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1 Overview

1.1 Introduction to Univariate and Spatial Extremes

Extreme events have a strong influence on various aspects of human life. While financial
crises and stock market crashes can lead to large financial losses for individuals, compa-
nies and economies, natural hazards such as severe storms, heavy precipitation, floods or
droughts often cause personal injury, death and infrastructure damage.

In order to estimate the risks associated with extreme events and take appropriate counter-
measures, the probabilities of exceeding extreme, possibly previously unobserved, thresh-
olds must be estimated from data or, conversely, the corresponding thresholds for specified
excess probabilities need to be determined — two of the key questions of extreme value
theory and statistics.

Mathematically speaking, one is interested in the tail behavior of some random vari-
able X describing the “impact” (e.g. the financial loss or the amount of precipitation)
of some extreme event. There are two main approaches that are closely related to each
other according to the Pickands—Balkema—de Haan Theorem (Balkema and de Haan, 1974;
Pickands, 1975): the block maxima and the peaks-over-threshold (POT) approach.

In this thesis, we will mainly focus on the block maxima approach, that is, we consider
the behavior of the random variable

M, = max X;
i=1,...,n
for large n where X1, Xo, ... are independent copies of the random variable X. Now assume

that {a,} C (0,00) and {b,} C R are normalizing sequences such that a, (M, — by,)
converges in distribution to a non-degenerate random variable Z as n — oco. Then, by
the Fisher—-Tippett—Gnedenko Theorem (Fisher and Tippett, 1928; Gnedenko, 1943), one
of the main results in extreme value theory, the limiting variable Z necessarily follows a
generalized extreme value (GEV) distribution

e (- (1+¢54) ), e £0,
exp (—exp (—2)) £=0,

P(Z < 2) = Ge po(2) := { z € R,

with shape parameter £ € R, location parameter u € R and scale parameter ¢ > 0. The
class of GEV distributions encompasses three types of distributions: the class of Fréchet
distributions with heavy tails, the light-tailed Gumbel distribution and the class of Weibull
distributions with finite upper endpoint.

All of these distributions are stable with respect to the maximum operation: For every
n € N, there are sequences {c,} C (0,00) and {d,} C R such that

Zi—d
max ——— =4 X,
i=1,...,n Cp,
where Z1, Zs, ... are independent copies of Z and “=;” denotes equality in distribution.

Such a random variable Z and its distribution, respectively, are called maz-stable. It can
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be shown that any max-stable distribution is either degenerate or a GEV distribution.
More details on the extremal behavior of single random variables, so-called univariate
extreme value theory, can be found in the textbooks of Resnick (1987), Embrechts et al.
(1997) and de Haan and Ferreira (2006).

In many practical examples, however, extreme events cannot be fully described by a single
random variable such as the price of a single stock or the amount of precipitation at a
single site. Instead, the joint extremal behavior of various components of random vectors
or even stochastic processes has to be considered resulting in multivariate extreme value
theory and extreme value theory of stochastic processes, respectively. Most of this thesis
focuses on the general case of stochastic processes on some domain S C R?, having spatial
processes in environmental applications in mind.

There is an analogous result to the Fisher—Tippett—Gnedenko theorem in this setting:
Let X; = {X;(s), s € S}, i € N, be independently and identically distributed sample-
continuous stochastic processes. Furthermore, assume the existence of sequences of con-
tinuous functions a, : S — (0,00) and b, : S — R and a sample-continuous process
{Z(s), s € S} with non-degenerate marginal distributions such that

Xi(s) —b

{ max M, s € S} " {Z(s), se S} (1.1)
i=1,...,n an(s)

weakly in the space C(S) of continuous functions on S. Then, it can be shown that

the limit process Z is a maz-stable process, i.e., for every n € N, there are sequences of

continuous functions ¢, : S — (0,00) and d,, : S — R such that

{Z:Hllaxnw, s € S’} =4{Z(s), s € S},
where Z1,Z, ... are independent copies of the process Z (cf. Chapter 9 in de Haan and
Ferreira, 2006).

Necessarily, by the Fisher—Tippett—Gnedenko theorem, for each s € S, the random variable
Z(s) follows a GEV distribution. As max-stability is preserved under marginal transfor-
mations within the class of GEV distributions (cf. Resnick 1987, Prop. 5.10, and de Haan
and Ferreira 2006, Thm. 9.2.1, for instance), one often focuses on the class of simple
max-stable processes, i.e. max-stable processes with unit Fréchet margins.

Max-stable processes and their finite-dimensional counterparts, multivariate extreme value
distributions, form the main object we study in this thesis. The thesis consists of eight
articles that have been published recently in various scientific journals. It contains contri-
butions to the theory and statistics of max-stable processes including their representation
(Chapter 2), likelihood-based inference (Chapter 3), unconditional simulation (Chapters
4, 5 and 6) and conditional simulation with applications to downscaling and statistical
post-processing (Chapters 7, 8 and 9). Brief overviews over the main results in these areas
and the author’s contributions will be given in the following sections of this introductory
chapter.

1.2 Spectral Representation of Max-Stable Processes

The class of simple max-stable processes can be characterized by the following spectral
representation (cf. de Haan, 1984; Giné et al., 1990; Penrose, 1992, among others):

Z(s) = max (;W;(s), s€e S, (1.2)
i€EN
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where {(;};cn are the points of a Poisson point process on (0, 00) with intensity measure
¢~2d¢, and, independently of the (;, the W; are independent copies of a sample-continuous
nonnegative stochastic process W = {W(s), s € S}, the so-called spectral process, satis-
fying EW(s) =1 for all s € S.

The spectral representation and the specific choice of W play an important role in extreme
value theory and statistics as many procedures for the estimation and simulation of max-
stable processes are based on an appropriate choice of the spectral process W which is not
unique, cf. Engelke et al. (2014, 2015); Dieker and Mikosch (2015); Dombry et al. (2016a);
Oesting et al. (2018b); Oesting and Strokorb (2018), for instance. Popular examples
include the following processes:

e Often a the spectral process of the form

v -1 —vm v
W(s)=T(4?) ,/%maX{O,G(S)} , s€Sb,

is considered where G is a centered Gaussian process and v > 0 . This results in the
max-stable extremal-t process (Opitz, 2013). For v = 1, one obtains the so-called
extremal Gaussian process (Schlather, 2002).

o If the spectral process is a log-Gaussian process, i.e.
W (s) = exp (G(s) - %Var(G(s))) , se€&b,

where, again, GG is a centered Gaussian process, we obtain a Brown—Resnick process
(Kabluchko et al., 2009) for Z.

If S =R (or an additive subgroup), special attention is given to stationary processes.
The extremal-t process and, thus, also the extremal Gaussian process, is stationary if the
underlying Gaussian process G is stationary. For the Brown—Resnick process, stationarity
of the increments of G already implies stationarity of Z.

An important subclass of stationary simple max-stable processes is given by the class
of simple max-stable processes allowing for a mixed moving maxima representation (cf.
Schlather, 2002; Stoev and Taqqu, 2005; Stoev, 2008, for instance)

Z(s) = max U,Fi(s — S;), seRY, (1.3)
where {(U;, Si) }ien are the points of a Poisson point process on (0, 00) x R? with intensity
measure u~2duds, and, independently of the (U;, S;), the F; are independent copies of a
sample-continuous process F' satisfying E ( Jra F(s) ds) = 1. A popular example of a max-
stable process with such a representation is the Gaussian extreme value process (Smith,
1990) where F' is deterministic and equals the density of a multivariate Gaussian distri-
bution. For further examples and the existence of such a representation, see Kabluchko
(2009), Strokorb et al. (2015) and Kabluchko and Stoev (2016), among others. By con-
struction, the mixed moving maxima representation (1.3) is of a different type than the
general spectral representation (1.2), but can be transformed in several ways (cf. Engelke
et al., 2014; Oesting et al., 2018b, for instance).

Motivated by practical applications where discontinuities are present because of measure-
ment errors or physical phenomena, one often drops the assumption of sample-continuity
and considers the broader class of processes arising as limits in (1.1) with respect to finite-
dimensional distributions. In case of a countable index set S C R? de Haan’s (1984)
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representation (1.2) is still valid with a discontinuous spectral process W. A more specific
popular max-stable model is the Reich and Shaby (2012) model

2(s) =) [ Bu(s)?]", ses, (1.4)

where By, ..., B are independent a-stable random variables whose distribution is given
by their Laplace transform E(exp(—tB;)) = exp(—t®), t > 0, for some « € (0,1), and,
independently of the By, € is a noise process on S with (1/a)-Fréchet marginal distribu-
tions. The functions wy,...,wr : S — [0,1] are deterministic weight functions such that
Zle wy(s) =1for all s € S. If S is a dense subset of R?, the sample path properties of Z
are of interest. Due to the noise process €(/®)| which can be perceived as a multiplicative
nugget effect, the sample paths of Z cannot be extended to continuous functions on R
This feature makes the Reich and Shaby (2012) model (1.4) different from the models
discussed above, but also attractive for environmental applications.

The question of the relation between the Reich—Shaby model (1.4) and the general spectral
representation (1.2) has been the motivation for the article Oesting (2018) which is pre-
sented in Chapter 2. In this article, a general framework of representations of max-stable
processes via P norms, p € (1,00], is established, namely

1
p/p

=Y W] ses, (1.5)

where P {¢;}ien and {W;}ien are all independent and defined as above. This repre-
sentation covers both the representation (1.4) of the Reich-Shaby model as a finite sum
and the spectral representation (1.2) by de Haan (1984) as the maximum over an infinite
number of processes. Thus, on the one hand, representation (1.5) allows to extend the
Reich—Shaby model to a class of processes whose finite-dimensional distributions are gen-
eralized logistic mixtures (cf. Fougeres et al., 2009, 2013). On the other hand, it provides
a way to include multiplicative nugget effects into well-known max-stable models.
Various results for max-stable processes with /% norm based representation (1.5) are pre-
sented. It is demonstrated that each process with an P norm based representation also
possesses an 9 norm based representation for ¢ > p with the special case ¢ = oo corre-
sponding to de Haan’s (1984) representation (1.2). Explicit formulae to switch from one
representation to another equivalent one are provided. In particular, this includes the
transformation from representation (1.5) for p < oo to representation (1.2). The converse
transformation, however, is not always possible. Here, necessary and sufficient conditions
for the existence of /P norm based representations are given. Interestingly, these conditions
are closely connected to the theory of negative definite functions on semigroups.
Furthermore, mixing and ergodicity properties of stationary processes with ¢Z norm based
representation (1.5) are discussed. It is shown that the properties are the same as for the
“denoised” analogues, which have been studied in works by Stoev (2008) and Kabluchko
and Schlather (2010), for instance.

1.3 Likelihood-Based Inference for Multivariate Extreme Value
Distributions and Max-Stable Processes

In view of the large variety of max-stable models, the question of inference for these models
arises. More precisely, we assume that a number of independent observations of the same k-
dimensional random vector Z, e.g. observations at pairwise disjoint sites s1,...,s; € S, are
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available. In the classical setting introduced in Section 1.1, these data correspond to block
maxima and are assumed to approximately follow a multivariate max-stable distribution
or, equivalently, a max-stable process on a finite index set S = {s1,...,sr}. There is
a large variety of methods for parametric, semi-parametric and non-parametric inference
for max-stable distributions. Here, for the sake of brevity, we will focus on parametric
approaches based on likelihoods.

Due to the representation (1.4) of the Reich and Shaby (2012) model as a finite sum,
its likelihood becomes tractable within a Bayesian hierarchical model. Conditional on
By,...,B, the random variables Z(s1),...,Z(s;) are independent Fréchet variables.
Even though there is no closed-form expression for the likelihood of the stable variables
B, it can be processed by introducing auxiliary variables (Stephenson, 2009).

For a general simple max-stable model with representation (1.2), the computation of the
likelihood is more intricate. In this case, we have that the distribution function F' of Z is
of the form F(z) =P(Z < z) = exp(—V(z)) where

W .
V(z)zE(m@Lx(Sl)) , z=(z1,...,2)" € (0,00)*,
=1 Zi
denotes the so-called exponent function. If V is continuously differentiable, then the
corresponding density f exists (see Dombry et al., 2017a, for more details on the existence
of f) and satisfies

[ =3, Jen =3 en{-V() HLT:ll{—aTjV(z)}, (1.6)

where Py, is the set of all partitions 7 = {7y,..., 7} of {1,...,k} and 05,V (;0) denotes
the partial derivative of V' with respect to the arguments z;, ¢ € 7;. As the number of
summands in (1.6) grows super-exponentially in k&, maximum likelihood estimators can be
directly implemented for small dimension & only.

Instead, often, a composite pairwise likelihood built from bivariate sublikelihoods only is
considered. The resulting maximum composite likelihood estimator (Padoan et al., 2010)
is known to be usually less efficient than the maximum likelihood estimator based on full
likelihoods, an effect that might be mitigated by including likelihood terms corresponding
to higher-dimensional subsets (cf. Genton et al., 2011; Huser and Davison, 2013; Castruccio
et al., 2016, for instance).

Alternative approaches are based on the fact that representation (1.2) naturally suggests a
partition 7 of the vector Z with j; and jo being in the same subset of {1, ..., k} if and only if
the maxima Z(s;,) and Z(s;,) in (1.2) are attained by the same function ¢;W;(-). The term
f(z,7) in (1.6) then provides the joint density of the vector Z and the underlying random
partition 7, which is integrated out in the sum (1.6). If, additionally to the block maxima,
the occurrence times of the maxima within the blocks are available for each component,
these occurrence times can be used to form an observed partition 7 in an analogous
way. For this case, Stephenson and Tawn (2005) suggest to consider the joint likelihood
of the data and the observed partition, that is, only one single summand in (1.6), for
maximum likelihood estimation. Due to the approximation of the underlying partition by
its empirical counterpart, however, the resulting estimator often suffers from a significant
bias. A correction is proposed in Wadsworth (2015). More details on these likelihood-based
estimators for max-stable models, alternative approaches based on threshold exceedances
and a comparison of different estimators are given in Huser et al. (2016).

Several recent works put the focus on different ways to treat the unknown random par-
tition, allowing for inference based on full likelihoods. For instance, Huser et al. (2019)
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suggest a stochastic expectation-maximization algorithm perceiving the underlying ran-
dom partitions as missing observations. As an alternative, Thibaud et al. (2016) propose to
use the random partition as latent variable in a Bayesian framework to fit a Brown—Resnick
process to extreme low temperature data. In Dombry et al. (2017b), which is Chapter 3
in this thesis, we generalize and further investigate this approach. More precisely, we
consider N independent data z1), ..., 2(N) from a max-stable distribution belonging to
a parametric family {Fy, 6 € O} equipped with an appropriate prior distribution and
also account for the unknown partitions 71, ..., 70V corresponding to each data vector,
thus allowing for the use of the Bayesian full likelihood. Sampling from the joint posterior
distribution of (, 7, ..., T")) can then be performed via Markov chain Monte Carlo
(MCMC) methods. Similarly to Thibaud et al. (2016), we update each variable separately
by the means of a Metropolis-Hastings sampler for 6 and the Gibbs sampler proposed in
Dombry et al. (2013) for the random partitions.

We show that, under appropriate conditions, the median of the posterior distribution of
f is an asymptotically normal estimator of the true parameter 8y as N — oco. Further-
more, it possesses the same asymptotic variance as the maximum likelihood estimator.
The most important conditions for this result are differentiability in quadratic mean and
the existence of uniformly consistent tests. While conditions for differentiability of simple
max-stable models, i.e. max-stable models with unit Fréchet margins, are given in Dombry
et al. (2017a), we provide a sufficient condition for the existence of uniformly consistent
tests in terms of pairwise extremal coefficients. Making use of further results of Dombry
et al. (2017a), the validity of all of these conditions is verified for a variety of max-stable
process models and multivariate extreme value distributions. For the logistic model, simu-
lation studies are conducted to compare the finite-sample performance of the Bayesian full
likelihood estimator to various other estimators such as the pairwise likelihood estimator
(Padoan et al., 2010), the independence likelihood estimator for marginal parameters, the
Stephenson-Tawn estimator (Stephenson and Tawn, 2005) and its bias corrected version
(Wadsworth, 2015). Furthermore, genuinely Bayesian techniques such as Bayesian model
comparison are discussed.

1.4 Simulation of Max-Stable Processes

Besides its use for the construction of parametric models, the spectral representation of
max-stable processes is of particular importance for their simulation. A first approach to
this problem has been considered in Schlather (2002). It relies on the intuition that the
product ¢;W;() is more likely to contribute to the maximum in (1.2) if (; is large, and on
the fact that the Poisson points {(;}ien can be generated subsequently in a descending
order, i.e., such that (; > (3 > ... a.s. Hence, for n € N, Schlather (2002) proposes the
finite approximation

ZM(s) = max GWi(s), seK, (1.7)

i=1,...,n

to the exact process {Z(®)(s), s € K} 4 {Z(s), s € K} on a compact simulation domain
K C S. Provided that the spectral process W is uniformly bounded on K by some
constant C' > 0, a stopping rule can be used to determine a finite, but random number 7’
such that {Z(T)(s), s € K} = {Z(®)(s), s € K} with probability one. Thus, the max-
stable process Z can be simulated exactly in finite time. A similar procedure also works
in case of a mixed moving maxima representation (1.3) provided that the corresponding
process F' is uniformly bounded and has compact support.
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If, in contrast, the spectral process is not uniformly bounded, one might use an approx-
imation Z®) where N is determined according to the above mentioned stopping rule
for sufficiently large C. In practice, such an approximation provides satisfactory results
in many cases where the spectral process is stationary with light tails and rather small
variance such as for extremal-t process with small v > 0. For Brown—Resnick processes,
however, approximations often turn out to be highly inaccurate. To overcome these issues,
several approximate simulation algorithms based on other equivalent representations are
considered in Oesting et al. (2012), which has been part of the author’s PhD thesis.

In recent years, also exact simulation procedures have been developed starting from the
work by Dieker and Mikosch (2015) for the case of Brown—Resnick processes on a finite
index set. Their approach is based on a measure transform resulting in spectral functions
that are normalized w.r.t. the L' norm.

The use of a family of more general measure transforms for the exact simulation of arbitrary
max-stable processes is investigated in the article Oesting et al. (2018b) which is presented
in Chapter 4. In this article, we start from the general representation

Z(s) = max U;Vi(s), se K, (1.8)
€N

where {(U;,V;)}ien are the points of a Poisson point process on (0,00) x Cy(K) with
intensity measure u=2du H(dv) for some Radon measure H satisfying [v(s) H(dv) = 1
for all s € K, and C4(K) denotes the space of nonnegative continuous functions on K.
This representation (1.8) comprises both de Haan’s (1984) representation (1.2) and the
mixed moving maxima representation (1.3). Then, introducing some probability density
gon Cy(K) wr.t. H, it can be shown that

<

2(s) =g max i) ek (1.9)
€N g(vz)

where {(U;,V;)}ien are the points of a Poisson point process on (0,00) x C (K) with
intensity measure u =2 du g(v)H (dv), i.e. the process allows for an equivalent spectral rep-
resentation of type (1.2) with spectral processes W;(s) = V;(s)/g(V;). Provided that g
is chosen such that these processes are uniformly bounded with probability one, again, a
stopping rule can be applied such that for some finite but random number T the approx-
imation Z(T) as defined in (1.7) provides an exact sample from the law of Z.

The article Oesting et al. (2018b) aims at minimizing the expected number ET" of func-
tions to be involved in the finite approximation among all probability densities g. As
the resulting optimization problem cannot be solved directly, two surrogates for the
original problem are stated, both of them being solved by the same probability den-
sity g*(h) = ¢ Lsup,ei h(s), h € C4(K), where ¢ > 0 is an appropriate normalization
constant. The corresponding spectral functions Wi(s) = ¢V;(s)/sup;ex Vi(t), i € N, con-
sequently satisfy sup,cy Wi(s) = ¢ a.s., which is why the resulting spectral representation
is called normalized spectral representation. While the existence of such a representa-
tion has already been verified in Giné et al. (1990), the article Oesting et al. (2018b)
provides the underlying transformation to obtain such a representation from any other
equivalent representation and proposes its use for exact simulation. For the evaluation of
the computational costs of the simulation, an expression for the expectation ET is given.
Explicit formulae for the spectral functions and the normalizing constant ¢ are available in
case of moving maxima processes with radial symmetric and non-increasing shapes. More
specifically, for the extremal Gaussian process (Smith, 1990), the performance of the exact
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simulation algorithm based on the normalized spectral representation is demonstrated and
compared to the approach by Schlather (2002).

In the general case of a max-stable process with representation (1.2), i.e. representation
(1.8) with H being equal to the distribution of W, sampling of normalized spectral func-
tions or, equivalently, the underlying processes V; in (1.9), is not straightforward due to
the underlying measure transform

P(V; € dv) = ¢t supye g v(s) - P(W € dv), veCK), v>0. (1.10)

While Oesting et al. (2018b) suggest an approach by MCMC techniques, de Fondeville and
Davison (2018) propose to simulate normalized spectral functions via rejection sampling
in the context of Pareto processes. For the important case of Brown—Resnick processes
where W is a log-Gaussian process, both the MCMC algorithm and the rejection sampling
approach are refined in Oesting et al. (2019), i.e. Chapter 5 of this thesis. More pre-
cisely, for a finite simulation domain K = {sy,...,s,}, we propose a Metropolis-Hastings
algorithm using a mixture of the type

forop(v) = Zjil pifi(v) = Zi]ilpiv(si)P(W e dv), wve(0, oo)N,

as proposal density, where p; > 0 are weights such that ZZJ\L 1pi = 1. In case of a
Brown—Resnick process, each modified density f; is also a log-Gaussian density (cf. Dombry
et al., 2016a) and, thus, allows for sampling in an efficient way. Specifying the acceptance
probability in an appropriate way, the distribution of the resulting Markov chain can be
shown to converge to the desired distribution in total variation norm. In order to obtain
good mixing properties, we recommend to choose the weights p;, ¢ = 1,..., N, such that
the relative deviation between fprop, and the target density is minimized, resulting in a
quadratic optimization problem.

As an alternative to approximate sampling from the desired distribution, in Oesting et al.
(2019), we also consider exact simulation via rejection sampling. Here, using the same
type of proposal density forop as before with weights p1 = ... = py = % results in an
procedure equivalent to the one proposed by de Fondeville and Davison (2018). Then,
the expected computational complexity is the same as for the algorithm developed by
Dieker and Mikosch (2015) (see Oesting and Strokorb, 2019). To reduce the computational
effort, we propose a more flexible approach with proposal density of the type forop =
Zf\il Pigie, where g; ., ¢ € [0,1), are log-Gaussian densities with an increased variance.
Ideally, one would choose the weights py, ..., pny and the additional parameter ¢ such that
the average acceptance rate is maximal. As the solution of this optimization problem
cannot be calculated directly, we present lower bounds for the average acceptance rate
and present strategies for their maximization. An example demonstrates the potential of
our modifications to improve the original approaches.

Thus, the work presented in Chapter 5 complements the results from Chapter 4 by showing
that, apart from the overall normalization constant ¢, also Brown—Resnick processes can
be simulated exactly and efficiently via the normalized spectral representation.

In addition to simulation via the normalized spectral representation, there are (at least)
two other general exact simulation methods both of which are presented in Chapter 6.
This chapter corresponds to the publication Dombry et al. (2016a). Our first approach is
based on the concept of so-called extremal functions which has been developed by Dombry
and Eyi—Minko (2012, 2013). More precisely, it can be shown that, for each s € S, there is
one and only one function ¢; = (;W; such that Z(s) = ¢;(s) in (1.2). Such a function, also
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denoted by ¢7, is called extremal function at point s € S. In order to simulate Z exactly
on a finite simulation domain K = {s1,..., sy}, we propose to subsequently simulate the
extremal functions ¢, ¢f ..., ¢ . By definition, the process

— +
(S) - 'LGll,a),{N (z)si (S)a s € Sa

satisfies Z (N)(s) = Z(s) for all s € K. An important ingredient for the simulation of the
extremal functions gb;t_ is the probability measure P,,. This measure is constructed from
the original spectral distribution of W by a transformation and is concentrated on those
functions f € C(K) that satisfy f(s;) = 1. In Dombry et al. (2016a), we give explicit
formulae for P, for the most popular max-stable process models and various multivariate
extreme value distributions. In all of these cases, the distributions P, allow for simulation
in an efficient way.

Our second approach generalizes the procedure developed by Dieker and Mikosch (2015)
for the simulation of Brown—Resnick processes on a finite domain K = {s1,...,sy} to
more general max-stable processes. It is based on a transformation of the spectral vector
such that it becomes normalized w.r.t. the L' norm. As this also implies a uniform
bound for the spectral vector, exact simulation can be performed as suggested in Schlather
(2002). This procedure is closely connected to the other two procedures discussed in
Chapter 4 and Chapter 6. First, the resulting representation is a special case of the
transformed representation (1.9) with g(f) = N~} Zf\; 1 f(s:). Second, the distribution of
the vectors V;, i € N, is a mixture of the distributions Ps;, j=1,...,N, occurring in the
simulation procedure via extremal functions. Thus, using the above results on the P,
exact simulation can be performed for the most popular max-stable models.

For both exact approaches discussed in Dombry et al. (2016a), expressions for the compu-
tational complexity defined as the expected number of spectral vectors to be simulated to
obtain one max-stable realization are given. Here, the extremal functions approach turns
out to be always preferable to the second approach. There is no clear ordering, however,
between the extremal functions approach and the procedure based on normalized spectral
functions, see Dombry et al. (2016a) and Oesting et al. (2018b) for examples.

In addition to the generic algorithms discussed above, there are also approaches tailored
specifically to Brown—Resnick processes. For instance, Liu et al. (2019+) propose an al-
gorithm for their exact simulation based on record breakers. In contrast, Oesting and
Strokorb (2018) revisit non-exact simulation procedures. Allowing for some small simu-
lation error, they suggest to reduce the computational effort by minimizing the maximal
variance of the underlying log-Gaussian spectral processes. Interestingly, in the non-exact
setting, the approach by Dieker and Mikosch (2015), or, more generally, the second ap-
proach in Dombry et al. (2016a), become competitive again even though not being efficient
for exact simulation, see Oesting and Strokorb (2019) for more details.

1.5 Conditional Simulation of Max-Stable Processes and its
Applications in Environmental Sciences

In many practical examples, additional information on the realization of a stochastic pro-
cess is given. For instance, its value at specific sites might be obtained from station
measurements or average values over certain grid cells might be available from satellite
data or numerical models. In order to get more insight in the distribution of the process
given these information, conditional simulations are necessary.
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For a max-stable process Z on S, the problem of conditional sampling given values
Z(s1),...,2Z(sn) for s1,...,sy € S, has been addressed in a series of papers starting
from Wang and Stoev (2011) who consider spectrally discrete max-linear models. In
Dombry and Eyi—Minko (2013), general results for max-stable processes, and, even more
generally, max-infinitely divisible processes, are provided. For three popular regular cases,
the Brown—Resnick, extremal Gaussian and extremal-t processes, these are explicitly cal-
culated and applied in Dombry et al. (2013) and Ribatet (2013). Their results are comple-
mented by the work of Oesting and Schlather (2014), which has been part of the author’s
PhD thesis and examines the irregular cases of mixed moving maxima processes.

Even though the works mentioned above use different techniques in the proofs, their algo-
rithms all rely on the concepts of extremal functions (cf. Section 1.4) and the partition of
the index set formed by the extremal functions (cf. Section 1.3) which is also called hitting
scenario in this context. Based on these ideas, a three-step algorithm is proposed. First, a
hitting scenario is sampled conditionally on Z(s1),...,Z(sy). Second, extremal functions
corresponding to this hitting scenario are simulated. Third, the spectral functions that do
not contribute to the maxima Z(s1),...,Z(sy), but might contribute to Z(s) for other
s € S are sampled. Here, the last step is closely related to the problem of unconditional
simulation, see the review article Dombry et al. (2016b) for more details.

Besides values of the process at specific sites, other information such as functionals of
the process might be given. Two types of such functionals are considered in Oesting
(2015) and Oesting et al. (2018a), which correspond to Chapter 7 and Chapter 8 of this
thesis, respectively. In Chapter 7, we focus on the problem of conditional simulation of
a simple max-stable process Z on some compact domain K given the values of continuous
max-linear functionals Li,..., L, : C+(K) — [0,00), i.e. continuous functionals satisfying

Lj(max{a1 f1,a2f2}) = max{a1L;(f1),a2L;(f2)}, ai,a2 >0, fi,f2 € CL(K).

Examples of such functionals are suprema over subsets of K. From the spectral represen-
tation (1.8) and the max-linearity of the L;, we obtain

1€EN

Thus, one can consider the extended process Zr, = ({Z(s), s € K}, L1(Z),...,Ln(Z)).
By the above considerations, this process is then a max-stable process with values in
C1(K) x [0,00)™ and possesses a spectral representation of the form (1.2) with spectral
process Wi = ({W(s), s € K},Li(W),...,L,(W)). Hence, one can adapt the gen-
eral methodology developed in Dombry and Eyi-Minko (2013) for conditional simulation
leading to a three-step procedure similar to the one described above. In Oesting (2015),
following Dombry and Eyi-Minko (2013), general formula for the conditional distributions
involved in each step are given. Particular emphasis is put on the case that only one
max-linear condition is given. Then, the distribution of corresponding extremal function
is closely related to the distribution of a spectral process with is normalized w.r.t. the
max-linear functional. Similarly to Chapter 4, an explicit formula can be obtained for
the Gaussian extreme value process, i.e. a moving maxima process. In the case of multi-
ple max-linear conditions, the conditional distributions can be rewritten in terms of the
Lebesgue density of the random vector (Li(W),..., L,(W)) provided that it exists.

In Chapter 8, we consider the case of one single condition given by a positively homoge-
neous functional, i.e. a functional ¢ : C(K) — [0, 00) such that

laf)=al(f), a>0, feCL(K).
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For instance, one could consider weighted averages, suprema or minima over subsets of K.
We start with the spectrally discrete case, i.e. a max-linear model

Z(s) = jlrllaxnaj(s)Zj se K, (1.11)
where Z1,...,7Z, are independent a-Fréchet variables and aq,...,a, € C4(K) are de-
terministic weight functions (cf. Wang and Stoev, 2011). Due to the homogeneity of ¢,
the random variables 71, ..., 7, and, thus, also the process Z, are uniquely determined
by the value of ¢(Z) and the ratios Z;/Z1, j = 2,...,n. Here, the density of the vec-
tor (Z;j/Z1)j=2,...n conditionally on ¢(Z) can be stated explicitly up to some normalizing
constant. Thus, we propose a Metropolis—Hastings algorithm with independence sampler
to sample from the conditional distribution. This idea can be extended to the case of
conditionally max-linear models even further to general max-stable models. To this end,
we use similar ideas as discussed in Section 1.4, and exploit the fact that a max-stable
process can be represented as

Z(s) =4 ZD(s) = max (Wi(s), s €K,
i=1,...,

with a finite, but random number T provided the spectral functions are uniformly bounded.
Here, the random spectral functions W;, ¢ € N, can be interpreted analogously to the
weight functions aq, ..., a, in (1.11), while the Poisson points ¢;, ¢ € N, take a similar role
as the a-Fréchet variables 71, ..., Z,. Thus, the Metropolis-Hastings algorithm above can
be adapted to sample from the joint distribution of T, {W;};=1__ 7 and {(}i=1,. 7 condi-
tional on ¢(Z), using the building blocks obtained from unconditional simulations of the
max-stable process Z as proposals. The performances of the algorithms for the max-linear
and the general max-stable case are demonstrated in simulation studies. Furthermore, the
behavior of the Markov chains produced by these algorithms are analyzed.

Conditions of the same type as in Chapter 8 play an important role in environmental
sciences. Climate models, for instance, often provide output on a rather coarse grid. In
many cases, the value corresponding to a grid cell can be interpreted as a spatial average
over the cell. As averaging typically tends to conceal localized extremes, one is interested in
the behavior of the process at fine scale, i.e. the problem of downscaling arises. A natural
approach to tackle this question is via conditional simulation. Focusing on extremes,
Bechler et al. (2015), for instance, propose to use transfer functions in order to assign
the value for each grid cell to a single site inside the cell. Then, conditional simulation
of an appropriate max-stable process given its values at these sites can be performed.
In the application part of Oesting et al. (2018a), which has been omitted in this thesis,
the methodology developed in our work, is applied to downscale precipitation data in the
southeast of France.

Often, the aggregated values that are available do not correspond to an aggregation of
block maxima, i.e. the max-stable process Z itself, but an aggregation of a single event,
i.e. a process X in the max-domain of attraction of Z. This broader setting is considered in
Engelke et al. (2018), which is part of Raphaél de Fondeville’s PhD thesis. In this paper, we
develop methods to estimate the parameters of the underlying max-stable process Z from
aggregated data given by homogeneous functionals ¢1(X),...,¢r(X). These are based on
limit results for the joint distribution of the aggregated data. Conditional simulations
from the limit model can then be used for downscaling.

Downscaling can be seen as a specific type of statistical post-processing, which is required
because of the phenomenon that output of numerical models such as a weather prediction
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models often does not reflect extremes accurately. Such a post-processing procedure is
presented in Oesting et al. (2017), which is Chapter 9 of this thesis. Here, we develop a
bivariate spatial process model (Z W,z (2))T where the first component Z(1) corresponds
to standardized observed block maxima and the second component Z) to the forecast
analogues. More precisely, we propose a bivariate Brown—Resnick model defined via

Z(l)(s) [ maxien( exp(GZ(-l)(s) — Var(GEl)(s))/Q) s d
( Z(s) ) R ( masicn G exp(G0 (s) — Var(@D (o2 )0 TS )

(2
where {(;};en are the points of a Poisson point process on (0, 00) with intensity measure
¢~2d¢ and, independently of the Poisson points, G; = (Ggl), G(Z)), 1 € N, are independent

7

copies of a centered bivariate Gaussian process G = {(GW(s), GP(s))T, s € R?}. The
bivariate Brown—Resnick process Z is stationary if and only if the pseudo cross-variogram

2’7(h) = (27ij(h))1§,i,j§2 = (Var(G(z) (S + h) — G(]) (S)))lgi,j§2’

does not depend on s € R? (cf. Genton et al., 2015; Molchanov and Stucki, 2013). We
further show that stationarity of Z implies that the components of (/7ij(h))i<i j<2 dif-
fer by bounded functions only, i.e. the asymptotic behavior of all the components of ~ is
essentially the same provided that at least one component tends to infinity. Based on the
bivariate Matérn model (Gneiting et al., 2010), we develop a flexible bivariate unbounded
cross-variogram model that allows for different smoothness properties of the two compo-
nent. The model can be fitted by a weighted least squares fit of the corresponding extremal
coefficients. Statistical post-processing can then be performed by simulating from the bi-
variate random field model Z conditionally on its second component Z2) at various sites.
The procedure is demonstrated for daily maxima of station data and forecasts for wind
gusts in Northern Germany. Model verification by the means of scores reveals that, in
contrast to a univariate max-stable model, the post-processing procedure based on the
bivariate model leads to convincing improvements of the forecasts.

Contributions to the Chapters of the Thesis:

In the final part of the introductory chapter, I would like to comment on my contributions
to the eight published articles that form Chapters 2-9 of this thesis.

e Oesting (2018) and Oesting (2015), i.e. Chapter 2 and Chapter 8 of this thesis, are
single author papers.

e Dombry et al. (2017b) and Dombry et al. (2016a), that is, Chapter 3 and Chapter
6, are joint work with Clément Dombry and Sebastian Engelke. Each of the three
authors contributed in equal parts to both articles.

e Martin Schlather, Chen Zhou and me contributed equally to Oesting et al. (2018b),
i.e. Chapter 4 of this thesis.

e I wrote the majority of Oesting et al. (2019), i.e. Chapter 5. Martin Schlather
contributed with a few ideas and the time relevant programming part while Claudia
Schillings made contributions to one of the optimization procedures.

e Asfirst author, I contributed in a leading manner to the three-author articles Oesting
et al. (2018a) and Oesting et al. (2017), which correspond to Chapter 7 and Chapter
9, respectively. In this thesis, the application part of Oesting et al. (2018a) is left
out as it has mainly been implemented by Liliane Bel.



2 Equivalent Representations of Max-Stable
Processes via // Norms

Up to minor modifications and corrections, this chapter is a reprint of the article Oesting
(2018) which has appeared in the Journal of Applied Probability.

While max-stable processes are typically written as pointwise maxima over an infinite
number of stochastic processes, in this chapter, we consider a family of representations
based on ¢ norms. This family includes both the construction of the Reich-Shaby model
and the classical spectral representation by de Haan as special cases. As the representation
of a max-stable process is not unique, we present formulae to switch between different
equivalent representations. We further provide a necessary and sufficient condition for the
existence of a /P norm based representation in terms of the stable tail dependence function
of a max-stable process. Finally, we discuss several properties of the represented processes
such as ergodicity or mixing.

2.1 Introduction

Arising as limits of rescaled maxima of stochastic processes, max-stable processes play
an important role in spatial and spatio-temporal extremes. Here, a stochastic process
X ={X(s), s € S} on a countable index set S is called max-stable if there exist sequences
{an(*) }nen and {b,(-) }nen of functions a, : S — (0,00] and b, : S — R such that, for all
n €N,
LX) = .c(m%xm),
i=1 (e7%)

where X;, i € N, are independent copies of X and the maximum is taken pointwise. From
univariate extreme value theory, it is well-known that the marginal distributions of X, if
non-degenerate, are necessarily Generalized Extreme Value (GEV) distributions, i.e.

P(X(s) < 2) = exp ( - (1 + g(s)x;(‘;)(s)> Ug(s)), 1+ g(s)f’“’;(‘;)(s) >0,

with £(s) € R, u(s) € Rand o(s) > 0 for s € S. As max-stability is preserved by marginal
transformations, it is common practice in extreme value theory to consider only one type
of marginal distributions, e.g. the case that the shape parameter £ is positive. In this
case, the marginal distributions are of a-Fréchet type, i.e., up to affine transformations,
the marginal distribution functions are of the form

D, (x) = exp (—x_o‘) , x>0,

for some a > 0. Here, we will focus on the case of max-stable processes with unit Fréchet
margins, i.e. X(s) ~ ®; for all s € S. In this case, X is called a simple max-stable process.

13



14 2. Representations of Max-Stable Processes via P Norms

By de Haan (1984), the class of simple max-stable processes on S can be fully characterized:
A stochastic process {X(s), s € S} is simple max-stable if and only if it possesses the
spectral representation

X (s) =maxA4;Vi(s), se€S, (2.1)

€N

where ), 04, is a Poisson point process on (0,00) with intensity measure a~2da and
Vi = {Vi(s), s € S} are independent copies of a stochastic process V such that E(V(s)) =1
for all s € S (Giné et al., 1990; Penrose, 1992, see also). It is important to note that this
representation is not unique. As different representations of the same max-stable process
might be convenient for different purposes such as estimation (see Engelke et al., 2014,
2015, among others) or simulation (cf. Oesting et al., 2012; Dieker and Mikosch, 2015;
Oesting et al., 2018b, for instance), finding novel representations is of interest.

Recently, Reich and Shaby (2012) came up with a class of max-stable processes written

as a product

L 1/p
X(s) =UWP(s)- ZBlwl(s)p] ., seSs, (2.2)
=1

where {U(")(s)}es is a noise process with U®)(s) ~yiq ), the functions w; : § — [0, 00),
l=1,...,L, are deterministic weight functions such that ZZL:1 wi(s) =1 foral s € S
and, independently from {U®)(s)}scs, the independent random variables By, | = 1,..., L,
follow a stable law given by the Laplace transform

E{exp(—t- B;)} = exp (—tl/p> , t> 0.

The parameter p € (1,00) determines the strength of the effect of the noise process which
— analogously to the terminology in geostatistics — is also called a nugget effect. In Reich
and Shaby (2012), the weight functions w; are chosen as shifted and appropriately rescaled
Gaussian density functions yielding an approximation of the well-known Gaussian extreme
value process (Smith, 1990) joined with a nugget effect. Similarly, Reich and Shaby (2012)
propose analogues to popular max-stable processes such as extremal Gaussian processes
(Schlather, 2002) and Brown-Resnick processes (Kabluchko et al., 2009) by choosing ap-
propriately rescaled realizations of Gaussian and log-Gaussian processes, respectively, as
weight functions. Due to the flexibility in modeling the strength of the nugget by the
additional parameter p and the tractability of the likelihood which allows to embed the
model in a hierarchical Bayesian model, the Reich-Shaby model (2.2) has found its way
into several applications (cf. Shaby and Reich, 2012; Reich et al., 2014; Stephenson et al.,
2015; Sebille et al., 2017, for instance).

While a simple max-stable process in the spectral representation (2.1) is written as the
pointwise supremum of an infinite number of processes, i.e. the pointwise /., norm of
the random sequence {A; - Vi(s)}ien, the Reich-Shaby model (2.2) is represented as the
pointwise p norm of the finite random vector (Bll/p ~wy($))i=1,...r- In this chapter, we will
present a more general class of representations of max-stable processes by writing them as
pointwise 7 norms of sequences of stochastic processes, including, for instance, both de
Haan’s representation and the Reich—Shaby model as special cases. The finite-dimensional
distributions of the resulting processes will turn out to be generalized logistic mixtures
introduced by Fougeres et al. (2009) and Fougeres et al. (2013).

This chapter is structured as follows: In Section 2.2, we will introduce the spectral repre-
sentation based on P norms. As a single max-stable process might allow for equivalent ¢P
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norm based representations for different p € (1, 00|, we give formulae to switch between
them in Section 2.3. Section 2.4 provides a full characterization of the resulting class of
processes whose properties are finally discussed in Section 2.5.

2.2 Generalization of the Spectral Representation

Denoting by

1
[>ien(Ai - Vi(s))P] ®ope (1,00),
maX;eN AZ : ‘/’Z(S)7 p =00,

[AcV(s)ly= {

the /P norm of the Hadamard product of the two random sequences A = {A4;};en and
V(s) = {Vi(s) }ien, s € S, the spectral representation (2.1) can be rewritten as

X(s) = Ao V(8)|los, sES.

We present a more general representation replacing the ¢°° norm by some general /P
norm, p € (1,00], and multiplication by an independent noise process with &, marginal
distributions. Here, we use the convention that ®., denotes the weak limit of ®, as p — oo,
i.e. Poo() = 1[1,00)(7) is a degenerate distribution function.

Theorem 2.1. Let p € (1,00] and {UP)(s)}ses be a collection of independent ®, random
variables. Further, let >,y 04, be a Poisson process on (0,00) with intensity a~*da
and, independently of Y ;. 04,, let Wi(p), 1 € N, be independent copies of a nonnegative
stochastic process {WP)(s), s € S} with E{W®)(s)} =1 for all s € S. Then, the process
X, defined by

U(p)<3)

X(s)==————||A (®) 2.
(S) F(l _p_1> || © W (s)Hpa ERS S7 ( 3)
is simple mazx-stable.

Proof. For p = 0o, we have UP)(s) = 1 a.s. and, thus, representation (2.3) is of the same
form as representation (2.1). Consequently, max-stability follows from de Haan (1984).
For p € (1,00), we first show that ||A o W®)(s)||, < oo a.s. According to Campbell’s
Theorem (cf. Kingman, 1993, p. 28), this holds true if and only if

E < /0 h min{|aW @ ()P, 1} a2 da) < 0. (2.4)

Substituting v = aW (s), we can easily see that the left-hand side of (2.4) equals

[e.e] 1
w®) . i P 2du = -
E( (s)) /0 min{|v|P, 1}v"“dv l—i-p_l.

Thus, HAoW(p)(s)Hp < oo a.s. Then, for s1,...,8, € S, x1,...,2, > 0, n € N, we obtain

A W(p)>)

P(X(si) <z i=1,...,n)

F(l—P_l)UCz‘ )
—E(P|U®(s) < =1,...
(( ) S aowwi(sy, ="

) n r—p "z \7°
-F (eXp (; <||Ao W(p)(si)HP) )) '
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Using well-known results on the Laplace functional of Poisson point processes, this yields

P(X(s;) <zj,i=1,...,n)

oo [ (SR )) )

7

(W(p)(si)>n
;
i=1llp

® () \ "
exp | —E ||<W '(81)>
i i=1

where we used Formula 3.478.2 in Gradshteyn and Ryzhik (2007). Thus, for m independent
copies Xq, ..., X; of X, m € N, the homogeneity of the /£ norm yields

=exp | E ‘

p

1
IP’< max X;(s;) < ay, izl,...,n) =P(X(s;) <mj,i=1,...,n),
m j=1,..m

i.e. Z is simple max-stable. O

Remark 2.2. Theorem 2.1 could alternatively be verified by observing that the process
T(s) = |Ao W®(s)|h, s € S, is a-stable with a = 1/p (see also the proof of Theorem
2.5). Thus, all the finite-dimensional distributions of X are generalized logistic mixtures
(cf. Fougeres et al., 2009, 2013) and, consequently, are max-stable distributions.

Noting that the finite-dimensional distributions of the Reich—Shaby model (2.2) are given

by
() ])

it can be easily seen that (2.2) is a special case of representation (2.3) where W follows
the discrete distribution P(W = Lw;) = 1/L, i = 1,..., L. Further, the classical spectral
representation (2.1) by de Haan (1984) can be recovered from representation (2.3) with

L
P(X(s;) <xjyi=1,...,n) = exp —Z
j=1

P = 0.

Analogously to the law of the spectral processes {V;(s), s € Stien in representation (2.1),
the law of the processes {VVi(p )(s), s € Stien in the 7 norm based representation of a
given process {X(s), i € S} is not unique: Let Y;, ¢ € N, be independently and identically
distributed random variables with E(Y;) = 1 which are independent from }, yd4, and
{W®)(s), s € S}. Then, the processes {UP)(s)/T(1 —p~ ') |[Ao WP)(s)|,, s € S} and
(U@ () T(1L—p~ ) - |AoY o WP)(s)|,, s € S} are equal in distribution.
Consequently, even for some fixed p € (1, 0] representation (2.3) of a simple max-stable
process X is not unique. Furthermore, there might be representations of type (2.3) with
different p for the same process X. Such equivalent representations are discussed in the
following section.
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2.3 Equivalent Representations

By de Haan (1984), the class of simple max-stable processes is fully covered by the class
of processes which allow for the spectral representation (2.1), i.e. representation (2.3) with
p = oo. Thus, any ¢/’ norm based representation (2.3) with p < oo of a simple max-
stable process can be transformed to an equivalent representation of type (2.1). This
transformation is presented in the following proposition. Even more generally, it is shown
how a ¢4 norm based representation can be derived from a ¢ norm based representation
with p < ¢ < o0.

Proposition 2.3. Let X be a simple maz-stable process with representation (2.3) for some
p € (1,00). Then, the following holds:

1. The process X allows for the spectral representation (2.1) with

() (.
VO = ot W), (2.
2. For q € (p,>), the process X satisfies
(@) (.
XC) =i i Ll Ao WO, (2.7

where {U(s)}ses is a collection of independent ®, random variables and Wi(q),
i € N, are independent copies of a stochastic process {W (9 (s), s € S} given by

r(1—q"
r(1-p

Here, independently from the process W®), the collection {Tp/q)(8)}ses consists of
independent stable random variables whose law is given by the Laplace transform

E (e o) =" 120,

W (s) = (T(p/q)(s))p/q WP(s), ses.

Proof. 1. By comparing the finite-dimensional distributions of the processes defined via

(2.1) and (2.3), it suffices to show that
1 . U (s )W P (s;) " - W®)(s;) "
r(1—p) T - 7 -
for all s1,...,8, € S, x1,...,2, > 0, n € N. To this end, we first note that, for

i=1
y >0,
1« [ W®)(s;) P
| — _ = o)
Sy‘W )—eXp< yp;< ” ;

(e
! i=1

that is, conditionally on the vector W®) the norm [|(U® (s;)W®)(s;)/2:)" [0
follows a p-Fréchet distribution with scale parameter ||(W®)(s;)/x;)?_,|l,- Thus,

() | )-snf )| o)
w® (s)\"
() L)

, (2.8)

p

= EW{P(l -p ")

i.e. Equation (2.8).
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2. From the first part of the proposition, it follows that the right-hand side of (2.7) al-
lows for a spectral representation (2.1) where the spectral functions are independent
copies of the process V' given by

_ U@g(.). (Tp/q(-))l/q
D = W@ (.

while the spectral functions of the process X on the left-hand side of (2.7) are
independent copies of the process V' given in (2.6). Conditioning on the value of the
stable random variable T(,/4)(s), it can be shown that the product U@(s) Tip/q) ()
has the distribution function ®, for all s € S (cf. Fougeres et al., 2009) and, thus,
V()=a V()

O

Remark 2.4. Even though the transformation in the second part of the proposition
requires p < g < oo, the two cases p = ¢ and ¢ = oo can be regarded as limiting cases.
As ¢ \ p, we obtain that U@ (.) -, UP)(.) and {T(p/q)(5)}ses converges in distribution
to a collection of random variables which equal 1 a.s. Thus, in the limit p = ¢, there is no
transformation.

