knowledge. By introducing Feynman parameters (cf. Eq. (E.6))
and performing a suitable shift of the integration variables the integration over the loop
momenta can be carried out applying Eqs. (E.2)-(E.4). The remaining integrations over the
Feynman parameters can be performed analytically e.g. by matching the definition of the
beta function (see Eq. (E.7)) and/or the hypergeometric function [108]

JFJ−1(A1, . . . , AJ ;B1, . . . , BJ−1; z) =
ΠJ−1

i=1

Γ(Bi)

Γ(Ai)Γ(Bi − Ai)

  1

0

dt1 . . . dtJ−1
ΠJ−1

k=1t
Ak−1
k (1− tk)Bk−Ak−1

(1− zt1 . . . tJ−1)AJ
. (4.2)

For J = 2 the expression simplifies to

2F1(A1, A2, B; z) =
Γ(B)

Γ(A1)Γ(B − A1)

 1

0

dt
tA1−1(1− t)B−A1−1

(1− t z)A2
. (4.3)

Since we work in d = 4 − 2ϵ dimensions, at least one of the parameters A1, A2 or B will
depend on ϵ. This is clear considering that by applying Eqs. (E.2)-(E.4) we introduce a
dependence on d in the exponent of the denominator which then will enter some of the
coefficients A1, A2 and B. The hypergeometric function can be expanded analytically in ϵ
by using the Mathematica package HypExp.m [109].
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4. Evaluation of the Master Integrals

Note that for more complicated Feynman diagrams it is often not possible to perform the
integrations over the Feynman parameters straightforwardly or to express the result in terms
of beta or hypergeometric functions. In those cases introducing Mellin-Barnes integrations
may help, which we describe in the next section.
We have applied the above procedure to calculate the master integrals M13−15. As an

example the evaluation of M15 is presented in App. D.1.

4.3. Mellin-Barnes Representation

A method for evaluating more complicated multi-loop multi-scale master integrals makes use
of Mellin-Barnes (MB) representations. We have previously mentioned that a straightforward
evaluation of master integrals by introducing Feynman parameters (see Sec. 4.2) can fail when
it comes to performing the integrations over the Feynman parameters. MB representations
can allow one to carry out those integrations analytically, at the cost of introducing additional
integrations in the complex plane. The latter can be evaluated numerically by using the
Mathematica routine MB.m [110], and even analytically, but to do so quite some effort is
required. However in our case, the structure of the lowest coefficients in the ϵ-expansion
usually is simple and thus, the ϵ-pole terms can often be extracted analytically by applying
Cauchy’s theorem. This feature represents one of the main powers of MB representations.
The idea of exploiting Mellin transformations as a tool for Feynman integrals goes back

to the 70’s [111] and was then also employed to calculate individual Feynman integrals [112,
113]. A first systematic evaluation followed by Smirnov [114] and Tausk [115] in the end of
the 90’s. We will explain the method below, a detailed description can also be found in [116].
By using MB representations one can expresses a sum of two variables in terms of products

raised by a complex parameter z

1

(A+B)σ
=

B−σ

2πiΓ(σ)

 c+i∞

c−i∞
dz AzB−zΓ(−z)Γ(σ + z) . (4.4)

Here A, B and σ are some (possibly complex) variables and Γ is the Gamma function. The
integration contour is parallel to the imaginary axis with negative c with 0 < |c| < Re(σ).
The integration over the complex parameter z is often referred to as Barnes integration and
z as Barnes parameter. The poles of Γ(· · · ∓ z) go to the right/left and thus, are called
right/left poles in the following.
The integration in the complex plane can be performed by applying Cauchy’s theorem.

We will demonstrate this for a concrete choice σ = ϵ − iα, ϵ > 0 and α > 0. If A and
B are analytic functions, the poles of the integrand lie in the complex plane as shown in
Fig. 4.2. The contour is chosen such that it separates right and left poles, a possible choice
C1 is shown in Fig. 4.2. The integral can be evaluated by applying Cauchy’s theorem closing
the contour in a huge semi-circle to the right or to the left and summing up all poles in the
enclosed region1. For d = 4 − 2ϵ the integration contour lies within −ϵ < Re(z) < 0. In
the limit ϵ → 0 the first left pole at z = −ϵ + i/2 hits the contour C1. In this case, the

1Note the minus sign when closing to the right.
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4.3. Mellin-Barnes Representation
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1

Figure 4.2. – The poles of the function (4.4) with σ = ϵ − iα, ϵ > 0 are shown in the complex z plane
with three possible contours C1, C

′
1 and C2. × denote the left and • the right poles.

contour can be deformed around the pole at z = i/2, as long as the new contour does not
encounter any singularity. A possible choice is C ′

1 in Fig. 4.2. We now consider the case
where all poles lie on the real axis (this corresponds to the limit α→ 0). For ϵ→ 0 the first
left pole at z = −ϵ and the first right poles at z = 0 merge, which makes above mentioned
deformation impossible. Still working in d dimensions we circumvent this problem by shifting
the integration contour such that the pole at z = −ϵ lies to the right of it, e.g. C2 in Fig. 4.2.
The integral along the shifted contour can safely be expanded in ϵ and then can be evaluated
by closing the contour to the right. We compensate for the change of the nature of the pole
at z = −ϵ by adding the residue at this point. Note that in general, the procedure of shifting
contours, performing the limit ϵ→ 0 and taking the residues extracts the pole terms in ϵ of
a master integral in an algorithmic manner.
From the discussion above we summarize that when evaluating Barnes integrations the

location of the integration contour in the complex plane is very important. We have to keep
track of it in order not to miss or double count poles and it must be chosen such that is does
not hit any of the latter.
Next, we demonstrate that MB representations allow one to perform the integrations

over the Feynman parameters analytically. Consider a simple example with one Feynman
parameter x  1

0

dx
xa(1− x)b
(xA+ yB)σ

f(y) , (4.5)

where A, B are variables and f(y) is an arbitrary function. We apply Eq. (4.4) and obtain
the following result
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4. Evaluation of the Master Integrals

(yB)−σ

2πiΓ(σ)
f(y)

 c+i∞

c−i∞
dz Az(yB)−zΓ(−z)Γ(z + σ)

 1

0

dx xa+z(1− x)b . (4.6)

The integration over x yields the beta function. The integration over the Barnes parameter z
can be performed by applying Cauchy’s residue theorem, but the calculation is quite involved
and not very illuminating. For a simpler example where the integrations over the Barnes
parameters can be carried out more easily see Eq. (E.8) in the appendix. In that way, by
introducing a sufficient number of new Barnes integrations, all Feynman integrations can
be traded for MB integrations. For simple MB integrals, which usually appear in the pole
terms of our master integrals, the integrations over the Barnes parameters can be carried
out analytically by applying the residue theorem as described above.

A generalization of the MB representation to a sum of arbitrary many variables in terms
of products can be derived by induction and is given by the following expression [116]

1

(A1 + · · ·+ An)λ
=

1

Γ(λ) (2πi)(n−1)

 i∞

−i∞
. . .

 i∞

−i∞
dz2 . . . dzn

n
i=2

Azi
i

× A−λ−z2−···−zn
1 Γ(λ+ z2 + · · ·+ zn)

n
i=2

Γ(−zi) . (4.7)

The dimensionality of a MB representation for an integral is defined as the number of
Barnes integrations. Note that there is no unique MB representation for an integral, however
it is convenient to search for a low dimensional representation. Next, we briefly explain the
numerical evaluation by the Mathematica routine MB.m.

4.3.1. Numerical Evaluation with MB.m

The Mathematica package MB.m is designed to solve Barnes integrations numerically by
Monte Carlo integration. Consider a given MB representation for an arbitrary integral. In
this representation all singularities in ϵ are contained in Gamma and polygamma functions,
defined in Eq. (E.2), since these are the only functions that are analyzed by the routine
for possible divergences. MB.m proceeds as follows. First a suitable integration contour is
found that does not hit any pole and separates left from right poles. Then, the analytic
continuation ϵ → 0 is performed. MB.m also gives the real part of all Barnes parameters
that fix the integration contours along the imaginary axis. Finally, the Barnes integrations
can be performed numerically specifying the desired accuracy of the calculation. The result
is presented as an expansion in ϵ along with the corresponding errors.

Note that usually the numerical integration is more complex for a higher dimensional
representation. Hence, in general the accuracy of the evaluation decreases and the runtime
increases with the number of dimensions.
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4.3. Mellin-Barnes Representation

4.3.2. Automated Derivation of MB Representations with
AMBRE.m

AMBRE.m is a Mathematica routine that automatically constructs a MB representation for a
given planar integral [117]. Consider a scalar L-loop Feynman integral with N internal lines

G(m2
1, . . . ,m

2
N , P ) =

1

(iπd/2)L


ddk1 . . . d

dkL
1

(q21 −m2
1)

ν1 . . . (q2N −m2
N)

νN , (4.8)

where P = (p1, . . . , pr) are the r independent external momenta, qi are linear combinations
of P and the loop momenta ki, mi are masses, and νi > 0 some arbitrary integers. First,
AMBRE.m replaces the momentum integrals by Feynman integrals

G(m2
1, . . . ,m

2
N , P ) = (−1)Nν

Γ(Nν − d
2
L)

Γ(ν1) . . .Γ(νN)

 1

0

N
j=1

dxj x
νj−1
j δ


1−

N
i=1

xi



× U(x)Nν−d(L+1)/2

F (x)Nν−dL/2
(4.9)

with Nν =
N

i=1 νi. The functions U(x) and F (x) can be derived from

N =
N
i=1

xi(q
2
i −m2

i ) ≡ klMll′kl′ − 2klQl + J , (4.10)

where Mll′ =
N

i=1 αil′xiαil, Ql =
N

i=1 αilPixi and J =
N

i=1(P
2
i −m2

i )xi. One finds them
to be polynomials in xi and they are formally given by the expressions

U(x) = det (M) , (4.11)

F (x) = −det (M) J +QlM̃ll′Ql′ − iη , (4.12)

where M̃ = det (M) M−1 and η marks the location of the pole of the combined Feynman
propagators in the complex plane.
Next, a sufficient number of MB representations is introduced such that the integrations

over the Feynman parameters can be performed analytically. Note that the sequence of
replacing the momentum integrals by Feynman integrals and later by MB integrations is done
for each momentum separately. The integration over the two loop momenta is performed
one after another. The choice of which comes first, influences the MB representation but
not the final result. For more details see [117].
AMBRE.m is not optimized to construct the lowest dimensional MB representation but

rather finds some representation and often, an integral is expressed as a sum of different
dimensional representations. In many cases it is possible to reduce the dimensionality by ap-
plying the residue theorem or by using the first or second Barnes lemma or modified versions
of the latter (see App. E.2). Indeed, there are reasons for aiming at a lower dimensional
representation: The extraction of the pole terms is much simpler and the numerical pre-
cision of the result obtained with MB.m decreases with the number of Barnes integrations
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4. Evaluation of the Master Integrals

while the runtime increases. Moreover, MB.m fails to evaluate representations that contain a
highly oscillating factor, if the convergence of the result is too slow. Such oscillating factors
can arise from kinematic thresholds of the integral. Sometimes, they can be removed by
performing some of the Barnes integrations analytically.

We have evaluated the master integrals M1−3,6−12,16−18,20−23 applying this method. In
App. (D.2) we present the calculation ofM↔

23 by “manually” introducing MB representations
and of M18 by using Ambre as an example.

4.4. Differential Equations

A very powerful method for evaluating master integrals analytically is based on differential
equations. In 1990, Kotikov was the first to show that by differentiating an unknown scalar
integral with respect to one of the propagator masses one could evaluate the master integral
by solving the resulting differential equation [118]. He was able to produce results for 2-
and 3-point functions. Based on this idea Remiddi [119] proposed to use IBP identities for
obtaining a linear system of first order differential equations for the master integrals in one
of the kinematic invariants of the process. Finally, this method was fully developed and
extended to multi-leg and multi-loop graphs by Remiddi and Gehrmann [120–122] and has
already been applied in the calculation of various processes2.

The differential equations can be solved by variation of constants. The boundary condi-
tions to obtain the integration constants correspond to pseudo thresholds of the kinematic
invariants and finding the boundary conditions can be a tedious task. Fortunately, for the
master integrals that we have calculated by this method simple conditions could be found.
The differential equations are Laurent-expanded about a certain value of the spacetime di-
mension, usually d = 4, up to the required order and then solved iteratively order by order
in the expansion parameter, here ϵ = (4 − d)/2. The result can be expressed in a basis
of iterated integrals, the harmonic polylogarithms (HPLs) [124]. Using the Mathematica
package HPL.m [125, 126] the HPLs are rather easy to handle and allow for an efficient
calculation. Before we describe the method of differential equations in detail we present the
definition of the HPLs and provide a short description of the most important relations.

4.4.1. Harmonic Polylogarithms and HPL.m

The harmonic polylogarithms (HPLs) [124] are a generalization of the ordinary polyloga-
rithms [127] and the Nielson polylogarithms [128]. They are defined by the following recur-
sive relation

Ha1,...,an(x) =

 x

0

dt fa1(t)Ha2,...,an(t) , (4.13)

2A good description of this method can be reviewed in [123], where the authors also provide a copious list
of references for applications.
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4.4. Differential Equations

where a⃗ = (a1, . . . , an) and each ai can be 0 or ±1. The functions

f1(t) =
1

1− t , f0(t) =
1

t
, f−1(t) =

1

1 + t
(4.14)

are called weight functions and correspondingly n is called the weight of the HPL. For
integrals with trailing zeros the recursive relation (4.13) does not hold, but diverges. In
order to handle HPLs in such cases, one defines

H0⃗n
(x) =

1

n!
logn(x) . (4.15)

We find the following relations between HPLs and ordinary logarithms

H1(x) =

 x

0

dt f1(t) =

 x

0

dt
1

1− t = − log(1− x) , (4.16)

H0(x) = log(x), (4.17)

H−1(x) =

 x

0

dt f−1(t) =

 x

0

dt
1

1 + t
= log(1 + x) . (4.18)

The HPLs obey a Hopf algebra and hence, the products of two HPLs with weight n and m
can be written as a linear combination of HPLs with weight n + m. The product of two
HPLs with vectors a⃗ = (a1, . . . , an) and b⃗ = (b1, . . . , bm) is given by the following expression

Ha⃗(x)Hb⃗(x) =

c⃗

Hc⃗(x) , (4.19)

where the sum runs over all vectors c⃗ of length n+m containing the elements of a⃗ and b⃗ such
that the ordering of all ai’s and bi’s separately is conserved. For examples see Eqs. (4.20)
and (4.21) below. Note that some of the HPLs might diverge for x = 0 and x = 1. HPLs with
n trailing zeros contain as leading logarithmic divergence logn(x), which can be extracted
explicitly by applying the product algebra (4.19) recursively. E.g. the logarithmic divergence
of Ha1,a2,0(x) can be extracted from the following equation

Ha1,a2(x)H0(x) = Ha1,a2,0(x) +Ha1,0,a2(x) +H0,a1,a2(x) . (4.20)

Similarly, HPLs with n 1’s to the left result in leading logarithmic divergences logn(1 − x)
and we can extract the logarithmic divergence of e.g. H1,a1,a2(x) from the following relation

Ha1,a2(x)H1(x) = H1,a1,a2(x) +Ha1,1,a2(x) +Ha1,a2,1(x) . (4.21)

For practical applications it is also convenient to define the “plus” and “minus” weights

f+(x) = f1(x) + f−1(x) =
2

1− x2 , (4.22)

f−(x) = f1(x)− f−1(x) =
2x

1− x2 . (4.23)

The product algebra, the derivative and integration properties, series expansion, numerical
evaluation and many more features of HPLs have been implemented in the Mathematica
package HPL.m [125, 126].
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4.4.2. Evaluation of the Integrals

The method of employing differential equations proposed by Gehrmann and Remiddi works
well for master integrals that depend on one scale. Hence, we apply it to obtain analytic
results for some master integrals in Fig. 4.1 that only depend on the scale zc and whose
result is hard to obtain by using the standard text book techniques:

M4,5 and M19 . (4.24)

Their evaluation will be explained below.
The master integrals of the set (4.24) depend on the ratio of the heavy-quark masses

zc = m2
c/m

2
b and on the expansion parameter ϵ = (4− d)/2. Moreover, they are functions of

the kinematic invariants (4.1)

M(zc, ϵ) ≡M(q23, q3 · q4, q24, zc, ϵ) . (4.25)

The total derivative of M with respect to zc is then given by

dM(zc, ϵ)

dzc
=
∂M

∂zc
+
∂M

∂q23

dq23
dzc

+
∂M

∂(q3 · q4)
d(q3 · q4)
dzc

+
∂M

∂q24

dq24
dzc

. (4.26)

∂M/∂zc can be easily computed whereas the partial derivatives of M with respect to the
kinematics on the r.h.s of Eq. (4.26) can be obtained from [123]

N
a=1


pj,µ ·

∂sa
∂pk,µ


∂M(s)

∂sa
= pj,µ

∂M(s)

∂pk,µ
, (4.27)

where s = {s1, . . . , sN} is the set of N kinematic invariants formed by the momenta pk,µ,
pj,µ. In our case s = {q23, q3 · q4, q24} and pk,µ = {q3,µ, q4,µ}. One obtains

2q23
∂M

∂q23
+ (q3 · q4)

∂M

∂(q3 · q4)
= q3,µ

∂M

∂q3,µ
, (4.28)

q23
∂M

∂(q3 · q4)
+ 2(q3 · q4)

∂M

∂q24
= q3,µ

∂M

∂q4,µ
, (4.29)

2(q3 · q4)
∂M

∂q23
+ q24

∂M

∂(q3 · q4)
= q4,µ

∂M

∂q3,µ
, (4.30)

(q3 · q4)
∂M

∂(q3 · q4)
+ 2q24

∂M

∂q24
= q4,µ

∂M

∂q4,µ
. (4.31)

The derivatives with respect to the four-momenta on the r.h.s can be carried out explicitly
and yields linear combinations of M and several integrals belonging to subtopologies of M .
Substituting the expressions for the derivatives with respect to the invariants in Eq. (4.26)
and considering that dq24/dzc = 0 we obtain

dM

dzc
=
∂M

∂zc
− 1

1− zc


q3,µ

∂M

∂q3,µ
+ q4,µ

∂M

∂q3,µ


. (4.32)
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This is a general differential equation valid for master integrals of the formM(zc, ϵ). Applying
the Laporta algorithm all integrals appearing on the r.h.s. of Eq. (4.32) can be expressed
in terms of M and in terms of master integrals of the considered topology having a lower
number of lines than M . Here, the master integrals of the subtopologies are either known or
very easy to calculate and thus we assume them to be known. Note that Eqs. (4.28)-(4.31)
are not independent of each other, i.e. ∂M/∂q23 can be either determined from Eqs. (4.28)
and (4.30) or from Eqs. (4.29) and (4.31). Each way will lead to the same result which
provides a check for this part of the calculation.
Inserting the results for all partial derivatives in Eq. (4.32) one obtains a differential

equation of the form

dM(zc, ϵ)

dzc
=

l

Al(zc, ϵ)Sl(zc, ϵ) +D(zc, ϵ)M(zc, ϵ) , (4.33)

where the Al and D are known functions depending on zc and ϵ, and Sl, which also depend on
zc and ϵ, are the known masters with fewer lines3 belonging to the same topology asM . There
might exist cases where D = 0, however we did not come across them. One can simplify
Eq. (4.33) by multiplying it by the exponential exp(−D), where D(zc, ϵ) ≡

 zc
zc0
dz′cD(z′c, ϵ)

and zc0 is an arbitrary lower integration bound. Using the following trick
dM

dzc
−MdD

dzc


exp [−D] = d

dzc


M exp [−D]


, (4.34)

we arrive at

d

dzc


M(zc, ϵ) exp [−D(zc, ϵ)]


=

l

Al(zc, ϵ)Sl(zc, ϵ) exp [−D(zc, ϵ)] . (4.35)

The r.h.s. of Eq. (4.35) is a function of zc and ϵ and can be evaluated explicitly. Performing
in Eq. (4.35) the integration over zc order by order in ϵ and afterwards multiplying both
sides by exp (D) one obtains the following expression

M(zc, ϵ) =

f(zc, ϵ) + C


exp [D(zc, ϵ)] , (4.36)

where f is the integral of the r.h.s. of Eq. (4.35) and C is an integration constant. The latter
still needs to be determined using boundary conditions. It is known that the master integrals
are analytic functions of zc for all zc > 04. Observation shows that for each master integral
of the set (4.24) there exists a value zc > 0 for which the exponential exp (D) and thus the
master integral given by Eq. (4.36) diverges5. Let us denote it by zc,bound. For all masters

3If there are more master integrals in one topology there might also appear integrals with the same number
of lines as M . In the case at hand we find that M4 and M5 lead to a system of coupled equations. Its
solution is presented in App. (D.3).

4Note that the master integrals can have infrared divergences for zc = 0 (zc = 0 implies mc = 0).
5The divergence in D will be logarithmic so that together with the exponential we just face a simple pole
and not an essential singularity.
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4. Evaluation of the Master Integrals

in the set (4.24) we have found zc,bound = 1. This artificial divergence can be removed by a
proper choice of the integration constant C such that

M(zc, ϵ) =

f(zc, ϵ)− f(zc,bound, ϵ)


exp [D(zc, ϵ)] (4.37)

is finite for all zc > 06 . Finally, we obtain a result of the master integral M as a series in ϵ
expression with some analytic coefficients Bi(zc)

M(zc, ϵ) =
B−4(zc)

ϵ4
+
B−3(zc)

ϵ3
+
B−2(zc)

ϵ2
+
B−1(zc)

ϵ
+B0(zc) +B1(zc)ϵ+ . . . . (4.38)

Some of the Bi may be zero and the expansion may just start with a double or single pole in
ϵ. For M4 and M19 we have found that the expansion starts with a double pole in ϵ, whereas
M5 is finite.

In App. (D.3) we present the evaluation of the master integrals M4 and M5 as an exam-
ple. As mentioned before there arises an additional complication since in constructing the
differential equation for M4 one finds that it couples to M5 and vice versa.

4.5. Differential Equations and Canonical Basis

Recently, the method of employing differential equations for obtaining master integrals has
been further developed by Henn [107]. As discussed in Sec. 3.3 the basis of master integrals
is not unique. Henn discovered that in a suitable basis – denoted as canonical basis –
the differential equations can be cast into a form that factorizes the dependences on the
kinematic variables from that on the number of space-times dimensions d. The solution
can be expressed in terms of iterated integrals, which in our case are the Goncharov poly-
logarithms [129]. This method was recently applied to a number of problems for loop [130–
138, 48] and phase-space [139, 140] integrals. A great advantage of this approach is that,
in comparison to the previous techniques, we obtain analytic results, also for the master
integrals depending on both scales u and zc. Moreover, in the basis of iterated integrals the
convolution of the hard scattering kernel with the pion LCDA simplifies to a large extent.

To the present day, the construction of the canonical basis is mostly based on experience
and experimentation rather than on a systematic procedure, although developments in this
direction have recently become available [141–144]. In the future it would be most desirable
to have a general algorithm for finding a canonical basis for arbitrary numbers of loops,
legs, scales, and even space-time dimensions. Each calculation of master integrals by this
new approach provides an important contribution towards finding a general algorithm for
constructing the canonical basis. Before describing the method we present the definitions
of the Goncharov polylogarithms, which is the class of iterated integrals that appear in the
solution of our master integrals.

6With the exception of course that there still appear divergences as poles in ϵ.
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4.5.1. Goncharov Polylogarithms

The Goncharov polylogarithms [129] are a generalization of HPLs to arbitrary weights. They
are defined in a similar recursive relation (cf. Sec. 4.4.1)

Ga1...,an(x) =

 x

0

dt

t− a1
Ga2...,an(t) , (4.39)

but the ai can now take arbitrary values. Eq. (4.39) does not hold for trailing zeros and in
analogy to Eq. (4.15) we define

G0⃗n
(x) =

1

n!
logn(x) . (4.40)

The concept of weight will become important in the discussion of the canonical basis. Note
that due to Eq. (4.40) logk(x) is assigned a weight k.
The relations between the weight one Goncharov polylogarithms and ordinary logarithms

read as follows

G1(x) = log(1− x) , (4.41)

G0(x) = log(x), (4.42)

G−1(x) = log(1 + x) . (4.43)

Moreover, we find a connection to the Riemann zeta function

G0,...,0,1(1) = −ζ(k) (4.44)

with k − 1 zeros and k > 1. ζ(k) ∼ πk for k even, and thus, we assign a weight k to both,
ζ(k) and πk.
For an ̸= 0 the Goncharov polylogarithms can be rescaled by an arbitrary variable y ̸= 0

Ga1,...,an(x) = Gya1,...,yan(yx) . (4.45)

Note, that it is most convenient to choose u as the argument of the Goncharov polylogarithm
whenever there is a dependence on this scale, bearing in mind that this choice simplifies a sub-
sequent convolution with the pion LCDA, which in a Gegenbauer expansion (cf. Eq. (5.29))
is a u-dependent polynomial.
The definitions of the Goncharov polylogarithms (4.39) and of the HPLs (4.13) are closely

related. For Goncharov polylogarithms with weights ±1 and 0 we find the correlation

Ha⃗n(x) = Ga⃗n(x)(−1)


i δ1,ai . (4.46)

Converting the Goncharov polylogarithms to HPLs, one may use the features implemented
in the Mathematica package HPL.m, like the product algebra and the extraction of logarith-
mic divergences (cf. Sec. 4.4.1). In addition, the C++ routine GiNaC [145] allows one to
numerically evaluate Goncharov polylogarithms for arbitrary weights.
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4.5.2. Canonical Basis

For defining the canonical basis, we first need to define the term “pure function”. Consider
a specific power in the ϵ-expansion of a master integral, the associated function is called
uniform, if each summand has the same weight. Moreover, a uniform function is defined
as pure, if its derivative with respect to any one of its arguments again yields a uniform
function whose weight is lowered by one unit.
Now, let us consider a system of differential equations in the kinematic variables xi for

master integrals in an arbitrary basis

d

dxi
M⃗(xj, ϵ) = Bi(xj, ϵ)M⃗(xj, ϵ) . (4.47)

M⃗(xj, ϵ) denote theN master integrals and Bi(xj, ϵ) areN×N matrices. Note that Eq. (4.47)
is the analogue of Eq. (4.33) from the previous approach with a single variable xi = zc and
for N = 1. In the canonical basis, the differential equation is cast into the form [107]

d

dxi
C⃗(xj, ϵ) = ϵAi(xj)C⃗(xj, ϵ) , (4.48)

where C⃗(xj, ϵ) are the new N master integrals. The matrix coefficients Ai(xj) are now
independent on ϵ, in contrast to the ones in Eq. (4.47), which explicitly depend on ϵ.
It turns out that the functions Ai are the coefficients of the gradient of a function Ã, i.e.

dÃ/dxi = Ai. Eq. (4.48) then takes the form

d

dxi
C⃗(xj, ϵ) = ϵ


d

dxi
Ã(xj)


C⃗(xj, ϵ) . (4.49)

By construction, Ã contains all information about the differential equations with respect to
the different kinematic variables. Hence, Ã together with the boundary conditions, which
are specific in each case, completely determines the master integrals.
The master integrals in such a basis have in turn several pleasant features: First, the

solution decouples order-by-order in the ϵ-expansion. Second, it is given by pure functions
to all orders in ϵ. Consequently assigning a weight −1 to each power of the expansion
parameter ϵ and multiplying each master integral by an appropriate power of ϵ renders the
total weight of the master integral zero to all orders. Third, the solution can be expressed
in terms of iterated integrals. If the coefficients Ai(xj) are rational functions of the xj, the
Goncharov polylogarithms discussed above represent a suitable class of iterated integrals to
describe the master integrals. We will refer to a basis that obeys Eq. (4.49) as a canonical
basis.
In the absence of an algorithm for the systematic construction of the canonical basis, we

obtain a canonical basis by searching for pure linear combinations of master integrals in a
“traditional” basis that consists of undotted and singly-dotted integrals, and compute them
up to terms that involve functions of weight two. This method is based on trial and error,
but has proven to be successful. As only disadvantage, an analytic representation of the
master integrals in this other basis up to weight two has to be known from other sources,

54



4.5. Differential Equations and Canonical Basis

like for instance from MB representations. An illustration of this procedure can be found
in App. (D.4) where the calculation of a set of master integrals in the canonical basis is
presented as an example. Next, we consider the differential equations in the invariants.

