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Abstract

The numerical simulation of physical problems involves capturing vari-
ous phenomena occurring simultaneously at different scales in a single
simulation. For example, considering aeroacoustic problems, the noise
generating flow and the propagation of the sound waves in the far-field
need to be taken into account. The increasing computational capacities
and the development of modern supercomputers allow for more detailed
studies of complex multi-physics and multi-scale problems. In this work,
the sound generation by moving obstacles and its propagation up to the
far-field is of particular interest. For this purpose, a high-order Discontin-
uous Galerkin method is utilized to discretize the fluid dynamic equations.
These high-order methods are exceptionally efficient as they only require
a few degrees of freedom to represent smooth solutions. Therefore, they
are often deployed for, e.g., the acoustics far-field, where a homogenous
flow field can be found. From the computational perspective on modern
high-performing architectures, few degrees of freedom are an exceptional
advantage, with memory bandwidth being a bottleneck on modern sys-
tems. Additionally, the ratio between communication and computation is
minimal due to the loose connection of computational elements at their
respective interfaces, which is an additional advantage of these methods,
when considering distributed and massively parallel computing systems.

However, the high-order representation of complex geometries has been a
critical limitation for their application in various fields. The representation
of geometrical shapes has to be appropriate to preserve the quality of the
numerical solution, which has been discretized with high-order. Incorpo-
rating meshing techniques such as body-fitted meshes might not be robust
in the workflow for the simulation. They are required to withstand differ-
ent scenarios that are common, such as scenarios with general complex
geometries inside the simulation domain. They can become expensive in
computation when involving simulations with multiple geometries and even
more when geometries can move. In these cases, the embedded method,
also known as immersed boundary method, provides a promising prospect.
In this work, the Brinkman penalization technique is applied to model
multiple complex and moving geometries.
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Moving rigid bodies are common in engineering applications. The sound
emitted due to the motion and the flow disturbance by geometries is of
particular interest, as awareness of environmental impact in society has
grown in recent years. Therefore, predicting the produced noise is a com-
mon responsibility in different fields, such as the design of wind turbines.
These simulations have a complex nature and require an efficient strategy
to facilitate them feasibly. Therefore we deploy the partitioned coupling
approach, where the complex and large simulation domain is decomposed
into smaller subdomains. Each subdomain is configured such that the
occurring phenomena can be precisely captured. It results in an efficient
strategy allowing for the simulation of various scales and physics, such as
the large-scale simulation in this work. The simulation includes the motion
of an airfoil and the induced noise that spreads over a large domain.
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Zusammenfassung

Bei der numerischen Simulation physikalischer Ereignisse sind oft viele
unterschiedliche Phänomene involviert, die gleichzeitig auftreten, jedoch
unterschiedliche räumliche und zeitliche Skalen haben können. Ist die
Schallausbreitung von Interesse, so muss sowohl die schallgenerierende
Strömung als auch die Schallausbreitung ins Fernfeld berücksichtigt werden.
Durch die Weiterentwicklung von Supercomputern und die vorhandenen
Rechenkapazitäten ist es möglich, detalierte Simulationen, die mehrere
Skalen und physikalische Phänomene beinhalten, zu berücksichtigen.

In dieser Arbeit wird die Schallerzeugung durch bewegte Geometrien
betrachtet, ebenso die Schallausbreitung ins Fernfeld. Um die numerische
Simulation mit hoher Genauigkeit und effizient zu realiseren, wird ein
Verfahren hoher Ordnung (Discontinuous Galerkin) für die numerische
Diskretisierung der Strömungsgleichungen herangezogen. Das Verfahren
erlaubt, neben effizienter Berechnung der Strömungsgleichungen, auch eine
hohe Genauigkeit der Lösung. Besonders für glatte Lösungen kann das
Verfahren seine Vorteile ausspielen. Dabei kann, verglichen mit Verfahren
niedriger Ordnung, die selbe Genauigkeit der Lösung mit weniger Frei-
heitsgraden erzielt werden. Glatte Lösungen sind u.a. im akustischen
Fernfeld vorzufinden, wo ein homogenes Strömungsfeld vorliegt. Aufgrund
der wenigen Freiheitsgrade ist das Verfahren hoher Ordnung besonders
vorteilhaft und erlaubt sehr effiziente Berechnungen auf modernen Super-
computern, deren Speicherbandbreite ein limitierender Faktor darstellt.
Des Weiteren wird durch das angewendete Verfahren lediglich zwischen
den direkten Nachbarn kommuniziert. Somit ist das Verhältnis zwischen
Kommunikation und der eigentlichen Berechnung sehr gering gehalten.
Dies ist besonders wichtig und von Bedeutung, wenn Simulationen auf
massiv parallelen Rechensystemen ausgeführt werden.

Die Repräsentation von komplexen Geometrien gilt jedoch als Limitierung
für Verfahren hoher Ordnung und wird somit kaum für die Darstellung
von Geometrien herangezogen. Die Modellierung der Geometrie mit einer
niedrigen Verfahrensordnung würde die Vorteile der hohen Verfahren-
sordnung im Strömungsfeld reduzieren und dazu führen, dass die hohe
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Genauigkeit der Lösung nicht mehr gegeben ist. Das Heranziehen von
Vernetzungsmethoden, wie z.B. körperangepassten Gittern, erlauben oft
keinen robusten Arbeitsablauf, um alle komplexen Szenarien, wie z.B. die
Bewegung einer komplexen Geometrie, zu erlauben. Des Weiteren kann
das Verwenden von mehreren komplexen Geometrien und insbesondere
ihre Bewegung zu Problemen bei der Generierung von körperangepassten
Gittern, führen. Bei solchen Problemstellungen bieten eingebettete Metho-
den eine Möglichkeit, um auch mit Verfahren hoher Ordnung komplizierte
Geometrien und deren Bewegung zu modellieren. In dieser Ausarbeitung
wird zur Modellierung von Geometrien, das Brinkman Penaliserungsver-
fahren herangezogen.

Bewegte Bauteil sind im Ingenieurbereich üblich. Umströmte, bewegte
Objekte verursachen Störungen der Strömung, die auch Schall erzeugen.
Dabei ist es wichtig, bereits in der Entwicklungsphase von z.B. Wind-
turbinen, die Geräuschentwicklung auf ein Minimum zu reduzieren. Die
numerische Simulation solcher Anwendungen ist komplexer Natur und
setzt eine effiziente Strategie voraus, um das große Simulationsgebiet
durch numerische Simulation zu verwirklichen. Dazu wird in dieser Arbeit
die Strategie der partitionierten Kopplung verwendet, um eine effiziente
Simulation zu ermöglichen. Das Simulationsgebiet wird dabei in Teilge-
biete unterteilt und jedes dieser Gebiete so konfiguriert, das auftretende
physikalische Phänomene durch die Numerik erfasst werden. Dies er-
möglicht physikalische Phänomene numerisch korrekt zu simulieren und
den Rechenaufwand zu reduzieren. In dieser Arbeit wird u.a. der durch
die Bewegung eines Tragflügels induzierter Schall simuliert.
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β Shock angle
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Notation

Before the introduction into this work and the technical discussions, let us
first have a look into the consistent notation throughout this thesis. We
review the basic notation of variables and operators used in this work.
For Rd we apply subscripts to differentiate between spatial directions, i.e
a specific point x in Rd is described by the d-tuple

x = (x1, . . . , xd)T .