As ¢ — 0o, we have that I'(1 — ¢~') — 1 and each U@(s), s € S, converges to 1 a.s.
Further, by Theorem 1.4.5 in Samorodnitsky and Taqqu (1994), for each s € S, the random
variable T{,,/q)(s) can be represented as

T(p/q)(s) = F(l—lp/q) Z(AJQ)‘I/P

1€eN

where {A;}ien are the points of a Poisson point process on (0,00) with intensity a~2da
and Y;, i € N, are independently and identically distributed non-negative random variables
with expectation 1. Thus, as ¢ — oo,

1/q
ve_ (1 A v \a/p % val/p

which has the distribution function ®,. Consequently, (T}, /q)(-))l/ T UP().

Denoting by MS the class of all simple max-stable processes and by MS,, the class of
simple max-stable processes allowing for a /P norm based spectral representation (2.3),
Proposition 2.3 yields

MSE, CMS; CMSo =MS, 1<p<g<oo.

A full characterization of the class MS,, is given in the following section.

2.4 Existence of /? Norm Based Representations

In the following, we will present a necessary and sufficient criterion for the existence of
a /P norm based representation of a simple max-stable process X in terms of the stable
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tail dependence functions of its finite-dimensional distributions. For a simple max-stable
distribution (X (s1),...,X(sn))", its stable tail dependence function s, s, is defined via

l : [0,00)"™ — [0, 00)

(@1, ) —log{]P’ (X( D<A X (sa) < ;)}

x1’

S1se0y8n

From the spectral representation (2.1), we obtain the form

ls, . s,(x) =E <'H11aX xiW(si)) , x€0,00)". (2.9)

i=1,..., n

The stable tail dependence function is homogeneous and convex (cf. Beirlant et al., 2004,
among others). Further, from Equation (2.9) together with dominated convergence, we
can deduce that the stable tail dependence function is continuous.

Theorem 2.5. Let {X(s), s € S} a simple maz-stable process and p € (1,00). Then, the
following statements are equivalent:

(i) X possesses a P norm based representation (2.3).

(i) For all pairwise distinct s1,...,s, € S and n € N, the function fg?,,_,sn, defined by

fs(f) sn(T) = sy, s, (:Ui/p, . ,l’}/p) , = (T1,...,2y,) € [0,00)",

-----

is conditionally negative definite on the additive semigroup [0,00)™, that is, for all
M 20 € [0,00)" and ay,. .., am € R such that Yo ai =0, we have

ii aia; fP) (29 +20) < (2.10)

Proof. Firstly, we show that (i) implies (ii). To this end, let X be a simple max-stable
process with representation (2.3). Then, from (2.5), we obtain that

1 1
fs(lf?,sn(m) = — 10g {P (X(Sl) < ?7 ... ,X(Sn) < 1/1’) }

Now, let w(s1),...,w(sy) > 0 be fixed. Then, by a straightforward computation, it can be
seen that the function « — >}, zw(sg)? is conditionally negative definite on [0, 00)".
As the function y — y'/P is a Bernstein function and the composition of a conditionally
negative function and a Bernstein function yields a conditionally negative definite function
(Berg et al., 1984, Theorem 3.2.9), the function = — (> ;_, ka(sk)p)l/p is conditionally

negative definite, as well. Being a mixture, the same is true for fs(f?_,,,sn
Secondly, we show that (ii) implies (i). From the conditionally negative definiteness of

fsl, sn » it follows that e ~f8)om is positive definite on [0, 00)" (Berg et al., 1984, Theo-

(p)
rem 3.2.2). As s, s, is non-negative and continuous, e~ fsTion is further bounded by 1

n
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and continuous. Thus, by Theorem 4.4.7 in Berg et al. (1984), there exists a unique finite
measure fs, s, on [0,00)" with Laplace transform

Litsy,...s (%) :/[0 . exp (—(z,a)) p(da) = exp (= fs;,..5,(2)), 2 €[0,00)".  (2.11)

Because of pis, .5, ([0,00)") = exp(—ls,...5.(0,...,0)) =1, ps, .. s, is a probability mea-

sure. Further,

n

l317.,,’sn($1, N ,$i71,0, L1y :L‘n)

- l81,...,8171,8i+1,‘..,8n (l’l, oo 7xi717 m’i+1a oo 7'1"71) (212)
for all = (z1,...,2,) € [0,00)" and i € {1,...,n} implies that

Ky oo (A1 X oo X A X [0,00) X Ajpr X ... X Ap)
= Msyq,..., Si— 158041y 1Sn (A1 X ... X Ai—l X Ai+1 X ... X An)

for all Borel sets Ap,...,A4, C [0,00) and ¢ € {1,...,n}. Consequently, the family
{1, sn @ S15--.,8n € S, n € N} of probability measures satisfies the consistency con-
ditions from Kolmogorov’s existence theorem. Thus, there exists a stochastic process
{T'(s), s € S} with finite-dimensional distributions ..

Now, let {U®)(s)}scs be a collection of independent ®,, random variables and

X(s) = UP(s)T(s)'/?, seb.
Then, for all pairwise distinct s1,...,s, € S and z1,...,z, > 0, we have

P()Nf(sl) <y, ..., X(sp) §$n)

Tn

- E{IP’ (U(”)(S1) < %,...,U<p>(sn) < TUn(s,) ‘ T(51),---,T(sn)>}

Af(£5)]
=1 g

By Equation (2.11), we obtain

P(X(s1) < x1,...,X(sp) < Tn) = exp (—f(p) (a:l_p,...,a:;p)>

S14--4,5n,
=P(X(s1) <z1,...,X(sn) <x).
Thus, X allows for the spectral representation
X(s) =UP(s)TYP(s), seb. (2.13)

Now, let T, ..., T be m independent copies of T, m € N. Then, for all s1,...,s, € S
and x = (z1,...,zy) € [0,00)", we have

E {exp (— <x (Z T<’“><si>> >) } = [E{exp(—(x, (T(s:))im )}
k=1 i=1

= exp(=m Loy, (@17 ) = XDl (MP2) VP, (mP) 7))

= E {exp ((z,mP(T'(s:))i=1))},
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where we used the homogeneity of the stable tail dependence function. Hence, for all
S1,..., 8, € S, the vectors (37", T(k)(si))?zl and mP(T'(s;));_, have the same distribu-
tion, i.e. {T'(s), s € S} is an a-stable process with & = 1/p. Thus, from Theorem 13.1.2
and Theorem 3.10.1 in Samorodnitsky and Taqqu (1994), we can deduce that {T'(s), s € S}
allows for the representation

T(s) = m_lp_l)p %Afﬁ/i(s), ses, (2.14)

where {A;};en are the points of a Poisson point process on [0,00) with intensity a~2da
and {W(s), s € S} are independent and identically distributed stochastic processes which
are independent from {A;};en and satisfy E(W;(s)'/?) = I,(1) = 1 for all s € S. Defining
W-(p)(s) = Wi(s)'/?, s € S, i € N, and plugging Equation (2.14) into Equation (2.13), we

(2

obtain Equation (2.3). O
Remark 2.6. Note that Theorem 2.5 assumes that, for each si,...,5, € S, £y, s, is
the stable tail dependence function of the simple max-stable vector (X (s1),...,X(sn))".

The conditional negative definiteness of the function f§f ) s, 1s an additional condition. In
particular, it is always satisfied for p = co — i.e. any simple max-stable process allows for
de Haan’s (1984) spectral representation (2.1) — as fs(fo)sn =lg,..s,(1,...,1) is always
conditionally negative definite.

In order to check whether a function [, . s, is the stable tail dependence function of some
process X with an ¢? norm based representation, we first need to ensure that I, . s,
is a valid stable tail dependence function. This can be done by checking necessary and
sufficient conditions given in Molchanov (2008) and Ressel (2013), for instance.

Using an integral representation of continuous conditionally negative definite functions on
[0,00)™ (cf. Paragraph 4.4.6 in Berg et al., 1984) condition (ii) in Theorem 2.5 can be
reformulated yielding the following corollary.

Corollary 2.7. For a simple maz-stable process {X(s), s € S} and p € (1,00), the
following statements are equivalent:

(i) X possesses a {P norm based representation (2.3).
(ii) For all pairwise distinct s1,...,s, € S and n € N, there ezist a vector
(51, 8n) = (c1(51,- -1 8n)s -y cn(S1,. .., 80)) €[0,00)"

and a Radon measure s, .. s, on [0,00)" such that the stable tail dependence function
ls,,....s, satisfies

n

Iy, .sn(2) = Zci(sl, S

i=1
+ / {1 — exp (— Z aﬂf) } sy ,...s, (da),
[0,00)" =1

for all z = (z1,...,2,)" € [0,00)".
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From the characterization given in Theorem 2.5, we can deduce necessary conditions on
the dependence structure of a max-stable process with ¢’ norm based representation (2.3)
in terms of its extremal coefficients: For a general simple max-stable process { X (s), s € S}

and a finite set S = {s1,...,5,} C S, let the extremal coefficient 8(S) be defined via

P (maxX(s) < a:) = exp (—@) . x> 0.

ses

Then, we necessarily have 0(S) € [1,n] where (S) = n if and only if X(s1), ..., X(s,) are

independent and 6(S) = 1 if and only if X(s1) = X(s2) = ... = X(sp) a.s. The extremal
coefficient is closely connected to the stable tail dependence function via the relation

O({s1,.. 5n}) = lsy.sn(1,..., 1).

If X further allows for an ¢ norm based representation (2.3), we obtain the following
condition.

Proposition 2.8. Let {X(s), s € S} be a simple maz-stable process with representation
(2.3) and S1,S2 C S be finite and disjoint. Then, we have

0(S;USy) > 21/pw‘

2

Proof. Let S1 = {s1,s2,...,5k } and S2 = {Sk,;+1,-- ., Sk, +k,} be disjoint. Furthermore,

let {e1,...,ex, +k,} denote the standard basis in R¥+#2. As the function
1 1

(:1:]_7 ey mkl—‘rkg) —> l517”.75k1+k2 (xl/p’ P 71:]4}{3—]?2)
is conditionally negative definite by Theorem 2.5, inequality (2.10) particularly holds true
form=2 a1 =1, ay=—1, 2 = Ef;l e; and (@ = Efggﬁl e;, 1.e.
| k1 L k1+ko k1+k2
l51,...,8k1+k2 27 Z e | + 1517._,75161%2 27 Z e | — 2, Sk o Z e; | <O0.
i=1 i=ky+1 i=1

Using the homogeneity and property (2.12) of the stable tail dependence function, we
obtain

2YPLy, L (1, 1)+ 2170 1,...,1) =20, . 1,...,1) <0.

5k1+17---75k1+k2( -75k1+k2(

As 0(S) = 13(1,...,1) for any finite S C 8, this yields the assertion. O

Of particular interest in extreme value analysis is the case of the pairwise extremal coef-
ficient function (cf. Smith, 1990; Schlather and Tawn, 2003) where S = {s1,s2}. Then,
Proposition 2.8 provides the lower bound

0({s1,s2}) =27 forall s; # sy € S. (2.15)

For the particular case of model (2.2), this bound has already been found by Reich and
Shaby (2012) motivating their interpretation of model (2.2) as a max-stable process with
nugget effect in analogy to the Gaussian case.

The bound (2.15) and the characterization of simple max-stable processes with a ¢” norm
based representation given in Theorem 2.5 can be used to show the existence of a minimal
/P norm based representation of a simple max-stable process X, i.e. the existence of some
Pmin(X) such that X € MS,, if and only if p > pmin(X).
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Corollary 2.9. Let {X(s), s € S} be a simple maz-stable process such that not all random
variables {X (s)}ses are independent. Then, there exists a number pmin(X) € (1,00] such
that X € MS, if and only if p > pmin(X).

Proof. By de Haan (1984), any simple max-stable process X satisfies X € MSq,. Thus,
the assertion follows directly if

Ppmin(X) =inf{p >1: X € MS,} = cc.

Thus, we restrict ourselves to the case that pyin(X) < 0o. As not all the random variables
{X(s)}ses are independent, there exist s1,s2 € S and € > 0 such that

0({s1,s2}) < 2/0F9).

Hence, by Equation (2.15), we obtain that pmin(X) > 1+ ¢. Now, using the fact that
MS, C MS§, for p < ¢, it remains to show that X € MS, . (x). By Theorem 2.5,
for all pairwise distinct si,...,s, € S, n € N, ai1,...,ay, € R such that Y ;" a; = 0,
zM . 20 €[0,00)™ and m € N we have that

i Zl (@ + 2, @)+ 2y ) <0
i=1 j=1

for all p > pmin(X). By the continuity of g, .
and, thus, by Theorem 2.5, X € MS

sm» the same holds true for p = pmin(X),
)- O

Prmin (X

For any p 6 (1, o0], we now give an example for a simple max-stable process X (") such
that puin(X®) = p. Thus, we will also see that

MS, CMS; CMSo =MS, 1<p<g<oo.
We consider the process Xl(fg) € MS, which possesses an ¢ norm based representa-

tion (2.3) with W(s) = 1 a.s. for all s € S. From Equation (2.5), for pairwise distinct
S1,...,8, €5, we obtain the finite-dimensional distributions

n 1/p
P(Xl%)g)(si)éxi, 1§z’§n):exp _(inp> ) T1s- s T >0,

i.e. all the multivariate distributions are multivariate logistic distributions (Gumbel, 1960).
Thus, the process Xl((i;) has pairwise extremal coefficients 6(s,t) = 21/P for all s,t € S,

s # t. From Equation (2.15), it follows that X () ¢ MS,, for p’ < p. Consequently, we

log
have pmin(Xl(ég) =p.

While we have (s, t) = 21/Pmin(X) for the process X = Xl(fg), the connection between
Pmin(X) and the pairwise extremal coefficients 6(s,t) is more involved in general. To
see this, we consider the case S = {s1,s2}. In this case, for a process X € MS,, the
condition 6(sy,s2) = 2'/7 implies W) (s;) = W®)(sy) a.s., i.e. X necessarily follows a
bivariate logistic distribution. For any other bivariate simple max-stable distribution, we
have 0(sy, s9) > 21/Pmin(X),
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2.5 Properties of Processes with /¥ Norm Based Representation

In this section, we will analyze several properties of simple max-stable processes with an ¢P
norm based representation in more detail. We will particularly focus on properties related
to the dependence structure of the process such as stationarity, ergodicity and mixing.
A characteristic feature of a process X with 7 norm based representation (2.3) is the
additional noise introduced via the process {U®)(s), s € S}. Thus, we will compare the
process X to a “denoised” reference process

X*(s) = maXAiWi(p)(s), se S,
S

i.e. the simple max-stable process constructed via the same spectral functions used in the
original (¢*° norm based) spectral representation (2.1). As the processes X and X* just
differ by the Fréchet noise process U®), we will call X* the denoised max-stable process
associated to X.

The following proposition relates the extremal coefficients 6({s1, s2}), s1,82 € S, of X
to the extremal coefficients 6*({s1, s2}) = E (max{W®)(s1), W) (s2)}) of the associated
denoised process X*. We obtain that extremal dependence of the process X is always
weaker than dependence of the associated denoised process — as expected.

Proposition 2.10. Let {X(s), s € S} be a simple maz-stable process with (P norm
based representation (2.3) with p € (1,00]. Then, for the pairwise extremal coefficients
0({s1,s2}), we obtain the bounds

0" ({51, 50}) < 0({s1,52)) < 27 - 0" ({51, 52})" ¥,

where 6*({s1,s2}) are the pairwise extremal coefficients of the associated denoised process
X*.

Proof. In the case p = oo, we have

0({s1,52}) = E (max{W® (1), W (s2)} ) = 0" ({1, 52)).

which equals both the lower and the upper bound given in the assertion.
Now, let p € (1,00). Then, we have the lower bound

0({s1,s2}) =E { (W(p)(sl)p i W(p)(sz)p>1/p}
> K (maX{W(p)(sl), W(p)(SZ)}> — 0" ({51, 5)).

Further, for any p < r < oo and w € [0,00)2, we obtain

Juwlly < ol - ol

(cf. Theorem 18 in Hardy et al., 1952), or equivalently

T—Pp 1—1771
r—1 1—r—1
wllr

1
|wllp < [Jwll}

As r — oo, this yields

1 _ 1
lwll, < [[w][}/? - [lwl|ls? .
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Taking the expectation of w with respect to the joint distribution of W®)(s;) and W®)(s)
and applying Holder’s inequality, we obtain the upper bound

0({s1,s2}) =E { (W(P)(Sl)p + W) (82)p> 1/10}

<E { (W(p)(sl) + W(p)(82)> . max{W® (s), W(p)(SQ)}lp_l}

—1

< {IE {W(p)(sl) 4 W(p)(32)H e [E (max{W(P)(sl), W(p)(SQ)}):| o
The assertion follows from E{W ®)(s1)} = E{W®)(sy)} = 1. O

In the following, we will consider the case that S = Z. In this case, properties such
as stationarity, ergodicity or mixing are of interest. For a simple max-stable process
{X(s), s € Z} with representation (2.1), necessary and sufficient conditions for these
properties can be expressed in terms of the distribution of the spectral function V: By
Kabluchko et al. (2009), X is stationary if and only if

E{V(s))" ... - V(sn)"} =E{V(s1 +8)" ... V(sp+s)"} (2.16)

for all n € N, s,51,...,8, € Z and uy,...,u, € [0,1] such that ", u; = 1. For sta-
tionary simple max-stable processes, Kabluchko and Schlather (2010) give necessary and
sufficient conditions for ergodicity and mixing in terms of the pairwise extremal coeflicients
0({s1,s2}) = E(max{V (s1), V(s2)}), stating that X is mixing if and only

li_)m 6({0,7}) =2, (2.17)

and X is ergodic if and only if
li EN 0({0,k}) =2 2.18
Ay 2 HU0R) =2 (2.18)

respectively.

Now, we transfer these results to a max-stable process X with ¢ norm based represen-
tation (2.3) giving necessary and sufficient conditions in terms of W®) . For the associ-
ated denoised process X*, Equations (2.16)(2.18) depend on the distribution W® = V'
only, while the structure of the process X is more difficult according to the relation
V() = [T —p Htu® (WP () (cf. Proposition 2.3). The following result, however,
shows that those conditions simplify to the conditions for the associated denoised process
X*.

Proposition 2.11. Let {X(s), s € Z} be a simple maz-stable process with ¢P norm based
representation (2.3) and let X* be the denoised process associated to X. Then, the follow-
ing holds:

1. X is stationary if and only if X* is stationary.
If X is stationary, we further have
2. X is mizing if and only if X* is mixing.

3. X is ergodic if and only if X* is ergodic.
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Proof. 1. By Kabluchko et al. (2009) and Proposition 2.3, the process X is stationary
if and only if (2.16) holds for V(-) = [['(1 — p~ )] *UP (YW ®)(.). The left-hand
side of (2.16) equals

E{V(st)™ oo Visa)™} = 5= . P {H v <p><si>“iw<p><si>“i}
i=1
1 - p Uj - p Us
= e _pl)E{il_[lU( )(si) }E{HW( )(Si) }

CIEL T —wip™) T )/
= Ta E{EW( (59 }

where we used the fact that U(p)(si)“i, i =1,...,n, are independent ®,,,, random
variables. Thus, X is stationary if and only if Equation (2.16) holds for V = W®),
i.e. if and only if X™ is stationary.

2. By Kabluchko and Schlather (2010), the process X is mixing if and only if Equation
(2.17) holds where 0 denotes the pairwise extremal coefficient of X. Proposition 2.10
yields the bounds

lim 6*({0,7})) < lim 6({0,r}) < 2'/* lim 0" ({0,r) P < 2.

700

Thus, lim, o 0({0,7}) = 2 if and only if lim,_,~, 0*({0,7}) = 2 which is equivalent
to X* being mixing.

3. The proof runs analogously to the proof of the second assertion. The process X is
ergodic if and only if Equation (2.18) holds. From Proposition 2.10 and Jensen’s
inequality, we obtain

li Ly 0*({0,k}) < i Ly 0({0, k
Jim = 0*({0.k}) < lim —> 60({0,k})
k=1 k=1
1 1 e
1/p 1: - * 1—p~ 1t 1/p 1: - *
<2/ lim ;9 ({0,k)'7 <27 lim [r ;0 ({O,k})] < 2.

Consequently, we have that lim, 77! > "7 _; 0({0,k}) = 2 holds true if and only if

lim, oo™t > 0, 0°({0,k}) =2
O

Remark 2.12. The mixing properties of a stochastic process { X (s), s € S} are described
more precisely by its mixing coefficients. For two subsets S1, .52 C 5, the S-mixing coeffi-
cient ((S1,52) is defined by

B(S1,S2) = sup{|Ps,us,(C) — Ps, ® Ps,(C)|, C € Csyus, }

where, for each S C S, the probability measure Pg denotes the distribution of the restricted
process { X (s), s € S} on the space of non-negative functions on S endowed with the Borel-
o algebra Cg.

For the case of a max-stable process, Dombry and Eyi—Minko (2012) provide the upper

bound
ﬁ(slasb) < 4 Z Z [2—9(81,82)].

$1€S1 82€S52
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Applying Proposition 2.10 , we obtain

B(S1,8) <4 > > [2-0(s1,52)] <4 > Y [2-0%(s1,52)],

51€51 52€852 51€51 52€852

i.e. the upper bound for a process with /% norm based representation (2.3) is lower than
the bound for the associated denoised process.

As Proposition 2.11 states, a max-stable process with #Z norm based representation (2.3)
shares properties such as stationarity, ergodicity and mixing with the associated denoised
process. In particular, the “noisy” analogues of well-studied max-stable processes might
be used without changing any of these properties.
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3 Bayesian Inference for Multivariate
Extreme Value Distributions

joint work with Clément Dombry and Sebastian Engelke

This chapter is based on the research article Dombry et al. (2017b) which has appeared in
the Electronic Journal of Statistics. Besides some minor modifications, also some changes
in the structure of the chapter have been made: all the proofs have been shifted from the
appendix to appropriate places in the main body of the chapter.

Statistical modeling of multivariate and spatial extreme events has attracted broad atten-
tion in various areas of science. Max-stable distributions and processes are the natural
class of models for this purpose, and many parametric families have been developed and
successfully applied. Due to complicated likelihoods, the efficient statistical inference is
still an active area of research, and usually composite likelihood methods based on bi-
variate densities only are used. Thibaud et al. (2016) use a Bayesian approach to fit a
Brown—Resnick process to extreme temperatures. In this chapter, we extend this idea
to a methodology that is applicable to general max-stable distributions and that uses
full likelihoods. We further provide simple conditions for the asymptotic normality of
the median of the posterior distribution and verify them for the commonly used models
in multivariate and spatial extreme value statistics. A simulation study shows that this
point estimator is considerably more efficient than the composite likelihood estimator in
a frequentist framework. From a Bayesian perspective, our approach opens the way for
new techniques such as Bayesian model comparison in multivariate and spatial extremes.

3.1 Introduction

Extremes and the impacts of rare events have been brought into public focus in the context
of climate change or financial crises. The temporal or spatial concurrence of several such
events has often shown to be most catastrophic. Arising naturally as limits of rescaled
componentwise maxima of random vectors, max-stable distributions are frequently used
to describe this joint behavior of extremes. The generalization to continuous domains
gives rise to max-stable processes that have become popular models in spatial extreme
value statistics (e.g., Davison and Gholamrezaee, 2012), and are applied in various fields
such as meteorology (Buishand et al., 2008; Engelke et al., 2015; Einmahl et al., 2016) and
hydrology (Asadi et al., 2015).

For a k-dimensional max-stable random vector Z = (Z1, ..., Z)) with unit Fréchet mar-
gins, there exists an exponent function V' describing the dependence between the com-
ponents of Z such that P[Z < z] = exp{—V(2)}, z € (0,00)¥. Many parametric models
{Fy, 0 € ©} for the distribution function of Z have been proposed (cf. Schlather, 2002;
Boldi and Davison, 2007; Kabluchko et al., 2009; Opitz, 2013), but likelihood-based infer-
ence remains challenging. The main reason is the lack of simple forms of the likelihood

29
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L(z;0) in these models, which, by Faa di Bruno’s formula, is given by

7|

L(z0) = Y L(z70) = Y exp{-V(2)} [[{-0,V(2)}, (3.1)
j=1

TEPY TEP)

where Py, is the set of all partitions 7 = {71,..., 77} of {1,...,k} and O,V (-;0) denotes
the partial derivative of the exponent function V' = Vj of Fy with respect to the variables
zi, 1 € 7;. The fact that the cardinality of P is the kth Bell number that grows super-
exponentially in the dimension k inhibits the use of the maximum likelihood methods
based on L(z;6) in (3.1).

The most common way to avoid this problem is to maximize the composite pairwise like-
lihood that relies only on the information in bivariate sub-vectors of Z (Padoan et al.,
2010). Apart from the fact that this likelihood is misspecified, there might also be consid-
erable losses in efficiency by using the composition of bivariate likelihoods instead of the
full likelihood L(z;#). To reduce this efficiency loss, higher order composite likelihood has
been considered (Genton et al., 2011; Huser and Davison, 2013; Castruccio et al., 2016).

In practice, to obtain observations from the random variable Z, the data, typically a
multivariate time series, is split into disjoint blocks and a max-stable distribution is fitted
to the componentwise maxima within each block. To increase the efficiency, not only
the block maxima but additional information from the time series can be exploited. The
componentwise occurrence times of the maxima within each block lead to a partition 7
of {1,...,k} with indices belonging to the same subset if and only if the maxima in this
component occurred at the same time. The knowledge of this partition makes inference
much easier, as a single summand L(z,7;6) in the full likelihood L(z;6) given in (3.1)
corresponds to the likelihood contribution of the specific partition 7. This joint likelihood
L(z,7;0) was introduced in Stephenson and Tawn (2005) and is tractable for many extreme
value models and, consequently, can be used for inference if occurrence times are available.
In real data applications, however, the distribution of the block maxima is only approx-
imated by a max-stable distribution and the distribution of the observed partitions of
occurrence times are only approximations to the limiting distribution (as the block size
tends to infinity) given by the likelihood L(z,7;#). This approximation introduces a sig-
nificant bias in the Stephenson—Tawn estimator and a bias correction has been proposed
in Wadsworth (2015).

In many cases, only observations (1), ..., 2(") € R¥ of the random max-stable vector Z are
available, but there is no information about the corresponding partitions 74, ..., 7). In
this case, the Stephenson—Tawn likelihood cannot be used since the partition information
is missing. In the context of conditional simulation of max-stable processes, Dombry et al.
(2013) proposed a Gibbs sampler to obtain conditional samples of 7() given the observation
20 1 =1,...,N. Thibaud et al. (2016) use this approach to treat the missing partitions as
latent variables in a Bayesian framework to estimate the parameters of a Brown—Resnick
model (cf., Kabluchko et al., 2009) for extreme temperature. They obtain samples from
the posterior distribution

N
L (0474 | =O0) o mo(0) [T 20,7030, (3.2)

via a Markov chain Monte Carlo algorithm, where 7y is the prior distribution on ©.

In this chapter, we extend the Bayesian approach to general max-stable distributions and
provide various examples of parametric models Fy where it can be applied. The first focus
is to study the statistical efficiency of the point estimators obtained as the median of the
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posterior distribution (3.2). This frequentist perspective allows to compare the efficiency
of the Bayesian estimator that uses the full likelihoods to other frequentist estimators. A
simulation study shows a substantial improvement of the estimation error when using full
likelihoods rather than the commonly used pairwise likelihood estimator of Padoan et al.
(2010).

From the Bayesian perspective, this approach opens up many new possibilities for Bayesian
techniques in multivariate extreme value statistics. Besides readily available credible in-
tervals, we discuss how Bayesian model comparison can be implemented. Thanks to the
full, well-specified likelihoods in our approach, no adjustment of the posterior distribution
as in the composite pairwise likelihood methods (Ribatet et al., 2012) is required.
Finally, we note that Huser et al. (2019) follow a complementary approach to ours where
they apply an expectation-maximization algorithm to use full likelihoods L(z;6) in the
frequentist framework. The large sample asymptotic behavior of the frequentist and
Bayesian estimators are the same (see Section 3.3 below) but the Monte-Carlo Markov
Chain computation of the Bayesian estimator offers better convergence guarantees than
the expectation-maximization computation of the maximum likelihood estimator. More-
over, alternatively to the perspective of max-stability and block maxima, inference can be
based on threshold exceedances (Engelke et al., 2014; Wadsworth and Tawn, 2014; Thibaud
and Opitz, 2015) and the corresponding multivariate Pareto distributions (Rootzén and
Tajvidi, 2006; Rootzén et al., 2018).

The chapter is organized as follows. In Section 3.2 we provide some background on max-
stable distributions and their likelihoods, and we present the general methodology for
the Bayesian full-likelihood approach. Section 3.3 develops an asymptotic theory for the
resulting estimator. We show in Section 3.4 that our method and the asymptotic theory
are applicable for the popular models in multivariate and spatial extremes, including the
Brown—Resnick and extremal-t processes. The simulation studies in Section 3.5 quantify
the finite-sample efficiency gains of the Bayesian approach when used as a frequentist point
estimator of the extremal dependence parameters. Interestingly, this advantage persists
when the dependence is a nuisance parameter and one is only interested in estimating
marginal parameters (Section 3.5.3), at least in the case of a well-specified model. The
posterior distribution and genuinely Bayesian techniques are studied in Section 3.6, with
a focus on Bayesian model comparison. Section 3.7 concludes the paper with a discussion
on computational aspects.

3.2 Methodology

In Section 3.2.1 we review some facts on max-stable distributions and their likelihoods.
We describe the general setup of our approach and review the Markov chain Monte Carlo
algorithm from Thibaud et al. (2016) and the Gibbs sampler from Dombry et al. (2013)
in Section 3.2.2.

3.2.1 Max-Stable Distributions, Partitions and Joint Likelihoods

Let us assume from now on that the max-stable vector Z belongs to a parametric family
{Fy,0 € ©}, where © C RP is the parameter space, and that it admits a density fp. The
exponent function of Fy is Vyp(2) = —log Fy(z). If there is no confusion we might omit the
dependence on @ for simplicity.

Recall that if Z has standard Fréchet margins, it can be represented as the componentwise
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maximum

Z; = W=tk 3.3
I]r,lea‘Nsz ) ? ) s vy ( )

where {¢) : j € N} is a Poisson point process on E = [0, 00)*\ {0} with intensity measure
A such that A(E'\ [0, z]) = V(z). For more details and an exact simulation method of Z
via this representation, we refer to Dombry et al. (2016a).

Analogously to the occurrence times in case of block maxima, the Poisson point process
induces a random limit partition T of the index set {1,...,k}, where two indices i1 # io

belong to the same subset if and only if Z;, = Q/Jff ) and Zi, = wg ) for the same jeN

(Dombry and Eyi—Minko, 2013). The joint likelihood of the max-stable vector Z and the
limit partition 7" under the model Fy satisfies

|7
L(z,7;0) = exp{-V(2)} [ [{-0-,V(2)}, 2z € (0,00, T € Py, (3.4)
j=1
and it equals the likelihood introduced in Stephenson and Tawn (2005). This fact provides
another interpretation of Equation (3.1), namely that the likelihood of Z is the integrated
joint likelihood of Z and T'.
In Dombry et al. (2017a) it has been shown that the existence of a density for the simple

max-stable random vector Z with exponent measure A is equivalent to the existence of a
density A; for the restrictions of A to the different faces E; C E defined by

Er={z2€FE; z;>0forie€land z;=0fori¢ I}, 0#IcC{l,...,k},

that is,
Ar(zr)pr(dzr),

AA) = Y

PAIC{1,...k} /{21: z€ANE;}

Thus, the Stephenson-Tawn likelihood L(z,7;6) can be rewritten as

4
L(z,7;0) = exp{=V(2)} [ Jw (75, 2), (3.5)
j=1
where
w(Tj, 2) = Z / A1 (27, uj)duy, (3.6)
rcIc{l,.. k)Y (OFenr)
and 11, ..., 7, denote the ¢ = |7| different blocks of the partition 7, and 2, and Zre are the
restrictions of z to 7; and 75 = {1,...,k} \ 75, respectively.

Equation (3.5) provides a formula for the joint likelihood of max-stable distributions with
unit Fréchet margins and its partition. From this we can deduce a formula for the joint
likelihood of a general max-stable distribution that admits a density. More precisely, let
Z be a k-dimensional max-stable random vector whose ith component, i = 1,...,k, has a
generalized extreme value distribution with parameters (p;,0;,&) € R x (0,00) x R, i.e.

2 AN
P(Zlgzz):exp{—<1+fz ) }, zi € R.

of n

Then, U;(Z;) has unit Fréchet distribution where U; denotes the marginal transformation

o\ Y .
Ui(x):(ugfg‘“) R A )

% 7
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For a vector z; = (2;)ie; with I C {1,...,k}, we define U(z7) = (U;(z;))ier, such that
P(Z < z) = exp{— VIU(2)]}, where V is the exponent measure of the normalized max-
stable distribution U(Z). Consequently, the joint density of the general max-stable vector
Z and the limit partition T is

k
L(z,7;0) = exp{-V[U Hw 75, U : (H ;Ui(zi)l_£i> ) (3.7)
i=1 "

for z € (0,00)F such that 1+ &(2z; — pi)/o; >0, i=1,...,kand 7 = {r,..., 7} € P

3.2.2 Bayesian Inference and Markov Chain Monte Carlo

Extreme value statistics is concerned with the estimation and uncertainty quantification
of the parameter vector § € ©. Here, § might include both marginal and dependence
parameters of the max-stable model. In a Bayesian setup we introduce a prior 7y(#) on
the parameter space ©. Given independent data (M. .., 2") € R* from the max-stable
distribution Z ~ Fjy, we are interested in the posterior distribution of the parameter
0 conditional on the data. As explained in Section 3.1, the complex structure of the
full likelihood L({z®"};8) = Hl L L(2W; ) prevents a direct assessment of the posterior
distribution, which is proportional to the product of L({z(V};6) and the prior density

79(#). Instead, we introduce the corresponding limit partitions TH, ..., T(N) as latent
variables and sample from the joint distribution of (9,71, ..., 7)) conditional on the
data z(, ..., 2() which is given in Equation (3.2).

It is customary to use Monte Carlo Markov Chain methods to sample from a target dis-
tribution which is known up to a multiplicative constant only. The aim is to construct a
Markov chain which possesses the target distribution as stationary distribution and has
good mixing properties. To this end, in each step of the Markov chain, the parameter vec-
tor 0 and the partitions T, ..., TW) are updated separately by the Metropolis—Hastings
algorithm and a Gibbs sampler, respectively (cf., Thibaud et al., 2016).

For fixed partitions 7W = 7 [ = 1,..., N, and the current state @ for the parameter
vector, we propose a new state 8* according to a probability density ¢(0,-) which satisfies
q(01,02) > 0 if and only if ¢(f2,61) > 0 for 01,02 € ©. The proposal is accepted, that is,
0 is updated to 8*, with probability

[, L0, 70:0%)m0(6%)a(6",0) 1} 58)
[Ty L0, 70: 0)mo(8)q (9, 6%)

where L(z,7;0) is given by (3.7). In general, there are various ways of choosing an ap-
propriate proposal density ¢. For instance, it might be advisable to update the vector
0 component by component. It has to be ensured that any state 6o with positive poste-
rior density can be reached from any other state 6; with positive posterior density in a
finite number of steps, that is, that the Markov chain is irreducible. The convergence of
the Markov chain to its stationary distribution (3.2) is then guaranteed. Note that the
framework described above enables estimation of marginal and dependence parameters si-
multaneously. In particular, it allows for response surface methodology such as (log-)linear
models for the marginal parameters.

For a fixed parameter vector § € © we use the Gibbs sampler in Dombry et al. (2013)
to update the current states of the partitions 7, ..., 7() e P} conditional on the data
21 .,z Thanks to independence, for each [ = 1,..., N, we can update 7 = 7

a(0,0") = min {
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conditional on z = z() separately, where the conditional distribution is

L(z,1;0)

L ;0) =
Tlat = T

l
S = C{ [[wim (), (3.9)
j=1

with C, the normalization constant

L
c.=3 _ T]wtmue)

-

For i € {1,...,k}, let 7_; be the restriction of 7 to the set {1,...,k}\ {i}. As usual with
Gibbs samplers, our goal is to simulate from

Py(T=-|T =7, Z=2), (3.10)

where 7 is the current state of the Markov chain and Py denotes the probability under
the assumption that Z follows the law Fy. It is easy to see that the number of possible
updates according to (3.10) is always less than k, so that a combinatorial explosion is
avoided. Indeed, the index i can be reallocated to any of the components of 7_; or to a
new component with a single point: the number of possible updates 7* € P such that

7%, = 7_; equals £ if {i} is a partitioning set of 7, and ¢ + 1 otherwise.

The distribution (3.10) has nice properties. From (3.9), we obtain that

L(z,7) 17} wir:,U(2)}

Po(T =7"|T-s =7-4, Z =2) = x .
ZT’EPk L(Z, 7-/)1{7'/71‘:7'71'} H|]11 ’U){Tj, U(Z)}

(3.11)

for all 7* € Py with 7%, = 7_;. Since 7 and 7* share many components, all the factors
in the right-hand side of (3.11) cancel out except at most four of them. This makes the
Gibbs sampler particularly convenient.

We suggest a random scan implementation of the Gibbs sampler, meaning that one itera-
tion of the Gibbs sampler selects randomly an element ¢ € {1,...,k} and then updates the
current state 7 according to the proposal distribution (3.10). For the sake of simplicity,
we use the uniform random scan, i.e., i is selected according to the uniform distribution
on {1,...,k}.

3.3 Asymptotic Results

In the previous section, we presented a procedure that allows to sample from the posterior
distribution of the parameter 6 of a parametric model {fy,0 € O} given a sample of N
observations. In this section, we will discuss the asymptotic properties of the posterior
distribution as the sample size N tends to occ.

The asymptotic analysis of Bayes procedures usually relies on the Bernstein—von Mises
theorem which allows for an asymptotic normal approximation of the posterior distribution
of VN (6 — ), given the observations z(), ... 2(N) from the parametric model fo,- The
theorem then implies the asymptotic normality and efficiency of Bayesian point estimators
such as the posterior mean or posterior median with the same asymptotic variance as the
maximum likelihood estimator.

A key assumption is that for every € > 0 there exists a sequence of uniformly consistent
(non-randomized) tests ¢n = dn (2D, ..., 2V)) € {0,1} for testing the null hypothesis
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Hy : 6 = 6y against Hy : ||0 — 6p||co > &, where Hj is not rejected if and only if ¢ = 0.
The uniformity means that

]P)go(qu = 1) — 0 and sup P9(¢N = O) —0 as N — . (3.12)
6—00lloc >

where Py denotes the probability measure induced by N independent copies of Z ~ fy.

Theorem 3.1 (Bernstein-von Mises, Theorems 10.1 and 10.8 in van der Vaart (1998)).
Let the parametric model {fg,0 € ©} be differentiable in quadratic mean at 0y with non-
singular Fisher information matriz Ip,, and assume that the mapping 0 — +/ fo(z) is dif-
ferentiable at Oy for fg,-almost every z. For every € > 0, suppose there exists a sequence
of uniformly consistent tests ¢n as in (3.12). Suppose further that the prior distribu-
tion Tprior(d) is absolutely continuous in a neighborhood of Oy with a continuous positive
density at 0. Then, under the distribution fp,, the posterior distribution satisfies

Hﬁpost(d‘g | 20, -:Z(N)) -N (00 + N71/2AN,90,N71]9_01> HTV 250 asN — 00,

where Ay g, = N71/2 Zfil 19;189 log fo, (29 and || - ||7v is the total variation distance.

As a consequence, if the prior distribution Tprior(d€) has a finite mean, the posterior median
~ Bayes

n is asymptotically normal and efficient, that is, it satisfies

\/N(@ﬁayes —6o) N N(O,I@_Ol), as N — oo.

In order to apply this theorem to max-stable distributions, two main assumptions are
required: the differentiability in quadratic mean of the statistical model and the existence
of uniformly consistent tests satisfying (3.12). Differentiability in quadratic mean is a
technical condition that imposes a certain regularity on the likelihood fp,. For the case
of multivariate max-stable models this property has been considered in detail in Dombry
et al. (2017a), where equivalent conditions on the exponent function and the spectral
density are given.

We now discuss the existence of uniformly consistent tests and propose a criterion based
on pairwise extremal coefficients. This criterion turns out to be simple and general enough
since it applies for most of the standard models in extreme value theory. Indeed, in many
cases, pairwise extremal coefficients can be explicitly computed and allow for identifying
the parameter 6.

For a max-stable vector Z with unit Fréchet margins, the pairwise extremal coefficient
Niyis € [1,2] between margins 1 <i; < iy < k is defined by

P(Zi, < 2,Z;, < z) =eXp{—M}, z> 0.
z

It is the scale exponent of the unit Fréchet variable Z;, V Z;, and hence satisfies

1 —1
iio = | B | o——— :
iz < |:Zi1\/Zi2:|>

In the case that Z follows the distribution fy, we write 7, ;,(0) for the associated pairwise
extremal coefficient.

Proposition 3.2. Let 0y € © and € > 0. Assume that

||0_;ﬁ‘m261§glg?§§k\nl,2( ) = 7irin (60)] > 0 (3.13)

Then there exists a uniformly consistent sequence of tests ¢y satisfying (3.12).
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Remark 3.3. The identifiability of the model parameters § € © through the pairwise
extremal coefficients n;, ;,(0), 1 < i1 < i2 < k is a direct consequence of Equation (3.13)
provided that the equation holds for every € > 0.

Remark 3.4. If 0 = (61,...,60,) € ©, and for any 1 < j < p there exists 1 <i; < iy <Kk,
such that 7;, ;,(0) depends only on §; and it is strictly monotone with respect to this
component, then Equation (3.13) is satisfied.

Proof of Proposition 3.2. For a random vector Z with distribution fy and 1 < iy <19 <k,
the random variable 1/(Z;, V Z;,) follows an exponential distribution with parameter
iy in(0) € [1,2] and variance 77;121.2(0) € [1/4,1]. Hence,

N

1 1
—1
7—;1,'52 = NZ i

N (@), 70
= Zy NV Z;,

is an unbiased estimator of 7;, }i2(9) with variance less than or equal to 1/N. Chebychev’s
inequality entails

1
< — . .
0)‘>5)_N52, for all 6 >0 (3.14)

(‘ i1 742 Z1 Z2

Define the test ¢ by

(z) — 0 1f max1<11<12<k ‘ 11 Z2 - 7721 ,12 (00” 6
N 1 otherwise.

We prove below that, for § > 0 small enough, the sequence ¢y satisfies (3.12). For 6 = 6y,
the union bound together with Equation (3.14) yield

_ k(k—1
P90(¢N = 1) < Z PGO(} i1, 12 - 771'1,11'2(00)‘ > 5) < (2N52 ) - 0’

1<iy <io<k

as N — oo. On the other hand, Equation (3.13) implies that there is some v > 0 such
that

-1
1<21<12<k ’7721712 0) — nil,iz(go)‘ >, forall || — 6plleo > e.

Let 6 € © be such that ||§ —0y||c > € and consider 1 < i; < iy < k realizing the maximum
in the above equation. By the triangle inequality,

|Tz:,122 _nu ZQ } = ‘nu,w 0) - 7721 22 (6o) } - ‘ i1 22 7711 22 (6o) ‘ ’ i1, 22 nu ia 90)’

so that, on the event {¢y =0} C {|T}; ! (60)| < 6}, we have

i1, 12 = Wiy io
| 1112_7711,22 }—’7 0.
Applying Equation (3.14) again, we deduce, for 6 € (0,~),

<1
N(y—6)*

Since the upper bound goes to 0 uniformly in 6 with [|§ — 6p|lcc > €, as N — oo, this
proves Equation (3.12). O

(¢N - O) < Pe(‘ﬂl,zz - 7711,12 ‘ - 7 5)
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3.4 Examples

In the previous sections we discussed the implementation of a Markov chain Monte Carlo
algorithm to obtain samples from the posterior distribution L (6, {7 | {z(l)}{il) and
its asymptotic behavior as N — oco. The only model-specific quantity needed to run the
algorithm are the weights w(7;, 2) in (3.6). In this section, we provide explicit formulas for
these weights for several classes of popular max-stable models and prove that the models
satisfy the assumptions of the Bernstein—von Mises theorem; see Theorem 3.1. It follows
that the posterior median éﬁayes is asymptotically normal and efficient for these models.
For the calculation of the weights w(7},2), we first note that all of the examples in this
section admit densities as a simple consequence of Proposition 2.1 in Dombry et al. (2017a).
We further note that, for the models considered in Subsections 3.4.1-3.4.4, we have \; =0
forall I C {1,...,k}, ie.

A(4) = /A Az) p(dz), A C [0,00)F\ {0},

and, consequently, Equation (3.6) simplifies to
w(Tj, 2) :/ Mz, uz) duy.
(Oﬂz‘rj‘?)

~B
For the posterior median Hnayes, in the sequel, we will always assume that the prior

distribution is absolutely continuous with strictly positive density in a neighborhood of
A, and that it has finite mean. Given the differentiability in quadratic mean of the
model, it suffices to verify condition (3.13) in Proposition 3.2. This implies the existence
of a uniformly consistent sequence of tests and, by Remark 3.3, the identifiability of the
model. Theorem 3.1 then ensures asymptotic normality of the posterior median.
Henceforth, analogously to the notation z; = (z;);cr for a vector z € R* and an index set
0#1IcC{1,...,k}, we write A7 j = (Ajj)icr,jes for a matrix A = (A;j)1<i <k and index
sets 0 £ I,J C{1,...,k}.

3.4.1 The Logistic Model

One of the simplest multivariate extreme value distributions is the logistic model where
0
V(z) = (2;1/9 oot z,gl/e) . 0e(0,1). (3.15)

The logistic model is symmetric in its variables and interpolates between independence as
f 1 1 and complete dependence as 6 | 0.

Proposition 3.5. Let 7 = (11,...,7) € Py and z € E. The weights w(7j,z) in (3.6) for
the logistic model with exponent measure (3.15) are

G k 0—|;1
O Raie = (VSRR B | eGS0

=1 iGTj

Proof. Taking partial derivative of the exponent function (3.15) we obtain

Iml-1 . k 0=
—0rVo(2) = H <; _ 1) (Z Zi—1/9> H 2;1/9_1‘

i=1 i=1 €Ty
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We note that

|71

U(nl —0) _ :
(. IT G—o).

i=1

Using this, Equation (3.5) becomes for the logistic model

V4
L(7,2;0) =exp{—V(2)} H w(Tj, 2)
j=1

with

(Il -0 ( o
Y — gl 2 UTE T -1/ —-1-1/6
w(rj,z) =017 (=) (;Zl z; ) | | z; .

1ETj

Remark 3.6. From (3.16), it can be seen that we can also write

k k —k ¢
L(7,z) = exp(=V(2)) (H 2;1_1/9) (Z zi_l/e> 6" H@(Tj,z)

i=1 i=1 j=1

with
Dl = 0) (S~ o)
N T; ~1/6
w(rj,2) = 9]7 z; .
- ()
This suggests to use the simplified weights @ for the Gibbs sampler.

Bayes .

Proposition 3.7. For the logistic model with 6y € (0, 1), the posterior median 9N 18
asymptotically normal and efficient as N — oo.

Proof. From Proposition 4.1 in Dombry et al. (2017a) it follows that the model is differ-
entiable in quadratic mean. For any 1 < i1 < io < k, the pairwise extremal coefficient of
the logistic model with parameter 6 € (0,1) is 1, 4, (8) = 2%, a strictly increasing function
in 8. The assertion of the proposition follows by Remark 3.4. O

3.4.2 The Dirichlet Model

The Dirichlet model (Coles and Tawn, 1991) is defined by its spectral density h on the
simplex S*~! = {w € [0,00)¥ : w; +--- +wp = 1}. For parameters a,...,a; > 0, it is
given by

w 711“(14—2 L 0y) i o a;w; it w e gkl
hw) = - gr(% (Z > . we S (3.17)

(Zz | aw;) R j=1 ¥ Wj

and it has no mass on lower-dimensional faces of S*~1 (Coles and Tawn, 1991). Equiva-
lently, the exponent function of the Dirichlet model is given by

V(z) = kE [ max m] ,
i=1,...k Z;

where W is a random vector with density h(w).
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Proposition 3.8. Let 7 = (71,...,7) € P and z € E. The weights w(7j,2) in (3.6) for
the Dirichlet model with spectral density (3.17) are

Qi Q= 01
w(Tj7 Z) = M / ZleT s H Fa 067,21/7" 7”_2_2?:1 Qi dr, (318)
LET; iETS

where
1

Fo(z) = () /Ox to et dt

is the distribution function of a Gamma variable with shape o > 0.