4.5.3. Solving Differential Equations

In the case at hand, the master integrals depend on the two scales zc and u. The differential
equation with respect to zc can be derived analogous to the previous section and is given by
Eq. (4.32). The one for u is simple and we find

dCi

dzc
=
∂Ci

∂zc
− 1

1− zc


q3,µ

∂Ci

∂q3,µ
+ q4,µ

∂Ci

∂q3,µ


, (4.50)

dCi

du
=
∂Ci

∂u
. (4.51)

For our master integrals in the canonical basis the explicit expressions for Eqs. (4.50)
and (4.51) factorize in ϵ and take the form

dCi

dzc
= ϵ


ai(u, zc)Ci +


j ̸=i

aj(u, zc)Cj


, (4.52)

dCi

du
= ϵ


bi(u, zc)Ci +


j ̸=i

bj(u, zc)Cj


, (4.53)

where the ai,j and bi,j are rational functions and Cj are master integrals with equal or lower
lines than Ci. We calculate the master integrals in the canonical basis successively, starting
with the lowest line integrals. Thus, we assume all lower line master integrals to be known
and take the lowest order in ϵ coefficients of the master integrals with equal lines from
elsewhere, i.e. from MB representations7.
In order to obtain an analytic expression for the master integral Ci(u, zc) in terms of

iterated integrals we first consider the differential equation (4.51) and integrate it in u u

u0

du′
dCi(u

′, zc)

du′
= Ci(u, zc)− Ci(u0, zc) , (4.54)

where u0 ∈ [0, 1] is an arbitrary lower limit. The integrand on the l.h.s. which given by
Eq. (4.53) can be integrated over and the master integral Ci(u, zc) is determined except for
the function Ci(u0, zc). The latter can be extracted from the differential equation (4.50)
evaluated at u = u0 and integrated in zc over an interval 0 ≤ zc0 < zc ≤ 1: zc

zc0

dz′c
dCi(u, z

′
c)

dz′c


u=u0

= Ci(u0, zc)− Ci(u0, zc0) . (4.55)

7If there are more master integrals in a topology the corresponding differential equations decouple order-
by-order in ϵ, as it can be seen from Eqs. (4.52) and (4.53), and thus can be solved.
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The integrand on the l.h.s. given by Eq. (4.52) is known and thus the integration can be
performed. The constant Ci(u0, zc0) can be matched to the analytical result of the master
integral at the point u = u0 and zc = zc0 obtained e.g. from MB representations.
Similar to the previous approach described in Sec. 4.4, the differential equations are solved

iteratively order by order in ϵ. Note, that it is useful to find boundary conditions for which
the master integrals vanish or take a simple expression. This might simplify the calculation
to a large extent.
We find that in the differential equations of the 23 master integrals in Fig. 4.1 there appear

in addition 14 lower line master integrals, which are known from previous calculations but
also have to be converted to the canonical basis in order to close the system of differential
equations. Thus, we need to calculate in total 37 integrals. The full set including results
can be found in [C] 8.
We have evaluated M8,9, M

↔
8,9 and M15 in the canonical basis using the steps outlined

in Eqs. (4.54) and (4.55). These integrals correspond to the master integrals C3,...,7 in the
canonical basis (see App. D.4 for the definition of the Ci) and we have found that they all
vanish in a certain kinematic point. However, there are master integrals such as C1,2, which
correspond toM6,7, for which we have only obtained non-vanishing boundary conditions and
more importantly, for which we find Goncharov polylogarithms with non-trivial dependence
on zc in the weights in differential equation with respect to zc (see Eq. (4.55)). Thus, this
differential equation cannot straightforwardly be integrated by using the definition (4.39)
but a suitable algorithm for the integration needs to be constructed. This is in principle
possible and we use it in Sec. 5.1.2 to reexpress such Goncharov polylogiarhms in terms of
HPLs. Instead one can follow another option which is to discard the differential equation
with respect to zc and obtain the function C(u0, zc) from MB representations, as it was
done in [C]. In App. D.4, the details of the calculation of M6,7, M8,9, M

↔
8,9 and M15 in the

canonical basis are presented.

4.6. Checks

For numerical cross-checks we have evaluated the master integrals for twelve points in the
zc – u plane. We have found that the results obtained in different MB representations agree
to order 10−6 for the highest ϵ-coefficients. The agreement is even better for the pole terms
and the integrals with different analytic representations in terms of HPLs or hypergeometric
functions. However, for the integrals M20−22 and their mass-flipped counterparts, both ob-
tained in a MB representation, the Monte-Carlo integration implemented in MB.m has failed
due to highly oscillating integrands. In this case, we have relied on the numerical results of
the sector decomposition method implemented in SecDec [146].
The master integrals in the canonical basis were evaluated in GiNaC, yielding an agreement

to the previous results obtained in the former basis at the level of 5 · 10−10. The only
exceptions are C28−30 (see [C] for the definition) which correspond to the master integrals
M20−22. Their agreement is at the level of 8 ·10−7 for the highest ϵ-coefficient, and 6 ·10−4 for

8Note that in [C] two additional integrals are included which are the master integrals stemming from
massive quarks in the gluon self energy correction.
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the corresponding mass-flipped counter parts. For the lower coefficients in the ϵ-expansion,
the agreement is several orders of magnitude better. We remark that having calculated the
numerics in two different integral bases constitutes a non-trivial check.
In the further calculation, we will use the analytic expressions for the master integrals

obtained in the canonical basis.
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Chapter 5

Results and Phenomenological Applications

In this chapter, we present the renormalization factors and matching coefficients that enter
the master formulae for the hard scattering kernels and briefly discuss the result for the
latter. We calculate the perturbative contributions a1 for the set of decays B̄0 → D(∗)L
with L = π, ρ and study the dependence on input parameters and on the factorization scale.
Moreover, we evaluate the corresponding branching decay rates and confront the results with
experimental data. In addition, we test how well the transition amplitude is described by
Eq. (1.10) in the heavy-quark limit by comparing of ratios of non-leptonic decay rates on
the one hand and ratios of non-leptonic and semi-leptonic decay rates on the other hand.
We finish this chapter with a brief discussion of our results.

5.1. Hard Scattering Kernels

We have derived expressions for the one- and two-loop hard scattering kernels in terms of
bare amplitudes, renormalization factors and matching coefficients in Sec. 2.2 . They are
given in Eqs. (2.63), (2.64), (2.75) and (2.80) (and the corresponding expressions for the
primed kernels). In the following, we give the explicit expressions for the renormalization
factors and matching coefficients that enter these formulae and briefly discuss the results of
the hard kernels.

5.1.1. Renormalization Factors and Matching Coefficients

The renormalization of the strong coupling is performed in the MS scheme. The correspond-
ing renormalization factor Zα can be found in [147] and reads

Zα = 1− αs

4π

1

ϵ


11CA

3
− 4nfTf

3


+O(α2

s) . (5.1)

Here, nf = 5 is the total number of active quark flavours, and CA = 3 and Tf = 1/2. The
operator renormalization factors Zij of the operators Qj have been calculated up to two-loop
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accuracy in the MS scheme [148, 84]. The explicit one- and two-loop expressions are given by

Z(1) =
1

ϵ


−2 4

3
5
12

2
9

0 0
6 0 1 0 0 0


, (5.2)

Z(2) =
1

ϵ2


17− 4nfTf

3
2
9
(4nfTf − 39) 5

18
(nfTf − 15) 1

54
(8nfTf − 93) 19

96
5

108

4nfTf − 39 4
2nfTf

3
− 31

4
0 5

24
1
9



+
1

ϵ


8nfTf

9
+ 79

12

20nfTf

27
− 205

18
1531
288
− 5nfTf

108
−2nfTf

81
− 1

72
1

384
− 35

864
10nfTf

3
+ 83

4
3 119

16
− nfTf

9
8
9

− 35
192

− 7
72


. (5.3)

The row index of these matrices corresponds to (Q1,Q2, E
(1)
1 , E

(1)
2 , E

(2)
1 , E

(2)
2 ) (see Sec. 1.3 for

the definitions of the evanescent operators) and the column index to (Q1,Q2). In contrast,
the renormalization of the mass and the wave-function is performed in the on-shell scheme.
The one-loop expression for the mass renormalization factor Zmq can be found in [147] and
reads

Zmq = 1− αs

4π

CF (2ϵ− 3)Γ(1− ϵ)Γ(ϵ)SΓ

(2ϵ− 1)


m2

q

−ϵ
+O(α2

s) , q = b, c . (5.4)

Here, SΓ is defined in Eq. (C.2) and CF = 4/3. The wave-function renormalization factor

Zext is given by the product of the on-shell field renormalization factors Z
1/2
b and Z

1/2
c which

relate the bare quark field q0 (q = b, c) to the renormalized field q via q0 = Z
1/2
q q. To

the one-loop accuracy Zq coincides with Zmq [147]. Hence, the explicit expression for the
wave-function renormalization factor is given by the following expression

Zext = 1− αs

4π

CF (2ϵ− 3)Γ(1− ϵ)Γ(ϵ)SΓ(1 + z−ϵ
c )

2(2ϵ− 1)


m2

b

−ϵ
+O(α2

s) . (5.5)

In Eq. (2.80) we further encounter the SCET operator renormalization factor Y11. If Y11
appears alongside a u-dependent function like T

(1)
1 we shall remember that this expression

must be interpreted as convolution product, i.e. T
(1)
1 Y

(1)
11 =

 1

0
du′ T

(1)
1 (u′)Y

(1)
11 (u′, u). By

construction Y11 “factorizes”and hence can be split into the following two parts

Y11(u
′, u) = ZJhδ(u− u′) + ZBL(u

′, u) . (5.6)

Here, ZJh and ZBL are the renormalization factors for the HQET heavy-to-heavy and the
SCET light-to-light currents, respectively. Since one collinear sector in SCET is equivalent
to full QCD – when restricted to soft fields and then boosted (see Sec. 2.1.2) – the renor-
malization constant ZBL coincides with the ERBL kernel in QCD [50, 51]. We take ZBL

from [149]

ZBL(v, w) = δ(v − w)− αs

4π

2CF

ϵ

 1

ww̄


vw̄

Θ(w − v)
w − v + wv̄

Θ(v − w)
v − w


+

− 1

2
δ(v − w)

+ ∆
 v
w
Θ(w − v) + v̄

w̄
Θ(v − w)


+O(α2

s) . (5.7)
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Here, ∆ = 1 for pseudoscalar and longitudinally polarized vector mesons and ∆ = 0 for
transversally polarized vector mesons. The plus-distribution for symmetric kernels f is
defined as follows 

dw [f(v, w)]+ g(w) =


dwf(v, w)(g(w)− g(v)) . (5.8)

The renormalization factor ZJh can be obtained in a matching of the heavy-to-heavy QCD
current c̄ /n+(1 − γ5)b to the HQET current h̄v′/n+(1 − γ5)hv. Note that in this process also
the matching coefficients CFF can be determined. Since we treat the charm quark as heavy,
it scales as of the order of the heavy-quark mass and we perform the matching at a scale of
O(mb). Beyond tree-level the QCD current mixes with the chirality flipped HQET current
h̄v′/n+(1 + γ5)hv. Hence, we make the following ansatz for the renormalized currents

c̄ /n+(1− γ5)b = CLL
FF


h̄v′/n+(1− γ5)hv


+ CLR

FF


h̄v′/n+(1 + γ5)hv


, (5.9)

c̄ /n+(1 + γ5)b = CRL
FF


h̄v′/n+(1− γ5)hv


+ CRR

FF


h̄v′/n+(1 + γ5)hv


, (5.10)

where the different CFF are the matching coefficients. We evaluate the latter in expansions
of the strong coupling with five light flavours. The diagonal coefficients are given by CLL

FF =
CRR

FF = 1 + O(αs), whereas the non-diagonal coefficients arise beyond tree-level only, i.e.
CRL

FF = CRL
FF = O(αs). In order to obtain the explicit one-loop expressions, and in addition

Z
(1)
Jh , we evaluate both sides of Eqs. (5.9) and (5.10) to one-loop accuracy. The renormalized

matrix element of the QCD currents takes the form

⟨c̄ /n+(1∓ γ5)b⟩(1) =

Z

(1)
ext + Z

(1)
hh


ALL,RR(0) + ALL,RR(1)


⟨c̄ /n+(1∓ γ5)b⟩(0)

+ ALR,RL(1)⟨c̄ /n+(1± γ5)b⟩(0) . (5.11)

Here, the A(0,1) are the bare tree-level/one-loop on-shell amplitudes. An explicit calculation
yields

⟨c̄ /n+(1∓ γ5)b⟩(1) =


1

ϵ
+ L


CF


(zc + 1) log(zc)

zc − 1
− 2


+ CF

(zc + 1) log2(zc)

2− 2zc

+ CF
(5zc + 1) log(zc)

2(zc − 1)
− 4


⟨c̄ /n+(1∓ γ5)b⟩(0)

+


CF

√
zc log(zc)

zc − 1


⟨c̄ /n+(1± γ5)b⟩(0) . (5.12)

The one-loop matrix element of the HQET currents is given by1

⟨h̄v′ /n+(1∓ γ5)h̄v⟩(1) =

Y

(1)
ext + Z

(1)
Jh


ML,R(0) +ML,R(1)


⟨h̄v′ /n+(1∓ γ5)h̄v⟩(0) . (5.13)

The SCET on-shell amplitudesML,R(1) and the on-shell wave-function renormalization factor
Y

(1)
ext receive only contributions from scaleless integrals and therefore vanishes in dimensional

1We shall remember that at the one-loop accuracy the coupling constants with five and three light flavours
coincide (see Sec. 2.2).
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regularization, whereas the tree-level amplitudes ML,R(0) are equal to unity. Thus, the only
surviving contribution comes from Z

(1)
Jh . Comparing Eqs. (5.12) and (5.13) we can identify

Z
(1)
Jh as the pole term in ϵ, that is

Z
(1)
Jh =

CF

ϵ


(zc + 1) log(zc)

zc − 1
− 2


, (5.14)

which correctly reproduces the IR behaviour of QCD in the effective theory. The CFF on the
other hand are given by the coefficients in Eq. (5.12), which are finite in ϵ. We find that the
explicit one-loop results each for the diagonal and off-diagonal expressions coincide, which
is not surprising as Eqs. (5.9) and (5.10) are symmetric under interchanging PL ↔ PR.

Introducing the notations C
D(1)
FF ≡ C

LL(1)
FF = C

RR(1)
FF and C

ND(1)
FF ≡ C

LR(1)
FF = C

RL(1)
FF the

expressions read

C
D(1)
FF = CF


L


(zc + 1) log(zc)

zc − 1
− 2


+

(zc + 1) log2(zc)

2− 2zc
+

(5zc + 1) log(zc)

2(zc − 1)
− 4


,

(5.15)

C
ND(1)
FF = CF

√
zc log(zc)

zc − 1


. (5.16)

As last contribution the sum


b̸=1H
(1)
1b Y

(1)
b1 in Eq. (2.80) needs to be further specified.

Considering Eqs. (2.49) and (2.52) we find that only H
(1)
1b with b = 2 yields a non-vanishing

contribution which, comparing the coefficients proportional to O2, is given by H
(1)
12 = A

(1)
12 +

Z
(1)
extA

(0)
12 + Z

(1)
1j A

(0)
j2 . The tree-level amplitude A

(0)
12 is zero and the factorizable diagrams

A
f(1)
12 vanish as well (see Sec. 2.2.3). Hence, H

(1)
12 = A

(1)nf
12 +Z

(1)
1j A

(0)
j2 . The derivation for the

corresponding primed contribution follows the same lines and we obtain a similar expression.
The operator renormalization factor Y

(1)
21 has already been used in the NNLO calculation

of the vertex corrections to the decay B → ππ and is given in [45] in Eq. (45). Its explicit
expression reads

Y
(1)
21 (u′, u) = 16CF


u′Θ(u− u′)

u
+

(1− u′)Θ(u′ − u)
1− u


. (5.17)

With this we have specified all renormalization factors and matching coefficients that enter
the master formulae for the hard scattering kernels.

5.1.2. Discussion of the Results for the Hard Kernels

We find that our expressions for the one-loop kernels agree with the results given in Eqs. (89)
and (90) in [27]. For performing this comparison one has to take into account that the one-
loop result given in Eq. (90) was calculated in the “traditional basis” given in Eq. (V.1)
in [82] (cf. [150]). The converted results are equal up to higher order corrections. The
explicit results for the two-loop hard scattering kernels are not presented here as they are
rather lengthy and not very illuminating. Instead we comment on some interesting features of

62



5.2. Perturbative Amplitude a1

the master formulae (2.75) and (2.80). Analogous considerations apply to the corresponding
formulae for the primed kernels.

As mentioned in Sec. 1.1.1 the hard scattering kernels must be free of IR divergences. The
UV divergences are removed by considering renormalized amplitudes. Even though most of
the individual terms in Eqs. (2.75) and (2.80) contain divergences, the total expressions are
free of poles in ϵ. For calcuating the hard scattering kernels we use the master integrals in
the canonical basis, which are written in terms of Goncharov polylogarithms. As we apply a
numerically routine for evaluating the latter (see Sec. 4.5) we obtain only a numerical result

for the kernels. We find that for T
(2)
1 all poles cancel, for the 1/ϵ poles at the level of 2×10−5

for 12 different points in the u-zc plain. The pole cancellation for the higher poles is much
better as well as the pole cancellation of the colour singlet kernels, which is at the level
of 3 × 10−7. We remark that after the convolution of the hard scattering kernels with the
LCDAs we can express the result in terms of harmonic polylogarithms, which can be easily
simplified in Mathematica (see Sec. 4.4.1). We find that the poles then cancel analytically.
Note that the master formula (2.75) for the two-loop colour singlet kernel is simpler than the

one of the colour octet kernel. The reason is that the one-loop kernel T
(1)
2 as well as other

one-loop colour singlet amplitudes are zero due to their colour factors. Hence, already A
(2)nf
21

is free of IR divergences, i.e. the 1/ϵ4 and 1/ϵ3 poles cancel in the sum, and performing the
UV renormalization is sufficient for obtaining an in ϵ finite result.

Finally, we remark that after performing the convolution of the hard scattering kernels
with the pion LCDA we reproduce the result for the vertex correction to the colour-allowed
topology of the decay B → ππ given in Eq. (48) in [47] in the limit mc → 0. Next, we
present and discuss the results for the perturbative amplitude a1.

5.2. Perturbative Amplitude a1

The perturbative amplitude a1 is defined as the convolution of hard scattering kernels and the
light meson (here the pion) LCDA multiplied by Wilson coefficients. As the hard kernels only
contain the short distance physics above scales µ ≥ mb (see Sec. 1.1.1), they are independent
of the explicit final-state mesons. Therefore, we can use the result for the hard scattering
kernels to calculate the NNLO vertex corrections to the transition amplitudes for the set of
decays B̄0 → D(∗)L with L = π, ρ, whose weak transitions all are mediated by the operators
Q1 and Q2. Note that our calculation only applies for longitudinally polarized vector mesons
in the B̄0 → D∗+ρ− transition amplitude (see Eq. (5.7)). However, the contribution from
transversally polarized vector mesons was found to be small [27] and thus can be neglected
(see also Sec. 5.3). In the following, we define the hadronic quantities and identify the
perturbative contribution a1 in the transition amplitude Eq. (1.1). Then, we present the
results for a1 up to NNLO accuracy and analyse their dependence on the input parameters
and on the factorization scale.
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5.2.1. Hadronic Matrix Elements and Definition of a1

For the decays B̄0 → D(∗)L the transition amplitude Eq. (1.1) reads

A(B̄0 → D(∗)L) =
GF√
2


i

V ∗
udVcdCi(µ)⟨D(∗)L|Qi|B̄0⟩ . (5.18)

The factorized hadronic matrix element is given by Eq. (2.35) which in d = 4 dimensions
reduces to

⟨D(∗)L|Qi|B̄0⟩ = T̂i⟨D(∗)L|QQCD|B̄0⟩+ T̂ ′
i ⟨D(∗)L|Q′QCD|B̄0⟩ . (5.19)

We shall remember that at leading power Q(′)
QCD factorizes in the product of a LCDA and

the full QCD form factor and thus, Eq. (5.19) takes the form

⟨D(∗)L|Qi|B̄0⟩ = ⟨L|d̄ γµ(1− γ5)u|0⟩⟨D(∗)|c̄ γµ(1− γ5)b|B̄0⟩

du T̂i(u)ΦL(u)

+ ⟨L|d̄ γµ(1− γ5)u|0⟩⟨D(∗)|c̄ γµ(1 + γ5)b|B̄0⟩

du T̂ ′

i (u)ΦL(u) . (5.20)

Note that in this expression all hadronic matrix elements are local. A comparison of Eq. (5.20)
with Eqs. (1.7) and (1.8) yields the following relations for the local matrix elements

⟨π(q)|d̄ γµ(1− γ5)u|0⟩ = ifπq
µ , (5.21)

⟨ρ(q)|d̄ γµ(1− γ5)u|0⟩ = −ifρmρη
∗µ , (5.22)

where η is the polarization vector and mρ the mass of the ρ meson. For a longitudinally
polarized ρ meson we have ηµ = qµ/mρ

2. The decomposition of the B → D vector form
factor is given in Eq. (1.4), whereas the axial form factor vanishes due to parity. The form
factors for transitions involving the D∗ can be found in [53] and read

⟨D∗(p′, ϵ∗)|c̄γµγ5b|B̄0(p)⟩ =
2iV (q2)

mB +mD∗
ϵµνρσϵ∗νp

′
ρpσ , (5.23)

⟨D∗(p′, ϵ∗)|c̄γµγ5b|B̄0(p)⟩ = 2mD∗A0(q
2)
ϵ∗ · q
q2

qµ + (mB +mD∗)A1(q
2)


ϵ∗µ − ϵ∗ · q

q2
qµ


− A2(q
2)

ϵ∗ · q
mB +mD∗


pµ + p′µ − m2

B −m2
D∗

q2
qµ

. (5.24)

Here, ϵ is the polarization vector and mD∗ the mass of the D∗, and q = p−p′. The Ai and V
are scalar form factors. Note that the B → D∗ vector form factor vanishes when contracted
with the matrix elements given in Eq. (5.21) and in Eq. (5.22) in the case of a longitudinally
polarized ρ meson. Hence, neglecting the contribution from transversally polarized vector
mesons we define a1 as follows

A(B̄0 → DL) =
GF√
2


i

V ∗
udVcd a1(DL) ⟨L|d̄ γµ(1− γ5)u|0⟩⟨D|c̄ γµb|B̄0⟩ , (5.25)

A(B̄0 → D∗L) = −GF√
2


i

V ∗
udVcd a1(D

∗L) ⟨L|d̄ γµ(1− γ5)u|0⟩⟨D∗|c̄ γµγ5b|B̄0⟩ , (5.26)

2In general η is a linear combination of p and p′ but in the limit q2 → 0 can be approximated by η = qµ/mρ.
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with

a1(DL)(µ) =

i=1,2

Ci(µ)

 1

0

du [Ti(u, µ) + T ′
i (u, µ)] ΦL(u, µ) , (5.27)

a1(D
∗L)(µ) =


i=1,2

Ci(µ)

 1

0

du [Ti(u, µ)− T ′
i (u, µ)] ΦL(u, µ) . (5.28)

Here, we have made explicit the dependence on the factorization scale µ. We take the values
for the Wilson coefficients at the weak scale and evolve them down to a scale of order of the
b-quark mass. The RG evolution can be found in [84, 85]. We take the running of the strong
coupling from [151] to NNLO accuracy, also in the evolution of the LO and NLO Wilson
coefficients. The light meson LCDAs are expanded in a basis of Gegenbauer polynomials
C

3/2
k (x) with Gegenbauer moments αL

k

ΦL(u, µ) = 6u(1− u)

1 +

∞
k=1

αL
k (µ)C

3/2
k (2u− 1)


. (5.29)

Following [27] we assume that the leading-twist LCDA is close to its asymptotic form given
in Eq. (1.6) and truncate the expansion at the second moment. The first two Gegenbauer

polynomials read C
3/2
1 (x) = 3x and C

3/2
2 (x) = 3

2
(5x2 − 1). The Gegenbauer moments are

eigenfunctions of the one-loop renormalized ERBL-kernel. Hence, to leading-logarithmic
(LL) accuracy they are multiplicatively renormalizable [152]

αL
n(µ

2) =


αs(µ

2)

αs(µ2
0)

γ
(0)
n /(2β0)

αL
n(µ

2
0) , (5.30)

with β0 = (11CA − 2nf )/3 and leading order anomalous dimension

γ(0)n = 8CF


n+1
k=1

1

k
− 3

4
− 1

2(n+ 1)(n+ 2)


. (5.31)

The next-to-leading logarithmic (NLL) evolution has been derived in [152–154]. Here, we
use the result presented in [155], which has the form

αL
n(µ

2) = αL
n(µ

2
0)E

NLL
n +

αs(µ
2)

4π

n−2
k=0

αk(µ
2
0)E

NLL
k d

(1)
nk , (5.32)

with

ENLL
n =


αs(µ

2)

αs(µ2
0)

γ
(0)
n /(2β0)


1 +

β0γ
(1)
n − β1γ(0)n

8πβ2
0


αs(µ

2)− αs(µ
2
0)


. (5.33)

For the evolution of the lowest moments n = 0, 1, 2 we use

γ
(1)
0 = 1, γ

(1)
1 =

23488

243
− 512nf

81
, γ

(1)
2 =

34450

243
− 830nf

81
, (5.34)
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Parameter Value/Range Parameter Value/Range

αs(mZ) 0.1185± 0.006 mt 173.21± 0.87

Λ
(5)

MS
(NNLO) 0.2143 mb 4.78± 0.06

Λ
(3)

MS
(NLO) 0.3957 mc 1.67± 0.07

MW 80.385± 0.015 απ
2 (1GeV) 0.29±0.08 [156, 157]

MZ 91.1876± 0.0021 α
||ρ
2 (1GeV) 0.17± 0.07 [157]

Table 5.1. – Dimensionful quantities are given in units of GeV. If not otherwise stated the values are

taken from the Particle Data Group [158]. The given masses are the pole masses. α
||ρ
2 is the

second Gegenbauer moment of the longitudinally polarized ρ meson.

and

d
(1)
20 =

7

30
(5CF − β0)

γ
(0)
2

γ
(0)
2 − 2β0

1− αs(µ
2)

αs(µ2
0)

−1+γ
(0)
2 /(2β0)

 . (5.35)

The Gegenbauer moments usually are obtained from lattice or sum rule calculations at scales
around 1-2 GeV and are then evolved to scales µ ∼ mb. For the evolution we consider the
running of the strong coupling with nf = 3 light flavours. Note that in the case of the pion
and the ρ meson the first moment απ,ρ

1 vanishes in the isospin symmetry limit.
Next, we calculate the perturbative amplitude a1 and study the impact of varying the

input parameters and the factorization scale.