Vectors and vector-valued functions are denoted in bold, e.g. in Rd this
results in

c = (c1, . . . , cd)T .

The notation for the dyadic product ⊗ of two vectors cande is specified as

c ⊗ e = c · eT =

c1e1 · · · c1ed

...
...

cde1 · · · cded

 .

Further we denote matrices and tensors in bold as well.

d =

(
d11 d12 d13
d21 d22 d23
d31 d32 d33

)
Throughout this thesis we always clearly distinguish between previously
mentioned vector notation and tensors. We define for the contraction : of
two tensors a,b as

a : b =
∑

j

∑
i

ajibji.

Partial derivatives are defined by

∂tf = ∂f

∂t
.
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Notation

With the nabla operator all partial derivatives for a specific variable are
collected, i.e.

∇ = (∂x1 , . . . , ∂xd )T .

The notation for the gradient of a scalar function g is defined as

grad(g) = ∇g = (∂x1g, . . . , ∂xdg)T .

Further we consider the divergence of a vector-valued function as

div(g) = ∇ · g =
d∑

i=1

∂xigi.

The Jacobi matrix of a vectorial function in

g : Rd → Rn

is defined as

∇g =


∂x1g1 · · · ∂xdg1
∂x1g2 · · · ∂xdg2

...
...

∂x1gn · · · ∂xdgn

 .
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1. Introduction

Numerical simulations became an essential utility in many engineering
applications. They provide detailed insights into occurring physics and
enable modifications and improvements of devices in the early design
process. With the increasing popularity of simulations, the demand for
sustainable and efficient simulation strategies has become even more criti-
cal when enabling complex simulations. In the last decades, computational
architectures have rapidly evolved. According to Moore’s law, the compu-
tational power doubles every two years [70], even though this statement
has been modified due to the changes in the evolution of hardware [45].
This progression in computational power offers the capabilities to solve
large simulations and permits the incorporation of more aspects of the real
world. However, the increasing complexity in the modeling necessitates
being adapted to the available computing resources to allow for their
efficient exploitation. For large-scale, particularly multi-scale and nonlin-
ear problems, numerical methods might suffer efficiency and robustness.
Considering a typical engineering problem such as fluid-structure-acoustics
interaction, we encounter varying scales that must be resolved appropri-
ately. The question arises: How to enable such complex problems from the
numerical perspective and, more importantly, how to efficiently allow for
these complex simulations. This thesis presents the strategy to enhance
efficient and accurate large-scale simulations for rigid body motion induced
aeroacoustics on massively parallel systems. The main focus is dedicated
to the efficient modeling of complex geometries and their motion.

1.1. Motivation

The simulation of real world problems is of interest in many research fields.
Focusing on engineering problems, numerical simulations have become an
essential tool for providing insights into different physical phenomena. In
addition, they help optimize devices to reduce, e.g., noise pollution, which
has gained importance with the worldwide energy transition, leading to
energy production through natural resources such as wind turbines. Wind
turbines emit noise when producing energy, which can impact human
health and may cause health issues for people living close to wind farms.
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1. Introduction

Often, health issues are exposed as i.a., sleep disturbance, headaches, tinni-
tus, or even cardiac arrhythmia [4]. According to the German government,
wind turbines have to be located 1 km away from neighborhoods. It
is intended to increase acceptance by the public. However, due to the
increasing awareness of climate change and the governmental aim to reduce
the CO2 emission by 2030, the discussion arose to remove the 1 km policy.
Moreover, the 1 km rule was criticized as available space would not be
used efficiently [92]. Considering the current valid rule and its possible
removal, the demand for appropriate noise reduction measures becomes
unavoidable to increase the acceptance of these devices in neighborhoods.

In the context of wind turbines, numerical simulations can help to e.g.,
optimize rotor blades to reduce noise pollution. Due to the rotation of the
blades, a swishing sound appears. However, such simulations involve vari-
ous scales and have a complexity that needs to be addressed appropriately.
More importantly, the requirements for numerical simulations are accurate
solutions, thus the adequate representation of the sound source and the
sound propagation. Furthermore, numerical simulations have to be efficient
in computation, allowing for the realization of complex problems involving
multi-physics and multi-scales. Wind turbines are an excellent example
of such a complex problem, where the transition from sound generation
to its propagation is computationally demanding as different physics and
scales are involved. (i) Viscous flow around the geometry (rotor blade)
that is dominated by small scales such as vortices and (ii) acoustic scales
that have large wavelengths and can be found away from the geometry.

The first challenge, therefore, is adequate and efficient geometry mod-
eling. Considering the geometrical shape of such wind turbines, especially
the shape of the rotor blades, that are curved, the question arises, how
they can be numerically represented. Hence the appropriate modeling
and the efficient incorporation of geometries in the simulation domain are
fundamental. A more realistic numerical simulation of such an engineering
problem involves the geometrical shape and its motion, resulting in higher
complexity of the numerical simulation, which can become troublesome
to realize. The numerical approximation must provide accurate results
and preserve numerical stability, while the efficient computation must be
maintained.

For numerical simulations, often a 2nd order scheme (low-order) is used
to simulate the flow field and the geometrical representation, requiring
tiny computational elements, to capture the flow features and to allow for
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1.1. Motivation

an appropriate numerical representation of the geometry. Additionally,
when its motion and deformation are required, the computational mesh
has to be adapted accordingly to capture all changes in the flow field
and the motion of the geometry. Therefore, it can become troublesome
as the computational mesh requires special treatment, and the efficient
computation can be negatively affected as the memory requirements for
the computation increase.

High-order methods, on the other hand, allow for very accurate numerical
flow simulations. Moreover, they can represent smooth solutions with
few degrees of freedom. Thus they require low memory bandwidth for
the computation. Therefore, they allow efficient computation as large
computational elements can be deployed. The high-order method is espe-
cially beneficial for representing long traveling waves due to the numerical
scheme’s small dissipation and dispersion errors. However, they are seen as
a critical limitation when it comes to the representation of complex geome-
tries. The description of curved geometries has to match the discretization
scheme. An option to attain a high-order geometry description is to use
deformed computational elements at the geometry interface. Unfortunately,
though, curved elements are challenging to deal with and are prone to nu-
merical instabilities. For flow simulations with moving geometries, curved
elements can even be prohibitive. An efficient and promising approach
to represent geometries using a high-order scheme can be achieved by
embedding geometrical information into the fluid dynamic equations. As
a result, both the flow field and the geometry can be discretized with the
same underlying high-order scheme while allowing for efficient numerical
computation.

The second challenge we need to overcome is the noise propagation of such
wind turbines. Depending on their size, the noise can spread over hundreds
of meters. Simulating such a large computational domain requires an
enormous amount of computational resources. The increasing computa-
tional power and the upcoming exascale era make such multi-physics and
multi-scale problems numerically feasible. However, they require efficient
strategies for their realization. A typical scenario of such a multi-physics
and multi-scale problem is the interaction of fluid-structure and acoustics.
In the case of wind turbines, rotating blades interact with the surrounding
flow and induce noise due to turbulent flow. The aim of the ExaFSA
project [37], which was part of the German priority program SPPEXA
[86], was to realize such large-scale and complex simulations, where sound
is generated through fluid-structure interaction and propagated across a
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large area. However, solving such complex problems with only one set
of equations and the same spatial discretization in the entire domain is
unfeasible.

