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Abstract

In this work we discuss the theoretical status for the study of the lifetime of heavy
hadrons. After presenting some introductory topics like the effective weak Hamil-
tonian and the heavy quark effective theory (HQET), we describe the construction
of the heavy quark expansion (HQE), which constitutes the theoretical framework
to systematically compute the total decay width of heavy hadrons, in terms of an
expansion in inverse powers of the heavy quark mass. The structure of the HQE is
discussed in detail, and the computation of the lowest dimensional contributions, ex-
plicitly outlined. Particular emphasis is put in describing the expansion of the quark
propagator in the external gluon field using the Fock-Schwinger (FS) gauge, which
represents a fundamental ingredient of the calculation. Moreover, the main result is
the computation of the dimension-six contribution due to the Darwin operator, only
recently determined and found to have a sizeable effect. Finally, we consider two
phenomenological applications of the HQE in the charm sector, namely the study of
the lifetime of charmed mesons and the analysis of the Glashow-Iliopoulos-Maiani
(GIM) cancellations in neutral D-meson mixing. By comparing our results with
recent measurements performed by the LHCb, Belle-II and BESIII collaborations,
we conclude that the HQE is able to reproduce, within large theoretical uncertain-
ties, the experimental pattern for the lifetimes of charmed mesons and we discuss
a potential solution for the discrepancy of previous theoretical determinations of

D-mixing with data.






Zusammenfassung

In dieser Arbeit erortern wir den theoretischen Status der Untersuchung von Lebens-
dauern schwerer Hadronen. Nach einigen einfiihrenden Themen wie dem schwachen
effektiven Hamiltonian und der effektiven Theorie fiir schwere Quarks (HQET)
beschreiben wir die Konstruktion der Heavy Quark Expansion (HQE), die den theo-
retischen Rahmen fiir die systematische Berechnung der totalen Zerfallsbreite schw-
erer Hadronen in Form einer Entwicklung in inversen Potenzen der schweren Quark-
masse bildet. Die Struktur der HQE wird im Detail diskutiert und die Berechnung
der niedrigstdimensionalen Beitrage wird explizit dargestellt. Ein besonderes Au-
genmerk wird auf die Beschreibung der Entwicklung des Quark-Propagators in einem
externen Gluon-Feld unter Verwendung der Fock-Schwinger-Eichung (FS) gelegt, die
einen grundlegenden Bestandteil unserer Rechnungen darstellt. Dariiber hinaus ist
das Hauptergebnis die Berechnung des Beitrags des Darwin Terms mit der Massendi-
mension sechs, der erst vor kurzem von uns erstmals bestimmt wurde und numerisch
bedeutend ist. Schliefllich stellen wir zwei phénomenologische Anwendungen der
HQE im Charm-Sektor vor, namlich die Untersuchung der Lebensdauern von Charm
Mesonen und die Analyse der Glashow-Iliopoulos-Maiani (GIM)-Kanzellierungen in
der Mischung neutraler D Mesonen. Durch den Vergleich unserer Ergebnisse mit den
jungsten Messungen der Kollaborationen LHCb, Bellell und BeslIII kommen wir zu
dem Schluss, dass die HQE in der Lage ist, innerhalb grofler theoretischer Unsicher-
heiten, die experimentellen Resultate fiir die Lebensdauern von Charm Mesonen zu
reproduzieren, und wir diskutieren eine mogliche Losung fiir die Diskrepanz zwischen

fritheren theoretischen Bestimmungen von D-Mischung und den Daten.



Alla mia famiglia:

mamma, papa e Beniamino



“If the doors of perceptions were cleansed,

everything would appear to man as it is, Infinite.”

William Blake, The Marriage of Heaven and Hell.
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Introduction

The standard model of particle physics (SM) describes our knowledge about the
fundamental constituents of nature, quarks and leptons, and the interactions among
them [1-3] and it is confirmed by numerous measurements to an astonishing preci-
sion, see e.g. textbooks like [4]. With the discovery of the Higgs boson [5-7] by the
experimental collaborations ATLAS [8] and CMS [9] at the Large Hadron Collider
(LHC) at CERN in 2012, the spectrum of the SM particles is complete.

Despite the enormous success, the SM leaves many important questions open, in
fact, e.g. it is not able to explain the existence of ordinary matter in the Universe or
that of dark matter. According to the Sakharov criteria [10], the fundamental theory
of nature must incorporate C and CP violation, baryon number violating processes
and a strong first order phase transition in the early Universe, to potentially explain
the existence of ordinary matter. C violation is implemented by construction in the
SM and CP violation is present in the Cabibbo-Kobayashi-Maskawa matrix [11,12],
although typically, the amount of CP violation contained in the CKM matrix is
considered to be too small to explain the matter-antimatter asymmetry [13], see,
however Ref. [14] for a counter example. Baryon number is violated in the SM via
sphalerons [15], but a strong first order phase transition could only occur for Higgs
masses below 70 GeV [16], which is not realised in nature [8,9] !.

Because of this, the SM is typically considered to be an effective theory, see e.g. the
textbook [18], extended at higher energies with contributions that might explain
some of the open questions. Numerous possible extensions of the SM have been
studied in the literature, one of the simplest predicts the existence of a second Higgs
doublet, see e.g. the review [19], which could provide the missing amount of CP
violation and also a strong first order phase transition, see e.g. Ref. [20]. Another
example is the framework presented in Ref. [14], in which it is investigated the pos-
sibility to explain the existence of matter and dark matter, through new sources of
CP violation in mixing of neutral B mesons and new couplings of the B mesons

with light dark matter particles.

n Ref. [17], we have developed a method to solve differential equations using neural networks,
applied then to the study of cosmological phase transitions in the early Universe.
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The search for beyond standard model (BSM) effects in particle physics, can be
direct and indirect. With the former, new heavy resonances can be produced in
particle collisions by increasing the center of mass energy, however, apart from the
discovery of the Higgs boson, direct searches have not been successful so far at the
LHC. On the other side, with indirect searches, measurements of observables with
high precision, are compared with the corresponding SM predictions. In this case
a robust control over the theoretical uncertainties is crucial, and the bottleneck is
represented by the strong interaction, which either requires the calculation of higher
order perturbative corrections or the use of non perturbative methods. Since the
LHC will continue running for several years with increased luminosity and in the
upcoming future there will not be a new particle accelerator with higher center
of mass, in recent years there has been a progressive shift from direct to indirect
searches, see e.g. Ref. [21].

Quark flavour physics is particularly well suited for indirect searches of BSM ef-
fects due to several reasons. First, many experiments are providing precise flavour
data, e.g. LHCb, Belle II, BESIII, ATLAS, CMS and formerly BaBar, Belle and
many more, see e.g. the extensive HFLAV report for a list of the numerous mea-
surements [22]. Second, the theoretical description of quark flavour observables is
theoretically very advanced and enables a control of the hadronic effects, see e.g. the
textbooks [23-25]. The computation of higher order perturbative corrections can be
systematically improved, see the recent N3LO-QCD calculation for the semileptonic
b — clvy decay [26]. Moreover, many heavy flavour observables can be expressed in
terms of a series in inverse powers of the heavy quark mass, see e.g. the review [27],
and again higher order power corrections can be systematically determined, see e.g.
the computation of the contributions up to order 1/m; for semileptonic b-decays [28].
Non perturbative effects can be determined with theoretical tools like light-cone sum
rules (LCSR) [29-31] or lattice QCD [32], which can also be systematically improved,
in order to match the increasing experimental precision. Third, CP violating effects
are large in the By-system and they are well studied, see e.g. Ref. [33]. Conversely,
they are expected to be very small in the charm sector, see e.g. the review [34], and in
the B; system, see e.g. the review [35], and can then provide a useful null-hypothesis
test of the SM, since any measurement of a sizeable amount of CP violation could be
a clear signal for BSM effects. Finally, we currently witness a significant number of
deviations between experiments and SM predictions for quark flavour observables.
The most famous are the so-called “flavour anomalies” [36], observed in semileptonic
loop-level decays, induced by the b — s/, with ¢ = pu, e, transitions and semileptonic
tree-level decays, induced by the b — clv, with ¢ = u, 7, transitions. A combined
statistical analysis of these anomalies points at deviations of the order of six to seven

standard deviations, see e.g. Ref. [37].
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The above arguments show that indirect BSM searches with quark flavour observ-
ables represent a very interesting and promising field for future investigations in
elementary particle physics. However, in order to be able to unequivocally identify
the signals of BSM effects, it is of primary importance to further improve the control
over the theoretical predictions. In this respect, the work here presented constitutes
a detailed study of the theoretical status for the determination of the lifetime of
heavy hadrons, like the B- and the D-mesons. In particular, we analyse the struc-
ture of the heavy quark expansion (HQE), which provides a consistent framework to
compute the total decay width of heavy hadrons in terms of a series in inverse powers
of the heavy quark mass, and discuss the recent computation of higher power cor-
rections of dimension-six. Specifically, the content presented in this work is divided
into four major parts. In Chapter 1 we introduce the main theoretical ingredients
required for the computation, and in particular describe the construction of the
HQE. In Chapter 2 we present the explicit calculation of the lowest dimensional
contributions to the HQE of a B-meson, namely due to two-quark operators up to
order 1/m? and to four-quark operators up to order 1/my. In Chapter 3 we outline
in detail the computation of the contribution of order 1/m;j due to the Darwin op-
erator for the case of arbitrary non-leptonic decay modes of the b-quark, which has
only recently been determined and found to be sizeable. Moreover, particular em-
phasis is put in describing the mixing between four-quark operators and the Darwin
operator at dimension-six, that ensures the cancellation of the infrared divergences,
arising from the emission of a soft gluon from a light quark propagator, otherwise
present in the coefficients of the Darwin operator. In Chapter 4 we consider two
phenomenological applications of the HQE in the charm-sector, specifically, we per-
form a comprehensive study of the inclusive decay width of charmed mesons and
propose a possible solution to explain the large discrepancy between the theoretical
determination of mixing of neutral D-mesons and the corresponding experimental

data. Finally we conclude with a discussion of the results.
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Notations

Here we list some of the notations adopted throughout this work, mostly following
the textbooks [38,39]. We use the natural system of units, i.e. ¢ = h = 1. Indices
representing all four components of a four-vector are always labelled by Greek letters
e.g. u = 0,1,2,3, while indices corresponding only to the three space components
are labelled by Latin letters e.g. £k = 1,2,3. Summation over repeated indices is
understood unless otherwise stated. The four-dimensional Minkoswki metric tensor
is g, = diag(1,—1,—1,—1), so that the invariant product between two four-vectors
z# and y* is given by x - y = gty = 2%y’ — x -y, with three-vectors denoted in
bold type. Moreover the differential operator reads

Op = 2 = (0, V), ot = 2 = (0, —V) . (1)

oxh 0w,

The Pauli matrices are the three hermitean 2 x 2 matrices

0 1 0 —i 10
al:<1 0)’ UQ:(z‘ 0)’ U3:<0 —1)’ @)

satistying o0, = 0;i + i€;107 , with €123 = 1. The four-dimensional gamma matrices

~*, in the standard representation, are respectively given by
]12 0 0 O
,yO = ) ’Yk = ) (3)
0 -1, -0, 0

{777} =20"1s, AT =100 (4)

with

The commutator of two gamma matrices is

l

2

ot

[7",7"1, ()

15



while the fifth gamma matrix is defined as

vs =" =i’y (6)

Regarding the convention for the four-dimensional Levi-Civita tensor e***?, we use
€23 = 1 = —¢p193. With the above definitions for 75 and €77, it follows that the

tensor decomposition of three gamma matrices reads
VAN = gy — g+ g+ e s (7)

and that the trace of four gamma matrices and one 5 is
Tr [YHy P 5] = —4ietP? . (8)

Quantum Chromodynamics (QCD) is a non-abelian gauge theory with the symmetry
group SU(N.) and number of colours N. = 3. Colour indices of fields in the adjoint
representation are indicated by a,b,c = 1,...,(N? — 1), whereas i, j,k = 1,..., N,,
are used to label fields in the fundamental representation. The generators in the
fundamental and in the adjoint representation are respectively denoted by t* and

T“. They satisfy the following commutation relations

[ta7 tb] _ Z'fabc € ’ [Tva7 Tb] _ Z'fabcTc ’ (Ta)bc _ _ifabc 7 (9)

where f®¢ are the structure constants of the group. From the normalisation choice

1
Tr[t*4"] = 55“", (10)
it follows that
(ta . ta)ij _ CF 5ij 7 fabc]z'dbc _ CA 5ad’ (11)

with Cp = (N? — 1)/2N,, and C4 = N.. The Feynman rules for a perturbative

analysis of QCD are derived from the Lagrangian 2

ﬁclassical + £gauge—fia:ing + 'Cghost ; (12)

2Note that this is an abuse of notation, it actually corresponds to the Lagrangian density.
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here, without discussing Ljquge— fizing and Lgnost, required for the renormalisation of

the theory, the classical Lagrangian reads

‘Cclassical = _;IGZV<I.)G@MV($) + Z qZ(x) (Zw - ml])ij qj (17) : (13)

flavours

In Eq. (13), the gluon field strength tensor is

G (@) = 0, A5 (x) — 0, A} () + g f*" Ay (2) Al (), (14)

AZ(:L‘) denotes the corresponding gauge field and g, is the strong coupling. More-
over, we use G, = G} " and A, = Ajt". Acting respectively on fields in the

fundamental and adjoint representation, the covariant derivative takes the form
(Dp)ij = 0udij — igs Ay ()(t*)i (15)

and

(Du)ab = auéab - ngAZ(x) (Tc)ab : (16>

Finally, the gluon field strength tensor can be expressed in terms of the commutator

of two covariant derivatives in the fundamental representation, as

1

G = Gt =

[Dys D]

[0 — igy AL (@), 0, — ig, AS (2)E°]

S

(0uAL(x) — 0,A%(x)) t* — igsAZ(m)Ai(x) [t°, 9]

= (0, A% (x) — 0, A () + gsfabCAZ(x)Afj(x)) t*, (17)

while from Eqgs. (16), (15), and (9), we obtain that a covariant derivative acting on
the gluon field strength tensor i.e. D,G, = (D,)apGh, %, see also e.g. Ref. [40], can
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be written as

D, G = 0p0anGlt® — g ASGY, fe0t

T

= 0,G — igs [t°, "] ASGY,

= 0pG v — 19s [Apv G/ﬂ/]

= [Dvaw/] = i [Dpv [D#,DV]] ) (18)

s

where the covariant derivative on the Lh.s. of Eq. (18) is in the adjoint representation
and those in the last line of Eq. (18) in the fundamental. However, in the following,
the coupling constant will be mostly absorbed in the definition of the gluon field i.e.
A, (z) = 1/gsA,(x), and G, — ¢sG L, so that in this case

GW =1 [D/mDu] ) DpGW =1 [Dpa [DM,D,,]] . (19)
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Chapter 1

The Theoretical Framework

In this first chapter we present four of the fundamental theoretical tools necessary for
the upcoming discussions and computations. Specifically, in Section 1.1, we intro-
duce the effective weak Hamiltonian, which provides the appropriate framework to
study processes like b- and c-quark decays, that happen at energy scales much lower
than the W-boson mass. We then briefly describe in Section 1.2, the construction
of the heavy quark effective theory (HQET), which represents an approximation of
QCD, valid in the case of heavy quarks ) with mass m¢g » Agcep, where Agep
characterises the onset of the non perturbative regime of the strong coupling as.
Particular emphasis is put in deriving in Section 1.3, the expansion of the quark-
propagator in the external gluon field using the Fock-Schwinger (FS) gauge, a key
ingredient for the calculations presented in the subsequent chapters. Finally, in
Section 1.4, we introduce the general framework in which all of the computations
and results obtained in the present work are embedded, namely, the heavy quark
expansion (HQE).

1.1 The effective weak Hamiltonian

The study of hadronic weak decays defines a typical multi-scale problem in which
the mass of the W-boson, my, the one of the decaying constituent quark, m, and
the hadronic non perturbative scale Agcp, lead to the hierarchy my » m » Agep.
The construction of effective field theories (EFTs) provides a general way to deal
with multi-scale problems, as it allows to reduce them to a combination of simpler
and single-scale ones.

In order to derive the effective Hamiltonian needed to describe weak decays of
B- and D-hadrons in the sequent chapters, we consider as a paradigmatic example

the ¢ — sdu decay. We stress that the content of this section closely follows the one
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Chapter 1 The Theoretical Framework

Figure 1.1: By expanding in powers of 1/m,, the non-local amplitude in the full
theory (left), results in a local interaction in the effective theory (right). The crosses
in vertices denote the insertion of the effective four-quark operator.

of the reviews [41-44], to which we refer for a comprehensive introduction to the

effective Hamiltonians for weak decays as well as for further references on the topic.

The tree-level flavour changing transition ¢ — sdu, proceeds through the ex-
change of a W-boson between the (cs) and (ud) left-handed quark currents, as it
is diagrammatically shown in the left diagram of Figure 1.1. The amplitude for

process is given by

i - (2%) ViVl [ e [ty s 0) 0 0) 1Dt ) ) P00, (1)

where g is the coupling corresponding to the SU(2), symmetry group, V4, the
elements of the quark-mixing Cabibbo-Kobayashi-Maskawa (CKM) matrix, and we
have introduced the short-hand notation for the Lorentz structure I'), = v, (1 — ),
and for the matrix element between external quark states (...). Moreover, in
Eq. (1.1) the propagator of the W-boson D, (x,y), in the unitary gauge, admits the

Fourier representation, see e.g. the textbook [38]

d*k -1 kuko \ (e
Dyy(xay) = f (271')4 kz _ mIQ/V <g,ul/ - TZ%V ) e k-(z—y) . (12)

Because of momentum conservation, the integral in Eq. (1.2) is saturated by values
of k of the order of the decaying quark mass m., much smaller than my,. It follows

that by expanding in powers of 1/m?%,, the expression of the W-propagator reduces to

d*k v k? k(g v
D, (x,y) :J_[QMQ +O(—4>]e k-(e=y) wg%é(‘l)(x—y). (1.3)

(2m)* [mijy My My

Substituting Eq. (1.3) into Eq. (1.1), and performing the integration over the vari-

able y*, we obtain that the transition amplitude for the tree-level process, up to

20



Chapter 1 The Theoretical Framework

Figure 1.2: Diagrams describing the decay ¢ — sdu, at NLO-QCD in the full theory.
Left-right and up-down reflected diagrams are not shown.

corrections suppressed by powers of k?/m?, in the W-propagator, reads

Gr 1/ 4 I J j
@Tz—zﬁv ud<fd x 8 (z) THe (2)w! (z) T (), (1.4)

where the Fermi constant Gy is defined as

Gr 92

V2 8miy

The amplitude in Eq. (1.4), valid at energy scales much lower than myy, could have
been equivalently derived starting from the following effective Hamiltonian

Heopp(z) = f/gv*vud 5 (@) D (2)@ (2) Tl (). (1.6)

We see that, by exploiting the hierarchy my, » m., the non-local product of two
currents, namely the non-local operator in Eq. (1.1), has been expressed in Eq. (1.4)
in terms of a local operator weighted by an effective coupling. This is schemati-
cally shown in Figure 1.1 and represents a basic illustration of the Wilson operator
product expansion (OPE) [45,46]. The next step is to include perturbative QCD
corrections to the tree-level transition ¢ — sdu, as schematically shown in Figure 1.2.
In this case the effective Hamiltonian must be modified as

Hepp(w) = Gr V* Vud (Cl Qi1(r) + Cy QQ(@) ; (1.7)

V2 ©

where the local effective four-quark operators are given by
Q@) = (S @ (@) (@ @r,d'(@). (1)
Qa(2) = (5'(@)(2)) (# (2T’ () ) (1.9)
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Chapter 1 The Theoretical Framework

v
X

Figure 1.3: Diagrams describing the ¢ — sdu at NLO-QCD in the effective theory.
Again, left-right and up-down reflected diagrams are not shown.

We see that in addition to the operator Q,(z) !, already obtained in the case of
tree-level transition, there is a new operator QQo(z), with different contractions of
the colour indices, which arises due to the fact that the exchange of a gluon leads to
two possible colour structures, because of the completeness property of the SU(3),

generators t, i.e.
ajo _ 1 5 8 _ig. 5 (1.10)
ik Y5l — 9 il Uk Nc ik Vgl . .

In Eq. (1.7), Cy and Cy denote the corresponding Wilson coefficients (WCs) of the
effective operators )1 and 2. From the result in Eq. (1.6), it follows that in the
absence QCD corrections, it is ¢ = 1 and Cy = 0.

The general prescription to determine the expression of the Wilson coefficients is
to require that the amplitude in the full theory is reproduced by the corresponding
one in the effective theory, which reads

Gp

1T = —Z\—ﬁ‘/;;vud (01 <Q1> + CQ <Q2>> . (111)

By computing, on one side, QCD corrections to the amplitude 7" in the full theory,
see Figure 1.2, and on the other side, the matrix elements of the effective operators
{(Q1) and {(Q3), at the same order in «y, see Figure 1.3, we can obtain the corre-
sponding expressions for the Wilson coefficients by equating the two results and by
taking into account Eq. (1.11). This procedure is called matching of the full theory
onto the effective theory. Omitting the explicit calculation, we only show the final
result for the renormalised amplitude in the full theory up to NLO-QCD corrections.
This is

Note that we do not adopt the convention historically used in the literature, see e.g. Ref. [42],
and instead denote by @7 the colour-singlet operator.
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Chapter 1 The Theoretical Framework

2
ZT = ?/{V*Vud[<l + ZCF_ 10g ( >) <Q1>tree
2 2
+ FCE 10g (T_gg) <Q1>tree - BZ_; log <T_;;;) <Q2>tT€6] ) (112>

where (Q1.2)1ree denote the tree level matrix elements of the operators )y and Qs.
The expression in Eq. (1.12) has been obtained in dimensional regularisation [47-50],
with D = 4—2¢ space-time dimensions, using the Feynman gauge for the gluon prop-
agator, massless external quark states and an off-shell momentum p, see Ref. [42].
Note that Eq. (1.12) includes only logarithmic corrections of the type s - log and
constant terms of order O(a;) have been neglected, which corresponds to the leading
logarithmic approximation. Moreover, the renormalisation of the quark fields has

been already implemented and has resulted in the explicit ;1 dependence.

Similarly, by computing the diagrams within the effective theory shown in Figure 1.3,
leads to the following results for the unrenormalised matrix elements of the opera-
tors ()1 and @5, up to NLO-QCD corrections, namely

s (1 i
<Q1>(0) — [1 + QCFZ_W (Z + log (_M—])Q>)} (Q1)tree

3 a, (1 ? L i
+ FCZ_W (E + log < a )) <Q1>tree 4 ( + lOg ( p )) <Q2>treea

(1.13)

and

<Q2>(0) = ll + 2CF% (1 + IOg (u_2>):| <Q2>tree
Am \ € —p?

3 Qg 1 /_1,2 Qg 1 ILLQ
+ N in (e + log <—p2)> (@2)tree 347T (e + log <_—p2 (Q1)tree

(1.14)

The 1/e poles in the square brackets of Eqgs. (1.13), (1.14), are removed again with
the renormalisation of the quark field. However, the results are still divergent and

require in addition an operator renormalisation, i.e.
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Chapter 1 The Theoretical Framework

where the superscript (0) refers to unrenormalised quantities, and 7 is a 2 x 2 renor-
malisation matrix. By taking into account also the field renormalisation Z,, the

relation between the unrenormalised and renormalised matrix elements, denoted by
(Q;), is given by

@)V = Z.2Z:;(Qyp, (1.16)

and in the MS scheme [51], the explicit expression of Z,, is

1
Z, _q_tCra
€ 4rm

+0(a?). (1.17)

S

Using Eq. (1.16), and Egs. (1.13), (1.14), (1.17), yields to the following result for

the Z matrix in the MS scheme, namely

N a;1 ( 3/N., -3 5
Z =1 —— 1.1
2+47T6 < _3 3/Nc ) +O(a5)7 ( 8)

from which we obtain that the renormalised matrix elements of the local operators,

respectively read

@)= [1+2¢02 108 ()| @,

3 a, 2 i
+ EZ—W IOg (_u_p2) <Q1>tree - 4 IOg ( ) <Q2>t7"68’ (119>

and

(@) = [1 20,2 log < - )] (@ire

3 a, 2 pw
+ EZ_W log (_”_pz) <Q2>tree 34_ log ( ) <Q1>tree (120>
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Chapter 1 The Theoretical Framework

Finally, by substituting Eqgs. (1.19), (1.20), into Eq. (1.11) and taking into account

Eq. (1.12), we can extract the corresponding expressions of the WCs, i.e.

3 o m? Qg m?

Setting a; to zero in Eq. (1.21), we recover C; = 1, Cy = 0. Note that this same

result is obtained also by setting p = myy, corresponding to the matching scale.

From the above description it is evident that the main property of the construction
of the OPE lies in the possibility to factorise the short and long distance contribu-
tions of the full amplitude, between the Wilson coefficients and the matrix element

of local operators in the effective theory. In fact, up to terms of order O(a?), we have
3 « m3 3 « m3 3 « >
14— % W =1+ =5 W 14— % i
(eaire () - (o () (o e (25))
(1.22)

and then

2 2 2
myy myy o
oc (257 =ox () +1os (£5) 2

By taking into account that the logarithms originate from the integration over a

loop variable, it follows that we can schematically write

my my Iy

dk? dk? dk?
=] % ] % (1.24)
7p2 /1'2 7p2

showing that the effect of large virtual momenta in the loop, e.g. from scales p ~ 1
GeV to my is absorbed in the expression of the Wilson coefficients, while the low
energy contributions, depending on the off-shell momentum p, are encoded into the

matrix elements of the local operators.

However, it is easy to verify that at scales much smaller than my,, the logarithms

in Eq. (1.21) become large, namely

2
aglog W — O(1),  with p® < mb, (1.25)
1

and therefore the series in powers of «, log(m#;/u?) does not converge. The solution

is provided by employing the renormalisation group equations (RGEs), which allow
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to resum the leading logarithms of the type a”log(m?,/u?)™ to all orders in per-
turbation theory. Analogously to Eq. (1.15), we then introduce the unrenormalised

Wilson coeflicients

o = z:0y, (1.26)

where Zj; is the corresponding renormalisation matrix 2. From the definition of the

anomalous dimension matrix ¥

4=2 7, (1.27)

or explicitly, using Eq. (1.18)

o) = ( _6éNC _G?NC ) , (1.28)

it follows that, taking into account Z¢7 = Z~! the RGEs satisfied by the renor-

malised Wilson coefficients, read

d
dlog

Cin) = 5 () Cyn) (1.29)
The solution of Eq. (1.29), can be formally presented as

Ci(p) = Ui (g, mw ) Ci(mw) (1.30)

with U(u, my) being the evolution matrix describing the running of the Wilson

coefficients from the matching scale my, to the lower scale p.

We conclude by emphasising that the presence of only two operators @Q(x) and
()2(x), in the effective Hamiltonian in Eq. (1.7), follows from having considered the
specific decay mode ¢ — sdu. In fact, in the description of arbitrary c-quark decays,
additional operators are generated by including QCD corrections, these are the pen-

guin operators

?Because the effective Hamiltonian, proportional to c <C§>, must be scale independent, it follows
that Z¢; = Z;;', where Z;; is given in Eq. (1.18).

Ji o
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Q3(z) = @ (x)y"(1 = 5)¢! Zq 2)7u(1 = 75)¢ (@), (1.31)
Qa(x) = @' (x)y"(1 = 75)¢! Zq )7 (1 = 75)4' (), (1.32)
Qs(x) = @ (x)7"(1 = 75)¢! Zq )7 (1 + )¢’ (), (1.33)
Qs(x) = ' (x)7"(1 = 75)¢! Zq )71+ 75)d' (@) . (1.34)

1.2 The heavy quark effective theory

The low-energy dynamics of hadrons is governed by the confining QCD interactions
and the scale Agcp, at which the strong coupling a,(¢) becomes non perturbative,
provides a characteristic parameter for it. The inapplicability of standard pertur-
bation theory poses a big challenge for the computation of any hadronic matrix ele-
ment, however, simplifications usually arise when considering special limiting cases.
The description of hadrons containing a heavy quark ), where by heavy it is meant
that mg » Agep, leads to profound consequences, because under this condition, the
hadronic system can be parametrised as an almost free heavy quark surrounded by
a cloud of light degrees of freedom. In particular, in the limit mg — o0, it is only the
four-velocity v* of the infinitely heavy quark, which coincides with the hadron ve-
locity, that characterises the bound state dynamics. The QCD interaction with the
light constituents, despite changing the heavy quark momentum pg, cannot affect
its velocity, which is conserved because of Av# = Ap’g2 /mgq. In this limit, the heavy
quark effectively acts as a static external colour source. The soft gluons and quarks
are sensitive to the static colour field because of confinement but they are unable
to resolve other quantum numbers of the heavy quark, like flavour and spin. These
relativistic effects are suppressed by the heavy quark mass and can be systematically
taken into account in a perturbative way, see e.g. the early review [52]. It follows
that, in the heavy-quark limit, the QCD Lagrangian is approximated by an effective
theory, the heavy quark effective theory (HQET) [53-63], where new symmetries,
which are not present in the original theory, become manifest. Specifically, for a
system with f heavy flavours, there is a SU(2f) symmetry group corresponding to
rotations in spin and heavy flavour space. The possibility to exploit the existence of
the heavy-quark symmetry in certain kinematical domains, leads to simplifications

in the computation of hadronic matrix elements involving heavy quarks, in particu-
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lar it allows to derive model-independent relations between hadronic form factors for
weak decays, thus reducing significantly the number of independent input required,

see e.g. the review [64].

Far from being exhaustive, the rest of this section is mainly intended as a brief
introduction to the HQET, in order to derive the basic properties that will be used
in the sequent chapters. The exposure closely follows the comprehensive monograph
[65] and the excellent reviews [52,64,66,67].

The fundamental assumption for the construction of the HQET is that a heavy
quark bounded in a QCD state with light constituents carries most of the four-
momentum of the system and is quasi on-shell. Interactions with soft gluons and
quarks can only change p’é by a fraction small compared to its large “kinetic” com-

ponent. According to this picture, the heavy quark momentum is parametrised as

P = mQut + k", (1.35)

where v# is the hadron velocity with v? = 1 and the “residual” momentum k* deter-
mines by how much the heavy quark is off-shell because of the QCD interaction with
the light degrees of freedom, so k is of the order of Agcp. Substituting Eq. (1.35)
into the expression for the Feynman propagator for (), and expanding in the small

quantity k/mg, yields

pQ+mQ . ngé—l—k—i—mQ

? -
pé_m2Q+25 <mé+2va'k+k2—mé+i5>
' 1 k
- (A o). (1.36)
v-k+ie 2 meo

Eq. (1.36) shows that the propagator of a heavy quark contains a velocity dependent

operator which projects onto the positive energy components of the Dirac field. In

fact it is immediate to verify that the operators

11y

Pi: 9 )

(1.37)

fulfil P} = Py, P, P+ = 0, and are thus projectors. Their meaning becomes partic-
ularly transparent if we consider the rest frame of the heavy quark i.e. v* = (1,0),

in fact in this case Py = (1 + 70) /2, or explicitly
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1
p,=(7 X , P = 00 , (1.38)
0 0 0 1,

indicating that Py respectively project onto the upper/lower two components of

the Dirac spinor. Because in Eq. (1.36) only the positive energy solutions of the
Dirac equation are propagated, it appears appropriate to introduce the following

parametrisation for the heavy quark field:

Q(z) = e ™" b (z) + O (i) : (1.39)

mq
where the effective heavy quark h,(x) satisfies

h(z) — imave # Qlx), (1.40)

and hence
P h,(x) = hy(z) . (1.41)

The presence of the exponential prefactor in Eq. (1.39) removes the large “kinetic”
part of the heavy-quark momentum, so that h,(z) contains only the small frequencies
of the order of k. Notice also that due to Eq. (1.40), h,(z) is constrained to be
effectively a two-component field. By expressing the QCD Lagrangian for @), in

terms of h,(z), gives
Locp = Q) (i) — mg) Q(x) = hy(z) il hy(z) + O (i)

= hy(z)Pyil) Py hy(x) + O <i) , (1.42)

mq

where we have used Eq. (1.41) and then ¢h, = h,. Taking into account the identity

P_;,_’}/'U‘P_i_ - P_i_P_/y“ + P+UM - P+UHP+ 3 (143)

we obtain that in the limit of a infinitely heavy quark, Eq. (1.42) becomes

Luoer = hy(x)(iv - D)h,(x) = hi(z) (z'v 00, + gsv- A” t?k) hf(m) , (1.44)
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and for clarity the colour indices 7, k, have been explicitly indicated in the second
equality. Eq. (1.44) defines the Lagrangian of the HQET. The corresponding Feyn-
man rules for the heavy quark propagator and for the coupling of a heavy quark to

the gluon field can be easily read off Eq. (1.44). They are respectively given by 3

;. & ® J —LM ..
' = D=0k 2 6]2

(1.45)

and

(1.46)

Clearly Eq. (1.45) reproduces the leading term in Eq. (1.36). It is worthwhile to
emphasise that the effective heavy field h,(z), by construction, annihilates a heavy
particle with velocity v* but does not create a heavy antiparticle. The conjugate
field h,(z), on the other side, creates a heavy particle with velocity v* but does
not annihilate a heavy antiparticle. Pair production is absent in the infinite heavy
mass limit and the field-theoretic description becomes actually redundant, see e.g.
Ref. [67]. Consistently, contrary to the full QCD propagator, Eq. (1.45) has a single
pole since only heavy particles are propagating in space and time, see e.g. Ref. [52].
The contribution of heavy antiparticles is suppressed by the heavy quark mass and
arises when power corrections are included, cf. Eq. (1.40). Note that Eq. (1.44)
does not depend on the heavy quark mass, so that the theoretical description stays
unchanged if the heavy quark @ is replaced by a different heavy quark " with the
same velocity v*, provided that the condition m¢g » Agep is verified. Furthermore,
since the vertex Eq. (1.46) does not contain any gamma matrix, which would act on
the spin states of the heavy quark field, the interaction with the gluon is independent
of the heavy quark spin. The effective theory exhibits a flavour-spin symmetry,

broken by the inclusion of mass effects.

Eq. (1.39) describes only the contribution of the large component of the heavy
quark field, h,(z). In order to derive power corrections to the HQET Lagrangian in

Eq (1.44), we introduce the small component b, (), defined by

bo(z) — emars L8 0 (1.47)

3The +ie prescription is consistent with a heavy quark propagating forward in time, see Ref [58].
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with
P_by(z) = hy(x). (1.48)

In the rest frame of the heavy quark, see Eq. (1.38), h,(z) corresponds to the lower
two components of @(x) and creates a heavy antiquark with velocity v*. Including
also the effect of b, (z), Eq. (1.39) reads *

Q(z) = e—ivaw[hv(JJ) + l‘)v(x)] , (1.49)
and correspondingly Eq. (1.42) becomes

Locp = [l_zy(x) + 6u($)] (mQﬁ +il) — mQ> [hv(x) + l‘)v(a:)]
= hy(z)(iv - D)hy(x) — bo(z) (v - D + 2mg) by ()

+ Ro(@) PeiP_b,(x) + bu(2) PiD Py, (x) (1.50)

Notice that in deriving the second equality in Eq. (1.50), we have used Eqs. (1.41),
(1.48), together with ph,(z) = h,(x) and ¢h,(z) = —h,(x). Moreover, the last line
of Eq. (1.50) can be further simplified. Because I is squeezed between P, and P_,
the component of the covariant derivative parallel to v* vanishes and only the one

orthogonal to the four-velocity actually contributes. Defining

DY = D¥ —o*(v- D), (1.51)
with v- D, =0, gives
‘CQCD = BU(:U)(ZU ’ D)hv(m) - 6v($) (iU - D+ QmQ) f)v(:B)
+ ho(2)il) 1 bo(x) + bo(2)i) (). (1.52)
Eq. (1.52) shows that the Lagrangian of a heavy, but not infinitely heavy, quark

() contains two independent fields h,(z) and b,(z), describing respectively massless

degrees of freedom and massive excitations with mass twice as large as mg. These

4Note that the formalism introduced so far applies to the description of a bound state with a
heavy quark. The case of a hadron containing a heavy antiquark is obtained by replacing the sign
of the velocity i.e. v* — —v#.

31



Chapter 1 The Theoretical Framework

Figure 1.4: Virtual fluctuation involving the creation and annihilation of a heavy
antiquark. Time flows from left to right.

fields interact due to the presence of the two terms in the second line of Eq. (1.52),
so that the propagator of a heavy particle h,(x) receives virtual corrections from the
coupling with the heavy antiparticle bh,(z). Precisely, a heavy quark propagating
forward in time can turn into a virtual heavy antiquark propagating backward in
time and then turn back into a heavy quark as it is schematically shown in Fig-
ure 1.4, see also Ref. [52]. From Eq. (1.52), it follows that the propagator of the
virtual antiquark is suppressed by a factor of 2m and at energy scales of the order
of Agep, the diagram in Figure 1.4 can be effectively described by a local interaction

of the form

in which the heavy degrees of freedom corresponding to bh,(x), appear decoupled.
The process of integrating out the small component of the heavy quark field can be
carried out in a systematic way by constructing an effective Lagrangian expressed
only in terms of the large component h,(xz). To this end, first we derive from
Eq. (1.52) the equations of motion for h,(z) and b, (x) by computing §Lgocp/dh, ()
and 6Lgcp /b, (). This yields respectively

(Z"U ) D>hv(x) = _imibv(x) ) (154>

and
(iv- D+ 2mg)by(z) = i) hy(z). (1.55)

Eq. (1.55) can be inverted in order to find a relation between b,(x) and h,(z), i.e.

ho(2) = (iv- D + 2mq —ie) il hy(x), (1.56)

showing that h,(z) indeed represents the small component of the heavy field Q(x),
as it is suppressed with respect to h,(x), by the heavy quark mass mg. By sub-
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stituting Eq. (1.56) into the equation of motion for h,(z), Eq. (1.54), we readily

arrive at
(iv - D)hy(x) + i) (iv - D + 2mg — ie) " il hy(z) = 0, (1.57)

which can be evidently traced back to the following Lagrangian °

Leps = ho(2)(iv - D)hy(x) + hy(2)i)  (iv - D + 2mg — ie) i hy(z) . (1.58)

Eq. (1.58) provides the appropriate theory to describe the strong interactions of a
heavy quark at the energy scale of the order of Agep. It is expressed only in terms
of the effective heavy field h,(x), as the dynamics of the massive degrees of freedom
becomes irrelevant at this scale. The information on b, (z) however, is contained in
the second term of Eq. (1.58), which represents a non local operator. Because the
action of a derivative on h,(z), returns only the “residual” momentum k*, the non
local contribution in Eq. (1.58) can be consistently expanded in powers of 1/(2mg)
leading to higher dimensional operators built from covariant derivatives. Corre-
spondingly, the equation of motion satisfied by h,(x), Eq. (1.57), explicitly depends
on the heavy quark mass. In order to exploit the symmetries of the effective theory
in the limit of a infinitely heavy quark, it appears convenient to regard Eq. (1.58)
in an alternative way, namely by treating the tower of power suppressed operators
arising from the expansion of the non local term in Eq. (1.58), as perturbations to
the HQET Lagrangian in Eq. (1.44) [63,69,70]. Accordingly, Eq. (1.58) is recast in

the form

£eff = 'CHQET + 'Cpower ) (159)
with

(—iv - D)

o >lelh() .. (1.60)

Lpower = ( )UDL lej_ o(T) + ( )lej_

Here the ellipsis denote terms suppressed by higher powers of mg. Now, the effec-
tive heavy quark field h,(x), satisfies the equation of motion following only from the
leading term of Eq. (1.59) i.e.

®The Lagrangian in Eq. (1.58) can be equivalently derived using the path integral formalism
by integrating out the heavy degrees of freedom from the generating integral of the QCD Green
functions with heavy quark fields, see Ref. [68].

33



Chapter 1 The Theoretical Framework

(tv- D)h,(z) =0, (1.61)

and in the computation of hadronic matrix elements, the contribution of L,syer in
Eq. (1.60) must be included in a standard perturbative way by taking the time or-
der product with the respective leading order operators. Similarly, by substituting
Eq. (1.56) into the expression for the heavy quark field Eq. (1.49), leads to the fol-

lowing expansion:

Q(z) = e "mave (1 + (iv- D+ 2mg — ie)_lilDL> hy(x)

I
27’I’lQZlDL + (2771@)2

= ¢ mQue (1 + (—iv-D)ilD, + .. ) hy(x),  (1.62)

which provides the prescription to consistently define in HQET any operator in-
volving a heavy quark field Q(z). Consider e.g. the heavy to light vector current
VH(z) = q(x)y"Q(x), with m, « mg. Up to leading power corrections, V*(x) can

be expressed as

Vi (z) = eV g(z)y* (1 + % + .. ) hy(z) . (1.63)

Due to the equation of motion Eq. (1.61), the effective heavy field h,(x) does not
contain any information about the heavy quark mass. This has the advantage that
the local hadronic matrix element (0|V*(0)|M (v)), where M is the corresponding
heavy meson, defined in full QCD, admits a systematic expansion in powers of 1/mg,

in which the dependence on the heavy quark mass results completely factored out.
In fact, from Egs. (1.63), (1.60), it follows that

1 .
OWVHIM (v))qep = O[qy"he| M (v))HoeT + %@WVWDLMM(U»HQET

+ 2L<o|¢fd4zT{qyuhv,Ll(z)} M) mopr + O (LQ) ,
mgq m

where we have introduced the notation
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1 1
E ower — /v‘ +
P 2mg ! 4m22

Lo+ .... (1.65)

Contrary to the matrix element on the Lh.s. of Eq. (1.64), the ones on the r.h.s
are independent on mg and can be parametrised by universal form factors [59, 70].
However, because of Eq. (1.61), the hadronic state |M(v))pger differs from the
original one |M(v))gcp. This is encoded in the appearance of the time ordered
product of the first term in Lypper, With the leading order part of V(0), which can

be interpreted as a correction to the wave function of the heavy meson, see Ref. [52].

Finally, in order to identify the set of lowest dimensional operators generated by the

Lagrangian in Eq. (1.60), we can employ the identity

P, ilpiilDlP+ =P, ZDT_ZDIJ/_ <{7M727u} I [’7u727u]> P,

= P+(ZDJ_)2P+ + P+ ZDN ZDV (_iUHV>P+ 5 (166)

where in the second line of Eq. (1.66) we have replaced D/ with the total derivative
D" since the component of the covariant derivative parallel to the four velocity does

not contribute, in fact

1 7
Povtou, Py = B) P ¥y —nwy) Py = B P (v — )Py =0. (1.67)

Recalling the definition of the gluon field strength tensor G,, = —i[iD,,iD,], see
Eq. (17), it follows that at order 1/mg, two operators appear in Loy, namely

Loper = ﬁ((’h(m) FOu() 4. (1.68)
with
Or(x) = hy(z) (1D 1) *hy(), (1.69)
and )
Orr(z) = il_%(x)G””JWhv(x). (1.70)

The two contributions in Eq. (1.68), describe respectively the covariant extension of
the kinetic energy of the heavy quark due to its off-shell motion inside the hadron

and the chromo-magnetic interaction of the heavy quark spin with the external gluon
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field.