5.2.2. Results and Dependence on Input Parameters

We evaluate the perturbative amplitudes a1(D
(∗)L) for the set of parameters given in Tab. 5.1

up to NNLO accuracy. The top mass enters the running of the Wilson coefficient only at
NNLO and we find that changes of the mass in the range of 172GeV < mt < 175GeV
do not have any affect on our result within the considered accuracy. The same applies for
varying MW , MZ and the second Gegenbauer moments within the given uncertainties. In
the evolution of the Gegenbauer moments we take the NLO strong coupling with nf = 3
light flavours. Note that a change to the coupling constant with nf = 4 light flavours has a
negligibly small impact on a1. Moreover, we find that dependence on zc = m2

c/m
2
b is given by

a smooth function and changes of zc in the range of 0.10 ≤ zc ≤ 0.15 affect a1 only at the per
mill level. The zc-dependence for the decays B̄0 → D(∗)π is visualized in Fig. 5.1 where we
have plotted the real and imaginary parts of aNLO

1 and aNNLO
1 as a function of zc. Note that

the zc-dependence of the decays B̄0 → D(∗)π shows a similar behaviour. Although we do
not expect any significant changes, it would be interesting to investigate the zc-dependence
when choosing a different scheme than the on-shell scheme for the renormalization of the
quark masses; for instance choosing the MS scheme. This is beyond the scope of this thesis
but will be analyzed in a forthcoming publication [E].
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Figure 5.1. – zc-dependence of the a1 varying zc in the range of physical values 0.10 < zc < 0.15. The
upper panels show the values for real parts of a1(Dπ) (left) and a1(D

∗π) (right), whereas
the size of the imaginary parts are given in the lower panels, left for a1(Dπ) and right for
a1(D

∗π). The dashed/solid lines represent the NLO/NNLO results.

The largest uncertainty of a1 comes from varying the factorization scale µ (see Eq. (1.1))
within mb/2 ≤ µ ≤ 2mb. The µ-dependence is visualized in Fig. 5.2 for the decays
B̄0 → D(∗)π. We find that for the real parts the LO and NLO results have a large scale
dependence, which gets significantly reduced in the NNLO results. This behaviour cannot
be observed in the scale dependence of the imaginary parts. However, this is not surprising
as the imaginary parts only arise at NLO. Hence, the NNLO results are in fact the first
correction and we do not expect the scale dependence to be sizably reduced at this order.
Note that the plots for the decays B̄0 → D(∗)ρ show a similar behaviour. Taking the specific
value µ = mb for the calculation of the central values we then obtain the following results for
the perturbative amplitude a1: At LO the values for the four different amplitudes coincide,
are real and read

aLO1 (D(∗)L) = 1.025± 0.024 . (5.36)

The NLO results as functions of the second Gegenbauer moment are given by

aNLO
1 (DL) = (1.054+0.021

−0.018 + 0.016i+0.013i
−0.007i) + (0.002+0.002

−0.001 − 0.001i+0.001i
−0.001i)α

L
2 , (5.37)

aNLO
1 (D∗L) = (1.052+0.019

−0.017 + 0.010i+0.008i
−0.005i) + (0.000+0.000

−0.000 − 0.001i+0.001i
−0.001i)α

L
2 . (5.38)
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Figure 5.2. – Factorization scale-dependence of the a1 in the range of 2 ≤ µ ≤ 10. In the upper pan-
els the real parts of a1(Dπ) (left) and a1(D

∗π) (right) are shown. The dependence of the
imaginary parts of a1(Dπ)and a1(D

∗π) on µ is given in the left and right lower panels, re-
spectively. The dashed-dotted/dashed/solid lines represent the LO/NLO/NNLO results.
Note that the imaginary parts just starts at NLO.

We remark that these numbers have been calculated with updated values of input parameters
in comparison to the NLO values given in Tab. (4) in [27]. However, even though using the
input parameters provided in [27] we find a small discrepancy at the per mill level for the
central values. This difference arises due to the neglected higher order corrections that are
different since both calculations have been performed using different operator bases (see
Sec. 5.1.2). At NNLO we obtain the following values

aNNLO
1 (DL) = (1.071+0.011

−0.013 + 0.044i+0.022i
−0.014i) + (0.003+0.003

−0.002 − 0.007i+0.002i
−0.003i)α

L
2 , (5.39)

aNNLO
1 (D∗L) = (1.071+0.012

−0.013 + 0.033i+0.017i
−0.010i) + (0.000+0.001

−0.000 − 0.009i+0.003i
−0.004i)α

L
2 . (5.40)

We find that in comparison to the NLO results the central NNLO values are increased by
about 2%, whereas the imaginary parts obtain a correction which is even larger than the
NLO imaginary parts themselves. Moreover, the uncertainties in real parts get reduced by
approximately 30%, the uncertainties of the imaginary parts on the other hand are still
sizable. The central values for real and imaginary parts of the LO/NLO/NNLO amplitude
a1(B̄

0 → D+π−) are shown in Fig. 5.3 including the corresponding uncertainties. We find
that the number of the real and imaginary part of the central values increases with the
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Figure 5.3. – The real and imaginary part of the LO/NLO/NNLO corrections are plotted for the decay
B̄0 → D+π− including error bars that show the corresponding uncertainties. Note that the
LO result has no imaginary part.

considered order in the perturbative expansion. Within the uncertainties the NLO and
NNLO reals parts are in good agreement, whereas there is only a small overlap of the NLO
and NNLO imaginary parts. Finally, we remark that within the given uncertainties the
NNLO corrections agree and point towards a quasi-universal perturbative contribution of
the vertex corrections to the decays B̄0 → D(∗)L in the framework of QCDF.
In the subsequent calculation of the branching ratios we will use the following results for

aNNLO
1 that include the values for the Gegenbauer moments given in Tab. 5.1

aNNLO
1 (Dπ) = 1.072+0.011

−0.013 + 0.043i+0.022i
−0.013i , (5.41)

aNNLO
1 (Dρ) = 1.072+0.011

−0.013 + 0.044i+0.022i
−0.014i , (5.42)

aNNLO
1 (D∗π) = 1.071+0.012

−0.013 + 0.032i+0.016i
−0.010i , (5.43)

aNNLO
1 (D∗ρ) = 1.071+0.012

−0.013 + 0.032i+0.016i
−0.010i . (5.44)

5.3. Branching Ratios

We evaluate the branching ratios (BRs) for the decays B̄0 → D∗+L− and compare the
result with the experimentally measured ones. They are related to the decay rates Γ by
BR(B̄0 → D∗+L−) = τB̄0/~ Γ(B̄0 → D∗+L−), where τB̄0 is the B̄0 meson life time. The
expression for the rates are given by [27]

Γ(B̄0 → D+π−) =
G2

F (m
2
B −m2

D)
2|q⃗|Dπ

16πmB

|V ∗
udVcb|2 |a1(Dπ)|2f 2

πF
2
0 (m

2
π) , (5.45)

Γ(B̄0 → D∗+π−) =
G2

F |q⃗|3D∗π

4π
|V ∗

udVcb|2 |a1(D∗π)|2f 2
πA

2
0(m

2
π) , (5.46)
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Parameter Value/Range Parameter Value/Range

mπ+ 0.13957 ρ2D 1.185± 0.054 [14]

mρ 0.77526 ρ2D∗ 1.207± 0.026 [14]

mD+ 1.869, 61 ηEWG(1)|Vcb| (42.65±1.53)×10−3 [14]

mD∗+ 2.01026 ηEWF(1)|Vcb| (35.81±0.45)×10−3 [14]

mB̄0 5.27958 R0(1) 1.151± 0.023 [162, 14]

|Vud| 0.974 R1(1) 1.406± 0.033 [14]

fπ 0.131 R2(1) 0.853± 0.020 [14]

fρ 0.216 τB̄0 1.519 ps

Table 5.2. – Dimensionful quantities are given in units of 1 GeV except the life time of the B meson. If
not otherwise stated the values are taken from the Particle Data Group [158].

Γ(B̄0 → D+ρ−) =
G2

F |q⃗|3Dρ

4π
|V ∗

udVcb|2 |a1(Dρ)|2f 2
ρF

2
+(m

2
ρ) , (5.47)

Γ(B̄0 → D∗+ρ−) =
G2

F |q⃗|D∗ρ

16πm2
B

|V ∗
udVcb|2 (|H0|2 + |H+|2 + |H−|2) , (5.48)

where |q⃗|HL = 1
2mB


(m2

B −m2
H −m2

L)
2 − 4m2

Hm
2
L is the three-momentum of the H and

L mesons and H0,± are helicity amplitudes corresponding to the polarization of the vector
meson. Both |q⃗|HL and H0,± are defined in the B meson rest frame. The explicit expression
for H0 reads

H0 =
a1(D

∗ρ)fρ
2m∗

D


(m2

B −m2
D∗ −m2

ρ)(mB +mD∗)A1(m
2
ρ)−

4m2
B|q⃗|2D∗ρ

mB +mD∗
A2(m

2
ρ)


. (5.49)

The amplitudes H± are contributions from transversally polarized ρ mesons. They are
suppressed with respect to H0 with H±/H0 = O(mρ/mB) and we therefore neglect them in
our analysis. For the scalar form factors F0,+ and A0,1,2 we take the parametrization given
in [159–161] and describe them by normalization factors and a slope function ρ, which are
ηEWG(1) (ηEWF(1)), R1(1) (R0,2(1)) and ρD (ρD∗) in the case of the B → D(D∗) transition3.
For performing the error analyses we neglect any correlations between these parameters but
rather perform a conservative error estimate. The uncertainties taking into account these
correlations are expected to be smaller and will be included in a forthcoming analysis [E].
We evaluate the BRs for the specific input parameters given in Tab. 5.2. The meson

masses, the B-meson life time and |Vud| are well known and their uncertainties are below
the accuracy of our result. We do not use any specific value for |Vcb| but rather take values
for the combinations ηEWG(1)|Vcb| and ηEWF(1)|Vcb|, which have been determined from

3The one-parameter functions that describe the form factors include only short-distance and 1/mb correc-
tions to the heavy-quark limit. Thus, to obtain a full NNLO result for the BRs the order α2

s, αs/mb and
1/m2

b should be includes as well, which have not yet been worked out. The uncertainties arising due to
these corrections are not accounted for in the uncertainties of the slope and the normalization.
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Decay LO NLO NNLO Experiment

BR(B̄0 → D+π−) 3.63+0.42
−0.38 3.84+0.43

−0.41 3.97+0.43
−0.41 2.68± 0.13

BR(B̄0 → D∗+π−) 3.19+0.24
−0.20 3.36+0.25

−0.22 3.49+0.22
−0.21 2.76± 0.13

BR(B̄0 → D+ρ−) 9.50+1.06
−0.96 10.06+1.07

−1.05 10.41+1.08
−1.06 7.8± 1.3

BR(B̄0 → D∗+ρ−) 8.45+0.56
−0.45 8.91+0.53

−0.50 9.23+0.48
−0.49 6.8± 0.9

Table 5.3. – BRs for the decays B̄0 → D(∗+)L− in units of 10−3. The experimental values are taken
from [158].

exclusive semi-leptonic decays. The results for the BRs up to NNLO accuracy are given in
Tab. 5.3. We find that the BRs rise from LO to NNLO which is due to the increasing of the
perturbative amplitude a1 with higher order in the perturbative expansion. The calculated
observables are about 20 − 30% larger than experimental BRs and show a tension at the
level of 2-3 σ. We will comment on this in Sec. 5.5. Next, we test the framework of QCDF
by comparing non-leptonic and semi-leptonic decay rates.

5.4. Factorization Tests

We have seen in the end of Sec. 5.2 that the calculated NNLO amplitudes a1 for the decays
B̄0 → D∗+L− are quasi-universal. In the following, we investigate whether also experimental
data points towards a quasi-universal value a1 in these decay channels. We follow [27] and
probe the quasi-universality of a1 by taking ratios of non-leptonic and semi-leptonic decay
rates.

5.4.1. Ratios of Non-leptonic Decay Rates

We consider the following ratios of non-leptonic decay rates

Γ(B̄0 → D+π−)

Γ(B̄0 → D∗+π−)
=

(m2
B −m2

D)
2|q⃗|Dπ

4m2
B|q⃗|3D∗π


F0(m

2
π)

A0(m2
π)

2 |a1(Dπ)|2
|a1(D∗π)|2 , (5.50)

Γ(B̄0 → D+ρ−)

Γ(B̄0 → D+π−)
=

4m2
B|q⃗|3Dρ

(m2
B −m2

D)
2|q⃗|Dπ

f 2
ρ

f 2
π


F+(m

2
ρ)

F0(m2
π)

2 |a1(Dρ)|2
|a1(Dπ)|2

. (5.51)

For their evaluation we use the values for the BRs give in Tab. 5.3 taking into account that
the B-meson life time drops out in the ratios. The results are presented in Tab. 5.4. We
find that the LO/NLO/NNLO and experimental values are in good agreement within the
given uncertainties. Moreover, taking the values for the experimental decay rates as input
Eqs. (5.50) and (5.51) directly probe the experimentally determined ratios of different a1.
The ratio of Γ(B̄0 → D+π−) and Γ(B̄0 → D∗+π−) is sensitive to the differences in a1 given
in Eqs. (5.39) and (5.40). In contrast, the ratio of Γ(B̄0 → D+π−) and Γ(B̄0 → D+ρ−) is
sensitive to difference in the LCDAs of the pion and the ρ meson which only enters at the
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5. Results and Phenomenological Applications

Decay LO NLO NNLO Experiment

Γ(B̄0 → D+π−)/Γ(B̄0 → D∗+π−) 1.14+0.22
−0.19 1.14+0.22

−0.19 1.14+0.20
−0.18 0.97+0.10

−0.09

Γ(B̄0 → D+ρ−)/Γ(B̄0 → D+π−) 2.62+0.63
−0.51 2.62+0.63

−0.51 2.62+0.61
−0.49 2.93+0.66

−0.60

Table 5.4. – Ratios of non-leptonic decay rates.

second Gegenbauer moment and is therefore expected to be small. We obtain the following
results

|a1(Dπ)|
|a1(D∗π)|

F0(m
2
π)

A0(m2
π)

= 0.95+0.05
−0.04 , (5.52)

|a1(Dρ)|
|a1(Dπ)|

F+(m
2
ρ)

F0(m2
π)

= 1.09± 0.12 . (5.53)

Considering that the ratio of the form factors F+(m
2
π) (F+(m

2
ρ)) and A0(m

2
π) (F0(m

2
π)) nu-

merically deviate from one only at the percentage level, we find no evidence for deviations
from naive factorization within the given errors. Next, we consider ratios of non-leptonic
and semi-leptonic decay rates.

5.4.2. Ratios of Non-leptonic and Semi-leptonic Decay Rates

Ratios of non-leptonic decay rates and the corresponding differential rates of semi-leptonic
decays evaluated at the same momentum transfer q2 = m2

L provide another possibility to test
factorization as they directly probe the magnitude of the perturbative amplitude a1 [163].
They are given by the following expression [164]

R
(∗)
L =

Γ(B̄0 → D(∗)L−)

dΓ(B̄0 → D(∗)l−ν̄)/dq2|q2=m2
L

= 6π2|Vud|2f 2
L|a1(D(∗)L)|2XP . (5.54)

The right hand side of this equation is true assuming that factorization holds andXP deviates
from 1 below the precent level. The experimental decay rates are obtained from the branching
ratios given in Tab. 5.3. In order to obtain the differential rates at q2 = m2

L we take
the parametrization for the form factors given in [159] in terms of a normalization and
a slope function. The form factors are written in the variable ω = vB · vD(∗) = (m2

B +
m2

D(∗)− q2)/(2mBmD(∗)), where vB and vD(∗) are the four-velocities of the B and D(∗) meson,
respectively, and can be related to q2 via the transformation

dΓ

dq2
=

1

2mBmD(∗)

dΓ

dω
. (5.55)

For the slope functions and the normalizations including |Vcd| we use the input values given
in Tab. 5.2 in the previous section.
The preliminary results for R

(∗)
L and |a1(D(∗)+L−)| are presented in Tab. 5.5. We find that

the experimentally determined values for the magnitude of a1 lie below 1, the value for naive
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5.5. Summary and Discussion

Decay R
(∗)
L |a1|

B̄0 → D+π− 0.75+0.09
−0.08 0.88± 0.05

B̄0 → D∗+π− 0.89± 0.06 0.96± 0.02

B̄0 → D+ρ− 2.26+0.45
−0.44 0.91+0.08

−0.09

B̄0 → D∗+ρ− 1.96± 0.27 0.86± 0.06

Table 5.5. – Preliminary results for the non-leptonic to semi-leptonic ratios R
(∗)
L and for the experimen-

tally extracted values for |a1(D(∗)+L−)|.

factorization, favoring a central value |a1| ≃ 0.94, which we obtain as the mean of the central
values of Tab. 5.5. Moreover, the experimentally predicted amplitudes a1 show a tension
of 4-5 σ compared to the NNLO absolute value |aNNLO

1 (D(∗)+L−)| = 1.07± 0.01, except for
|a1(D+ρ−)| which has rather large uncertainties. We note, however, at this point that these
results are still preliminary. The values given in Tab. 5.5 will be updated in a forthcoming
publication [E]. We summarize and discuss our results in the next section.

5.5. Summary and Discussion

We have evaluated the NNLO vertex corrections to the colour-allowed tree-topology of the
decays B̄0 → D(∗)+L− with L being π or ρ. The final result is given by a perturbative
contribution a1, which in naive factorization has the value 1. We find that our NNLO results
for a1, given in Eqs. (5.39) and (5.40), are close to one but have a small non-zero imaginary
part. In comparison to the NLO results, which have been calculated in [27], the real parts
have increased by 2%, whereas the imaginary parts obtain a contribution which is even larger
than the NLO imaginary parts themselves. Moreover, a1 only mildly depends on the ratio of
the heavy-quark masses zc = m2

c/m
2
b and variations of zc within its physical ranges affect the

result only at the per mill level. Changes in the second Gegenbauer moments within the given
uncertainties do not have any impact on a1 within the considered accuracy. The dependence
on the factorization scale on the other hand yields the largest uncertainties. Nevertheless,
for the real parts we find a significant reduction of the scale dependence compared to the
NLO result. This reduction does not occur in the imaginary parts, which is expected as the
latter only arise at NLO. In [27] it was further pointed out that to NLO accuracy there is
a quasi-universal perturbative correction a1 for the decays B̄0 → D∗+L− in the framework
of QCDF. Our results confirm the quasi-universality of a1 to NNLO accuracy with a value
|a1| ≃ 1.07± 0.01.

We have evaluated the BRs to NNLO accuracy and find a 2-3 σ tension compared to
the experimental BRs, whose central values are about 20 − 30% smaller. This tension had
not been observed in an earlier analysis by Beneke et al [27] in 2000 using NLO BRs (the
experimental and NLO BRs can be found in [27] in Tab. 5). Since then, the form factors
have improved and increased at around 10% and the uncertainties of the experimental BRs
have decreased significantly in most of the decay channels. In addition, the NNLO values of
a1 are slightly increased compared to the NLO values.
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Moreover, we have analyzed whether data favors a quasi-universal value of a1 in the decay
channels B̄0 → D∗+L− by considering ratios of non-leptonic and semi-leptonic decay rates.
The ratios of different a1 extracted from non-leptonic rates turn out to be compatible with
naive factorization. The preliminary values for a1 that we obtain from ratios of non-leptonic
to semi-leptonic decay rates on the other hand favor a central value |a1| ≃ 0.94, with errors
in the individual channels at the 2-10%-level. These two results agree with an analysis
performed in 2011 by Fleischer at al [49], which use the same data for the BRs and similar
input parameters. From the ratios of non-leptonic to semi-leptonic decay rates they had
extracted a central value |a1| ≃ 0.95 for the decays B̄0 → D(∗)π and B̄0 → D(∗)K. The
corresponding errors in individual channels are at the 10-20%-level.
As mentioned in Sec. 1.1.2 our results for the perturbative NNLO amplitude and the

factorization tests provide a better understanding of power corrections to the factorization
formula (1.10). The 2-3 σ tension in the experimental and theoretical BRs indeed gives
an indication towards non-negligible power corrections, together with the experimentally
extracted favoured central value |a1| ≃ 0.94, which is smaller than the central NNLO value
|a1| ≃ 1.07. Given the uncertainties of the BRs and a1 (see above) the power corrections
could be 10-20% in size, which coincides with a numerically estimated value of ΛQCD/mb.
Moreover, as data points towards a quasi-universality of a1 and all central values for the
NNLO BRs are about 20 − 30% larger than the experimental BRs one could suspect a
common mechanism that pushes the power correction in the same direction. This would
also be supported by the good agreement of the experimental and theoretical values for
the ratios of the non-leptonic decay rates. Additional contributions of similar-sized power
corrections could cancel in the ratios.
We remark that still it remains to be clarified to what significance the deviations for the

experimentally extracted and the NNLO value for a1 occur. Moreover, for an interpretation
of tensions one should take into account that the HFAG results for the normalizations and
form factors given in Tab. 5.2 are global averages of several experimental measurements.
The single measurements have different central values and mostly larger uncertainties. In
addition, a small uncertainty also arises since the one-parameter functions that describe the
form factors are only known to order αs and 1/mb.
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B → πππππππππ in QCD factorization
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Chapter 6

Three-body Decays from QCD

We investigate the prospects of a QCD-factorization study for the decay B+ → π+π−π+.
Therefore, we identify different regions in the Dalitz plot where the final-state particles have
special kinematic configurations. We claim that these regions can be treated in QCDF with
appropriate non-perturbative input, which includes generalized form factors and generalized
distribution amplitudes. We construct corresponding factorization formulae and give the
definitions for the B → ππ form factor and the two-pion distribution amplitudes. We
calculate the three-body amplitude in the central region of the Dalitz plot and analyse it in
the limit when moving towards the edges. Moreover, we evaluate the amplitude in the edge
and integrate the corresponding differential decay rate in a window around the ρ resonance
for a rough estimate of the branching ratios. Finally, we discuss how both descriptions merge
to describe the full Dalitz plot, and what we can expect for a physical value of the b-quark
mass.
The main results of this chapter are published in [D]. We further remark that the main

ideas developed here have been discussed qualitatively by M. Beneke [165] and I. Stew-
art [166].

6.1. Identifying Regions in the Dalitz Plot

We consider the decay B+ → π+π−π+, and define the external momenta as

B+(p)→ π+(k1) π
−(k2) π

+(k3) with p = k1 + k2 + k3 . (6.1)

We set the pion masses to zero in the kinematics and thus have

p2 = m2
B , k2i = 0 for i = 1, 2, 3 , (6.2)

where mB is the mass of the B meson. The invariant masses of each pair of particles,
normalized to m2

B, are given by

sij ≡
2ki · kj
m2

B

(i ̸= j) . (6.3)
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6. Three-body Decays from QCD

Due to momentum conservation they fulfill the following kinematic constraints

s12 + s13 + s23 = 1 and 0 ≤ sij ≤ 1 . (6.4)

The center-of-mass energies ECM
i of any one pion can be expressed in terms of these invari-

ants, and read ECM
1 = mB(1 − s23)/2, ECM

2 = mB(1 − s13)/2 and ECM
3 = mB(1 − s12)/2.

Eq. (6.4) fixes one of the invariant masses, e.g. s13, whereas the remaining two are free
parameters. The differential decay rate of the three-body decay (6.1) in terms of those two
invariants is given by [167]

dΓ =
1

32 (2π)3
mB|A|2ds12ds23 , (6.5)

where A = A(s12, s23) is the transition amplitude. A scatter plot dΓ/(ds12ds23) is known as
a Dalitz plot1. In the case of massless final-state particles the physical kinematical region
in the s12 − s23 plane is given by a triangle. If |A|2 is constant the Dalitz plot is uniformly
populated, otherwise structures arise due to dynamical effects. Resonances of intermedi-
ate two-body states appear as bands, which exhibit a characteristic shape that depends on
the type of the resonance (scalar, vector or tensor) [170]. The regions of overlapping reso-
nances yield information on strong and weak phase differences which allow for a study of
CP violation [171].
In the case at hand, we encounter two identical particles in the final state and the invariants

s12 and s23 are not distinguishable anymore. Hence, we label the two π+ according to their
CM energies. Choosing ECM

1 < ECM
3 we find that s12 < s23 and adopt the notation s12 ≡ slow+−,

s23 ≡ shigh+− and s13 ≡ s++. The physical kinematical region in the plane of the invariants slow+−
and shigh+− shown in Fig. 6.1 is then given by a triangle, where the region with shigh+− < slow+− is
unpopulated by definition.
We distinguish three regions in the Dalitz plot where the final-state particles have special

kinematical configurations:

I. “Mercedes Star” Configuration: This configuration occurs in the central region of
the Dalitz plot, where all the invariant masses are roughly the same and of O(mB)

Region I : s++ ∼ slow+− ∼ shigh+− ∼ 1/3 , (6.6)

corresponding to the kinematical situation where all three pions have a large energy in
the B-meson rest frame and none of the pions moves collinearly to any other.

II. Collinear Decay Products: This corresponds to regions of the Dalitz plot where
one invariant mass is small and the other two are large. The kinematic configuration
is such that two pions are collinear, generating a small invariant mass recoiling against
the third pion. In our case there are two such regions:

Region IIa : s++ ∼ 0 , slow+− ∼ shigh+− ∼ 1/2 , (6.7)

1This visualization method goes back to Dalitz [168] who employed it for the study of the θ − τ puzzle in
1953 and shortly afterwards was extended to a relativistic formulation by Fabri [169]. The latter version
is commonly used in the current applications of Dalitz plot analyses.
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Figure 6.1. – Left: Dalitz plot distribution for B+ → π+π−π+ from [19]. Right: Dalitz plot divided into
the different regions with special kinematical configurations: I - Mercedes Star configura-
tion, IIa,IIb - Two collinear pions, IIIa,b - One soft pion.

which is the region where the two π+ move collinearly, recoiling against the π−, and

Region IIb : slow+− ∼ 0 , s++ ∼ shigh+− ∼ 1/2 , (6.8)

where the π− and one π+ move collinearly, recoiling against the second π+.

III. One Soft Decay Product: The regions of the Dalitz plot where two invariant masses
are small and one is large correspond to kinematical configurations where one pion is
soft and the other two are fast and back-to-back. In our case there are two such regions:

Region IIIa : s++ ∼ slow+− ∼ 0 , shigh+− ∼ 1 , (6.9)

which is the region where one π+ is soft, and

Region IIIb : shigh+− ∼ slow+− ∼ 0 , s++ ∼ 1 , (6.10)

where the π− is soft.

The different regions are shown in the right-hand panel in Fig. 6.1. Next, we discuss the
factorization properties that are expected to apply in the different regions.