We know that away from the geometry, viscous effects do not play a
role anymore, and further away, only acoustic waves are present, then the
fluid-structure and acoustics problem can be spatially separated. Thus, the
overall complex computational domain can be decomposed into smaller sub-
domains, such as solving smaller tasks. Subdomains exchange information
at joint interfaces, the so-called coupling interfaces. The decomposition
and the coupling of the subdomains provide a dedicated numerical treat-
ment of each of them. This strategy enables solving complex and large
problems more efficiently, such that compute-intensive approximations
are used where it is necessary and simplified as soon as specific physical
phenomena can be represented with simpler equations.

1.2. Related work

In recent years significant investigations for coupled simulations have
been conducted. In this work, we distinguish between (i) the coupling of
modeling terms with the conservation equations to model the geometry,
referred to as the embedded or immersed boundary method. (ii) The
decomposed of the simulation domain into subdomains that are coupled
together through a coupling approach, referred to as partitioned coupling.
For both cases, a short overview of recent activities in research is given in
the following sections. A more detailed review is presented in the respective
chapters of this work.

1.2.1. Embedded method
The modeling methods for geometry representation have been advanced
with many scientific contributions. Different techniques have been pro-
posed to facilitate simulations with complex geometries and allow for
precise geometry modeling. A wide range of applications and methods
employed to realize fluid-structure interaction (FSI) is presented in [12].
Generally, the FSI problem can be classified according to two criteria [48].
The first one is based on how the physical equations of fluid and structure
are coupled together and solved. The second criterion is according to
the mesh utilized to discretize the simulation domain. We focus here on
the second criterion. More details on the first criterion can be found in
Chapter 7.
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The second criterion, that is, according to the mesh, can be distinguished
between the body-fitted mesh methods and the embedded methods. If
the mesh is fitted towards the geometry (body-fitted), the geometrical
interface is considered a physical boundary condition. Due to the geome-
try’s movement or deformation, re-meshing or mesh adaptation is required
as the solution advances. In case an embedded method is deployed, the
boundary location and the geometry interface are implied as constraints
in the equations to be solved, allowing for computational meshes that are
preserved throughout the simulation [48]. This method does not require
an adaptation of the mesh, even though the motion of the geometry is
desired. Thus, it provides an efficient method to model arbitrary complex
geometries for numerical simulations.

The embedded method was first proposed by Peskin in 1977 [73], who
represented the structure through a boundary in the fluid dynamic equa-
tions to be solved. The fluid-structure force was explicitly computed
and later fed into the fluid motion equations [72]. The disadvantage of
this method was the structural response to the fluid domain, which was
not accordingly modeled. Therefore, this method was extended, where a
finite volume was used to advance the modeling of complex geometries [32].

The modeling approach incorporated in this work considers the embedded
approach, where a finite volume is deployed to model complex moving
geometries. We need to emphasize that most studies with the embedded
approach are based on incompressible flows. However, as this method has
grown in popularity, more investigations were conducted for compressible
flow simulations of aeroacoustic problems e.g., in [49], [67] or [57]. To the
best of our knowledge, this method has not been incorporated before in
the literature for compressible flow simulations combined with moving ge-
ometries. Furthermore, this method has not been used with the high-order
discretization method deployed in this work.

1.2.2. Partitioned coupling
Due to the complexity of fluid and acoustics interaction and the inherent
multi-physics and multi-scale properties, various theories have been devel-
oped and investigated to enable such simulations in recent years. In this
section, a brief overview of the realization of fluid-acoustic interaction is
provided. The numerical simulation of aeroacoustics has become impor-
tant in the strive of noise reduction. Investigations are not only restricted
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to the near-field acoustics but also include the far-field. However, the
simulation of near-field and far-field can become very compute-intensive.
Therefore various investigations have been dedicated to the numerical
simulation of both fields in an efficient manner. A comprehensive strategy
that has proven to be very efficient is the partitioned coupling approach.
This method decomposes the complex simulation domain and solves each
according to the physical requirements. Whereas the decomposed sub-
domains can be connected through volume or surface coupling. In the
case of volume coupling, volume information is exchanged; thus, coupling
domains coincide and are often used in acoustics analogies. The incom-
pressible Navier-Stokes equations are solved, source terms (e.g., pressure
and velocity fluctuations) extracted, and provided to the acoustics solver.
For this approach, e.g., the Lighthill analogy [63] is utilized, which is
used, e.g., in the solver, FASTEST [58, 65]. It allows to compute the
flow field first and, in a later step, the acoustics perturbation. Hence,
both fluid and acoustics domains can be separately computed. However, a
disadvantage of this approach is the uni-directional coupling of the fluid
flow to the acoustics far-field, where information is transferred from the
fluid domain to the acoustics domain, but not vice versa. Moreover, more
memory is required for the computation since volume information needs
to be exchanged between the subdomains.

Instead of separately computing source terms and utilizing the volume
coupling, a more efficient approach is the surface coupling. Again, the sim-
ulation domain is decomposed but coupled together only at the surfaces of
the respective domains. Thus information is exchanged in two-dimensional
space (at the surfaces). In the flow field, the compressible Navier-Stokes
equations are solved. Hence information about the fluctuation in, e.g.,
pressure is available and does not necessitate to be separately computed.
Assuming a homogenous field is encountered in the far-field, thus only
the acoustics propagation, simplified equations can be considered and
solved to capture the occurring physics. This approach permits efficient
and inexpensive computations, as (i) less memory and communication
is needed between the domains, due to the surface coupling and (ii) the
acoustics information is available in the equations to be solved. It does
not require the additional computation of source terms [76].

More details on the partitioned coupling can be found in Chapter 7.
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1.3. Aim of this work

This work aims to enable the coupled simulation of rigid body motion
induced aeroacoustics. In the first part of this work, we examine the
geometry representation and its validation in our numerical solver, where
the embedded method is deployed for the modeling. Different scenarios
are studied to address common geometrical constraints that are typical
for engineering applications. Investigations cover various applications in
different spatial directions, from a simple reflection of an acoustics pulse
up to the interaction of shocks and shock formation. Additionally, flat,
curved, and sharp geometrical shapes are investigated. A thorough search
of the relevant literature does not yield an extensive examination of the
embedded method used in this work. Afterward, we concentrate on the
coupling strategy, where the complex simulation domain is decomposed
into subdomains connected through joint coupling interfaces. Two coupling
approaches are analyzed to enable the data exchange between them. In
one case, an external black-box coupling approach is applied, where each
subdomain receives an independent executable and is treated as a black-box.
In the other case, the coupling approach is integrated into the simulation
framework. Here each solver is seen as a library, and one executable is
used for all subdomains. The second coupling approach has the advantage
of exploring the knowledge of the internal data structure. The main focus
is devoted to the accuracy of the solution and the optimization of the
coupling strategy. Finally, all findings are used to achieve the goal of
this work: The numerical simulation of a 3-field coupled problem with a
moving geometry, which disturbs the fluid flow, and noise is generated due
to turbulent flow and propagates up to the far-field.