1.3 Expansion of the quark-propagator in the Fock-Schwinger
gauge

In light of the primary role that it will play in the following chapters, we discuss
the computation of the quark propagator ¢ in the presence of non perturbative
QCD interactions, in a form suitable to describe the case in which the gluon field
is soft, namely its characteristic momentum is much smaller than the one carried
by the corresponding quark field. Under this assumption the dynamics reduces to
that of a quark propagating in a weakly changing gluon background, see e.g. the
lecture notes [71], and the solution of the Green function equation can be build as
an operator expansion in terms of the the external gauge field. The formulation
is based on the Schwinger method which was introduced in the early 50’s in the
context of Electrodynamics in Ref. [72]. Later it has been adapted to QCD where
it has found a large number of applications, see e.g. Ref. [73]. A variation of the
background field technique based on the Fock-Schwinger (FS) gauge [72,74] has
been first considered in Refs. [75-77]. This alternative method results extremely
convenient for calculations in gauge theories due to the remarkable property that
only gauge covariant expressions appear in the intermediate steps of the computation
of gauge invariant quantities. For details on the application of the Schwinger method
and of the FS gauge in QCD we refer to the technical review Ref. [78] as well as to
the references within.

In the rest of the present section, after introducing the F'S gauge and discussing
its main features, we turn to the calculation of the quark propagator. Specifically,
we use the F'S gauge to compute the coefficients of the gluon operators that arise in
the expansion of the quark propagator, up to terms proportional to one covariant
derivative of the gluon field strength tensor GG, The corresponding expressions are
derived both in momentum and in coordinate space.

Let us start by recalling that the vacuum expectation value of the time ordered

product of two free-quark fields is defined as
OIT{¥ (), ¥(y) }|0) = iSo(z,y) . (1.71)

For e.g. 2° > 30, the Lh.s. of Eq. (1.71) describes a quark emitted at the space-time

point y* and subsequently annihilated at point z*, i.e. Sy(x,y) denotes the propa-

5We now consider an arbitrary quark, without making any assumption on its mass.
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gator of a free-quark. Equivalently Sy(z,y) constitutes the Green function for the

Dirac equation, namely it satisfies the inhomogeneous differential equation

(idl, — m)Sola.y) = 6Dz — ). (172)

It is worthwhile to emphasise how the translation invariance of Eq. (1.72) implies
that the free-quark propagator is also translation invariant, this is reflected by the
condition Sy(z,y) = So(x—y). Eq. (1.72) can be solved exactly. In momentum space

So(z — y) admits the well known Fourier representation, see e.g. the textbook [38]

S[)(.T — y) = J‘(;ZZLT?AL SO(p) e*ip-(xfy) ’ (173)
with
Slp) = (174

S p2—m2+ie’

A quark bounded in an hadronic state is subject to the long-distance interaction
with the confining gluon field A,,(z). Correspondingly, the quark propagator S(z,y)

defines the Green function of the coupled Dirac equation, see e.g. Ref [78] 7

(zﬁz + A(x) — m)S(aj, y) =W (z—y). (1.75)

Eq. (1.75) cannot be solved exactly, however in the kinematical region k% « ¢*> where
k refers to the momentum of the gluon field and ¢ » Agep, is a large perturbative
scale saturated by the quark momentum p i.e. p*> ~ ¢2, the quark propagates with
a characteristic length scale that is much smaller than the one of the external gluon
field, which effectively acts as a slowly changing background, see e.g. Ref. [79]. Under
the assumption that the field A,(x) is weak and randomly orientated, it is possible

to construct the solution of Eq. (1.75) in the form of the series, see e.g. Ref. [7§]

iS(z,y) = iSo(z —y) +iSi(x,y) + ..., (1.76)

where S;(z,y) denotes the first order correction, describing the interaction of the
quark with one gluon field while the ellipsis stand for higher order terms with more

than one gluon, explicitly

"Unless otherwise stated, in the following, the coupling constant g, is absorbed in the definition
of the gauge field A*(x).
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Figure 1.5: A quark propagating from y to x in the background gluon field, scatters
off 0,1,2,..., soft gluons.

iS1(x,y) = Jd4z iSo(x — 2) iA(2) iSo(z — ). (1.77)

Eq. (1.76) is schematically represented in Figure 1.5. It is straightforward to verify
that Eq. (1.76) does indeed satisfy Eq. (1.75) up to terms of first order in A,(x),
by substituting Eq. (1.77) and using Eq. (1.72). To fix the form of the gauge field
in Eq. (1.77), it is particularly convenient to employ the F'S gauge. This is defined by

(at —af)A,(x) = 0. (1.78)

In Eq. (1.78) the gauge fixing parameter zf is an arbitrary space-time point which
we set for convenience to zero. On one side, this will lead to simpler expressions,
on the other, the possibility to use the independence of the final result on zf as a

consistency check for the computation, is lost. The gauge condition then becomes

atA,(x) =0. (1.79)

Let us immediately point out that the quark propagator S(z,y) is not translation
invariant anymore. First, the gauge field in Eq. (1.77) depends on the space-time
coordinate. This however only apparently breaks the translation symmetry, since
after averaging, the background gluon field is actually translation invariant, see
Ref. [78]. The true reason for the symmetry breaking lies in the choice of the FS
gauge Eq. (1.79), which gives to the origin the special role of gauge fixing parameter.

In general then

S(x,y) # S(x —y). (1.80)

Eq. (1.80) can lead to differences in intermediate steps of the computation of a

physical quantity although the translation invariance must be restored in any final
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meaningful expression.

The FS gauge though, has many advantages. The first is that it allows for a
simple relation between the gauge field A,(z) and the field strength tensor G, ().

This relation reads 8

1

Al(z) = Lda az’ G (ax). (1.81)
The proof of Eq. (1.81) proceeds as follows. We start with the identity

d 0

Ay () = @@ - Az)) - :vp@Ap(a:)
= 3G o (x) — xp%fla(x) +iaf [Ay(x), Ay ()]
= 3G (x) — x”%Ag(x) : (1.82)

where the second and third equalities are consequence of the gauge condition Eq. (1.79).
By performing the change of variable z#* — ax*, it is easy to see that the depen-
dence on A, (ax) is reduced to that of a total derivative i.e. Eq. (1.82) becomes

d

I (ozAU(ozx)> = ar’G e (ax) , (1.83)

which reproduces Eq. (1.81), after integrating both sides over a from 0 to 1. In
order to prove another property of the FS gauge, we expand A,(z) in Eq. (1.79)

around z = 0, this yields ?

1
o (AH b B Ay + a0 A )+ ) ~0. (1.84)

For arbitrary space-time coordinates, evidently Eq. (1.84) requires that

I“A“ — x“xl“@,,lAH(xH — x“xl’lx”@ylawflﬂ(x”

. =0. (1.85)

=0 =0 =

81n the literature this is known as inversion formula, in reference to the fact that it inverts the
usual relation in which the field strength tensor is expressed in terms of the gauge field and of its
derivative, for a comprehensive overview on the FS gauge see the PhD thesis [80].

9Note that we often omit to explicitly write the space-time coordinate when this is zero.
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Eq. (1.85) leads to the important result that in the expansion of an arbitrary func-
tion f(z), the action of the partial derivative d,, at the origin can be replaced with

that of the covariant derivative D,,, in fact

fl) = f+a"0.f(z)| _, + %x“m”@uﬁ,,f(x)|x_0 + ...

=f+a"(0, - iAM(x))f(x)‘xzo + z*z¥ (0, — 1A, (2)) (0, — iAy(x))f(x)‘x_o T

— f 4D f(a)],_, + %xﬂxmﬂpy F@)] g+ (1.86)

We can now derive a convenient representation for the gauge field A, (z). Expanding
Gpu(ax) around z = 0 in Eq. (1.81), and taking into account Eq. (1.86), yields
1

a a 1 « a
Al (r) = §xpGpu(0) + 57 2’ Do G5, (0) + .., (1.87)

where the ellipsis denote terms with higher derivatives. Eq. (1.87) shows that the
gauge field A, () can be expanded directly in terms of the gluon field strength tensor
and of its covariant derivatives evaluated at the origin and it constitutes the main
result of the FS gauge. In particular it follows that A,(0) = 0. This property will
reveal to be very useful in practical calculations.

To compute the first order correction to the free-quark propagator in Eq. (1.76),
we substitute Eq. (1.87) into Eq. (1.77), and choose for simplicity y* = 0. This gives

Sy(w,0) = J d*z f (;ljf; (p;%;@ia) e

1 1
X (§7MZPGW + gvuzo‘z”DaGgu>

y f (3:54 <k2igé;2ﬁ)ig) emhE L (1.88)

The functions z” and z®z” in the second line of Eq. (1.88) can be conveniently rewrit-

ten using the identity '° 2 = i=C-e~** which leads to
"

9Rewriting z* in terms of a derivative with respect to k,, is the simplest choice. Equivalently

one could write z# = —i aﬁ e’P’# in this case though, when integrating by parts one would have to

= |
differentiate also the function e=*P%,
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d*p i(p +m) o
g i (5—2)
S1(x,0) Jd : J (2m)4 (p2 —m?+ ia) ‘
1 d*k i(k+m) 0
—~H ik-z
* [27 GWJ(QW)‘l (k'?—m2+i€> <26kpe )
1 d*k i(f +m) 0 0 _u
ZAH _ ik-z
+ 37 DQGWJ oo (kQ_m2+i€> ( T ) +.... (1.89)

Performing a single and double integration by parts, respectively in the second and
third line of Eq. (1.89), we obtain

Si(z,0) = Jd4z f (534 f(g;’; pilh=p)z i
(Fte) [pron () (#5525

Lupa, 20 (in<%ij) >]+ (1.90)

3 POk, Oky \ k2 —m? + ic

also note that we have taken into account that all the boundary terms vanish,
which can be easily verified by direct inspection. The integral over the variable z*
in Eq. (1.90), results in a delta function and enforces the momentum conservation
k* = p* when integrating over the variable k*. Furthermore, the first and second or-

der derivatives of the free-quark propagator in the square brackets of Eq. (1.90), yield

o pEm) e wpem o)
p,p?2 —m2+ic  p2—m2+ic (p2—m?2 +ig)?’ ’
and
20 Am) 2 ap) 20 Em) L 8pp(ptm)
Opp Opa p? — m? + ic (p2—m2+ie)2  (p>—m?+ie)?  (pP>—m?+ig)’
(1.92)
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By substituting Eqgs. (1.91), (1.92), the expression in Eq. (1.90) can be written as

4

d p —ip-x «
Si(z,0) = Jwe P (gg“GpM + g2 DaGlop + .. ) , (1.93)

where for clarity we have introduced the compact notation

gor = i D pleisel ‘m P

22T (PP —m?+ie)?  (p — m? +ie)?

il 2 yH
— 2pypop” —— —2m°p’ — 1, 1.94
PnPoP (p?2 — m? +ie)3 mp (p2 —m? +ie)3 ( )

and
ganr = _g 1 (p DeY VY, + mpgy“y,) (ggang + gﬁpgm>
3(p2 —m?+ieg)d [ \77

+ | g™ — A (p DoV + mPyt 4+ 2m p“) .
(p? —m? +ie) K

(1.95)

We can simplify Eq. (1.93) by using the tensor decomposition of three gamma ma-
trices, see Eq. (7), together with the antisymmetry of the field strength tensor G, .
A slightly lengthy yet simple algebraic manipulation leads to the final result for the
quark propagator

S(z,0) = J ((217:;4 S(p)e P, (1.96)
with
S(p) =Solp) + Silp) + ..., (1.97)
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and
Si(p) = -Z G ot + Goy P’y — 2 DGy AHpP
2 (p? —m? + ig)? (p? — m? + ic)? 3% —m? +ic)?
2 DG D.C
+ = Oéall. |:li 2 2\ +9 ]+2 OLTT]. QT n5
3 —m2 eyl p"=m") =P+ 2m) " —mr+iepl P
3 “ - ¢ e 1.98
+3 <p2_m2+i5)3(p77 Pty ) + ( )

Here the ellipsis denote terms with higher order derivatives of the field strength ten-
sor, while the dual field tensor is G, = (1/2)€4,,0G?. Eq. (1.98) has a transparent
meaning. The interaction with the soft gluon field introduces corrections to the
free-quark propagator parametrised by operators of higher dimensions built from
the gluon field strength tensor and its covariant derivatives, evaluated at the origin.
Each operator of dimension-n is suppressed by n powers of the quark momentum
p, with the lowest order contribution being due to the dimension-two operator G, .
In the limit of massless quark, Eq. (1.98) reproduces the result of Ref. [78], apart
from the opposite sign in front of the two terms proportional to 75. We trace this
back to the different convention used in the Russian literature to define the fifth
gamma matrix, namely v5 = —iv%y'v%y3, cf. Eq. (6). We stress that having fixed
the notation and been consistent with it, the computation of any observable using
Eq. (1.98) or the expression in Ref. [78] must lead to the very same result. More-
over, it is worthwhile to emphasise that the massless limit should be taken with care.
Upon integration over p*, it is only in the domain p? ~ ¢%, where ¢ denotes a large
perturbative scale, that the operator expansion in terms of the external gluon field is
legitimate. However, as higher dimensional operators are considered and the power
of the momentum variable in the denominator increases, the integral in Eq. (1.96)
starts to be sensitive also to the long-distance region p? = 0 and to develop infrared
(IR) divergences. In this case, the corresponding quark line becomes soft and the
effect must be parametrised in terms of quark operators, see for details Ref. [78] or
Chapter 3.

Because of Eq. (1.80), the expression obtained in Eq. (1.98) is valid only in the
specific reference frame chosen, namely y* = 0. In order to compute S;(0,y) we
must repeat the calculation and set #* = 0. In this case substituting Eq. (1.87) into
Eq. (1.77) gives
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o fo [ 5 (0220)

1 1
X <§7“29GW + gy“zazpDaGgu>

Xf d*k < i(k +m) )eik-<zy>+,__, (1.99)

2m)t \ B2 —m? +ic

where now it is convenient to rewrite z” and z®z” in the second line of Eq. (1.99)

using the identity z# = —i%e”"z. The next intermediate steps proceed in analogy

to the case of S1(z,0), for brevity we omit them and state here only the final result,
which reads

S(0,y) = f D S(p)er (1.100)
7y - (27‘(’)4 p (& P .
with
S(p) = Solp) + Si(p) + ..., (1.101)
and
S _ _T GP# yoyus ém] T MNAD g paDaGpu P
S0 =S m i T FEomr it Y T3 mi ey P
2 DaGau w2 2 o ] . Daé”l 5
—_ _ _ _ 2 o T 1
+3(p2—m2+i5)3[7 (p* —m?) Py Z(pg_mg_i_w)gpp’y’y
2 DO‘GW ( P P A )
-z * — @ e 1.102
Bm(pQ—m2+i€)3 A A (1.102)

The absence of translation symmetry Eq. (1.80), is then reflected in momentum
space by the condition S;(p) # Si(p), which actually holds true only starting from
the operator of dimension-three D,G,,,. In fact a comparison between Eq. (1.98) and
Eq. (1.102), shows that the translation invariance is still preserved in the coefficients

of the dimension-two operator G, .

For completeness, it is instructive to derive also an explicit representation of

the quark propagator in coordinate space, by performing the anti-Fourier transform
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of the expressions in Eqgs. (1.98), (1.102). These contain both scalar and tensor
functions of the variable p*. However, it actually suffices to directly evaluate only

the scalar integrals. In the case of S(z,0) in Eq. (1.96), they have the following form

d*p 1 ,
I.(z) = e N. 11
(z) J (2m)* (p* — m? + ie) ‘ "e (1.103)

Given the analytic expression of I,,(x), it is possible to obtain the tensor integrals

appearing in Eq. (1.96), by differentiating Eq. (1.103) with respect to z,, namely

d'p  pr.phe ‘ - ( d )
[ﬁl"'“n’ ) = f - efzpw — Z [n x), 1104
@)= Gy (p? — m? + ie) E dz,, ) (1104

11 The integral in Eq. (1.103) can be conveniently computed in Eu-

with n’ < n
clidean space by performing the Wick rotations pg — —ipsy and zg — —ixy, see e.g.

the textbook [81] or the lecture notes [82]. This gives

LAxE):i(—D"J‘éﬁﬁ(p%+inﬂne@EwE. (1.105)

The Euclidean four-vectors are defined as pf, = (p,ps) and zf, = (x,x4), while
the Euclidean metric reads diag(1,1,1,1). The factor of (—1)" in Eq. (1.105), fol-
lows from the fact that (p* — m?) — —(p% + m?), also note that we have dropped
the +ie prescription since the denominator is now positive definite. The latter
can be suitably expressed in an integral form. To this end, we start by writing
[(s) = {Me "}(s), where {Mg(t)} denotes the Mellin transform of ¢(¢) and T'(s) is
the gamma function, see Ref. [83] for exhaustive tables with definitions and useful

properties, i.e.

0¢]
I'(s) = J dtt*te ", Res > 0. (1.106)
0

Performing the change of variable t — M\ with A > 0, yields A=*T'(s) = {Me}(s),

and after setting A = (p% + m?) and s = n, we readily obtain that

1 1 (™ -
- dt t" e tPptm?) 1.107
(p% + m2)n rmyL c (1.107)

"UNote that for n > 2 only n — 1 powers of the four-momentum can appear in the numerator.
This follows from the fact that S(p) must have mass dimension of —1 and that for each gluon
operator of dimension n there are 2n powers of the momentum in the denominator.
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Equivalently, Eq. (1.107) can be derived by taking into account the identity

]. ®© 2 2
= | dte Pt 1.108
el (1105

easily proved by directly computing the integral on the r.h.s. The result for n > 1
follows from differentiating n — 1 times both sides of Eq. (1.108) with respect to
the parameter m? and using that I'(n) = (n — 1)!. Substituting Eq. (1.107) into
Eq. (1.105), we then arrive at

I =7 (=1)" Oodt gn—lg—tm? d'pp —tpp+ipETE 1.109
n(tp) =i (-1) . € We . (1. )

The second integral on the r.h.s. of Eq. (1.109) reduces to a standard four-dimensional

Gaussian integral, see e.g. Ref [84], after shifting the integration variable by a con-

stant Euclidean four-vector i.e. pf — ply — iz’ /(2t). The solution reads

4 t 2 4. ™ 2 ‘L%J
Jd pp e PhHPETE _ <—> e (1.110)

which we insert into Eq. (1.109) to obtain

. (_1)71, ” n—3 ftmzfﬁ
I(zg) =1 627 ), dt t" e it (1.111)

It is easy to show that Eq. (1.111) can be expressed in terms of the modified Bessel
functions of the second type K, (z). Starting with the integral representation, see
e.g. Ref. [83]

z\ [~ -2 7r
<—> f dtt™"te " larg z| < 5 Rez* >0, (1.112)
0

and performing the change of variables t — at, 22 — «z?, with a > 0, gives

* 22 0\ 2
J dt t_”_le_at_uz2(—> K, (Vaz) . (1.113)

0

From Eq. (1.113), it then follows that

Ieg) =i U <4_W)22”K2_n (). L114)

2 2
8m Ty
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and the condition Re(max%) > 0 translates into 2% > 0 for positive and real values
of m as well as real Euclidean distances. We can now rotate back to the Minkowski

space-time and arrive at the final expression

Iz) =i S <4m2>22nK2_n <m —x2) , (1.115)

82 —z2

which is valid for space-like separations 22 < 0. The solution corresponding to the
space-time region 22 > 0 can be derived from Eq. (1.115) by analytic continuation,

taking into account, see e.g. Ref. [83], that

—T1

K, (iz) = Te’%’” H%(2), (1.116)

where H, ,52)(2) denotes the Hankel’s function of the second kind. Finally, recall that

the Bessel functions K, (z) satisfy the following recursive relation

LK) = LR o)~ K2, (1.117)

that allows to compute the tensor integrals appearing in Eq. (1.96) according to
Eq. (1.104). Let us consider explicitly the case n = 1. Egs. (1.115), (1.104) then

read

1 m
and
M) = - L™k 2) gt 1.119
1(x)——4ﬂngm—x Tt (1.119)

from which we can readily derive the expression of the anti-Fourier transform of the

free-quark propagator Sy(p), namely

1 m? i m?

Proceeding in a similar way for the remaining cases n = 2, 3, it is straightforward to

verify that the coordinate representation of the first order correction in Eq. (1.98),
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has the following form

Gap o 5 mEKi(mv—1?)  Gap

Sl(ZL’,O) = _W:U Y Y5 \/TxQ —2167T20a5mK0(m —1‘2)

DG DG mKy(my —x?)
.a— K _ 2 _ . [0

Syt U S R B v

_ DO‘Gaﬁx mKo(mv—z?) —i—DaGﬂp Lo mA (my —a?)
24n2 P Tre e =
DGPr mKi(my/—22)  DGPP Ko )

— ————Y,V5T o - og mKo(myv—x
1672 P50t T Agnz PlatpTR
De@GBp

~ gz V8%a mKo(mv—z2)+.... (1.121)

The result in Eq. (1.121) was first derived in Ref. [85] up to terms proportional
to G, while the contribution of D,G,, can be found in Ref. [86] 2. In order
to compute the corresponding expression for S(0,y) we can make the replacement
z# — —yt in Egs. (1.103), (1.104). Notice that because of Eq. (1.115), the function

I,(x) is even i.e. I,(—z) = I,,(x) and from this we obtain that
1 (—y) = (<1 ). (1122)

The above relation allows to immediately write

So(—y) L7;—22K2 (m —y2>y— iLQKl (m —y2>7 (1.123)

:471'2 4_71'24/—y2

consistently with the fact that free-quark propagator is translation invariant. More-

over it is easy to check that the first order correction now reads

12Note that it is presented only the expression relevant for the computation described in the
paper, namely with an odd number of gamma-matrices.
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G’ag o B mKl(m —y2) .Gag

S1(0,y) = == — P K —y?
l( 7y) 871'2y 7 ")/5 \/TyQ 21671'20— m O(m y )
D,G*# D,G*? mKi(my/—y?)
. (7 K o 2 s «
g V) i ey =
_DGPr mKi(m\/—y2) DYGP

TR JeYals N + gz VeYas mEo(my —y?)

DG DeGoe m (mr/—y2)
+ 1872 Vo V8Ya MEo(mA/—y?) + W”Yp%yayﬁ \/_—yQ +...,

(1.124)

which clearly indicates that the translation symmetry is firstly broken in the coef-
ficients of the dimension-three operator D,G,,, due to the fact that some of the
quadratic functions in Eqs. (1.121), (1.124), appear with a negative relative sign.
We conclude this section with a final remark about the dependence of the quark
propagator on the mass parameter m. Following the comment made on the massless
limit of Eq. (1.98), the expressions in Eqgs. (1.121), (1.124), become divergent for
m — 0. In coordinate space the singularity derives from the asymptotic behaviour

of the Bessel functions in the limit of small argument, see e.g. Ref. [83], namely

K, (2) ~loe(3) e, v =0, (1.125)
’ T2y s, |

Notice that in the specific case of Eqs. (1.121), (1.124), the divergence originates

from the dimension-three contribution D,G*®~5Ko(my/—z2).

1.4 The heavy quark expansion

The total decay width I or equivalently its inverse, the total lifetime 7 = I'"!, defines
one of the fundamental properties of elementary and composite particles and hence
constitutes an observable of phenomenological primary importance. In the study
of lifetimes a special role is occupied by heavy hadrons, due to the interplay that
strong and weak interactions have in determining their decay, see e.g. Ref. [87]. As
discussed already in Section 1.2, a heavy flavour hadron Hg is a QCD bound state
that can be conveniently represented as heavy quark () surrounded by a cloud of

light quarks, antiquarks and gluons, where the distinction between heavy and light
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degrees of freedom is meant with respect to the typical hadronic scale Agcp. The
description of these systems considerably simplifies by considering the limit of an
infinitely heavy quark @), i.e. mg — o0. In this case it is possible to neglect the
effect of the non perturbative QCD interactions and the hadron dynamics results
entirely determined by that of a free quark @), with the light constituents reducing
to passive spectators, see e.g. Ref. [88]. This approximation leads to the result
I'(Hg) = I'g, and then to the theoretical prediction that the lifetimes of hadrons
containing the same heavy flavour but different spectator quarks should be equal.
While among bottom hadrons this statement can be experimentally accommodated
within deviations of few percent [22], the pattern in the charm family is far less
monotonous and lifetime ratios of charmed hadrons can be as large as 7 [89,90] 3.
The infinite mass limit is clearly not sufficient for a proper interpretation of the
experimental data, particularly in the charm sector where deviations from the free
quark decay approximation are expected to give the dominant contribution. Before
discussing how the corrections to this limit can be systematically taken into account,
in what is the current theoretical framework for the study of inclusive decays of heavy
hadrons, it is instructive to briefly retrace the main developments that have brought
to its construction. In this respect we refer to the comprehensive review [27].

The possibility to describe the decay of a heavy hadron in terms of an asymp-
totically free constituent heavy quark was first exploited in 1973 by Nikolaev in
Ref. [91], where constraints on the decay properties of a 'supercharged’ (charmed)
hadron, which at the time was only a theoretical particle, were proposed as an in-
direct test of its existence. Furthermore, after their discovery, the description of
charmed hadrons decays was initially performed by considering only the dominant
partonic contribution see e.g. Refs. [92-95]. A pioneering work for the study of the
lifetime of heavy hadrons is the one of Shifman and Voloshin, Ref. [87], where many
of the ingredients that contributed to the formulation of the heavy quark expansion
(HQE) were originally presented. The HQE is a theoretical framework in which
inclusive decays of heavy hadrons can be computed in terms of an operator product
expansion (OPE) [45,46,96], by exploiting the large scale hierarchy mqg » Agep.
This method was firstly applied in a systematic way by Chay, Georgi and Grinstein
for the analysis of inclusive semileptonic decays of heavy hadrons in Ref. [97], and
briefly after employed in the work of Bigi, Shifman, Uraltsev and Vainshtein [98,99]
and of Blok, Koyrakh, Shifman and Vainshtein [100], for the description of inclusive
non-leptonic as well as semileptonic decays, see e.g. Ref. [101].

In order to discuss the construction of the HQE, it is convenient to review some

13More precisely, the lifetime ratio between the longest and the shortest living b-hadrons, de-
caying weakly and containing only one heavy quark, is 7(£;)/7(Ap) = 1.11, to be compared with
7(2Y)/7(D*) = 6.8, in the charm sector [22,89,90].
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important results in scattering theory, focusing in particular on the case of particle
decay. We recall that the scattering process is described by introducing a unitary
operator S, which governs the evolution of an asymptotically free state |i) into an
asymptotically free state |f) for a given interaction theory, where the information
about the non trivial part of the dynamics is encoded in the action of a transition

operator T. The S matrix is then decomposed into

By taking into account that the interaction must conserve four-momentum, the tran-

sition amplitude T; can be further parametrised as

Ty = (2m)*6W (ps — pi) My, (1.127)

where pf| p label respectively the momentum of the initial and final states and
M; denotes the invariant scattering amplitude. In the case that |i) contains only
one particle, say A, the total decay width I'(A), is obtained by computing the am-
plitude squared for the process A — n, where |n) represents an allowed n-particle
final state, by summing over all the possible values of n and finally by accounting

for the flux factor 2m 4, namely, see e.g. the textbook [38]

ZmA Z f (2m)*6® (Z Pj —pA> [(n|MIA (1.128)

j=1

here

J J H ngféE (1.129)

denotes the integration over the Lorentz invariant n-particle phase space while the
presence of the delta function ensures that four-momentum is conserved in each
decay. An equivalent and, for practical calculations, more advantageous represen-
tation of Eq. (1.128), can be obtained by employing the optical theorem, see e.g.
the textbook [81], which states that in a given interaction theory, the imaginary
part of the forward scattering amplitude is proportional to the total cross section
for the production of all final states. The optical theorem follows from the unitarity
of the scattering operator S and hence from the mathematical requirement for the

conservation of probability in Quantum Field Theory. The unitarity condition reads
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Figure 1.6: Schematic representation of the optical theorem: the amplitude squared
for the production of all final states is proportional to the absorptive part of the
forward scattering amplitude.

STs =1=258". (1.130)

Considering the matrix element between the states |i), |f), and using the com-
pleteness relation Y [n)(n| = I, where Y = >, { implies the sum over all the
particles in |n) as well as the integration over their momenta, cf. Eq. (1.129), the

first equality of Eq. (1.130) can be recast as
/
D 1S Il S|iy = 85 (1.131)

In the special case of forward scattering i.e. |f) = |i), taking into account that
(| ST|ny = (n|S|i)T = (n|S|i)*, from Egs. (1.126), (1.131), it follows that

S G — i TE) Gi + i Tos) = b (1.132)

n

and expanding the L.h.s. of Eq. (1.132), readily yields

i(Ty —T7) Z = (1.133)

or equivalently

2ImTy = Y | Tl (1.134)

n

Finally we can rewrite Eq. (1.134) by substituting Eq. (1.127) on both sides and by
using (0@ (2))? = §®(0)6™(2) to evaluate the square of the delta function, namely

n n j=1
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which corresponds to the standard formulation of the optical theorem, schematically
sketched in Figure 1.6. Setting |iy = |A), a comparison between Eq. (1.135) and
Eq. (1.128), evidently gives
1
F(A) = —IIIlMAA, (1136)

ma

showing that the total decay width I'(A) can be obtained by computing the imagi-
nary part of the forward scattering amplitude A — A.

We now apply the result in Eq. (1.136) to the decay of a heavy quark Q '*. We
assume that at the renormalisation scale ;1 = mg the weak interaction is described
by an effective Hamiltonian H.;s(z), governing the transition of the heavy quark
into all possible lighter fermions, see Section 1.1, so that the scattering operator S

can be written as
S =Texp {—zfd%%eff(x)} : (1.137)

where T is the time-ordering operator. The first non vanishing contribution to the
forward scattering amplitude Mg, is obtained by expanding S to second order in

the weak effective coupling. Up to terms of higher order this gives

1 .
Too = 5@l [ s [y T{Hopsle) Hors)}IQ. (1138)
Using that the translation invariance of the Hamiltonian operator implies
Hepp(x) = €7 Hopp(0) e (1.139)

with P, = 0/0x,, and that |Q) corresponds to a state with definite momentum Po>

namely

e_zﬁx‘Q> _ e—in-x‘Q> ’ (1140)

14The choice of a heavy quark is just for future convenience, the same description applies, taking
into account the proper replacements, to the weak decay of any elementary fermion.

157t is worthwhile to emphasise that H.rs must be intended as supplemented with the QCD
as well as with the QED Lagrangian, responsible for higher order corrections to the leading weak
decay.
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Eq. (1.138) can be simplified as, see for a similar derivation the textbook [23]

Tog = 5<Qli [[a'a [ &y T{ 7ty ™2 Hops (0} 1@)

Heyr(z—y)

1
- 50800 @l [T @) O fl@), (114D
where in the last step we have performed the change of variable z* — y* — x* un-

der the integration over z# and used that {d*y = (27)*0™®(0). From Egs. (1.127),
(1.136), we finally obtain that

(@) = 3o I QITI). (1142
with
T ifd4xT{Heff(:U) Hers(0)} (1.143)

We can interpret Eqs. (1.142), (1.143), as the statement that, due to the optical
theorem, the total decay width of ) is proportional to the amplitude for the process
Q — X — (@, describing the forward scattering of () via the production and anni-
hilation of all the possible intermediate states X. This corresponds to computing
the imaginary part of the time ordered product of the Hamiltonian operator eval-
uated at two different space-time points, namely the non local operator 7, and to

determining its expectation value between external |@)) states.

An analogous description for the decay of a hadronic state is plagued by the
presence of the non perturbative QCD effects responsible for the confinement dy-
namics. However, it was first proposed by Shifman and Voloshin in Ref. [87], that
the inclusive decay width of a heavy hadron, in their specific case a charmed meson,
in the assumption of an infinitely heavy constituent quark, could be obtained using
the partonic description, and hence by computing the probability for the free heavy
quark to decay into all the lighter fermions. Following their formulation, the total
decay width of a heavy hadron Hg can be expressed as the imaginary part of the
non local operator 7 in Eq. (1.143), evaluated between external hadronic states,

namely

1
['(Hq) = 5

Hq

Im<HQ|T|HQ> (1.144)
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Chapter 1 The Theoretical Framework

When mg — o0, the hadronic state and mass coincide with those of the heavy
quark and Eq. (1.144) becomes I'(Hg) = I'(Q)). However, this approximation is
not sufficient for phenomenological applications and corrections to this limit must
be systematically included. The HQE provides a theoretical framework to compute
I'(Hg) in Eq. (1.143), in the case of large, but finite, heavy quark mass mq. The
fundamental assumption is that, inside a heavy hadron, the heavy quark, propagat-
ing in the soft background generated by the non perturbative gluon field, interacts
with the light degrees of freedom exchanging momenta of the order of Agcp, much
smaller than mg, meaning that there is a large part in the heavy quark momentum,
which is proportional to the heavy quark mass and that can be extracted by means
of a field redefinition, see e.g. Ref. [102], i.e.

Q(x) = e7™"* Qy(x), (1.145)

where v* denotes the hadron velocity. It is worth emphasising that despite the
strong analogy, @,(x) in Eq. (1.145) constitutes a rescaled four-component QCD
field and not the two-component non relativistic field introduced in the context of
the HQET, cf. Section 1.2, more details on the difference between the two methods
can be found e.g. in Ref. [71]. From Eq. (1.145) it then follows that

iDyQ(x) = ¢ (mgu, + D, ) Qulx), (1.146)

which combined with the equation of motion (i) — mg)Q(z) = 0, gives

ip

P—&-Qv(x) = Qv(‘r) - 2mQ Qv<x> ) (1147>
and 7
P-Qul®) = 5, =Qula), (1.148)

with the projector operators Py defined as in Eq. (1.37). Moreover, acting with P,
on both sides of Eq. (1.148) and using that P,il) = i[DP_ + (iv - D), yields

(iv- D)Qu(x) = —QQQ@WQM | (1.149)

The relations in Eqgs. (1.145)-(1.149), allow to construct a systematic procedure to
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Chapter 1 The Theoretical Framework

compute the inclusive decay width I'(Hg). Specifically, Eq. (1.144) can be evaluated
in two steps, see e.g. Ref. [103]. First, by taking into account the soft interaction
with the background gluon field as well as with the light spectator quarks, the imag-
inary part of the non local second order operator T is expanded in a series of local
operators Oy with increasing dimension d, where the corresponding coefficients cq4

are suppressed by d — 3 powers of the heavy quark mass mg, namely
@
T =) ca—'s (1.150)
a MQ

In general all possible Lorentz and gauge invariant operators, bilinear in the heavy
quark field, can appear on the r.h.s of Eq. (1.150) and for large values of mq, it is
sufficient to consider only those of lowest dimension. These respectively are QQ,
(1/2)Q0,.,G"Q, QTqql'Q, etc., where I' denotes a combination of gamma matrices
and colour matrices. The corresponding coefficients in Eq. (1.150) are extracted
by taking the matrix element of both sides of Eq. (1.150) between external quark
and gluon states, see e.g. Ref. [71]. Notice that there is no dimension-four operator,
since QIPQ can be reduced to QQ by means of the equation of motion for Q [103].
The series in Eq. (1.150) starts at dimension-three with the operator QQ = Q,Q,.
This is not suppressed by the heavy quark mass and at leading order in 1/mg it
reproduces the partonic result in Eq. (1.142). In fact, QQ receives non perturbative
corrections from higher order operators, see Ref. [98]. The proof starts with the

following identity

QQ = Qv}ij + QQvP—Qv = Qvﬁ@v + QQUP—P—QU ) (1151)

which, using Eq. (1.148) together with Q,P_ = Q,(—ilD)/2mq, leads to

QQ = QvﬁQU—QQv;ii—IDQQU = QyﬁQv+QU@€2QU+t0tal derivative, (1.152)

mg 2m 2mg,

where the contribution of the total derivative can be neglected since, in forward
matrix elements with zero momentum transfer, it vanishes, see e.g. Ref. [104]. The
first operator on the r.h.s. of Eq. (1.152) is the generator of the conserved charge as-
sociated to the heavy flavour @), its matrix element between external hadronic states
is one, up to a normalisation factor [98]. Note that in Eq. (1.152) there are no linear
terms in 1/mg. These would be generated by operators of dimension-four, however,
containing only one covariant derivative, they would either correspond to a total

derivate, which does not contribute, as stated above, or to a derivative acting on the
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heavy quark field, which, by means of the equation of motion Eq. (1.149), is propor-
tional to operators of higher order. The absence in the HQE of linear terms in 1/mg
was first discussed by Chay, Georgi and Grinstein in Ref. [97], and subsequently by
Bigi, Uraltsev, and Vainshtein in Ref. [98] and is known as CGG/BUV theorem, see
Ref. [71] 6. First corrections to the infinite mass limit arise at dimension-five, and
correspond to operators with two covariant derivatives acting on the heavy quark
field. We can identify them from Eq. (1.152), i.e.

(iID)? 1 - 1

QU%QU = Qmé QU(ZDM)(ZDH)QU + %Qv(iDu)(iDu)(_io-lw)C&H (1153)

where we have used that v#v = {y*,7"}/2 + [y*,~4"]/2. The kinetic and chromo-

magnetic operators are then defined respectively as

Orin = Qu(iD,)(iD")Q, (1.154)

Ornag = QuliD,)(iD,) (~i0™)Q, (1.155)

At dimension-six, operators generated from the action of three covariant derivatives,
but also four-quark operators, contribute. The former correspond to the spin-orbit

and Darwin operators, defined respectively as, see e.g. Ref. [105]

Ors = Q,(iD,)(iv - D)(iD,)(—ic")Q., (1.156)

Opp = Qu(iD,)(iv - D)(iD,)Q, . (1.157)

Four-quark operators have the schematic form QI¢gl'Q, where T refers to a com-
bination of gamma matrices as well as colour matrices, compatible with the V' — A
structure of the effective Hamiltonian, and ¢ denotes a light spectator quark. It is
worth mentioning that, using the equation of motion for the gluon field D,G** =
—gs . V7t the Darwin operator can be expressed, at leading order in 1/mg, in
terms of four-quark operators, see e.g. Ref. [98] and also Chapter 4. Finally, opera-
tors of higher dimension are built by further expanding in the number of covariant

derivatives and of light quark fields.

16Tn the framework of the HQET, the absence of linear terms in 1/mg to the forward matrix
element of a heavy quark current is known as Luke’s theorem [63], see e.g. Ref. [66].
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Chapter 1 The Theoretical Framework

Having constructed the series in Eq. (1.150) up to the desired order in 1/mg,
the second step in the calculation of Eq. (1.144) is to evaluate the matrix element of
the local operators obtained, between external hadronic states, see Ref. [103]. These
encode the large distance dynamics responsible for the hadronic structure and re-
quire non perturbative methods like Lattice QCD [32] or QCD Sum Rules [29, 30]
to be determined. In some cases they can also be extracted performing fits to the
experimental data, see e.g. Ref. [106]. Alternatively, using the framework of the
HQET, the dependence of the heavy quark field and of the hadronic state on the
heavy quark mass, see Section 1.2, can be further factored out, the correspond-
ing matrix elements are then expanded in inverse powers of mg and expressed in
terms of a minimal set of elementary parameters, which must again be determined
by means of the non perturbative methods mentioned above, or in some cases via
spectroscopy relations [52]. For the matrix element of the dimension-three operator
in Eq. (1.152), the HQET expansion has the following form [98,105]

5
mq

(HolQQIHg) _ | pz(Ho) —n&(Ha) ( ! ) : (1.158)

2mHQ Qmé ma

where the non perturbative parameters p2, % are related to the expectation value
of the operators in Egs. (1.154), (1.155), as

2mig 17 (Ho) = —(Ho|Okin|Ho),  2mug ng:(Hq) = (Hq|Omag|Hgy . (1.159)

Similarly, the matrix elements of the spin-orbit and Darwin operators, are expressed

in terms of the two non perturbative parameters p? o, p?), i.e.

2mu, pis(He) = —(HqlOLs|Hgy,  2mu, ph(Hq) = (Hq|Op|Hg)y.  (1.160)

In the case of four-quark operators, a simple way to estimate the matrix elements
between external mesons states, is the so called ‘vacuum insertion approximation’
(VIA), corresponding to the assumption that the matrix elements can be saturated

by the vacuum intermediate state, see e.g. Ref. [71], namely
= A = _
(Hq|QTqqlQ|Hg) =" (Hq|QTq|0)0|qTQ|Hq) . (1.161)

Set for definiteness I' = #v; and consider Hg to be e.g. a pseudoscalar B meson. It

follows that the matrix element on the Lh.s. of Eq. (1.161) is parametrised in terms
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| f 1 Q | f 1 Q
| fS q | q
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O;g @G @7

Figure 1.7: Schematic representation of the HQE in Eq. (1.164). The imaginary
part of the double insertion of the effective Hamiltonian (top line), is matched into
a series of local operators (bottom line).

of the B meson mass mp and decay constant fg, where the latter is defined as
Olgy*vsb|B) =i fry (1.162)

here p/; denotes the meson four-momentum with p% = m%. By taking into account
that the matrix element of the corresponding vector current vanishes due to parity

conservation in QCD, see e.g. the textbook [39], we obtain that
(Blby,(1 = 75)al0)01q7"(1 = 45)b| B) = fmi;. (1.163)

Finally, the construction of the HQE leads to the following expansion for I'(Hy)

D(Hg) =T+ F5<25> - P6<O§> + .+ 167 f6<0§’> - f7<01> +o |, (1164)

o mq mq mq

schematically sketched in Figure 1.7. Eq. (1.164) shows that, by exploiting the
large hierarchy m¢q » Agcp, the total decay width of a heavy hadron can be sys-
tematically computed as a series in inverse powers of the heavy quark mass. The
lowest order contributions describe the effect of two- and four-quark operators and,
in Eq. (1.164), the latter are labelled with a tilde. Moreover, from the diagram-
matic representation in Figure 1.7, we see that while the contribution of four-quark
operators corresponds to one-loop diagrams at LO-QCD, two-quark operators are
generated only at two-loop, again at LO-QCD, and this mismatch is reflected in
the presence of the enhancement factor of 1672 in front of the square brackets in
Eq. (1.164) [107-110]. As already stressed in Section 1.1, the essential feature of the

OPE is the separation between short- and long-distance effects. Namely, the non
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perturbative dynamics is absorbed in the matrix element of local operators, whereas
the short distance contribution is encoded in the corresponding coefficients. The

latter, in fact, obey the perturbation expansion

2
La=TP + (20 + (52) 1P+ (1.165)

and can be computed within standard perturbation theory. Extensive work has
been put in this direction, here a brief summary of the current status. The complete
calculation of I'; up to NLO-QCD corrections has been obtained in Refs. [111-118].
Currently, also NNLO-QCD corrections are known for semileptonic decays [119-128],
while for non-leptonic decays, these have only been determined, for massless final
quarks and in full QCD, i.e. without using the effective Hamiltonian, in Ref. [129].
I's has been computed at LO-QCD for both non-leptonic and semileptonic decays
(98,103,130, 131], for the latter even NLO-QCD corrections are available [132-134].
For semileptonic decays, I'g was first computed at LO-QCD in Ref. [135] and recently
the NLO-QCD corrections were determined in Ref. [136], while the LO-QCD compu-
tation for non-leptonic decays has been performed for the first time in Refs. [137-139]
for the b-system and in Ref. [140] for c-quark decays, see also Section 4.1. Finally
[s is known at NLO-QCD [141-143], while I'; only at LO-QCD [144].

We conclude by emphasising that the construction of the HQE is based on the va-
lidity of the so called quark-hadron duality (QHD). This refers to the assumption
that the inclusive rate determined by summing over all the exclusive hadronic decay
channels, and the one predicted by the HQE, are dual to each other, in the sense
that they provide two valid representations of the same quantity, using respectively
the hadron-level and the quark-level description. However, violations of QHD con-
stitute a systematic uncertainty of the HQE, and one simple argument is the fact
that, by computing the total decay width in terms of a series expansion in pow-
ers of Agep/mg, any term of the type exp(—mg/Agep)sin(mg/Agep), would be
systematically neglected, since exp(—1/x) is non-analytic and its expansion around
x = 0, yields identically zero. Despite deviations of HQD cannot be excluded, there
is no experimental evidence so far for sizeable violations that might compromise the
applicably of the HQE. For a detailed discussion of QHD see e.g. Refs. [145-147] .
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Practical Calculations within the HQE

With the theoretical background discussed in Chapter 1, we can now show the
explicit computation of the lowest-order contributions to the total decay width of a
heavy hadron, Eq. (1.144). For definiteness we assume Hg to be a B meson with
B = {By, B~, B}, i.e. we limit ourselves to systems containing a heavy b quark and
a light antiquark ¢ = {d, 1, 5}, without discussing the case of the B. meson !. We
stress, however, that the expressions obtained, taking into account the appropriate
replacements, e.g. of the CKM factors and masses, can be also applied to the study
of the charm system and of the b-baryons with one heavy quark. Furthermore, we
emphasise that all the calculations presented are only at LO-QCD.