Proposition 3.9. Consider the Dirichlet model with 6y = (a1, ...,q) € © = (0,00)".
~B

For k > 3 and almost every 8y € ©, the posterior median GNayes s asymptotically normal

and efficient as N — oo.

Both the proof of Proposition 3.8 and Proposition 3.9 rely on the following lemma.

Lemma 3.10. Let Y(aq),...,Y (ax) be independent random variables such that Y («) has
a Gamma distribution with shape parameter o > 0 and scale 1.

(i) Let Uy > Uy > ... be the points of a Poisson point process on (0,00) with intensity

u=2du and, independently of the U;, let 17(1),17(2),... independent copies of the
random vector Y = (Y (oy)/i)1<i<k. Then the simple maz-stable random vector

Z =\ Uiff(i) has angular density (3.17).

(i) In the Dirichlet max-stable model with angular density (3.17), the pair extremal
coefficient n;, iy, 1 < 11 <ig < k, is given by

Y(ah) Vi Y(aiQ)

(078 (672

Miv,ia = n(ailvaiz) =K
Furthermore, i : (0,00)% — [1,2] is continuously differentiable and strictly decreasing
in both components.

Proof. For the proof of the first part, we note that the intensity of the spectral measure
is given by

z) = /000 ff,(z/u)lfkf2 du, =ze€ (0,00)k,

where

is the density of the random vector Y. A direct computation yields

d a; _o—
Az) = D(L+ Y00, ) H Q"% 1'
>l ovizi) i i Do)

We see that the restriction of \ to the simplex S*~! is equal to h which proves the claim.
The first statement of the second part, is a direct consequence of the first part since

Y(a) ,, Y(Oéz)}

a1 a2

77(@1:042) = —IOg]P)(Zl < 1722 < ]-) = ]E|:
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The proof of the strict monotonicity relies on the notion of convex order, see Chapter 3.4 in
Denuit et al. (2005). For two real-valued random variables X1, X2 we say that X; is lower
than X5 in convex order if E[p(X1)] < Elp(X1)] for all convex functions ¢ : R — R such
that the expectations exist. It is known that the family of random variables (Y («)/a)a>0
is non-increasing in convex order (Ramos et al., 2000, Section 4.3), and, in this case, the
Lorenz order is equivalent to the convex order (Denuit et al., 2005, Property 3.4.41). We
show below that this implies that n(aq, ag) is strictly decreasing in its arguments.

Let o) > a1 > 0 and a2 > 0 and let us prove that n(a}, a2) < (a1, a2). For independent
random variables Y (o), Y (o)) and Y (a2), we have

v(a}) , Y(az)

e a9

et an) = |

] and n(al,aQ)zE[Y(al)vY(O‘?)].

a1 a2

Using that Y(a))/a} is lower than Y («;)/aq in convex order, we obtain

E[Y( Dy ”]gE[ (1 )va] for all y3 > 0, (3.19)
al a9 aq a9

because the map u — u V (y2/ag) is convex. Replacing y2 by Y (ag) and integrating,
we get n(a),a2) < n(ag,az). The equality n(o), a2) = n(aq,az) would imply that for
almost every y2 > 0 the equality holds in (3.19) which is true if and only if Y (a1)/a; and
Y («})/c) have the same distribution. Since this is not the case, n(a/, a2) < n(aq, az) and
7 is strictly decreasing in 1. By symmetry, n is also strictly decreasing in .

Finally, the fact that (a1, as) — n(a1, as) is continuously differentiable follows from the
integral representation

1 a1 — 1 ag— 1 —Y1 ,~Y2
dy, d 3.20
ala 042 / / 042 F Oél)F(CYQ)yl Yo € € Y1 dy2, ( )

for a1, o > 0, and standard theorems for integrals depending on a parameter. O

Proof of Proposition 3.8. From the construction given in the first part of Lemma 3.10, we
obtain

[ee] k (e %) .
;b szl
Y _ 4 (i) —(aizi/7) —Q—kd
(2) /0 2131 (o \r e r r
i 01
_ H OZ;'X qu /oo 6_% Zle aizir—2—Z§:1 @i qp
. F OZZ) 0

and, consequently,

/ A(2r;, uj) duy
uj <z c

.aizal_l —1is iz _9 k
- / / ( e miZi/T)) duj-e " =€5 T —2im1 i gy
F al Uj <2z c oo C F(al)

1E€T; 1ETS
€ J

a; o—1 g

o, "z, ;% 2" oy
_ iz / P [T Fas(asar) | 2 S % ar,
(i) Jo

1ET; zGT

where

1 X
Folz)= —— [ t“te7tdt
@) = T /0 et

is the distribution function of a Gamma variable with shape a > 0. O
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Proof of Proposition 3.9. Proposition 4.2 in Dombry et al. (2017a) implies that the model
is differentiable in quadratic mean. In order to verify Equation (3.13) for the Dirichlet
model, we consider the mapping

U (0,00)% = [1,2]%, 0= (a1, .. ) = (71.2,12,3, M3, M4y -+ -0 k)-

We first show that ¥ is injective. To this end, let (1) # 0(2) € © where 1; = (agi), .. ,a,(j)),
1 = 1,2. We distinguish between two cases.
First, we assume that () and () share at least one common component. Then, there

is a pair (7,7) € {(1,2),(2,3),(1,3),(1,4),..., (1,k)} such that (a{",a{") and (a{”, a{?)

differ in exactly one component. As 771,] n(az, ;) is strictly decreasing both in o; and
a;, by Lemma 3.10, we have that 77( 1)) # (o (@) o2 )).

Secondly, we consider the case that 9( ) and 0 do not Share any common component.
Then, there is a pair (i,7) € {(1,2),(2,3), (1,3)} such that both components of the vector
(1) 2 M

() — «

i iy af ) have the same sign and, again, by the strict monotonicity of

a )#n( 2 o).

Hence, in both cases, \11(9(1)) #* \I' e ), that is, ¥ is injective and there exists a unique
inverse function U1 : W((0,00)*) — (0, 00)*.

Consider the set

n(ay, o), it follows that 77(

0 = {(al,...,ak) € (0,00)F : Ba,n(vi, ) <0, Oa;n(avi, ) <0 V1 << j < k}

Note that since 7 is continuously differentiable and strictly decreasing in its argument,
© \ © has Lebesgue measure 0. For all 8y = (aq,...,a;) € O, the Jacobian DW satisfies

det{D\I](QO)} = {8a177(041, 052) ! aa277(a27 a3) ' 804377(0417 043)

k
+8a277(a17 CYQ) : 8&377(a27 a3> . aoqn(ah Oé3)} : H aaﬂ?(ab aj) 7& 0.
j=4

The inverse function theorem then implies that W1 is continuously differentiable at ¥ (6y),
that is, for every e > 0, there exists 6 > 0 such that [[U(0y) — ¥oo(0)||ec < d implies
|00 — 0]|cc < €. In particular, we obtain
inf | ¥(6o) — ¥(0)[[oc =6,
100—0lco>e

that is, Equation (3.13), and the asymptotic normality and efficiency of the posterior
median for 6y € © follow from Proposition 3.2. Finally, we note that each extremal
coefficient 7 is continuously differentiable and strictly decreasing with respect to both
components by Lemma 3.10. Thus, 0, n(a1,a2) < 0 and Oa,n(a1,a2) < 0 for almost
every 0 € O. O

Remark 3.11. We believe that the result for the posterior median holds true even for
every 0y € ©. In the proof of 3.9, we need the partial derivatives of (aq, ) — n(a, a9)
to be negative, but this can only be concluded almost everywhere.

3.4.3 The Extremal-t Model and the Schlather Process

The extremal-t model (Nikoloulopoulos et al., 2009; Opitz, 2013) is given by an exponent
measure of the form

V(z) = ¢, E | max max{0, Wi}” , (3.21)

i=1,...,k Z;



42 3. Bayesian Inference for Multivariate Extremes

where (W7,..., W) is a standardized Gaussian vector with correlation matrix ¥, the
constant ¢, is given by ¢, = /72~ @221 {(v +1)/2}~! and v > 0.

Proposition 3.12 (Thibaud and Opitz, 2015). Let 7 = (11,...,77) € Py and z € E. The
weights w(7j, z) in (3.6) for the extremal-t model with exponent function (3.21) are

W(TJ, Z) = ﬂ7j|+V(21J£V — [L i) . Vli‘T]" . 7-‘-(17‘7-]|)/2 . det(ZTj,Tj)il/Q

T{(v + 7)) /2} Yoot f (1 Tso1 (v+m])/2
F{(l/—l—l /2} H| Z‘ { Tj ) ETJ‘,T] 5 } (3.22)

1.1
,1Z /l/
Ty “ri

where L = ET 75,

~ _ Tae—
Y = (|T]| + l/) 1 (271_]/”) Zlesz (ZTJC - 27- yTj ETJ}T] ET]‘,TJ.C)

and Ty (+; ) denotes a multivariate Student distribution function with k degrees of freedom
and scale matrix 3.

Proposition 3.13. Consider the extremal-t model with 6y = (X,v) where X is a positive
definite correlation matriz and v > 0. Then, for fired v > 0 the posterior median HNayes

s asymptotically normal and efficient as N — oo.

Proof. By Proposition 4.3 in Dombry et al. (2017a), the model is differentiable in quadratic
mean (even if v > 0 is not fixed). For any 1 < i; < i3 < k, and fixed v > 0, the pairwise
extremal coefficient of the extremal-t model with parameter matrix > = {Pij}lgz‘,jgk is

Ninin(8) = 2141 <\/( + 1) plm) : (3.23)

L+ piyiy

where 7,41 denotes the distribution function of a t¢-distribution with v + 1 degrees of
freedom. Therefore, 7;, ;,(X) as a function of p; 4, € [—1,1] is strictly decreasing and the
claim follows by Remark 3.4 together with Proposition 3.2. O

Remark 3.14. If v is not fixed, then the parameter § = (X, v) cannot be identified from
the pairwise extremal coefficients and Equation (3.13) is not satisfied. The identifiability
can still be shown by considering the behavior of the bivariate angular measure at the
origin (Engelke and Ivanovs, 2017, Section A.3.3).

A popular model in spatial extremes is the extremal-¢ process (Opitz, 2013), a max-
stable process {Z(z), = € R?} whose finite-dimensional distributions (Z(z1),...,Z(xx))",

x1,...,2r € R? have an exponent function of the form (3.21) where the Gaussian vector
is replaced by a standardized stationary Gaussian process {W(z), = € R?} evaluated at
Z1,...,Zk. The correlation matrix ¥ then has the form

¥ = {p(x; — z5) }1<ij<k,

where p : R? — [—1,1] is the correlation function of the Gaussian process W. The special
case v = 1 corresponds to the extremal Gaussian process (Schlather, 2002), also called
Schlather process.
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Corollary 3.15. Let Z be the Schlather process on R% with correlation function p coming
from the parametric family

_linlig
S

p(h)zexp( ) (s,0) € © = (0,000) x (0,2].

Suppose that Z is observed at pairwise distinct locations ti,...,t, € R% such that not
all pairs of locations have the same Fuclidean distance. Then, the posterior median of
0 = (s, ) is asymptotically normal.

Proof. Analogously to the proof of Corollary 4.4 in Dombry et al. (2017a), it can be shown
that the model is differentiable in quadratic mean. Suppose that ||t1 — tal|2 # [|t2 — t3]|2
and observe that the mapping

ti — ;]IS
U:0=¥(0), 0=(s,a) = {pijhcij<k = {exp <_HJH2>}
§ 1<i,j<k

is continuously differentiable. Since

_logflog p1o} —log{log a3} s _lIti—taflg
log [[t1 — ta[l2 — log [[t2 — t3]|2’ log p12

the same holds true for the inverse mapping ¥~

Further, from the continuity of ¥~! at ¥(fy) at any 6y € O, we obtain that for every e > 0
there is some 6 > 0 such that for all ¥(6) € ¥(0) with [|U(0y) — U(0)]|sc < & we have
|60 — 0]|oc < €. Consequently,

inf ([ W(00) — U(0)]low > 0.
[160—0]|cc>e

From the proof of Proposition 3.13 and with the same notation as in (3.23), we obtain
that [[¥(60) — ¥ (8) oo > & implies max<i, <iy <k 17512, { ¥ (60)} — iy 1o {¥(6)}] > & for some
§" > 0, that is, Equation (3.13) holds. The assertion follows then from Proposition 3.2. [

3.4.4 The Husler—Reiss Model and the Brown—Resnick Model

The Hiisler—Reiss distribution (cf., Hiisler and Reiss, 1989; Kabluchko et al., 2009) can be
characterized by its exponent function

V(z)=E [ max exp {IWi it/ }] , (3.24)
i=1,....,k Zi
where W = (W7, ..., I/V/yf)T is a Gaussian vector with expectation 0 and covariance matrix

Y. It can be shown that the exponent function can be parameterized by the matrix

1
A={)  h<ij<k = {4E(Wi - Wj)Q}
1<i,j<k

as we have the equality

V()= Y 2 @y (202, +log(sp/2): 57), ze (0,00)f,  (3.25)
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(cf. Nikoloulopoulos et al., 2009), where for each p =1, ..., k, the matrix Y (") has (i,4)th
entry 2()\271- + /\IZ)J - /\ZZJ), i,j # pand ®_, (-, 2?) denotes the (k — 1)-dimensional normal
distribution function with covariance matrix %),

Note that the positive definiteness of the matrices »®), p=1,...,k, follows from the fact
that A is conditionally negative definite, i.e.

> Al <0 (3.26)
1<i,j<k

for all aj,...,ar € R summing up to 0 (cf. Berg et al., 1984, Lemma 3.2.1). In the
following, we will assume that A is even strictly positive definite, i.e. equality in (3.26)
holds true if and only if a1 = ... = a; = 0. Then, all the matrices ng} with p € {1,...,k}
and ) # I C {1,...,k} are strictly positive definite. 7

Proposition 3.16 (see also Wadsworth and Tawn, 2014; Asadi et al., 2015, for instance).
Let 7 = (11,...,7) € Pr and z € E. For j € {1,...,k}, choose any p € 7; and let
7 =1 \{p}, 7 = {1,...,k} \ 75. The weights w(7j,z) in (3.6) for the Hiisler-Reiss
distribution with exponent function (3.25) are

1 * * —1_x. &)
w(T), 2) = 3 {Z%; Egpl} Pzl { 7o E(%IZ),%(E(%I;;) L8 } : (3.27)
p Llier =2
where
i r I3 < —
= {log <z> + W} and £ =30 _ 5@ (5@))-15n®)
zp 2 =1 i P ) ) )

[ARRE]

Here @ (;X) denotes a k-dimensional Gaussian distribution function with mean 0 and
covariance matrix ¥, and k(- X) its density. The functions @9 and o are set to be
constant 1.

Proposition 3.17. Consider the Hiisler—Reiss model with 8g = A being a strictly con-

~B
ditionally negative definite matriz. Then, the posterior median 6 Nayes is asymptotically
normal and efficient as N — oo.

Proof. From Proposition 4.5 in Dombry et al. (2017a), it follows that the model is differ-
entiable in quadratic mean. For any 1 < 41 < i9 < k, the pairwise extremal coefficient of
the Hiisler—Reiss model with parameter matrix A = {)\Z2 j}lgi,jgk is

Mir iz (A) = 281 {\/E} ;

which is a strictly increasing function in )‘12171‘2 > 0, and the claim follows by Remark 3.4

together with Proposition 3.2. O

Hiisler—Reiss distributions also appear as the finite dimensional distributions of the max-
stable Brown—Resnick process, a popular class in spatial extreme value statistics. Here,
the Gaussian vectors (Wi, ..., W) " in (3.24) are the finite-dimensional distributions of
a centered Gaussian process {W(zx), z € R?} which is parameterized via a conditionally
negative definite variogram ~ : R? x R — [0, 00), y(z1,12) = E(W (x1) — W (29))2. If W
has stationary increments, we have that (z1,z2) = v(x1 — x2,0) =: y(z1 — z2) and the
resulting Brown—Resnick process is stationary (Brown and Resnick, 1977; Kabluchko et al.,
2009). The most common parametric class of variograms belonging to Gaussian processes
with stationary increments is the class of fractional variograms, which we consider in the
following corollary.
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Corollary 3.18. Consider a Brown-Resnick process on R® with variogram coming from
the parametric family

v(h) = [[nll5 /s, (s,a) € © = (0,00) x (0,2).

Suppose that the process is observed on a finite set of locations ti, ..., tm € R% such that
the pairwise Fuclidean distances are not all equal. Then the posterior median of 0 = (s, «)
s asymptotically normal.

Proof. Analogously to Corollary 4.6 in Dombry et al. (2017a), the model can be shown
to be differentiable in quadratic mean. Suppose that |[t; — t2|la # ||t2 — t3]|2. As the
mapping ¥ : © — ¥(0), § = (\,a) — {)‘%j}lgi,jgk — {”ti#”g

. } is continuously
1<i,j<k
differentiable and

_ log y12 — log ya3 o = It =413
log [[t1 — tall2 — log [|ta — t3]|2’ AN

the inverse mapping ¥~! is continuously differentiable, as well. The same arguments
as in the proof of Corollary 3.15 together with the proof of Proposition 3.17 yield the
assertion. O

3.5 Simulation Study

Let z() = (z%l), ... ,z,(!)), [l =1,...,N, be N realizations of a k-dimensional max-stable
vector Z whose distribution belongs to some parametric family {Fp, 6 € ©}. As described
in Section 3.2, including the partition 7() associated to a realization z(!) in a Bayesian
framework allows to obtain samples from the posterior distribution L( | 21, ..., 2(N)) of
f given the data. This procedure uses the full dependence information of the multivariate
distribution Z. This is in contrast to frequentist maximum likelihood estimation for the
max-stable vector Z, where even in moderate dimensions the likelihoods are to complicated
for practical applications. Instead, at the price of likelihood misspecification, it is common
practice to use only pairwise likelihoods which are assumed to be mutually independent.
The maximum pairwise likelihood estimator (Padoan et al., 2010) is then

GPL—argmaXZ Z log fo.:,j (% l),zj(-l)), (3.28)

060 10 1<icj<k

where fg.; ; denotes the joint density of the ith and jth component of Z under the model
Fy. Using only bivariate information on the dependence results in efficiency losses.

In this section, we analyze the performance of our proposed Bayesian estimator and com-
pare it to Opr, and other existing methods. Since the latter are all frequentist approaches,
for a Markov chain whose stationary distribution is the posterior, we obtain a point esti-
mator 9Bayes of 0 as the posterior median, i.e.,

éBayes = mediaH{L(9|Z(1), - ,Z(N))},

As the parametric model we choose the logistic distribution introduced in Subsection 3.4.1
with parameter space © = (0, 1) and uniform prior. This choice covers a range of situations
from strong to very weak dependence. Other choices of parametric models will result in
different efficiency gains but the general observations in the next sections should remain
the same.
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Figure 3.1: Root mean squared errors (dashed) and biases (solid) of fpayes (blue) and Opry,
(red) for different dimensions k and different parameters 6. Values have been
multiplied by 10000.

We note that other functionals of the posterior distribution can be used to obtain point
estimators. Simulations based on the posterior mean, for instance, gave very similar
results, and we therefore restrict to the posterior median in the sequel. Similarly, changing
the prior distributions does not have a strong effect on the posterior distribution for the
sample sizes we consider; see also Section 3.6.1.

3.5.1 Max-Stable Data

We first take the marginal parameters to be fixed and known and quantify the efficiency
gains of HBayeS compared to Opr.. We simulate N = 100 samples 2, ..., 2 from the
logistic distribution for different dimensions k& € {6, 10,50} and dlfferent dependence pa-
rameters § = 0.1 x 4,9 =1,...,9. For each combination of dimension k£ and parameter
we then run a Markov chain with length 1500, where we discard the first 500 steps as the
burn-in time. The empirical median of the remaining 1000 elements gives éBayeS. The chain
is sufficiently long to reliably estimate the posterior median; see also the mixing properties
in Section 3.6.1. The maximum pairwise likelihood estimator fpr, is obtained according
0 (3.28). The whole procedure is repeated 1500 times to compute the corresponding root
mean squared errors and biases shown in Figure 3.1.

As expected, the use of full dependence information substantially decreases the root mean
squared errors and thus increases the efficiency of the estimates. In extreme value statistics,
where typically only small data sets are available, this allows to reduce uncertainty due
to parameter estimation. The advantage of this additional information becomes stronger
for both higher dimensions and weaker dependence, analogously to the observations in
Huser et al. (2016). This behavior can to some extent be understood by the results in
Shi (1995) on the Fisher information of the logistic distribution for different dimensions
and dependence parameters. When 6 | 0, pairwise likelihood performs just as well as full
likelihood, which is sensible since, up to a multiplicative constant, the pairwise likelihood
equals the full likelihood when 6 = 0.

It is interesting to note that the estimates éBayeS appear to be unbiased in almost all cases,
whereas the pairwise estimator has a finite sample bias for @ close to 1.
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3.5.2 Data in the Max-Domain of Attraction

In applications, the max-stable distribution Z might not be observed exactly but only as
an approximation by componentwise block maxima of data vectors X1, ..., X©®) in its
max-domain of attraction with standard Fréchet margins, where b € N is the block size.
Indeed, the random vector

7= 5 (e 17 e, 1),
approximates the distribution of Z, where the approximation improves for increasing b.
In this situation we can associate to Z the partition of occurrence times of the maxima,
say 7. Stephenson and Tawn (2005) proposed to use this information on the partition to
simplify the likelihood of the max-stable distribution. For N observations 2V, ... (V) of
Z with partitions %(1), . ,%(N) they defined the estimator

N

9ST = argmaxz log L(E(l), 7-(l); 0).
S S

This estimator suffers from two kinds of misspecification biases. Firstly, the () are only
approximately Z distributed and, secondly, the partitions 7 are only finite sample ap-
proximations to the true distribution of the limit partition 7. For the latter, Wadsworth
(2015) proposed a bias reduction method for moderate dimensions and showed in a simu-
lation study that it significantly decreases the bias of the Stephenson—-Tawn estimator in
the case where the X(®) and thus also Z follow exactly a max-stable logistic distribution.
However, if the X*) are samples from the outer power Clayton copula (cf. Hofert and
Méchler, 2011) and thus only in the max-domain of attraction of the logistic distribution,
then even the bias reduced estimator suffers from significant bias (cf., Wadsworth, 2015,
Table 3).

We repeat the simulation study from Section 3.5.1 with the only difference that, instead of
sampling from Z, we simulate N = 100 samples 2(1), cee z\N) of Z , which is the rescaled
maximum of b = 50 samples from the outer power Clayton copula for different parameters.
Based on these data in the max-domain of attraction of the logistic distribution we estimate
the dependence parameter 6 using our Bayes estimator and compare it to the pairwise
likelihood estimator. Both approaches ignore the additional information on the partitions
7 that we have in this setup. On the other hand, we can also compute the Stephenson—
Tawn estimator and its bias reduced version by Wadsworth (2015), which explicitly include
the partition information.

Table 3.1 shows the root mean squared errors and biases of the four estimators. For
all of them the bias plays a significant role for the overall estimation error and that is
due to the model misspecification for only approximately max-stable data. This bias is
however much stronger for @ST and @W, which use the again misspecified partitions. In this
case, the Bayes estimator that treats the partitions as unknown and samples from them
automatically seems to be more robust and does not need a bias correction. At the same
time it has a small variance and thus in many cases the smallest root mean squared error.
Especially in higher dimensions (> 20) where the bias reduction of Wadsworth (2015)
can no longer be used, the Bayes estimator still provides a robust and efficient method
of inference. As one would expect, the pairwise likelihood estimator has the smallest bias
since it is less sensitive to model misspecification, but it still a higher root mean squared
error due to its higher variance.
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0p=011| =04 6o = 0.7 0o =0.9

k 6 10 6 10 6 10 6 10
RMSE(0Bayes) | 36 29 | 144 111 | 241 191 | 262 220
RMSE(fpr,) 40 32 | 159 127 | 279 235 | 311 286
RMSE(fsT) 38 29| 148 126 | 352 401 | 647 840
RMSE (0w ) 38 29| 134 108 | 230 228 | 313 434

Bias(0payes) 9 -10| -44 -35| -57 -70| -96 -114
Bias(6pr,) -10 -10 | -47 =32 | 44 42| -46 -42
Bias(fsT) -12 <11 90 -88 | -315 -385 | -634 -835
Bias(fw) -11 <11 | -61 -8 | -158 -194 | -277 -422

Table 3.1: Root mean squared errors (top four rows) and biases (bottom four rows) of

@Bayes, Opr,, Ogr and 9W, estimated from 1500 estimates; figures have been
multiplied by 10000.

3.5.3 Estimation of Marginal Extreme Value Parameters

In spatial settings, the marginal extreme value parameters are often estimated by using
the independence likelihood (Chandler and Bate, 2007), where all locations are assumed
independent. This avoids to specify a dependence structure but can result in efficiency
losses, even if only the marginal parameters are of interest.

We perform a simulation study to assess how using the full likelihoods in a Bayesian frame-
work improves estimation of the marginal parameters. We fix the dimension & = 10 and
set the marginal parameters to p =1, 0 = 1 and £ € {—0.2,0.4, 1}, equal for all k¥ margins.
The dependence is logistic with unknown nuisance parameter 6y € {0.1,0.4,0.7,0.9}.
Based on N = 100 independent samples from this model, we compare three different
estimation procedures. The first one is our Bayesian approach using the full joint likelihood
of the marginal parameters and the dependence parameter. We use a uniform prior for
0, and independent normal priors for u, logo and £ with large standard deviations. For
the univariate case, more sophisticated choices for the prior distributions are possible,
including dependencies between the three extreme value parameters (e.g., Stephenson and
Tawn, 2004; Northrop and Attalides, 2016).

The second procedure is the maximum pairwise likelihood estimator that only uses bivari-
ate dependence, and the third is the maximum independence likelihood estimator that
completely ignores dependence between different components. Each simulation and esti-
mation is repeated 1500 times.

Table 3.2 contains the root mean squared errors of the marginal parameters for the three
approaches. Interestingly, for the location and scale parameter we see only little differ-
ence between the three methods, meaning that they can be efficiently estimated without
taking into account dependencies. For the shape parameter, however, there are substan-
tial improvements in the estimation error by including the unknown dependence structure
in the model and estimating it simultaneously. Since estimation of the shape is both the
most difficult and the most important of the three extreme value parameters, the Bayesian
approach is promising also for marginal tail estimation. Finally, we observe that there is
already an efficiency gain for the shape parameter when only the pairwise dependence is
considered, but it is even more remarkable in the Bayesian setting with full likelihoods.
Table 3.2 also shows that these observations hold across different ranges for the shape
parameter &. It should be noted that we considered the case of a well-specified model,
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6o = 0.1 6 =04 0o =0.7 6o =0.9
§=-02 po o §l p o Elp o &l p o &
Bayes full 105 75 22| 97 58 21|71 37 20|51 28 19
Pairwise 106 73 31| 98 57 28|72 39 24|52 30 21
Independence | 111 75 67 | 101 58 52 |73 39 35|52 30 24
£=04 p oo & p o Elp o &lp o &
Bayes full 102 99 41| 96 8 39|71 65 34|51 45 32
Pairwise 106 98 57| 97 89 54|71 67 45|51 47 38
Independence | 112 100 96 | 100 89 79 | 72 67 56 | 51 48 42
§=1 poooo & o p o &l p o &l p o §
Bayes full 109 155 85 | 100 144 76|77 111 59|53 75 46
Pairwise 106 146 94| 96 135 90|74 108 72|52 75 53
Independence | 110 146 127 | 98 135 107 | 74 109 81 |52 76 57

Table 3.2: Root mean squared errors of (u, 0, &) estimates with different values of £ for the
Bayesian approach, pairwise likelihoods and independence likelihoods, respec-
tively, where # is an unknown nuisance parameter; figures have been multiplied
by 1000.

where the class of dependence structures is known. An additional model uncertainty might
render the independence likelihood more favorable.

3.6 Applications in a Bayesian Framework

In the previous sections we discussed the efficiency gains of the Bayesian full likelihood
approach in the frequentist framework of point estimates. The Markov chain from Section
3.2.2 however produces not only a point estimate but an estimate of the entire posterior
distribution. For instance, this can directly be used to produce credible intervals for the
parameter of interest. As a further application of our approach in the Bayesian framework,
we will present Bayesian model comparison in this section.

3.6.1 The Posterior Distribution and Credible Intervals

As an illustration of the methodology we simulate a sample of N = 15 data 20 =
(251)7 . .,z,gl)), Il =1,...,N, from a k-dimensional max-stable vector Z whose distribu-
tion belongs to the parametric family of logistic distributions introduced in Subsection
3.4.1 with parameter space © = (0,1). We run the Markov chain from Subsection 3.2.2.
The left panel of Figure 3.2 shows the Markov chain for the parameter 6 with simulated
data from the logistic distribution in dimension k£ = 10 with 6y = 0.8. The prior dis-
tribution is uniform, that is, mg = Unif(0,1). The chain seems to have converged to its

stationary distribution, namely the posterior distribution

N
L (01 {=04,) o< mo(6) l]}m“% 0), (3.29)

after a burn-in period of about 200 steps. The auto correlation of the Markov chain in
Figure 3.3 suggests that there is serial dependence up to a lag of 30 steps. The parallel chain
that updates the partitions is difficult to plot. The right panel of Figure 3.2 therefore shows
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Figure 3.2: Markov chains for 6 (left) and the mean partition size (right) with uniform
prior.
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Figure 3.3: Auto correlation function of the Markov chain for the parameter 6.

in each step as a summary the mean number m of sets in the partitions 74, ..., 7(N) | that
is, m = 1/N Y1 [7®)|. For complete independence (fp = 1) we must have m = k = 10,
whereas for complete dependence (6 = 0) we have m = 1.

The left panel of Figure 3.4 shows a histogram and an approximated smooth version of the
posterior distribution, together with the uniform prior. In order to assess the impact of the
prior distribution on the posterior, the two other panels contain the corresponding plots for
the same data set but for different priors, namely the beta distributions 7y = Beta(0.5,0.5)
(center) and mp = Beta(4,4) (right). Even for a relatively small amount of N = 15 data
points, the influence of the prior is not very strong.

The Bayesian setup provides us with a whole distribution for the parameter instead of a
point estimate only. From this we can readily deduce credible intervals for the parameter
f. This is an advantage compared to frequentist composite likelihood methods since the
Fisher information matrix has a “sandwich” form adjusting for the misspecified likelihood,
and confidence intervals are thus not easily computed (Padoan et al., 2010). When us-
ing composite likelihoods in a Bayesian setup, the posterior distributions are much too
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Figure 3.4: Histogram and smooth approximation of the posterior distribution (dotted
red) for different priors (solid blue): Unif(0,1) (left), Beta(0.5,0.5) (center)
and Beta(4,4) (right).

concentrated and the empirical coverage rates are very small. Adjustments are necessary
to obtain appropriate inference (Ribatet et al., 2012). Since our approach uses the full,
correct likelihood, no adjustment is needed to obtain accurate empirical coverage rates.
Indeed, in Table 3.3 we provide the coverage rates of the 95% credible intervals obtained
in the simulation study in Section 3.5.1 for some values of 6.

3.6.2 Bayesian Model Comparison

Starting from data z from a family of max-stable distributions {Fy, § € O}, we consider
two sub-models M; : § € ©1 and Ms : § € ©5 for disjoint sets ©1,0, C ©. In Bayesian
statistics, comparison of such models is often based on the Bayes factor By, which trans-
lates the prior odds into the posterior odds (e.g., Kass and Raftery, 1995), that is,

7Tposterior(@l) _ Bl,2 % 71'prior(@l). (330)
7"'posterior(@Q) 71'prior(@)2)
The Bayes factor can also be written as By 2 = L(z | M1)/L(z | M), where
L(= | M) = / L(=:0)m(0 | My)do, i=1,2, (3.31)
(C]

are the so-called marginal probabilities of the data and 7 (- | M;) is the prior density of the
parameter 6 under the model M;. Since the max-stable likelihood cannot be computed,
the integral in (3.31) is computationally infeasible. However, we can use the estimation of
the posterior probability (3.29) discussed in the previous subsection and estimate

m9(02) o, L(O | {zV}Y,)do

Bio = X . 3.32
L2 T0@0) * Jo, 10| (201, o (3.52)
0y =0.1 0o =0.4 0o =0.7 0o =0.9
k 6 10 50 6 10 50 6 10 50 6 10 50

Coverage (in %) |94 93 90|95 94 94 |94 94 94|94 94 90

Table 3.3: Empirical coverage rates of 95% credible intervals obtained from the posterior
distributions using full likelihood.
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As an example, we consider a simple regression model
LG =a+iB, i=1,...,k, (3.33)

for the marginal shape parameters &1, ..., & of the k-dimensional max-stable distribution
in dimension k. One might be interested in testing if there is a linear trend in the shape
parameters, and, thus, in comparing the models M; : {5 = 0} and M : {5 # 0}. In order
to compute the Bayes factor as the ratio of the posterior probabilities of the two models
according to (3.32), the prior distribution mg of § must be a mixture

Pox X 0goy + (1 —pox) X 75

of a Dirac point mass dgp; on 0 and an appropriate continuous distribution w5 on R with
mixture weight po» € (0,1). This ensures that we have a positive posterior probability on
both sets {5 = 0} and {3 # 0} and the Bayes factor is well-defined. Here, it is important
to note that the choice of the mixture weight pg r does not have an effect on the Bayes
factor Bj 2 as Equations (3.30)—(3.32) show.

Similarly as in Section 3.5.3, we simulate N = 15 data from a max-stable logistic distribu-
tion with dimension £ = 10 and dependence parameter §y = 0.5, with marginal parameters
i =1, 0 = 1 and & as in (3.33) with @ = 1 and different values for 3, i = 1,... k.
The prior distributions for the dependence, location and scale parameters are chosen as
in Section 3.5.3. The prior for « is standard normal and for the prior for 3 is a mixture of
0.5 X dgo1 + 0.5 x 5 of a point mass and a centered normal with standard deviation 0.5
as the continuous component G-

A Markov chain whose stationary distribution is the posterior distribution of the param-
eters given the data can be constructed analogously to Section 3.2.2. However, given the
current state 8 of the Markov chain, the proposal 5* is not drawn from a continuous
distribution with density g, but from a mixture

Po(B)dg0y(-) + (1 = po(6))q°(B, )

of a Dirac point mass on {0} and a continuous distribution with density ¢°(83,-), with
mixture weight po(5) € (0,1). To ensure convergence of the Markov Chain, the densities
q°(B,-) should be chosen such that ¢°(3, 8*) > 0 if and only if ¢¢(5*, ) > 0.

Figure 3.5 gives an illustration of the Bayes factors Bj 2 that compare the model without
trend M; : {# = 0} and the model with trend My : {8 # 0} for the simulated data
described above. The true trend varies from § = 0, in which case M; would be correct,
over positive values up to § = 0.08 where M> is the correct model. As comparison, we
implemented a Bayesian approach based on the independence likelihood (Chandler and
Bate, 2007), which is the product of the marginal densities and ignores the dependence
structure. The results show that using the full likelihood that takes the dependence
into account and treats it as a nuisance parameter significantly facilitates the distinction
between the two different models. The Bayes factors for the full likelihood show stronger
support for M; if 8 = 0, and decrease more rapidly to 0 if § > 0 than the Bayes factors
for independence likelihood.

Finally, we note that a similar approach has been proposed in the univariate setting for
estimation of the shape parameter in Stephenson and Tawn (2004) in order to allow the
Gumbel case & = 0 with positive probability.

3.7 Discussion

We present an approach that allows for inference of max-stable distributions based on full
likelihoods by perceiving the underlying random partition of the data as latent variables
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Figure 3.5: Bayes factors for different value of 8 for full likelihood (blue) and independence
likelihood (red).

in a Bayesian framework. The formulas for w(7;, z) provided in Section 3.4 allow in prin-
ciple to perform Bayesian inference based on full likelihoods for many popular max-stable
distributions in any dimension. However, computational challenges arise for both the
extremal-t and the Brown-Resnick model in higher dimensions since the corresponding
w(Tj, z) require the evaluation of a multivariate Student and Gaussian distribution func-
tions, respectively, which have to be approximated numerically; see also Thibaud et al.
(2016). The recent work de Fondeville and Davison (2018) on efficient computation of
Gaussian distribution functions allows for even higher dimensions.

Making use of the weights w(7j, 2), the posterior distribution of the parameters becomes
numerically available by samples based on Markov chain Monte Carlo techniques. As the
results in Section 3.6.1 indicate, the posterior distribution does not show strong influence
of the prior distribution even in case of a rather small amount of data; cf., Figure 3.4. In
most of the examples presented here, the proposal distributions for the model parameters
in the Metropolis—Hastings algorithms were chosen to be centered around the current
state of the Markov chain with an appropriate standard deviation, resulting in chains
with satisfactory convergence and mixing properties; cf., Figures 3.2 and 3.3, for instance.
Further improvements of these properties might be possible, e.g., by implementing an
adaptive design of the Markov chain Monte Carlo algorithms.

In the frequentist framework, we propose to use the posterior median as a point estimator
for the model parameters. As the simulation studies in Section 3.5 show, the use of
full likelihoods considerably improves the estimation errors compared to the commonly
used composite likelihood method even in the case of a rather small sample size. This
complements our theoretical results on the asymptotic efficiency of the posterior median.
Besides the point estimator in the frequentist setting, we can also make use of the posterior
distribution in a Bayesian framework. In Section 3.6, we discuss the use of credible intervals
and Bayesian model comparison for max-stable distributions. Further applications such
as Bayesian prediction are possible.
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4 Exact and Fast Simulation of Max-Stable
Processes on a Compact Set Using the
Normalized Spectral Representation

joint work with Martin Schlather and Chen Zhou

This chapter is based on the article Oesting et al. (2018b) which has appeared in Bernoulli.
Only few changes have been made: Besides some minor modifications and a correction in
Equation (4.47), the proof of Proposition 4.13 has been shifted from the appendix to the
main body of the chapter.

The efficiency of simulation algorithms for max-stable processes relies on the choice of the
spectral representation: different choices result in different sequences of finite approxima-
tions to the process. We propose a constructive approach yielding a normalized spectral
representation that solves an optimization problem related to the efficiency of simulating
max-stable processes. The simulation algorithm based on the normalized spectral repre-
sentation can be regarded as max-importance sampling. Compared to other simulation
algorithms hitherto, our approach has at least two advantages. First, it allows the ex-
act simulation of a comprising class of max-stable processes. Second, the algorithm has
a stopping time with finite expectation. In practice, our approach has the potential of
considerably reducing the simulation time of max-stable processes.

4.1 Introduction

Max-stable processes have become a popular tool for modeling spatial extremes, particu-
larly in environmental sciences, see, e.g. Coles (1993), Coles and Tawn (1996) and Padoan
et al. (2010). A stochastic process {Z(y) : y € K} with standard Fréchet margins defined
on an index set K, i.e. P(Z(y) < 2) = exp(—2z~1), 2 > 0, for all y € K, is called max-stable
if

1
= miax Zi=q 2
n i=1
for any n € N and independent copies Z;, ¢ = 1,...,n, of Z, where the maximum is

taken pointwise. Max-stable processes occur naturally as limits of suitably normalized
pointwise maxima of stochastic processes which motivates their usage in the context of
spatial extremes.

Simulating max-stable processes is an important step in application for the following three
reasons. First, while bivariate marginal distributions can be calculated frequently, higher
dimensional marginal distributions do not have, in nearly all the cases, explicit formulae.
Consequently, they can be addressed only by simulation. Second, most applications re-
quire the estimation of characteristics of max-stable processes that cannot be explicitly
calculated. That leaves simulation as the only option, see, e.g. Buishand et al. (2008) and

95
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Blanchet and Davison (2011). Finally, unconditional simulation appears as part of the con-
ditional simulation of max-stable processes (Dombry et al., 2013; Oesting and Schlather,
2014).

Schlather (2002) suggested an algorithm to simulate max-stable processes. However, the
simulation is exact only under substantial restrictions, namely when the shape function is
bounded and has compact support. In this case, the algorithm ends in finite time almost
surely. Compact support can be enforced by cutting the shape function, which introduces
an approximation error. In some cases, such an error is not negligible. For example,
consider moving maximum processes with monotone shape functions that have a pole at
the origin. Strokorb et al. (2015) provided a derivation of such processes whose realizations
have poles on a dense subset of the space. In particular, they are discontinuous everywhere
with probability one. For such processes, any modification of the shape function towards a
bounded shape function will alter dramatically the properties of the process. Consequently,
the use of Schlather’s (2002) algorithm becomes doubtful. By contrast, this chapter deals
with the question of drawing random samples of max-stable processes in an exact and
efficient way, including shape functions that are unbounded and do not have compact
support.

Simulation of max-stable processes is based on their spectral representation (see de Haan,
1984; Giné et al., 1990; Kabluchko, 2009; Wang and Stoev, 2010, for instance): For any
max-stable process Z with standard Fréchet margins defined on an index set K, there
exists a spectral measure H defined on an appropriate set H of non-negative functions
such that

Z(y) = / K 4.1
(y) P fy), yeK, (4.1)

where 11 is a Poisson point process on (0,00) x H with intensity =2 dt H(df) and

/H fy) Hdf) = 1 (4.2)

for all y € K. The functions f in H are the spectral functions of the max-stable process
Z. As any max-stable process can be obtained from a max-stable process with standard
Fréchet marginals via marginal transformations, we will henceforth assume processes with
standard Fréchet marginals, i.e. processes with representation (4.1) and (4.2).

According to the spectral representation (4.1), the construction of a max-stable process
involves infinitely many points (¢, f) € II. Nevertheless, since only the maximum over all
functions ¢f counts, the number of points (¢, f) that contribute to Z, i.e. Z(y) = tf(y)
for at least one point y € K, is finite under mild conditions, see de Haan and Ferreira
(2006), Corollary 9.4.4. However, their statement is a theoretical one that does not help
for simulation purposes because one cannot determine ex ante which functions f will
contribute.

Schlather’s (2002) algorithm for simulating max-stable processes requires that K is com-
pact, the shape functions f : R? — [0,00) are bounded by some C € (0,00) and the
support is within a ball of radius r centered at the origin. For example, consider a sta-
tionary moving maxima processes with the measure H given by

H{f(-—z): feB,xe A}) = A(A)H;(B) (4.3)

for some probability measure Hy and the Lebesgue measure A. Let K, = {z € R? -
lx — y|]| < r for some y € K}. Under the aforementioned assumptions, Schlather (2002)
showed that the right-hand side of (4.3) can be restricted to A(AN K, )H(B). Hence, the
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intensity for (¢, f(- — z)) equals

A(dz N K;)

t2A(K,)dt - AE)

Hy(df),

where f(- — x) can be reinterpreted as realization of a random function F' with law
A(dz N K,)/A(K,) - Hf(df) that is independent of the Poisson point process with in-
tensity t2A(K,)dt.

Schlather (2002) suggested to start with those points (¢, f) that will contribute most likely
to Z, i.e., with those points (¢, f) that have the highest values of ¢. By ranking the
points ¢t in a descending order t; > to,..., we have that t; =4 1/(2;:1 E;), where Ej;
are independent and identically distributed random variables with standard exponential
distribution. Let F; ~;; 4. F be independent of the E; and

ZM(y) = max ———F(y), yeK,

be a finite approximation for Z. Then, Z =4 Z(°). Assume that for some m the inequality

Zm) (y) > sup fly) forallyeK, (4.4)

holds. Then, obviously, Z( (y) = Z(OO) (y) for all y € K and all n > m. In other words,
any spectral function f; with ¢ > m cannot contribute to Z. This results in a stopping rule
for a “m-step representation” of Z which can be used to construct an exact simulation
procedure. Here, the minimal number of steps M = min{m € N : m satisfies (4.4)} is a
random integer. The properties of M depend on the choices of the spectral functions.
Schlather (2002) further proposed to replace inequality (4.4) by a stronger stopping rule
inf,cre Z0M(y) > C/ zmHE As a generalization of Schlather (2002), we consider
stopping rule (4.4) with H being any locally finite measure, not necessarily of the form
(4.3).

The random number of steps in the simulation of a max-stable process depends on the
choice of the corresponding ensemble of spectral functions which is not unique (cf. de Haan
and Ferreira, 2006, Remark 9.6.2). Some specific choices may bear severe disadvantages
for the accuracy and speed of the simulation. For instance, finite approximations based
on the original definition of the Brown—Resnick process are usually far from the actual
process (Kabluchko et al., 2009; Oesting et al., 2012). The optimality of the choice of
spectral functions with respect to the number of steps in simulating max-stable processes
has not been discussed in literature yet. Here, we propose a choice of spectral functions,
the normalized spectral representation and show that it is the solution to an optimization
problem related to the number of steps in the simulation.

An illustrative example may clarify why the choice of spectral functions can have a signif-
icant impact on the distribution of the stochastic number M. Consider the simplest case
where Z is univariate. Specializing (4.1) to K = {yo} and f = 1, the random variable
Z(yo) follows a univariate Fréchet distribution. It has a representation given by

Z(yo) =4 maxt (4.5)

where II is the Poisson point process on (0, c0) with intensity ¢+ ~2 d¢. By ranking the points

t, we get that
1 1
z/(m) - = = = — 7M.
(o) = max, S5 B (0)
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In other words, M = 1 based on the constant spectral function f = 1. Differently,
Z(yo) can also be constructed by (4.1) with f(yo) being a non-degenerate random variable
satisfying Ef(yo) = 1. In that case, the stochastic number M is greater than 1 with
positive probability. Therefore, for simulating Z(yo), the spectral representation in (4.5)
would be considered as optimal. This example illustrates the optimality we intend to
achieve by the choice of spectral functions for an arbitrary max-stable process.

The very general optimality problem for general index sets K and arbitrary random func-
tions f seems to be rather complicated. Therefore, we shall suggest a modified optimization
problem and shall demonstrate that its solution is explicit and unique for each given max-
stable process and index set K. The optimality is achieved by transforming any ensemble
of spectral functions to a new ensemble of spectral functions satisfying sup,cx f(y) = ¢,
for all f € H. We call such a representation with all spectral functions sharing the same
supremum the normalized spectral representation. This representation was initially used
in constructing the spectral representation for max-stable processes with a continuous
sample path on K = [0, 1], see e.g. de Haan and Lin (2001) and de Haan and Ferreira
(2006), Corollary 9.4.5. In this chapter, we provide a theoretical justification on the use
of this normalized spectral representation in simulation algorithms.

This chapter is organized as follows. In Section 4.2, we revisit de Haan’s (1984) spec-
tral representation of max-stable processes and give the formula of spectral representation
transformation, i.e. transforming one ensemble of spectral functions under a given spectral
measure to another ensemble under a different spectral measure. Based on the transformed
representation, we formulate a stopping rule that allows an exact simulation of max-stable
processes. In Section 4.3, we pose an optimization problem for selecting the spectral rep-
resentation that yields the most efficient simulation procedure. This problem is closely
related to the problem of importance sampling. In addition, we give the explicit solution
of a modified optimization problem. This results in the normalized spectral representa-
tion. Differences between the modified problem and the original optimization problem are
evaluated in Section 4.4. Section 4.5 deals with the normalized spectral representation for
moving maxima processes. For moving maxima processes and Brown—Resnick processes,
the performance of the simulation procedure based on the normalized spectral represen-
tation is compared to other algorithms in Section 4.6. In Section 4.7, we summarize and
discuss our results.

4.2 Transformation of Spectral Representations

Throughout the chapter we consider a max-stable process Z on some index set K that is
assumed to be a compact Polish space. Further, we will assume that the spectral functions
f from representation (4.1) lie in some Polish space H C [0, 00)% equipped with a o-algebra
H such that the mapping f + sup,c f(y) is (H, BN[0, 00))-measurable where B denotes
the standard Borel o-algebra on R.

The subsequent proposition presents a general procedure to transform one spectral repre-
sentation to another yielding the same max-stable process. It can be proved by standard
arguments from extreme value theory, see Oesting et al. (2013) for details.

Proposition 4.1. Let Z be a maz-stable process with standard Fréchet margins defined
as in (4.1) and (4.2). Suppose that H is a locally finite measure on H. Let g be some
probability density on H w.r.t. H, i.e. ¢ >0 and [;g(f)H(df) =1, such that

yeK

H ({f :g(f) =0, sup f(y) > 0}) =0. (4.6)
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Then, by excluding all the functions f € H with g(f) =0, we get

Z(y) =q¢ max tM, y € K, (4.7)

@ pei 9(f)

where 11 is a Poisson point process with intensity t=2 dt g(f)H (df).