1.4. Outline

The outline of this work is as follows: In the first chapter, the relevant fluid
dynamic equations are revisited. Afterward, the numerical discretization
methods in space and time are introduced. The high-order Discontinuous
Galerkin method is utilized in space and the explicit Rung-Kutta method
for the time discretization. Chapter 4 gives an overview of the simulation
framework used to accomplish the numerical simulations in this thesis. In
Chapter 5 the embedded method is presented, used to model arbitrary
geometries with the same discretization method as the flow domain. After-
ward, the geometry modeling is validated through several well-studied test
cases from the literature. Hereafter the coupling strategy and challenges
associated with that method are studied, and enhancements in terms
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of efficient computation are introduced (cf. Chapter 7). In Chapter 9
numerical results of different geometrical shapes and different numerical
challenges for the moving geometry are presented. Later, simulation results
of a 3-field coupled simulation with a moving airfoil are presented and
used to investigate the acoustics far-field (cf. Chapter 10). Finally, all
findings are summarized and a conclusion drawn in Chapter 11.
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The goal of this work is the simulation of aeroacoustic problems that are
governed by compressible flows. These can be described by the compress-
ible Navier-Stokes equations. They often can be simplified in parts of
the simulation domain as some physical phenomena do not play a role
anymore. They are described by the equations to be solved but are not
relevant in those parts. Hence the fluid dynamic equations to be solved
can be reduced in complexity and computational effort.

In this chapter, the focus is devoted to the governing equations used
to describe the fluid motion. In the Sections 2.1, 2.2 and 2.3 the field
of continuums mechanics is revisited, where the governing equations of
fluid dynamics will be explained. In Chapter 3 the numerical method to
discretize those governing equations is introduced and explained in more
detail.

2.1. Compressible viscid Navier-Stokes equations

Generally, compressible fluids can be described by the compressible viscid
Navier-Stokes equations, given in three equations. They define the conser-
vation of mass, momentum, and energy. For a Newtonian fluid, they are
given by [62]

∂tρ+ ∇ · mu = 0 (2.1a)

∂tmu + ∇ · (u ⊗ mu + pI) − ∇τ = ρf (2.1b)

∂tE + ∇ · (u ((E + p))) − ∇ · (τu + γ∇T ) = −mu · f, (2.1c)

with τ being the viscous stress tensor, that is defined as

τ = µ
(
∇u + (∇u)T

)
− λ(∇ · u)I. (2.2)

In Eq. (2.1a) the conservation of mass, Eq. (2.1b) the conservation of
momentum and lastly Eq. (2.1c) the conservation of energy is presented.
Thereby, the density is given by ρ, the velocity by u, the momentum with
mu = ρ · u, p the pressure, I being the identity matrix and E the energy.
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The dynamic viscosity of the fluid is given by µ, while λ is related to the
volume viscosity and is given as λ = 2µ/3 for the ideal gas phase. Further,
the temperature is given with T and the thermal conductivity of the fluid
with γ. On the right hand side (rhs) of Eq. (2.1b) and Eq. (2.1c) a force
vector is imposed on the fluid, which can contain e.g gravitation or any
other desired source term, acting on the fluid. The equation system is
closed by considering the equation of state for the ideal gas

p = ρRT = (γ − 1)
(
E − ρu2

2

)
, (2.3)

where γ denotes the heat capacity ratio cp/cv and R (cf. Eq.(2.4)) the
ideal gas constant.

R = cp − cv = (γ − 1)cv (2.4)

Additionally, the absolute temperature of the fluid can be calculated
according to

cvT = e, (2.5)

where e is the internal energy and is defined as e = (E − ρu2/2)/ρ.

For the characterization of the fluid motion, dimensionless numbers are
helpful parameters to describe the property of the flow. The Mach number
(Ma) provides a ratio between the speed of the fluid motion and the speed
of sound. Further the Ma indicates how large the impact of compressibility
effects are on the flow.

Ma = ‖u‖
c

(2.6)

With c being the speed of sound defined as

c =
√
γ
p

ρ
. (2.7)

Another dimensionless number is the Reynolds number (Re), which is
interpreted as the ratio between inertial to viscous forces within the fluid.
Hence flows with a high Re are dominated by convection, while a low Re
indicates a flow dominated by dissipation

Re = ρUL

µ
(2.8)

with U being the characteristic velocity and L the characteristic length
of the flow, respectively. Lastly, we consider the dimensionless Prandtl
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number which is specified as

Pr = cpµ

γ
= cvγµ

γ
. (2.9)

Pr denotes the relation between momentum viscosity and thermal conduc-
tivity. It describes the ratio of the momentum boundary layer thickness to
the thermal boundary layer thickness. Further dimensionless numbers can
be found e.g. in [62].

In some investigations, it might be helpful to use the primitive vari-
ables. Those primitive variables can be determined by transformation of
the conservative variables (ρ, mu and E). The primitive variables are
obtained from the conservative variables as

ρ = ρ (2.10a)

u = mu

ρ
(2.10b)

p = (γ − 1)
(
E − ρu2

2

)
. (2.10c)

In this work, we mainly consider for the discussion of the numerical results
the primitive variables. However, from an implementational perspective,
the conservative form as stated is used.

2.1.1. Boundary conditions
For the viscous compressible Navier-Stokes the following boundary condi-
tions are considered:

• Subsconic inflow: Dirichlet conditions are applied for u and ρ.

• Subsonic outflow: A Dirichlet condition for pressure p is prescribed
along the boundary.

• Supersonic inflow: At this Dirichlet boundary all primitive quantities
(ρ ,u and p) are imposed, while all flow information is propagated
downstream.

• Supersonic outflow: The flow information is propagated downstream,
i.e. no quantity is prescribed along this boundary.
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• Primitives: All primitive variables are applied, resulting in Dirichlet
conditions. Additional conditions are imposed for the gradients of
all quantities, i.e. n · ∇p = 0, n · ∇ρ = 0 and n · ∇u = 0.

• No-slip-wall, isothermal: Dirichlet conditions for u in all spatial
directions as well as for the temperature, i.e. imposing u = 0 and
the initial temperature T = T0 along the wall.

• No-slip-wall, adiabatic: Dirichlet boundary conditions are imposed,
which are similar to the isothermal wall condition. However, a
Neumann condition is prescribed for the temperature with n ·∇T = 0
along the wall.

• Slip-wall condition: Dirichlet condition is used on the normal velocity
direction n · u.

Variables not prescribed at the boundaries are extrapolated.

2.2. Compressible inviscid Euler equations

For an inviscid fluid, the Navier-Stokes equations can be simplified to the
inviscid Euler equations. Hereby the viscous effects are neglected and
the temperature is constant. The equations defined in Eq. (2.1) can be
simplified to [62]

∂tρ+ ∇ · mu = 0 (2.11a)

∂tmu + ∇ · (u ⊗ mu + pI) = pf (2.11b)

∂tE + ∇ · (u ((E + p))) = −mu · f. (2.11c)

In Eq. (2.11) again the conservation of mass, momentum, and energy are
provided. To close the equation system from the mathematical perspective,
the equation of state for the ideal gas Eq. (2.3) is used.

