
ISBN: 978-3-96182-104-4

V
er

en
a

K
ru

pp
|

Ef
fi

ci
en

t
co

up
lin

g
of

 fl
ui

d
an

d
ac

ou
st

ic
 in

te
ra

ct
io

n Verena Krupp

Effi cient coupling of fl uid and
acoustic interaction on massively
parallel systems

Verena Krupp studied mechanical engineering at H-BRS and Simulation Sciences
at the GRS/RWTH Aachen; 2013-2016 she worked in the DFG funded project
exaFSA on the effi cient coupling of fl uid and acoustics. From 2013-2017 she
was working in research at the chair for Simulation Techniques and Scientifi c
Computing at the University of Siegen.

Simulation Techniques in Siegen

Vol. 5

Simulation Techniques in Siegen

Vol. 55

The series Simulation Techniques in Siegen presents contributions to the fi eld
of scientifi c computing with a focus on the utilization of large-scale computing
systems for highly resolved simulations. Applications, as well as numerical
methods and their effi cient implementation on modern supercomputers, are
investigated and described.

This work presents an effi cient coupling strategy to tackle the multi-scale
problem posed by technical devices that radiate sound. Two different approaches,
a fl exible multi-solver approach (with the coupling library preCICE) and an
optimized integrated approach (called APESmate), are established and compared
in terms of quality, load balancing, and performance. Load balancing is a crucial
aspect regarding simulations in the fi eld of high performance computing where
many processes are used in parallel and, in particular, when considering coupled
simulation where different partitions are solving different physical phenomena
and numerical discretization. The benefi ts of the partitioned coupling approach
and good load balancing are demonstrated on an industrial application of a 3D
free-stream jet with a high Reynolds number showing that a multi-scale problem
can be effi ciently simulated using today‘s computing resources.

Efficient coupling of fluid and
acoustic interaction on massively

parallel systems

DISSERTATION
zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften

vorgelegt von

Dipl.-Ing. (FH) Verena Krupp M.Sc.

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät der
Universität Siegen

Siegen 2021

Betreuerin und erste Gutachterin
Prof. Dr.-Ing. Sabine Roller

Universität Siegen

Zweiter Gutachter
Prof. Marek Behr, Ph.D.

RWTH Aachen

Tag der mündlichen Prüfung
27. August 2021

Simulation Techniques in Siegen / STS

Edited by Sabine Roller and Harald Klimach

Vol. 5 (2021)

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

Diss. Universität Siegen, 2021
DOI: https://doi.org/10.25819/ubsi/10033

Simulation Techniques in Siegen Vol. 5 / STS Vol. 5 (2021)
Editors: Sabine Roller and Harald Klimach

This work is licensed under the Creative Commons Attribution 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

1st edition universi – Universitätsverlag Siegen 2021

Printing: UniPrint, Universität Siegen
printed on wood- and acid-free paper

universi – Universitätsverlag Siegen
Am Eichenhang 50
57076 Siegen
Germany
info@universi.uni-siegen.de
www.uni-siegen.de/universi

ISBN: 978-3-96182-104-4

http://dnb.d-nb.de
http://creativecommons.org/licenses/by/4.0/
www.uni-siegen.de/universi

Danksagung

Diese Dissertation wäre in ihrer jetzigen Form nicht ohne die Hilfe vieler
Menschen möglich gewesen. An dieser Stelle möchte ich diesen Personen
meinen Dank aussprechen.

Mein besonderer Dank gilt meiner Doktormutter Prof. Dr.-Ing. Sabine
Roller, für die Möglichkeit das Thema dieser Dissertation zu bearbeiten
und in der Arbeitsgruppe STS eine so gute Zeit erleben zu können. Ohne
unsere Diskussionen, gerade in der letzten Phase dieser Arbeit, wäre ich
aus der ein oder anderen Sackgasse nicht herausgekommen. Außerdem
möchte ich mich bei Prof. Marek Behr, Ph.D herzlich für seinen Einsatz
als Zweitgutachter bedanken. Zudem möchte ich mich bei Harald Kli-
mach im Besonderen bedanken: ohne die unzähligen Diskussionen und
Vorschläge wäre diese Arbeit nicht da wo sie jetzt ist. Des Weiteren haben
seine Kommentare und das kritische Hinterfragen maßgeblich zur Qualität
meiner Publikationen und Implementierungen beigetragen.

Darüber hinaus geht mein Dank an das komplette ExaFSA Projekt des
DFG Schwerpunktprogramms “Software for Exascale Computing” (1648)
für die Zusammenarbeit. Vor allem die produktive Zusammenarbeit mit
Benjamin Uekermann im Rahmen der Implementierung von preCICE in
Ateles hat mir große Freude bereitet.

Für eine großartige und produktive Arbeitsumgebung möchte ich mich
bei allen (ehemaligen) Mitgliedern der Arbeitsgruppe STS der Uni Siegen
bedanken: es war eine super Zeit! Besonders die Whiteboard-Diskussionen,
Kaffee-Sessions und die Zeit im gemeinsamen Büro mit Nikhil Anand
möchte ich nicht missen. Auch bedanken muss ich mich bei Peter Vitt,
denn ohne ihn wäre die Implementierung und insbesondere meine Pro-
grammierfähigkeiten nicht da wo sie heute sind. Großer Dank gilt auch
Kannan Masilamani mit dem ich gemeinsam an APESmate arbeiten durfte.

Es gibt noch viele Namen auf der Liste und Menschen, die mich bereichert
haben. Gaby und Lena, ohne eure Unterstützung wäre mein Studium in
Aachen so nicht möglich gewesen. Andreas, danke für dein Mentoring im
letzten Jahr. Es hat mir immer wieder geholfen das Ziel nicht aus den
Augen zu verlieren und meine Zeit sinnvoll einzusetzen.
Abschließend, gibt es eine ganz besondere Person, die alle meine Höhen
und Tiefen mit dieser Dissertation miterlebt und mir stets den Rücken
freigehalten hat - danke Stefan!

v

Zusammenfassung

Mehrskalenprobleme, wie die Schallerzeugung durch Strömung und deren
reine Schallausbreitung, sind für die Industrie von wachsender Bedeutung,
z.B. für die Reduktion der Schallemission von Windenergieanlagen. Ge-
nerell können sowohl Strömung als auch akustische Wellenausbreitung
durch die selben physikalischen Gleichungen beschrieben werden. Die
Beschreibung des reinen Wellentransports kann jedoch wesentlich verein-
facht werden, was in einem geringeren Berechnungsaufwand resultiert.
Des Weiteren basieren Strömungsphänomene auf sehr kleinen räumlichen
Skalen, wohingegen die akustische Wellenausbreitung auf großen räum-
lichen Skalen stattfindet. Vor allem dieser Skalenunterschied macht die
numerische Berechnung solcher Mehrskalenproblemen anspruchsvoll. So
ist eine Simulation des gesamten Gebietes mit der Auflösung, welche durch
die sehr kleinen Strömungsskalen vorgegeben ist, aufgrund der hohen Kos-
ten und des hohen Energieverbrauches mit heutigen Computerressourcen
nicht durchführbar. Im Rahmen dieser Arbeit wird eine partitionierte
Kopplung mittels Oberflächen als Ansatz zur effizienten Simulation solcher
Probleme auf massiv parallelen Supercomputern entwickelt. Dabei wird
das gesamte Gebiet in kleinere Gebiete einzelner physikalischer Phänomene
aufgeteilt und die Interaktion dieser Gebiete durch einen bidirektionalen
Datenaustausch an den Rändern realisiert. Die separate Behandlung ein-
zelner Phänomene ermöglicht nicht nur die Nutzung von auf die jeweilige
Physik abgestimmter Verfahren (Ordnung, Gitterauflösung, Gleichungen),
sondern auch verschiedener numerischer Löser. Diese Herangehensweise
birgt aber auch numerische Herausforderungen an den Kopplungsrändern:
so sind für einen konsistenten Datenaustausch an den Kopplungsrändern
im Falle unterschiedlicher räumlicher Auflösung direkte Datenauswertung
oder effiziente Interpolationsmethoden notwendig. Im Rahmen dieser Ar-
beit werden zwei verschiedene Ansätze zur partitionierten Kopplung von
Strömungs- sowie Akustikgebieten im Hinblick auf Qualität der Lösung
und Performanz implementiert und untersucht: ein black-box und ein
white-box Ansatz. Dabei verspricht ein white-box Ansatz höhere Effizienz,
da löserinterne Verfahren zur Datenevaluierung verwendet werden können.
Ein black-box Ansatz hingegen, zeichnet sich durch Flexibilität in der Wahl
der numerischen Löser sowie schneller Umsetzbarkeit aus. Dieser Anspruch
auf Flexibilität geht allerdings einher mit einem beschränkten Zugriff auf
löserinterne Informationen sowie potenziellen Geschwindigkeitseinbußen.
Zudem arbeitet ein solcher Ansatz an den Kopplungsrändern ausschließlich
mit Punktwerten, was zur Folge hat, dass externe Interpolationsmethoden
zum konsistenten Datenaustausch verwendet werden müssen, was erwar-

vii

tungsgemäß weniger effizient ist als löserinterne Methoden. Daher wird
in dieser Arbeit auch die Performanz beider Kopplungsansätze betrachtet
und eine optimale Lastverteilung zwischen den einzelnen physikalischen
Gebieten erarbeitet. Es wird an einem Beispiel aus der Industrie, einem
3D Freistrahl mit hoher Reynoldszahl gezeigt, dass mit dem beschriebenen
Verfahren die Berechnung komplexer Mehrskalenprobleme in angemesse-
ner Zeit durch eine effiziente Nutzung der heutigen Computerressourcen
ermöglicht wird.

viii

Abstract

Multi-scale problems like the generation of sound in a flow field and its
sound wave propagation in the far field have become increasingly important
in the design phase of industrial devices: One example is noise reduction of
aircrafts or wind turbines. Although the generation of sound as well as its
propagation can both be described by the same governing equations, wave
propagation is a linear phenomenon and its equations can be simplified,
which results in less computational effort. Additionally, the generation of
sound in a flow field occurs at small spatial scales, while its propagation
in the far field has to be observed on a large spatial scale. These large
differences in scales are particularly challenging for numerical simulations.
Resolving the entire domain with the high resolution that is required
for the small scales of the flow domain is impossible due to the vast
computational demand. In this thesis, we propose a partitioned coupling
approach for the efficient simulation of such problems on massively parallel
supercomputers. In partitioned coupling the physical domain is split into
smaller subdomains, each covering a different physical phenomenon. Their
interaction is realized by exchanging data at the joint coupling interface.
Subsequently, these subdomains can be solved with numerical methods,
resolutions, and equations tailored to the local physical requirements. Even
different solvers can be used. However, this approach also holds numerical
challenges at the coupling interface: E.g. for a consistent data exchange
in case of different spatial resolutions, direct data evaluation, or efficient
interpolation methods are necessary. Within this work, two different
approaches of partitioned coupling are implemented and compared: A black-
box and a white-box approach. The black-box approach is characterized by a
flexible choice of numerical solvers which allows for a wide range of different
applications. Its generality comes with limited access to information inside
each solver and, therefore, with a potential loss of performance. However,
a black-box approach only acts on point data at the coupling interface and
therefore requires external interpolation methods for a consistent coupling
in space which is expected to be less efficient than solver-internal data
mapping. In contrast, the white-box approach is fully integrated within
one numerical framework. Accordingly, it can access solver-internal data
mapping methods which promises better numerical results. This tight
integration allows for the exploitation of knowledge about internal data
structures and, therefore, yields performance benefits. On the other hand,
it comes with less flexibility. Both strategies will be compared with respect
to quality of data mapping at the coupling interface as well as performance
on modern supercomputers. In order to achieve the best performance,

ix

the optimal load balancing strategy for a coupled setup is investigated.
The benefits of the partitioned coupling approach are demonstrated on
an industrial application of a 3D free-stream jet with a high Reynolds
number showing that a multi-scale problem can be simulated using today’s
compute resources.

x

Contents

Nomenclature xv

1. Introduction 1
1.1. State of the art . 9
1.2. Aim of this work . 17
1.3. Outline . 19

2. Governing equations and their discretization 21
2.1. Governing equations of fluid dynamics 21

2.1.1. Navier-Stokes equations 22
2.1.2. Euler equations . 24
2.1.3. Linearized Euler equations 25

2.2. Numerical discretization . 27
2.2.1. Discretization in space: Discontinuous Galerkin . . . 27
2.2.2. Discretization in time: Runge-Kutta 33

3. Partitioned coupling 35
3.1. Coupling tasks . 35

3.1.1. Steering of individual solvers 36
3.1.2. Communication of coupling data 37
3.1.3. Data mapping in time 40
3.1.4. Data mapping in space 42

3.2. Static load balancing . 44
3.2.1. Load balancing between subdomains 45
3.2.2. Load balancing within a subdomain 46

3.3. Discontinuous Galerkin in the context of coupling 52
3.3.1. Coupling points . 53
3.3.2. Data mapping via polynomial evaluation 54

3.4. Fluid dynamics in the context of coupling 56

4. Numerical framework 59
4.1. Simulation framework APES 59
4.2. High-order Discontinuous Galerkin solver Ateles 61

4.2.1. Load balancing in Ateles 64

xi

Contents

4.3. Multi-solver approach: preCICE 66
4.3.1. Overview . 67
4.3.2. Steering of individual solvers 67
4.3.3. Communication of coupling data 70
4.3.4. Data mapping in time 71
4.3.5. Data mapping in space: (Interpolation) methods . . 71

4.3.5.1. Projection-based mapping 72
4.3.5.2. Radial Basis Function interpolation 73
4.3.5.3. Comparison of the interpolation methods . 75

4.3.6. Performance . 82
4.4. Integrated approach: APESmate 84

4.4.1. Overview . 84
4.4.2. Steering of individual solvers 85
4.4.3. Communication of coupling data 86
4.4.4. Data mapping in time 87
4.4.5. Data mapping in space 87
4.4.6. Performance . 89

4.4.6.1. Initialization of coupling 90

5. Coupling results 93
5.1. Gaussian distribution in pressure 93

5.1.1. 2-field coupling of same equations 97
5.1.2. 2-field coupling of different equations 100
5.1.3. 3-field coupling of different equations 102

5.2. 3D subsonic free-stream jet 106
5.2.1. Investigation of numerical setup 106
5.2.2. Testcase Setup . 115
5.2.3. Numerical resolution A: Monolithic-like setup 118
5.2.4. Investigations of load balancing 120

5.2.4.1. Load balancing with APESmate 120
5.2.4.2. Single-stage vs. multi-stage time integration 136
5.2.4.3. Load balancing with preCICE 137
5.2.4.4. Comparison of APESmate and preCICE . . 139

5.2.5. Scalability of setup A with APESmate 140
5.2.6. Numerical resolution B: Tailored setup 142

5.2.6.1. Scalability of setup B with APESmate . . . 148
5.2.6.2. Load Balancing of setup B with APESmate 151

5.2.7. Investigation of imperfect choice of coupling interfaces153

6. Investigation of time-consistent coupling 165

xii

Contents

7. Summary and outlook 171
7.1. Summary . 171
7.2. Outlook . 174

7.2.1. Partitioned coupling 174
7.2.2. Integrated approach: APESmate 175
7.2.3. Multi-solver approach: preCICE 176

A. Optimization of polynomial evaluation in Ateles 179

B. Performance of the initialization phase of APESmate using MPI_ALL-
TOALL 185

C. Figures for investigation of the Gaussian distribution in pressure 189

D. Iterative use of SPartA 197

Bibliography 199

List of Figures 209

List of Tables 213

xiii

Nomenclature

Symbols

cp\cv Specific heat

d Dimension

e Energy density

F i Flux function in i-direction

F µi Diffusive flux function in i-
direction

U State vector

h Grid/Element size

I Identity matrix

L Refinement level of octree mesh

lu Length unit

m Polynomial degree

n Number of coupling points

O Numerical order of a scheme

p Polynomial order

R Ideal gas constant

Re Reynolds number

rhs Right hand side

T Temperature

tu Time unit

vi Velocity in direction of i

v Vector of velocities

Greek Symbols

γ Adiabatic exponent

κ Thermal conductivity

λ Bulk viscosity

ρv Momentum

µ Dynamic viscosity

Ω Domain

ψ Test function

ρ Density

τ Viscous stress tensor

Υ Tessellation of the domain Ω

Other Symbols

⊗ Dyadic product

L2 Direct projection via numerical
quadrature

nElems Total number of elements

nV ars Number of variables

∂i Partial derivative with respect
to i, e.g. time, x-, y-, z-direction

∇· Scalar product

Acronyms

ADER Arbitrary high order using
DERivatives

APES Adaptable Poly-Engineering
Simulator

CFL Courant-Friedrich-Levy

DAA Direct Aero-acoustics

DG Discontinuous Galerkin

DNS Direct Numerical Simulations

DoF Degrees of freedom

EE Euler equations

FD Finite Difference

FE Finite Elements

FPT Fast Polynomial Transformation

FV Finite Volume

xv

Contents

HPC High Performance Computing

LEE Linearized Euler equations

MpCCI Mesh-based parallel Code Cou-
pling Interface

MPI Message Passing Interface

NN Nearest Neighbor mapping

NP Nearest Projection mapping

NSE Navier-Stokes equations

ODE Ordinary differential equation

PDE Partial differential equations

preCICE Precise Code Interaction Cou-
pling Environment

RBF Radial Basis Bunctions

RK Runge-Kutta

SFC Space-filling Curve

xvi

1. Introduction

Acoustic noise is all around us in “our daily lives” stemming from a variety
of sources that generate sound: Ranging from aircraft jet engines over wind
turbines and air-conditioners to the fans of laptops. A prominent example
are wind turbines: Their rotor blades move through the air, which leads
to turbulent flow and vortices near the blades. The vortices themselves
generate sound waves which are subsequently transported through the air
and can be perceived by humans and wild life, even over long distances. In
the last decades the amount of noise generated by humans has drastically
increased and the term “noise pollution” has been coined. Noise pollution
usually describes environmental, unwanted noise, such as the sound from
traffic, or the occupational noise by industrial machinery. This noise, stem-
ming from various sources, impacts the well-being of people and wildlife
[1]. As a recent example, the impact of wind turbines has been studied
[2–4]. With increasing awareness of noise pollution and its consequences,
the reduction of acoustic sound has become more and more important in
the design phase of industrial devices. Here, simulations of fluid dynamic
processes have become a very important tool: They provide deeper insights
into the sound generation of technical devices and help, for instance, during
the design of rotor blades of a wind turbine to optimize their shape with
the objective of noise reduction. On a large scale, simulations can also
help to optimize the location of wind turbines close to villages with larger
buildings where different sound waves and echoes can influence each other.

In general, the simulation of fluid dynamic processes is a very com-
putationally demanding task: The phenomena that can occur in flows,
especially noise generation and its propagation, cover a wide range of
scales. With the availability of increasing computational resources it be-
comes feasible to include more and more physical effects or physical scales
into a single simulation. The most common computer systems for the
parallel execution of simulations are so-called supercomputers. Research
and computation on such massively parallel systems are related to the
field of High Performance Computing (HPC). The forthcoming exascale
era for supercomputers promises immense computational power and allows
to simulate a new range of multi-physics and multi-scale problems that

1

1. Introduction

were previously unfeasible.

This thesis establishes an efficient approach for a direct numerical sim-
ulation of sound generation and its propagation. To make it feasible on
supercomputers, a so-called partitioned coupling approach is used to re-
duce the computational cost. To understand why coupling is a promising
approach and what the challenges are, we start with an explanation of the
physics of acoustic noise. Afterwards, partitioned coupling is described
and which approaches exist. Once this has been clarified, we address
the numerical discretization and how to best approximate each physical
phenomenon. This introduction part concludes with a section on HPC,
since it is a key aspect of this work.

Physics of acoustic noise The physics of acoustic noise is a fluid dy-
namic process that comprises the generation of sound and its propagation.
Flow at high Reynolds numbers or around physical structures causes
small vortices that generate sound. These sound waves are subsequently
transported via the fluid over long distances. The flow is governed by
small scale structures carrying large amounts of energy, while acoustics
is dominated by large wavelengths, but small amounts of energy. Hence,
fluid acoustic dynamics is a multi-scale problem where the small scales
of the vortices must be resolved and the large scales of acoustic waves
must be treated appropriately. The sound waves are propagated over large
distances, which is often called the acoustic far field. This propagation
is a linear phenomenon. Considering the numerical discretization, small
grid cells are required to capture the small scales of sound generation. For
the spatial discretization of the acoustic far field there are three points to
consider: First, large grid cells can be used since large wavelength have to
be resolved; second, the numerical scheme should not dampen the solution
since this would lead to decreasing wave amplitudes with distance; and
third, the numerical scheme should not introduce a phase error.

Sound generation and its propagation can be described by the general
compressible flow equations – the Navier-Stokes equations. Solving these
full equations and resolving even the smallest eddies is called a direct
numerical simulations (DNS). Of course, such simulations are computa-
tionally expensive and, when aiming to extend the computational domain
up to the large acoustic far field, are infeasible within reasonable time on
today’s supercomputers. There are two ways to reduce the computational
demand of aero-acoustic simulations: Modeling or tailoring governing

2

equations to a physical problem. A classical approach for modeling are
large eddy simulations (LES). Here, instead of resolving all small scales,
only large eddies are resolved by a discretization and an additional model
is added for the small scales. Tailoring the governing equations to a
physical problem is, in particular, beneficial for a multi-scale problem
where different physical phenomena occur simultaneously. Depending on
the physical problem, it is possible to separate the phenomena and save
computational cost by only computing the equations which are actually
required. Looking at the physical problems of flow and acoustics sepa-
rately, the following difference can be stated: Acoustics-generating flow
is a compressible, viscid phenomenon which is non-linear. Considering a
turbulent flow, the viscous part of the Navier-Stokes equations is crucial
for the transition from laminar to turbulent flow and the dissipation due to
viscosity drives the energy cascade. The acoustics are described by wave
transportation which is a linear problem without viscosity. Hence, using
the full Navier-Stokes equations to compute the acoustic wave propagation
is not necessary. While the full equations are valid, assuming non-viscosity
and linearity, they can be simplified and some terms are even negligible.
This decreases the numerical and, thus, the computational demand which
is particularly helpful for the large distances of the acoustic far field.

As previously described, both phenomena, acoustic generation and acous-
tic propagation, occur in spatially separate partitions of the simulation
domain. Hence, one approach is to split the overall domain into a flow
subdomain and an acoustic subdomain that are coupled via boundary
conditions. In these subdomains, different governing equations can be
solved and different numerical approaches best suited for the individual
physics can be used when exploiting partitioned coupling.

Partitioned coupling Partitioned coupling is based on the idea that an
entire computational domain of a multi-physics or multi-scale simulation
can be split into subdomains, where in each only single physics need to
be considered. To realize their interactions, these subdomains are then
connected via a coupling approach.

In general, there are two different kinds of coupling: Volume coupling
and surface coupling, where the terms “volume” and “surface” refer to the
region where information is exchanged, respectively. In case of volume
coupling, the subdomains have to partially or in total overlap which results
in a common volume. In this common volume, the coupling information is

3

1. Introduction

Acoustic domain with
wave propagation

 Flow domain with
 acoustic generation

Coupling interface

Figure 1.1.: Sketch of a coupled setup for an areo-acoustic jet. The dotted
line indicates the coupling interface between the flow domain and the
acoustic domain and the arrows depict exchange positions where coupling
variables like density, velocity, and pressure are exchanged.

exchanged. Typically, the information of one subdomain is requested by
the other subdomains as source terms. In contrast, for surface coupling the
subdomains have a joint surface and do not overlap. At this joint coupling
surface, the coupling information is exchanged. Thereby, the coupling data
is used as boundary condition of the requesting subdomain. Figure 1.1
shows a typical scenario of a coupled fluid-acoustic simulation using surface
coupling: We split the entire domain into a smaller flow subdomain and
a surrounding acoustic subdomain. With that, the original multi-scale
domain is divided into a subdomain with small scales and large scales, re-
spectively. As depicted by the arrows in Figure 1.1, interactions are realized
by exchanging the values of the coupling variables at the “coupling inter-
face”. In this way, appropriate numerical schemes can be applied in each
subdomain. Partitioned coupling opens up the possibility to use different
equations, different discretization in space as well as in time. Even coupling
across different machines is possible [5]. In this work, we focus on en-
abling large-scale aero-acoustic simulations by efficient coupling of different
equations (e.g. Navier-Stokes equations, Euler equations, Linearized Euler
equations) as well as different numerical discretizations on parallel systems.

Another aspect to consider is the direction of coupling: Unidirectional

4

and bidirectional coupling; in other words one-way or two-way coupling.
Unidirectional means that the information is only is requested by one
subdomain and provided by the other. Unidirectional coupling is a com-
mon method for aero-acoustic simulations, where a flow solver computes
acoustic source terms that are fed to the acoustic domain in which the
acoustic wave propagation is computed subsequently. Here, no feedback is
provided to the flow domain. Bidirectional coupling, in contrast, denotes
that coupling information is requested and provided by both subdomains
(as illustrated by the two-directional arrows in Figure 1.1). This becomes
important when feedback or bilateral interaction is required, e.g. influence
of an echo, or for fluid-structure interaction where the deformation of a
geometry is influencing the flow.

In order to enhance the quality as well as the performance of multi-scale
simulations, numerical schemes and equations that have been tailored to
physical phenomena are required. Partitioned coupling allows to combine
different numerical schemes and equations in one simulation. Therefore, the
coupling approaches should not adversely affect the quality of the coupled
simulation. Regarding the example of surface coupling, the coupling data
is used as boundary condition of the requesting subdomain and hence “low
quality” data influences the solution of this subdomain. Besides quality,
also the performance of coupling approaches plays a role: To understand
the performance challenges, it is important to point out that both domains
are computed in parallel. The requesting subdomain requires coupling data
at the coupling interface at synchronization points. If the data is not yet
provided by the other subdomain, the requesting subdomain has to wait.
To avoid waiting times, the delivering subdomain should provide the data
immediately. Here, two points are important: Firstly, a good load balanc-
ing between the subdomains, so that they are done with their individual
work at the same time during execution, and secondly, the coupling ap-
proach must not pose a bottleneck (e.g. in communication or interpolation).

We distinguish two different groups of coupling approaches: black-box
and white-box approaches. Generally speaking, these approaches differ
in data that is exposed during simulation and the code that drives the
simulation. The term black-box describes coupling approaches that con-
sider subdomains as black boxes without information about their inside.
Typically, black-box coupling tools are flexible with respect to the applied
solvers. If no application programming interfaces is readily available, it
is simple to implement an adapter. This flexibility implies that black-box
coupling tools exclusively work on input and output data, independent of

5

1. Introduction

the applied numerical discretization. In contrast, the quality and the per-
formance of a coupled simulation can be improved for dedicated cases when
insights of the subdomains can be used, i.e. when opening the black boxes.
We call this white-box approaches. For example, a white-box approach can
be designed in such a way that it uses data from the numerical scheme
of the subdomains. White-box approach further implies that the coupling
approach is designed in such a way that it fits to the desired solvers in
the subdomains and to the desired application. That means, solver and
coupling tool are designed together to achieve the best framework for the
desired application. This involves more implementation effort and code
design than using a black-box approach, but is expected to gain efficiency
and accuracy.

To look more closely at coupling challenges, let us consider two subdo-
mains A and B: B requires data at specific points on the coupling interface.
In order to properly realize an interaction, the second subdomain A has
to provide data at these requested points. However, the points where sub-
domain A is able to provide data depends on its numerical discretization.
When these sets of points – requesting and providing – coincide, we use
the term matching coupling interface. While the data can be exchanged
without additional work in this case, these points do not generally coincide
at the coupling interface. When A provides data at a different set of points,
we talk about non-matching coupling interfaces. Here, additional work for
data mapping is required. There are two different options: evaluation or
interpolation. With the former option, the numerical solver is requested to
generate data at the desired points with additional effort. For example, a
higher-order method based on polynomials, e.g. the Finite Element scheme
or the Discontinuous Galerkin method, can evaluate their polynomials at
any point. In contrast, interpolation methods take the provided data and
interpolate the data at the requested points. Such external methods can be
costly and might reduce the quality of the solution. Black-box approaches
typically act exclusively on geometric data of the subdomain without inter-
nal information which forces them to use external interpolation methods,
while white-box approaches can exploit all insights of the solvers.

Comparing black-box and white-box approaches, it is obvious that black-
box approaches are more flexible in terms of connecting them to new solvers.
Even commercial solvers might have application programming interface
(API) to a black-box coupling tool. But black-box coupling tools require
coupling schemes that can deal with arbitrary point data. Using external
interpolation data for non-matching coupling interfaces can reduce quality

6

and performance. In contrast, white-box approaches achieve higher quality
of the solution and can be more performant, since they can exploit internal
information. White-box approaches, however, require more implementation
effort and are limited to the specific scheme that they have been established
for. Typically, black-box approaches require linking individual solvers
to a coupling tool which can impair their handling on supercomputers.
The white-box approach usually results in a single application to handle.
Whether to chose a black-box or a white-box approach depends on the
explicit multi-physical or multi-scale problem and the general conditions.

Numerical discretization After this brief introduction to coupling, we
will focus on how to compute individual subdomains. For aero-acoustic
problems, the physics suggests to split the domain into a small flow and a
large acoustic subdomain.
After the generation of acoustic waves in the flow field, the waves enter
the acoustic field and travel over long distances. In order to simulate the
wave transportation as correctly as possible, the applied numerical scheme
has to minimize:

• The dissipation error, that leads to incorrect amplitudes of the waves
and would dampen them and

• the dispersion error, that results in phase errors of the waves.
A high-order scheme yields low numerical dissipation and dispersion errors
[6]. It is also possible to use a lower-order scheme when refining the com-
putational grid to counter the dissipation error. But a lower-order scheme
will still yield a higher dispersion error. Hence, the low dispersion error of
a high-order scheme is better suited for the computation of acoustic wave
propagation over long distances. Additionally, a high-order scheme shows
high convergence rates in case of smooth solutions. This means that such
schemes provide high accuracy with only a few degrees of freedom (DoF),
which equates to lower computational demand. Furthermore, fewer DoF
also require smaller amounts of memory, which is essential since memory
is an expensive resource and can limit scalability. Specifically for the
simulation of a large acoustic far field, resource optimization is necessary.
A promising candidate is the high-order Discountinous Galerkin (DG)
method: It is a numerical method to solve partial differential equations
and is applicable to a broad set of problems. It is based on a polynomial
representation within each computational element and a flux calculation
between elements. Because this method only requires data from direct
neighbors, it is also well suited for parallel computations.

7

1. Introduction

For the flow subdomain, a numerical scheme that is capable of handling
high Reynolds numbers and resolving the small scales of vortices is required.
Typically, a finite volume scheme with a fine computational grid is used.
The DG scheme, however, is also suitable for this domain since the order
of the polynomial function can be decreased and a lower-order scheme is
constructed. Gassner presented the DG method for unsteady compressible
Navier-Stokes equations [7]. Similar to a Finite Volume scheme, the DG
scheme is capable of handling shocks. Zudrop has presented a DG approach
which recovers high order solutions by post-processing even in the presence
of discontinuities [8]. Additionally, the locality of the DG scheme makes it
attractive for the use-cases discussed in this thesis.

High performance computing Nowadays, most large scale computing
systems are massively parallel. Thus, approaches to simulate aero-acoustic
problems and acoustic noise propagation should operate efficiently on such
architectures. To this end, a framework that provides scalable solvers as
well as pre- and post-processing tools is required. Here, the term “end-to-
end parallel” was established over the last years for a tool chain without
serial bottlenecks. Concerning exascale computing, we need software that
is capable of running efficiently on a large number of CPUs. Furthermore,
such large-scale simulations generate a large amount of data that cannot
be processed serially. Thus, it is crucial that each tool of a tool chain
is highly parallel. For coupled problems, this does not only hold for the
individual solvers, but also for the coupling tools itself.

One especially important point is load imbalances. Load imbalances oc-
cur when computational work is not equally distributed over all processing
units so that some units do more work than others. This usually results
in waiting time for the processing units that are doing less work. At a
synchronization point, they have to wait until the processing units that
are doing more work have finished. Considering a coupling approach, the
solvers of individual subdomains have to compute different equations with
different numerical discretizations. Because of this, the workload of the
solvers is different which leads to imbalances. The goal of load balancing
approaches is to equally distribute the work over all processing units to
avoid waiting times and increase the overall performance.

8

1.1. State of the art

1.1. State of the art

For simulating aero-acoustic problems, including noise generation and its
propagation, several approaches are known. Generally speaking, for each
physical phenomenon there are direct simulation approaches as well as
modeling techniques. That is, computationally demanding direct numerical
simulations are available even for acoustics-generating flow, which compute
the sound together with its fluid dynamic source field. One could also use
a turbulence model in which only the dynamically important flow scales
are resolved and the effects of smaller scales are modeled. For the acoustic
far field, one can use acoustic analogies based on source terms in the flow
domain, approximate the solution to the homogeneous wave equation based
one the Kirchhoff integral theorem [9], or direct simulation by solving
simplified equations such as the Linearized Euler equations. Aiming for a
direct simulation of both, flow dynamics and acoustic propagation, results
in vast computational cost. One idea to circumvent this is to only compute
the equations that are strictly necessary to describe physical phenomena.
As stated before, noise generation and its propagation occur in spatially
separate partitions of the simulation domain. Hence, partitioned coupling
helps to reduce the computational demand by a) only solving the equations
required to describe the phenomena in a subdomain and b) using the best-
suited numerical scheme for the respective phenomena. Wang et al provide
a recent overview of the computational prediction of flow-generated sound
including direct simulation of flow and acoustics, acoustic analogies, and
turbulent flow modeling [10].

A prominent approach for aero-acoustic simulation are acoustic analo-
gies. A classical approach is Lighthill’s analogy [11]: It is based on the
decomposition of variables into acoustic and non-acoustic components.
Lighthill starts from the compressible Navier-Stokes equations and derives
the inhomogeneous acoustic wave equation in which source terms describe
the acoustic sources. With the introduction of assumptions these source
terms become independent of the acoustic variables and linearized equa-
tions for the propagation of the acoustic waves in a homogeneous, resting
fluid can be derived. Another analogy extending Lighthill’s approach is
the Ffowcs Williams–Hawkings analogy [12]. All analogies represent a
unidirectional coupling, where the acoustic wave propagation never influ-
ences the flow computation. Acoustic analogies are also used to determine
acoustic sources from the incompressible Navier-Stokes equations and feed
these sources into a solver for wave propagation [13]. The authors of [10]
summarize that remarkable care is required in evaluating the source terms

9

1. Introduction

to make accurate computational predictions of the far-field sound. Also,
other studies have critically discussed such acoustic analogies: Fedorchenko
presents a critical analysis of main theoretical approaches for sound gener-
ation for the case of inviscid gas flow [14]. He reveals that the definition of
aero-dynamic sound sources, as described by Lighthill’s acoustic analogy,
contains evident defects and models cannot be adapted to be physically
correct. Tam presents examples in [15] where, in each case, the acoustic
analogy theory identifies the wrong acoustic source. This study points out
that quadrupole source terms are not unique and change depending on the
choice of variables to characterize acoustic waves. Acoustic analogies have
been an important tool to reduce computational demand and to make
aero-acoustic simulations possible. They are, however, only applicable for
dedicated applications where their assumptions hold. In several cases [15],
for example, an acoustic field influencing a flow field, this is not guaranteed.

With the increase of computational power of supercomputing facilities,
direct aero-acoustics (DAA) simulations of the far field have become possi-
ble. Instead of using analogies, the governing equations are numerically
solved, as the name suggests. Hence, DAA can replaced acoustic analogies.
Besides the computation of the far field, the acoustics-generating flow has
to be computed: Direct numerical simulation (DNS) are one approach.
Here, the full governing equations are numerically solved without applying
additional models. For acoustics-generating flow, the compressible viscous
Navier-Stokes equations are used. Without a model, the whole range
of spatial and temporal scales of the flow must be resolved. For high
Reynolds numbers and turbulent flow, these scales are very small: The
smallest dissipative scales are called Kolmogorov microscales and depend
on the kinematic viscosity and the rate of kinetic energy dissipation [16].
Increasing Reynolds numbers result in smaller scales which require a higher
resolution and, hence, computational demand. Therefore, DNS of turbu-
lent flow might be infeasible for some applications due to computational
restrictions. In such cases, turbulent flow models can be applied, which
use mathematical model to predict the effects of turbulence: Two popular
streams are Large-eddy simulations (LES) and RANS (Reynolds-averaged
Navier–Stokes)-based models [16]. Large-eddy simulation are based on
the idea that the large eddies of a flow are dependent on the geometry
while the smaller scales are universal. This allows for solving the large
eddies in a simulation explicitly and implicitly accounting for the small
eddies by using a subgrid-scale model. The first published subgrid-scale
model is the Smagorinsky–Lilly model developed by Smagorinsky [16].
An approach connected to LES is the Variational Multiscale approach

10

1.1. State of the art

which is a technique for a priori separation of scales and an essential
mathematical framework for the construction of the subgrid-scale model
[17]. The second group of turbulence model is based on the Reynolds-
averaged Navier–Stokes equations (RANS) which are the time-averaged
equations of motion for fluid flow. The idea is that an instantaneous
quantity can be decomposed into its time-averaged and fluctuating quanti-
ties. To close the averaged equations, the non-linear Reynolds stress term
requires additional modeling [16]. However, turbulence models are based
on assumptions which have to hold for the respective applications. This is
particularly challenging for the occurrence of multiple phenomena.

For aero-acoustic applications, by using partitioned coupling approach,
it is possible to enable DNS for the acoustics-generating turbulent flow
(without modeling assumptions) and DAA for the far field propagation.
When considering this, however, it is important to use bidirectional coupling
to fully realize the interaction. The combination of partitioned coupling and
best-suited numerical schemes per phenomena makes the computational
demand manageable: In this work we split the entire domain in a flow
and a acoustic subdomain and leverage a lower-order DG method for the
flow domain and a higher-order DG scheme in the acoustic domain. The
next section outlines the state of the art of numerical discretization and
emphasizes the DG method, particularly, for the acoustic far field.

Numerical discretization Multiple approaches for spatial discretization
with different goals and advantages have been implemented. To solve the
governing equations of flow (Navier-Stokes equations, Euler equations)
in space, various numerical methods have been established. The three
most widely used ones are Finite Difference (FD), Finite Volume (FV),
and Finite Element (FE) [18]. A rather new method that became pop-
ular over the last decades is the Discontinuous Galerkin (DG) method
[19–21], which combines advantages of the FV and the FE method. It uses
higher-order representations within elements from the FE method as well
as the allowance of discontinuity between elements where it uses the flux
calculation of the FV method. Hence, DG maintains a good approximation
quality which is only dependent on neighboring elements. In contrast to
the FE method, there is no need to solve a global linear equation system in
DG. Thus, with its locality and the lack of a global equation system, DG
offers great potential for massively parallel programming and high perfor-
mance computing. A large number of different variants of the DG method
are known which typically differ only in the choice of basis functions,

11

1. Introduction

e.g. nodal scheme [6] or modal scheme [8]. A comprehensive collection
of mathematical details of the DG method is given in [22]. Hartmann
presents a method to deal with the viscous parts of the Navier-Stokes
equations [23]. All of the aforementioned discretization techniques can
provide values at arbitrary points in coupling: The FD method computes
data at the nodes of the discretization mesh and works on point values;
the FV method computes the integral mean values and, therefore, the
value is constant within a volume and thus assessable at every point; the
DG method exploits polynomial representations within the elements which
can be evaluated to obtain values at any point.

Another approach to solve PDEs are spectral methods [6, 24]. These
methods are closely related to FE and DG, since they are based on similar
ideas like basis functions and polynomial representations. Classical spec-
tral methods are global approaches that are operating in frequency space.
Therefore, the solution is based on information from the entire spatial do-
main. Even with this intrinsic lack of locality, parallelized implementations
have been proposed [24]. Spectral methods converge exponentially and
have excellent error properties when the solution is smooth, but under-
perform when handling discontinuities like shocks [25]. However, several
aspects of spectral methods can be leveraged in the DG methods, for
instance, spectral filters [8].

After this introduction into numerical discretization in space, we will
focus on the discretization in time. A classical approach for solving par-
tial differential equations (PDEs) is the method of lines where time and
space discretization are treated separately of each other [26]. By first
discretizing the spatial variables, a PDE is transformed into an ordinary
differential equation (ODE) in time. To evolve an ODE in time, an or-
dinary differential equation integrator is required. Multiple ODE solvers
are presented in [27]. Here, a general classification can be done: implicit
or explicit methods. Since implicit schemes are based on previous and
current time information, a linear equation system needs to be solved in
each iteration. While this might be more involving, typically, implicit
schemes are unconditionally stable which means that large timesteps are
allowed. In contrast, explicit schemes do not involve any linear equation
system since they are only based on the variables of the previous timestep.
They are, however, only conditionally stable and have a restriction on the
timestep size, the so-called CFL condition [28]. The stability criterion as
well as the timestep size depends on the combination of time and space
discretization. Classical explicit time integration methods are offered by

12

1.1. State of the art

the family of explicit Runge-Kutta methods (RK) [29]. These methods
achieve high-order time integration by using multiple substeps (sub-stages)
within each timestep [28]. The classical fourth-order Runge-Kutta method
uses four sub-stages to advance to the next timestep. Using the explicit
Runge-Kutta method in combination with DG was introduced by Cock-
burn and Shu [19–21, 30]. Zudrop presents the implementation of the RK
integration for DG in the numerical framework APES [8]. In general, it
should be stated that each sub-stage requires the evaluation of a spatial
discretization. However, increasing the order of the time integration by
using corresponding numbers of sub-stages only holds up to a certain limit,
the so-called Butcher barrier [31]. This barrier states that for orders higher
than four, there are no explicit RK methods with the number of sub-stages
corresponding to the convergence order, i.e. disproportionate more sub-
stages are necessary to compute the timestep for an desired order. Hence,
up to fourth-order, the explicit RK method is an efficient and straightfor-
ward time integration method. Another popular class of time integration
methods are the so-called strong-stability-preserving (SSP) time-stepping
schemes. These high-order time discretization methods preserve the strong
stability properties of first-order Euler timestepping and have proven to
be useful in solving hyperbolic partial differential equations [32].

The DG solver Ateles1 will be used and extended in this work. A second-
order SSP RK method as well as a fourth-order RK method in time is
available in Ateles.

Partitioned coupling As DNS of acoustic-generating flow, particularly
combined with a DAA of the far field, are computational demanding, the
idea of partitioned coupling for such problems is not new: Several authors
have proposed to use surface coupling for aero-acoustic applications to cou-
ple a non-linear compressible flow domain to an acoustic far field [33–35].
In literature, the term domain decomposition is used as an alternative to
partitioned coupling. For example Schwarzkopff couples via so-called ghost
elements which then provide information for the numerical methods [36].
This allows for coupling different numerical schemes in space as well as in
time. Based on this, Utzmann established a coupling mechanism entirely
based on the exchange of data in the Gauss integration points of the ghost
elements [37], which was then parallelized and optimized for large-scale
simulation by Klimach [5]. These are examples for white-box coupling,
where the coupling approach is implemented in one integrated tool.

1https://www.apes-suite.org/pages/ateles

13

1. Introduction

On the other hand, black-box coupling tools are developed to couple
individual black-box solvers. They are often used for multi-physics sim-
ulations like fluid-structure interaction. A widely used tool is MpCCI
[38]. MpCCI 2 abbreviates “Mesh-based parallel Code Coupling Interface”
and is developed at the Frauenhofer Institue for Algorithms and Scien-
tific Computation (SCAI). It can be used for fluid-structure interaction,
coupling climate models, fluid-electro combinations, among others. The
MpCCI software is offered as a commercial product. Another open-source
coupling tool is the coupling library preCICE (Precise Code Interaction
Coupling Environment) [39]. Details that go beyond the scope of [39]
are described in [40] and [41]. preCICE is constructed as library which
allows a minimally invasive integration into existing solvers. In [42] and
[43], development and achievements of preCICE working on distributed
data are presented. The idea is to establish a fully parallel point-to-point
concept for the communication of coupling data. As a black-box approach,
preCICE works purely on geometric data at the coupling interface. For
non-matching interfaces, preCICE provides two standard interpolation
methods: Projection-based mapping and radial basis function interpola-
tion. Additionally, for implicit coupling, which is not part of this work
but a key feature of preCICE, efficient solvers for fixed-point equations
derived from coupling conditions are implemented in preCICE. Flexibility
is the key benefit of using a coupling tool like preCICE. The application
programming interface (API) is concise and enables easy coupling of in-
dividual solvers. The advantages, however, are clouded by disadvantages
intrinsic to black-box approaches: A performance decrease is accepted in
favour of generality. Additionally, the quality of the overall simulation
can diminish for non-matching coupling interfaces when using external
interpolation methods with a lower order than in the subdomains. Using a
high-order interpolation can be disproportionately expensive, particularly
in contrast to solver-internal methods. Another aspect, compared to single
application tools is the user experience on massively parallel architectures.
For coupling with preCICE, different executables of the solvers involved
in coupling must be linked with preCICE and all executables must be
started individually, but simultaneously. On today’s supercomputers, set-
ting up such a coupled job is more involved than a single application:
When starting several executables, the correct binding of MPI ranks to the
corresponding executable needs to be taken into account to avoid running
multiple ranks on the same CPU. Hence, porting software, establishing

2http://www.mpcci.de/en/mpcci-software/mpcci-couplingenvironment.html

14

1.1. State of the art

the correct binding of MPI ranks, and compiling the job script on a super-
computer is more challenging compared to running a single application.
Nevertheless, preCICE was successfully applied in the ExaFSA (“Exascale
Simulation of Fluid-Structure-Acoustics Interactions”)project, which is
part of the German priority program SPPEXA3 and has tackled challenges
of the simulations of fluid-structure-acoustics interactions. In this context,
results using the finite volume solver OpenFOAM4 (for the flow) coupled
to the DG solver Ateles (for the acoustic far field), have been published in
[44, 45]. Further results using the finite volume solver FASTEST5 coupled
with the DG solver Ateles have been reported in [46].