Applying Proposition 4.1, a given ensemble of spectral functions {f} sjerr can be trans-
formed to a new ensemble {f/g( f)}(t pei: where f follows the transformed probability
measure gH defined by

gHM%iAmﬂHMﬁ

for all measurable sets A C H. For this transformed spectral representation (4.7), the
stopping rule (4.4) can be formulated as follows. Denote

Z0m (y) = L Bw o ok (4.8)

= max : . ,
1<ism 3 By 9(F)

for standard exponentially distributed random variables F; and F; ~ gH, which are all
independent. Let
Z(>) = lim z™M), (4.9)

m—r0o0

Then, Z(*°) =, Z and, for fixed w € Q, we have Z(™ = Z() on K if

esssup sup W < mir:l E; (4.10)
feH yeK 9(f)Zm(y) ~ g

where the essential supremum is taken w.r.t. the probability measure gH. Note that, by
(4.6), up to a H null set, the set {f € H: g(f) = 0} consists of functions f € H with
f k= 0. Thus, for fixed g, we may exclude all the functions f € H with g(f) = 0.

If the number M, := min{m € N : m satisfies (4.10)} is finite, the max-stable process Z
can be simulated exactly in finite time via the following algorithm.

Algorithm 4.1: Exact simulation of a max-stable process via threshold stopping

Set m =0 and ZV(y) =0forall y € K.
Simulate a standard exponentially distributed random variable Fj.

while (4.10) is not satisfied do
Update m by m + 1.

Sample F,,, from gH.

Set Z(™)(y) = max {Z(m_l)(y), Zmll 7 5(";,(3‘/5} for all y € K.
= m

Simulate a standard exponentially distributed random variable E,,41.

return Z(™)

Algorithm 4.1 requires the evaluation of the stopping rule (4.10) which involves suprema
with respect to y € K and f € H. While, in practice, the set K often is finite, i.e. the
supremum w.r.t. ¥ is a maximum, the evaluation of the essential supremum w.r.t. f is
more difficult. However, with the normalized spectral representation (cf. Algorithm 4.2),
it is possible to provide a bound for the essential supremum facilitating this evaluation;
see Remark 4.12.

The exact simulation based on the stopping rule (4.10) requires the simulation of M,
processes from law gH and M, + 1 exponentially distributed random variables. Therefore,
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the time costs of Algorithm 4.1 depend on the stopping rule, which essentially depends
on the choice of g. Consequently, the following question arises: which density g minimizes
the random number of steps M,? This optimization problem will be formulated in a more
rigorous way in the next section.

4.3 The Optimization Problem

Henceforth, we will always assume that we are in the framework of Proposition 4.1. Fur-
ther, the process Z is assumed to be almost surely strictly positive on K, i.e.

P (yiglf(Z(y) > 0) = 1. (4.11)

Note that this assumption is valid for continuous sample path process.!

We are interested in minimizing the number of steps in Algorithm 4.1, M, i.e. the minimal
number m such that (4.10) holds. Since M, is a random variable, we aim at minimizing
some of its mathematical characteristics. As many applications require a large number of
simulations, a natural choice to start with is to minimize the mean @), of M, by choosing
a proper density g, i.e.,

m+1
Qg = EM,, M, = min {m € N : esssup sup O < Ej}. (4.12)

jer yek 9(NZM(y) T A

In addition, we aim to determine at least one member of
G = argmin Q.
g

We remark that the finiteness of @), is not ensured. As a first step, the following proposition
provides a sufficient condition for M, being finite almost surely. It follows directly from
the definition of M.

Proposition 4.2. Assume that (4.11) holds. Then M, is finite a.s. if

f()

esssup sup —-- < 00. (4.13)
feEH yeK g(f)

Proposition 4.18 below assures the finiteness of @, provided that condition (4.13) is fulfilled
and Z is sample-continuous.

There is a close relation between our approach and the importance sampling (Hastings,
1970). We interpret (4.7) as “max-importance sampling” as follows. Importance sampling
is targeted on calculating an integral [ f(z)A(dz) in an efficient way for a function f :
X — R and a measure A on some space X. It uses the fact that

X

[ s = [ ﬁgg;(gx)(dm), (4.14)

! Assuming sample continuity, we even have
. -1
E ((mfyeK Z(y)) ) < 00,

(Dombry and Eyi—Minko, 2012, Theorem 2.2). It can be shown that this also holds true under weaker
assumptions than sample continuity (see Oesting et al., 2013).



4.3. The Optimization Problem 61

where g : X — (0,00) is a probability den51ty w.r.t. A and (g\)(A f 49 . Then

the integral can be approximated by I = 1 i) S g i T Where (X)), is an i.i. d se-

quence of random variables on X’ with law g/\ Importance samphng considers a practically

advantageous choice of the density g such that Var(f(X1)/¢g(X1)) and hence Var(I i )) are
small. Exchanging the underlying space X with the function space H, and replacing the
integral with the max-integral (de Haan, 1984), we receive a similar description of our
approach:

Y ) Yy(f) e
2) = [ wnman = [ U e (415)
9(f)
where y : H — [0,00), f — f(y), is the punctual evaluation of a function f at y, H* is a
random discrete measure on H defined as H*({f}) = sup(; sjerrt and the integral [ Vs
understood as taking the maximum of the integrand weighted by the measure H*.
Despite the formal correspondence between (4.14) and (4.15), there are some notable
differences. First, in our approach, y, which is formally an element of the dual space of H,
is not fixed. Second, importance sampling is always an approximation to the integral value
of interest. Under mild conditions, see Section 4.4, a finite approach to the right-hand
side of equality (4.15) renders the exact value of the max-integral. Hence, we intend to
choose g so that the required number of steps is minimized in order to eliminate the error
of the finite approximation. In contrast, importance sampling searches for a g that leads
to a high speed of convergence, i.e., a small variance of I (n).
Whilst the theoretical optimum is well known in importance sampling, and the diffi-
culty there is to find a numerically advantageous function g, the optimization prob-
lem (4.12) itself is difficult to solve, since both the numerator and the denominator of
f()/(g(f)Z™()) depend on y and the denominator is stochastic. To circumvent this
difficulty, we modify the optimization problem in Subsection 4.3.1 and solve the modified
problem in Subsection 4.3.2. The solution of the modified problem leads to the normalized
spectral representation discussed in Section 4.3.3.

4.3.1 A modified optimization problem

We first motivate the modification of the optimization problem. Recall the stopping rule
(4.10) as

f(y) =
esssup sup ———————— < E;.
fer yek 9(f)Zm (y) ; !

A stronger inequality that implies this stopping rule is

m+1
supycre f(y)
esssup - — < E;, 4.16
ren g(f)infgex Z0M(7) JZ_; ’ (410)

while a weaker inequality that is implied by the stopping rule is

ye
esssup E E;. (4.17)
feH g(f)supyeKZ

The actual stopping time is larger than that under the weaker rule and smaller than that
under the stronger rule. In other words, if we consider (4.16) and (4.17) as stopping rules,
we might simulate too many or too few spectral functions, respectively. Next, we define
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an ensemble of alternative stopping rules that also lie in between the rules (4.16) and
(4.17). Suppose T : [0,00)% — [0,00) is a functional that satisfies T(1) = 1 and that is
max-linear, i.e.

T(max{alhl,aghg}) = maX{a1T<h1),CL2T(h2)}

for all aj,as > 0 and hy, he : K — [0,00). Then, we have that T'(h) < T'(g) for all h < g,
which leads to

inf h(y) < T(h) < sup h(y) (4.18)
yek yeK

for all h: K — [0,00). Therefore, any max-linear functional 7" delivers a stopping rule

m—+1
supyer f(y) -
esssup ——————— < E E; 4.19

that lies also in between the aforementioned stronger and weaker stopping rules.
We regard these new conditions (4.19) as surrogates for the actual stopping rule (4.10).
The corresponding modified optimization problem is then

G* = argmin Qy, (4.20)
g
m—+1

. . . sup eK f
Q*=EM*=Emin{ m € N : esssup ————_ E;
5 = EM; ssup oo Z

Examples of T are T'(h) = sup,¢c h(y) and T'(h) = h(yo) for some yo € K. The corre-
sponding modified problems based on these two specific 7' minimize the quantities

m+1
supyex f(y

Q') = Emin{ m € N : esssup E; ., (4.21)
I reir 9(f)supger Z( m) Z
( ) Su er m+41
and Q'?(yo) = Emin { m € N : esssup y— E; 3. (4.22)
! ren 9(f)Z Z

Note that the modified condition (4.19) does not correspond to the stopping rule under
consideration (Algorithm 4.1).

4.3.2 The Solution of the Modified Optimization Problem

The following proposition provides a first but also a key step towards the solution of (4.20).
It shows that the solution of (4.20) is independent of T'.

Proposition 4.3. The solution of the modified optimization problem in (4.20) satisfies

. . supyex f(y)
G*" = arg min esssup —————
9  feH g(f)

Proof. If there exists some g such that Qy is finite, then necessarily

supyer f(y)
esssup —————

fed g(f) =0
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Thus, we can restrict ourselves to

geD:{g: esssupsupl/EKf(y)<oo}
feH g(f)

and assume w.l.o.g. that D # 0. For ¢ = [ sup, ek f(y) H(df) and any g € D, we have

h h
c< / esssup wg(f) H(df) = esssup M < 0. (4.23)
H

heH g(h) heH g(h)
Thus, by (4.18), for ep = [; T'(f) H(df), we obtain ¢y < ¢ < oo.
Next, we prove ¢ > 0 by contradiction. Assume that ¢p = 0. This yields T'(f) = 0 for
H-a.e. f € H which — by the max-linearity of Z — implies T(Z) = 0 a.s. in contradiction
to infyerx Z(y) > 0 a.s. and (4.18). Thus, we conclude that cp € (0, 00).
Now, let g € D. Using the max-linearity of T" and the fact that

(o]
Q; =EM; = > P(M; >m),

m=0

we have

/m“ 1 T(f)

Q —1= P | esssup sup max
Z gt e St By 9(fk)

el feH yng

00 k )
= P ( Z] 1 £ > (fk)/esssup sup —-= 1) 1<k< m) . (4.24)
1

2\ gt ) e ek o)
Note that T
<fk)/esssup sup fw) € [0,1].
9(f) 1 e yer 9(f)
As the joint distribution of (Z] L E;/ Zm+ Ej)k=1,..m equals the joint distribution of
the order statistics of m independent random varlables Ui, ..., Uy which are uniformly

distributed on [0, 1], and as, by exchangeability,
P(U(l) > Xq,.. ,U(m) > Xm) = ]P(Ul > Xq,...,Up > Xm)

holds for i.i.d. [0, 1]-valued random variables Xy, ..., X,,, we obtain
)> f1™
=1+ [1 — < esssup sup ——=
Z (f1) / reti yek 9(f)

= eSSssup su M (fl) = esssu M
B fEprEIgg(f)/E<g(fl)> - fer g(f) //HT(fl)H(dfl) (4~25)

This finishes the proof since cr € (0, 00). O

Remark 4.4. In the proof of Proposition 4.3, the distribution of the random variable
M, defined in (4.20) is calculated. We see that M follows a geometric distribution
with parameter [;; T'(h)H(dh)/ esssup jcg sup,e e (f(y ) /g(f)). Therefore, a density g that
minimizes esssup yep supye g (f(y)/9(f)) does not only minimize the expectation of M
but also other characteristics. For example, the probability IP’(M; > my) for a given
mo € N, or the quantile of My at a given probability level. However, this property does
not necessarily hold for the stochastic number M, in the actual stopping rule (4.10).
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We carry on to find the density g that minimizes esssup ;e w. Instead of consid-

ering the supremum in the numerator, we deal with a broader class of functionals in the
following proposition.

Proposition 4.5. Let L : H — (0,00) be measurable and cg, = [y L(f)H(df) < oo.
Then,

gr(f) = ¢ 'L(f) (4.26)

1s an element of

L(f)

Q(L) = arg min esssup ——.
9  feH g(f)

Furthermore, for every g € G\X), Equation (4.26) holds for H-a.e. f € H.

Proof. First, by contradiction, we show that the inequality

L(f)
esssup ——=+ > Cf, 4.27
feH g(f) ( )
holds for all g. So, assume that (4.27) does not hold for some g considered in Proposition
4.1. Then some ¢ > 0 and some density g with [g(f) H(df) = 1 exist such that, for
almost all f € H, we have L(f)/g(f) < c¢r — €. Hence,

e = /H L(f) H(df) < (e — <) /H o(HHAS) < cr

which is a contradiction. Hence, (4.27) is proved. Note that the choice g(f) = ¢ L(f)
implies equality in (4.27). The first assertion follows.

For the proof of the second assertion, assume that there is some g € G(%) such that (4.26)
does not hold for H-a.e. f € H. Then, as

[atryman =1~ [ 'rinman.
H H

there is some set A C H with H(A) > 0 such that, for all f € A, g(f) < cZIL(f), but
g(f) > 0 by (4.6). This yields gH (A) > 0 and, hence, esssup scpy L(f)/9(f) > cr, which is
a contradiction to g € g, O

Remark 4.6. Let £,(H) be the space of p-integrable functionals with respect to H. Then
cr, = | LIz, (rry and esssup fep % = |L/9ll zo (mr)- Proposition 4.5 states a special case of
Holder’s inequality for all density functions g, e, < ||L/gllz.mnll9llzy oy = 1L/l 2o )
and equality holds if and only if ¢ is proportional to L (H-a.e.).

Similarly, in importance sampling, the second moment E(f(X1)/g(X1))? = ||f//3ll3 is
intended to be small. Now, ¢, := || f|1 §J|f/\/§||2 1vgll2 = E(f(X1)/9(X1))? and equality
holds if and only if g is proportional to f. .

Both ¢, and ¢4 can simply be regarded as a factor that normalize L and f, respectively.

The results stated above enable us to describe the solution of the optimization problem
(4.20). To be rigorous, we first give a necessary and sufficient condition for the solvability
of the problem. Here an optimization problem
argminh(x), h:A—RU{oco},
€A
is called solvable if infyca h(z) € (—o00,00) and there exists some xp € A such that
h(zg) = inf e h(x). Our key theorem is given as follows.
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Theorem 4.7. The optimization problem (4.20) is solvable if and only if
e= [ sup f)H@S) < .
HyeK

Assuming ¢ < 0o, the solution is given as

g (f):==c'sup f(y), feH. (4.28)
yeK

The solution is unique H-a.s.

Proof. 1f ¢ = oo, Equation (4.23) and Proposition 4.3 yield that (4.20) is not solvable. For
¢ < o0, the solution and its uniqueness follow directly from Propositions 4.3 and 4.5 with

L(f) = supyef f(y)- O

Remark 4.8. It is obvious that g* is also the H-a.s. solution for the two examples of the
modified optimization problem in (4.21) and (4.22) and these problems are solvable if and
only if ¢ < co. Consequently, the original optimization problem (4.12) is not solvable if

¢ = 00, because le) < Qg for any g.

We close this subsection with analyzing under which conditions c is finite, i.e. the modified
optimization problem is solvable. For instance, if Z is sample-continuous or if K is finite,
¢ < oo follows from a result by Resnick and Roy (1991) (see also de Haan and Ferreira,
2006, Theorem 9.6.1) who showed the equivalence of the first and third assertion in the
following proposition. Our result is more general as it shows the equivalence to further
conditions and sup,¢ f (y) is replaced by a general max-linear functional L.

Proposition 4.9. Assume the framework of Proposition 4.1. Furthermore, assume that
the functional L : H — (0, 00) is measurable and maz-linear. Then the following conditions
are equivalent:

1. cp:= [y L(f) H(df) < o0
2. P(L(Z) <a)>0 for some a >0

3. P(L(Z) < o0) =1 (or, equivalently, P(L(Z) < c0) > 0).
If there is some stochastic process W such that

7 = tW, 4.29
a maxtW, (4.29)

where Tly is a Poisson point process on (0,00) with intensity t=2dt and Wy, t € Ty, are
independent copies of W, we get another equivalent condition:

4. EL(W) < oo.

Proof. The assertion follows from the following continued equality:

exp (~ L) = exp (— /H /az(f)t‘thH(df)> —P(L(Z) < a)

= ex — - w2 du = exp (—a~! .
= p< Ey (/Q/L(W) d )) p( EL(W))

for any @ > 0. The equivalence to the third assertion can be seen from the relation
P(L(Z) < 00) = limy 00 P(L(Z) < a). O
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4.3.3 The Normalized Spectral Representation
Plugging in the solution g* of (4.20) given by (4.28) into (4.7), we obtain Z =; Z with

Z(y) = maxt cFi(y)

e €K, 4.30
tello supgeg Fi(Y) Y (4.:30)

where Il is a Poisson point process on (0,00) with intensity ¢~2dt and Fj, t € Iy, are
independent random processes with density ¢*(f) H(df). It can be verified that the trans-
formed spectral functions {cF;/sup,cf Fi(y)} are independent copies of a stochastic pro-
cess I'* with

sup,er F*(y) = c. (4.31)

We define such a representation as the normalized spectral representation as follows.

Definition 4.10. Let Z be a max-stable process on K satisfying

7 = tFy. 4.32

d ?611@[%( t ( )
Here, IIj is a Poisson point process on (0,00) with intensity ¢t~2dt and F}, ¢t € Ilg, are
independent copies of a stochastic process F* satisfying (4.31) for some ¢ € (0,00). Then,
the right-hand side of (4.32) is called normalized spectral representation of Z.

Theorem 4.7 implies that the normalized spectral representation exists if and only if ¢ < co.
The following proposition implies that the constant ¢ and the finite-dimensional distribu-
tions of the processes F}* in the normalized spectral representation are uniquely determined
by the process Z.

Proposition 4.11. Let Z be a mazx-stable process with a normalized spectral representa-
tion. Furthermore, let ZX := supye Z(y). Then, we have

1. c= —log]P’(ZK < 1)
2. For any y1,...,Yn € K, v1,...,v, >0, it holds

Z(yi) _ v ,
7K S;JSZSTL

P(F*(y;) <wv;, 1 <i<n)= lim IP’(

Z—00

zK > z> . (4.33)

Proof. The first part is a consequence of the proof of Proposition 4.9. In order to prove
the second part, we provide an lower and an upper bound for the probability of the event

A={Z(y) <viZ¥)c,i=1,...,n, Z5 > 2}.

To this end, let IT = {(t,F}) : t € Iy} and note that ZX > z if and only if there is
some (u,w) € I such that ZX = uc = USUDyc i w(y) > z. Now, suppose that further
Z(y;) < v;Z%/c holds for all i = 1,...,n. Then, this point (u,w) necessarily satisfies
w(y;) < v; for all i = 1,...,n. This yields an upper bound for P(A). If, on the other
hand, Z(y;) > v;Z% /e for some i = 1,...,n, then one point (u,w) € II with uc > z
satisfies w(y;) > v; for some i = 1,...,n or there is some point (u,w) € I with ue < z,
but uw(y;)/z > v;/c for some i = 1,...,n. Considering the complementary probabilities,
we obtain a lower bound. Summing up, we have

P(‘ﬁﬂ{(u,w) tu > z}‘ > 0,

f[ﬂ{(u,w):u>z, 1> min Yi }‘:0,
c 1<i<n w(y;)
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ﬁﬂ{(u,w):ugz,u> min —° }'zO) < P(A)
¢z 1<i<n cw(y;)
§]P’<‘f[ﬂ{(u,w) > 2 max B0 1}' >0>. (4.34)
c 1<i<n v;

The lower bound in (4.34) equals
(1-exp (“SPF () < i 10 <))
z
- exp (—CIF’ <max F(y:) exp IE/ uw2du
E-= < i i 27
= (1 — exp (—EIP’(F*(yZ) <w, 1<i< n))
z

(5 (e ) ) oo (5 (e 5 ) )
-exp | ——P | max exp - max -1 ,
z 1<i<n  v; z 1<i<n vy +

while the upper bound equals 1 — exp (—gIP’(F*(yZ) <wv,1<i< n)) By using that
P(ZK > 2) =1 — ¢7%* and taking the limit z — oo, inequality (4.34) yields (4.33). [

Proposition 4.11 implies that the solution of the optimization problem (4.20) is unique in
two different aspects. First, as stated in Theorem 4.7, any solution g € G* satisfies g = g*
H-a.s. Second, the finite-dimensional distributions of the normalized spectral functions
{f/g*(f)} do not depend on the initial choice of the spectral functions. In particular, the
normalized spectral representation is unique if H is the space of continuous functions on
K equipped with the Borel o-algebra, i.e. the product o-algebra on [0, 00)X

Summarizing the results in this section, we suggest to make use of the normalized spectral
representation for exact and efficient simulation as it is the unique solution to the modified
optimization problem provided that ¢ < co. Analogously to Algorithm 4.1, the algorithm
for simulation via the normalized spectral representation is given as follows.

Algorithm 4.2: Exact simulation of a max-stable process Z via the normalized
spectral representation

Set m =0 and Z©(y) =0 for all y € K.
Simulate a standard exponentially distributed random variable FEj.
. cf y +1
while esssup fcp Supyc i S [ZTG ;> Zm E; do
Update m by m + 1.
Sample Fy, with density ¢™!sup,cx f(y)H(df).
(m) () — (m—1) c Fin(y) }
Set Z\"™(y) = max {Z m=H(y), ST T, Sibyer (D) for all y € K.
Simulate a standard exponentially distributed random variable E,, 1.

return Z(™)

Remark 4.12. In practice, with the normalized spectral representation, the criterion in
the while-loop in Algorithm 4.2 might be replaced by the weaker criterion

m+1
> E;.
1nfy€K Z(m Z

Although the use of the weaker stopping rule based on this criterion may increase the
number of iterations, it simplifies the evaluation of the essential supremum.
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The constant ¢ plays the role analogous to the bound of the quotient of the genuine density
function and the proposed density function in rejection sampling. In particular, ¢ controls
the speed of the algorithm, while (4.10) guarantees the exactness.

Finally, we investigate the sampling of F},, in Algorithm 4.2. The simulation of the stochas-
tic processes Fy, = {F,(y), y € K}, m € N, according to the transformed measure g*H
may not be always straightforward. For some processes, such as the moving maxima pro-
cesses (cf. Section 6.4), the distribution of F,,, can be calculated explicitly, which allows for
efficient sampling. For many other processes, such as Brown—Resnick or extremal ¢ pro-
cesses, there is no direct way to simulate the normalized spectral functions. One solution
is to use the following Metropolis—Hastings algorithm.

Algorithm 4.3: Metropolis—Hastings algorithm for the simulation of normalized
spectral functions

Simulate f() according to the law H.

fork=1,....nycmc —1 do
Sample fP™P from H and set

brop . - oy J suPyer PP (Y)
f with probability min { sup e f®)(y) Ly
sup, e g fP"P(y) }

supye fF) (y)

f(kJrl) _
f®) with probability max {1 —

return f(nmomo)

If H is a probability measure, Algorithm 4.3 generates a Markov chain of length nyone
whose stationary distribution is ¢* H based on simulations from H.

4.4 Evaluating the Modified Optimization Problem

In this section, we discuss how close the modified optimization problem and the original
problem are. Considering the two examples (4.21) and (4.22) of the modified problem, we
have that Qél) < QEJQ) (yo) < Qg for all g under some mild condition on H (see the proof
of Proposition 4.13). Therefore, the modified optimization problem is in fact minimizing
a lower bound of g — (4. This section proceeds in two steps. First, we will improve
the lower bound and show that the normalized spectral representation also minimizes
the improved lower bound function. Second, we give a formula for calculating Q4. In
particular, this formula allows the calculation of Qg+, that is, the expected number of
steps when simulating Z using the normalized spectral representation and the original
stopping rule (4.10).

We start giving bounds for the expected number of iterations in the simulation algorithm.

Proposition 4.13. Assume that the there exists a countable subset Ko C K such that
supye f(Y) = supyek, f(y) for H-a.e. f € H. Denoting by go € G a solution of the
original optimization problem, we get for all yo € K,

1=Q% < Q' (y0) < Qqy < Qy-

Proof. First, the last part of the inequality, g, < @4, holds automatically due to the
optimality of gg. Second, note that

SupyGK f(y) SupyEK f(y>
esssup — < esssup ———————
rer 9(f)supgex ZM(G) = pem 9(f)Z (o)
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and thus le) < QéQ) (yo) for any g and any yo € K. In particular, these inequalities hold
for ¢ = g*. Therefore, we get that Qé}) < Qéz) (yo) for any yo € K.
Third, we show that le) = 1. On the one hand, we have that

fy) ]
sup ——~ =c for g*H-a.e. f € H. 4.35
R ) 39
On the other hand, with (4.8), we obtain
1 i _
sup 2™ (y) = Sup max —;—— fi(y) =cE! forallmeN. (4.36)
yeK yek €N 370 By g *(fi)
Combining equations (4.35) and (4.36) yields
/) S
Q' =Emin{me N: esssup sup ~——== < supZ( m) E;
g feH yng(f) yeK (); !
m—+1
=Emin{meN:c<e¢- ZEj/El =1.
j=1

To complete the proof of the proposition, we show that QgZ) (o) < Qg for all g. We first
consider the case that esssup scp Supycx (% = 00. Since ¢ < oo, by Proposition 4.9, we
get that sup,c i Zm (y) < supye i Z(y) < oo with probability one. Thus, by the definition
of Qél) in (4.21), we get that le) = 00. Consequently, Q4 > Q(gl) = 0o. It is thus proved
that QY < Q,.

Next, consider the case esssup ¢cp SUPye x ((% < 00. Since there exists some countable set
Ko C K such that sup,cx f(y) = sup,cg, f(y) for H-a.e. f € H, we have that

f(y) f(y)

eSSSUp SUp — % = SUp esssup — -
fer yek 9(f)  yero rem 9(f)

Therefore, for every € > 0, there exists some y(¢) € Ky such that

f(y) f(y(e)) f(y)

esssup sup ————~~—— < esssup —————— < esssup sup —————
Lte jem yex 9(N)ZM(y(e)) = yem 9(f)Z(y(e)) = rem yek 9(f)Z™(y)
(4.37)
Analogously to the proof of Proposition 4.3, we have that
m—+1
. 1 supyc f(y) u
Emin{ m e N: ——esssup — = < E;
L+e jem 9(f)Z20M(y(e)) ; !

-3 (o (R S)))
f()

“[o(in (5 i )] = TR

where the last step follows from fH y(e)) H(df) = 1. From (4.25), it is straightforward to
verify that, for any yo € K, Qg(y (yo) = esssup FeH SUDyc K Iy (( f;’ which is mdependent from

the choice of yo € K. Hence, by using (4.37) and taking ¢ — 0, we obtain Qg (yo) < Qg
for any g, which implies that Qg) (y0) < Qgy, due to the optimality of g*. O
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As Proposition 4.13 shows, approximating the optimal number of steps in the original
problem (4.12) by the solution for the two example problems (4.21) and (4.22) might be

quite vague. In particular, the achieved minimum of Qél) always equals to 1. In other
words, some spectral functions that in fact contribute to Z are not taken into account in
the calculation of Q(gl) or Q(QQ).

To overcome the aforementioned pitfall, we proceed with a theoretical investigation to
improve the lower bound of @, for a given density g. The idea is to evaluate ()4 by sepa-
rating two types of spectral functions. First, we consider those functions that contribute
to the max-stable process under the transformed spectral representation. Second, we deal
with those functions that do not contribute, but are taken into consideration because of
the stopping rule. To this end, we replace the processes Z(™ occurring in the construc-
tion of Z by the final process Z(°) given by (4.9). Theoretically, this will not affect the
construction of the process because once we stop after m steps according to the stopping
rule (4.10), we have Z (m) — 7() However, the modified inequality is not a stopping rule.
This is why we call the analysis below a “theoretical investigation”.

We further assume that H corresponds to the space Cy(K) of nonnegative continuous
functions on K endowed with the Borel o-algebra 7. This ensures the finiteness of ¢,
and thus the solvability of all the optimization problems. Note that all the results of this
section hold true for more general spaces H, see Oesting et al. (2013).

In order to separately consider these two types of functions, we adopt the concepts of
K -extremal and K -subextremal points introduced by Dombry and Eyi—Minko (2013) and
Dombry and Eyi-Minko (2012) as follows.

Definition 4.14. Let ® be some Poisson point process on (0, 00) x C4(K) with intensity
measure v~ 2 du x v(dh) where v is a locally finite measure on C (K). We call (t*,h*) € ®
a K-extremal point and write (t*, h*) € ®}. if and only if
t*h*(y) = max th(y) for some y € K.
(t,h)eP
Otherwise, i.e. if t*h*(y) < max pyee th(y) for all y € K, the pair (t*,h*) € @ is called a
K-subextremal point and we write (t*,h*) € ® ..

In contrast to Dombry and Eyi-Minko (2013), we are interested in tuples (¢,h) instead
of the product th. Therefore, we generalize a result given in Dombry and Eyi—Minko
(2013) and show that the random sets ®; and ® are point processes on (0, 00) x C4(K),
i.e. 5 (S) and ®(S) are random variables for any bounded set S € B x C(K); see
the following proposition. The proof runs analogously using the fact that the mapping
¢ :(0,00) x C4(K) = CL(K), (t,h)— th(-) is measurable and is therefore omitted.

Proposition 4.15. ®}. and ®5 are point processes on (0,00) x C4(K).

To apply the theory of extremal and subextremal points in the construction of the process
Z(>) | we define the Poisson point process

@:{(t,g&): (t,f)eﬁ}.

Similar to the proof of Lemma 3.2 in Dombry and Eyi—Minko (2012), the following lemma
characterizes the points of the point process ® ..

Lemma 4.16. Conditional on Z(°), the point process @ is a Poisson point process on
(0,00) x C4(K) with intensity measure

dA

_ -2
m(ta h) =t77g(h) - Ly sg(hy< 200 ()
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In addition, we calculate the expected number of points in the point process @}2 in the
following lemma.

Lemma 4.17. We have

EiPil = £z </c+(z<) ver Z(y) H(df)>

which does not depend on the choice of g.

Proof. Let B = [tg,00) x C4(K) with t9 > 0. Then, ® N B is finite and we have
E ’@} N B‘ =E|®NB|-E ’q);( N B‘. Conditioning on Z(*), Lemma 4.16 yields

E\@}L{QB\:/C(K)/O 21150y dt g(f) H(dS)
+

Z( )( Cy(K)Jo {t>to} {%>SUPyeK¢} g(f) ( f)

9(Hz(®) (y)

=E / / 21 1 dtngdf).
Z( o) Jo 2t} <owpye e 5w (NHAS)

Considering a monotone sequence tg , \, 0 as n — oo, the monotone convergence theorem
yields

+_ =2
Flid _EZ</C+(K)/0 ! 1{t>1/5“py61< h¥w dtg(f)H(df))
f(y) >
=K =~ H(d
Uy )]

which completes the proof. O

The first type of spectral functions that contribute to M, correspond to the extremal
points (t*, h*) € ®. Thus, we can rewrite (4.12) as

o . /) 1
QQ‘E‘q’K”E(H“’h)E‘I’K‘ S S SN2 tH) (4.38)

The second term in the right hand side of (4.38) corresponds to the number of the sec-
ond type of spectral functions: they do not contribute to the max-stable process but are
counted due to the stopping criterion (4.10). Notice that the component E|®}| is inde-
pendent of the choice of g. We thus modify the optimization problems by maintaining this
component, while refining the second component in an analogous way as the modification
in (4.20). This results in a refined version of the modified optimization problem (4.20) as

- . sup er(y) 1
Q, = E|®}| +]E<H(t, h) € @ : f(%esgi?g) m > t}‘) (4.39)

The following proposition relates the minimizer of (4.39) to the solution of our previously
modified optimization problem, g* € G*. In addition, it provides a formula for @, for any
given g based on the results in Lemma 4.16 and 4.17.

Proposition 4.18. 1. For any g, we have

= esssu su &
Qg—Ez< p sup (f)z@))' (4.40)

feCL(K)yeK g
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2. For any maz-linear function T, it holds

su
arg man D argmin esssup M
g

— g*’
9 fecy(k)  9(f)

where Q; is as in (4.39) and G* = arg ming Q.

Proof. Let Z(*) be given by (4.9). By Lemma 4.17, we obtain

_ or
Qg—EZ /C+( ) b == (df)
f(y)

yeK Z( )
E — —1}
* < rec, (k) yek 9(F)Z)(y) =1

{(t, h) € @, : esssup sup
Conditioning on Z(*), Lemma 4.16 yields

E<'{(t, h) € @, : esssup sup Sy > tl}
'(v)
=k t71 1 dtg(f)H(d
Z(/C'+(K)/0 t>1/ esssup sup m t<1/ Sup g(}‘)(g)(y) g(f)H( f))

)

fecy (k) yek 9(f) 2=
heC, (K) yeK

_ h(y)g(f) f(y) } )
—F DIRIT qup 2L (4
Z(/c+(K) {hiséi?% P2 Ry f, )
_ h(y) ] B FW) 1eq
S| e sy | <Bo [ Gy )
In the last step we used the fact that
h(y)g(f) f(y)

esssup sup ————~ — sup ——~ >0
heCy (K)yek 9(R)Z(Y)  yekx Z(y)

for H-a.e. f € C4(K). The first assertion follows.
Analogously to the first part, we get that

A% )
Qg_EZ/@( K)y ek Z(y) H{df)

s
+IE< {(t,h) € ¢ : esssup w >t_1}

recy (k) 9(HT(Z(>)
_ supyer f(¥) 4
E(H 'fiséi?p> o(NT(Ze) ~ }D

)

and

[e.e]

o, (k) Jo t>1/ esssup sup W1t<l/ sup C) dtg(f)H(df))

( heCL (K)yeK 9(f)Z(y)
sy hy) . ) ! wan)
(Lo {hzssi?g Sz ) g}
SupyeK f( ) . f(y)}
( { T(Z) ek 2()
Now, let g € G* = arg ming esssupec, (k) (SUPyex f(y)/9(f)). Then, by Theorem 4.5, we

have that g(f) = ¢! sup,eg f(y) for all f € Cy(K), H-a.e. Thus, we get equality in
Equation (4.41) and hence G* C argminy Q O

I
=

Z

I
=

| \/

sup
H(df) ). (4.41)
N
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Proposition 4.18 leads to two implications in applications. Firstly, it facilitates the nu-
merical calculation of @y = E(M,) by simulation. While Equation (4.40) is difficult to be
evaluated exactly in many cases, it may be used to obtain bounds for EM, such as

esssup sup M < Qg =EM,; < esssup sup ME[( inf Z(y)>_1}. (4.42)

recy (k) yek 9(f) recy (k) yek 9(f) L\yek

This confirms the finding of Proposition 4.2 that esssupfcc, (k) SuPyex % < 00, is a
necessary condition for EM, to be finite.

()

In particular, the result can be applied to analyze Q4+. With P e < ¢, we obtain

Qg < ¢-E[(infyex Z(y))']. (4.43)

This yields that Q4+ < oo if Z is sample-continuous, as in this case we have ¢ < oo and
E[(infyex Z(y))fl] < o0 holds. In other words, the expectation of the stochastic number
Mg, based on the normalized representation is finite. Note that the upper bound in (4.43)
is reached under some mild conditions, see Oesting et al. (2013). We will see that all
examples considered in the present chapter meet these conditions.

Secondly, Proposition 4.18 implies that the minimal value for @; can be achieved by any

g* € G*. As further @ < Q; by construction, we obtain the following corollary.

Corollary 4.19. The optimization problem given in (4.39) is solvable if and only if the
optimization problem (4.20) is solvable (cf. Theorem 4.7). With solvability, the normalized
spectral representation is an optimal solution to (4.39) and (4.20).

This corollary further confirms that using the normalized spectral representation may lead
to an efficient and exact simulation, because the refined optimization problem (4.39) is
closer to the original optimization problem than the modified problem (4.20).

Lastly, we improve the lower bounds for 5. To this end, refined versions of the examples
in (4.21) and (4.22) are considered:

~ (1) . _ supyer f(y) 1
Q. =E|® +E('{ t,h) € . : esssup — > — , 4.44
g @il (1:h) € P recy (k) 9(f) supger Z()(g) ~ t (1.44)

~ (2) B . SUPye K f(y) 1
Qy (o) = EI@ +E<H“”” SO e ) t}D (4.45)

Proposition 4.20. For any gy € G, we have
AL e ~(2) <
1< Qg* > IMlypek Qg* (yO) < ng > Qg*v
where g* € G* is given by (4.28).
.y ~(1) (1) ~(2) (2) . .
By definition, Q," > Q¢ and Q," > Qg for all g. Hence, the results in Proposition

4.20 give improved lower bounds of @4,. The proof is analogous to Proposition 4.13 and
is thus omitted.

4.5 Example: Moving Maxima Processes

In this section, we discuss the normalized spectral representation for the class of moving
maxima processes which can be simulated via an algorithm of Schlather (2002). In this
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case, the normalized spectral functions can be calculated explicitly and are convenient
to handle, which allows a rather general implementation of the simulation procedure for
processes on a grid, see the R package RandomFields (R Core Team, 2018; Schlather et al.,
2019). The procedure is further compared to Schlather’s (2002) algorithm both from a
theoretical point of view and in a simulation study in Section 4.6.
Here, we focus on moving maxima processes on a compact set X C R?, i.e. processes of
the form

Z(y) =¢ max th(y—z), yeK, (4.46)

(t,z)€llnr2

where II 79 is a Poisson point process on (0, 00) x R? with intensity ¢t =2 dt A(dx), A denotes
the Lebesgue measure on R? and h : R? — [0,00) is a so-called shape function satisfying
Jga h(z)dz = 1. Thus, Z has a spectral representation of form (4.1) with

H(A):)\({xe]R{d: h(-—x)eA}), A€

In the following, we will explicitly calculate the distribution of the normalized spectral
functions for moving maxima processes. First, we note that, due to the specific structure
of a moving maxima process Z defined in (4.46), its normalized spectral representation
can be written as

h(y — Xi)

Z(y) =q max ct—=

, YEK,
telly h(Xt)

where Il is a Poisson point process on (0, c0) with intensity measure t =2 dt and X;, t € Iy,
are independent random vectors with Lebesgue density ¢~ 'h(z) dz, h(z) = Supye i h(y—1)
and ¢ = [a fNL(x) dz. Thus, both the function & and the constant ¢ are crucial for the
simulation of the normalized spectral functions. Further, ¢ also occurs in the stopping
rule and thus influences the number of spectral functions considered in Algorithm 4.2. If
h is continuous or K is discrete, the upper bound (4.43) is reached, i.e.

-1
Qg =EMgy =c-E [(ylg}f{Z(y)) ] .

In general, the term E[(infyex Z(y)) 1] cannot be calculated analytically, but needs to be
estimated via simulations. For the implementation of Algorithm 4.2, however, only the
constant ¢ and the function h are needed, both of them depending on the shape function
h and the geometry of the set K.

In the following, we will calculate ¢ and h under different assumptions on the domain K.
We restrict ourselves to the case where the shape function A is radial symmetric and non-
increasing, i.e. h(z) = fo(]|z||) for a non-increasing function fy : [0,00) — [0,00). Then,
in general,

W) = supyerc follly — zll) = fo (minyer [ly — 2|

First, consider the case that K is a d-dimensional ball (0, R) centered at the origin with
radius R, i.e. K = {x € R?: ||z|| < R}. Then,

hz) = fo(0)1{ju<r) + Lie=ry fo(lz| — R), z€R%

and ¢ =vol(b(0,1)) - [fg(O)Rd + d/ooo(f" + R) Lo (7) dir| < o0 (4.47)

where vol denotes the d-dimensional volume.
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Second, consider the case that K is a d-dimensional cube, i.e. the case that K = [ R, R}d
for some R > 0. Then, we get

h((@1s. .5 xa)) = fo ([((za] = R) VO, (Jza| = R) vV O)[]). (4.48)

We consider the subcases d = 1 and d = 2 to derive explicit formulae. If d = 1, then
K satisfies K = [-R, R] = b(0, R), and, according to the formulae above, we get that

h(z) = 1{141<ry fo(0) + (> ry fo(|z| — R) and thus,

c:/fz(a:)d:r:2Rfo(0)+/ Follz]) dz = 2R£o(0) + 1.
R i

|z|>0}

If d = 2, we obtain

h(x) = Lfja; Viwa|<r} 0(0) + 2 1o |Alzo| <R jz1 [Viea|> R} fo(([Z1] A |22]) — R)
+ 1z |Afeaf>rY fo ([(J71] = R, [22] = R)]) -

Thus,
c= (2R o) + 4R [ folel)dn+ [ ollel)de = aR2F(0) + 4R [ follal o+ 1.

Next, we further specify explicit examples on the function fy, under which the constant ¢
can be further calculated.

Example 4.21. 1. Indicator function
We consider the case that the shape function is the indicator function of a ball b(0,r)
with radius v > 0 centered at the origin, i.e. fo(||lz|) = 1{z<r}- In this case we
have h(z) = L keb0,)}(7) and ¢ = vol(K @ b(0,7)) where © denotes morphological
dilation. Here, all the finite approximations derived from the normalized spectral
representation coincide with the corresponding approximations resulting from the
algorithm proposed by Schlather (2002). See Section 4.6 for details on this algorithm.

2. Smith model
As a second example, we consider the Gaussian extreme value process (Smith, 1990)
where fo is a Gaussian density function. Here, for simplicity, we assume the shape
function is the density of a multivariate normal random vector Y ~ N (0, c%1d) with
o > 0. Thus, it is a radial symmetric monotone function. Let K = [~R, R]¢ for
some R > 0. Then, by the considerations above, we get that h is of type (4.48) and
ford=1,2, we obtain

2R 4, d=1
2
25y 40, /2811 d=2.

s g
Remark 4.22. Note that the results can easily be generalized to the case of mixed moving
maxima processes (Schlather, 2002; Stoev and Taqqu, 2005), i.e. the case where the
deterministic shape function A is replaced by independent copies of a random function.
See Oesting et al. (2013) for details.
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4.6 Simulation: Comparison to Other Algorithms

In this section, we investigate the number of spectral functions needed in simulating a
max-stable process, considering the suggested normalized spectral representation as well
as other algorithms. In Subsection 4.6.1, we compare it with the analogous number in
Schlather’s (2002) algorithm for moving maxima processes. Then, we compare simulations
via the normalized spectral representation to the recent algorithms devised by Dieker
and Mikosch (2015) and Dombry et al. (2016a) focusing on Brown-Resnick processes in
Subsection 4.6.2. Besides the number of spectral functions, we further consider the actual
computational costs accounting for the fact that simulation of the normalized spectral
functions is not straightforward in this case.

4.6.1 Comparison to the Algorithm Proposed in Schlather (2002)

Let Z be a moving maxima process on K C R? as defined in (4.46). Assume that the shape
function h is bounded and has compact support, i.e. h(z) < C for all x € R? for some
C > 0 and supp(h) C b(0,7)}) for some r > 0. Schlather’s (2002) algorithm considers the
following equivalent representation

Z(y) —d \K®b(0,r)| - max M

k ) y E K7

where F; are standard exponentially distributed random variables, F; follow the law 7, U;
are uniformly distributed on K @ b(0,7) and all these random variables are independent.
Following Schlather’s (2002) algorithm, the number of simulated spectral functions is then
a random number defined as

C Fip.(x — U
M = min mENzilginf maxM .

Here, analogously to Proposition 4.18, the following result can be shown.

Proposition 4.23. The expectation of M, defined as above, equals

|K @ b(0,r)] -C>
infyeK Z(y) ‘

EM =E (
Thus, the ratio between the expected numbers of spectral functions considered by the

normalized spectral representation and by Schlather’s (2002) algorithm is

Qg  EMg c
EM EM  |K®b0,r)|-C

If the shape function h is bounded, but not compactly supported, the max-stable process
Z can be approximated using a shape function which is cut off outside a compact set J,
ie. heut(r) = h(z) - Lizeyy. Let Uk ~iiq Unif(K & J) where J = {—z : z € J}, and
Zj(-) be given by

)’ hcut(y_ﬁn)
7z = |K®J| max <\ 1)
) = K& J]-max S E

Then, the number M of shape functions that need to be considered is finite a.s., and, by
Proposition 4.23, its expectation equals EM; = E ((infycx Z;(y)) ™" - |K & J| - C). Hence,

y € K,
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in the approximative case, the ratio of expected numbers of spectral functions considered
by the two algorithms, can be written as the product

Qg* EMg*
- = Ag.g P 4.4
EM; EM, K,J 1K, J, (4.49)
E (su Z(y) "t
where A j = _° ad Pr.j = (supycx Z(y) 1) '
(K& .J]-C E (supyex Zs(y))

The first factor Ag ; refers to the domain of the Poisson point process, and the second
factor Pk ; refers to the precision of the approximation by Schlather’s (2002) algorithm.
As heut (1) < h(+), we have that Pk y < 1 with lim; sge Pr,; = 1. Thus, we obtain the
upper bound Qg+«/EM; < Ak, y which can be calculated via the formulae for ¢ obtained
in Section 4.5. The factor Py j, however, cannot be calculated explicitly in general, but
needs to be accessed via simulation.

In view of these theoretical observations, we perform a simulation study for Smith’s (1990)
model described in Example 4.21 on a rectangle [~ R, R]¢ for d = 1,2. For the simulation
algorithm of Schlather (2002), we need an approximation as described above. Here, a
natural choice for cutting off the shape function is J = [~ko, ko]? for some k € N. Then,
by Example 4.21, the first factor Ary = A|_pg gl [—kokoe I Equation (4.49) equals
(R/o + \/7/2)¢/(R/o + k)%, ie. Ay < 1 if and only if & > /7. In order to access
Prk = P_R R4 [—ko,ko¢ and the exact values of Qg+ and EM|_, ,1a, we choose o = 1
and simulate Z and Zj_; jj« for k = 2,3 on a grid K = {-R,—R+h,...,R— h, R},
d = 1,2. For simplicity, the normalized spectral representation is chosen as if K was the
rectangle [~ R, R]%.

In the case d = 1, for h = 0.1 and each R € {1,2,5,10,50,100} we simulate each process
N = 5000 times. The values of Q)4+ and EM[_ka]d are estimated via the corresponding

empirical means denoted by Qg* and m (the corresponding emopirical standard devi-

ations are denoted by s(/]W;) and @, respectively). We use a plug-in estimator P R,k
for Pp ), that is based on the empirical means of sup, ¢ Z(y)~! and SUPy ek Z[_hk]d(y)_l.
The results of the simulation study are shown in Table 4.1.

First, we note that — in accordance to Equation (4.49) — Qg is always smaller than
EM (—k,kj¢- For instance, for R = 1, the number of considered shape functions is decreased
by 29% (k = 2) and 43% (k = 3), respectively. Furthermore, we observe that Ppy
seems to be almost constant in R, namely Pro ~ 0.95 and Pr3 ~ 1 which shows that
the approximation of Z by Z|_3 3 is sufficiently good for ~ = 0.1. Thus, the behavior
of Qg*/EM[_hk] is basically driven by Apgj; which tends to 1 as R — oo. For large R,
Qg+ /EM[_}. 1) = Prj. This explains the surprising fact that EM|_5 9 > EM|_53 even
though the approximation of Z by Z|_j 9] is less accurate than that by Z|_3 3.

Next, we perform the simulation for d = 2, R € {1,2,5,10} and h = 0.25. Each process
is simulated N = 2500 times. The results are shown in Table 4.2. In general, the results
are similar to our observations for d = 1. However, for d = 2 the improvements compared
to Schlather’s (2002) algorithm are even more distinct. In the case R = 1, the number of
considered spectral functions is decreased by 45% (k = 2) and 69% (k = 3), respectively.

4.6.2 Comparison to the Algorithms Proposed in Dieker and Mikosch (2015)
and Dombry et al. (2016a)

Recently, Dieker and Mikosch (2015) proposed an exact algorithm for the simulation of
Brown—Resnick processes on a finite set. In Dombry et al. (2016a), a generalization of this
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Table 4.1: Results for simulations of Z (via the normalized spectral representation) com-
pared to Z[_ ) with k = 2 (top) and k = 3 (bottom), on the 1-dimensional grid
{-R,—R+0.1,...,R—0.1, R} for different R. For each case, Apj and the esti-
mates for Qg+, EM|_y 3 and Pg as well as the corresponding sample standard
deviations are displayed, based on N = 5000 simulations of each process.