2.2.1. Boundary conditions
Boundary conditions mentioned in 2.1.1 can be employed for the inviscid
compressible Euler equations, as well. However, as the viscous terms are
not present for the Euler equations, gradients are not needed here.

• Primitives: All primitive variables are applied, resulting in Dirichlet
conditions as in Section 2.1.1. However, the gradients are not required
and do not have to be computed.
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A further simplification of the inviscid Euler equations results in the
linearized Euler equations. They are of interest for e.g. aeroacoustic
problems, where the propagation of pressure waves and their impact on the
surroundings is of interest. In the following section, they are introduced
and described in more detail.

2.3. Linearized Euler equations

For some problems, non-linear effects do not have any impact on the
solution e.g. for aeroacoustics, and therefore can be neglected in the
computation of the solution. For that, the viscid Euler equations can be
linearized (cf. Eq. (2.11)) around a constant background. These equations
are attractive when e.g. the propagation of pressure waves in a larger area
is of interest, which is the case in the acoustics far-field. The computation
of these equations is inexpensive, as non-linear or viscid terms do not play
a role anymore. For the linearization around a constant background, the
state variables are split into a constant background and a perturbation part,
denoted with a subscript c and ′, respectively. With that, the conservation
of density, momentum, and energy can be rewritten as [88]

∂t ρ
′ + ∇ ·

(
ucρ

′ + ρcu′)︸ ︷︷ ︸
:=mu

= 0 (2.12a)

∂t u′ + ∇ ·
(

ucu′ + 1
ρc
p′
)

= 0 (2.12b)

∂t p
′ + ∇ ·

(
ucp

′ + γpcu′) = 0. (2.12c)

In Eq. (2.12) the multiplication of different perturbations is neglected as
they are small scales and result in even smaller ones. Additionally, the
time derivatives of the constant background variables can be eliminated as
the background is, as mentioned, time-independent.

2.3.1. Boundary conditions
Boundary conditions mentioned in Section 2.1.1 can also be considered for
the linearized Euler equations. However, the variables prescribed at the
boundaries are the perturbations of all quantities, as the background has
predefined values.

In the next section, the discretization method used to discretize the fluid
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dynamic equations is explained. Afterward, the focus is devoted to the
time integration.
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3. Discretization in space and time

This chapter is devoted to the numerical discretization in space and time
of the fluid dynamics equations mentioned in Chapter 2. We consider the
Discontinuous Galerkin Finite Element method. The significant advantage
of this method is the high locality. At the same time, the volumetric infor-
mation within each element is tightly coupled. The interaction between
the elements occurs only on the element interfaces. Hence only planar
information has to be exchanged, resulting in a small ratio of commu-
nication to computation. The inherent property of the high locality of
this method makes it well suited when running on modern distributed
parallel computing architectures. By restricting the numerical scheme to
cubical elements for the computational mesh, operations can be carried
out through a dimension by dimension strategy in those elements, eligible
for efficient parallel execution. An additional benefit of this method is
its high-order accuracy, which is very attractive for many applications in
different scientific areas. For a smooth solution, the high-order discretiza-
tion can compute the numerical solution of a given quality with fewer
degrees of freedom compared to a method that uses a lower order scheme.
This benefit can also be taken into consideration for parallelization and
large-scale applications when considering memory bandwidth. Using fewer
degrees of freedom results in a reduced amount of memory consumption,
which is a bottleneck on modern computing systems. Hence, this method
is well suited for today’s supercomputer architectures, which provide faster
computation (floating-point operations) but have less memory bandwidth
per compute unit. We aim for efficient large-scale simulations by fully
deploying the capacities of this method. For the realization of the simula-
tions, we first discretize the partial differential equations (PDE) in space,
which results in ordinary differential equations (ODE) in time.

This chapter is structured as follows: In the first section, we recall the
Discontinuous Galerkin method for hyperbolic problems, where the inviscid
Euler equations are considered. Hereafter, we revisit the discretization of
the viscous part of the parabolic mixed hyperbolic Navier-Stokes equations.
Afterward, we focus on the time integration used in this work.
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3.1. Spatial discretization - Discontinuous Galerkin
method

The Discontinuous Galerkin Finite Element method has gained popular-
ity as a numerical method for hyperbolic conservation laws. The user
community has intensively increased, as this method is well suited for a
highly parallel and distributed execution. Reed and Hill [80] were the first
to introduce this method by solving the steady-state neutron transport
equations. Consequently, this method was further investigated and de-
veloped (cf. e.g [26] and [25]) resulting in the utilization of this method
in various areas of research. From linear to nonlinear problems, from
low- to high-order equations, and from conservative to non-conservative
formulations. Interested readers are referred to [46] and [74] for a full
review regarding this discretization method.

3.1.1. Compressible inviscid Euler equations
In this section, the variational formulation of the Discontinuous Galerkin
Finite Element method for the inviscid Euler equations is derived and
explained in more detail. This method can be seen as a hybrid method,
combining the high-order representation within elements from the Fi-
nite Element and the connection via fluxes known from the Finite Vol-
ume Method. To derive the variational formulation of the Discontinuous
Galerkin method, we first consider the conserved quantities represented by
the vector v. With the physical flux function F being a vectorial function,
we obtain the following equation

∂tv + ∇F (v) = 0, (3.1)

with appropriate initial and boundary conditions. At first, we neglect
any source term and require the rhs to be zero. The vector v con-
tains all conserved quantites and the flux function is given as F (v) =
(f(v), g(v),h(v))T .

v =


ρ
ρux

ρuy

ρuz

ρE

 (3.2)

For a three dimensional problem f(v), g(v) and h(v) are the convective
fluxes in all three directions. In the Euler equations these fluxes are defined
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as:

f(v) =


ρux

ρux
2 + p

ρuxuy

ρuxux

(ρE + p)ux

 , g(v) =


ρuy

ρuyux

ρuy
2 + p

rhouyuz

(ρE + p)uy

 ,

h(v) =


ρuz

ρuzux

ρuzuy

ρuz
2 + p

(ρE + p)uz


(3.3)

where ρ, ux, uy, uz, E and p denote the density, the velocity in all three
directions, the total energy and the pressure, respectively. The first step to
achieve the variational formulation of the conservation laws, is to consider
the above equation (Eq.(3.1)) and multiply it by a test function ψ

∂tvψ + ∇F (v)ψ = 0. (3.4)

Afterward, Eq. (3.4) is integrated over the domain Ω, and integration by
parts is applied, leading to the weak formulation.∫

Ω
∂tv · ψdΩ +

∮
Fψ · ndS −

∫
Ω

F (v) · ∇ψdΩ = 0 (3.5)

Here dS denotes the surface integral and n the normal vector at the surface.
A discrete formulation of the above equation is obtained by dividing the
domain Ω into m non-overlapping and closed elements, which is given
by T = Ωj |i = 1, 2, 3, ...,m, so that Ω = ∪m

j=1Ωj and Ωj ∩ Ωi = ∅∀j 6= i.
Defining a finite element consisting of discontinuous polynomial functions
of degree p ≥ 0 by considering

P p = {f ∈ [L2(Ω)]p}. (3.6)