High performance computing With the increased computational power
of today’s supercomputer, researchers invest a lot of effort to efficiently
use them. Here, we focus on the state of the art in high performance
computing directly related to this thesis. The aforementioned SPPEXA
programme abbreviates “Software for Exascale Computing” and indicates
the importance of the forthcoming exascale era for supercomputers. It
investigates the new possibilities of exascale compute systems and their
challenges [47, 48]. The project “ExaFSA” presented its work on super-
computers in Germany in [49].

As mentioned before, a parallel solver on its own is not enough to
solve large-scale problems. An “end-to-end parallel” simulation tool chain
without bottlenecks and memory issues, working directly on massively
parallel systems, is required. One open-source simulation toolbox is DUNE
(“Distributed and Unified Numerics Environment”) [50], which was also
part of the SPPEXA programme. It is a modular software toolbox for
parallel solving of PDEs and is based on the separation of data structures
and algorithms by abstract interfaces. Hence, it provides a generic mesh in-
terface, so that one numerical scheme can efficiently work on different mesh
implementations [51]. DUNE supports the implementation of methods like
Finite Elements (FE), Finite Volumes (FV), and also Finite Differences
(FD). Recently, a DG scheme with DUNE was published [52]. Another
promising “end-to-end parallel” simulation tool chain is APES (“Adaptable
Poly-Engineering Simulator”), developed by the STS (Simulation Tech-
niques and Scientific Computing) group at the University of Siegen. APES
provides scalable solvers, Lattice-Boltzmann method and DG, as well as

3http://www.sppexa.de
4http://www.openfoam.org
5https://www.hkhlr.de/fastest

15

1. Introduction

pre- and post-processing tools. It is based on the common “Tree-based
Elemental Mesh library” TreElM that provides the functionality to act on
distributed parallel octree meshes. Klimach presents the advantages of
octree based data structure for mesh generation in flow applications [5]. In
TreElM , a space filling curve is used for spatial ordering of the mesh infor-
mation and implements a fast connectivity search. With the connectivity
already in the mesh generation, the neighbor information required for a
numerical solver can be found a priori. Hence, APES provides all building
blocks for an white-box coupling approach, like the octree representation
of the mesh, a distributed neighborhood search, communication routines,
parallel IO, and time measurements. The high order DG solver Ateles,
which is part of APES , shows great performance on today’s supercomput-
ers [8].

For the aspect of balancing loads in HPC, a wide variety of partitioning
and load balancing algorithms have been developed. Teresco et al review
several partitioning algorithms, along with their strengths and weaknesses
for various PDE applications and present that the effectiveness of parti-
tioning and load balancing algorithms depend on the characteristics of
the application [53]. For load balancing algorithms based on weights,
which mirror the actual workload, the appropriate measurement of these
weights has to be determined for each application individually. A common
approach are re-partitioning methods which use weights to indicate the
workload and re-distribute the work accordingly. For numerical algorithms
based on grid cells, the weights are typically measured per grid cell and
then the grid cells are re-distributed accordingly. A popular option for
the partitioning of meshes is provided by the ParMETIS library [54].
ParMETIS (”Parallel Graph Partitioning and Fill-reducing Matrix Order-
ing”)6 is an MPI-based parallel library and is developed at the Department
of Computer Science & Engineering at the University of Minnesota. It uses
a graph-based algorithm for the following functions: Graph partitioning,
mesh partitioning, graph repartitioning, partition refinement, and matrix
reordering. Harlacher et al argue that with an increasing number of pro-
cesses, graph-based partitioning algorithms seem to reach their scalability
limits. In particular, one scalability issue arises due to the required memory
[55]. An alternative to graph-based partitioning is offered by partitioning
methods that are based on space-filling curves. An example of such a
method is SPartA [55] which is available in Ateles. SPartA is based on
space-filling curves and individual weights which mirror the actual load

6http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

16

1.2. Aim of this work

per element. Using such weights and calculating a priori the additional
cost for re-partitioning, SPartA is an efficient method that is tailored to
the requirements of a static mesh.

1.2. Aim of this work

This work deals with large-scale aero-acoustic simulations including fluid-
acoustic interaction without using modeling techniques, but DNS and
DAA. To make such costly simulations feasible on today’s supercomput-
ers, we propose to use a partitioned coupling approach that reduces the
numerical cost in applicable regions. Bidirectional coupling is applied for
full interaction between subdomains. When using a coupling approach to
enable simulations for a specific scenario, like fluid-acoustic interaction,
it has to be verified that the coupling interface does not influence the
solution. Once we have shown this, we can straightforwardly extend the
idea of partitioned coupling to an n-field coupling with n subdomains.
For an aero-acoustic problem, this means that the entire domain can be
separated into three individual subdomains: A viscous flow domain with
vortices, an inviscous flow and a linear acoustic far field. Hence, three
different equations, three different numerical schemes with different grid
sizes and numerical orders can be chosen. In this thesis, a 3D subsonic
free-stream jet with high Reynolds number is investigated by employing
such a 3-field coupling.

We will establish a black-box and a white-box approach within the
simulation framework APES and provide a direct comparison in terms
of numerical as well as performance results. The difference in terms of
quality of the solution will be investigated with an academic testcase with
analytical solution, while the performance difference will be analyzed with
the 3D subsonic free-stream jet.

However, the usage of coupling itself does not necessarily promise a
feasible simulation on massively parallel systems: Load balancing between
subdomains is essential to avoid idle processors and to use computational
resources efficiently. As introduced before, a coupled simulation has a
higher risk for imbalances due to individual workloads. Hence, This work
investigates the origin of load imbalances and evaluates load balancing
strategies for 3-field coupling. Typically, load balancing strategies are
based on measurements of workload, so-called weights, which are used
for re-distributing the workload. This means that the quality of a load
balancing strategy is limited by the quality of these measurements. How to
measure these weights appropriately is a fundamental issue for individual

17

1. Introduction

applications. Here, a white-box approach is advantageous since all insights
of coupling as well as the solver characteristics can be leveraged for a
correct measurement of workload.

In a partitioned coupling approach, we compute the subdomains individ-
ually. For the acoustics-generating flow domain, we choose the high-order
DG solver Ateles that allows to set the numerical order arbitrarily and
shows great performance on today’s supercomputer [8]. For the far field,
we use Ateles as well after extending it for the computation of acoustic
wave propagation. Hence, we present the coupling of a DG scheme with
a DG scheme where each has a tailored grid as well as numerical order.
As already explained, the high-order DG method is able to provide eval-
uation methods which can be used by a white-box approach in case of
non-matching coupling interfaces. As indicated, we consider a white-box
approach to be the best option regarding the quality and performance of
an aero-acoustic simulation using a high-order DG in the far field. Thus,
as part of this work, the white-box coupling approach APESmate based
on APES was developed. During development, the main focus was on
the integration of the DG solver Ateles. For the solution of a coupled
simulation it is not only essential how data is communicated, but foremost
which data is communicated. To exchange the correct data, the polynomial
evaluation at arbitrary points has been implemented in Ateles where a
scalable implementation was considered as crucial (Appendix A). The
points for this evaluation have to be identified and required information
like process unit and variable type has to be exchanged. Gathering of
all static information as well as mapping of process units should be done
during initialization while the evaluation is processed during simulation.
We chose the simulation tool chain APES with its open source DG solver
Ateles and its open source library TreElM , which provides all building
blocks to implement a parallel coupling approach. The availability of
sources is a necessity for a good load balancing in large-scale scenarios,
where a white-box approach can use all the insights of schemes as well as
the code for an accurate measurement of weights.

To compare the white-box approach, a black-box approach using the
black-box coupling library preCICE is also developed with Ateles. Once,
both coupling approaches, preCICE with Ateles and APESmate with
Ateles, have been established and validated, the 3D free-stream jet with
3-field coupling can be investigated. To observe the wave propagation in
the entire far field, the simulation has to run sufficiently long. To find
the most efficient approach, load balancing plays a significant role. The

18

1.3. Outline

weights for the load balancing strategy are directly connected to a specific
scenario and, hence, investigations with the 3D jet have to be conducted
beforehand: This is done for APESmate and preCICE, respectively, to
determine the appropriate load balancing strategy. We will take a closer
look at the measured weights for the white-box approach APESmate that
uses polynomial evaluation of the solver for the data mapping. For the
black-box tool preCICE it is not possible to attribute the coupling workload
per element, since the coupling work is done per processing unit. With the
appropriate load balancing strategy for the black-box approach preCICE
and the white-box approach APESmate, the performance is compared. The
final step is the large-scale simulation of the 3D free-stream jet with an
efficient coupling approach. Now, the numerical results can be investi-
gated, where we will take a closer look at the coupling interfaces. Here, we
first analyze a point in simulation time for which the coupling interfaces
between three different governing equations (viscous flow, inviscid flow,
acoustic) are chosen appropriately. Consciously progressing the simulation
of the free-stream jet further in time, the choice of coupling interfaces
becomes non-optimal and viscous flow phenomena/properties are reaching
into the inviscid flow subdomain. Here, we can investigate the influence of
imperfect coupling interface onto the sound generation and the acoustic
far field.

In the following, instead of using the term “black-box approach”, we use
the term “multi-solver approach” since when considering the solvers, and
even the coupling tool, as black boxes, is results in a coupling of multiple
solver. The term “white-box approach”, in contrast, will be replaces by
“integrated approach”, since in case of “opening” the black boxes and
integrated insights to obtain a better solution anyway, we are aiming for a
fully integrated implementation in order to achieve the best performance.

1.3. Outline

The upcoming chapter presents the governing equations of the single physics
and their discretization. This is followed by a chapter about coupling theory
that discusses the coupling tasks, static load balancing and the numerical
DG method as well as the governing equations in the context of coupling.
The theory part is followed by a chapter on the numerical framework.
Here, the individual components of the coupled simulation, namely APES
(Section 4.1), Ateles (Section 4.2) and both coupling approaches, preCICE
(Section 4.3) as well as APESmate (Section 4.4), are presented. The latter

19

1. Introduction

two sections do not only examine how the coupling tasks are implemented
but also present a performance evaluation. Chapter 5 exhibits and discusses
the coupling results. First, both presented approaches are evaluated with
an academic testcase (Section 5.1). Subsequently, the 3-field coupling of a
3D free-stream jet is investigated in Section 5.2. This section starts with
a look at the numerical results at a point in simulation time where the
choice of coupling interfaces are valid, followed by a detailed description of
this setup. Since load balancing of coupled simulation is crucial for large
scale simulations, this section also includes the investigation of static load
balancing strategies on the massively parallel system SuperMuc Phase 1 for
both approaches. With a strategy for well-balanced coupled simulations,
we perform the 3D free-stream jet for a large simulation time resulting in
a scenario where the defined coupling interface are not optimal anymore.
Hence, we conclude this section with an investigation of an imperfect
choice of coupling interfaces and the influence on the acoustic far field.
After the numerical results with the focus on the data mapping in space,
we briefly investigate time-consistent coupling and presents preliminary
results to tackle this challenge. This work is concluded with a summary
and short outlook in Chapter 7.

20

2. Governing equations of fluid dynamics
and their discretization

In this chapter, the governing equations of fluid dynamics are described.
The governing equations are the mathematical models that describe real-
world phenomena and translate them into a language that can be used by
numerical methods.
After recapitulating the leading partial differential equations in Section 2.1,
their discretization is presented in Section 2.2. In this work, we use the
explicit Runge-Kutta (RK) method (Section 2.2.2) for evolving in time,
whereas for the spatial discretization a higher-order Discontinuous Galerkin
(DG) method (Section 2.2.1)is employed.

2.1. Governing equations of fluid dynamics

Fluid dynamics are characterized by partial differential equations (PDEs).
These partial differential equations for flow dynamics are typically based
on conservation laws which concern the conservation of mass (depicted
by ρ), momentum (specified by ρ v) and energy (referred as e). For ease
of use, conservation laws are stated in a compact notation, defining a
vector U = (ρ, ρvx, ρvy, ρvz, e) of the conserved variables and the flux
functions F x(U), F y(U), F z(U) in x-, y-, and z-direction respectively,
which depend on the vector of conserved variables U . The equation for
that notation reads as

∂tU + ∂xF x(U) + ∂yF y(U) + ∂zF z(U) = rhs. (2.1)

The expression ∂t,x,y,z denotes the partial derivative with respect to t, x, y, z
respectively. In the following, rhs marks right-hand side rhst,x,y,z. Using
∇· to express the scalar product with the gradients and combining the
individual flux functions to the flux F consisting of F x, F y, F z, the short
notation

∂tU + ∇ · F (U) = rhs (2.2)

can be obtained. In this work, the compressible Navier-Stokes equations
(NSE) are used for the general flow, the Euler equations (EE) as simplifica-

21

2. Governing equations and their discretization

tion for inviscid flow, and the further simplified Lineraized Euler equations
(LEE) are used for acoustic far field propagation.

2.1.1. Navier-Stokes equations

In general, compressible fluids are described by the compressible Navier-
Stokes equations. The first conservation law is the conservation of mass ρ
and it is described as

∂tρ+ ∇ · (ρ v) = 0 (2.3)

where ρ defines the density, v is the velocity vector and no sources or sinks
of mass are applied. The second conservation law describes the balance of
momentum

∂t (ρ v) + ∇ · (ρ v ⊗ v) = −∇p+ ∇ · τ , (2.4)

where the pressure is denoted by p and the viscous stress tensor by τ . ⊗
is the dyadic product of two vectors. Any external source terms/forces are
omitted for brevity.
Energy is the third quantity to be conserved and the corresponding equation
is

∂te+ ∇ · ((e+ p)v) = ∇ · (τv + κ∇T), (2.5)

e is energy density which is the sum of the kinetic and internal energy
of the fluid, κ denotes the thermal conductivity of the fluid and T the
temperature.
For a Newtonian fluid, the stress tensor τ can be formulated as

τ = µ(∇ ⊗ v + (∇ ⊗ v)T) − (λ∇ · v) I, (2.6)

where µ is the dynamic viscosity and λ the bulk viscosity of the fluid. In
an ideal gas, the assumption λ = 2µ/3 is valid [56]. I denotes the identity
matrix.

To fully describe the system we consider the equation of state for ideal
gas

p = ρRT = (γ − 1)
(
e− ρv · v

2

)
(2.7)

where R is the ideal gas constant and γ the adiabatic exponent γ = cp/cv

with the specific heats cp and cv dependent on the fluid. This equation
yields a relation between pressure p and energy density e.

Rewriting the Navier-Stokes equations (2.3)-(2.5) in the compact notation

22

2.1. Governing equations of fluid dynamics

defined in (2.1), the vector of conserved variables is

U =


ρ
ρvx

ρvy

ρvz

e

 (2.8)

where the velocity v is split into the entries for each dimension. The flux
functions F x, F y, F z are defined as following

F x(U) =


ρvx

ρv2
x + p
ρvxvy

ρvxvz

vx(e+ p)

 ,F y(U) =


ρvy

ρvyvx

ρv2
y + p
ρvyvz

vy(e+ p)

 ,F z(U) =


ρvz

ρvzvx

ρvzvy

ρv2
z + p

vz(e+ p)

 .

(2.9)

For the Navier-Stokes equations, the right-hand side of Equation (2.1)
consists of the viscous part. Applying the expression for the stress tensor
(2.6), the diffusive fluxes of the right-hand side F µx, F µy, F µz can be
rewritten into vectorial form like

F µx(U ,∇U) =


0
τxx

τxy

τxz

(τ · v)x + κ ∂xT

 ,F µy(U ,∇U) =


0
τyx

τyy

τyz

(τ · v)y + κ ∂yT

 ,

F µz(U ,∇U) =


0
τzx

τzy

τzz

(τ · v)z + κ ∂zT

 .

(2.10)

Inserting these vectors into the compact notation, the Navier-Stokes
equations can be stated as

∂t U+∂x F x(U) + ∂y F y(U) + ∂z F z(U) =
∂x F µx(U ,∇U) + ∂y F µy(U ,∇U) + ∂z F µz(U ,∇U).

(2.11)

23

2. Governing equations and their discretization

The flux functions depend on the state and the diffusive fluxes functions
depend on the state vector as well as on its gradients. Note that the
Navier-Stokes equations have hyperbolic as well as parabolic parts.

2.1.2. Euler equations

Inviscid compressible flow is governed by the Euler equations which are
obtained from the Navier-Stokes equations (2.3)-(2.5) by neglecting the
diffusive terms. Hence, the compact notation is obtained from Equation
(2.11) by omitting the right hand side, which results in

∂t U + ∂x F x(U) + ∂y F y(U) + ∂z F z(U) = 0 (2.12)

using the vector of conserved variables (2.8) and the flux vectors (2.9).
Without diffusive terms, this partial differential equation is purely hyper-
bolic. It governs the dynamics of a compressible fluid and hence, allows
for, e.g. the appearance of shocks.

Since all equations above are derived from the conservation laws, they
are formulated in conserved variables, but can also be stated in primitive
variables. With Equation (2.7) the transformation from conservative
U = (ρ, ρvx, ρvy, ρvz, e)T to primitive variables Uprim = (ρ, vx, vy, vz, p)T

is
ρ = ρ

vx = ρvx

ρ

vy = ρvy

ρ

vz = ρvz

ρ

p = (γ − 1)(e− ρ

2 (v2
x + v2

y + v2
z)

(2.13)

where vx, vy, vz is the velocity in x-, y-, z-direction respectivly. The Euler

24

2.1. Governing equations of fluid dynamics

equations written in primitives variables are

∂tρ+ vx∂xρ+ vy∂yρ+ vy∂zρ+ ρ(∂xvx + ∂yvy + ∂zvz) = 0

∂tvx + vx∂xvx + vy∂yvx + vz∂zvx + 1
ρ
∂xp = 0

∂tvy + vx∂xvy + vy∂yvy + vz∂zvy + 1
ρ
∂yp = 0

∂tvz + vx∂xvz + vy∂yvz + vz∂zvz + 1
ρ
∂zp = 0

∂tp+ vx∂xp+ vy∂yp+ vz∂zp+ γp(vx + vy + vz) = 0.

(2.14)

2.1.3. Linearized Euler equations

If non-linear effects do not have an impact and can be neglected, compress-
ible flows governed by the Euler equations (2.12) can be linearized around
a constant background state.
Only perturbations of the flow are considered as variables in the equation
and thus the flow can be linearized around the constant background flow.
For this, we split the variables into the constant background denoted by
the subscript 0 and the perturbation denoted with the superscript ′, e.g.
ρ = ρ0 + ρ′. By inserting this in the conservation laws written in their
primitive form (2.14) and apply the assumption that the perturbation
quantities are much less that the background flow (ρ′ � ρ0), the products
of small quantities (e.g. rho′, v′, p′) can be neglected since their multi-
plication (v′ · p′) becomes insignificant. Further, the time derivatives of
constant background drop out.
The following Linearized Euler equations are obtained

∂t ρ
′ + ∇ ·

(
v0ρ

′ + ρ0v′) = 0 (2.15a)

∂t v′ + ∇ ·
(

v0v′ + 1
ρ0
p′
)

= 0 (2.15b)

∂t p
′ + ∇ ·

(
v0p

′ + γ p0 v′) = 0 . (2.15c)

25

2. Governing equations and their discretization

The vector of primitive perturbation is U ′
prim = (ρ′, v′

x, v
′
y, v

′
z, p

′)T and
the according flux functions are

F x(U ′
prim) =


vx0ρ

′ + ρ0v
′
x

vx0v
′
x + 1

ρ0
p′

vx0v
′
y

vx0v
′
z

vx0p
′ + γp0v

′
x

 ,F y(U ′
prim) =


vy0ρ

′ + ρ0v
′
y

vy0v
′
x

vy0v
′
y + 1

ρ0
p′

vy0v
′
z

vy0p
′ + γp0v

′
y

 ,

F z(U ′
prim) =


vz0ρ

′ + ρ0v
′
z

vz0v
′
x

vz0v
′
y

vz0v
′
z + 1

ρ0
p′

vz0p
′ + γp0v

′
z

 .

(2.16)
The according Jacobi matrices of the flux function are

Jx = ∂F x

∂U ′
prim

=


vx0 ρ0 0 0 0
0 vx0 0 0 1

ρ0
0 0 vx0 0 0
0 0 0 vx0 0
0 γp0 0 0 vx0

 ,

Jy = ∂F y

∂U ′
prim

=


vy0 0 ρ0 0 0
0 vy0 0 0 0
0 0 vy0 0 1

ρ0
0 0 0 vy0 0
0 0 γp0 0 vy0

 ,

Jz = ∂F z

∂U ′
prim

=


vz0 0 0 ρ0 0
0 vz0 0 0 0
0 0 vz0 0 0
0 0 0 vz0

1
ρ0

0 0 0 γp0 vz0

 .

(2.17)

Since the Jacobi matrices (2.17) only depends on the background state, the
Linearized Euler equations can be defined in their primitive formulation
as

∂tU
′
prim + Jx∂x U ′

prim + Jy∂y U ′
prim + Jz∂x U ′

prim = 0. (2.18)

26

2.2. Numerical discretization

Note, that for the Linearized Euler equations the notation in (2.18) is
also the conservative form, due to the constant matrices. Linearizing the
Euler equations simplifies the PDE, but this is only allowed in regions with
non-linear terms can be neglected which is true for small perturbations.

2.2. Numerical discretization

After introducing the equations, we now present the numerical methods to
solve them with a focus on the methods used in this work. All presented
partial differential equations (PDEs) are time as well as space dependent.
The Discontinuous Galerkin scheme, presented in Section 2.2.1, is used in
space and the Runge-Kutta methods, described in Section 2.2.2, is used in
time.

2.2.1. Discretization in space: Discontinuous Galerkin
In this section, we derive the semi-discrete form of the DG method. For
detailed derivation and numerical details on the modal DG scheme im-
plemented in our numerical solver Ateles, please refer to Zudrop [8]. A
general derivation can be found in Hartmann [23].
We start with the short notation of the conservation law (Equation (2.2)).
Depending on the governing equations, this equation consists of convective
parts defined by the left-hand side ∇ · F (U) and viscous parts on the
right-hand side. Since the viscous part is only relevant for the viscous
compressible Navier-Stokes equations, we first concentrate on the convec-
tive part and derive the DG discretization. For generality, we combine the
convective fluxes F x, F y, F z to the generic flux F .

To derive the variational formulation of the conservation laws, the first
step is the multiplication by the so-called test function ψ:

∂tUψ + ∇ · F (U)ψ = 0. (2.19)

Subsequently, we integrate over the domain Ω and, by using integration
by parts, the following weak formulation is obtained:∫

Ω
∂tUψdΩ −

∫
Ω

F (U) · ∇ψdΩ +
∫

∂Ω
Fψ · ndS = 0, ∀ψ, (2.20)

where dS denotes the surface integral and n the corresponding vector
normal to the surface.
The discrete variational formulation is obtained by considering a tessellation
of the domain Ω into N closed, non-overlapping elements given by Υ =

27

2. Governing equations and their discretization

{Ωi|i = 1, 2, . . . , N}, such that Ω = ∪N
i=1Ωi and Ωi ∩ Ωj = ∅, ∀i 6= j.

Within the element Ωi the DG method uses a polynomial representation
to approximate the solution. We define a finite element space comprising
of discontinuous polynomial functions of degree m ≥ 0 given by

Pm = {f ∈ [L2(Ω)]m}. (2.21)

With the above definition we can write the approximate discrete solution
Uh(x, t) within each element using a polynomial function of degree m

Uh(x, t) =
m∑

k=1

ûkφk, ψh(x) =
m∑

k=1

v̂kφk, (2.22)

where the expansion coefficients ûk and v̂k denote the degrees of freedom
of the approximated solution and of the test function, respectively. Notice,
that there is no global continuity requirement for Uh and ψh in the previous
definition.
Splitting the integrals in Equation (2.20) into a sum of integrals over
elements Ωi, we obtain the space-discrete variational formulation

N∑
i=1

(
∂t

∫
Ωi

UhψhdΩ −
∫

Ωi

F(Uh) · ∇ψhdΩ +
∫

∂Ωi

F ∗ · ψhndS
)

= 0, ∀ψh.

(2.23)
Due to element-local support of the numerical representation, the flux
term is not uniquely defined at the element interfaces. Therefore, the flux
function F in the surface integral is replaced by a numerical flux function
F∗(U−

h ,U
+
h ,n), where U−

h , U+
h are the interior and exterior traces at

the element face in the direction normal to the interface n. Hence, the
numerical flux only couples the direct neighboring elements.
Rearranging the terms and using the expansion coefficients (Equation (2.22))
leads to the space-discrete formulation: Find the coefficients ûk such that

N∑
i=1

∂t

∫
Ωi

m∑
k=1

ûkφkψh dΩ =

N∑
i=1

(∫
Ωi

F(Uh) · ∇ψhdΩ −
∫

∂Ωi

F ∗ · ψhndS
)
, ∀ψh.

(2.24)

The handling of numerical flux is well known from the FV schemes: At each
element interface a Riemann problem exists. For the numerical scheme,

28

2.2. Numerical discretization

the exact solution of the Riemann problem is not required; it is sufficient
to use an approximate Riemann solver instead. One approximation is the
the Lax-Friedrich flux [57]:

F ∗(U−,U+) = F (U−) + F (U+)
2 + c

2(U−n − U+n), (2.25)

with c the local speed of sound of the interior and exterior trace. A detailed
explanation of the Riemann problem and its solution can be found in [57].
We utilize the Lax-Friedrich flux in this work, when solving the Euler
equations. Looking at coupling with a domain that solves the Navier-stokes
equations, this does not pose an issue since the domain with the Euler
equations is typically solved with a higher order. For the DG scheme it
holds true that the higher the order of the scheme is, the lower the impact
of the numerical flux calculation is [58].

In case of the viscous Navier-Stokes equations, as already mentioned,
there are convective and viscous parts. The presented derivative of the
DG scheme is valid for the convective part described with flux functions
F x, F y, F z and the numerical flux function F ∗. The rhs consists of the
viscous flux functions. The derivation of the DG scheme for viscous fluxes
can be found in Hartmann [23] and Zudrop [8]. To concentrate on the
viscous parts, we neglect the convective part for now and Equation (2.11)
becomes

∂t U =∂x F µx(U ,∇U) + ∂y F µy(U ,∇U) + ∂z F µz(U ,∇U). (2.26)

With the introduction of a viscosity tensor νij ∀i, j = 1, ..., d, the equation
can be rewritten to

∂t U = ∇ · (ν(U) · ∇U). (2.27)

To obtain a first-order system, the equation can be rephrased to

∂t U = ∇σ (2.28a)
σ = ν(U)∇U , (2.28b)

with the auxiliary tensor σ : Rd → R(d+2)×d.

29

2. Governing equations and their discretization

To achieve the variational formulation, test functions are defined as poly-
nomial functions of the introduced tessellation Υ:

ψh ∈ [Pm(Υ)]d+2, ψh ∈ [Pm(Υ)](d+2)×d. (2.29)

Note that the first function is the vector-valued polynomial function known
from the convective parts and the second is a tensor-valued polynomial
function. Multiplying the first-order system with the test functions and
considering a single element Ωi results in

∂t

∫
Ωi

Uhψh dV =
∫

Ωi

(∇σh)ψh dV (2.30a)

∂t

∫
Ωi

σh · ψh dV =
∫

Ωi

(ν(U)∇Uh) · ψh dV. (2.30b)

Integration by parts and summation over all elements N yields

N∑
i

∂t

∫
Ωi

Uhψh dV =
N∑
i

(
−
∫

Ωi

σh · ∇ψhdV +
∫

∂Ωi

(σh · n) · ψhdS

)
(2.31a)

N∑
i

∂t

∫
Ωi

σh · ψh dV =
N∑
i

(∫
Ωi

Uh∇ · (νT (U)ψh) dV

+
∫

∂Ωi

Uh · (νT (U)ψh · n) dS
)
. (2.31b)

30

2.2. Numerical discretization

The next step is to introduce the numerical flux functions u∗ : Rd → Rd+2

and σ∗ : Rd → R(d+2)×d and, in contrast to the convective derivation, a
second integration by parts is additionally applied

N∑
i=1

∂t

∫
Ωi

Uhψh dV =
N∑

i=1

(
−
∫

Ωi

σh · ∇ψh dV

+
∫

∂Ωi

(σ∗ · n) · ψh dS

)
(2.32a)

N∑
i=1

∂t

∫
Ωi

σh · ψh dV =
N∑

i=1

(∫
Ωi

(ν(Uh)∇Uh) · ψh dV

+
∫

∂Ωi

(u∗ − Uh) · (νT (U)ψh · n) dS
)
. (2.32b)

By setting the tensor-valued polynomial function ψh = ∇ψ in Equa-
tion (2.32), the auxiliary variable σh can be eliminated and the variational
equation is obtained

N∑
i=1

∂t

∫
Ωi

Uhψh dV =
N∑

i=1

(
−
∫

Ωi

(ν(Uh)∇Uh) · ∇ψh dV

−
∫

∂Ωi

(u∗ − Uh) · (νT (Uh)∇ψh · n) dS

+
∫

∂Ωi

(σ∗ · n) · ψh dS

)
.

(2.33)
The viscous numerical flux u∗,σ∗ of the viscous part are chosen according
to the Symmetric Interior Penalty Discontinuous Galerkin (SIPG) [8]

31

2. Governing equations and their discretization

discretization to

u∗(U−,U+) = U− + U+

2

σ∗(U−,∇U−,U+,∇U+) = ν(U−)∇U− + ν(U+)∇U+

2

− CIP (U−n − U+n).

(2.34)

The penalty parameter is set to

CIP = C
(m+ 1)(m+ d)

d

∂Ωi

Ωi
, (2.35)

where C ≥ 1 is required for stability, ∂Ωi is the surface area, and Ωi is the
volume of the element.

Combining the variational formulation of the convective terms (Equa-
tion (2.24)) and the just derived variational formulation of viscous terms
(Equation (2.33)), the Variational Interior Penalty Discontinuous Galerkin
formulation of the viscous compressible Navier-Stokes equations is given
by: Find uh ∈ [Pm(Υ)]d+2 such that for all φh ∈ [Pm(Υ)]d+2

N∑
i=1

∂t

∫
Ωi

Uhψh dV =
N∑

i=1

(
−
∫

Ωi

(ν(Uh)∇Uh) · ∇ψh dV

−
∫

∂Ωi

(u∗ − Uh) · (νT (Uh)∇ψh · n) dS

+
∫

∂Ωi

(σ∗ · n) · ψh dS

+
∫

Ωi

F (Uh) · ∇ψhdV −
∫

∂Ωi

(F ∗ · n) · ψhdS

)
(2.36)

holds true. The SIPG flux defined by Equation (2.34) is used for σ∗ and
u∗, and F ∗ is the numerical flux of the convective part.
How boundaries are imposed with the help of the numerical flux functions
can be found in Zudrop [8]. In this work when solving the Navier-Stokes
equations, the HLL Riemann solver is used for F ∗ [57].

The previously obtained ordinary differential equation is the starting
point for the time integration methods presented in the next section.

32

2.2. Numerical discretization

2.2.2. Discretization in time: Runge-Kutta

Runge-Kutta methods (RK) are classical explicit time integration methods
[29]. These methods achieve high-order time integration by using multiple
stages within each timestep to advance to the next timestep t+ ∆t [28].
That is, a fourth-order Runge-Kutta method uses four sub-stages and a
second-order Runge-Kutta method uses two sub-stages.

Re-arranging Equation (2.36) to matrix-vector notation yields

∂tUh = M−1 ·
(
S · F (Uh(t)) − Mf · F ∗(Uh(t))

)
, (2.37)

where M is the mass matrix, S the stiffness matrix, and Mf the so-
called face lifting matrix. F and F ∗ are flux and numerical flux functions,
respectively. It can be further shortened to

∂tUh = M−1 · rhs(U h(t), t). (2.38)

The explicit RK method advances the system (2.38) from t to the next
timestep t+ ∆t by solving

Uh(t+ ∆t) = Uh(t) + ∆t
s∑

i=1

biUhi (2.39)

where bi are coefficients from the Butcher tableau [27] and Uhi the sub-
stages. For the second order it results in

Uh(t+ ∆t) = Uh(t) + ∆t(Uh1 + Uh2), (2.40)

and for the fourth order it is

Uh(t+ ∆t) = Uh(t) + ∆t
6 (Uh1 + 2(U h2 + Uh3) + Uh4), (2.41)

where the sub-stages are

Uh1 = M−1 · rhs(U h(t), t), UA
h = Uh(t) + ∆t

2 Uh1, (2.42a)

Uh2 = M−1 · rhs(U A
h , t+ ∆t

2), UB
h = Uh(t) + ∆t

2 Uh2, (2.42b)

Uh3 = M−1 · rhs(U B
h , t+ ∆t

2), UC
h = Uh(t) + ∆tUh3, (2.42c)

Uh4 = M−1 · rhs(U C
h ,∆t). (2.42d)

To construct the two sub-stages Uh1 and Uh2, which are the only ones

33

2. Governing equations and their discretization

required for the second-order method, the midpoint rule is applied by using
one midpoint at t+ ∆t

2 .

As mentioned in the introduction (Chapter 1), explicit time integrations
are only conditionally stable. For hyperbolic conservation laws solved with
the explicit RK scheme combined with the DG discretization, the stability
limit is given by

α · p2 · ∆t
h

≤ CFL, (2.43)

where α denotes an upper bound on the global wave propagation speed and
CFL denotes the Courant-Friedrich-Levy constant, which is independent
of gridsize h and numerical order in space p of the DG scheme. Hence,
the timestep ∆t is limited by h/p2 and results in a very small timestep for
very high-order schemes. This timestep becomes even smaller for parabolic
equations. Here, the stability limit is

ν · p
4 · ∆t
h2 ≤ CFL, (2.44)

with the diffusion constant ν. Thus, the timestep ∆t is limited by h2/p4.

34

3. Partitioned coupling

As described in the introduction (Chapter 1), the term partitioned coupling
refers to the splitting of a computational domain into subdomains such
that each subdomain can be treated with different PDEs and numerical
techniques that handle the physical characteristics best. The main motiva-
tion for coupled simulations is to enable the solution of computationally
expensive problems: Using best-suited techniques for each subdomain
can decrease the computational demand, in contrast to solving the entire
problem monolithically. It can also improve the quality of the solution, for
example, by using a high-order scheme with low dissipation and dispersion
errors for wave propagation over long distances. When dividing a domain,
interactions between subdomains must be realized as well: In case of sur-
face coupling this can be achieved with boundary conditions. In literature,
the term domain decomposition is used as an alternative to partitioned
coupling, for instance by Schwarzkopff [36]. In this work, however, the term
partitioned coupling is used in accordance with the DFG-funded ExaFSA
project [47, 48].

In this chapter, we first describe the general coupling tasks that a
coupling tool has to undertake. We establish two different implementations
for partitioned coupling: A multi-solver approach using the coupling
library preCICE and the integrated approach APESmate as part of the
APES framework. Details of these will be elaborated in the corresponding
sections of Chapter 4. Subsequently, in Section 3.2 static load balancing for
coupled simulations is described since one goal of this work is the efficient
computation on many compute cores. Here, we discuss how idling processes
and imbalances in a coupled setup can be avoided. The following section
(Section 3.3) addresses special features of the Discontinuous Galerkin (DG)
method in the coupling context. This chapter is closed with a section
about fluid dynamics in the context of coupling.

3.1. Coupling tasks

When coupling multiple subdomains with individual solvers, the following
major tasks need to be tackled:

35

3. Partitioned coupling

• Steering of individual solvers,
• communication of coupling data at interfaces,
• data mapping in time, and
• data mapping in space.

These tasks should be handled efficiently in parallel by a coupling approach
and will be discussed in the following.

3.1.1. Steering of individual solvers
For a coupled simulation, individual solvers need to be steered by the
coupling tool in such a way, that the solvers provide coupling data at
the points in time and in space, where these coupling data are required.
In this work, two implementations are established, a multi-solver and
an integrated approach. Concerning these implementations, steering is
done in two different ways: Figure 3.1 depicts both implementations on

Ateles

preCICE

AP
I

Multi-solver approach

Ateles

preCICE

AP
I

application
library
data exchange

Integrated approach

APESmate

Ateles Ateles

Figure 3.1.: Overview of steering individual solvers of the coupled simulation
in both established coupling approaches.

an abstract level. To use the multi-solver approach as shown on the left
side of Figure 3.1, an external coupling library is required. This, in turn,
implies the availability of an application programming interfaces (API) to
the coupling tool that can be accessed by individual solver. In such an
approach, the coupled simulation is controlled by calls from a solver to the
corresponding library and their return values. For example, the solver asks
the library if the simulation is done or should continue, and has correspond-
ing procedures implemented. For each subdomain, the individual solvers,

36

3.1. Coupling tasks

e.g. two instances of Ateles, are started and the coupling library, e.g. pre-
CICE, is called internally to take care of the aforementioned coupling tasks.

Running individual executables in a coupled mode is more involving on
supercomputers: For example, control mechanisms are required to finalize
both solvers correctly in case one of them reports an instability. Also,
binding the correct number of MPI-ranks to each individual executable
to avoid running multiple MPI-ranks on the same core needs to be taken
into account. For the multi-solver approach with individual executables,
these must be linked to the coupling library during compilation and the
correct MPI-ranks must be chosen when submitting jobs. Merging multi-
ple executables into one executable is also possible, but this implies more
modifications to the black-box solver and a larger API: The solver, for
instance, must be capable of using a provided MPI communicator for
internal communication.

In contrast, the integrated approach (right side of Figure 3.1), where the
coupling concept is implemented in the same framework as the numerical
solvers, only has one single executable with all required solvers. Here, the
solvers are incorporated as a library. Since the coupling tool has access to
the entire data structures of the solvers, the steering is more direct. The
coupling tool on the highest hierarchy level (Figure 3.1) has the control
of the simulation. For example, it checks for the synchronization step
and triggers the solver to run until the next synchronization step or to
finalize its subdomain. Within a single timestep, the solver has no further
interaction with the coupling tool. Of course, this direct steering is only
feasible if the solver and the coupling tool are implemented within the same
framework. The benefit of the integrated approach is the handling of one
executable instead of several ones on a supercomputer. Porting software,
establishing the correct binding of MPI-ranks to the individual subdomains,
e.g. to avoid running multiple MPI-tasks on one CPU, and compiling the
job script is greatly simplified when running a single application.

3.1.2. Communication of coupling data
A coupling is based on the exchange of data at defined coupling points
at the interface at defined synchronization steps. Such data are coupling
variables such as density, velocity, and pressure for flow simulations, and
are defined by the user in the corresponding coupling configuration (file).
They are requested by one subdomain from the other subdomain at the
coupling interface. The definition of coupling points, as well as the synchro-

37

3. Partitioned coupling

nization step, will be discussed in the next sections. The challenge is that
parallel processes of each subdomain can be arbitrarily distributed. Fur-
thermore, only the processes that accommodate elements at the coupling
interface, henceforth referred to as coupling elements, should be involved
in the communication between subdomains. These processes establish
a point-to-point communication for data mapping between neighboring
coupling element. Figure 3.2 sketches a setup with two subdomains A
and B, where arrows illustrate the required communication. RAi and RBi

depict the processes arbitrarily distributed on the subdomains. Here the
processes RA1, RA5 and RA11, RA20 on subdomain A should communicate
directly with the processes RB3 and RB35 on subdomain B, respectively

RA7 RA1

RA32

RA17

RA5

RA11

RA20RA4

RB3

RB35

RB21

RB9

Subdomain A Subdomain B

coupling interface

{

Figure 3.2.: Sketch of two subdomains A and B where the corresponding
processes RAi and RBi at the interface need to communicate (blue arrows)
the coupling data between each other. For the sake of visualization, the
points are slightly shifted away from the interface.

The focus is on the efficient communication of these data from the
coupling points of the subdomain A to the coupling points of the second
subdomain B and vice versa. Since we are aiming for large-scale simula-
tions on massively parallel systems and even prospective exascale systems,

38

3.1. Coupling tasks

communication must not pose a bottleneck. To establish communication
at every synchronization step, the communication infrastructure must be
initialized first as discussed below.

Initialization of communication: In this phase, the communication
relations between the processes, which contain coupling elements and,
therefore, participate in the coupling, have to be established. This is
closely related to data mapping between different coupling points at the
coupling interfaces, since only the processes with coupling points are in-
cluded in the corresponding data mapping and should talk to each other.
This communication should be as direct as possible. However, depending
on the implementation of the coupling approach, this initialization is more
or less challenging as discussed below.
Communication at synchronization steps: This part of the communication
is even more important than the communication during initialization, since
it happens at every synchronization step during the simulation time. The
communication should be significantly faster than the computation of the
individual subdomains. Therefore, after establishing the communication
relations between individual processes, the actual exchange of data should
be in a direct way. All information should be available locally to a process
to avoid expensive communication, e.g. all-to-all. This point-to-point com-
munication is sometimes referred to as M:N communication indicating M
processes on one side exchange with N processes on the other side.

Realization of both steps, Initialization of communication and Commu-
nication at synchronization steps, depends on the coupling approach and
its implementation. Naturally, Initialization of communication is more
simple for the integrated approach. The integrated approach is a single
application that uses a single MPI communicator. For the multi-solver
approach, employing a coupling library to establish a point-to-point com-
munication is not trivial. As mentioned in the previous Section 3.1.1, the
multi-solver approach starts individual applications that are connected via
the coupling library. Hence, different MPI communicators are involved.
The coupling library treats solvers as black boxes and, therefore, only
acts on input and output data from them. Nevertheless, communication
must not contradict exascale computing paradigms. Furthermore, memory
might be a limited resource, thus, for instance gathering all information
on the root processes during initialization to realize the mapping is not
possible for very large interfaces. After initialization, point-to-point com-
munication, i.e. direct communication between two processes sharing a
coupling interface, is similar for both implementations in terms of available

39

3. Partitioned coupling

local information on every MPI-rank. Of course, APESmate communicates
within one MPI communicator, whereas preCICE needs to invoke sockets
or MPI-ports to communicate across different MPI communicators. More
detailed descriptions of the individual implementations can be found in
Section 4.3.3 and Section 4.4.3, respectively.

3.1.3. Data mapping in time

Data mapping in time is one of the required coupling tasks when subdo-
mains use different time integration methods or different physical timestep
sizes due to different mesh discretizations or multi-scale phenomena. When
exactly a synchronization in time happens is testcase and solver-dependent.
Whether explicit or implicit time integration is used, for instance, will
influence the size of the simulation timestep, since explicit time integration
is limited by the so-called CFL condition. In the following, we will explain
various concepts concerning the data mapping in time for coupled simula-
tions: Sub-cycling, multi-stage time integration, and iterative coupling.
Sub-cycling: Choosing a synchronization timestep that is larger than
the individually required timesteps of the numerical solvers, will result
in sub-cycling. Figure 3.3 demonstrates such a configuration where the

tsync
Δt < tsync Δt = tsync

tsync

tsync

Δt

Δt

Δt

Δt

Δt

Δt

Δt

Δt

Δt

Δt

Figure 3.3.: Sub-cycling of one
subdomain. The left subdo-
main has a smaller timestep
∆t than the synchronization
timestep tsync which leads
to sub-cycling of this sub-
domain. The solid horizon-
tal lines indicate data ex-
change at each synchroniza-
tion timestep tsync. Dotted
lines depict data exchange re-
quired for the sub-cycling left
subdomain.

left subdomain has a smaller timestep ∆t than the chosen synchronization
timestep tsync. Hence, the left subdomain requires four small timesteps ∆t
until it reaches the synchronization timestep. Dotted lines indicate points

40

3.1. Coupling tasks

in time, where the left subdomain requires data from the right subdomain.
For consistent time integration, it is important to ensure that the required
data at the interface is provided at those sub-cycling timesteps as well. It
either needs to be ensured by the coupling tool by providing a high-order
extrapolation in time or the solver needs to provide a corresponding time
integration method. This is, for example, offered by the ADER time
integration method [59]. In this work, we do not allow sub-cycling (due to
adaptive time-stepping) of one solver to avoid inconsistent coupling in time.
Allowing sub-cycling (adaptive timestepping) can improve the performance
of multi-scale simulations which implies using individual timestep sizes
tailored to the individual physics and, therefore, optimal usage of the
individual numerical schemes. Furthermore, we do not consider limitations
on the numerical order of the solution due to inconsistent coupling in time,
which of course can reduce the overall order of the numerical scheme.
Multi-stage time integration: Another challenge is the time-consistent
coupling of multi-stage time integration schemes. As presented in Sec-
tion 2.2.2, we use the explicit two-stage Runge-Kutta (RK) method. This
method constructs two sub-stages via a midpoint in the timestep which
leads to a similar problem as for the sub-cycling in Figure 3.3: In the
synchronization at the midpoint of the RK timestep one subdomain needs
data at the coupling interface, where the other subdomain does not pro-
vide it. This can be circumvented if both subdomains use the same time
integration method and the coupling tool supports the exchange of data at
the midpoint of an RK timestep. This, however, contradicts the concept of
coupling black-box solvers, while it is possible for an integrated approach.
Iterative coupling: In case of implicit time integration in a solver, where
the solver requires data of the old as well as the new timestep to evolve in
time, iterative coupling is required: This is, performing an iterative process
of solver evaluations in every timestep until convergence of coupling values
at the interface at this timestep is achieved. Iterative coupling is also
called implicit coupling and different iterative solvers are available [60,
61]. Such an iterative coupling is typically more stable, but costly and is
often considered to couple multi-physics phenomena like fluid-structure
interaction. More details about implicit coupling approaches and their
realization are addressed by Gatzhammer in [40]. Implicit coupling could
be helpful regarding sub-cycling and time-consistent coupling when using
multi-stage time integration.