6.2. Factorization Formula

We have briefly discussed the factorization properties of three-body decays in Sec. 1.1.3,
which depend on the invariant masses of the final-state mesons. In the cases at hand at least
one particle, which we denote by πk in the following, has2 ECM

k = O(mB). We take πk as the
fastest particle in the following. The other two particles constitute a system, or a “compound

2As mB/
√
3 ≫ ΛQCD where ΛQCD is the typical hadronic scale we adopt the power counting mB/

√
3 ∼

O(mB).
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FB→ππ

T I

Φπ
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πk

B +

FB→π

B

πk

πi
πj
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Φππ

+ B ΦB T II

πi
πjΦππ

Φπ πk

Figure 6.2. – Factorization formula in the edges (Regions II and III)

object”, with invariant mass sij m
2
B with i, j ̸= k, moving in the direction opposite to πk

with large energy but not necessarily large momentum. With sij = 1 − 2ECM
k /mB one

finds 0 < sij < 1/3. From the point of view of power counting this compound object
can be light (sij ∼ Λ2

QCD/m
2
B), or heavy (sij ∼ 1), or anything in between. We describe the

(πiπj) sub-system in terms of generalized form factors or generalized distribution amplitudes.
Depending on the size of sij we adopt the factorization formulae of two-body decays (see
Sec. 1.1.1) to describe the three-body decay amplitude in the heavy-quark limit. The regions
II and III are part of the “edge” of the Dalitz plot, where sij ≪ 1. This is where the physics
of rescattering and resonance formation in the (πiπj) sub-system is mostly contained. The
central region of the Dalitz plot (Region I) on the other hand is expected to be dominated
by standard QCD factorization. We start by considering the decay amplitude at the edges
(Region II and III).

Factorization in the Edges (Regions II and III)

If sij is small, the three-body decay resembles a two-body decay into two light hadrons, the
only difference being that one of the final light hadrons is replaced by the (light) system
(πiπj). The QCD-factorization ansatz takes then the following form (cf. Eq. (1.2))

⟨πiπjπk|Qa|B⟩sij≪1 = T I
a ⊗ FB→πk ⊗ Φπiπj + T I

a ⊗ FB→πiπj ⊗ Φπk

+ T II
a ⊗ ΦB ⊗ Φπk ⊗ Φπiπj . (6.11)

Here FB→ππ and Φππ denote generalized B → ππ form factor and the two-pion light-cone
distribution amplitude (2π-LCDA) to be defined more precisely in Sec. 6.3. The expressions
for the FB→π vector form factor and the single-pion LCDA Φπ are given in Sec. 1.1.1, and
the hard scattering kernels T I and T II are perturbatively calculable in an expansion in the
strong coupling αs (cf. Eq. (1.9)). The operators Qa are defined in Sec. 1.3. A schematic
illustration of the factorization formula is given in Fig. 6.2.

The region sij ≪ 1 of the Dalitz plot corresponds either to the kinematic configuration
II or III in Sec. 6.1. However, in the limit where one pion is soft and the other two decay
back-to-back (Region III) the 2π-LCDA reduces to a single-pion LCDA [60]. To what extent
this configuration is included in Eq. (6.11) needs to be investigated in more detail. As this
exceeds the scope of this thesis we will not consider Region III any longer.
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6.2. Factorization Formula

FB→π

T I

Φπ
π

B

π

+ B ΦB T II

Φπ π

Φπ π

Figure 6.3. – Factorization of the FB→ππ form factor for a large invariant mass.

Factorization at the Center (Region I)

In the center of the Dalitz plot, where sij is large3, the three-body decay resembles a two-
body decay to one heavy and one light meson, e.g. B → Dπ. If the spectator quark goes to
either πi or πj, then the factorization theorem for a two-body decay to one heavy and one
light meson Eq. (1.3) can be applied directly to the case at hand, resulting in a convolution
of a generalized form factor FB→ππ(sij) and a regular LCDA Φπ. In addition, at large sij
the FB→ππ form factor factorizes further4

FB→ππ|sij∼1/3 = T I ⊗ FB→π ⊗ Φπ + T II ⊗ ΦB ⊗ Φπ ⊗ Φπ . (6.12)

This factorization is visualized schematically in Fig. 6.3. The situation in which the spectator
goes to πk is more subtle. We know that the corresponding B → Dπ analogue does not
factorize. This is because the D meson sits at rest interfering with the B → π transition,
and the idea of color transparency does not apply, as it was discussed in detail in Sec. 1.1.2.
Therefore in the resonant contributions B → H[→ πiπj]πk where H represents the heavy
meson the description of the H resonance within the generalized LCDA Φππ(sij) cannot be
argued on the basis of present factorization theorems. One may now wonder if such decays
pose a difficult background to B → πππ. However, since the D meson in our example decays
weakly, it is a very narrow resonance in the (ππ) invariant mass distribution of the B → πππ
decay. Thus it can be described separately with good precision, or even directly removed
from the measurement without introducing large systematic effects.
A different situation arises in the case in which H is a genuine QCD resonance, decaying

strongly into πiπj. The masses mR of these resonances however do not scale with the
heavy B-meson mass and hence the width of the Region II scales as mR/mB, showing
the dominance of Region I in the infinite mass limit. Therefore (in the heavy-mass limit)
the decay B → πiπjπk at large sij ∼ 1/3 is purely non-resonant, and involves two fast light
mesons πi, πj flying away with large invariant mass. The (πiπj) system can then be described
in terms of Φπi and Φπj , which factorize from the FB→πk

form factor. This picture can be
related to the perturbative limit of 2π-LCDAs, where Φπiπj

∼ Φπi
⊗ Φπj

[172].
In addition, there are non-factorizable contributions to B → [πiπj]πk, which are power

suppressed for sij ≪ 1, but are of leading power for sij ∼ 1/3. However, when sij ∼ 1/3

3We recall that, by construction, sij < 1/3.
4In the calculation of the amplitude in the central region (see Sec. 6.4) we have shown that factorization
applies for the leading order form factor in an expansion in the strong coupling αs. The next-to-leading
order proof is in preparation [70].
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+
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B
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+ B ΦB T II

Φπ π+

Φπ π+
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Figure 6.4. – Factorization formula in the center (Region I)

these contributions are perturbative and thus further factorize (see Sec. 6.6 for more details).
All in all, for large sij the factorization formula reads:

⟨π+π−π+|Oi|B⟩sij∼1/3 = T I ⊗ FB→π+ ⊗ Φπ− ⊗ Φπ+ + T I ⊗ FB→π− ⊗ Φπ+ ⊗ Φπ+

+ T II ⊗ ΦB ⊗ Φπ+ ⊗ Φπ− ⊗ Φπ+ . (6.13)

A graphic visualization is given in Fig. 6.4.

The factorization formulae Eqs. (6.11) and (6.13) yield the transition amplitudes for certain
regions in the Dalitz plot. We will evaluate these to leading order in the strong coupling in
the sections 6.4 and 6.5. Next, we give the definitions for the generalized form factors and
distributions amplitudes.

6.3. Generalized Form Factors and Distribution

Amplitudes

Generalized form factors and distribution amplitudes have been studied in the literature,
the former in the context of semi-leptonic B decays [57], and the latter in connection with
two-meson electroproduction [59] or semi-leptonic τ decays [58] (see also [60–68]). Here, we
present the definitions that we use in the evaluation of the transition amplitude to leading
order in mB and in the strong coupling αs in Sec. 6.5.

6.3.1. Two-pion Distribution Amplitude

To leading twist, the 2π-LCDA for a (π+π−) system is formally given by the non-local matrix
element [59, 60, 62]

Sq
αβ(z, k1, k2) =

k+12
4π


dx−e−iz(k+12x

−)/2⟨π+(k1)π
−(k2)|q̄β(x)[x, 0]qα(0)|0⟩x+=x⊥=0 , (6.14)

where α, β are Dirac indices, q = u, d, and [x, 0] is a Wilson line. We take k12 = k1 + k2 and
define two light-like vectors nµ

± = (1, 0, 0,±1), which obey n2
± = 0 and n+n− = 2, such that

kµ12 =
k+12
2
nµ
+ +

k−12
2
nµ
− and xµ =

x+

2
nµ
+ +

x−

2
nµ
− + xµ⊥ . (6.15)
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6.3. Generalized Form Factors and Distribution Amplitudes

Moreover, in the limit k212 → 0 one has k−12 → 0. The variable z is the fraction of the mo-
mentum k12 carried by the quark q. Note that due to isospin and charge conservation the
operator q̄βqα cannot create two equally-charged pions and hence the leading-twist distribu-
tion amplitude for the (π+π+)-system is zero.
The Lorentz decomposition of the matrices Sq

αβ consistent with parity invariance, keeping
only terms that contribute at lowest twist, is given by5

Sq
αβ =

1

4
Φq

∥(z, ζ, k
2
12) k/12 + Φq

⊥(z, ζ, k
2
12)σµνk

µ
1k

ν
2 , (6.16)

which defines the vector (Φ∥) and tensor (Φ⊥) 2π-LCDAs. The variable ζ = k+1 /k
+
12 is the

light-cone momentum fraction of the π+. In terms of invariants, we have

k212 = m2
B s12 , ζ =

s13
1− s12

. (6.17)

Isosinglet (Φ0 ≡ 1
2
[Φu + Φd]) and isovector (Φ1 ≡ 1

2
[Φu − Φd]) 2π-LCDAs have been

discussed in the literature (e.g. Refs [60, 62]). The I = 1 2π-LCDAs are normalized as [60]
dzΦ1

∥(z, ζ, s) = (2ζ − 1)Fπ(s) , (6.18)

where Fπ(s) is the vector time-like form factor of the pion. The latter satisfies the normaliza-
tion Fπ(0) = 1. Isospin and C-parity invariance imply that the corresponding integral is zero
for the isosinglet component [60] 

dzΦ∥(z, ζ, s) = 0 . (6.19)

We do not display the relations for the tensor distribution Φ⊥ here, as they do not contribute
to leading order in αs.
The renormalization group equation (RGE) for the 2π-LCDAs is given at leading order in

αs by the ERBL evolution equation [173, 50]. Hence, the z-dependence of the 2π-LCDAs can

be expanded in Gegenbauer polynomials C
3/2
n . The ζ-dependence is additionally expanded

in Legendre polynomials Pℓ and one obtains

Φ0
∥(z, ζ, s;µ) = 6z(1− z)

∞
n=1
odd

n+1
ℓ=0
even

Bnℓ(s, µ)C
3/2
n (2z − 1)Pℓ(2ζ − 1) , (6.20)

Φ1
∥(z, ζ, s;µ) = 6z(1− z)

∞
n=0
even

n+1
ℓ=1
odd

Bnℓ(s, µ)C
3/2
n (2z − 1)Pℓ(2ζ − 1) , (6.21)

where we have made explicit the dependence on the renormalization scale µ. The normaliza-
tion conditions lead to B01(s) = Fπ(s). In the case of the isovector 2π-LCDA the coefficients

5This definition of Φ∥ agrees with reference [60] (up to the isospin decomposition). However the definition
for Φ⊥ differs from that in [60] by an overall factor, which we do not address here because to the order
considered Φ⊥ will not appear in the amplitude.
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Figure 6.5. – Pion form factor Fπ(s) = |Fπ|eiδ in the time-like region [174, 175].

Bnℓ are multiplicatively renormalizable to leading order and the RGE is the same as for
the single-pion LCDA (see Eq. (5.30) in Sec. 5.2.1). The asymptotic form of the isovector
2π-LCDAs is then given by

Φ1
∥(z, ζ, s;µ)

µ→∞−→ 6z(1− z)(2ζ − 1)Fπ(s) . (6.22)

The case of the isoscalar 2π-LCDA is more complicated since it mixes with gluon 2π-LCDAs.
As a consequence, Φ0

∥ in the asymptotic limit is described by coefficients which belong to

the Belinfante-improved energy-momentum tensor defined in [61]. In order to see how these
coefficients reduce to known form factors, a deeper analysis is required which would exceed
the scope of this thesis. Thus, we disregard the isoscalar 2π-LCDAs in the numerical analysis
later. We will find that this does not affect the final conclusions in Sec. 6.6.

We will see in Sec. 6.5 that at leading order the hard kernel T (z) with which Φ(z, ζ, s) is
convoluted in the B → πππ amplitude does not depend on the momentum fraction z, so the
amplitude depends only on the local form factor Fπ(s), just as the leading contribution in
B → ππ depends only on fπ. The vector form factor Fπ(s) in the time-like region (s > 0)
can be obtained from measurements of the process e+e− → π+π−(γ) [174]6 – see Fig. 6.5.
We employ here the fit parametrization of [175], which is consistent with general principles
of QCD at low energies, and covers the energy range of interest, including the relevant
resonances in that range. The particular choice of parametrization is not very important for
the absolute value |Fπ(s)|, where a good fit to the data is enough (see Fig. 6.5), but it is
important for the phase, where data is not so precise. A thorough analysis of the phase of
Fπ(s) and its impact in B → πππ is beyond the scope of this thesis, but it becomes a crucial
issue as soon as one attempts to describe CP asymmetries. We leave this for future work.

6 For simplicity we use only the latest Babar data, but see also Refs. [176–180, 66, 181].
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6.3. Generalized Form Factors and Distribution Amplitudes

6.3.2. Generalized Form Factor

The second nonperturbative input is the B → ππ form factor, which has been discussed
already in the context of B → ππℓν decays in [57]. We consider the generic form factor

Fαβ(k1, k2, k3) ≡ ⟨π+(k1)π
−(k2)| b̄β uα|B+(p)⟩ , (6.23)

where α, β are Dirac indices. The most general Lorentz decomposition consistent with parity
invariance is given in terms of four independent form factors

F = Ft
1

4

k23
k/3γ5 + F2 k/(0)γ5 + F3 k̄/(∥)γ5 + F4 ϵαβγµk

α
1 k

β
2k

γ
3γ

µ +


k23

4(mb +mu)
Ftγ5 . (6.24)

The momentum k3 is almost time-like (k23 = m2
π ≃ 0) and k(0), k(∥) are (space-like) vectors

orthogonal to k3 and built from k1,2,3. We find that in the leading order B+ → π+π−π+

amplitude only the time-like form factor Ft contributes (see Sec. 6.5). Its definition coincides
with [57]. Note that for similar arguments as in the case of the 2π-LCDA the FB→ππ form
factor for the doubly-charged (π+π+)-system is zero.
In order to be able to make a quantitative prediction, we can relate time-like form factor

Ft to the 2π-LCDAs via a light-cone sum rule [69]

Ft(ζ, s12) =
m2

b√
2f̂Bmπ

 1

u0

dz

z
exp


(1 + s12z̄)m

2
B

M2
− m2

b

zM2


Φ∥(z, ζ, s12) . (6.25)

Here, f̂B is the B-meson decay constant extracted from a corresponding sum-rule, which
is correlated to the Borel parameter M and to the threshold parameter u0. These three
parameters must be determined simultaneously with the condition that the physical decay
constant and form factor are independent of M and u0. We remark that Eq. (6.25) is
a preliminary result. More details will be presented in the forthcoming publication [69].
While we do not attempt to perform a full error analysis here, we note that the values
f̂B ≃ 0.316, u0 ≃ 0.6 and M2 ≃ 10 GeV2 satisfy this correlation approximately. Ft can be
further decomposed into an isoscalar and isovector component

Ft = F 0
t + F 1

t . (6.26)

The convolution with Φ0
∥ in the sum-rule for F 0

t is in general not zero because the integrand

is not even in z. As we do not know the asymptotic limit for Φ0
∥ in terms of known form

factors (see Sec. 6.3.1) we will neglect this contribution in the numerical analysis later but
note that this will not affect the final conclusions in Sec. 6.6. For the isovector component
we take Φ1

∥ in the asymptotic limit, given by Eq. (6.22), and obtain

F 1
t (ζ, s12) =

3
√
2m2

b(2ζ − 1)Fπ(s12)

f̂Bmπ

 1

u0

du ū exp


(1 + s12ū)m

2
B

M2
− m2

b

uM2


. (6.27)

With Eqs. (6.18), (6.19), (6.24) and (6.27) we have finally specified the nonperturbative
inputs that are needed in the evaluation of the leading order in ΛQCD/mB and αs amplitude in
Region II of the Dalitz plot (see Sec. 6.5). We proceed with the calculation of the amplitude
in the central region of the Dalitz plot.
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6. Three-body Decays from QCD

6.4. The Central Region of the Dalitz Plot

We have argued in Sec. 6.2 that for a very heavy B meson, the central region of the Dalitz
plot (Region I) is dominant since the width of the edges scales as mR/mB. The condition
m2

Bsij ≫ Λ2
QCD is satisfied in most of the Dalitz plot and hence the resonances pile up at

the edges. The amplitude is expected to factorize according to Eq. (6.13) which we again
display here

⟨π+π−π+|Oi|B⟩sij∼1/3 = T I ⊗ FB→π+ ⊗ Φπ− ⊗ Φπ+ + T I ⊗ FB→π− ⊗ Φπ+ ⊗ Φπ+

+ T II ⊗ ΦB ⊗ Φπ+ ⊗ Φπ− ⊗ Φπ+ . (6.28)

We calculate the hard scattering kernels to leading order in the strong coupling αs. While
the study of α2

s corrections7 is beyond the scope of this analysis, we expect these to be
about ∼ 10% relative to the leading color-allowed amplitude, similar to the case of B → ππ
(see e.g. [182]). Below, we present the construction of the leading order Feynman diagrams
that contribute to the kernel T I . We will see that T II only receives corrections which are
proportional to α2

s.

6.4.1. Leading Order Feynman Diagrams

We consider the following product of three fermion lines
(q̄n)

a
α (Γ1)

ab
αβ b

b
β

 
(q̄j)

c
γ (Γ2)

cd
γδ (qi)

d
δ

 
q̄eσ (Γ3)

ef
στ q

f
τ


, (6.29)

where the Latin and the Greek letters denote the colour and the spinor indices, respectively.
The (Γk)

ab
αβ, k = 1, 2, 3, can be further decomposed into a Dirac part (Γk)αβ where Γk is an

arbitrary Dirac matrix, and a colour part Cab that will be addressed later. The qq̄ pair is
produced by a gluon that couples to one of the other two fermion lines [q̄n Γ1 b] or [q̄i Γ2 qj].
The two quarks contribute to the leading-Fock states of two different pions which have a
large invariant mass of order mB. Hence, the gluon as well must have virtuality of order
mB. Considering that there are four possibilities for attaching the gluon to these two lines
we have to modify the latter according to one of the following expressions

(q̄n)
a
α (×)aa

′

αα′ (Γ1)
a′b
α′β b

b
β


,

(q̄n)

a
α (Γ1)

ab′

αβ′ (×)b′bβ′β b
b
β


,

(q̄j)
c
γ (×)cc

′

γγ′ (Γ2)
c′d
γ′δ (qi)

d
δ


,

(q̄j)

c
γ (Γ2)

cd′

γδ′ (×)d
′d

δ′δ (qi)
d
δ


. (6.30)

Here, the cross marks the additional Dirac matrices stemming from the gluon insertion.
A schematic visualization is given in Fig. 6.6. Note that diagrams where the gluon inter-
action involves the spectator quark are kinematically forbidden at leading order since the
momentum of the spectator quark in the B meson is of order ΛQCD and thus, cannot decay
into two particles with momentum of order mB. Hence, we do not obtain a contribution
to T II in Eq. (6.28) to leading order8 in αs. Next, the fermion lines have to be contracted

7The leading order corrections are already proportional to αs as two of the gluons contributing to the
leading-Fock states of the three pions must be produced in gluon-quark-pair production.

8Contributions to T II arise at order α2
s, when there is e.g. an additional hard gluon interacting with the

spectator quark.
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12
Γ1

34
Γ2

56
Γ3

Γ3

Figure 6.6. – Construction of the LO Feynman diagrams. (1, 2), (3, 4) and (5, 6) represent the fermion
lines (q̄nΓ1b), (q̄iΓ2qj) and (q̄Γ3q), respectively. The crosses on the fermion lines mark the
four possibilities where the hard gluon from the qq̄ pair (5, 6) can couple to.

to form bilinears. We assign numbers to each spinor and denote the trivial contraction
[q̄n Γ1 b] [q̄j Γ2 qi] [q̄ Γ3 q] - including the corresponding replacement (6.30) - by the number
pairs (1, 2) (3, 4) (5, 6). Note that each of the pairs (1, 2) (3, 4) (5, 6) has to be a colour sin-
glet and the corresponding colour octet contribution vanishes. Other combinations can be
obtained by once or twice applying Fierz identities

[q̄1Aq2] [q̄3Bq4] =
1

4


m


q̄1Γ

(m) q4
 
q̄3BΓ(m)Aq2


, (6.31)

where Γ(m) = {1, γ5, γρ , iγργ5, σρτ/
√
2} and A, B are arbitrary Dirac matrices and the

q1, . . . , q4 arbitrary spinors. There are six possibilities for contracting the fermion lines (6.29).
Together with the four choices for the gluon attachment, we end up with a set of 24 different
diagrams.
The three bilinears are mapped to a B → π form factor and to two single-pion LCDAs Φπ

(cf. Sec. 1.1.1), schematically

(a, 2)→ FB→π , (b, 4)→ Φπ , (c, 6)→ Φπ , (6.32)

where a, b, c is a permutation of the numbers 1, 3, 5. In the center of the Dalitz plot the
momentum transfer to the three pions is large, thus for the B → π form factors defined in
Eq. (1.4) we find the large-recoil relation [53]

FB→π
+ =

mB

2Eπ

FB→π
0 , (6.33)

where Eπ is the energy of the of the pion. We further use the asymptotic form of the
LCDA9 given in Eq. (1.6). From the weak Hamiltonian (1.11) we have qn = u in the
current-current and qn = d in the penguin transitions. Moreover, Γ1,2 = {γµ, γµγ5} and

9We assume that the asymptotic form has the same endpoint behaviour as Φπ at the scale µ ∼ mB as
argued in [27].
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Figure 6.7. – Leading order Feynman diagrams for the decays B+ → π+π−π+. The crosses mark all
possible insertions of the gluon propagator creating the q̄q quark-antiquark pair.

CabCcd = {δabδcd, (TB)ab(TB)cd}, where TB is a generator of SU(3) colour gauge group.
(Γ3)

ef
στ is stemming from the qq̄ production of a gluon and therefore, Γ3 is an arbitrary Dirac

matrix γα and Cef = (TA)ef . We find that all eight combinations where the spinors (5, 6)
form a pion render zero as in the projection on the leading-twist LCDA given in Eq. (1.7) only
contributions involving the axial vector survive. Finally, we are left with the 16 Feynman
diagrams shown in Fig. 6.7 that contribute to the leading order decay amplitude. The results
for the diagrams are presented in the App. F.

6.4.2. Differential Decay Rate

We find that all diagrams (a)-(d) in Fig. (6.7) yield non-vanishing contributions to the hard
scattering kernels. Moreover, the convolutions of the latter with the two single-pion LCDAs
in Eq. (6.28) are free of endpoint divergences, which is a necessary but not sufficient condition
for factorization to apply (see Sec. 1.1.1). Note that this is a nontrivial statement already at
leading order since, in contrast to two-body decays, at this order the hard scattering kernels
T I
i (u, v) depend on the momentum fractions u and v of the two pions.
We have further computed the differential decay rate d2Γ/(ds++ ds+−) by using Eq. (6.5).

We do not display the full result here as it is not very illuminating but rather comment
on some interesting features. First of all, moving from the central point s++ = s+− = 1/3
(Region I) toward the edge s++ ∼ 0 (Region IIa), we find that the rate remains regular, that
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Figure 6.8. – Differential decay rate when extrapolated from the center region of the Dalitz plot towards
the collinear edges. The extrapolation to small s++ remains regular, while the limit to
small s+− diverges. See text for details.

is, it approaches a finite limit as s++ → 0. This can be seen explicitly in the calculation,
with no propagator becoming soft as s++ → 0. More precisely, moving away from the center
along the line s+− = (1− s++)/2, we find

dΓ

ds++ ds+−

s++ → 0
s+− ∼ 1/2

∼ Γ0 F
B→π
+ (m2

B/2)
2 (6.34)

up to a coefficient of order one, with

Γ0 =
G2

Fα
2
s(mB)f

4
πmB|VubV ∗

ud|2
32π

. (6.35)

In Fig. 6.8 (left panel) we show the exact dependence of the rate as a function of s++,
along this direction in the Dalitz plane. This regular behavior does not depend on how we
approach the s++ = 0 edge.
The situation is very different if we consider the behavior of d2Γ/(ds++ ds+−) as s+− gets

small (towards Region IIb). We consider now the direction along the line s++ = (1−s+−)/2.
In this region the rate behaves as,

dΓ

ds++ ds+−

s+− → 0
s++ ∼ 1/2

∼ 1

s2+−
Γ0 F

B→π
+ (m2

B/2)
2 + regular terms as s+− → 0 (6.36)

rendering the rate non-integrable. One may interpret this behaviour as an indication that
the edge of the Dalitz plot with small s+− is populated by hadronic resonances. In this
region the three-body decay effectively becomes a quasi two-body decay, and the amplitude
has to be described by generalized form factors and distribution amplitudes. We proceed
with the discussion of the edges of the Dalitz plot.
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Figure 6.9. – Leading contributions to the hard kernels given in Eq. 6.11. Here, we have omitted the
spectator quark of the B meson.

6.5. The Collinear Regions of the Dalitz Plot

We consider the collinear Regions IIa and IIb of the Dalitz plot in which we expect factor-
ization to apply according to Eq. (6.11), which is given here again

⟨πiπjπk|Qa|B⟩sij≪1 = T I ⊗ FB→πk ⊗ Φπiπj + T I ⊗ FB→πiπj ⊗ Φπk

+ T II ⊗ ΦB ⊗ Φπk ⊗ Φπiπj . (6.37)

The B → ππ form factor and the 2π-LCDA have been defined in Sec. 6.3. At leading order
the contributions to the hard scattering kernels T I are given by the Feynman diagrams
depicted in Fig. 6.9, contributions to T II only arise at order αs. The computation of the
Feynman diagrams in Fig. 6.9 is trivial and we see that the hard kernels do not depend on
the momentum fractions of the single- or 2π-LCDAs.
Moreover, we find that in the contribution involving FB→ππ in Eq. (6.37) the only relevant

form factor is the time-like form factor Ft defined in Eq. (6.24). To see this, we consider
that the Dirac structure of the hard kernel T I is given by T I ∼ Γ ⊗ Γ′, where we have
Γ,Γ′ ∈ {γµ, γµγ5} from the effective operators. The convolution of FB→ππ(s12) with the
pion LCDA Φπ is proportional to tr[FB→ππΓ]tr[k/3γ5Γ

′]. To leading order, only Γ′ = γµγ5
contributes, and by orthogonality, the form factor trace is only non-zero for the time-like
component of the axial form factor Ft.
Considering the term with the 2π-LCDA and the B → π form factor in Eq. (6.37) we find

that it receives only contribution from the vector 2π-LCDA Φ∥ defined in Eq. (6.16). The
reason is the simple Dirac structure of the leading order hard scattering kernel T I ∼ Γ⊗ Γ′

with Γ,Γ′ ∈ {γµ, γµγ5}. We further employ the large-recoil relation Eq. (6.33) for the B → π
form factor since the pion that recoils against the two collinear pions (which are described
by the 2π-LCDA) has large energy.
Altogether, we obtain the following expression for the leading order amplitude in the

Region IIb10

A|s+−≪1 =
GF√
2


fπmπ(a1−a4)·Ft(ζ, s+−)+m

2
B(a2+a4)(2ζ−1)·FB→π

0 (s+−)·Fπ(s+−)

. (6.38)

10For the collinear Region IIa we have A|s++≪1 = 0 as anticipated in Sec. 6.3.
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Figure 6.10. – Differential decay rate obtained from the description in terms of two-pion distributions
for small s+−. Left: extrapolation to s+− ∼ 1/3, with the ρ′′(1700) apparent, and the
ρ − ω − ρ′ peak, in logarithmic scale. Right: Zoom to resonant contribution from the
ρ(770) and ω(782).