The total decay width in Eq. (1.164) can be decomposed in the sum of semilep-

tonic and non-leptonic widths, namely

I'(B) =T6Y(B) + TOY(B). (2.1)

For simplicity, in the following, we consider only the computation of I'N!(B), again,
the corresponding results for the semileptonic case can be easily derived by setting
N.=1,C; =1and Cy = 0. According to Eq. (1.144), the total non-leptonic decay
width of a B meson is induced at the quark level by the flavour-changing transition
b — q1G2q3, With ¢1,q2 = {u,c} and ¢z = {d, s}, described, at the renormalisation
scale p11 ~ my, by the effective weak Hamiltonian #H.;s(z), see Section 1.1, i.e.

Hest () Vo Vaoas [01 Q1(z) + Cy Qg(m)] + h.c.. (2.2)

_Gr
V2

The colour-singlet and colour-rearranged local four-quark operators Q1, (x), Q2(x),

In this case the HQE must be properly generalised in order to include a double expansion in
inverse powers of the bottom as well as the charm quark mass, see e.g. Refs. [148-150].
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in Eq. (2.2), are respectively given by

Qi) = (@ (@0 (@) (B (@) (23)

A (@)) (24)

O
(V)
—
&
I
/N
=
8
~—
—
=
<
B
N———
/~/

where I'), = 7,(1 — ). In Eq. (2.2), Cy(p1), Ca(p1), define the corresponding
Wilson coefficients, their scale dependence is often omitted in order to simplify the
notation. Note also that, being interested in discussing only the general structure
of the computation, in Eq. (2.2) we have neglected the contribution of the penguin
operators, however the expressions can be easily generalised to include them. Sub-
stituting Eq. (2.2) into Eq. (1.143), leads to the following decomposition for the non

local second-order operator 7 i.e.

T(qlngg) _ 012 7—1(14162%) 1+ 20,C, 7—1(211162113) + 022 2(2Q1¢?2q3) (2.5>
here the superscript (¢1G2q3) refers to the specific decay mode of the b quark, which
for the sake of a more compact notation will be sometimes dropped, and

2 2 2
7‘77(1%162%) _ GF|Vf]1b|2 ‘Vq3q2’ ZJdALxT{Qm(x) ’ QIL(O)} + (3; PEN O) . (26)

In Eq. (2.6), the corresponding term due to the exchange of coordinates (z < 0)
must be considered separately, and cannot be in general reduced to a symmetry
factor of 2, since the computation of power corrections will be performed in the FS
gauge, which, it is worth remarking, explicitly breaks the translation invariance of

the propagator, see Section 1.3.

The time-ordered product in Eq. (2.6) is written, by means of the Wick’s theo-
rem [151], as a linear combination of terms where only normal products, normal
products and contractions and only contractions of fields appear, see e.g. the text-
book [152]. The lowest-order contributions in the HQE correspond to two- and
four-quark operators and are generated respectively from the contraction of three-
and two-pairs of light quark fields while leaving the b-quark fields uncontracted. The

first case is discussed in Section 2.1, the second in Section 2.2.
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2.1 Contribution of two-quark operators

Following Refs. [130, 131], for a straightforward treatment of colour in the com-
putation of power corrections due to the expansion of the quark propagator, it is

convenient to perform in 772, Eq. (2.5), the change of basis
{Qu@). @@} = {Qu@). @)} (27)
where Q3(r) denotes the colour-octet operator
Qs(2) = (@@t V() ) (@@ 8, 05'() ) (2.8)

The relation between @Q2(x), and Q3(x), in Eq. (2.7) is obtained by taking into ac-

count the completeness property of the SU(3). generators, i.e.
1 1
tiitim = 3 <5im5jl - Fézjélm) : (2.9)
C

Substituting Q2 (z) = (1/N.)Q1(z) +2Q3(x) in T12 in Eq. (2.5), and considering only

the contribution of two-quark operators, leads to the general decomposition

TCD = CYTEY + 2C1Cy (ﬁﬂq) +27;<2‘1) +C3TRY . (210)

[

where the superscript (2¢) indicates that all pairs of light quarks fields in the time-

ordered product in Eq. (2.6) have been contracted and replaced with the correspond-

ing propagators, namely, without specifying the colour structure 3

r 1 —— |
4, (2)L,b(2) g3 (z)I gy (x )bFVqquF q

(2.11)

{2 (@),b(0) G (@) o). B T4 | =

here the two colons denote the normal product. Eq. (2.11) can be schematically

visualised in Figure 2.1. Taking into account Eq. (2.11), it follows that the expres-

2Note that in Refs. [130,131] the colour octet-operator is denoted by Q.
3We recall that we often omit to explicitly indicate the dependence on the space-time coordinate
for fields evaluated at the origin, so unless otherwise stated, we assume g = ¢(0), for generic g(x).
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sions of the non local operators 7'77%(1) in Eq. (2.10), are respectively given by

G3 , % ol
T = = 5 Vo Vs j dte By (1= 75) iS5 (0,2)7(1 = 93)0 (2)

x Tr [7%1 — 75)iSL%) (0, )y (1 — 5)iS\ 2 (x, 0)] +(z < 0), (2.12)
T(zq):—G—%v 20y 124 | dia B (1 — st 1S9 (0 1 — ~5)bF
13 9 Vo *| Vasae| " @ x b',( V5) 3l W1k (0, 2)7,( ¥5)b" ()

x Tr [7”(1 — 75) i 1958 (0, )7 (1 — 5)iS )12 (x, 0)] +(z<0), (213

and

G7 . = ,
T = = S Val Voo j de By, (1= 5) iy (0, 2)3(1 = 35t (2)

x Tr [7“(1 - 75)1'53(-23)(0@)7“(1 - 75)i51(f,f)(x, 0)] + (z < 0), (2.14)

where the minus sign and the trace over spinor indices, derive from the fermion loop.

Note that applying the Fierz identity
(@005 (airad) = (@00t (ai7ad) - (2.15)
to the four-quark operators in Eqgs. (2.3), (2.4), gives

Qua = Q"™ (2.16)

meaning that the four-quark operator (); is equal to ()5 with the exchange q; < g3

and vice versa. This important relation implies that in Eq. (2.14) we can write

St Sitess = Stomns Syioa (2.17)

Im,~yo
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a1
FE\Y
& &
a3

Figure 2.1: Diagram describing the leading order contribution to the free b-quark
decay.

where the Greek letters denote spinor indices, and then that

20 _ 0 (o) (2.18)

By taking into account Eq. (2.18), the contribution of Q2 ® @2 in Eq. (2.6) can be
obtained from that of (); ® @) after performing the replacement ¢; < ¢s.

The coefficients of the two-quark operators up to order 1/mj, are computed in
detail in Chapter 3, for generic non-leptonic decays of the b-quark and using the
representation of the quark-propagator in momentum space, Eqs. (1.98), (1.102).
However, it is instructive to perform the same calculation also using the expression
of the quark-propagator in coordinate space given in Egs. (1.121), (1.124). This is
discussed in the next two sections, respectively for the case of dimension-three and

dimension-five contributions, and for the single mode b — cud.

2.1.1 Computation of Fgfﬂd)

The leading term in Eq. (1.164) corresponds to the decay of a free b quark, as shown
in Figure 2.1. Neglecting the interaction with the background gluon field, see Sec-
tion 1.3, all the propagators in Eqgs. (2.12)-(2.14), reduce to

Sy =S (@ —y)on, g=cud, (2.19)

where SSQ) (x—1y) is the free-quark propagator defined in Eq. (1.72), and a superscript
has been introduced in order to distinguish between the different quarks consistently
with the description of the b — cud decay. The presence of the Kronecker delta in
Eq. (2.19) leads to immediate simplifications. In fact, by enforcing the trace of the
SU(3). generators t* in the square brackets of Eq. (2.13), we readily obtain that
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7](32(1) must vanish at this order i.e. *

1
RG] <—2> . (2.20)

Moreover, it follows that Eqs. (2.12), (2.14), exactly coincide, so that 7‘1(12‘1) and 7;(22(1)

are equal up to higher order corrections, namely

Te'| =T (2:21)
- d=3
Because of Egs. (2.20), (2.21), we need to compute only one expression, i.e.
N.G3 _ c
T = 2 VPV [ 2 5201 = 50) S ()1 = 22)0(a)
x Tr [7"(1 - 75)Séd)(—a:)7“(1 — 75)Séu)(x)] +(xe0)+.... (2.22)

In Eq. (2.22), the colour factor is §;; = N, and the ellipsis denote power suppressed
contributions due to higher order terms in the quark-propagator. Notice also that
the result in Eq. (2.21), combined with Eq. (2.18), shows that Eq. (2.22) must
be a symmetric function under the exchange ¢ < d. A further simplification in
the computation of the dimension-three contribution, derives from the translation
invariance of the free-quark propagator, meaning that the integral in Eq. (2.22) is
also translation invariant, and that the second term on the r.h.s. of Eq. (2.22), at
this order, reduces to a symmetry factor of 2.

In Eq. (2.22), the corresponding expressions for the three propagators follow
from Eq. (1.123). For the charm quark, it is

i m2Ky(meyv/—1?) ¢ m2Ky(mev/—22)

() _
S (~1) = 15 e + 15 = , (2.23)

and, due to the chiral structure of Eq. (2.22), only the term in Eq. (2.23) propor-
tional to an odd number of gamma matrices contributes. Furthermore, neglecting
the mass of the up- and down-quarks, we need to consider the following limits of

the Bessel functions

“Note that the first correction to the free-quark propagator arises at order O(1/m2).
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2
lim m? K (mv—a2) =0, lim m?Ky(mv—12) = —— (2.24)

m—0 m—0 1‘2 ’

from which we obtain that

S (z) ¢ = 5\ (=2). (2.25)

~ 2m2gd
Moreover, we recall that the coefficient of the dimension-three operator bb in the
OPE in Eq. (1.150), is obtained by evaluating Im 7% between external b states
with momentum pj,, hence we can make the following replacement in Eq. (2.22) 5,

see also Refs. [69, 87]

b(z) — e P b(0). (2.26)

By substituting Eqgs. (2.23), (2.25) and (2.26) into Eq. (2.22), it is then straightfor-

ward to arrive at

(29) _ G_% 2 2 2 2
T - 7T6 "/cb| |vud| Nc (Cl + CZ) + 20102

8

x B{ Jd“x o—inve Mea(mey/—2?) ¢}(1 )b (2.27)

The next step is to compute the imaginary part of the integral in the curly brackets
of Eq. (2.27). This is easily obtained using the formalism presented in Ref. [130],
based on the technique developed by Belyaev and Blok in Ref. [85] for the compu-
tation of the spectral representation of integrals appearing in the Fourier transform
of the product of several massless and one massive quark propagator, expressed in

coordinate space, see Ref. [130]. The result reads °

K, (my/—x2)

N Gou(P®) 9", (2.28)

Im J d*x e~

with

This follows from b(z)|b) = exp(—ipy - ¥)up(pp) where uy(py) = b(0)|b), is the b-quark spinor.
SNote that the result in Ref. [130] must be multiplied by —. This might be due to a different
convention used to define the discontinuity of a complex function.
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n

L
3 1 E -
G, n(p?) = § )T Rk, Ut A (p?) . 2.29

(P) 2(”*4)m”F(_n§V) k=0 =0 sl T 7 (2.29)

In Eq. (2.29), the coefficients C]* are given by

om = (”) S L (2.30)

m m!(n—m)!

while the functions U (p) are

p
2(i—1) 2 _ \i—1
25 (.2 m (p z)
. == - . . 2' 1
U (p%) (j—l)!JdZ " (2.31)

m2

Setting v = 2 and n = 8 in Eq. (2.28) yields

. 2 Ko (mon/— 22 3
Im{fd‘lxe_’pb.x = 2(728\/7) ¢} - %pg]ﬁb (1—8r—12r"logr + 8° —r?) |

(2.32)

where we have introduced the dimensionless parameter r = m?/p?. Substituting
Eq. (2.32) into Eq. (2.27), we then obtain

GQ
Im7 29 — _F|vcb|2|Vud|2<Nc <012 + C§> + 201()2>
19273
xpy vy (1= 8r =127 logr +8r° =) by, (1 —5)b+ ... (2:33)

Finally, Eq. (2.33) depends on the heavy quark momentum pj,, which, it is worth
remarking, admits the general parametrisation pj = mpv* +k*, here v* is the hadron
velocity and the ‘residual’ momentum k* describes the interaction of the heavy quark
with the light degrees of freedom, see Chapter 1. As stated above, the dimension-
three contribution to Im7 9 corresponds to the decay of a free b-quark, meaning
that all the interactions with the soft gluons and quarks can be neglected at this
order. In this case the heavy quark momentum reduces to pj = myv*+O(1/my,), and
recalling the definition of the rescaled heavy quark field b(x) = exp(—imyv - x)b,(x),
see Eq. (1.145), satisfying 9b, = b, + O(1/my), cf. Eq. (1.148), from Eq. (1.144) and
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Figure 2.2: Soft gluon corrections to the free b-quark decay.

Eq. (1.158), we arrive at the well known expression

(cady _ Gemy
3 19273

|vc,,|2|vud|2(Nc (C2+C2) + 20102) (1—8p—12p%log p + 8p° — p) |
(2.34)

where p = m?2/m? is a dimensionless mass parameter and we have taken into account
that the contribution of the axial current to the matrix element between B mesons

states vanishes due to conservation of parity in QCD [39].

2.1.2  Computation of Fécwj)

In order to compute power corrections to the free b-quark decay in Eq. (2.34), we
must include the effect of the QCD interaction of the heavy quark field with the soft
degrees of freedom inside the heavy hadron. This results in three contributions, gen-
erated by expanding respectively, the propagator of the quarks inside the two-loop
diagram, because of the large b-quark momentum flowing into it, the heavy-quark
momentum and the relevant matrix elements up to the order in 1/my, considered.
In the case of two-quark operators, the starting point is represented by Eqs. (2.12)-
(2.14), where now, being interested in computing dimension-five contributions, we
must take into account, in the expression of the quark propagator, also terms pro-
portional to the gluon field strength tensor G,,, see Section 1.3 and Figure 2.2,

namely

Sj(»z)(x,y) = SéQ)(:c — 1Y) + qu)(x -y, q=cu,d, (2.35)

here qu) (x —y) contains only corrections to the free-quark propagator due to oper-
ators of dimension-two, cf. Eq. (1.121) and we have explicitly indicated that up to
this order the translation invariance is still preserved. The presence of the Kronecker
delta and of the SU(3). generators in Eq. (2.35), significantly simplifies the colour
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structure of Eqs. (2.12)-(2.14), in fact, it is easy to verify that, since Tr[t*] = 0 and
terms proportional to G ,,G),,, correspond to corrections of at least dimension-seven,
a soft gluon cannot be radiated off every propagator for each of the expressions in
Egs. (2.12)-(2.14). Namely, only 5 (—x) can contribute to 7,27 and as consequence
of Eq. (2.18) only Sfd)(—x) can contribute to 75(22(1). Finally, in Eq. (2.13) only the
expansion of the two propagators inside the trace is non vanishing and both Sf")(x)
and Sfd)(—x) must be independently taken into account in 7‘1(3261). However, it is clear
that by substituting Eq. (2.35) into Eqs. (2.12)-(2.14), we also recover the leading
order result already discussed in the previous section. This generates the remaining
dimension-five contributions, once the corrections to the heavy quark momentum
in Eq. (2.33) and to the matrix element of the dimension-three and dimension-four
operators are respectively included. To avoid confusion we introduce the notation

Fécﬂd) _ Fécﬁd)

+1f) (2.36)

corresponding to the sum of the dimension-five contributions arising from the ex-
pansion of the quark-propagator on one side (I) and of the heavy-quark momentum

as well as of the matrix elements of dimension lower than five, on the other (II).

Let us start by considering (I). In the case of 7](12[1), as commented above, only
the contribution of the gluon emitted from the charm-quark line is non vanishing

and the three propagators in Eq. (2.12) are respectively given by *

() Gy MoK (mey/—a?)
S (—x) = o2 — : (2.37)
and
y 1
S8 (z) = ﬁ% — S (—z). (2.38)

Substituting these expressions as well as including a symmetry factor of 2 due to

the translation invariance ®, Eq. (2.12) becomes °

"We already take into account that in the propagator of the charm quark only terms proportional
to an odd number of gamma matrices contribute.

8The same factor appear also in the remaining contributions.

9Note that the replacement in Eq. (2.26) is again introduced, since at this order the contribu-
tion from the dimension-five operator with one gluon field is obtained taking the matrix element
(bg|/ImT 9|b) between external b-quark and gluon states.
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Wolyss  64x 8 )

) ~
T(QQ)‘ _ G |Vcb|2|vud|2l_? { fd4$ o~y G x,xemr me Ki(mey —12)

(71 =75) 1Y (1 = 75) ) Te| 4 (1 = 75) 77" (1= 75)77 | ¢ b
( )| }

(2.39)

From
D G Tr[’y“(l —v5) ¥ 7" (1 —7s5) 77] =32x,7, (2.40)

it is clear that the contribution in Eq. (2.39) must vanish since the dual field strength

tensor G”" is contracted with the symmetric tensor z,z, i.e.

2
AR =0 (2.41)

In the case of 75(22‘1), in Eq. (2.14) we can only expand the propagator of the down

quark while the ¢- and u-quark propagators are free. Using the following limits

1

limOmKo(m —x2) =0, limOmKl(m —x?) = = (2.42)

we evidently obtain that
Wy = L L gy LT e (2.43)

s 1T T Tgga gz el '
and
2K . /2

SE(—a) = L1 {mey =), (2.44)

472 2

Substituting these expressions into Eq. (2.14) gives
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G2 _ - GoeaPay,
(2q) F “/;b|2 ‘Vud|2b {fdélxe—zpb-m pEL" L X mz Kg(mc\/—iﬁ)

2 ‘d:5 B 12876 8

X (11 =75) 1 7w (1= 5) ) Te[ 4 (1 = 5) 757" (1 =) | p b,
( )= I

(2.45)

where now the corresponding gamma structure can be simplified as

a2z, ('mn%(l - 75)) Tr[v’”(l +795)7° 7 (1= s) ’YT] = 3225 4(1 —5), (2.46)

showing that also this contribution must vanish, since again the dual field tensor

G ¢ in Eq. (2.45) is contracted with the symmetric tensor z°z¢, namely

T =o. (2.47)

d=5

We see that the emission of a soft gluon from both the charm and down quark prop-
agators does not contribute at dimension-five, therefore in Eq. (2.13) it is sufficient
to consider the expansion of the u-quark propagator only. However, we notice that
the result in Eqs. (2.41), (2.47) is general and that the fact that contributions to
the propagator of the ;- and g3-quarks vanish at order 1/m?, holds independently
of the specific mode considered see Refs. [130, 131]. We will discuss this again in
Chapter 3.

Finally in the case of 7’1(32["), considering only corrections to the propagator of the up

quark, we must substitute the following expressions into Eq. (2.13), i.e.

(u) . L oaf T (d) _ 1 ¢
Sl (ZE) - @FGQT’Y 5 So (—%) = _ﬁlj’ (248)
and , .
K. A/ —
5 (—a) = L 2(mev =), (2.49)

which, taking into account that Tr[t*t’] = (1/2)5%, leads to
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G2 _ ) G, xPx"
(2q) F |‘/cb’2|vud‘2 b{fd4x P il xrx xgmng(mc\/—iIQ)

13 ‘d:5 B 12876

8

X (1 =95) Y 1 (1= 5) ) Te| A (1= 35) 77" (1= 75) 7" 5| 1 b-
( )| }

(2.50)
The gamma structure simplifies as

2"z (Vv (1= 7s)) Tr[v“(l +95) 7 7 (1 —5) 77] =327"2*(1 —75), (251)

from which it follows that, since the dual field tensor pr is now contracted with

xP~7, this contribution is non vanishing and equal to

d=5 26

G* _ , 2 Ky (mpn/— 22
7-1(32(1) _ 2_F6|‘/cb|2|vud’2 prr’YT{ Jvdllx e WPy m, 2(m Y ) P } (1 _ 75) b.
T
(2.52)
The imaginary part of the integral in the curly brackets of Eq. (2.52) can be again

obtained using the general result derived in Ref. [130]. Setting v = 2 and n = 6 in
Eq. (2.28), yields

) 2K . ) 3
Im{ f Aty e—imve e 2(77;6 ) :E’)} = —% ol (1— 7")3 , (2.53)

where we recall that the dimensionless parameter 7 is defined as r = m?/p?. In order
to single out the operator appearing in Eq. (2.52), we use that G, = (1/2)€ 7, G*,

then, from the the tensor decomposition of three gamma matrices Eq. (7) we have

EpprrY = =1V Y VY5 + 1o VY5 — o Va5 F 9w p Vs 5 (2.54)

which leads to
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_ o~ 1-
prT’)/TpZ<1 - 75) b= 5 bG'uVEp,uuT’YTpg(l - 75) b

| o
=b {5 G*" vy oy (L =5 ) — 1 G* 7y pp (1 — 75)}17- (2.55)

Note that, when contracted with the antisymmetric tensor G*, the fourth term
on the r.h.s of Eq. (2.54) vanishes while the second and third terms give the same
contribution. Taking into account that at this order pj = myv*+O(1/m;) and intro-
ducing the rescaled heavy quark field b(z) = exp(—imyv - x)b,(x), see Eq. (1.145),
satisfying b,(x) = 9b,(x) + O(1/my), cf. Eq. (1.148), it is easy to show that the

second term on the r.h.s. of the second line in Eq. (2.55) is zero, in fact

—ib G" v po b = —imy, b, G" 7,0, by + O(1/my,)
= —imy b, G*v,v, b, + O(1/my)

O(1/ms), (2.56)

where the contributions proportional to 75 in Eq. (2.55) can be neglected, since they
vanish in matrix elements between B meson states due to parity conservation, and

we have used the following identity

boYuby = by, ¥by = —byyuby + 2b,v,b, (2.57)

valid up to 1/my corrections, to write b,7,b, = b,v,b,, see e.g. Ref. [153] or cf.
Eq. (1.43). Conversely, the first term on the r.h.s. of the second line in Eq. (2.55)

gives

(i/2) b G* 470 pRb = (1/2)m by G* 90,0, + O(1/my)
= (1/2) my l_)v GﬂyUﬂybv + (’)(l/mb)
= Omag + O(1/my) (2.58)

here the first equality follows from taking the antisymmetric part of «,v, upon con-
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b q3 b
X XX

q1 q1
q2

Figure 2.3: Diagrams describing respectively, from left to right, the WE, PT and WA
topologies.

traction with G*”, while the chromo-magnetic operator O,,,, is defined in Eq. (1.155).
From Egs. (2.53), (2.55), (2.58), and (2.10), we finally obtain, in agreement with
Ref. [130], that

)| GEmM}

05| = — 1053 Val*Vaa* 2C1C28(1 — p)* g (B) (2.59)

where the dimensionless mass parameter p is again defined as p = m?/m? and the
non perturbative parameter p% is given in Eq. (1.159).

The second type of contribution (II) in Eq. (2.36) is obtained by expanding the
expression in Eq. (2.33) up to order 1/m?. Using the results in Appendix A, a
slightly long yet straightforward computation, which can be easily performed with
e.g. Mathematica [154], leads to

e GEm ey e (024 02) + 20,0
5 . - ]_9271'3 cb ud c 1 2 1V2
2(B
X (1 —8p —12p?log p + 8p® — p4) (—@)
1
+3 (=3 +8p—12p°log p — 24p° + 24p° — 5p*) ug,(B) |, (2.60)

with the non perturbative parameter p2 given in Eq. (1.159).

2.2 Contribution of four-quark operators

We now turn to discuss the contribution of four-quark operators. By applying the

Wick’s theorem in Eq. (2.6), we consider all possible contractions of two pairs of
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light-quark fields in the time ordered product, which leave the b-quark as well as a

pair of light-quark fields uncontracted, namely

T{ <671 ()T b(x) gs(z) T 92@))7 (E Ly eI CI3> }

r - 1 1
=:q ()T b(z) g3(x) TF gy (z) bTy q1 G2 T g5

{ f 1 \
+: ¢ (2) T, b(x) g5(x) T qo(2) bT', 1 G2 T g3

[ D E— \
+ () Dpb(@) g5(x) T go(2) b1, g1 G2 T g3+ (2.61)

Note that for simplicity we have omitted to specify the colour structure. The three
terms on the r.h.s. of Eq. (2.61) generate different topologies, usually referred to,
respectively, as Weak Exchange (WE), Pauli Interference (PI) and Weak Annihila-
tion (WA) ' schematically shown in Figure 2.3. In analogy to Eq. (2.10) we then

introduce the notation

TUD = TVE 4 TP TV (2.62)
where the superscript (4¢) indicates that four-quark fields are not contracted and
T = (012 0 +2CCy T +C3 ;;) : (2.63)

with X labelling the specific topology. We emphasise that the three contributions
in Eq. (2.63) correspond to the same Dirac structure and differ only by the contrac-
tion of the colour indices, namely, starting with the case of Weak Exchange, we can
conveniently define the following tensor in colour space
y G2 _ .
s’ = = Ve P Vaea” ifd“x (bz (1= 75) iS4 (0, 2) (1 = 5)¥ ()

x @5 (@) (1 = 75) iS58 (2, 0) 7 (1 — 75) eé‘) +(z < 0), (2.64)

10Tt is worth mentioning that for the description of baryons, the WE and PI topologies are
interchanged.
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so that the three terms in Eq. (2.63) are respectively given by

WE _ qiimn ¢i ¢j smsn 'WE _ qijmn i cjsmsn WE _  gqijmn cingjm
T = A 01010705, Tig ™ = A 05010,70 . Toy™ = Appy 070" 0psOty -

(2.65)

Similarly, for the Pauli Interference topology, we introduce the tensor

jmn GQ . 71 . 1 1
Bkjlrs = TF’%lb|2|VQ3Q2‘2 ’Lfd4£l} <b ’YV(l - 75) ZSI(;Z] )(07 :C)”)/u(l - 75)[7](3:)

x @y (1= 75) iS5 (0,2) (1 = 93) g3 () ) + (2 <> 0), (2.66)
and the three contributions in Eq. (2.63) read

TR =B S0io00r Tt = Bl i8leey . Tyt = T (2.67)

[ Yr Ys o s

Finally, in the case of Weak Annihilation, we define

jmn G2 . 71 i —m n
Care' = == VeI Vasaa” ’tfd‘*fﬁ (b YL =75) @ @ (2)7u(1 = 75)b (@)
x e[y (1= 95) S (0,2) (1 = 15) iSW (3, 0) | + (x> 0),  (2.68)

where the minus sign and the trace over spinor indices follow from the fermion-loop
and

WA _ pigmn ¢ij cmn WA _ pigmn i o mn WA _ pigmn ¢i $j emen
7—11 - Ck:lrs 670 51?8617‘7 7—12 - Ck:lrs 5k5$51T6 ) 7—22 - Ck:lrs 5k555r 6[ .

(2.69)

2.2.1 Computation of Im7g(4Q)

To compute the leading power corrections to the WE, PI and WA topologies, namely

the dimension-six contribution to the four-quark operators, we can ignore the QCD
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interaction with the background field and set in Eqs. (2.64), (2.66), (2.68)

SW(w,y) = SSw —y) o, i=1,2,3, (2.70)

where S((]qi) (x—y) is the free-quark propagator associated to ¢;, and note that we con-
sider now the general case of b — ¢1G2¢3 transition. Higher order terms in Eq. (2.70),
cf. Egs. (1.76), (1.121), describe soft gluon corrections to the four-quark operators
and lead to contributions to the HQE of at least dimension-eight. These will not be
discussed in the present work. However now, the loop-computation is more easily
performed in momentum space and we will use, contrary to what we have done
in the previous section, the Fourier representation of the propagator in Eq. (2.70).
Substituting Eq. (1.73) into the first of the three expressions in Eq. (2.65) yields "

TWE _ G2 |V |2‘V |2 . d4 d4l d4k —i(p+k—I)x l_)z (1 . )
11 - FlVaqb q3q2 ? x (27T)4 (277')46 T Y5

x <;> V(L = )b By (1 = 5) (kz ¢

2 —m?+ie —mj +ie

) 77 (1 — 75)61‘§> :
(2.71)

where p/ = pj+pl . In deriving Eq. (2.71) we have used that b(x) and gs(x) describe
respectively, an incoming quark with momentum p}’ and an incoming antiquark with
momentum pt '?. We notice that a symmetry factor of 2 due to translation invari-
ance has been already included and that the chiral structure of Eq. (2.71) implies
that all terms in the propagator proportional to an even number of gamma matrices

must vanish. Performing the integration over the variables x* and k*, leads to

1 (1717 — 1)
2m)* (12 — m? + ie)((I — p)? — m3 + ie)

TV = 4GV Vi f :

X ot (l_?ivu(l — %)%wbi) (@év“vgv”(l —~ 75)q§> , (2.72)

where the structure of the four-quark operator in Eq. (2.72) can be simplified taking
into account the tensor decomposition of three gamma matrices in Eq. (7) and the
Fierz identity in Eq. (2.15), i.e.

1 Note that we take into account the replacement in Eq. (2.26), supplemented with the corre-
sponding one for the light spectator antiquark.
?For baryons, being both b and g3 quarks, it would be p* = p’ — p. .

78



Chapter 2 Practical Calculations within the HQE

(5"%(1 - %)%mbi) (61%7“757”(1 - 75)q§) —4 (51'75(1 - 75)Q§) (@é%(l - 75)61) -
(2.73)

Using the Passarino-Veltman reduction algorithm [155], the one-loop tensor integral
in Eq. (2.72) can be decomposed in terms of one- and two-point one-loop scalar in-
tegrals. Note that the latter are ultraviolet (UV) divergent and must be regularised.
Performing the computation in dimensional regularisation [47-50] with D = 4 — 2¢
space-time dimensions, one obtains the results listed in Appendix B, in which the
singularity appears as a single pole in €, see Egs. (B.4), (B.5). However, being
interested only in the imaginary part of 7;\'® which, cf. Eqgs. (B.8), (B.9), is finite
for e — 0, we can use the expressions in Eqs. (B.10)-(B.20) setting D = 4. This gives

[ dU (e — 1) =
" (2 f (2m)* (2 = m3 +ie) (L = p)* = m3 + Z'g)) :
P2/ AL, 1, 7o)

PorT
187 [gpa (2 -1 =1y — (1 — 7“2)2) + 2pp123 <2(r1 —ry)? — (147 + m))] ,

(2.74)

where r; = m?/p? and A(a,b,c) = (a — b — ¢)? — 4bc is the Killen function. Notice
that Eq. (2.74) is a symmetric function under the exchange m; < my. Substituting
Egs. (2.73), (2.74) into Eq. (2.72), we then obtain

G2
Imﬂ\{VE = é|%1b|2|vq3%‘2p2 V )‘(17T17T2)

[ v 2) (51,0) ()
-2 p;fy (2(7“1 i rg)) (Bil“qu) (q‘gl“,,bi)] . (2.7)

Finally, we can express the colour-rearranged operators in Eq. (2.75) in terms of

colour-singlet and colour-octet ones using Eq. (2.9), this yields
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GQ
T = SV, PV 2PN 7 72) {((m )’ i+ —2)

X

[N% (i) (80) + 2 (7,05 (ngVtgmbm)]

v

- 2P (2 = = (1 1) [Ni (57,5) (@00

+ 2(6@' T, qg> (qg rm’)] } (2.76)

To compute the remaining colour structures we substitute Eq. (1.73) into the second

and third term of Eq. (2.65), obtaining respectively

TWE _ GQ |V |2|V |22~ d4IE d4l d4k e—i(p+k—l)~ac BZ (1 . )
12 - FlVaqb q3q2 (277')4 (277')4 T V5

2 —m? +ie —mj + ie

x (4) V(L = y5) b EA (1 = s) (,@L) V(1 - ’Vs)qé,] :

(2.77)

and
T =NTY", (2.78)

with the colour factor in Eq. (2.78) following from d;; = N.. The calculation of
Eq. (2.77) proceeds in the very same way as for Eq. (2.71). For brevity we only
state here the final expression which reads

GQ
Im 73" = é‘%lb|2|%3q2|2p2 A1, 7y, 79) [((Tl — 7o) 41+ — 2)

(Pt (@0 228 (2t = 1) () ()|

(2.79)
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note that in this case, the result contains already colour-singlet and colour-rearranged
operators and we do not need to further use Eq. (2.9). Substituting Eqs. (2.76),
(2.79), and (2.78), into Eq. (2.63), we readily arrive at

G2 _. . . .
T = V2 Vg 2PN 71, 72) {k [“”(“’”) (7m0 (af0)

_ QP:QS” wo(r1,72) <BiFqu> <Q§F,,bj>] + ko [wl(rl, ) (ZJTMtgqu) <cjé1““t?mbm>

_qup’/ ( ) Z_)ZF t(l J —ZF ta bm + (2 80)
p2 AT ulij@s |\ @l vt R .

where the ellipsis refer to power suppressed contributions arising from corrections
to the propagator of order O(1/m?) and for the sake of a more compact notation we

have introduced the following combinations of Wilson coefficients

1
k1=ﬁ012+20102+]\70022, ky =2C%, (2.81)

while

wi(a,b) =(a—b?+a+b—2, wo(a,b) =2(a—0)*—(1+a+b). (2.82)

We now turn to consider the contribution of Pauli Interference. Inserting Eq. (1.73)

into the first expression in Eq. (2.67), gives

TPI _ G2 ‘V ’2|V |22~ d4SL’ d*l d*k efi(pfkfl)-x E@ (1 o )
1 = FlVaqb 9392 (271')4 (271')4 T V5

) (#M) (1= 45 b (1 = 5) (%) (1 — 75)615) ,
(2.83)

here pt = p — pl,, which follows from the fact that go (x) describes an outgoing an-
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tiquark with momentum p# '*. The integration over the variables 2/ and k* yields

a1 (1917 — pPI°)
(2m)* (12 —m3 +ie)((I — p)?2 — m?2 + ie)

e VAN PANCY f

X o (5%%(1 - 75)7pwbi) (cié Yyt (1 — 75)CI§> : (2.84)

where the four-quark operator can be simplified as in Eq. (2.73), again using Eq. (2.9),
while the imaginary part of the one-loop integral in Eq. (2.84) is obtained, taking
into account the symmetry under the exchange m; < mg, by replacing ro — r3 into
Eq. (2.74). A straightforward calculation leads to

GQ
Im 71" = 2—75“41117|2|ngq2|2p2 AL, ri,7r3) (L =11 —73)
1 /-, . . . _. .
x (F (b’Fuq§> (q;Mﬂ) 4 2<blfut%qé> (qgrﬂ t?mbm)> . (2.85)

The remaining colour structure is obtained by substituting Eq. (1.73) into the sec-
ond term of Eq. (2.67), i.e.

TPI _ _G2 ‘V ’2|V ‘Qi d4l' d*l d*k e—i(p—k—l)-:p Bz (1 o )
12 — FlVaqb 4392 (271')4 (27’(’)4 T V5

X (L> (1 =)0 @B (1 = 75) (%) (1 - %)qé) :

k? —m? + ie —m3 + ie
(2.86)

All the steps proceed analogously to the case of 7|1, the only difference being that

the result is already expressed in terms of colour-singlet operators and we do not

need to use Eq. (2.9). It is in fact easy to show that

G? N R
I T = SE VoV 9 VAL 1 70) (1= 11 = 1) (BTs) (@00) - (2.87)

¥For baryons, being both b and ¢z quarks, it would be p* = pj’ + p. .

82



Chapter 2 Practical Calculations within the HQE

and from Eqs. (2.85), (2.87), (2.63) we readily obtain that

GQ
Im 7! = 2_71;“/;11b’2|%3Q2|2p2 A1, 71,73) (1 =7 —13)

x| ks <l_)ifuqé> (qgl““bj) + &y (Bfrutgjq@ (qgrﬂtfmbm)] Lo, (2.88)
with
ey = Ni(cf + 03) L2010y, ka=2 (012 + 03) . (2.89)

Finally we discuss the Weak Annihilation topology. Substituting Eq. (1.73) into the
first expression of Eq. (2.69) yields

TWA =N GQ |V |2|V ‘2~ d4 d'l d'k —i(p+k—1)-z [_)Z (1 - ) i
11 — eV FRIVab azqa| Z (27T)4 (27’(’)46 T V5)41

X <§{7u(1 - ’75)bj>Tr [’Y'/(l — ) (%) Y1 =) (#W)]
(2.90)

where p* = pi' + ph., due to the fact that ¢(z) describes an incoming antiparticle

o 14
q1

agator proportional to an odd number of gamma matrices contribute to the trace.

with momentum p: , and we have taken into account that only terms in the prop-

Performing the integration over the variables x* and k* and evaluating the trace in
Eq. (2.90), leads to

d4l lplo - pplcr
(2m)* (12 —m3 +ie)((I — p)?2 — m3 + ic)

T =SNG Vi Ve |

X (5"%(1 - %J%) (cj{’m(l — )b ) (g”pg’“’ +977g" — gy + ieVp"“) :
(2.91)

Again, since the one-loop integral in Eq. (2.91) is symmetric under the exchange

14For baryons, being both b and ¢; quarks, it would be p* = Py — Py,
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mg <> mg, its imaginary part can be obtained from Eq. (2.74) making the replace-

ment r; — r3, namely

N,
Im 7,1 = EG%H/QWPH/%@‘QPZ A1, 73,72) [((7’3 — 7o) 1+ — 2>

X (l_)ifl,(ﬁ) (q_{l_‘”bj) — 2p;]2)y (2(7“3 —rg)? = (1475 + 7"2)) (BiFMQD (q{rvbj>] :

(2.92)

Note that Eq. (2.92) reproduces Im7%'" in Eq. (2.78) with the exchange ¢; <> ¢3.
This result is consequence of the Fierz identity in Eq. (2.15), and by taking into
account Eq. (2.16) it follows that

Tﬂl}\TILA _ EVXmE (1a3) (2.93)

From Eq. (2.93), we see that the expression for In7"A can be immediately obtained

from Eq. (2.80) by replacing C; < Cs, and ¢; <> g3, namely

G2 . i . .
I T = ZE Vo Vo 9/ A7, 72) {%[wl(“’”) (0rai) (at)

Y _. ) . ) _. .
_ 2ppf wa(rs, 72) <b‘F“q§) (g{l“l,bj)] + kg [wl (13, 75) (bzrﬂtgjqﬁ (q{l““t;‘mbm>
pupl/ 71 a . J ~1 a 1m
-2 pe wa(rs, o) (O'Tyutiiql ) (@ Luty,b +..., (2.94)
with
1
]{35=NCC'12+20102+FC'22, k6=2022 (295)

In deriving Eqgs. (2.80), (2.88) and (2.94) we have only neglected power corrections
due to the expansion of the quark propagator, however, because p* depends on
the residual component of the heavy quark momentum k* as well as on the soft

momentum of the light spectator quark pl , the expressions above contain also the
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information about the interaction of the heavy quark with the light degrees of free-
dom. In order to single out the dimension-six result, we set p* = myv* + O(1/my)
and introduce the rescaled field b(x) = exp(—imyv - )b, (), see Eq. (1.145), satisfy-
ing b,(z) = ¢b,(z) + O(1/my), cf. Eq. (1.148). We then obtain that

p:;u <(_Wu(1 - 75)%‘) <67i%(1 - 75)b> = (Bv(l - 75)%) (Qi(l + 75)b,,> +0O (L) ,

myp

(2.96)

where for simplicity we have not specified the colour structure, and that the dimension-

six contributions to Im7VE, Im7 ! and Im7 WA are given respectively by

_Gr

I WE _
m T 127

Vi Vg Pmi A/ A(L, 21, 22) {kl[wl(l’l,@) 0% — 2w2(ﬂ?17$2)0§qg)]

] o

+ ko [wl(ﬂfl, 3?2)05%) - 2W2(51717 $2)O~§q3)]

G2 -
1 TE = S E Vol Vi i /AL 21, 3) (1= 1 = ) [ K5O + ki |
(2.98)
and
WA G% 2 2 92 (q1) (q1)
Im,ﬁi :E|vt]1b| “/(13@’ my, >‘(17I37I2) k5[w1<$3,l‘2)01 _2W2($37x2)02 ]

+ kg [w1 (23, 22) O™ — 2 (3, ZUQ)OéqI)]} : (2.99)

In Eqgs. (2.97)-(2.99), z; denotes the dimensionless mass parameters z; = m?/m2,
and the following basis for the dimension-six four-quark operators has been intro-
duced
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O(q

w1 (1 —5)q ) (c?jv (1- 75)173,) ; (2.100)

O(Q)

(8

0% — ( (1—5)q ) (q‘j(l + 75)1;3;) , (2.101)
(BU% (1 — y5)t 7 ) (qu”u - 75)t7mbT> , (2.102)
= (B

(1 —v)t5d ) (@l(l + 75)t?mbT> : (2.103)

2.2.2  Computation of Im7'7(4q)

By including 1/m;, corrections to the incoming four-momentum p* as well as to the
heavy quark field b(z), in Eqgs. (2.80), (2.88), and (2.94), leads to dimension-seven
contributions to the WE, PI, and WA topologies. In the following, we discuss in
detail only the first two cases since the corresponding expression for WA can be
immediately obtained using Eq. (2.93). However, before considering the specific
contributions separately, it is convenient to derive some general results which will
facilitate the computation. We recall that the incoming momentum p* is the sum
(for WE and WA), or the difference (for PI), of the b-quark and of the light-quark
momentum, i.e. p* = pj' + pl, here py = mpu* + k*, while ¢ = q1, ¢z, g3, respec-
tively for the case of WA, PI and WE. Taking into account that k ~ p, « m;, the
square of the incoming momentum can be written, up to terms of order O(1/m}),
as p?> = m? (1 + z), with the small parameter z given by

v-k oV Pq

z=2 «1. (2.104)

my myp

Correspondingly, the heavy quark field b(x), using the framework of the HQET, see

Section 1.2, can be expanded in powers of 1/(2my), as

b(z) = e—imv (h (z) + Zﬂh (2)+ O (%)) , (2.105)

b

where h,(x) denotes the effective heavy quark field, which coincides with b,(z) at
leading order in 1/my, and which obeys to the equation of motion (iv- D)h,(z) = 0,
following from the HQET Lagrangian in Eq. (1.44). However, in the original QCD

86



Chapter 2 Practical Calculations within the HQE

Lagrangian in Eq. (1.58), there are also subleading contributions suppressed by
the heavy quark mass, which are treated as perturbations to Luger, cf. Lpower in
Eq. (1.59), so that, in the expansion of the matrix element of an operator containing
the heavy quark field, their effect must be included in a standard perturbative way
by taking the time ordered product of L,,e- With the corresponding leading order
operators, see Eq. (1.64). It then follows that

_ _ 1 [- _ -
bluqql,b ~ h,Tqql by, + Dy [hvfuqqfuilﬁhv + hv(—iID)Fuquth]
b

1 _ 1
+ —zfd‘ly T{hvrﬂqqryhv, £1(y)} + 0O (—2) : (2.106)

my my

and for brevity we have not specified the colour structure. Note that in Eq. (2.106),
the equation of motion for h,(x) has been used to replace the action of D with
that of D, and that the symbol =~ refers to the fact that left and right hand side
of the equation must be evaluated respectively between QCD and HQET states, cf.
Eq. (1.64) and see for more details Ref. [109] '*. Moreover, the non local operator
in the second line of Eq. (2.106), parametrises the contribution of the first power
correction to the QCD Lagrangian, i.e. £; in Eq. (1.65).