When exploiting explicit time integration methods, where only data
of previous timesteps are required to advance in time, only one iteration
is required, i.e. an iterative coupling with only one iteration is used to

41

3. Partitioned coupling

compute the new timestep. Such a coupling, where only one iteration of
the solver evaluation is performed, is also referred to as explicit coupling.
In case an explicit time integration is used, for some coupling tools it is a
pre-requisite to exchange the initial condition at each coupling interface
since the solver requires valid boundary conditions at the initial step.

For the simulation of fluid-acoustic interaction in this work, we use
explicit time integration and a fixed synchronization timestep for all
subdomains. This fixed timestep is set to the minimum of all individual
timesteps limited by the individual CFL condition of each subdomain and
equation system. Multi-stage time integration will be investigated during
load balancing investigations.

3.1.4. Data mapping in space
The interaction between different subdomains is realized by exchanging
coupling variables at coupling interfaces. These data are exchanged at
defined points on the coupling interface. Each subdomain requests data at
individual coupling points that depend on the mesh discretization and the
order of the numerical scheme. Typically, these coupling points in space do
not coincide at the coupling interface: For instance, two neighboring subdo-
mains can use different meshes, different approximation orders, or schemes
with e.g. different integration points. In such cases, one subdomain requires
data at specified points, but the second subdomain operates on data at
different points. Figure 5.15 depicts the integration points for DG schemes
of different order and mesh size. A matching grid as shown in Figure 3.4a
is only achieved when using the same grid size h and polynomial order p in
each subdomain. n is the number of integration points which is a function
of h and p. All other examples in Figure 3.4b - Figure 3.4d present non-
matching interfaces. In Figure 3.4b, both subdomains have fourth-order
discretization, but the computational grid of the right subdomain is twice
as fine as the left subdomain, which leads to twice the number of inte-
gration points at the right interface nR. Figure 3.4c presents an example
where the same computational grid in both subdomains is chosen, but
different orders, i.e. left subdomain is eighth-order and right subdomain is
fourth-order, respectively, which results in twice the number of integration
points at the left interface nL. Finally, Figure 3.4d shows an interface with
the same number of integration points (nL = nR) but still obtaining a
non-matching grid due to different orders and mesh resolutions. Here, the
left subdomain has a coarser grid but an eighth-order DG scheme in space,
and the right subdomain has two-fold finer grid, but only fourth-order

42

3.1. Coupling tasks

(a) Matching:
hL = hR,
pL = pR,
nL = nR

(b) Non-matching:
hL > hR,
pL = pR,
nL < nR

(c) Non-matching:
hL = hR,
pL > pR,
nL > nR

(d) Non-matching:
hL > hR,
pL > pR

nL = nR

Figure 3.4.: Example of matching and non-matching integration points at
the coupling interface when using DG. At least one element per subdomain
is shown exemplarily. Grid size h and/or the polynomial order p, and,
therefore, the number of integration points n vary. For illustration purpose,
the coupling points are shifted to the left and right of the coupling interface,
in reality the points are lying directly on the interface. Please note that
integration points for the DG scheme are not equidistant within the
element.

DG scheme. This is due to the non-equidistant distribution of integration
points in DG schemes. Furthermore, when coupling different discretization
methods in space, e.g. an FV scheme with a DG scheme, we typically
face non-matching coupling interfaces. Therefore, good data mapping for
non-matching integration points at interfaces is required and will influence
the overall coupling accuracy.

Especially for high-order discretizations in one subdomain, a good data
mapping in space is important: Low-order data at the interface can impair
the error convergence of individual solvers. However, high-order data
mapping can be achieved by solver-internal methods to obtain the values
at arbitrary coupling points or by providing additional data points resulting
in higher effort. Additionally, interpolation methods can be expensive.
It can be discussed up to which numerical order data mapping is useful:
Assuming the coupling of a lower-order discretization with a higher-order

43

3. Partitioned coupling

discretization, it can be unnecessarily costly to provide higher-order data
to the lower-order discretization. Assuming black-box coupling, where a
coupling tool only acts on input/output data, an external interpolation
method within the coupling tool is typically used. Of course, acting purely
on point data, information on the specific discretization is lost. In case of
matching interfaces, a requesting subdomain can directly use the data that
the other solver is working on. Here, no additional effort is required, but the
coupling tool cannot influence the quality of the data. For non-matching
interfaces, additional work in form of matching techniques is required, for
which the coupling tool has several options: a) Use the provided data and
apply an external interpolation method. This option is flexible and the
coupling tool can influence the quality by choosing appropriate mapping
methods; it is expensive though. b) Use solver-internal information, e.g.
the DG polynomials to obtain the values at the requested points. This
yields less additional effort than external interpolation methods since the
polynomial is already constructed, and the quality of the solution (from
the solver) is maintained. However, this is only possible if the coupling
tool has access to the solver-internal data. A white-box approach can avoid
this issue by leveraging the internally known information of the scheme
to provide high quality point values, i.e. using the aforementioned option
a). For example, Discontinuous Galerkin is a numerical scheme that can
provide data at arbitrary points in space (see Section 3.3).

3.2. Static load balancing

Coupled simulations on massively parallel systems often result in load
imbalances due to different workloads of each subdomain. Therefore,
balancing these loads is an important topic for coupled simulations running
on massively parallel systems. The available resources should be used
efficiently, which implies that the workload across the processes must be
evenly distributed. Static balancing in this context means that imbalances
introduced during execution are not considered. We assume that the load
distribution does not vary during the execution since the coupling setup (e.g.
location of the coupling interface) does not change over time. With respect
to partitioned coupling, we can differentiate load balancing between the
individual subdomains and the load balancing within each subdomain.
We first discuss the load balancing between the subdomains due to different
workloads and afterwards elaborate on load imbalances within subdomains,
originating from the additional workload at the coupling interfaces.

44

3.2. Static load balancing

3.2.1. Load balancing between subdomains

Different equations, spatial domains, and numerical discretizations lead to
different workloads of individual subdomains. For example, solving a non-
linear flow with around 1000 fine elements and lower-order has a different
workload than a linearized acoustic field with 500 coarse elements and a
higher order. If the subdomains are not properly distributed according to
their workload then the different workloads will lead to imbalances in the
coupled simulation, even if a perfect load balance within the individual
subdomains would be given. We always assume parallel coupling, which
means the subdomains are solved in parallel. A static load balancing
can be achieved by choosing an appropriate number of processes for each
subdomain, s.t. its computation takes approximatively the same time, by
assuming no adaptive time-stepping, a fixed coupling interface, and no
sub-cycling, Figure 3.5 shows an example of a non-linear flow domain
coupled with a linear acoustic domain. Here, the workload of the acoustic
domain is only 1

3 of the flow domain. In Figure 3.5a the same number of
MPI-processes, i.e. 6, per domain are used which results in idle time for
all 6 processes of the acoustic domain. But only 1

3 of the 6 MPI-processes
are required to solve the acoustic domain in the same computational
time. Hence, Figure 3.5b presents a perfect load balancing using the
appropriate number of MPI-processes, i.e. only 2 processes in the acoustic
domain. Instead of using 12 MPI-processes in total only 8 MPI-processes
are enough to solve this setup in the same computational time and avoid
idling processes. Choosing the number of processes according to the actual
load requires a strategy that can be based on heuristics or weights that
mirror the workload. Such weights naturally depend on the solver and
the physical regime (equation system) to solve, but also on the computer
system, e.g. memory cache size. Furthermore, when using the DG solver
Ateles, the weights depend on the chosen spatial order. Accordingly, some
experience and preliminary investigations are required.

Applying a dynamic load balancing between two subdomains is even more
challenging. Here, “dynamic” means the re-partitioning of all processes
between the subdomains, i.e. moving some MPI-processes from subdomain
A to subdomain B during execution. Re-partitioning of processes at
runtime using an integrated coupling approach (e.g. APESmate) might be
simpler to implement than for a multi-solver approach that uses an external
coupling library (e.g. preCICE). Since the integrated approach is a single
application, a dynamic LB mechanism designed for one application can
be applied. In detail, this comprises a) the determination of the compute

45

3. Partitioned coupling

Flow domain Acoustic domain

idling
processes

t

tsync

tsync

tsync

idling
processes

MPI proccesses

(a) Same number of MPI-processes per
subdomain yielding load imbalances
and idling processes

Flow domain Acoustic domain

t

tsync

tsync

tsync

MPI proccesses

(b) Appropriate number of processes

Figure 3.5.: Example of load balancing between a flow domain and an
acoustic domain. a) Same number of MPI-processes in both subdomains
yield to idling processes in the acoustic subdomain; b) adapted number of
processes in the acoustic domain which avoids idling processes.

weights by measuring runtimes, b) the re-distribution of the domain onto
a different number of MPI-processes according to the weights, and c) the
update of the domain-specific MPI communicators. In contrast, utilizing an
external coupling library results typically in separate applications coupled
via the library. In this case, the dynamic load balancing is more involving,
e.g. exchanging MPI-processes between the subdomains might imply to
store results intermediately and to restart the coupled simulation with
different processor counts due to different MPI communicators. Dynamic
load balancing gains importance when the workload per subdomain changes
during computation due to adaptive time-stepping or dynamic changes of
coupling interfaces. Dynamic load balancing is not part of this work but
should be considered in the future.

3.2.2. Load balancing within a subdomain

Several factors influence the workload and, therefore, the load balancing
of a simulation. Considering a computational domain discretized into
several elements and distributed over processes, an ideal load balancing is

46

3.2. Static load balancing

achieved when all processes have the same workload. The workload of a
single element depends on the numerical scheme but also additional work
like applying boundary conditions or source terms. Here, we discuss the
load imbalances within a subdomain introduced by additional coupling
load at the coupling interfaces. Elements at this coupling interface are
under additional load: With the integrated approach APESmate, such
elements need to provide coupling data at coupling points, which can be
costly depending on the chosen discretization (refer to Section 3.3). In
case of the multi-solver approach these coupling elements have to “write
to” the black-box tool and “read from” it. An element located at a cou-
pling interface is involved in the numerical computation of the equation
(“compute workload”) as well as in coupling (“coupling workload”). Such
an element will be referred to as “coupling element ” throughout this thesis.

During a parallel simulation, synchronization steps across all processes
are required, e.g. to exchange local timestepping information after com-
pleting a timestep or the simulation status. At such a synchronization
step, processes with less workload have to wait (idle) for processes with
more workload to complete their computation. For an efficient load bal-
ancing, the compute and coupling loads of a coupling element must not
be separated by a synchronization point, so that both workloads can be
considered jointly for re-partitioning.

Figure 3.6 presents common examples for load balancing scenarios within
a subdomain for single-stage time integration. In each scenario, 4 MPI-
processes are depicted by solid lines and 16 elements by dotted lines. In
Figure 3.6a, an ideal balancing without coupling elements is shown. Each
process computes 4 elements and, therefore, has the same workload per
timestep. The second example (Figure 3.6b) shows the same element dis-
tribution, i.e. 4 elements per MPI-process, but includes 1 coupling element
(blue dotted). This coupling element has additional work (blue blocks)
while the other 3 processes are idling (shaded blocks) at the synchroniza-
tion timestep. Here, we can see that large imbalances in workload yield a
suboptimal load balancing in a subdomain and result in idling processes.
Figure 3.6c presents the same setup but with a sensible load balancing:
Here, the loads are distributed according to the total load per element,
i.e. computation + coupling load: 1 expensive coupling element on 1 rank
and 5 elements on each of the 3 other ranks. This re-partitioning can
be done with specific libraries like ParMETIS1 or other re-partitioning
methods that use weights to indicate the load per element and re-distribute

1http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

47

3. Partitioned coupling

t

tsync

tsync

tsync

(a) Ideal LB yielding
same number of elements
on each processes with-
out any element involved
in coupling

t

tsync

tsync

tsync

(b) Same number of ele-
ments on each processes
with one element in-
volved in coupling.

t

tsync

tsync

tsync

coupling
idling

coupling element
element

(c) Using re-balancing
mechanics resulting in
good load balancing with
one element involved in
coupling.

Figure 3.6.: Example of load balancing within a subdomain that a) does
not have any coupling elements and therefore ideal balancing is achieved
by the same number of elements per rank; b) has the same number of
elements per rank with one coupling element which leads to idling ranks
while coupling; c) has one coupling element but rebalanced load, which
results in same computation times and avoids idling ranks.

accordingly. In APES , we use the parallel re-partitioning algorithm SPartA
[55], which is described in Section 4.2.1. Figure 3.6 also highlights that a
good load balancing results in an overall smaller computation time.

The compute load can be partitioned down to one element per process
in Ateles, which naturally limits the maximum number of processes. For
example in Figure 3.6 this means 16 ranks. Inhomogeneous loads of
individual elements limit the sensible number of processes to be utilized
even further: This is the case in Figure 3.6 where the cost of the single
coupling element (blue dotted + blue) is assumed to be extraordinary
high, e.g. 5 times the workload of any other element. The re-partitioning
algorithm tries to distribute elements such that each partition has a similar
load. In this example, the re-partitioning results in 1 rank with the coupling

48

3.2. Static load balancing

element and 3 more ranks with 5 elements each (Figure 3.6c). The high
load of the single coupling element located on 1 rank determines how
much load must be located on the other ranks to minimize idling times.
Therefore, the sensible number of processes to utilize in this example is 4.
Using more ranks does not reduce the overall runtime any further, since
it is determined by the high load of one element that cannot be further
distributed. In general, we have to consider the ratio of the maximum
load and the average load of elements. This ratio determines the number
of average-load elements that can be solved in the same time on one rank
while a single high-load element is solved. In our example we have 15
compute only elements and 1 coupling element, and we denote load by the
arbitrary unit l: Each compute element has 1l, while the single coupling
element has 5l. The overall load is 20l. Locating the coupling element on
one rank, the remaining load of 20l-5l = 15l (the compute elements) needs
to be distributed on a sensible number of ranks. The load ratio between
coupling and average is 5

1 , which means that while the coupling element is
solved, 5 compute elements can be solved on one rank. Considering the
remaining load of 15, 15

5 = 3 ranks are required. The total number of
sensible ranks can be computed as

Nsensible = Nremaining +Nmax

= Wtotal−Wmax

Wmax
+ Wmax

Wmax

= Wtotal−Wmax+Wmax

Wmax

= Wtotal
Wmax

(3.1)

W denote loads (=“weight”), N the number of processes, and subscripts
the kind of loads, respectively. With this, we obtain Nsensible = 4 for our
example. Hence, inhomogeneous workload of elements within one subdo-
main can limit the sensible number of processes and must be considered.

Load balancing within a subdomain is a general concept and applies
to the multi-solver as well as the integrated coupling approach. However,
for the multi-solver approach with an external library the load balancing
inside of the coupling tool is not addressed in this work.

So far, we have only looked at single-stage time integration (Figure 3.6).
Compared to this, multi-stage time integration methods utilize multiple
sub-stages within one timestep to increase the order in time. As presented
in Section 2.2.2, the RK method is such a multi-stage time integration
method. Here, second-order is assumed where the midpoint rule is applied

49

3. Partitioned coupling

by using one midpoint at t+ ∆t
2 to construct the two sub-stages. Typically,

in a coupled simulation coupling data is exchanged at the end of a complete
timestep, which implies that the coupling data is only available at that point
in time. A second-order RK timestep has one synchronization within the
subdomain and one synchronization between subdomains at the end, while
a first order timestep has just one synchronization between subdomains
at the end. Please keep in mind, that load can only be balanced between
synchronization points.

t

tsync

tRK

tsync

sync

(a) Load balanced according to
the midpoint of the 2nd order
RK method leading to idling
processes at the end of the com-
plete timestep

t

tsync

tRK

tsync

coupling
idling

coupling element
element

sync

(b) Load balanced including the
coupling load yielding one idling
process at the midpoint of the
timestep of the 2nd order RK
method

Figure 3.7.: Load balancing examples with multi-stage time integration.
tRK depicts synchronization steps at midpoints within the second-order
RK method within a subdomain and tsync illustrates synchronization
steps at complete timesteps between subdomains.

Figure 3.7 presents the load balancing examples within a subdomain
when using multi-stage time integration. Here, tRKsync depicts synchro-
nization steps at midpoints and tsync illustrates synchronization steps
at “complete” timesteps. tRKsync synchronizes within a subdomain, while
tsync synchronizes between subdomains. The same exemplary scenario as

50

3.2. Static load balancing

in Figure 3.6 is chosen: 4 MPI-ranks with 16 elements including 1 coupling
element. In Figure 3.7a, only the compute load is balanced, which results
in a balancing according to the the midpoints of the second-order RK
method. At the end of the complete timestep, the coupling data need
to be provided by the single coupling element and idling ranks appear.
Figure 3.7b gives an example, where the load of computation and coupling
is balanced. This implies that 1 rank only has the coupling element while
each of the other 3 ranks has 5 elements without coupling. Due to the
different compute load, the rank with the coupling element is idling at the
midpoint while the other ranks are computing the 3 additional elements.
For the synchronization step tsync at the end of the timestep, the coupling
data needs to be provided and, thus, all ranks require the same amount
of time which avoids idling ranks. Hence, using a multi-stage approach
in a coupled setup poses a conflict when coupling data is only provided
at the end of a complete RK step: Either there are idling ranks in at
the end of the timestep while coupling (and only the compute load is
balanced), see Figure 3.7a; Or coupling and compute load are considered
together and balanced accordingly, which results in idling ranks at every
midpoint in the timestep for processes with coupling load, see Figure 3.7b.
Providing coupling data at every midpoint in a timestep could circumvent
this conflict but it needs to be supported by the coupling tool and the
solvers. Furthermore, we do not consider re-partitioning of elements for
each sub-stage since the cost of re-partitioning would be larger than the
benefit of avoiding idling ranks. Typically, the number of coupling elements
is considerably lower than the number of elements without additional cou-
pling work. Therefore, we consider compute and coupling load together
and accept a few idling processes in synchronization at the midpoint of
the timestep.

In general, the coupling loads introduce load imbalances within a subdo-
main due to additional work for some elements of the partitions. Therefore,
imbalances should be minimized by, for instance, additional mechanisms
like re-partitioning. Re-partitioning, however, impacts single-stage time
integration methods and multi-stage time integration methods differently.
Additionally, all synchronization points between the computation step
and the coupling step should be avoided to enable the joint balancing of
compute and coupling workload. A good load balancing in the subdomains
will avoid idling processes and reduce the overall computation time.

51

3. Partitioned coupling

3.3. Discontinuous Galerkin in the context of coupling

In this work, we are using a high-order Discontinuous Galerkin (DG)
method to solve the flow field as well as the acoustic far field. For the
acoustic far field in particular, which is computationally expensive due to
its spatial dimension, we are aiming for a high order in space. Using a
higher order allows for the mesh to be significantly coarser which reduces
the degrees of freedom, while still maintaining a reasonably small error.
The grid size h and the numerical order in space p can be chosen in such a
way that the timestep t limited by the CFL condition t ∼ h/p2, becomes
sufficiently large. When coupling different physical regimes, e.g. an acoustic
domain with a flow domain, we ensure the timestep t in both domains to
be equal to ease the data mapping in time (see Section 3.1.3). Using the
CLF condition Equation (2.43) it follows

ta = CFLa αa
ha

p2
a

tf = CFLf αf
hf

p2
f

where the subscript a defines acoustic parameters and f flow parameters. α
denotes an upper bound on the global wave propagation speed. Assuming
the parameters CFLa and CFLf as well as αa and αf to be fixed and
forcing ta = tf lead to

ha

p2
a

= CFLf

CFLa

αf

αa

hf

p2
f

.

With this equation, grid sizes and orders can be chosen accordingly.

Additionally, the high-order DG scheme provides low dispersion and
low dissipation error, which is in particular suited for linear acoustic wave
propagation over long distances. Since the general method is already
described in Section 2.2.1, we focus on the implication and benefits in the
coupling context in the following. Two major challenges are addressed: the
choice of the coupling points at the coupling interface and the evaluation
method of the DG scheme at arbitrary points in space.

52

3.3. Discontinuous Galerkin in the context of coupling

3.3.1. Coupling points
As presented in Section 3.1.4, the interaction between two domains is
realized via boundary conditions. There, coupling data needs to be ex-
changed at the coupling interface. This is done at specific coupling points.
Figure 5.15 (of Section 3.1.4) shows several examples of individual coupling
points at coupling interfaces. Here, we discuss which coupling points can
be chosen in the DG method, in particular when using a high order.

Our solver Ateles implements the modal DG scheme (see Section 2.2.1):
A nodal representation is provided via a transformation based on numeri-
cal integration at fixed integration points. Ateles implements the Gauss-
Legendre integration [62] or Gauss-Chebyshev [63] integration. More details
on the modal implementation and the modal-to-nodal transformations can
be found in Section 4.2 and in [64]. Here, we focus on Gauss-Legendre
integration points as example. These integration points are defined in
the interval [−1, 1] and are the zeros of the Legendre polynomial, i.e. the
point xi is the i-th zero of the Legendre polynomial. The number of Gauss
points n depends on the polynomial degree m and is n = m+ 1. Figure 3.8
presents the first six Legendre polynomials and illustrates their zeros xi.
These reference positions on the interval [−1, 1] are then transformed into
physical coordinates.

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 3.8.: Legendre polynomials for polynomial degree m = 0...5.

53

3. Partitioned coupling

These Gauss points are used as coupling points at the coupling interface,
which are the red and blue dots in Figure 5.15. A DG scheme of order p
result in a polynomial degree of m = p− 1. For a coupling element at the
coupling interface there are n = m+ 1 coupling points per direction. That
is, for a 2D coupling face of a 3D coupling element there are n points in
x-direction and n points in y-direction, resulting in n2 coupling points.

As seen in Figure 3.8, the Gauss points feature a non-equidistant dis-
tribution. Actually, they are more concentrated towards the interval
boundaries -1 and 1. Referring again to Figure 5.15, the one subdomain
(red) requires data at its Gauss points (red dots) while the other subdo-
main (blue) requires data at its own Gauss points (blue dots). When using
an external library, e.g. preCICE, each solver sends these points to the
coupling tool along with its mesh connectivity. An external interpolation
is subsequently done by the coupling tool based purely on geometric data.
The presented non-equidistant distribution of the coupling points is chal-
lenging for this interpolation method, in case of non-matching coupling
interfaces (Section 3.1.4 and Section 4.3.4). Using an integrated approach,
e.g. APESmate, the challenge of non-matching interfaces remains, but
solver-specific evaluation methods based on its numerical scheme in space
can be used. In the next section we address the interpolation method
based on the polynomial representation in the DG scheme.

3.3.2. Data mapping via polynomial evaluation

Data mapping in space between different coupling points at the coupling
interface is a key task of a coupling tool. The Discontinuous Galerkin
method is a numerical method that provides a continuous solution in space
within each element which can be exploited to provide data at arbitrary
points in space within this element. This is the most attractive property of
the DG method in the context of coupling and is presented in the following.

In the DG method, there is a polynomial representation of the solu-
tion within an element. The approximated solution of the state vector
U(x, y, z, t) within an element can be formulated by using a polynomial
function of degree m as

U(x, y, z, t) =
(m+1)3∑
ijk=1

ûijk(t)Li(x) · Lj(y) · Lk(z) (3.2)

54

3.3. Discontinuous Galerkin in the context of coupling

where ûijk are the modal coefficients and the corresponding iterator is
ijk = i + j · (m + 1) + k · (m + 1)2, ∀i, j, k ∈ {0, . . .m}. Li, Lj , Lk are
the chosen Legendre functions in the dimension i, j, k. The Legendre
polynomials have a recursive definition and the i-th polynomial is defined
by

Li(x) := (2i− 1)xLi−1 − (i− 1)Li−2

i
,

L1(x) := x ,

L0(x) := 1 .

The polynomial order is p = m + 1. With this recursive definition and
Equation (3.2) the solution at an arbitrary point (x, y, z) in space up to
the order of the chosen polynomial can be computed. The polynomial eval-
uation in Equation (3.2) is a evaluation of a three-dimensional polynomial.
In case of coupling, coupling data for an arbitrary number of coupling
points are requested. This number depends on the numerical scheme of the
other coupling subdomain (see previous section Section 3.3.1). For each
coupling point we compute this three-dimensional evaluation to obtain the
coupling data. In general, the cost of the polynomial evaluation depends
on the polynomial order p, and the number of requested coupling points n.
For the three-dimensional evaluation the resulting cost is n · p3. Projecting
the polynomial from the volume to the coupling face is a promising opti-
mization step, that yields a two-dimensional polynomial. Subsequently,
a two-dimensional evaluation can be done for all points on this coupling
face. This optimization step reduces the evaluation cost from n · p3 to
p3 + n · p2 per coupling face.

As highlighted in the next section, Section 3.4, in case of coupling to
a flow domain where the Navier-Stokes equations are solved, the state
variables as well as their gradients have to be provided at the coupling
points. This is additional work in the coupling context and the impact
of the gradient evaluation should be minimized. Therefore, an impor-
tant optimization step of the implementation of this gradient evaluation
is presented in Appendix A. Without this optimization step, coupling
to a Navier-Stokes domain would be highly computationally demanding
and would decrease the performance benefits of the partitioned coupling
approach.

Looking at interpolation methods based on geometric data, e.g. the
radial basis functions, a global interpolator is built first by using an

55

3. Partitioned coupling

equation system that needs to be solved; then the interpolator needs
to be evaluated. The cost of the polynomial evaluation depends on its
degree. If the polynomial degree is the same, the evaluation cost of a
DG polynomial, a RBF polynomial or a Legendre polynomial can be
considered be similar. Compared to nearest neighbor injection or nearest
projection, polynomial evaluation is clearly more expensive. Which quality
of the different interpolation methods is needed depends on the expected
coupling data, e.g. matching coupling points at the coupling interface only
need first-order mapping, whereas for highly non-matching points a higher-
order interpolation should be used. The benefit of direct evaluation gains
importance when using a higher order in a subdomain, e.g. in the acoustic
far field. Coupling a high-order solution using a low-order interpolation
method for the data mapping reduces the overall numerical order and can
lead to instabilities. However, there could be cases where a higher order is
coupled to a lower order, where the lower order is chosen due to stability
reasons or special characteristics of an application. In such cases, it can
be sufficient to map data in space with a reasonably lower order to reduce
the coupling cost. Limiting the polynomial order in the DG scheme for the
direct evaluation of the coupling data, depending on the coupling scenario,
could be a promising optimization step in the future.

3.4. Fluid dynamics in the context of coupling

Partitioned coupling opens up the possibility to solve different equations
in individual subdomains. For fluid dynamics, the governing equations
are presented in Section 2.1. These equations (Equation (2.11), Equa-
tion (2.12), Equation (2.15)) describe different physical phenomena of fluid
dynamics but are based on the same state vectors.This is beneficial for
coupling different equations where coupling variables need to be exchanged.
Hence, it is important to know which variables to exchange between sub-
domains and how to compute them.

In general, the variables of the state vector U have to be exchanged.
Here, the conservative state vector U = (ρ, ρvx, ρvy, ρvz, e) as well as
the primitive state vector Uprim = (ρ, vx, vy, vz, p) are available, where
Equation (2.13) defines the transformation. When coupling the same
equations, the same type of state vector should be used to avoid additional
computation: For our description of the equations this means that we
exchange the conservative state vector for Navier-Stokes equations and
the Euler equations, and the primitive state vector for Linearized Euler

56

3.4. Fluid dynamics in the context of coupling

equations. Even when coupling different equations, Navier-Stokes with
Euler, we exchange the conservative state vector since both equations are
formulated in conservative variables. Additionally, the gradient of the
state vector is required to solve the Navier-Stokes equations as indicated
in Equation (2.11). In case of coupling to a subdomain with Navier-Stokes
equations, the delivering subdomain has to provide the gradients of the
state vector U at the coupling interface for the Navier-Stokes subdomain.
In this work, the Linearized Euler equations is formulated in primitive
variables (Equation (2.15)). When coupling Euler equations with Lin-
earized Euler equations, the solver of the Euler subdomain has to convert
the conservative state variables to the primitives variables by using Equa-
tion (2.13) to provide them to the Linearized Euler subdomain and vice
versa.

One challenging question of coupling different equations is the location
of the coupling interface. In case a physical phenomenon requires diffusive
and viscous effects, computing the Navier-Stokes equations is necessary.
This is, for instance, the case when computing a shear layer or vorticies.
Considering turbulent flow, the viscosity influences the transition from
laminar to turbulent flow. Viscous effects are responsible for vorticies to
dissipate and trigger the energy cascade. Regarding the Navier-Stokes
equations (2.11), the stress tensor (including viscosity) only acts on the
gradient of the velocity. Hence, the gradient of the velocity can be used as
a measurement for the influence of viscosity in a flow. When using DG
to solve the Navier-Stokes equations, the viscous numerical flux u∗,σ∗ of
Equation (2.34) is computed and can, hence, be used as an indicator of
the local influence of viscosity. When viscous effects can be neglected it
is legitimate to switch from Navier-Stokes to Euler equations. A switch
between Euler and Linearized Euler equations is only valid when lineariza-
tion of the flow is allowed. Linearization assumes that flow quantities can
be split into background flow and perturbation, and that the perturbation
quantities are much smaller than the background flow. This is the case,
for example, when no vortices occur in the flow. Hence, the vorticity
can be used as a measure of non-linearity of a flow. Furthermore, the
perturbation magnitude can be an indicator. Schwartzkopff describes the
coupling between Euler and Linearized Euler equations in a conservative
way, that is, the flux functions at the coupling interface are constant
[36]. In such a case the propagation speed at the interface changes from
non-linear u +

√
γp/ρ to linear u0 +

√
γp0/ρ0, where the subscript “0”

denotes the constant background quantities. The change in propagation

57

3. Partitioned coupling

speed can be interpreted as two materials with different propagation speed
where the coupling interface is the material-border. Schwartzkopff uses the
fundamentals of optics, like the angles of incidence and refraction, to show
that this can lead to reflections. Hence, to avoid reflection the variance
of local speed of sound can be taken as indicator for the switch between
equations.

For the studies in this thesis, we choose the location of coupling interfaces
according to these considerations. The main focus is the development of
partitioned coupling approaches. Solving the computationally demanding
physics, like Navier-Stokes equations, only in the narrowed space where it
is actually required will improve the speed-up of the partitioned coupling
approach for a dedicated testcase.

58

4. Numerical framework

In this chapter, we present the numerical framework that is further de-
veloped with this work. The end-to-end parallel simulation framework
APES (Section 4.1) with the high-order Discontinuous Galerkin solver
Ateles (Section 4.2) forms the basis. Detailed descriptions of APES can
be found in [5, 65]. For further explanations of the high-order solver
Ateles and implementation details the reader might refer to Zudrop [8].
In the context of this work, i.e. to solve aero-acoustic simulations, the
DG solver Ateles is extended to compute the Linearized Euler equations
(Section 2.1.3). To enable a multi-solver coupling approach, calls to the
API of the external coupling library preCICE are implemented into APES .
Details about preCICE and how the multi-solver approach handles coupling
are described in Section 4.3 and [39–41]. Subsequently, the integrated
coupling approach APESmate and its approach to the coupling tasks
are presented in Section 4.4. The development and implementation of
APESmate are joint work together with Kannan Masilamani and the first
results are published in [66]. Additionally, an important optimization step
within the implementation of Ateles for the evaluation of coupling data is
discussed in Appendix A. In the context of high performance computing,
the performance on a massive parallel system (SuperMUC, LRZ, Munich)
for both coupling approaches are presented.

4.1. Simulation framework APES

APES is an end-to-end parallel simulation framework that is designed
to take advantage of massively parallel systems available in supercom-
puting today. As such, it provides scalable solvers as well as pre- and
post-processing tools. Figure 4.1 gives a schematic overview of the APES
framework. All computational components of APES are implemented
based on the common mesh library TreElM [67], which is developed and
distributed as open-source software1. The TreElM library relies on an
octree representation of computational meshes and provides a distributed
neighborhood search within them. A space-filling curve is used for the

1https://osdn.net/projects/apes/scm/hg/treelm/

59

4. Numerical framework

APES
Adaptable Poly-Engineering Simulator

with Lua
Configuration
Aotus

Deployment Scripts
Shepherd

AP
ES

m
at

e
C

ou
pl

in
g

of
 A

PE
S

so
lv

er
sGalerkin

Discontinuous
Ateles

Lattice Boltzmann
Musubi

Space-Time DG
Muriqui

Mesh Generation
Seeder

Analysis
Post-Processing
Harvester

Infrastructure
Octree Mesh
TreElM

Figure 4.1.: Schematic organization of the APES framework.

domain decomposition of the octree mesh, which maintains data local-
ity. Since stencil-based solvers require neighborhood information during
computation, the octree structure of the mesh and its locality of the data
help to reduce communication during computation which is essential for
parallel efficiency. Even the high-order Discontinuous Galerkin solver
Ateles only requires data from direct neighbors such that it can perfectly
exploit the locality property. An crucial feature of TreElM for this work
is the load balancing algorithm SPartA [55], which is further described
in Section 4.2.1. Ateles requires a computational meshes in the octree
format for operation. that is generated using the mesh generator Seeder
[68]. Seeder also provides geometries in a high-order representation of their
surfaces in the octree meshes, which is required for high-order solvers like
Ateles as low-order surface representations would diminish the accuracy of
their solution [69].

The post-processing tool Harvester reads binary output data from the
aforementioned solvers and converts them into a multitude of visualization
formats, in parallel. Hence, binary data is output during computation and
we can post-process the results in a subsequent step using a different number
of processes. Usually, visualization tools like ParaView or TotalView
working on cell or point data, and the visualization of polynomial data

60

4.2. High-order Discontinuous Galerkin solver Ateles

that Ateles is using is not intuitive. Therefore, Harvester is closely related
to the numerical solver as it includes special treatment of the polynomial
representation of Ateles, e.g. a higher refined visualization mesh represents
better the features of the polynomial solution. A convenient feature of
Harvester is the adaptive post-processing where the visualization mesh
is based on the actual solution of the polynomial and not just on the
Cartesian mesh. Hence, areas where the polynomials vary more are better
resolved and not unnecessary memory is consumed.

4.2. High-order Discontinuous Galerkin solver Ateles

The high-order solver Ateles2 uses a modal DG method in space (Sec-
tion 2.2.1), while classical explicit RK method are employed in time
(Section 2.2.2). Hence, simulations with Ateles are limited by the so-called
CFL condition described in Equation (2.43) and Equation (2.44). The
DG scheme is a numerical method to solve partial differential equations
and is applicable to a broad set of problems. It is based on a polyno-
mial representation within each element and a flux calculation between
elements. Hence, there is a strong linking of data within each element and
only a loose linking between elements via their surfaces. The choice of
the polynomial degree defines the spatial discretization order so that by
choosing a high degree a high-order method is constructed.

A high-order scheme has several advantages: First, it shows high conver-
gence rates in case of smooth solutions. Hence, a high-order approximation
provides high accuracy with a limited number of degrees of freedom (DoF).
Fewer DoF equate to smaller amounts of memory, which is essential since
memory is an expensive resource that can limit scalability. Secondly, a
high-order scheme yields low numerical dissipation and dispersion errors
[6], which is advantageous for approximating a wave propagation over long
distances in the acoustic far field. We choose the Legendre Polynomials as
basis functions of the DG scheme in Ateles. Exploiting such a modal basis
has numerical as well as computational reasons. Orthogonality and the
recursive definition of Legendre Polynomials lead to the fast evaluation
of mass and stiffness matrices while showing good conditions. Moreover,
the numerical flux of a linear problem can be directly evaluated in modal
space. The cubical elements provided by the mesh generator Seeder can be
computed without expensive transformations to a reference element. Then,
using a tensor product formulation in the DG scheme, a dimension-by-

2https://www.apes-suite.org/pages/ateles

61

4. Numerical framework

dimension algorithm can be deployed. However, some operations require a
nodal representation as they can not be computed in the modal space: a)
The non-linear flux computation for Euler and Navier-Stokes equations
in every timestep; b) applying boundary conditions; c) applying initial
conditions or source terms to the PDE. Therefore, different modal-to-nodal
transformations have been implemented: The fast polynomial transforma-
tion (FPT) by Alpert and Rokhlin [70], direct projection via numerical
quadrature (also called L2 projection), and a spherical harmonic transform
using fast multipole method as implemented in the FXTPACK library.
Details on each method and investigations for hybrid parallelization can
be found in [64].

Whether we consider linear or non-linear equations influences the work-
load per timestep due to this modal-to-nodal transformation. For linear
equations without the need for transformation, the work per timestep
is O(nElems · pd), where nElems is the total number of elements, d is
the number of dimensions, and p denotes the spatial order. In case of a
cubic domain, increasing p or refining the mesh size h (to increase nElems)
will result in the same additional costs. For non-linear equations, where
a transformation is required, the workload is impacted by the cost of
the transformation. Using direct numerical projection together with the
dimension-by-dimension algorithm reduces the number of iterations from
O(nElems · p2d) to O(nElems · d · pd−1 · p2) = O(nElems · pd+1) [64]. Using
the fast polynomial transformation, this complexity can also be recovered
for smaller polynomial degrees p, whereas for large degrees this projection
shows an asymptotic behavior of O(nElems · pd log p). This asymptotic
behavior is also promised for the fast multipole method for sufficiently
high orders. Hence, in our implementation, the high-order scheme implies
an increased computational cost for non-linear equations, but for linear
systems like the acoustic equations, a modal scheme keeps the computa-
tional effort per DoF constant over increased spatial orders and solves
them efficiently. When coupling a linear system like the Linearized Euler
equations, the modal-to-nodal transformation is required to obtain the
coupling points at the coupling interface (see Section 3.3.1). For non-linear
equations, e.g. Navier-Stokes and Euler equations, this transformation is
performed anyway.

In our implementation of modal DG, the spatial order of the scheme and,
thus, the polynomial degree p can be chosen arbitrarily [6]. The number of
degrees of freedom (DoF) per element is computed as DoF = (p+1)d ·nVars,
where nVars is the number of conservative variables in the equation system.

62

4.2. High-order Discontinuous Galerkin solver Ateles

The numerical resolution is dictated by the physical scale that should
be resolved. However, applying high-order methods to problems with
discontinuous solutions or shocks might lead to unphysical oscillations, the
so-called Gibbs phenomena [8]. In particular for non-linear terms, these
arbitrary oscillations can grow to the point where they impair the point-
wise solution and convergence. Thus, for some problems it is reasonable
to choose a lower order and a more refined mesh. Secondly, the spatial
order depends on the parallelization and the system to run on.

While the volumetric data within each element is tightly linked and
many operations require different access patterns to the data and the inter-
action between elements happens purely on the faces. Thus, only planar
data on the faces need to be exchanged between elements. With this, the
scheme offers a natural separation into two levels of parallelism, which
we exploit by using OpenMP parallelism for operations within elements
and MPI communication between elements. In general, Ateles can scale
down to a single element per MPI-rank. However, computing only one
element per CPU reduces the options for distributing the elements and,
therefore, limits the potential of optimal load balancing. Furthermore, the
DG method exhibits a strong data coupling within an element due to the
polynomial representation. To get the most out of this data locality, the
size of an element and the order of the polynomial p should be chosen
so that the data fits into the cache of the system. Since the cache is far
smaller than shared memory, several elements should be computed per
MPI-rank for optimal usage of the resources.

To overcome stability issues, different modal filters can be applied. This
is another advantage of the modal scheme since oversampling, which is used
for de-aliasing and co-volume stabilization, is easy to apply. More details
on stabilization approaches can be found in Zudrop [8]. The polynomial
representation of the DG method also has an advantage in the coupling
context. For the data exchange at the coupling interface, the polynomial
representation can be evaluated at any point on the surface up to a chosen
order of the method. In a multi-solver approach, where solvers are treated
as black-box, the quadrature points of the polynomial on the coupling
surface are utilized as coupling points, as explained in Section 3.3.1.

The DG method can be used to solve a large set of partial differential
equations. In Ateles the following set of equations were available prior to
this work: Flow (compressible Navier-Stokes and inviscid Euler equations),
electrodynamics (Maxwell equations), as well as Heat equation. For the

63

4. Numerical framework

purposes of this work, Ateles was extended to solve the Linearized Euler
equations.

4.2.1. Load balancing in Ateles

Detailed information about the load balancing algorithm SPartA can be
found in [55]. We will summarize the main points for the reader: An
arbitrary mesh with nElems elements shall be distributed equally among
P processes. In other words, the number of elements per process shall
be balanced. The workload of element might be differ due to different
task of an element, for example an element that is involved in boundary
condition. Therefore, each element is assigned a weight Wi, where i is
the global index of the element, which corresponds to the actual workload
during simulation. SPartA uses these weights to re-distribute the elements
such that the workload per process is balanced instead of the number of
elements per process. The ideal workload per process, Wopt, is

Wopt = Wsum

P
(4.1)

where Wsum =
∑N

i=1 Wi denotes the total workload. Each process has
a unique rank identifier r, 0 ≤ r < P . To identify which elements has
to be moved to which processes, the prefix dependency on the element is
introduced

prefix(I) =
I−1∑
i=0

Wi (4.2)

where 0 < I ≤ nElems and prefix(0) = 0, by definition. After re-
partitioning, each process should have the elements with the prefix(r)
with the range [r ·Wopt, (r + 1) ·Wopt]. By comparing prefix(I) with the
target range, each process can determine to which process each of its ele-
ments has to be moved. An important aspect is, that this re-partitioning
procedure follows the space-filling curve (SFC), which is used in Ateles,
for the domain decomposition of the octree mesh to maintain data locality.
To identify the new partitions SPartA uses so-called splitters, to mark
the ideal splitting positions along the SFC to match prefix(I) with afore-
mentioned target ranks. The ideal splitter are multiple of Wopt. This
algorithm is implemented in the octree mesh library TreElM . Examples of
this procedure are presented in [55].

In order for this approach to work, solvers have to provide weights per

64

4.2. High-order Discontinuous Galerkin solver Ateles

element to SPartA. The weights calculation for the LBM solver Musubi
is discussed in [71]. Here, we present the timings-based calculation of
weights for Ateles. Please note, that initialization routines are explicitly
not included in the weights. By default, Ateles distributes elements
equally among processes. To appropriately re-partition these elements,
the workload per element has to be determined and weights have to be
computed per element. To determine the workload per element, the
compute kernel for all elements on a process is clocked. Hence, the weight
for the computation is Wcomp = Tcomp

Np
, where Tcomp is the timing for the

compute kernel and Np the number of elements per process. As discussed
earlier, partitioned coupling introduces additional work for the elements
which are involved in coupling. In order to express this workload per
element, coupling point evaluation weights Weval are introduced, which
are measured directly per element. For both implemented approaches,
APESmate and preCICE, evaluating coupling data is the same routine
except for the number of coupling points. So, we measure the polynomial
evaluation for state and gradient evaluation to obtain coupling point
evaluation weights. For the multi-solver approach with preCICE, there are
additional library calls like read_from_precice, write_to_precice and
advance_precice (see Section 4.3.2) that cannot be resolved per element,
since it is a single library call per process. Nonetheless, the element weights
in Ateles can be calculated as

Wi =
{

Wcomp +Weval, if element is a coupling element
Wcomp, otherwise

As described in Section 3.2.2, computational and coupling workload should
be considered together for a balanced simulation. The user has to provide
weights to SPartA via a so-called weight file. When configured accordingly,
solvers output their weights after simulation so that this file can be used
as starting distribution for the next simulation.