R EMQ Qg* ARQ PR72 S(Mg) S(Mg*)
1 438  312(29%) 0.75 094 284 1.85

2 7.57 5.73 (24 %) 0.81 0.94 4.10 3.06

5 18.83 15.82 (-16 %) 0.89 0.95 7.93 6.68
10 40.57  35.63 (-12 %) 0.94 0.94 14.03 12.55
50 257.61 239.75 (- 7%) 0.99 094 62.63 60.96
100 579.11 540.44 (- 7%) 0.99 094 124.66 117.76
R EMg Qg* AR73 PR73 S(Mg) S(Mg*)
1 5.46 3.12 (43 %) 0.56 1.00 3.78 1.85

2 8.93 5.73 (-36 %) 0.65 0.98 5.13 3.06

5 1998 15.82(-21 %) 0.78 1.02 8.71 6.68
10 41.16  35.63 (-13 %) 0.87 1.00 14.82 12.55
50 24735 239.75 (- 3%) 097 1.00 60.14 60.96
100 550.70 540.44 (- 2 %) 0.98 1.00 114.36 117.76

Table 4.2: Results for simulations of Z (via the normalized spectral representation) com-
pared to Z|_j 2 with k = 2 (top) and k = 3 (bottom), on the 2-dimensional
grid {—R,—R+0.25,..., R—0.25, R}? for different R. For each case, Ag and
the estimates for Qg+, EM|_j, 12 and Pry as well as the corresponding sam-
ple standard deviations are displayed, based on N = 2500 simulations of each

process.
R EM; Qy- Apz Pra s(My) s(Mg)
1 1486 814 (-45%) 056 096 9.26 4.65
2 40.17  26.32 (-34 %) 0.66 1.00 18.07 10.96
5 189.83 150.89 (-21 %) 0.80 0.99 49.32 40.96
10 727.33 636.03 (-13 %) 0.88 0.99 146.88 127.36
R EM; Qyr Ars Prs  s(Ms) s(My)
1 26.37 8.14 (-69 %) 0.32 0.96 16.63 4.65
2 61.07 26.32 (-57 %) 0.42 1.03 26.99 10.96
5 247.10 150.89 (-39 %) 0.61 1.00  65.75 40.96
10 839.44 636.03 (-24 %) 0.75 1.01 168.31 127.36
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algorithm and a novel exact simulation procedure based on extremal functions have been
presented. Denote the number of stochastic processes to be simulated for obtaining an
exact simulation on K via the (generalized version of the) Dieker-Mikosch algorithm and
via the extremal functions approach by M (DM) and MEF), respectively. Then, it can be
shown that

EMPM) = |K|. R
yeK

(inf Z(y)>_1] and EMWFF) = |K| (4.50)

(cf. Dombry et al., 2016a). As E[(infyex Z(y))™!] > 1 for any max-stable process with
standard Fréchet margins, we have EM(PM) > ENM(EF) | Further, the underlying stochas-
tic processes follow mixtures of the same laws. Consequently, between these two ap-
proaches, the one via extremal functions is always preferred in terms of the average com-
putational costs of simulation.

In this subsection, we will compare the computational costs of these algorithms to that
of simulation via the normalized spectral representation for simulating Brown—Resnick
processes. This is what the original Dieker—Mikosch algorithm was designed for. Let Z
be a Brown-Resnick process on K C R associated to a variogram v (Kabluchko et al.,
2009), i.e. a max-stable process with representation (4.1) with H being the probability
measure of the stochastic process

W(y) = exp <G<y> - ;Var@(y))) . yeRr-

Here G is a centered Gaussian process with stationary increments and variogram ~ defined
as v(h) = E(W(y + h) — W(y))2. In the following, we consider a Brown-Resnick process
associated to the variogram (k) = ||h|| on the rectangle [0, 1]?. We simulate N = 500 real-
izations of the process on the grids {0,0.05,...,0.95}2 (400 points) and {0, 0.01,...,0.99}2
(10000 points), respectively, via each of the three algorithms on a 2.90 GHz processor.
We start with comparing the average numbers of spectral processes to be simulated, i.e.
Qg+ = EMye, EMPM) and EMFF). Since the terms c in (4.43) and E[(inf,cx Z(y)) ]
in (4.43) and (4.50) often cannot be calculated explicitly, the above expectations need
to be estimated via simulations. Furthermore, in the Dieker—Mikosch algorithm and the
extremal functions approach, we can directly simulate the underlying spectral functions
as a single log-Gaussian process, whereas we have to use the Algorithm 4.3 to simulate the
normalized spectral functions. For each process F(™) we simulate nycarc log-Gaussian
processes. Consequently, a fair comparison across the three algorithms should be based
on the average computational costs accounting for the number of simulated log-Gaussian
processes. The costs for the simulation via the normalized spectral representation, the
Dieker—Mikosch algorithm and the extremal functions approach are thus

(g Z<y>)1] ,
(s.70) |

We use nyome = 100, 500 and 1000 in our simulation. The normalization constant c
is finally estimated by the average of the maxima of the ny;cymc log-Gaussian processes
simulated in each Markov chain.

CWSB) — nyione - EMye = nyrome - ¢ - E

cPM) — gp(PM) — |K| - E

and CPFF) = EMEF) = |K|.
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Finally, we consider the exactness of the simulations. Notice that the Dieker—-Mikosch
algorithm and the extremal functions approach yield exact realizations of the Brown-—
Resnick process. This is true for the normalized spectral representation approach only if
the Markov chains have converged. Therefore, we need to evaluate the quality of the sim-
ulations. As a measure of exactness, we first calculate the Kolmogorov—Smirnov distance
between the standard Fréchet distribution ®; and the empirical cumulative distribution
function F . obtained from the N = 500 realizations Z;(y), ..., Zn(y) at each location

(500)
y. Then we calculate the average of these distances across all y € K i.e.

— 1
drs = & > 1) — ®illoo-
yeK

Further, we consider the extremal coefficient (Smith, 1990; Schlather and Tawn, 2003),
0(y1,y2) defined by

P(Z(p) < 2 Z(y2) < 2) =P(Z(y) < 2)"0%), 2 >0,

as a measure of extremal dependence between Z(y;) and Z(yz). By definition, we have
O(y1,y2) € [1,2] with 0(y1,y2) = 1 if Z(y1) = Z(y2) a.s. and 6(y1,y2) = 2 if Z(y;) and
Z(y2) are independent. For a Brown-Resnick process Z, we have 0(y1,y2) = 2®(\/v(h)/2)
where ® denotes the standard normal distribution function. We estimate the extremal
coefficients making use of the relation

14207 (y1,92)
0 = —F K 4.51
(y1,92) 1= 20 (y1, 40)’ Y1,Y2 € K, (4.51)

between 6(y1,y2) and the F-madogram (Cooley et al., 2006)

1
vE (y1,2) = §E|Fyl(Z(y1)) — FY(Z())|» y1,Yy2 € K,

with F() being the cumulative distribution function of Z (y), y € K. The F-madogram
can be estimated non-parametrically by

N

Z [Ri(y1) — Ri(y2)l,  v1,92 € K,
i—1

- 1
V) = onv T

where R;(y) denotes the rank of Z;(y) (Ribatet, 2013). Plugging the estimator v (y1, y2)
into relation (4.51), we obtain an estimator 8(yy, ) and 6(y1,y2). As a measure of quality
of the simulations, we calculate the root-mean-square error between the estimated and the
theoretical extremal coefficients, i.e.

1/2

o= 3 (0w 22/ —wl/2)’

D}’ (y1,92)€Y

for some finite set Y C K x K\ {(y,y) : y € K}.

Table 4.3 reports the average number of simulated spectral functions M, the average
computational costs both in terms of the number of log-Gaussian processes simulated C
and in terms of the CPU time for a single simulation (in seconds), the average Kolmogorov—
Smirnov distance dig and the root-mean-square error dpc based on 79800 pairs. We
note that the average CPU time ? is effectively proportional to the average number C of
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Table 4.3: Results for simulations of Brown—Resnick processes on the 2-dimensional grids
{0,0.05,...,0.95}2 (top) and {0,0.01,...,0.99} (bottom). For simulation via
the normalized spectral representation with nyconc = 100, 500 and 1000
(N R100, N Rs00 and N R1ggp), the Dieker—Mikosch algorithm (DM) and simula-
tion via extremal functions (EF), the average number M of simulated spectral
functions, the average computational costs C' (with sample standard deviation
s(C)), the average CPU time ¢ (with sample standard deviation s(t)), the av-
erage Kolmogorov-Smirnov distance dig and the root-mean-square error dpc
are displayed.

M C t dxs drgc s(C) s(t)
NSRi00 7 704 0.13 0.030 0.011 492 0.07

7

7

NS Rs00 3677 0.56 0.060 0.014 2462 0.36
NSRi000 7244 1.07 0.047 0.020 4971 0.71
DM 932 932 0.17 0.036 0.020 713 0.11
EF 390 390 0.09 0.036 0.013 355 0.05

M C t dis dro s(C) s(t)
NS Ry 9 896 108 0.041 0.012 666 81

9

9

NS Rs00 4357 522 0.028 0.013 2888 346
NSRi000 9194 1095 0.040 0.011 6131 737
DM 26270 26270 3126 0.027 0.012 21199 2542
EF 9361 9361 1116 0.0564 0.015 8448 1014

simulated log-Gaussian processes. For the grid {0,0.05,...,0.95}2, we observe f ~ 2-107*C'
while we have  ~ 0.12C for the grid {0,0.01,...,0.99}2. Smaller deviations from this
proportion in case of the first grid are mainly due to some preparatory computations which
have a larger effect in case of small C. Thus, we can conclude that C is an appropriate
measure of the computational costs of the simulations.

Comparing the results for the different algorithms in more detail, we first focus on the
exactness of the simulations via the normalized spectral representation. As both the
Kolmogorov—Smirnov distances and the root-mean-square errors for the extremal coeffi-
cients indicate, the Markov chains converge quite fast. In all the cases, both measures of
the quality of the simulations via the normalized spectral representation are comparable
to those for the exact simulations via the Dieker—-Mikosch (2015) algorithm or via extremal
functions. Therefore, the algorithms perform with equivalent exactness even though the
algorithm based on the normalized spectral representation provides approximations only.
Secondly, the number of simulated normalized spectral functions in our algorithm is much
lower than that in the other two algorithms. This difference becomes even more pro-
nounced in the case of a dense grid: While the numbers of simulated processes in the
Dieker—Mikosch (2015) algorithm and the algorithm via extremal functions grow (at least)
linearly in | K|, that in our algorithm remains bounded and practically stable (increased
from 7 to 9), as long as K C [0,1]%.

Lastly, even though the computational costs of a single normalized spectral function in
our algorithm is npsopr¢ times higher than that for the other two algorithms, on a dense
grid, the total computational costs is much lower than that via the other two algorithms.
The aforementioned three features make the simulation via the normalized spectral rep-
resentation very attractive, particularly when the process should be simulated at a large
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number of locations on a dense grid. Simulation via extremal functions (Dombry et al.,
2016a) is preferred only if the process should be simulated at a small or moderate number
of locations.

4.7 Summary and Discussion

Whilst in the definition of a max-stable process an infinite number of spectral functions is
involved, the minimal expected number of spectral functions that are actually needed for
a simulation is an open problem. We consider two substitution problems, problems (4.20)
and (4.39), and show that the unique normalized spectral representation is a solution in
both cases. Consequently we propose a simulation algorithm based on the normalized
spectral representation.

Our simulation result reveals two advantages of the proposed algorithm. First, it improves
the algorithm of Schlather (2002) for (mixed) moving maxima processes, because in this
case the normalized spectral functions can be simulated easily.

Secondly, it is competitive to other algorithms even if simulation of the underlying nor-
malized spectral functions from the transformed measure g* H is not straightforward, such
as in the simulation of Brown—Resnick processes, even though simulations are no longer
exact in this case. Similar results are also expected for other popular max-stable models,
such as the extremal Gaussian (Schlather, 2002) and extremal ¢ processes (Opitz, 2013).
Although the problem (4.39) is rather close to the original problem (4.12), it remains
unclear whether the normalized spectral representation is also the solution to the original
one. It is even not known whether different initial choices of the spectral representation
in (4.1) may lead to the same solution via renormalizations g in (4.7) and whether the
solution is unique.

Other representations of max-stable processes may also allow for exact simulations. For
example, Wang and Stoev (2010) considered a representation based on a finite number
of Fréchet variables when the spectral measure H is discrete. Our approach may be
advantageous if the number of Fréchet variables gets large while the domain K is bounded.
The assessment of the relative performance is left to future research.
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5 Sampling Sup-Normalized Spectral
Functions for Brown—Resnick Processes

joint work with Martin Schlather and Claudia Schillings

Up to some minor modifications, this chapter is reprint of the research article Oesting
et al. (2019) which has appeared in Stat.

Sup-normalized spectral functions form building blocks of max-stable and Pareto processes
and therefore play an important role in modeling spatial extremes. For one of the most
popular examples, the Brown—Resnick process, simulation is not straightforward. In this
chapter, we generalize two approaches for simulation via Markov Chain Monte Carlo
methods and rejection sampling by introducing new classes of proposal densities. In both
cases, we provide an optimal choice of the proposal density with respect to sampling
efficiency. The performance of the procedures is demonstrated in an example.

5.1 Introduction

Spatial and spatio-temporal extreme value analysis aims at investigating extremes of quan-
tities described by stochastic processes. In the classical setting, the real-valued process
of interest X = {X(t),t € K} is sample-continuous on a compact domain K C R
Analysis of its extremes is often based on results of the limiting behavior of maxima of
independent copies X;, ¢ € N. Provided that there exist continuous normalizing func-
tions a, : K — (0,00) and b, : K — R such that the process of normalized maxima
{max?_ | a; 1(t)-(Xi(t)—bn(t)), t € K} converges in distribution to some sample-continuous
process Z with nondegenerate margins as n — oo, the limit process Z is necessarily max-
stable and we say that X is in the max-domain of attraction of Z.

From univariate extreme value theory, it follows that the marginal distributions of Z
are necessarily generalized extreme value (GEV) distributions (cf. de Haan and Ferreira,
2006, for instance). As max-stability is preserved under marginal transformations between
different GEV distributions, without loss of generality, it can be assumed that Z has
standard Fréchet margins, i.e. P(Z(t) < z) = exp(—1/z), 2 > 0, for all t € K. By de Haan
(1984), any sample-continuous max-stable process with standard Fréchet margins can be
represented as

Z(t) =4 %%X{Ui-%(t)}, te K, (5.1)

where the so-called spectral processes V;, ¢ € N, are independent copies of a nonnegative
sample continuous stochastic process V on K satisfying E{V;(¢)} =1 for all t € K, and
Y ien Ov; is a Poisson point process on (0,00) which is independent of the V; and has
intensity measure A given by A{(u,o0)} = w1 for all u > 0.

Due to its complex structure, many characteristics of the max-stable process Z in (5.1)
cannot be calculated analytically, but need to be assessed via simulations. In order to
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simulate Z efficiently, Oesting et al. (2018b) suggest to make use of the sup-normalized
spectral representation

Ve (1)

IVl

Z(t) =4 max {Ui oo - } te K, (5.2)
€N

where the U; are the same as above, the processes V;"*** are independently and identically

distributed, independently of the U;, with distribution P(V™#* € .) given by

P(V™ ¢ B) = ¢} - / |v||lP(V € dv), B €C(K), (5.3)
B

and || f|lcc = supsex f(t) for every f € C(K), where C(K') denotes the set of all real-valued
continuous functions on K equipped with the supremum norm || - ||« and corresponding
o-algebra C(K). Here, the normalizing constant coc = E{||V||~} is the so-called extremal
coefficient of the max-stable process Z over the domain K. In a simulation study, Oesting
et al. (2018b) demonstrate that simulation based on the sup-normalized spectral repre-
sentation is competitive to other state-of-the-art algorithms such as simulation based on
extremal functions (Dombry et al., 2016a) provided that the normalized spectral process
Ve can be simulated efficiently.

The law of the processes V™ also occurs when analyzing the extremes of a stochastic
process X in an alternative way focusing on exceedances over a high threshold: If X is in
the max-domain of attraction of the max-stable process Z in (5.1), we have

1 Vm&X(‘)
V02| g
as x — 0o, where P is a standard Pareto random variable and V™ is an independent
process with law given in (5.3). The limit process PV™#(.)/[|[V™ ||, is called Pareto
process (cf. Ferreira and de Haan, 2014; Dombry and Ribatet, 2015).

Arising as sup-normalized spectral process for both max-stable and Pareto processes,
the process V™2* plays an important role in modelling and analyzing spatial extremes.
As a crucial building block of spatial and spatio-temporal models, this process needs to
be simulated in an efficient way. Due to the measure transformation in (5.3), however,
sampling of V™# is not straightforward even in cases where the underlying spectral process
V can be simulated easily.

In the present paper, we focus on the simulation of V™#* for the very popular class of log
Gaussian spectral processes, i.e. V() = exp(W (t)) for some Gaussian process W such that
E{exp(W(t))} = 1 for all t € K. The resulting subclass of max-stable processes Z in (5.1)
comprises the only possible nontrivial limits of normalized maxima of rescaled Gaussian
processes, the class of Brown—Resnick processes (Kabluchko et al., 2009; Kabluchko, 2011).
In order to obtain Brown—Resnick processes that can be extended to stationary processes
on R?, Kabluchko et al. (2009) consider W (t) = G(t) — Var{G(t)}/2, t € K, with G being

a centered Gaussian process on R? with stationary increments and variogram
1
v(h) = SE{(G(t+h) - G1)*}, theR™
It is important to note that the law of the resulting max-stable process Z does not depend

on the variance of W, but only on 7. Therefore, Z is called the Brown-Resnick process
associated with the variogram .
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Recently, Ho and Dombry (2017) introduced a two-step procedure to simulate the corre-
sponding sup-normalized process

Vmax(.)
Ty = P (W) — W)
Voo
efficiently if the finite domain K = {t1,...,tx} is of small or moderate size:

1. Sample the index i of the component where the vector V& = (V™ (¢1)) 1 N
assumes its maximum, i.e. select one of the events V™ ¢ G, = {s € (0,00)" :
Is|lcc = si}, ¢ =1,...,N. Provided that the covariance matrix C of the Gaussian
vector W = (W (t;))Y, is nonsingular, we have that this index is a.s. unique and
that the probabilities of the corresponding events can be calculated in terms of the
matrix Q € RY*N and the vector m € RY given by

Ccliy1,C™! 1 1-iscTC™1

Q:C_l—TN—{V and m:—<70+ 27 NlT)C_1
1ch 1N

where o = (Var(W (tx)))k=1,....n denotes the variance vector of W and, furthermore,

1y =(1,...,1)T € RN, More precisely, by Ho and Dombry (2017),

P (V™" e S))
det(Q—;) Y2 exp{im”,Q"'m_;}On_1(0n_1;Q"jm_;, Q"))

S det(Q_ ;)2 exp{3m! ,Q tm_;}dy_1(0n_1;Q°Im_;,Q_})
where m_; denotes the vector m after removing the jth component, Q_; denotes
the matrix Q after removing the jth row and jth column and ®x_1(On_1;p, X)
is the distribution function of an (N — 1)-dimensional Gaussian distribution with

mean vector p € RY~! and covariance matrix ¥ € RWV-DXWVN-1 eyaluated at
On_1=(0,...,0) € RVN-L,

2. Conditional on V™ ¢ S, we have V™*(¢;) /|| V™®||» = 1 and the distribution of
the vector M = (log(V™*(t;))) ji —log(||[V™**||) is an (/N —1)-dimensional Gaussian
distribution with mean vector Q:ilm_i and covariance matrix Q:} conditional on
M being nonpositive.

However, the first step includes computationally expensive operations such as the evalua-
tion of (N — 1)-dimensional Gaussian distribution functions and the inversion of matrices
of sizes N x N and (N — 1) x (N — 1). Furthermore, an efficient implementation of the
second step is not straightforward. Thus, the procedure is feasible for small or moderate
N only.

In this paper, we will introduce alternative procedures for the simulation of V™ or,
equivalently, W™&* = log V/™#*  that are supposed to work for larger N, as well. To this
end, we will modify a Markov Chain Monte Carlo (MCMC) algorithm proposed by Oesting
et al. (2018b) and a rejection sampling approach based on ideas of de Fondeville and
Davison (2018). Both procedures have originally been designed to sample sup-normalized
spectral functions in general. Here, we will adapt them to the specific case of Brown—
Resnick processes.

5.2 Simulating W™** via MCMC algorithms

Based on the Brown—Resnick process as our main example, we consider a max-stable pro-
cess Z with spectral process V = "V for some sample-continuous process W. Henceforth,
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we will always assume that the simulation domain K = {t1,...,tx} C R? is finite and
that the corresponding spectral vector W possesses a density f w.r.t. some measure p
on RY. Then, by (5.3), the transformed spectral vector W™a* = log(V™aX) ' where the
logarithm is applied componentwise, has the multivariate density

4+ N
Smax(w) = coo1 max exp(w;) f(w), w e RY,

which obviously has the same support as f, i.e. sSupp(fmax) = supp(f).

As direct sampling from the density fuax is rather sophisticated and the normalizing
constant ¢ is not readily available, it is quite appealing to choose an MCMC approach
for simulation. In the present paper, we focus on Metropolis-Hastings algorithms with
independence sampler (cf. Tierney, 1994, for example). Denoting the strictly positive
proposal density on supp(f) by fprop, the algorithm is of the following form:

Algorithm 5.1: MCMC Approach (Metropolis—Hastings)
Input: proposal density fprop
Simulate w(® according to the density Jorop-

for k£ = 1,...,nMCMC do
Sample w from frop and set

") w with probability a(w(k_l), w),
w p—

k=1) " with probability 1 — a(w(k_l),w),
where the acceptance probability «f(-,-) is given by (5.4).

Output: Markov chain (w),. .. wmomc)),

w!

Here, the acceptance ratio a(w, w) for a new proposal w € supp(f) given a current state
w € supp(f) is

(W, w) = min{ (5.4)

fmax(w)/fprop(w)
fmax(ﬁ)/fprop(ﬁ) ’ 1} 7

using the convention that a ratio is interpreted as 0 if both the enumerator and the
denominator are equal to 0. This choice of a(w,w) ensures reversibility of the resulting
Markov chain {w®)},cn with respect to the distribution of W™ Further, it allows
for a direct transition from any state w € supp(f) to any other state w € supp(f).
Consequently, the chain is irreducible and aperiodic and, thus, its distribution converges
to the desired stationary distribution, that is, for a.e. initial state w(®) € supp(f), we have
that

[P (w @) — P(W™ € )||py =30, (5.5)

where P™(w(®,.) denotes the distribution of the n-th state of a Markov chain with initial
state w® and || - ||pv is the total variation norm.

As a general approach for the simulation of sup-normalized spectral processes of arbitrary
max-stable processes, Oesting et al. (2018b) propose to use Algorithm 5.1 with the density
f of the original spectral vector W as proposal density (Algorithm 1A) and the Metropolis-
Hastings acceptance ratio in (5.4) simplifies to

max)y | evi

N

,,1}, w,w e RV, (5.6)
max;’ , eWi

(@, w) = min{
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As the proposal density fprop = f is strictly positive on supp(f), convergence of the
distribution of the Markov chain to the distribution of W™#* as in (5.5) is ensured. If the
support of f is unbounded, however, there is no uniform geometric rate of convergence of
the chain in (5.5), as we have

essinf M = essinf <coo . ni\i[n ewi) =0
weRN fmax(w) weRN 1=1

(Mengersen and Tweedie, 1996). In particular, this holds true for the case of a Brown—
Resnick process where W is a Gaussian vector.

Furthermore, due to the structure of the acceptance ratio in (5.6), the Markov chain may
get stuck, once a state @ with a large maximum max?_; exp(w;) is reached. This might
lead to rather poor mixing properties of the chain. Even though independent realizations
could still be obtained by starting new independent Markov chains (cf. Oesting et al.,
2018b), such a behavior is undesirable having chains in high dimension N with potentially
long burn-in periods in mind.

While the algorithm in Oesting et al. (2018b) is designed to be applicable in a general
framework, we will use a specific transformation to construct a Markov chain with stronger
mixing and faster convergence to the target distribution. For many popular models such
as Brown—Resnick processes, this transformation is easily applicable. More precisely, we
consider the related densities f;, i = 1,..., N, with f;(w) = exp(w;) f(w). These densities
are closely related to the distributions P; that have been studied in Dombry et al. (2016a).
Hence, we propose to approach the target distribution with density fiax = ¢t maxi]il fi
by Algorithm 5.1 using a mixture

N
fprop = szfz (57)

=1

as proposal density, where the weights p; > 0, ¢ = 1,..., N, are such that Zf\il p; = 1.
The corresponding acceptance probability in (5.4) is then

N w; N LLW;
G(w, w) = min § =L /Z,N:m{ 1% (5.8)
max;  evi/ . piet

With the proposal density being strictly positive on supp(f), we can see that the distribu-
tion of the Markov chain again converges to its stationary distribution with density fiax-
As we further have

N w N
. w . > o piei V
inf fprop( ) = inf 174—1—pl = Coo - Minp; > 0’ (59)
weRY  fmax(w weRN cog max{il ewi i=1

provided that p; > 0 for i = 1,..., N, the results found by Mengersen and Tweedie (1996)
even ensure a uniform geometric rate of convergence for any starting value w® € supp(f)
in contrast to the case where fyrop = f.

In order to obtain a chain with good mixing properties, we choose p; such that the accep-
tance rate in Algorithm 5.1 is high provided that the current state w®) is (approximately)
distributed according to the stationary distribution. To this end, we minimize the relative
deviation between fyrop and frax under frax, i.e. we minimize

D(p1,...,pn) = /RN <m - 1>2 fmax(w) dw,
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under the constraint Zfi 1 pi = 1. Introducing a Lagrange multiplier A € R, minimizing

D(p17"-7pN -

Jj=1
1 rnax W (¢ o0

2
7, 1pe Wit) _1> c—l maxi_ | W(t;)
)

N N
ZZ zpkE{ t)+W (t) —max_ | W (t; )} 1
1=1 k=1

results in solving the linear system

(3 5 (%)-(%): 610
where p = (p1,...,pn)" and X = (0ik)1<i k<N With
git, = B{ VW (t) —maxil, W(t) (5.11)
Provided that the matrix 3 is nonsingular, the solution of (5.10) is given by

2_111\7

5.12
1, 11y (5:12)

p =
(cf. Cressie, 1993, for instance). This solution does not necessarily satisfy the additional

restriction p; > 0 for all # = 1,..., N. In case that ¥ is singular or the vector p has at
least one negative entry, the full optimization problem

miinEp
st. 1yp=1 (QP)
p; >0 Vi=1,...,N,

has to be solved. Using the Karush-Kuhn—Tucker optimality conditions, the quadratic
program (QP) can be transformed into a linear program with additional (nonlinear) com-
plementary slackness conditions. It can be solved by modified simplex methods. Alter-
natively, the problem (QP) can be solved by the dual method by Goldfarb and Idnani
(1983).

Remark 5.1. In order to ensure a geometric rate of convergence of the distribution of
the Markov chain, we might replace the condition p; > 0 for all i = 1,..., N, in (QP) by
p; > € for some given € > 0. Then, a geometric rate of convergence follows from (5.9) as
described above.

In the case of Brown—Resnick processes, for simplicity, we consider the case that the
random vector W possesses a full Lebesgue density. In particular, the covariance matrix
C = (Cov(W(t:), W(tj)))lgththN of W is assumed to be nonsingular. Then, the target
density is

rnax(w) = ¢ I?:]gtfc exp(w;) f (w)

e maxlY | exp(w;) 1 oNT o N
= om) V2 der(C) 12 exp {—2 (w—i— —) C (w + 2)} , weRY,
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where o = (Var(W (t;)))k=1,.. v is again the variance vector of W. Now, the densities
fi(w)) = e™i f(w) which form the proposal density are just shifted Gaussian distributions:

filw) = ﬁ%exp{—; (w + %)Tc—l ('w-l- ;)}

e e e GRS R R )

cf. Lemma 1 in the Supplementary Material of Dombry et al. (2016a), i.e. we have
LW = L(W +C)) (5.13)

where the Gaussian vectors W) and W possess densities f; and f, respectively. The
calculation of the optimal weights p; is based on the expectation in (5.11) which typically
cannot be calculated analytically, but needs to be assessed numerically via simulations.
Such a numerical evaluation, however, is challenging as the random variable exp(W (¢;) +
W (ty) — maxé\[: 1 W(t;)) is unbounded. To circumvent these computational difficulties, we
make use of the identity

—-F {ew(ti)+W(tk)—max;V=1 W(tj)}
wi+wk7maxN:1 wj 1 T
e J o o
- exp {5 (w+5) € (w5} aw
/IRN (27)% det(C)2 p{ 2< 2) ( 2)
ewk—maxéyzl wj 1 o\ T o
= TN L, 1 X -5 w_Cz_“* Cil w—C,—i-f }dw
/RN (277)% det(C)% p{ 2 ( 2) ( 2)

— / UETIAGLL5 £ () dw = E {exp(W“) (t) — niax W (tj))} . (5.14)
RN

Oik

Jj=1

The expression on the right-hand side of (5.14) can be conveniently assessed numerically
as the random variable exp(W @ (t3) — maxj»\’:1 W(t,)) is bounded by 1.

Remark 5.2. Note that both (5.13) and the final result in (5.14) still hold true if W
does not possess a full Lebesgue density, but exactly one component W;« is degenerate
and the reduced covariance matrix (Cj;); jzi+ is nonsingular. This situation appears in
several examples such as W being a fractional Brownian motion where W (0) =0 a.s.

In summary, we propose the procedure below to simulate the normalized spectral vector
WmaX for the Brown-Resnick process (Algorithm 1B):

1. Calculate p by solving the quadratic program (QP) where the entries of the matrix
3 are given by (5.14). Provided that all its components are nonnegative, the solution
p has the form (5.12).

2. Run Algorithm 5.1 with proposal density fprop = ZZ]\LI pi fi and acceptance probabil-
ity given by (5.8). The output of the algorithm is a Markov chain whose stationary
distribution is the distribution of W™ax,

5.3 Exact Simulation via Rejection Sampling

In this section, we present an alternative procedure to generate samples from W™#* with
probability density fimax. In contrast to Section 5.2 where we generated a Markov chain
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consisting of dependent samples with the desired distribution as stationary distribution,
here, we aim to produce independent realizations from the exact target distribution. To
this end, we make use of a rejection sampling approach (cf. Devroye, 1986, for instance)

based on a proposal density f,,, satisfying
fumax(W) < (Coo - C)  fprop(w),  for all w € RY, (5.15)

for some C' > 0.

Algorithm 5.2: Rejection Sampling Approach

Input: proposal density fpmp and constant C' > 0 satisfying (5.15)
repeat
Simulate w* according to the density fprop.
Generate a uniform random number v in [0, 1].
until u - f, (W) <O oo frnax(W*);
Output: exact sample w* from distribution with density fiax

Thus, on average, (cs - C')~! simulations from the proposal distribution are needed to

obtain an exact sample from the target distribution. Of course, to minimize the com-
putational burden, for a given proposal density f the constant C' should be chosen
maximal subject to (5.15), i.e.

prop’

O= inf Tl
wcRN Coofmax(w)
Recently, de Fondeville and Davison (2018) followed a similar idea and suggested to base
the simulation of a general sup-normalized spectral process V (-)™#*/||[V™2%|| ; on the re-

lation
max 7 Y /
P (‘;ax € dv) = HV~H°O P ~V e dv (5.16)
[[Vmax| o E[Vleo \ IVl

where V is a spectral process normalized with respect to another homogeneous functional
7 instead of the supremum norm, i.e. 7(V) = 1 a.s. If ||V || is a.s. bounded from above
by some constant, from the relation (5.16), we obtain an inequality of the same type as
(5.15) for the densities of V(-)™</||[V™2 || and V(-)/||V e instead of fiax and forop,
respectively. Thus, samples of V(-)/||V||s can be used as proposals for an exact rejection
sampling procedure. For instance, the sum-normalized spectral vector V., i.e. the vector
which is normalized w.r.t. the functional r(f) = || f|1 = chvzl | f(tk)|, can be chosen as
it is easy to simulate in many cases (cf. Dombry et al., 2016a) and satisfies ||V]|e < 1
almost surely.

For a Brown-Resnick process, it is well-known that the sum-normalized process V has
the same distribution as exp(WP™P) /|| exp(WP*P)||; where WP™P has the density fprop
from (5.7) in Section 5.2 with equal weights p; = ... = py = 1/N (see also Dieker
and Mikosch, 2015). Thus, in this case, the procedure proposed by de Fondeville and
Davison (2018) with (f) = || f|l1 is equivalent to performing rejection sampling for Wmax
with fpmp = Zf\i |~ fi as proposal distribution (Algorithm 2A). From Equation (5.9), it
follows that rejection sampling can also be performed with }prop = Ef\; 1 bi fi and arbitrary

positive weights p1,...,pxy summing up to 1, since we have (5.15) with C' = minlY, p;.
Thus, accepting a proposal w* in the rejection sampling procedure with probability
- N N *
m]\ifnpi . Coo fmax(W") _ mingl, p; - max;_, e ,

=1 fprop(’lU*) B le\;l piew;k
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we will obtain a sample of independent realizations from the exact target distribution
fmax- The rejection rate, however, is pretty high. In order to obtain one realization of
WM on average (coo . minﬁ\;l p,-)fl simulations from f7,,, are required. It can be easily
seen that the computational costs are indeed minimal for the choice p; = ... =py =1/N,
i.e. the choice in the approach based on the sum-normalized representation. In this case,
one realization of W™#% on average requires to sample cgolN times from fprop. Therefore,
this approach becomes rather inefficient if we have a large number N of points on a dense
grid.

In order to reduce the large computational costs of rejection sampling which are mainly
due to the fact that min®Y ; fi(w)/ fumax(w) gets small as |[w| — oo , we replace each
density f; by the modified multivariate Gaussian density ¢; . whose variance is increased
by the factor (1 —¢&)~! > 1 for some ¢ € [0, 1):

—e)N/2 o _ o
(27-()(]37/2 dgt(C)lﬂ exp <—;(1 —€)- ('w —C,; + §>TC 1 (w - C,+ 2))

= (2F)(]}[/g§2tj\(f/é)l/2 exp ((1 — &)w;) - exp (—;(1 —g)- (w o %)TC_l (w + ;)) .

Analogously to fprop for the MCMC approach in Section 5.2, we propose a mixture
~ N
fprop = Zi:l PiGie

with p; > 0 and Zfil p; = 1 as proposal density for the rejection sampling algorithm. A
proposal w* is then accepted with probability

e )

gie(w) =

Coo * fmax(w*)

<) ~ C(pe)- ,
it pigie(w?) (1-2)% - T, piexp ((1 — e)w; — maxi w;k)
(5.17)
where
N pigi N SN
C(p,e) = inf Lz Pigic(W) _ e N D in Pigic(w)
weRN coofmax(w) weRN j=1 fj( )
= i £ o\ T 1 o
- 1= Sope (1= i+ 5(0+5) 07 (0 5)).
(5.18)

Thus, to summarize, for appropriately chosen ¢ > 0 and p > 0 such that ||p[j; = 1, we
propose to run Algorithm 5.2 with proposal density f ., = Zf\il pigie and C = C(p,¢)
according to (5.18).

Remark 5.3. To further reduce the computational costs in the simulation, we might
even choose a more flexible approach. For instance, instead of using a mixture of a finite
number of functions gi,...,gn., one could consider arbitrary mixtures

}prop(w) = /Rd gt,a(w)V(dt), w € RN,

where g .(w) = fR gN+1e(w, wyy1)dwn41 on the enlarged domain {t1,...,tn,t} and v
is a probability measure on R?. Furthermore, depending on ¢t € R?, different values for
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e = g(t) € [0,1) might be chosen. However, due to the complexity of the optimization
problems involved, we restrict ourselves to the situation above where v is a probability
measure on K = {t1,...,ty} and € is constant in space.

Using the procedure described above, on average, (co - C(p,€))~! simulations from the

proposal distribution are needed to obtain one exact sample from the target distribution,
i.e. the computational complexity of the algorithm depends on the choices of p and . The
remainder of this section will be devoted to this question.

Choice of p and ¢ For a given € > 0, the computational costs of the algorithm can
be minimized by choosing p = p*(¢) such that the constant C(p,e) given in (5.18) is
maximal, i.e. by choosing p as the solution of the nonlinear optimization problem

ax C(p,¢
max (p;)
st [lplhi=1 (NP)

pi>0 Vi=1,...,N

Optimizing further w.r.t. € € [0,1), we obtain the optimal choice (p,e) = (p*(e¥),e*)
where £ = argmax.¢(y 1) C(p*(¢), €).

As the above optimization problem includes optimization steps with respect to w € R,
pe{xc0,1]V: |x|1 =1} and € € [0, 1], none of which can be solved analytically, the
solution is quite involved. In order to reduce the computational burden, we simplify the
problem by maximizing an analytically simpler lower bound. To this end, we decompose
the convex combination Zfi 1 Pigie/ f; into sums over disjoint index subsets of the form
I ={i1,....im} C {1,...,N}. For a convex combination of (g;, c)k=1,.m Wwith weight
vector A = (Ag)k=1,...m € [0,1]™, we obtain the lower bound

inf 27];”:1 Akg’ik,c’ (’(U)
weRN fi(w)

- (ST ) (5 (0 5) € (04 9)

nf (1 e)V/2. S s —w; ) cexp (S (wr D) 0 (w i O
wlenﬂgN(l £) exp((l 8);Aszk w]> exp(2 (w+2> C <w+2)>

—: P (e, ),

v

where we made use of the convexity of the exponential function. Setting
. m
(e A) = (1-2) Y MCy, — Cy,
k=1

this bound can be calculated explicitly:

(e )
€ 1 a\ " 1 ¢ o
= wien]l{N(l —e)NV/2 . exp {2 (w + gngj)(e, A)+ 2) c! (w + gn(])(a, A)+ 2) }

. o 1 . B .
. exp (_@gﬁ(e, A)TC 15 — %(K§J>(e, A)TC (e, )\))
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1 —e 1 <

N/2 —

=(1-¢) / - exp (— 5 i T 50 T Z Ciyi — jj)
k=1

k=

c m
Z MCij
k=1 1k =1

- & 1 ) &K=
= (1 — 5)1\7/2 exp <—5 Z)\k’)/(tik — Uy ZZ)\k)\l’y Zk - Zl)) . (519)
k=1 k=11=1

1

- exp

Hence, for w € RV,

j PI
> pigic(w) = |1l - Z o1 gza > [Ipl - ¢ (€7> - fi(w),

Py Iprlh

where p;r = (p;)ier for every subset I C {1,...,N}. Now, for each j € {1,..., N}, let J)
be a partition of {1,..., N}, so that

Coo  C(p,e) = inf Jprop(Ww) — inf mln N D resw Zzel pigic(w)
weRN Jmax(w)  werN j= Coo f]( )

N 2 resw (Zie[pi) 'C(j) ( & ||p,||l) fi(w)

> inf mln

~ weRN j= cod fi(w)
=iy 3 (Zp’) @ (o) (520
IeJU) \iel 11

Thus, the RHS of (5.20) provides an explicit lower bound for the average acceptance
probability for any choice of the J@).

Remark 5.4. Assume that, for some index j € {1,..., N}, there is some index set
I={i1,...,im} C{1,..., N} such that y(¢; —t;) =T for all ¢ € I. Then, Equation (5.19)
provides the bound

Zp%gz,m w) > [prfhcd ( S )fj( )
1— 1— Di, Di,
= [|psl[1 exp (— . °r ) ZZ pHg Yty — tz‘J) fi(w)

(5.21)

for all w € RY. Alternatively, for the same index set I, we could bound each summand
separately, i.e.

szkgwm szk Clig} (e, 1) fj(w) = [[p1]l1 exp <_ €F> fi(w). (5.22)

Note that, for all w € RY, the RHS of (5.22) is less than the RHS of (5.21), i.e. the lower
bound is less sharp. Therefore, we prefer pooling locations with the same distance to ¢;
rather than considering them separately in order to have the bound in (5.20) as sharp as
possible.
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In view of (5.20), instead of considering the exact value C(p, £) which is needed to calculate
the minimal rejection rate, but cannot be given explicitly, we might maximize the function

Cgroups p,€) = mln Z sz < H)

[E](]) i€l

for fixed partitions JU) ..., J™). Due to the complex dependence of cg ) on P, the result-

ing optimization problem is nonlinear in p even for fixed . To circumvent this difficulty,
for each I € JU)| we fix |I|-dimensional weight vectors A(I) and consider the function

fi
Coroups (P63 A) = mm in > S pief (e, AU
[eJ(J) iel

N
r]n: g picij(e;A) = minp ' c(g; \)

with c(e; X) = {cij(e; A) hi<ij<nv and ¢j(e; A) = (j)(s X(I)) for the unique set I € JU)
such that ¢ € I.

Analogously to the solution above, we first maximize Cgmups( ,&;A) for fixed € € [0,1) and
A, i.e. we consider the optimization problem
N
max min c.j(; )" p
pERYN j=1
st. lph=1 (LP1)

pi>0 Vi=1,...,N.

To convert the linear program to standard form, we introduce an additional variable z € R,
unconstrained in sign, leading to the equivalent program

max z
PERN 2€R

st z <cj e A)'p Vj=1,...,N (LP2)

1yp=1
p; >0 Vi=1,...,N.

The standard form of (LP2) is then given by

max 2z — 2z~
peRN
s,zt,z7€R
st. 2t =z 4+s=cj(eN)p Vi=1,...,N (LP2S)
1yp=1

Pls.- s DN,S, 2T, 27 > 0.

Such a linear program in standard form can be solved by standard techniques such as the
simplex algorithm. Compared to the optimization of Cgroups(-, €), the complementary one-
dimensional problem of maximizing Cgroups(P,-) for fixed p can be solved rather easily.

To summarize, starting from some €* > 0 and p* = N~!'1y, we propose to apply the
following two steps repeatedly (Algorithm 2B):
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1. Define
P;

= , TeJVu. . uJg®™
Pl

A1

and set

p* = argmax Cg;i)ups(pa e"; )‘)7
P
i.e. the solution of the optimization problem (LP1) (or (LP2) or (LP2S), equiva-
lently).

2. Set e* = argmax. Cgroups(p*7 E)'

Even though Cgroups(P, €) might be significantly smaller than C(p,¢), in some cases, this
bound is already sufficient to improve the results for € = 0 that have been discussed in
the beginning of this section, where we have already seen that the corresponding optimal
weight vector equals p* = N~ !'1y and that C(p*,0) = 1/N. We show an example to
illustrate that this choice is not necessarily optimal, i.e. there is some € > 0 and a vector
p of weights such that C(p,e) > Cgroups(P,€) > 1/N.

Example 5.5 (Fractional Brownian Motion). Let x1,...,xy be N equidistant locations
n [0,1] and v(h) = |h|* for some a > 1. Choose p = N~ '1y, ¢ = V2N~ and set
JO = = JWN = {{1},...,{N}}. Then, for every z; there are at least | N~/ . N |

locations x; such that v(x; —x;) < 1/N. Thus, we obtain for large N that

C(pag) > Cgroups(pag)
N/2
1 V2 N 1
> | N Ve N = [1-Y2 A Y e _
> |N N| N <1 N) exp( 7 N) N exp(—V/2)

which is eventually larger than 1/N as o > 1.

5.4 lllustration

Finally, we illustrate the performance of Algorithm 5.1 and the rejection sampling algo-
rithm in an example. Taking up Example 5.5 in higher dimensions, we consider the case
that Z is a Brown—Resnick process associated with the variogram

1.5
., heR?

on the grid K = {0,0.2,...,5} x{0,0.2,...,5} (N = 676 points). We run four different
algorithms:

1A. Algorithm 5.1 with proposal density fprop = f as proposed by Oesting et al. (2018b)

1B. Algorithm 5.1 with proposal density fprop = Zfi 1 pifi where p is given as the
solution of (QP) (cf. Section 5.2).

2A. Algorithm 5.2 with proposal density forop = %Ef\; 1 fi and C = 1/N (equiva-
lent to the procedure proposed in de Fondeville and Davison (2018) based on sum-
normalized spectral functions)
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Weights p; for MCMC Proposal Weights p;* for Rejection Sampling Proposal (¢*=0.0039)
o Jll L] o Jll |
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0.08 0.006
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Figure 5.1: Vectors p (left) and p* (right) of optimal weights used in Algorithms 1B and
2B, respectively, for a Brown—Resnick process associated with the variogram
y(h) = ||h/5||*® on the set K = {0,0.2,...,5}%

2B. Algorithm 5.2 with proposal density fprop = Zf\il pi(e*)gie+ and C = C(p*,e*) in
(5.18) where p*(e*) € [0,1]"V and €* € (0, 1) are obtained as described in Section 5.3

Even though the laws of the Brown—Resnick process Z and the normalized spectral process
VmaX do not depend on the variance, but only on the variogram of the underlying Gaussian
process G, the choice of the Gaussian process may affect the performance of the algorithms.
Here, we choose the Gaussian process G whose law is uniquely defined via the construction

o=@ () () () - () rex

where G is an arbitrary centered Gaussian process with variogram ~. Oesting and
Strokorb (2018) show that this process has a smaller maximal variance and is thus prefer-
able in the context of simulation.

We first calculate the optimal weights p = (p1,...,p676) | as a solution of (QP) (used
in Algorithm 1B) as well as the optimal weights p*(¢*) as a solution of (LP1) and the
optimal variance modification €* (used in Algorithm 2B). The results for p and p*(¢*) are
displayed in Figure 5.1. It can be seen that, in both cases, the weights are not spatially
constant, but are larger on the boundary of the convex hull conv(K) = [0,5] x [0, 5] with
the maximum in the corners of the square. This observation is well in line with the fact
that these points have the largest contribution to max;cx exp(G(t) — Var(G(t))/2) since
the variance of G attains its maximum there (see also Oesting and Strokorb, 2018).

We run Algorithm 5.1 with both proposal densities as specified above (Algorithms 1A

and 1B, respectively) to obtain two different Markov chains {Wl(k)}kzl,...,IOOOOOO and

{Wg(k)}kzl,...,lo()OOOO of length ny;cpmec = 1000000. It can be seen that the empiri-
cal acceptance rate of the second chain (0.855) is remarkably higher than the one of
the first chain (0.656). The consequences on the mixing properties of the chains can
be discovered by analyzing the empirical autocorrelation functions of the time series
{H eXp(Wl(k))Hoo}k:l,...,l 000 000 and {H eXp(WQ(k))Hoo}k:l,...,l 000 000 which are shown in Flg—
ure 5.2. Here, the empirical autocorrelation in the second chain is drastically reduced in
comparison with the first chain, indicating that two states of the chain can be regarded
as nearly uncorrelated after roughly five steps.
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Figure 5.2: Empirical autocorrelation functions of the two different time series

k k .
{ll eXP(Wl( ))Hoo}kzzl,...,l 000000 (left) and {|| eXP(WQ( ))||oo}k:1,...,1000000 (right)
obtained via Algorithms 1A and 1B, respectively. Here, by the optimal choice
of p, the autocorrelation is clearly reduced.

The rejection sampling algorithm (Algorithm 2A and Algorithm 2B) automatically gen-
erates independent realizations from the multivariate target density fmax. Therefore, we
will compare them with respect to their computational complexity. To this end, we run
them to generate a sample of size 100000 and count the average number of simulations of
Gaussian vectors from the proposal density to generate one realization of W™#*_ In case
of Algorithm 2A, this number is 203.1 which is close to the theoretical expression ¢! - N.
For Algorithm 2B, the number is improved by a factor of approximately 4.4, leading to an
average number of 45.9 Gaussian vectors to be simulated to obtain one realization from
the target distribution. This improvement is well in line with the corresponding value
C(p*,&*) ~ 0.0065 ~ 4.4 - N~! where N~! corresponds to the constant C in (5.15) for
Algorithm 2A.

As the example illustrates, the two modifications we suggested may lead to significant
improvements of MCMC and rejection algorithms that have been proposed so far. Here,
only the modified rejection sampling algorithm ensures independence of exact samples
from the target distribution. However, as the example indicates, the MCMC algorithm
might be particularly attractive in practice as a thinned chain results in nearly independent
samples even if the thinning rate is rather small. Note that we also tried other examples
such as a Brownian sheet (« = 1). However, we found that significant improvements in
the rejection sampling procedure become apparent only for o > 1, see also Example 5.5.
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6 Exact Simulation of Max-Stable Processes

joint work with Clément Dombry and Sebastian Engelke

This chapter is based on the research article Dombry et al. (2016a) that has been published
in Biometrika and the corresponding supplementary material. Besides some minor modi-
fications, also some changes in the structure of the chapter have been made: the different
parts of the appendix and the supplementary material have been shifted to appropriate
places in the main body of the chapter.

Max-stable processes play an important role as models for spatial extreme events. Their
complex structure as the pointwise maximum over an infinite number of random functions
makes their simulation difficult. Algorithms based on finite approximations are often
inexact and computationally inefficient. In this chapter, we present a new algorithm
for exact simulation of a max-stable process at a finite number of locations. It relies
on the idea of simulating only the extremal functions, that is, those functions in the
construction of a max-stable process that effectively contribute to the pointwise maximum.
We further generalize the algorithm by Dieker and Mikosch (2015) for Brown—Resnick
processes and use it for exact simulation via the spectral measure. We study the complexity
of both algorithms, prove that our new approach via extremal functions is always more
efficient, and provide closed-form expressions for their implementation that cover most
popular models for max-stable processes and multivariate extreme value distributions.
For simulation on dense grids, an adaptive design of the extremal function algorithm is
proposed.