The parameters ai are combinations of the Wilson coefficients a1,2 = V ∗
ubVud(C2,1 + C1,2/Nc)

and a3,4 = V ∗
tbVtd(C3,4+C4,3/Nc). The isovector contribution of Ft can be related to Fπ by the

QCD sum rule (6.27). Note that to this order all the convolution integrals are trivial. Hard
kernels are known already at NNLO from studies of two-body decays [45, 47, 48, 94, 183–185],
but the convolutions with two-pion distributions still need to be worked out, in particular
the contribution of Φ⊥. This is beyond the scope of this work. The conclusions derived here
at this order of approximation should nevertheless remain valid.
A qualitative difference of three-body decays in this kinematic regime with respect to

two-body decays is that the nonperturbative input is much richer in terms of QCD effects.
In particular, Fπ contains resonance and rescattering contributions, including an imaginary
part from non-perturbative dynamics. In contrast, in two-body decays the imaginary parts
that determine the strong rescattering phases are, at the leading power, of perturbative
origin [28]11. This has also implications for the determination of CP asymmetries. Most of
the information on Fπ(s) can be obtained from data (see Fig. 6.5), allowing for a data-driven
model-independent interpretation of three-body Dalitz plots, at least within the accuracy of
factorization theorems.
As a simple application of this result, we estimate the branching fraction BR(B+ → ρπ+)

by integrating the differential decay rate (see Eq. (6.5)) in a window around the ρ resonance
which is the dominant resonance in the (π+π−)-system:

BR(B+ → ρπ+) ≡
 1

0

ds++

 s+ρ

s−ρ

ds+−
τB dΓ

ds++ds+−
=

 1

0

ds++

 s+ρ

s−ρ

ds+−
τBmB|A|2
32(2π)3

, (6.39)

where s±ρ = (mρ ± nΓρ)
2/m2

B with n specifying the window size in units of the ρ-meson

11The physical picture behind the perturbative origin of the strong rescattering phases is the hard gluon
exchange between the two final-state mesons [26].
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width. We find12:

BR(B+ → ρπ+) ≃ 2.4 · 10−6 for n = 1 , (6.40)BR(B+ → ρπ+) ≃ 3.0 · 10−6 for n = 2 , (6.41)BR(B+ → ρπ+) ≃ 3.2 · 10−6 for n = 3 , (6.42)BR(B+ → ρπ+) ≃ 3.3 · 10−6 for n = 4 . (6.43)

Note that extending the window size beyond mρ±4Γρ does not modify the result very much,
as the resonant ρ contribution dominates the full decay rate (see Fig. 6.10). Comparing these
numbers to the experimental value [158]

BR(B+ → ρπ+)exp = (8.3± 1.2) · 10−6 , (6.44)

we see that the result is in the right ballpark. However, BR is an object different from
the B → ρπ branching fraction as given in [158], and can be measured experimentally in
a direct and model-independent manner, without the need to extract the ρ from the full
distribution13. A this point we must emphasize that this is still a very crude estimate and a
more careful study would need to be performed to really test the data.

6.6. Reconstructing the Dalitz Plot

So far we have used two different factorization formulas for Region I and Region II. Region
I has been described using the conventional QCD factorization in terms of single pion states
(which we will call QCDFI hereafter), while Region II has been described in terms of hadronic
input describing two-pion states with small invariant mass (called QCDFII hereon). To get
the full Dalitz distribution one needs to match the result from the central region with the
one of the edges. To this end, we assume that there is an intermediate region between the
edge (slow+− ≡ s ≃ 0) and the center (slow+− ≡ s ≃ shigh+− ≃ 1/3) where both descriptions apply.
This region corresponds to Λ2

QCD/m
2
B ≪ s ≪ 1/3, and it certainly exists, if mB is large

enough. We will investigate below, whether this happens for physical B-meson masses.
In this intermediate region, one might use QCDFII (see Sec. 6.5) to write the amplitude

in terms of two-pion states, then take the perturbative limit for the 2π-LCDAs and B → ππ
form factors and finally compare the result with the factorized QCDFI amplitude of Sec. 6.4.
The idea is, that for s≫ Λ2

QCD/m
2
B, we have (schematically)14

Φππ → f 2
π


du dv Tφ(u, v)φπ(u)φπ(v) , (6.45)

12The neglected power and αs corrections to Eq. 6.38 are formally of the order 10% and 20%, respectively.
13Usually a parametrization of the ρ and ω mesons is fitted to the experimental line shape of Fπ (higher

resonances such as ρ′ and ρ′′ may be included in the fit). From this fit the masses and widths of the
resonances can be extracted, which however depends on the parametrization.

14 The dots in Eq. (6.46) account for “factorizable” contributions proportional to the B-meson light-cone
distribution, corresponding to neglected contributions in Sec. 6.4.
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Figure 6.11. – Diagrammatic correspondence between the different contributions at the center (QCDFI)
and the edge (QCDFII) of the Dalitz plot. The black square denotes the different weak
interaction vertices. Crosses mark the alternative insertions of the gluon. One- and two-
pion distributions are denoted by Φπ and Φππ respectively, while Fπ and Fππ denote
B → π and B → ππ form factors. The last four contributions are leading at the center
but power-suppressed at the edge.

FB→ππ → fπ F
B→π(0)


du TF (u, v)φπ(u) + · · · . (6.46)

Taking this limit for the leading power contribution in QCDFII, we expect to fully recover
some of the contributions obtained using QCDFI.
In Fig. 6.11 we show the correspondence between the different contributions to the am-

plitude in this intermediate region, either in QCDFI or QCDFII. The first column shows
the contributions from two-pion distribution amplitudes. In QCDFII (lower diagram), this
is a leading-power contribution proportional to the 2π-LCDA, Φππ. As the invariant mass
of the two pions in this intermediate region is also large, the two pions can be factorized
according to Eq. (6.45). The production of two pions with large invariant mass requires a
hard gluon, as shown in by the diagram at the top (corresponding to QCDFI). A similar
argument goes through for the B → ππ contribution, shown in the second column. The
contribution in QCDFI (where the two pions are assumed to have large invariant mass) re-
quires a hard gluon (top diagram), and can be obtained from the contribution in QCDFII

(bottom diagram) by factorization of FB→ππ according to Eq. (6.46). We have checked an-
alytically that by applying Eq. (6.46) to the part proportional to FB→ππ in Eq. (6.37) we
recover the corresponding results in Sec. 6.4. Similar, by using Eq. 6.45 the contribution
proportional to Φππ in Eq. (6.37) is expected to factorizate reproducing the corresponding
results in Sec. 6.4 [172].
However, some contributions in QCDFI correspond to contributions in QCDFII that are

power suppressed, and do not arise from the perturbative limit of leading power contributions
in QCDFII. These are shown in the last four columns in Fig. 6.11. Again, the contributions
in QCDFI (s ≫ ΛQCD/mB) require a hard gluon. Columns 3 and 4 show the cases in
which this gluon becomes collinear (in the [ππ] direction) as s→ 0. They are termed “non-
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Figure 6.12. – Contributions from 2π-LCDAs to the B+ → π+π−π+ differential branching fraction, for
s++ = (1 − s+−)/3: Full contribution (solid) and perturbative contribution (dashed).
A perturbative region exists for large s+− in the heavy-quark limit, but probably not for
physical values of the b-quark mass.

factorizable” since the gluon connects the two different collinear sectors. As s → 0, the
quark propagator remains hard, which represents a power suppression with respect to the
leading contributions. Columns 5 and 6 show the cases in which the gluon remains hard for
all s < 1/3. For s→ 0, these match onto 6-quark operators that are again power-suppressed
with respect to the leading contributions. There is therefore a one-to-one diagrammatic
correspondence between QCDFI and QCDFII, but this correspondence does not respect the
power counting.
We note at this point that in the center, since all invariant masses are large and of order

m2
B, there are always two hard propagators, leading to an amplitude that is power suppressed

with respect to the amplitude in the edge. In addition, the perturbative nature of the hard
gluon exchange leads to an αs(mB) suppression at the center, which is not present at the
edge, where the gluon becomes soft. All in all, the amplitude at the center is expected to be
both power- and αs-suppressed with respect to the amplitude at the edge.
While the previous considerations imply that formally there must be a good matching
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6.6. Reconstructing the Dalitz Plot

between both regions, the question is whether this happens in practice for physical B-meson
masses. To this end we focus on the 2π-LCDA contribution shown in the first column in
Fig. 6.11. This contribution arises from the second term in Eq. (6.38). We find that, in the
limit of large (m2

Bs+−), this amplitude reproduces the corresponding contribution obtained
from the QCDFI calculation in Sec. 6.4 15. The particular values of s for which this matching
occurs depends on the value of m2

B. In Fig. 6.12 we show the results of both calculations for
different values of mB. We see that for mB ∼ 20 GeV there is enough phase space to reach
a perturbative regime in the central region of the Dalitz plot. However, the phase space gets
reduced considerably when mB is decreased to its physical value, where there seems to be
no perturbative regime.
Similar conclusions are expected for the B → ππ form-factor contribution in the second

column in Fig. 6.11. Adding the rest of the central-region contributions to the perturbative
side, we will get a mismatch at large (m2

Bs+−) of the order of the perturbative contribu-
tion itself, which is expected to be of the same order as neglected power corrections to
the QCDFII calculation in the perturbative limit. This corresponds to the contributions
in the last four columns in Fig. 6.11. Since we anyway do not expect the two-pion sys-
tem to factorize into single-pion distributions as early as m2

Bs+− ∼ 8 GeV2, we can conclude
that the QCDFI calculation of Sec. 6.4 might not be relevant in any region of the Dalitz plot.

We summarize that the amplitude in the Dalitz plot can be described in certain regions
of the phase space by applying factorization theorems. In the central region of the Dalitz
plot the amplitude factorizes into a B → π form factor and/or single-meson LCDAs. For
the description of the edges of the Dalitz plot generalized non-perturbative inputs in form
of 2π-LCDAs and B → ππ form factors are needed. We have evaluated the amplitude in
the central region of the Dalitz plot and have found that the convolution integrals with
the LCDAs are finite. We remark that although this is not a proof of factorization, it is a
mandatory condition for factorization to apply. Moreover, we have evaluated the amplitude
in the edge of the Dalitz plot and have integrated the corresponding differential decay rate in
a window around the ρ resonance. This rough estimate of the branching ratio is in the right
ballpark of the experimental result. Finally, we have analyzed the prospects of a merging
of the descriptions in both regions in an intermediate kinematical regime. We find that the
perturbative regime described by the QCDFI calculation seems only kinematically allowed
for B-meson masses several times larger that the physical value.

15This happens by construction, since we force the function Fπ(s) to satisfy the perturbative limit asymp-
totically for large sm2

B . This is in fact the only information we have on Fπ(s) at large energies, since
data reaches only up to ∼ 3 GeV. For our purposes, the relevant observation is that data shows that the
perturbative regime might lie beyond 3 GeV.
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Chapter 7

Conclusion and Outlook

Hadronic decays of B mesons yield a broad spectrum of observables for testing the CKM
sector of the Standard Model. The theory description of many of these observables from
non-leptonic two-body decays is based on QCD factorization (QCDF), which is a model-
independent framework that exploits the structure of a decay amplitude in the heavy-mass
limit. A genuine QCD-based description of non-leptonic three-body decays on the other
hand is still not yet available. In this thesis we have considered two applications of QCDF.
In the first part, we have calculated the vertex corrections to the colour-allowed tree topol-

ogy of the decays B̄0 → D(∗)+π− and B̄0 → D(∗)+ρ− to NNLO accuracy. The calculation has
been performed by applying the Laporta algorithm for the reduction of the several thousand
scalar two-loop two-scale integrals to master integrals. For the evaluation of the master
integrals we have used a new approach and have obtained analytical results for them in a
canonical basis. The final result for the perturbative contribution a1 (defined in Sec. (5.2))
to NNLO accuracy reads

a1(DL) = (1.071+0.011
−0.013 + 0.044i+0.022i

−0.014i) + (0.003+0.003
−0.002 − 0.007i+0.002i

−0.003i)α
L
2 ,

a1(D
∗L) = (1.071+0.012

−0.013 + 0.033i+0.017i
−0.010i) + (0.000+0.001

−0.000 − 0.009i+0.003i
−0.004i)α

L
2 , (7.1)

where αL
2 is the second Gegenbauer moment of the light meson L, which is π or ρ. Within the

given uncertainties we can thus confirm the quasi-universality of a1 also at NNLO accuracy.
We have calculated the B → D(∗)L branching ratios and find a tension of 2-3 σ with respect
to the corresponding experimental values, whose central values are about 20− 30% smaller.
Moreover, we have performed factorization tests to see how well these decay channels are
described in QCDF. The preliminary results for experimental ratios of non-leptonic to semi-
leptonic decay rates that directly probe the magnitude of a1 turn out to favour a central
value |a1| ≃ 0.94, with errors in the individual channels at the 2-10%-level. This number is
smaller than the quasi-universal value |a1| ≃ 1.07±0.01 from the NNLO results in Eq. (7.1).
Power corrections which rise to 10-20% could account for this differences in a1 and also the
deviations of the calculated and experimental BRs. Moreover, as data points towards a
quasi-universality of a1 and all central values for the NNLO BRs are about 20− 30% larger
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than the experimental BRs one could suspect a common mechanism that pushes the power
correction in the same direction. This would be also supported by the good agreement of
the experimental and theoretical values for the ratios of the non-leptonic decay rates as
similar-sized power corrections could cancel in the ratios. We will update the numbers for
the experimentally extracted values of a1 in a forthcoming publication [E]. Moreover, the
results for the hard scattering kernels also apply in the evaluation of the NNLO corrections
to the colour-allowed tree topologies of the decays B̄0 → D(∗)+K(∗)− or baryonic decays like
Λ0

b → Λ+
c π

−. We will determine the values of a1 for these decays and include the results in
the factorization tests.

Finally, it should be noted that the two-loop correction will most probably be the final
word on the perturbative side of the factorization formula (1) since the perturbative series
is expected to be well-behaved and should therefore not be subject of unexpected large
corrections. As the precision on the form factor and Gegenbauer moments of the LCDA is
expected to improve, a comparison to experimental data will allow one to estimate the size
of power corrections more precisely. The uncertainties of the experimental values for the
branching ratios are currently at the 5%-level for the decays B̄0 → D(∗)+π− and below the
20%-level for the decays B̄0 → D(∗)+ρ− and B̄0 → D(∗)+K(∗)− [158].

In the second part of this thesis, we have provided a description of non-leptonic three-body
B decays in the framework of QCDF using the decay B+ → π+π−π+ as an example. We have
divided the Dalitz plot in several regions which have special kinematic configurations. Based
on the factorization properties of non-leptonic two-body decays we have employed different
descriptions in the central region and in the edges of the Dalitz plot. Whereas the central
region can be described by conventional form factors and LCDAs, generalized B → ππ form
factors and two-pion distribution amplitudes are also needed for the description of the edges
of the Dalitz plot. We have evaluated the transition amplitudes in the different regions to
leading power in Λ/mb and leading order in the strong coupling. Moreover, assuming that
these two regions are well described by the respective factorization formulae, we have tried a
merging of both descriptions in an intermediate kinematical regime. We have seen that some
of the contributions at the center correspond, in the heavy-quark limit, to the expression for
the amplitude at the edge with factorized B → ππ form factors and 2π-LCDAs. Therefore,
a parametrization of these nonperturbative objects that is consistent with their perturbative
regime leads automatically to a well behaved limit of the result at the edge when extrapolated
to the center. However, it seems that the perturbative regime is only kinematically allowed
for b-quark masses several times larger that the physical value.

It seems promising to continue the study of non-leptonic three-body decays as the NLO and
even NNLO hard scattering kernels are already known from non-leptonic two-body decays.
However, for a more precise study a better knowledge of the B → 2π form factor and the
2-pion LCDAs and improved sum rule calculations are indispensable. From the theoretical
point decays like B0

s → D−
s π

+π0 are also interesting, as factorization is assumed to be
considerably simpler. On the other hand, decays involving kaons in the final states such as
B+ → K+π−π+, which have already been measured at the B-factories and the LHC, provide
another avenue to study CP violation (see e.g. [171, 186]). Our descriptions also apply to
these decays. However, for a further study, knowledge about πK (KK) form factors and πK
and 2-K distribution amplitudes is required. The former can be obtained from semi-leptonic
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B decays (e.g. [187]) whereas the latter can be probed in τ decays (e.g. [188]).
Finally, we remark that three-body decays with their large phase space have the potential

of studying factorization and hadronic effects in B decays in different kinematic regions and
may provide a deeper understanding of the nature of power corrections in the framework of
QCDF.
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Appendix A

Laporta Reduction of a Sample Feynman

Diagram

We present the Laporta reduction of the two-loop Feynman diagram 14a) given in Fig. 2.4
by using FIRE [101, 102]. There arises a subtlety which all diagrams of the topology 14 have
in common and which will be explained below.
The topology of diagram 14a) is depicted in Fig. A.1. qi (i = 1, . . . 4) and k1,2 are the exter-

nal and loop momenta, respectively. The momenta of the internal lines can be parametrized
arbitrarily. A particular choice for the propagators is given in the following list

{(k2 − q3 − q)2 −m2
b , (k1 − k2 + uq)2, (k1 − (1− u)q)2, k21, k22, (k1 + uq)2} , (A.1)

where we have substituted q1 = uq, q2 = (1 − u)q and q4 = −q3 − q. Four of those are
fermion propagators (the propagators 1-3 and 6 in the list (A.1)). Hence, there can appear
tensor integrals which, at most, carry four Lorentz indices. One can easily see that after the
PV decomposition (see Sec. 3.1) there may show up the following seven scalar products in
the numerator of the integrals (3.9): k21, k

2
2, (k1 · k2), (q · k1) and (q3 · k2) can be expressed

by one of the propagators of the list (A.1) however, for reducing (q3 · k1) and (q · k2) we have
to introduce two new propagators. We find (k2 − uq)2 and (q3 + k1)

2 −m2
c to be a suitable

choice. Thus the topology 14a) can be fully described by the set of integrals

F (a1, a2, a3, a4, a5, a6, a7, a8) =
ddk

(2π)d
1

[(k2 − q3 − q)2 −m2
b ]

a1 [(k1 − k2 + uq)2]a2 [(k1 − (1− u)q)2]a3 [k21]
a4

1

[k22]
a5 [(q3 + k1)2 −m2

c ]
a6 [(k2 − uq)2]a7 [(k1 + uq)2]a8

, (A.2)

where the ai are some integer powers. In the following we perform the reduction of integrals
of type (A.2) with a particular choice of indices to master integrals by applying FIRE. First,
the packages FIRE 3.5.0.m and IBP.m, which can be obtained from [189], have to be loaded.
We then enter the commands Internal and External, which specify the internal and the
linearly independent external momenta, respectively:

103



A. Laporta Reduction of a Sample Feynman Diagram

k2

k1 − q2
k2 − k1 − q1

k1

−k1 − q1

k2 + q4

q1 q2

q4 q3

Figure A.1. – Topology of diagram 14a): The external momenta are q1 = uq, q2 = (1 − u)q, q3 and
q4 with q = −q3 − q4 and the loop momenta are k1 and k2. The momentum flow in the
internal lines is given for a concrete choice.

Internal = {k1, k2};

External = {q, q3};

Note that the choice for the external momenta is not unique. We use the parametriza-
tion (A.2) for the propagators which are initiated by the command

(* original list Propagators *)

Propagators = {(k2 - q3 - q)^2 - mb^2,(k1 - k2 + u q)^2,(k1 - (1 - u) q)^2,

k1^2,k2^2,(q3 + k1)^2 - mc^2,(k2 - u q)^2,(k1 + u q)^2};

The routine

PrepareIBP[ ];

prepares the corresponding IBPs which later are automatically generated. However, for the
case at hand an error message appears:

Out[ ] = Linearly dependant propagators. Perform reduction first.

The reason for this is the following: Two of the eight propagators are linearly dependent,
which are (k1 − (1 − u)q)2 and (k1 + uq)2. Therefore the reduction of the scalar product
(q · k1) is not unique since it either can be expressed in terms of (k1 − (1− u)q)2, (k1 + uq)2

or a linear combination of both. The routine for preparing the IBPs cannot handle linearly
dependent propagators and does not further proceed. Since we do not want to perform a
reduction of the propagators as suggested by the error message, we use a workaround to
this problem [190]. First, we consider only seven linearly independent propagators, here
(k1 + uq)2 is left out:

(* new list Propagators *)

Propagators = {(k2 - q3 - q)^2 - mb^2,(k1 - k2 + u q)^2,(k1 - (1 - u) q)^2,

k1^2,k2^2,(q3 + k1)^2 - mc^2,(k2 - u q)^2};

PrepareIBP[ ];
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MMA proceeds by preparing the IBPs for the seven propagators:

Out[ ]= Prepared

We then specify the on-shell conditions for the external momenta:

reprs = {q^2 -> 0,q3^2 -> mc^2,q q3 -> (mb^2 - mc^2)/2};

For generating all IBPs we also have to take into account the propagator (k1 + uq)2 that
does not appear in the new list Propagators. Therefore, using the definition (3.22) we
manually evaluate IBP(k1, k1−k2+uq), IBP(k1, k1− (1−u)q), IBP(k1, k1), IBP(k1, k1+uq)
and IBP(k1, k1 + q3), reducing the scalar product (q · k) either to the third propagator of
the original list Propagators, (k1 − (1− u)q)2, or to the new eighth propagator (k1 + uq)2.
This yields ten IBP relations. We will denote the IBPs where (q · k) has been reduced
to the third and the eighth propagator by IBP3 and IBP8, respectively, i.e. IBP3(k1, . . . )
and IBP8(k1, . . . ). The remaining four IBPs that contain the derivation with respect to k2,
which are IBP(k2, k2), IBP(k2, k2 − q3 − q), IBP(k2, k2 − k1 − uq) and IBP(k2, k2 − uq), can
be generated automatically by means of the command IBP[k2,...]. The reason for this
lies in the notation of the IBPs in FIRE created by the command IBP:

• A propagator that is reduced (raised) by one is described by Ym[i] (Y[i]), where i

marks its position in the list Propagators. The a[i] denote the ai as given in (A.2).

• Propagators which do not receive any change do not appear.

Hence, from the new list Propagators all IBP(k2, ...) can be created automatically by using
the command IBP. The manually derived IBPs have to be converted to the internal form of
the IBP command. Finally, we can generate all IBPs by entering1

startinglist = {IBP[k2, k2],IBP[k2, k2 - q3 - q],IBP[k2, k2 - k1 - u q],

IBP[k2, k2 - u q],IBP3[k1, k1 - k2 + u q],IBP3[k1, k1 - (1 - u) q],

IBP3[k1, k1],IBP3[k1, k1 + u q],IBP3[k1, k1 + q3],

IBP8[k1, k1 - k2 + u q],IBP8[k1, k1 - (1 - u) q],IBP8[k1, k1],

IBP8([k1, k1 + u q],IBP8[k1, k1 + q3]}/.reprs;

Next, we have to specify the topologies for which (A.2) vanishes. We find that for the case
at hand all topologies where the first propagator is raised to a negative integer or is absent,
render zero since the resulting integrals are scaleless. This information can be feed into FIRE
by using the command:

RESTRICTIONS = {{-1, 0, 0, 0, 0, 0, 0, 0}};

1The relations IBP3(..) and IMP8(...) have to be generated manually. The explicit code for these IBPs is
not given here as it is rather lengthy and not illuminating.
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A. Laporta Reduction of a Sample Feynman Diagram

The zeros denote any arbitrary integers whereas the −1 represents a non-positive entry or
zero. As optional input the symmetries of the integral can be provided. However, we do not
find any for diagram 14a).
Considering Eq. (3.23) we find that for the case at hand there are 2(2+2) = 8 independent

IBP relations. However, by the command startinglist 14 IBPs are generated and thus
not all will be independent. In order for FIRE to work properly the following command has
to be added:

LeeIdeas = False;

This option has to be used in case that the IBPs do not form a Lie algebra (or one does not
know if the IBPs form one). Otherwise there might remain additional master integrals after
the reduction [190]2. Finally, FIRE can be run by adding the two commands

Prepare[ ];

Out[ ] = Dimension set to 8

Out[ ] = No symmetries

Burn[ ];

Integrals are automatically reduced by calling F[{...}]. For instance the command

F[{1,1,0,1,0,0,0,1}]

yields the following linear combination of master integrals, which are denoted by G({...})

F({1, 1, 0, 1, 0, 0, 0, 1}) = −6(d− 2) (m2
bu−m2

b −m2
cu)G({1, 1,−1, 1, 0, 0, 0, 0})

(d− 4)(u− 1)u2(mb −mc)3(mb +mc)3

+
(5dm2

bu− 4dm2
b − 5dm2

cu− 12m2
bu+ 10m2

b + 12m2
cu)G({1, 1, 0, 1, 0, 0, 0, 0})

(d− 4)u2(mb −mc)2(mb +mc)2

− (3d− 8)G({1, 1, 0, 0, 0, 0, 0, 1})
2(d− 4)u(mb −mc)(mb +mc)

. (A.3)

We express the master integral with entry −1 in terms of a master integral with a douply-
dotted propagator. For instance G({1, 1,−1, 1, 0, 0, 0, 0}) can be extracted from the following
equation

F({2, 1, 0, 1, 0, 0, 0, 0}) = 3(d− 2) (m2
bu−m2

b −m2
cu)G({1, 1,−1, 1, 0, 0, 0, 0})

m2
b(u− 1)u(mb −mc)2(mb +mc)2

− (dm2
bu− 2dm2

b − dm2
cu− 2m2

bu+ 5m2
b + 2m2

cu)G({1, 1, 0, 1, 0, 0, 0, 0})
m2

bu(mb −mc)(mb +mc)
. (A.4)

Note that the package Sbases.m [192] turned out to be a useful addition to decrease
the evaluation time. It can be used to obtain master integrals in certain (sub)topologies
(sectors) by constructing so-called sector-bases (or s-bases). In the remaining sectors the
master integrals are found by applying the Laporta reduction. The command BuildAll

2By default LeeIdeas is set to true since one knows that the IBPs define a Lie Algebra [191].
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automatically tries to build such bases. It has to be provided directly before applying
Burn. By construction master integrals cannot arise in topologies where the newly added
propagators have positive indices, in the case at hand that are the sixth and the seventh
propagator. Therefore, we apply for instance the following command:

BuildAll[{0, 0, 0, 0, 0, 0, -1, 0}]

The zeros stand for arbitrary integers whereas the entry −1 states that there is no master
integral that has a positive entry on the seventh line. We do not display the output here as
it is rather lengthy, but only note that bases have been build in 35 sectors. For more details
on the s-bases approach and the definition of a sector see [105, 106].
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Appendix B

Reduction of the γ-matrix Algebra to

Operators

We consider the various Dirac γ-matrices contracted with the tensorial structures resulting
from the PV decomposition (see Sec. 3.4) and reduce them to a set of known operators.
The reduction consists of two parts, which are described below: First, we modify the Dirac
strings and the corresponding spinors by using Mathematica to obtain rather simple patterns
and then, we express the later in terms of operators that have the same Dirac structure as
the SCET operators (2.18)-(2.23) but with spinors defined in QCD. The explicit matching
onto the SCET operators is subject of Sec. 2.2. Finally, we present two examples for the
reduction.