Taking into account that the action of a derivative on h,(z), returns only small
frequencies of the order of k and that ¢(x) describes an outgoing antiquark with

momentum p/, we respectively have '

vk (ﬁvfuchl“,,hv> ~ lim <ﬁv(x)Fuq(x)q(x)FViv . th(;p)) ~0, (2.107)

while

- (BUFquT,,hU) ~ lim (ﬁv(x)FM(—iv-D)q(x)q_(x)F,,hv(x)) — —h,Dyiv-Dgqlyh |
(2.108)

where Eq. (2.107) vanishes due to the equation of motion for A,, and in Eq. (2.108),
the small momentum p, has resulted in a dimension-seven operator with a covariant
derivative acting on ¢q. Consider now the expansion of the product of two momenta,

namely

5 However, for simplicity, in the following we will just use an equal sign.
6Recall that in the FS gauge A4,,(0) = 0, and that the action of a partial derivative at the origin
can be replaced with that of a covariant derivative, see Section 1.3 and also Appendix A.
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U#/{V Uyk,u Y VY pH 1
p'p’ =my (v“v” + + R R G| <—>) ) (2.109)
my my my my

which, combined with the result in Eq. (2.106), yields

p'p” <5Fuqqub)

_ 1 - .
=m; <hv(1 —%5)qq(1 + v5)hy + Ebhv(l —95)qq(1 + 75)ilDh,

I . _ Mg+ _
+ EZJd“yT{hv(l —¥5)qq(1 + 75)hv,£1(y)} - Qihv(l —¥5)qq(1 — 5)hy + .. ) :

(2.110)

where the ellipsis stand for terms of order O(1/mj). Notice that in Eq. (2.110),
the anti-commutation relation WD = —]D;é + 2v - D, and the corresponding equa-
tions of motion for h,(z) and for the light field, i.e. (i[) —m,)q(x) = 0, have been
used. Moreover, we have taken into account that operators related by Hermitian
conjugation lead to the same matrix element, hence a factor of 2 has been included.

Specifically these are

«—

ho(=iD)(1 = 35)a(1L +18)hy = [Bu(1 = 35)aa(1 + %)(z’zmhv]T , (2.111)

and
ho(1 + 75)qq(1 + 75)hy = [i_zv(l —5)qq(1 — 75)hv]T : (2.112)

Finally, we introduce the dimension-seven four-quark operator basis, which for clar-

ity, we split into three categories, namely

P = m, (11— 35)a") (@ (1~ 3)H) (2113)
P = (i (1 = y5)iv - D) (@4 (1 = 35)h]) (2.114)
P = (hi(1 = ~s)iv - Dg) (F (1 + 75)h) (2.115)
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parametrising the effect of the light-quark momentum p,,

R = (hi(1 = 75)q") (7" (1 — 75)ilDh) (2.116)
R = (hi(1 = 45)q") (@ (1 + ~s)ilPh3) | (2.117)

describing local contributions due to the expansion of the heavy-quark field, and

M = z’fd‘*yT{O&q), Oj(y)} , (2.118)
MY = z'jd‘lyT{qu),(’)H(y)}, (2.119)
M = z’fd”‘yT{Oé”, OI(y)} , (2.120)
M = Z-dem{og@, (’)H(y)} , (2.121)

with Oy ;r defined in Egs. (1.69), (1.70), corresponding to the non-local contribu-
tions generated by taking the time ordered product of the 1/m; correction in the

Lagrangian in Eq. (1.59), with the dimension-six local HQET operators

O = (Bin(1=5)q' ) (#2"(1 = 35)h7) (2.122)
O = (R(1 = 35)a") (@ (1 +5)07) (2.123)
O = (Rino(1 = 0)t5e’) (27 (1 = )il (2.124)
OF = (W1 =)t ) (a1 +26)th, ) (2.125)

Note that the 1/m;, contributions arising from the expansion of the heavy quark
momentum vanish due to the equation of motion for h,(z). Apart from the oper-
ators in Egs. (2.113)-(2.121), the basis includes also the corresponding colour-octet

operators 75£Q), 755‘1), 75?@, 7~€§Q), 7%&1), containing respectively the colour matrices %,
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and Mﬁq), /\;léq), /\?lgq)/\?tff), in which we must replace ©; — O;. For brevity however,

we omit to explicitly show them.

With the above results, it is straightforward to obtain the expansion of Eq. (2.80),
up to order O(1/m3), namely

G%
127

X {kl

-2 (m(m,m) — yo(x1, T2) z) (1-2) (Oéqs,

Im 7VE =

1—x —
"/qlb|2|v113!I2|2m§ /\(Lxlal?) <l+w )

A(]-u Zy, x?) :

. qu?)) . ngg) . Mgls)>

. O(q:a)
(wl(l'l,lfz) yl(xlaxQ) Z)( 1 mp my my

R(%) M(qa) M(Q3) fP(qa)
A B B A S St | )

my mp my my
+ <k1 — ko, singlet — octet> +0 1 (2.126)
) m[% )
where
yi(a,b) =2(a—b)* + (a +b), ya(a,b) = 4(a—b)?—(a+0), (2.127)

and the small parameter z is defined in Eq. (2.104) (with the plus sign). The lead-
ing order result in Eq. (2.126) reproduces the dimension-six expression obtained in
Eq. (2.97), but with the QCD operators, i.e. Q\% Q% see Egs. (2.100)-(2.103),
replaced by the corresponding HQET ones i.e. qug)) @§q3>, see Eqgs. (2.122)-(2.125).

Moreover, using Eqgs. (2.107), (2.108), to rewrite z in terms of derivatives acting on

light-quark field, we arrive at the final dimension-seven contribution, which reads
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G2

I WE
m 7, 1o

’V;hb| |VZIBQ2|2mb )‘(17 I, IQ) {kl [Wl(xl’ IQ) <R§q3) + Mg%) + Méq3)>

(1 =29 — )

+ 2
)\(1a Ty, '7:2)

(2 wa(x1, 2) Pzgq Y- wi (21, 72) P(qd )

+ 2ws (1, T2) ( (P(% - P§q3)) _ <R§q3> + M+ M§q3)>>

+ 2 (yl (w1, 22)P*) = 2oy, 25) P >]

+ <k1 — ko, singlet — octet>} : (2.128)
Similarly, it follows that the expansion of Eq. (2.88) up order O (1/mf), yields

G2

2_71:|V111b|2“/:13%|2ml% )‘(17 Iy, SL‘3) (1 — T — x3)

(x1 + x3) (1 -2y — x3)
L+ <(1 — T — x3) - A1, 21, x3) ) Z]

R(‘D) (g2) (g2)
X{k3[0§q2)+ L M +M2]

Im 7 =

X

my my my
. 1
+ (kg — ky , singlet — octet) + O (—2> } , (2.129)
my,

with the small parameter z defined in Eq. (2.104) (with the minus sign). Again,
the leading order contribution in Eq. (2.129) reproduces to the dimension-six ex-
pression obtained in Eq. (2.98), but with the QCD operators, i.e. Q; (42) Q) (@2) " gee
Egs. (2.100)-(2.103) replaced by the corresponding HQET ones i.e. (’)i'm, (’)Z(q2 , see
Egs. (2.122)-(2.125). Moreover, using Eqgs. (2.107), (2.108), to rewrite z in terms
of derivatives acting on light-quark field we arrive at final dimension-seven result,
which reads
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G2
Im ,T7PI = 2_;“/;11b|2|vng2|2mb )‘(17551; 173) (1 — I — x3)

X {k’g

+ (kg — ky, singlet — octet> } : (2.130)

(1 — T —333) )\(1,1’1,1’3)

R 4 M) 4 pqlae) +2< (1 + x3) N (11— —:cg)) plae)

Finally, the corresponding dimension-seven contribution to the WA topology is sim-

ply obtained by replacing Cy < Cs, and ¢; <> g3, into Eq. (2.128), namely

G2 1 1 1
I T = ZE Vo P Vsao P/ AL, 23, 22) {k [m(xg,xz)(nﬁq D M M)

(1 — X3 —IQ)

2
T N 20)

<2 w2 (T3, T2) ng‘“) — wy (3, T2) 732(‘71))
+ 2wq(x3, T2) (2 (7)1((11) _ ?Ecn)) _ (qul) +M§q1) i Miq1)>)

+ 2 <y1(9€3, 29)Ps — 2y (5, 5) 73:5(“))

+ (k5 — kg, singlet — octet) } . (2.131)

We emphasise that the results in Eqgs. (2.128), (2.130), and (2.131), can be applied
without any difference, to the description of baryons as well. In fact, in this case, the
sign change in front of the light-quark momentum i.e. p* = pj F ply, is compensated
by the same sign change in front of the operators Pi(q), i = 1,2,3, since now ¢(z)
describes an incoming quark with momentum pf.

To conclude, we note that we have derived the dimension-seven contribution in terms
of operators defined in HQET, the corresponding expressions in terms of QCD fields
are obtained by expanding Eqgs. (2.80), (2.88), and (2.94), only in the small momen-
tum p, of the light spectator quark, but not in the HQET field. This results in the

following basis
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P = mg (b1 —5)g") (7 (1 — 1)) , (2.132)
1 - < ) ) )

P = o (0Dl = 95) D7) (@9 (1 = 35)V) (2.133)
1 - < , ) )

P = - (0'Du(1 = 93)D"q') (@ (1 + 35)V) (2.134)

together with the colour-octet operators PZ-(Q). Due to the presence, in Eqs. (2.133),
(2.134), of a covariant derivative acting on the b-quark field, which scales as m;, at
this order, there is no explicit power counting, differently to the HQET basis. The
corresponding QCD result for Egs. (2.128), (2.130), (2.131), can be immediately ob-
tained by setting in these expressions, qu), REQ), MEQ), ME") to zero and by replacing
Pi(q) — PZ-(Q) and 751-(‘1) — ]Bi(q). We stress that, in this case, the difference in the op-
erator basis is compensated by the different parametrisation of the corresponding

matrix elements in QCD and in HQET, cf. Chapter 4 and Appendix G.
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Chapter 3

Contribution of the Darwin Operator

In Section 2.1 we have discussed the calculation of the dimension-three and dimension-
five contributions to the HQE of a B meson due to the single mode b — cud and using
the representation of the quark-propagator in coordinate space given in Egs. (1.121),
(1.124). In the present chapter, we generalise the above results by computing the
coefficients of the two-quark operators in the HQE, for the generic b — ¢1G2q3 tran-
sition and up to terms of order 1/mj, where the latter describe the contribution of
the Darwin operator, see Eq. (1.157) 1. The representation derived in Ref. [130] for
the calculation of the imaginary part of integrals containing Bessel functions, is not
sufficient for the case in which more than one propagator is massive, hence now the
whole computation is performed in momentum space, using the expression of the
quark-propagator given in Eqs. (1.98), (1.102). Specifically, we start in Section 3.1,
by computing the expansion of Im7 % up to order 1 /m3. We will find that the
coefficients of the Darwin operator develop IR divergences in correspondence of the
emission of a soft gluon from a light quark propagator. In particular, the singular-
ities originate from the expansion of the propagator of the up, down, and strange
quarks, which we consider massless, and are logarithmic, namely the correspond-
ing coefficients have the asymptotic form ~ log(m?/m;) in the limit mg, — 0, with
q = u,d,s. As described e.g. in Ref. [73], these logarithmic infrared divergences
are due to the mixing between operators of the same dimension under renormali-
sation. This is discussed in Section 3.2, where we compute the one-loop diagram
describing the mixing of the four-quark and the Darwin operators and perform their
renormalisation in order to ensure the cancellation of the IR divergences. Finally,
the complete expressions for the coefficients of the Darwin operator are presented in
Section 3.3 together with a discussion of the results. The structure closely follows
the one of Ref. [137].

'We stress that again, the computation is performed only at LO-QCD.
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3.1 Computation of '?)(B) up to order 1/m;

The starting point for the computation of the contribution of two-quark operators

is Eq. (2.10), which we state here again for practicality, i.e. 2

1
TE) = 2T 4+ 20,0y (ﬁﬂ(f‘“ - 2’6‘5")) +C3 7557, (3.1)

[

with Egs. (2.12), (2.13), compactly written as

G7 : - v
Tt = = Vel Vi i f d'e b, (1 = 75) {45 (0, 2)7,(1 = 95)b(x)

x Tr [fy”(l — ) {t*}iS%) (0, )y (1 — 75)iS“ (2,0) | + (z < 0).  (3.2)

Note that only in the case of 7’1(32‘]) the SU(3). generators t* appear on the r.h.s.
of Eq. (3.2), as indicated by the curly brackets, and that a summation over colour
indices is understood. Furthermore, the corresponding expression for 7;(22[1) has been
omitted, since it can be derived from that of 71(12Q) by taking into account the result
in Eq. (2.18).

Being interested in the expansion of 79 up to order 1 /m3, we must now sub-
stitute in Eq. (3.2), the complete expression of the quark propagator derived in
Section 1.3, namely including also terms proportional to one covariant derivative
of the gluon field strength tensor D,G,,. It is worth remarking that the colour
structure of Eq. (3.2) allows for a straightforward treatment of colour, in complete
analogy to what has already been discussed in Section 2.1.2. To this end, it is
convenient to single out the colour structure of the propagator in Eq. (1.97), which

schematically reads

S (p) = S (p) i + S (p) o + O(t) . i=1,2,3, (3.3)

where Séqi)(p) denotes the Fourier transform of the free-quark propagator given
in Eq. (1.74), while SI(Qi)(p) includes higher order corrections due to operators of

dimension-two and dimension-three describing the emission of one soft gluon field,

2Note that the superscript (g1g2q3) is often omitted for the sake of a cleaner notation, however
it must be always understood.
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Figure 3.1: Two-loop diagrams describing power corrections due to the expansion of
the quark propagator up to order 1/m$, from the Q@ ® Q; (left) and Qo ® Qs (right)
contributions.

Figure 3.2: Two-loop diagrams describing power corrections due to the expansion
of the quark propagator up to order 1/m3, from the Q; ® Q3 contribution.

see Eq. (1.98), and again the superscript (¢;) has been introduced in order to dis-
tinguish between different quarks. As consequence of fact that Tr[t*] = 0 and that
terms quadratic in the gluon field strength tensor correspond to operators in the
HQE of at least dimension-seven, a soft gluon cannot be emitted from all the prop-
agators in Eq. (3.2). Specifically, in the case of 7,29 only the contribution of S
is non zero and hence, because of Eq. (2.18), only qug) contributes to 75(22@, see
Figure 3.1. Finally, in the case of 71(32‘1), we can independently expand the two prop-
agators inside the trace and both quz) and S£q3) give a non vanishing contribution,
see Figure 3.2.  Substituting Eqgs. (1.96), (1.100) into Eq. (3.2), and taking into

account Eq. (2.18), we respectively obtain 3

3Note that the replacement in Eq. (2.26) is used.
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2q_

d4l1 d4l2 d4l3 i g .
|Vqlb\ |‘/q3q2|2jd4 J J J(Zﬂ') o iprHiz—l1~l3)

x b (1= 5) (S67) (1) + S (1)) (1 = 3500
x Tr [m —95)S5™) (1) (1 = 75)S¢™ <z2>]
(1= 9) (8 (1) + S (1)) 7L = 35

; 1
X Tl“[ (1 - ’}/5) S (g3) (lg) (1 — 75)86(12)([2)] el(pb+lz—l1—l3)'a:} L0 (E) ’
b

(3.4)

d'h d'ly d*ls —i —li—l3)x
F|Vqlb| |V;3q2|2fd4 J J J(%) o~ ilpyla—li—ls)

% by, (1 = 75) Se™ (1) 71 — 5)b

T v(1 _ S(%) I 3(@(3) I 1— S (g2) I
x Tr|7"(1—5) (Sp (I3) + S (I3) ) (1 — 7s) (I2)
+ el By (1= ) I (1) (1 = 5)b

x Tr [7”(1 —5) (S((,qg)(lg) + qug)(ls)) (1 — ’75)8(()q )( )] } +0 <mif;>

(3.5)
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and

4 4 4
|Vqlb| |Vqsq2|2fd4 j o J o J(;l li {e_i(p”+12_ll_l3)'x
T

b (1 - 75)5 (11)%(1 - 75)5

x {Tr [7”(1 — )81 (1) (1 — 75) S (12)]

i Tr[ Y(1 = 75)S4 (I5)y" (1 — 75)5?2)(52)] }
+elpetla=hla) @ g (] 75)3 (11)%(1 —75)b

X {Tr[ V(1= )81 I3y (1 = 75) 85" (12)]

£y [v (1 = 78)S (1) (1 — 1) 1, >] }} e ( ! ) L 39

mb

where, owing to the fact that starting with the dimension-three operator D,G,,,
the translation invariance of the quark-propagator is broken, see Section 1.3, the
second term in Eq. (3.2) must be explicitly computed and cannot be derived from
symmetry arguments. Note also that in writing Eq. (3.6) we have already taken into
account that the contribution of the free-quark propagator alone, vanishes because

of the traceless property of the colour matrices, cf. Eq. (2.20).

It is worth remarking that the expression of the propagator in Eqgs. (1.121),
(1.124) is infrared divergent in the limit of massless quark, cf. Eq. (1.125). This
point will be further discussed later on, for the moment it is important to stress
that by setting the mass of the up, down and strange quarks to zero, the logarith-
mic divergences would appear in Egs. (3.4)-(3.6) from the contribution of Sf“), Sfd)
and S*, starting at order 1 /m3. In the following, in order to regularise the inte-
grals, we keep the light-quark masses finite and only in the final expressions, once
the infrared divergences have been subtracted, we take the limit m, — 0, where
q = u,d,s. Moreover, the computation is performed in D = 4 space-time dimen-
sions since the imaginary part of the integrals Eqs. (3.4)-(3.6) is ultraviolet (UV)
finite at LO-QCD. Alternatively, Egs. (3.4)-(3.6) could be calculated in dimensional

regularisation setting in this case m, = 0 from the beginning [138, 139].

The manipulation of Eqs. (3.4)-(3.6) proceeds in a similar way and can be con-
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Chapter 3 Contribution of the Darwin Operator

veniently performed using e.g. the Mathematica package FeynCalc [156]. After inte-
grating over the variables z# and l%, Eqs. (3.4)-(3.6) reduce to a linear combination
of two-point two-loop tensor integrals with one external momentum pj and of pos-

sible rank r = 1,...,4, of the type

)

J 4l f d'l, N N T (11310 SO
(2m)* ) (2m)4 [l% —m? + is]al [l% —m3 + is]a2 [(11 + 1y —pp)? —m3 + is]as
(3.7)

with a; = 1,2,3. The tensor structure of the integrals in Eq. (3.7) can be simplified
using the procedure discussed in Appendix C for D = 4. As a result, each integral
of rank-r in Eq. (3.7), is expressed in terms of a linear combination of tensors of the
same rank built from the metric tensor g"* and the external momentum pj where

the corresponding coefficients represent scalar integrals of the form

3 -

(3.8)

J d*l, J d*ly {lill oy by - py, - }

2m)t ) o)t 13 —m? +ie] ™13 — m3 +ie] [ (L + lo — py)? — m3 + ig]"

Note that all the possible scalar products of the three momenta [, 14, pl’ appear
in the numerator of Eq. (3.8). In the next step, we use the Mathematica package
LiteRed [157,158] to perform the reduction of the set of scalar integrals obtained, to

a liner combination of master integrals (MIs). Let us introduce the notation

oo = [ e o 1
) @mr ) @m)t [ - md +ie] " [ - md 4 ie] [+ b — p)? —m +ie] ™
(3.9)

with n; € Ny, then the set of master integrals reads
{Im, Tor1, Tiot, Ti2, Lo1r, Lions Ino} : (3.10)

The first four integrals in Eq. (3.10) correspond to the MIs of the sunrise graph
with three different masses [159,160]. From the definition in Eq. (3.9), it evidently
follows that once the expression of Z;1; is known, the solution for the remaining

three MIs can be obtained by differentiating Z;;; with respect to the appropriate
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mass parameter, i.e.

0 0 0
Ty =T Ty = =T T = —5Th11 - 3.11
211 om? 11, 4121 om2 11, L2 o2 111 (3.11)

Furthermore, the last three integrals in Eq. (3.10) factorise into the product of two

scalar tadpoles, in fact, e.g. Z;91, can be rewritten as

I f (d411 1 J (d412 1 (31

24 12 —m2 +ie ) (2m)413 —md + g’

by performing the change of variable I} +15 —pl' — 14, and similarly for Zy;; and Zy .
However, we immediately point out that these do not contribute to Im7 9, since

the imaginary part of the product of two tadpoles vanishes, cf. Eq. (B.8), namely

ImIlOl = ImIHO = ImIOH =0. (313)

From Eq. (3.11), (3.13), it then follows that in order to compute the imaginary part
of the set of integrals in Eq. (3.8), it suffices to know the solution of the master in-
tegral Z;1; in the physical decay region p? > (m; 4+ ma 4+ m3)?, in correspondence of
which its integrand develops a discontinuity. Using the result presented in Ref. [161],
we obtain that *

(vs—m1)?
1 g NG mE,m3) As, t,m3)
25673 ts ’

(ma2+m3)?

ImIlu = (314)

where s = p?. However, the integral in Eq. (3.14) admits a simple analytical
expression if at most two masses are non zero. For three non vanishing masses,
its complexity highly increases and the solution involves elliptic functions, see e.g.
Refs. [162-165]. We emphasise that in the approximation of massless u,d and s
quarks, it is always possible to set at least one mass to zero and to compute all the
corresponding master integrals analytically, except in the case of b — ccs transition
where, as discussed above, we need to keep the mass of the s-quark finite in order
to regularise the IR divergence originating from SF). It follows that for this specific
mode, we do not provide an analytical expression for all the corresponding MIs, and

our results still require a numerical integration.

The integrals in Eqgs. (3.14)-(3.11), are scalar functions of the external momen-

4Note that we set d = 4 in the result of Ref. [161].
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tum p) and depend on the dimensionless parameters r; = m?/p7. At this point of
the computation then, taking into account that G,, = —i[iD,,iD,], see Eq. (17),
together with D,G,, = —[iD,,[iD,,iD,]|, see Eq. (19), the imaginary part of
Egs. (3.4)-(3.5) can be schematically written in the following form °

1T, = Fo (1) B + Gy, 7) BiD, ) 0D, )b

mn

+ D (py, ;) b(iD,,)(iD,)(iD,)b + O (%) , (3.15)

n
my

corresponding, respectively, to the sum of the contributions due to the free quark
propagator and to the two lowest dimensional corrections to this, namely the ones
proportional to the gluon field strength tensor and to its first covariant derivative.
We notice that Fi3(py, ;) = 0, since the free-quark propagator is colour singlet and
the contribution of the colour octet operator Qs, cf. Eq. (2.8), vanishes. Moreover,
another feature of Eq. (3.15) is that

]:22(]91), 7”1') = «7:11(}?1:77“1‘) ) (3-16)

which is the generalisation of the result given in Eq. (2.21), to the case of an arbitrary
decay mode of the b quark. Singling out the colour factor due to ¢; = N,., we can

write

Fi1(pp,1i) = N -7:—11(]91;77%‘) ; (3.17)

and then from Eq. (3.1) we readily obtain that

(q1G243)

I T2 _ (NC (C2+C2) +2 0102>F~1(§@Q3)(pb, ri) bb, (3.18)

d=3

which again generalises the result in Eq. (2.33). Furthermore, Eq. (3.15) presents
also the important property, already encountered in Section 2.1.2 for the specific
case of b — cud transition, that at order 1/m only the expansion of the ¢ quark

propagator gives a non vanishing contribution, namely

Gy (po, i) = G4y (o 1i) = 0, G5 (py,73) # 0. (3.19)

5Note that for brevity spinor and colour indices are not shown.
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This result has relevant numerical consequences, since the coefficient of C? at or-
der 1/mZ, is strongly suppressed. So far only power corrections deriving from
the expansion of the quark-propagator have been taken into account. The coef-
ficient functions in Eq. (3.15) depend on the heavy quark momentum pj explicitly
and implicitly through the variable r;. Introducing the standard parametrisation
Pl = mpv* + k*, see Section 1.2, and recalling the definition of the rescaled heavy
quark field b(x) = exp(—imyv - )b, (), see Eq. (1.145), each term in Eq. (3.15) can
be further expanded in powers of 1/my, resulting in higher dimensional operators
with additional covariant derivatives acting on the b, field. Specifically, in our case,
the expansion must be performed up to order 1/mj, hence power corrections to
the dimension-six coefficients D! (py, ;) in Eq. (3.15), can be neglected as these
would lead to contributions of order O(1/mj). Using the procedure described in

Appendix A, we then obtain

fmn(pbv Ti) Eb = fmn<mbvv pz) Bvbv + /Cf,m(mbv, pz) EviDubv

+ G (myv, p;) byiD,iD,b, + DFP(myv, p;) byiD,iD,iDyb, + ...
(3.20)

G (py, i) biD,iD,b = G (myv, p;) byiD,i Dy by +Dr? (myv, p;) byiD,iDyiD by +. . .
(3.21)

and

DHP(py, ;) biD,,iD,iD,b = DM (myv, p;) byiD,iD,iD,b, + ... (3.22)

n n

where the ellipsis denote power suppressed contributions of order O(1/m}) and we
have introduced the dimensionless mass parameters p; = m?/m;. Finally, in order
to compute I'??(B), we must evaluate the matrix element of Im7 9 between ex-
ternal B states. This can be conveniently done in the framework of the HQET, in
which, the residual mass dependence of the b, field and of the B meson state, can
be systematically extracted, leading to a further expansion in 1/m,. A consistent
procedure to determine the forward matrix element of operators containing multiple
covariant derivatives acting on the heavy quark field and to express them in terms
of a minimal set of non perturbative parameters, has been presented in Ref. [105].

Using their results, we readily arrive at the final expression for the contribution of
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two-quark operators to the total decay width of a B meson, namely

ré(B) =1

_ 2(B
(NCCIQ + 20102 + N0022>C(()q1q2q3) (1 . :U7r( ))

2
2mj

~—

2(B
+ (N ) 20,00 CEm) 1 NG el ) el
b

3(B 1
<N 02 Cglquqs 20,0, 6[1)1111122%) + N, 02 6[1)11;22(13)) p’j?i?) ) +0 (W) 7
b b
(3.23)
where we have introduced
G2m?
Lo = 192 g "/;llb‘Z“/l]ztIs‘z ) (3'24)

and the non perturbative parameters p2(B), p%(B) and p%(B) are defined as in
Eqs. (1.159), (1.160). In Eq. (3.23), C{*®%) refers to the partonic-level coefficient,
which coincides, up to a factor of (—1/2), with that of the kinetic operator Oy, /m3 °,
cf. Eq. (1.154), while CGqﬁlqi” and C [‘)“anf’ respectively describe the contribution of
the chromo-magnetic and of the Darwin operators. Note that having adopted a
covariant definition for these operators, the coefficient of the spin-orbit operator
Ops, cf. Eq. (1.156), is identically zero, see for more details e.g. Refs. [105,138,166].
Moreover, we stress that while C{*'%%) and Cé];q;qg are finite functions of at most
one dimensionless mass parameter p = m?/m?, and we list their complete expres-
sions in Appendix D, as previously discussed, the coefficients of the Darwin operator
still depend on the infrared regulator m,, with ¢ = u, d,s. These in fact, have the

following schematic form

C\ 1) _ Rgﬁl‘b%) + D%ﬁz%) 7 (3.25)

Dmn

where R(qmq?’ are finite functions of at most the dimensionless parameter p, while

D%9) ahsorb the remaining divergent contributions, namely

_ m2
Di=1) ~ log (—;’) , (3.26)
my,

5This follows from the reparametrisation invariance of the HQE, see e.g. Ref. [166].
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N

Figure 3.3: Schematic representation of the OPE at order 1/mj. At LO-QCD, the
Darwin operator is generated at two-loop, whereas the four-quark operators arise
already at one-loop.

.,9
|
§

and their explicit expression can be found in Appendix E. Eq. (3.26) shows that the
functions Cg{fﬁfg) are logarithmically sensitive to the light quark mass m, « m.
However, the advantage of constructing the operator product expansion lies in the
introduction of a factorisation scale p, in terms of which the dependence on the
hard, i.e. pu, and soft i.e. us scales with my > pp, = p, and ps < p, is respectively
factorised between short distance coefficients and matrix elements of local operators,
see e.g. Ref. [71]. Eq. (3.23) alone, including the effect of two-quark operators only,
does not correspond to the complete OPE up to dimension-six because starting at
this order also four-quark operators contribute. In fact, the logarithmic infrared
divergence in Eq. (3.26) reflects the mixing between operators at order 1/mj under
renormalisation. It follows that by solving the corresponding RGEs, the dependence
on the light quark mass in the coefficients in Eq. (3.25) can be correctly absorbed
in the matrix element of local operators, making then manifest the factorisation

between hard and soft scales. This is discussed in detail in the next section.

3.2 Operator-mixing at order 1/m

To understand the origin of the IR divergences in Eq. (3.26), and how these are
properly subtracted, we study the structure of Eq. (1.144) at order 1/mj. Within
the HQE, the imaginary part of time ordered product of the double insertion of the

effective Hamiltonian is expanded in a series of local operators with new effective
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Figure 3.4: One-loop diagram describing the mixing of four-quark operators with
the Darwin operator.

couplings. This can be schematically written as 7

A T)| = oo (b0) Opp)po) + 5 & (o) - (Oi o), (3:27)

9=491,92,43

where the shorthand (...) denotes a matrix element between external B meson
states and the dependence on the scale 1y at which the matrix element of the local
dimension-six operators are renormalised, is now explicitly indicated. In Eq. (3.27),
the Darwin operator O,, is defined as in Eq. (1.157) and we have introduced a

compact notation for the four-quark operators listed in Eqgs. (2.100)-(2.103), namely

6 (0. 0. 6. o) . (3.25)

In the following we want to determine the short distance coefficients c,, (¢o) and

1(3) (t0). The OPE leading to Eq. (3.27) can be schematically visualised as in Fig-

ure 3.3. It has the peculiarity that the order of the Darwin and of the four-quark

operators, in terms of the loop- and a,-expansion, does not coincide. Specifically,

while the four-quark operators are generated at one-loop at order oY

0

s*

, the Darwin
operator arises only at two-loop again at order «. It follows that the one-loop
correction to the four-quark operators, shown in Figure 3.4, is of the same order
in terms of loop- and a,-expansion as the coefficient of the Darwin operator and
must be included to obtain the complete contribution to ¢,,(10) at LO-QCD, see
e.g. Refs. [167-169]. We note that operator mixing at zeroth-order in «, has been
extensively discussed for the b — sv effective Hamiltonian, see e.g. Refs. [170-172].
In order to evaluate the diagram in Figure 3.4 for all four operators in Eq. (3.28),
we start by considering the one-loop matrix element of the colour-singlet operators

in the presence of a soft gluon field A, (), which is obtained by computing the time

"Note that the superscript (q1¢2¢3) and the subscript mn are omitted for the sake of a cleaner
notation, however they must be always understood.
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ordered product of Ofﬁgj, 7 = 1,2, with the interaction part of the QCD Lagrangian

Sép(x) = X, qA(x)q. This reads ®

<OZ(L(<11),j>17100p = <ifd4ZT{6§3?j7Z Q'<z)A(Z)q,(Z>}> RERE

— (b, ( f d4ziSéq)(—z)iA(z)iSéq)(z)) Tib)y+ ..., (3.29)

where the ellipsis denote terms with more than one gluon field, SéQ) (r —y) is the

free-quark propagator and for convenience we have introduced the notation

[1=7(—9) To=0+7%), T;=%lls. (3.30)

We recognise in the term in round brackets of Eq. (3.29) the first order correction to

the free-quark propagator for vanishing space-time separation, cf. Eq. (1.77), namely

f A28\ (—2)id(2)iSS?(z) = lim iS\9(z,0), (3.31)

which, in the F'S gauge, admits the Fourier representation

d*l
: (9) _ (9)
glelir(l) S (z,0) = f o) S,7(1), (3.32)

with Sl(q)(l) given in Eq. (1.98). The integral in Eq. (3.32) has both UV- and
IR-divergences in the limit of massless quark ¢q. To regularise the former we use di-
mensional regularisation, setting the number of space-time dimension to D = 4 — 2e,
for the latter we must choose the same regularisation scheme applied to the com-
putation of the coefficients in Eq. (3.25), hence we keep the mass of the light-quark
running into the loop finite. The algebra of gamma matrices in D dimensions is

computed using the naive dimensional regularisation (NDR) scheme, with

{’Ymﬁ)/u} = 2g;wa g;wglw =D, {7u775} =0. (3'33>

Taking into account in the expression for the quark-propagator Sl(q)(l) that G, =
—i[iD,,iD,| and that D,G,, = —[iD,,[iD,,iD,]], Eq. (3.29) becomes

8Note that summation over colour indices is understood.
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D .
(@) Y d-l )
Olnen = Ol | Gy { TaE—mpr iR
)

L 21D I
Bl —m2 iz \ TP —m2 + ie)

Dy, [D7, D7]]

T z'fzwepw}rjbv> +o. (3.34)
q

We stress that due to the chiral structure of Eq. (3.34), terms in the propagator pro-
portional to an even number of gamma matrices do not contribute and that we have
used that y5I'; = I';. Moreover, the first integral on the r.h.s of Eq. (3.34) vanishes,
being the integrand an odd function of [* and the integration domain even. This
result is independent of the colour structure of the operator inserted in the vertex of
the diagram in Figure 3.4 and applies also to the matrix element of the remaining
colour-octet operators in Eq. (3.28). Hence, the four-quark operators 6&3) do not

mix with the chromo-magnetic operator at order a? ?. Eq. (3.34) then simplifies to

Py e puor

__ ( d°l ([D,,[D°, D]
(@) _ ) Vs )
<O4q,j>1floop = —(bI; f (2m)P {(lQ _ mg + ig)3

[Dy, [D?, D] /
(17 —m2 + ic)? (7“ - l“m)

e
3

[V 1Py
(12— m2 + ic)?

_ g[pw [D,, D,]] }ijv> +.... (335)

The dimensional analysis of Eq. (3.35) reveals an interesting subtlety. From

D -1

W] = T? [Du] = 17 [lu] =1, (336>

where the square brackets denote the dimension in units of mass i.e. [m] = 1 and
Y an arbitrary fermion field, see e.g. Ref. [38], we obtain that while Eq. (3.35) is

9Note that mixing with lower-dimensional operators can arise at NLO-QCD, see e.g. Ref. [173].
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dimensionally correct, since both sides have the same mass dimension, the integrals

in Eq. (3.35) have now become dimensionful, namely

U (12 - ncng z’s)2] =0 = U = Zg: 2.5)2} = —2¢. (3.37)

This fictitious dimension is an artefact of the regularisation scheme and does not

correspond to any physical parameter. In fact, in this case, the integrals in Eq. (3.35)
would be expressed in terms of ill defined logarithms with a dimensionful argument,
cf. Egs. (B.1), (B.23). The origin of this mismatch lies in the different scaling be-
tween the Darwin and the four-quark operators with the number of dimensions, see

a similar discussion, for the case of b — sy and b — sg, in Ref. [172], i.e.

[(5513)} —6-4e # 62 = [OpD] . (3.38)

In order to keep the integrals in Eq. (3.35) dimensionless, we must introduce a scale

factor of 1% in the integration measure. Eq. (3.35) then becomes

.

D o T
(9) — 2 T 2ef d”l [D,, [D?, DT]]
<O4q7]>1floop 1% < v ],u (27T)D <l2 _ mg + i8)3

2 [D,,[D*, D*]] /
+§(12—mg+z’s)2 <7“_l“(z2— '))

— =[D,,[D,, D,]] G _gvzﬂfy# = } Libyy+ ... . (3.39)

Using the results in Eqgs. (B.21), (B.24), to evaluate the scalar and tensor integrals
in Eq. (3.39), we obtain that

9% /T T ]_ vuoT
<Oé(l?1)7j>1—loop =—H ? <bvrj {Zzo(m§>[DV7 [DC” DT]]E :

+ %Io(m?,)[Dm (D7, D"]] }% L)+ ..., (3.40)

where Zo(m?) is given in Eq. (B.23). The gamma structure on the r.h.s. of Eq. (3.40)

reduces to
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Y (I =9)7 7 (L=7) =22 -D)yp(1—-9), j=1, (3.41)

(1 =75) 7 (L +795) =27 (1 + ), ji=2, (3.42)
and by substituting the expression in Eq. (B.23), it follows that

a; 9 1 qu
<Oﬁ(l?z),j>1*loop = T;Q [M 2 (E —ve + log(47r)) + log (W) + bj]

q

x [2<5v [Dy, [Do, D177 (95 + (=1)7) by
+i(by[D,, [D?, D*]]y, (1 + (—1)jfy5)bv>] +..., (3.43)

with
a1=2, blz—l, GQI—l, bgzo. (344)

Note that the tensor decomposition of three gamma matrices Eq. (7) has been used
to rewrite ¢ €”?7*~, in the second line of Eq. (3.43), see also Eq. (2.54), and that
terms O(e) have been already neglected. We emphasise that the presence of the
constant terms b; in Eq. (3.43) depends on the choice of the four-quark operators
basis in Eq. (3.28). This will be discussed further at the end of this chapter.

In order to simplify the structure of Eq. (3.43) and identity the relevant opera-
tors, first we take into account that due to parity conservation, matrix elements
with an odd number of 5 vanish, then we recall that the rescaled heavy quark
field b, (x) satisfies (iv - D)b,(z) = O(1/my), cf. Eq. (1.149), together with ¢b,(x) =
by(x) +O(1/my), cf. Eq. (1.148). It follows that the two operators in the second and
third line of Eq. (3.43), respectively give

110



Chapter 3 Contribution of the Darwin Operator

bo[ Dy, [Do, D777 b
= % <<5v¢[Dy; [Dy, DV by) + (bo[ Dy, [ Dy, DT]],yV,)/UfyT?jbv>> L

1 -
= §<bv [Dy,,|D,, D-]] (W”v"f + Py + 2079y — 2v“7”f> by)+ ...

= —i<6v [DV,[DJ’ DT]] <UV0-U7' + T — UJO_V7—> bu> L

_o(L), 3.45
(o) (3.45)

where in the last step we have taken into account the result in Eq. (1.67), which

applies up to order O(1/my;), moreover

ibo[ D, [D”, D' ]Jyb)

(BurLDys LD DX 13ub) + Bul Dy [0, DI yafbn) + ..

NSRS

= LD, (D7, DI ) + -

={b,[iD,, [iD",iD"]]v,b,) + ...

= 200y e + O (i) , (3.46)

my

with .
(Opptree = 3 (Blb, [iD,,[iv - D,iD"]] b,|B) . (3.47)

Using Eqgs. (3.45), (3.46), from Eq. (3.43) we finally obtain

<OpD>tree + ... )

(3.48)

q

a; e (1 12
<Q(1?1?j>1*loop - 12;2 [M ? (E —YE + 10g(47r)) + log (ﬁ) + b
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and the ellipsis refer to terms of higher order in a; and 1/my,. We can now consider

the one-loop matrix element of the colour octet operators (91(51)73- 12, J = 1,2, namely

<O4qj+2>1 loop = <2Jd4ZT{ 4qy+2’2 }>+

- <55Jrjt7m< J d*ziS (=2)if ()t i (2 )) TN SR
(3.49)
where for clarity the colour indices have been explicitly indicated. Taking into ac-

count the relations in Eqs. (9), (11), it is straightforward to simplify the product of
three colour matrices on the r.h.s. of Eq. (3.49), i.e

(ta . tb . 7fa)ls _ (tb 1o ta) + Z-fabc (tc . ta)[g

ls

1
_ CFt?s . 5Jcbzzc.]cclact;is
=t} (C — 7) =~ 5t (3.50)

Substituting Eq. (3.50) into Eq. (3.49) and comparing with Eq. (3.29) we can readily
obtain that

<Oz(12j+2>1—l00p =

4, - qla) . . olq
2N (Jd 21Sg (—z)zA(z)zS((] )(2)) L;b,)

., (3.51)

(9)
4q,j

and the ellipsis stand for terms of order O(as) and O(1/my). Eq. (3.51) shows that
up to higher order corrections, to compute the mixing between the four-quark and
the Darwin operators, it is sufficient to know only the contribution of the colour

singlet operators <Oif1)’j>1_loop. The basis in Eq. (3.28) is then redundant and the
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computation would appear simpler if we would had chosen the equivalent basis '°

aw' = (0, 0,0, oY), (3.52)

in terms of the colour-rearranged four-quark operators

O = (B (1 = 75)g™) (@™ (1 = s)b,) (3.53)
O = (BL(1 = 75)g™) (7" (1 +75)0l) - (3.54)
In fact, from
|
0} = (2000 + 70, ) (359

it immediately follows that

1

my

(O D —toop = O < ) + O(w). (3.56)

However, we will continue the computation using the original basis in Eq. (3.28).

The one-loop matrix elements in Eq. (3.48), and then also in Eq. (3.51), are
divergent in the limit ¢ — 0 and need to be renormalised. For the sake of clarity,
let us introduce the compact notation for the dimension-six operators in Eq. (3.27)

and their corresponding coefficients i.e.