6.1 Introduction

Max-stable processes have become widely used tools to model spatial extreme events.
Occurring naturally in the context of extremes as limits of maxima of independent copies
of stochastic processes, they have found many applications in environmental science; see for
instance Coles (1993), Buishand et al. (2008), Blanchet and Davison (2011) and Davison
et al. (2012).

Any sample continuous max-stable process Z with unit Fréchet margins on some compact
domain X C R? is characterized by a point process representation (de Haan, 1984)

Z(x) = izfifﬁil/}z'(lﬂ), reX, (6.1)

where {({;,4),7 = 1,2,...} is a Poisson point process on (0,00) x C4(X) with intensity
measure (2 d¢ x v(dp) for some locally finite measure v on the space Cy (X) of continuous
non-negative functions on X equipped with the Borel o-algebra C4(X') such that

/ Y(z)v(dy) =1, ze€X. (6.2)
C(X)

99
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-10 -5 0 5 10

Figure 6.1: The Poisson point process {({;, ¥;),i > 1} (grey). Only finitely many (colored)
(G, 1i) contribute to the maximum process Z (bordered in black).

Figure 6.1 shows a realization of Z composed of those random functions of the above point
process that are maximal at some location. Due to this complex structure of max-stable
processes, in many cases, analytical expressions are only available for lower-dimensional
distributions and related characteristics need to be assessed by simulations. Moreover,
non-conditional simulation is an important part of conditional simulation procedures that
can be used to predict extreme events given some additional information (e.g., Dombry
et al., 2013; Oesting and Schlather, 2014). Thus, there is a need for fast and accurate
simulation algorithms.

As the spectral representation (6.1) involves an infinite number of functions, exact simula-
tion of Z is in general not straightforward and finite approximations are used in practice.
For the widely used Brown—Resnick processes (Kabluchko et al., 2009), Engelke et al.
(2011) and Oesting et al. (2012) exploit the fact that the representation (6.1) is not unique
in order to propose simulation procedures based on equivalent representations. However,
often these approximations do not provide satisfactory results in terms of accuracy or com-
putational effort. The effect of the approximation can be illustrated in Fig. 6.1, where an
approximate algorithm might miss one or several of the colored processes and the resulting
maximum process would be strictly smaller than the exact realization Z.

Exact simulation procedures can so far be implemented only in special cases. Schlather
(2002) proposes an algorithm that simulates the points {(;,7 > 1} in (6.1) in descending
order until some stopping rule takes effect. If v is the probability measure of a stochas-
tic process whose supremum on X is almost surely bounded or if Z is a mixed moving
maxima process with uniformly bounded and compactly supported shape function, this
procedure allows exact simulation of Z. For extremal-t processes (Opitz, 2013), the ellipti-
cal structure of Gaussian processes can be exploited to obtain exact samples (Thibaud and
Opitz, 2015). Oesting et al. (2018b) focus on a class of equivalent representations for gen-
eral max-stable processes that, in principle, allow for optimally efficient exact simulation.
They propose to simulate max-stable processes via the normalized spectral representation
with all the spectral functions sharing the same supremum. Being efficient with respect to
the number of spectral functions, the simulation of a single normalized function might be
rather intricate in some cases including Brown—Resnick processes. For the latter, Dieker
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and Mikosch (2015) derived a new representation that enables exact simulation at finitely
many locations.

Several articles focus on the simulation of finite dimensional max-stable distributions or,
equivalently, of their associated extreme value copula. Ghoudi et al. (1998) and Capéraa
et al. (2000) propose simulation procedures for certain bivariate extreme value distribu-
tions. Stephenson (2003) considers extreme value distributions of logistic type. Boldi
(2009) provides a method for exact simulation from the spectral measure of extremal
Dirichlet and logistic distributions.

In this chapter, we consider the problem of exact simulation of a general max-stable
process Z at a finite number of locations. We introduce a new procedure based on the
idea to simulate only the extremal functions (cf. Dombry and Eyi-Minko, 2012, 2013)
out of the infinite set {(;4;,i > 1}, i.e., those functions that satisfy (;9;(z) = Z(x) for
some x € X, the colored functions in Fig. 6.1. In contrast to all existing simulation
procedures, the process Z is not simulated simultaneously, but successively at different
locations, rejecting all those functions that are not compatible with the process at the
locations simulated so far. We propose also a second procedure that relies on sampling
from the spectral measure on the Li-sphere of a multivariate extreme value distribution.
Interestingly, in the case of Brown—Resnick processes, this second procedure turns out
to be identical to the algorithm by Dieker and Mikosch (2015). We prove that the new
procedure based on extremal functions is computationally more efficient than simulation
via the spectral measure. Both procedures are based on random functions following the
same type of distribution that can be easily simulated for most popular max-stable models.
Both algorithms also apply very efficiently to exact simulation of finite-dimensional max-
stable distributions or, equivalently, of the associated extreme value copulas.

6.2 Simulation via Extremal Functions

In Sections 6.2 and 6.3, we will propose two procedures for exact simulation of arbitrary
max-stable processes and distributions. More precisely, for a fixed number N € N of
distinct locations # = (x1,...,zy) € X, we aim at obtaining exact simulation of the
max-stable random vector

Z(x) ={Z(x1),...,Z(zN)}, (6.3)

where Z is a sample-continuous process given by the spectral representation (6.1). Without
loss of generality, we may restrict to processes with unit Fréchet margins as any sample-
continuous max-stable process can be obtained from a process with unit Fréchet margins
via marginal transformations. The first procedure, presented in this section, relies on
conditional distributions of the Poisson point process underlying the max-stable process.
This allows for exact simulation of (6.3) by simulating at each location only the unique
function that actually attains the maximum, see Fig. 6.1. In the following, we will briefly
present some results on the distribution of this function, the so-called extremal function.
Throughout, we write f(z) = {f(z1),..., f(xn)} for the restriction of a generic, possibly
random, function f to the locations z € X'V,

Starting from representation (6.1), we use a point process approach and recall that the
C4(X)-valued point process ® = {¢;}i>1 with ¢; = (;3; is a Poisson point process with
intensity

uta) = | . | twene 2 dcvian),  aeci), (6.4)
+
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where 1;7) denotes the indicator function of a logical expression L, i.e. 17y = 1 if L is
true and 177, = 0 otherwise.

Definition 6.1. Let K C X be a nonempty compact subset. A function ¢ € ® is called
K-extremal if there is some x € K such that ¢(z) = Z(x), otherwise the function is called
K-subextremal. We denote by @}Q the set of K-extremal functions and by ®7- the set of
K-subextremal functions.

It can be shown that &1 i and @ are properly defined Poisson point processes. When
K = {0}, 29 € &, is reduced to a single point, it is easy to show that &7 {z0} is also almost
surely reduced to a single point which we denote by ngxO, termed the extremal function at
xg. The distribution of ¢x0 is given in the next proposition.

Proposition 6.2 (Dombry and Eyi-Minko (2013), Proposition 4.2). The random variables
Z(x0) and ¢ /Z(xo) are independent. Furthermore, Z(xo) has a unit Fréchet distribution
and the dzstrzbutwn of o/ Z (o) is

Po() =B {1, /20) € A} = [ Lganen @) vdf), ACX). (69
+

By definition, ¢ (0) = Z(x¢), so the distribution P, is supported by the subset of

functions {f € C+( ), f(xo) =1}

Proposition 6.3. The restricted point process ® N {f € C4(X), f(zo) > 0} is a Poisson
point process with intensity

[ tsesonan = [ [T ugenctacman, ace. 60

Proof. The fact that the restricted point process ® N{f € C(X), f(zo) > 0} is a Poisson
point process with intensity 1ys(zq)>oy(df) is standard. We prove Equation (6.6). For
A€ C+(X)7

/ / Ligreayd ™ A0 Puy(df) = / / Lt/ faoeayC ™ dC f(wo) v(df)
Cy(X) JO ci(x) Jo
00 g~
- / / LeremS 46 1graos0v(df) = / LireayLao)>0) #(df)-
C+(x) /0 C4(X)

Here, we use successively Equation (6.5), the change of variable (= ¢/ f(xo) with f(zg) >0
and Equation (6.4) for the last equality. O

Remark 6.4. As a consequence of (6.6), independent copies Y1, Ya, ... of processes with
distribution Py, result in a point process {¢;Y;};>1 which has the same distribution as the
restricted point process ® N{f € C(X), f(xo) > 0}. f v({f € CL(X), f(xg) =0}) =0,
then @ consists only of functions with positive value at g and ® has the same distribution
as {(;Y:i}i>1. This provides an alternative point process representation of the max-stable
process Z in terms of a random process Y such that Y (xzg) = 1 almost surely. Engelke
et al. (2014, 2015) exploit this representation for statistical inference on Z.

These preliminary considerations on extremal functions enable us to introduce a procedure
for exact simulation of the max-stable process Z at locations z € XN. More precisely, for
n=1,...,N, we consider the extremal and subextremal point processes ®; = (I)Er:m on}
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and @ =@, .. We have that @, equals {¢; }1<i<n Where the cardinality of this
set may be less than n as several locations may share the same extremal function. We
define the nth-step maximum process

Zn(x) = max ¢(z) = max ¢, (), x€X. (6.7)

pedt 1<i<n ' T

By the definition of extremal functions we have Z(z;) = ¢} (z;) and clearly
Z(x;) = Zp(zi), i=1,...,n. (6.8)

Hence, in order to exactly simulate Z at locations z, it is enough to exactly simulate
@;. We will proceed inductively and simulate the sequence (gb;rn)lgng ~ according to the
following theorem.

Theorem 6.5. The distribution of ((b;)lgnSN is given by the following sequential proce-
dure. The initial distribution for the the extremal function qb;'l has the same distribution
as F1Y, where F is a unit Fréchet random variable and Y, an independent random process
with distribution Py, given by (6.5).

For1 <n < N —1, the conditional distribution of qﬁj{nﬂ given (qu{i)lgign s equal to the
distribution of

Q%Jr _ Jargmax, g O (Tnt1), (i)n+17é®7
Intl ArgMAax . g+ d(xpi1), Oy =10

)

where (in+1 1s a Poisson point process with intensity

L (i) <Zn(@e), 100} 1S @ns1) > Zn s }UAS) (6.9)
and Zy, is defined by (6.7).

Proof. The distribution of ¢ is given in Proposition 6.2. We prove the result for the
conditional distribution of ¢ given (¢} )1<i<n Recall that & = {¢f ..., ¢7 }. Then,

by Lemma 3.2 in Dombry and Eyi-Minko (2012), the conditional distribution of ®, given
@ is equal to the distribution of a Poisson point process with intensity

Lif@n<z(ay), 1§z‘§n}u(df) = 1{f(a)<Zn(x), 1§¢§n}M(df), (6.10)

where the equality follows from Equation (6.8). In order to determine ¢ ., we focus on
the functions ¢ € @, satisfying ¢(zn4+1) > Zn(xn+1) and consider the restriction

(i)n—H =&, N{f € C(X), f(wny1) > Zn(Tni1)}-

It follows from Equation (6.10) that conditionally on (¢;:ri)1§i§m ®,,.1 is a Poisson point
process with intensity given by Equation (6.9). We distinguish two cases. If ®,,1; = () then
there is no function in ®; exceeding Z,, at point z,,41, that is, Z(zn+1) = Zp(xn41) and
o L = Argmax g+ d(zps1). If ®, 1 # 0 then there is some function in & exceeding
Zy, at point x,41, that is, Z(x,41) > Zn(2p41) and ¢:§fn+1 = argmax,.g . &(zn+1). This
concludes the proof of Theorem 6.5. O

From Theorem 6.5 one can deduce Algorithm 6.1 for exact simulation of the max-stable
process Z at locations x = (x1,...,2zN). According to Proposition 6.3 and Remark 6.4,
the distribution P, ., can be used to simulate ®,; with intensity (6.9). Hence, the

algorithm requires only that one can simulate from the distributions P,,,... P, which
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5 5 5 5
4 4 4 4
3 3 3 3
2 2 2 2
1 1 14 1
0 0 01 0 -

Xi X X3 Xa X X> X3 X4 X4 Xo X3 X4 Xi X X3 Xa

Figure 6.2: Simulation of Z via Algorithm 6.1 at locations (1, z2, z3,24). Initial process
(b;l is always accepted (first panel). Second process qu{z is accepted as it exceeds
Z1 = ¢, at x3 but not at x; (second panel). Third process ¢, is equal to ¢
since @3 = ) (third panel). First sample of P, (grey line) is rejected since it
exceeds Z3 at x3; second sample is valid and thus called QSL (fourth panel).

can be easily done for the most popular max-stable models. See Section 6.4 for details.
Figure 6.2 illustrates the procedure.

Algorithm 6.1: Exact simulation of a max-stable process Z at z = (z1,...,2N)
via extremal functions
Simulate (7! ~ Exp(1) and Y ~ P,,.
Set Z(x) = CY (x).
forn=2,...,N do
Simulate (=1 ~ Exp(1).
while ¢ > Z(z,) do
Simulate Y ~ P, .
if (Y(x;) < Z(x;) foralli=1,...,n—1 then
| Update Z(x) to the componentwise maximum max{Z(x),CY (z)}.
Simulate e ~ Exp(1) and update (~! to (~! +e.

r(:,turn A

6.3 Simulation via the Spectral Measure

Dieker and Mikosch (2015) presented the first procedure for exact simulation of the finite-
dimensional distributions of stationary Brown—Resnick processes. Applying change of
measure arguments for Gaussian processes, they found an alternative representation of
these processes that can be simulated easily. In this section, we introduce an approach
relying on the spectral representation on the Li-sphere that can be applied for general
max-stable distributions. In the case of stationary Brown—Resnick processes, in Remark
6.11 we retrieve the algorithm of Dieker and Mikosch (2015).

Let us recall the spectral decomposition of the max-stable random vector Z(z) with x €
AN; for details see (Resnick, 1987, Chapter 5). Following Equation (6.1), the vector
Z(x) = max;>1 (;¢i(x) is generated by the Poisson point process ®, = {(i(z),7 > 1}
whose intensity measure on the cone D = [0,00)" \ {0} is denoted by ju,. Due to its
homogeneity, the exponent measure j, can be factorized into a radial part on (0, 00) and an
angular part on the unit Li-sphere Sy_1 = {z € D : ||z|| = 1}, where ||z|| = 21+ + 2N,
for z = (z1,...,2n) € D. More precisely, a change to polar coordinates under the map
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U:D — (0,00) x Sy—1, U(z) = (|2], 2/||z||) yields
1 (F) = / 1y o U~ (dr,ds) = N / =2 dr H(ds), (6.11)
U(F) U(F

for any Borel subset F' C D. The probability measure H on Sx_; is called the spectral
measure of Z(z), and it satisfies

/ sjH(ds)=N"' j=1,...,N.
Sn-1
Equation (6.11) shows that we can represent the process @, as

O, = {U Ry, Q) :i>1} = {R;Q; =i > 1}, (6.12)

where {R; : i = 1,2,...} is a Poisson point process on (0,00) with intensity Nr—2dr
and @1, Q2,... are independently sampled from the spectral measure H on Sy_1. The
advantage of this representation is that the components of ); are bounded by 1. This
ensures that Z(z) = max;>; R;Q); can be simulated exactly by generating the largest R;
first until no more of the remaining points R;Q); can contribute to the maximum.

The only difficulty is thus to generate the random variables @; from the probability mea-
sure H on the (N — 1)-dimensional positive sphere Sy_;. The following theorem gives
such an explicit representation for the @; for general max-stable distributions Z(z) based
on the distributions P,,, k =1,..., N, in (6.5).

Theorem 6.6. Let T1,T5,... be independent copies of a random variable T with uni-
form distribution on the discrete set {1,...,N}. Further, for any k = 1,...,N, let
Yl(k),YQ(k), ... be independent random processes with distribution Py, as in (6.5). Then,

the Sy_1-valued random variables

1, (@)

are independent with distribution H. Consequently, with {R;, i > 1} as above,

(Ti)(x)
Z(x) =maxR; ICADI—E (6.13)
izt v T ()|
Proof. For any k =1,..., N, Equation (6.5) implies
/ F@e) g1 @ eay v(df) = / Lt )/ 1) leay Pa (df)- (6.14)
Ci(X) C(X)

We compute the p,-measure of the set U~ '{(u,00) x A} for v > 0 and a Borel set
AC Sy_1.

pa[U~H{(u, 00) x A}] = / / Ligls@l>ut L@/l @lears ¢ v(df)
CL(X)Jo

1/
oo 1 @)L p @) /15 @)1y Z o W@/ @) leay V(dS)
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= - Z / l{f(:v )/ @)lleay Pay (df) = Z / Lt/ 1) leay Pa (df),
(6.15)
where the penultimate equality follows from (6.14). Let Y*), k = 1,... N, be independent

random processes with distribution P,,, respectively, and let 7" be an independent uniform
random variable on {1,..., N}, then Equation (6.15) can be restated as

N
HalU™H(w,00) x AY) = =P {yD(@)/ |y D(a)|| € 4}
Comparing this with (6.11) yields the assertion of the theorem. O

Theorem 6.6 shows how to simulate from the spectral measure H. It requires only to be
able to simulate from the distributions P, , k = 1,..., N. Algorithm 6.2, an adaptation
of Schlather’s (2002) algorithm, provides an exact sample from the max-stable process Z
at locations .

Algorithm 6.2: Exact simulation of a max-stable process Z at z = (z1,...,2N)
Simulate (7! ~ Exp(N) and set Z(z) = 0.
while ¢ > min{Z(z1),...,Z(zn)} do
Simulate 7" uniform on {1,..., N} and Y according to the law P,,..
Update Z(z) by the componentwise max{Z(x),(Y (z)/||Y (z)||}.
Simulate e ~ Exp(N) and update ¢! by (7! +e.
return 7

Both Algorithm 6.1 and Algorithm 6.2 include the simulation of random functions with
distributions Py, in (6.5), 29 € X. In Section 6.4 we provide closed-form expressions
for various important examples of max-stable process and multivariate extreme value
distributions.

6.4 Examples

6.4.1 Moving maximum process

The parameter space is X = Z% or R? and X denotes the counting measure or the Lebesgue
measure, respectively. A moving maximum process on X is a max-stable process of the

form
Z(x) = maxGh(z = x;), =€ X, (6.16)
1=
where {((, xi),@ = 1,2, ... } is a Poisson point process on (0, 00) x X with intensity measure

¢72d¢ x A(dy) and h : X — [0,00) is a continuous function satisfying [, h(z)A(dz) = 1.
A popular example is the Gaussian extreme value process proposed in Smith (1990) where
h is a multivariate Gaussian density on R

Proposition 6.7. Consider the moving mazimum process (6.16). For all xy € X, the
distribution P, is equal to the distribution of the random function

h(-+ x — xo)

e ;o x ~ h(u)A(duw).
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Proof. In the case of the moving maximum process (6.16), the measure v associated with
the representation (6.1) is

v(A) = /Xl{h(._x)eA})\(dX), A € Ci(X).

We deduce from Proposition 6.2,
Pro(A) = / Lis/f(@o)eayf(@o) v(df) = / Lin(—x)/h(zo—x)eA} (o — X) A(dX)
4 (X) X

= /Xl{h(.ﬂ—xo)/h(u)eA}h(u) A(dw)

where the last line follows from the simple change of variable g — x = u. This proves the
result since h(u)A(du) is a density function on X'. O

6.4.2 Brown—Resnick process

We consider max-stable processes obtained by representation (6.1) where v is a probability
measure on Cy (X)) given by

v(A) =P <exp {W(-) — 022()} € A> , AeCi(X), (6.17)

with {W(x), x € X'} being a sample-continuous centered Gaussian process on X with
variance o?(x) = E{W(x)?}. In other words, v is the distribution of the log-normal
process Y (z) = exp {W(z) — 0%(z)/2}, z € X.

An interesting phenomenon arises when X = Z¢ or R? and W has stationary increments:
Kabluchko et al. (2009) show that the associated max-stable process Z is then stationary
with distribution depending only on the semi-variogram

~(h) = %IE [{W(h) — W(O)}2], heX.

The stationary max-stable process Z is called a Brown—Resnick process. However, our
results apply both in the stationary and non-stationary case (cf., Kabluchko, 2011) and
unless stated otherwise we do not assume that W has stationary increments.

Proposition 6.8. Consider the Brown—Resnick type model (6.17). For all xog € X, the
distribution Py, is equal to the distribution of the log-normal process

Y (2) = exp [W(z) — W(ao) - %Var{W(av) ~W(a))], zex.

The proof of Proposition 6.8 relies on the following lemma on exponential changes of
measures for Gaussian processes. Note that the distribution of P, is strongly connected
to the notion of conditional intensity introduced in Dombry et al. (2013) and that the
formula are similar.

Lemma 6.9. The distribution of the random process (W (x))zex under the transformed
probability measure P = eW(@o)—o®(0)/2qp ;s equal to the distribution of the Gaussian
random process

W(z)+ c(xo,z), xe€X,

where c(x,y) denotes the covariance between W (x) and W (y).
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Proof. We need to consider finite dimensional distributions only and we compute for some

x1,...,x, € X the Laplace transform of (W (x;))1<i<x under the transformed probability
measure P. For all § = (61,...,60;) € R¥, we have
E {625:1 GiW(wi)} —E {eW(mo)—UZ(Io)/Qerﬂ GiW(wi)} = exp <19T2é _ 10—2(330))
2 2 ’
(6.18)

with 6 = (1,0) € R¥! and ¥ = (¢(x;, z)) the covariance matrix. We introduce the

block decomposition

0<i,j<k

$_ o(z0) Dok
Xk,0 b

with ¥ = (c(@,25))1<; j<p, and Ty = Yox = (c(zo,2i))1<i<k. The exponent in Equation
(6.18) can be rewritten as

1-7~~ 1 1 1 1
ieTze — 50%@0) = 5 {02(900) 1 0TR0 4 29Tzk,0} — 50%(w0) = 07 Sy + 567 2.
We recognize the Laplace transform of a Gaussian random vector with mean ¥j o and
covariance matrix ¥ whence the lemma follows. O

Proof of Proposition 6.8. Equations (6.5) and (6.17) together with Lemma 6.9 yield, for
all A € C+(X),

Py (A) = /C+(X) 1is/f@yearf(x)v(df)

_ W(zo)—Lto2(z
—E[e (20)=2 (O)1{exp<w<~>—%02<~>>/exp(W(xo)+éa2(xo>>eA}]

= (o [W0) = Wian) = § {020 - *(a)} | € 4)

1

) (exp -W() + c(zo,+) — W(x0) — (g, x0) — 5 {02(-) - 02(330)}] € A)

=P <exp W() — W(xy) — % {02(-) + 02(z0) — 2¢(x0, )}] € A> .

Using the fact that for all x € X
o?(z) + (o) — 2¢(wo, x) = Var[W (z) — W (o))

we deduce that P, is equal to the distribution of the log-normal process

1
Y (z) = exp [W(x) — W (o) — 5 Var {W(x) - W(mo)}], v e X.
This proves Proposition 6.8. O

Remark 6.10. The finite dimensional margins of Brown—Resnick processes are Hiisler
and Reiss (1989) distributions and the above therefore provides a method for their exact
simulation.

Remark 6.11. For stationary Brown-Resnick processes, i.e., when W has stationary
increments with W (0) = 0, it is easy to deduce from Proposition 6.8 that P,, is equal to
the distribution of

exp{W(x —x0) —vy(x —x0)}, z€X.
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Thus, Theorem 6.6 yields

2(x) = max R Wile = 1) =7z ~ 1))
2 e {Wilee = T — (e - 1))

where {R; : i = 1,2,...} is a Poisson point process on (0,00) with intensity Nr~2dr,
Ty, Ty, ... are independent with uniform distribution on {z1,...,zx} and Wy, Wy, ... are
independent copies of W. The same representation appears in Dieker and Mikosch (2015),
so Algorithm 6.2 is identical to Dieker and Mikosch procedure in this case.

6.4.3 Extremal-t process

We consider the so called extremal-t max-stable process (cf. Opitz, 2013) defined by rep-
resentation (6.1) with v the distribution of the random process

Y(z) = cqmax{0,W(x)}¥, =ze€lX, (6.19)

where a > 0, ¢q = 7/227(@=2/2/T{(1 + )/2}, and W a sample-continuous centered
Gaussian process on X with unit variance and covariance function ¢. For a = 1, the cor-
responding max-stable process in (6.1) coincides with the widely used extremal Gaussian
process of Schlather (2002).

Proposition 6.12. Consider the extremal-t model (6.19). For all zg € X, the distribution
Py, is equal to the distribution of max(T,0)*, where T' = (T'(z))zecx is a Student process
with o + 1 degrees of freedom, location and scale functions given respectively by

c(x1,x2) — c(xg, 1)c(x0, T2)
(a+1)

/L(:L‘) = C(:L‘o,l’), 6($1a$2) =

It is worth noting that the formula for P,, provided in Proposition 6.12 is similar to
the formula for the conditional intensity of the extremal-t process that was computed in
Ribatet (2013).

The proof of Proposition 6.12 is based on the following lemma.

Lemma 6.13. The distribution of the random process (W (x)/W (x)),cr under the trans-
formed probability measure P = coW (x0)YdP is equal to the distribution of a Student

process with o+ 1 degrees of freedom, location and scale functions given respectively by
Xk — 2k,020,k

- d S =
Uk ko on k a1

)

where X, = (c(xi,arj))lgingk and Xy o = Eg’k = (c(zo, i) 1<i<k-

Proof. We consider finite dimensional distributions only. Let k > 1 and z1,..., 2 € X.
We first assume that the covariance matrix X = (c(zi, %)), ;< is non singular so that
(W (z;))o<i<k has density -

. _ S I oo :
) = (2) 2 det(S) 2 exp (<5 TSy with y = (hosicr

Setting z = (yi/yo0)1<i<k, we have for all Borel sets Aj,..., Ay CR

= W(i‘z) . i
P A, i=1,...kp = 1, o . a q
{W(xo) <At } /R,c+1 {yi /w0 A, i=1,...k}Ca(¥0)59(y) dy
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= /]Rk 1{Z¢€A¢, i=1,....k} { /0 Ca(yO)ig(yoa yoz) yg dyO} dz
We deduce that under P, the random vector (W (z;)/ W (x0))1<i<k has density

o0
g(z) = / et 350, 07) dyo
0

~Te—1~

_ S e Z' 'Yz
= o (2m) /2 Gt () 1/2/0 ot exp(_ . y(2]> dyo

with Z = (1, z). Using the change of variable u = %ETifléyg, we get
oo 5Ty -1z 5Ty =1z _otktl
ko _z X 22>d :}(22 z>— 2
/0 oo ( g )=\
B 1(5Ti—12>—
2

/ uFte=D/2 exp (—u) du
0

Q

: (e

2
and we obtain after simplification

k‘ (0% o

g(z) = ﬂ—k/2L2+1) det ()12 {gg—lg}* kD
T (23)

1 Yok

the inverse matrix is
Yko 2k )’

Introducing the block decomposition Y= (

S-1_ ( 1+ S0 x(Sk — Sko0Z0k) ' Sko —Zox(Zk — Sk oXok) ! >
—(Zk — Zk0Xo0k) ko (Zk — Zko0Xok) ’
By the definition of u; and f]k, we have

S-1_ 1 1+« —1/—\/;22,;1/% —MA,IE;
l+a =5 g I

and -y
(z— ) 25 (2 — )

2Tl =(1,2)'S 1,2) =1+

a+1
Finally, we obtain after simplification
P (kg o (= ) TS e =) T
L —k/2 —k/2 2 ~1/2 k) g Hk
g(z) =7 (a+1) NG det(Xg) {1+ P }
We recognize the k-variate Student density with a + 1 degrees of freedom, location pa-
rameter py and scale matrix . O

Proof of Proposition 6.12. Consider the set
A={feCu(X): f(z1) € Ar,..., flak) € Ar}-
Equations (6.5) and (6.19) together with Lemma 6.13 yield,
Puy(A) = /C » Liy/pwearf(@)v(df) =E [CQW(mO)i1{W(x¢)ff_/W(xo)i€Ai, i=1,...,k}}
+
=P{W ()% /W (zo)F € Aiy i=1,...,k} =P{(T))F € A, i=1,...,k}

where T' = (11, ...,T}) has a multivariate Student distribution with « + 1 degrees of
freedom, location parameter p and dispersion matrix 3. This proves the result. ]
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6.4.4 Multivariate extreme value distributions

In this section, we review some popular models for multivariate extreme value distribu-
tions, i.e., the case when X = {1,...,N} in (6.1) is a finite set for some fixed N € N.
For these models, we explicitly calculate the measure Pj, for any jo = 1,...,/N. Unless
otherwise stated, all random vectors are N-dimensional in this section. For more details
on the models, we refer to Gudendorf and Segers (2010).

Logistic model

The symmetric logistic model in dimension N with parameter § € (0, 1] corresponds to
the max-stable random vector with cumulative distribution function

0
P{Z <z} =exp {— <ZN z._1/€> } . z=1(z1,...,2y5) € (0,00)". (6.20)

j=1"7

Proposition 6.14. Let § =1/0. In the logistic model (6.20), the probability measure Pj,
for any jo=1,..., N is equal to the distribution of the random vector

RN
Fo R

where Fy,...,Fy are independent, F;, j # jo, follows a Fréchet(B,cg) distribution with
scale parameter cg = I'(1—1/8)~1 and (Fj,/cg)~" follows a Gamma(l —1/8,1) distribu-
tion.

Proof. 1t is easily shown that the logistic model admits the representation
Z = max (; F;
i 1X GFE;

where the F; are independent random vectors with independent Fréchet(3, cg)-distributed
components. To check this, we compute

F; e F; o N
E(mj\éxj) = / P (m]ng > u) du = / {1 — H P(F; < zju)}du
J=1 Zzj 0 J=1 z; 0 j=1
0 J=1 0
1/8
- (=)
j=171

For the computation of the last integral, we recognize the expectation of a Fréchet distri-
bution. Next we use the fact that P}, is the distribution of F'/F}, under the transformed

density
N —-1-p
uio 1 B <yk> o—(un/ca) P

We recognize a product measure where the jth margin, j # jo, has a Fréchet(3,cg)
distribution. The joth marginal has density

N\ —1-8

n ﬁ <y30> o~ Wig/ce) ™"

Jo
cg \C3

and a simple change of variable reveals that this expression is the density of cgZ —1/8 with
Z ~ Gamma(l —1/3,1). O
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Remark 6.15. The asymmetric logistic distribution can be represented as the mixture
of symmetric logistic distributions; see Theorem 1 in Stephenson (2003), for instance.
As a consequence, Proposition 6.14 also enables exact simulation of asymmetric logistic
distributions.

Negative logistic model

The negative logistic model in dimension N with parameter 6 > 0 corresponds to the
max-stable random vector Z with cumulative distribution function

PZ<=ewd 3 (OV(X ze>’1/" L e (000N (621)

0#£JC{1,....,N}

Proposition 6.16. In the negative logistic model (6.21), the probability measure P, for
any jo=1,..., N is equal to the distribution of the random vector

Wi Wy

W W,
where Wi, ..., Wy are independent, W, j # jo, follows a Weibull(0, c¢y) distribution with
scale parameter cy = T'(1 +1/0)~1 and (W, /c)? follows a T(1 + 1/0,1) distribution.

Proof. Similarly to the logistic model, we have the spectral representation
7 — W
max GWi

where the W; are independent random vectors with independent Weibull(6, ¢g)-distributed

components with scale parameter cy = W. To check this, we compute
N W; o N W o N
E( max—L | = / P(max — >u | du = / 1-— HIP’(Wj < zju) p du
=1z 0 =1z 0 paiey
oo N oo 0 0
= / 1-T] {1 - e*(Za'“/%)g} du= — Z(—l)“'/ e Tiesz/)” qy
~1/0 ~1/0
= =D ey T 1/0) = =S (DM S
J JjeJ J JjeJ

For the computation of the last integral, we recognize the expectation of a Weibull distri-
bution. As for the logistic model, P}, is the distribution of W/Wj, under the transformed

density
N

0 Yk o-1 0
mie (@) o—(e/ca)?

k=1
We recognize a product measure where the jth margin, j # jo has a Weibull(0, ¢y) distri-
bution. The jpth marginal has density

0 (y; o-1 0
Yjo— <30> e~ (Wig/co)
co \ ¢y

and a simple change of variable reveals that this expression is the density of cgZ 10 with
Z ~ Gamma(1l +1/6,1). O
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Dirichlet mixture model

The Dirichlet mixture model was introduced by Boldi and Davison (2007). In dimension
N, the model corresponds to the max-stable random vector given by

Z = max (;(NY;) (6.22)

where the Y;’s are independent identically distributed random vectors on the simplex

N
Sn-_1= {Z/ € [0,1]": ijlyj = 1}~

The distribution of each Y; is a mixture of m Dirichlet models, i.e., its Lebesgue density
is of the form

y) = Zﬂkdiri(y | a1y ank), y= (y1,-..,Yn) € Sn—1, (6.23)
k=1

where m; >0, k= 1,...,m such that > ;" m, =1, a; >0,i=1,..., N, k=1,...,m,

and N
1 a;—1 (@) [L= Tey)

diri(y | a1, ...,an) = o~ || v;” 5 Blo)=—=x—— (6.24)
B(a) j=1 F(ijl Oz]')
Here, the parameters m; and o, i =1,...,N, k=1,...,m, are such that
1
7Tk; , j=1,...,N.
Z SV ool TN

Proposition 6.17. In the Dirichlet model (6.22), we have for any jo = 1,..., N that
Py =>7", frkPj(O) where 7y, = Wkajok/(z _, k) and Pj(f) is equal to the distribution of

the random vector ®) ®
<G1 i )
(k)77 ~(k)
Gjo G

Jo

and G( ) o ,Ggl\;) are independent random variables with
Gg.’g’) ~ Gamma(aj, + 1,1), Gj ~ Gamma(ajk, 1), j # jo-

Proof. By definition, P}, has the form

Pj,(4) NZM/ YjoLiy/y;,eardiri(y | aip, ..., ang) dy
k=1
mo ;i endiri(y | aqp, ... ang) dy
=N e L0/u ) . AcC(0,00)N.
fsN71 Yjodiri(y | aig, ..., ang) dy

Thus, Pj, is given as the mixture Pj, = > ", ﬁkP(k), where for each k = 1 ,m, the
probability measure Pj(o) is equal to the distribution of the random vector Y / on , and
~ (k
Y( ) has a transformed density proportional to y;, vazl Y, %977, We recognize the Dirichlet
distribution with parameters &g, ..., ang given by

&jok = ok t+ 1 and CNij = Qg 7 # jo-
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It is well known that Dirichlet distributions can be expressed in terms of Gamma distri-
butions. More precisely, we have the stochastic representation

N
A G“/E}ﬂ W/E)#),
j=1

where G(k) are independent Garnrna(djk, 1) random variables. The result follows since

Pj(o) is the distribution of ¥* / Y . O

6.5 Complexity of the Algorithms

In this section, we assess the complexity of Algorithms 6.1 and 6.2 as a function of the
number N of simulation sites. Both algorithms contain the simulation of exponential
random variables e and the simulation of N-dimensional random vectors Y (z) according
to a mixture of the laws P, ,..., P;,. The simulation of e involves much less computa-
tional effort than the simulation of Y and can therefore be neglected in the analysis of
the algorithmic complexity. We thus consider the number C1(NN) and C2(N) of random
vectors Y (x) that must be simulated by Algorithm 6.1 and 6.2 respectively to obtain one
exact simulation of Z(z). The following proposition provides simple expressions for the
expectations E(C1(N)) and E(C2(N)).

Proposition 6.18. The expected number of random vectors Y (x) that are needed for exact
simulation of Z at x = (z1,...,xN) are:

Algorithm 6.1:  E{Cy{(N)} =N

Algorithm 6.2: E{C3(N)} = NE { _max Z(a:i)l}
Furthermore, E{C1(N)} < E{C2(N)}, with equality if and only if Z(x1) = --- = Z(xn)
almost surely.

Proof. In order to analyze the complexity of Algorithm 6.1, we consider each step of the
algorithm separately. In the nth step, i.e. for sampling the process perfectly at site z,,
we simulate Poisson points ¢ and stochastic processes Y, until one of the following two
conditions is satisfied:

(a) ¢ < Zp—1(xzy). This condition is checked directly after the simulation of ¢ and, in
this case, no stochastic process Y needs to be simulated.

(b) ¢ > Z,—1(xy) and (Y (z;) < Z(x;) for all 1 <4 < n — 1. In this case, Z is updated
and (Y is an extremal function as it contributes to Z at site x,, (and possibly also
at some of the sites zp41,...,ZN).

Thus, any stochastic process that is simulated is either rejected, i.e. it is not considered
as contribution to Z as it does not respect all the Values Z(x1), ..., Z(xp-1), or it leads
to an extremal function. Denoting by ®™ {( (n)) i > 1} a Poisson point process
on (0,00) x C4(X) with intensity measure £~ 2d§ Pxn (dv), the random number C;(N) of

processes simulated in Algorithm 6.1 satisfies

N Z(x5)
o =1ot, L1+ J

n—1
¢21;§m>2@@,$ﬂ>mmn}y(e%)
{ Py (ay)

=
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In this formula, the term |<I> " }| is the number of extremal functions that need to
be simulated, and the term Wlth 1ndex n in the sum is the number of functions that are

simulated but rejected since §i ngn)( ;) > Z(xj) for some j < n—1. For the computation
of the expectation of the second term, conditionally on <I>{+x1 i} i.e. for fixed Z(x;),
1 <j<n-—1, the two sets
o = {6 ™) - 6" (@) > Z(aj) for some j=1,...,n—1}
and q)gn) = {(gf”),wf")) : fz(n)%(n)(mj) <Z(zj) forall j=1,...,n—1}

are restrictions of the Poisson point process ®(™) to disjoint sets and, thus, are indepen-
dent Poisson point processes with intensities €721 {e>min=} (Z(z;)/ w(xj))}dﬁ P, (dv) and
5_21{£<mm?:_11(Z(xj)/w(zj))}df P, (d), respectively. Conditioning further on @gn), Z(xy)

is also fixed and we obtain

ﬂH@-W )5>>Zm05)>%£f?%H]

~E(E|{cveel: e> z@}| | o, .., 28"))

— -2 o . 1 n—1 Yn(x)
—2[ [ [ e nan {eomzt 22 }dfpx"(dw)] - o { g B S )

where Y,, ~ P, and Z are independent. The relation min{a,b} = a + b — max{a, b},
a,b € R, and the fact that Y, (z,) = 1 almost surely yield

EH%&%@”%@”>Z@»&“>%$ S)}H
=1 ()

ot} e ) e )
—1+e(ef, L ) ~E(f, ),

as IE(|<I>{$1 mn}|) = E{max}_, Yy(z;)/Z(x;)} by Lemma 4.5 in Oesting et al. (2018b).
Thus, by (6.25), we obtain

N

EACUN)} =B (1, o) + o {14 E (190, ]) ~ B (190 }

n=

_N—1+E(y¢ y)

[\

Moreover, by (6.2), we have that EZ(x;)~! =1 for i = 1,..., N, and, thus,

E{ max Z(:L’i)_l} >1,

i=1
with equality if only if Z(x1) = --- = Z(zy) holds almost surely.
The expectation of Co(N) can be calculated similarly to Proposition 4.6 in Oesting et al.
(2018Db). O

Remark 6.19. The expectation of Cj(N) does not depend on Z(z). Further charac-
teristics of its distribution such as its variance however depend strongly on the model
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€ Hy Po 01 02
0.25 291 1037 195 605
0.5 79 260 53 149

1 25 68 15 40

9 21 5 12

Table 6.1: Empirical means ji; and i, and standard deviations &1 and &2 of the number of
random vectors to be simulated to obtain an exact sample of a Brown—Resnick
process on the grid (eZN[—2, 2]) x (¢ZN[—2, 2]) via Algorithm 6.1 and Algorithm
6.2, respectively.

and apparently cannot be readily expressed by an explicit formula in the general case.
The following simple examples may provide some further insight into the distribution of
C1(N). In the case of independent random variables Z(z;), 1 < ¢ < N, the extremal
function at z; is Z(z;)1{,,}(-) which is why, at each step of Algorithm 6.1, a new extremal
function is simulated and accepted, whence C1(IN) = N. In contrast, for completely de-
pendent random variables Z(x;) = Z(x1), there is only one extremal function, namely
the constant function z +— Z(z), the one simulated at the first location. At each further
step of Algorithm 6.1, all proposed extremal functions are rejected. The number Cy (V)
follows a geometric distribution with success probability 1/N and, thus, E{C1(N)} = N
and Var{C1(N)} = N(N —1). In this case, C1(N) and C(N) share not only the same
mean, cf. Proposition 6.18), but also the same distribution.

We conclude this section with some comments on the complexity of our algorithms and
a comparison with other exact simulation procedures. Proposition 6.18 shows that, for
any max-stable process, Algorithm 6.1 is more efficient than Algorithm 6.2 in terms of
the expected number of simulated functions. As the spectral functions follow either of
the laws Py, ..., Py, or a mixture of these, the simulation of a single spectral function is
equally complex in both cases. Thus, the new Algorithm 6.1 based on extremal functions
is always preferable to Algorithm 6.2.

The differences in complexity of the two algorithms are further illustrated in a simulation
study. We consider exact simulations of the Brown—Resnick process associated to the
variogram «y(h) = ||h|| on a grid (¢Z N [-2,2]) x (¢Z N [-2,2]). For € € {0.25,0.5,1,2},
Algorithms 6.1 and 6.2 are run 10000 times. The empirical means ji; and fi5 and standard
deviations &1 and g2 of C1(N) and Ca(N), respectively, are reported in Table 6.1. It
can be seen that both the mean and the standard deviation are remarkably larger in case
of Algorithm 6.2. The corresponding histograms for C1(N) and Cy(N) are displayed in
Figure 6.3 for the cases ¢ = 0.5 and € = 1.

Finally, we briefly comment on exact simulation via the normalized spectral representation
proposed by Oesting et al. (2018b). By Proposition 4.6 in Oesting et al. (2018b), the
number C3(N) of simulated normalized spectral functions in this algorithm satisfies

E{C3(N)} = { _max_ () y(dw)}E{ _max Z(wi)’l} (6.26)
and, thus, depends both on the geometry of the set {z1,...,zx} and on the law of the
max-stable process Z. In general, the numbers E{C3(N)} and E{C1(N)} can however
not directly be used to compare the complexity of simulation via the normalized spectral
representation and simulation via extremal functions, because the distribution and the
simulation complexity of a single random function are different for the two algorithms. As
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Figure 6.3: Histograms for C(N) (grey) and C2(N) (white) based on 10000 exact simu-
lations of an original Brown—Resnick process on the grid (eZN[—2,2]) x (¢ZN
[—2,2]) for e =1 (left) and € = 0.5 (right), respectively.

we have seen in Section 6.4, the random functions in Algorithms 6.1 and 6.2 with distri-
butions P, in (6.5), g € X, can be simulated efficiently for the most popular max-stable
process and extreme value copula models. For the normalized spectral function, exact
and efficient simulation procedures are only known for some cases such as mixed moving
maxima processes, but are unavailable in other cases like Brown—Resnick or extremal-¢
processes. For this reason, simulation via Algoritm 6.1 is often preferable to simulation
via the normalized spectral representation when E{Ci(N)} > E{C5(N)}.

6.6 Simulation on Dense Grids

In many applications, one is interested in simulating a max-stable process Z on a dense
grid, e.g., x = X N (¢Z)?. As discussed in Section 6.5, on average, this requires the
simulation of FCy(N) = N random functions in Algorithm 6.1, that is, the simulation
of N random vectors of size N. For small ¢, N will be large and the procedure can
become very time-consuming. Thus, one might be interested in aborting Algorithm 6.1
after m < N steps, ensuring exactness of the simulation only at locations x1,...,Zm. In
this case, an alternative design of the algorithm which efficiently chooses the subset of m
locations might improve the probability of an exact sample at all N locations.

For comparison of two designs, we introduce the random number

No=min{m € {1,...,N}: Z,,(z) = Zn(2)}.

For n > Ny, the algorithm does not provide any new extremal functions, but all the
simulated functions are rejected. Hence, Ny is the optimal number of iterations before
aborting the algorithm. One design is preferable to another if its corresponding random
number Ny is stochastically smaller. An efficient design should thus simulate the extremal
functions at an early stage of the algorithm. Based on the intuition that qﬁ;n ., 1s likely not
to be contained in @, if Z,(z,41) is small, we propose the following adaptive numbering
M 2W) of points in Algorithm 6.1:

e =z, (6.27)
() = argmin{Zn(a:) cx€{x1,..., N} \ {x(l),...,z(")}}, n=1,...,N—1.
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Figure 6.4: Histogram of Ny based on 5000 realizations of a Brown—Resnick process as-
sociated to the semi-variogram y(h) = ¢||h||* with ¢ = 1 and a = 1.5 (left),
c¢=2.5and « = 1 (middle) and ¢ = 5 and o = 0.5 simulated via Algorithm 6.1
with the deterministic design (grey) and the adaptive design (6.27) (white),
respectively.

We perform a simulation study to compare the adaptive version of Algorithm 6.1 intro-
duced in (6.27) to a version, where the numbering of locations is deterministic. The simu-
lation study is based on 5000 simulations of a Brown—Resnick process associated to a semi-
variogram of the type v(h) = c||h||* on the two-dimensional grid {0.05,0.15,...,0.95} x
{0.05,0.15,...,0.95}. We run Algorithm 6.1 with the deterministic design (the grid points
are ordered by their coordinates in the lexicographical sense) and with the adaptive design
(6.27). The simulation is repeated for different values of the parameter vector (¢, «) repre-
senting strong dependence ((c, ) = (1, 1.5)), moderate dependence ((¢, ) = (2.5,1)) and
weak dependence ((¢,a) = (5,0.5)). The histograms of Ny are shown in Figure 6.6. For
each of the three parameter vectors, the number Ny for the adaptive design is stochastically
smaller than the corresponding number for the deterministic design.
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7 On the Distribution of a Max-Stable
Process Conditional on Max-Linear
Functionals

Up to minor modifications, this chapter is a reprint of the article Oesting (2015) that has
been published in Statistics €& Probability Letters.

Recently, Dombry and Eyi-Minko (2013) provided formulae for the distribution of a max-
stable process conditional on its values at given sites and and proposed a methodology for
sampling from this distribution. In this chapter, we generalize their results by allowing for
conditions stemming from max-linear functionals of the process. Furthermore, we show
that the conditional distribution of the extremal functions, i.e. the spectral functions at-
taining the imposed conditions, is closely related to the normalized spectral representation.
The results are illustrated in several examples.

7.1 Introduction

During the last years, max-stable processes have become frequently used models for spatial
extremes, in particular for applications in environmental sciences. In the context of the
prediction of these processes given some data, the question of their conditional distribution
arises. The conditions considered so far are restricted to values of the process at several
sites. For this case, exact formulae in terms of the exponent measure of the max-stable
process have been provided (Dombry and Eyi-Minko, 2013) and explicit computations have
been implemented for several subclasses (cf. Dombry et al., 2013; Oesting and Schlather,
2014, for example).

In this chapter, we analyze the conditional distribution allowing for more general con-
ditions given by max-linear functionals of the process. For instance, a condition on the
maximum of the process may be considered. In this case, the analysis of the conditional
distribution may provide further insight in characteristics of extreme events that exceed
a certain value. More precisely, we consider a max-stable process {Z(x), x € K} on some
compact set K C R? which — without loss of generality — can be assumed to have unit
Fréchet marginals, i.e. P(Z(x) < z) = exp(—1/z), z > 0, for all z € K. Further, we
require Z to be sample-continuous, that is, all sample paths are in the space C(K) of
nonnegative continuous functions on K. Thus, Z possesses a spectral representation (see
de Haan, 1984; Giné et al., 1990; Penrose, 1992, for example):

Z(t) = mz%\]inW/i(t), te K, (7.1)
1€
where {U;, i € N}, is a Poisson point process on (0, 00) with intensity measure u~2du and
W;, ¢ € N, are independent copies of a nonnegative sample-continuous stochastic process
W with EW(t) =1 for all t € K.

Assume that we observe values of continuous functionals Ly,..., L, : C+(K) — [0,00)
that are max-linear, i.e.

Lj(max{a1 f1, a2 fo}) = max {a1L;(f1),a2L;(f2)},

119



120 7. Distribution of a Max-Stable Process Conditional on Max-Linear Functionals

for all aj,as > 0, f1,f2 € CH(K), j = 1,...,n. An example for such a max-linear
functional is L(f) = sup,eg- f(t) for some compact set K’ C K, including the special
cases L(f) = sup,cx f(t) and L(f) = f(to) for some ty € K. More generally, using
continuity arguments and the compactness of K, it can be shown that every functional of
this type is of the form

L(f) =suph(t)f(t),  fe€Cu(K), (7.2)

teK

for some bounded, but not necessarily continuous function h : K — [0, 00).
In this paper, we analyze the conditional distribution of Z given Li(Z), ..., L,(Z), i.e. the
distribution of Z | L(Z) where L(Z) = (L1(Z),...,L,(Z))". In Section 7.2, we provide
formulae for the conditional distribution in terms of the exponent measure generalizing
the results of Dombry and Eyi—Minko (2013). More explicit expressions for the case of one
single condition are derived in Section 7.3 making use of connections to the normalized
spectral representations to max-stable processes. Section 7.4 deals with the more general
case of a finite number of conditions.