B.1. Part I: Simplification by a Mathematica Routine

We describe the Mathematica routine that we have created in order to simplify the Dirac
γ-strings consisting of γ-matrices contracted with the tensorial structures from the PV de-
composition (see Sec. 3.4). For the reduction we use the following conditions and relations:

• The external momenta are on-shell, i.e.

q24 = m2
b , q23 = m2

c , q2 = 0 . (B.1)

• As a result of the on-shell conditions the equations of motion (eom) for the spinors can
be applied1. Since we consider u and d as massless we do not distinguish their flavour
anymore but denote them by q (not to be confused with the momentum q of the light
meson). The eom then read

/q4 b(q4) = mb b(q4) , c̄(−q3) /q3 = −mc c̄(−q3) ,
/q q(−q1) = 0 , q̄(−q2)/q = 0 . (B.2)

1We shall remember that all momenta are taken to be incoming.
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B. Reduction of the γ-matrix Algebra to Operators

• The Dirac matrices obey the Clifford algebra

{γµ, γν} = 2gµν . (B.3)

We remark that throughout the reduction, all Lorentz indices are first contracted before any
further change is made. The routine then is constructed as follows.

Preparation

Before starting the reduction we prepare each string such that it has the following form
q̄(−q1) Γl q(−q2)

 
c̄(−q3) Γh b(q4)


≡ Γl ⊗ Γh . (B.4)

The Γl,h are products of an arbitrary number of γ-matrices, contracted amongst each other
or with qµ, qµ3 , q

µ
4 . They explicitly contain the projectors PL(R) = (1∓ γ5)/2. Note, that all

Lorentz indices are contracted. There also are strings where all γ-matrices can be contracted
among themselves and the momenta /q, /q3, /q4 can appear more that once in Γl,h. The former
kind of gamma strings will not get modified by the following four reduction steps and thus
one can immediatelly skip to part II of the process (see Sec. B.2).
In the following we write the products defined in Eq. (B.4) in the schematic form

Γl ⊗ Γh = {γa1 , . . . , γam , /q, /q3, /q4} ⊗ {γa1 , . . . , γan , /q, /q3, /q4} , (B.5)

where the γ-matrices and the slashed momenta might have an arbitrary ordering and the
Lorentz indices n,m ∈ N.

First Step

The first step includes the elimination of equal momenta appearing twice or three times on
the quark lines Γl and Γh (cf. Eq. (B.5)) and the removal of the momenta q3,4 and q in Γh

and Γl, respectively. Afterwards the strings have the following form

Γl ⊗ Γh = {γa1 , . . . , γan , /q3, /q4} ⊗ {γa1 , . . . , γan , /q} , (B.6)

where q3,4 and q appear only once. We execute this step as follows: First, the Clifford algebra
is used to exchange the Dirac matrices in order to bring two identical momenta next to each
other. Applying the on-shell conditions Eq. (B.1) we can substitute these two momenta
by their mass squared. Next, we commute the momenta to their corresponding spinors in
order to exploit the eom (B.2). As a consequence there again may appear γ-strings with two
identical momenta on one quark line. If so we apply the above mentioned changes as often
as necessary such that all γ-strings match the form given in Eq. (B.6).

Second Step

The next step aims at obtaining strings of the following structure

Γl ⊗ Γh = {γa1 , . . . , γam , /q3} ⊗ {γa1 , . . . , γan} , (B.7)
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B.2. Part II: Reduction to Known Operators

where q3 can appear even more that once on Γl. To achieve this, we make use of the
conservation of momenta and in Eq. (B.6) we substitute q → −/q3− /q4 and q4 → −/q− /q3 on
Γh and Γl, respectively. Next, exploiting the Clifford algebra we commute the momenta such
that we can apply the corresponding eom. In this process there again may appear γ-strings
of the form (B.6). If so this step has to be repeated until all γ-strings have the structure
given in Eq. (B.7).

Third Step

This step applies to γ-strings (B.7) that contain the momentum q3 more that once. By
using the Clifford algebra we bring the two q3 together and can eliminate them. In this
process, there might show up γ-strings with q3 on the heavy quark line and we commute
this momentum to the left in order to apply the eom. This might again lead to γ-strings
containing more the one momentum q3 (cf. Eq. (B.7)). Thus, we repeat this step as often
as necessary to arrive at Dirac strings of the form

Γl ⊗ Γh = {γa1 , . . . , γam , /q3} ⊗ {γa1 , . . . , γan} , (B.8)

where q3 only appears once.

Forth Step

The remaining task is to order the Dirac strings (B.8) such that the momentum q3 is located
on the left hand end on Γl

Γl ⊗ Γh = /q3{γ
a1 , . . . , γam} ⊗ {γa1 , . . . , γan} . (B.9)

In order to obtain this structure we use the Clifford algebra and in Eq. (B.8) commute the
momentum to the correct location. This will introduce γ-strings with an additional momen-
tum q3 on the heavy quark line which can be eliminated using the eom. Again, strings of
the form (B.8) may appear and thus, iterations of this step might be necessary to reduce all
γ-strings to the structure given in Eq. (B.9).

After having applied these four steps we are left with structures of the form (B.9) and
strings where all γ-matrices are contracted among themselves. At last, we get rid of all
γ-matrices that are contracted on the same quark line by exploiting the Clifford algebra and
then, we replace the remaining scalar products using the on-shell conditions Eq. (B.1) and
also q · q4 = 1/2(m2

c −m2
b), q · q3 = 1/2(m2

b −m2
c) and q3 · q4 = −1/2(m2

b +m2
c).

B.2. Part II: Reduction to Known Operators

We consider the two γ-strings obtained from the previous reduction
q̄(−q1) 2PL(R) /q3{γ

a1 . . . γam}q(−q2)
 
c̄(−q3) 2PL {γa1 . . . γan} b(q4)


, (B.10)

q̄(−q1) 2PL(R) {γa1 . . . γan}q(−q2)
 
c̄(−q3) 2PL {γa1 . . . γan} b(q4)


. (B.11)
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B. Reduction of the γ-matrix Algebra to Operators

Below, we describe the transformation of these strings into the operators

OQCD
1 =


q̄
/n−

2
(2PL)q

 
c̄ /n+(2PL)b


, (B.12)

OQCD
2 =


q̄
/n−

2
(2PL)γ

α
⊥γ

β
⊥q

 
c̄ /n+(2PL)γ⊥,βγ⊥,αb


, (B.13)

OQCD
3 =


q̄
/n−

2
(2PL)γ

α
⊥γ

β
⊥γ

γ
⊥γ

δ
⊥q

 
c̄ /n+(2PL)γ⊥,δγ⊥,γγ⊥,βγ⊥,α


, (B.14)

and

O′QCD
1 =


q̄
/n−

2
(2PL)q

 
c̄ /n+(2PR)b


, (B.15)

O′QCD
2 =


q̄
/n−

2
(2PL)γ

α
⊥γ

β
⊥q

 
c̄ /n+(2PR)γ⊥,αγ⊥,βb


, (B.16)

O′QCD
3 =


q̄
/n−

2
(2PL)γ

α
⊥γ

β
⊥γ

γ
⊥γ

δ
⊥q

 
c̄ /n+(2PR)γ⊥,αγ⊥,βγ⊥,γγ⊥,δb


. (B.17)

Note that this set of operators matches the definition of the SCET operators Eqs. (2.18)-
(2.23) except that the fields are defined in full QCD.
We start by expressing q3,4 and q in terms of the two light-like vectors n± and the time-like

vector v, defined in Sec. 2.1.1. Working in the B meson rest frame and using momentum
conservation q4 = −q3 − q we obtain

q =
m2

c −m2
b

2mb

n+ , (B.18)

q3 = −
mb

2
n− −

m2
c

2mb

n+ , (B.19)

q4 = mb v . (B.20)

The eom (B.2) then take the following form2

q̄(−q1) /n+ = 0 , /n+q(−q2) = 0 , (B.21)

/vb(q4) = b(q4) . (B.22)

It is convenient to first modify the strings (B.10) and (B.11) such that they take the form
q̄ /n−PL {γa1 , . . . , γan}q

 
c̄ /n+PL(R){γa1 , . . . , γan} b


. (B.23)

One can easily verify that in the case at hand n = 0, 2, 4, which altogether yields 54 different
γ-strings. Note that exploiting the Clifford algebra, strings with different permutations of
the γ-matrices can easily be related to a certain combination, preferable the one given by

2We do not display the corresponding eom for q3 since we will not use them.
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B.2. Part II: Reduction to Known Operators

the operators (B.12)-(B.17). This combination can then be expressed in terms of the latter
by replacing all γµ by the decomposition (2.3), which for γµ takes the form

γµ = γµ⊥ +
nµ
−

2
/n+ +

nµ
+

2
/n− , (B.24)

and using the relations

{γµ⊥, /n±} = 0 , {γµ⊥, γ5} = 0 , γµ⊥γ⊥µ = d− 2 ,

γ⊥ · n± = 0 , {γµ⊥, γν⊥} = 2gµν − nµ
+n

ν
− − nµ

−n
µ
+ . (B.25)

It remains to describe the reduction of the γ-strings (B.10) and (B.11) to the form given
in Eq. (B.23). We find that, while simplifying strings of the form (B.10), we also encounter
γ-strings with the structure (B.11). Thus, we start reducing the former and substitute q3
by n+ and n− using Eq. (B.19). The term with n+ vanishes due to the eom (B.21) we and
obtain

/n−PL {γa1 , . . . , γan} ⊗ PL(R){γa1 . . . γam} . (B.26)

Next, we introduce the momentum q3 on the heavy quark line by applying the reverse
eom (B.2) and then replace q3 by n+ and v (cf. (B.19) and n− = 2v−n+). The contribution
with n+ already has the desired structure given in Eq. (B.23) and thus, we do not further
consider it. The remaining γ-strings have the form

/n−PL {γa1 , . . . , γan} ⊗ /vPL(R){γa1 . . . γam} . (B.27)

The further reduction consists of the following building blocks:

1) We consider γ-strings of the form

/n−PL {γa1 , . . . , γan} ⊗ PL(R){γa1 , . . . , γam , /v} , (B.28)

and commute v on the heavy quark line to the right in order to apply the eom (B.22).
From this we encounter strings that have the form given in Eq. (B.26) which, thus,
need not to be further modified3. In addition, γ-strings show up with v on the light
quark line. In those we substitute v = 1/2 (n− + n+) and proceed following (2) and
(4), respectively.

2) We further simplify γ-strings

/n−PL {γa1 , . . . , γan , /n−} ⊗ PL(R){γa1 , . . . , γam} , (B.29)

where there appear two n− on the light quark line. We commute them together by
using the Clifford algebra and apply /n2

− = 0. This will lead to γ-strings that involve
n− on the heavy quark line (see (3)).

3Note that γ-strings with different chiralities can mix. In order to reduce those, a system of coupled
equations has to be solved (see App B.3).
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B. Reduction of the γ-matrix Algebra to Operators

3) Next, we deal with strings which have the following pattern

/n−PL {γa1 , . . . , γan} ⊗ PL(R){γa1 , . . . , γam , /n−} (B.30)

and substitute n− = 2v − n+ on the heavy quark line. We are done, if we arrive at

O(′)QCD
1 or at structures /n−PL ⊗ PL(R)/v = /n−PL ⊗ PL(R), which can easily be related

to the operators O(′)QCD
1 . Otherwise, the terms involving v are reduced following (1).

The γ-strings including n+ are pursued in (5).

4) We consider γ-strings which take the form

/n−PL {γa1 , . . . , γan , /n+} ⊗ PL(R){γa1 , . . . , γam} . (B.31)

Using the Clifford algebra we commute n+ either to the right or to the left in order
to exploit the eom (B.21). While doing so, there will appear γ-strings with n+ on the
heavy quark line (see (5)) and eventually also strings of the form (B.11) (see (6)). In
order to avoid the appearance of the latter strings, n+ should be commuted to the
right.

5) There arise strings of the form

/n−PL {γa1 , . . . , γan} ⊗ PL(R){γa1 , . . . , γam , /n+} . (B.32)

We are done if they already have the same structure given in Eq. (B.23). Otherwise
n+ must be shifted in order to obtain the correct position. In this process there will
appear γ-strings with n+ on the light quark line. For their reduction follow (4).

6) We also may encounter strings of the form (B.11). In order to reduce those, we insert
the identity

1 =
/n+/n−

4
+
/n−/n+

4
(B.33)

on light quark line next to left spinor. The first term vanishes due to eom (B.21) and
we are left with γ-strings

/n−/n+PL {γa1 , . . . , γan} ⊗ PL(R){γa1 , . . . , γan} . (B.34)

To further simplify them we follow (4) but commute /n+ to the right in order to not go
back to the starting point.

For the reduction of strings of the form (B.27), we start with (1). Depending on the explicit
structures of the γ-strings, not all might be needed and we finally arrive at strings that have
the desired structure given in Eq. (B.23).
Below, we present to examples of the reduction γ-strings of the forms (B.10) and (B.11)

to the operator basis.
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B.3. Examples for the Reduction

B.3. Examples for the Reduction

After applying our Mathematica routine the γ-strings take the forms (B.10) and (B.11).
Here, we give two examples for the reduction of such strings to the set of operators given in
Eqs. (B.12)-(B.17). In this procedure we will encounter the following γ-strings

SL(R) =

q̄ /n−PLγ

αγµq

c̄ /n+PL(R)γµγαb


≡ /n−PLγ

αγµ ⊗ /n+PL(R)γµγα , (B.35)

which have to be related to the operators O1 – O′
3. We first consider SL and replace γµ by

the decomposition (B.24). Due to Eq. (B.25) and n2
± = 0 most of the terms cancel and with

n+ · n− = 2 we find

SL = /n−PLγ
αγµ⊥ ⊗ /n+PLγ⊥µγα +

1

2
/n−PLγ

α/n− ⊗ /n+PL/n+γα . (B.36)

The first term matches the definition of the operator OQCD
2 (cf. (2.19)). Using PL/n+ = /n+PR

and n2
+ = 0 the second term vanishes and thus, the result is given by

SL =
1

2
OQCD

2 . (B.37)

Next, we consider the Dirac structure SR. Before substituting γµ by the light-cone decom-
position, we interchange the ordering of the γ-matrices in order to match the operators with
the primed indices (B.15)- (B.17)

SR = −/n−PLγ
αγµ ⊗ /n+PRγαγµ + 2d /n−PL ⊗ /n+PR . (B.38)

The second term can already be expressed in terms of O′QCD
1 and in the first term, we

proceed similarly as in the reduction of SL. We obtain

SR = −1

2
O′QCD

2 + (d− 2)O′QCD
1 . (B.39)

Example 1

We consider the Dirac structure

KL(R) =

q̄ /q3PLγ

αγµq

c̄ PL(R)γµγαb


(B.40)

and reduce it to the set of operators Eqs. (B.12)-(B.17). As first step, q3 is replaced by n+

and n− using Eq. (B.19). Taking into account the eom (B.21) the contribution involving n+

vanishes and we obtain

KL(R) = −
mb

2


q̄ /n−PLγ

αγµq

c̄ PL(R)γµγαb


. (B.41)

In the following we omit the prefactor −mb/2 and use the abbreviations

K̃L(R) ≡

q̄ /n−PLγ

αγµq

c̄ PL(R)γµγαb


≡ /n−PLγ

αγµ ⊗ PL(R)γµγα . (B.42)
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B. Reduction of the γ-matrix Algebra to Operators

Next, we focus on K̃L and introduce the momentum q3 on the heavy quark line by applying
the eom (B.2)

K̃L = − 1

mc
/n−PLγ

αγµ ⊗ /q3PLγµγα . (B.43)

Then, q3 is further substituted by n+ and v (cf. (B.19) and n− = 2v − n+). The resulting
expression reads:

K̃L =
m2

c −m2
b

4mbmc
/n−PLγ

αγµ ⊗ /n+PLγµγα +
mb

mc
/n−PLγ

αγµ ⊗ PR/vγµγα . (B.44)

The Dirac structure of the first term can be expressed in terms of OQCD
2 (cf. Eq. (B.37)). In

the second term we commute v to the right by using the Clifford algebra (B.3) which yields
two additional terms

K̃L =
m2

c −m2
b

4mbmc

OQCD
2 +

mb

mc
/n−PLγ

αγµ ⊗ PRγµγα/v +
2mb

mc

PR/n−γ
α/v ⊗ PRγα

− 2mb

mc

PR/n−/vγ
µ ⊗ PRγµ , (B.45)

where we have used /n−PL = PR/n−. Due to /vb(q4) = b(q4) the Dirac structure of the second

term matches K̃R. In the other two terms we replace v = (n+ + n−)/2. The contribution
of n+ in the third and n− in the last term yield zero due to the eom (B.21) and n2

− = 0,
respectively, and we find

K̃L =
m2

c −m2
b

4mbmc

OQCD
2 +

mb

mc

K̃R +
mb

mc

PR/n−γ
α/n− ⊗ PRγα −

mb

mc

PR/n−/n+γ
µ ⊗ PRγµ . (B.46)

We then move n− to the left in the third term in order to apply n2
− = 0, and in the last term

we commute n+ to the right to use the eom (B.21)

K̃L =
m2

c −m2
b

4mbmc

OQCD
2 +

mb

mc

K̃R +
2mb

mc

PR/n− ⊗ PR/n− −
2mb

mc

PR/n− ⊗ PR/n+ . (B.47)

In third term we substitute n− = 2v−n+ on the heavy quark line and apply the eom (B.22)
to remove v. The contribution with n+ matches the definition of OQCD

1 . Moreover, the last

term can be written as OQCD
1 and with PR/n− ⊗ PR = 1

4
OQCD

1 + mc

4mb
O

′QCD
1

4 we obtain

K̃L =
m2

c −m2
b

4mbmc

OQCD
2 +

mb

mc

K̃R +O′QCD
1 − mb

mc

OQCD
1 . (B.48)

Similar, we find that K̃R mixes with K̃L
5 and using Eq. (B.39) and PR/n−⊗PL = mc

4mb
OQCD

1 +

2(d− 2)O
′QCD
1 the corresponding expression can be derived:

K̃R =
−m2

c +m2
b

4mbmc

O′QCD
2 +

mc

mb

K̃L +


m2

c −m2
b

4mbmc

2(d− 2)− mb

mc


O′QCD

1 +OQCD
1 , (B.49)

4This relation can be easily derived following the same lines as the example presented here.
5Note that in the operators with the primed indices, the ordering of the Dirac matrices on the heavy quark
line is reversed.
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where d denotes the spacetime dimension. From Eqs. (B.48) and (B.49) the expressions for
K̃L(R) in terms of the operators (B.12)- (B.17) can be extracted

K̃L =
d

2
O′QCD

1 − 1

4
O′QCD

2 +
mc

4mb

OQCD
2 , (B.50)

K̃R =
1

2

mc

mb

(d− 2)O′QCD
1 − 1

4

mc

mb

O′QCD
2 +OQCD

1 +
1

4
OQCD

2 , (B.51)

which then multiplied by −mb/2 yield the results for KL(R).

Example 2

As second example we perform the reduction of the following operators

RL(R) =

q̄PRγ

µγαγβq

c̄ PL(R)γµγαγβb


≡ PRγ

µγαγβ ⊗ PL(R)γµγαγβ, (B.52)

which have the Dirac structures of the form (B.11). First, we consider RL and insert the
identity (B.33) on the l.h.s. of the light quark line:

RL =
1

4
(/n+/n− + /n−/n+)PLγ

µγαγβ ⊗ PLγµγαγβ . (B.53)

The first term in the sum vanishes as a result of the eom (B.21). Next, we commute n+ to
the right and again applying the E.o.M (B.21) we obtain

RL =
1

2


PR/n−γ

αγβ ⊗ PL/n+γαγβ − PR/n−γ
αγβ ⊗ PLγα/n+γβ + PR/n−γ

αγβ ⊗ PLγαγβ/n−

.

(B.54)

The first term can be related to O′QCD
2 , as given in Eq. (B.39). The γ-matrices in the second

and third term can be commuted such that they match the structure of O′QCD
2 as well and

after a few simplifications the final result takes the form

RL = O′QCD
1 +

3

4
O′QCD

2 . (B.55)

In an analogue calculation and by means Eq. (B.37) one finds

RR =
1

4
(−8 + 6d)OQCD

1 − 3

4
OQCD

2 . (B.56)
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Appendix C

Results for the Master Integrals

We show the results for master integrals given in Fig. 4.1. The calculation was performed
using the techniques presented in Chap. 4 and the integration measure


ddk/(2π)d. In order

to facilitate the presentation of the results we write the master integrals as

M̃ = − M

(m2
b)

d−nS2
Γ

, (C.1)

with an integer n that denotes the sum of all propagator powers, such that the integral M̃
is dimensionless and SΓ defined as

SΓ =
1

(4π)d/2Γ(1− ϵ) . (C.2)

The results for mass-flipped integrals can be obtained by letting zc → 1/zc, keeping in
mind that the analytic continuation is done via zc → zc − iη, with infinitesimal η > 0.
We remind that for the master integrals M13,14,15 we have found a closed representation in
terms of hypergeometric functions. M4,5,19 were calculated by solving differential equations
and for M1−3,6−12,16−18,20−23 a MB representation was found. For the master integrals in the
canonical basis and the corresponding results we refer to [C].
The analytic results forM4,5,19 are only displayed up to O(ϵ) since the expressions of O(ϵ2)

are rather lengthy. The latter can be derived from the corresponding differential equations
and the boundary conditions given in Sec. 4.4 (see also App. D.3 for the evaluation of M4,5).
ForM1−3,6−12,16−18,20−22 a MB representation was derived with AMBRE.m. We don’t present
the results for the integrals M20−22. Their MB representation contains highly oscillating
integrands which could not be evaluated by MB.m. Here, we rely on the corresponding
analytic results obtained in the canonical basis which we numerically cross-checked by the
sector decomposition method implemented in SecDec (see also Sec. 4.6). We present the MB
representations for the remaining integrals before having performed the analytic continuation
to ϵ → 0 and state the real parts of the Barnes parameters which fix the contours in the
complex plain. The analytic continuation can be performed using MB.m and the expressions
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C. Results for the Master Integrals

for the master integral can be derived up to an arbitrary order in ϵ. Note that for two
integrals, namely M1 and M10, an additional regulator δ has to be introduced in order to
fix the contours. One power of a certain propagator then is shifted by the regulator and
subsequently δ → 0. In the resulting expression, which is independent of δ, the analytic
continuation ϵ→ 0 can be performed:

M̃1 =

 i∞− 9
32

−i∞− 9
32

dz1
2πi

 i∞− 3
256

−i∞− 3
256

dz2
2πi

 i∞− 7
16

−i∞− 7
16

dz3
2πi

 i∞− 1
2

−i∞− 1
2

dz4
2πi

 i∞− 1
8

−i∞− 1
8

dz5
2πi

× (−1)δ+5

Γ(δ + 2)


m2

b

−δ
uz3+z4 (−1− iη)z3+z5 z−δ−2ϵ−1−z3−z5

c

Γ(1− ϵ)2
Γ(2− 2ϵ)

Γ(z1 + 1)

× Γ(−z2)Γ(−z3)Γ(−z4)Γ(−z5)
Γ(−2ϵ+ z1 − δ + 1)Γ(−ϵ− z2 − δ)

Γ(−2ϵ− z1 + 1)Γ(ϵ+ z1)Γ(z3 + z4 + 1)

× Γ(−ϵ+ z1 − z2 + 1)Γ(−ϵ+ z2 − δ)Γ(−ϵ− z2 − z3 − z4 − δ − 1)

× Γ(ϵ− z1 + z2 + z3 + z4 + z5 + δ + 1) (C.3)

with ϵ = 11
32
, where we have introduced a regulator δ in the dotted propagator (this expression

can now be savely expanded in δ and is finite for δ → 0),

M̃2 =

 i∞− 13
16

−i∞− 13
16

dz1
2πi

 i∞− 1
2

−i∞− 1
2

dz2
2πi

 i∞− 1
16

−i∞− 1
16

dz3
2πi

 i∞− 23
32

−i∞− 23
32

dz4
2πi

 i∞− 1
8

−i∞− 1
8

dz5
2πi

×−uz3+z4(−1− iη)−ϵ−1+z1−2z2−z3−2z5z−ϵ−1+z1−2z2−z3−2z5
c

Γ(1− ϵ)2
Γ(2− 2ϵ)

Γ(−ϵ+ z2 + 1)

× Γ(−z2)Γ(−z3)Γ(−z4)Γ(−z5)
Γ(−ϵ− z2 + 1)Γ(−2ϵ+ z1 − z2 − z5 + 1)

Γ(z3 + z4 + 2)Γ(z1 − z2 − z5 + 1)

× Γ(−ϵ+ z1 − 2z2 − z5)Γ(ϵ+ z1 − z2 − z5)Γ(−2ϵ− z1 + z2 + z5 + 1)

× Γ(−ϵ− z2 − z3 − z4 − 1)Γ(ϵ− z1 + 2z2 + z3 + z4 + 2z5 + 1) (C.4)

with ϵ = 1
4
,

M̃3 =

 i∞− 3
16

−i∞− 3
16

dz1
2πi

 i∞− 1
32

−i∞− 1
32

dz2
2πi

 i∞− 1
2

−i∞− 1
2

dz3
2πi

 i∞− 1
4

−i∞− 1
4

dz4
2πi

 i∞− 1
8

−i∞− 1
8

dz5
2πi

×−uz3+z4 (−1− iη)−2ϵ−1−z1−z3 z−2ϵ−1−z1−z3
c

Γ(1− ϵ)2
Γ(1− 2ϵ)

Γ(−ϵ+ z2 + 1)Γ(z3 + z4 + 1)

× Γ(−z2)Γ(−z3)Γ(−z4)Γ(−z5)Γ(−z1 + z2 + z5)

Γ(−ϵ− z2 + 1)Γ(−3ϵ− z1 + z2 + z5 + 1)
Γ(−2ϵ− z1 + z5)Γ(−ϵ− z2 − z3 − z4)

× Γ(−ϵ+ z1 − z2 − z5 + 1)Γ(−ϵ− z1 + z2 + z5)Γ(2ϵ+ z1 + z3 + z4 + 1) (C.5)

with ϵ = 0,

M̃4 =
1

2ϵ2
+

5

2ϵ
− 1

6(zc − 1)


6zc ln(1− zc) ln2(zc) + 6zc ln(1− zc) ln(zc)
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− 12 ln(1− zc) ln(zc) + 6zcLi2(1− zc) ln(zc) + 6zcLi2(zc) ln(zc)

− 6Li2(zc) ln(zc)− 57zc − 6Li2(1− zc) + 6zcLi2(zc)− 12Li2(zc) + 12Li3(zc)