SPartA preforms a reasonable LB when considering elements with similar
workloads but it is limited with Wcomp

Wopt
, where Wopt depends on the num-

ber of processes. In case of a coupled simulation, the weights of coupling
elements can be significantly higher though. Figure 4.2 described different
scenarios of re-partitioning when high-weight elements occur: The black
lines is the vector of elements along the SFC and S defines the splitter
positions based on Wopt for the partitioning. Each box is an element
where the size along the line defines the weight of this element. Gray
boxes are elements with an outstanding load. In scenario a), all elements

65

4. Numerical framework

space filling curveS S S

S S S S

S S S S

S S S S

a)

b)

c)

d)

Figure 4.2.: Schematic of splitting with SPartA.

have the same load and SPartA can easily partition the SFC at the shown
splitter positions. b) Assuming one gray element with Wi < Wopt, this
element still fits between two splitters and even two more elements can
be located onto that partition. In case of c), the gray element has a load
which is slightly higher than the optimal weight Wopt for this number of
partitions. It is not optimal, but SPartA can locate only this element
on a partition. This “overshoot” can be compensated with the cheaper
elements of the next partition. An even worse case is, when several gray
elements are located back to back in the SFC vector: This, however,
should be avoided with the chosen Z-curve in TreElM [5]. The last sce-
nario d) illustrates the case that the gray element is twice as expensive
as the optimal weight, Wi > 2Wopt. This results in one element spread-
ing over two splitter locations which hamper the re-partitioning of the SFC.

Besides load balancing within a subdomain with SPartA, we uses these
weights for load balancing between subdomains, i.e. to chose the number
of processes per subdomain based on actual work. Based on the sum of
the weights, we approximate the different workload between the subdo-
mains. The entire procedure is described for a large-scale simulation in
Section 5.2.4.

4.3. Multi-solver approach: preCICE

For the multi-solver approach, we focus on using the solvers as black-boxes
which means that a solver’s input and output values are only accessible
via their provided interfaces. Therefore, the tasks of the coupling library,

66

4.3. Multi-solver approach: preCICE

i.e. steering individual solvers, communication of data, and accurate data
mapping between non-matching interfaces, are more challenging. We first
give an overview of the coupling library preCICE [39], which is followed by
a description of the treatment of the aforementioned coupling tasks. Then,
a summary of available interpolation methods is presented. For more
details on interpolation, the reader is referred to [72] and [42]. Afterwards,
a brief investigation of interpolation methods in the high-order solver
Ateles is done, where Section 5.1 adds mode details. Finally, a performance
investigation is presented.

4.3.1. Overview
The open-source coupling library preCICE3 offers approaches for the cou-
pling tasks presented in Section 3.1, while allowing for a minimally invasive
integration into existing solvers [39]. Additionally, for implicit coupling,
which is not part of this work but is a key feature of preCICE, efficient
solvers for fixed-point equations derived from coupling conditions are avail-
able. The major tasks of the coupling device need to work efficiently
and should be scalable for distributed computations. In [42] and [43],
developments and achievements of preCICE working on distributed data
are presented. [40] and [41] give an even more detailed description of
preCICE. Flexibility is the key benefit of using a coupling tool like pre-
CICE. The application programming interface (API) is concise and enables
easy coupling of individual solvers. Additionally, it implements several
sophisticated coupling methods, which are required to improve numerical
stability and accuracy at the coupling interface. The advantages are only
clouded by the decrease in parallel performance due to the generality of a
black-box approach.

4.3.2. Steering of individual solvers
The steering of individual solvers by preCICE is done via an API through
which the solver and coupling library interact. The main steering proce-
dures that need to be called from within a solver are listed in Code 4.1.

3www.precice.org

67

4. Numerical framework

Code 4.1: Main steering procedures of the preCICE API.
def : i n i t i a l i z e _ p r e c i c e ()
def : i n i t i a l i z e D a t a _ p r e c i c e ()
def : advance_precice (computedTimestepLength)
def : f i n a l i z e _ p r e c i c e ()

The initialize procedure sets up data structures and master communication
channels. Afterwards, the coupling meshes are communicated and, if
required, the re-partitioning of the meshes and initialization of point-
to-point communication is performed. Moreover, initialize returns the
maximum timestep length for the solver to reach the next synchronization
timestep. Subsequently, initializeData can be used to communicate initial
conditions from one subdomain to another. This is important for solvers
with explicit time integration since each subdomain should start with
valid conditions at the coupling boundaries. If this routine is not used,
default “zero” boundary conditions are assumed. advance is called after the
computation of every timestep. Here, preCICE applies mappings schemes,
communicates the coupling data, and computes fixed-point acceleration
techniques for iterative coupling methods. Additionally, the time steering
is performed by taking the last timestep as the input argument. preCICE
checks for reaching the synchronization timestep or indicates sub-cycling of
one solver. The return value indicates, again, the next maximum timestep
size or the remaining timestep in the case of sub-cycling. Finally, finalize
tears down data structures and closes communication channels.

Other coupling routines, which are essential but do not belong to clas-
sical steering, are reading from and writing to preCICE. Both routines
interact with the local preCICE slaves to read and write values at the local
coupling points, respectively. This does not imply communication, which
is only done in the advance procedure. A further auxiliary procedure is
isCouplingOngoing which allows to trigger the end of the simulation by
the coupling library and to return a logical flag which is read by the solver.
Code 4.2 sketches the pseudo code of Ateles augmented with calls to the
preCICE API.

68

4.3. Multi-solver approach: preCICE

Code 4.2: Pseudo code of the solver Ateles extended to call the preCICE
API.
i n i t i a l i z e _ a t e l e s ()
dt_cf l = get_cfl_timestep ()
dt_precice = i n i t a l i z e _ p r e c i c e ()

i f (p r e c i c e_ac t i on i s r equ i r ed) :
write_to_precice (i n i t i a l condi t ion)
i n i t i a l i z e D a t a _ p r e c i c e ()

dt = min(dt_cfl , dt_precice)
t=0
while t < t_max :

read_from_precice ()
data = solve_timestep ()
write_to_precice (data)
advance_precice (dt)
determine_end_by_ateles
determine_end_by_precice
t = t + dt

f i n a l i z e _ p r e c i c e ()
f i n a l i z e _ a t e l e s ()

To enable iterative coupling with fix-point iterations in preCICE the
API needs further control procedures. Please refer to [41], as this is not
implemented in this work.

For coupling with preCICE, the different executables for the solvers
involved in the coupling must be linked with preCICE and all executables
must be simultaneously started. Starting such a job on supercomputers
is more involved: When starting several executables, MPI-ranks have
to be correctly bound to the corresponding executable to avoid running
multiple ranks on the same CPU. Furthermore, concepts and scripts
to check if one simulation might have crashed need to be established
to maintain a consistent state and to finalize properly. Hence, porting
software, establishing the correct binding of MPI-ranks, and compiling job
scripts on a supercomputer is more challenging compared to running a
single application.

69

4. Numerical framework

4.3.3. Communication of coupling data
As already mentioned, efficient point-to-point communication is a pre-
requisite for large-scale simulations. Here, we consider the initialization
phase and general communication in each synchronization step from the
perspective of the external coupling library preCICE and focus on basic
concepts and outcomes. More details and performance tests can be found
in [42].

The major challenge is to establish the communication relations be-
tween the processes of the subdomains. Assuming the black-box approach,
preCICE only works on geometric data as input/output data from each
subdomain. For the initialization of the communication, preCICE exploits
a Master-Slave communication concept: All coupling interfaces of individ-
ual subdomains are exchanged via their master processes. Subsequently,
the coupling interface is re-partitioned to the corresponding ranks accord-
ing to data mapping, i.e. each slave receives its portion of the interface to
be able to do the data mapping.

The algorithmic steps for one-way coupling with two subdomains A and
B with the corresponding coupling interfaces ΓA and ΓB (as noted in [42])
are:

I. The master rank of B gathers coupling interface ΓB from all ranks
of B.

II. ΓB is communicated from the master rank of B to the master rank
of A.

III. The master rank of A broadcasts ΓB to all ranks of A.

IV. Each rank of A filters ΓB according to its partition of ΓA and a
defined mapping between both meshes.

V. Master rank of A gathers distribution information from all ranks of
A.

Hence, after broadcast II and gathering distribution information V, the
master rank of A holds two partitioning descriptions of the coupling in-
terface ΓB , i.e. all coupling surface mesh points and the corresponding
processes in subdomain A. But with step IV every rank of A knows which
coupling points it has to communicate with whom. For all further communi-
cations, an M:N communication (built from multiple 1:N communications)
between the ranks of A and B is established. These 1:N communications

70

4.3. Multi-solver approach: preCICE

are implemented either with TCP/IP (based on Boost.Asio4) or with
MPI-2.0 (or later) ports, which can be chosen at run-time. For two-way
coupling this algorithm is also executed to communicate distribution in-
formation from subdomain A to the ranks of subdomain B. While the
initialization still relies on global operations, all necessary information is
completely local afterwards and the communication in every advance step
is a purely point-to-point between the processes. One major drawback
of the Master-Slave concept is high memory consumption due to the ex-
change of entire coupling interfaces with distribution information. Even
with the minimal storage requirements of surface coupling, this contradicts
exascale computing. Hence, this poses a major bottleneck that needs to
be addressed in future versions.

4.3.4. Data mapping in time
preCICE provides several fix-point iteration schemes for iterative coupling
(sometimes referred to as implicit coupling). This means performing an
iterative process of solver evaluations in every timestep until convergence
of coupling values at the interface is achieved: This might allow for time-
consistent coupling. However, when iterative coupling is not used, preCICE
does not provide higher-order time representations. Therefore, in this work,
we do not allow for sub-cycling of any participant which means that we
have to force all subdomains to use the smallest timestep. In most cases,
the synchronization timestep in the preCICE configuration is chosen so
that it provides the smallest timestep.

4.3.5. Data mapping in space: (Interpolation) methods
As mentioned, preCICE is acting purely on geometric data. When coupling
non-matching interfaces as depicted in Figure 5.15, mapping between cou-
pling points becomes necessary. preCICE provides two standard mapping
methods: Projection-based mapping and radial basis function interpolation.
The two solvers for subdomains A and B provide the interpolation values
UA ∈ RNA on the coupling interface ΓA and UB ∈ RNB on the coupling
interface ΓB , respectively. A general interpolation from ΓB to ΓA can be
written as

UA = HABUB ,

with the mapping matrix HAB ∈ RNA×NB . There are two different kinds of
mappings: Consistent and conservative [73], where only the first mapping

4www.boost.org

71

4. Numerical framework

is considered in this work. A consistent mapping denotes that the entries
of every row sum up to 1, which guarantees an exact mapping of constant
functions. Conservative mapping, in contrast, defines the column-sum to
be equal to 1. In the following we briefly summarize the interpolation
methods available in preCICE. More information can be found in [42, 72].

4.3.5.1. Projection-based mapping

There are two different projection-based mapping methods available in
preCICE: Nearest neighbor (NN) and nearest projection (NP). While the
first mapping is first-order, the latter one is second-order if the projection
distance from one mesh to the other is much smaller than the mesh width.
In practice, this typically holds [41].

For the NP mapping, the solver needs to provide mesh connectivity
information on the coupling interface. This is not the case for the NN
mapping. Figure 4.3 depicts a schematic view of both projection-based

B

A

B

A

nearest neighbour mapping nearest projection mapping

Figure 4.3.: Schematic view of the two projection-based mapping methods
provided in preCICE in a two-dimensional case: Nearest neighbor mapping
and nearest projection mapping. Arrows denote data transfer between
points of B and A.

mapping methods: The coupling interfaces ΓA and ΓB with multiple
coupling points are depicted in blue and red, respectively. The NN mapping
is a first-order mapping where the closest neighbor point among all ΓB

points is found and the respective value is copied to the ΓA point. Thus, the
NN mapping is purely injective. NP in contrast, does a linear interpolation
on the ΓB points based on the provided connectivity information from B
before sending this value to the corresponding ΓA point (blue). NN is useful
for coupling matching interfaces, where the coupling points coincidence and
a higher-order interpolation could introduce numerical errors and would be
unnecessarily expensive. For non-matching interfaces where connectivity

72

4.3. Multi-solver approach: preCICE

information on the coupling interface is provided, NP mapping on the
other hand can be suitable since no further tuning parameters are required.

4.3.5.2. Radial Basis Function interpolation

A more general mapping method, without the need for any mesh connectiv-
ity information, is the second-order accurate Radial Basis Function (RBF)
interpolation method. Here, the influence of all coupling points depends
on their distance from the interpolated point. To map values from ΓB to
ΓA, a global interpolant on a point on ΓB is generated and then evaluated
at the coupling points on ΓA.
The interpolant a : R3 → R, reads

a(x) =
NB∑
i=1

γi · ϕ(‖x− xi‖) + g(x) ,

with the radial basis functions ϕ centered at the (coupling) point xi of ΓB .
There are several types of radial basis functions implemented in preCICE,
e.g.

Gaussian ϕ = exp
(
− (s‖x‖)2) ,

Thin Plate Splines ϕ = ‖x‖2 log (‖x‖) ,

Multiquadrics ϕ =
√
s2 + ‖x‖2,

where s is the so-called shape parameter and ‖x‖ is the Euclidean distance
of the evaluation point from the origin of the basis function. These
types have global support, but also basis functions with local support
are available. Decreasing the support radius should improve the solver’s
convergence, but decrease the approximation quality. To ensure the exact
interpolation of constant and linear functions this basis is enriched with
a global linear function g(x) = β0 + β1x1 + β2x2 + β3x3 (3D case). The
interpolant a(x) and the linear global function g(x) imply the interpolation
condition

a(xi) = ωB
i ∀i = 1 . . . NB

for the functions coefficients γi ∈ R and βi ∈ R where ωB
i denotes the

respective value at point xi on ΓB ; as well as the polynomial condition

NB∑
i=1

γi · q(xi) = 0

73

4. Numerical framework

for every polynomial q. In combination the following matrix notation can
be derived  0 QT

Q P


 β

γ

 =

 0

ω

 , (4.3)

where P ∈ RNB×NB , Pi,j = ϕ (‖xi − xj‖2) and where the ith row of
Q ∈ RNB×4 looks like (1xi,1 xi,2 xi,3) [42].

After solving this system, the interpolant can be evaluated at the point
yj on ΓA by

ωA
j = a(yj) =

NB∑
i=1

γiϕ(‖yj − xi‖2) + g(yj) ∀j = 1 . . . NA . (4.4)

Solving the system (4.3) on distributed data, preCICE uses PETSc5, a
toolkit for parallel solution of scientific applications that provides solvers
for linear systems.

In this work, we will only consider Gaussian basis function interpolation
in PETSc [74]. The basis function can heavily influence the condition of
the mapping matrix (4.3). Therefore, the function as well as the shape
should fit to the distribution of points on the coupling interfaces. The
condition number of the mapping matrix increases exponentially with a [75,
76]. Solving the system, the condition of the matrix plays an important
role in linear system solvers like GMRES, ILU, or Jacobi. The condition of
the system matrix needs to be sufficient, so that the system can be solved
in an acceptable amount of iteration steps. The full behavior of the linear
solver of PETSc and the shape parameter of the Gaussian RBFs for the
coupling of non-matching interfaces is still under investigation. A more
detailed study [77] points out that a non-equidistant point distribution
leads to instability and poor convergence properties of the system. As
presented in Section 3.1.4, the DG scheme provides non-equidistant points
at the interface. Hence, the radial basis functions are a sub-par choice for
coupling non-matching interfaces as shown in next Section 4.3.5.3. One
circumvention would be to provide equidistant points for the interpolation
from the solver to preCICE and use a solver-internal interpolation from
non-equidistant to equidistant points. This might stabilize the RBF system
but would lead to a higher computational effort on the solver side [78].

5https://www.mcs.anl.gov/petsc/

74

4.3. Multi-solver approach: preCICE

In this work the following equation for choosing the shape parameter for
Gaussian basis functions is applied:

s =
√

− ln 10−9

np · ∆x , (4.5)

where np is the number of points included in the interpolation at one
specific coupling point and ∆x is the distance of the coupling points.
Due to the non-equidistant points at the interface, we use the maximum
distance of coupling points to calculate the corresponding shape parameter
s as suggested in [79].

4.3.5.3. Comparison of the interpolation methods

coupling
interface

left
domain

right
domain

velocity

(a) Sketch of simple showcase with Gaus-
sian density distribution travels from left
to the right with constant speed.

(b) Monolithic solution of Gaussian pulse
in density (xy-plane) at time t = 0.008
s; red line depicts location of coupling
interface.

Figure 4.4.: Testcase of traveling Gaussian pulse in density.

Here, we illustrate briefly the difference between first-order NN, second-
order NP, and second-order RBF interpolation utilizing Gaussian basis
functions: Our testcase is a 4 × 4 plane that is split orthogonally to the
x-axis into two equally sized halves. The subdomain on the left is ini-
tialized with a Gaussian distribution for density and the flow is set to
travel with a constant velocity from the left to the right subdomain. We
use the Euler equations in 2D with the material parameters: Thermal
conductivity λ = 1.5625e−2, isentropic coefficient γ = 1.4, and specific
gas constant R = 280.0. The initial conditions of the flow are ρ = 1.225,
v =

[
250.00.0

]T , and p =100 000. Initially, the Gaussian distribution in

75

4. Numerical framework

density is located in the middle of the left domain and the amplitude
of the pulse is set to 2.0 and a halfwidth of 0.2. The setup is depicted
in Figure 4.4a. In the following investigation we use the same equations
in both subdomains to exclude the influence from two different physics.
Additionally, we use a bidirectional coupling to allow interactions in both
directions to be as close as possible to the monolithic approach. For a
correct interpretation of the coupling results, we compare against the
monolithic solution with the same numerical discretization. Figure 4.4b
presents the monolithic solution for the depicted scenario of the Gaussian
density pulse at t = 0.008 s. It is an xy-plane where the red line illustrates
the location of the coupling interface for the following coupled simulations.
The amplitude of the density as well as the shape of the Gauss pulse are
well preserved.

In total, four different interface configurations with three different com-
binations of matching and non-matching interfaces are tested, where h
specifies the grid size and O the numerical order in space:

(o) Matching interfaces
left/right domain: 4096 points (h = 0.5, 64 elements at interface,
O(8))

(i) Non-matching interfaces: Same number of coupling points at the
coupling interface
left domain: 4096 points (h = 0.5, 64 elements at interface, O(8))
right domain: 4096 points(h = 0.25, 256 elements at interface, O(4))

(ii) Non-matching interfaces: Different number of coupling points where
the left interface is better resolved than the right interface
left domain: 6400 points (h = 0.5, 64 elements at interface, O(10))
right domain: 1024 points (h = 0.5, 64 elements at interface, O(4))

(iii) Non-matching interfaces: Different number of coupling points where
the right interface is better resolved than the left interface
left domain: 1024 points (h = 0.5, 64 elements at interface, O(4))
right domain: 6400 points (h = 0.5, 64 elements at interface, O(10))

First (o) we maintain the same numerical resolution (same grid size h as
well as same numerical order in space O) to ensure coinciding coupling

76

4.3. Multi-solver approach: preCICE

points at the interface. To illustrate the influence of the different mapping
methods, the investigation is done with non-matching interfaces according
to configurations (i)-(iii). (ii) and (iii) are different since in this dedicated
testcase the information is only traveling by convection in one direction, i.e.
from the left domain to the right domain. Therefore, a different distribution
of the coupling points on the coupling interface can influence the quality of
the mapping method. Since it is guaranteed that all discretizations resolve
the physical testcase correctly the errors stem from the chosen mapping
method. All configurations are done with nearest neighbor (NN), nearest
projection (NP), and Radial Basis Functions (RBF) interpolation utilizing
Gaussian functions. Results (o)-(iii) with NN mapping are presented in

Figure 4.5.: NN mapping results (xy-plane) for configuration (o) top left,
(i) top right, (ii) bottom left and (iii) bottom right showing the density;
red lines denote the coupling interface.

Figure 4.5. As described in Section 4.3.5.1, NN mapping only copies data
from the closest point on the mapping interface without interpolation.
Therefore, the following results can be interpreted regarding the spatial
location of the coupling points. Coupling matching interfaces (o), the NN
mapping is similar to the monolithic simulation and does not show any

77

4. Numerical framework

further numerical error. However, coupling non-matching interface, you
can see that the different configurations (i) - (iii) lead to different results
with a distorted pulse after passing the coupling interface. Maintaining
the same number of points (i) leads to an elongated, drawn-out pulse in
x-direction which indicates that around the origin of the pulse there are
too few points on the right interface originating from the lower order. As
stated in Section 3.3, in the DG method the number of coupling points at
the interface is order-dependent and the points concentrate towards the
element corners. Here, on the left O(8)-interface the points are closer to the
center of the Gaussian pulse than in the right O(4)-interface, which leads
to the pulse getting spread. Looking at (ii), the distortion of the pulse is
slightly different: The density pulse is not heavily distorted in x-direction,
instead the circular shape of the pulse is not preserved. Moreover, it looks
like a split pulse center in the y-direction. In this configuration, the left
interface has more points than the right interface. Here, a few points on
the right interface can choose nearest neighbors among many points on
the left interface. There is, however, still some kind of compression on
the pulse in the y-direction. The last setup (iii), turns out to be the the
worst configuration of coupling points for the depicted showcase: Since
the right domain has 6 times more points on the interface than the left
domain, the information from the left domain is duplicated onto the points
of the right domain. This explains for example the multiple splitting of the
center of the pulse and the overall distribution after passing the coupling
interface. This investigation shows the immense influence of the location
of the coupling points on the coupling interfaces. Hence, it can be stated
that first-order NN mapping is only sufficient for matching interfaces with
coinciding coupling points.

Next, we investigate the NP mapping for all configurations and show
the results in Figure 4.6. For all configurations, the amplitude as well
as shape of the density pulse after the coupling interface at t = 0.008s
are well preserved. Just for configuration (iii), it looks like the shape is
minimally elongated in x-direction. A deeper validation with NP mapping
is done in Section 5.1. For the matching interfaces (o), the NP mapping is
equal to NN mapping but with added computational effort.

Since we are using Gaussian basis functions, we have to determine suit-
able shape parameters s. This parameter needs to suite the corresponding
interface from which the values are mapped onto the other interface. The
shape parameter s is chosen in a way that a) as many mapping points
as possible are used to improve the quality of the solution, and b) still

78

4.3. Multi-solver approach: preCICE

Figure 4.6.: NP mapping results (xy-plane) for configuration (o) up left,
(i) up right, (ii) down left and (iii) down right showing density (a) and
error(b); red line denotes the coupling interface.

achieve good condition of the system matrix (4.3) to solve the system
in an acceptable number of linear solver iterations. The chosen shape
parameters according to Equation (4.5) are listed in Table 4.1.

The number of points included in the interpolation np of Equation (4.5)
is chosen to be as large as possible to still achieve reasonable convergence of
the linear solvers of PETSc. The unsatisfying results for RBF interpolation
are shown in Figure 4.7: Only the matching configuration (o) preserves
the shape as well as the amplitude of the density pulse. All non-matching
configurations show very distorted pulses. The worst configuration is (iii),
where the shape of the pulse is not preserved at all. This scenario shows
the influence of the interpolation at non-matching interfaces. In contrast
to the NN mapping, where the influence of the mapping only depends on
the position of the coupling points on the interface, the RBF interpolation
is more involving. The choice of the shape parameter highly influences
the quality of the interpolation results. Hence, a smaller shape parameter
could improve the results, but for the given point distributions no smaller

79

4. Numerical framework

shape
parameter s

coupling
points

grid
size h

order
O

np configurations

23.334 4096 0.5 8 2 (o) left / right
(i) left

23.791 4096 0.25 4 2 (i) right

7.930 6400 0.5 10 3 (ii) left
(iii) right

58.2 1024 0.5 4 1 (ii) right
(iii) left

Table 4.1.: Shape parameters for different configurations.

shape parameter yield to a convergence of the linear solvers provided by
PETSc.

Moreover, when using the modal DG scheme, we work with a non-
equidistant point distribution at the interface: This is challenging for the
interpolation and it is hard to pick the correct shape parameter, as most
investigations are done on uniform point distributions [74, 80]. One option
would be to utilize basis functions with global support since they don’t
require addition parameters, like the shape parameter. However, in these
configurations, running simulations on distributed data and, therefore,
using the linear solvers provided by PETSc, no converging, global basis
function was found. Another approach would be to provide equidistant
coupling points to the coupling library preCICE. This could increase the
quality of the RBF interpolation but also increases the coupling cost in
Ateles for providing these points. Results of the investigation of equidistant
coupling points with Ateles and preCICE with RBFs can be found in
[78]. Please note that the presented results are preliminary: More work
on radial basis functions and parallel coupling of non-matching coupling
interfaces is done at the Institute for Parallel and Distributed Systems at
the University of Stuttgart [72]. However, the intention of this section was
to show that coupling black-box solvers is not trivial. In particular, data
mapping in space, where the coupling library only works on point clouds
requires special treatment. In this investigation, we have only considered
the numerical results of the interpolation methods and did not address
their performance in a coupled approach.

80

4.3. Multi-solver approach: preCICE

Figure 4.7.: RBF interpolation utilizing Gaussian basis function results
(xy-plane) for configuration (o) top left, (i) top right, (ii) bottom left
and (iii) bottom right showing the density; red lines denote the coupling
interface.

Here, we briefly summarize these first conclusions for data mapping in
space using preCICE:

• For matching interfaces always use NN mapping.

• For non-matching interfaces never use NN mapping.

• If connectivity information is provided by the solver, NP is an easy-
applicable mapping with good results for non-matching interfaces.

• RBF interpolations show a promising theory, but from the user
perspective it is hard to find a good basis function with suitable
shape parameter s which provides a good converge of the linear
system solver. These parameters are also highly dependent on the
points distribution at the coupling interface.

• RBF will lead to higher computational cost due to additional com-
putation in solving a linear system.

81

4. Numerical framework

A thorough investigation on the data mapping in space with preCICE
is performed in Section 5.1 where the multi-solver coupling approach is
further analyzed.

4.3.6. Performance
In this section, we present the performance of multi-solver coupling with
preCICE with NN mapping on the SuperMuc Phase 1 IBM system at
LRZ, Munich. The first performance results of preCICE with the DG
solver Ateles are were presented in [81] with more recent investigations on
the coupling library and its performance in [41–43]. SuperMuc Phase 1
IBM system comprises a total of 9216 nodes on 18 islands with 2 Sandy
Bridge-EP Xeon E5-2680 8-core processor per node resulting in 147 456
cores. The nodes are connected with Infiniband FDR10. The testcase for
this scaling analysis is a 3D Gaussian pulse (similar to the one described
in the previous section) with a total problem size of 8192 elements: The
computational domain is split equally into a left and a right subdomain
with 4096 elements each. The total problem size of 8192 elements is chosen

100 101 102 103 104

Number of processes per domain

10−3

10−2

10−1

100

101

102

103

104

T
im

e
(s
)

Total

Init

Init Coupling

Coupling

Write to preCICE

Read from preCICE

Computation right

Computation left

Figure 4.8.: Strong scaling using preCICE up to one island (= 8192 MPI
ranks) on the SuperMuc Phase 1 IBM system at LRZ, Munich. Total
runtime is split into individual subroutines.

82

4.3. Multi-solver approach: preCICE

such that there is at least one element per core and the polynomial order O
is set to fit into node memory, i.e. O(20). The simulations are run for 100
timesteps. The DoF per element is 40 000, resulting in 163 840 000 DoF
for a problem size of 4096 elements per domain. Since it is a matching
coupling interface, the NN mapping is chosen for the data mapping in
space. We only consider MPI parallelism for this testcase. Figure 4.8
shows strong scaling up to a single island, i.e 512 compute nodes or 8192
cores. The total run time is an averaged results to include minimum and
maximum results on different processes.

The total runtime is split into the individual routines: Initialization,
Coupling and Computation. To uncover the influence of the coupling
on the whole Initialization, the specific coupling initialization work Init
Coupling is measured additionally. The Coupling line depicts the pure
coupling processes of preCICE. To provide data to preCICE and read it
from preCICE, in every timestep two extra routines Write to preCICE and
Read from preCICE are measured. For Computation, the measurements
of the left and the right domain are plotted individually which show
exactly the same behavior. The routines Coupling, Write to preCICE,
Read from preCICE, and Computation show good scalability. These are the
routines in the simulation phase after initialization is done. Initialization,
in contrast, scales roughly until 128 processes per domain but takes more
and more time for more processes. Looking at Init Coupling, it is visible
that Initialization mainly consists of Init Coupling. Hence the scalability
of the initialization of preCICE heavily impacts the initialization of the
multi-solver approach. The bad scalability is mainly due to gathering and
broadcasting of the complete surface meshes in the re-partitioning step
explained in Section 4.3.3. The initialization phase is challenging for a
coupling library which connects black-box solvers and works purely on
input/output data This is already presented in [42]. Ideas to overcome this
are presented in [43], and work in progress is reported in [72]. Beyond 1024
processes per domain, the influence of the Initialization phase outweighs the
other phases, so that the solver Total doesn’t scale anymore. The immense
influence of the initialization phase is due to the very short simulation phase
for this scaling test of 100 timesteps. Nevertheless, the initialization of the
coupling tool preCICE as well as the solver Ateles should be reconsidered
and optimized since all runtime phases scale well. For good performance
of the coupling approach in general, the most expensive routine should be
Computation, which is the case. Unfortunately, Write to preCICE, which
provides coupling values to preCICE, is also very expensive. This routine
is expected to have optimization potential and should be considered in

83

4. Numerical framework

future software updates.

4.4. Integrated approach: APESmate

In this section we present the integrated coupling approach APESmate.
This approach is implemented in the APES framework (presented in
Section 4.1). Since the idea of integrated coupling is similar to a multi-solver
approach, the same coupling tasks have to be accomplished. However, an
integrated approach has several benefits from the performance point of view.
First, we present a general overview of the integrated approach, discuss
its potential and benefits, and follow up with implementation principles
for each individual coupling task described in Section 3.1. Subsequently, a
performance analysis is done.

4.4.1. Overview
The fully integrated coupling approach APESmate within the APES frame-
work is based on the TreElM library so that it has full access to octree data
structures, solver data, as well as parallel features. This tight integration
allows for the exploitation of knowledge about internal solver data and,
therefore, yields performance benefits accompanied with some limitations:
This approach is less flexible since only numerical solvers within the APES
infrastructure can be coupled. Besides the performance benefits, another
advantage is solver-specific data mapping procedures. In contrast to an ex-
ternal coupling library that is most likely working on pure geometric data,
the integrated approach can access solver specific procedures to provide
coupling data directly. For example in the DG solver Ateles, the coupling
tool can evaluate the polynomial on the required coupling surface points as
described in Section 3.3. Exploiting solver specific routines is superior with
respect to quality of data mapping. This is of particular importance when
tethering high-order solvers like Ateles where direct numerical evaluation
of polynomials is available. Conceptually, the solvers are invoked as a
library by the coupling application so that only a single application must
be handled.

Assuming no adaptive time-stepping and no change of the coupling
interface, the same static load balancing based on heuristics, as presented
in Section 3.2, can be applied. This is similar to the multi-solver approach
but dynamic load balancing can be deployed easier. From the user’s
perspective, the handling of an integrated approach with one executable is
facilitated. Development and implementation are joint work together with

84

4.4. Integrated approach: APESmate

Kannan Masilamani: More details and further implementation principles
of APESmate can thus be found in [82].

4.4.2. Steering of individual solvers
The integrated coupling approach APESmate combines all included solvers
into one application and invokes a solver as a library. The steering of the
coupled simulation is direct by accessing data structures explicitly instead
of providing and returning information from a library. Code 4.3 sketches
the pseudo code for APESmate.

Code 4.3: pseudo code for APESmate.
de f i n i t i a l i z e apesmate :

load domain_distribution
load domain con f i gu ra t i on s
i n i t i a l i z e ind iv idua l domains
i n i t i a l i z e communication

def compute apesmate :
whi le t < t_max

synchronize_domains
dt_sync = max(domain_dt)
so lve ind iv idua l domains u n t i l dt_sync
t = t + dt_sync

def f i n i a l i z e apesmate :
f i n a l i z e ind iv idua l domains

The domain distribution is the partitioning of the subdomains onto pro-
cesses as defined in a configuration file. The user can choose between
defining the number of MPI-ranks per domain or specifying the fraction
of all MPI-ranks per domain. Using the fraction parameter guarantees
that all domains sum to unity. Loading and initialization of the individual
domain are solver-specific and the corresponding routines are directly
called by APESmate. The initialization phase for communication will be
more elaborated in Section 4.4.3. synchronize_domains depicts the part
where coupling variables are evaluated and exchanged between subdomains
at the beginning of each synchronization step. In the integrated approach,
no external synchronization timestep needs to be selected: APESmate
defines the next synchronization step internally by taking the maximum
timestep size of all domains. A solver then iterates with its own timestep

85

4. Numerical framework

limitation until it reaches this synchronization point. On a technical level,
this allows for sub-cycling without additional implementation effort.

4.4.3. Communication of coupling data
The communication of coupling data at the coupling interface itself as well
as its initialization is done without any global communication. More im-
portantly, only point-to-point communication is used. In a fully integrated
approach, the communication can be realized directly: All components are
implemented in a single application which then distributes processes ac-
cording to a configuration file. Starting with a global communicator, each
subdomain gets its own MPI sub-communicator for subdomain-internal
communication, e.g. communication of fluxes within each timestep. There-
fore, the global communicator is only used for subdomain to subdomain
communication. The elements of the computational domain are equally
distributed over processes. The challenge is to connect these processes
which have to couple points and values with each other. This is done in
the initialization step. Let’s assume that there are two coupling domains
A and B: First, all coupling requests, i.e. all coupling points of domain A,
are locally gathered. Exploiting the space-filling curves in APES, every
process can identify on which process a specific leaf of the tree is located,
i.e. every process knows on which process a defined element is located
[5]. Using this property, each process of domain A sends its requested
points to any process of the requested domain B. The process of domain B
subsequently converts the points into the corresponding elements and iden-
tifies the processes in domain B that host these elements. The requested
process of A receives this information and for the next communication,
it can directly ask the corresponding process on domain B for coupling
values. This first communication is done in a round-robin fashion, i.e.
rank 1 of domain A asks rank 1 of domain B which is the correct rank for
point-to-point communication. The implementation invokes several steps,
such as: Using of communication buffers between the domains; storing of
requested point coordinates at the initialization phase for reuse; applying
an offset bit which shifts the coupling points from the surface towards
the element to uniquely identify the corresponding elements; mapping
between global MPI communicator; and establishing the domain-specific
MPI sub-communicators.

Additionally to establishing the direct correspondence, i.e. to whom to
talk to during simulation, the information “what is to be exchanged at
which coupling point” is sent to the target process. This ensures that

86

4.4. Integrated approach: APESmate

after the initialization phase, each coupling process knows which data to
provide to which process, minimizing unnecessary communication. During
the simulation, coupling values have to be evaluated and exchanged at
each synchronization step. This is done in the synchronize domains step
in Code 4.3. The solver-specific evaluation is described in Section 4.4.5.
As established, the communication is purely point-to-point and done via
the global communicator.

4.4.4. Data mapping in time

As already mentioned in the general description of this coupling task
in Section 3.1.3 and similar to the multi-solver approach - consistent
time stepping is challenging for the integrated approach as well. Here,
we do not have to provide a synchronization timestep explicitly as it is
required for the coupling library preCICE. As aforementioned, APESmate
defines the next synchronization step as the maximum of all domain-
specific timesteps so that a solver iterates with its own timestep until
it reaches this synchronization step. In Ateles, this individual timestep
is either a fixed timestep dictated by the user or an adaptive timestep
identified by the CFL stability condition described in Equation (2.43) and
Equation (2.44). However, if the synchronization timestep is larger than
the individual timestep, this can result in time-inconsistent coupling, as
already explained in Section 3.1.3. The same holds true for multi-step time
integration: Using explicit multi-step time integration, the solver needs
to provide data at each sub-step of the time integration method. This
can be realized with APESmate when coupling the same solver, the same
time integration, and the same timestep size. At the time writing this
thesis, sub-cycling and multi-step time interpolation are inconsistent in
time which will be more discussed in Section 6. In the scope of this work,
we used fixed timestepping to guarantee that sub-cycling does not happen.

4.4.5. Data mapping in space

Within the fully integrated coupling approach, the application can access
solver specific data as well as its data mapping procedure. Obviously,
the solver needs to provide these procedures. Using the high-order DG
solver Ateles, arbitrary points can be obtained through direct evaluation
of the polynomial representation in the high-order scheme itself. Hence,
coupling non-matching grids with different numerical resolutions, as shown
in Figure 5.15, does not require additional data mapping. This is a key
benefit compared to the multi-solver approach: In particular for very high

87

4. Numerical framework

orders, a second-order NP or RBF mapping of the multi-solver approach
might be insufficient, while a low order interpolation can decrease the
quality of the overall solution.
Similar to the investigation on data mapping in space using the multi-
solver approach with preCICE in Section 4.3.5.3, we examine the data
mapping in space using APESmate on the same testcase configurations.
Figure 4.9 presents the results for the configurations (o)-(iii) as defined

(a) Density pulse at t = 0.008s

Figure 4.9.: Coupling scenarios with APESmate using internal data evalu-
ation at the coupling points. Results (xy-plane) for configuration (o) up
left, (i) up right, (ii) down left, and (iii) down right showing density (a)
and error (b); red line denotes the coupling interface.

in Section 4.3.5.3. All scenarios show similar results of the density pulse
and shape while the amplitude of the pulse is well preserved. A complete
validation of APESmate in 2D and 3D is presented in Section 5.1.

In the case of coupling solvers other than Ateles within APESmate, e.g.
the Lattice-Boltzmann solver Musubi, which does not provide a polynomial
representation of the solution, the solver is required to provide an interpo-

88

4.4. Integrated approach: APESmate

lation method using its data representation and mathematical formulation.
Even if interpolation is necessary though, it is done by the data-providing
solver and can make use of all the knowledge of its data structures. In
general, APESmate is designed in a way so that surface coupling as well as
volume coupling can be realized to increase the range of applications: For
instance, the coupling of multi-component flow and an electro-dynamic
field [82, 83].

4.4.6. Performance

In this section, the performance of the integrated approach APESmate is
investigated. These results are published in [66] and presented here for
completeness as well as comparison to preCICE. Hence, the same scaling
testcase as well as the same Supercomputer as for the performance measure-

100 101 102 103 104

Number of processes per domain

10−1

100

101

102

103

T
im

e
(s

)

Total

Init

Init Coupling

Coupling

Computation left

Computation right

Figure 4.10.: Strong scaling using APESmate up to one island (= 8192
MPI-processes) on the SuperMuc Phase 1 IBM system. The total runtime
is split into individual subroutines.

89

4. Numerical framework

ments of the coupling tool preCICE in Section 4.3.6 are utilized. Strong
scaling up to a single island is presented in Figure 4.10 where the number of
processes per subdomain is on the x-axis and the total run time in seconds
is on the y-axis. The total runtime is split into the individual routines:
Initialization, Coupling and Computation. To investigate the influence of
coupling on the Initialization, the initialization of the coupling is measured
individually as Init Coupling. Coupling includes the synchronization of
subdomains which comprises solver specific data mapping, i.e. evaluation
of the polynomial in Ateles, and the point-to-point communication of these
values between the corresponding partitions. For Computation the mea-
surements of the left and the right domain are plotted individually, which
show the same behavior. The major phases during simulation, Coupling
and Computation, are both scaling well. Coupling shows linear speedup
and scales better than Computation. Moreover, the execution time of
Coupling is about one order of magnitude lower than Computation. This
is important because the coupling approach should not slow down the
overall computation. This testcase is a nice showcase for performance,
since both subdomains have the same number of elements and degrees of
freedom to solve. Furthermore, the number of elements and the polynomial
order are equal. Due to the same setup, there are no imbalances between
the subdomains and the point-to-point communication in APESmate is
optimized. There are still work imbalances in each subdomain due the
additional work of the elements involved in coupling but imbalances of
the whole domain are minimized. Initialization is scaling roughly up to
256 processes per domain, after which it flattens out. The same holds
true for the initialization phase of the coupling approach Init Coupling.
Additionally, Init Coupling is more than one magnitude of order smaller
than Initialization. Hence, Init Coupling does not restrict the Initialization
as it is done with the coupling library preCICE (Figure 4.8 in Section 4.3.6).

The presented results are obtained using sparse all-to-all communication.
Using MPI _ALLTOALL communication, the initialization phase yields
poor scalability. This is described in more detail in Appendix B. In the
following, the initialization phase is more investigated.

4.4.6.1. Initialization of coupling

Figure 4.11 depicts the Init Coupling routine in the initialization phase of
APESmate which is split further into two major routines: Fill SpaceTime
Function and Init Cpl Comm. Fill SpaceTime Function gathers all main
information, e.g. which subdomain requests which coupling values from

90

4.4. Integrated approach: APESmate

100 101 102 103 104

Number of processes per domain

10−5

10−4

10−3

10−2

10−1

100

T
im

e
(s

)

Init Coupling

Fill SpaceTime Function

Init Cpl Comm

Figure 4.11.: Strong scaling using APESmate of the initialization of APES-
mate. The initialization has two major routine: Fill SpaceTime Func-
tion, which gathers all information about coupling variables from each
subdomain, and Init Cpl Comm, which establishes the point-to-point
communication between the subdomains.

100 101 102 103 104

Number of processes per domain

10−3

10−2

10−1

100

T
im

e
(s

)

Init Cpl Comm

Round Robin

Check variables

Identifying Ranks

Exchange Ranks

Exchange Cpl Data

Create Cpl variable

Figure 4.12.: Strong scaling of the initialization phase of the coupling
communication Init Cpl Comm of APESmate split into individual substeps.

91

4. Numerical framework

which other subdomain. Init Cpl Comm establishes the point-to-point
communication between the MPI-processes of subdomains. As you can see,
Fill SpaceTime Function does not scale at all but only requires a small
amount of time for less than 1000 processes. The initialization phase is
mainly dominated by the initialization of the coupling communication, Init
Cpl Comm. Therefore this routine is further investigated in Figure 4.12.
The major routine Init Cpl Comm is split into the individual subroutines:

Round Robin Communicate general information (coupling points and vari-
able names) to the remote domain in round robin

Identify Ranks Identify source ranks (”ranks sending data”) and target
ranks (”ranks receiving data”) from the round robin information to
establish direct communication between source and target ranks

Check variables Check if the requested variable names are actually avail-
able on the remote domain

Exchange Ranks Send the information of the corresponding rank back to
the requesting partition in round robin fashion

Exchange Cpl Data Send the requested coupling information to the correct
targets which host the requested partition

Create Cpl variable Combine requested information to avoid multiple com-
munication during a synchronization step of APESmate

As it can been seen in Figure 4.12, the initialization Init Cpl Comm is
mainly dominated by the substep Round Robin. Up to 512 processes,
Round Robin scales well, and then it flattens out. All other routines
don’t scale well, i.e. the time spent in each routine is almost constant as
number of processes increases. However, the time spent in this subroutine
is reasonably small and thus the initialization phase will be negligible for
long simulation runs.

92

5. Coupling results

This chapter collect the results of a selection of coupled simulations. In
the first part we use an academic testcase to investigate two coupling
strategies: The integrated approach APESmate and the multi-solver ap-
proach utilizing preCICE. Partitioned coupling provides the flexibility to
couple different physics by using different equations, different numerical
resolutions, i.e. different grid resolutions and spatial order of the scheme,
and different solvers. Since different resolutions lead to non-matching cou-
pling interfaces, we investigate the influence of data mapping in space at
coupling interfaces. First results of this, including a 2D scenario, have been
published in [66]. In this chapter, we investigate a 3-field coupling where
three physical regimes are considered in 3D: A viscous flow (Navier-Stokes
equations), an inviscid flow (Euler equations), and an acoustic far field
(Linearized Euler equations).

Once the aforementioned coupling strategies have been evaluated, a
realistic testcase is investigated: A 3D subsonic free-stream jet. Here,
we first analyze the numerical results of a 3-field coupled simulation with
correctly chosen coupling interfaces. After the numerical results have been
presented and the testcase setup has been described, we examine the load
balancing in detail and APESmate and preCICE are compared in terms of
performance. We complete the chapter with a section on how the choice of
imperfect coupling interfaces influences acoustic wave propagation into a
far field. The chapter is completed by the numerical results of this realistic
testcase.

5.1. Gaussian distribution in pressure

In order to analyze the integrated and the multi-solver approach, we start
by coupling the same physics and the same resolution in both domains.
This means that we use the same equations and a matching coupling
interface by using the same grid sizes as well as spatial orders in both
subdomains. Once the implementation has been checked for all combina-
tions and the coupling and its data exchange itself does not influence the
solution, we change the resolution in the domains but keep the equations

93

5. Coupling results

the same. Hereby, we investigate the interpolation errors of APESmate
and preCICE. Due to the multi-solver nature of preCICE, it has to use an
external interpolation method and we chose the nearest projection (NP)
mapping, according to Section 4.3.5.3, for non-matching interfaces. The
integrated approach APESmate uses direct evaluation of polynomial rep-
resentations in the DG scheme as presented in Section 4.4.5. We compare
the solutions by plotting evolution over time and inspecting deviations
in these figures and measure the relative error at positions close to the
coupling interface. In order to provide a valid comparison of the relative
error we compute the monolithic simulation for all governing equations.
The monolithic simulations are performed with the resolution of the match-
ing scenario, since a monolithic setup is limited to the same order of the
numerical scheme. Subsequently, we investigate the coupling of different
physics. Thus, we analyze all possible combinations of different equations
which are meaningful, i.e. Navier-Stokes equations with Euler equations
and Euler equations with Linearized Euler equations. Here, we start with
matching interfaces and continue with non-matching interfaces. For non-
matching interfaces, there will be again a difference in both approaches
due to different interpolation techniques. The last step is the investigation
of a 3-field coupling where three physical regimes are coupled: A viscous
flow (Navier-Stokes equations), an inviscid flow (Euler equations), and an
acoustic far field (Linearized Euler equations).