O = (opD,;@g) . E= (ch,Zq] @fg)) (3.57)

so that the operator renormalisation reads

(OY = 20, (3.58)

where (O)©® and (@) denote respectively the bare and the renormalised matrix el-

ements and the Z matrix is constructed, by definition, to absorb the divergences of

10We stress that the computation in Ref. [137] has been performed in this basis.
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(OYO) From

<6>(0) = <(§>tree + <6>1—loop + ... ) (359)

and Eqs. (3.48), (3.51), we can read the expression of the Z matrix and of the renor-

malised matrix elements (@), in the MS scheme [174] and at order a2, namely

1 0000

Zyn 1.0 0 0
Z=|%n 01001+ 0(), (3.60)

Zy 0 0 1 0

Zsp 00 0 1

with
T & log(4 3.61
21_1271-2” E_7E+Og< 7)), (3.61)
T = <2 (1 log(4 3.62
5= paH | e tlogldn) ), (3.62)
Zn= Lo, Ly = Z (3.63)
41 2Nc 21 51 = 2NC 31, .
and
<OPD>(/1’> = <Opp>tree + O<Oés) s (364)
(q) a; 2
<O4‘I’j>(:u’) = <O4q,j>tree + _127T2 IOg ﬁ + bj <Opp>t7’ee + O(as) , (365)
q
< 4q,j+2>(:u> - < 4q,j+2>tree - W ﬁ og w —+ i < pD>tree + (a8>7
€ q

(3.66)

where j = 1,2 and a;, b; are given in Eq. (3.44). While Eqs. (3.64)-(3.66) describe
how the renormalised matrix elements depend on the renormalisation scale p, the
behaviour under a variation of y is obtained by requiring that the bare matrix ele-
ments (O)® in Eq. (3.58), are scale independent, i.e.
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d
d log p?

oy

(OYD) =0, 30, (3.67)

dlog 2

with the anomalous dimension matrix (ADM) 4 defined as

R d R
=7t — 7 3.68

or explicitly, taking into account Eq. (3.60)

0 0000
Y1 0 0 0 0
=1 000 0+ O(ay), (3.69)
1 0 0 0 0
%1 0 0 0 0
where
a1 ) 21 V31

- - S = — ) 3.70
Y21 1972 Y31 1972 Va1 2N, V51 2N, ( )

The RGEs for the renormalised matrix elements in Eq. (3.67) lead to the corre-

sponding ones for the renormalised coefficients ¢, since the product
(ImT)| =¢& (O, (3.71)

must be scale independent. We then obtain the following system of equations

d(0) 3
leg ,UQ = =7 <O>7
L (3.72)
¢
dlogpu? e

which can be easily solved since # is constant at this order. Integrating from the

matching scale © = my to u = pg, respectively yields
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(O (0) = (Opy)(ims) + Olar) (3.73)
(G (0) = (CD>my) — 7 1og( 2)<OpD><mb> LO),  (374)
together with

& (o) = &2 (my) + O(a) (3.75)

q

o) = Gy ) + 237 ) o (15 ) + 0, 370

and we have defined 4 = (721,731,741,751). Substituting Eqgs. (3.73)-(3.76) into
Eq. (3.27) and taking into account Egs. (3.64)-(3.66), we arrive at

<OPD >tree

<Im77‘d:6 = [CpD (my) + ;7 2 () log (”_3)

2
my,

2 C(q)' (my) . m2
+2.0 (Cig,)j (my) = = ]2V Tor? [log (m_g) * bj] Opp irec

q j=1 q
2

# Dl m) - |G 108 (15 ) Oy | + 00) . 371

b

in which the dependence on the renormalisation scale pg cancels, consistently with

a calculation of order a?. Dropping for simplicity the the suffix tree, we then obtain

(T = G (me)(Op) + Y840 (ma) - (OL2)

(Q) 64(3,)3‘4,-2 (mb) Qj 1 ml2) b. O O
X3 (el - ) e wE) o] ©u) + ).

q j=1
(3.78)

The Lh.s. of Eq. (3.78) has been computed in Section 2.2.1 and in Section 3.1 and

schematically reads
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mT) = Cp{O,,) + Cwi - (O + Cya (O + Cpr - (O, (3.79)

where the coefficients Cp have the divergent behaviour shown in Eq. (3.26). Equat-

ing the respective r.h.s. of Egs. (3.78), (3.79), we can finally read the expression of

54(3) and c,,, at the matching scale m;, namely

cig) (my) = Cwi 0% + Cya 690 + Cpy 6922, (3.80)
and
—C (@ L@ G 100 (75 1y
Cop (1103) D _ZZ Cag,j (Mb) = IN. Cag;+2(M0) 1272 | 28 \ 2 o
7 j=1 c q
(3.81)

It is straightforward to check, by taking into account the results for the coefficients of
the four-quark operators computed in Section 2.2.1, together with the expressions of
the divergent functions listed in Appendix E, that all the dependence on log (m?2/m3)
exactly cancels on the r.h.s. of Eq. (3.81), leaving the final coefficient of the Darwin
operator c¢,,, free of any IR divergences. Notice though that as consequence of the
operator mixing, Cp and c,,, differ also by a finite contribution due to the presence
of the constants b;. The complete expressions for the coefficients c,,, are presented

in the next section.

3.3 Analytical expressions for the coefficients of the Darwin

operator

The final expression for the contribution of the Darwin operator to the inclusive
decay width of a B meson, induced by the flavour-changing transition b — ¢1¢2qs,

with q1, g = {u, c} and ¢q3 = {d, s}, is presented in the following form !

F(ththqa)(B) (N Cl qul‘Ii‘IB +2C,Cqy¢ (q14293) 02 (Q1q2q3)> pD(B) 7 (3,82)

12 22
PD PD, PD mb

1Note that the coefficients originally presented in Ref. [137], still depend on the renormalisation
scale g since the running of the matrix element of the corresponding four-quark operators was
not explicitly included.
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where the non perturbative parameter pp(B) is defined as in Eq. (1.160), Iy is given

in Eq. (3.24) and the coefficients cf,%%qﬁ) respectively read

(und) _ ¢ wad) _ 34 (wid) _ (3.83)

pp,11 = pp12 T T g Cop,22 =

for the b — uud mode,
ucs 2
CLDJ)I = 5(1 - p) l9 +11p — 12p° log(p) — 24 (1 — p*) log(1 — p) — 25p* + 5p° |,
(3.84)

ucs 2
c;DJ)Q =3 {—41 —12(2+ 5p + 2p* — 2p°) log(p) — 48(1 — p)*(1 + p) log(1 — p)

+ 26p — 18p* + 38p® — 5,04} , (3.85)

ucs 2
ey = 5(1=0) [9 +11p — 12p?log(p) — 24 (1 — p?) log(1 — p) — 25p° + 5p3] ,

(3.86)
in the case of b — ucs transition,
L) = ; :17 +121og(p) — 16p — 12p° + 16p° — 5p4], (3.87)
cgf% = g :—9 + 12 (1 —3p° + p3) log(p)
+ 24(1 — p)®log(1 — p) + 50p — 90p* + 54p° — 5p4] , (3.88)
et = 2(1= p)| 9.+ 11— 1257 log )
— 24 (1—p®)log(1 —p) — 25p + 5,03} : (3.89)

for the b — ucs mode and finally
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) = g [M (17 + 8p — 22p* — 60p°)

1++/1-4p
F\/ﬁ)]’ (3.90)

— 12 (1 —p =20+ 2p° + 10,04) log (

. 2
C(CCS) i [ 1— 4p (—45 + 46,0 - 106p2 _ 60,03)

pD,12 3
+ 12 (1 + 4% — 166° — 10p*) log (H— V1_4p>]
1—a/1—4p

8 | Min(p.n) —/T—plogtn)|| . (391)

n—0

ccs 2
)y = §[ 1—4p (=3 +22p — 34p — 60p°)

1++/1—4p
— 249 (1 20% +50%) 1 —
p(L+p+20"+ p)0g<1_m>]
+ 8 [an(p, n) —/1—4p log(n)”nﬁo, (3.92)

in the case of b — cés decay. In Egs. (3.84)-(3.92) the dimensionless mass parameter

is p = m?/mZ, moreover the master integral M5 in Eqgs. (3.91), (3.92) is defined as

(1-y7)?
B (> =201+ p)t + (1 —p)?) (t =0 + p)
Mz (p,n) = WJ@:“ t/ (2 —201+p)t+ (L—p)2) (=2t +p) + (1 —p)?)

(3.93)

with n = mg/mi. We emphasise however, that the analytical expression for the
limits in Eqgs. (3.91), (3.92), has been derived in Ref. [138], namely

[M112(P7 n) —+/1—4p log(n)” = 2(1 = p)log (H—m>

1 1—T—4p
++/1—4p [1 + 2log(p) — 4log ( 1= 4")} ’
(3.94)
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Figure 3.5: Relative effect of the Darwin operator with respect to the dimension-
three term for the b — cud (top left), b — wud (top right), b — c¢s (bottom left),
and b — ucs (bottom right) transitions. For each mode, the green dotted, the solid
cyan and the dotted-dashed orange lines correspond respectively to the @1 ® @1,
Q1®Q> and Q2®Q, contributions. The reference values m;, = 4.5 GeV and p3, = 0.2
GeV? have been used and the dashed vertical line indicates the approximate value
p = 0.05 in the MS scheme.

n

terms of which Eqgs. (3.91), (3.92), can be simplified as

12 = 5
PD, 3

1++/1—-4p
+ 12 (3 —2p +4p* — 16p> — 10p*) 1 —Y = ||, 3.95

w2
L) [ 1 — 4p (=33 + 241log(p) — 24log(1 — 4p) + 46p — 106p* — 60p%)

w2
o), — 5[ 1 —4p (9 + 241og(p) — 241og(1 — 4p) + 22p — 34p” — 60p°)

1+4+/1—-4p
+ 24 (1 —=2p— p* —2p% —5p%) 1 - Y- . 3.96

Finally, we stress that for my = ms = 0, the following relations hold, i.e.

cud) (cts) (ces) __ (ced) (vad) __ (uus) (ucs) (ued)

C( =C C =C C =C C =

pPD,MN pD,MN 7 pPD,MN pD,MN ) pPD,MN pD,MN pPD,MN pp,mn *

(3.97)
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Figure 3.6: Relative size of the Darwin term compared to the partonic-level con-
tribution respectively for the b — wud (dashed orange), b — cud (solid purple),
b — ucs (dotted green) and b — cés (dot-dashed cyan) modes. The reference values
my = 4.5 GeV and p} = 0.2 GeV? have been used and the dashed vertical line
indicates the approximate value p = 0.05 in the MS scheme.

The relative effect of the Darwin operator with respect to the corresponding partonic-

q1G243)

level contribution C(() is given by

(©1q2q3) 3
(qlngg) _ chvmn pD

pD MM Cé’ll@zqs) Eg’ ' <3'98)
In Figure 3.5, the dependence of the functions in Eq. (3.98) on the dimensionless
mass parameter p, is plotted for all the three colour structures and the four modes,
using for reference the values my, = 4.5 GeV and p3, = 0.2 GeV?. Furthermore,

Figure 3.6 shows the total relative contribution for each mode, namely

3O MBS 4 2CiCy BB + 303 UBY) 1 500
Hg 9 ( . )

Ala1@2a3) 7
(3¢ +201C, + 303) i)

PD

indicating that the Darwin operator can lead to sizeable corrections to the b — ¢1G2q3
decay width, of the order of 1 — 7% (for p = 0.05).

A final comment about the numerical effect of the constant terms b; in Eq. (3.81)
for the coefficients c,(%fjﬁ%). We have already noticed that their values depend on
the choice of the four-quark operators basis. Consider as an example the coefficient
c,(of%. In our basis given by Eq. (3.28), c/(fg% = —29.0, for the reference value
p = 0.05. Had we chosen the same basis as done in Ref. [138], namely with Og") and

Oéu) , replaced by
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O = (BT Tou) (@ ToyTub), O = (BT7PI ) (@WT,¥T,b7),  (3.100)

we would have obtained in Eq. (3.44), that a; = 8, by = —5/4 and ay = 2, by = —3/2,
leading to cgcgﬁ)z = —24.0, for the same value of p. This shift of ~ 17% must be
compensated, up to corrections of higher orders, by the different value of the matrix

element of the operators defined in these two bases.
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Chapter 4

Phenomenology of Lifetime and Mixing

In this last chapter, we consider two phenomenological applications of the HQE
in the charm sector, specifically, the study of the lifetime of charmed mesons and
of neutral D-meson mixing. In light of the large amount of current and future
charm data collected by LHCb [175], BESIII [176], and Belle-II [177], an improve-
ment of the theoretical understanding of charm physics, see Refs. [34,178-181] for a
comprehensive introduction to the subject, is crucial to fully exploit the significant
experimental progress in this field. The recent discovery by the LHCb collabora-
tion [182] of direct CP violation in the charm sector, specifically in the non-leptonic
decays D — 7" + 7~ and D° — K+ + K~ provides one example of this necessity,
since after its announcement, both SM and BSM interpretations of the measurement
have been proposed, see Refs. [183-186] for the former, and Refs. [187,188], partly
based on the calculation of Ref. [189], for the latter '. Exclusive non-leptonic decays
of charm hadrons and even of b-hadrons are among the most challenging observables
in quark flavour physics from a theoretical point of view. In the following, we will in-
stead focus on the study of inclusive quantities like the total decay width, for which
the HQE provides a systematic theoretical framework, see Section 1.4. However, due
to the size of its mass, the charm quark sits at the boundary between the heavy- and
light-quark region, making the applicability of the HQE a priory questionable. This
is clearly signalled by the fact that contrary to the b-sector, lifetime ratios of charmed
hadrons can significantly differ from one, which represents the naive expectation in
the heavy quark limit. Specifically, lifetimes of charmed hadrons are experimentally
determined very precisely [191] and also inclusive semileptonic branching fractions

have been measured [191], with a recent update for the Ds-meson released by the

LA summary of references investigating a previous claim for evidence of CP violation can be
found in Ref. [190].
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D" Dt Dt
7 [ps] 0.4101(15) | 1.040(7) | 0.504(4)
T [ps] 2.44(1) | 0.96(1 1.98(2)

)
7(Dx)/7(D") 1 2.54(2) | 1.20(1)

I'(Dx — XeTv,)

(
Br(Dx — Xetwv)[%] | 6.49(11) | 16.07(30) | 6.30(16)
['(D° - Xetr,) (

1 0.977(26) | 0.790(26)

Table 4.1: Status of the experimental determinations of the lifetime and the semilep-
tonic branching fractions of the lightest charmed mesons. All values are taken from
the PDG [191], apart from the ones for the semileptonic Ds-meson decays, which
were recently measured by the BESIII Collaboration [192].

BESIII Collaboration [192] . A summary of the current experimental status for the
lightest D-mesons, is shown in Table 4.1. Finally, a long-standing puzzle in charm
physics, is the theoretical description of mixing of neutral D mesons, see e.g. the

excellent reviews [194-196]. Charm-mixing is experimentally well established and
the HFLAV [197] average of Refs. [182,198-231] ® reads

AMp
Tr =
I'po

ATl'p

= (0409%5515)% . v = 55—

= 0.61570022% , (4.1)

where AMp is the mass difference of the neutral D° mesons mass eigenstates and
AT'p the corresponding decay rate difference. However, the theoretical predictions
for x and y cover a vast range of values, which spread over several orders of mag-
nitude, see e.g. Refs. [232,233]. Future measurements will not only increase the
precision of x and y, but also provide stronger bounds or even evidence for CP
violation in mixing [234]. It is clear that having a reliable range of potential SM

predictions is necessary in order to benefit from these experimental improvements.

In Section 4.1 we discuss the study of the total decay width of charmed mesons
and obtain theoretical predictions for the lifetimes of the D°, D¥ and D] mesons
and their ratios, as well as for the semileptonic branching fractions Br(D — Xe*tr,),
and their ratios. Furthermore, in Section 4.2 we present a possible solution for the
discrepancy between previous HQE determinations of D-mixing with data. The
content of this chapter closely follows the one of Ref. [140] and Ref. [235].

ZNew results from Belle II have recently been published [193]: 7(D%) = 410.5 + 1.1 + 0.8 fs,
7(D*) = 1030.4 + 4.7 + 3.1 fs.
3Performed in the case of allowed CP violation.
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4.1 Theoretical study of the total decay width of charmed

ImMesoI1s

In the present section, we analyse the structure of the HQE in the charm sector,
to try to shed further light into the question, whether the expansion parameters
as(m.), and Agep/me, are small enough in order to ensure meaningful theoretical
predictions for the observables listed in Table 4.1. The Particle Data Group [191]

quotes, respectively for the pole and the MS mass of the charm quark, the values

mfole _ (167 + 007) GeV , mc(mc) = (127 + 002) GeV, (42)

while the dependence of o on both the charm scale and the loop order, obtained
using the RunDec package [236], is shown in Table 4.2. We emphasise that in our

numerical analysis we use the five-loop running result.

as(me) || me =1.67GeV | m. = 1.48GeV | m, = 1.27 GeV

two-loop 0.322 0.346 0.373
five-loop 0.329 0.356 0.387

Table 4.2: Numerical values of the strong coupling «, evaluated at different scales
and loop order, obtained using the RunDec package [236].

The relation between the pole and MS mass schemes, up to third order in the strong
coupling, reads [237-239)

™ ™

Mg = (M) | 1+ 2@ +10.43 (M)Q +116.5 (M)j

Me(Me) [1 + 0.1642 + 0.1582 + 0.2176] (4.3)

where we have used the five-loop value of «y, at the scale 1.27 GeV. The strong
dependence of T's on the charm pole mass, cf. Eq. (3.24), leads to different results
according to how higher orders in Eq. (4.3) are treated. Specifically, by truncating
the expansion in Eq. (4.3) at first order in «g, and using m.(m.) = 1.27 GeV, we
obtain for the pole mass the value mt°® = 1.479 GeV, which, respectively yields
(mF®)° = m (m,)® [1 + 0.1642]° = 2.14mm,(m.)°, (4.4)

c
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Pole

C I

by computing the fifth power of m and

(mPole)5 ~ mc(mc)5 [1 + 5. 01642] =1.82 mc(m0)5 s (45)

C

by further expanding the fifth power up to the first order in a,. Note that the result
in Eq. (4.5) is about 15 % smaller than the one in Eq. (4.4). Conversely, by including
also all the higher order terms shown in Eq. (4.3), gives

C

(mPOle)5 — . (.)° [1 + 0.1642 + 0.1582 + 0.2176]° = 8.66 . (77,)° , (4.6)

which is roughly four times larger than the result in Eq. (4.4). In order to deal with

this numerical instability, in the following we investigate different scenarios:

1. Use Eq. (4.3) to first order in a, since this is the order at which most of
the Wilson coefficients are known. In this case we fix mF°® = 1.48 GeV and
as = 0.356. A further possibility would be to use as input the pole mass value
from the PDG, i.e. m{°® = 1.67 GeV. However, in this case, our numerical
analysis gives results for the decay rates which are roughly 30% larger than
the ones obtained in the 1S scheme, discussed below. Since we expect this
enhancement to be compensated by missing NNLO corrections to the non-

leptonic decay rates, we do not present explicit results for mtee = 1.67 GeV.

2. Express ml?*® in terms of the MS mass [174]

o~ 14 520 (4.7

¢ T

using m.(m.) = 1.27 GeV [191], and expand consistently up to order as.
Because of the dependence on the fifth power of the charm quark mass, in this
case, I's receives large corrections ~ 5 x (4/3)(as/7).

3. Express m!®® in terms of the kinetic mass [104,240]. The kinetic scheme has
been introduced in order to obtain a short distance definition of the heavy
quark mass which allows a faster convergence of the perturbative series and
which is still valid at small scales u ~ 1 GeV. The relation between the kinetic
scheme and the MS and pole schemes can be found, up to N3LO corrections,
in Ref. [241]. At order a; we have
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, dog (4 pet 1 [ et
Pole Kin S
= 1+ — | z—= - . 4.
m, m, [ 3 <3m§m +5 <m§m : (4.8)

where ;€ is the Wilsonian cutoff separating the perturbative and non pertur-

bative regimes. In our numerical analysis we set p"* = 0.5 GeV, which gives,
at NLO-QCD and using as an input m.(3 GeV) [241]

mE™(0.5GeV) = 1.363 GeV . (4.9)

4. Express m{®® in the 1S-mass scheme, defined as [242,243]

2
mPole _ My <1 + (Oés CF) ) : (410)

‘ 2 8

where Cp = 4/3, and we use my;, = 3.0969 GeV [191], so that m;.,/2 ~
1.55 GeV. Note that in Eq. (4.10), the NLO correction actually starts at order
a?, see Ref. [242].

4.1.1 Description of the computation

The non-leptonic decay of a charm quark ¢ — ¢ Ggou, with ¢1,¢2 = {u,d, s}, is

described by the following effective Hamiltonian, cf. Section 1.1, i.e.

G 6
W ="Z1 Y M (01 Q1% 4 Oy ng) DGO, | +he,  (411)
\/5 q1,2=d,s j=3
where we have defined the CKM factors respectively as Ay 4, = Vi Vig, and Ay =

Vi Vup, and introduced the following notation for the tree-level AC' = 1 operators:

QP = (g, (1 —5)c) (W"(1 = 5)a) (4.12)
57 = (07,(1 = %)) (@ (1 —%)a) (4.13)
while @;, with j = 3,...,6, refer to the penguin operators, which can only arise

in the singly Cabibbo suppressed decays ¢ — ssu and ¢ — ddu. In Eq. (4.11),
Ci(p1), with ¢ = 1,...,6, denote the corresponding Wilson coefficients evaluated

at the renormalisation scale p; ~ m.. A comparison of their values respectively at
NLO-(LO-)QCD and for different choices of m,, is shown in Table 4.3.
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p11[GeV] 1 1.27 1.36 1.48 1.55 3
Crm) 1.25 1.20 1.19 1.18 1.17 1.10
1 (1.34) (1.27) (1.26) (1.24) (1.23) (1.15)
Colonr) —0.48 —0.39 —0.40 —0.37 —0.36 —0.24
2\ (—=0.62) | (—=0.50) | (—0.53) | (—0.48) | (—0.47) | (—0.32)
) 0.03 0.02 0.02 0.01 0.01 0.00
3\ (0.02) (0.01) (0.01) (0.01) (0.01) (0.00)
Can) —0.06 —0.05 —0.04 —0.04 —0.04 —0.01
4\ (—0.04) | (=0.03) | (=0.03) | (=0.02) | (—0.02) | (—0.01)
o) 0.01 0.01 0.01 0.01 0.01 0.00
5\ (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
Colpn) —0.08 —0.05 —0.05 —0.04 —0.04 —0.01
611 (=0.05) | (=0.03) | (=0.03) | (—0.03) | (—0.02) | (—0.01)

Table 4.3: Comparison of the Wilson coefficients at NLO-QCD (LO-QCD), for

different values of ; = me.

We see that the Wilson coefficients C, with j = 3,...,6, are very small and addi-
tionally strongly CKM suppressed because of the factor A\, « A 4,. For these rea-
sons, in the following, the contribution due to the penguin operators in Eq. (4.11) is
neglected. However, the most general effective Hamiltonian describing all possible
c-quark decays is a sum of non-leptonic, semileptonic as well as radiative contribu-

tions, namely

Herr = Moy + Hog + Heit* (4.14)
here, HYF is given in Eq. (4.11),
sk = Gr D VEQY +hee (4.15)
eff ﬁ i cq )
q=a,s t=e,[l
where we have introduced the semileptonic operator
Q" = (7" (1 = %)) (myu(1 =5)0) . L=e,p, (4.16)

while H:2® describes decays like D — 7wf*¢~, whose branching fraction is much
smaller than those corresponding to the tree-level transitions. Hence, in the follow-

ing, we also neglect the presence of rare decays and omit to specify further the form
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of H*. Starting from the expression of the effective Hamiltonian in Eq. (4.14),
the total decay width of the heavy charm mesons D°, D, D, can be computed ac-
cording to Eq. (1.144), where now we need to set ) = c¢. The structure of the HQE
is schematically given in Eq. (1.164), and its diagrammatic representation can be
visualised as in Figure 1.7. The lowest dimensional contributions, namely those due
to two-quark operators up dimension-six, and to four-quark operators up dimension-
seven, have been discussed in detail in Chapter 2 and Chapter 3. Despite having
considered explicitly the case of the B meson, almost all the expressions obtained,
can be used also in the charm sector, taking into account the proper replacements
ie. b — ¢, c — s, etc.. However, we cannot directly use the coefficients of the Darwin
operator listed in Egs. (3.83)-(3.92), since by setting p = m?/m?, it is straightfor-
ward to see that some of the functions diverge in the limit my — 0. The presence
of IR divergences reflects the fact that now there are further contributions due to
mixing of four-quark operators with external s-quarks and the Darwin operator,
that must be included, whereas for the b-system, the corresponding operators with
external c-quarks did not. This point will be discussed further later on, and we refer
to Ref. [169] for more details.

Following Ref. [140], we try to analyse each of the contributions that enter the
HQE of a D meson, in order to identify the presence of possible cancellations
which might affect the charm system. We start from the leading order term I,
cf. Eq. (1.164), which, including also NLO-QCD corrections to the short distance

coefficients, can be schematically written as

I's=Tgc3 =1 [3 012 03711 + 2 0102 63712 + 3022 83’22 + C3,SL] , (417)

where a summation over all modes is implied and we stress that now I'y is defined

slightly differently compared to Eq. (3.24), i.e.

2 5
_ Gime 12 (4.18)

F - CS
0 192w3‘

At LO-QCD, the three non-leptonic coefficients Cs 11, C312, and Cs a2, for each of
the ¢ — ¢1¢gou modes, reduce to Cé‘h@u), computed in Chapter 3, cf. Eq. (3.23) *.
The expressions for the QCD corrections to the non-leptonic coefficients Cs;; and
Cs .22, as well as to Cs g1, are obtained from Ref. [111]. In the latter, the computation
has been performed for three arbitrary massive final states of the decaying quark,

hence their results can be easily applied to all c-quark decay modes, by taking the

4Up to the CKM factor A2, /|Ves|?.

q192
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59 [ps™!] | T30 [ps™]
mPole = 1.48 GeV 1457017 | 1.52707g
m.(m.) = 1.27 GeV 0.69"00 1327005
mkn (0.5 GeV) = 1.363 GeV || 0.977919 | 1.47+02
mlS = 1.548 GeV 1.80%0 % | 2-1275%5,

Table 4.4: Numerical values of I'3 and LO- and NLO-QCD, using different schemes
for the c-quark mass. The uncertainties are obtained by varying the renormalisation
scale py between 1 GeV and 3 GeV.

appropriate mass limits. For the coefficient Cs 12, we use the results of Ref. [114],
respectively for the ¢ — sdu, ¢ — dsu and ¢ — ddu decay channels, and those of
Ref. [118] in the case of two massive final states, e.g. ¢ — ssu. To compare the
size of c3 between the b- and c-system, it is interesting to consider the effect of
the NLO corrections in the case of dominant CKM non-leptonic and semileptonic
modes °, neglecting for simplicity the mass of the final state particles. The result
was determined in 1991 in Ref. [112], and reads °

47

- - o -

s 25 31 2 7
CgLO — C%O = 8a— <Z — 712) +<012 + 022) (Z — 7T2) —501C2 (Z + 7T2)
; _/

(4.19)

The first term on the r.h.s. of Eq. (4.19), corresponds to the semileptonic mode while
the remaining two terms to the non-leptonic one. For the b-quark decay, the NLO
corrections are negative, while for the charm system, the third term can dominate
over the second one and lead to a positive correction to c3. Moreover, there is a
sizeable enhancement of the QCD corrections for non-leptonic b-quark decays due to
finite charm quark mass effects [113-115,118], whereas the corresponding increase
for charm is much less pronounced since m?/m? ~ 0.1 » m?/m? ~ 0.005. A com-
parison of I's, both at LO- and NLO-QCD, for different c-quark mass schemes is
shown in Table 4.4. The range of values between 1.3ps™! to 2.7ps™! for the free
charm-quark decay at NLO-QCD, is in good agreement with the experimental de-
terminations in Table 4.1, and we find that the effect of a non-vanishing strange
quark mass leads to small corrections (< 5%). Interestingly, the NLO-QCD result

is affected by strong cancellations. We in fact observe a suppression of the non-

5For example b — cud, b — c¢fv; and ¢ — sdu, ¢ — slv, transitions.
SNote that the factor |V,q|? ~ 1 has been omitted for simplicity.
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leptonic contribution because of the opposite sign between the NLO corrections to
the AC = 1 operators and to their Wilson coefficients. Furthermore, a cancellation
is present between the semileptonic and the non-leptonic modes. In the MS scheme
an additional NLO contribution arises from the conversion factor of m?, which is
the origin of the large shift between the LO and the NLO value. This is explicitly

indicated in the following two equations

NL SL
- - ~N /—/R 2
(Pole) Ty=T%0 |14 1814 — 074 —0.67 %+0(%> . (4.20)
| oper. wWC
[ NL SL conv.fac. )
—_— 15 -~ ~  — =
(VMS) Ty =T5 |1+ {210~ 070 - 071+ 666" | =2+ 0 (2)
—_— == T T
| oper. wC
(4.21)

To obtain a first indication of the behaviour of the QCD series for I's at higher orders,
the authors of Ref. [140] have compared the results for the NNLO- [127] and NNNLO-
[26] QCD corrections to the semi leptonic b-quark decay and the preliminary NNLO-
QCD corrections for the non-leptonic b-quark decay [129], concluding that higher

order corrections seem to be crucial for a reliable determination of I's 7.

At order 1/m? in the HQE, Eq. (1.164), we find the contribution of the kinetic
and the chromo-magnetic operators, defined in Eqs. (1.154), (1.155), and respec-
tively parametrised by the non perturbative input p2? and pZ, see Eq. (1.159). At
this order and at LO-QCD, we can schematically write

(Os5) 12 11
F5 5 = FO CMWW + ca m—G2 s (422)

where now, compared to the corresponding ones introduced in Eq. (3.23), the short
distance coefficients ¢, , cg, contain also the contribution due to the semileptonic

modes as well as the dependence on the CKM factor A, 4,/|Ves|?, due to the differ-

(q1G2u)
G,mn

and C(()q“bu) listed in Appendix D. Note that again a summation over all modes is

ent definition of I'y. Their expressions can be then obtained from those of C
implied. Specifically, we can decompose cg as

cg =3 C12 cgi1 + 2C1Cy cgi2 + 3 022 g2 + Cg,sL, (4.23)

"Note that the results presented in Ref. [129] are not complete and hence cannot be used for
phenomenological applications.
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Figure 4.1: Scale dependence of the coefficient of the chromo-magnetic operator cg.

which leads to the following expression if we neglect the strange and muon masses

and consider only the dominant CKM modes, i.e.

Cqg ~ —‘Vud|2 [g ((712 + 022) + 19 0102] - 3. (424)

Because of the large coefficient in front of C;Cy and of its negative value, Eq. (4.24)
can be affected by cancellations. This can be visualised in Figure 4.1, in which we
show the dependence of the function c¢g in Eq. (4.23), on the renormalisation scale
(1, for both LO- and NLO-QCD, AC' = 1 Wilson coefficients. Note that the latter
case in Figure 4.1, is indicated in quotation marks since it does not represent the
complete NLO result, as corrections for non-leptonic modes are still missing and their
effect could significantly reduce the strong scale dependence. In particular, from
Figure 4.1, we see that a change of sign occurs in the region between 1 and 2 GeV,
leading to a large uncertainty due to scale variation. The numerical determinations

of 2 and pZ are presented at the end of this section.

We now turn to analyse the contribution of the Darwin operator, which arises
at order 1/m? in Eq. (1.164) and which has been discussed in detail in Chapter 3.
This can be compactly written as

. 3
<Og> S R (4.25)

37
mC

I's

C

where again a summation over all modes is implied and the coefficient c,,, includes

the effect of non-leptonic and semileptonic channels, namely
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CPD = 3012 CPD711 + 20102 CpD712 + 3022 CpDQQ + CPD,SL . (426)

As already mentioned, the expressions for the non-leptonic coefficients obtained in
Egs. (3.83)-(3.92), cannot be directly applied to the charm sector, since by naively
replacing m;, — m. and m. — mg, some of the functions would develop infrared di-
vergences in the limit m,; — 0, whereas in the b-system the corresponding coefficients
were finite functions of p = m?2/mZ. In fact, while we can assume m; ~ m. » Aqcp,
and neglect the effect of four-quark operators with external c-quarks in matrix el-
ements between B-meson states %, see e.g. Ref. [169], in the charm sector, it is
me » ms ~ Aqcp, and there are further contributions due to the mixing of four-
quark operators with external s-quarks which must be additionally included. Specif-
ically, this leads to a modification of the coefficients proportional to C? and C,C,.
Using the same procedure as discussed in Ref. [137], the coefficients of the Darwin
operator required for the study of D-meson decays have been computed in Ref. [140],
and the analytical expressions, including the full s-quark mass dependence, however
finite in the limit m, — 0, are listed in Appendix F, for all non-leptonic modes.
The results for C,, sz, can then be obtained by setting, N. =1, C; =1, Cy =0
and my — m,, in the case of ¢ — su*v, decay. By neglecting the strange and muon

masses and by considering only the dominant CKM modes, we have

68
Cop = | Vial? (18 C? — 5 10 + 18 022) +12. (4.27)

It is interesting to note that in this combination all terms have the same sign and
no cancellations arise. In Figure 4.2 we show the dependence on the renormalisation
scale y11 of the function c,, in Eq. (4.26), where the quotation marks in the NLO-
QCD result reflect again the fact that only corrections due to the AC = 1 Wilson
coefficients have been included, since also in this case a complete determination of
the NLO corrections is still missing. Estimates for the matrix element of the Darwin

operator will be presented at the end of this section.

In order to discuss the contribution of four-quark operators at order 1/m? in

Eq. (1.164), see Section 2.2, we introduce the following basis, in complete analogy

8We recall that we do not consider the case of the B, meson.
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Figure 4.2: Scale dependence of the coefficient of the Darwin operator c,,,.

to Egs. (2.100)-(2.103) ?, namely

= (€(1 = %)q) (a+"(1 —5)c) 4 (4.28)
= (e(1—75)q) (a1 +s)c) , (4.29)
= (e7u(1 = 78)t) (@7 (1 = s)te) (4.30)
= (e(1 = y5)t"q) (q(1 + 7)) | (4.31)

where a summation over colour indices is implied and we have replaced ¢, with
¢, cf. Eq. (1.145). The parametrisation of the matrix element of the operators in
Eqgs. (4.28)-(4.31) is given in Appendix G. However, by evaluating them in the
framework of the HQET, the dependence on the charm quark mass can be further
extracted from the c-quark field and meson state cf. Section 2.2.2, and in this case,

the corresponding dimension-six operators read

Of = (hy (1 = 75)9) (@7 (1 = 75) ) (4.32)
Of = (ho(1 = 75)a) (@1 + 75)ho) (4.33)
OF = (hy 7u(1 = 75)t%q) (T7* (1 — 75)t*h) (4.34)
Of = (ho(1 = 75)t°q) (q(1 + 75)t"he) (4.35)

9Note however that now, we do not use the tilde to denote the colour-octet operators.
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where h, denotes the effective heavy quark field, see Section 1.2. The parametrisa-
tion in HQET of the matrix element of the operators in Eqs. (4.32)-(4.35), see also

Appendix G, can be written as

- ~ 4 ag(me) - ~

q ) q aq\ _ 2,2 A N7 g 99
(D,[0¢ D) = F(me) m, (B! +64) = f3,m3, (1+3 = >(Bz+5z>,
(4.36)

/ ~ 4
(D4 OF |Dy) = F2(mc) me(qu = fzz)qm%)q (1 + 5as<mc>

™

) qu/, qg#4q, (4.37)

where ¢,¢ = u,d, s, Bg are the Bag parameters computed in HQET, while F'()
and fp, correspond respectively to HQET and QCD decay constants, defined, by 10

Ogy"vs¢| Dy(v))qep = ifp, P", (4.38)
with p#* = mpo*, and

Olgy"v5ho| Dg(v))uqer = i F(1) \/mp, v". (4.39)

The relation between fp and F'(u) up to QCD and power corrections, can be found
e.g. in Refs. [244,245]. At the scale u = m,, it reads

_ F(m,) 2a5(m:)  Gi(me) Go(m.) 1A
= (15 S oS )

where A = mp —m,, and the parameters G; and G5 characterise matrix elements of
non-local operators. Note that in Eqgs. (4.36), (4.37), by expressing the HQET decay
constant in terms of the one defined in QCD, we have included only corrections due
to a, which become part of the NLO-QCD contribution at dimension-six. In fact,
as we will discuss, the power corrections can be absorbed in the contribution of some
of the dimension-seven operators appearing in HQET.

In vacuum insertion approximation (VIA), the Bag parameters of the colour-

singlet operators are equal to one, i.e. sz = 1, and those of the colour-octet

10The subscript ‘QCD’ or ‘HQET’ on the states is usually omitted, however for clarity it is
specified in the definition of the decay constant.
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Figure 4.3: Diagram describing the eye-contractions.

operators vanish, i.e. B??A = 0. Note that we assume isospin symmetry, so that
B* = B?. The parameters 629, 027 in (4.37), describe subleading effects in the
non perturbative matrix elements, compared to the dominant B;, and correspond
to the so called eye-contractions, shown in Figure 4.3. In VIA, the contribution of
all eye-contractions vanish i.e. 69 = 6% = 0. However, beyond vacuum insertion
approximation, the matrix element of four-quark operators with external ¢’ quarks,
differ from zero even when the spectator quark ¢ in the D, meson does not coincide
with ¢/, as it is indicated in Eq. (4.37) and in Figure 4.3. Again, due to isospin
symmetry, we assume 0°¢ = 6% and 07 = 6?. The Bag parameters B; and 077
have been computed using HQET sum rules, specifically, the formed were obtained
for the D™ mesons in Ref. [246], while corrections due to the strange quark mass as
well as the contribution of the eye-contractions, have been determined for the first
time in Ref. [247]. The numerical values of the HQET Bag parameters are listed in
Table 4.10.

By considering only the dominant CKM modes and by neglecting the effect of the
eye-contractions, at LO-QCD and at dimension-six, the contribution of four-quark
operators to the decay rate of the D°, D and D} mesons, cf. Eq. (1.164), reads

- 0 {OgyP"’ . Mpo f2
167r2rg)°—< :;LZ = Do| V52 1672 —2220

(& C

(1- ISV{C%E |(Bs - B)]
+ay <2Bg - %) + O (BY = By) + . (2B - %)]} ,

(4.41)

which corresponds to the WE topology,

- 1 (OgHP” Mps+ f2 . 5
1&#?% — o[V 1677 lzn;gfm (1— )2 {cgl B+ ¢S, B;f} . (4.42)
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describing the PI contribution, and

3 3
c c

~ 2
I ;<06>D:— * MD:fD;r 2 s s
167T2F(])? m = FU’Vud‘2167TQT C\SA'/A + W <BQ - B1>
+C%u (B - B) } , (4.43)

due to WA. Here x, = m?/m?, and we have introduced the following notation for
the combinations of Wilson coefficients, cf. Eqgs. (2.81), (2.89), and (2.95), namely

1

Civp = 50T +2C10y +3 65, CQp =202, (4.44)

CS = C?+ 60,0y + C2, CS =6(C2+C2), (4.45)
1

Cian =301 +2C,Cy + g(122, CQ, =202, (4.46)

where the superscript “S” and “O” refers to coefficient in front of the colour-singlet
and of colour-octet Bag parameters, respectively. Note that in Eq. (4.43), the con-
tribution due to the muon mass in the semileptonic decay ¢ — su*v,, has been
neglected. The expressions in Eqs. (4.41)-(4.43) lead to some interesting numerical
effects. First, in the charm system, one expects that the contribution due to the
spectator quark is of similar size compared to the leading term I's in the HQE, unless
some additional cancellations are present. Using the pole mass mt® = 1.48 GeV
and Lattice QCD values for the decay constants [248], roughly yields

2
2MDS+fD:

3
me

2
mr——= =41~ O(c3), 167 =6.0~ O(c3). (4.47)

This result has led the authors of Ref. [249] to propose a different way to rearrange
the HQE series in the charm sector. However, to investigate further the size of
four-quark contributions at dimension-six, we consider the combinations of Wilson
coefficients that appear in Eqs. (4.41) - (4.43). A comparison of these coefficients
at LO- and NLO-QCD, for different values of the renormalisation scale j; is shown

in Table 4.5. The first observation is that C%y is strongly suppressed. Moreover, in
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1 [GeV] 1 1.206 1.27 1.48 1.67 3
C(LO) 0.09 0.04 0.03 0.01 0.00 0.01
CSs(NLO) || —0.03 | —0.03 | —0.03 | —0.02 | —0.02 0.04
CQe(LO) 3.57 3.30 3.24 3.08 2.98 2.63
CRp(NLO) 3.11 2.93 2.89 2.77 2.70 2.44
C3(LO) —280 | -225 | —212 | —1.79 | —157 | —0.79
CS/(NLO) | —1.74 | —-136 | —128 | —1.04 | —088 | —0.27
CS(LO) 13.0 11.7 11.4 10.6 10.1 8.50
CS(NLO) 10.6 9.73 9.55 9.05 8.72 7.60
Ca (LO) 3.82 3.65 3.61 3.51 3.45 3.24
C%4 (NLO) 3.57 3.45 3.42 3.35 3.31 3.16
CQa(LO) 0.77 0.59 0.55 0.46 0.40 0.21
CQA(NLO) 0.41 0.32 0.30 0.24 0.21 0.10

Table 4.5: Comparison of the combinations C’\S,\}%PLWA, respectively at LO- and
NLO-QCD, for different values of the renormalisation scale ;.

Eq. (4.44) the Bag parameters of the colour-singlet operators exactly cancel in VIA.
On the other side, the combination of Wilson coefficients in front of the colour-octet
operators is not suppressed for weak exchange, indicating that both colour structures
might be equally important in this case. For Pauli interference, the combinations
of Wilson coefficients multiplying the colour-singlet operators are significantly en-
hanced compared to those in WE, the same holds for the colour-octet operators.
Note that CS, and C5; get large modifications, and even a change of sign, compared
to the case (7 = 1 and C; = 0 revealing the importance of gluon radiative correc-
tions. Moreover C§; is enhanced compared to Cg}, again indicating that both colour
structures might be equally important for PI. In the case of weak annihilation, O,
is large. On the other hand, the Bag parameters of the colour-singlet operators
exactly cancel in VIA. The above arguments show that by neglecting the effect of
the colour-octet operators in VIA, one might be led to misleading conclusions, and
therefore an accurate determination of the deviation of the Bag parameters from
their VIA values, using non-perturbative methods like HQET sum rules or lattice
simulations, is necessary. Finally, by including all CKM modes as well as NLO-
QCD corrections, the contribution of four-quark operators to the total decay width

at order 1/m?, schematically reads
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scheme DY D* D}

VIA

Pole —0.06 = 0.00 —0.06 | —11.3 = —=7.18 —4.13 | —0.85 = —0.51 —0.34
——— —— —— | —~— —— —— | —— —— ——
NLO LO ANLO NLO LO ANLO NLO LO ANLO

MS —0.09 = 0.00 —0.09 | —22.9 = —11.3 —11.5 | —1.66 = —0.77 —0.89
—— N [~ | =~ ==
NLO LO ANLO NLO LO ANLO NLO LO ANLO

Kinetic | —0.08 = 0.00 —0.08 | —16.3 = —9.18 —7.14 | —1.21 = —0.64 —0.57
—— MM | Y — Y —— —— ——

——
NLO LO ANLO NLO LO ANLO NLO LO ANLO
18 —0.06 = 0.00 —0.05 | —10.1 = —6.27 —3.82 | —0.76 = —0.45 —0.31
—— N [~ | =~ ==
NLO LO ANLO NLO LO ANLO NLO LO ANLO
HQET SR

Pole 0.06 = 0.10 —0.04 | —12.3 = —=7.97 —4.37 | —0.93 = —0.69 —0.24
M Y~ [~ | =~ =
NLO LO ANLO NLO LO ANLO NLO LO ANLO

MS 0.23 = 0.17 4+0.06 | —24.9 = —12.6 —12.3 | —1.78 = —1.06 —0.72
|~ Y~ |~ ==
NLO LO ANLO NLO LO ANLO NLO LO ANLO

Kinetic | 0.12 0.13 -0.01 | =178 = —10.2 —7.61 | —1.31 = —0.87 —0.43
Y =~ = ~—— S~—— —
NLO LO ANLO NLO LO ANLO NLO LO ANLO

18 0.06 = 0.09 —-0.03 | —11.0 = —6.97 —4.05 | —0.83 = —0.60 —0.23
—— —— —— —— —— | —— —— ——
NLO LO ANLO NLO LO ANLO NLO LO ANLO

Table 4.6: Dimension-six contributions to the D-mesons decay width normalised
by I'g and split up into LO-QCD and NLO-QCD corrections within different mass
schemes and using both VIA and HQET SR values for the Bag parameters.

=0, (O)P we (DglOF|Dy) o1 (Dy|lOF|Dy)
FG mg V 2 Z |)\q1q2| 2 [Al(h(m—?)q Alq1q2Tq

q1,q92=d,s ¢ ¢

L ORI

1,4192 m3
C

Iy D,|Oj"|\D
|V ’2 Z |ch1’2 Z 2 lAﬂ?é%] ’

q1=d,s l=e,pi=1

(4.48)

where the matrix elements of the four-quark operators are given in Egs. (4.36),
(4.37), and the short-distance coefficients for the WE, PI and WA topologies are
denoted by Ay\;‘lEqQ, AP (Ih 5 and Ay‘;‘;“qw A}’\;‘i‘e, respectively. Their expressions at LO-

QCD have been derived in Section 2.2.1, while NLO corrections to AVE and A
1,4192 1,4192
AVVA
1,4192

obtained by using Eq. (2.93), since the Fierz symmetry is respected also at one-loop.

have been computed in Ref. [142]. The corresponding results for can be
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For the semileptonic modes, the coefficients AYY", have been determined in Ref. [143].
Note that in our analysis, we treat the contribution of the 6§ql parameters effectively
as a NLO effect, therefore their coefficients are included only at LO-QCD. Finally, in
Table 4.6, we compare the size of the LO- and NLO-QCD corrections in Eq. (4.48),
normalised by I'g, both in VIA and using HQET SR results for the Bag parameters.
The NLO-QCD corrections turn out to have an essential numerical effect for the
contribution of four-quark at order 1/m?. In particular, in the case of the D° and
D} mesons, they lift the helicity suppression present in the weak exchange and
weak annihilation topologies at LO-QCD and in VIA. Note that for the D} meson,
in addition to the CKM dominant WA contribution, there is a correction due to the
CKM suppressed, but nevertheless large PI topology. In the case of the D" meson
the NLO corrections to Pauli interference are very large, 50% — 100% depending on
the mass scheme. Already in the B system they were found to be of the order of
30% for the ratio 7(B*)/7(By), in the pole scheme, see e.g. Ref. [141]. We conclude
that, neglecting these contributions in the study of charm lifetime, as it has been
previously done in Ref. [250], is clearly not justified and the determination of higher

order corrections would be highly desirable.