− 12ζ3 + π2 + 57


+ ϵ
1

240(zc − 1)


240H3,0(zc) + 240H2,0,0(zc) + 1440H2,1,0(zc) + 240Li2(zc)

2

+ 1200zcLi2(zc)− 1200Li2(zc) + 480zcLi3(1− zc)− 480Li3(1− zc) + 240zcLi3(zc)

−H2,0,0(zc)Li3(zc)− 240Li2(1− zc) ln2(zc)− 480Li2(zc) ln
2(zc)

+ 240zcLi2(1− zc) ln(zc) + 480Li2(1− zc) ln(1− zc) ln(zc)− 240Li2(1− zc) ln(zc)
+ 960Li2(zc) ln(1− zc) ln(zc) + 240Li2(zc) ln(zc) + 480Li3(zc) ln(zc)

− 960zcLi2(1− zc) ln(1− zc) + 960Li2(1− zc) ln(1− zc)− 960zcLi2(zc) ln(1− zc)
+ 960Li2(zc) ln(1− zc)− 960Li3(zc) ln(1− zc)− 960S2,2(zc)− 240zcζ3 − 720ζ3 ln(zc)

+ 960ζ3 ln(1− zc) + 7800zc − 40zc ln
3(zc)− 240 ln(1− zc) ln3(zc) + 40 ln3(zc)

+ 480 ln2(1− zc) ln2(zc) + 600zc ln
2(zc) + 120zc ln(1− zc) ln2(zc)

− 120 ln(1− zc) ln2(zc) + 60π2 ln2(zc)− 600 ln2(zc)− 960zc ln
2(1− zc) ln(zc)

+ 960 ln2(1− zc) ln(zc)− 120π2zc ln(zc)− 4560zc ln(zc) + 1200zc ln(1− zc) ln(zc)
− 160π2 ln(1− zc) ln(zc)− 1200 ln(1− zc) ln(zc) + 80π2 ln(zc) + 3215 ln(zc)

+ 160π2zc ln(1− zc)− 160π2 ln(1− zc) + 740ψ(2)(3) ln(zc)− 160ψ(2)(2) ln(zc)

− 100ψ(2)(1) ln(zc) + 720ζ3 + 16π4 − 7800

+O(ϵ2) , (C.6)

where S2,2 is a Nielson polylogarithm,

M̃5 =
−2Li3(zc) + Li2(zc) log(zc) + 2ζ3

zc − 1

+ ϵ
1

180(zc − 1)


− 720ζ3H−(

√
zc) + 120π2H−,0(

√
zc)− 4320H0,0,−,0(

√
zc)

− 7200H0,−,0,0(
√
zc)− 1440H0,−,0,−(

√
zc)− 720H0,−,−,0(

√
zc)− 1440H−,0,−,0(

√
zc)

− 1440 log(1− zc)H0,−,0(
√
zc) + 1440 log(zc)H0,−,0(

√
zc)− 720H0,+,+,0(

√
zc)

− 720ζ(3) log(1− zc) + 7π4

+O(ϵ2) , (C.7)

M̃6 =

 i∞− 309
512

−i∞− 309
512

dz1
2πi

 i∞− 317
512

−i∞− 317
512

dz2
2πi

 i∞− 1
4

−i∞− 1
4

dz3
2πi

 i∞− 1
256

−i∞− 1
256

dz4
2πi

 i∞− 1
4

−i∞− 1
4

dz5
2πi

 i∞− 1
16

−i∞− 1
16

dz6
2πi

×
 i∞− 1

32

−i∞− 1
32

dz7
2πi

uz4+z5+z6+z7 (−1− iη)z4 zz3+z5+z7
c

Γ(1− ϵ)2Γ(−z1)Γ(z2 + 1)

Γ(−2ϵ)Γ(−3ϵ− z1)Γ(−ϵ+ z2 + 1)

× Γ(−z3)Γ(−z4)Γ(−z5)Γ(−z6)Γ(−z7)Γ(−ϵ− z1 − 1)Γ(z6 + z7 + 1)Γ(−ϵ+ z1 − z2)
× Γ(−z2 + z4 + z5)Γ(z3 + z4 + z5 + 1)Γ(−ϵ+ z2 − z3 − z4 − z5)
× Γ(−3ϵ− z1 + z2 − z4 − z5 − z6 − z7 − 1)Γ(2ϵ+ z1 + z3 + z4 + z5 + z6 + z7 + 2)

(C.8)
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with ϵ = − 51
128

,

M̃7 =

 i∞− 309
512

−i∞− 309
512

dz1
2πi

 i∞− 317
512

−i∞− 317
512

dz2
2πi

 i∞− 1
4

−i∞− 1
4

dz3
2πi

 i∞− 1
256

−i∞− 1
256

dz4
2πi

 i∞− 1
4

−i∞− 1
4

dz5
2πi

 i∞− 1
16

−i∞− 1
16

dz6
2πi

×
 i∞− 1

32

−i∞− 1
32

dz7
2πi

uz4+z5+z6+z7(−1− iη)z5+z6
z−2ϵ−2−z3−z4
c Γ(1− ϵ)2Γ(z2 + 1)

Γ(−2ϵ)Γ(−3ϵ− z1)Γ(−ϵ+ z2 + 1)

× Γ(−z1)Γ(−z3)Γ(−z4)Γ(−z5)Γ(−z6)Γ(−z7)Γ(−ϵ− z1 − 1)Γ(z6 + z7 + 1)

× Γ(−ϵ+ z1 − z2)Γ(−z2 + z4 + z5)Γ(z3 + z4 + z5 + 1)Γ(−ϵ+ z2 − z3 − z4 − z5)
× Γ(−3ϵ− z1 + z2 − z4 − z5 − z6 − z7− 1)Γ(2ϵ+ z1 + z3 + z4 + z5 + z6 + z7 + 2)

(C.9)

with ϵ = − 51
128

,

M̃8 =

 i∞− 1
4

−i∞− 1
4

dz1
2πi

 i∞− 1
32

−i∞− 1
32

dz2
2πi

 i∞− 1
8

−i∞− 1
8

dz3
2πi

 i∞− 1
2

−i∞− 1
2

dz4
2πi

 i∞− 1
16

−i∞− 1
16

dz5
2πi

×−uz3+z4 (−1− iη)z3 z−2ϵ−1−z2−z3−z5
c

Γ(1− ϵ)2
Γ(1− 2ϵ)

Γ(−z1)Γ(−z2)Γ(−z3)Γ(−z4)Γ(−z5)
Γ(−3ϵ− z1 + 1)Γ(−ϵ+ z2 + z5 + 1)

× Γ(−ϵ− z1)Γ(−ϵ+ z1 + 1)Γ(−ϵ− z2)Γ(2z2 + z5 + 1)Γ(z3 + z4 + 1)

× Γ(−3ϵ− z1 − z3 − z4)Γ(2ϵ+ z1 + z2 + z3 + z4 + z5 + 1) (C.10)

with ϵ = 1
128

,

M̃9 =

 i∞− 1
16

−i∞− 1
16

dz1
2πi

 i∞− 3
128

−i∞− 3
128

dz2
2πi

 i∞− 1
2

−i∞− 1
2

dz3
2πi

 i∞− 3
32

−i∞− 3
32

dz4
2πi

 i∞− 3
64

−i∞− 3
64

dz5
2πi

×−uz3+z4 (−1− iη)z3 z−2ϵ−1−z2−z3−z5
c

Γ(1− ϵ)2
Γ(1− 2ϵ)

Γ(−z1)Γ(−z2)Γ(−z3)Γ(−z4)Γ(−z5)
Γ(−3ϵ− z1 + 1)Γ(−ϵ+ z2 + z5 + 1)

× Γ(−ϵ− z1 + 1)Γ(z1 − ϵ)Γ(−ϵ− z2)Γ(2z2 + z5 + 1)Γ(z3 + z4 + 1)

× Γ(−3ϵ− z1 − z3 − z4)Γ(2ϵ+ z1 + z2 + z3 + z4 + z5 + 1) (C.11)

with ϵ = −1
8
,

M̃10 =

 i∞− 3
16

−i∞− 3
16

dz1
2πi

 i∞− 1
8

−i∞− 1
8

dz2
2πi

 i∞− 3
32

−i∞− 3
32

dz3
2πi

 i∞− 21
32

−i∞− 21
32

dz4
2πi

× (−1)δ+5

Γ(δ + 1)


m2

b

−δ
(−1− iη)z3 uz3+z4zz2+z4

c

Γ(1− ϵ)2
Γ(−ϵ) Γ(−z1)Γ(−z2)Γ(−z3)Γ(−z4)

× Γ(−ϵ− z1 + 1)Γ(z3 + z4 + 2)

Γ(−2ϵ− δ + 2)Γ(−3ϵ− z1 − δ + 1)
Γ(−ϵ+ z1 − δ + 1)Γ(z2 + z3 + z4 + 1)

× Γ(−ϵ− z2 − z3 − z4 − 1)Γ(−3ϵ− z1 − z3 − z4 − δ − 1)

× Γ(2ϵ+ z1 + z2 + z3 + z4 + δ + 1) (C.12)
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with δ = 5
8
and ϵ = −1

4
, where δ is the regulator of the undotted massless propagator,

M̃11 =

 i∞− 1
16

−i∞− 1
16

dz1
2πi

 i∞− 1
2

−i∞− 1
2

dz2
2πi

 i∞− 1
4

−i∞− 1
4

dz3
2πi

 i∞− 1
8

−i∞− 1
8

dz4
2πi

×− (u)z3+z4 (−1− iη)z3 zz2+z4
c

Γ(1− ϵ)
Γ(1− 2ϵ)

Γ(z3 + z4 + 1)

Γ(−3ϵ− z1 + 1)
Γ(−z1)Γ(−z2)Γ(−z3)Γ(−z4)

× Γ(−ϵ− z1)Γ(−ϵ+ z1 + 1)Γ(z2 + z3 + z4 + 1)Γ(−3ϵ− z1 − z3 − z4)
× Γ(−ϵ− z2 − z3 − z4)Γ(2ϵ+ z1 + z2 + z3 + z4 + 1) (C.13)

with ϵ = 1
64
,

M̃12 =

 i∞− 1
16

−i∞− 1
16

dz1
2πi

 i∞− 25
48

−i∞− 25
48

dz2
2πi

 i∞− 1
4

−i∞− 1
4

dz3
2πi

 i∞− 1
2

−i∞− 1
2

dz4
2πi

×−uz3+z4 (−1− iη)z3 zz2+z4
c

Γ(1− ϵ)
Γ(2− 2ϵ)

Γ(z3 + z4 + 1)

Γ(−3ϵ− z1 + 1)
Γ(−z1)Γ(−z2)Γ(−z3)Γ(−z4)

× Γ(−ϵ− z1 + 1)Γ(−ϵ+ z1 + 1)Γ(z2 + z3 + z4 + 2)Γ(−3ϵ− z1 − z3 − z4)
× Γ(−ϵ− z2 − z3 − z4 − 1)Γ(2ϵ+ z1 + z2 + z3 + z4 + 1) (C.14)

with ϵ = 3
16
,

M̃13 = −Γ(ϵ)
Γ2(1− ϵ)
1− ϵ Γ(−1 + ϵ) z1−ϵ

c 2F1(1, ϵ,−ϵ+ 2, 1− u(1− zc)− iη) , (C.15)

M̃14 = Γ2(ϵ)
Γ2(1− ϵ)
(1− ϵ)2 z−ϵ

c 2F1(1, ϵ,−ϵ+ 2, 1− u(1− zc)− iη)

× 2F1(1, ϵ,−ϵ+ 2, 1− ū(1− z−1
c ) + iη) , (C.16)

M̃15 =
Γ2(1− ϵ)Γ2(ϵ)

(ϵ− 1)(2ϵ− 1)
2F1(ϵ, 2ϵ− 1; 2ϵ; 1− zc + iη) , (C.17)

M̃16 = −
 i∞− 1

4

−i∞− 1
4

dz2
2πi

(−1− iη)z2zz2c Γ(1− ϵ)4Γ(−z2)Γ(ϵ+ z2)Γ(2ϵ+ z2 − 1)

Γ(−ϵ+ z2 + 2)
(C.18)

with ϵ = 3
4
,

M̃17 =

 i∞− 1
4

−i∞− 1
4

dz2
2πi

(−1− iη)z2zz2c Γ(1− ϵ)4Γ(−z2)Γ(ϵ+ z2)Γ(2ϵ+ z2)

Γ(−ϵ+ z2 + 2)
(C.19)

with ϵ = 1
2
,

M̃18 =

 i∞− 1
8

−i∞− 1
8

dz2
2πi

 i∞− 5
32

−i∞− 5
32

dz3
2πi

 i∞− 7
512

−i∞− 7
512

dz5
2πi

 i∞− 7
64

−i∞− 7
64

dz7
2πi

 i∞− 7
128

−i∞− 7
128

dz8
2πi

 i∞− 7
256

−i∞− 7
256

dz9
2πi
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× (−1)uz7+z8(−1− iη)z8z−2ϵ−1−z2−z3−z5−z7−z9
c

Γ(1− ϵ)2
Γ(1− 2ϵ)

Γ(z2 − ϵ)Γ(z7 + z8 + 1)

× Γ(−z2)Γ(−z3)Γ(−z5)Γ(z5 + 1)Γ(−z7)Γ(−z8)Γ(−z9)Γ(−ϵ− z2 + 1)

Γ(−3ϵ− z2 + 1)Γ(−ϵ+ z3 + z5 + z9 + 1)Γ(z5 + z7 + z8 + z9 + 2)

× Γ(z7 + z8 + z9 + 1)Γ(−3ϵ− z2 − z7 − z8)Γ(−2ϵ− z2 − z3 − z7 − z8)
× Γ(2ϵ+ z2 + z3 + z5 + z7 + z8 + z9 + 1)Γ(ϵ+ z2 + 2z3 + z5 + z7 + z8 + z9 + 1)

(C.20)

with ϵ = −1
4
,

M̃19 =
1

2ϵ2
+

5− 2 ln(zc)

2ϵ
+

1

6(zc − 1)


− 6zcLi2(1− zc) + 6Li2(1− zc)− 12Li3(zc)

+ 6Li2(1− zc) ln(zc) + 12Li2(zc) ln(zc) + π2zc + 57zc + 3zc ln
2(zc)

+ 6 ln(1− zc) ln2(zc)− 3 ln2(zc)− 30zc ln(zc)− 2π2 ln(zc) + 30 ln(zc) + 12ζ3 − π2 − 57


+ ϵ
1

240(zc − 1)


240H3,0(zc) + 240H2,0,0(zc) + 1440H2,1,0(zc) + 240Li2(zc)

2

+ 1200zcLi2(zc)− 1200Li2(zc) + 480zcLi3(1− zc)− 480Li3(1− zc) + 240zcLi3(zc)

− 720Li3(zc)− 240Li2(1− zc) ln2(zc)− 480Li2(zc) ln
2(zc) + 240zcLi2(1− zc) ln(zc)

+ 480Li2(1− zc) ln(1− zc) ln(zc)− 240Li2(1− zc) ln(zc) + 960Li2(zc) ln(1− zc) ln(zc)
+ 240Li2(zc) ln(zc) + 480Li3(zc) ln(zc)− 960zcLi2(1− zc) ln(1− zc)
+ 960Li2(1− zc) ln(1− zc)− 960zcLi2(zc) ln(1− zc) + 960Li2(zc) ln(1− zc)
− 960Li3(zc) ln(1− zc)− 960S2,2(zc)− 240zcζ3 − 720ζ3 ln(zc)

+ 960ζ3 ln(1− zc) + 7800zc − 40zc ln
3(zc)− 240 ln(1− zc) ln3(zc) + 40 ln3(zc)

+ 480 ln2(1− zc) ln2(zc) + 600zc ln
2(zc) + 120zc ln(1− zc) ln2(zc)

− 120 ln(1− zc) ln2(zc) + 60π2 ln2(zc)− 600 ln2(zc)− 960zc ln
2(1− zc) ln(zc)

+ 960 ln2(1− zc) ln(zc)− 120π2zc ln(zc)− 4560zc ln(zc) + 1200zc ln(1− zc) ln(zc)
− 160π2 ln(1− zc) ln(zc)− 1200 ln(1− zc) ln(zc) + 80π2 ln(zc) + 3215 ln(zc)

+ 160π2zc ln(1− zc)− 160π2 ln(1− zc) + 740ψ(2)(3) ln(zc)− 160ψ(2)(2) ln(zc)

− 100ψ(2)(1) ln(zc) +H2,0,0(zc)ζ3 + 16π4 − 7800

+O(ϵ2) , (C.21)

M̃23 =
Γ4(1− ϵ)
Γ(2− 2ϵ)

1

Γ(−3ϵ+ 2)

1

(2πi)2

 i∞− 3
16

−i∞− 3
16

dz1

 i∞− 1
16

−i∞− 1
16

dz2 ū
z2uz1−z2(1− zc)z1

Γ(ϵ+ z2)

Γ(1 + ϵ+ z2)

× Γ(−4ϵ+ 1− z1)Γ(1 + ϵ+ z1)Γ(−z1 + z2)Γ(2ϵ+ z1)Γ(−z2) (C.22)

with ϵ = −1
8
.
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Appendix D

Examples of Evaluating Master Integrals

We present the explicit evaluation of a selection of master integrals by applying the methods
presented in Chap. 4. The results for the other integrals are obtained in a similar manner.

D.1. Hypergeometric Functions: M15

The master integralM15 depicted in Fig. D.1 is evaluated by using Feynman parameters and
hypergeometric functions. With the parametrization of the momenta as shown in Fig. D.1
the integral is given by the following expression

ddk1
(2π)d


ddk2
(2π)d

1

[(q4 − k2)2 −m2
b + iη] [(q3 + k1)2 −m2

c + iη] [(k2 − k1)2 + iη]
, (D.1)

where η > 0 denotes the location of the poles in the complex plane. In the following, we
consider the second and the third propagator of (D.1), since those are the only ones that
depend on the integration momentum k1. By introducing a Feynman parameter x according
to (E.6) we find

ddk1
(2π)d

1

[(q3 + k1)2 −m2
c + iη] [(k2 − k1)2 + iη]

=


ddk1
(2π)d

 1

0

dx
1

[x(q3 + k1)2 − xm2
c + (1− x)(k2 − k1)2 + iη]2

. (D.2)

In order to perform the integration over k1, we simplify and rearrange the denominator and
arrive at the following expression

ddk1
(2π)d

 1

0

dx
1

[(k1 + xq3 − x̄k2)2 − A2 + iη]2
, (D.3)

where A2 = m2
cx

2 − xx̄k22 − 2xx̄q3k2 and x̄ = (1 − x). Since A2 is independent of k1, we
shift the integration variable k1 → k1 + xq3− x̄k2 according to (E.1). By applying (E.2) the
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D. Examples of Evaluating Master Integrals

−q qq4 − k2

q3 + k1

k2 − k1

Figure D.1. – M15 with a specific choice of the momentum flow of the inner lines. k1 and k2 are loop
momenta and q = −q3 − q4 is the external momentum.

integration over k1 can be performed and we obtain

i

(4π)
d
2

Γ(2− d
2
)

 1

0

dx
x−2+ d

2
Ã2 − iη

2− d
2

, (D.4)

where Ã2 = A2/x. Note that in (D.4) the denominator has a small imaginary part with a
negative sign. In order to trace the location of the poles in the complex plane in the further
calculation, we take out a factor (−1) of the denominator in (D.4) by applying Eq. (E.5)
such that the sign of the imaginary part becomes positive.
We then combine the result with the first propagator in (D.1) by introducing a second

Feynman parameter y and after some simplifications we obtain the following expression for
the master integral

M15 =
i

(4π)
d
2

(−1)2− d
2 Γ(3− d

2
)

 1

0

dx

 1

0

dy y1−
d
2x−2+ d

2 (1− xy)−3+ d
2

×


ddk2
(2π)d


k2 +

yx̄q3 − ȳq4
1− xy

2

−B2 + iη

−3+ d
2

(D.5)

with B2 = (ȳm2
b+ym

2
c)/(1−xy). By means of a suitable shift k2 → k2+(yx̄q3− ȳq4)/(1−xy)

the integration over k2 can be performed by applying (E.2) and the simplified result reads

M15 =
1

(4π)d
Γ(3− d)


m2

b

−3+d
 1

0

dx

 1

0

dy
y1−

d
2x−2+ d

2 (1− xy)− d
2

[1− y(1− zc + iη)]3−d
, (D.6)

with zc = m2
c/m

2
b . Substituting d = 4− 2ϵ the integration over x can easily be performed by

using  1

0

dx
x−ϵ

(1− xy)2−ϵ
= −(1− y)−1+ϵ

−1 + ϵ
(D.7)
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23 and M18

and we obtain the following expression

M15 = −S2
Γ


m2

b

1−2ϵ Γ(−1 + 2ϵ)Γ2(1− ϵ)
(−1 + ϵ)

 1

0

dy
y−1+ϵȳ−1+ϵ

[1− y(1− zc + iη)]−1+2ϵ

= − 1

(4π)d
m−2ϵ+1

b

Γ(−1 + 2ϵ)

−1 + ϵ

Γ(ϵ)2

Γ(2ϵ)
2F1(ϵ,−1 + 2ϵ, 2ϵ; 1− zc + iη) . (D.8)

Here, we have used the definition of the hypergeometric function (4.3) to obtain the second
line and SΓ is given in Eq. (C.2). Eq. (D.8) can be expanded in ϵ up to the desired order by
applying the MMA package HypExp.m. We find that the leading pole is 1/ϵ2.
Note that the choice of first contracting the propagators that contain k1 was arbitrary. The

final result does not change if we first perform the contraction of the propagators involving
k2

1. However, a certain choice which is not always obvious in the beginning can simplify the
evaluation.

D.2. MB Representations: M↔
23 and M18

We present two examples of calculating master integrals by using MB representations. First,
the mass flipped master integral M↔

23 is evaluated by manually introducing MB representa-
tions in the calculation. In the second example we use AMBRE.m to derive a MB represen-
tation for the master integral M18 and state the input to be provided for the routine. Then,
we take one specific term and simplify it by applying the techniques presented in Sec. E.2.

D.2.1. ”Manual” Evaluation of M↔
23

The mass flipped master integral M↔
23 shown in Fig. D.2 is evaluated by applying Feynman

parameters and by introducing MB representations. Using the choice of momenta given in
Fig. D.2, M↔

23 takes the following form

M↔
23 =


ddk1
(2π)d


ddk2
(2π)d

1

[(q3 + q1 + k1)2 −m2
c ] k

2
1 (q2 − k2)2 (k2 − k1)2

, (D.9)

where we tacitly assume the “+iη”–description to be included in the propagators. The
first steps of the calculation are performed analogously to the evaluation of M15. We start
with the propagators three and four of (D.9) and combine them by introducing a Feynman
parameter x. After some simplifications and a suitable shift of the loop momentum k2 the
integration over the latter can be performed as well as the integration over x for d = 4− 2ϵ,
which only yields Gamma functions. The result then is combined with the second propagator
of (D.9) by introducing another Feynman parameter x. Since both terms are massless and
differ only by light-like momenta the resulting expression simplifies to a large extent and
combined with the first propagator in (D.9) – by introducing a new Feynman parameter y –
yields M↔

23 . Applying a suitable shift k1 → k1 + yq3 + yq1 − 2xȳq2 (ȳ = 1 − y) we are able

1The explicit form of the result may deviate from Eq. (D.8) though.
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q3 + q1

q4 q2q2 − k2

k1 − k2

k1q3 + q1 + k1

Figure D.2. – M↔
23 with an arbitrary choice of parametrization. q1 . . . q4 denote the external and k1 and

k2 are the loop momenta.

to perform the integration over this loop momentum. After some simplifications and setting
d = 4− 2ϵ we find

M↔
23 =− S2

Γ


m2

b

−2ϵ
A

 1

0

dx x−1+ϵ

 1

0

dy ȳϵy−2ϵ


(1− y)(u+ ūx)


1

zc
− 1


− y + iη

−2ϵ

,

(D.10)

with zc = m2
c/m

2
b , A = z−2ϵ

c Γ(2ϵ)Γ(1 − ϵ)4/Γ(2 − 2ϵ) and SΓ defined in Eq. (C.2). It is not
possible to perform the integration over x or y analytically. Therefore, we introduce two
Barnes parameters z1 and z2 according to (4.4) such that2

M↔
23 =− S2

Γ

Γ(2ϵ)

(m2
b)

−2ϵ

(2πi)2
A

 1

0

dx x−1+ϵ

 1

0

dy ȳϵy−2ϵ

 c+i∞

c−i∞
dz1


(1− y)


1

zc
− 1

z1
y−2ϵ−z1

× (−1 + iη)−2ϵ−z1 Γ(2ϵ+ z1)

 c′+i∞

c′−i∞
dz2(ūx)

z2uz1−z2Γ(−z1 + z2)Γ(−z2) , (D.11)

Now, the terms involving the integrations over x and y are separated. These integrations can
be performed analytically yielding products of Gamma functions. The final result is given
by

M↔
23 =− S2

Γ


m2

b

−2ϵ Γ(1− ϵ)4
Γ(2− 2ϵ)

z−2ϵ
c

1

(2πi)2
1

Γ(−3ϵ+ 2)

 c+i∞

c−i∞
dz1

 c′+i∞

c′−i∞
dz2


1

zc
− 1

z1

× (−1 + iη)−2ϵ−z1 Γ(2ϵ+ z1)Γ(−4ϵ− z1 + 1)Γ(ϵ+ z1 + 1)

× ūz2uz1−z2Γ(−z1 + z2)Γ(−z2)
Γ(z2 + ϵ)

Γ(z2 + ϵ+ 1)
. (D.12)

2The integration constants c and c′ are chosen such that right and left poles are separated (see Sec. 4.3 for
details).
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q3

q4 q2
q4 + k1

−k2 q3 − k2

q1 + k2 − k1k2 − k1

q1

Figure D.3. – Master integral M18 for an arbitrary parametrization of the momentum flow. k1 and k2
are the loop and q1 . . . q4 the external momenta.

D.2.2. Evaluation of M18 by Using AMBRE.m

We evaluate M18 by deriving a MB representation with AMBRE.m and further simplifying
it by applying the first and second Barnes lemma and Cauchy’s residue theorem. Here, only
a part of the calculation is presented.
The master integralM18 is depicted in Fig. D.3 with some concrete choice of the inner mo-

mentum flow. For using AMBRE.m the following input has to be provided: the propagators
with the choice shown in Fig. D.3, the invariants and the information which loop momentum
is to be integrated first, here we take k1. Feeding the input into the AMBRE.m routine, we
find that ten Barnes integrations are introduced. Further commands automatically check
the applicability of the first and second Barnes lemma. In the case at hand, four Barnes in-
tegrations can be performed and we arrive at a six dimensional MB representation for M18.
Next, we apply MB.m to find a suitable contour and perform the analytical continuation
ϵ→ 0. The final expression is given by two MB representations, a six and a five dimensional
one. The latter reads

M
(5)
18 =

 i∞−5/32

−i∞−5/32

dz3
2πi

 i∞−7/512

−i∞−7/512

dz5
2πi

 i∞−7/64

−i∞−7/64

dz7
2πi

 i∞−7/128

−i∞−7/128

dz8
2πi

 i∞−7/256

−i∞−7/256

dz9
2πi

× −(u)z7+z8z−1−3ϵ−z3−z5−z7−z9
c (−1− iη)z8

Γ(1− 4ϵ)Γ(1− ϵ+ z3 + z5 + z9)Γ(2 + z5 + z7 + z8 + z9)
Γ(1− ϵ)2Γ(−ϵ)

× Γ(−z3)Γ(−z5)Γ(1 + z5)Γ(−z7)Γ(−4ϵ− z7 − z8)Γ(−3ϵ− z3 − z7 − z8)Γ(−z8)
× Γ(1 + z7 + z8)Γ(−z9)Γ(1 + z7 + z8 + z9)Γ(1 + 3ϵ+ z3 + z5 + z7 + z8 + z9)

× Γ(1 + 2ϵ+ 2z3 + z5 + z7 + z8 + z9) . (D.13)

The real parts in the integration borders fix the contours, which are straight lines parallel
to the imaginary axis. As the contours are not unique the real parts are chosen such that a
better convergence of the integral is achieved. Introducing a new variable s by performing a
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shift z9 → s− z5 we are able to apply the first Barnes lemma (E.10) for integration over z5.
In order not to change the contours the real part of this new variable is fixed Re(s) = − 21

512
.