With this formulation, we are allowed to write the approximate solution
vh(x, t) within each element considering a polynomial function of degree p
as

vh(x, t) =
p∑

j=1

v̂jφj , ψh(x) =
p∑

j=1

ŵjφj . (3.7)
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The expansion coefficients given with v̂j and ŵj denote the degrees of
freedom of the solution and the test function respectively. In the next step
Eq. (3.5) is used, with a sum of integrals over the elements Ωj instead of
the entire domain.

m∑
i=1

∂t

∫
Ωj

ψhvhdΩ +
∮

∂Ωj

ψhF ∗ · ndS −
∫

Ωj

∇ψh · F (vh)dΩ = 0,

∀ψh ∈ P p

(3.8)

Since the element support is strongly local, the flux term on the element
surface is not uniquely defined. Therefore the physical flux F is replaced
by a numerical flux function F ∗(v−

h , v
+
h ,n), with v−

h and v+
h representing

the interior and exterior traces at the surface of the element, respectively.
Hence the numerical flux connects the neighboring elements, resulting in
a weak link between them. Considering the numerical flux function, the
expansion coefficients, and rearranging Eq. (3.8), we obtain the final weak
formulation as

m∑
i=1

∂t

∫
Ωj

p∑
j

ψhv̂jφjdΩ =
∫

Ωj

∇ψh · F (vh)dΩ −
∮

∂Ωj

ψhF ∗ · ndS = 0,

∀ψh ∈ P p.
(3.9)

Rewriting Eq. (3.9) to a matrix-vector notation results in

∂tv̂(t) = M−1 ·
(
S · F̂ (v̂) − MF · F̂ ∗(v̂)

)
, (3.10)

where M denotes the mass matrix, which is element local, and M−1 the
inverse of it, that can be computed element by element. S and MF are
the stiffness and the face mapping matrix, respectively. The functions F̂
and F̂ ∗ denote the modal expansion coefficient counterparts of the phys-
ical flux F and the numerical flux F ∗ in each case. Different numerical
approaches are available for the numerical flux, and the simplest might be
the Lax-Friedrich scheme. The reader is referred to [46] for more detailed
information about suitable numerical fluxes for the high-order Discontinu-
ous Galerkin method. The formulation in Eq. (3.10) can be solved in time
with any time-stepping method, e.g., the Runge-Kutta method that is used
in this work. In Section 3.2 this time discretization method is described in
more detail.

The difference between the Euler and Navier-Stokes equations are majorly
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the viscous terms, which are neglected for the Euler equations. In the
next paragraph, the discretization of the viscous part of the Navier-Stokes
equations is shown.

3.1.2. Compressible viscous Navier-Stokes equations
This section is devoted to the discretization of the viscous terms of the
Navier-Stokes equations. We recall Eq, (2.1) for this purpose.

∂tρ+ ∇ · mu = 0 (3.11a)

∂tmu + ∇ · (u ⊗ mu + pI) = ∇

·
(
µ
(
∇u + (∇u)T

)
− λ(∇ · u)I

)︸ ︷︷ ︸
:=τ

(3.11b)

∂tE + ∇ · (u ((E + p))) = ∇ · (τu + κ∇T ) (3.11c)

In this section we are only interested in the viscous terms of Eq.(3.11) and
rewrite the viscous fluxes in three-dimensional space through the vectors
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3. Discretization in space and time

f(vµ), g(vµ) and h(vµ).

f(vµ) =


0

(2µ+ λ) ∂ux
∂x

+ λ
(

∂uy

∂y
+ ∂uz

∂z

)
µ
(

∂uy

∂x
+ ∂ux

∂y

)
µ
(

∂uz
∂x

+ ∂ux
∂z

)
(τ · u)x + κ∂xT

 ,

g(vµ) =


0

µ
(

∂ux
∂y

+ ∂uy

∂x

)
(2µ+ λ) ∂uy

∂y
+ λ

(
∂ux
∂x

+ ∂uz
∂z

)
µ
(

∂uz
∂y

+ ∂uy

∂z

)
(τ · u)y + κ∂yT

 ,

h(vµ) =


0

µ
(

∂ux
∂z

+ ∂uz
∂x

)
µ
(

∂uy

∂z
+ ∂uz

∂y

)
(2µ+ λ) ∂uz

∂z
+ λ

(
∂ux
∂x

+ ∂uy

∂y

)
(τ · u)z + κ∂zT



(3.12)

As previously introduced, we collect all unknowns (ρ,mu and E) in the
vector v (cf. Eq. (3.2)). For the discretization we then rewrite Eq. (3.12)
as

∂tv =
d∑

k=1

∂xk (νk,1(ρ,u, E) · ∂x1 v

+ νk,2(ρ,u, E) · ∂x2 v + νk,3(ρ,u, E) · ∂x3 v)

(3.13)

with d being the dimension of the problem and νk,l the viscosity tensor,
more details can be found in full length in [98]. Rewriting Eq. (3.13) we
obtain

∂tv = ∇ · (ν(ρ,u, E) · ∇v) =
d∑

k=1

∂xk

(
d∑

l=1

νk.l(ρ,u, E) · ∂kl v

)
. (3.14)
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3.1. Spatial discretization - Discontinuous Galerkin method

For further simplification and to obtain a first order equation system, we
split Eq. (3.14) into

∂tv = ∇ · σ with
σ = ν(ρ,u, E) · ∇v,

(3.15)

where v = (ρ,u, E) : Rd→Rd+2 resulting in five first order equations in
three dimensional space to be solved, while the tensor σ is of second rank
σ : Rd→R(d+2)×d. To re-obtain the variational formulation for the viscous
parts in the momentum and energy equations, we again multiply those
equations by test functions ψh for a single element Ωj . By summation
over all elements we obtain the following formulation

m∑
j=1

∂t

∫
Ωj

ψhvdΩ =
m∑

j=1

∫
Ωj

(∇ · σ)ψhdΩ (3.16a)

m∑
j=1

∫
Ωj

σ : ψhdΩ =
m∑

j=1

∫
Ωj

ν(ρ,u, E)∇v : ψhdΩ. (3.16b)

Considering integration by parts for the rhs of Eq. (3.16) we end up with
m∑

j=1

∂t

∫
Ωj

ψhvdΩ =
m∑

j=1

∮
∂Ωj

(σ · n)ψhdS −
∫

Ωj

σ : ∇ψhdΩ (3.17a)

m∑
j=1

∫
Ωj

σ : ψhdΩ =
m∑

j=1

∫
Ωj

v · (νT (ρ,u, E)ψhn)dΩ (3.17b)

−
∫

Ωj

v∇(νT (ρ,u, E)ψh)dΩ.

Introducing numerical fluxes u∗ and σ∗ on the element surface and applying
again integration by parts, we obtain Eq. (3.18).

m∑
j=1

∂t

∫
Ωj

ψhvdΩ =
m∑

j=1

∮
∂Ωj

(σ∗ · n)ψhdS −
∫

Ωj

σ : ∇ψhdΩ (3.18a)

m∑
j=1

∫
Ωj

σ : ψhdΩ =
m∑

j=1

∫
Ωj

(v∗ − v) · (νT (ρ,u, E)ψhn)dΩ (3.18b)

+
∫

Ωj

v∇(νT (ρ,u, E) : ψh)dΩ
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3. Discretization in space and time

Defining ψh = ∇ψh [46] allows to couple the equations in Eq. (3.18),
resulting in

m∑
j=1

∂t

∫
Ωj

ψhvdΩ =
m∑

j=1

−
∫

Ωj

(ν(ρ,u, E)∇v) : ψhdΩ

+
∮

∂Ωj

(σ∗ · n)ψhdS

−
∮

∂Ωj

(v∗ − v) · (νT (ρ,u, E)ψhn)dS.