We now consider the contribution of four-quark operators at order 1/m? to the
HQE in Eq. (1.164), which have been discussed in detail in Section 2.2.2. By ex-

panding p# = pk & pt, only in the small momentum of the light spectator quark

Py ~ Agep, leads to the following basis for the dimension-seven operators !

Pl = mg (¢(1 —75)q)(q(1 = y5)c), (4.49)
P = (2D (1~ 35) D) (@ (1 1)) (450)
Pf = L (@D,(1~ ) D) a1 + %)) (451)

together with the corresponding P!, P{, P, containing the generators t*. Due to
the presence in Eqs. (4.50), (4.51), of a covariant derivative acting on the charm
quark field, which scales as m, at this order, there is no immediate power count-
ing for these operators, contrary to those defined in HQET, cf. Eqgs. (4.53), (4.54).
Moreover, note that this basis differs from the one used in Ref. [144] for the compu-

tation of the dimension-seven and dimension-eight contributions. By evaluating the

1Note that the basis used e.g. in Ref. [143], is redundant, since it contains also the additional
operator denoted by Py, related to P by hermitean conjugation, namely Py = m, (¢(1+75)q)(q(1+
v5)c) = (P{)T. Leading to the same matrix element, we do not include this operator in our basis.
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matrix elements of the dimension-seven four-quark operators using the framework
of the HQET, we have to further expand the charm quark momentum, according to
Pt = meot+ k| see Section 1.2, as well as to include 1/m, corrections to the effective
heavy quark field and to the HQET Lagrangian, cf. Section 2.2.2. In this case, we
obtain the following basis, in complete analogy to Eqgs. (2.113)-(2.121), namely

Pi = my (ho(1 = 75)q)(q(1 — v5)h) (4.52)
Pg = (hyyu(1 = 5)(iv - D)g)(qy" (1 = 75)ho) (4.53)
Pg = (Bv(l - ’75)(“) : D)Q)(Q(l + VS)hv) ) (454)

due to the contribution of the light spectator quark momentum,

RY = (hoyu(1 = 75)a) (@7 (1 — 75) (i) hy) (4.55)

R = (ho(1 = 75)a)(@(1 + 75) (i) hy) . (4.56)

due to 1/m, corrections to the effective heavy quark field h,, and

Mi = z'fd‘*yT [09(0), ((iD)*h,) ()] (4.57)

M = z‘jd‘*yT [03(0), %gs (hooasG*hy) (y)] , (4.58)

Mg = z'fd‘*yT [03(0), (h(iD)*h,) ()] (4.59)
. 1.

M =i ] dy T log(()), 595 (th'agGthv) (y)] , (4.60)

due to 1/m. corrections to the HQET Lagrangian, which we have explicitly indi-
cated, cf. Eq. (1.69), (1.70). Moreover, the set of operators in Eqs. (4.52)-(4.60), are
supplemented by the corresponding colour octet ones. To parametrise the matrix
element of the dimension-seven operators in HQET, we use VIA and account for
deviations from it by including the corresponding Bag parameters, as it is explicitly

shown in Appendix G. However, since for these matrix elements, does not exist a non
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perturbative evaluation available yet, in our analysis we have to rely only on VIA.
It follows that, at LO-QCD the matrix element of the dimension-seven operators
listed above, can be expressed in terms of the HQET non perturbative parameters
F(n), G1(p), Ga(p), and A, so far determined only with large uncertainties. For this
reason, we prefer to use as an input the QCD decay constant fp, which is computed
very precisely using Lattice QCD [248]. In doing so, we obtain that in VIA and at
the matching scale y1 = m,, the contribution of the local operators R{ ,, as well as
that of the non-local M{, M1, M2 and M, can be entirely absorbed in the QCD
decay constant fp, cf. Eq. (4.40), more precisely, in the QCD matrix element of the
dimension-six operators in Eqs. (4.28), (4.31), which are proportional to fp, and
the only remaining 1/m, contribution is due to the operators Pj, 3, analogously to
the QCD case '2. To make this point more clear, we consider as an example the
contribution due to Pauli interference at LO-QCD and up to order 1/m?, in the case

of ¢ — sdu transition, which constitutes the dominant correction to I'(D7), namely

32 2 Rd d d 1 s q
I 7P = Do VA2 2o (1 — )| O5, (02 + =2 + Mi My gl toPs
mg me me me 1 — TsMe

+ (singlet — octet)] : (4.61)

By evaluating the matrix element of Im7*! in VIA, the contribution due to the
colour-octet operators vanishes. Moreover, using the parametrisation for the matrix
elements of the four-quark operators given in Eq. (4.36) and in Appendix G, we
obtain in VIA and setting p = m,, that

R{ ¢ 4 A 2Gi(m.)  12Ga(me
<Of+—1+&+M2>HQET=F2(mC)mp+ [1——+ 1<TTL) + 2(m>
Mme c c me me me
= fimb: = (Of)qcp, (4.62)

where in the second line we have used the conversion between the QCD and HQET
decay constants given in Eq. (4.40). From Eq. (4.62) we see that the contribution
of the local operators R{ and non-local operators M7 and M1, is entirely absorbed
by using the QCD decay constant. Note that, by neglecting the effect due to the
strange quark mass and using VIA we reproduce the result in Eq. (19) of Ref. [249].

2Tn the matrix element of ]51(17273 one can replace the HQET decay constant with the QCD one,
up to higher order corrections.
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The same argument applies also to the remaining topologies i.e. WE and WA. How-
ever, it is worth remarking that in VIA and neglecting the strange quark mass,
the contribution of WE and WA exactly vanishes at LO-QCD, due to the helicity
suppression. This suppression is lifted once the s-quark mass or perturbative gluon
corrections are included, and in this case it becomes again manifest that the contri-
bution of RY, and M{ in HQET, can be completely absorbed in fp by evaluating
the matrix elements in VIA. 3. We stress that in our numerical analysis, we employ
this argument also when using the results of the Bag parameters determined from
HQET SR, by neglecting the small deviation from their corresponding VIA values.
Note that a detailed analysis of the dimension-seven contributions within the HQET
has been performed in Ref. [245] for the case of B — B-mixing. Specifically, it was
found that in VIA, subleading power corrections due to non-local operators can be
entirely absorbed in the definition of the QCD decay constant, and that the residual
1/my corrections, due to the running of the local dimension-seven operators from
the scale my, to u ~ 1 GeV, is numerically small (~ 5% for Ref. [245]).* Finally, by
summing over all the CKM modes, at LO-QCD, the dimension-seven contribution

can be presented as

22:0,{OnP" Ty we (Dq |77“|D> pi (Dl Pi”|Dy)
167 F ma ‘ | Z q1q2| Z [Gl q192 . G i,q1q2 ma !
¢ “lq1,qa=d,s C ¢
Dy |7’ 1 Dy) (Dq !7’ |1 Dy)
£, L]+ Ve Y > SLalPE 1D
l=e,pi=1

+ (colour-octet part)} : (4.63)
and we confirm the results for the short-distance coefficients G}V" , G, . and

G\i\gfqy GW presented in Ref. [143]. Note that, due to the current accuracy of the

analysis, at dimension-seven we include only the contribution of the valence-quark
therefore e.g. (D°|P#|D°) = 0.

Having presented each of the contributions that enter the HQE of D-mesons,
we now turn to discuss the numerical evaluation of the corresponding matrix ele-
ments. For most of the non perturbative parameters in the charm-sector there is no

determination available yet, contrary to the b-system, where e.g. the value of pZ,

13Note, that for the operator Of the contribution of R2 is absorbed by the combination

(mD fD/mc)2 x (1 + 21_X/mc) f]23
1By neglecting the effect of running down to a lower scale, from Ref. [245] one can see that in
VIA the QCD decay constant entirely absorbs all the 1/m;, contributions.
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p2, and p%, has been extracted performing fits to experimental data for B® and B*

semileptonic decays [251]. Specifically, for p2 they find [251]

p4(B) = (0.332 + 0.062) GeV?. (4.64)

By using the heavy quark symmetry, we could expect the corresponding parameter
in the D system to have a similar size. The value of % can also be obtained taking

into account the spectroscopy relation [252]

3
1&(Ds) = 5me (MD;*;) - MD@) ) (4.65)

which holds up to power corrections. Using the value for the meson masses given in
the PDG [191] and setting m. = 1.27 GeV, we obtain the following estimates

pz (D) = (0.268 £ 0.107) GeV?, p&(D,) = (0.274 £ 0.110) GeV?,  (4.66)

where we have conservatively added an uncertainty of 40% due to unknown power
corrections of order 1/m.. The values in Eq. (4.66) are roughly 19% smaller than
those obtained from experimental fits for semileptonic B-meson decays, see Eq. (4.64).
Moreover, Eq. (4.65) leads to a tiny amount of SU(3) j-symmetry breaking of ~ 2%,
which might, however, be enhanced by the neglected power corrections. In the lit-
erature instead of Eq. (4.65) it is often adopted the relation [52,70]

2 3

(D) = 7 <M%§5

2
: - MD(S)> : (4.67)

)

which coincides with Eq. (4.65) up to corrections of order 1/m.. Numerically we

find that Eq. (4.67) yields

ps(D) = 0.41GeV?,  p2(DF) = 0.44GeV?, (4.68)

which are roughly 23% higher than the values in Eq. (4.64). In our numerical
analysis we take the average of the two determinations in Eq. (4.66) and Eq. (4.68).
This gives

ps(D) = (0.34 £ 0.10) GeV?, ps(DF) = (0.36 £ 0.10) GeV?, (4.69)
which agrees well with the one in Eq. (4.64). From Eq. (4.22), we expect correc-
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LQCD LQCD Exp. it | QCDSR | QCD SR
Source [253] [254] [251] [255] [256]
12[GeV?] | 0.05(22) | 0.314(15) | 0.465(68) | 0.10(5) 0.6(1)

Table 4.7: Different determinations of p2(B) available in the literature.

tions to the total decay rate due to the chromo-magnetic operator, cg u2/(c3m?)
ranging between —6% and +8% with respect to the leading free-quark decay con-
tribution. A large part of the sizeable uncertainty derives from the cancellations in
the coefficient ¢, as shown in Figure 4.1, which could be reduced with a complete
determination of the NLO-QCD corrections. For semileptonic rates the contribution
of the chromomagnetic operator can be even of the order of 20%. An experimental
determination of pZ(D) from inclusive semileptonic D-meson decays could further
reduce the uncertainties and could in particular give some insight into the numerical
size of SU(3)y breaking.

For the matrix element of the kinetic operator, there are several predictions of
p2, available in the literature for the B-meson, which cover a large range of values,

see Table 4.7. Assuming heavy quark symmetry we can again use the determination
in Ref. [251]

p2(B) = (0.465 + 0.068) GeV?, (4.70)
to obtain the following estimate in the case of D-meson
p2(D) = (0.465 + 0.198) GeV?, (4.71)

where we have added a conservative uncertainty of 40% in order to account for the
breaking of the heavy quark symmetry. This value fulfils the theoretical bound
p2 = p%, see e.g. the review [257]. We then expect, from Eq. (4.22), corrections
due to the kinetic operator of the order of —10%. The SU(3) breaking effects for
the matrix element of the kinetic operator have been estimated in Refs. [143,258], i.e.

p2(DF) — p2(D°) ~ 0.09 GeV?, (4.72)
leading to the following estimate in the case of the D, meson
p2(DF) = (0.555 + 0.232) GeVZ. (4.73)

Again a more precise experimental determination of 2 from fits to semileptonic
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D*, D° and D meson decays, as it has been done for the B* and B° decays, would
be very desirable.

For the matrix element of the Darwin operator, we can again assume the validity
of the heavy quark symmetry and use the corresponding value obtained from fits of

the semileptonic B decays [251], namely

p3(B) = (0.170 + 0.038) GeV?, (4.74)

which, by adding quadratically an uncertainty of 40% to account for the breaking

of the heavy-quark symmetry, leads to a first estimate of
P (D) = (0.17 £ 0.07) GeV?. (4.75)

Alternatively the Darwin parameter can be related to the matrix elements of the
dimension-six four-quark operators through the equation of motion for the gluon

field. At leading order in 1/m¢, we obtain

2
9s ~ me 3o 3
pgb(HQ) = 1_8]%@ MH, [2333‘11 4 ;13:3 _ EBZ

_ (zég’q—ég’uzsgq—;sgq) | (4.76)

q'=u,d,s

where Hg is a heavy hadron with the mass mpy, and the decay constant fg,,
q = u,d, s, is the light valence quark in Hg, and the Bag parameters have bee intro-
duced in Egs. (4.36). The strong coupling g2 = 47a, should be evaluated at a non
perturbative scale and e.g. Ref. [259] suggests to set oy = 1. From the input listed

i =15 GeV nw=1.0 GeV as =1
p3[GeV?3] || VIA | HQET || VIA | HQET || VIA | HQET

B*, By, 0.048 | 0.047 |} 0.066 | 0.064 | 0.133 | 0.129

By 0.072 | 0.070 |} 0.098 | 0.095 | 0.199 | 0.193
D+, D° 0.021 | 0.020 |} 0.027 | 0.026 | 0.059 | 0.056
Dt 0.030 | 0.029 || 0.040 | 0.038 | 0.086 | 0.082

s

Table 4.8: Values of p},(H) for B- and D-mesons in VIA and using HQET SR for
the Bag parameters for three different choices of a; in Eq. (4.76).
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in Table 4.9 and the expression in Eq. (4.76), we can estimate the size of p%, for
both the B- and D-mesons and using the VIA as well as the HQET SR values for
the Bag parameters. The results are summarised in Table 4.8 for the three different
choices, namely ag(u = 1.5GeV), as(pn = 1 GeV) and o, = 1. By setting oy = 1 in
Eq. (4.76), we obtain values for p3,(B) that are close to the one in Eq. (4.74), indi-
cating 1/my-corrections in Eq. (4.76) of the order of +30%. Moreover, the difference
between using VIA and HQET sum rule is small. We emphasise that because of the
sizeable SU(3)r breaking in the decay constants, Eq. (4.76) leads also to a sizeable
SU(3)r breaking for the non-perturbative parameters p?,(D), p%(D7). By setting
as = 1 and using HQET SR results for the Bag parameters we arrive at the second

estimate, cf. last column in Table 4.8
ph (D) = (0.056 + 0.022) GeV?,  p% (D) = (0.82 +0.033) GeV?,  (4.77)

where we have again added 40% uncertainty. Finally, another possibility to extract
p3(D) is to substitute in Eq. (4.76) the values of the Bag parameters in VIA, which
gives

2
Js
P%(HQ) ~ 1—8f1?1Q MH- (4.78)

Assuming the strong coupling to have a similar size for both the B- and D-meson

matrix elements, from Eq. (4.78) we obtain

f%) mp 3
T B). 4.79
e () (4.79)

3 fz% mp 3 3
PD(D) N PD(B)> pD(DS)
fB mpg

Using the most precise determination of the decay constants from Lattice QCD [248],
and of the meson masses from PDG [191] and taking into account the value of p%,(B)
in Eq. (4.74), leads to the third estimate

P (DY = (0.075 + 0.034) GeV?,  p?(D,)"" = (0.110 + 0.050) GeV?,  (4.80)

where we again assign in addition a conservative 40% uncertainty due to missing

power corrections. These values are consistent with the numbers shown in Table 4.8
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for oy = 1. Contrary to the case of the dimension-five matrix elements, in Eq. (4.80)
we observe a large SU(3) symmetry breaking of ~ 46%, and similarly of ~ 49% for
the B(,)-mesons, as already stated above, mostly stemming from the ratios fg,/f5,
and fp+/fpo. In our numerical analysis we use the values shown in Eq. (4.80),
which lie between the estimates obtained in Eq. (4.75) and Eq. (4.77). Again, a
more precise experimental determination of p3, from fits to semileptonic D, D°
and D meson decays, as it has been done for the Bt and B° decays , would be
very desirable and could have a significant effect on the phenomenology of inclusive
charm decays.

Finally, the dimension-six Bag parameters of the D* and D° mesons have been
determined using HQET sum rules in Ref. [246]. Corrections due to the inclusion of
the strange quark mass, needed in the case of the DI meson, as well as the effect of
the eye-contractions, have been computed for the first time in Ref. [247], again using
HQET sum rules. The results, collected in Table 4.10, show only a small deviation
from the corresponding VIA values. For the dimension-seven Bag parameters we
use only VIA. In HQET the matrix elements of dimension-seven operators depend
also on the parameters /_\(s) = Mp,, — Me, for which we use the following range of
values [247]

A =(0.5£0.1)GeV, Ay = (0.6 £0.1) GeV . (4.81)

4.1.2 Numerical results

In this section, using all the ingredients described above, we present the theoretical
predictions for the total and semileptonic decay rates of the D°, D* and D} mesons,
and for their ratios. All the input included in our numerical analysis are collected
in Table 4.9. For each observable we investigate several quark mass schemes, using
as default the kinetic and the 1.5 scheme, and compare the corresponding results
with both VIA and HQET SR values for the dimension-six Bag parameters. The
uncertainties quoted are obtained by varying all the input parameters within their
intervals. For the renormalisation scales, we fix the central values to u; = pg =
1.5GeV '°, and vary both of them independently between 1 and 3 GeV. Moreover,

we add an estimated uncertainty due to missing higher power and QCD corrections.

We start by considering the total decay rates, which are expected to have size-
able uncertainties due to the dependence of the free quark decay on the fifth power

of the charm quark mass and due to large perturbative and power corrections. A

15The renormalisation scale ug enters in the NLO-QCD corrections to the dimension-six coeffi-
cients as well as in the running of the Bag parameters.
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Parameter Value Source
as(My) 0.1179 £+ 0.0010 PDG [191]
[Vis| 0224834500005
Vio|/| Ve 0.088496 10 00351
Vsl /| Ves| 0.002244 CKMfitter [260]
| V| 0.041627 5 G080
5 (65.80*094)°
me(m,) (1.27 £ 0.02) GeV PDG [191]
mkn (0.5 GeV) 1.306 GeV [241]
! 3.0969 GeV PDG [191]
m (93%5") MeV PDG [191]
Mpo 1.86493 GeV
Mp+ 1.86965 GeV PDG [191]
Mp+ 1.96834 GeV
fp (0.2120 £ 0.0007) GeV
Lattice QCD [248]
fp. (0.2499 + 0.0005) GeV
u2(D) (0.465 £ 0.198) GeV? Exp. fit [251] and HQ symmetry
p2(Dy) (0.555 + 0.232) GeV? | SU(3)-breaking [258] and HQ symmetry
p(D) (0.339 £ 0.098) GeV? ‘
Spectroscopy relations [70,252]
wz(Dy) (0.357 £ 0.104) GeV?
p5(D) (0.075 4+ 0.034) GeV? _
Exp. fit [251] and E.O.M relations
p%(Dy) (0.110 £ 0.050) GeV?

Table 4.9: Numerical input used in the numerical analysis.
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HQET B B, Bs B,
D0 11 1.00000005% | 1.00000 0006 | —0.016113038% | —0.0007+991%
D | 1.00005599%3 | 1.0000509000 | —0.009470:0:%% | —0.000175 0100
HQET 5 3 0 o
(D,|0%D,> || 0.00265:39%% | —0.00183:999% | —0.0004+3:9%% | 0.0003+3:9990
(Ds|O9|D,> || 0.0025+3:9904 1 _0.0018+3:995 | —0.0004+5:9901 | 0.0003+9-9900
(D,|0*|D,> || 0.0017+5:390% | —0.0012+3:99%% | —0.0003+3:9%%1 | 0.0002+3:9901
(Ds|O*|Dy) || 0.0023+3:9905 1 _0.0017+3:995 | —0.0004+5:9902 | (.0003+9-9900

Table 4.10: Numerical values of the HQET Bag parameters [246,247], at the renor-
malisation scale pg = 1.5 GeV.

comparison of the central values for the HQE prediction of the decay widths in
several mass schemes is shown in the three first rows of Table 4.11, using VIA for
the Bag parameters and of Table 4.12 using the HQET sum rules results. In Ta-
ble 4.13 we present the complete theoretical prediction including the corresponding
uncertainties, using the 15 and kinetic scheme for the quark masses and the HQET
SR values for the dimension-six Bag parameters, the same results can be visualised
also in Figure 4.4. In each table, the corresponding experimental determinations are
listed in the last column. For the D} meson there is an additional subtlety due to
the large branching fraction of the leptonic decay D} — 7% 1., which however is not
included in the HQE, since the tau lepton is more massive than the charm quark.
Using the experimental value of the leptonic branching ratio [191] (online update),

we obtain

Br(D} — 77v,) = (5.48 £ 0.23)%, (4.82)
accordingly, we define the reduced decay rate I'(D{), as
[(DY) =T(DF) -~ T(DY — 7tu,) = (1.88 + 0.02) ps~* (4.83)
which leads to the reduced lifetime ratio
i((lz)) ;) — 1.30 + 0.01. (4.84)
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VIA
Observable Pole MS Kinetic 15 Exp. value
L(D%[ps~'] | 1.68 1.47 1.56 2.31 2.44
T(DY[ps] | 0.19 —0.03 0.09 0.56 0.96
[(DF)[ps!] 1.72 1.48 1.58 2.34 1.88
T(D*)/T(D% | 2.55 2.56 2.53 2.82 2.54
7(DF)/r(D% | 0.99 1.00 0.99 0.99 1.30
B2’ (%] 5.31 6.46 6.03 8.48 6.49
BR[%] 13.5 16.4 15.3 21.5 16.07
B [%] 6.88 8.24 7.74 10.8 6.30
ot ro’ 1.000 1.000 1.000 1.000 0.985
ro¢ o 1.04 1.04 1.04 1.05 0.790

Table 4.11: Central values of the charm observables in different quark mass schemes
using VIA for the matrix elements of the four-quark operators compared to the
corresponding experimental values (last column).

The first and main result we can derive from Table 4.13 and from Figure 4.4, is
that the HQE can reproduce the experimental values of T'(D?), T'(D*), and I'(D}),
within very large uncertainties. Moreover, we find that in the 15 scheme we obtain
larger values for the decay rates, while the kinetic and the MS scheme typically result
in smaller values, close to the pole scheme. Within the uncertainties the predictions
in the different mass schemes are compatible with each other, however, to a large
extent. Given the current precision then, to consider only one quark mass scheme
might lead to considerably underestimate the uncertainties. Due to the fact that
the values of the HQET Bag parameters [246,247] are close to the corresponding
ones in VIA, the predictions shown in Table 4.11 and in Table 4.12 do not differ
much. A peculiar role is played by the Dt meson, for which we obtain huge the-
oretical uncertainties because of the large negative value of the Pauli interference
contribution at dimension-six. This term actually dominates the total decay rate.
Furthermore, the large negative value is enhanced by the NLO-QCD corrections, but
partly compensated by the dimension-seven contribution. In this respect, having an
independent determination of the HQET sum rule results, e.g. with a lattice QCD

computation, as well as higher order QQCD corrections to dimension-six and seven
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HQET SR
Observable Pole MS Kinetic 15 Exp. value
r(D%[ps~'] | 171 1.50 1.59 2.34 2.44
I(DH[ps™] | —0.05 | —025 | —0.14 0.29 0.96
[(DF)[ps!] 1.70 1.46 1.56 2.32 1.88
T(D*)/r(D%) | 2.83 2.83 2.80 3.14 2.54
F(DH)/r(D° | 1.01 1.02 1.01 1.01 1.30
B2°[%] 5.18 6.37 5.93 8.34 6.49
BY %] 13.2 16.2 15.1 21.2 16.07
B2 (%] 6.79 8.19 7.67 10.7 6.30
ot /ro’ 1.002 1.001 1.001 1.002 0.985
NN 1.05 1.05 1.05 1.05 0.790

Table 4.12: Central values of the charm observables in different quark mass schemes
using HQET sum rule results [246,247] for the matrix elements of the four-quark
operators compared to the corresponding experimental values (last column).

might could significantly bring more insights. For the determination of the lifetime
ratios, in order to eliminate the contribution of the free-quark decay, we use
7(Df

(s)) HQE/ 10 HQE [ 1+ exp( N+
e (F QB( 0y _ PHA (D(s))>7 (D). (4.85)

In Eq. (4.85), I's cancels exactly and I's and I's cancel up to isospin or SU(3);
breaking corrections in the corresponding non-perturbative matrix elements. The
lifetime ratios should then be dominated by the contribution of four-quark operators.
The results for the HQE prediction of the lifetime ratios, in several mass schemes,
are shown in the fourth and fifth rows of Table 4.11, Table 4.12, Table 4.13 as
well as in Figure 4.4. We observe that the large lifetime ratio 7(D")/7(D°) is well
reproduced in all schemes considered, while in the case of 7(D})/7(D°) the HQE
result lies closer to one, compared to the experimental value. In the latter case,
the theoretical prediction is dominated by SU(3);-symmetry breaking effects in the
non-perturbative parameters p2, p2 and p?,, which are only very roughly known.

Future and more precise determinations of their values can considerably improve our
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Observable Kinetic scheme 15-scheme Exp. value
(D% [ps™'] | 1.590 £ 0.24270:322 0005 | 2.348 4 0.24770520 70002 | 2.44 £ 0.01
T(D*)[ps~'] | —0.138 + 0.572750:582 0252 1 0.293 + 0.664 75935 0350 | 0.96 + 0.01
T(DH)[ps™'] | 1.572+0.30970555 F0-008 | 2.330 + 0.3497 018 T0-920 | 1.88 + 0.02
7(D*)/7(D%) | 2.798 + 0.60613991 ¥9209 | 3.137 + 0.69170:523 70369 | 2.54 4 (.02
F(DF)/T(D% | 1.010 + 0.105F30A5909% | 1.010 + 0.11870:027 7009 | 1.30 + 0.01

B2°[%] 5.94 4+ 1.15+9:33 8.36 + 1.3179:23 6.49 £+ 0.11
B2 [%] 15.1 +2.9110% 21.2 4 3.321028 16.07 + 0.30
B2 (%] 7.73 +1.80104 10.76 + 2.187933 6.30 + 0.16
ot o’ 1.002 + 0.002 + 0.001 1.002 4+ 0.003 + 0.001 | 0.985 + 0.028
rb¢ o 1.053 £ 0.13070:00¢ 1.060 £ 0.1647900% | 0.790 + 0.026
Table 4.13:  HQE predictions for all the ten observables in the kinetic (second

column) and in the 15-schemes (third column), using HQET SR results for the Bag
parameters. The first uncertainty is parametric one, second and third uncertainties
are due to u1- and pp-scales variation, respectively. The results are compared with
the corresponding experimental measurements (fourth column).

conclusion for these lifetime ratios. In the case of the inclusive semileptonic decays,
we introduce the shorthand notations ') = T'(D — Xe'v,) and BY = Br(D —
XeTv,). The theoretical predictions are then obtained as

. :

sl

(4.86)

The HQE results in several mass schemes are shown in the sixth, seventh and eighth
row of Table 4.11, Table 4.12 and Table 4.13, as well as in Figure 4.4. In the ki-
netic scheme all HQE predictions for the semi-leptonic branching fractions cover the
experimental values, while the results in the 15 scheme tend to be too large. It
is interesting to note, that by adding NNLO-QCD corrections to the semileptonic
decays, the difference between the two quark mass schemes is considerably reduced,
see Figure 4.5. Using the experimental values respectively for the DO lifetime and
the semileptonic branching fraction, we determine the semileptonic ratios in the fol-

lowing way
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Figure 4.4: A comparison of the HQE prediction for the charm observables in the
kinetic scheme (magenta) and in the 1S scheme (blue), with the corresponding
experimental data (green). Note that all the quantities are normalised to the corre-
sponding experimental central values.

ro” N o THQE [ 7(D%) ]

Fé“ 14 [rg P ] 57 , (4.87)

rl; o po]heE [7(D°)]7P

stgo 14 [Fﬁs D ] % . (4.88)
Sl L ,sl .

The HQE results for these ratios are shown in the ninth and tenth row of Table 4.11,
Table 4.12 and Table 4.13 and in Figure 4.4. In agreement with the experimental
data, the HQE leads to values for 2" /I'D° very close to one. Also for I’E;Dli/I‘g0
the corresponding theoretical prediction is close to one, however, the corresponding
experimental number is as low as 0.79, confirming the necessity of having better con-
trol over the SU(3)s-symmetry breaking effects in the non-perturbative parameters

pe, 12 and p?, for the D mesons.

4.2 Charm mixing

In Section 4.1 we have shown that the HQE is able to reproduce, within large the-

oretical uncertainties, the experimental pattern for the lifetime of charmed mesons.
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Figure 4.5: A comparison of the HQE prediction for the charm observables in the
kinetic scheme (magenta) and in the 1.5 scheme (blue) with the corresponding ex-
perimental data (green). All the quantities are normalised to the corresponding
experimental central values. In comparison to Fig. 4.4 now the NNLO corrections
to the semileptonic branching fractions are included, taken from the talk of Matteo
Fael at the CHARM-2020 conference.

However, a naive application of the HQE yields results for the decay rate difference of
neutral D mesons that are four orders of magnitude smaller than the experimental
ones. It is well known that this huge suppression results from severe Glashow-
lliopoulos-Maiani (GIM) cancellations [261]. Following Ref. [235], we discuss a pos-
sible explanation for the large discrepancy between the theoretical prediction for
D-mixing and experimental data. We stress though, that we do not present a de-
tailed derivation of the fundamentals of the theory of mixing, for which, instead, we

refer to the comprehensive reviews [194-196].

4.2.1 GIM cancellations in D-mixing

Because of the weak interaction, neutral mesons, here we consider the case of the
D meson, can mix with their corresponding antiparticles through the box diagrams
shown in Figure 4.6. The process is described by a 2 x 2 Hamiltonian matrix with
non vanishing off-diagonal entries M5 and I'y5. By diagonalising the mixing ma-
trix of the D° and the D° mesons, we can obtain the two eigenstates with definite
mass and decay width. The corresponding observables AMp and AI'p, denoting

respectively the mass and decay width difference between the two eigenstates, are
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Figure 4.6: Box diagrams contributing to mixing of neutral D-mesons.

functions of I'15 and Mi,,. Moreover we define

AMp Al'p
- = 4.89
T T YT or, (4.89)
and
2 | M| 2|T Mo
= = ——= = — . 4.90
T12 T Y12 Tpo P12 = arg Ty ( )

In the following we only discuss the computation of I'15 and, by taking into account
the bound AT'p < 2|I'y5, see e.g. Refs. [195,262], we derive the theoretical predic-
tion for AI'p. In fact, we do not consider the calculation of M;,, and hence we can
only determine one contribution to the mixing phase ¢12 in Eq. (4.90). T'15 corre-
sponds to the absorptive part of the mixing amplitude of the D° - D system, and
it is then obtained by computing the imaginary part of the matrix element of the
effective Hamiltonian describing the c-quark decay, between the D® and D° states.
Using the formalism described in Section 1.4, I'15 can be expanded in inverse powers

of the heavy c-quark mass, leading to

Iy = [FéO)JrZ—;Fél)Jr...]%Jr--- , (4.91)

where the ellipsis stand for terms of higher order and we have explicitly shown
the perturbative expansion of the short distance coefficient I's, cf. Eq. (1.165).
Eq. (1.164), is diagrammatically represented in Figure 4.7. The product of AC' =1
operators in the effective Hamiltonian, i.e. in the “full” theory, cf. Eq. (4.11), is now
matched into a series of local AC' = 2 operators ()4 of increasing dimension d > 6,
with the short distance coefficients denoted by I'y. The expressions for Féo) can be
easily derived in complete analogy to what it has been done in Section 2.2, while
those for Fél) can be obtained from the corresponding ones for B-mixing determined
in Refs. [263-268] by replacing m;, — m,, m. — my, etc. Furthermore, the matrix

elements of the dimension-six operators have been computed e.g. in Refs. [246,269).
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The experimental value of the decay rate difference reads 6

ATP® = 2y/7(D%) = (0.032 + 0.003) ps*, (4.92)

which, at one standard deviation, leads to the following bound

ATP® > 0.028ps ™. (4.93)

In order to compare the theoretical predictions with the experimental determina-

tions, we investigate the quantities

2|y [5M

a:—arg(ru), :W7

(4.94)

where « contributes to CP violation in mixing and values of {2 smaller than one sig-
nal a discrepancy between the theoretical and experimental description of D-mixing,
within the one sigma range. A naive application of the HQE leads to Q = 3.4-107°
at LO-QCD and to 6.2-107° at NLO-QCD, showing that the theoretical prediction
for the decay rate difference is more than four orders of magnitude smaller than
the corresponding experimental number. Moreover, the phase « is very large, i.e.
a = 93° at LO-QCD and a = 99° at NLO-QCD. By default in our numerical anal-
ysis we have used PDG [270] values for the quark, in the MS scheme, and meson
masses, as well as for the strong coupling, CKM input from Ref. [260], the results
of Ref. [246] for the non-perturbative matrix elements and Ref. [248] for the D°
decay constant. In order to analyse the peculiarities of D-mixing, we decompose I';5
according to the flavour of the internal quark pair, cf. Figure 4.7. We denote the

3 : 3 55 dd sd ;
corresponding three contributions by I'f5, I'(9, and I'{3, i.e.

Pio = (AT + 22T + AT

= —2(rs - 2rgd + 1) + 200 (1 - 1) - (4.95)

where the CKM factors are defined as \; = V, V.2

uq’?

relation Ay + Ag + A, = 0, to eliminate \; in the second line of Eq. (4.95). Taking

and we have used the unitarity

16Note that for consistency we present the numbers used in the analysis of Ref. [235] based on
the previous determination y = 0.68f8:8$ %, however, using the new value quoted in Eq. (4.1),

would not lead to any significant difference, and we would have instead AF%XP > 0.027 ps— .
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Figure 4.7: Diagrams describing mixing of neutral D mesons via intermediate ss,
sd, ds, and dd, states in the“full” theory at LO-QCD (left) and NLO-QCD (center)
and at NLO-QCD in the HQE (right). The crossed circles denote the insertion of
AC = 1 operators of the effective Hamiltonian describing the charm-quark decay,
while the full dot indicates the insertion of AC' = 2 operators in the HQE.

into account the numerical value of the CKM elements, we see that Eq. (4.95) shows

the presence of a very pronounced hierarchy, namely

—A2 = —4.791-107% + 3.094 - 1079, (4.96)
+2X A = +2.751 - 107° + 6.121 - 10754, (4.97)
—\l = +1.560 - 10~® — 1.757 - 10~ %i. (4.98)

The CKM factor in the first term of Eq. (4.95) has considerably the largest real
part, whereas the second term has the largest imaginary part and it should then be
important for the determination of the potential size of CP violation in D-mixing.
The relative size between the imaginary and real part, is much larger in A\, than in
As and we therefore suggest to include all terms in Eq. (4.95). Moreover, extreme
GIM cancellations [261] affect the short distance coefficients of the CKM elements
in Eq. (4.95). By expanding in the small mass parameter z = m?/m?, we obtain at
LO- (top line) and at NLO-QCD (lower line), respectively

1.62 —2.342 - 50722 +...,
rss = (4.99)
142 — 430z — 124522 + .. .,

—1.172—2532% + ...,
rsd —1dd — (4.100)
—2152—-6.2622 4 ...,

—13.38 23 + ...,
I35 — 2T59 + I = (4.101)
0.072%—-29.7223 + .. ..
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Note that in the NLO result in Eq. (4.101), the GIM suppression is lowered by
one power of z, as it has been observed before [271,272]. We conclude that the
peculiarity of Eq. (4.95) lies in the fact that the CKM dominant factor A? multi-
plies the extremely GIM suppressed term given in Eq. (4.101), the CKM suppressed
factor A\;A, multiplies the GIM suppressed term given in Eq. (4.100), while the
very CKM suppressed factor A? multiplies I'94, obtained taking the limit 2 — 0 in
Eq. (4.99), in which no GIM suppression is present. Therefore, the three contribu-

tions in Eq. (4.95) have actually a similar size, in fact

[y = (2.08-107" — 1.34 - 107"'¢) (1st term)
— (3.74-107" + 8.31- 107 "i) (2nd term)

+(2.22-107% = 2.5 - 10~%) (3rd term). (4.102)

Because of Eq. (4.97), it also follows that a sizeable contribution to the mixing
phase can only arise if the slightly GIM suppressed term in Eq. (4.100) is enhanced.
In order to explain the mismatch between the HQE prediction and experimental

determination, in the literature different solutions have been proposed.

i) At higher order in the HQE, the GIM suppression could be less pronounced
[273-275]. First estimates of the dimension-nine contribution to D-mixing,
performed in Ref. [276], show indeed such an enhancement, but not on a scale
sufficient to reproduce the experimental result. For a final statement about
this possibility, the complete determination of the dimension-nine and twelve

contributions, would be necessary.

ii) The discrepancy is a signal of the violation of quark hadron duality. However,
while it was originally suggested that deviations of quark hadron duality should
be as large as 105, because of 2 ~ 1075, this seems unlikely given the many
successful tests of the HQE. In fact in Ref. [262] it was shown that violations

as small as 20 per cent could be sufficient to explain the experimental data.

iii) The HQE is not applicable and we have to consider different methods, like
to sum over all the exclusive decays channels contributing to the decay rate
difference, see e.g. Refs. [277-279).

159



Chapter / Phenomenology of Lifetime and Mixing

1.2x1070 '

1.0x1078}
. 8.0x1077}
z (L0)
= 6.0x107| o
= [(NLO)

12
4.0x107
1.0 15 2.0 25 3.0 35 40

i (GeV)

Figure 4.8: Comparison of p;-dependence of |T'j2| at LO-QCD (dotted blue) and
NLO-QCD (solid pink).

4.2.2  Alternative scale setting

I'15 depends on the two scales p; and py. The former denotes the renormalisation
scale of the AC' = 1 operators, and it is explicitly present in the expressions of
the corresponding Wilson coefficients in the effective Hamiltonian, the latter is the
renormalisation scale of the AC' = 2 operators that arise in the HQE and it appears
also in their short distance coefficients. Up to higher order terms, the dependence
on i; and o must cancel between the local matrix elements and the correspond-
ing short distance functions. Without discussing the dependence on ps9, for which
the cancellation is very effective, in the following we consider only that on p;. In
the By system the cancellation is numerically only weakly realised when moving
from LO- to NLO-QCD, see Refs. [280,281], indicating the importance of higher
order corrections. First steps in this direction show indeed large NNLO-QCD ef-
fects [280,281]. In the D system a reduction of the ui-dependence, when moving
from LO- to NLO-QCD, is present in the individual contributions I'{5*** but not
in "5, see Figure 4.8, which seems to be again consequence of the severe GIM can-

cellations. By explicitly showing the scale dependence in I'y5, we can write

1
o= 3 TE(™ ) Q™) =+ (4103)

q1q2=ss,sd,dd ¢

In general different internal quark pairs contribute to different decay channels of the
D° (D°) meson e.g. s5 to a K*K~ final state and sd to a 7+ K~ final state. For
each of these observables the choice of the renormalisation scales is a priori arbitrary,
nevertheless typically one fixes p2¥ = ps? = pd? = 11, which is then chosen to be equal
to the mass of the decaying heavy quark, i.e. 1 = mg for () quark decays, in order to

minimise the effect of the logarithmic terms o (u) log(u?/mg). Uncertainties due to
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unknown higher order corrections are estimated varying u between mg/2 and 2mg
and in the case of the charm quark we fix the lower bound to 1 GeV to still ensure
reliable perturbative results.

We consider two alternative possibilities to treat the renormalisation scale ui'®,
which both allow to reduce the discrepancy between the theoretical and the ex-
perimental determination of D-mixing, while leaving the other HQE predictions

unchanged, namely

A) We fix the central value of the three scales u5*, pi¢, and ud?, to m., but we

vary them independently between 1 GeV and 2m..

B) We choose different central values for the three scales pi*, pi¢, and ufé, ac-
cording to the size of the available phase space. In particular we evaluate I'g’
at the scale pi® = pu — 2¢, T at the scale pj¢ = p — ¢, and T'¢? at the scale
pd? = 1, where € is an unknown parameter, related to the kinematics of the

decays.

If € is not too large, both methods yield results for the individual I'g*, T's® and T'¢?,
which lie within the usually quoted theory uncertainties obtained following the pre-
scription stated above, but they affect in a sizeable way the severe GIM cancellations
in Egs. (4.100) and (4.101). The first method gives a considerably enhanced range
of values for €2 in Eq. (4.93), i.e.

Qe4.6-107°1.3], (4.104)

which nicely covers also the experimental determination of the decay rate difference.
Scanning independently over u5*, u3¢, and pd? in 11 equidistant steps we find that
out of the 1331 points only 14 give a value of Q < 0.001, while 984 give a value
of 2 > 0.1. The large discrepancy between the theoretical and the experimental
determinations, seems then to be an artefact of fixing the scales 15%, 5, and pd?, to
be the same. The range of values shown in Eq. (4.104) does not change significantly
if we use the pole scheme for the quark masses, lattice results instead of the HQET
sum rule results, or a different AC' = 2 operator basis. In all these cases we can
obtain © > 1. For a in Eq. (4.94), we observe that the results lie in the range
[—m,7]. A closer look however, shows that for Q > 0.5 only values of o < 0.1° are
allowed, and conversely large values of « correspond to results for 2 inconsistent

with the experimental data.

The second method for the scale setting requires the introduction of a mass scale
€. A possible estimate for the size of this parameter could be the strange quark

mass € = my ~ 0.1 GeV or the phase space difference of the corresponding exclusive
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Figure 4.9: Comparison of the e dependence of Q at LO-QCD (blue) and NLO-QCD
(pink) for different values of u: the dashed line corresponds to p = m, while the
two solid lines to =1 GeV and p = 2m..

decay channels, specifically, by comparing the energy release of D° — K+ K=, Mpo—
2My+ = 0.88 GeV, with that of D° — 7nt7n~, Mpo — 2M .+ = 1.59 GeV we might
expect that € ~ 0.35 GeV. In Figure 4.9 it is shown how the HQE prediction of €2
would be affected in this scenario. Also in this case, it appears possible that the

theoretical prediction could reach the experimental value for € ~ 0.2 GeV.

Finally, we have to consider how other HQE predictions would be affected by
choosing a different scale setting procedure. In the case of observables in which
GIM-like cancellations are not present, like the lifetime, both in the charm and bot-
tom system, and the decay rate difference Al'y, there is no significant change, but
only a shift within the usually quoted theory uncertainties. However, the semilep-
tonic CP asymmetries are governed by the weakly GIM suppressed contribution in

Bs-mixing. The SM predictions read

S — .1074 =
Re (F_‘ﬁ) M _ AFq _ (499 + 67) 10 q S
q )
Mg AM, _(49.7+6.8)-107% ¢=4d
17\ SM (+2.240.2)-107° g=s
I (—15) =al = , (4.105)
My (—5.0+04)-10* g=d

while in the scenario B we obtain
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€ (GeV) I'yy /M7, ',/ M7,

0. —0.00499 + 0.000022i | —0.00497 — 0.00050i
0.2. —0.00494 + 0.000023i | —0.00492 — 0.00053i
0.5. —0.00484 + 0.0000267 | —0.00482 — 0.00059¢
1.0 —0.00447 + 0.000037: | —0.00448 — 0.00084%
1.5. —0.00287 + 0.000091: —0.00309 — 0.0021%

We see that for values of € < 1 GeV, the predictions for the real part lie within the
usually quoted theory uncertainties, indicated in bold type. However, they would
be increased by almost 100% in correspondence of larger values of e.