We introduce another new variable r according to z8 → r− z7 with real part Re(r) = − 21
128

.
The complete dependence on z7 then is given by the following expression c+i∞

c−i∞
dz7 Γ(−r + z7)Γ(−z7)f(z7) , (D.14)

where f(z7) = (−1 − iη)−z7z−z7
c is an analytic function and Re(r) < c < 0. Eq. (D.14) has

exactly the form of Eq. (E.8). Hence, we can perform the integration by applying Cauchy’s
residue theorem. Considering the above discussions about contours we find that in the case
at hand no deformation and no shift is needed. The contour at Re(z7) = − 7

64
separates the

left and the right poles and the limit ϵ→ 0 obviously is safe. Thus, we close the contour to
the right and sum up all residues inside the region. The integral (D.14) is then given by the
sum

∞
z7=0

Res

Γ(−r + z7)Γ(−z7)f(z7)


= 2πi

∞
n=0

(−1)n 1

Γ(n+ 1)
Γ(−r + n)(−1− iη)−nz−n

c

= 2πi


1 +

1

(−1− iη)zc

r

Γ(−r) . (D.15)

A final shift s→ w − z3 with real part Re(w) = −101
512

allows one to perform the integration
over z3 by applying the first Barnes lemma. We arrive at the following two dimensional MB
representation in r and w

M
(5)
18 = −Γ(1− ϵ)Γ(−ϵ)

Γ(1− 4ϵ)

 i∞− 21
128

−i∞− 21
128

dr

 i∞− 101
512

−i∞− 101
512

dw ur

1 + (−1− iη)zc

r
z−1−3ϵ−r−w
c Γ(2 + r)

× Γ(−4ϵ− r)Γ(−r)Γ(1 + r)2Γ(−3ϵ− r − w)Γ(−w)Γ(1 + 2ϵ+ r + w)

× Γ(1 + 3ϵ+ r + w) . (D.16)

The six dimensional representation can be simplified in a similar way. Note that in the
derivation of the MB representation we have taken out a factor −S2

Γ · (m2
b)

−1−2ϵ, with SΓ

defined in Eq. (C.2). Thus, (D.16) has to be multiplied by this prefactor. The final result
can be expanded up to the desired power in ϵ and can then be evaluated by applying MB.m.

D.3. Differential Equations: M4 and M5

The master integrals M4 and M5 are evaluated by applying the method of differential equa-
tions. Both M4 and M5 depend on the scale zc and on ϵ, but not on the momentum fraction
u, thus, we can construct two differential equations according to Eq. (4.32). Applying the
Laporta algorithm all integrals are written in terms of master integrals and we obtain the
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following expressions for the two differential equations (d = 4− 2ϵ)

d

dzc

4

3 1 + 2
=
dzc − 3d− 4zc + 10

2(zc − 1)zc

4

3 1 + 2− mb

zc

4

3 1 + 2

− 1 + 3zc
(−1 + zc)2

3

+
(−2 + d)(1 + zc)

2(−1 + zc)2zcmb

2

+
−8 + 3d

2(−1 + zc)2mb

3

− (−2 + d)2(1 + 2zc)

4(−3 + d)(−1 + zc)2zcm2
b

, (D.17)

d

dzc

4

3 1 + 2
=
d− zc − 4

(zc − 1)zc

4

3 1 + 2− (−4 + d)(−10 + 3d)

2(−1 + zc)zcmb

4

3 1 + 2

− (−11 + 3d)(1 + zc)

2(−1 + zc)2mb

3

+
(−4 + d)(−2 + d)

2(−1 + zc)2zcm2
b

2

+
(−11 + 3d)(−8 + 3d)

8(−1 + zc)2m2
b

3

+
(−2 + d)2

8(−1 + zc)2zcm3
b

− (−2 + d)2(−16 + 4d− 17zc + 5d zc)

16(−3 + d)(−1 + zc)2zcm3
b

. (D.18)

Here, the labels 1 to 4 in the figures of the master integrals denote the incoming momenta
q1, . . . , q4. In the following we use primed indices for all quantities involved in the differential
equation for M5. We can read off D(zc, d) = dzc−3d−4zc+10

2(zc−1)zc
and D′(zc, d) = d−zc−4

(zc−1)zc
for the
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q4 + k1 q3 − k2

q3 + k2

q4 + k1 − k2

q4

qq3

Figure D.4. – The topology of the master integrals M4 and M5 with a specify choice of momentum flow.
k1 and k2 are the loop and q, q3 and q4 are the external momenta with q = −q3 − q4.

coefficients in front of M4 and M5, respectively. Hence, the integrated functions D(zc, d)
read

D(zc, d) =
1

2
[(3d− 10) log(zc)− 2(d− 3) log(1− zc)] , (D.19)

D′(zc, d) = (d− 5) log(1− zc)− (d− 4) log(zc) . (D.20)

All master integrals on the r.h.s. of Eq. (D.17) and (D.18) which are subtopologies ofM4 and
M5 are assumed to be known. However, we find that M5 appears in the differential equation
of M4 and vice versa and therefore, we obtain a coupled system of equations. Taking a
closer look at the differential equation for M5 we find that M4 appears alongside a factor
(d − 4) ∼ ϵ. Hence, the differential equations decouple order-by-order in ϵ. We take the
lowest order in ϵ coefficients of M4 and M5 from applying Ambre.m (see Sec. 4.3.2) we find

M4 = −(m2
b)

−2ϵS2
Γ


1

2ϵ2
+

5

2ϵ
+O(ϵ0)


, (D.21)

M5 = O(ϵ0) , (D.22)

with SΓ defined Eq. (C.2). Both finite parts in ϵ contain non-trivial Barnes parameters.
Inserting (D.21) and (D.22) in the differential equation for M5 (D.18), we apply (4.34)
and then expand the resulting expression in ϵ up to the finite order. After performing the
integration over zc in (4.35) the master integral is given by the following expression

M5(zc, ϵ) =

f ′(zc, ϵ) + C ′


exp [D′(zc, ϵ)] (D.23)

with

f ′(zc, ϵ) = −(m2
b)

−2ϵ−1S2
Γ [− log(zc)Li2(zc) + 2Li3(zc)] . (D.24)
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The unknown integration constant C ′ remains to be calculated according to the boundary
condition (4.37). Looking at the explicit expression for D′ given in (D.20) we see that there
is an artificial logarithmic divergence at zc = 1, which in the exponential in Eq. (D.23)
becomes a simple power divergence. As stated above the master integrals are analytic for
zc > 0 and hence this divergence has to be artificial. We remove it by choosing C ′ = −f ′(1, ϵ)
and obtain the following result for the finite part of M5

M5(zc, ϵ) = −(m2
b)

−2ϵ−1S2
Γ

−2Li3(zc) + Li2(zc) log(zc) + 2ζ3
zc − 1

+O(ϵ)


. (D.25)

Inserting this result back in the differential equation for M5 yields zero, which provides a
good check of the calculation.
Next, we consider the differential equation for M4 and plug in (D.21) and (D.25) on the

r.h.s. Following exactly the above mentioned steps for evaluating the finite part of M5 we
find a logarithmic divergence at zc = 1 in (D.19) which can be removed by applying the
boundary condition (4.37). The expression for M4 up the finite part then reads

M4(zc, ϵ) = −(m2
b)

−2ϵS2
Γ

 1

2ϵ2
+

5

2ϵ
− 1

6(zc − 1)


− 6Li2(1− zc) + 6zcLi2(zc)− 12Li2(zc)

+ 12Li3(zc) + 6zcLi2(1− zc) log(zc) + 6zcLi2(zc) log(zc)− 6Li2(zc) log(zc)

− 57zc + 6zc log(1− zc) log2(zc) + 6zc log(1− zc) log(zc)
− 12 log(1− zc) log(zc)− 12ζ3 + π2 + 57


+O(ϵ)


. (D.26)

We go back to the differential equation for M5 in order to evaluate the O(ϵ) part of M5 and
then to the differential equation for M4 for the O(ϵ) part of M4. This can be repeated, until
we have evaluated the master integrals up to the desired orders in ϵ.
Note, that beginning at O(ϵ) there is a subtlety in evaluating M5. In the O(ϵ) differential

equation there only appear HPLs with argument
√
zc, since the results for the lower line

master integrals at higher orders in ϵ contain those HPLs. The MMA package HPL.m can
only perform integrations of HPLs with argument t with are multiplied by the weights f1,0,−1

and f+,− (see Sec. 4.4.1 for the definition of f1,0,−1 and f+,−). Therefore we substitute t =
√
zc

and consider a modified differential equation in this new variable

1

2t

dM5

dt
=
dM5

dzc


zc=t2

. (D.27)

An analogous change of variables is done for the differential equation for M4. By using
these new differential equations we obtain the higher O(ϵ) results for the master integrals
following the above described procedure. The results forM4 andM5 up to O(ϵ) are displayed
in App. C. Note, that one can also express them in terms of the new variable t, however the
result remains more compact, if we chose not to do so.

D.4. Canonical Basis: M6 and M7

We present the calculation of the master integralsM6 andM7 by solving differential equations
in a canonical basis [107]. In the differential equation ofM6 andM7 there appear ten integrals
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1 + 4 1 + 4 1 + 4 1 + 4

O1(y) O2(y) O′
1(y) O′

2(y)

Figure D.5. – Master integrals in different bases with y = 1−u(1−zc): 1−4 denote the incoming external
momenta q1, . . . , q4. The double and curly line represent a propagator with mass mb and
mc, respectively, and the dashed line denotes a massless one. The dot on a line indicates a
squared propagator.

with fewer lines, which are M8,9, M
↔
8,9, M15 and five master integrals with three or less lines

(which are known from previous calculations). In order to close the system of differential
equations these lower line master integrals have to be converted to the canonical basis as
well, which is then given by C⃗ = (C1, . . . C12). The basis is obtained by searching for suitable
linear combinations of master integrals which yield pure functions (see Sec. 4.5.2). As an
example for finding such a linear combination consider a basis of the two master integrals O1

and O2 depicted in Fig. D.5 which arise in the Laporta reduction of several master integrals
of the set of two-loop integrals shown in Figs. 2.4 and 2.5. They are subtopologies of M6

and M7 and are known from previous calculations. Their analytic expressions up to finite
order in ϵ read

O1(y) = −(m2
b)

−2ϵ+1S2
Γ

 1

2ϵ2
+

1

ϵ


3

2
− y

4


−G0,1(y)−

13y

8
+

1

2
yG1(y)−

G1(y)

2y
+
π2

3
+ 3

,

(D.28a)

O2(y) = −(m2
b)

−2ϵS2
Γ

 1

2ϵ2
+

1

2ϵ
−G0,1(y)−

G1(y)

y
+G1(y) +

π2

3
− 1

2


, (D.28b)

with y = 1 − u(1 − zc) and SΓ defined Eq. (C.2). Both integrals contain algebraic factors
and moreover, the terms in the finite parts have different weights. However, neither O1 and
O2 nor any linear combination yield pure functions. We consider a different basis and find
that the doubly-dotted integrals O′

1 and O′
2 defined in Fig. D.5 are a good choice3. Their

analytic expressions can be easily obtained from Eqs. (D.28a) and (D.28b) by applying the
Laporta algorithm and up to O(ϵ0) are given by

O′
1(y) = −(m2

b)
−2ϵ−1S2

Γ


−G1(y)

yϵ
+

4G0,0(y)−G0,1(y)

y


, (D.29a)

O′
2(y) = −(m2

b)
−2ϵ−1S2

Γ


1

(y − 1)ϵ2
− 2(y + 1)G1(y)

(y − 1)yϵ

+
2 [12(y + 1)G0,0(y) + π2y − (6y + 3)G0,1(y)]

3(y − 1)y


.

(D.29b)

3O′
1 and O′

2 are equal to the integrals I8 and I9 in Fig. D.6.
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The individual integrals are not pure but the following linear combinations yield pure func-
tions

C8 ≡ ϵ2 y O′
1 = −(m2

b)
−2ϵ+1S2

Γ


− ϵG1(y) + ϵ2 [4G0,0(y)−G0,1(y)] +O(ϵ3)


, (D.30a)

C9 ≡ ϵ2 (y − 1) (O′
2 + 2O′

1) = −(m2
b)

−2ϵ+1S2
Γ


1− 4ϵG1(y)

+ ϵ2

16G0,0(y)− 4G0,1(y) +

2

3
π2


+O(ϵ3)


. (D.30b)

Note that the master integrals have to be evaluated to O(ϵ4) since the two-loop amplitude
contains poles up to 1/ϵ4 stemming from the infrared and ultraviolet regions. We find that
C8 and C9 are pure functions to O(ϵ4) and the corresponding differential equations in zc
given in Eq. (4.50) and in u given in Eq. (4.51) factorize the kinematics from the space-time
dependence

d

dzc


C8

C9


= ϵ

 y−1
y(zc−1)

1
zc−1

6(1−y)
y(zc−1)

4
1−zc


C8

C9


, (D.31)

d

du


C8

C9


= ϵ


zc−1
y

zc−1
y−1

6(1−zc)
y

4(1−zc)
y−1


C8

C9


. (D.32)

Hence, instead of O1 and O2 we take C8 and C9 in the canonical basis as new master integrals.
The procedure for finding pure linear combinations of the remaining master integrals is
similar. Finally, we obtain the following expressions for the master integrals C1−12 in terms
of the integrals I1−12 defined in figure D.6 (x̄ = 1− x):

C1(u, zc) = ϵ3 uz̄c I1(u, zc) , (D.33)

C2(u, zc) = ϵ3 u(zc − 1)zc I2(u, zc) , (D.34)

C3(u, zc) = ϵ3 ūz̄c I3(u, zc) , (D.35)

C4(u, zc) = ϵ3 ūz̄c I4(u, zc) , (D.36)

C5(u, zc) = ϵ3 ū(zc − 1) I5(u, zc) , (D.37)

C6(u, zc) = ϵ3 ū(zc − 1) I6(u, zc) , (D.38)

C7(zc) = ϵ (1− ϵ)z̄c I7(zc) , (D.39)

C8(u, zc) = ϵ2 (ū+ uzc) I8(u, zc) , (D.40)

C9(u, zc) = ϵ2 uz̄c


I9(u, zc) + 2I8(u, zc)


, (D.41)

C10(u, zc) = ϵ2 (u+ ūzc) I10(u, zc) , (D.42)

C11(u, zc) = ϵ2 u(zc − 1)

I11(u, zc) + 2I10(u, zc)


, (D.43)

C12(zc) = ϵ2 I12(zc) . (D.44)
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The explicit differential equations for the Ci take the canonical form given in Eqs. (4.52)
and (4.53) and we obtain the following expression for Ã

Ã =



−4L1 − L4 3L3 − 3L4 −2L2 − L3

2
− L4

2
+ L6 −L2 +

L3

2
− L4 +

L6

2
L2 +

L3

2
− L4

2

−3L4 −4L1 − L3 − L4 L2 − L4

2
−L2 − L4 −2L2 − L4

2
+ L5

0 0 2L2 − L3 + 2L4 − 2L6 L3 − L6 0
0 0 −2L1 − 2L4 + 2L6 −4L1 + 2L2 − 2L4 + L6 0
0 0 0 0 2L2 − L3 + 2L4 − 2L5

0 0 0 0 −2L1 − 2L4 + 2L5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−L2 + L3 − L4
L3

4
− L6

4
0 L3

4
− L4

4
3L6

2
− 3L3

2
−L3

2
+ L4

4
+ L6

4
L6

4
− L3

4

−L2 − L4 +
L5

2
L5

4
3L5

2
L4

4
+ L5

4
0 −L4

4
L5

4

0 L6

2
0 0 −2L6 −L6

2
−L6

2

0 L1 − L6

2
0 0 L6

L6

2
L6

2

−L5
L3

2
− L5

2
2L3 − 2L5

L3

2
− L5

2
0 0 L3

2
− L5

2

−4L1 + 2L2 − L3 − 2L4 + L5 −L1 − L3

2
+ L5

2
L5 − L3

L5

2
− L3

2
0 0 L5

2
− L3

2

0 −2L4 0 0 0 0 L3

0 0 L5 L1 + L4 0 0 0
0 0 −6L5 −4L1 − 4L4 0 0 0
0 0 0 0 L6 − 3L3 L1 − L3 + L4 0
0 0 0 0 6L3 − 6L6 −4L1 + 2L3 − 4L4 0
0 0 0 0 0 0 −L3



.

(D.45)

L1,...6 are logarithms which only linearly depend on the arguments u and zc

L1 = ln(u) , L4 = ln(1− zc) ,
L2 = ln(1− u) , L5 = ln(1− u(1− zc)) ,
L3 = ln(zc) , L6 = ln(z + u(1− zc)) . (D.46)

By using the scaling relation (4.45) we can change the arguments of the Goncharov poly-
logarithms. As mentioned above, u is a good choice for the Goncharov polylogarithms that
depend on this scale since this will simplify the convolution with the pion LCDA. Then we
find that the weights are either integer (0,±1) or one of the following zc-dependent expres-
sions

a1 =
1

1− zc
, a2 =

zc
zc − 1

. (D.47)

Products of Goncharov polylogarithms of the same argument are expanded by means of the
Hopf algebra.
For details of solving the differential equations we refer to the example in the “traditional”

basis in Sec. D.3. Here, we will only specify the various boundary conditions. C7 and C12

both are independent of u and vanish at zc = 1. C3,4 and C5,6 vanish at u = 1. For C1,2,8,9,10,11

we haven’t found a specific kinematic point where they vanish. Thus, we have evaluated C8,9

for (u0, zc0) = (1, 0) and C10,11 for (u0, zc0) = (1, 1/2). A difficulty arises when solving the
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3

1 2

4

3

1 2

4

4

2 1 + 3

4

2 1 + 3

I1(u, zc) I2(u, zc) I3(u, zc) I4(u, zc)

3

2 1 + 4

3

2 1 + 4 2 1 + 4

I5(u, zc) I6(u, zc) I7(zc) I8(u, zc)

1 + 4 1 + 3 1 + 3

I9(u, zc) I10(u, zc) I11(u, zc) I12(zc)

Figure D.6. – Set of basic integrals needed in the construction of the pure master integrals C1,2: 1 − 4
denote the incoming external momenta q1, . . . , q4. The double and curly line represent a
propagator with mass mb and mc, respectively, and the dashed line denotes a massless
one. The dot on a line indicates a squared propagator.

differential equation for C1,2 with respect to zc. We encounter Goncharov polylogarithms
with non-trivial dependence on zc in the weights, e.g. G1,a2(u0). The integration over zc
cannot easily be performed by rescaling the weights using Eq. (4.45) and applying Eq. (4.39).
As an alternative to integrating the differential equation with respect to zc one can obtain
the function C(u0, zc) from MB representations (see [C]).
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Appendix E

Useful Identities and Definitions for

Evaluating Integrals

We present some useful identities and definitions which apply in the calculation of Feynman
diagrams or can be used to reduce the dimensionality of a given Mellin Barnes representation
(see Sec. 4.3).

E.1. Identities for Calculating Feynman Diagrams

We provide some useful identities and definitions for calculating Feynman diagrams. Most
of the relations given here can be found in [193].
The following type of integrals are invariant under a linear shift of the integration variable

ddk

(2π)d
{f(k), 1}

[(p− k)2 −∆+ iη]n
=


ddk

(2π)d
{f(p+ k), 1}
[k2 −∆+ iη]n

, (E.1)

where f(k) is some function of k and ∆ is independent of k. The momentum p is usually
a linear combination of external momenta and η > 0 (infinitesimal) and n ∈ R. After this
shift, the integration over k can be performed by applying one of the following identitites

ddk

(2π)d
1

(k2 −∆+ iη)n
=
i(−1)−n

(4π)d/2
Γ(n− d

2
)

Γ(n)
(∆− iη)−n+ d

2 , (E.2)
ddk

(2π)d
k2

(k2 −∆+ iη)n
=
i(−1)−n+1

(4π)d/2
d

2

Γ(n− d
2
− 1)

Γ(n)
(∆− iη)−n+ d

2
−1 , (E.3)

ddk

(2π)d
(k2)

2

(k2 −∆+ iη)n
=
i(−1)−n+2

(4π)d/2
d(d+ 2)

4

Γ(n− d
2
− 2)

Γ(n)
(∆− iη)−n+ d

2
−2 . (E.4)

We further find

1

(−∆± iη)n =
(−1)∓n

(∆∓ iη)n . (E.5)
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There are other identities like the Feynman parameters and the Beta functions. The former
can be used to express the product of propagators with a sum by introducing additional
integrations

1

Eα1
1 . . . Eαn

n

=
Γ(α1 + · · ·+ αn)

Γ(α1) . . .Γ(αn)

 1

0

dx1 . . . dxn
δ(1−i xi)x

α1−1
1 . . . xαn−1

n

[x1E1 + · · ·+ xnEn]


i αi
. (E.6)

Some of the integrations over the Feynman parameters may be performed (at a later stage
of the calculation) by using the definition of the Beta function

B(α, β) =

 1

0

dx xα−1(1− x)β−1 =
Γ(α)Γ(β)

Γ(α + β)
, Re(α, β) > 0 . (E.7)

E.2. Cauchy’s Residue Theorem and Barnes Lemmas

Mellin Barnes (MB) representations have been discussed in Sec. 4.3. Here, we present
methods that apply in the reduction of the dimensionality of a given MB representation.
The integration over a Barnes parameter z can be performed by means of Cauchy’s residue

theorem, if z only appears linearly in two Gamma functions with opposite sign and all other
dependence on z is given by an analytic function f(z) c+i∞

c−i∞

dz

2πi
Γ(z + a)Γ(−z + b)f(z) =

∞
n=0

Res

Γ(n+ a+ b)Γ(−n)f(n+ b)


. (E.8)

The integration contour is parallel to the imaginary axis and c is chosen such that Γ(· · ·∓ z)
has poles on the right/left of the contour. For f(z) = xz, x being an arbitrary z-independent
variable, which is often realized in the calculations of the master integrals, and Re(a+b) > 0,
we find  c+i∞

c−i∞

dz

2πi
Γ(z + a)Γ(−z + b)xz = xb(1 + x)−a−b Γ(a+ b) . (E.9)

Moreover, if applicable, Barnes integrations can be performed by the first and second Barnes
lemma, which read c+i∞

c−i∞
dz Γ(a+ z)Γ(b+ z)Γ(c− z)Γ(d− z) = Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
, (E.10)

 c+i∞

c−i∞
dz

Γ(a+ z)Γ(b+ z)Γ(c+ z)Γ(d− z)Γ(e− z)
Γ(a+ b+ c+ d+ e+ z)

=

Γ(a+ d)Γ(a+ e)Γ(b+ d)Γ(b+ e)Γ(c+ d)Γ(c+ e)

Γ(a+ b+ d+ e)Γ(a+ c+ d+ e)Γ(b+ c+ d+ e)
. (E.11)

The integration contours are fixed such that Γ(· · · ∓ z) are right/left poles. There are also
modified versions of the Barnes lemmas, some even involving Polygamma functions

ψ(0) =
d

dz
ln Γ , (E.12)
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ψ(n) =
d

dz
ψ(n−1) , n > 0 integer . (E.13)

A copious list of these integrals can be found in [116].
The above mentioned simplifications apply for integrals in d dimensions as well as for

integrals which already have been expanded in a series in ϵ. It is advisable to perform as
many integrations as possible before expanding the integrand since this often reduces the
effort to a large extent. After the expansion, the Barnes lemmas or Eq. (E.8) may still
apply for the lower order ϵ terms. In some cases these simplifications are only possible after
suitable shifts of MB variables.
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Appendix F

Results for the Feynman Diagrams in the

Central Region of the Dalitz Plot

We present the results for the leading order Feynman diagrams depicted in Fig. 6.7 including
the contributions of the form factors and the LCDAs. We find that only the combinations
V − V or A− A yield non-vanishing contributions, where V (A) denotes the vector (axial)
current. The momentum fraction of the LCDA that involves the spinor q̄j (q̄) is denoted
by u (v). The gluon can be attached to the different quark lines and we assign numbers
1-4 to the insertions of the gluon on the b, qn, qi or q̄j quark line, respectively. The results
from the colour singlet and colour octet operators are marked by the superscripts “0” and
“8”, respectively. E.g. (A0

V⊗V )a1 denotes the result of diagram (a) of the vector-vector
contribution of the colour singlet operator with gluon insertion on the b quark line.

(A0
V⊗V )a1 = 0 ,

(A8
V⊗V )a1 = 0 ,

(A0
A⊗A)a1 = 2αsπ

(1 + u)CF

u(2 + u)Nc

f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A8
A⊗A)a1 = 0 ,

(A0
V⊗V )a2 = 0 ,

(A8
V⊗V )a2 = 0 ,

(A0
A⊗A)a2 = 2αsπ

CF

uNc

f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A8
A⊗A)a2 = 0 ,

(A0
V⊗V )a3 = 0 ,

(A8
V⊗V )a3 = −αsπ

(−1 + u)CF

2N2
c u(−1 + u(−2 + v) + v))

f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A0
A⊗A)a3 = 0 ,
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(A8
A⊗A)a3 = αsπ

(3 + u− 2v)CF

2u(−1 + u(−2 + v) + v)N2
c

f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A0
V⊗V )a4 = 0 ,

(A8
V⊗V )a4 = αsπ

(−1 + u)CF

2N2
c u(u+ v + uv)

f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A0
A⊗A)a4 = 0 ,

(A8
A⊗A)a4 = αsπ

(1 + u+ 2v)CF

2N2
c u(u+ v + uv)

f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A0
V⊗V )b1 = −αsπ

(1 + u)CF

N2
c u(2 + u)

f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A8
V⊗V )b1 = −αsπ

(1 + u)C2
F

N2
c u(2 + u)

f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A0
A⊗A)b1 = −αsπ

(1 + u)CF

N2
c u(2 + u)

f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A8
A⊗A)b1 = −αsπ

(1 + u)C2
F

N2
c u(2 + u)

f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A0
V⊗V )b2 = −αsπ

CF

N2
c u
f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,

(A8
V⊗V )b2 = −αsπ

C2
F

N2
c u
f 2
πF

B→π
+ (m2

B/3)Φπ(u)Φπ(v) ,
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F. Results for the Feynman Diagrams in the Central Region of the Dalitz Plot
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