7.2 General Theory

In the following, we analyze the distribution of Z conditionally on L(Z) = z for some
z = (z1,...,2,)" € (0,00)". Here, we note that, because of the max-linearity of L;,
j = 1,...,n, the properties of L;j(Z) are directly connected to those of L;(W). By
Proposition 2.3 in Oesting et al. (2018b), the finiteness of L(Z) implies that EL;(W') < oo
and P(L;(Z) < z) = exp(—E(L;(W))/z), z > 0, i.e., Lj(Z) follows a Fréchet distribution.
To exclude the trivial case that the distribution of L;(Z) is degenerate, assume that
pj = P(Lj(W) > 0) > 0 for every j € {1,...,n}. We consider the extended process
Zr =({Z(t),t € K},L(Z)) on C4(K) x (0,00)". By the max-linearity of L;, we obtain
that L](Z) = maX;cN UZL](VVZ) Thus,

21, = max(&;, L(&;)) (7.3)
1€EN
where the maximum is considered componentwise and IT = >0, r(,)) denotes a

Poisson point process on S = C (K) x [0,00)™ with intensity measure
o
A(Ax B) = / u 2P(uW € A,uL(W) € B)du,
0

for Borel sets A C C(K) and B C [0,00)" (cf. Kingman, 1993), that is, & corresponds
to the product U;W; in representation (7.1).

Perceiving the conditions Li(Z) = z1,...,L,(Z) = 2, as conditions on the value of the
process Z, at specific “sites” according to representation (7.3) the results of Dombry and
Eyi—Minko (2013) can be applied on Zp, in order to derive the distribution of Z conditional
on L(Z). To this end, for every non-empty index subset J C {1,...,n}, we consider the
J-extremal random point measure Hj and the J-subextremal random point process I17,
defined by

Hj = Z 651‘1{Lj(§i):Lj(Z) for some jEJ} and H; - Z 5511{L]~(£i)<LJ~(Z) for all jeJ}-
i€EN iEN
It can be shown that IT and II; are well-defined point processes on C(K) (see Dombry
and Eyi-Minko, 2013, Lemma A.3). Further, as H{E}(C’}) =1 a.s. (cf. Dombry and Eyi-
Minko, 2013, Proposition 2.5), Hzrl ) is characterized via so-called hitting scenarios (cf.
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Wang and Stoev, 2011; Dombry and Eyi-Minko, 2013), i.e. partitions 7 = {7y,..., 7} of
{1,...,n} representing the situation that H?l,...,n} ={&, ... ,§l+} s.t.

:L](Z)v j € Tk

. ; 1<j<n, 1<Ek<I
<LJ(Z)7 j¢7-k

Lj(&) {
Let © € Pyy,... ) be the random partition realized by Z where Py 3 denotes the space of
partitions of {1,...,n}. Based on the different hitting scenarios, conditional simulations

of Z | L(Z) = z can be performed via the following three-step procedure proposed by
Dombry and Eyi-Minko (2013):

1. Draw a partition 7 = {7} _, from the distribution of © | L(Z) = z.

2. Simulate (&}, _; as a realization of H{+1,...,n} |L(Z)=2,0=r.

3. Draw {&; }ien from the distribution of Iy | L(Z) = =.

Then, max!_, & V max;en &, is a realization of Z | L(Z) = z.

The distributions involved in the algorithm are given in the following theorem which
summarizes Theorem 3.1 and Theorem 3.2 in Dombry and Eyi-Minko (2013). First, we
need some more notation. For any non-empty index subset J C {1,...,n}, define the
mapping Ry : [0,00)" — [0, oo)“]| as the projection on the components belonging to J, i.e.
Rj(z) = z; where z; = (2j)jes for z = (2;)7_;. Further, let u be the exponent measure of
Z,ie. p(A) = A(A x [0,00)"), A C C(K), and py the exponent measure of (L;(2));e,
ie.
1;(B) = A(C(K) x R;Y(B)), B [0,00)/’ Borel.

The tail function of u; is denoted by fi;(z5) = ps([0,25)%), z; € [0,00). Furthermore,
let {Pj(zs;-), z7 € [0,00)I} be a regular version of the measure u(df) conditional on
(Lj(f))jes = zs. That is, Py(z,;-) satisfies [, 15(L(f)) u(df) = [ [, Ps(z;df) ps(dzy)
for all Borels sets A € C'(K) and B C [0, 00)l.

Theorem 7.1 (adapting Dombry and Eyi—MinkO, 2013). With the above notation, the
following holds true:

PO =171, L(Z) € dz)
ZT’GPM ,,,,, n} P(© =17/, L(Z) € dz)’

where the fraction is understood as a Radon-Nikodym derivative and

LPO=7|L(Z)=2z)=

P(O = 7, L(Z) € dz)
= exp (_ﬂ{l,.,.,n}(z)> Hic:l {Pﬂc (273 {(Lj(f))jéﬁﬁ < ZTE})NTk (dsz)} :
l

2. P& edfi | L(Z)=2,0=1) =
k=1

1{LTg(fk)<ZT,g}PTk(ZTk; dfx)
PTk(sz; {f: LT,S(f) < Z‘rﬁ}) ‘

3. Conditionally on L(Z) = z, H{_1 n) 18 a Poisson point process with intensity mea-

sure 1i(f)<zy p(df), independently of © and H?L---,n}'

Remind that, for the conditional simulation of Z, we do not need the whole Poisson point
process H{_l,...,n}’ but only the pointwise maximum Z~(t) = max;en§; (t), t € K. By the
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third part of Theorem 7.1, simulation of Z~ is closely related to unconditional simulation
of Z. The only difference is that those points that violate the condition L(Z) = z are
neglected.

A specific spectral representation of Z proves beneficial for an exact simulation: By
de Haan and Ferreira (2006), Cor. 9.4.5, any sample-continuous max-stable process with
unit Fréchet margins can be written as

Z(t) = max U;Vi(t), teK,
€N
where V;, i € N, are independent copies of some stochastic process V' with sup;cx V(t) = ¢
a.s. for some uniquely determined ¢ > 0. Recently, Oesting et al. (2018b) revisited this
representation — which they call the normalized spectral representation — and showed
that the law of the process V' can be expressed in terms of the law of the process W in
representation (7.1) via the equality

-1
V=g4c- <sup W(t)) W,
teK

where the law of W is given by

P(W € A) = c_l/ supw(t) P(W € dw), A C CL(K),
AteK

with ¢ = E(sup;ex W(t)). For this representation, only a finite number of tupels (U;, V;)
— those tupels that satisfy cU; > infyc i Z(t) — can contribute to the maximum Z. This
fact allows for an exact simulation of Z in finite time and can also be used for an exact
simulation in the third step of the procedure for conditional simulation described above.
Further, as we will see in what follows, the distribution of the normalized spectral functions
is closely connected to the conditional distribution of the extremal functions.

7.3 Conditioning on One Max-Linear Functional

We first consider to the special case that we have one condition L(Z) = z for some z > 0,
only. In this case, there is one extremal function £+ satisfying L(¢éT) = 2 and there is no
need to consider different hitting scenarios. The second part of Theorem 7.1 allows us to
calculate the distribution of £T:

E (L(W)1gw/w)eay)
EL(W)

P(E* € A| L(Z) = 2) = Py (2 A) = ;

SA(AX[0,2]) = . (7.4)

for A C C;(K). Thus, we can write {* = W /L(Wp), where the law of W is given by
the Radon-Nikodym derivative P(W, € dw)/P(W € dw) = ¢; ' L(w) with c¢;, = EL(W).

Remark 7.2. Note that there is a connection between the law of the extremal function
£ and a representation similar to the normalized spectral representation. Generalizing
the functional f +— sup,cx f(t) by a max-linear functional L : C{(K) — [0, 00) as above,
we obtain the L-normalized spectral representation

Z(t) = maxUiViH(t), teK, (7.5)
1€
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Figure 7.1: Examples of samples from the distribution of max-stable processes conditional
on max-linear functionals containing five realizations each. The dots indicate
the hitting of the condition. Left: A Smith process Z with ¢ = 1 conditional
on maxye_55 Z(t) = 4. Middle: A Brown-Resnick process Z associated to
the variogram ~(h) = 2|h|*3 conditional on max;e_55 Z(t) = 4. Right: A
Smith process Z with o = 1 conditional on L;(Z) = maxe[_4,_1] Z(t) = 2 and
Lo(Z) = maxyey 4 Z(t) = 3.

where VL-L , 1 € N, are independent copies of a stochastic process V, satisfying

_ crL T _
V= By > oypiy L r T B

where B is some Bernoulli random variable with parameter p = P(L(W) > 0), W, has
the same law as in (7.4) and W, has the distribution of W | L(W) = 0. Thus, the spectral
functions ViL7 1 € N, of the L-normalized spectral representation are characterized by the
fact that L(Vl) = p~lcy with probability p and L(V;*) = 0 with probability 1 — p. From
(7.5), it can be seen that the law of extremal function ¢+ conditional on L(Z) = z equals
the law of ¢, 'pzVy, | L(V) > 0, confirming Equation (7.4).

In practice, the simulation of the process W, which is needed for the simulation of the
extremal function, and the process W, which can be used for the exact simulation of the
subextremal functions, is not straightforward. Here, remind that W is a special case of
W, for the choice L(f) = maxyc f(t). One possible way of simulation is simulation via
MCMC methods. For instance, one could use the Metropolis-Hastings algorithm with the

distribution of W as proposal distribution.

We now present two examples for sampling of max-stable processes conditionally on the
max-linear functional L(f) = maxex f(t).

Example 7.3 (Smith process). We consider Smith’s (1990) process of moving mazima
type .
Z(t): aXUifg(t_Si), te K,
€N

on some finite interval K = [—r,r], where ), (5(&_ ) 18 a Poisson point process on
(0, 00) xR with intensity u~2duds and fs(z) = (vV2ro) ' exp (—2?/(20?)), = € R, denotes
the normal density with standard deviation o > 0. As we consider a condition on the
overall mazimum of Z, we can make use of the normalized spectral representation of the
Smith process which was calculated explicitly in Oesting et al. (2018b):

Z(t) =g max U; e/t _~Si) ,
N f(max{0, |Si| — 7})

teK, (7.6)
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where Si, 1 € N, are independent copies of some random variable S whose law is given by
P(S <s)=c ! [°  f(max{0,|z| —r})dz and c = 2r f(0)+ 1. Thus, the extremal function
T can be written as

t —
z il :9) , teK.
f(max{0,[S| —r})
As the spectral functions in representation (7.6) can be simulated easily, we also use them

to simulate the subextremal functions contributing to Z | L(Z) = z exactly. An example is
shown in Figure 7.1.

§h(t) =

Example 7.4 (Brown-Resnick process). The second example we consider are Brown-
Resnick processes (Brown and Resnick, 1977; Kabluchko et al., 2009) on some compact
set K C R%:

2(t
Z(t) = max U; exp <Bi(t) — UU) , teK,
ieN 2

where B;, i € N, are independent copies of a centered Gaussian process {B(t), t € Rd}
with stationary increments, variance o2(-) and variogram y(h) = Var (B(h) — B(0)).
Kabluchko et al. (2009) showed that the process Z, extended to R?, is stationary and
its law depends on the variogram ~ only. Figure 7.1 shows five realizations of a Brown-
Resnick process Z on [—5,5] conditional on max,e|_5 5 Z(t) = 4. Here, for the simulation
as well of the extremal as of the subextremal functions, we use a Metropolis-Hastings al-
gorithm. However, for the subextremal functions, also other (approximative) methods for
the simulation of Brown-Resnick processes can be used, see Oesting et al. (2012).

7.4 Conditioning on a Finite Number of Max-Linear Functionals

In this section, we use the formulae given in Theorem 7.1 to explicitly calculate the distri-
bution of the random partition © and the extremal functions f,j in the general case of n
conditions Li(Z) = z1, ..., Ln(Z) = z,. Here, we restrict to the case that the distribution
of the random vector L(W) is absolutely continuous and has density f7 with respect to
the Lebesgue measure. Then, applying Theorem 7.1, yields to the following proposition.

Proposition 7.5. Under the above assumptions, we obtain the following results.

1. For any partition T = {71,...,7} € P(i,.. n}, we have
! 00
PO=7|L(Z)=2)~ H/ Il fr (vak,yTlg) dyre dv.
1 Jo [o,vag

2. Conditional on © = T for a partition T as in the first part, the distribution of the
extremal functions 51":, k=1,...,1, is given by

P eAlL(Z)=2,0=7)

~ [ P (zW/Li(W) € A| L(W) = (vzr,, yr))
0 0,z ¢

fL (Usza yT,g) dyr,g d’U,
for any Borel set A C CL(K) and an arbitrary index j € .

In the case 7 = {{1,...,n}}, the inner integrals are read as a single evaluation of the
integrand.
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Alternatively to representation (7.1) and the corresponding spectral process W, we can also
consider the L-normalized spectral representation (7.5). Let V() be the spectral process of
the Lj-normalized spectral representation conditional on L; > 0, i.e. Lj(V(j )) = ) as. for
some V) > 0. Assuming that all the (n—1)-dimensional vectors (Ly(V"), ..., L;_1(V)),
LjH(V(j)), o Ly(VONT 5 =1,... n, possess densities fr,; w.r.t. the Lebesgue mea-
sure on (0,00)" "1, Proposition 7.5 can be reformulated in terms of these lower-dimensional
densities.

Proposition 7.6. For any partition 7 = {1,..., 7}, let ji . be an element of 1, with
k=1,...,1. Then, the following statements hold true.

1. The conditional distribution of the random partition © has the form

PO =1[L(Z) = 2)
l
]k 7‘ |7—k‘
7 \{Jk,r }
_ fr; ( ]’”)ki,y ) dyre.
I;I lTk|+1 /[OvC(Jk’T)ZTg/ij, ] J Zjy . Tf TE
2. The distribution of the extremal functions {,’;, k=1,...,1, conditional on © = 1 for
T=A{m,...,m}, is given by

P e A|L(Z)=2,0=1)

i 2T\, )
X / G ) fL,j (C(Jk’T)"ayTIg
[O,C Ik, T ZTE/ij T] Z]k,‘r

2 TV(jk,T) X . Z

In general, sampling from the distribution of the extremal functions may be quite sophis-
ticated even in the case of few conditions. We finally consider an example that allows for
conditional simulation in the case of two conditions.

Example 7.7 (Smith process, cf. Example 7.3). We consider Smith’s (1990) process
{Z(t),t € K} on some real interval K conditional on Li(Z) = z1 and La(Z) = 2o
for some z1,z0 > 0. Here, we consider conditions of the type L1(f) = maxica, f(t)
and Lo(f) = maxeca, f(t) for disjoint closed intervals Ay, A2 C K. Using the notation
}’mA(:U) = maxyea fo(t —x) and ca = [ }a,A( )dz, the spectral function V) of the L;-
normalized spectral representation can be written as V9 (t) = ca; fo(t — )/fo'A (X;),
te K, j=1,2, where X; is a random variable with Lebesgue density cA C,A (cf. Oesting

et al., 2018b). Thus, the distribution of Ly(VY)), j # k, is given by

)
P(Ly (VY / (ty Touny @)/ @€} 1; T, (@) (7.7)

By Proposition 7.6, we obtain

PO = {{1}.{2}}) = 5 5°P <L2(V‘”) < %22) P (Ll(v@)) < M) ,

2
PO = {{1,2}}) = %P <L2(V(1)) c chlZ2> _ Cx‘gzp <L1(V(2)) c dc,4221> 7
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where the right-hand sides can be calculated by solving the integral in (7.7) numerically.
The extremal functions belonging to the partition {{1},{2}} can be simulated easily by
simulating VY and V) conditional on LQ(V(l)) < ca,22/21 and Ll(V(Q)) < ca,21/ 22,
respectively. Sampling the extremal function associated to {{1,2}} is more involved as
it includes the law of V9 | Lp(VW). However, in many situations, V9 is uniquely
determined by the condition Ly(VW)/L;(VW) = 2,/z;. Figure 7.1 shows five realizations
of a Smith process Z conditional on Li(Z) =2 and Ly(Z) = 3.
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8 Sampling from a Max-Stable Process
Conditional on a Homogeneous Functional

joint work with Liliane Bel and Christian Lantuéjoul

This chapter is based on the article Oesting et al. (2018a) that has been published in the
Scandinavian Journal of Statistics. Here, the section on the application to climate data is
omitted as it has mainly been implemented by Liliane Bel. Apart from this, only minor
modifications have been made. The appendix of the paper has been put to Section 8.6
and Section 8.7 at the end of the chapter.

Conditional simulation of max-stable processes allows for the analysis of spatial extremes
taking into account additional information provided by the conditions. Instead of observa-
tions at given sites as usually done, in this chapter, we consider a single condition given by
a more general functional of the process as may occur in the context of climate models. As
the problem turns out to be intractable analytically, we make use of Markov chain Monte
Carlo methods to sample from the conditional distribution. Simulation studies indicate
fast convergence of the Markov chains involved.

8.1 Introduction

Naturally occurring as limits of appropriately rescaled pointwise maxima of stochastic pro-
cesses, max-stable processes have become popular models in spatial and spatio-temporal
extremes. For instance, they have found application in modelling of extreme rainfall (Huser
and Davison, 2014), temperatures (Davison and Gholamrezaee, 2012), snowfall (Gaume
et al., 2013) or wind speeds (Engelke et al., 2015). A detailed review can be found in
Davison et al. (2012). In this chapter, we will deal with a sample-continuous max-stable
process {X(t), t € K} on some compact metric space K with a-Fréchet marginals, i.e.
P(X(t) <z) =exp(—o(t)z™®), z > 0, for some o(t) > 0, & > 0. In the following, we will
write X (t) ~ ®, (1), for short, using the convention that ®, = ®,,1. By de Haan (1984),
the process X possesses a spectral representation which, without loss of generality, may
be assumed to be of Penrose (1992) type:

X(t) = max UiWi(t), te K, (8.1)

where {U;, i > 1} are the points of a Poisson point process on (0, co) with intensity measure
au~(@tDdy and W;, i > 1, are independent copies of some nonnegative sample-continuous
process {W(t), t € K} such that o(t) = EW(¢)* € (0,00) for all t € K.

In the framework of spatial and spatio-temporal modelling, simulations have proven to
be a useful tool for gaining more insight in the structure of the problem at hand. In the
situation that additional information on the process is available, simulations conditional
on this information are required. For max-stable processes, expressions for the conditional

127
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distribution and algorithms for conditional simulation have been developed recently. Wang
and Stoev (2011) provide exact formulae and an exact and efficient algorithm for condi-
tional simulation for the subclass of spectrally discrete, also called max-linear, models.
In the general case of max-stable processes, Dombry and Eyi-Minko (2013) derive for-
mulae for the conditional distribution in terms of the exponent measure. Further works
on the problem of conditional simulation deal with algorithmic aspects and more explicit
expressions for popular subclasses like Brown-Resnick and extremal Gaussian processes
(Dombry et al., 2013), (mixed) moving maxima processes (Oesting and Schlather, 2014)
and extremal ¢t processes (Ribatet, 2013).

In all the cited works, the conditions for the simulation are given by observations at some
sites, i.e. conditions of the type X(t1) = x1,..., X (tx) = x for some t1,...,t; € K and
x1,...,x, > 0. Oesting (2015) showed that the same methodology can be used if the
conditions stem from max-linear functionals such as the maximum of the process over
some subregion. However, in many applications, some aggregated data may be given that
are not of max-linear type. For instance, numerical models for meteorological and climate
variables often provide average values on large grid cells rather than values at specific sites.
Here, conditional sampling given these average values can be used for downscaling. For
this purpose, Bechler et al. (2015) proposed to assign aggregated data to specific locations
via transfer functions and to perform conditional simulations in the classical framework
where the conditions are given by values at several sites. In this chapter, we will deal with
a procedure to directly simulate a max-stable process conditional on a more general, single
observation functional. More precisely, we consider a positively homogeneous functional
¢ : Cy(K) — [0,00), that is, a functional satisfying ¢(Af) = M(f) for all A > 0 and
f € C{(K) where C;(K) denotes the space of nonnegative continuous functions on K
equipped with the topology of uniform convergence. Examples for such a functional are
U(f) = supieg f(t), £(f) = infiex f(t) or £(f) = [ f(t)u(dt) for any positive and finite
measure p on K. There is already some related work in the literature such as in the papers
by Dombry and Ribatet (2015) and Thibaud and Opitz (2015) who consider a process Y in
the domain of attraction of a max-stable process X and analyze the conditional distribution
YY) > y, as y — oo. Here, we will focus on a max-stable process X and condition
on ¢(X) = z, instead. Thus, we consider the exact value of the functional applied to the
limiting max-stable process, while existing work typically considers exceedances of high
thresholds by the functional applied to the underlying process as condition.

In general, the conditional distribution cannot be expressed in terms of the exponent mea-
sure of the max-stable process. Thus, the approach of Dombry and Eyi-Minko (2013)
cannot be applied here. Instead, we will develop a simulation algorithm based on Markov
chain Monte Carlo techniques. The problem of conditional simulation of max-stable prob-
lem will be approached in three steps: In Section 8.2, we will first restrict to max-linear
models. Then, in Section 8.3, we will extend our focus to conditionally max-linear models,
before covering the general max-stable case (Section 8.4). Finally, we conclude the chapter
and provide some perspectives for future research (Section 8.5).

8.2 Max-linear Models
8.2.1 Background

We first consider a max-linear, also called spectrally discrete, model (cf. Wang and Stoev,
2011):

X(t) = Imax a;(t)Z; te K, (8.2)
J=4L..,n
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where Z; ~ ®,, j = 1,...,n, are independent random variables and a; € C(K) for
j =1,...,n. Following Wang and Stoev (2011), henceforth, we will write X = a® Z with
a = (a;j(t))ier j=1,.m and Z = (Zj);j=1,..n instead of (8.2), for short. Further, for any
vector z € (0,00)" and an index i € {1,...,n}, we use the notation z_; = (2j)je1,...n}\{i}-
The definition (8.2) allows for the calculation of the finite-dimensional distributions yield-
ing

n [0
a;(t;
P(X(t;) <z, 1 <i<m)=exp —Z max <M> , t; e K, z; > 0.

2 i=1,....m ZT;

7=1
In particular, X has marginal distributions of a-Fréchet type. Further, all the finite-
dimensional marginal distributions of a max-stable process can be approximated arbitrarily
well by a max-linear model using a sufficiently large number n of spectral functions a; (cf.
Wang and Stoev, 2011, among others).

For such max-linear models, Wang and Stoev (2011) calculated the conditional distribu-
tion of Z conditional on a finite number of observations X (¢1) = z1,..., X (tx) = x by
considering so-called hitting scenarios describing which components of Z hit their upper
bound given by the conditions. However, for a general condition of the type ¢(X) = =z,
such upper bounds for Z may not necessarily be hit. Consider for instance the process
X(t) = max{Zy,tZ}, t € [0,1]. The condition [} X(t)dt = = implies that Z; < = and
Zo < 2x. Although Z; or Z> may be arbitrarily close to these bounds, they are hit with
probability zero. Thus, an alternative approach has to be designed for sampling from the
distribution of Z conditional on ¢(X) = x. First, we observe that this distribution has all
its mass in the set

Mi,={z€(0,00)": l(a® z) > 0}.

Due to the homogeneity of ¢, for each (1,y_1) € M, 4, there is one and only one vector
z € (0,00)"™ with z_1/2z1 = y_ satisfying {(a ©® z) = x, namely

Thus, the mapping z — ({(a ® z),z_1/z1) maps the set M, 4 bijectively onto the set
(0,00) x MJ(:al) where

MUY = {y_l € (0,00)" L ¢ <a® ( yll >> > o}.

Thus, instead of sampling from the vector Z conditional on ¢(X) = z directly, we can focus
on the equivalent problem of sampling from the distribution of Y_1 = (Z2/Z1,...,Z,/Z1)
conditional on ¢(X) = z. In contrast to the conditional distribution of Z given ¢(X) = x
which is supported on some Lebesgue null subset of (0, 00)™, the conditional distribution of
Y_; is supported on Mj(fal) C (0,00)""! and possesses a Lebesgue density Ty o)== ()
Thus, the homogeneity of ¢ allows us to sample from a distribution on a lower-dimensional
space. The sampling algorithm presented in the following subsection will make use of the
fact that this Lebesgue density is proportional to the joint density of (£(X),Y_1), i.e. the
product of the densities given in the following proposition.
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Proposition 8.1. The Lebesque density of Y_1 is

Oznl

fY_l(y_l) (Zz 1Y

H (et g1 € (0,00)" L. (8.3)

Further, for x > 0, the conditional density of £(X) given Y_1 = y_1 for y_1 € Mi_al)
equals

fricoy 1=y (@) = OEZ__Q;:(Z; (W)C“)"exp ( - :cia Zjﬂ <€(azfy)>a>

Yi
(8.4)

where y = (y1,...,yn) | with y; = 1.

Proof. First, we use the fact that there is a diffeomorphic one-to-one mapping between the
random vectors Z and (Z;,Y_1) given by (z1,...,2,) " ~ (21,22/21,...,2n/21)". Thus,
the joint density f(z, y._,)(-,-) of Z1 and Y_; is obtained by the density transformation
formula

e N o

fayo(zy-1) = ”11_[‘1” ) = a 1exp<_zazuyia>ﬂyi(‘”‘“,
=1

(8.5)

where 2 > 0, 1 = 1, y_1 = (Y2,...,%n)" € (0,00)" ! and @/, denotes the a-Fréchet
density function. Integrating (8.5) with respect to the first component yields

=1 i=1
— > n— —a n —(a+1)
= 1/0u exp(th:Zl )Herdu

=1
o 1 (n—1)! ﬁ a—l—l
(Z =1 yz i=1

which is (8.3). Thus, by (8.3) and (8.5), the conditional density fz |y —y_, () is

fzryy(zy-1) _ " 1 & o

Conditional on Y_; = y_; for some y_1 € MJ(;al), the homogeneity of ¢ implies the
linear relationship ¢(a ® Z) = ¢(a ® y)Z;. Thus, by standard density transformation,

fg(X)|Y_1:y_1(x) = E(a ® y)flfzﬂy_l:y_l (ﬁ(a ® y)*lx), which yields (8.4). ]

8.2.2 The Algorithm

Due to the fact that the distribution of £(.X) is unknown, the target distribution fy- | |¢(x)=s
is only known up to a constant. Thus, we will use a Metropolis-Hastings algorithm with
independent samplers (cf. Tierney, 1994, for example) for sampling from the conditional
distribution of Y_1 given ¢(a® Z) = x. Here, we will propose the transition from a current
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state y_1 to a new state y_; according to the unconditional density fy ,(y_;) which does
not depend on the current state. The proposal will be accepted with probability

e [ Peeo=2@ )y B0 Jexyyoi=g_, (%)
Pl = min {1, e e} = {Lfm”y_l:y_l(x)}’ 50

i {1, (U20D" T B e /e 0 ) )
{aoy Sy ") o (S v/l 0y) )

by Proposition 8.1. Then, by construction, fy X):x(-) is the density of the stationary

distribution of the resulting Markov chain. Further, for any state y_1 € MJ(r ;), the
probability of proposing a new state that is not accepted is positive and, consequently,
the Markov chain is aperiodic. As the proposal density allows for a direct transition from
any state y_; € MJ(r D to any other state y_; € ]\L(r b , the chain is also irreducible. This
implies that the distribution of the Markov chain converges to the desired conditional
distribution in total variation norm. Using that

fyi (y-1) . . 1
inf = inf k(x)
yoreM{ D Fyae0=e(U-1)  yemiD T fuxoyi=g, (@)
—1\! n o\ —n n o

e e (L (1)) (5 (152

yoaeM,’ @ i3 Yi Kt Yi

(n—1)! e\n

o B (0

for some k(x) > 0, we even get a geometric rate of convergence by Theorem 2.1 in
Mengersen and Tweedie (1996). Hence, Algorithm 8.1 below generates a Markov chain
{(X®(t),t e K }k=1,....m whose distribution converges to the desired conditional distribu-
tion of Y_1.

Algorithm 8.1: Conditional sampling from max-linear model with M iterations

Initial Step: Simulate independent random numbers z1, ..., z, ~ @,.
Set y(©) = z/z;. Repeat the simulation if necessary until £(a ® y(©)) > 0.
Update Step: for k. =1,..., M do

Sample independent random numbers Z1,...,Z, ~ P,.
Set y = z/%Z; and

(k) _ Y with probability p(y(kfl)yg)
L P
) else

| where p(-,-) is defined as in Equation (8.6).
return {X(k)(-)}kzl,_.’M where X () = (za © y®)) /t(a © y*)

Remark 8.2. For specific choices of ¢ and a, it may happen that ¢(X) = 0 with some
positive probability. In this case, repeating the simulation in the first step of Algorithm 8.1
may be necessary to ensure that the initial state y is in the support of the density fy|¢(x)=x
and, consequently, the acceptance probability p(y, y) is almost surely well-defined in each
iteration step.
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8.2.3 Simulation Study

We aim to analyze the performance of Algorithm 8.1 empirically in a simulation study. To
this end, we compare the results of the algorithm with the exact conditional distribution
which can be calculated analytically or at least be simulated in some special cases. Here,
we consider the distribution of a max-linear model at m locations, i.e.

Xz‘: max aiij ’i:l,...,m,
Jj=1,...,n

conditional on its maximum

X = max X; = max bjZ;,
i=1,....,m Jj=1,...,n
where b; = max;—1, . ma;j. Then, there exists a well-defined random variable J with
values in {1,...,n} such that X = b;Z;. The conditional distribution of this random
variable given X = x is

. b
PJ=j|X=2)= =>+—, i=1,...,n,
(J =7l ) ST j

and, thus, does not depend on the value of X (cf. Resnick and Roy, 1990). Conditional
on J = j and X = z, we have Zj = x/bj. The other Z;, j' # j, follow the conditional
law of independent ®,-variables given Z; < x/bj. Consequently, after sampling from
the conditional distribution of the random index J, we can easily simulate from the exact
conditional distribution of the vector (Z;)j=1,. n, and, thus, of the vector (X;)i=1,. m,

given X = 1.

In our simulation study, we choose coefficients a;; which are independently drawn from a
uniform distribution on [0,1] for m = 10 and n = 100. Given a = (a;j)i=1,...,m j=1,...n, &
realization (z;)i=1,..m of X = a®Z is simulated with independent unit Fréchet distributed
random numbers Z,...,Z,. Then, a sample of size 5000 is drawn from the conditional
distribution of min;—; . ,, X; given X = max;—1,.. m T; via Algorithm 8.1. Here, as a
more detailed analysis of convergence and mixing properties of the algorithm suggests
(cf. Subsection 8.6), we use a burn-in period of 1000 steps and thin the chain by using
every 250th step only. Thus, we consider the states of the Markov chain after 1000, 1250,
1500, ..., 1250750 iterations as an independent sample of size 5000 from the conditional
distribution.

In order to compare the output of Algorithm 8.1 to the exact conditional distribution, we
take an independent sample of size 5000 from the exact conditional distribution and we con-
sider the p-value of the two-sample Kolmogorov-Smirnov test. This procedure is repeated
500 times yielding different coefficient functions a and different values of max;—1 . ., ;.
Under the null hypothesis that Algorithm 8.1 produces independent samples from the de-
sired stationary distribution, i.e. the samples from the algorithm and the exact conditional
distribution follow the same law, the p-value are uniformly distributed on the interval [0, 1],
i.e. the histogram of the p-values shown in Figure 8.1 is flat. The fact that the histogram
fully lies in the region of acceptance of the hypothesis test with a significance level of 5%
(indicated by the dashed red lines) obtained by a Monte Carlo experiment, confirms the
performance of the algorithm.

8.3 Extension to Conditionally Max-Linear Models

In this section, we deal with a generalization of Algorithm 8.1 which can be applied
to models of type (8.2) where the coefficient functions a;(-), j = 1,...,n, are random.
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Figure 8.1: Histogram of 500 p-values of Kolmogorov-Smirnov tests comparing samples
of size 5000 from the exact conditional distribution for a max-linear model of
n = 100 coefficients with the output of Algorithm 8.1.

More precisely, let Z1, ..., Z, be independent a-Fréchet distributed random variables and
{A;(t),t € K}, j = 1,...,n, be independent sample-continuous processes. Then, the

process

X(t) = .HllaX Aj(t)Zj te K, (8.7)
j=1,...,n

is max-linear conditionally on A;(-) = ai(-),..., An(-) = an(-). However, in general, it
is not max-stable and does not have marginal distributions of a-Fréchet type any more.
Instead, the finite-dimensional distributions are given by

P(X(t) <2, 1<i<m)=E (exp <— S max <Af(t)>a>> . (8.8)

j=1li=1,...m Z;

for all t1,...,t; € K, x1,...,2,m > 0, m > 1. Although not being max-stable themselves,
conditionally max-linear models (8.7) allow for a straightforward approximation of general
max-stable processes as we will see in Section 8.4.

A first approach to perform conditional sampling from model (8.7) might be to reduce
the problem to the problem of conditional sampling from a max-linear model by drawing
the vector of coefficient functions A = (Ay(-),...,A,(-))" in a first step before applying
Algorithm 8.1. However, in this case, A has to be drawn from the conditional law of A
given ¢(X) = x. For this law, we obtain

P(A € da | {(X) =) X fianz)(@)P(A € da) = E (fyaoz)y, (¢)) P(A € da).  (8.9)
In general, the expectation in (8.9) cannot be calculated explicitly.

As an alternative to such a two-step procedure, we could also directly sample from the
joint conditional distribution of A and Z given ¢(A ® Z) = z. Analogously to Section
8.2, we note this distribution has all its mass in the set

U {a} x M, 4.

acsupp(P(A€"))
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Again, for every fixed vector of coefficient functions A = a , the vector Z is uniquely
determined by Y = Z/Z;. Consequently, we will sample from the joint conditional distri-
bution of A and Y_;. Up to the normalizing constant P(¢/(A ® Z) € dx), this distribution
can be calculated by the means of Proposition 8.1 yielding

P(Y_1€dy_1,A€da|l(A®Z)=2)xP(Y_1 €dy_1, A€ da, V(AG Z) € dz)
= f(@oz))y_1=y_, (¥)fy_, (Y-1)P(A € da)dy ,dz (8.10)
and the first and the second factor are given by formulae (8.4) and (8.3), respectively.

Analogously to Subsection 8.2.2, it can be shown that the distribution of the Markov
chain generated in Algorithm 8.2 converges to the desired conditional distribution.

Algorithm 8.2: Conditional sampling from a conditionally max-linear model
with M iterations
Initial Step: Simulate a®) according to the distribution of A and independent
random numbers z1, ..., z, ~ ®,. Set y(o) = z/z1. Repeat the simulation, if
necessary, until £(a ® z) > 0.

Update Step: for k=1,...,M do
Draw a from the distribution of A and, independently, z1, ..., 2z, ~ ®,.

Set y = z/Z; and

(a(k)7 ,y(k)) _ (dv '!NJ) with probablhty p((a(k_l)a y(k_l)))a (dv Q))
(a* =1 y*=1))  else

iy — w1, (T (452) ) e (o wi (452
p((a,y),(a,9)) = 1, (ZL (“ayi?y))a)”exp (7%&2?:1 (Z(ay?y)>a)

77777

8.4 General Max-Stable Processes

8.4.1 An Exact Algorithm for Max-Stable Processes

We now consider a not necessarily spectrally discrete max-stable process {X (t), t € K}
with a-Fréchet marginals and sample paths in Cy (K), i.e. a process X given by a spectral
representation (8.1). One of the main difficulties of such a general max-stable process
compared to a (conditionally) max-linear model is the fact that it is represented as a
maximum over an infinite number of functions. However, the following two well-known
observations allow us to restrict to a finite (but random) number of functions and, thus,
form the basis for the algorithm:

First, let E = (E;);>1 be a sequence of independent standard exponential random variables
and Vi (E) = (Zle Ei)_l/CY for k = 1,2,.... Then, {Ux(E), k > 1} are the points
of a Poisson point process on (0,00) with intensity measure au~ @t du. Moreover, by
construction, the sequence (¥y(E))i>1 is monotonically decreasing. Thus, the points
{Ui, i > 1} from the construction (8.1) of X can be simulated in a descending order.
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Second, for a given max-stable process X, the spectral representation (8.1) is not unique,
but allows for several choices of the spectral process W. By de Haan and Ferreira (2006,
Cor. 9.4.5), for any sample-continuous max-stable process, there exists a corresponding
spectral process W such that

supW(t) <C (8.11)

te K
almost surely for some C' > 0. Moreover, any spectral representation can be transformed
such that equality in (8.11) holds almost surely for C' = (Esup;cx W(t)a)l/o‘ (Oesting
et al., 2018b). We have that

X(t) = maX\Ifk(E)Wk(t)7 te K,
keN

and by (8.11), those (¥ (E), W}) that satisfy CV(E) < inficx X (¢) do not contribute
to the above maximum X. Thus, a finite (but possibly random) number of points need
to be taken into account when simulating X (¢) over the set K. More precisely, for any
positive sequence E = {E}}r>1 and any collection W = {Wj, }>1 of continuous functions
bounded by C, we consider the operation W ® ¥(E) which — in analogy to the max-linear
case with finite vectors — is defined by

By definition, W ® ¥(E) depends only on a potentially random, but finite number of
components, namely the first N(W, E) elements of W and E where

NW,E)=min{n >1: UV, (E)C <infiexg (W @ ¥(E))(t)}. (8.12)

Assuming from now on that C' and W are chosen such that (8.11) is satisfied, for Ej,
k > 1, being independently standard exponentially distributed and Wy, & > 1, being
independent processes with the same distribution as W, the definitions above imply that

(X(Ohex = (W o UB)Ohex = { | max (W) )

As N(W,FE) is a stopping time, i.e. the event N(E, W) < n depends only on Fi,...,E,
and Wy, ..., W, this finite representation can be used for an exact simulation of X (cf.
Oesting et al., 2018b). Further, it allows the conditional distribution of X given /(X) = x
to be simulated as the limit distribution of a Markov chain similarly to the case of a
(conditionally) max-linear model. Here, the Poisson points Wy (E), k > 1, take the role
of the random variables Z; in the max-linear model, while the spectral functions Wy
correspond to the random coefficient functions A;. Analogously to the max-linear case,
the conditional distribution of E | W = w, N(W,E) = n, {(W oY (E)) = x is supported
in the set
My wn={e€(0,00)": N(w,e) =n, {(wo ¥(e)) > 0}.

Moreover, for each (1,d_1) € M 4., there is exactly one vector e € (0,00)" such that
e/ey =dand {(wO¥Y(e)) =z, namely e = (((w o Y(d))/xz)*(1,d_1). Thus, the mapping
e— (l(woV(e)),ea/er,...,en/e1) maps My 4 p bijectively onto (0,00) X MUY where

+7w7n

_ . 1
MUY, = {d_l € (0,00)" L : ( d ) € Mﬂm}.

Hence, similarly to the case of a max-linear model, we will sample from the vector
D_| = (Ey/Ey,...,E,/E)" given that W = w, N(W,E) = n and {(W ® ¥(E)) = .
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The corresponding density fpil‘w,nvx(-) is proportional to the product of the conditional
density of D_; given W = w and N(E,W) = n and the conditional density of (W ©
V(E)) given D_1 =d_1, W =w and N(E,W) = n.

These densities are given in the following proposition which can be proved analogously to
the proof of Proposition 8.1.

Proposition 8.3. Forn > 1 and w € (C+(K))", the conditional density of D_1 given
W =w and N(E,W) =nis

(n - 1)' 1{N(d,w):n}

00 n—1 )
(", d)" P(N(D,w) = n)’ d_1 € (0,00)"", (8.13)

fD_1|w,n(d—1) =

where dy =1 and d_y = (da, . ..,d,)". The conditional density of {(X) given D_y = d_1,
W =w and N(E,W) =n equals

fex)1d_1 0,0 (T) (8.14)
= (na—/xl)! <Zj:1 <€(w quj(d))>a di>nexp (— 2:21 (f('w @;Il(d)))a di> , x>0

Similarly to the first approach in the case of conditionally max-linear models, this result
suggests to sample via the following two-step procedure which reduces the problem to a
problem similar to the max-linear case:
S N(W.E)
1. Draw some realization of the number N(W,E) and the vector (Wg),_, of
stochastic processes conditional on /(W © ¥ (E)) = z.

2. Conditional on (Wk)ff:(?/E), N(W,E) and {(W © ¥(FE)) = z, simulate the vector
E=(E,....Exywp) -
However, the first step would require to sample from the distribution
P(W edw, NW,E)=n|{(W ©VU(E)) =u1)
(8 fE(X)|w,n(x)]P)(W € d’UJ, N(WaE) = TL)

- /M(l) fZ(X)|d,1,w,n(x)fD,1\w,n(dfl)dd*IP(W € dw, N(Wv E) = n)

+,w,n

:E{(no‘_/ﬁ)! [<£(w Gf(D))YZ?I Di]n (8.15)

- exp [— (Mw>a Z; Di] ‘ N(w, D) = n}]P’(W € dw, N(W,E) =n),

X

where we used the results from Proposition 8.3. In general, the expectation in (8.15)
cannot be calculated explicitly.

Thus, we directly sample from the joint conditional distribution of E;, W and N(W, E)
conditional on /(W ® ¥(FE)) = x, which is supported in the set

U U  Miwnx{w}x{n}

neNwe(Cy (K))n

Sampling from D again instead of E requires the density

P(D_; € dd_,, W € dw, N(W,E) =n | (W © ¥(E)) = z)
xP(D_; € dd_1, W € dw, N(W,E) =n, (W © U(E)) € dz)
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= fK(X)\d,hw,n(x)P(D*l €dd_;, W € dw, N(W> E) = n)dx, (816)

where the first factor is given by Equation (8.14).

Noting that we can sample from the unconditional distribution of (D_;, W, N(W E))
by simulating the max-stable process X and extracting these quantities, we can use this
as the proposal distribution. This leads to the following algorithm generating a Markov
chain whose distribution converges to the conditional distribution of X | ¢(X) = x.

Algorithm 8.3: Conditional sampling from a max-stable process with M iter-
ations
Initial Step: Simulate (e(®), w(©) n(9)) according to the law of (E, W, N(W, E))
by simulating X and set d(©) = 6(0)/650)
Update Step: for k=1,..., M do
Simulate (é,w,n) according to the law of (E, W, N(W | E)) by simulating X
and set d = &/¢;. Update

((~1, w,n) with probability
= p((d*=1, w1 nt=1) (d, @, 7))
(d®=1D =1 nt=1)  else

where

p((d, w,n), (d, w,n))

d, w
(R A (e ) )

() o5, ) o - (S8 . 0)

rgturn {X®) (Vo1 s where X () = w 0 U(({(w © U(d))/z)*d)

8.4.2 Simulation Study

In order to study the performance of Algorithm 8.3, we consider an extremal-t process
(Opitz, 2013) given by

X(t) = maxc, - U; - max{0,G;(t)}", tec K CR? (8.17)

where {U;, i > 1} are the points of a Poisson point process on (0, 00) with intensity v~ 2du,
v>0,c¢ = ﬁ2_(”_2)/2f (’%1)_1 and G;, i > 1, are independent copies of a centered
Gaussian process G with unit variance and correlation function p. Conditioning on a
max-linear functional such as ¢(X) = sup;cx X(¢), exact conditional simulation can be
performed by the algorithm introduced in Oesting (2015) and the results can be compared
to those of Algorithm 8.3.

To apply Algorithm 8.3, we need to find a constant C' such that the corresponding spectral
processes W; are bounded. Such a constant does not exist for the spectral processes

Wi(t) = ¢, - max{0,G;(t)}", te K
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given in (8.17). Applying an appropriate transform of the probability measure, an equiv-
alent representation of the same max-stable process with bounded spectral processes can
be found (cf. Oesting et al., 2018b). However, the resulting transformed spectral processes
are difficult to simulate. Thus, for simplicity, we will assume that the original spectral
processes are bounded by a constant C' of the form C' = ¢, -Cf where C¢ is an appropriate
bound for the standard Gaussian process G, e.g. Cg = 4.

In our simulation study, we consider an extremal-t process X with unit Fréchet mar-
gins, parameter v = 2 and correlation function p(h) = exp(—||h||/1.5) on the set K =
{0,0.2,...,1} x {0,0.2,...,1}. A realization {z(t)}1ex is simulated from the uncondi-
tional distribution of X. Then, both Algorithm 8.3 and the exact algorithm in Oesting
(2015) are performed to obtain two samples of size 5000 from the conditional distribution
of inf,c i X (t) given sup,ex X (t) = sup;c «(t). For Algorithm 8.3, we choose Cg = 4,
and, based on some further analysis (cf. Subsection 8.7), a burn-in period of length 1000.
We further thin the chain by using every 200th step only, i.e. we select the states of the
Markov chain after 1000, 1200,...,1000800 iterations as a sample.

The procedure is repeated 250 times and the p-values two-sample Kolmogorov-Smirnov
test is calculated for each pair of samples. The histogram of the obtained p-values is shown
in Figure 8.2. It fully lies in the region of acceptance of the test of the hypothesis that both
distributions coincide with a significance level of 5 % which indicates a good performance
of the algorithm.
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Figure 8.2: Histogram of 250 p-values of Kolmogorov-Smirnov tests comparing samples
of size 5000 from the exact conditional distribution for an extremal-t process
with the output of Algorithm 8.3.

8.5 Conclusion and Perspectives

We investigate the simulation of max-stable processes conditionally on the value of a single
positively homogeneous functional of the process. An iterative algorithm based on Markov
chain Monte Carlo techniques is used to sample from the conditional distribution. In
simulation studies, we verify that simulations exhibit convergence to the right distribution
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in a reasonable way. Further, the algorithm can be successfully applied to climate data
for downscaling (see Oesting et al., 2018a).

Resorting to conditional simulation for downscaling has several advantages: both the
spatial dependence structure and the extremal behaviour of the max-stable process are
used to full capacity by the algorithm. Moreover, we can profit from standard downscaling
techniques for post-processing the large scale conditions. Thus, the overall procedure takes
benefit from various sources of information.

The methodology proposed in this work provides a mathematically rigorous way to sample
from the conditional distribution if the condition is expressed as a single functional of the
process. Nevertheless, in most applications, there are several conditions which need to
be respected and performing conditional simulations for each condition separately is not
satisfactory. Lifting this restriction remains a challenging problem from a mathematical
point of view. In the application we choose the simplest way to deal with this restriction,
that is, we separately sample in each region covered by a large scale grid cell. This
approach is feasible because the range of precipitation is small compared to the cell size.
In order to rectify the resulting discontinuities at the interfaces of different cells, smoothing
techniques could be investigated.
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8.6 Diagnostics of Markov Chain in Algorithm 8.1

We further analyze convergence and mixing properties of the Markov chain in Algorithm
8.1. To this end, we consider three random matrices with m = 10 and n = 100 as in
Subsection 8.2.3 and perform Algorithm 8.1 conditioning on X = max;—1,..m X;. More
precisely, for the first, second and third matrix A, we condition on X being equal to
the 5%-, 50 %- and 95 %-quantile of the unconditional distribution of X, respectively,
which is given by P(X < z) = exp(— > i-1(bj/x)*) where bj = max;=1,.ma;;. Then,
each iteration provides a realization of the vector (X;)",. For each of the three Markov
chains, Figure 8.5 shows the values of min;—; . ,, X; for the first 10000 iteration steps
of the algorithm. It can be seen that the behaviour of the chains appears stationary
already after a small number of iterations. Besides this common effect, however, there
are some obvious differences in the behaviour of the Markov chains. In the third case,
where we condition on X being large, we encounter much longer sequences of iterations
with min;—q _,, X; being constant than in the first case where X is small. This difference
becomes even more pronounced if we compare the third and the second Markov chain
where X is moderate.

To further investigate this phenomenon indicating different strengths of mixing, we calcu-
late the empirical autocorrelation functions of the Markov chains based on the values for
min;—1 .., X; in iteration steps 5000-500 000. The results displayed in Figure 8.3 confirm
the observation made in Figure 8.5. While the autocorrelation drops below 0.05 after 70
and 30 steps for the first and second chain, respectively, there is much stronger dependence
in the third chain where autocorrelation is higher than 0.05 for almost 200 steps.
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Figure 8.3: The empirical autocorrelation function for the values of min;—; .. ,, X; provided
by Algorithm 8.1 conditioning on X being equal to the 5 %-, 50 %- and 95 %-
quantile of its distribution (from left to right) for three random matrices A of

size 10 x 100.