Our conclusion is that, by modifying the usually adopted scale setting, the the-
oretical uncertainty of y, within the HQE, becomes larger than previously thought
and it can cover the experimental value. However, this does not represent a com-
plete solution and more precise estimates of higher power corrections to the HQE, as
well as full NNLO-QCD corrections to the leading dimension-six term, could bring
further insights. The alternative scale setting procedure shows that a small contri-
bution to CP violation in mixing stemming from the decay rate can be up to one per
mille within in the SM, which agrees with estimates made in Refs. [282,283]. For
a prediction of CP violation in mixing, the contribution coming from M5 needs to
be determined in addition. This might be done in future via the help of dispersion
relations, see e.g. Refs. [278,283,284]. We would like to note that our suggested
procedure still respects the GIM mechanism, because for vanishing internal strange
quark mass, also the parameter € is zero. Finally this alternative scale setting does
not affect quantities like 7(D™)/7(D°), b-hadron lifetimes and AT’y outside the range
of their quoted theoretical errors, but it affects the semileptonic CP asymmetries

and we get enhanced SM ranges

aly € [-9.2;-4.6]- 107",  af € [2.0;4.0] - 107°. (4.106)

Note that in Ref. [14], the CP violating effects responsible for creating the baryon

asymmetry stem actually from a? and a?,.
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Conclusion

As discussed at the beginning this work, indirect BSM searches with quark flavour
observables, represent a promising route to improve the current understanding of the
fundamental laws of physics. However, this strategy strongly relies on the ability to
systematically increase both the experimental and the theoretical precision. In the
present thesis we have analysed the theoretical status for the study of the inclusive
decay widths of heavy hadrons, which define observables of primary phenomeno-
logical importance in heavy flavour physics. In particular, we have discussed the
computation of higher power corrections to the HQE, and tested its applicability
in the charm sector, for the case of inclusive quantities like lifetimes, semileptonic
branching fractions and mixing observables. Specifically, the first part of this thesis
has been dedicated to presenting the main ingredients required for the computation.
We have started by introducing the weak effective Hamiltonian and the heavy quark
effective theory, which constitute the two effective theories that allow to disentan-
gle a multi-scale problem like the weak decay of heavy hadrons, by progressively
integrating out the heavier degrees of freedom, respectively, the W-boson and the
massive component of the heavy quark field. We stress that our exposure, far from
being exhaustive, has only covered the aspects relevant for the subsequent discus-
sions and has mostly followed the excellent reviews available in the literature. We
have then performed a detailed derivation of the expansion of the quark propagator
in the external gluon field using the Fock-Schwinger gauge, which provides a gauge
covariant parametrisation of the soft interaction with the non perturbative QCD
field, for a quark propagating with large momentum inside the hadronic state. The
corresponding expressions, up to terms proportional to one covariant derivative of
the gluon field strength tensor, have been computed both in momentum and in co-
ordinate space. Finally, we have presented a pedagogical introduction to the heavy
quark expansion, the theoretical framework in which all of the remaining computa-
tions and discussions are embedded. In the second part of this work, we have shown
the explicit calculation of the lowest dimensional contributions to the HQE of a B
meson, namely those of two-quark operators up to order 1/m? and of four-quark

operators up to order 1/mj. For the former, the computation has been performed
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using the coordinate representation of the quark propagator and considering the
single decay mode b — cud. Moreover, we have reproduced the results given in the
literature and in some cases derived more general expressions. Also in this case we
have tried to provide a very comprehensive and detailed presentation. The most
important results, from a technical point of view, have been discussed in the third
part of this work. Here, we have outlined the detailed computation of the contri-
bution of two-quark operators up to order 1/m3, for arbitrary non-leptonic decays
of the heavy b-quark and using the momentum representation of the quark prop-
agator in the external gluon field. Particular emphasis has been put in describing
the mixing between four-quark operators and the Darwin operator at dimension-
six, which ensures the cancellations of the infrared divergences otherwise present in
the coefficients of the Darwin operator, due to the emission of a soft gluon from a
light quark propagator. The contribution of the Darwin operator for non-leptonic b-
quark decays, has been only recently determined and found to be sizeable, hence its
effect, previously neglected, might have important consequences for b-physics phe-
nomenology. In the last part of this work, we have considered two phenomenological
applications of the HQE in the charm sector, specifically the study of the inclusive
decay width of D-mesons and of the Glashow-Iliopoulos-Maiani (GIM) cancellations
in D-meson mixing. Due to the value of its mass, the charm quark sits at the bound-
ary between the heavy- and light-quark region, and the applicability of the HQE
in the charm sector is a priori questionable. In fact, both the perturbative and the
power corrections might not describe a well converging series. For this reason, the
charm system can be considered an important testing ground for the theoretical
framework here discussed. We have then performed a comprehensive study of the
structure of the HQE for the inclusive decay width of charmed mesons, including for
the first time the contribution of the Darwin operator and in addition clarified some
inconsistencies related to the contribution of dimension-seven four-quark operators.
Our predictions appear to be consistent with the corresponding experimental pat-
tern, albeit with large theoretical uncertainties. Given the current poor knowledge
of many of the non perturbative input in the charm sector, as well as the absence
of determinations of higher order perturbative and power corrections, we conclude
that our numerical analysis does not show signals for a breakdown of the HQE in the
charm system. Finally, we have also attempted to clarify the long standing puzzle
due to the big discrepancy between the experimental determination for neutral D-
meson mixing and the corresponding HQE prediction, which might naively point at
a complete failure of the HQE in the charm sector. In this respect, we have proposed
a novel procedure to treat the renormalisation scale for observables affected by GIM
cancellations. Our results show that the experimental value can be accommodated

within the HQE, albeit again with very large theoretical uncertainties.
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In conclusion, we have improved the current theoretical status of the HQE, by
computing the contribution of the Darwin operator to non-leptonic decays of heavy
quarks and by testing its applicability in the charm system. The same framework
can in future be applied to the B system, to improve the theoretical prediction
for lifetimes and mixing observables. A precise determination of e.g. 7(Bs)/7(By),
could in fact increase the bounds on the size of potential new physics contributions
in the decay b — s77, which are predicted by some of the current BSM models
that explain the B-anomalies, or could further constrain the baryogengesis model
discussed in Ref. [14].
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Appendix A

Expansion of operators containing the heavy

quark momentum

Here we discuss a general procedure to generate operators of higher dimension, bilin-
ear in the heavy quark field, starting from expressions containing lower dimensional
operators with coefficients proportional to the heavy quark momentum. For definite-
ness we consider the case of the b-quark in order to make the connection to Chapter 2
and Chapter 3 easier. We start by recalling that inside a heavy hadron, the mo-
mentum of the heavy quark can be conveniently parametrised as pi = myv* + k*.

Correspondingly the rescaled heavy quark field b,(z) is defined by

b(x) = e ™, (1), (A.1)

where the phase factor removes the large ‘kinetic’ part of the heavy quark momen-
tum so that a derivative acting on b,(x) returns only the residual component k.
Consider now the following expression p}' bb, with the b-fields evaluated at the origin

z = 0. By taking into account Eq. (A.1), we can write, see Refs. [130,131]

p}bb = ilir(l) b(z)io"b(x) = lim b, (z)(myv" + i0")b,(x), (A.2)

r—0

here the partial derivative is acting on the right. Using that in the FS gauge, see
Section 1.3, the gauge field satisfies the useful property A#(0) = 0, cf. Eq. (1.87), it
follows that on the r.h.s. of Eq. (A.2), the partial derivative acting on b,(z) can be

replaced by the corresponding covariant derivative in the limit  — 0, namely
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pybb = 91611)1% by () (myv* + 10" + A*(2))by(2) = by(mpv* + iD")b, (A.3)

which generates the dimension-four operator b,iD"b,. If the original expression con-
tains more than one power of the heavy quark momentum, to keep track of the order
of the covariant derivatives we can symmetrise the action of the partial derivatives,
e.g. the case of pjpl bb gives

Pl bb = L im b(z) (i0*i0” + 10"io")b(x)

z—0

= % lim b, () ((mbv“ + 10") (mpv” 4 107) + (mypv” + i0") (myvt + i&“))bv(x) :

o (A4)

Here again we would like to replace the action of the partial derivative with that
of the covariant derivative. Note that in this case, apart from terms containing the
gauge field on the most left, which vanish when taking the limit x — 0, we introduce
also terms with derivatives of the gauge field evaluated at the origin, that are in gen-
eral non zero. From Eq. (1.87), it follows that 0*A¥(0) = (1/2)G**(0), however, due
to the antisymmetry of the gluon field strength tensor, these contributions cancel in

the symmetric combination in Eq. (A.4), namely

b, (z‘D“iD” + z’D”z‘D“)bv

DO | —

- % lim b, (v) ((zawa” + A (@)id” + 10" AY (x) + AY(2)id" + AP () A¥ (x))

+ (i0¥ie" + A”(2)id" + i A (x) + A™(x)id” + A”(:c)A“(x)))bv(x)

1. . .
= S bu(ienie” +icvio" + %GW(O) + %G”“(O))bv
Lo | s
= ébv (i0"i0” +id"i0" )b, . (A.5)
We then obtain that
Moy 1 : v - v
Py oy bb = §bv{(mbv“ +iD*), (mpv” + iD )}bv : (A.6)
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where the curly brackets denote the anticommutator. Notice that we generate oper-
ators of dimension-four and dimension-five with respectively one and two covariant
derivatives. In the case of three powers of the heavy quark momentum, pj'pyp) bb,
in rewriting this expression in terms of partial derivatives we consider all the per-
mutations in the three Lorentz indices pvp. The replacement 0" — iD* again
follows from the symmetric combination of antisymmetric tensors, since Eq. (1.87)
now gives o*0¥ AP(0) = (1/2)0*G*P(0) + (1/3)D*G**(0). For n-powers of the heavy

quark momentum, we use the general expression

A= o S (e D) (e +0D) b, (A)

" 0€Sn

where .5, is the group of all permutations of n elements. Furthermore consider the

following function

firy=a+b(r)r+clr)r* +dr)r* +e(r)rt, (A.8)

with the dependence on the heavy quark momentum contained in the argument

r =m?/p?. In this case, we can use that p? = m? (1 + X), where

. 2
X:2M+k—2<<1, (A.9)
my my,
and expand Eq. (A.8) in series, i.e.
o0
Fr) = galp) (=X)", (A.10)
n=0

here go(p) = f(p) and the dimensionless mass parameter p = m?/m?. The series
in Eq. (A.10) can be truncated at a certain value of n, leading to corrections up to
order 1/m2". Expressing X in Eq. (A.10) back in terms of the four-momentum, we

then obtain

from which it follows that f(r)bb can be expanded according to Eq. (A.7). Finally,

for the computation of the coefficient of the Darwin operator discussed in Chapter 3,
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we need to expand also the structure pgl_)G“”b. In this case we write

lim (B(x)(—igp)GMV(x)b(x) 4 B@)GW@)(@&)b@))

lin% (Bv(a:)(mbvp - z'é_p)G“”(x)bv(:c) + by (2)G* () (myv” + i(?p)bv(q;)>

lim <Bv(x)(mbvp 0P G ()b () + b(2) G () (v + z'a_;’)bv(:c)>

N~ NI~ N~ N
8
|

— (z‘)v(mbw +iDP)GHb, + by G (P + z‘D")b,,) , (A.11)

where in the third step we have applied the chain rule for the derivative operator
acting on the left and dropped the corresponding term with a total derivative since
it does not contribute in forward matrix elements with zero momentum transfer.
In general, by expressing powers of the heavy quark momentum in terms of op-
erators acting on the heavy quark field, we generate a set of higher dimensional
operators with multiple covariant derivatives. Specifically, in order to compute the
contributions discussed in Chapter 2 and Chapter 3, it is sufficient to consider the
expansions up to three covariant derivatives. The operators obtained in this way,
must be then evaluated between external B meson states for the calculation of the
total decay width. This can be easily done by taking into account the results pre-
sented in Ref. [105], in which the complete parametrisation of these matrix elements,

up to order 1/mj was derived.
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Appendix B

Results for one-loop integrals in dimensional

regularisation

Here we list some useful results for the computation of one-loop integrals in dimen-
sional regularisation [47-50] with D = 4 — 2e. All the expressions presented can be
found in standard QFT textbooks like Refs. [38,81,285]. Note that in the following

we use the notation
dPl
2e =|. B.1
| o = | (B-1)

The scalar tadpole and bubble integrals are respectively given by

1

ﬁm = Ao(mz) ) (B.2)

and .

_ 2 2 2
Jl (12 —m? +ie)((l — p)2 —m3 +1is) Bo(p™sma,ma) (B-3)
with
9 im? (1 m?
Ayg(m*) = 62 \ g et log(47) + 1 + log (?) + O(e), (B.4)
1 1

BO(p27 m%u m%) = W (; —YE + 10g(477) + f(p27 mimg)) + 0(6) ) (B5>

where vg is the Euler-Mascheroni constant and
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1

F(2 2. m2) = _de log<(1—m)m%+xm%—x(1—x)p2—i€> 7 (B.6)

12

Note that as e — 0, the function f(p?, m?,m3) is real and analytic in s € C, with
Re(s) = p?, only for p* < (m1 + m2)2 v 0 < x < 1, while it exhibits a branch
point when the argument of the logarithm in the integrand on the r.h.s of Eq. (B.6)
vanishes. This leads to a cut in the complex s-plane, in correspondence of the points
p? > (ml + m2)2 in which the argument of logarithm becomes negative. By intro-
ducing e, the computation of the integral, performed above and below the branch

cut, gives see e.g. the lecture notes [286, 287]

N2 2. m2
Disc f(p?, m3,m3) = 2im (v ;;nl’m2> 7 <p2 — (mq + m2)2> : (B.7)

and 6(z) is the Heaviside function. From Egs. (B.4)-(B.7) it follows that

ImiAy(m?) =0, (B.8)
while
, 1 1 A/A(p?,m2,m3)
ImiBy(p?, m3, m3) = —Wlmf(pQ,m%,mg) T e D22 (B.9)

for p? > (m1 +m2)2. The corresponding one- and two-point one-loop tensor integrals
of rank r can be computed, using the Passarino-Veltman reduction algorithm [155],
as a linear combination of tensors of the same rank, built from the metric g and
the external momentum p#, with coefficients proportional to the scalar integrals in
Egs. (B.2), (B.3). Let us consider explicitly the cases r = 1,2. Rank-1 integrals can

only depend on the four-vector p*, namely

I
fl (12—=m?2 +ie)((l — p)2 — m3 + ic

) = Bllpp, <B10>

where the coefficient By; is obtained contracting both sides of Eq. (B.10) with p, i.e.

l-p

1
By = — . B.11
u p2fl<z2—m%+z's><<Z—p>2—m§+ie> (B.11)

By substituting the identity
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1
l-p:§<l2+p2—(l—p)Q—i—mf—m%—km%—m%), (B.12)
into Eq. (B.11), evidently yields

L[ =m})— (= p)?* —m3) + (p* + mi — m3)

By = —
N | (2 —m?2 +ie)((1 — p)2 — m2 + ie)

1

=52 (Ao(mg) — Ag(mi) + <p2 +mi— mg) By (p”, mf,m%)) , (B.13)

where we have taken into account Eqs. (B.2), (B.3). In the case of rank-2 integrals,
we can build two independent tensors, ¢g?° and p”p?, namely

f e
p (B=m3 +ie)((l —p)? —m3 +ie

j = By p’p° + Bay p°g™ (B.14)

here, the coefficients Bay, Bag, are the solutions of the system of two equations ob-

tained contracting both sides of Eq. (B.14) respectively with p, and g,,, i.e.

l2
= By p®* + p?Bn D B.15
fz(l2—mf+i€)((l—p)2—m§+ie) up P En (B.15)
(L-p)p” ) )
=D 7 By p”. B.1
fl(lz—m%+i€)((l—p)2—m§+ig) 21" P + P” DD (B.16)

Adding and subtracting m? in the numerator of Eq. (B.15) and substituting Eq. (B.12)
into Eq. (B.16), we obtain !

(321 + D B22) p2 = Ao(m§> + mf BO(Pza m%a m%) ) (B.17)

1

(321 + 322> P2 = 5

@W@+W+M—%w@, (B.18)

solved by

!Note that integrals of odd functions of I* vanish due to parity.
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1
B =579 (Ao<m§><D =2) = 2mi By(p’, mi, m)

D (m? = m3 + p2) (Ao(m3) — Ao(m2) + (9 + m3 — m§>60<p2,m%,m3>)>
+ ;

2p?
(B.19)

and

1 1
By =5 2—p2<Ao<m3> +2m3 Bo(o?, m3, m3)

(3 — 3 + ) (Ao(m3) — Ao(m3) + (b + m? — m3)Bo(p?, m3, m3)
_ - |
(B.20)

where Eq. (B.13) has been used. The expressions in Eq. (B.2)-(B.20) are needed for

the computation of the four-quark operators contribution discussed in Chapter 2.

Finally we derive some useful results used in the calculation of the one-loop di-
agram in Figure 3.4, describing the mixing of four-quark operators with two-quark

operators at dimension-six, discussed in Chapter 3. Consider the following scalar

integrals
1 2
B rie)? = Toy(m?), (B.21)
and
[2 D 9
with
2 i 1 p
To(m?) = =1 log(4m) + log g + O(e) . (B.23)

Rank-2 integrals, since now there is no external momentum they can depend on,

can be only parametrised by the metric tensor i.e.
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1 )

where the coefficient g(m?) is obtained by contracting both sides of Eq. (B.24) with
9. This gives

fz G ni? +ie)® Dg(m?), (B.25)

and from Eq. (B.22) it then follows that

g(m?) = 1 To(m?). (B.26)
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Appendix C

Decomposition of tensor integrals

In the following section we describe how to reduce rank-r integrals to a linear com-
bination of tensors of rank-r with coefficients given by scalar integrals. We consider
explicitly integrals of the sunset type encountered in Chapter 3 although the same
procedure can be generalised to any tensor integral without loss of generality. We
work again in dimensional regularisation with D = 4 — 2¢ and to simplify the nota-

tion we define

1
= C.1
Jlllz Jll le (B —m?+ie) (B —m3+ie)((lh + 1o — p)? —m3 +ig)’ (C1)

with {, defined as in Eq. (B.1). Rank-1 integrals can only be parametrised in terms

of the external momentum p*, hence
| = aermty (©2)
Il

where j = 1,2 and the coefficient a;(p?, m?) is obtained by contracting both sides
of Eq. (C.2) with p, i.e.

0, (P m?) = f (o). (C3)

In the case of rank-2 integrals, we can build two independent tensors, namely p?gH”

and p'p”, hence
f I = bin(p®,m?) p*g" + cie(P?, mi) p'p” (C.4)
l1lo

where j, k = 1,2 and the coefficients b;x(p?, m7), ¢;i(p*, m?) are the solutions of the
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system of two equations obtained by contracting both sides of Eq. (C.4) respectively
with ¢, and p,p, i.e.

bt ) = 5 o | (000 = G0 p) (©5)
) = 5o | (P@epten -6 o

In the case of rank-3 integrals, there are four independent tensors p>¢¥*p?} with the

curly brackets denoting all possible permutation of the Lorentz indices, hence

J HIIE, = dy g (PP, m7) D° g D° + dojem (p°, m3) D7 g7'p"
1112
+ ds jkm (D%, m2) D gD + €jkm (PP, m2) PPPUD
(C.7)

where j, k,m = 1,2 and the coefficients d, jxm (p?, m?), €km(p?, m?) are the solutions
of the system of four equations obtained by contracting both sides of Eq. (C.7) re-

spectively with ¢,.p,, 9pubvs Gvppp and p,p,p,. Defining for simplicity

1 1
) 2 02\ _ . . 2_(7].. . .
bion? ) = 57 75 | (W2 = 6 D)D) (C5)
leads to
dl,jkm(p27m7,2) = d]km(p27mz2) ) (09>
d2,jk:m(p2>m12) = dkmj(p2>mz2) ) (ClO)
dS,jkm(pzam?) = dmjk(pzamzz) ) (Cll)
while
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1 1
D—1p5 ),

— (L - b)) P° = (b - L) (1 - ) ° = (b - 1) (I - ) p2> . (C.12)

(7 = (D +2) - P)0a - ) )

Finally in the case of rank-4 integrals there are 10 independent tensor structures we

can build, namely p* ¢t ¢#7}, p?g!*pPp?} | and ptp”pPp°, hence

Jz , B LT = f1jemn (07 m3) D' 9" 97 + fojrmn (PP, ma) p* 99"
162

+ f3,jkmn (p27 mz) p4 guagup + gl7jkmn(p2> mz) p2 gw/pppa

v

+ 92,jkmn (pQ, ml) p2 g"’p'p” + 93, jkmn (p2, mz) p2 g'p"p”

2 vo

+ G jkmn (D%, M) P G DD + G5 jkmn (D%, M) P* ¢ " D”

+ 96,jkmn (D7, 1) D° 977D DY+ Rjiomn (D7, M) PPV DD (C.13)

where the coefficients f, jmx (%, m5), gsjmrk(p?, mi) and hj,k(p?, m;) are the solutions
of the system of 10 equations obtained by contracting both sides of Eq. (C.13) with

each of the tensor structures. Defining

9 1 1
Fitmn (P, i) = (D2 = 1)(D — 2) E JMQ [D ((lj P)(le - p) (- p)(ln - p)

4 (1) (o 1) = D)l 2)) = (05 Pl ) - 1)
+ (G L)k - p) (Lo - p) + (4 - 1) (I - p) (b - D)
+ (G p) (o p) e ) + (LG - p) (b - ) (I~ 1)

— (5 )l ) + (- )l L) 2 (4 Pl D) - )0 ) |
(C.14)
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and

2 1 1 2
e e T R R

+D(D ;P ) b D)l 2) + (U5 1)l 1) = (15 P) Ui )l - 1)
4205 1) Pl - 9) + (4 - bn) b D)0 -9) + (G - 1) (- P) b - )
+ (- p)Un - )l - ln) + (- ) (b ) (k- L)

= (T - L) (I - 1) + (- 1) (- Tn) + 4L - ) (k- ) (L - D) (T 'p))] ,

(C.15)
it follows that

Frgemn (0%, M) = Fitmn (D%, ) , (C.16)
o jmn (0P, M) = Fimpn (D%, M) , (C.17)
3 gtmn (0%, 3) = Finkm (D%, M) , (C.18)
Ik (D, M) = Gt (D, 1) (C.19)
92,kmn (D%, M5) = Gimien (D7, 103) (C.20)
93,jtmn (P 103) = Gjk (D%, M) (C.21)
94,k (D 1103) = Gramgn (07, 1103) | (C.22)
95, (D 1103) = G (D7, 1103) (C.23)
gﬁ,jkmn(p2a m;) = gmnjk(an m;), (C.24)

while
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1 1

hjkmn(p27mi) = —ﬁ E

Jll [_ (D + 4)(D + 2) (l] p)(lk p)(lm p)(ln p)

+ (D + 2 1)l 2) b 9) + (- L) (- P) (T D)
(b))l ) + (- 1) (- )T+ )

# L) D)l 2) + (- 1) - 2) (- )

- ((zj ) - 1)+ (U L) (B L) + (- 1) (L - zm))] . (C.25)
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Appendix D

Expressions for the coeflicients Céqﬁz%) and

(916243)
CG ;mn

Here we present the analytic expressions for the coefficients C(qmqg’) and C(glygi%)
with mn = 11,12, 22, introduced in Eq. (3.23). They read respectively

wud uud 3 wud uud ]-9
C(() = L, Cé‘n = 5 = Cé‘,22)7 CG 12 — _?a (D-l)
Cy'™) =1 —8p—12p*log(p) + 8p" — p", (D.2)
UCS 1 UCS
Cm = —5 (3= 80 +12p°log(p) + 240" — 249" + 5p") = CG5y (D.3)
UCs 1
Coty) = -3 (19 + 16p + 12p(p + 4) log(p) — 24p> — 16p° + 5p*) |, (D.4)
Cécad) =1-8p—12p*log(p) + 8p* — p*, (D.5)
cerd _ _Lia o 190 2% — 249 + 5pt) = ¢l D.6
i = =5 (3= 8p+12p"log(p) + 24p* — 249 + 5p) = Ci0 (D.6)
1
cina) = —5 (19— 56p + 1207 log(p) + 720" — 400" + 5p") . (D.7)
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i (14T
C) = /T —dp (1 —14p — 2p* — 12p%) + 24p%(1 — p?) log i

(D.8)
z 1 2 3
ces — — 10p + 10p” + 60p
cit = 4| VI 0 0 0 )
1 + 1 - 4P o (CES) D9
_24p2(1_5p2)10g (L)] _CG,QQ’ ( )
z 1 2 3
- — 2p + 58p% + 60p
e = -3 [m (19— 20+ 58p )

2 —5p*)lo Liyi-dp , (D.10)
—24p(2+ p—4p” —5p°) log 1_M
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Appendix E

Expressions for the divergent functions D(q1q2q3)

Here we list the expressions for the divergent functions DY%2®) given in Eq. (3.26).

ul m2
b
2 2
(uud) my m;,
Dy, " = [log (m—g> — log (m—z)] , (E.2)
2
uud m
b
(ucs) 2 §
Dy =8(1-p) (1+p)log( g>7 (E.4)
b
(ucs) mi mg
o pueom()om()]. e
my, b
DI —8(1— p)2 (14 p)] ( 2) (E6)
b
d 2 m?
D(cu ) = —16(1— p)®log <—g) +8(1 >(1+ p)log (—2> , (E.7)
b mb
(cud) 2 m3
Dy =8(1—p)"(1 + p)log — ) (E.8)
b
2
ccs) — 8\/7 10g ( ;) , (E9)
my,
m2
ccs) _ 8\/7 log ( ;) (ElO)
b
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Appendix F

Coefficients of the Darwin operator for the

charm system

The coefficients cﬁ%% of the Darwin operator corresponding to the ¢ — ¢ qu de-
cya, needed for the analysis of D-meson decays, including the full s-quark mass

dependence with p = m?2/m?, are given by the following expressions

o P T N S N (F.1)

pp,11 7 pp,12 — 3’ pD22

5 2
Cé(;)n = 5(1 —p) [9 +11p — 12p° log(p) — 24 (1 — p*) log(1 — p) — 25p* + 5p3} :
(F.2)

5 2
Chpn> = —3 [17 +12p (5 + 2p — 2¢) log(p) + 48(1 = p)(1 — p*) log(1 - p)
—26p + 18p* — 38p® + 5p*| , (F.3)

5 2
C/(Ji?m = 5(1 —p) l9 + 11p — 12p*log(p) — 24 (1 — p2) log(1 — p) — 25p* + 5p° |,
(F.4)
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C(Sg)

pp,11 =

C(SE)

p,12 =

p

!

p

$8)
D722

2
3

2
cld, = 3 [9 — 16p — 12p* + 16p° — 5p4] , (F.5)
o 2
Conz = —3 l17 +12p% (3 — p) log(p)
— 24(1 — p)®log(1 — p) — 50p + 90p* — 54p° + 5p4], (F.6)

a2
Chmir = 31=7) {9 +11p — 12p° log(p)

— 24 (1 - p®) log(1 — p) — 25p° + 5p3] : (F.7)

g[m—4p(17+8p—22p2—60p3) —4(2-3p+p") +

—12(1—p—2p" + 20" + 10p") log <%)
—12(1=p)(1=p") 10g(p)], (F.8)

1—4p (—33 + 24 log(p) — 24 log(1 — 4p) + 46p — 106p*> — 60p°)

1++/1-4p
12(3 —2p + 40> — 16p° — 10p*) 1 S ‘-
+12( prap P p)0g<1—m>

+ 4(1=p)* (4+3(1 - p)log(p) —p)], (F.9)

2
3 V1 —=4p(9+ 24 log(p) — 24 log(1 — 4p) + 22p — 34p> — 60p°)

14++/1—4p
24 (1 —2p — p? — 20 — 5p) 1 — Vv . F.10
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Appendix G

Parametrisation of matrix elements of four-

quark operators

The matrix elements of the dimension-six operators in QCD are parametrised as

(Dy|Of | Dy = A; [, mb, B, (G.1)
(Dy|OF |Dyy = A fp,mp, 61, a#d (G-2)

where )
AT=A=1, Aj=A= (mCTqu)z (G.3)

In VIA the Bag parameters reduce to BY = BS = 1, B! = 0, B? = 0 and 6 = 0.
The matrix elements of the dimension-seven four-quark operators in Egs. (4.52) -

(4.60) in HQET are parametrised in the following way

(Dy|P{|Dy) = —myF*(p19) mp Bp, , (G-4)
(Dy|P§|Dy) = —F*(p1g) mp A By, (G.5)
(Dy|P§|Dy) = —F*(pig) mp A B, (G.6)
(Dy|R{|Dy) = —FQ(MO) mp (/_\ — my) B?m ; (G.7)
(Dy|R3|Dy) = F* (o) mp (A —mg) B, (G-8)
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with A = mp — m,, and

(Dy|MS|Dyy = 2 F*(po) mp G (o) Bl (G.9)
(Dy| M8 Dy) =12 F*(j19) mp Ga(po) Biy (G.10)
(Dyg| ME|Dg) = 2 F (o) mp G1(po) By 5., (G.11)
(Dy|M§|Dy) = 12 F?(p10) mp Ga (o) By, (G.12)

and similar expressions for the colour-octet operators. Again, in VIA, the dimension-
seven Bag parameters are B;é’i =1, BEIM =1, and E?Wz = 1, while the corresponding
colour-octet Bag parameters vanish. The expressions in Eqs. (G.4) - (G.8) have
been obtained using the general parametrisation in HQET of the matrix element
of heavy-quark currents between a heavy pseudo-scalar meson and the vacuum, see

e.g. Ref. [52], namely

OlaThef M(0)) = 5 () T{EM(0)], (G.13)

gL iDahy|M(v)) = —é(_ — mg) () Tr[ (va + 7a)TM(v)], (G.14)

Ola(=iDa) T hy M (2)) = — F() Tl (45 = my iy + (& = m, o) EM()],
(G.15)

while for the non-local operators

Off [ @'y T[T ha)(0), (1 (iDP ) 0)] M) = Flo) Ga () THEM()),

(G.16)
0 [ ¢ [0 10, . (a1 ()| M) = 6 F(0)Galo) HEMG))
(G.17)

where T is a generic Dirac structure, and
M) = —yimp L (G.18)

2

194



Bibliography

[1]

2]

3]

[10]

[11]

[12]

S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett., vol. 19, pp. 1264-1266,
1967.

S. L. Glashow, “Partial Symmetries of Weak Interactions,” Nucl. Phys.,
vol. 22, pp. 579-588, 1961.

A. Salam, “Weak and Electromagnetic Interactions,” Conf. Proc. C,
vol. 680519, pp. 367-377, 1968.

P. Langacker, The standard model and beyond. 2010.

P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys.
Rev. Lett., vol. 13, pp. 508-509, 1964.

F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector
Mesons,” Phys. Rev. Lett., vol. 13, pp. 321-323, 1964.

G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global Conservation
Laws and Massless Particles,” Phys. Rev. Lett., vol. 13, pp. 585-587, 1964.

G. Aad et al., “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B,
vol. 716, pp. 1-29, 2012, 1207.7214.

S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with
the CMS Experiment at the LHC,” Phys. Lett. B, vol. 716, pp. 30-61, 2012,
1207.7235.

A. D. Sakharov, “Violation of CP Invariance, C asymmetry, and baryon asym-
metry of the universe,” Pisma Zh. Eksp. Teor. Fiz., vol. 5, pp. 32-35, 1967.

N. Cabibbo, “Unitary Symmetry and Leptonic Decays,” Phys. Rev. Lett.,
vol. 10, pp. 531-533, 1963. [,648(1963)].

M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory
of Weak Interaction,” Prog. Theor. Phys., vol. 49, pp. 652-657, 1973.

195



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

23]

[24]
[25]

[26]

M. B. Gavela, P. Hernandez, J. Orloff, O. Pene, and C. Quimbay, “Standard
model CP violation and baryon asymmetry. Part 2: Finite temperature,” Nucl.
Phys. B, vol. 430, pp. 382-426, 1994, hep-ph/9406289.

G. Alonso-Alvarez, G. Elor, and M. Escudero, “Collider signals of baryogenesis
and dark matter from B mesons: A roadmap to discovery,” Phys. Rev. D,
vol. 104, no. 3, p. 035028, 2021, 2101.02706.

F. R. Klinkhamer and N. S. Manton, “A Saddle Point Solution in the
Weinberg-Salam Theory,” Phys. Rev. D, vol. 30, p. 2212, 1984.

K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, “Is there
a hot electroweak phase transition at my larger or equal to my ?,” Phys. Rev.
Lett., vol. 77, pp. 2887-2890, 1996, hep-ph/9605288.

M. L. Piscopo, M. Spannowsky, and P. Waite, “Solving differential equations
with neural networks: Applications to the calculation of cosmological phase
transitions,” Phys. Rev. D, vol. 100, no. 1, p. 016002, 2019, 1902.05563.

A. A. Petrov and A. E. Blechman, Effective Field Theories. WSP, 2016.

G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P.
Silva, “Theory and phenomenology of two-Higgs-doublet models,” Phys. Rept.,
vol. 516, pp. 1-102, 2012, 1106.0034.

O. Atkinson, M. Black, A. Lenz, A. Rusov, and J. Wynne, “Cornering the
Two Higgs Doublet Model Type II,” 7 2021, 2107.05650.

A. Dainese, M. Mangano, A. B. Meyer, A. Nisati, G. Salam, and M. A. Vester-
inen, eds., Report on the Physics at the HL-LHC',and Perspectives for the HE-
LHC,vol. 7/2019 of CERN Yellow Reports: Monographs. Geneva, Switzerland:
CERN, 2019.

Y. S. Ambhis et al., “Averages of b-hadron, c-hadron, and 7-lepton properties
as of 2018,” Fur. Phys. J. C, vol. 81, no. 3, p. 226, 2021, 1909.12524.

A. Khodjamirian, Hadron Form Factors: From Basic Phenomenology to QCD
Sum Rules. March 2020.

A. Buras, Gauge Theory of Weak Decays. Cambridge University Press, 6 2020.
A. V. Manohar and M. B. Wise, Heavy quark physics, vol. 10. 2000.

M. Fael, K. Schonwald, and M. Steinhauser, “Third order corrections to the
semi-leptonic b — ¢ and the muon decays,” 11 2020, 2011.13654.

196



[27]

28]

[29]

[30]

[36]

[37]

[38]

[39]

A. Lenz, “Lifetimes and heavy quark expansion,” Int. J. Mod. Phys. A, vol. 30,
no. 10, p. 1543005, 2015, 1405.3601.

T. Mannel, S. Turczyk, and N. Uraltsev, “Higher Order Power Corrections in
Inclusive B Decays,” JHEP, vol. 11, p. 109, 2010, 1009.4622.

M. A. Shifman, A. I. Vainshtein, and V. 1. Zakharov, “QCD and Resonance
Physics: Applications,” Nucl. Phys. B, vol. 147, pp. 448-518, 1979.

M. A. Shifman, A. I. Vainshtein, and V. 1. Zakharov, “QCD and Resonance
Physics. Theoretical Foundations,” Nucl. Phys. B, vol. 147, pp. 385-447, 1979.

I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, “Radiative Decay ¥ —
py in Quantum Chromodynamics,” Nucl. Phys. B, vol. 312, pp. 509-550, 1989.

K. G. Wilson, “Confinement of Quarks,” Phys. Rev. D, vol. 10, pp. 24452459,
1974.

I. I. Bigi and A. I. Sanda, CP wviolation, vol. 9. Cambridge University Press, 9
2009.

A. Lenz and G. Wilkinson, “Mixing and C'P violation in the charm system,”
11 2020, 2011.04443.

M. Artuso, G. Borissov, and A. Lenz, “CP violation in the B? system,”
Rev. Mod. Phys., vol. 88, no. 4, p. 045002, 2016, 1511.09466. [Addendum:
Rev.Mod.Phys. 91, 049901 (2019)].

J. Albrecht, D. van Dyk, and C. Langenbruch, “Flavour anomalies in heavy
quark decays,” Prog. Part. Nucl. Phys., vol. 120, p. 103885, 2021, 2107.04822.

M. Alguerd, B. Capdevila, S. Descotes-Genon, J. Matias, and M. Novoa-
Brunet, “b — s global fits after Moriond 2021 results,” in 55th Rencontres
de Moriond on QCD and High Energy Interactions, 4 2021, 2104.08921.

C. Itzykson and J. B. Zuber, Quantum Field Theory. International Series In
Pure and Applied Physics, New York: McGraw-Hill, 1980.

R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and Collider Physics.
Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology,
Cambridge University Press, 1996.

M. A. Shifman, “Wilson Loop in Vacuum Fields,” Nucl. Phys. B, vol. 173,
pp- 13-31, 1980.

197



[41]

[42]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

A. J. Buras, “Weak Hamiltonian, CP violation and rare decays,” in Les
Houches Summer School in Theoretical Physics, Session 68: Probing the Stan-
dard Model of Particle Interactions, pp. 281-539, 6 1998, hep-ph/9806471.

G. Buchalla, A. J. Buras, and M. E. Lautenbacher, “Weak decays beyond
leading logarithms,” Rev. Mod. Phys., vol. 68, pp. 1125-1144, 1996, hep-
ph/9512380.

G. Buchalla, “Heavy quark theory,” in 55th Scottish Universities Sum-
mer School in Physics: Heavy Flavor Physics (SUSSP 2001), 2 2002, hep-
ph/0202092.

A. Grozin, “Effective weak Lagrangians in the Standard Model and B decays,”
in Helmholtz International Summer School on Physics of Heavy Quarks and
Hadrons, pp. 78-98, 2014, 1311.0550.

K. G. Wilson, “Nonlagrangian models of current algebra,” Phys. Rev., vol. 179,
pp. 1499-1512, 1969.

K. G. Wilson and J. B. Kogut, “The Renormalization group and the epsilon
expansion,” Phys. Rept., vol. 12, pp. 75199, 1974.

G. 't Hooft and M. J. G. Veltman, “Regularization and Renormalization of
Gauge Fields,” Nucl. Phys. B, vol. 44, pp. 189-213, 1972.

C. G. Bollini and J. J. Giambiagi, “Dimensional Renormalization: The Num-
ber of Dimensions as a Regularizing Parameter,” Nuovo Cim. B, vol. 12,
pp. 20-26, 1972.

G. M. Cicuta and E. Montaldi, “Analytic renormalization via continuous space
dimension,” Lett. Nuovo Cim., vol. 4, pp. 329-332, 1972.

J. F. Ashmore, “A Method of Gauge Invariant Regularization,” Lett. Nuovo
Cim., vol. 4, pp. 289-290, 1972.

G. 't Hooft, “Dimensional regularization and the renormalization group,”
Nucl. Phys. B, vol. 61, pp. 455-468, 1973.

M. Neubert, “Heavy quark symmetry,” Phys. Rept., vol. 245, pp. 259-396,
1994, hep-ph/9306320.

E. Eichten and F. L. Feinberg, “Spin Dependent Forces in Heavy Quark Sys-
tems,” Phys. Rev. Lett., vol. 43, p. 1205, 1979.

198



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

E. V. Shuryak, “Hadrons Containing a Heavy Quark and QCD Sum Rules,”
Nucl. Phys. B, vol. 198, pp. 83101, 1982.

M. B. Voloshin and M. A. Shifman, “On the annihilation constants of mesons
consisting of a heavy and a light quark, and B° < B oscillations,” Sov. J.
Nucl. Phys., vol. 45, p. 292, 1987.

M. A. Shifman and M. B. Voloshin, “On Production of d and D* Mesons in
B Meson Decays,” Sov. J. Nucl. Phys., vol. 47, p. 511, 1988.

H. David Politzer and M. B. Wise, “Effective field theory approach to processes
involving both light and heavy fields,” Physics Letters B, vol. 208, no. 3,
pp- 504-507, 1988.

E. Eichten and B. R. Hill, “An Effective Field Theory for the Calculation of
Matrix Elements Involving Heavy Quarks,” Phys. Lett. B, vol. 234, pp. 511—
516, 1990.

N. Isgur and M. B. Wise, “Weak decays of heavy mesons in the static quark
approximation,” Physics Letters B, vol. 232, no. 1, pp. 113-117, 1989.

H. Georgi, “An effective field theory for heavy quarks at low energies,” Physics
Letters B, vol. 240, no. 3, pp. 447-450, 1990.

B. Grinstein, “The Static Quark Effective Theory,” Nucl. Phys. B, vol. 339,
pp. 253-268, 1990.

A. F. Falk, H. Georgi, B. Grinstein, and M. B. Wise, “Heavy Meson Form-
factors From QCD,” Nucl. Phys. B, vol. 343, pp. 1-13, 1990.

M. E. Luke, “Effects of subleading operators in the heavy quark effective
theory,” Phys. Lett. B, vol. 252, pp. 447-455, 1990.

T. Mannel, “Heavy quark effective field theory,” Rept. Prog. Phys., vol. 60,
pp. 1113-1172, 1997.

A. V. Manohar and M. B. Wise, Heavy Quark Physics. Cambridge Monographs
on Particle Physics, Nuclear Physics and Cosmology, Cambridge University
Press, 2000.

T. Mannel, “Recent progress in the theory of heavy flavor decays,” J. Phys.,
vol. 21, pp. 1007-1042, 1995.

199



[67]

[68]

[69]

[71]

[72]

73]

[76]

I. Bigi, M. Shifman, and N. Uraltsev, “Aspects of heavy-quark theory,” Annual
Review of Nuclear and Particle Science, vol. 47, no. 1, pp. 591-661, 1997,
https://doi.org/10.1146 /annurev.nucl.47.1.591.

T. Mannel, W. Roberts, and Z. Ryzak, “A Derivation of the heavy quark
effective Lagrangian from QCD,” Nucl. Phys. B, vol. 368, pp. 204-217, 1992.

H. Georgi, B. Grinstein, and M. B. Wise, “A; semileptonic decay form-factors
for m. does not equal infinity,” Phys. Lett. B, vol. 252, pp. 456460, 1990.

A. F. Falk and M. Neubert, “Second order power corrections in the heavy
quark effective theory. 1. Formalism and meson form-factors,” Phys. Rev. D,
vol. 47, pp. 2965-2981, 1993, hep-ph/9209268.

M. A. Shifman, “Lectures on heavy quarks in quantum chromodynamics,” in
Theoretical Advanced Study Institute in Elementary Particle Physics (TASI
95): QCD and Beyond, 10 1995, hep-ph/9510377.

J. S. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev.,
vol. 82, pp. 664-679, 1951.

V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Operator
expansion in quantum chromodynamics beyond perturbation theory,” Nucl.
Phys. B, vol. 174, pp. 378-396, 1980.

V. Fock, “Proper time in classical and quantum mechanics,” Phys. Z. Sowje-
tunion, vol. 12, pp. 404-425, 1937.

M. S. Dubovikov and A. V. Smilga, “Analytical Properties of the Quark Po-
larization Operator in an External Selfdual Field,” Nucl. Phys. B, vol. 185,
pp. 109-132, 1981.

E. V. Shuryak and A. I. Vainshtein, “Theory of Power Corrections to Deep
Inelastic Scattering in Quantum Chromodynamics. 1. Q? Effects,” Nucl. Phys.
B, vol. 199, pp. 451-481, 1982.

A. V. Smilga, “Calculation of the degree corrections in fixed point gauge. (in
Russian),” Sov. J. Nucl. Phys., vol. 35, pp. 271-277, 1982.