For brevity, we will use the abbreviations NSE for Navier-Stokes equa-
tions, EE for Euler equations and LEE for the Linearized Euler equation.
Furthermore, we will refer to a domain according to the equations used in
that domain, i.e. a domain employing the Euler equations as Euler domain.

We have chosen an academic testcase which is suitable for this inves-
tigation: Valid for all equations, physics influences all variables of the
state vector, and an analytical solution is available. Hence, the academic
testcase for the analysis is a 3D Gaussian pulse in pressure as illustrated
in Figure 5.1. The different subdomains are referred to as inner and outer,
respectively. The 3D acoustic pulse is initialized at time t = 0 with a
Gaussian pressure distribution which is spreading spherically symmetric
with respect to the origin of the pulse as described in [84] and sketched in
Figure 5.1. All lengths are defined in length units lu. The 3D flow domain
in which the pulse is located is a box of 20 × 20 × 20 lu with a surrounding
outer domain of size 60 × 60 × 60 lu. The parameters for the different flow
regimes are defined in Table 5.1.

94

5.1. Gaussian distribution in pressure

coupling surface

inner

 outer

A B

y

x

z

Figure 5.1.: 2D sketch of the 3D Gaussian pulse in pressure [origin at
(0,0,0)], where a inner box is surrounded by an outer box. The • mark
the measurement positions A = (10 − 0.01, 0, 0) and B = (10 + 0.01, 0, 0),
close to the coupling interface at x = 10 (dashed line).

viscous flow (NSE)
dynamic viscosity µ 1.0e−6 m2 s−1

thermal conductivity λ 1.5625e−2 W m−1 K−1

viscous/ isentropic coefficient γ 1.4
inviscid flow (EE) specific gas constant R 280.0

acoustics (LEE)

background density ρ0 1.0

background velocity v0

[
0.0, 0.0, 0.0

]T

background pressure p0 1/γ
speed of sound c 1.0

Table 5.1.: Parameters for the Gaussian pulse in pressure for all different
equations: viscous flow (NSE), inviscid flow (EE) and acoustics (LEE).

95

5. Coupling results

For the inner domain, the initial condition is a Gaussian pressure distri-
bution:

p = p0 + ppulse ·
(
−[(x+ x0)2 + (y + y0)2 + (z + z0)2]/b · log(2)

)
(5.1)

with amplitude of the pulse ppulse = 0.001 and half width set to b = 3.
The origin is (x0, y0, z0) = (0.0, 0.0, 0.0). The background for the flow is
set to the background of the LEE domain defined in Table 5.1. When
defining the inner domain to be an LEE domain, p0 in Equation (5.1)
is set to 0 instead of 1/γ , since the Linearized Euler equations only
solve for perturbations and the background state p0 = 1/γ is already
defined with the Linearized Euler equations (2.15). In case the outer is
an LEE domain, the initial condition

[
ρa,va, pa

]T is specified to be 0,
since at the start of the simulation, no acoustic perturbation should occur.
The inner boundaries are always coupling interfaces where, as described
in Section 3.4, the variables according to the equations are exchanged.
When coupled to an NSE domain, also gradients in normal direction are
exchanged. The outer boundaries are set to Dirichlet boundary conditions
for all state variables where in viscous and inviscid flow the state is set to
the background state and for acoustics the perturbations are set to zero.
This can avoid stability issues which might occur when extrapolating these
boundary conditions. For linear acoustic transportation, in particular, we
did not face issues with reflections due to the type of boundary condition.
The analytical solution for a Gaussian pressure distribution spreading
spherically symmetric with respect to the origin (0.0, 0.0, 0.0) and the
radial distance r =

√
(x− x0)2 + (y − y0)2 + (z − z0)2 is :

p = p0 + ppulse ·
[
r − c · t

2 · r · exp
(

− log(2) ·
(r − c · t

b

)2
)

+ r + c · t
2 · r · exp

(
− log(2) ·

(r + c · t
b

)2
)]

(5.2)

with speed of sound defined by the material c =
√

γ·p0
ρ0

, or in acoustic
c = 1.0. For this testcase, we assume that the perturbations are sufficiently
small for the linearization to be applicable. Therefore, the analytical
solution is valid for NSE and EE and deviations due to non-linearity and
viscous effects are negligible.

As a first step, we check the implementation by keeping the physics
as well as the resolution constant. To that end, we require a matching
coupling interface. Subsequently, to investigate the data mapping in space

96

5.1. Gaussian distribution in pressure

and, thus, the interpolation error of integrated and multi-solver approach,
we require a non-matching coupling interface. Table 5.2 presents the used
discretizations to obtain matching and non-matching coupling interfaces.
For matching interface, we chose the grid size h = 1 and a numerical

interface domain total number
of elements

grid
size h

numerical
order p

matching
inner 8000 1 O(6)
outer 208 000 1 O(6)

non-matching
inner 8000 1 O(6)
outer 1664 5 O(12)

Table 5.2.: Discretizations for matching and non-matching coupling inter-
faces.

order of O(6). For non-matching interfaces, the effort in the outer domain
is decreased by using a coarser mesh (h = 5 instead of h = 1), but a
higher order in the DG scheme compared to the inner domain (O(12)
instead of O(6)). This leads to DoF = 8 640 000 in the inner domain and
DoF = 224 640 000 (matching) and DoF = 14 376 960 (non-matching) in
the outer domain, respectively. We decrease the number of DoF when
using a higher order, since the DG scheme shows a similar convergence rate
and, hence, fewer DoF are required for a high accuracy. For the coupling
interface in the non-matching case we decrease the total number of coupling
points from 14 400 to 2304. For each simulation, using APESmate as well
as preCICE, the timestep is fixed and depends on the CFL condition of the
explicit RK scheme together with the respective equation. For preCICE,
nearest neighbor (NN) mapping is utilized for matching interfaces and NP
mapping for non-matching interfaces as presented in Section 4.3.5.3.

5.1.1. 2-field coupling of same equations
For the investigation on coupling of the same equations, we look at the
temporal evolution of values at the specific points A and B close to the
coupling interface (±0.01) as sketched in Figure 5.1. We compare the
analytical solution against the solution of the simulation and plot temporal
evolution as well as look at the relative error. Due to the large number of
combinations, we only show significant results in this chapter. All plots
are presented in Appendix C. Figure 5.2 shows the result for coupling the

97

5. Coupling results

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(a) NSE - NSE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(b) NSE - NSE with preCICE,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(c) EE - EE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(d) EE - EE with preCICE,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(e) LEE - LEE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(f) LEE - LEE with preCICE,
non-matching interface.

Figure 5.2.: Comparison of numerical and analytical result in both sub-
domains for coupling of same equations with non-matching interfaces for
APESmate (left column) and preCICE (right column).

98

5.1. Gaussian distribution in pressure

same equations with non-matching interfaces. Since matching interfaces
are not as challenging as non-matching interfaces, we explicitly present
the combination with non-matching interfaces. It depicts the analytical
solution according to Equation (5.2) at positions A and B and the solution
of the simulation at these positions. We can see that the solutions of the
simulations match the analytical solution well and APESmate as well as
preCICE are comparable. Please note, that the solution at position A and
B coincides since the pulse is very broad and does not vary within 0.02 lu.

equations A (Inner) B (Outer)

NSE 3.948e−8 3.972e−8

EE 4.070e−8 4.092e−8

LEE 2.629e−9 2.617e−9

interface APES-
mate

pre-
CICE

APES-
mate

pre-
CICE

NSE - NSE matching 1.899e−7 1.586e−7 4.051e−9 1.730e−8

NSE - NSE non-matching 1.537e−7 1.600e−7 2.605e−8 5.138e−8

EE - EE matching 2.175e−7 2.175e−7 1.361e−8 1.361e−8

EE - EE non-matching 2.221e−7 6.666e−8 3.795e−9 3.422e−8

LEE - LEE matching 1.528e−7 1.741e−7 3.313e−8 3.197e−8

LEE - LEE non-matching 1.897e−7 1.060e−7 3.625e−8 1.087e−7

Table 5.3.: Relative error at simulation time t = 7 in pressure for positions A
and B for coupling the same equations, first three rows are the monolithic
simulations.

To investigate these results further, we look at the relative error in
pressure measured at positions A and B at the simulation time of 7 tu,
when the maximum pressure over simulation is reached. Table 5.3 shows
this relative error for matching and non-matching interfaces as well as both
coupling strategies. Furthermore, the relative error at the simulation time
t=7 tu for a monolithic simulation is provided in the first three rows. The
relative error is normalized to the analytical solution of Equation (5.2).

99

5. Coupling results

We can see that the relative error that occurs in all simulations is in
the order of e−7 to e−8, and one order of magnitude lower than for the
monolithic approach. Both approaches, APESmate and preCICE with
NN/NP mapping, yield similar results. The relative errors for monolithic
with NSE and EE is one order of magnitude lower compared to the LEE.
This can be explained with the fact that the presented analytical solution
(Equation (5.2)) is the solution of the linear equations under the assumption
that they are a good approximation for NSE and EE. This assumption only
holds when the viscous and non-linear terms, including rounding errors,
become zero. In Section 6, we will have a closer look at the time-consistent
treatment of the coupling interface when using a second-order RK scheme,
as it is done for this simulations.

5.1.2. 2-field coupling of different equations
The next step is analyzing the coupling of different equations. Here, in
a first step, only the equations are switched while grid size and order of
the scheme are kept the same in both parts of the domain (= matching
resolution). Hereby, the influence of different equations is investigated.
Once this is done, we test the coupling of different equations having dif-
ferent resolutions in both subdomains yielding a non-matching coupling
interface. In this section we only print selected figures; figures for all
combinations of coupling can be found in Appendix C. When exploiting
non-matching interfaces, we utilize the NP mapping for the multi-solver
approach with preCICE. Figure 5.3 shows the results for coupling dif-
ferent equations. The first two figures present NSE–EE coupling with
matching interface for APESmate (a) and preCICE (b). The figures (c) -
(f) demonstrate the coupling with non-matching interface. These figures do
not indicate a discrepancy between simulation results and analytic results.
Table 5.4 shows the comparison of the results for matching and non-
matching interfaces in terms of the relative error in pressure at simulation
time 7 tu (maximum pressure at positions A and B over simulation time).
Similar to the investigation of coupling same equations (Table 5.3), both
approaches show the same behavior. One striking result is the simulation
of EE - LEE with non-matching coupling interface using APESmate, where
the relative error is two orders of magnitude lower.

100

5.1. Gaussian distribution in pressure

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(a) NSE - EE with APESmate,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(b) NSE - EE with preCICE,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(c) NSE - EE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435
P

re
ss

ur
e

analytical A

A

analytical B

B

(d) NSE - EE with preCICE,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(e) EE- LEE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(f) EE - LEE with preCICE,
non-matching interface.

Figure 5.3.: Comparison of numerical and analytical result in both subdo-
mains for coupling of different equations with non-matching and matching
interfaces for APESmate (left column) and preCICE (right column).

101

5. Coupling results

equations A (Inner) B (Outer)

NSE 3.948e−8 3.972e−8

EE 4.070e−8 4.092e−8

LEE 2.629e−9 2.617e−9

interface APES-
mate

pre-
CICE

APES-
mate

pre-
CICE

NSE - EE matching 1.900e−7 1.586e−7 4.226e−9 1.742e−8

NSE - EE non-matching 1.538e−7 1.611e−7 2.615e−8 4.565e−8

EE - LEE matching 2.210e−7 9.305e−8 1.010e−8 4.830e−8

EE - LEE non-matching 2.256e−7 7.718e−8 1.204e−10 3.585e−8

Table 5.4.: Relative error at simulation time t = 7 in pressure for positions
A and B when coupling different equations, first three rows are the
monolithic simulations.

Euler equations

 Linearized Euler equations

A B
Navier-Stokes

 equations

DC

y

x

z

Figure 5.4.: 2D sketch of
3-field coupling for the 3D
Gaussian pulse [origin at
(0,0,0)]. The dotted lines
illustrate coupling inter-
faces. The • mark the
measurement positions A,
B, C, and D, close to the
coupling interfaces at x =
10 and x = 15 (dashed
line).

5.1.3. 3-field coupling of different equations

In this last section, we investigate a 3-field coupling of the 3D Gaussian
pulse with matching as well as non-matching interfaces. The goal is to
couple three different equations: NSE, EE, and LEE. Once a 3-field cou-

102

5.1. Gaussian distribution in pressure

pling is validated, it enables an efficient fluid-acoustic simulation.

Figure 5.4 illustrates the sketch of this 3-field coupling. The complete
domain (60 × 60 × 60 lu) is split into an inner (20 × 20 × 20 lu) subdo-
main, surrounded by the middle (30 × 30 × 30 lu) subdomain, which is
surrounded by the outer (60 × 60 × 60 lu) subdomain.The inner domain
solves the Navier-Stokes equations, then the Euler equations are com-
puted, surrounded by the acoustic far field approximated by the Linearized
Euler equations. The same parameters for the different flow regimes as
in the previous investigations are used (Table 5.1). For this setup we
have four measuring positions: A = (10 − 0.01, 0, 0), B = (10 + 0.01, 0, 0),
C = (15 − 0.01, 0, 0), and D = (15 + 0.01, 0, 0), where A is located in the
Navier-Stokes domain, B and C in the Euler domain and D lies in the
Linearized Euler domain. Table 5.5 defines the discretizations for matching

interface domain total number
of elements

grid
size h

numerical
order p

matching
inner 8000 1 O(6)

middle 19 000 1 O(6)
outer 189 000 1 O(6)

non-matching
inner 8000 1 O(6)

middle 1216 2.5 O(10)
outer 1512 5 O(12)

Table 5.5.: Discretizations for matching and non-matching coupling inter-
faces for 3-field testcase.

and non-matching coupling interfaces for the 3-field testcase NSE–EE–LEE.
For the non-matching setup, the inner domain as well as the outer domain
are similar to the previous investigations. For the middle domain we chose
a grid to be between h = 1 and h = 5 and a medium order of O(10). This
decreases the number of coupling points at the coupling interface by a
factor of 3 between each coupling interface.

Figure 5.5 presents the simulation results for matching and non-matching
interfaces for both coupling approaches. The amplitude of the pressure
pulse decreases over distance. In contrast to the previous section, we have
a distance of 5 lu between the interfaces. Hence the solutions at A/B

103

5. Coupling results

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

analytical C

C

analytical D

D

(a) NSE - EE - LEE with APESmate,
matching interface.

0 10 20 30
Time (s)

0.71420

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

analytical C

C

analytical D

D

(b) NSE - EE - LEE with preCICE,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

analytical C

C

analytical D

D

(c) NSE - EE - LEE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71420

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

analytical C

C

analytical D

D

(d) NSE - EE - LEE with preCICE,
non-matching interface.

Figure 5.5.: Comparison of numerical and analytical results for the coupling
of three different equations with matching interfaces and non-matching
interfaces at measuring points A, B, C, and D.

104

5.1. Gaussian distribution in pressure

and C/D do not coincide and the time evolution show two pulses with
a decreased amplitude. The solutions at all measured points show good
agreement with the analytical solution. Table 5.6 presents the relative error
at simulation time of 7 tu for position A/B and 13 tu for position C/D for
both coupling approaches and both coupling interfaces. At the simulation
time t = 13, the maximum of the pressure has reached the measuring
positions C/D. The first three rows are the corresponding results for the
monolithic simulations. All relative errors of the monolithic simulations are
in the range of e−6 to e−9. Compared to the presented investigations with
two coupling domains (Table 5.3 and Table 5.4), the relative error is one
order of magnitude higher. Although we have two coupling interface now,
the error at the boundary in the outermost subdomain is not significantly
lower. The error of the monolithic simulations at the measuring points
also varies with two orders of magnitude.

A
(Inner)

B
(Middle)

C
(Middle)

D
(Outer)

NSE 3.948e−8 3.972e−8 9.892e−9 8.582e−9

EE 4.070e−8 4.092e−8 7.861e−9 6.547e−9

LEE 2.629e−9 2.617e−9 3.945e−10 4.754e−10

interface coupling
approach

N
SE

-
E

E
-

LE
E

matching
APESmate 1.899e−7 4.207e−9 1.187e−7 1.793e−7

preCICE 9.339e−7 3.421e−7 1.007e−6 1.322e−6

non-
matching

APESmate 1.604e−7 1.305e−8 9.131e−8 1.356e−7

preCICE 1.028e−6 2.034e−7 8.186e−7 8.584e−7

Table 5.6.: Relative error at simulation time t = 7 for position A/B
and t = 13 for position C/D in pressure when coupling three different
equations, first three rows are the monolithic simulations.

105

5. Coupling results

5.2. 3D subsonic free-stream jet

The simulation of a 3D subsonic free-stream jet is enabled by employing a
3-field coupling. The free-stream is expanded by a nozzle, where close to
it viscous effects influence the flow leading to vortices. Farther away from
the nozzle, where viscous terms can be neglected, inviscid Euler equations
can be used to describe the physics. In the outermost region, where
only acoustic waves are transported, the Linearized Euler equations are
employed. For ease of reading, domains will be named after their respective
equations in the following: NSE subdomain for Navier-Stokes equations,
EE subdomain for Euler equations, and LEE subdomain for linearized Euler
equations. First, we will look at numerical results of the free-stream jet and
discuss the numerical testcase including the coupling setup. In a monolithic
simulation with a state-of-the-art solver, the grid size can be varied, while
a change in the order of the numerical scheme within a domain is often
not possible. Thus, in order to compare the performance of the coupling
approaches to a monolithic simulation, we setup the coupled scenario to use
the same numerical order in each domain. With this monolithic-like setup
A, we investigate static load balancing strategies on the massively parallel
system SuperMuc Phase 1 for APESmate and preCICE. For the integrated
approach APESmate we will take a closer look at the measured weights.
With the appropriate load balancing strategy for both approaches, the
performance is compared. Once, an appropriate load balancing strategy is
found, we will adapt the the setup by tailoring the numerical discretization
to the physical regimes to leverage all benefits of a partitioned coupling
approach. According to the physics, we chose a low order with a very
fine grid for the flow domain and a high order with a coarse mesh for the
acoustic far field. This tailored setup for the numerical resolution will be
called setup B. We will look at the performance of this tailored setup B
with APESmate and compare it to a monolithic simulation as well as to the
monolithic-like setup A. Since another important aspect of performance
is the scalability of an approach, we will also present a strong scaling of
the balanced APESmate approach for both setups. Subsequently, we will
investigate the impact of choosing imperfect coupling interfaces on the
acoustic wave propagation with the 3D subsonic free-stream jet.

5.2.1. Investigation of numerical setup

A 3D subsonic free-stream jet is an example for a scenario where acoustics
are generated and acoustic waves are radiated. “Subsonic” indicates that
the Mach number of the flow (Ma) is less than 1, that is, flow velocity

106

5.2. 3D subsonic free-stream jet

is smaller than the speed of sound everywhere. Typically, such jets are
expanded from a nozzle: The nozzle flow itself is not discretized but mod-
eled with the initial conditions as described in [85]. The noise generation
of free stream jets has been studied [85–88].

The presented 3-field coupling is applied to the testcase of a subsonic 3D
jet. The jet is separated into an NSE subdomain, close to the nozzle inlet
where turbulent flow occurs. This is surrounded by the EE subdomain,
and, where non-linear effects can be neglected, we introduce a surrounding
LEE subdomain.

First, we have a general look at how such a free-stream develops within
the NSE subdomain. Here, we also show parts of the EE subdomain, where
white lines in the figures denote coupling interfaces between subdomains.
Figure 5.6 illustrates the instantaneous density field at a simulation time

Figure 5.6.: Instantaneous density field of a 3D subsonic free-stream jet at
t = 120.

of 120 tu. tu defines time unit and will be used in the following as unit
for the simulation time. On the left boundary, a nozzle inlet is modeled
and the free-stream can be observed flowing in x-direction. Along the
flow direction, a stable stream and its shear layer are visible for a limited
extent. Outside of the stream we observe a fluid at rest. At the shear layer
there is a high velocity inside the stream and low velocity outside.

107

5. Coupling results

Figure 5.7 illustrates the properties of the free-stream when considering
velocity at the same point in time as the density field. Figure 5.7a presents
the instantaneous velocity field where the shear layer is clearly visible. Al-
most immediately, however, the stream breaks up into turbulent flow. This
depends on the viscosity of the fluid and the velocity of the flow. In the
turbulent region vortices are generated which transmit sound waves. These
vortices travel downstream, decay, and interact with each other. Such
interactions create acoustic waves, which are radiated to the surrounding
of the free-stream jet. Figure 5.7b illustrates the gradient of the velocity.
The only term in the Navier-Stokes equations (2.11) that includes the
stress tensor (2.6) with viscosity is the multiplication with the gradient of
velocity. Hence, we can interpret the gradient of velocity as a measure for
the influence of viscosity on the flow. We can see that viscosity is a major
contributor to the collapse of the jet and the emergence of a turbulent
region. Downstream, where the stream widens slightly, the gradient of the
velocity is close to a value of 1-1.5. In the surrounding of the free-stream,
where the fluid is at rest (v = 0), the viscosity has no impact. Hence, the
gradient of velocity can indicate where we have to compute Navier-Stokes
equations in order to capture the physical phenomena correctly. Vorticity
is another variable related to velocity, and is presented in Figure 5.7c.
The vorticity shows very similar features to the gradient of the velocity
(Figure 5.7b). Hence, we can say that in regions where vorticity is not
zero, viscosity and non-linearity effects play a role and computing the NSE
or EE is required.

The physical phenomenon that we are ultimately interested in is the
acoustic generation and wave propagation. Figure 5.8 presents the pressure
field of the subsonic free-stream scaled to the flow as well as to the acoustics.
Considering the flow scales in Figure 5.8a, the pressure field is completely
located in the NSE domain, while in the acoustic scales the coupling
interface is reached: In the acoustic scales in Figure 5.8b we can see
acoustic waves radiating from the free-stream jet. At the inlet, the radius
of the acoustic wave front is visible, and downstream we can see that
waves with larger radii occur. This figure demonstrates that a large
surrounding domain is required to capture acoustic waves entirely. Since
we are interested in the acoustic far field, we will generously extend the
computational domain in order to propagate the acoustic waves. To
visualize them, Figure 5.9 presents a Schlieren visualization of the NSE
and EE subdomain for t = 120 tu. Compared to the figures before, we
show an even larger excerpt of the EE subdomain to visualize the wave
propagation. Schlieren visualizations are common practice to visualize the

108

5.2. 3D subsonic free-stream jet

(a) Velocity

(b) Gradient of velocity

(c) Vorticity

Figure 5.7.: Velocity, gradient of velocity, and vorticity of the 3D subsonic
free-stream jet at t=120.

109

5. Coupling results

(a) Scaled to flow

(b) Scaled to acoustics

Figure 5.8.: Pressure field of the 3D subsonic free-stream jet at t = 120.

110

5.2. 3D subsonic free-stream jet

Figure 5.9.: Schlieren visualization (gradient of density) of the 3D subsonic
free-stream jet at t = 120 surrounded by the Euler subdomain (extended
clip). White lines indicate coupling interfaces.

flow of fluids and their acoustic waves. It shows the flow density gradient
and, thus, how density varies. We use a gray color-scale to be as close as
possible to common Schlieren flow photographies that are based on shadow
patterns. The scale is logarithmic to cover the full range (1.0e−10 to 1.0)
of values.

Acoustic far field While we have looked at the acoustic generation in
the turbulent region before, we now inspect the wave propagation into
the acoustic far field. Figure 5.10 presents the Schlieren visualization
at simulation time of 120 tu for almost the entire computational domain.
For presentation’s sake, the outermost subdomain is cropped so that only
the inner region is visible. At this simulation time, acoustic waves have
traveled through the EE subdomain and have already reached passed
through half of the acoustic subdomain.

111

5. Coupling results

Figure 5.10.: Schlieren visualization of NSE, EE, and parts of LEE at
t = 120.

NSE – EE coupling interface In order to take a closer look at the NSE–
EE coupling interface, Figure 5.11 presents acoustic waves traveling across
the NSE–EE coupling interface at multiple points early in simulation
time: Figure 5.11a shows the wavefront just before reaching the right
coupling interface, Figure 5.11b when the first wave touches the right
coupling interface, and Figure 5.11c after the wave has reached the coupling
interface and is propagating over it. In these Schlieren visualizations, the
internal level jumps of the NSE domain are also visible. From this figure
we can derive how the jet evolves at early timestep and how acoustic wave
generation starts early on. Please note, that for stability reason the inlet
velocity is ramped up to Ma = 0.5 in the first 30 tu of the simulation,
which will be described later in the initial conditions of the testcase.

112

5.2. 3D subsonic free-stream jet

(a) t=24

(b) t=25

(c) t=26

Figure 5.11.: Schlieren visualization (gradients of density in xz-plane)
showing the acoustic waves traveling across the NSE–EE coupling interface
at different timesteps. The evolution of the jet close to the inlet is illustrated
with density field in rainbow color scale.

113

5. Coupling results

(a) t=70 (b) t=74 (c) t=79 (d) t=87

Figure 5.12.: Schlieren visualization (xz-plane) showing the acoustic waves
traveling across the EE–LEE coupling interface (indicated by white lines)
at different timesteps.

EE - LEE coupling interface Figure 5.12 presents the acoustic waves
traveling across the EE-LEE coupling interface at the timestep before
the first significant wave hits the coupling interface up to the timestep
when the first waves have successfully propagated across this interface,
and finally across the corners of the coupling interface. The value range
of the logarithmic scale is narrowed compared to the previously shown
Schlieren visualizations to focus on the data at the interface. The time
evolution shows that the acoustic waves propagate without disturbance or
artifacts from the coupling interface.

These figures emphasize that coupling until this point in simulation time
(t = 120) and the chosen coupling interface are physically allowed. Now,

114

5.2. 3D subsonic free-stream jet

we will describe the testcase in detail, explain the coupling setup, and
investigate the performance for such large scale simulations.

5.2.2. Testcase Setup

To decrease the computational demand for the simulation of such a large-
scale scenario, we try to solve the physics only where required. In order
to properly take into account the viscous effects, we need to compute the
Navier-Stokes equations. When viscosity has no longer any influence, we
can switch to Euler equations and solve for inviscid flow with non-linearity.
Once only linear phenomena occur, we switch to the linearized Euler equa-
tions. Switching as soon as possible from non-linear to linear is promising
in terms of computational demand: As described in Section 4.2, the solver
Ateles is a modal DG solver that requires modal-to-nodal transformations
in dedicated cases. In case of linear equations, the computation can be
done entirely in modal space, except for applying boundary conditions
where a nodal representation is required. The workload per timestep for a
linear equation is O(nElems · pd), where d is the number of dimensions,
nElems the total number of elements and p the polynomial order. For
non-linear equations, in contrast, a modal-to-nodal transformation is re-
quired for the flux computations. Depending on the transformation, L2 or
FPT, this results in a workload of O(nElems ·pd+1) or O(nElems ·pd log p),
respectively. Nevertheless, the coupling interfaces are determined by the
physics of the jet. Hence, we split the computational domain into an NSE,
an EE, and an LEE domain: The viscous NSE domain is the smallest,
elongated domain solving the bulk viscous flow. It is surrounded by the
EE domain, that is almost twice as large in x- and four times in y- (and z-)
direction, where non-linear inviscid flow is computed. The LEE domain is
the outermost square and largest domain where only linear wave equations
are simulated. Figure 5.13 depicts a 2D sketch of this setup that is not
to scale. The black lines indicate coupling interfaces. Thus, we have a
coupling interface between the NSE and the EE domain, as well as between
the EE and the LEE domain, respectively. The outermost black dashed
lines depict the outflow boundary of the LEE domain. The computational
domain is 240 × 240 × 240 lu in total. The NSE domain includes the
regions where the gradient of the velocity is not zero, while the EE domain
contains all non-linearities. To make sure that the coupling is physically
allowed, we chose each domain to rather be too large than too small (see
previous section). Next, we give all information of the simulation setup
considering parameters, initial as well as boundary conditions, and the
numerical discretizations.

115

5. Coupling results

 EENSE

32 lu

24lu

72 lu

96 lu

240 lu

240 lu

x

y

LEE

Figure 5.13.: 2D sketch of the coupling setup of free-stream jet for
monolithic-like setup A (not to scale). Black lines indicate coupling inter-
faces, the outermost black dashed lines are outflow boundary conditions.
Lengths in lu.

Material Table 5.7 defines the flow parameters for the different flow
regimes.

Initial condition As initial condition, the flow is set at rest which is equal
to the background state of the acoustic domain. The velocity of the jet at
the inflow with the amplitude ṽx = Ma · c is defined as

vx = ṽx · 0.5 ·
(

1 + tanh

(
r0 − |y − y0|

2d

))
where the tanh function smoothes the pulse in y-direction. The jet radius
is r0 = 0.1 and the jet center is moved in y-direction by 1e−4 to induce
asymmetry which accelerates the development of more vortices in the flow.
The momentum thickness is d = r0/20 = 5e−3. The velocity in y-direction
at the inlet is set to zero. To diminish the initial shock of the jet streaming
into a fluid at rest, the inflow velocity is linearly ramped up to the full
amplitude during the first 30 tu of the simulation. The density at the
inflow is adapted to the inflow velocity by means of the Crocco-Busemann
relation [86]:

ρ = ρ̃ ·
(

1 + γ − 1
2 ·Ma2 · vx

ṽx
·
(

1 − vx

ṽx

))

116

5.2. 3D subsonic free-stream jet

viscous flow (NSE)

dynamic viscosity µ 4.0e−6 m2 s−1

thermal conductivity λ 5.92e−3 W m−1 K−1

Prantl number Pr 0.6621
Reynold number Re 12 500

isentropic coefficient γ 1.4
viscous/
inviscid flow
(NSE/EE)

specific gas constant R 280.0
specific heat cp 980
Mach number Ma 0.5

acoustics (LEE)

background density ρ0 1.4

background velocity v0

[
0.0, 0.0, 0.0

]T

background pressure p0 1.0
speed of sound c 1.0

Table 5.7.: Parameters for the individual equations for the jet testcase.

Boundary conditions The black lines in Figure 5.13 mark all coupling
interfaces that are either coupling NSE with EE or EE with LEE. According
to Section 3.4, at the coupling interfaces all state variables are exchanged
and for NSE the gradients in normal direction are communicated as well.
The outer boundary conditions of the surrounding acoustic domain are
Dirichlet boundaries where all perturbation is set to zero.

Numerical framework All simulations are performed with the DG solver
Ateles. For the transformation from modal to nodal space, a fast polyno-
mial transformation (FPT) is used with no extra dealiasing factor. The
individual numerical resolutions in space are presented in Section 5.2.3 and
Section 5.2.6. For the discretization in time, we use the explicit second-
order Runge-Kutta method for all simulations. As coupling approach, we
use the presented integrated approach APESmate and the multi-solver
approach with preCICE. Considering preCICE, for non-matching coupling
interfaces the NP mapping is chosen. In order to stabilize the monolithic
simulation that computes NSE, we apply a positivity filter in the mono-
lithic simulation. We also apply a positivity filter in the NSE domain in
the coupled setup, whereas in the EE domain a weak modal cutoff filter
with an order of 50 is sufficient and less costly. The LEE domain does not

117

5. Coupling results

need any stabilization.

5.2.3. Numerical resolution A: Monolithic-like setup

In the following, we compare a monolithic simulation against a coupled
simulation while focusing on performance. First, we present a monolithic-
like setup, called setup A. Since it is not possible to change the order of the
numerical scheme between different regions in a monolithic simulation, we
use the same numerical order everywhere. In order to have the monolithic
and coupled simulations as similar as possible, we also use the same order
in every subdomain for the coupled setup. We set the order to O(8) as a
compromise between a low order for the flow domain but a high order for
the acoustic propagation in the far field.
Solving the entire domain with a very fine computational grid, which is

Figure 5.14.: Multi-
level mesh (L(12) up
to L(7)) of the viscous
flow, showing mesh
level jumps where
neighboring elements
are coarsened or
refined by a factor of
two.

required for the viscous flow close to the nozzle exit, is not feasible due to
vast computational cost. This cost can be reduced by coarsening the mesh
in regions of the domain where it is physically allowed, e.g. far away from
the nozzle. Therefore, most numerical solvers support varying grid sizes.
We call such a mesh with different grid sizes within one domain “multi-level
mesh” [5]. For Ateles, which is based on a cartesian octree grid, the mesh
level L indicates the grid size. Between neighboring elements, the grid size
can be coarsened or refined by a factor of two which equals to a jump of one
mesh level. For the monolithic simulation, we use such a multi-level mesh

118

5.2. 3D subsonic free-stream jet

equa-
tion

domain
size [lu]

number
of

elements

mesh
levels

L

element
size h

spatial
order

O

mono NSE 240 × 2402 137 964 12−5 6.25e−2−8.0 8

co
up

le
d NSE 32 × 242 102 180 12−7 6.25e−2−2.0 8

EE 72 × 962 10 080 6 4.0 8
LEE 240 × 2402 25 704 5 8.0 8

Table 5.8.: Individual domain and numerical discretization specifications
of monolithic-like setup A where the numerical resolution of monolithic
and coupled setups are equal. Lengths are measured in normalized length
units, lu.

with L(12) − L(5) to reduce the computational cost. This mesh contains
five level jumps concentrated in the region of viscous flow, and seven jumps
in total. Figure 5.14 shows the mesh for the viscous flow and these five
mesh level jumps. For the coupled simulation, we want to achieve exactly
the same computational discretization in element size h (= mesh level L)
as for the monolithic simulation. Hence, we use the same L(12) − L(7)
multi-level mesh in the NSE domain (Figure 5.14), where we introduce
a coupling interface from the NSE to the EE domain at the level jump
from 7 to 6, and at the level jump from 6 to 5, we introduce a coupling
interface from EE to LEE, respectively. Table 5.8 shows the individual
domain and discretization specifications of the monolithic-like setup A,
for the monolithic, as well as for the coupled simulation. The number
of elements for the monolithic simulation matches the sum of elements
across all subdomains in the coupled one. All domains use the same spatial
order Oand the number of degrees of freedom (DoF) for monolithic and
coupled are identical with 353 187 840. Thus, the monolithic and coupled
simulations differ in the following points: The replacement of two level
jumps by a (non-matching) coupling interface, and the simulation of NSE
in the entire domain in contrast to NSE–EE–LEE in individual subdomains.

As mentioned, we use the explicit second-order Runge-Kutta scheme in
time. For the coupled simulation, the timestep of each domain is fixed
to the smallest timestep of all domains: With the given flow parameters,
the parabolic timestep (Equation (2.44)) of the NSE domain limits the

119

5. Coupling results

timestep to be less than 1.61e−4 s. The CFL condition of the EE domain
requires a timestep less than 2.08e−2 s. Hence, the timestep of the NSE
domain limits the timestep in the coupled setup. This is equal to the
monolithic setup where the whole domain must be solved with the smallest
timestep.

Since we keep the computational discretization (order O and element
size h) the same for monolithic and coupled, with the monolithic-like
setup A we investigate the influence of the different equations in terms of
computational costs. These investigations will be done with the integrated
approach APESmate and the multi-solver approach preCICE. A good load
balancing strategy for the coupled scenario is a prerequisite for a large
scale simulation without wasting computational resources.

5.2.4. Investigations of load balancing

In this section we analyze load balancing (LB) by looking at the afore-
mentioned 3D jet testcase. We focus on a coupled simulation which has
a great potential to benefit from LB: The individual workloads for com-
putation and coupling steps for the monolithic-like setup A using the
integrated coupling approach APESmate are investigated in detail. With
APESmate, we also compare a single-stage to a multi-stage time inte-
gration. Subsequently, we look into load balancing with the multi-solver
coupling approach preCICE. Finally, we compare the performance of the
two coupling approaches to find the configuration which simulates the 3D
jet test case most efficiently. All investigations and timings were done on
SuperMuc Phase 1, IBM system at LRZ, Munich.

5.2.4.1. Load balancing with APESmate

In a coupled simulation we can observe two types of load imbalances (as
described in Section 3.2): Load imbalances between subdomains that are
due to different workloads from solving different equations, resolutions, or
orders of the numerical scheme. Therefore, the available computational
resources have to be distributed across subdomains according to their
individual workload. The second type of load imbalances are imbalances
within a subdomain that originate from boundary treatment, i.e. physical
boundaries as well as coupling interfaces. Elements that have to treat
boundaries are more expensive than inner elements, and coupling inter-
faces are even more expensive than the physical boundaries, especially
where additional gradients need to be computed (e.g. for coupling to NSE).

120

5.2. 3D subsonic free-stream jet

Both types of imbalances, between and within subdomains, influence each
other: Higher imbalances within a subdomain increase the run time of this
subdomain which in turn can result in imbalances between the subdomains.
In the following, we will investigate the load to find an optimal partitioning
of computational resources for a coupled simulation.

Therefore, we investigate the factors that contribute to the execution time
of an individual element: The numerical computation of equations; bound-
ary treatment in general and coupling work in particular; communication
of coupling data; communication of flux data; waiting at synchronization
points; waiting in peer-to-peer communication. We identify the following
reasons why a coupled simulation requires time:

(i) Load for actual numerical computation: Computation of physical
flux, projection onto test functions, multiplication with inverted mass
matrix, etc.,

(ii) load for coupling point evaluation,
(iii) load for communication (internal communication to neighboring

elements as well as exchange of coupling data), and
(iv) waiting (also known as idling).

For this analysis, we have to distinguish between the actual load of a
process (i)-(iii) and the idling of a process (iv). The sum of loads (i) will
be called “compute load”. Time required for coupling point evaluation (ii)
will be called “coupling point evaluation load”. The LB algorithm SPartA
re-distributes elements based on weights, which should obviously mirror
the workload. In Section 4.2.1 we have described that measured timings
of individual routines are used as weights in Ateles. Therefore, weights
will be denoted in seconds in the following. To determine the compute
weights, Wcomp, the averaged workload (i), i.e. excluding communication,
is measured. For the point evaluation weights, Weval, the evaluation of
the polynomial (ii) is measured. Please note that each coupling element is
involved in computation like all “inner” compute elements and, thus, has a
non-zero compute weight Wcomp as well. The loads (i) and (ii) represent
the actual computation and evaluation task and, thus, are independent
of the number of MPI-processes. Hence, the sum of the compute weights
Wcomp as well as the evaluation weights Weval over all processes is constant
for the setup.

In order to be able to balance load well, synchronization points should
be avoided, since it is only possible to balance load in between them.
Since synchronization points often cannot be entirely avoided, the weights

121

5. Coupling results

for the LB algorithm have to represent the load between them. Hence,
an important conclusion from Section 3.2.2 is that load balancing that
considers computation and evaluation jointly is only beneficial when these
are not separated by any sort of synchronization.

Compute weights To examine the compute load per subdomain, we sum

up the compute weights of all elements in a subdomain,
nElems∑

i=1

Wcompi .

The sum of compute weights for the subdomains of setup A are

NSE EE LEE

sum of compute weights 61 922 s 2193 s 1893 s ,

which indicates that the NSE subdomain has the largest workload (a factor
of 28 larger than EE and a factor of 33 larger than LEE), while EE and
LEE show similar load with a minor 16% difference. The large difference
is due to the fact that 74% of the total number of elements compute NSE,
7% compute EE, and 19% compute LEE, where the latter two are also
less computationally demanding. Computing the LEE, in particular, is
cheap since the equations can be evaluated fully in modal space, except
for the boundary elements (see Section 4.2). In total, the compute load of
the entire coupled simulation is 66 008 s.

These compute weights, Wcomp, include internal level jumps. In case a
computational domain contains level jumps (here: monolithic and NSE
subdomain), they introduce additional internal load since interpolation
between coarse and fine elements is required. Setup A is constructed
such that two (of the seven) level jumps in the monolithic configuration
correspond to the coupling interfaces in the coupled configuration. The
workload of coupling interfaces is not included in Wcomp, but will be
investigated separately as Weval. In the coupled setup, the remaining
five level jumps are located exclusively in the NSE subdomain. Hence,
the monolithic simulation has two more level jumps, resulting in a higher
compute load. Thus, for a valid comparison we have to compare Wcomp of
the monolithic simulation with Wcomp +Weval of the coupled simulation,
which we will present in the paragraph about total weights.

Coupling point evaluation weights Besides compute load, there are ele-
ments at the coupling interface with additional load due to coupling. To
obtain the load of this coupling point evaluation, additional weights are

122

5.2. 3D subsonic free-stream jet

introduced. These weights, Weval, measure the evaluation of the polyno-
mial in the DG solver per element, as described in Section 3.3.2. Several
factors influence the cost of polynomial evaluation:

a) The polynomial order,
b) the number of points to be evaluated, and
c) whether a state only or a state & gradient evaluation is done.

For setup A, all subdomains use the polynomial order O(8) so that no
influence on Weval due to a) is expected. The number of points to be
evaluated, b), varies for the coupling elements for two reasons: The number
of requested points and the location of the coupling element. The number
of requested points depends on the polynomial degree of the requesting
subdomain (Section 3.3.1) and the number of “counter elements” that need
to be served. “Counter elements” describe the elements in the opposite
subdomain whose coupling points have to be served. For setup A the
polynomial order p is constant and set to p = 8. Therefore, we have
n = p2 = 64 coupling points per element per coupling face for the 2D
interface. The number of counter elements depends on the element size and
the level jumps at the coupling interface. Figure 5.15 presents a coupling

Fine
!+1

Fine
!+1

Coarse
!

(a) 2D sketch

Coarse
�픏

Fine
!+1

(b) 3D sketch

Figure 5.15.: Coupling interfaces with a one-level jump. Black dots illus-
trate coupling points (shifted to the left and right of the coupling interface
for illustration purposes).

interface with a one-level jump. In 3D, one coarse element has to serve the

123

5. Coupling results

points of 4 elements (instead of 2 elements in 2D), and one fine element
has to serve the points of 1

4 elements (instead of 1
2 elements in 2D). This

results in one element having to provide coupling data for several elements
or only a fraction of an element of the other subdomain. The black dots
in Figure 5.15a illustrate coupling points that are shifted to the left and
right of the coupling interface for illustration purpose, in reality the points
are lying directly on the interface. With the presented different number
of counter element to serve, a coupling element has to evaluate different
number of coupling points which are listed in Table 5.9.

co
up

lin
g

in
te

rf
ac

e

co
rn

er
el

em
en

ts

ed
ge

el
em

en
ts

pl
an

e
el

em
en

ts

co
up

lin
g

el
em

en
ts

(t
ot

al
)

co
up

lin
g

po
in

ts
pe

r
co

up
lin

g
fa

ce
pe

r
el

em
en

t

to
ta

ln
um

be
r

of
co

up
lin

g
po

in
ts

fo
r

st
at

e
ev

al
ua

ti
on

to
ta

ln
um

be
r

of
co

up
lin

g
po

in
ts

fo
r

gr
ad

ie
nt

ev
al

ua
ti

on

NSE–EE 4 100 700 804 16 14 592 0

EE–NSE 0 0 112 112 256 28 678 28 678
EE–LEE 4 156 1980 2140 16 36 864 0

LEE–EE 0 0 380 380 256 97 280 0

Table 5.9.: Element configuration at the coupling interfaces of setup A,
classified into into corner, edge, and plane elements.

Considering the location of the coupling elements, we can state that a
3D coupling element can have one, two, or three coupling faces. In case an
element has no coupling face, it is not a coupling element according to our
definition. An element with one coupling face is, for instance, located at
the plane of a 2D coupling interface. An element with two coupling faces
is located at the edge of the 2D coupling interface, resulting in two faces
that have to serve the other subdomain. In this case, the element has to
serve twice the number of points compared to plane elements of the same
coupling interface. An element with three coupling faces is located at one
of the corners of the 2D coupling interface. Table 5.10 gives an overview
of the number of total, compute and coupling elements per subdomain

124

5.2. 3D subsonic free-stream jet

subdomain total elements compute elements coupling elements

NSE 102 180 101 376 804
EE 10 080 7828 2252

LEE 25 704 25 324 380

Table 5.10.: Number of total, compute and coupling elements at the
coupling interfaces of setup A.

of setup A. Compute elements are “inner” elements without boundary
treatment. Additionally, Table 5.9 presents the element configurations per
coupling interface, where coupling elements are classified into corner, edge,
and plane elements. The names of the coupling interface, e.g. NSE–EE, are
chosen in such a way, that the first subdomain, e.g. NSE, is the subdomain
that has to evaluate the coupling points and, thus, is the subdomain
with the additional weight Weval. The second subdomain, e.g. EE, is the
subdomain that requests the coupling points and requires the coupling data.

Table 5.9 presents the number of requested points that require a gradient
evaluation in addition to the state evaluation in the last column. For the
jet setup, only the EE elements at the NSE interface have to evaluate
state & gradient. This is the third factor c) that influences the load of a
coupling element, and has the biggest impact.

The total evaluation weight of a subdomain depends on the number of
coupling elements and the evaluation weight per element. With the setup
A and the presented element configuration of Table 5.10 and Table 5.9,
the sum of coupling point evaluation weights for each subdomain
are

NSE EE LEE

sum of coupling point evaluation weights 30 s 690 s 207 s .