(3.19)

With u∗(u−,u+) and σ∗(u−,∇u−,u+,∇u+), where − and + indicate
again the interior and exterior traces at the surface of the element, re-
spectively. As in Section 3.1.1 different numerical flux approaches may be
applied. The interested reader is referred to e.g. [46]. We can now bring
together the convective and diffusive part of the discretized Navier-Stokes
equations resulting in

m∑
j=1

∂t

∫
Ωj

ψhvdΩ =
m∑

j=1

−
∫

Ωj

(ν(ρ,u, E∇v) : ψhdΩ

+
∮

∂Ωj

(σ∗ · n)ψhdS

−
∮

∂Ωj

(v∗ − v) · (νT (ρ,u, E)ψhn)dS

+
∫

Ωj

∇ψh · F (v)dΩ −
∮

∂Ωj

ψhF ∗ · ndS.

(3.20)

For a more detailed overview on the discretization of the viscous terms,
the reader is referred to e.g. [98]. We simplify our afore shown equations,
by rewriting them again in matrix-vector notation

∂tv̂(t) = M−1 · rhs(v̂(t), t), (3.21)

where the right hand side rhs is defined as

rhs(v̂(t), t) =
(
S · F̂ (v̂(t)) − MF · F̂ ∗(v̂(t))

)
. (3.22)

The computational effort to perform the operations in Eq. (3.21) is de-
pendent on the choice of basis functions. In our studies, we consider
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3.2. Explicit time discretization - Runge-Kutta method

the Legendre polynomials, where we can use the inherent property of
orthogonality of the Legendre polynomials for the mass matrix, resulting
in a diagonalized mass matrix that can be trivially inverted. Hence, the
multiplication with M−1 can be calculated in O(m+ 1) operations. The
stiffness matrix is, however, occupied and therefore not trivially computed.
But, due to the recursive property of the Legendre polynomials, the calcu-
lation can be performed in O(m+ 1) operations as well.

We now move on and focus on the discretization in time to fully dis-
cretize the conservation equations.

3.2. Explicit time discretization - Runge-Kutta method

This section deals with the discretization in time to complete the previ-
ous section, which was devoted to the discretization in space using the
high-order Discontinuous Galerkin method. Generally, different kinds of
ordinary differential equation solvers can be applied to Eq. (3.21). In this
work, the explicit Runge-Kutta method (RK) is used since this method is
well studied in theory as well as in combination with the Discontinuous
Galerkin method ( e.g. [74], [24] and [25] ). The classical fourth-order
Runge-Kutta method advances the system from a time t to t+ ∆t through
four substages in time, shown in Eq. (3.23). Each substage involves the
evaluation of spatial discretization. One might assume that with increasing
substages, higher accuracy in time can be achieved, with the order of
accuracy being equivalent to the number of substages. However, this is
only true to a certain extent, known as the Butcher barrier [20]. The
Butcher barrier states that the number of substages grows faster than
the convergence rate after more than four substages. Thus for a higher
number of substages, there exists no explicit Runge-Kutta method that
allows for a convergence rate as high as the number of substages. We,
therefore, restrict our solver to the classical Runge-Kutta method with
four substages leading to a fourth-order convergence in time

v̂1 = M−1 · rhs(v̂(t), t), v̂a = v̂(t) + ∆
2 v̂1 (3.23a)

v̂2 = M−1 · rhs(v̂a, t+ ∆t
2 ), v̂b = v̂(t) + ∆t

2 v̂2 (3.23b)

v̂3 = M−1 · rhs(v̂b, t+ ∆t
2 ), v̂c = v̂(t) + ∆tv̂3 (3.23c)

v̂4 = M−1 · rhs(v̂c, t+ ∆t) (3.23d)
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3. Discretization in space and time

v̂(t+ ∆t) = v̂(t) + ∆t
6 (v̂1 + 2(v̂2 + v̂3) + v̂4). (3.23e)

Eq. (3.23e) provides the final stage, where the intermediate substages
are weighted accordingly to advance the time step. To ensure numerical
stability of the explicit Runge-Kutta Discontinuous Galerkin method,
the Courant-Friedrichs-Lewy constant (CFL) is deployed. For parabolic
problems, it can be computed according to

ζ
O4 · ∆t
h2 < CFLp, CFLp ∼ O4

h2 . (3.24)

ζ denotes the diffusion constant, O = p+ 1 the scheme order and h the
element size of the mesh. For hyperbolic problems the CFL is defined as

α
O2 · ∆t
h

< CFLh, CFLh ∼ O2

h
, (3.25)

where α represents the upper bound of the speed of the wave propagation.
Eq. (3.24) and Eq. (3.25) demonstrate very well the influence of the
scheme order on the CFL condition. For hyperbolic problems, the time
step size reduces quadratically with increasing scheme order. However, for
parabolic equations, the time step size is influenced by the scheme order
with the power of four.

3.3. Numerical oscillations - Gibbs oscillation

High-order accuracy requires the smoothness of the solution, and therefore
high-order discretization is mainly applied to problems where the smooth-
ness of the solution can be ensured. However, in the case high-order is
used for problems with discontinuities solutions, the Gibbs phenomenon
occurs [22]. The Gibbs phenomenon destroys the pointwise convergence of
the solution. Nevertheless, global convergence is still possible.

The Gibbs phenomenon occurs when the Fourier series of a piecewise
continuous differentiable periodic function encounters a jump, a disconti-
nuity. The xth partial sum of the Fourier series reacts with an oscillatory
behavior in the vicinity of the jump. This can cause an increase in the
maximum of the partial sum when compared to the original function. The
maximum is known as an overshoot, which does not vanish when adding
more terms to the Fourier sum, but will eventually reach a finite limit [22].

The phenomenon that appears in any smooth function series, not only
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3.3. Numerical oscillations - Gibbs oscillation
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Figure 3.1.: Analytical integration of a discontinuity (red line and blue
area). Oscillations are visible around the discontinuity, with
over- and undershoots, representing the Gibbs oscillations
around a discontinuity.

in Fourier expansions, is illustrated in Figure 3.1 for a Legendre series,
approximating a step function. The discontinuity is located at x = 0.2
and highlighted by a red line. The blue area marks the part of the domain
where the step function is not zero. We compute the expansion coeffi-
cients of the Legendre series for this special case by analytical integration.
High-frequency oscillations appear with dominant peak deviations from
the approximated step function in the vicinity of the discontinuity. We
discuss the influence and properties of numerical integration, required for
arbitrary functions in Section 5.3.

Many methods have been investigated and introduced to address this
occurrence. One method is the h/p adaptivity, where the resolution is
increased through a finer mesh (h adaptivity), while a lower scheme order
is used (p adaptivity) near strong discontinuities [29]. Another approach
is to introduce additional dissipation in the vicinity of the discontinuity
to smear and achieve a smoother solution [71]. However, the mentioned
methods reduce the accuracy of the solution to first order close to the
discontinuity [98].