V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Calcu-
lations in External Fields in Quantum Chromodynamics. Technical Review,”
Fortsch. Phys., vol. 32, p. 585, 1984.

200



[79]

[30]

[81]

[82]

[89]

[90]

[91]

V. 1. Zakharov, “Gluon condensate and beyond,” Int. J. Mod. Phys. A, vol. 14,
pp. 4865-4880, 1999, hep-ph/9906264.

The Fock-Schwinger Gauge. Theses, University of Tasmania, 1991.

M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory.
Reading, USA: Addison-Wesley, 1995.

R. Soldati, “Introduction to Quantum Field Theory. A Basic Course
for Primary FEducation,” on line notes for the I Semester Course,

http://www.robertosoldati.com .

I. S. Gradshteyn and 1. M. Ryzhik, Table of integrals, series, and products.

Elsevier/Academic Press, Amsterdam, seventh ed., 2007.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. New York: Dover, ninth ed.,
1964.

V. M. Belyaev and B. Y. Blok, “Charmed baryons in quantum chromodynam-
ics,” Z. Phys. C| vol. 30, p. 151, 1986.

B. Blok, R. D. Dikeman, and M. A. Shifman, “Calculation of 1/m? terms in the
total semileptonic width of D mesons,” Phys. Rev. D, vol. 51, pp. 61676176,
1995, hep-ph/9410293.

M. A. Shifman and M. B. Voloshin, “Preasymptotic Effects in Inclusive Weak
Decays of Charmed Particles,” Sov. J. Nucl. Phys., vol. 41, p. 120, 1985.

M. A. Shifman, “Theory of weak inclusive decays and lifetimes of heavy
hadrons,” in 27th International Conference on High-energy Physics, 7 1994,
hep-ph/9409359.

R. Aaij et al., “Measurement of the QY baryon lifetime,” Phys. Rev. Lett.,
vol. 121, no. 9, p. 092003, 2018, 1807.02024.

R. Aaij et al., “Precision measurement of the A}, ZF and = baryon lifetimes,”
Phys. Rev. D, vol. 100, no. 3, p. 032001, 2019, 1906.08350.

N. N. Nikolaev, “Gauge model for weak interaction and supercharged
hadrons,” Pisma Zh. Eksp. Teor. Fiz., vol. 18, pp. 447-451, 1973.

M. K. Gaillard, B. W. Lee, and J. L. Rosner, “Search for Charm,” Rev. Mod.
Phys., vol. 47, pp. 277-310, 1975.

201



[93]

[94]

[95]

[99]

[100]

[101]

[102]

[103]

R. L. Kingsley, S. B. Treiman, F. Wilczek, and A. Zee, “Weak Decays of
Charmed Hadrons,” Phys. Rev. D, vol. 11, p. 1919, 1975.

J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, “On the Weak Decays
of High Mass Hadrons,” Nucl. Phys. B, vol. 100, p. 313, 1975. [Erratum:
Nucl.Phys.B 104, 547 (1976)].

G. Altarelli, N. Cabibbo, and L. Maiani, “Possibility that Charmed Vector
Mesons are Lighter than Charmed Pseudoscalars,” Phys. Rev. Lett., vol. 35,
pp. 635638, 1975.

V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Wilson’s
Operator Expansion: Can It Fail?,” Nucl. Phys. B, vol. 249, pp. 445-471, 1985.

J. Chay, H. Georgi, and B. Grinstein, “Lepton energy distributions in heavy
meson decays from QCD,” Phys. Lett. B, vol. 247, pp. 399-405, 1990.

I. I. Y. Bigi, N. G. Uraltsev, and A. I. Vainshtein, “Nonperturbative correc-
tions to inclusive beauty and charm decays: QCD versus phenomenological
models,” Phys. Lett. B, vol. 293, pp. 430-436, 1992, hep-ph/9207214. [Erra-
tum: Phys.Lett.B 297, 477-477 (1992)].

I. I. Y. Bigi, M. A. Shifman, N. G. Uraltsev, and A. I. Vainshtein, “QCD
predictions for lepton spectra in inclusive heavy flavor decays,” Phys. Rev.
Lett., vol. 71, pp. 496-499, 1993, hep-ph/9304225.

B. Blok, L. Koyrakh, M. A. Shifman, and A. I. Vainshtein, “Differential dis-
tributions in semileptonic decays of the heavy flavors in QCD,” Phys. Rev.
D, vol. 49, p. 3356, 1994, hep-ph/9307247. [Erratum: Phys.Rev.D 50, 3572
(1994)].

T. Mannel, “Operator product expansion for inclusive semileptonic decays in
heavy quark effective field theory,” Nucl. Phys. B, vol. 413, pp. 396-412, 1994,
hep-ph/9308262.

M. A. Shifman, “Theory of preasymptotic effects in weak inclusive decays,”
in Workshop on Continuous Advances in QQCD, 2 1994, hep-ph/9405246.

I. I. Y. Bigi, B. Blok, M. A. Shifman, N. G. Uraltsev, and A. I. Vainshtein, “A
QCD 'manifesto’ on inclusive decays of beauty and charm,” in 7th Meeting of
the APS Division of Particles Fields, 11 1992, hep-ph/9212227.

202



[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

114]

[115]

[116]

[. I. Y. Bigi, M. A. Shifman, N. G. Uraltsev, and A. I. Vainshtein, “Sum rules
for heavy flavor transitions in the SV limit,” Phys. Rev. D, vol. 52, pp. 196—
235, 1995, hep-ph/9405410.

B. M. Dassinger, T. Mannel, and S. Turczyk, “Inclusive semi-leptonic B decays
to order 1/my,” JHEP, vol. 03, p. 087, 2007, hep-ph/0611168.

A. Alberti, P. Gambino, K. J. Healey, and S. Nandi, “Precision determina-
tion of the cabibbo-kobayashi-maskawa elementvcb,” Physical Review Letters,
vol. 114, Feb 2015.

V. A. Khoze and M. A. Shifman, “Heavy quarks,” Sov. Phys. Usp., vol. 26,
p. 387, 1983.

M. A. Shifman and M. B. Voloshin, “Hierarchy of Lifetimes of Charmed and
Beautiful Hadrons,” Sov. Phys. JETP, vol. 64, p. 698, 1986. [Zh. Eksp. Teor.
Fiz.91,1180(1986)].

M. Neubert and C. T. Sachrajda, “Spectator effects in inclusive decays of
beauty hadrons,” Nucl. Phys., vol. B483, pp. 339-370, 1997, hep-ph/9603202.

N. G. Uraltsev, “On the problem of boosting nonleptonic b baryon decays,”
Phys. Lett. B, vol. 376, pp. 303-308, 1996, hep-ph/9602324.

Q. Ho-kim and X.-Y. Pham, “Exact One Gluon Corrections for Inclusive Weak
Processes,” Annals Phys., vol. 155, p. 202, 1984.

G. Altarelli and S. Petrarca, “Inclusive beauty decays and the spectator
model,” Phys. Lett., vol. B261, pp. 303-310, 1991.

M. B. Voloshin, “QCD radiative enhancement of the decay b — cc¢s,” Phys.
Rev., vol. D51, pp. 3948-3951, 1995, hep-ph/9409391.

E. Bagan, P. Ball, V. M. Braun, and P. Gosdzinsky, “Charm quark mass de-
pendence of QCD corrections to nonleptonic inclusive B decays,” Nucl. Phys.,
vol. B432, pp. 3-38, 1994, hep-ph/9408306.

E. Bagan, P. Ball, B. Fiol, and P. Gosdzinsky, “Next-to-leading order radiative
corrections to the decay b — ccs,” Phys. Lett., vol. B351, pp. 546-554, 1995,
hep-ph/9502338.

A. Lenz, U. Nierste, and G. Ostermaier, “Penguin diagrams, charmless B
decays and the missing charm puzzle,” Phys. Rev., vol. D56, pp. 7228-7239,
1997, hep-ph/9706501.

203



[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

A. Lenz, U. Nierste, and G. Ostermaier, “Determination of the CKM angle
gamma and |V,;/Vy| from inclusive direct CP asymmetries and branching
ratios in charmless B decays,” Phys. Rev., vol. D59, p. 034008, 1999, hep-
ph,/9802202.

F. Krinner, A. Lenz, and T. Rauh, “The inclusive decay b — ccs revisited,”
Nucl. Phys., vol. B876, pp. 31-54, 2013, 1305.5390.

A. Czarnecki and K. Melnikov, “Two loop QCD corrections to semileptonic
b decays at maximal recoil,” Phys. Rev. Lett., vol. 78, pp. 3630-3633, 1997,
hep-ph/9703291.

A. Czarnecki and K. Melnikov, “T'wo - loop QCD corrections to semileptonic
b decays at an intermediate recoil,” Phys. Rev., vol. D59, p. 014036, 1999,
hep-ph/9804215.

T. van Ritbergen, “The Second order QCD contribution to the semileptonic
b — wu decay rate,” Phys. Lett., vol. B454, pp. 353-358, 1999, hep-ph/9903226.

K. Melnikov, “O(a?) corrections to semileptonic decay b — cliy,” Phys. Lett.,
vol. B666, pp. 336-339, 2008, 0803.0951.

A. Pak and A. Czarnecki, “Heavy-to-heavy quark decays at NNLO,” Phys.
Rev., vol. D78, p. 114015, 2008, 0808.3509.

A. Pak and A. Czarnecki, “Mass effects in muon and semileptonic b — ¢
decays,” Phys. Rev. Lett., vol. 100, p. 241807, 2008, 0803.0960.

M. Dowling, A. Pak, and A. Czarnecki, “Semi-Leptonic b-decay at Intermedi-
ate Recoil,” Phys. Rev., vol. D78, p. 074029, 2008, 0809.0491.

R. Bonciani and A. Ferroglia, “T'wo-Loop QCD Corrections to the Heavy-to-
Light Quark Decay,” JHEP, vol. 11, p. 065, 2008, 0809.4687.

S. Biswas and K. Melnikov, “Second order QCD corrections to inclusive
semileptonic b — X (c)lp, decays with massless and massive lepton,” JHEP,
vol. 02, p. 089, 2010, 0911.4142.

M. Brucherseifer, F. Caola, and K. Melnikov, “On the O(a?) corrections to b —
X,ev inclusive decays,” Phys. Lett., vol. B721, pp. 107-110, 2013, 1302.0444.

A. Czarnecki, M. Slusarczyk, and F. V. Tkachov, “Enhancement of the
hadronic b quark decays,” Phys. Rev. Lett., vol. 96, p. 171803, 2006, hep-
ph/0511004.

204



[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

138

[139]

[140]

[141]

B. Blok and M. A. Shifman, “The Rule of discarding 1/N, in inclusive weak
decays. 1.,” Nucl. Phys., vol. B399, pp. 441-458, 1993, hep-ph/9207236.

B. Blok and M. A. Shifman, “The Rule of discarding 1/N, in inclusive weak
decays. 2.,” Nucl. Phys., vol. B399, pp. 459-476, 1993, hep-ph/9209289.

A. Alberti, P. Gambino, and S. Nandi, “Perturbative corrections to power
suppressed effects in semileptonic B decays,” JHEP, vol. 01, p. 147, 2014,
1311.7381.

T. Mannel, A. A. Pivovarov, and D. Rosenthal, “Inclusive semileptonic B
decays from QCD with NLO accuracy for power suppressed terms,” Phys.
Lett., vol. B741, pp. 290-294, 2015, 1405.5072.

T. Mannel, A. A. Pivovarov, and D. Rosenthal, “Inclusive weak decays of
heavy hadrons with power suppressed terms at NLO,” Phys. Rev., vol. D92,
no. 5, p. 054025, 2015, 1506.08167.

M. Gremm and A. Kapustin, “Order 1/mj corrections to B — X (c) lepton
anti-neutrino decay and their implication for the measurement of A and \;,”
Phys. Rev., vol. D55, pp. 6924-6932, 1997, hep-ph/9603448.

T. Mannel and A. A. Pivovarov, “QCD corrections to inclusive heavy hadron
weak decays at A%CD/m‘ZQ,” Phys. Rewv., vol. D100, no. 9, p. 093001, 2019,
1907.09187.

A. Lenz, M. L. Piscopo, and A. V. Rusov, “Contribution of the Darwin op-
erator to non-leptonic decays of heavy quarks,” JHEP, vol. 12, p. 199, 2020,
2004.09527.

T. Mannel, D. Moreno, and A. Pivovarov, “Heavy quark expansion for heavy
hadron lifetimes: completing the 1/m; corrections,” JHEP, vol. 08, p. 089,
2020, 2004.09485.

D. Moreno, “Completing 1/mj corrections to non-leptonic bottom-to-up-quark
decays,” JHEP, vol. 01, p. 051, 2021, 2009.08756.

D. King, A. Lenz, M. L. Piscopo, T. Rauh, A. V. Rusov, and C. Vlahos,
“Revisiting Inclusive Decay Widths of Charmed Mesons,” 9 2021, 2109.13219.

M. Beneke, G. Buchalla, C. Greub, A. Lenz, and U. Nierste, “The BT —
BY Lifetime Difference Beyond Leading Logarithms,” Nucl. Phys., vol. B639,
pp. 389407, 2002, hep-ph/0202106.

205



[142]

[143]

144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

E. Franco, V. Lubicz, F. Mescia, and C. Tarantino, “Lifetime ratios of beauty
hadrons at the next-to-leading order in QCD,” Nucl. Phys., vol. B633, pp. 212—
236, 2002, hep-ph/0203089.

A. Lenz and T. Rauh, “D-meson lifetimes within the heavy quark expansion,”
Phys. Rev., vol. D88, p. 034004, 2013, 1305.3588.

F. Gabbiani, A. I. Onishchenko, and A. A. Petrov, “Spectator effects and
lifetimes of heavy hadrons,” Phys. Rev., vol. D70, p. 094031, 2004, hep-
ph/0407004.

B. Blok, M. A. Shifman, and D.-X. Zhang, “An Illustrative example of how
quark hadron duality might work,” Phys. Rev. D, vol. 57, pp. 2691-2700, 1998,
hep-ph/9709333. [Erratum: Phys.Rev.D 59, 019901 (1999)].

B. Chibisov, R. D. Dikeman, M. A. Shifman, and N. Uraltsev, “Operator
product expansion, heavy quarks, QCD duality and its violations,” Int. J.
Mod. Phys. A, vol. 12, pp. 2075-2133, 1997, hep-ph/9605465.

M. A. Shifman, “Quark hadron duality,” in 8th International Symposium on
Heavy Flavor Physics, vol. 3, (Singapore), pp. 14471494, World Scientific, 7
2000, hep-ph/0009131.

M. Beneke and G. Buchalla, “The B, Meson Lifetime,” Phys. Rev. D, vol. 53,
pp. 4991-5000, 1996, hep-ph/9601249.

J. Aebischer and B. Grinstein, “Standard Model prediction of the B, lifetime,”
5 2021, 2105.02988.

J. Aebischer and B. Grinstein, “A novel determination of the B, lifetime,” 8
2021, 2108.10285.

G. C. Wick, “The Evaluation of the Collision Matrix,” Phys. Rev., vol. 80,
pp. 268272, 1950.

N. N. Bogolyubov and D. V. Shirkov, Introduction to the theory of quantized
fields, vol. 3. 1959.

H. Georgi, “Heavy quark effective field theory,” in Theoretical Advanced Study
Institute in Elementary Particle Physics (TASI 91): Perspectives in the Stan-
dard Model, 8 1991.

W. R. Inc., “Mathematica, Version 12.3.1.” Champaign, 1L, 2021.

206



[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

G. Passarino and M. J. G. Veltman, “One Loop Corrections for ete~ An-
nihilation Into mu*tmu~ in the Weinberg Model,” Nucl. Phys. B, vol. 160,
pp- 151207, 1979.

R. Mertig, M. Bohm, and A. Denner, “FEYN CALC: Computer algebraic cal-
culation of Feynman amplitudes,” Comput. Phys. Commun., vol. 64, pp. 345—
359, 1991.

R. N. Lee, “Presenting LiteRed: a tool for the Loop InTEgrals REDuction,”
2012, 1212.2685.

R. N. Lee, “LiteRed 1.4: a powerful tool for reduction of multiloop integrals,”
J. Phys. Conf. Ser., vol. 523, p. 012059, 2014, 1310.1145.

O. V. Tarasov, “Generalized recurrence relations for two loop propagator in-
tegrals with arbitrary masses,” Nucl. Phys. B, vol. 502, pp. 455-482, 1997,
hep-ph/9703319.

M. Caffo, H. Czyz, S. Laporta, and E. Remiddi, “The Master differential equa-
tions for the two loop sunrise selfmass amplitudes,” Nuovo Cim. A, vol. 111,
pp. 365-389, 1998, hep-th/9805118.

E. Remiddi and L. Tancredi, “Differential equations and dispersion relations
for Feynman amplitudes. The two-loop massive sunrise and the kite integral,”
Nucl. Phys., vol. B907, pp. 400-444, 2016, 1602.01481.

A. A. Pivovarov, N. N. Tavkhelidze, and V. F. Tokarev, “The Schwinger model
and sum rules,” Phys. Lett., vol. 132B, pp. 402-406, 1983.

S. Groote and A. A. Pivovarov, “Threshold expansion of Feynman diagrams
within a configuration space technique,” Nucl. Phys., vol. B580, pp. 459-484,
2000, hep-ph/0003115.

J. Broedel, C. Duhr, F. Dulat, and L. Tancredi, “Elliptic polylogarithms and
iterated integrals on elliptic curves. Part I: general formalism,” JHEP, vol. 05,
p. 093, 2018, 1712.07089.

J. Broedel, C. Duhr, F. Dulat, and L. Tancredi, “Elliptic polylogarithms and
iterated integrals on elliptic curves II: an application to the sunrise integral,”
Phys. Rev., vol. D97, no. 11, p. 116009, 2018, 1712.07095.

T. Mannel and K. K. Vos, “Reparametrization Invariance and Partial Re-
Summations of the Heavy Quark Expansion,” JHEP, vol. 06, p. 115, 2018,
1802.09409.

207



[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

P. Gambino, G. Ossola, and N. Uraltsev, “Hadronic mass and ¢?> moments of
charmless semileptonic B decay distributions,” JHEP, vol. 09, p. 010, 2005,
hep-ph/0505091.

I. I. Bigi, N. Uraltsev, and R. Zwicky, “On the nonperturbative charm effects
in inclusive B — X lv decays,” Eur. Phys. J. C| vol. 50, pp. 539-556, 2007,
hep-ph/0511158.

C. Breidenbach, T. Feldmann, T. Mannel, and S. Turczyk, “On the Role of
Intrinsic Charm’ in Semi-Leptonic B-Meson Decays,” Phys. Rev. D, vol. 78,
p. 014022, 2008, 0805.0971.

R. Grigjanis, P. J. O’Donnell, M. Sutherland, and H. Navelet, “QCD radiative
corrections to B — X,ete™ processes,” Phys. Lett. B, vol. 223, pp. 239-244,
1989.

M. Misiak, “QCD corrected effective Hamiltonian for the b — sv decay,” Phys.
Lett. B, vol. 269, pp. 161-168, 1991.

M. Ciuchini, E. Franco, L. Reina, and L. Silvestrini, “Leading order QCD
corrections to b — sy and b — sg decays in three regularization schemes,”
Nucl. Phys. B, vol. 421, pp. 41-64, 1994, hep-ph/9311357.

C. W. Bauer, A. F. Falk, and M. E. Luke, “Resumming phase space logarithms
in inclusive semileptonic B decays,” Phys. Rev. D, vol. 54, pp. 2097-2107,
1996, hep-ph/9604290.

W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, “Deep Inelastic
Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories,”
Phys. Rev. D, vol. 18, p. 3998, 1978.

R. Aaij et al., “Physics case for an LHCb Upgrade II - Opportunities in flavour
physics, and beyond, in the HL-LHC era,” 2018, 1808.08865.

M. Ablikim et al., “Future Physics Programme of BESIIL,” Chin. Phys.,
vol. C44, no. 040001, 2020, 1912.05983.

W. Altmannshofer et al., “The Belle II Physics Book,” PTEP, vol. 2019, no. 12,
p. 123C01, 2019, 1808.10567. [Erratum: PTEP2020,n0.2,029201(2020)].

G. Bellini, I. I. Y. Bigi, and P. J. Dornan, “Lifetimes of charm and beauty
hadrons,” Phys. Rept., vol. 289, pp. 1-155, 1997.

208



[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189)]

[190]

[191]

[192]

S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, “A Cicerone for the physics of
charm,” Riv. Nuovo Cim., vol. 26, no. 7-8, pp. 1-200, 2003, hep-ex/0309021.

M. Artuso, B. Meadows, and A. A. Petrov, “Charm Meson Decays,” Ann.
Rev. Nucl. Part. Sci., vol. 58, pp. 249-291, 2008, 0802.2934.

M. Gersabeck, “Brief Review of Charm Physics,” Mod. Phys. Lett. A, vol. 27,
p- 1230026, 2012, 1207.2195.

R. Aaij et al., “Observation of CP Violation in Charm Decays,” Phys. Rev.
Lett., vol. 122, no. 21, p. 211803, 2019, 1903.08726.

H.-N. Li, C.-D. Lu, and F.-S. Yu, “Implications on the first observation of
charm CPV at LHCb,” 3 2019, 1903.10638.

Y. Grossman and S. Schacht, “The emergence of the AU = 0 rule in charm
physics,” JHEP, vol. 07, p. 020, 2019, 1903.10952.

H.-Y. Cheng and C.-W. Chiang, “Revisiting CP violation in D — PP and VP
decays,” Phys. Rev. D, vol. 100, no. 9, p. 093002, 2019, 1909.03063.

A. Soni, “Charm CP: AAcp and Radiative decays,” in 37th International
Symposium on Lattice Field Theory, 1 2020, 2001.10014.

M. Chala, A. Lenz, A. V. Rusov, and J. Scholtz, “AAcp within the Standard
Model and beyond,” JHEP, vol. 07, p. 161, 2019, 1903.10490.

A. Dery and Y. Nir, “Implications of the LHCDb discovery of CP violation in
charm decays,” JHEP, vol. 12, p. 104, 2019, 1909.11242.

A. Khodjamirian and A. A. Petrov, “Direct CP asymmetry in D — 7~ 7+ and
D — K~K* in QCD-based approach,” Phys. Lett. B, vol. 774, pp. 235-242,
2017, 1706.07780.

A. Lenz, “What did we learn in theory from the AAgsp-saga?,” in Proceedings,
6th International Workshop on Charm Physics (Charm 2013): Manchester,
UK, August 31-September 4, 2013, 11 2013, 1311.6447.

P. Zyla et al., “Review of Particle Physics,” PTEP, vol. 2020, no. 8, p. 083C01,
2020.

M. Ablikim et al., “Measurement of the absolute branching fraction of inclusive
semielectronic D} decays,” 4 2021, 2104.07311.

209



193]

[194]

[195]

[196]

197]

193]

[199]

200]

[201]

[202]

203

204]

[205]

206]

F. Abudinén et al., “Precise measurement of the D and D7 lifetimes at Belle
I1,” 8 2021, 2108.03216.

B physics at the Tevatron: Run II and beyond, 12 2001, hep-ph/0201071.

U. Nierste, “Three Lectures on Meson Mixing and CKM phenomenology,”
in Heavy quark physics. Proceedings, Helmholtz International School, HQPO0S,
Dubna, Russia, August 11-21, 2008, pp. 1-38, 2009, 0904.1869.

L. Silvestrini, “Effective Theories for Quark Flavour Physics,” 5 2019,
1905.00798.

Y. S. Ambhis et al., “Averages of b-hadron, c-hadron, and 7-lepton properties
as of 2018,” 2019, 1909.12524.

E. Aitala et al., “Search for DO - anti-D0 mixing in semileptonic decay modes,”
Phys. Rev. Lett., vol. 77, pp. 2384-2387, 1996, hep-ex/9606016.

C. Cawlfield et al., “Limits on neutral D mixing in semileptonic decays,” Phys.
Rev. D, vol. 71, p. 077101, 2005, hep-ex/0502012.

B. Aubert et al., “Search for D° — D° mixing using doubly flavor tagged
semileptonic decay modes,” Phys. Rev. D, vol. 76, p. 014018, 2007, 0705.0704.

U. Bitenc et al., “Improved search for D° — DY mixing using semileptonic
decays at Belle,” Phys. Rev. D, vol. 77, p. 112003, 2008, 0802.2952.

E. Aitala et al., “A Search for D° — D° mixing and doubly Cabibbo suppressed
decays of the D° in hadronic final states,” Phys. Rev. D, vol. 57, pp. 13-27,
1998, hep-ex/9608018.

R. Godang et al., “Search for D° — D° mixing,” Phys. Rev. Lett., vol. 84,
pp. 5038-5042, 2000, hep-ex/0001060.

J. Link et al., “Measurement of the doubly Cabibbo suppressed decay D° —
K*7~ and a search for charm mixing,” Phys. Lett. B, vol. 618, pp. 23-33,
2005, hep-ex/0412034.

L. Zhang et al., “Improved constraints on D° — D° mixing in D® — K*7~
decays at BELLE,” Phys. Rev. Lett., vol. 96, p. 151801, 2006, hep-ex,/0601029.

B. Aubert et al., “Evidence for D? — D’ Mixing,” Phys. Rev. Lett., vol. 98,
p. 211802, 2007, hep-ex/0703020.

210



207]

208]

209]

[210]

211]

212]

[213]

214]

[215]

[216]

[217)

218]

T. A. Aaltonen et al., “Observation of D° — D’ Mixing Using the CDF II
Detector,” Phys. Rev. Lett., vol. 111, no. 23, p. 231802, 2013, 1309.4078.

B. Ko et al., “Observation of D° — D® Mixing in e*e~ Collisions,” Phys. Rev.
Lett., vol. 112, no. 11, p. 111801, 2014, 1401.3402. [Addendum: Phys.Rev.Lett.
112, 139903 (2014)].

R. Aaij et al., “Updated determination of D°-D° mixing and CP violation
parameters with D° — K7~ decays,” Phys. Rev. D, vol. 97, no. 3, p. 031101,
2018, 1712.03220.

B. Aubert et al., “Measurement of D° — DY mixing from a time-dependent
amplitude analysis of D° — K*7 7 decays,” Phys. Rev. Lett., vol. 103,
p. 211801, 2009, 0807.4544.

R. Aaij et al., “First observation of D° — DO oscillations in D° — K*a~ 7t~
decays and measurement of the associated coherence parameters,” Phys. Rev.
Lett., vol. 116, no. 24, p. 241801, 2016, 1602.07224.

E. Aitala et al., “Measurements of lifetimes and a limit on the lifetime dif-
ference in the neutral D meson system,” Phys. Rev. Lett., vol. 83, pp. 32-36,
1999, hep-ex,/9903012.

J. Link et al., “A Measurement of lifetime differences in the neutral D meson
system,” Phys. Lett. B, vol. 485, pp. 62-70, 2000, hep-ex/0004034.

S. Csorna et al., “Lifetime differences, direct CP violation and partial widths
in DY meson decays to KK~ and pitpi~,” Phys. Rev. D, vol. 65, p. 092001,
2002, hep-ex/0111024.

J. Lees et al., “Measurement of D°— D° Mixing and CP Violation in Two-Body
D° Decays,” Phys. Rev. D, vol. 87, no. 1, p. 012004, 2013, 1209.3896.

T. A. Aaltonen et al., “Measurement of indirect CP-violating asymmetries in
D° - K*K~ and D° — 777~ decays at CDF,” Phys. Rev. D, vol. 90, no. 11,
p. 111103, 2014, 1410.5435.

M. Ablikim et al., “Measurement of yop in D° ~D° oscillation using quantum
correlations in ete~ — DD at Vs = 3.773GeV,” Phys. Lett. B, vol. 744,
pp. 339-346, 2015, 1501.01378.

R. Aaij et al., “Measurement of indirect CP asymmetries in D° — K~-K*
and D° — 7~7F decays using semileptonic B decays,” JHEP, vol. 04, p. 043,
2015, 1501.06777.

211



219

[220]

[221]

222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

230]

M. Staric et al., “Measurement of D° — DO mixing and search for CP violation
in D' - KtYK~—,7t7~ decays with the full Belle data set,” Phys. Lett. B,
vol. 753, pp. 412-418, 2016, 1509.08266.

R. Aaij et al., “Measurement of the CP violation parameter Ar in D’ —
K*K~ and D° — 77~ decays,” Phys. Rev. Lett., vol. 118, no. 26, p. 261803,
2017, 1702.06490.

R. Aaij et al., “Measurement of the Charm-Mixing Parameter yop,” Phys.
Rev. Lett., vol. 122, no. 1, p. 011802, 2019, 1810.06874.

B. Aubert et al., “Search for CP violation in the decays D° — K~K* and
D° — 77t Phys. Rev. Lett., vol. 100, p. 061803, 2008, 0709.2715.

A. Di Canto, “CP Violation in charm decays at CDF,” Nuovo Cim. C, vol. 036,
no. 01, pp. 26-28, 2013, 1208.2517.

P. del Amo Sanchez et al., “Measurement of D° — D® mixing parameters using
D —» Klrtn~ and D° — KJKTK~ decays,” Phys. Rev. Lett., vol. 105,
p. 081803, 2010, 1004.5053.

T. Peng et al., “Measurement of D° — D° mixing and search for indirect CP
violation using D° — K9r "7~ decays,” Phys. Rev. D, vol. 89, no. 9, p. 091103,
2014, 1404.2412.

R. Aaij et al., “Model-independent measurement of mixing parameters in D°
— K% 777~ decays,” JHEP, vol. 04, p. 033, 2016, 1510.01664.

R. Aaij et al., “Measurement of the mass difference between neutral charm-
meson eigenstates,” Phys. Rev. Lett., vol. 122, no. 23, p. 231802, 2019,
1903.03074.

A. Zupanc et al., “Measurement of ycp in D° meson decays to the KoK ™K~
final state,” Phys. Rev. D, vol. 80, p. 052006, 2009, 0905.4185.

J. Lees et al., “Measurement of the neutral D meson mixing parameters in a
time-dependent amplitude analysis of the D° — 7t7~7° decay,” Phys. Rewv.
D, vol. 93, no. 11, p. 112014, 2016, 1604.00857.

D. Asner et al., “Updated Measurement of the Strong Phase in D° — K*n~
Decay Using Quantum Correlations in e*e™ — D°D° at CLEO,” Phys. Rev.
D, vol. 86, p. 112001, 2012, 1210.0939.

212



[231]

232]

[233]

[234]

[235]

[236]

1237]

238

239

[240]

[241]

[242]

[243]

R. Aaij et al., “Observation of the mass difference between neutral charm-
meson eigenstates,” 6 2021, 2106.03744.

H. N. Nelson, “Compilation of D° — D° mixing predictions,” in Lepton and
photon interactions at high energies. Proceedings, 19th International Sympo-
sium, LP’99, Stanford, USA, August 9-14, 1999, 8 1999, hep-ex/9908021.

A. A. Petrov, “Charm physics: Theoretical review,” eConf, vol. C030603,
p. MECO05, 2003, hep-ph/0311371.

A. Cerri et al., Report from Working Group 4: Opportunities in Flavour
Physics at the HL-LHC and HE-LHC, vol. 7, pp. 867-1158. 12 2019,
1812.07638.

A. Lenz, M. L. Piscopo, and C. Vlahos, “Renormalization scale setting for
D-meson mixing,” Phys. Rev. D, vol. 102, no. 9, p. 093002, 2020, 2007.03022.

F. Herren and M. Steinhauser, “Version 3 of RunDec and CRunDec,” Comput.
Phys. Commun., vol. 224, pp. 333-345, 2018, 1703.03751.

K. Chetyrkin and M. Steinhauser, “The Relation between the MS-bar and the
on-shell quark mass at order o,” Nucl. Phys. B, vol. 573, pp. 617-651, 2000,
hep-ph/9911434.

K. Chetyrkin and M. Steinhauser, “Short distance mass of a heavy quark at
order a3.” Phys. Rev. Lett., vol. 83, pp. 4001-4004, 1999, hep-ph/9907509.

ER

K. Melnikov and T. v. Ritbergen, “The Three loop relation between the MS-
bar and the pole quark masses,” Phys. Lett. B, vol. 482, pp. 99-108, 2000,
hep-ph/9912391.

[. I. Y. Bigi, M. A. Shifman, N. Uraltsev, and A. I. Vainshtein, “High power
n of my in beauty widths and n = 5 — oo limit,” Phys. Rev. D, vol. 56,
pp. 4017-4030, 1997, hep-ph/9704245.

M. Fael, K. Schénwald, and M. Steinhauser, “Relation between the MS and
the kinetic mass of heavy quarks,” Phys. Rev. D, vol. 103, no. 1, p. 014005,
2021, 2011.11655.

A. H. Hoang, Z. Ligeti, and A. V. Manohar, “B decay and the Upsilon mass,”
Phys. Rev. Lett., vol. 82, pp. 277-280, 1999, hep-ph/9809423.

A. H. Hoang, Z. Ligeti, and A. V. Manohar, “B decays in the upsilon expan-
sion,” Phys. Rev. D, vol. 59, p. 074017, 1999, hep-ph/9811239.

213



[244]

[245]

[246]

247

[248]

[249]

[250]

[251]

252]

[253]

[254]

[255]

[256]

M. Neubert, “Symmetry breaking corrections to meson decay constants in the
heavy quark effective theory,” Phys. Rev. D, vol. 46, pp. 1076-1087, 1992.

W. Kilian and T. Mannel, “QCD corrected 1/m; contributions to B — B
mixing,” Phys. Lett. B, vol. 301, pp. 382-392, 1993, hep-ph/9211333.

M. Kirk, A. Lenz, and T. Rauh, “Dimension-six matrix elements for meson
mixing and lifetimes from sum rules,” JHEP, vol. 12, p. 068, 2017, 1711.02100.

D. King, A. Lenz, and T. Rauh, “to appear,”

S. Aoki et al., “FLAG Review 2019,” Fur. Phys. J. C, vol. 80, no. 2, p. 113,
2020, 1902.08191.

T. Mannel, D. Moreno, and A. A. Pivovarov, “The Heavy Quark Expansion
for the Charm Quark,” 3 2021, 2103.02058.

H.-Y. Cheng, “Phenomenological Study of Heavy Hadron Lifetimes,” JHEP,
vol. 11, p. 014, 2018, 1807.00916.

A. Alberti, P. Gambino, K. J. Healey, and S. Nandi, “Precision Determination
of the Cabibbo-Kobayashi-Maskawa Element V,,” Phys. Rev. Lett., vol. 114,
no. 6, p. 061802, 2015, 1411.6560.

N. Uraltsev, “On the chromomagnetic expectation value p2 and higher power
corrections in heavy flavor mesons,” Phys. Lett. B, vol. 545, pp. 337-344, 2002,
hep-ph/0111166.

A. Bazavov et al., “Up-, down-, strange-, charm-, and bottom-quark masses
from four-flavor lattice QCD,” Phys. Rev. D, vol. 98, no. 5, p. 054517, 2018,
1802.04248.

P. Gambino, A. Melis, and S. Simula, “Extraction of heavy-quark-expansion
parameters from unquenched lattice data on pseudoscalar and vector heavy-
light meson masses,” Phys. Rev., vol. D96, no. 1, p. 014511, 2017, 1704.06105.

M. Neubert, “QCD sum rule calculation of the kinetic energy and chromo
interaction of heavy quarks inside mesons,” Phys. Lett., vol. B389, pp. 727—
736, 1996, hep-ph/9608211.

P. Ball and V. M. Braun, “Next-to-leading order corrections to meson masses
in the heavy quark effective theory,” Phys. Rev., vol. D49, pp. 2472-2489,
1994, hep-ph/9307291.

214



[257]

[258]

259

260]

[261]

262]

263

264]

[265]

[266]

1267]

268

[. 1. Y. Bigi, M. A. Shifman, and N. Uraltsev, “Aspects of heavy quark theory,”
Ann. Rev. Nucl. Part. Sci., vol. 47, pp. 591-661, 1997, hep-ph/9703290.

[. I. Bigi, T. Mannel, and N. Uraltsev, “Semileptonic width ratios among
beauty hadrons,” JHEP, vol. 09, p. 012, 2011, 1105.4574.

I. I. Y. Bigi, M. A. Shifman, N. G. Uraltsev, and A. I. Vainshtein, “On the
motion of heavy quarks inside hadrons: Universal distributions and inclusive
decays,” Int. J. Mod. Phys. A, vol. 9, pp. 2467-2504, 1994, hep-ph/9312359.

J. Charles, A. Hocker, H. Lacker, S. Laplace, F. Le Diberder, J. Malcles,
J. Ocariz, M. Pivk, and L. Roos, “CP violation and the CKM matrix: Assess-
ing the impact of the asymmetric B factories,” Fur. Phys. J. C, vol. 41, no. 1,
pp. 1-131, 2005, hep-ph/0406184.

S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak Interactions with Lepton-
Hadron Symmetry,” Phys. Rev., vol. D2, pp. 1285-1292, 1970.

T. Jubb, M. Kirk, A. Lenz, and G. Tetlalmatzi-Xolocotzi, “On the ultimate
precision of meson mixing observables,” Nucl. Phys. B, vol. 915, pp. 431-453,
2017, 1603.07770.

M. Beneke, G. Buchalla, and I. Dunietz, “Width Difference in the B, — B, Sys-
tem,” Phys. Rev. D, vol. 54, pp. 4419-4431, 1996, hep-ph/9605259. [Erratum:
Phys.Rev.D 83, 119902 (2011)].

M. Beneke, G. Buchalla, C. Greub, A. Lenz, and U. Nierste, “Next-to-leading
order QCD corrections to the lifetime difference of By mesons,” Phys. Lett. B,
vol. 459, pp. 631-640, 1999, hep-ph/9808385.

A. Dighe, T. Hurth, C. Kim, and T. Yoshikawa, “Measurement of the lifetime
difference of By mesons: Possible and worthwhile?,” Nucl. Phys. B, vol. 624,
pp. 377-404, 2002, hep-ph/0109088.

M. Beneke, G. Buchalla, A. Lenz, and U. Nierste, “CP asymmetry in flavor
specific B decays beyond leading logarithms,” Phys. Lett. B, vol. 576, pp. 173~
183, 2003, hep-ph/0307344.

M. Ciuchini, E. Franco, V. Lubicz, F. Mescia, and C. Tarantino, “Lifetime
differences and CP violation parameters of neutral B mesons at the next-to-
leading order in QCD,” JHEP, vol. 08, p. 031, 2003, hep-ph/0308029.

A. Lenz and U. Nierste, “Theoretical update of B,— B, mixing,” JHEP, vol. 06,
p. 072, 2007, hep-ph/0612167.

215



269

270]

271]

[272]

273

[274]

[275]

[276]

277]

278

279]

[280]

A. Bazavov et al., “Short-distance matrix elements for D°-meson mixing for
Ny = 2 4 1 lattice QCD,” Phys. Rev., vol. D97, no. 3, p. 034513, 2018,
1706.04622.

M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev. D, vol. 98, no. 3,
p- 030001, 2018.

E. Golowich and A. A. Petrov, “Short distance analysis of D° - D° mixing,”
Phys. Lett. B, vol. 625, pp. 53-62, 2005, hep-ph/0506185.

M. Bobrowski, A. Lenz, J. Riedl, and J. Rohrwild, “How Large Can the SM
Contribution to CP Violation in D — D° Mixing Be?,” JHEP, vol. 03, p. 009,
2010, 1002.4794.

H. Georgi, “D - anti-D mixing in heavy quark effective field theory,” Phys.
Lett. B, vol. 297, pp. 353-357, 1992, hep-ph/9209291.

T. Ohl, G. Ricciardi, and E. H. Simmons, “D — D mixing in heavy quark
effective field theory: The Sequel,” Nucl. Phys. B, vol. 403, pp. 605-632, 1993,
hep-ph/9301212.

I. I. Bigi and N. G. Uraltsev, “D® — D° oscillations as a probe of quark hadron
duality,” Nucl. Phys. B, vol. 592, pp. 92-106, 2001, hep-ph/0005089.

M. Bobrowski, A. Lenz, and T. Rauh, “Short distance D — D mixing,” in
Proceedings, 5th International Workshop on Charm Physics (Charm 2012):
Honolulu, Hawaii, USA, May 14-17, 2012, 8 2012, 1208.6438.

A. F. Falk, Y. Grossman, Z. Ligeti, and A. A. Petrov, “SU(3) breaking and D0
- anti-D0 mixing,” Phys. Rev. D, vol. 65, p. 054034, 2002, hep-ph/0110317.

H.-Y. Cheng and C.-W. Chiang, “Long-Distance Contributions to D° — D°
Mixing Parameters,” Phys. Rev. D, vol. 81, p. 114020, 2010, 1005.1106.

H.-Y. Jiang, F.-S. Yu, Q. Qin, H.-n. Li, and C.-D. Lu, «po_Dp’ mixing pa-
rameter y in the factorization-assisted topological-amplitude approach,” Chin.
Phys. C; vol. 42, no. 6, p. 063101, 2018, 1705.07335.

H. Asatrian, A. Hovhannisyan, U. Nierste, and A. Yeghiazaryan, “Towards
next-to-next-to-leading-log accuracy for the width difference in the B, — B,
system: fermionic contributions to order (m./my)°? and (m./my)',” JHEP,
vol. 10, p. 191, 2017, 1709.02160.

216



[281]

[282]

[283]

[284]

[285]

[236]

[287]

H. M. Asatrian, H. H. Asatryan, A. Hovhannisyan, U. Nierste, S. Tumasyan,
and A. Yeghiazaryan, “Penguin contribution to width difference and CP asym-
metry in B,-B, mixing at order a2N;,” 6 2020, 2006.13227.

A. L. Kagan and L. Silvestrini, “Dispersive and Absorptive CP Violation in
D — DO Mixing,” 1 2020, 2001.07207.

H.-N. Li, H. Umeeda, F. Xu, and F.-S. Yu, “D meson mixing as an inverse
problem,” 1 2020, 2001.04079.

A. F. Falk, Y. Grossman, Z. Ligeti, Y. Nir, and A. A. Petrov, “The D° — D°
mass difference from a dispersion relation,” Phys. Rev. D, vol. 69, p. 114021,
2004, hep-ph/0402204.

M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge
University Press, 3 2014.

B. A. Kniehl, “Dispersion relations in loop calculations,” Acta Phys. Polon.
B, vol. 27, pp. 3631-3644, 1996, hep-ph/9607255.

R. Soldati, “Intermediate Quantum Field Theory. A Next-to-Basic Course
for Primary Education,” on line notes for the II Semester Course,

http://www.robertosoldati.com.

217



	Title page
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Notations
	The Theoretical Framework
	The effective weak Hamiltonian
	The heavy quark effective theory
	Expansion of the quark-propagator in the Fock-Schwinger gauge
	The heavy quark expansion

	Practical Calculations within the HQE
	Contribution of two-quark operators
	Computation of 3(c  d)
	Computation of 5(c  d) 

	Contribution of four-quark operators
	Computation of ImT (4q)6
	Computation of ImT (4q)7


	Contribution of the Darwin Operator
	Computation of (2q)(B) up to order 1/mb3
	Operator-mixing at order 1/mb3
	Analytical expressions for the coefficients of the Darwin operator

	Phenomenology of Lifetime and Mixing
	Theoretical study of the total decay width of charmed mesons
	Description of the computation
	Numerical results

	Charm mixing
	GIM cancellations in D-mixing
	Alternative scale setting


	Conclusion
	Acknowledgements
	Expansion of operators containing the heavy quark momentum
	Results for one-loop integrals in dimensional regularisation
	Decomposition of tensor integrals
	Expressions for the coefficients C0(q1 2 q3) and CG, mn(q1 2 q3)
	Expressions for the divergent functions Dmn(q1 2 q3)
	Coefficients of the Darwin operator for the charm system
	Parametrisation of matrix elements of four-quark operators
	Bibliography