8.7 Diagnostics of Markov Chain in Algorithm 8.3

Similarly to Section 8.6, we analyze the Markov chains occurring in Algorithm 8.3. To
this end, we consider the same extremal-¢ process model as in the simulation study in
Subsection 8.4.2 and perform Algorithm 8.3 conditioning on X = sup,cx X(t). More
precisely, we condition on X being equal to the 5%-, 50 %- and 95 %-quantile of the
unconditional distribution of X, respectively. For each of the three scenarios, we run a
Markov chain according to Algorithm 8.3 with Cq = 4.

For each of the three Markov chains, Figure 8.6 shows the values of min;—; . ., X; for the
first 10 000 iteration steps of the three chains. Further, the corresponding autocorrelation
functions based on iteration steps 5000-100000 are displayed in Figure 8.4. The results
are very similar to those obtained in Section 8.6.
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Figure 8.4: The empirical autocorrelation function for the values of inf;cx X (t) provided
by Algorithm 8.3 conditioning on X being equal to the 5 %-, 50 %- and 95 %-
quantile of its distribution (from left to right) where X is an extremal-t process.
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Figure 8.5: The values of min}",; X; in the first 10000 iterations of Algorithm 8.1 condi-
tioning on X being equal to the 5 %-, 50 %- and 95 %-quantile of its distribution
(from top to bottom) for three random matrices A of size 10 x 100.
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Figure 8.6: The values of inficx X (¢) in the first 10000 iterations of Algorithm 8.3 condi-
tioning on X being equal to the 5 %-, 50 %- and 95 %-quantile of its distribution
(from top to bottom) where X is an extremal-t process.



9 Statistical Post-Processing of Forecasts
for Extremes Using Bivariate
Brown—Resnick Processes with an
Application to Wind Gusts

joint work with Martin Schlather and Petra Friederichs

Up to some minor modifications, this chapter is a reprint of the article Oesting et al.
(2017) that has been published in Eztremes.

To improve the forecasts of weather extremes, in this chapter, we propose a joint spatial
model for the observations and the forecasts, based on a bivariate Brown-Resnick process.
As the class of stationary bivariate Brown-Resnick processes is fully characterized by the
class of pseudo cross-variograms, we contribute to the theorical understanding of pseudo
cross-variograms refining the knowledge of the asymptotic behaviour of all their compo-
nents and introducing a parsimonious, but flexible parametric model. Both findings are
of interest in classical geostatistics on their own. The proposed model is applied to real
observation and forecast data for extreme wind gusts at 119 stations in Northern Germany.

0.1 Introduction

Spatial extremes may occur in various forms such us heavy rainfall, floods, heat waves
or wind gusts. In view of their severe consequences, an adequate and precise forecast of
these events is of great importance. However, the rareness of extreme events impedes any
such task and, consequently, existing forecasts often lack accuracy. In meteorology, for
example, forecasting extreme wind gusts, which are defined as peak wind speeds over a few
seconds, is exacerbated by the short temporal and spatial ranges. Furthermore, numerical
weather prediction (NWP) models provide estimates or diagnoses of wind gusts based on
empirical knowledge only (cf. Brasseur, 2001). Although wind is a prognostic variable in
NWP models, its values represents an average wind speed over a few minutes or longer
depending on the grid spacing of the NWP model. Hence, post-processing procedures are
needed that allow for an enhanced probabilistic forecast.

Occurring as limits of normalized pointwise maxima of stochastic processes, max-stable
processes provide a suitable framework for the description of spatial extreme events, com-
monly used in environmental sciences (Coles, 1993; Coles and Tawn, 1996; Huser and
Davison, 2014). Of particular interest is the subclass formed by Brown-Resnick processes
which arise as limits of rescaled maxima of Gaussian processes (Brown and Resnick, 1977;
Kabluchko et al., 2009; Kabluchko, 2011).

During the last years, max-stable processes have been frequently applied as models for
spatial extremes in environmental sciences. For instance, Engelke et al. (2015) and Genton
et al. (2015) recently used max-stable processes to model extreme wind speed observations.
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The model we propose will go one step further, also taking into account the forecasts in two
different aspects: First and in contrast to Engelke et al. (2015) and Genton et al. (2015), we
consider the mean forecast to get a normalized version of the extreme observations. Second,
besides the observable variable of interest itself, the corresponding forecast is included as
second variable yielding a bivariate max-stable process. Here, we will focus on the class
of bivariate Brown-Resnick processes (cf. Molchanov and Stucki, 2013; Genton et al.,
2015) to exploit the statistical relation between observable data and the corresponding
forecast. Modeling the behavior of observational data, a sample from the distribution of the
observations conditional on the forecast is supposed to provide more realistic results than
the original forecast and thus will appear as an appropriate probabilistic post-processed
forecast.

The chapter is structured as follows: In Section 9.2, we present a univariate model for
extreme observations, which may, in general, provide a first alternative to the original
forecast. We introduce a model for the marginal distribution, i.e. the distribution of the
observable variable of interest at a single location, motivating the normalization of its
extremes by the mean forecast. The spatial dependence structure is incorporated into the
model by the use of univariate Brown-Resnick processes. Section 9.3 is dedicated to the
bivariate Brown-Resnick process which serves as a joint model for both the maximally
observed and forecasted quantities. We deduce a necessary condition on the asymptotic
behavior of the pseudo cross-variogram and provide a flexible cross-variogram model which
leads to a stationary bivariate Brown-Resnick process. In Section 9.4, we describe how the
model can be fitted to data. Based on this model, we propose a post-processing procedure
which is presented in Section 9.5. Further, we provide tools to verify the procedure and
the underlying models. Finally, the methods presented in Sections 9.4 and 9.5 are applied
to real observation and forecast data for extreme wind gusts provided by the German’s
National Meteorological Service, Deutscher Wetterdienst (DWD) (Section 9.6).

9.2 Modeling by a Univariate Random Field

In this section, we present a spatial model for the observed pointwise maximum V3% within

a specific time period. To this end, we assume that, for each location and time period,
the maximum V°" is based on observations at N equidistant instants of times per period,

max
that is, we have Vrﬁgi = max;—i,.. N V;Obs for Vfbs, e VJ‘\’,bS ~ Fy for some parameter 9.

Here, the probability distributions Fy are supposed to form a location-scale family with
finite second moments, i.e. ¥ = (m,s) € R x (0,00) with F(,, 5 (z) = Fo1) (%), © € R,
and F{ ) is standardized to mean zero and unit variance. We assume 9 = (m, s) to be
temporally constant at each location within the same time period, but allow the values
to vary among different locations and different time periods. The values of m and s will
essentially be estimated from the bulk of the distribution, not the tail, and thus, they can
often be extracted accurately from forecasts. Within the same time period and at the same
location, the observable variables Vfbs, e ]ﬁ}bs are assumed to be subsequent N elements
of a stationary time series (V;°*);cz. Furthermore, we assume that the standardized
distribution F{g ;) belongs to the max-domain of attraction of some univariate extreme
value distribution G¢, £ € R, ie. there are sequences (an)nen, an > 0, and (by)nen,

b, € R, such that

n—oo

Foy(ant +bp) — Ge(z), 1+E&x >0,
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where

Gelx) = {eXp(—(l +&x)71%), 67_&0,
exp(—exp(=z)),  £=0,

for 1+ &z > 0. As the second moment of F{g ) is assumed to be finite, we have § < 0.5.
Under some conditions on the regularity and the dependence of the stationary sequence
Vf’bs, V2°bs, ..., we obtain that

- Vobs _ _g
P<male,~-m i m nS < x) s G§($), 1+&x >0, (9.1)
an$

where @, = a,07¢ and b, = b, — & 1(1 — 07¢) for some 6 € (0,1] called extremal index
(cf. Coles, 2001; Leadbetter et al., 1983).

Let m = m(l,p) and s = s(l, p) be the mean of the variable at location [ and period p and
its standard deviation, respectively. Let

xr — X —
Gf,u,a(x) :G§< U“), 1+£T >0

be the generalized extreme value distribution (GEV). Then, considering the maximum
Vobs — yobs (1 p) for large N, we have approximately that

max max

Vrggfc(lv p) B m<l7p)
s(l,p)

Here, the GEV parameters are assumed to be the same for every time period, which, in
general, enables us to estimate the parameters for current and future time periods from
past data. As common in many applications, the extreme value index £ is also assumed
to be constant in space. Under the ideal assumption that VZ-ObS ~ F,s) and that m and s

~ Ggobs’#obs(l)’gobs(l). (92)

can be determined exactly, the GEV parameters £°7%, ;°P% and ¢°" are constant in space,
as well. In practice, however, the observed variable of interest is subject to measurement
errors whose distribution is spatially varying. Further, m and s often need to be extracted
from forecasts with limited spatial resolution. To account for these difficulties, we allow
p°(1) and 0°™(I) to depend on the location I, while the extreme value index £°P% is
assumed to be constant in space, as common in many applications. In contrast to p°Ps
and ¢°P, m(l,p) and s(l, p) vary in space and time and may be interpreted as normalizing
constants that will be the same for observation and forecasts. As m(l,p) and s(l,p) are
defined as mean and standard deviation of the variable of interest, the parameters 1°"(1)
and 0°™(1) are uniquely determined. Marginal transformation yields that

Vers(l,p) —m(l,p) — 8(l,p)u°bs(l)>
s(l,p)o°bs(1)

is standard Gumbel distributed for every location [ and time period p.

obs 1 {001
Xb(l,P)Zgobslog<1+§b

(9.3)

Perceiving the set of locations as a subset of R? and the set of periods as a subset of Z, the
transformed observations can be regarded as realizations of a spatio-temporal random field
{X°(1,p), | € R%, p € Z}. While we assume that the spatial random fields { X°*(1, p), [ €
R?}, p € Z, are independent and identically distributed, we allow for a non-trivial spatial
dependence structure. Here, we use the class of Brown-Resnick processes that can be
defined for arbitrary dimensions D (Brown and Resnick, 1977; Kabluchko et al., 2009): Let
II =3,y du, be a Poisson point process on R with intensity e~ du and, independently of
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I, let W;, i € N, be independent copies of a zero-mean Gaussian random field {W (s), s €
RP} with stationary increments and semi-variogram ~(-) defined by

2y(s) = Var(W(s) — W(0)), seR”.
Then, the random field Z defined by
Z(s) = maxjen (U; + Wi(s) — Var(W(s))/2), s¢€ RP,

and called Brown-Resnick process associated to the semi-variogram -, is stationary and
max-stable with standard Gumbel margins and its law only depends on the semi-variogram
v (Kabluchko et al., 2009). For the application of the Brown-Resnick model to observed
data with locations in R?, we propose to restrict to semi-variograms from a flexible para-
metric subclass, such as semi-variograms of the type

vo(h) = |sA(b,Ohl*,  h e R?, (9-4)

with ¥ = (s,b,(,a) for s,b > 0, ¢ € (—nw/4,7/4] and o € (0,2]. Here, the matrix
A(b, ¢) € R?*2 allows for geometric (elliptical) anisotropy, i.e.

_ cos ( sin
A, Q) = ( —bsin¢ beos( ) (9:5)

(cf. Chiles and Delfiner, 2012, Subsection 2.5.2), and s is an overall scale factor.

9.3 Modeling by a Bivariate Random Field

In this section, we also take into account the dependence between the observed maximum
Vobs and its forecast vPred - Ag vPred g 4 forecast for Vobs it seems reasonable to use a
GEV model similar to the one described in Section 9.2 with possibly different parameters

Epred’ Mpred(_) and O.pred(‘)7 ie.

Vnrigscd(la p) B m(l7p)
s(l,p)

(cf. Equation (9.2)). Marginally transforming Viired analogously to (9.3) yields a random
field {XPrd(l,p), | € R2, p € Z} with standard Gumbel margins. Thus, we end up with
bivariate spatial random fields {(X°"(I,p), XP*4(1,p)), I € R?} which are assumed to be
independent and identically distributed for p € Z.

A bivariate Brown-Resnick process can be constructed in the following way (cf. Molchanov
and Stucki, 2013; Genton et al., 2015): Let ), 0y, be a Poisson point process on R with
intensity measure e~%“ du. Further, let W;, i € N, be independent copies of a bivariate cen-
tered Gaussian process W = (WO WENT = {(W D (s), WP (s))T : s € RP} such that
the pseudo cross-variogram (Clark et al., 1989; Papritz et al., 1993) v(h) = (7ij(h)); jef1,2}
defined by

~ Gé‘pred7upred(l)7o-pred(l) (96)

29,5(h) = Var(W@(s + h) = WU)(s)), heRP, (9.7)

does not depend on s € RP. Analogously to the univariate Brown-Resnick process, it can
be shown that the bivariate Brown-Resnick process Z = (Z(1), Z())T defined by

ZW(s) = max (Ui + Wi(j)(s) - Var(W(j)(s))/Q), seRP, j=1,2, (9.8)
1€

is max-stable and stationary. Its law only depends on the pseudo cross-variogram -.
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Remark 9.1. The fact that (7;;(h)) j=1,2 can be defined independently of s € R” implies
that W is intrinsically stationary, i.e. the process {W (s+h)—W(s) : s € RP} is stationary
for every h € RP. Both conditions, however, are not equivalent as the definition of
y12(h) might depend on s € R% even if W is intrinsically stationary. For instance, if
both components are independent, we have vi2(h) = 2v11(s + h) + 2722(s) for the off-
diagonal element of pseudo cross-variogram. By way of contrast, intrinsic stationarity is
equivalent to the cross variogram h — (E(W;(s + h) — W;(s))(W;(s + h) — W;(s)))ij=12
being independent of s.

Indeed, Molchanov and Stucki (2013) already gave necessary and sufficient conditions for
a multivariate process of Brown-Resnick type to be stationary. For a fixed intensity e ™" du
of the Poisson point process, the conditions on Gaussian processes given in Theorem 5.3
in Molchanov and Stucki (2013) can be shown to be equivalent to the conditions on the
process W stated above (if we additionally require Z to have standard Gumbel margins)
by a straightforward computation. Thus, the Gaussian processes in the above definition
of bivariate Brown-Resnick processes are essentially the only ones that yield a stationary
max-stable process.

In the following, we investigate the structure and the asymptotic behavior of bivariate
variograms that are translation invariant, refining the result by Papritz et al. (1993) that
limp 00 v12(R)/711(h) = 1 if 711 is unbounded. This allows us to find valid models for
bivariate Brown-Resnick processes. The following theorem, as well as the statements
above, immediately extend to the general multivariate case.

Theorem 9.2. Let W = (WU WENT be a bivariate second-order process on RP with
pseudo cross-variogram (vij(h)); jeq1,2y which does not depend on s € RP. Then,

VA = m(h))@-,je{l,z}:(} i) %<h>+(§;EZ§ éﬂ;)

for some univariate variogram o and bounded functions fi1, fi2, fo1, for : RP — R.

Proof. For i,j € {1,2}, and h € RP, we obtain

(\/’m— m)Q =7ii(h) — 2\/’m+ 73 (h)
< i (h) = Cov (WO () = W(0), WO (h) = W (0)) + 55()
= %Var (WD (n) — wO(0) — WU (h) + WU)(0))
= ij(0) = Cov (W (h) — W (R), WO (0) = W(0)) + (0 < 4755(0),

where we used the Cauchy-Schwarz inequality for both inequalities. Analogously, we get
the assessment

(\/ Yii(h) — 4/ ’in(h))z = %ii(h) — 24/7i(h)vji(h) + ;i (h)

< 5ii(h) = Cov (WO (R) = WO(0), W () = W(0)) + ()
1

=5 Var (W(i)(h) - W(j)(h)) = 7i;(0).

Thus, the assertion of the theorem follows with vy = 713. O
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As the components of a translation invariant bivariate pseudo cross-variogram only differ
by a function that may increase only with a rate of order O(1/70(h)) (Theorem 9.2), a
reasonable and not too restrictive model for the corresponding bivariate Gaussian random
field W = (WM, W) T is given by

W(s) = (1,1)"Vi(s) + Va(s), s€R”,

where V] is a univariate Gaussian random field with stationary increments and semi-
variogram v and V3 is a bivariate stationary Gaussian random field with bivariate cross-
covariance function C(h) = (Cyj(h)); jef1,2), independent from Vi. Then, the pseudo
cross-variogram ~ of W has the form

1 1 .
’yij(h) = fyo(h) + 50“(0) + §ij(0) — Ci‘(h), 1, € {1, 2}, h e RD.
Analogously to the univariate case, we propose to restrict to a parametric subclass of

semi-variograms for vy such as

(5~ [IR[1)?

o) = 7 Gl + 17

where 0,5 > 0 and 8 € (0,1). Here, g is a valid univariate variogram as h — ||h||? is
a variogram and A — \/(\ + 1)? is a Bernstein function (cf. Berg et al., 1984; Schilling
et al., 2010). Note that v is a variogram of power law type modified to be smooth at the
origin.

For the bivariate cross-covariance C, we propose to use a parsimonious version of the
bivariate Matérn model (cf. Gneiting et al., 2010), which is a bivariate generalization of
one of the most widely used models in geostatistics, the Matérn model (cf. Guttorp and
Gneiting, 2006; Stein, 1999, for example). In the bivariate Matérn model, each component
of C is a Matérn covariance function which we parametrize in the way suggested by
Handcock and Wallis (1994), i.e.

217vi (2, /v; vi 2\/Vi
Cuh) = o2 (ﬁw>m@ﬂm,ﬁm
a; 473

"T(y)
N SN iz 2\/V12
omma&wzmm< lww mm( Ww)
['(v12) a2 a12

for ay, as,a12,01, 02,11, 2,12 > 0 and suitable p € [—1,1].

Here, analogously to the parsimonious version of the bivariate Matérn model which is
based on a different parametrization (Gneiting et al., 2010), we set a1 = a12 =az =a >0
and v12 = 3(v1 +v2). Then, by Theorem 3 in (Gneiting et al., 2010), C is a valid bivariate
cross-covariance model if and only if

(1 + I/ﬁl)2ul2+2
(1w (1 oy et

PP <

To increase the flexibility of the model, we further add a spatially constant effect with
variance ¢? in the second component. Thus, C has the form

2l-m1 /9 /v Vi 2./v
enty = a2 (B s (200

71 (1) a

ol=vi2 /9 7 vi2 2.V
Cia(h) = Coi(h) = poros N Ko, Zn) ),
['(v12) a a
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2172 12, /v "2 2/
_ 2 2
Cna(h) =+ o35 (222l ) Ko (22101

Note that as the common summand g is smooth at the origin, the behavior of v;; near the
origin, i.e. the differentiability of W depends only on the behavior of C' which can be
modeled flexibly by the smoothness parameters v; and vy of the bivariate Matérn model.
In particular, as ||h|| — 0 and for some k(a,v) > 0, we have

kav)|A? +O(RID).  wi<l,
Yir(h) = { k(a, 1) [h]|?log [[A] + O(IA]?), v =1,
k(a, i) |12 + o[BI, v > 1

(cf. Stein, 1999). Furthermore, the sample paths are m times differentiable if and only if
v > m (Gelfand et al., 2010). The behavior of the 7;; as ||h|| — oo, which has to be the same
for all components by Theorem 9.2, is parameterized by £ as we have ~;;(h)||h| 208 = 1
as ||h]| — oo. To increase the applicability of our model to real data located in R?, we
further allow for geometric anisotropy, replacing ||h|| by ||h*|| where h* = A(b,{)h and
A(b, €) is the anisotropy matrix defined in (9.5). Thus, we obtain the variogram model
v(?; ) given by

kL|R*)? 2vi e\ 2V
(0 h) = o i o2 (1= (225 e) w (2271 ).

(GRS a
(AN of+F A+
712(19; h) = 0'2 "
)= T Gl + 1)? >
2l-v2 /9 V12 . 4 vi2 2./V12 "
—poorge s () i, (P20, (9.9)

for i = 1,2 and h € R? where ¥ = (0, s,b,(, 8,¢,01, 1,02, V2, a, p).

9.4 Model Fitting

In the following, we will assume that data vo® (I;,p) and vhied(l;,p) for the maximal
observed and forecasted variable of interest at stations l;, ¢ = 1,...,n; and time period
p=1,...,n, are available.

9.4.1 Fitting of the Univariate Model

Let henceforth be k € {“obs”, “pred”}. We concentrate here on the estimation of the
GEV and max-stable parameters assuming that the unknown mean m(l;, d) and standard
deviation s(l;, p) of the underlying distribution F' have already been estimated by m(l;, p)
and 5(l;, p), respectively. An example for the later estimates can be found in Section 9.6.
Given the estimates m(l;,p) and $(l;, p), we obtain the standardized data

y*(li,p) = i=1,...,n, p=1,...,np, (9.10)
which are assumed to be GEV distributed with parameters ¥, p*(1;) and o*(l;). We
assume that the parameters are independent between the stations. This can be justified
by measurement errors and the fact, that the forecasts used to estimate m(l;, d) and 5(l;, d)
are not directly available for the station I; but only for the closest grid point. Furthermore,
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we face model errors, e.g. misrepresentation of orographic effects. Effects stemming from
the environment of the measurement stations might even be the major cause for the
variations. As genuine variation and measurement errors cannot be separated in our set
up, we estimate the parameters separately for each station, via maximum likelihood. As
the standardized data y* are assumed to be temporally independent, by Smith (1985), the

maximum likelihood estimators (£ ([;), 1 < i < ny, are asymptotically normally distributed
~k ~k
if ¢ > —0.5. Thus, under the hypothesis that ¢ = St € (L) is the true shape

n;
parameter of the GEV at each station, the standardized residuals
~k ~k ~k ~k

CW-& )¢
(Var(@ )12 (Var(€ (1))

are approximately standard normally distributed, where \75(5 k(ll)) is the variance of ék(li)
estimated via the Hesse matrix of the log-likelihood function. Thus, the three hypotheses
that the shape parameter, the location and the scale parameter are spatially constant
can be checked indirectly via one-sample Kolmogorov-Smirnov tests of the correspond-
ing residuals for the standard normal distribution. Here, although the data for different
locations may be dependent, we assume that the normalized estimated parameters are
independent.

By transformation (9.3), the estimates Ek, [F(1;) and 6%(1;) yield normalized data

*(li,p) — 1" (1)
" (1;)
These can be compared to a standard Gumbel distribution via Kolmogorov-Smirnov tests

separately for each station as a goodness-of-fit test for the marginal model
k 5 ~Y ~
Vinasc(bis P ~ Gk 1, ) 68100
where jiy(l,p) = m(l,p) + 3(L,p)a" (1) and &5(1,p) = 5(1,p)6* (D). (9.13)

In order to capture the spatial dependence structure, a univariate Brown-Resnick pro-
cess associated to a variogram ¥ as defined in (9.4) is fitted to the transformed data
(z*(li, p))1<i<m,1<p<n,- Note that there exist numerous methods of inference for Brown-
Resnick processes, see, for example, Engelke et al. (2015) for a comparison of differ-
ent estimators. The method we will use is based on the extremal coefficient function
(Schlather and Tawn, 2003). For a stationary Brown-Resnick process associated to the
semi-variogram ¥, the pairwise extremal coefficients are given by

log P(X*(s1) <z, X*(s0) < ) (51— s2) 2
ok = ’ =20 —_— R
(81782) IOgP(Xk(Sl) S x) 2 ’ 81,82 € )

1 )
xk(li,p):éklog <1+§ky ), 1<i<n, 1 <p<n,. (9.11)

(9.12)

(9.14)
where ® denotes the standard normal distribution function (cf. Kabluchko et al., 2009).
This relation can be used for fitting Brown-Resnick processes to real data as the extremal
coefficients 0% (s1, s2) can be estimated well via the relation
1+ 2I/F’k($1, 82)

0% (s1,89) = a5y 0% € R?, (9.15)

F,k(

where the F-madogram v (s, s2) is defined by

vk (51, 59) = %E F(X*(s1)) — F(X*(s2))|, 51,52 € R, (9.16)
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and F is the marginal distribution function of X*(s) (Cooley et al., 2006). Thus, we
~k

obtain a plug-in estimator 6" (I;,1;) for the extremal coefficients 0%(1;,;), by replacing v1°*

in (9.15) by an estimator ﬁF’k(li, l;), 1 <i,j <mny. In order to avoid propagation of errors

in marginal modeling, we choose the non-parametric estimator

Tp

oL, ) = Rp(a*(li, ) — Ry(z" (15, ) (9.17)

1
2‘np'(np_1);
where R,(x) denotes the rank of the p-th component of some vector x (cf. Ribatet, 2013).

. . ~k . .
Then, the corresponding variogram parameter vector 1 can be estimated by a weighted
~k
least squares fit of 6 (I;,1;) to 6%(1;,1;) as given in (9.14). As proposed by Smith (1990),
we choose weights that depend on the (estimated) variance Var(6*(1;,1;)) of the estimator
0%(1;,1;). Thus, we obtain the estimator

y 0" (1.17) — 20 (VARG —1)/2)

¥ = arg mﬂin

- (9.18)
1<i<j<n Var(0%(l;,15))

We will further discuss the estimation of the variance of 6%(;,1;) in Section 9.6.

9.4.2 Fitting of the Bivariate Model

For fitting the bivariate Brown-Resnick process {(X°P%(1), XPrd(1))T : I € R?} we consider
the extremal coefficients 6%1%2(s,t) of max-stable vectors (X*1(s), X*2(¢))" for ky, ko €
{“obs”, “pred”}. The extremal coefficients can be estimated from the transformed data

z°P(1;, p) and 2P*d(l;,p), 1 < i < ny, 1 < p < ny, in the same way as in the univariate

. . ~k1,k ..
case. The resulting estimates 6 2(li,lj), 1 < 4,5 < ny, ki,ka € {“obs”, “pred”} are

compared to the corresponding extremal coefficients of a bivariate Brown-Resnick process
associated to the variogram ~(;-) yielding the weighted least squares fit

> (ékhb(li,lj) —2CI>(\/'7k1,k2(795li_lj)/2>)2.

¥ = arg mﬁin E
1<4,5<n; kq,ka€{“obs”,“pred” }

Var(8k1k2 (1, 1;))

9.5 The Post-Processing Procedure

As the bivariate Brown-Resnick process model developed in this chapter describes the joint
distribution of the observed and forecasted maxima of the variable of interest, it allows
for some spatial post-processing of the original forecast. In this section, we will describe
the resulting post-processing procedure in more detail and provide some tools to verify
the procedure and the underlying model.

9.5.1 Post-Processing via Conditional Simulation

Let éObs, fOPS (), 6OPs (), épred, fiPred (), 6P*4(.) and 9 be estimates for the GEV and

variogram parameters derived from past training data. Further, assume that we have
VR (15, p), m(li, p) and 3(l;, p), i = 1,...,ny, based on forecasts for n; locations 1, .. ., In,
and a time period p in near future. Then, we obtain an arbitrary number K of realiza-
tions (vj(li))1<i<n,, J = 1,..., K, of the modeled distribution of the maximal observation

conditional on the forecast by the following three-step procedure:
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1. Transform vggg (-,p) to standard Gumbel margins:

1 ~ored VP (. _ ppred/,
xpred(.) - log (1 n é_pre Umax( ipged My ( 7p))7
¢’ a5 (- p)

where fiP™ and 6P*¢ are given by Equation (9.13) for k = pred.

2. Conditional simulation of a bivariate Brown-Resnick process given its second com-

ponent: Simulate K independent realizations (:U;?bs('),x?red()), j=1,....,K, of a
~ob
bivariate Brown-Resnick process associated to the pseudo cross-variogram 7(190 S; )

with standard Gumbel margins conditional on x?red(-) = gPred (),

3. Transform x?bs() to GEV margins: For j =1,..., K, set

~obs
. exp(§ () —1
U](vp) = Ugbs('7p) Aojbs + Mgbs('ap>7

3
where 12" and 69" are given by Equation (9.13) for k = pred.

The random fields obtained by this three-step procedure can be interpreted as post-
processed probabilistic forecasts for the maxima of the variable of interest at time period
p. While the first and the third steps only consist of marginal transformations, the con-
ditional simulation in the second step is the challenging part of the procedure. For this
step, the algorithm by Dombry et al. (2013) can be used. Note that the algorithm, which
has originally been designed for conditional simulation of univariate Brown-Resnick pro-
cesses, can directly be transferred to the multivariate case by perceiving the multivariate
processes as univariate processes on a larger index set. However, the computations will
be computationally expensive, in particular if the number of conditioning locations gets
large.

9.5.2 Verification

In practical applications, the proposed post-processing procedure and the underlying
model need to be verified. Here, we do not only consider the full bivariate Brown-Resnick
model which forms the base of the post-processing procedure, but also intermediate mod-
els such as the marginal GEV model and the univariate model. This allows us to evaluate
the effect of incorporating the spatial dependence structure and the forecasted maxima,
respectively.

For the evaluation and verification of the different models, we choose a standard verification
score in probabilistic prediction, the (negatively oriented) continuous ranked probability
score (CRPS) (cf. Gneiting and Raftery, 2007):

crps(E) = [ y—al Fay) — 5 [ [ - el Flam) Flaw),

—0o0

where F' is a real-valued distribution and x € R™ is an observation. The continuous ranked
probability score is a strictly proper scoring rule, i.e.

/CRPS(F, z)F(dx) < /C’RPS(G,m)F(dx)

for all distribution functions F' and G with finite first moments and equality if and only
if /7 = (. This indicates that the mean CRPS for different observations is the smaller,
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the better the predicted distribution F fits to the true distribution of the observation
data. The usefulness of the CRPS for evaluating extremes was shown by Friederichs and
Thorarinsdottir (2012).

First, we evaluate the improvement in predictive quality by fitting the parameters of the
GEV model given in (9.12) and (9.13) to the observations instead of the forecast, i.e. we
calculate CRPS®P(1;) and CRPSP™4(1;) where

k -1 b:
CRPS*(l;) = n; ZCRPSG;CM)(Z @)% 1y P (i ))-

for every station l;, 1 < i < ny, and k € {“obs”, “pred”}. For the calculation, we employ
the closed formula for the CRPS of a GEV provided by Friederichs and Thorarinsdottir
(2012). For £ # 0, they obtain

CRPS(Gg o, @) = (:U — p+ Z) (2F(z) — 1)
- % (2%(1 — &) — oMyl — €, —log F(x))

where I'; is the lower incomplete gamma function. Furthermore, the CRPS for the GEV
fitted to the observations can be compared to the CRPS of the original forecast

CRPS®"%(1 ’1ZCRPS EU8 02 (1;,p)) (9.19)

lip? max

where F g denotes the distribution of the original (probabilistic) forecast for the maxi-
mum of the variable of interest at location [; within time period p. If this forecast is given
by an ensemble of values, such as the output of a numerical weather prediction model, for
example, ﬂ?gg corresponds to the empirical distribution function of this sample. If the

forecast corresponds to a single value, CRPS®8(;) reduces to the mean absolute error.

Finally, the full bivariate model and, thus, the proposed post-processing procedure can be
evaluated and verified by comparing the CRPS
. _ n
CRPS™(1;) = n,~? ZP; CRPS(F,  prea, voun(li, 1))

i7p| VUmax

where F pred 1S the distribution of the observed maximum at location [;, 1 < i < ny

l g | Umax

within time period p conditional on pPred , that is, the distribution of the post-processed

forecast, with the CRPS of the original forecast, CRPS®"8(1;).

9.6 Application to Real Data

In this section, we will apply the fitting and verification procedure described in Section
9.4 to real wind gust data consisting both of observation and forecast data. We will see
that, even though the marginal distributions are fitted quite well, a forecast based on the
single GEV for the observations is not able to outperform the forecast by the numerical
weather prediction model. However, the results for the bivariate model indicate that the
post-processing procedure proposed in Subsection 9.5.1 improves the predictive quality.
We also discuss the uncertainty of the obtained estimates.
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9.6.1 The Data

We consider observed as well as forecasted wind speed data provided by Germany’s Na-
tional Meteorological Service, the Deutscher Wetterdienst (DWD). We use observations
from 218 DWD weather stations over Germany at 360 days from March 2011 to February
2012. The weather stations register mean and maximum wind speed on an hourly basis.
Due to the inertia of the measuring instruments, the maximum wind speed approximately
corresponds to the highest 3-second average wind speed. Here, we use the maximum wind
speed v3% (I, d) between 08 UTC and 18 UTC for each station [ and each day d.

max

Furthermore, for each day, forecasts for the wind speed maxima and for the hourly mean
wind speed both in 10m height above ground and for the 10-hour-period from 08 UTC
to 18 UTC are available. The forecasts are provided by the COSMO-DE ensemble pre-
diction system (EPS) operated by DWD. COSMO-DE (Baldauf et al., 2011) is a non-
hydrostatic limited-area numerical weather prediction model that gives forecasts for the
next 21 hours on a horizontal grid with a width of 2.8km covering Germany and neigh-
boring countries. For each variable of interest, the COSMO-DE EPS yields forecasts
consisting of 20 ensemble members stemming from COSMO-DE runs with five differ-
ent physical parameterizations and four different lateral boundary conditions provided by
global model forecasts. For more details on the Consortium for Small-scale Modeling see
http://www.cosmo-model.org/, and Gebhardt et al. (2011) and Peralta et al. (2012), for
COSMO-DE EPS.

The COSMO-DE EPS is initialized every 3 hours. Here, we take the forecasts that are
initialized at 00 UTC. Using the forecasts for the nearest grid point of a station, we obtain
forecasts vggan(l,d, T)y oeey vffeogn(l,d, 7), T € {9,10,...,18}, and vr(&z;x(l,d), - vgg))((l,d)
for every weather station [ and every day d. Here, vr(ggan(l ,d, ) and vr(ggx(l, d) denote the
forecast for the mean wind speed between (7 — 1) UTC and 7 UTC and the maximal wind
speed, respectively, at station [ and day d, forecasted by the jth COSMO-DE ensemble

member.

For the application of our model with a stationary spatial dependence structure, in the
following, we will restrict ourselves to forecasted and observed data for 119 DWD stations
north of 51°N, denoted by Iy,...,l119, as the northern part of Germany has a much more
homogeneous topography than the southern part.

9.6.2 Applying the Univariate Model

As the wind speed observations correspond to 3-second averages, the daily maximal wind
gusts v2%_ can be perceived as the maximum of a long time series. Further, the distribution
of a single wind speed is frequently modeled by a Weibull or a Gamma distribution (e.g.,
Conradsen et al., 1984; Pavia and O’Brien, 1986; Sloughter et al., 2007), that is, given
a fixed shape parameter of the Weibull or Gamma distribution, respectively, which is
spatially and temporally constant, the single observations may be assumed to come from
a location-scale family of distributions. These considerations give support to the usage of
the GEV model presented in Section 9.2 as a model for the maximal wind speed V¥, (1;,d),
ie{l,...,119}, d € {1,...,360}. Fitting a GEV distribution to the standardized wind
speeds y¥(l;,d) as defined in (9.10) needs the estimates 1(l;,d) and 3(l;, d) for the mean
and the standard deviation of the underlying wind speed distribution. We aim to extract
these characteristics from the forecast. Here, instead of direct estimates for the mean and
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the standard deviation, we use

m(ls,d) = max—zvmean li,d, ) (9.20)
oy 1/2
A _ !
and §(;,d) = 199;;} o) (L, d, T) — % ;;)vmean li,d, ") . (9.21)

Even though not providing consistent estimates for mean and standard deviation of the

underlying distribution, m(l;,d) and $(l;, d) lead to a consistent normalization in the fol-

lowing sense: If the data vglo;x and the forecasts vggan are affinely transformed (i.e. the

parameters m and s are modified) in the same way, the normalized data yObS(li, d) remain
unchanged. This choice of m(l;,d) and 5(1;,d) also ensures the identifiability of the GEV
parameters p*(l;) and o*(1;).

As described in Section 9.4, the GEV parameters for the standardized observations can be
estimated via maximum likelihood and the hypotheses that these are spatially constant
can be checked via Kolmogorov-Smirnov tests. For £°P%, we obtain a p-value of 0.194. The
analogous tests for ;°” and ¢°P both yield p-values smaller than 2.2 - 10716, Thus, the
hypotheses that the residuals of the estimates of ;°* and ¢° follow a normal distribu-
tion both can be rejected and, consequently, we stick to the assumption that the GEV
parameters, location and scale, differ among the stations.

In contrast to the location and the scale parameter, the shape parameter of the GEV will
be assumed to be spatially constant in northern Germany with the value

119
obs Ao obs
¢ =119 25

(The empirical standard deviation of the sample {EObS (l;): i=1,...,119} is 0.049). Note,
however, that the estimated shape parameter differs significantly (to a 5%-level) from the
mean value in case of 20 stations. For six of these stations, it even differs highly signif-
icantly (to a 1%-level), and four of them even to a 0.1%-level. The parameter estimates
i(l;) and 6(1;), 1 < i < 119 for the location and scale parameters, respectively, obtained

by maximum likelihood estimation with fixed shape parameter £°P = éObS are depicted
in Figure 9.1a. Note that the estimated vectors of location and scale parameters show a
strong empirical correlation of 0.97. By (9.3), the data can be transformed to standard
Gumbel margins. Kolmogorov-Smirnov tests performed separately for each station yield
p-values of at least 0.098 with a mean value of 0.718 which indicates that the GEV model
fits quite well for all the stations.

As a fit of the GEV distribution to the forecast is needed for both verification of the
marginal model and the bivariate Brown-Resnick model, we repeat our analysis replacing
the observed maximal wind speed v (I;,d) by oRrd(1;,d), i.e. a forecast for the maximal
wind speed at station [; and day d. Here, we use the maximum over the 20 corresponding

COSMO-DE ensemble members
oPed (1 d) = max20v< D (li,d), 1<i<119, 1<d < 360,

max ]_1
which suggests that the distribution of vﬁfsg should be close to a GEV distribution. Note
that this choice of vﬁffg is in complete accordance to the choice of m(l;,d) as maximal
mean of all the ensemble members in Equation (9.20).
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Figure 9.1: a Estimates ji°*(l;) and 6°P(l;) for the location and scale parameters corre-

sponding to the observed maximal wind speed at the stations in the northern
part of Germany. b Estimates iP™%(l;) and 6P74(1;) for the location and scale
parameters corresponding to the forecasted maximal wind speed at the stations
in the northern part of Germany.

As the Kolmogorov-Smirnov test of the normalized estimates for £P*d yields a p-value of
0.53 and the estimates differ significantly from the mean for seven stations (for three of
them very significantly), we may assume a shape parameter of

119
A 1
gpred _ f1;)1fed _ m prred(li) = 0.028
=1

(The empirical standard deviation of the sample {épred(li) c4=1,...,119} is 0.044) at

every station in northern Germany. However, the hypotheses that the estimates for the
location and the scale parameter follow a normal distribution have been both rejected.
The maximum likelihood estimates jiP™%(1;) and 6P*4(1;), 1 < i < 119, with fixed shape
parameter are shown in Figure 9.1b. Here, the empirical correlation of the vectors of
estimated location and scale parameters is just as strong as in case of the observations.
Kolmogorov-Smirnov tests of the transformed data xP*4(l;,d) for every station yield p-

values of at least 0.142 with and equal 0.748 in average which also indicates an appropriate
fit.

The spatial dependence is modeled by a univariate Brown-Resnick process which is ob-
tained by a weighted least squares fit of the extremal coefficient function. Here, the weights

~ob

depend on the variance of the estimators 9 S(li, l;) (see Section 9.4) estimated by a jack-

knife procedure where the extremal coefficients are reestimated leaving out one month of
~ob,

data. The estimated extremal coefficients §° and the fitted extremal coefficient function

~obs ’Y@obs (8 - t)

0 (s,t) =29 5 , s, teR2
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Figure 9.2: Left: The estimated extremal coefficients 6° (black circles) and the fitted
extremal coefficient function 8 (red line) of the normalized random field
X©°bs(. d) of observed wind gusts. Right: Contour level plot of the fitted

. . ~ob .
extremal coefficient function 6° S(lo, -) where [y is located at Hanover.

are displayed in Figure 9.2. Here, the estimated coefficients seem to be fitted quite well.

For verification, we first calculate the mean CRPS for each of the two models given by
(9.12), CRPS°™(l;) and CRPSP™4(1;), for every station l;, 1 < i < 119. Then, the im-
provement or deterioration by using the GEV distributions of the observations instead of
the forecasts is expressed in terms of the skill score (e.g., Gneiting and Raftery, 2007)

CRPS°P(1;)

S(l)=1— ———
() CRPSP4(1;)

which has the value 1 in case of an “optimal” model which equals vS% a.s. and the value

0 if both models yield the same result. Here, S;, > 0 for 115 of 119 stations. For the skill
score corresponding to the mean CRPS averaged over all the stations, we obtain

119 obs
Zi:l CRPSle

S=1-
119 red
11 CRPS}

~ 0.293.

Note that, for simplicity, the reference model (9.12) for the predictions is based on the
maximal ensemble members vRics (1;, d) only and further information given by the maximal
wind speed forecasted by the other ensemble members are neglected. Thus, we further
compare the CRPS of the GEV model for the observations, CRPS°(1;), with the CRPS
of the original COSMO-DE ensemble, CRPS®"8([;), taking the ensemble forecast as a
probabilistic forecast with equal probability for each ensemble member. Here, the skill
S(l;) = 1 — CRPS°™(1;)/CRPS8(l;) is positive for 37 of 119 only, with the skill of
the averaged CRPS being approximately —0.032. As the skill score is slightly negative,
the COSMO-DE ensemble forecast seems to contain more information than our marginal
model.

Note that, for a fair comparison, we should avoid the validation of our model on the
same data that have been used for the model fit. Hence, we perform cross validation:
Separately for every month, the GEV parameters are reestimated leaving out the data
for this month and using only the data for the other eleven months for the model fit.
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The GEV parameters estimated for different months in this way show very little variation
corroborating the assumption that they are constant in time. Further, the verification
results above are confirmed: We obtain skill scores of 0.285 for the CRPS compared with
the GEV model for the forecast and —0.048 compared to the COSMO-DE ensemble.

9.6.3 Applying the Bivariate Model

A bivariate Brown-Resnick process is fitted to the transformed data according to Section
9.4. Here, as a preliminary analysis suggests, the parameter p is set to the maximal value
yielding a valid valid variogram, i.e.

(14 vt

L+ )2 e (L ag )zt

The estimate ¥ of the remaining eleven pseudo cross-variogram parameters leads to the
fitted extremal coefficient function
~k1,k2

0(li,1;) = (07 (L1
( ’ ]) ( ( J))kl,kze{“obs”,“pred”}

_5 (o \/%m(ﬁ;li—l]’)

2
k1,ka€{“obs”,“pred” }

Kk
Figure 9.3 presents the estimated extremal coefficients 8 (1;,1;), and the fitted extremal

coefficient functions ékl’kQ(-, -) for k1, ko € {“obs”, “pred”}. Asillustrated, the fitted model
seems to be appropriate with respect to the behavior of the extremal coeflicient function.
Figure 9.4 depicts a simulated realization of the corresponding Brown-Resnick process as-
sociated to the variogram v(f?; -) with standard Gumbel margins. The realization indicates
a remarkable amount of positive correlation between z°° and zP*d which emphasizes the
gain of information by taking zP™4 into account.

In order to verify the bivariate model, we apply the post-processing procedure proposed in
Subsection 9.5.1. Due to the computational complexity of the conditional simulation, we
do not simulate the observations at all stations simultaneously conditional on the forecast
at all locations, but perform post-processing with sample size K = 20, i.e. the size of the
original COSMO-DE ensemble, at each location separately conditioning on the forecast at
the same location and two neighboring grid cells only. We calculate the CRPS of the post-
processed distribution, CRPSPY(1;), and compare it with CRPS(NWP)(li), i.e. the CRPS
belonging to the empirical distribution of the COSMO-DE ensemble, yielding a positive
skill score for 82 of 119 stations where the skill score related to the mean CRPS equals 0.128
(0.111 cross-validated). If we increase the sample size K = 100, we obtain an improved
skill score of 0.164 (0.147 cross-validated), being positive for 104 of 119 stations. Thus, we
conclude that the post-processing procedure based on the bivariate Brown-Resnick model
is able to improve the forecast given by COSMO-DE ensemble.

9.6.4 Uncertainty Assessment

We assess the uncertainty in the estimation of the model parameters via parametric boot-
strap, i.e. we simulate data sets from the fitted model and repeat the estimation procedure.
As a detailed analysis of the numerical model producing the forecasts is beyond the scope
of this chapter, we do not account for the uncertainty in the estimates 7 (l;, d) and $(l;, d),
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Figure 9.3: Left: The estimated extremal coefficients (black circles) and the fitted ex-
tremal coefficient function (red line) of the normalized bivariate random field
(Xobs xPred) of observed and forecasted wind gusts. Right: Contour level
plots of the fitted extremal coefficient function 6(lo,-) where [y is located at

Hanover.
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Realisation of Z°° Realisation of Z°®

Figure 9.4: Simulated realization of a Brown-Resnick process associated to the variogram
~(¥; ) with standard Gumbel margins.

b 0 15} o K c o1 v 09 9 a

orig. 1.2 -0.10 091 20 425 15 13 03 1.1 04 124
mean 1.2 005 072 13 307 15 14 03 12 0.5 306
std. dev. 0.2 036 023 08 214 0.1 04 05 04 0.7 283

Table 9.1: Results for parameters of the bivariate Brown—Resnick model obtained via para-
metric bootstrap

but focus on the normalized values

{Uf?;x(liid) =il d) vl d) =l d) g g .,360} .
S(li,d) S(Zi,d)
To this end, we draw 360 independent realizations from the bivariate Brown-Resnick pro-
cess fitted in Subsections 9.6.2 and 9.6.3 using the simulation algorithm by Dombry et al.
(2016a). The procedure is repeated 100 times yielding 100 independent data sets of the
same size as the original one. Following the steps described in Subsections 9.6.2 and 9.6.3,
we thus obtain 100 independent estimates.
The sample of estimates fAObS has mean 0.043 and a standard deviation of 0.02. In order
to validate the p-value of the Kolmogorov-Smirnov tests for £°°%, we repeat these tests
on the simulated data sets and obtain a p-value smaller than the original one (0.194) in
22 of 100 cases which supports the non-rejection of the hypothesis that £°P% is spatially
constant. The p-values of the tests for ;°b °bs are confirmed, as well.
Analogously, the results for the marginal parameters for the forecast are verified: The
sample of estimates é\pred has mean 0.03 and a standard deviation of 0.02 while the original
p-value (0.53) of the test for £°P is undercut in 62 of 100 cases.

and o

Further, we assess the estimation of the Brown-Resnick model parameters. The origi-
nal parameter values and the sample means and standard deviations obtained from the
parametric bootstrap are presented in Table 9.1. It can be seen that most parameters are
recovered well by the estimation procedure. For some parameters of the bivariate Whittle-
Matérn model, however, rather large variances are observed, a phenomenon which is often
encountered in practice in accordance to the fact that not all parameters of the Whittle-
Matérn model can be consistently estimated from observations in a fixed domain (cf.
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Zhang, 2004). Even though some parameters show considerable variation, there is little
variation in the bivariate extremal coefficient function as displayed in Figure 9.5.

Besides the uncertainty of the parameter estimates, we also assess the deviation of the non-
parametrically estimated extremal coefficients from the parametrically estimated extremal
coefficient function. To this end, for ki, ko € {“obs”, “pred” }, we calculate the root-mean-
square error

1/2

2
RMSEF#2 — | - 0" (1,15) — 20 DL 1)/
1192 Z (la j) ( '71917162( 5 by ])/ )
1<4,5<119

For the original data, the corresponding root-mean-square errors are RMSE®P%°P* = 0.074,
RMSE°PsPred — RMSEPred0bs — (.078 and RMSEP™dPred — (. 061. Repeating the calcula-
tion for the simulated data sets, we obtain sample mean root-mean-square errors 0.039 (for
RMSE®>°%) 10,041 (for RMSE®PPrd and RMSEP™4°b%) and 0.037 (for RMSEPredpred)
with standard deviations 0.0018, 0.0019 and 0.0018, respectively. Thus, the deviations for
the real data are roughly twice as large as expected in case of the model being correct.
One may conclude, that the extremal coefficient for real data is not only a function of the
distance, but may be modulated by the topography or the climate at the stations.

Finally, note that the same methodology could be used to assess the uncertainty of the
post-processed forecast. To this end, different sets of estimated parameters could be used
as input for the post-processing procedure described in Subsection 9.5.1 to determine the
uncertainty of its output. However, a full analysis would also require an assessment of
the uncertainty in the estimates m(l;,d) and 5(l;, d) which, as already mentioned above,
is beyond the scope of this work.
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Figure 9.5: Results for the bivariate extremal coefficient functions obtained via parametric
bootstrap as functions of the distance in north-south (left) and east-west (right)
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