These evaluation weights show that the NSE subdomain has the lowest
coupling load, while the load of the LEE subdomain is six times higher,
and the EE subdomain has the highest load with its state & gradient
evaluation and two coupling interfaces. This can be expected from Ta-
ble 5.9: Considering only state evaluation NSE has the smallest number
of points to be evaluated. LEE has 6.5 times the number of points of

125

5. Coupling results

NSE, which leads to a proportionally times higher evaluation load. For
the EE domain, the number of points for state evaluation (EE–NSE and
EE–LEE) is 4.5 times higher than NSE, which would result in an evalu-
ation weight of around 135 s, but EE has 28 678 points that additionally
require gradient evaluation. Usually, it can be assumed that the number of
points effects the workload for a polynomial evaluation. This is true for the
state evaluation, but not entirely for the gradient evaluation: As presented
in Appendix A, we have developed an optimized implementation that is
based on an element-wise evaluation. This means, that some parts of the
gradient evaluation are performed once for an element and are reused for all
coupling points located in this element. Hence, not only the number of cou-
pling points but also the combination of points within elements influences
the evaluation load (for a detailed analysis see Appendix A and Figure A.3).

The high evaluation weights of the EE subdomain are analyzed in more
detail. Figure 5.16 illustrates the evaluation weights of the EE subdomain

Figure 5.16.: Coupling weights of both EE coupling interfaces. Left shows
the entire subdomain and right is zoomed to the EE–NSE interface which
shows an increased evaluation load.

with logarithmic scale. On the left side, the entire EE subdomain is shown
where the front “with the whole” is the yz-plane of the physical boundary
of the EE subdomain. At the interface between EE and the surrounding
LEE subdomain, the different weights for plane (one face), edge (two faces),
and corner (three faces) elements can be distinguished: The weight for a

126

5.2. 3D subsonic free-stream jet

plane element with one coupling face are around 0.03 s (cyan color); the
weight for an edge element with two coupling faces are around 0.06 s (green
color); a corner element with three coupling faces shows a weight of around
0.1 s (yellow color). The dark blue elements are “inner”elements, that do
not generate coupling load. The right side of Figure 5.16 shows only the
coupling elements towards the inner NSE subdomain. Here, we see that
the weight for state & gradient evaluation elements (red color) is by more
than an order of magnitude higher than all other weights. Please note that
the weights are based on timers and during performance measurements
fluctuation of the timings were noticeable. All of the aforementioned points
explain the high coupling costs of the EE subdomain.

Total weights In order to obtain the total load of a subdomain, we con-
sider the sum of compute and coupling point evaluation load. Compared
to the compute weight, the evaluation weight for NSE is significantly
smaller at only 0.048%. For the EE subdomain, the evaluation weight
is around 30% compared to the compute weight and for the LEE sub-
domain the evaluation weight is only 10% compared to the compute
weight. The sum of total weights for the individual subdomains are

NSE EE LEE

sum of total weights 61 952 s 2883 s 2100 s .

The total weights of the coupled simulation sum up to 66 935 s. The
monolithic simulation, in contrast, has a total weight of 83 250 s which
is about 24% more expensive. As previously mentioned, the monolithic
simulation has internal level jumps, where the coupled simulation uses
coupling interfaces. Costs for internal level jumps are included in Wcomp

while costs of coupling evaluation are included in Weval. Hence, we have
to compare Wcomp of the monolithic simulation with Wcomp + Weval of
the coupled simulation for a valid statement of loads. The conclusion is
that the difference of 24% in load is due to the fact that the monolithic
simulation computes NSE in the entire domain.

Table 5.11 summarizes the previously presented weights for the sub-
domains. Regrading the distribution of the total number of process
across the subdomains, we have to consider the total weights. Hence,

127

5. Coupling results

NSE EE LEE

sum of compute weights 61 922 s 2193 s 1893 s
sum of evaluation weights 30 s 690 s 207 s
sum of total weights 61 952 s 2883 s 2100 s

Table 5.11.: Weight distribution between the subdomains: Sum of weights
for compute, coupling point evaluation, and total as sum of the subdomains.
All weights in s.

the number of available processes should be distributed according to
total weight of subdomain

sum total weight of all subdomains . This results in 92.6% of available processes
for NSE, 4.3% of available processes for EE, and 3.1% of available processes
for LEE subdomain and will be present in the following paragraph for load
balancing.

Weight ranges within a subdomain With the presented weights per sub-
domain, we can balance the load between subdomains. As the loads per
element differ for coupling and non-coupling elements, we will look at the
load ranges within a subdomain in the following.
The compute weights per element do not differ within a subdomain, except
for the elements involved in internal level jumps and physical boundaries,
since all elements have to compute the same equation and numerical
scheme. In the NSE domain, there are internal level jumps. The physical
boundaries for NSE and EE do not have additional impact, since these
equations anyway require nodal-to-modal transformations for non-linear
terms. For the LEE domain, the physical boundary elements have to do an
additional nodal-to-modal transformation. The compute weights range
is

NSE EE LEE

compute weights range [0.55 s, 0.65 s] [0.19 s, 0.21 s] [0.06 s, 0.08 s] .

Considering the coupling point evaluation weights, the range is larger:
The minimum weight is zero, since all “inner”, non-coupling elements have
no evaluation weight. The coupling point evaluation weights range
in the coupled setup A are measured to

128

5.2. 3D subsonic free-stream jet

NSE EE LEE

coupling point
evaluation

[0.0 s, 0.1 s] [0.0 s, 6.7 s] (EE–NSE) [0.0 s, 0.55 s]

weights range [0.0 s, 0.12 s] (EE–LEE) .

For the EE subdomain, two ranges are listed since the EE subdomain
has two coupling interfaces, EE–NSE and EE–LEE, respectively. The
maximum evaluation weights differ so significantly due to the already
presented reasons: Mesh level jumps at the coupling interfaces (see Fig-
ure 5.15), the different element locations (see Table 5.9), and the additional
gradient computation at the EE–NSE interface (see Table 5.9). In detail
the maximum weights can be explained as follows:

NSE All NSE elements need to couple to a mesh that is one level coarser,
which means that 1 NSE element serves only 1

4 of the coupling points
of one EE element. The NSE element with the largest coupling load
is the corner element that has 3 times the coupling points to serve
than the other NSE elements.

EE The EE subdomain has two coupling interfaces: At the EE–NSE
interface the EE subdomain needs to provide the gradients of the
coupling variables (red elements in Figure 5.16) and, additionally,
couple to a one-level finer mesh s.t. 1 EE element has to serve 4
NSE elements. Therefore, these coupling elements have the high-
est evaluation weight within the EE subdomain. At the EE–LEE
interface, there is a one-level jump and, thus, an EE element has
to serve points of 1

4 of an LEE element. According to Table 5.9,
the EE–LEE interface has elements of different location categories,
where the corner elements are the most expensive category among
the EE to LEE elements.

LEE The LEE subdomain only has plane elements with one coupling face.
Hence, all coupling elements have the same amount of coupling load
of around 0.55 s. For completeness, all LEE elements couple to a
one-level finer mesh resulting in 1 LEE element serves points of 4
EE elements.

With these facts, we can look at the total weights range within a
subdomain. The largest share are, as expected, the coupling weights, since
all elements have to perform calculations. The minimum total weight of all
elements is the minimum compute weight for an “inner” element. While

129

5. Coupling results

the total weight is the sum of compute and coupling point evaluation
weight, the maximum total weight over all elements is not necessarily
the maximum of all compute weights and the maximum of all evaluation
weight. For example, a coupling element with high evaluation load is
typically not involved in a internal level jump which increases the compute
load. The total weights range is

NSE EE LEE

total weights range [0.55 s, 0.73 s] [0.21 s, 6.79 s] [0.08 s, 0.6 s] .

NSE EE LEE

compute weights
range

[0.55, 0.65] [0.19, 0.21] [0.06, 0.08]

coupling point
evaluation [0.0, 0.1]

[0.0, 6.7] (EE–NSE)
[0.0, 0.55]

weights range [0.0, 0.11] (EE–LEE)

total weights range [0.55, 0.73] [0.21, 6.79] [0.08, 0.6]

Table 5.12.: Weight distributions within the subdomains: Minimum and
maximum weights for compute, coupling point evaluation, and total. All
weights in s.

Table 5.12 summarizes the previously presented minimum as well as
maximum weights and, thus, the weight distribution the subdomains. As
described in Section 3.2.2, the most expensive element, when compared to
the averaged load, limits the sensible number of processes to be used. The
LB algorithm tries to distribute the overall workload of the subdomains so
that all partitions have the same workload. The ratio between coupling
evaluation load and compute load in a subdomain is mainly determined
by the ratio of coupling elements to non-coupling elements. For coupling
elements, the type of polynomial evaluation is crucial since it increases the
load of the coupling point evaluation. The limiting case is reached when
we want to use more processes than the sensible number and no workload
is left to be further distributed. For setup A, the limiting subdomain is
the EE subdomain, due to the high cost of gradient evaluation with a

130

5.2. 3D subsonic free-stream jet

one-level jump and a ratio of coupling to compute elements of 1
3 . This

limitation highly depends on the simulation setup.

Communication load The next type of load of an element that we focus
on is communication. In general, a simulation does not necessarily in-
volve communication: Communication is only required when distributing
a problem across multiple processes to solve it in parallel. How much
communication is required depends on the number of processes and the
numerical approach. Often, communication load is not included in weights
for load balancing since it is not an actual workload, but a necessity for
parallel computation. Additionally, when measuring communication tim-
ings, it is hard to distinguish between actual communication and waiting
in point-to-point communication. Therefore, we do not include communi-
cation load as weights in the LB algorithm.

Nevertheless, we will discuss where communication is required. Within
a subdomain, each element communicates with its direct neighbors in
order to exchange flux information during DG computation. Additionally,
MPI-reduce communication takes place for all elements to exchange the
local time step and simulation status. In case all elements have the same
compute load, the waiting timings in communication are minimized and
the communication load only depends on the message size. Since all
communication elements within a subdomain, communicate the same kind
of information, the communication load can be considered a constant
offset. This offset is irrelevant for the LB algorithm since it only considers
weights relative to each other. Between subdomains, coupling elements
communicate with their counter element(s) to exchange coupling data.
Here, the total communication load depends on the number of coupling
elements and their coupling data which determine the message size. Hence,
the message size of an element changes with the number of points to serve
and whether it is state evaluation only or state & gradient evaluation. In
particular, the number of messages changes whether it is a plane, edge or
corner element: An edge element sends two messages of the same message
size as a plane element; and a corner element sends three messages of the
respective size. Nevertheless, we assume the point-to-point communication
to be significantly smaller than the polynomial evaluation (depending on its
order) and, therefore, we neglect this contribution to the imbalances. For
coupling, it is important to minimize the communication during simulation
which is done with a thought out initialization routine (see Section 4.4.3).
The main aspect is, that all information that can be gathered a priori and

131

5. Coupling results

does not change during simulation are stored per process. Based on this,
the number of messages during simulation can be reduced.

Load balancing to minimize waiting times After discussing the actual
workload and the communication load, we look at the waiting times in
coupled simulation and how they occur. Waiting times typically arise
during communication and at synchronization points. As mentioned in
the previous paragraph, we have communication within subdomains and
coupling communication between the subdomains. Within a subdomain,
waiting can occur in the point-to-point communication between elements
which indicates bad load balancing within the subdomain. In the coupling
step, waiting times can occur in the exchange of coupling data. For ex-
ample, when an LEE element has to wait for an EE element to reach the
coupling step to be able to receive the requested data. This is an indicator
for bad load balancing between the subdomains. The other possibility
for waiting times of an element is at synchronization points: When an
element is done with its tasks after one timestep, there is a synchronization
point in Ateles where all elements wait for each other (e.g. to synchronize
the timestep, check of the simulation status, etc). An element without
coupling load is faster and will reach this final synchronization point faster
than elements with coupling load. Therefore, the goal of load balancing is
to gather elements without coupling and elements with coupling onto a
number of processes so that in sum each process needs about the same time
to reach the final synchronization point. This is equivalent to avoiding, or
at least minimizing, waiting times. We evaluate the waiting times at this
synchronization point as indicative numbers to evaluate how well the LB
within and between the subdomains is.

In order to find the load balancing strategy that minimizes waiting
times, we investigate setup A on 4096 MPI-processes for 100 timesteps.
Table 5.13 presents the execution times for different partitioning strategies
with APESmate including the waiting times at the synchronization point.
Please note that the execution time is presented as “wall-clock time” while
the waiting times are given as “cpu time”. That is, the waiting times are
aggregates of the elapsed time over all coupling elements and all processes.
Hence, it cannot be stated whether some elements are waiting for a long
time, or if there are many elements waiting for a short time. However, a
significantly large number indicates more waiting in sum and, thus, worse
load balancing. For a better comparison, we list the the sum of waiting
times (“cpu time”) averaged over the total number of coupling elements as

132

5.2. 3D subsonic free-stream jet

Waiting times [s]
Partitioning
strategy

Subdo-
mains

Pro-
cesses

Execution
time [s] Sum

Element
averaged

1) NSE 3034 78 100 97.1
elements EE 299 99.6 25 500 11.3

LEE 763 73 100 192.4

2) NSE 3791 217 000 269.9
total weights EE 176 114.8 13 600 6.0

LEE 129 243 000 639.5

3) NSE 3791 80 300 99.9
total weights EE 176 80.3 7250 3.2
+ SPartA
LB

LEE 129 7580 19.9

Table 5.13.: Waiting and execution times (without initialization phase)
for different partitioning strategies: 1) using number of elements per
subdomain for the distribution of processes, 2) using weights for the
distribution of processes, 3) using weights and re-partitioning with SPartA
running 100 timesteps of setup A with APESmate. Execution times are
“wall-clock time”. Waiting times are “cpu-time”.

“element averaged waiting time”. Nevertheless, the most important times
are the execution times as “wall-clock time” since this is the elapsed time
between the first timestep of the simulation and reaching 100 timesteps
(without initialization). We use three different partition strategies to
distribute the total number of 4096 processes over the three subdomains
(NSE, EE, LEE):

1) Partitioning between the subdomains according to the number of
elements per subdomain and within subdomains according to the
number of elements: According to the number of elements (102 180,
10 080, 25 704) each subdomain gets 74.1%, 7.3%, and 18.6% of the 4096
MPI-processes, respectively. Within the subdomains, the elements are
equally distributed. As the costs per element differ strongly for NSE,
EE, and LEE, as well as for coupling and non-coupling elements, this
distribution cannot lead to a good load balancing between subdomains.
Table 5.13 shows the high waiting times resulting from these imbalances.

133

5. Coupling results

In particular the LEE subdomain, with its cheap computation, results in
high averaged waiting times.

2) Partitioning between subdomains according to total weights per
subdomain and within a subdomain according to number of elements:
As presented in Table 5.12, the total weight (computation + evaluation) per
subdomain differ and according to the actual weights the NSE subdomain
requires 92.6% of the resources, the EE and LEE subdomains 4.3% and
3.1%, respectively. Keeping the overall number of MPI-processes constant
to 4096, the distribution of processes is 3791, 176, and 129, respectively.
With this, the waiting times for NSE and LEE increase by a factor of
2.8 and 3.3, respectively, and the execution time escalates by 15% (Ta-
ble 5.13). Considering each subdomain individually, the NSE subdomain
should be faster since it has more processes, while the EE and the LEE
subdomain take more computation time since they have less processes
compared to 1). Coupling them, the overall execution time should decrease
since load between the subdomains should be more balanced and smaller
waiting times are to be expected. The problem, however, is that within
the subdomain, the elements are still equally distributed and the high
evaluation load of elements at the coupling interface results in waiting
times for the other subdomains (to receive their coupling data). The
missing key is load balancing within subdomains that leads to element
distributions according to the workload, in particular in the EE subdomain.

3) Partitioning between the subdomains according to total weights
per subdomain and within subdomain according to total weights per
elements by applying SPartA: The aforementioned number of processes
per subdomain is chosen. Table 5.13 shows that the waiting times for EE
and LEE decreased by a factor of 3.5 and 9.6 compared to strategy 1),
and that they are the smallest of all strategies. The waiting times for
NSE increase slightly but we cannot determine how many elements are
actually waiting. Within the NSE subdomain, the elements are distributed
according to their weights which leads to a better balancing so that cou-
pling elements can finish faster which results in less waiting of the EE
subdomain. Compared to 2) where the same number of processes is used,
the waiting times decrease by a factor of 2.7, 1.9, and 32, respectively.
This partitioning strategy 3) shows the best overall performance of the
coupled simulation. The execution time for 100 timesteps decreased by
30% compared to 2) and by 19% compared to 1).

In contrast to the coupled simulation, the monolithic simulation needs

134

5.2. 3D subsonic free-stream jet

120 s for 100 timesteps, which is more than any of the coupled simulations.
The execution time of the fastest coupled simulation with partitioning
strategy 3) is 34% less than the monolithic simulation.

Using a load balancing algorithm can prolong the initialization phase
due to additional computations required for re-partitioning and, subse-
quently, the actual re-partitioning. Table 5.14 shows the time spent in the

Partitioning strategy Initialization time of APESmate [s]

1) elements 4.885
2) total weights 5.805
3) total weights + SPartA LB 13.89

Table 5.14.: Time spent in the initialization phase of APESmate for the
different partitioning strategies.

initialization phase of APESmate for the entire simulation. We observe
that re-partitioning with the LB algorithm SPartA increases the time by
a factor around 2.6. Considering large scale simulations, the initialization
phase becomes negligible so that all aforementioned execution times ex-
clude the time for the initialization process. An “iterative” use of SPartA
where we restart the simulation with new weights after certain numbers of
timesteps is evaluated in Appendix D.

Well-balanced coupled simulations with APESmate We propose the fol-
lowing workflow for setting up a well-balanced coupled simulation: First,
use partitioning strategy 1) to partition between the subdomains according
to the number of elements per subdomain and within subdomains accord-
ing to the number of elements. Run the simulation for a small number of
timesteps to determine the set of weights per element. Subsequently, apply
partitioning strategy 3) to partition between the subdomainss according to
the total weight per subdomain and within subdomains according to the
total weight per element by applying SPartA. The partitioning strategy 2)
is not required as the presented results show. As mentioned before, the
weights are based on timings that are highly dependent on the hardware
setup (the machine, partition, CPUs). Hence, the weights do not necessar-
ily translate between system so that they have to be measured for a new
target system.

135

5. Coupling results

5.2.4.2. Single-stage vs. multi-stage time integration

All previously shown results were done with a second-order Runge-Kutta
(RK) method which is a multi-stage time integration scheme (Section 2.2.2).
As already discussed in Section 3.2.2, a multi-stage time integration uti-
lizes two sub-stages to increase the order in time. These two sub-stages
are constructed with a midpoint t + ∆t

2 for each timestep. Hence, a
second-order RK method has two computation steps each concluded by a
synchronization step. A single-stage time integration like the first-order
forward Euler scheme has only one computation step. The synchronization
at the midpoint in the second-order RK method influences the load bal-
ancing within the subdomain. The load balancing based on total weights
(computation + coupling) works well for single-stage integration, whereas
it introduces imbalances at the synchronization step at the midpoint of the
second-order method. As presented in Figure 3.7 in Section 3.2.2, when
balancing according to total weights, coupling elements are idling at the
end of the first sub-stage. Considering the overall simulation, this balanc-
ing strategy is superior to balancing according to the compute weights
only, since it leads to idling of all compute elements at the end of the
second sub-stage of the second-order RK scheme. It also results in smaller
overall simulation time. We assume that the maximum of waiting times in
the internal communication over all elements represents this idling of the
coupling elements at the midpoint. Therefore, Table 5.15 presents these

time integration method subdomain maximum
communication time [s]

NSE 32.2
forward Euler EE 3.3

LEE 4.4

NSE 62.8
Runge-Kutta EE 10.7

LEE 11.5

Table 5.15.: Maximum communication time for first-order forward Euler
scheme and second-order Runge-Kutta scheme when balancing based on
total weights (computation + coupling).

maximum communication times for the individual subdomains for the
first-order forward Euler scheme and the second-order RK scheme. Ideally,

136

5.2. 3D subsonic free-stream jet

the internal communication of the second-order RK require twice as much
time as the internal communication of the forward Euler scheme. Since
data to communicate, partners to communicate with, and partition of
elements are similar, the deviation can be explained by processes waiting
for their communication partner to be ready to communicate. Table 5.15
shows that for the NSE subdomain the maximum communication time is
almost doubled. For the EE subdomain the maximum communication time
of the coupling element is a factor of 3.2 larger and for the LEE subdomain
a factor of 2.6. This indicates idling processes in a balanced simulation
with multi-stage time integration, as already predicted in Section 3.2.2.

5.2.4.3. Load balancing with preCICE

The multi-solver approach uses the external coupling library preCICE
that works exclusively on geometry data of the coupling interfaces. How-
ever, most load balancing algorithms are based on element weights (as
previously discussed). In order to distribute the compute and coupling
workload jointly, both types of workload must be measured, which is hardly
possible within preCICE: After computation, point data at the interface
are provided by the solver Ateles to preCICE. Subsequently, the association
between points and elements is lost and data mapping as well as commu-
nication within preCICE is done per process. While element weights
for computation can be measured by the solver, the element weights for
coupling cannot be measured. As described in Section 4.3.2, the solver
has two extra calls to preCICE for writing data to and reading data from
preCICE in every timestep. The routine Write to preCICE is expensive,
as shown in Section 4.3.6. In Ateles, we measure the timings for these
two extra calls to preCICE as coupling weights and include them in the
total weights per element. Hence, the load balancing algorithm SPartA
distributes according to total weights that are based on computation of
the numerical scheme in Ateles and the solver-internal coupling cost due to
preCICE calls. Table 5.16 presents execution times for different partition-
ing strategies similar to the investigations for APESmate (Table 5.13). The
first line in the partitioning strategy describes the distribution between
the subdomains and SPartA defines whether load balancing within the
subdomains is used. Since we are running a multi-solver approach, each
subdomain has its individual runtime which should be similar to each
other to be efficient. Therefore, each run has three execution times and the
maximum time is pivotal. Six different strategies are used, which already
shows that load balancing is not that simple with preCICE.

137

5. Coupling results

Partitioning strategy subdomain processes execution time [s]

1) elements NSE 3034 107.4
EE 299 99.8

LEE 763 105.7

2) total weights NSE 3795 155.8
EE 172 137.6

LEE 129 78.4

3) total weights NSE 3795 151.5
+ SPartA LB EE 172 149.9

LEE 129 75.8

4) computation and NSE 1816 163.5
coupling times EE 1113 165.8

+ SPartA LB LEE 1167 165.3

5) computation times NSE 3979 222.2
+ SPartA LB EE 69 205.3

LEE 48 78.3

6) elements NSE 3034 94.7
+ SPartA LB EE 299 94.9

LEE 763 93.5

Table 5.16.: Computation times (without initialization phase) of different
partitioning strategies running 100 timesteps of setup A using the multi-
solver approach preCICE. First line in the partitioning strategy describes
the distribution between the subdomains, and SPartA is used for load
balancing within the subdomains.

We start with the naive approach and distribute the total number of
processes between the subdomains according to the number of elements
in each subdomain. Next, we use the total weights per subdomain to
distribute the processes according to the workload. Strategy 3) maintains
the same distribution of processes and utilizes SPartA for load balancing
within each subdomain. The maximum execution time does not reduce
as expected for the aforementioned strategies. Please note that strategies
1) - 3) are similar to the load balancing with APESmate, except that the

138

5.2. 3D subsonic free-stream jet

measuring of the coupling weights differs due to the black box preCICE.
Therefore, strategy 4) partitions the processes according to computation
times (including internal communication) and the coupling times (times
of all processes per subdomain spent in preCICE) and uses SPartA for
load balancing within the subdomains. This shifts processes from the NSE
subdomain to the EE and LEE subdomains, which increases all execution
times even further. In particular for the LEE subdomain, the execution
time increases by more than a factor of two due to high waiting times in
preCICE. Hence, we neglect coupling and strategy 5) distributes processes
between the subdomains exclusively according to computation times per
subdomain, which leads to an even higher maximum time. Therefore,
the final strategy 6) falls back to distributing processes according to the
number of elements per subdomain (strategy 1)), but uses load balancing
within the subdomains. It is the best run of all partitioning strategies.
The timings for this run are 13% lower than for partitioning according
to elements 1) and all subdomains observe the same low execution time,
thus no subdomains are idling or have more workload than others. For
setup A, the number of elements appears to be a good indicator of the
overall load even if the subdomains solve different equations. SPartA
helps to reduce the load imbalances within the subdomains due to the
solver-internal coupling load. Partitioning strategy 3) (weights + SPartA
LB) which is working good for APESmate does not improve the maximum
timing since the coupling load per element in preCICE (data mapping +
communication) is not properly measured and SPartA cannot distribute
the coupling elements. In this work, we identify partitioning strategy 6)
to be the most efficient approach for coupled simulations with the multi-
solver approach preCICE. For further enhancements, preCICE would need
to incorporate load balancing or, at least, provide coupling weights per
element s.t. the LB within the subdomain can work properly.

5.2.4.4. Comparison of APESmate and preCICE

To sum up, Table 5.17 presents the execution times (without initialization
time) for a monolithic and a coupled simulation using APESmate and
preCICE for setup A. The results of the most efficient partitioning strate-
gies, as identified in the previous sections (see Table 5.13 and Table 5.16),
are listed. The monolithic simulation was setup to not utilize SPartA,
since using it has increased the simulation time by 5%. As presented in
Section 4.2.1, compute weights are not explicitly measured per element,
but are computed as the average weight of all elements on the same process.
Hence, the load of elements involved in level jumps is underestimated,

139

5. Coupling results

subdomain processes execution time [s]

monolithic 4096 120.2

preCICE NSE 3034 94.71
EE 299 94.97

LEE 763 93.53

APESmate NSE 3791
EE 176 80.3

LEE 129

Table 5.17.: Execution times (without initialization phase) of the most
efficient partitioning (Table 5.13 and Table 5.16) of the setup A for
monolithic, coupled simulation using preCICE and coupled simulation
using APESmate.

while the load of the elements on the same process without level jump
are overestimated. Therefore, the monolithic simulation does not benefit
from SPartA. For future work, it is highly recommended to explicitly
measure all weights per element. The multi-solver approach with preCICE
is partitioned according to the number of elements per subdomains and
balanced with SPartA. The APESmate run is partitioned according to the
weights and also balanced with SPartA. The execution times confirm our
previous predictions: Coupled simulations are faster than monolithic simu-
lations and the integrated coupling approach is faster than the multi-solver
approach using an external library. APESmate speeds up the simulation
by a factor of 1.5 and preCICE by a factor of 1.2.

5.2.5. Scalability of setup A with APESmate

In this section we investigate the scalability of setup A with APESmate.
To achieve a strong scalability, we use the identified best load balancing
configuration and balance between the subdomains according to the total
weights and use SPartA for LB within the subdomains. Based on the
resulting distribution on 4096 processes, we distribute the processes accord-
ing to Table 5.18. The construction of the weights mirrors the compute
and polynomial evaluation load and, therefore, are independent of the
number of processes.

140

5.2. 3D subsonic free-stream jet

total NSE EE LEE

1024 948 44 32
2048 1896 88 64
4096 3791 176 129
8192 7582 352 258

12 288 11 373 528 387

Table 5.18.: Number of processes for strong scaling distributed of the
individual subdomains for monolithic-like setup A.

The maximum number of processes that can be utilized is naturally
limited by the number of elements in a setup, since one element cannot
be distributed across multiple processes. As described in Section 3.2.2,
the most expensive element, when compared to the average load, limits
the sensible number of processes to be used. For the usage of SPartA,
this is further described in Section 4.2.1. For setup A, we use 12 288 as
maximum number of processes (Table 5.24) for the strong scaling. This is
due to the EE subdomain, where coupling elements to NSE are expensive
and the ratio between maximum total weight (6.79 s) and average total
weight (0.28 s) is bad.

103 104

Number of processes

1.0

1.2

1.4

P
ar

a
lle

l
effi

ci
en

cy

setup A

Figure 5.17.: Strong scaling for well-balanced setup A with APESmate
measured for 100 timesteps.

Figure 5.17 presents the results of strong scaling for the monolithic-like

141

5. Coupling results

setup A. The simulations are performed for 100 timesteps, the consumed
time excluding the initialization phase are measured, and the parallel
efficiency is computed. The computation on the smallest number of ranks
(1024) is used as reference, resulting in a parallel efficiency of 1. The setup
shows a superlinear scaling which indicates that coupling in general does
not pose a bottleneck.

5.2.6. Numerical resolution B: Tailored setup
Once an appropriate load balancing strategy has been found, we will adapt
the setup by tailoring the numerical discretization to the physical regimes
to exploit all benefits of a partitioned coupling approach. According to
the physics, we choose a low order with a very fine grid for the viscous
flow domain and a higher order with a coarse mesh for the acoustic far
field. For the adaptation, we can use our knowledge about the physics of
the 3D free-stream jet as well as the results from the previous Section 5.2.4.

For the tailored setup B, we focus on the coupled simulation. The
monolithic simulation is adapted to be as close as possible to the coupled
setup in order to allow for a performance comparison. Please note that
the monolithic simulation will only be simulated for a limited period of
simulation time to not unnecessarily consume computational resources.
First, we narrow the NSE domain for the coupled simulation to a specific
region, such that two different cases can be investigated: One where the
turbulent jet only expands in the NSE subdomain (t = 120) and another
example where the vorticty of the jet travels over the coupling interface
into the EE subdomain (t > 100). Thus, we shrink the NSE domain
in x-direction by a factor of 3.2 and in y-(and z-)direction by a factor
of 6. As a consequence, the number of elements of the EE domain is
increased, which improves the coupling to compute ratio within the EE
domain. A limiting factor of setup A was the small timestep of the NSE
subdomain which had to be used for all subdomains. This small timestep
is due to the high order, O(8), in the NSE domain according to the CFL
condition for parabolic equations (2.44), In order to increase the timestep,
a second-order scheme in the viscous flow with an according grid resolution
is preferable.

Similar to setup A, Table 5.19 summarizes the individual domain sizes
and numerical specifications of B. In the following, we will discuss individ-
ual changes in detail. In contrast to the monolithic-like setup A, we do not
limit the tailored setup B to use the same spatial order in every domain.

142

5.2. 3D subsonic free-stream jet

equa-
tion

domain
size [lu]

number
of

elements

mesh
levels

L

element size h spatial
order

O

mono NSE 240×2402 8 833 832 14−7 1.5625e−2−2.0 2

co
up

le
d NSE 10 × 42 4 676 160 14−12 1.5625e−2−6.25e−2 2

EE 72 × 962 35 688 9−6 0.5−4.0 8
LEE 240×2402 25 704 5 8.0 12

Table 5.19.: Individual domain and numerical specifications of setup B
where the monolithic and the coupled setup are tailored to physical needs.
Lengths are measured in normalized length units.

Instead, we adapt the spatial order to the physical phenomena: O(2) in
the NSE domain and a high order O(12) for the acoustic wave propagation
in the LEE domain. For the EE domain, we maintain the medium order
O(8), similar to setup A. In the monolithic approach, we also use O(2)
to benefit from a larger timestep as well. Accordingly, we have to adapt
the grid size to achieve the required numerical resolution. Therefore, we
refine the mesh in the entire domain to counteract the reduction in spatial
order. In practice, this means increasing all mesh levels by two. Similarly,
we refine the grid resolution for the NSE domain accordingly. Figure 5.18
presents a comparison of the meshes of the NSE subdomain for setup A
and B. Please note, that the locations of level jumps in setup A and B
are similar but not identical. Additionally, we have adjusted the mesh of
setup B to the narrowed NSE domain. Since we have narrowed the NSE
domain, the EE domain has to be enlarged accordingly and we shift jumps
of the refinement levels from the former NSE domains to the EE domain.
Close to the EE–LEE coupling interface, the grid resolution is unaffected,
i.e. L(6). For the tailored setup, we do not restrict the mesh configuration
of coupling interfaces to be one-level jumps only. Hence, the NSE domain
has an L(12)-mesh at the coupling interface, while the EE subdomain has
a L(9)-mesh at the NSE interface. This results in a three-level jump as
presented in Figure 5.19.

143

5. Coupling results

Figure 5.18.: Comparison of mesh of NSE domain for setup A (top) and
setup B (bottom).

Fine
!+3

Coarse
!

Figure 5.19.: Coupling interfaces with three-level jump.

144

5.2. 3D subsonic free-stream jet

co
up

lin
g

in
te

rf
ac

e

co
rn

er
el

em
en

ts

ed
ge

el
em

en
ts

pl
an

e
el

em
en

ts

co
up

lin
g

el
em

en
ts

(t
ot

al
)

co
up

lin
g

po
in

ts
pe

r
co

up
lin

g
fa

ce
pe

r
el

em
en

t

to
ta

ln
um

be
r

of
co

up
lin

g
po

in
ts

fo
r

st
at

e
ev

al
ua

ti
on

to
ta

ln
um

be
r

of
co

up
lin

g
po

in
ts

fo
r

gr
ad

ie
nt

ev
al

ua
ti

on

NSE–EE 4 884 43 276 44 164 1 45 056 0

EE–NSE 0 0 468 468 256 119 808 119 808
EE–LEE 4 156 1980 2140 36 82 944 0

LEE–EE 0 0 380 380 256 97 280 0

Table 5.20.: Element configuration at the coupling interfaces of setup B,
classified into into corner, edge, and plane elements.

Considering the number of coupling points, a coarse EE element has to
serve 4 points to each of the 64 NSE elements, resulting in 256 coupling
points to evaluate. In total, the number of coupling points increased by a
factor of 4 since the number of EE coupling elements is increased as seen
in Table 5.20. The EE–NSE interface has to provide expensive gradients
as well. In this case, however, one EE elements has more coupling points
located within it and, hence, can we exploit the element-wise implementa-
tion of the gradient evaluation. For the LEE domain, we are not limited
to the medium order O(8) of the EE domain: Since we are interested in
the acoustic far field, we maintain the grid resolution while increasing the
spatial order to O(12), in order to simulate the wave propagation with
higher quality than in the limited monolithic-like setup A. The higher order
will increase the cost of the coupling point evaluation. The computational
cost, however, does not increase drastically since the modal computation
of linear equations scales well with a complexity of O(nElems · p3) in 3D
(as presented in Section 4.2). With all this, setup B poses non-matching
coupling interfaces.

Table 5.21 gives an overview of the number of total, compute and cou-
pling elements per subdomain of setup B. Compared to setup A, especially

145

5. Coupling results

subdomain total elements compute elements coupling elements

NSE 4 676 160 4 631 996 44 164
EE 35 688 33 080 2608

LEE 25 704 25 324 380

Table 5.21.: Number of total, compute and coupling elements at the
coupling interfaces of setup B.

for the EE domain, the ration between compute to coupling elements is
increased from 3.5 to 12. This is very beneficial for load balancing since
more compute workload can be distributed and compensate the coupling
workload.

setup A setup B

NSE 261 580 800 187 046 400
EE 25 804 800 91 361 280
LEE 65 802 240 222 082 560

Coupled 353 187 840 500 490 240
Monolithic 353 187 840 353 353 280

Table 5.22.: Degrees of freedom DoF for the monolithic-like setup A and
the tailored setup B.

Table 5.22 provides an overview of the degrees of freedom (DoF) for
both setups. The narrowed NSE domain with second order and finer grid
results in 187 046 400 DoF, which is 30% less than setup A. Please note
that this is misleading because of the highly decreased domain volume of
setup B. Normalizing the DoF to volume, the NSE domain has a factor of
82 more DoF than in setup A. Considering the EE domain, the increased
number of elements results in 3.5 times more DoF. The higher number of
elements in the EE domain is beneficial for the coupled approach since
it increases the computational costs for this domain. This results in a
better computation to coupling ratio and improves the load balancing as
described in Section 3.2.2. The LEE domain with O(12) enhances the DoF
by a factor of 3.4. Hence, the coupled domain has 500 490 240 DoF which
is by a factor of 1.5 larger than the monolithic simulation. In particular,

146

5.2. 3D subsonic free-stream jet

the acoustic LEE domain is much better resolved, as desired. In contrast,
the degrees of freedom for the monolithic simulation is 353 353 280, and
thereby close to the coupled setup A.

NSE EE LEE

sum of compute weights 400877 s (6.5) 5904 s (2.7) 5748 s (3.0)
sum of evaluation weights 23 s (0.8) 916 s (1.3) 677 s (3.2)
sum of total weights 400900 s (6.5) 6820 s (2.4) 6425 s (3.1)

Table 5.23.: Weight distribution between the subdomains: Sum of weights
for compute, coupling point evaluation, and total as sum of the subdomains
for setup B. Numbers in brackets denote the fold change compared to
setup A. All weights in s.

Table 5.23 summarizes the weight distribution between the subdomains
for setup B. In total, the weights are 414 145 s and a factor 6.2 higher than
for setup A. One striking fact is that the costly evaluation weights for the
EE subdomain are only slightly increased in comparison to setup A (from
690 s to 916 s), while the number of points to evaluate is increased by a
factor of 4. The maximum evaluation cost is thereby dropped from 6.0 s
to 2.4 s. This was expected, since more coupling points are now located
within one element that has to be evaluated. The compute load of the EE
subdomain is about 2.7 times more expensive, which is due to 3.5 times
more compute elements (of same order as setup B) . The NSE subdomain
has a 6.5 time higher load while the DoF are only 1.3 times larger. This
hints at a peculiarity of Ateles: Exploiting O(2) is more expensive than
O(8). This is due to the fact that Ateles is optimized for higher order
computations: The efficiency is reduced since small orders produce more
but smaller messages instead of fewer but larger messages Furthermore,
vectorization cannot be exploited for very small problem sizes. In contrast,
the cost for polynomial evolution is reduced with this lower order. Looking
at the LEE subdomain, the evaluation costs are increased due to the higher
order, resulting in a factor of 3.2. The compute cost, with 3.375 times the
DoF, is only increased about 3.1 times. Although we increase the DoF in
LEE drastically, together with the enlarged EE subdomain EE and LEE
now have around the same overall weight.

147

5. Coupling results

Similar to setup A, the timestep of each domain is fixed to the smallest
timestep of all domains for the coupled simulations of setup B. For setup
A, the limiting factor was the NSE timestep since a high order decreases
the timestep drastically according to Equation (2.44). While tailoring the
numerical resolution of setup B, we have tried to achieve dtNSE

!
≈ dtEE .

In the NSE domain, according to Equation (2.44), the second order and the
four times smaller h results in a limiting NSE timestep dtNSE of 2.58e−3.
The EE timestep, dtEE , with an eight times smaller h but O(8) reduces
to 2.6e−3. Thus, both timesteps are almost equal and the NSE resolution
is no longer limiting. Finally, the maximal timestep of the LEE due to the
CFL condition is 3.4e−2. Compared to setup A with dt = 1.61e−4, the
timestep of setup B is increased by factor 16. Hence, with this tailored
setup a larger simulation time can be reached with an order of magnitude
fewer timesteps is pivotal for B.

In summary, setup B exploits all benefits of a coupled approach: Exploit-
ing different numerical orders in the individual subdomains (O(2), O(8),
O(12)) and arbitrary jumps of element sizes at coupling interfaces (internal
mesh level jumps are restricted to one-level jumps). In particular using
a low order and a fine grid for the NSE domain is beneficial due to the
timestep restriction of the parabolic equations. Additionally, we increase
the quality of LEE solution since we are interested in the acoustic far field.
Next, we will look at the performance of this tailored setup B and compare
it to the monolithic simulation of setup B as well as to the monolithic-like
setup A. Due to compute time budget restrictions, the consideration of
only one of the two approaches was possible. As Section 5.2.4 has shown
the highest efficiency for the integrated approach, APESmate was chosen.

5.2.6.1. Scalability of setup B with APESmate

Here, we show the strong scaling of the tailored setup B with the inte-
grated approach APESmate. For this setup we distribute the number of
processes between the subdomain according to Table 5.24. Compared to
setup A, the maximum number of processes for the meaningful usage of
SPartA is not limited for setup B (since the maximum total weight in the
EE domain is drastically decreased) and, thus, it is scaled up to 32 768
processes, which is the maximum number of cores per job available on
SuperMUC.

Figure 5.20 presents the result of strong scaling for the tailored setup
B. The simulations are performed for 100 timesteps, the consumed time

148

5.2. 3D subsonic free-stream jet

total NSE EE LEE

1024 992 24 8
2048 1984 48 16
4096 3968 96 32
8192 7936 192 64

12 288 11 904 288 96
16 384 15 872 384 128
24 576 23 808 576 192
32 768 31 744 768 256

Table 5.24.: Number of processes for strong scaling distributed of the
individual subdomains for tailored setup B.

10
24

20
48

40
96

81
92

12
28

8

16
38

4

24
57

6

32
76

8

Number of processes

0.6

0.7

0.8

0.9

1.0

P
ar

a
lle

l
effi

ci
en

cy

setup B

Figure 5.20.: Strong scaling for the tailored setup B with APESmate
measured for 100 timesteps.

excluding the initialization phase is measured, and the parallel efficiency
is computed. The computation on the smallest number of ranks (1024) is
used as reference. The efficiency of the coupled simulation decreases down
to 60%. For 12 288 ranks the efficiency of setup B increases slightly, and
for 24 576 and 32 768 ranks the efficiency plateaus.

One conspicuousness is that the trend of the efficiency changes at 12 288
and 24 576 processes. The parallel simulation of the subdomains itself and

149

5. Coupling results

the coupling is based on exchanging data at the interface via point-to-
point communication. On SuperMUC, one island consists of 512 nodes
that comprise 8192 cores. This implies the usage of two islands for runs
on more than 8192 cores and the usage of three islands for more than
16 384 cores. Using more than one island results in higher communication
times due to limited bandwidth between islands. This influence of the
communication is visible in Figure 5.20 at 12 288 and 24 576 processes.
Regarding the distribution of the subdomain, it is very likely that the EE
and LEE sudomain are located on one island while the NSE subdomain is
spread over multiple islands. It might be counterintuitive that the scaling
improves slightly when communicating over more than one island. But,
this change in the communication introduces another layer of imbalances,
which can compensate the imbalances of the subdomain to some extent.

We generally see that the coupling approach with three coupled sub-
domains scales. However, the scalability of coupled simulation has its
limits: For high numbers of ranks, the problem size per subdomain per
rank decreases and overhead can dominate the computation time. Addi-
tionally, expensive coupling elements cannot be further distributed across
multiple ranks (one element per rank) and, thus, the scaling only shows
benefits until most of the coupling elements are distributed. Looking at
the difference between setup A and B, it appears that the issues of scaling
a coupled 3-field simulation are concealed by the general configuration of
setup A. For setup A, the element ratio of computation to coupling is
worse than for B. Additionally, in the EE subdomain the coupling load at
the NSE interface is increased. In the tailored setup B, where the benefits
of coupling are exploited, the limits of scalability become visible. Here the
element ratio between interface and computation is tuned. In particular for
setup B, the ratios between evaluation cost and computation cost for EE
subdomain (cheaper gradient evaluation) and for NSE subdomain (higher
computation, lower evaluation) are tuned (Table 5.23).

We have started out with the assumption that we can reuse the weights
measured in Section 5.2.4.1 for 4096 ranks, since the actual load does
not depend on the number of ranks. This investigation, however, shows
that this might not be entirely valid. In Section 4.2.1, we have described
that the weight of computation is measured per process and not element
(as it is done for coupling). The computation weight per element is then
computed as Wcomp = Tcomp

Np
, where Tcomp is the timing for the compute

kernel and Np the number of elements per process. Hence, the number of

150

5.2. 3D subsonic free-stream jet

processes influences the average computation weights. For future work, it
is recommended to compute the weights once per individual distribution
or to change the implementation so that the computation weights are not
averaged but directly computed per element.

5.2.6.2. Load Balancing of setup B with APESmate

Analogously to the previous performance investigation for setup A, we will
now consider setup B. Table 5.25 shows the results for the tailored setup
when using the presented workflow of well-balanced coupled simulation.
According to the total weights for the individual subdomains (Table 5.23),
the number of processes between the subdomains are distrusted by 96%,
1.6% and 1.5%. To make it easier to compare results, timings of setup A
are listed as well. Compared to setup A, we observe that the timing of the
monolithic approach is by a factor of 7.5 higher, which is also observed for
the NSE subdomain in the coupled simulation and is due to the fact that
Ateles is not optimized for low orders. The coupled timings, in contrast,
only increase by a factor of 4. Here the coupled simulation benefits from
the tailored configuration and results in a speedup of 2.8 compared to
monolithic.

setup B setup A

sub-
domain

processes execution
time [s] processes execution

time [s]

m
on

o-
lit

hi
c 4096 902.8 4096 120.2

16 384 211.8

A
PE

S-
m

at
e

NSE 3965 3791
EE 67 318.4 176 80.3

LEE 64 129

NSE 15 876
EE 256 92.9

LEE 252

Table 5.25.: Computation times for 100 timesteps (without initialization
phase) of monolithic and coupled simulations of setup B. As comparison
timings of setup A of Table 5.13 are listed.

151

5. Coupling results

This comparison is based on a fixed number of timesteps, while the
major benefit of setup B is the 16 times larger timestep. Therefore,
Table 5.26 also includes execution times for 100 timesteps (like Table 5.25)
as well as execution times until 1 tu of simulation time is reached. To reach
the latter, the monolithic simulation of B is twice as fast as A, and the
coupled simulation is four times faster. Furthermore, the acoustic far field
(LEE subdomain) is expected to show a better quality of the solution.

setup B setup A

execution time for execution time for
dt 100 ·dt 1 tu dt 100 ·dt 1 tu

monolithic 2.58e−3 902.8 3499.2 1.61e−4 120.2 7465
APESmate 2.58e−3 318.4 1234.1 1.61e−4 80 4968.9

Table 5.26.: Execution times for 100 timesteps (=dt) (similar to Ta-
ble 5.25) and for reaching 1 tu of simulation time for setup A and B
on 4096 MPI-processes. All times without initialization phase and in s.
(Setup B is limited to 12 288 processes, and thus, not listed).

This rather large test case is constructed for running on as many pro-
cesses as possible: The number of processes can also influence the load
balancing slightly, since the workload can be spread over more processes.
Therefore, we also show the timings for running on up to two islands
(16 384 processes) on SuperMUC, LRZ, Munich. Comparing the timings
for 4096 and 16 384 processes for setup B, we observe a speedup of 3.4
for the coupled simulation. For the monolithic simulation we observe a
superlinear behavior with a speedup of around 4.3. One explanation for
the superlinearity of this strong scaling is that the monolithic simulation
uses a low order of O(2) which can yield caching effects in the computation.
Additionally, for the coupled simulation even when balancing between and
within subdomains, there is more risk for for waiting times.

152

5.2. 3D subsonic free-stream jet

5.2.7. Investigation of imperfect choice of coupling interfaces
In this section, we enforce an imperfect coupling interfaces between viscous
and inviscid flow in order to investigate the influence on the acoustic far
field. To that end, we place the NSE–EE interface in the 3D jet too close
to the jet assuming a final simulation time t. The coupling setup was
design to fit optimal for t = 120 (Section 5.2.2) where the turbulent jet is
still inside the NSE subdomain. When simulating this setup until t = 250,
however, the turbulent jet with viscous effects travels over the coupling
interface into the inviscid flow domain. This was done on purpose to
investigate the obvious influence on the turbulent part and its impact on
the development of acoustic waves. The results up to a simulation time
of 120 are described in Section 5.2.1, where the tailored setup B is used
and the partitioning from Section 5.2.6.2 is applied. The simulation is
performed on 1024 nodes with 16 384 cores of SuperMUC. Since one island
on SuperMUC consists of 512 cores, we have to use a minimum of two
islands. Using two island exclusively can lead to long job waiting times in
case the system is highly frequented. Hence, due to a high occupancy on
the system we allow to distribute the MPI-processes on three islands to
minimize job waiting times. To perform this simulation until a simulation
time of 250 tu, several jobs have been submitted. Depending on the used
CPUs and the network load, it took between 33 and 55 minutes to simulate
a second in simulation time and write one restart file. In total, the full
simulation has consumed more than 2 million CPU hours.

Navier-Stokes and Euler domain We consider the NSE and EE domain
mostly together, since the free stream is expected to travel over the cou-
pling interface. White lines always indicate coupling interface between
different equations. Figure 5.21 shows the acoustic waves with a Schlieren
visualization of an xz-plane at y = 0. Since we have to handle a multi-scale
problem, the jet is shown on the large data range of the flow variable by
the iso-contour of Ma=0.39. The Schlieren (gradient of density) indicate
the shape of the free-stream and show turbulence. On the left-hand side,
close to the inlet where the free-stream jet is stable and has pressure close
to 1, we can see sound waves radiating from it. On the right-hand side
at the coupling interface, the flow (in Schlieren representation) does not
freely travel out of the NSE domain.

153

5. Coupling results

Figure 5.21.: Schlieren visualization (gradient of density in xz-plane) of
NSE domain (gray scale) and iso-contour of Ma=0.39 colored by pressure
(rainbow scale) at t = 250.

To investigate the NSE domain and its coupling further, we look at dif-
ferent properties of the flow: Figure 5.22 presents the pressure of the flow in
the NSE domain with the interface to the EE domain. Scaling the pressure
range to the values of NSE domain (Figure 5.22a), the pressure field looks
nicely resolved in the NSE domain and values close to background (p = 1)
have traveled over the coupling interface. Scaling the pressure range to
the scales of the EE domain (Figure 5.22b), the structure is still preserved
but already reaches into the EE domain. In Figure 5.22b at the break-up
of the free-stream, the acoustic wave generation is nicely visible.
The next property of the free-stream that we consider is the velocity
presented in Figure 5.23. At t = 250, small values of the velocity (below
0.1) have propagated into the EE domain. Here, we do not observe any
strong artifacts but some oscillations (5e−2 to 5e−8) at the bottom right
coupling corner of the NSE domain. To investigate if viscous effects
play a role, we look at the vorticity in Figure 5.24. The aforementioned
oscillations in the velocity field are better visible in the vorticity plot.
Vorticity of the flow has traveled over the coupling interface and into the
EE domain where a vorticity of ≈ 1 can be observed. The main influence
of the vorticity at t = 250, similar to t = 120, is at the beginning of the
jet in the shear layer and the turbulent region close to the nozzle.

154

5.2. 3D subsonic free-stream jet

(a) Scaled to NSE

(b) Scaled to EE

Figure 5.22.: Pressure field of NSE and EE subdomain at t = 250.

155

5. Coupling results

Figure 5.23.: Velocity of NSE and EE subdomain at t = 250.

Figure 5.24.: Vorticity of NSE and EE subdomain at t = 250.

156

5.2. 3D subsonic free-stream jet

(a) Scaled to NSE

(b) Scaled to EE

Figure 5.25.: Density field of NSE and EE subdomain at t = 250.

157

5. Coupling results

Figure 5.25 illustrates the density field at the simulation time of 250 tu
of the free-stream jet, scaled to both, the NSE (Figure 5.25a) and the EE
domain (Figure 5.25b), respectively. Similar to previous properties, the
free-stream has traveled into the EE domain. Both figures reveal issues in
the density at the NSE–EE interface which were not there for t = 120.

As we are highly interested in acoustic wave propagation, we consider
the Schlieren visualization in the NSE and EE subdomains at t = 250 in
Figure 5.26. Even though we can identify some artifacts at the coupling
interface, the acoustic waves are traveling over the coupling interface in
x-direction and waves properly radiate into the EE domain. However, the
acoustic waves are mainly generated within the first part of the free-stream
jet where the jet evolves without the influence of internal level jumps
and the coupling interface. In the higher-order EE domain, the “coarse”
Cartesian grid of the simulation is visible where the polynomials show
artifacts at element boundaries. In z-direction, small oscillations parallel
to the coupling interface occur. As mentioned in Section 4.1, the visual-

Figure 5.26.: Schlieren visualization of NSE and EE subdomain where EE
is clipped to 20 × 10 lu at t = 250.

158

5.2. 3D subsonic free-stream jet

ization of polynomials is not implemented in common visualization tools.
Therefore, we have to subsample the polynomial data (in this case of O8)
with additional points. This is not ideal for the polynomial representation
because the integration points of the polynomials are not equidistant while
the subsampling is.

Above, we have identified the following challenges: i) Turbulent flow
reaches the coupling interface and, hence, switching from a viscous to an
inviscid flow is not physically allowed. Here, the NSE domain should be
elongated in x-direction, while this is not required for the z- and y-direction.
ii) Artifacts of internal level jumps are visible in the vorticity field (and
other properties) when scaling to small value ranges. This can indicate
that the spatial resolution is not high enough. In addition to the internal
level jumps, the numerical resolution (setup B) has a large jump in mesh
resolution (L(12)-L(9)) and polynomial degree (O(2)-O(8)). In general,
non-matching coupling interfaces with such large jumps in numerical order
and grid resolution were investigated with the academic testcase. However,
turbulent flow is a challenging testcase and the large difference in order
and grid at the coupling interface can have a significant influence. iii) A
final aspect is that the visualization of high order polynomials is not trivial
and small oscillations of polynomials within the Schlieren visualization of
the higher-order EE domain are visible (Figure 5.26). There, the Schlieren
visualization with logarithmic scale presents the small scales of the flow.
The “coarse” Cartesian grid of the simulation is visible and toward element
interfaces the polynomials are better resolved. It can be stated that, even
though the turbulence of the jet in x-direction is not perfectly resolved and
travels over the coupling interface, acoustic waves are mainly generated
close to the nozzle and that they nicely propagate. For future simulations
of this testcase, the spatial resolution of the EE domain should be increased.
After we have investigated the NSE domain jointly with the EE domain,
we analyze the EE domain separately and look at the coupling interface
to the LEE domain.

Figure 5.27 visualizes the entire EE domain at the simulation time
250 tu without the NSE domain, where in a region close to the NSE
domain (20 × 10 lu from Figure 5.26) the density is shown in the rainbow
colors and a Schlieren visualization is used to show the acoustic waves
otherwise. Based on this figure, we can state that for the time evolution
until 250 tu the EE domain could be reduced. As explained earlier, besides
the physics, also the computational load should be taken into account
for choosing the locations of coupling interfaces and switching as soon as

159

5. Coupling results

Figure 5.27.: The full EE domain at t = 250: Close to the NSE coupling
interface the density is shown with the rainbow colors and further away
the Schlieren flow is presented. The region for density visualization is
clipped to 20 × 10 lu.

160

5.2. 3D subsonic free-stream jet

possible to LEE is preferable. Figure 5.27 emphasizes that, even though
the turbulent jet has already traveled into the inviscid EE subdomain, the
large acoustic scales are resolved and transported into the far field. Finally,
we will investigate the LEE domain at t = 250.

Figure 5.28.: Schlieren visualization (xz-plane) of the entire LEE domain
at t = 250.

Linearized Euler domain Figure 5.28 shows the Schlieren visualization of
the entire LEE domain at the simulation time 250 tu. In this visualization
the color scale is not logarithmic, since the data range is smaller. In
the Linearized Euler equations only the perturbations of the flow are
considered as variables (see Section 2.1.3).

Acoustic far field The overall goal is the simulation of acoustic waves
and their propagation into the acoustic far field. Figure 5.29 presents the
acoustic far field of the entire coupled domain (NSE–EE–LEE), where
the coupling interfaces are marked with white lines. It is a Schlieren
visualization of xz-plane at y=0 (the middle of the jet), in which the
gradient of the density is visualized. At this point in time the acoustic
waves have reached the outer outlet boundary of the domain.

161

5. Coupling results

Figure 5.29.: Schlieren visualization (gradients of density) of xz-plane at
t = 250 where the acoustic waves reach the outer boundary condition. The
coupling interfaces are marked with white lines.

Summary To sum up, we presented the 3-field coupling for a 3D free-
stream jet at Re = 12500 and Ma = 0.5, computed efficiently with the
integrated coupling approach APESmate. While the coupling interfaces
had beend constructed for evolving the simulation up to a simulation time
of 120 tu, here we have investigated imperfect sound generation and the
influence on the acoustic far field. At the final time (250 tu), the turbulent
jet has fully propagated in the NSE domain and reaches over the coupling
interface into the EE subdomin. That is, an unsuitable coupling interface
between viscous and inviscid flow has been chosen. The acoustic far field
has reached the outer boundary of the computational domain at this point
in time. Even though the sound generation of turbulent jet is not perfectly
simulated considering the coupling interface at t = 250, the acoustic waves
are smoothly transported into the far field. One aspect is that the acoustic
generation happens mainly at the beginning of the jet which is simulated
fully in NSE domain. With the tailored setup B, we have aimed for a
good resolution of the LEE domain.

162

5.2. 3D subsonic free-stream jet

Besides the physical aspects, computational aspects must be considered
as well and the workload of a coupled simulation must be balanced. There-
fore, the grid resolution plays a role as well as it increases the workload
but leads to better results. As presented in the investigation of the NSE
domain, the physics are not fully resolved and some artifacts like internal
level jumps are visible. Also, in the Euler domain, the resolution close
to the NSE domain should be increased and it would be beneficial to
tailor the spatial order of the DG scheme to the refinement levels. For the
given scenario and point in time, the computational domain of the EE
domain could be reduced and the coupling interface to the LEE domain
moved towards the jet: Switching as soon as possible from non-linear to
linear equations with Ateles is preferable form the computational workload
aspect.

163

6. Investigation of time-consistent coupling

In the previous chapter we have presented and analyzed the integrated
as well as the multi-solver coupling approach. So far, we have exclusively
investigated the influence of data mapping in space for those approaches.
As introduced in Section 3.1.3, however, data mapping in time is important
as well: In case both subdomains use a different timestep, the subdomain
with the smaller timestep requires data at points in time where the other
subdomain does not provide it. Without a method to circumvent this, the
subdomain with the smaller timestep may use inconsistent data. In this
work, we avoid this by using the same timestep in all subdomains which
guarantees that data is available at each timestep. Unfortunately, the
same challenges of time-consistent coupling occur when using multi-stage
integration in time.

As discussed in Section 3.1.3, there is an inconsistent coupling in time
when using a multi-stage time stepping approach without appropriately
treating boundary conditions within a timestep. All simulations presented
in this work are done with the explicit second-order Runge-Kutta (RK)
method which requires two sub-stages. To construct the two sub-stages,
a midpoint at t + ∆t

2 is used. The equation for RK to advance the DG
solution from t to the next timestep t+ ∆t for second order is (combined
Equation (2.40) and Equation (2.42a)):

Uh(t+ ∆t) = Uh(t)+ (6.1a)

∆t

(
M−1 · rhs(U h(t), t)︸ ︷︷ ︸

1. sub-stage: data at last complete timestep

(6.1b)

+ M−1 · rhs(U A
h , t+ ∆t

2)︸ ︷︷ ︸
2. sub-stage: data at midpoint

)
. (6.1c)

When only exchanging coupling data at a complete timestep, consistent
data at the coupling interface is only available for the first sub-stage while
the second sub-stage has to use “outdated” data of the latest complete RK

165

6. Investigation of time-consistent coupling

timestep. In case coupling data is exchanged at the midpoint as well, the
second sub-stage can use consistent data at the coupling interface. Within
a subdomain, all elements use second-order RK and the synchronization
at midpoints is no problem so that flux data from neighbors can be used.
Hence, the “effective” time discretization decreases to first order for the
boundary treatment at the coupling interface. In the following we investi-
gate the influence of this inconsistent boundary treatment by using the
same academic testcase as presented in Section 5.1 with Linearized Euler
equations (LEE) in both subdomains.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(a) LEE - LEE with APESmate,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435
P

re
ss

ur
e

analytical A

A

analytical B

B

(b) LEE - LEE with preCICE,
matching interface.

Figure 6.1.: Comparison of numerical and analytical result in both subdo-
mains when coupling the same equations with matching interfaces for
APESmate and preCICE at measurement positions A = (10 − 0.01, 0, 0)
and B = (10 + 0.01, 0, 0), close to the coupling interface.

Figure 6.1 presents the results for coupling the same equations with
matching interfaces at the measurement positions A = (10 − 0.01, 0, 0) and
B = (10 + 0.01, 0, 0), close to the coupling interface. With this minimal
setup, we exclude any influence from changing physics as well as data
mapping in space. Even though the plots in Figure 6.1 show good general
agreement, taking a closer look reveals issues at the coupling interface:
Figure 6.2 shows close-ups of different simulations, illustrating oscillations
that are not visible in a monolithic simulation with a single LEE domain
of the same resolution (Figure 6.2a). The first observation comparing
Figures 6.2c - 6.2b is that the oscillations have the same order of mag-
nitude regardless of the type of interface or approach. Figure 6.2d with
non-matching coupling interfaces shows slightly different oscillations at

166

20.0 22.5 25.0 27.5 30.0
Time (s)

0.7142850

0.7142852

0.7142854

0.7142856

0.7142858

0.7142860
P

re
ss

ur
e

analytical A

A

analytical B

B

(a) Monolilthic simulation of LEE domain.

20.0 22.5 25.0 27.5 30.0
Time (s)

0.7142850

0.7142852

0.7142854

0.7142856

0.7142858

0.7142860

P
re

ss
ur

e

analytical A

A

analytical B

B

(b) LEE - LEE with preCICE,
matching interface.

20.0 22.5 25.0 27.5 30.0
Time (s)

0.7142850

0.7142852

0.7142854

0.7142856

0.7142858

0.7142860

P
re

ss
ur

e

analytical A

A

analytical B

B

(c) LEE - LEE with APESmate,
matching interface.

20.0 22.5 25.0 27.5 30.0
Time (s)

0.7142850

0.7142852

0.7142854

0.7142856

0.7142858

0.7142860

P
re

ss
ur

e

analytical A

A

analytical B

B

(d) LEE - LEE with APESmate,
non-matching interface.

Figure 6.2.: Close-ups for 15s < t < 30s and pressure range of 0.7142850 <
p < 0.7142860 of the comparison of monolithic simulation and differ-
ent coupled simulations with numerical and analytical results in both
subdomains.

the overshoot for measurement position B (after the coupling interface),
which indicates that the data mapping in space has some impact.

To prove that the oscillations are due to the inconsistency at the bound-
ary treatment, we check the influence of ∆t: The inconsistency is expected
to become smaller with decreasing ∆t. Thus, we compare a simulation
with dtCF L = 1.25e−2 and a significantly smaller timestep dtsmall = 1e−5

in Figure 6.3. Figure 6.3b shows that the magnitude of the oscillations is
strongly decreased when using dtsmall, which hints at the impact of the
time-inconsistent coupling. While the main focus of this thesis is consistent
coupling in space, we show a naive approach for time-consistent coupling

167

6. Investigation of time-consistent coupling

20.0 22.5 25.0 27.5 30.0
Time (s)

0.7142850

0.7142852

0.7142854

0.7142856

0.7142858

0.7142860

P
re

ss
ur

e

analytical A

A

analytical B

B

(a) dtCF L = 1.25e−2

20.0 22.5 25.0 27.5 30.0
Time (s)

0.7142850

0.7142852

0.7142854

0.7142856

0.7142858

0.7142860

P
re

ss
ur

e

analytical A

A

analytical B

B

(b) dtsmall = 1e−5

Figure 6.3.: Comparison of LEE - LEE coupling with APESmate and
matching interface with a) the CFL timestep dtCF L and b) a significantly
smaller timestep dtsmall.

20.0 22.5 25.0 27.5 30.0
Time (s)

0.7142850

0.7142852

0.7142854

0.7142856

0.7142858

0.7142860

P
re

ss
ur

e

analytical A

inconsistent time-coupling A

consistent time-coupling A

analytical B

inconsistent time-coupling B

consistent time-coupling B

Figure 6.4.: Comparison of inconsistent to consistent time-coupling for
LEE - LEE coupling with APESmate and matching interface.

168

with multi-stage timestepping to perform a preliminary investigation. To
that end, we have enabled the integrated approach APESmate to exchange
coupling data at the midpoint of the RK timestep. If both subdomains
use the same time discretization, we can use it for a proof of concept
to show the need tor time-consistent coupling. Figure 6.4 compares the
results of inconsistent and consistent coupling in time, i.e. coupling at each
complete RK timestep and coupling at each midpoint of the RK timestep.
We can see that with coupling at each midpoint of the RK timestep, the
oscillations decrease in a similar way to using dtsmall = 1e−5 (Figure 6.3b);
the oscillations for t > 22s even vanish completely. The overshoot of the
pressure at 20s < t < 23s decreases by a magnitude of 2e−7. But, com-
pared to the monolithic simulations the oscillations do not vanish entirely.
Hence, for this academic testcase, there is no difference in time-consistent
coupling and using a significantly smaller timestep dtsmall = 1e−5. So, in
case time-consistent coupling is not possible, using a significant smaller
timestep could circumvent the problem of inconsistent boundary treatment.
Please note that we are looking at a strong close-up to the pressure range
of 1e−6 which is only two orders of magnitude smaller than the accuracy
of the discretization. As shown in Table 5.3 of the previous chapter, the
monolithic solution for the LEE with the chosen discretization has a rela-
tive error of 1.218e−8 at measurement position B.

The presented investigation illustrates the influence of time-inconsistent
coupling and the impact of inconsistent boundary treatment. For the
usage of second-order RK time integration, we have presented preliminary
results where data are exchanged at the midpoints of the second-order
RK timestep: This shows increasing accuracy of the solution. The impact
for different testcases is out of scope of this thesis. Typically, consistent
boundary treatment is not as important for the overall simulation since
boundary conditions happen “far away” from the desired phenomena. In
a coupled simulation, this does not hold: In particular for the subdomain
where the desired information are emitted from the coupling boundary,
consistent treatment is important. In a flow-acoustic simulation, the acous-
tic waves travel from the flow domain into the acoustic domain and, thus,
the impact of inconsistent boundary treatment is higher for the acoustic
domain than for the flow domain. In case of bi-directional coupling, where
feedback is desired, this is not entirely true trough. The impact of the
inconsistent boundary treatment for the entire simulation and the test-
case dependency should be further analyzed. Also the question whether
to use a second or fourth order time integration and accept lower-order
boundary treatment must be considered individually. For a fourth-order

169

6. Investigation of time-consistent coupling

RK, where the sub-stages are not only constructed by the midpoint rule,
time-consistent coupling is more involving.

Consequently, time-consistent coupling and its realization should be
addressed in future work: This could be achieved by coupling for each
sub-stage with an thought-out strategy or by exploiting time integration
schemes that construct high-order methods differently than multi-stage ap-
proaches. For instance, by using an ADER scheme [36, 59] that constructs
time derivatives from spatial derivatives or a local time Galerkin scheme
[89]. Another approach would be to use an extrapolation / reconstruction
in time within the domain so that each domain solver can provide the
required data itself. This challenge of time-consistent coupling is even
bigger when allowing each subdomain to use its own timestep based on the
individual physics to solve. Allowing adaptive timestepping can improve
the performance of a coupled simulation, since not all subdomains are
forced to use the same (small) timestep of one subdomain. Hence, the
benefits of individual numerical schemes can be exploited even further.

170

7. Summary and outlook

In this final chapter, Section 7.1 provides a short summary of the presented
work. This thesis has established two different approaches of partitioned
coupling that we have realized within the end-to-end parallel simulation
toolchain APES: The multi-solver approach with the coupling library
preCICE and the integrated approach APESmate. In this context, the
challenges of a partitioned coupling with respect to these approaches
are discussed. The work shows that partitioned coupling enables the
computation of large, multi-scale problems which are computationally too
demanding with a monolithic approach. This is shown with a simulation of
a 3D free-stream jet with acoustic noise generation on the massive parallel
computing system SuperMuc Phase 1 IBM system at LRZ, Munich. With
this promising result and the presented coupling approaches, multi-physics
and multi-scale problems, which are unfeasible with a monolithic approach,
can be examined. Ideas and future tasks are outlined in Section 7.2.

7.1. Summary

Aero-acoustic simulations have the potential to provide deeper insights
into applications from various fields like the sound design of aircraft or
wind turbines. It is the nature of such multi-scale simulations to exhibit
a wide range of scales in space and time. Hence, they pose one of the
most demanding computational tasks in engineering. Indeed, only with
the increasing computational power of supercomputers and appropriate
strategies larger simulations investigating interactions between multiple
physics became feasible. Therefore, this work is concerned with partitioned
coupling as an approach to enable simulations of fluid-acoustic interactions
on massive parallel computing systems. To that end, we have presented
the coupling of a high-order Discontinuous Galerkin with a low-order
Discontinuous Galerkin method. We have used the scalable DG solver
Ateles (4.2) which is part of the end-to-end parallel simulation toolchain
APES (4.1). To represent the aero-acoustic problem, a 3D free-stream jet
was picked.

For this work, two different coupling approaches were implemented: The

171

7. Summary and outlook

multi-solver approach with the coupling library preCICE (4.3) and the
integrated approach APESmate within the simulation framework APES
(4.4). Both coupling approaches enable direct aero-acoustic simulations
with bidirectional coupling, but differ in their scaling on massive parallel
systems and their quality of data mapping in space. The comparison
highlights the trade-off between a coupling library with high flexibility and
an integrated approach with several constraints on the solver but increased
performance and appropriate data mapping in space. The multi-solver
approach with preCICE enables the direct simulations of an aero-acoustic
problem which is unfeasible with a monolithic simulation, but the speed
up of the simulation is not as high as with APESmate. This is due to the
fact that APESmate is a new implementation that is limited to solvers
in APES , which enables circumventing external data interpolation. This
yields a high scalability on massive parallel computing systems.

With respect to the coupling tasks: steering; communication; and data
mapping in space and time; both approaches were compared. When steering
individual solvers (3.1.1), preCICE has to deal with individual executables
of solvers which need to be linked to it. In contrast, APESmate compiles
to a single executable. Hence, porting the software, establishing the correct
binding of MPI-ranks, and setting up the job script on a supercomputer is
more challenging with preCICE compared to running a single executable
for APESmate. To realize the interaction between different domains that
are coupled, communication of coupling data is required (3.1.2). Using an
efficient communication is essential: Both approaches establish point-to-
point communication between the involved processes in their initialization
phase. For preCICE, which is working on input/output data, this is more
demanding which is consistent with the presented performance.
The last coupling tasks are the data mapping in time (3.1.3) and data
mapping in space (3.1.3). We specifically did not focus on data mapping
in time in this thesis, since we guarantee same timestepping in all coupled
domains and no sub-cycling. For data mapping in space, the main differ-
ence is that APESmate utilizes mapping routines of the numerical solver
while preCICE works exclusively on geometric data, which requires an
external interpolation method. As described in Section 3.3.2, when using
a DG method the polynomial evaluation can be used to provide data at
arbitrary points in space. In other words, preCICE requires interpolation
while APESmate uses an evaluation within the solver Ateles. We presented
the available interpolation methods in preCICE in Section 4.3.5 and com-
pared their solutions in Section 4.3.5.3. As reported in these sections,
Radial Basis functions are promising but challenging for non-equidistant

172

7.1. Summary

coupling points at the coupling interface. Furthermore, we derived that it
is advisable to use NN for matching coupling interfaces with preCICE and
nearest projection mapping for non-matching interfaces. The quality of
the data mapping in space, i.e. interpolation (preCICE) and evaluation
(APESmate), was evaluated with an academic testcase and shows good
agreement with the analytical solution for all combinations of interfaces
and equations. As presented in Section 6, data mapping in time is an
non-negligible aspect for multi-stage time integration methods, like higher-
order Runge-Kutta, and will be further discussed in the outlook. Here, a
3-field coupling using three different physical subdomains, namely viscous
flow with Navier-Stokes equations, inviscid flow with Euler equations and
acoustic propagation with Linearized Euler equations is analyzed as well.

Another crucial aspect of partitioned coupling, and large-scale simula-
tions in general, is load balancing (3.2): We discussed the load imbalances
between subdomains (3.2.1) and within a subdomain (3.2.2) which are
introduced by additional coupling work. The load balancing strategy in
Ateles was presented which is beneficial for the multi-solver as well as
the integrated approach. Furthermore, the load balancing for APESmate
and preCICE was investigated for the large-scale scenario of the 3D jet
and a workflow for well-balanced coupled simulation was identified in
Section 5.2.4.1.

This large-scale scenario of the 3D jet was also used to investigate the
spatial choice of coupling interfaces: First, the coupling interfaces were
chosen to suit the physical phenomena and, subsequently, an imperfect
choice of coupling interfaces was demonstrated. The latter one shows,
that in our testcase an imperfect location of coupling interface between
viscous and inviscid flow subdomain is not a determining factor for acoustic
wave propagation into the far field: The sound is mainly generated at
the break-up of the free-stream and large scales are transported over the
interface without disturbance.

In short, partitioned coupling is beneficial for multi-scale as well as
multi-physics problems, in particular, the presented large-scale scenario.
Here, the integrated coupling approach APESmate requires ≈ 66% the
time of a monolithic simulation. In contrast, the multi-solver approach
using the external library preCICE with NP mapping still requires ≈ 83%.
Thus, the coupling library preCICE presents an accessible approach with
a minimal-invasive API to the numerical solver to enable partitioned black-
box coupling. In contrast, APESmate was developed from scratch and is

173

7. Summary and outlook

tailored for use with the solvers available in APES . An important factor
of the performance increase is the optimization of the implementation in
APESmate, which is described in Appendix A.

7.2. Outlook

The outlook structures ideas for future tasks according to topics concerning
partitioned coupling in general, topics which focus on the integrated
approach APESmate, and finally ideas for the coupling library preCICE.

7.2.1. Partitioned coupling
There are multiple aspects to look at in future: Time-consistent coupling,
improvements concerning the general performance, and investigations of
real-world scenarios which are made possible with the presented approaches.

One crucial aspect presented in this work is the time-consistent coupling
when applying a multi-stage approach. The challenge is to provide appro-
priate coupling data at the coupling interface for intermediate timesteps.
Coupling at each intermediate timestep shows increasing accuracy of the
solution. One approach would be the usage of an extrapolation or re-
construction in time within the domain so that each domain solver can
provide the required data itself. Exploiting a single-step scheme in time
can circumvent this issue. For instance the ADER scheme [36, 59] or a
local time Galerkin scheme [89]. Implicit coupling, which is a feature of
the coupling library preCICE, could overcome this issue as well. Using
adaptive timestepping to enable one coupling domain to have its own
timestep based on the individual physics to solve, would improve the
performance even more.

Considering the performance of coupled simulations, coupling introduces
load imbalances within one domain, and every step that reduces these
imbalances speeds up the simulation. This also improves the ratio of
computation cost incurred by every element compared to coupling cost
incurred by a small portion of elements, which can be exploited by a load
balancing algorithm. While a static load balancing was presented in this
thesis, dynamic load balancing would be interesting to cover cases where
the workload changes at simulation time. For example, considering a
moving structure or moving coupling interface would require dynamic load
balancing.

174

7.2. Outlook

The most seminal aspect is the possibility that the coupling approach
opens up: Aero-acoustic noise generation of super- and transonic flows
can be investigated in the future, e.g. noise of a planar jet [90] or noise of
a coaxial jet [91]. By extending the DG solver Ateles with an immersed
boundary approach to represent geometries within the Cartesian octree-
mesh [92–94] even more challenges could be tackled, e.g. flow around a
profile [95] or the flow around a moving geometry which introduces high
noise.

An entirely different approach for fluid-acoustic simulations would be a
scheme where the equation system changes locally. Considering the DG
scheme, where elements are only loosely coupled to each other via the
numerical flux, an element-wise change of the equation system is possible.
With this, no additional coupling tools are required and, hence, additional
communication can be avoided [96].

7.2.2. Integrated approach: APESmate
For the integrated coupling approach APESmate, several optimization
ideas were sketched in this work. One promising aspect to consider for
speed up is the gradient evaluation: In this work a point-wise evaluation is
done, while it would be faster to do a face-wise evaluation. For a face-wise
evaluation, a projection from the volume to the coupling face could yield
a two-dimensional polynomial. Subsequently, for all points of the coupling
face, a two-dimensional evaluation instead of a three-dimensional could
be done. This optimization step would reduce the evaluation cost from
O(n · p3) to O(p3 + n · p2) per coupling face, where n is the number of
coupling points and p the spatial order of the scheme. Another idea is the
vectorization of the gradient evaluation, so that it is possible to evaluate
the polynomial in one specific direction. This is beneficial, because the
gradient data is typically required in the normal direction of the coupling
face.

Besides reducing the coupling costs, knowing these costs in advance is a
benefit for designing testcases accordingly. One potential direction is the
investigation of a cost function for the polynomial evaluation of the DG
method. The coupling costs depend on the order of the polynomial and
the number of requested points. The order p is the more crucial factor
since the complexity is O(p3). In case a reliable cost function for state and
gradient evaluation is known, the coupling cost can be predicted and used
for load balancing within a subdomain instead of weights that are based

175

7. Summary and outlook

timings. Improving load balancing and therefore the weights in Ateles
is offers great potential for future work: The calculation of weights per
elements (4.2.1) can be fine-tuned to, for instance, better include the cost
for internal level jumps or to measure the computation time per element
explicitly instead of an average value of the partition. This could improve
the load balancing of coupled simulation since the re-partition algorithm
relies on the work for computation and coupling point evaluation.

7.2.3. Multi-solver approach: preCICE
One area for improvement is how the DG solver Ateles provides the cou-
pling data to preCICE: Currently, the data mapping in space is exclusively
done in preCICE. Ateles provides coupling data at the coupling points
based on the numerical scheme and the modal-to-nodal transformations
(Section 3.3.1). In the current implementation of Ateles, the computation
of the DG-flux and the evaluation of coupling data are handled separately.
For non-linear equations, however, nodal information could directly be
provided by Ateles for reuse by preCICE, which would avoid an additional
modal-to-nodal transformation.

Looking at the data mapping in space in general, the interpolation
methods in preCICE could be improved: For a low order simulation in
conjunction with a solver that provides mesh connectivity information,
the second-order nearest-projection mapping is useful. For higher-order
simulations, the general approach of Radial Basis functions sounds promis-
ing, but finding the optimal shape parameter is not trivial, especially for
non-equidistant coupling points [72]. Hence, for the DG solver Ateles one
idea is to convert its non-equidistant distributed points to equidistant
points and provide these to the RBF interpolation of preCICE, for which
results are discussed in [78].

A general challenge, independent of the numerical solver, is the perfor-
mance on massive parallel systems. For highly parallel computations, the
performance of the coupling library must not impact the overall perfor-
mance. This holds true for preCICE except for the initialization phase.
Another aspect of the initialization phase is the Master-Slave communi-
cation concept: The complete surface mesh of one coupling domain is
communicated to the master rank of the other coupling domain. Therefore,
the memory of the master rank is the limiting factor for the size of the
coupling mesh. A workaround would be grant the master rank exclusive
access to a CPU, which guarantees the largest available memory. However,

176

7.2. Outlook

this depends on the computing system, the distribution of processes, and
the coupling scenario. In this work, a static load balancing based on
measured weights within the solver Ateles is presented. Another approach
is presented in [97], where a load balancing model is used to approximate
the appropriate number of processes per domain. Similar to APESmate, it
is promising to work towards a more dynamic balanced workload during
run time.

177

A. Optimization of polynomial evaluation in
Ateles

In this section, we present a optimization step. Coupling via boundary
conditions always implies additional work at the coupling interface which
introduces load imbalances: This work should be minimized. The costs
when coupling with APESmate are mainly due to of the polynomial
evaluation of the coupling variables at the coupling points, as described in
Section 3.3.2. Therefore, this appendix describes the implementation of
polynomial evaluation and show analysis of two different implementations.
Additionally, more optimization potential is identified. As mentioned in
Section 3.4, the coupling variables differ depending on which equation
system is to be coupled: For Euler or Linearized Euler equations only the
state variables are required; for coupling to the Navier-Stokes equations
the state variables and their gradients in the normal direction to the
coupling interface have to be exchanged. The gradient evaluation is more
costly than the state evaluation, which poses a bottleneck when coupling
Navier-Stokes equations. Thus, an optimization of the gradient evaluation
will accelerate the entire coupling process. The difference between the two
evaluations can be explained when recapitulating the individual steps of
the implementation.
For the state variable, the evaluation has the following steps:

I Find corresponding element of requested point
II Convert physical point coordinates to reference coordinates
III Get modal coefficients by evaluating 3D tensor product of Legendre

polynomials at reference coordinates
IV Multiply modal coefficients with state vector to obtain exact value

at requested point

To evaluate the gradient of state variables these steps are required:

I Find corresponding element of requested point
II Convert physical point coordinates to reference coordinates
A Get modal coefficients for gradients of complete element:

179

A. Optimization of polynomial evaluation in Ateles

A.1 Get modal coefficients of state variable

A.2 Differentiate modal values for each direction

III Get modal coefficients by evaluating 3D tensor product of Legendre
polynomials at reference coordinates

IV Multiply modal coefficients with modal coefficients for the gra-
dients to obtain exact value at requested point

While steps I - IV are (almost) identical for both evaluations, the gradient
evaluation requires an additional step: A implements the gradient compu-
tation of the full polynomial ending in all modal coefficients of the gradient
for the corresponding element. Regarding the complexity, steps I - IV are
of complexity O(p3), with the polynomial order p. The additional steps
(A.1) - (A.2) for gradients are of the same complexity O(p3) which offers
a great potential for improvements.

Implementing the steps of the polynomial evaluation as described above
will lead to a point-wise evaluation and we will refer to it as naive im-
plementation. In contrast to the point-wise evaluation, an optimized
implementation utilizes an element-wise evaluation. As presented in Sec-
tion 3.3, the coupling points at the coupling interface are chosen to be
the integration points of the modal-to-nodal transformation, that is, for
example, the Gauss-Legendre integration. Hence, there are multiple cou-
pling points per coupling element. More precisely, there are p coupling
points per direction for each coupling element. For coupling domains that
use higher spatial order and typically have coarser elements, it is very
likely that one element needs to serve multiple requested points. There-
fore, the optimization step includes the sorting of the requested points
per element at first and then evaluates them element-wise. Thereby the
elemental modal information of steps (A.1) - (A.2) in the gradient evalu-
ation can be reused. Another advantage of the element-wise evaluation
is that steps I and II can be done during initialization and the corre-
sponding element and coordinates can be stored. Step I is implemented
as a binary search in the octree representation of the TreElM mesh [5]
and has typically the complexity O(log n), with the number of elements
n. Hence, the influence of this O(log n) operations during computation is
negligible. Step II is a plain scaling of the coordinates since Ateles works
exclusively on cubic elements. Here, the costs are quantified with the help
of timers that measure the time spent in the evaluation routines. Due to
the implementation, the measurements of the evaluation do not include
the binary search I and, thus. it is not represented in the measured timings.

180

To investigate the benefit of the optimized implementation we use a
plain testcase: A 3D computational domain is split into two domains, left
and right, with the yz-plane as the coupling interface. Each domain is
constructed to have 16 elements at this interface. Both domain have vary-
ing orders between 4 to 100 but the number of elements remains constant.

Figure A.1 compares the optimized implementation (solid line) to the

0 20 40 60 80 100
Order

10−3

10−2

10−1

100

101

102

103

104

105

T
im

e
(s

)

state - optimized implementation

state - naive implementation

gradient - optimized implementation

gradient - naive implementation

Figure A.1.: Comparison of the naive (dashed line) and the optimized
(solid line) implementation for both evaluation.

naive one (dashed line). As expected, the optimization mainly improves
the gradient evaluation whereas the state evaluation is not affected much.
Only for orders p < 20 the optimization speeds up the state evaluation as
well. On average, the optimized version is faster than the naive version
by a factor of 34. For orders p < 20, the speedup is a little bit less. This
can be explained by caching effects of the machine. The measurements
were done on the SuperMuc IBM system at LRZ, Munich. For orders
p < 20, the consumed memory fits into the L2 cache of the SuperMUC
and the caching effects superpose the effects of the optimization. For
the state evaluation, the speedup is 1.15 on average. Figure A.2 shows

181

A. Optimization of polynomial evaluation in Ateles

26

28

30

32

34

36

38

40
S

p
ee

d
up

Gradient evaluation

0 20 40 60 80 100
Order

0

1

2

3

4

5

6

7

S
p

ee
d

up

State evaluation

Figure A.2.: Speed up of the optimized implementation for the gradient
(upper) and the state evaluation (lower).

that for small orders p < 20, the benefit is larger with a peak of 6 for a
fourth-order evaluation. This indicates that for the caching region, the
overhead for point-wise evaluation is rather large which is circumvented
with the element-wise evaluation. Additionally, in Figure A.2 it can be
seen that the speedup of the gradient evaluation for orders of 32, 48, 64,
80 and 96 is comparatively low.

Even with the optimization, there is clearly a difference between the
evaluation of gradient variables and state variables, presented in Figure A.1.
With the optimization, the difference between state and gradient evaluation
reduces from a mean factor around 79 to a mean factor of 2.6. For sake of
completeness, Figure A.3 illustrates the coupling costs for a typical Navier-
Stokes and Euler coupling: One domain evaluates state variables (dashed
red line) only, while the other domain evaluates “state+gradients” (solid
grey line). Obviously, the “state+gradients” evaluation is the individual
sum of the state evaluation and the gradient evaluations. By speeding up

182

0 20 40 60 80 100
Order

10−3

10−2

10−1

100

101

102

103

T
im

e
(s

)

state

gradient

state+gradients

Figure A.3.: Comparison of both evaluations required for coupling to
the Euler equations: state variables (dashed/red line) and to the Navier-
Stokes equations: state variables + their gradients (solid/grey line) in
the optimized version. Additional the pure gradient (dotted/blue line)
evaluation is plotted.

of the gradient evaluation, the factor between state and “state+gradients”
evaluation reduces on average from 80 to 4.6. Depending on the order, this
difference decreases from a maximum factor of 146 to 11. As discussed
in Section 3.2.1, different subdomains can have different workload, e.g.
Navier-Stokes equations are more costly than Linearized Euler equations.
Besides the load of solving the equation system, also the coupling cost
contributes to the workload of a subdomain. Hence, with the presented
optimization, the imbalances introduced by different coupling costs (due
to state or gradient evaluation) on different subdomains are highly reduced.

There is an additional benefit to the element-wise implementation. Re-
garding real-world scenarios, there might be “bad location elements”. “Bad
location elements” are elements with increased coupling costs due to their
location. There are two reasons for this: First, the number of requested
points for such an element increases, e.g. when coupling different grid
resolutions, such that one coupling element might need to evaluate points
from four or more elements; second, an element needs to provide gradient

183

A. Optimization of polynomial evaluation in Ateles

information for two or three normal directions, e.g. elements located on a
corner or at an edge, which requires the costly element evaluation (step A)
to be executed two or three times. By using an element-wise evaluation
instead of a point-wise evaluation, the high cost of the element evaluation
for the gradient computation is minimized to only one per element. This is
particularly observable when providing coupling data for a larger number
of requested points. Also, in case of gradient evaluation in two or three
normal directions, this optimization speeds up the whole evaluation. Still,
the costs of such elements are two or three times higher, which cannot be
avoided. However, the optimization step reduces coupling costs of such a
“bad location element” and, therefore, decreases the difference of coupling
cost between all coupling elements (as well as of course all elements which
are not involved in coupling). As described in Section 3.2.2, load imbal-
ances within a subdomain can be introduced by different loads on the
elements of these subdomains. With the optimization the cost difference
between the coupling elements, the coupling elements at bad locations,
and non-coupling elements is reduced. Hence, the load imbalances intro-
duced by coupling are minimized which is essential for good load balancing.

In this appendix, we have presented an important optimization based
on an element-wise implementation of the polynomial evaluation with the
DG solver Ateles. As shown, this optimization step yields a speedup of up
to 38 (on average 34) for the gradient evaluation and does not affect the
state evaluation. With this speedup, the cost difference between coupling
state variables and coupling state+gradient variables is reduced from 80
to 2.6. This is essential since we can not avoid to couple the gradients in
addition to the state variables when coupling to the Navier-Stokes equations.
Besides, with the shown optimization step, we minimized the impact of
the coupling location which is relevant for realistic testcases in which, for
example, corner elements exist. Minimizing the load imbalances within
a domain enables real-world applications. With the optimization step
the real-world scenarios presented in Section 5.2 coupled with APESmate
shows faster computation times than a similar monolithic simulation. This
optimization demonstrates an important step towards efficient coupling
using the integrated approach APESmate that utilizes Ateles.

184

B. Performance of the initialization phase of
APESmate using MPI_ALLTOALL

Section 4.4.6 has presented the performance of the initialization phase of
APESmate when using a sparse all-to-all communication. In this appendix,
we show why the usage of MPI_ALLTOALL instead of the sparse all-to-all is
not advisable.

During the initialization phase the point-to-point communication for the
exchange of coupling data in the simulation has to be established. For

100 101 102 103 104

Number of processes per domain

100

101

102

103

T
im

e
(s

)

Total

Init

Init Coupling

Coupling

Computation left

Computation right

Figure B.1.: Strong scaling using APESmate and standard MPI_ALL-
TOALL for the initialization phase up to 1 island (= 8192 MPI ranks)
on the SuperMuc Phase 1 IBM system. The total runtime is split into
individual subroutines.

the establishment of point-to-point communication, one round of global
communication is necessary. The main coupling information is communi-

185

B. Performance of the initialization phase of APESmate using
MPI_ALLTOALL

cated via Round Robin so that each coupling process subsequently knows
which data to provide to which process during simulation. Usually, the
MPI_ALLTOALL routine provided by the MPI standard was used. We have
observed a weak scaling of the initialization routines, which is shown in
Figure B.1. For comparison, the same testcase as well as the same setup
as for the strong scaling in Figure 4.10 of Section 4.4.6 are utilized.

The impact of the initialization of the coupling is so high that it influ-
ences the total runtime (for 100 timesteps). Actually, the weak scaling of
the total computation time arises from the initialization of the coupling
communication, namely from Round Robin, Exchange Ranks and Exchange
Cpl Data subroutines. This is due to the dense MPI_ALLTOALL calls. With
the MPI-3 standard [98], more non-blocking collectives like MPI_IBARRIER,
MPI_ISSEND, MPI_IRECV (MPI_ANY_SOURCE) were introduced. With the
help of those non-blocking collectives a sparse all-to-all communication
[99] can be realized in which only a target rank and data to send need
to be provided. This sparse communication is mainly useful in the case
where there are only few actual communication partners in a large com-
municator. Figure B.2 shows the scaling behavior using sparse all-to-all

100 101 102 103 104

Number of processes per domain

10−2

10−1

100

101

102

103

T
im

e
(s

)

Round Robin sparse

Exchange Ranks sparse

Exchange Cpl Data sparse

Round Robin

Exchange Ranks

Exchange Cpl Data

Figure B.2.: Strong Scaling of the costly initialization subroutines and
comparison using dense MPI all-to-all communication (dashed lines) or a
sparse version of all-to-all communication (solid lines).

186

communication in comparison with the standard MPI_ALLTOALL commu-
nication. Dashed lines denote the dense MPI_ALLTOALL communication,
while solid lines represent sparse all-to-all communication. We can see
that all three subroutines benefit from the sparse all-to-all communication.
With MPI_ALLTOALL, none of the subroutines scale but require increasing
time with an increasing number of processes. With the sparse all-to-all
communication, the timings for the subroutines reach a plateau at 512.
For the Round Robin, the sparse communication has the most benefit and
it shows good scalability for up to 512 processes.

So, the usage of MPI_ALLTOALL has an immense impact of the scalability
of the initialization phase of APESmate. For simulations with APESmate
on massive parallel systems the sparse all-to-all communication should be
used.

This is configured with setting use_sparse_ alltoall = true in the
lua configuration file of APESmate.

187

C. Figures for investigation of the Gaussian
distribution in pressure

In this appendix, we present all figures for the investigation of the aca-
demic testcase described in Section 5.1. The testcase is the 3D Gaussian
distribution in pressure. For the evaluation and discussion please refer to
the previously mentioned section.

189

C. Figures for investigation of the Gaussian distribution in pressure

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(a) NSE - NSE with APESmate,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(b) NSE - NSE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(c) NSE - NSE with preCICE,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(d) NSE - NSE with preCICE,
non-matching interface.

Figure C.1.: NSE - NSE coupling: Comparison of numerical and analytical
results in both subdomains for coupling of same equations with matching
interface (both subdomains h = 1,O = 6) and non-matching interfaces
(inner: h = 1,O = 6; outer: h = 5,O = 12).

190

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(a) EE - EE with APESmate,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(b) EE - EE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(c) EE - EE with preCICE,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(d) EE - EE with preCICE,
non-matching interface.

Figure C.2.: EE - EE coupling: Comparison of numerical and analytical
results in both subdomains for coupling of same equations with matching
interface (both subdomains h = 1,O = 6) and non-matching interfaces
(inner: h = 1,O = 6; outer: h = 5,O = 12).

191

C. Figures for investigation of the Gaussian distribution in pressure

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(a) LEE - LEE with APESmate,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(b) LEE - LEE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(c) LEE - LEE with preCICE,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(d) LEE - LEE with preCICE,
non-matching interface.

Figure C.3.: LEE - LEE coupling: Comparison of numerical and analytical
results in both subdomains for coupling of same equations with matching
interface (both subdomains h = 1,O = 6) and non-matching interfaces
(inner: h = 1,O = 6; outer: h = 5,O = 12).

192

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(a) NSE - EE with APESmate,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(b) NSE - EE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(c) NSE - EE with preCICE,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(d) NSE - EE with preCICE,
non-matching interface.

Figure C.4.: NSE - EE coupling: Comparison of numerical and analytical
results in both subdomains for coupling different equations with matching
interface (both subdomains h = 1,O = 6) and non-matching interfaces
(inner: h = 1,O = 6; outer: h = 5,O = 12).

193

C. Figures for investigation of the Gaussian distribution in pressure

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(a) EE - LEE with APESmate,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(b) EE - LEE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(c) EE - LEE with preCICE,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

(d) EE - LEE with preCICE,
non-matching interface.

Figure C.5.: EE - LEE coupling: Comparison of numerical and analytical
results in both subdomains for coupling different equations with matching
interface (both subdomains h = 1,O = 6) and non-matching interfaces
(inner: h = 1,O = 6; outer: h = 5,O = 12).

194

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

analytical C

C

analytical D

D

(a) NSE - EE - LEE with APESmate,
matching interface.

0 10 20 30
Time (s)

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

analytical C

C

analytical D

D

(b) NSE - EE - LEE with APESmate,
non-matching interface.

0 10 20 30
Time (s)

0.71420

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

analytical C

C

analytical D

D

(c) NSE - EE - LEE with preCICE,
matching interface.

0 10 20 30
Time (s)

0.71420

0.71425

0.71430

0.71435

P
re

ss
ur

e

analytical A

A

analytical B

B

analytical C

C

analytical D

D

(d) NSE - EE - LEE with preCICE,
non-matching interface.

Figure C.6.: NSE - EE - LEE coupling: Comparison of numerical and
analytical results for the coupling of three different equations with
matching interface (both subdomains h = 1,O = 6) and non-matching
interfaces (inner: h = 1,O = 6; middle: h = 2.5; O = 10; outer: h =
5,O = 12).

195

D. Iterative use of SPartA

Here, we investigate the use of the load balancing algorithm SPartA in an
“iterative” way. This means we run the simulation of the jet setup A (from
Section 5.2.3)) for a certain number of timesteps balanced with SPartA,
measuring new weights, rerun the simulation for for a certain number of
timesteps with SPartA etc. This re-distributes the loads, and thereby the
elements, which can result in different communication patterns that might
influence the overall performance. Table D.1 presents the computation

SPartA iteration computation time [s]

1 80.3
2 79.3
3 80.0
4 81.3
5 76.6
6 77.2
7 79.1
8 84.4

Table D.1.: Iterative usage of the load balancing algorithm SPartA, com-
putation time is without initialization time.

times (excluding the initialization time) for iterative usage of the load
balancing algorithm SPartA. We see that using SPartA iteratively does
not give any benefits. The timings spread closely around 80 s. This might
be different for another simulation scenario, though, where the boundary
elements and, hence, the communication patterns are strongly influenced
by the balancing algorithm.

197

Bibliography

[1] R. Sordello et al. “Evidence of the environmental impact of noise pol-
lution on biodiversity: a systematic map protocol”. In: Environmental
Evidence 8.1 (2019), p. 8. doi: 10.1186/s13750-019-0146-6.

[2] L. D. Knopper and C. A. Ollson. “Health effects and wind turbines:
A review of the literature”. In: Environmental Health 10.78 (2011).
doi: 10.1186/1476-069X-10-78.

[3] E. Pedersen and K. Persson Waye. “Perception and annoyance due to
wind turbine noise—a dose—response relationship”. In: The Journal
of the Acoustical Society of America 116 (2005), pp. 3460–3470. doi:
10.1121/1.1815091.

[4] I. van Kamp and F. van den Berg. “Health Effects Related to Wind
Turbine Sound, Including Low-Frequency Sound and Infrasound”. In:
Acoustics Australia 46.1 (2018), pp. 31–57. doi: 10.1007/s40857-
017-0115-6.

[5] H. Klimach. “Parallel Multi-Scale Simulations with Octrees and
Coupled Applications”. PhD Thesis. RWTH Aachen, 2016.

[6] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin
Methods: Algorithms, Analysis, and Applications. 1st ed. Springer,
2007.

[7] G. Gassner. “Discontinuous Galerkin Methods for the Unsteady
Compressible Navier-Stokes Equations”. PhD Thesis. Universität
Stuttgart, 2009.

[8] J. Zudrop. “Efficient Numerical Methods for Fluid- and Electrody-
namics on Massively Parallel Systems”. PhD Thesis. RWTH Aachen,
2015.

[9] F. Farassat and M. Myers. “Extension of Kirchhoff’s formula to
radiation from moving surfaces”. In: Journal of Sound and Vibration
123.3 (1988), pp. 451–460. doi: 10.1016/S0022-460X(88)80162-7.

[10] M. Wang, J. B. Freund, and S. K. Lele. “Computational Prediction
of Flow-Generated Sound”. In: Annual Review of Fluid Mechanics
38.1 (2006), pp. 483–512. doi: 10.1146/annurev.fluid.38.050304.
092036.

199

http://dx.doi.org/10.1186/s13750-019-0146-6
http://dx.doi.org/10.1186/1476-069X-10-78
http://dx.doi.org/10.1121/1.1815091
http://dx.doi.org/10.1007/s40857-017-0115-6
http://dx.doi.org/10.1007/s40857-017-0115-6
http://dx.doi.org/10.1016/S0022-460X(88)80162-7
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092036
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092036

Bibliography

[11] M. Lighthill. “On Sound Generated Aerodynamically I. General
Theory”. In: Proceedings of The Royal Society London A 211 (1107
1952), pp. 564–587. doi: 10.1098/rspa.1952.0060.

[12] J. E. F. Williams et al. “Sound Generation by Turbulence and
Surfaces in Arbitrary Motion”. In: Philosophical Transactions of
the Royal Society of London. Series A, Mathematical and Physical
Sciences 264.1151 (1969), pp. 321–342. doi: 10.1098/rsta.1969.
0031.

[13] M. Kornhaas. “Effiziente numerische Methoden für die Simulation
aero-akustischer Probleme mit kleinen Machzahlen”. PhD Thesis.
Technische Universität Darmstadt, 2011.

[14] A. . Fedorchenko. “On Some Fundamental Flaws in Present Aeroa-
coustic Theory”. In: Journal of Sound and Vibration 232.4 (2000),
pp. 719–782. doi: 10.1006/jsvi.1999.2767.

[15] C. K. Tam. “Computational Aeroacoustics Examples Showing The
Failure Of The Acoustic Analogy Theory To Identify The Correct
Noise Sources”. In: Journal of Computational Acoustics 10.04 (2002),
pp. 387–405. doi: 10.1142/S0218396X02001607.

[16] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000. doi:
10.1017/CBO9780511840531.

[17] T. J. R. Hughes, L. Mazzei, and K. E. Jansen. “Large Eddy Simula-
tion and the variational multiscale method”. In: Computing and
Visualization in Science 3.1 (2000), pp. 47–59. doi: 10 . 1007 /
s007910050051.

[18] S. Larsson and V. Thomée. Partial Differential Equations with Nu-
merical Methods. 2003. doi: 10.1007/978-3-540-88706-5.

[19] B. Cockburn and C.-W. Shu. “TVB Runge-Kutta Local Projection
Discontinuous Galerkin Finite Element Method for Conservation
Laws II: General Framework”. In: Mathematics of Computation
52.186 (1989), pp. 411–435.

[20] B. Cockburn, S.-Y. Lin, and C.-W. Shu. “TVB Runge-Kutta Lo-
cal Projection Discontinuous Galerkin Finite Element Method for
Conservation Laws III: One-dimensional Systems”. In: Journal of
Computational Physics 84.1 (), pp. 90–113. doi: 10.1016/0021-
9991(89)90183-6.

200

http://dx.doi.org/10.1098/rspa.1952.0060
http://dx.doi.org/10.1098/rsta.1969.0031
http://dx.doi.org/10.1098/rsta.1969.0031
http://dx.doi.org/10.1006/jsvi.1999.2767
http://dx.doi.org/10.1142/S0218396X02001607
http://dx.doi.org/10.1017/CBO9780511840531
http://dx.doi.org/10.1007/s007910050051
http://dx.doi.org/10.1007/s007910050051
http://dx.doi.org/10.1007/978-3-540-88706-5
http://dx.doi.org/10.1016/0021-9991(89)90183-6
http://dx.doi.org/10.1016/0021-9991(89)90183-6

Bibliography

[21] B. Cockburn, S. Hou, and C.-W. Shu. “The Runge-Kutta Local
Projection Discontinuous Galerkin Finite Element Method for Con-
servation Laws IV: The Multidimensional Case”. In: Mathematics of
Computation 54.190 (1990), pp. 545–581.

[22] D. Di Pietro and A. Ern. Mathematical Aspects of Discontinuous
Galerkin Methods. Springer Berlin Heidelberg, 2012. doi: 10.1007/
978-3-642-22980-0.

[23] R. Hartmann and P. Houston. “Symmetric Interior Penalty DG
Methods for the Compressible Navier–Stokes Equations I: Method
Formulation”. In: International Journal of Numerical Analysis &
Modeling 3 (2006), pp. 1–20.

[24] C. Canuto et al. Spectral Methods: Evolution to Complex Geometries
and Applications to Fluid Dynamics. Springer Berlin Heidelberg,
2007. doi: 10.1007/978-3-540-30728-0.

[25] W. S. Don. “Numerical Study of Pseudospectral Methods in Shock
Wave Applications”. In: Journal of Computational Physics 110.1
(1994), pp. 103–111. doi: https://doi.org/10.1006/jcph.1994.
1008.

[26] R. LeVeque. Numerical Methods for Conservation Laws. Lectures
in Mathematics ETH Zürich, Department of Mathematics Research
Institute of Mathematics. Birkhäuser Basel, 1990.

[27] J. C. Butcher. Numerical Methods for Ordinary Differential Equations.
2nd ed. John Wiley & Sons Ltd, 2008. doi: 10.1002/9780470753767.
ch1.

[28] J. H. Verner. “On deriving explicit Runge-Kutta methods”. In:
Proceedings of the 1971 Conference on Applications of Numeri-
cal Analysis. Springer Berlin Heidelberg, 1971, pp. 340–347. doi:
10.1007/BFb0069470.

[29] W. Kutta. Beitrag zur näherungsweisen Integration totaler Dif-
ferentialgleichungen. B.G Teubner, 1901.

[30] B. Cockburn and C.-W. Shu. “Runge–Kutta Discontinuous Galerkin
Methods for Convection-Dominated Problems”. In: Journal of Sci-
entific Computing 16.3 (2001), pp. 173–261. doi: 10 . 1023 / A :
1012873910884.

[31] J. C. Butcher. The Numerical Analysis of Ordinary Differential
Equations: Runge-Kutta and General Linear Methods. USA: Wiley–
Interscience, 1987. doi: 10.5555/22730.

201

http://dx.doi.org/10.1007/978-3-642-22980-0
http://dx.doi.org/10.1007/978-3-642-22980-0
http://dx.doi.org/10.1007/978-3-540-30728-0
http://dx.doi.org/https://doi.org/10.1006/jcph.1994.1008
http://dx.doi.org/https://doi.org/10.1006/jcph.1994.1008
http://dx.doi.org/10.1002/9780470753767.ch1
http://dx.doi.org/10.1002/9780470753767.ch1
http://dx.doi.org/10.1007/BFb0069470
http://dx.doi.org/10.1023/A:1012873910884
http://dx.doi.org/10.1023/A:1012873910884
http://dx.doi.org/10.5555/22730

Bibliography

[32] S. Gottlieb, C.-W. Shu, and E. Tadmor. “Strong Stability-Preserving
High-Order Time Discretization”. In: SIAM Review 43.1 (2001),
pp. 89–112.

[33] T. Schwartzkopff and C.-D. Munz. “Direct Simulation of Aeroacous-
tics”. In: Analysis and Simulation of Multifield Problems. Springer
Berlin Heidelberg, 2003, pp. 337–342.

[34] M. Borrel, L. Halpern, and J. Ryan. “Euler/Navier-Stokes couplings
for multiscale aeroacoustic problems”. In: 20th AIAA Computational
Fluid Dynamics Conference. 2011. doi: 10.2514/6.2011-3047.

[35] J. Ryan, L. Halpern, and M. Borrel. “Domain decomposition vs.
overset Chimera grid approaches for coupling CFD and CAA”. In:
Proceedings of the 7th International Conference on Computational
Fluid Dynamics (ICCFD7). 2012.

[36] T. Schwartzkopff. “Finite-Volumen Verfahren hoher Ordnung und
heterogene Gebietszerlegung für die numerische Aeroakustik”. PhD
Thesis. Universität Stuttgart, 2005.

[37] J. Utzmann. “A Domain Decomposition Method for the Efficient
Direct Simulation of Aeroacoustic Problems by”. PhD Thesis. Uni-
verstität Stuttgart, 2008.

[38] W. Joppich and M. Kürschner. “MpCCI—a tool for the simulation
of coupled applications”. In: Concurrency and Computation: Practice
and Experience 18.2 (2006), pp. 183–192. doi: 10.1002/cpe.913.

[39] H.-J. Bungartz et al. “preCICE – A fully parallel library for multi-
physics surface coupling”. In: Computers and Fluids 141 (2016),
pp. 250–258. doi: 10.1016/j.compfluid.2016.04.003.

[40] B. Gatzhammer. “Efficient and Flexible Partitioned Simulation of
Fluid- Structure Interactions”. PhD Thesis. Technische Universität
München, 2014.

[41] B. Uekermann. “Partitioned Fluid-Structure Interaction on Massively
Parallel Systems”. PhD Thesis. Technische Universität München,
2016.

[42] H.-J. Bungartz et al. “Partitioned Fluid–Structure–Acoustics Inter-
action on Distributed Data: Coupling via preCICE”. In: Software for
Exascale Computing – SPPEXA 2013-2015. Springer International
Publishing, 2016, pp. 239–266.

202

http://dx.doi.org/10.2514/6.2011-3047
http://dx.doi.org/10.1002/cpe.913
http://dx.doi.org/10.1016/j.compfluid.2016.04.003

Bibliography

[43] A. K. Shukaev. “A Fully Parallel Process-to-Process Intercommunica-
tion Technique for preCICE”. Master’s Thesis. Technische Universität
München, 2015.

[44] D. Blom et al. “On parallel scalability aspects of strongly coupled
partitioned fluid-structure-acoustics interaction”. In: Proceedings of
the 6th International Conference on Computational Methods for
Coupled Problems in Science and Engineering. CIMNE, 2015, pp. 556–
565.

[45] D. Blom et al. “Partitioned Fluid-Structure-Acoustics Interaction on
Distributed Data: Numerical Results and Visualization”. In: Software
for Exascale Computing – SPPEXA 2013-2015. Springer Interna-
tional Publishing, 2016, pp. 267–291.

[46] T. Reimann et al. “Multifield coupling of a fluid-structure-acoustics
interaction problem in low-Mach number turbulent flow”. In: 6th
European Conference on Computational Mechanics (ECCM 6) / 7th
European Conference on Computational Fluid Dynamics (ECFD 7).
2018.

[47] H.-J. Bungartz, P. Neumann, and W. Nagel, eds. Software for Ex-
ascale Computing - SPPEXA 2013-2015. Springer International
Publishing, 2016. doi: 10.1007/978-3-319-40528-5.

[48] H.-J. Bungartz et al., eds. Software for Exascale Computing - SPPEXA
2016-2019. Springer International Publishing, 2020. doi: 10.1007/
978-3-030-47956-5.

[49] H. Bijl et al. “ExaFSA–Exascale Simulation of Fluid-Structure-
Acoustics Interactions”. In: InSiDE Magazine (Autumn 2014).

[50] P. Bastian et al. The Distributed and Unified Numerics Environment
(DUNE).

[51] P. Bastian et al. “A generic grid interface for parallel and adaptive
scientific computing. Part I: Abstract framework”. In: Computing 82
(2008), pp. 103–119. doi: 10.1007/s00607-008-0003-x.

[52] A. Dedner et al. “The DUNE-FEM-DG module.” In: Archive of
Numerical Software 5 (2017), No 1. doi: 10.11588/ANS.2017.1.
28602.

[53] J. Teresco, K. Devine, and J. Flaherty. “Partitioning and Dynamic
Load Balancing for the Numerical Solution of Partial Differential
Equations”. In: Numerical Solution of Partial Differential Equations
on Parallel Computers. 2006, pp. 55–88. doi: 10.1007/3-540-31619-
1_2.

203

http://dx.doi.org/10.1007/978-3-319-40528-5
http://dx.doi.org/10.1007/978-3-030-47956-5
http://dx.doi.org/10.1007/978-3-030-47956-5
http://dx.doi.org/10.1007/s00607-008-0003-x
http://dx.doi.org/10.11588/ANS.2017.1.28602
http://dx.doi.org/10.11588/ANS.2017.1.28602
http://dx.doi.org/10.1007/3-540-31619-1_2
http://dx.doi.org/10.1007/3-540-31619-1_2

Bibliography

[54] K. Schloegel, G. Karypis, and V. Kumar. “A Unified Algorithm for
Load-balancing Adaptive Scientific Simulations”. In: 2000, pp. 59–59.
doi: 10.1109/SC.2000.10035.

[55] D. F. Harlacher et al. “Dynamic Load Balancing for Unstructured
Meshes on Space-Filling Curves”. In: Proceedings of the 2012 IEEE
26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum. 2012, pp. 1661–1669. doi: 10 . 1109 /
IPDPSW.2012.207.

[56] L. D. Landau and E. M. Lifshitz. Fluid Mechanics, Second Edition:
Volume 6 (Course of Theoretical Physics). 2nd ed. Butterworth-
Heinemann, 1987.

[57] E. F. Toro. Riemann solvers and numerical methods for fluid dynam-
ics. 2nd ed. Springer, 1999.

[58] A. Beck, G. Gassner, and C.-D. Munz. “On the Effect of Flux Func-
tions in Discontinuous Galerkin Simulations of Underresolved Turbu-
lence”. In: Spectral and High Order Methods for Partial Differential
Equations - ICOSAHOM 2012. Springer International Publishing,
2014, pp. 145–155. doi: 10.1007/978-3-319-01601-6_11.

[59] V. Titarev and E. Toro. “ADER schemes for three-dimensional non-
linear hyperbolic systems”. In: Journal of Computational Physics
204.2 (2005), pp. 715–736. doi: 10.1016/j.jcp.2004.10.028.

[60] F. Lindner et al. “A comparison of various quasi-Newton schemes
for partitioned fluid-structure interaction”. In: Proceedings of 6th
International Conference on Computational Methods for Coupled
Problems in Science and Engineering. 2015, pp. 1–12.

[61] D. Blom et al. “A Review on Fast Quasi-Newton and Accelerated
Fixed-Point Iterations for Partitioned Fluid–Structure Interaction
Simulation”. In: Advances in Computational Fluid-Structure Interac-
tion and Flow Simulation: New Methods and Challenging Compu-
tations. Springer International Publishing, 2016, pp. 257–269. doi:
10.1007/978-3-319-40827-9_20.

[62] F. G. Lether. “On the construction of Gauss-Legendre quadrature
rules”. In: Journal of Computational and Applied Mathematics 4.1
(1978), pp. 47–52. doi: http : / / dx . doi . org / 10 . 1016 / 0771 -
050X(78)90019-0.

[63] C. Clenshaw and A. Curtis. “A method for numerical integration
on an automatic computer.” In: Numerische Mathematik 2 (1960),
pp. 197–205.

204

http://dx.doi.org/10.1109/SC.2000.10035
http://dx.doi.org/10.1109/IPDPSW.2012.207
http://dx.doi.org/10.1109/IPDPSW.2012.207
http://dx.doi.org/10.1007/978-3-319-01601-6_11
http://dx.doi.org/10.1016/j.jcp.2004.10.028
http://dx.doi.org/10.1007/978-3-319-40827-9_20
http://dx.doi.org/http://dx.doi.org/10.1016/0771-050X(78)90019-0
http://dx.doi.org/http://dx.doi.org/10.1016/0771-050X(78)90019-0

Bibliography

[64] N. Anand, H. Klimach, and S. Roller. “Dealing with non-linear
terms in a modal High-Order Discontinuous Galerkin Method”. In:
Proceedings of the 2016 Joint Workshop on Sustained Simulation
Performance, University of Stuttgart (HLRS) and Tohoku University.
Springer International Publishing, 2016.

[65] S. Roller et al. “An Adaptable Simulation Framework Based on
a Linearized Octree”. In: High Performance Computing on Vector
Systems 2011. Springer Berlin Heidelberg, 2012, pp. 93–105. doi:
10.1007/978-3-642-22244-3_7.

[66] V. Krupp et al. “Efficient Coupling of Fluid and Acoustic Interaction
on Massive Parallel Systems”. In: Proceedings of the 2016 Joint Work-
shop on Sustained Simulation Performance, University of Stuttgart
(HLRS) and Tohoku University. Springer International Publishing,
2016, pp. 61–81. doi: 10.1007/978-3-3199-46735-1_6.

[67] H. G. Klimach et al. “Distributed Octree Mesh Infrastructure for
Flow Simulations”. In: Proceedings of the 2012 European Congress
on Computational Methods in Applied Sciences and Engineering
(ECCOMAS). 2012.

[68] D. F. Harlacher et al. “Tree Based Voxelization of STL Data”. In: High
Performance Computing on Vector Systems 2011. Springer Berlin
Heidelberg, 2012, pp. 81–92. doi: 10.1007/978-3-642-22244-3_6.

[69] H. G. Klimach, J. Zudrop, and S. P. Roller. “Generation of high order
geometry representations in Octree meshes”. In: PeerJ Computer
Science 1 (Nov. 2015), e35. doi: 10.7717/peerj-cs.35.

[70] B. K. Alpert and V. Rokhlin. “A Fast Algorithm for the Evaluation of
Legendre Expansions”. In: SIAM Journal on Scientific and Statistical
Computing 12.1 (1991), pp. 158–179. doi: 10.1137/0912009.

[71] J. Qi. “Efficient Lattice Boltzmann Simulations on Large Scale High
Performance Computing Systems”. PhD Thesis. RWTH Aachen,
2017.

[72] F. Lindner. “Data Transfer in Partitioned Multi-Physics Simulations:
Interpolation & Communication”. PhD Thesis. Universität Stuttgart,
2019.

[73] A. de Boer, A. van Zuijlen, and H. Bijl. “Comparison of conservative
and consistent approaches for the coupling of non-matching meshes”.
In: Computer Methods in Applied Mechanics and Engineering 197.49-
50 (2008), pp. 4284–4297. doi: 10.1016/j.cma.2008.05.001.

205

http://dx.doi.org/10.1007/978-3-642-22244-3_7
http://dx.doi.org/10.1007/978-3-3199-46735-1_6
http://dx.doi.org/10.1007/978-3-642-22244-3_6
http://dx.doi.org/10.7717/peerj-cs.35
http://dx.doi.org/10.1137/0912009
http://dx.doi.org/10.1016/j.cma.2008.05.001

Bibliography

[74] R. Yokota, L. A. Barba, and M. G. Knepley. “PetRBF — A parallel
O(N) algorithm for radial basis function interpolation with Gaus-
sians”. In: Computer Methods in Applied Mechanics and Engineering
199.25-28 (2010), pp. 1793–1804. doi: 10.1016/j.cma.2010.02.008.

[75] S. Deparis, D. Forti, and A. Quarteroni. “A Rescaled Localized
Radial Basis Function Interpolation on Non-Cartesian and Noncon-
forming Grids”. In: SIAM Journal on Scientific Computing 36.6
(2014), A2745–A2762. doi: 10.1137/130947179.

[76] M. Buhmann. “Radial basis functions”. In: Acta Numerica 9 (2000),
pp. 1–38.

[77] F. Lindner, M. Mehl, and B. Uekermann. “Radial Basis Function
Interpolation for Black-Box Multi-Physics Simulations”. In: Proceed-
ings of the VII International Conference on Coupled Problems in
Science and Engineering. CIMNE, 2017, pp. 50–61.

[78] N. Ebrahimi Pour et al. “Coupled Simulation with Two Coupling Ap-
proaches on Parallel Systems”. In: Proceedings of the 2017 Joint Work-
shop on Sustained Simulation Performance, University of Stuttgart
(HLRS) and Tohoku University. Springer International Publishing,
2017, pp. 151–164. doi: 10.1007/978-3-319-66896-3_10.

[79] A. de Boer, A. H. van Zuijlen, and H. Bijl. “Comparison of the
conservative and a consistent approach for the coupling of non-
matching meshes”. In: European Conference on Computational Fluid
Dynamics (2006), pp. 1–19.

[80] M. Mongillo. “Choosing Basis Functions and Shape Parameters for
Radial Basis Function Methods”. In: SIAM (2011), pp. 190–209.

[81] H.-J. Bungartz et al. “Fluid-Acoustics Interaction on Massively
Parallel Systems”. In: International Workshop on Computational
Engineering CE 2014. Lecture Notes in Computational Science and
Engineering. Heidelberg, Berlin: Springer, 2015.

[82] K. Masilamani. “Coupled Simulation Framework to Simulation Elec-
trodialysis Processes for Seawater Desalination”. PhD Thesis. RWTH
Aachen, Submitted in 2019.

[83] K. Masilamani, H. Klimach, and S. Roller. “Highly Efficient Inte-
grated Simulation of Electro-Membrane Processes for Desalination
of Sea Water”. In: High Performance Computing in Science and En-
gineering ’13. Springer International Publishing, 2013, pp. 493–508.
doi: 10.1007/978-3-319-02165-2_34.

206

http://dx.doi.org/10.1016/j.cma.2010.02.008
http://dx.doi.org/10.1137/130947179
http://dx.doi.org/10.1007/978-3-319-66896-3_10
http://dx.doi.org/10.1007/978-3-319-02165-2_34

Bibliography

[84] C. K. Tam. Computational Aeroacoustics: A Wave Number Approach.
Cambridge Aerospace Series. Cambridge University Press, 2012.

[85] C. Bogey and C. Bailly. “Investigation of downstream and sideline
subsonic jet noise using Large Eddy Simulation”. In: Theoretical and
Computational Fluid Dynamics 20.1 (2006), pp. 23–40.

[86] C. Bogey and C. Bailly. “Computation of a high Reynolds number
jet and its radiated noise using large eddy simulation based explicit
filtering”. In: Computers & Fluids 35 (2006), pp. 1344–1358. doi:
10.1016/j.compfluid.2005.04.008.

[87] C. K. Tam et al. “The Sources of Jet Noise: Experimental Evidence”.
In: Journal of Fluid Mechanics 615 (2008), pp. 253–292. doi: 10.
1017/S0022112008003704.

[88] S. Karabasov. “Understanding jet noise”. In: Philosophical transac-
tions. Series A, Mathematical, physical, and engineering sciences
368 (2010), pp. 3593–3608. doi: 10.1098/rsta.2010.0086.

[89] M. Dumbser et al. “A unified framework for the construction of
one-step finite volume and discontinuous Galerkin schemes on un-
structured meshes”. In: Journal of Computational Physics 227.18
(2008), pp. 8209–8253. doi: 10.1016/j.jcp.2008.05.025.

[90] J. Berland, C. Bogey, and C. Bailly. “Numerical study of screech
generation in a planar supersonic jet”. In: Physics of Fluids 19.7
(2007), p. 075105. doi: 10.1063/1.2747225.

[91] D. Casalino and S. Lele. “Lattice-Boltzmann Simulation of Coaxial
Jet Noise Generation”. In: Proceedings of the Summer Program,
Center for Turbulence Research, Stanford, CA. 2014, pp. 231–240.

[92] N. Ebrahimi Pour. “Efficient high-order simulation of aeroacoustics
from rigid body motion on massively parallel systems”. PhD thesis.
Universität Siegen, 2021.

[93] N. Anand et al. “Utilization of the Brinkman Penalization to Rep-
resent Geometries in a High-Order Discontinuous Galerkin Scheme on
Octree Meshes”. In: Symmetry 11.9 (2019). doi: 10.3390/sym11091126.

[94] N. Ebrahimi Pour et al. “Load Balancing for Immersed Boundaries
in Coupled Simulations”. In: Proceedings of the 2018 and 2019 Joint
Workshops on Sustained Simulation Performance, University of
Stuttgart (HLRS) and Tohoku University. Springer International
Publishing, 2019, pp. 185–201. doi: 10.1007/978-3-030-39181-
2_15.

207

http://dx.doi.org/10.1016/j.compfluid.2005.04.008
http://dx.doi.org/10.1017/S0022112008003704
http://dx.doi.org/10.1017/S0022112008003704
http://dx.doi.org/10.1098/rsta.2010.0086
http://dx.doi.org/10.1016/j.jcp.2008.05.025
http://dx.doi.org/10.1063/1.2747225
http://dx.doi.org/10.3390/sym11091126
http://dx.doi.org/10.1007/978-3-030-39181-2_15
http://dx.doi.org/10.1007/978-3-030-39181-2_15

Bibliography

[95] M. Ghasemian and A. Nejat. “Aerodynamic Noise Computation
of the Flow Field around NACA 0012 Airfoil Using Large Eddy
Simulation and Acoustic Analogy”. In: Journal of Computational
Applied Mechanics 46.1 (2015), pp. 41–50. doi: 10.22059/jcamech.
2015.53392.

[96] M. Gaiga. “Implementierung einer lokal linearisierten Euler-Gleichung
in den modalen Discontinuous Galerkin Löser Ateles”. Bachelor’s
Thesis. Universität Siegen, 2017.

[97] A. Totounferoush et al. “A new load balancing approach for coupled
multi-physics simulations”. In: Proceedings of the 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 2019. doi: 10.1109/IPDPSW.2019.00115.

[98] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 3.0.

[99] T. Hoefler and J. Träff. “Sparse collective operations for MPI”. In:
Proceedings of the 2009 IEEE International Symposium on Parallel
& Distributed Processing. 2009, pp. 1–8. doi: 10.1109/IPDPS.2009.
5160935.

208

http://dx.doi.org/10.22059/jcamech.2015.53392
http://dx.doi.org/10.22059/jcamech.2015.53392
http://dx.doi.org/10.1109/IPDPSW.2019.00115
http://dx.doi.org/10.1109/IPDPS.2009.5160935
http://dx.doi.org/10.1109/IPDPS.2009.5160935

List of Figures

1.1. Sketch of coupled setup of an areo-acoustic jet. 4

3.1. Overview of steering individual solvers of the coupled simu-
lation in both established coupling approaches. 36

3.2. Sketch of two subdomains A and B where the corresponding
processes need to communicate. 38

3.3. Sub-cycling of one subdomain. 40
3.4. Example of matching and non-matching integration points

at the coupling interface when using the DG method. 43
3.5. Example of load balancing between a flow domain and an

acoustic domain. 46
3.6. Example of load balancing within a subdomain for different

scenarios. 48
3.7. Load balancing examples with multi-stage time integration. 50
3.8. Legendre polynomials for polynomial degree m = 0...5. . . . 53

4.1. Schematic organization of the APES framework. 60
4.2. Schematic of splitting with SPartA. 66
4.3. Schematic view of the two projection-based mapping meth-

ods provided in preCICE. 72
4.4. Testcase of traveling Gaussian pulse in density. 75
4.5. NN mapping results for different configurations. 77
4.6. NP mapping results for different configurations. 79
4.7. RBF interpolation results for different configurations. 81
4.8. Strong scaling using preCICE up to one island on SuperMuc. 82
4.9. APESmate results for different configurations. 88
4.10. Strong scaling using APESmate up to one island on SuperMuc. 89
4.11. Strong scaling of the initialization phase of APESmate. . . . 91
4.12. Strong scaling of the initialization phase of the coupling

communication Init Cpl Comm of APESmate split into
individual substeps. 91

5.1. 2D sketch of a 3D Gaussian pulse in pressure. 95

209

List of Figures

5.2. Comparison of numerical and analytical result for coupling of
same equations with non-matching interfaces for APESmate
and preCICE. 98

5.3. Comparison of numerical and analytical result for coupling
different equations for APESmate and preCICE. 101

5.4. 2D Sketch of 3-field coupling for the 3D Gaussian pulse. . . 102
5.5. Comparison of numerical and analytical results for the cou-

pling of three different equations. 104
5.6. Instantaneous density field of a 3D subsonic free-stream jet

at t = 120. 107
5.7. Velocity, gradient of velocity, and vorticity of the 3D subsonic

free-stream jet at t=120. 109
5.8. Pressure field of the 3D subsonic free-stream jet at t = 120. 110
5.9. Schlieren visualization of the 3D subsonic free-stream jet at

t = 120 . 111
5.10. Schlieren visualization of NSE, EE, and parts of LEE at

t = 120. 112
5.11. Schlieren visualization showing the acoustic waves traveling

across the NSE–EE coupling interface at different timesteps. 113
5.12. Schlieren flow visualization showing the acoustic waves trav-

eling across the EE–LEE coupling interface at different
timesteps. 114

5.13. 2D sketch of the coupling setup of free-stream jet for monolithic-
like setup A. 116

5.14. Multilevel mesh of the viscous flow. 118
5.15. Coupling interfaces with a one-level jump. 123
5.16. Coupling weights of both EE coupling interfaces. 126
5.17. Strong scaling for setup A with APESmate. 141
5.18. Comparison of mesh of NSE domain for setup A (top) and

setup B (bottom). 144
5.19. Coupling interfaces with three-level jump. 144
5.20. Strong scaling for tailored B with APESmate. 149
5.21. Schlieren visualization of NSE domain and iso-contour of

Ma=0.39 at t = 250. 154
5.22. Pressure field of NSE and EE subdomain at t = 250. 155
5.23. Velocity of NSE and EE subdomain at t = 250. 156
5.24. Vorticity of NSE and EE subdomain at t = 250. 156
5.25. Density field of NSE and EE subdomain at t = 250. 157
5.26. Schlieren visualization of NSE and EE subdomain at t = 250.158
5.27. The full EE domain at t = 250. 160

210

List of Figures

5.28. Schlieren visualization (xz-plane) of the entire LEE domain
at t = 250. 161

5.29. Schlieren visualization at t = 250 where the acoustic waves
reach the outer boundary. 162

6.1. Numerical and analytical result when coupling the same
equations with matching interfaces for APESmate and pre-
CICE. 166

6.2. Close-ups of the comparison of monolithic simulation and
different coupled simulations. 167

6.3. Comparison of LEE - LEE coupling with APESmate using
matching interface and different timesteps. 168

6.4. Comparison of inconsistent to consistent time-coupling. . . . 168

A.1. Comparison of the naive (dashed line) and the optimized
(solid line) implementation for both evaluation. 181

A.2. Speed up of the optimized implementation for the gradient
(upper) and the state evaluation (lower). 182

A.3. Comparison of both evaluations required for coupling to the
Euler equations. 183

B.1. Strong scaling using APESmate and standard MPI_ALL-
TOALL. 185

B.2. Strong Scaling of the initialization subroutines for dense and
sparse MPI all-to-all communication. 186

C.1. NSE - NSE coupling: Comparison of numerical and analyti-
cal results. 190

C.2. EE - NSE coupling: Comparison of numerical and analytical
results. 191

C.3. LEE - LEE coupling: Comparison of numerical and analyti-
cal results. 192

C.4. NSE - EE coupling: Comparison of numerical and analytical
results. 193

C.5. EE - LEE coupling: Comparison of numerical and analytical
results. 194

C.6. NSE - EE - LEE coupling: Comparison of numerical and
analytical results. 195

211

List of Tables

4.1. Shape parameters for different configurations. 80

5.1. Parameters for the Gaussian pulse in pressure for all dif-
ferent equations: viscous flow (NSE), inviscid flow (EE) and
acoustics (LEE). 95

5.2. Discretizations for matching and non-matching coupling
interfaces. 97

5.3. Relative error at simulation time t = 7 for positions A and
B for coupling the same equations 99

5.4. Relative error at simulation time t = 7 for positions A and
B when coupling different equations 102

5.5. Discretizations for matching and non-matching coupling
interfaces for 3-field testcase. 103

5.6. Relative error at simulation time t = 7 for position A/B
and t = 13 for position C/D when coupling three different
equations, . 105

5.7. Parameters for the individual equations for the jet testcase. 117
5.8. Individual domain and numerical discretization specifica-

tions of monolithic-like setup A. 119
5.9. Element configuration at the coupling interfaces of setup A. 124
5.10. Number of total, compute and coupling elements for the

individual subdomains of setup A. 125
5.11. Weight distribution between the subdomains: Sum of

weights for compute, coupling point evaluation, and total
as sum of the subdomains. All weights in s. 128

5.12. Weight distributions within the subdomains: Minimum and
maximum weights for compute, coupling point evaluation,
and total. All weights in s. 130

5.13. Waiting (sum of all elements) and execution times for dif-
ferent partitioning strategies. 133

5.14. Time spent in the initialization phase of APESmate for the
different partitioning strategies. 135

213

List of Tables

5.15. Maximum communication time for first-order forward Euler
scheme and second-order Runge-Kutta scheme when bal-
ancing based on total weights (computation + coupling). . . 136

5.16. Computation times of different partitioning strategies of the
setup A using preCICE. 138

5.17. Execution times of the most efficient partitioning of the
setup A for monolithic, coupled simulation using preCICE
and coupled simulation using APESmate. 140

5.18. Number of processes for strong scaling distributed of the
individual subdomains for monolithic-like setup A. 141

5.19. Individual domain and numerical specifications of setup B. . 143
5.20. Element configuration at the coupling interfaces of setup B. 145
5.21. Number of total, compute and coupling elements for the

individual subdomains of setup B. 146
5.22. Degrees of freedom DoF for the monolithic-like setup A and

the tailored setup B. 146
5.23. Weight distribution between subdomains for setup B. . . . 147
5.24. Number of processes for strong scaling distributed of the

individual subdomains for tailored setup B. 149
5.25. Computation times of monolithic and coupled simulations

for 100 timesteps of setup B using APESmate. 151
5.26. Execution times for 100 timesteps and for reaching 1 tu

of simulation time for setup A and B. 152

D.1. Iterative usage of the load balancing algorithm SPartA. . . 197

214

ISBN: 978-3-96182-104-4

V
er

en
a

K
ru

pp
|

Ef
fi

ci
en

t
co

up
lin

g
of

 fl
ui

d
an

d
ac

ou
st

ic
 in

te
ra

ct
io

n Verena Krupp

Effi cient coupling of fl uid and
acoustic interaction on massively
parallel systems

Verena Krupp studied mechanical engineering at H-BRS and Simulation Sciences
at the GRS/RWTH Aachen; 2013-2016 she worked in the DFG funded project
exaFSA on the effi cient coupling of fl uid and acoustics. From 2013-2017 she
was working in research at the chair for Simulation Techniques and Scientifi c
Computing at the University of Siegen.

Simulation Techniques in Siegen

Vol. 5

Simulation Techniques in Siegen

Vol. 55

The series Simulation Techniques in Siegen presents contributions to the fi eld
of scientifi c computing with a focus on the utilization of large-scale computing
systems for highly resolved simulations. Applications, as well as numerical
methods and their effi cient implementation on modern supercomputers, are
investigated and described.

This work presents an effi cient coupling strategy to tackle the multi-scale
problem posed by technical devices that radiate sound. Two different approaches,
a fl exible multi-solver approach (with the coupling library preCICE) and an
optimized integrated approach (called APESmate), are established and compared
in terms of quality, load balancing, and performance. Load balancing is a crucial
aspect regarding simulations in the fi eld of high performance computing where
many processes are used in parallel and, in particular, when considering coupled
simulation where different partitions are solving different physical phenomena
and numerical discretization. The benefi ts of the partitioned coupling approach
and good load balancing are demonstrated on an industrial application of a 3D
free-stream jet with a high Reynolds number showing that a multi-scale problem
can be effi ciently simulated using today‘s computing resources.

	Cover
	Title Page
	Danksagung
	Zusammenfassung
	Abstract
	Contents
	Nomenclature
	Introduction
	State of the art
	Aim of this work
	Outline

	Governing equations and their discretization
	Governing equations of fluid dynamics
	Navier-Stokes equations
	Euler equations
	Linearized Euler equations

	Numerical discretization
	Discretization in space: Discontinuous Galerkin
	Discretization in time: Runge-Kutta

	Partitioned coupling
	Coupling tasks
	Steering of individual solvers
	Communication of coupling data
	Data mapping in time
	Data mapping in space

	Static load balancing
	Load balancing between subdomains
	Load balancing within a subdomain

	Discontinuous Galerkin in the context of coupling
	Coupling points
	Data mapping via polynomial evaluation

	Fluid dynamics in the context of coupling

	Numerical framework
	Simulation framework APES
	High-order Discontinuous Galerkin solver Ateles
	Load balancing in Ateles

	Multi-solver approach: preCICE
	Overview
	Steering of individual solvers
	Communication of coupling data
	Data mapping in time
	Data mapping in space: (Interpolation) methods
	Projection-based mapping
	Radial Basis Function interpolation
	Comparison of the interpolation methods

	Performance

	Integrated approach: APESmate
	Overview
	Steering of individual solvers
	Communication of coupling data
	Data mapping in time
	Data mapping in space
	Performance
	Initialization of coupling

	Coupling results
	Gaussian distribution in pressure
	2-field coupling of same equations
	2-field coupling of different equations
	3-field coupling of different equations

	3D subsonic free-stream jet
	Investigation of numerical setup
	Testcase Setup
	Numerical resolution A: Monolithic-like setup
	Investigations of load balancing
	Load balancing with APESmate
	Single-stage vs. multi-stage time integration
	Load balancing with preCICE
	Comparison of APESmate and preCICE

	Scalability of setup A with APESmate
	Numerical resolution B: Tailored setup
	Scalability of setup B with APESmate
	Load Balancing of setup B with APESmate

	Investigation of imperfect choice of coupling interfaces

	Investigation of time-consistent coupling
	Summary and outlook
	Summary
	Outlook
	Partitioned coupling
	Integrated approach: APESmate
	Multi-solver approach: preCICE

	Optimization of polynomial evaluation in Ateles
	Performance of the initialization phase of APESmate using MPI_ALLTOALL
	Figures for investigation of the Gaussian distribution in pressure
	Iterative use of SPartA
	Bibliography
	List of Figures
	List of Tables