Let us move one step back and focus on identifying the origin of this
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3. Discretization in space and time

phenomenon. According to Gottlieb et al. [42] the Gibbs phenomenon
exists, where point values need to be recovered by a function from its respec-
tive expansion coefficients. To allow a better understanding of this issue,
we consider the Fourier series. In order to achieve a high-order accuracy, we
need to have a sufficiently smooth function f(x) to be approximated. This
is an optimal condition for high-order polynomial interpolation. Assuming
a problem is given with 2N + 1 Fourier coefficients ffk of a function f(x),
with fk being −N ≤ fk ≤ N . Considering f(x) is defined for −1 ≤ x ≤ 1,
the classical Fourier sum can be constructed as [42]

fN (x) =
N∑

k=−N

ffke
ikπx. (3.26)

This is a simple way to reconstruct the function f(x), when f(x) is smooth
as well as periodic. In the case f(x) is analytic and periodic, it is well-
known that the Fourier series converges exponentially with [42]

max
−1≤x≤1

|f(x) − fN (x)| ≤ eqN , with q > 0. (3.27)

In the case that f(x) is not smooth or periodic, then fN (x) is not a
reasonable approximation for the function f(x) as it results in a poor
convergence rate. Two features may be noticed here

1. There exists an overshoot close to the discontinuity, that does not
vanish or decrease with increasing N , hence

max
−1≤x≤1

|f(x) − fN (x)| ∼ O(1)

does not tend to zero.

2. The convergence rate becomes slow in the vicinity of the discontinuity
x0

|f(x0) − fN (x0)| ∼ O
(

1
N

)
This phenomenon is known as the Gibbs phenomenon, where oscillations
appear around the point x0. The Gibbs phenomenon gives the impression
to disable the high-order pointwise convergence for discontinuous functions.

Intensive research has been dedicated to ENO (Essentially Non-Oscillatory),
or the WENO (Weighted Essentially Non-Oscillatory) techniques [85].
These approaches aim to recover a non-oscillatory solution through weighted
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3.3. Numerical oscillations - Gibbs oscillation

interpolation or the modification of the state close to the non-smooth solu-
tion. The mentioned methods work as expected and increase the stability
of the numerical simulation. But, unfortunately, they tend to reduce the
accuracy of the solution to first order in the vicinity of the discontinuity [98].
At first glance, it seems impossible to obtain highly accurate local point
values from the global modal coefficients for piecewise smooth functions.
However, it can be shown that the high-order information is available in
the modal coefficients, which can be considered during post-processing.
Special techniques can be deployed to recover the exponential convergence
rate from the modal coefficients. The argumentation is that the moments
of the solution are maintained in the high-order information [42], even
though a thoroughly investigated proof for most numerical methods is
not available. The high-order information needs to be extracted through
appropriate post-processing techniques [98].

The method used in this work to deal with the Gibbs phenomenon is
filtering the modal expansion, where an appropriate modal filter in the
simulation framework is used. As a result, the modal expansion is replaced
by a filtered modal expansion, where either a polynomial or an exponential
filter is used to reduce high oscillations. To ensure that strong oscillations
around the point of discontinuity are damped, the filter needs to be chosen
strong enough. This technique is also known as spectral viscosity filtering.
Further, it needs to be mentioned that modal filtering allows a relatively
inexpensive computational method when the solution of the simulation
is available as expansion coefficients of a Legendre or Chebyshev series.
Hence this filtering method addresses high oscillations throughout the
simulation and post-processing to obtain a high-order and stable method.

An additional filtering method that is applied in this work is the so-
called co-volume filtering. It was initially meant to increase the explicit
time step size in the high-order Discontinuous Galerkin method and was
introduced by Warburton et al. [95]. However, this technique can further
be deployed to remove numerical oscillations from the solution, e.g., at the
boundaries of the elements, as the spectral filtering loses its effect there.
Zudrop [98] additionally applied the spectral viscous filtering to achieve
improved filtering results for the numerical solution. This filter is utilized
on the original element and a virtual element, which is shifted by half of
the element size. The objective of the co-volume filtering is to diminish the
high gradients on the co-volume mesh elements. Afterward, the gradients
of the solution on the co-volume mesh are evaluated and projected back to
the original mesh. Through the additional spectral filtering on the left and
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3. Discretization in space and time

right virtual element, a better filtering result can be achieved [98]. These
filtering methods are used, to stabilize the numerical simulation and keep
high numerical oscillations in a reasonable frame. Further information
regarding these filtering techniques can be found in [98].

Conclusion In this chapter, the high-order Discontinuous Galerkin
method is introduced, used to discretize hyperbolic and parabolic equa-
tions. After a short introduction into the discretization of the inviscid
Euler equations, the discretization of the diffusive terms of the Navier-
Stokes equations were presented. Afterward, the discretization method in
time was introduced, where the fourth-order Runge-Kutta method was
considered. Using four substages results in a fourth-order accuracy in time.
Furthermore, as the explicit Runge-Kutta method is deployed, the CFL
condition is used as stability criteria. Finally, we recalled the Gibbs phe-
nomenon, numerical oscillations that have no physical nature and require
to be treated appropriately, e.g., through special filtering techniques.

In the following chapter, the numerical framework to realize the numerical
simulations in this work is introduced.
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4. Numerical Framework

This chapter introduces and further develops the numerical framework
to realize the simulations conducted in this work. The in-house APES
(Adaptable Poly-Engineering Simulator) framework is end-to-end paral-
lelized and tailored for large-scale simulations on today’s supercomputing
systems. Details on the simulation framework APES can be found in [81]
and [54], an overview is given in Section 4.1. Afterward, the high-order
Discontinuous Galerkin solver Ateles is presented in Section 4.1.1, used for
the realization of the flow simulation in this work. Further, in Section 4.1.2
the integrated coupling approach in the simulation framework is revisited,
enabling efficient computation of multi-scale problems. Additionally, the
black-box library preCICE is briefly introduced in Section 4.2, that is
later used to compare to the white-box coupling approach APESmate (cf.
Section 4.1.2), where advantages and disadvantages are highlighted (see
Section 7.3.3).

The main contribution of this work is the motion of complex geometries
(cf. Chapter 5) in the solver Ateles and the simulation of flow-induced
noise, where the motion of a rigid body disturbs the flow field and noise
is generated and transported to the far-field. Further, load balancing
challenges and the method deployed to treat load imbalances, especially
in the presence of geometries, are addressed.

4.1. APES simulation framework

The simulation framework APES is designed for parallel execution on to-
day’s supercomputing systems. It is well suited for large-scale simulations
in different areas of research, mainly for fluid dynamic problems. Such
highly parallel and scalable frameworks are crucial to address computa-
tionally demanding large-scale simulations such as the direct numerical
simulation of aeroacoustics. With the upcoming era of exascale comput-
ing, intensive research has been devoted to the development of software
packages that are capable of efficient execution on a large number of CPUs.

The APES framework is massively parallel and provides scalable solvers
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Figure 4.1.: Massively parallel simulation framework APES, suited for
large-scale simulations.

and pre- and post-processing algorithms. An overview of this powerful
framework is given in Fig. 4.1. All parts in APES share the common data
structure called TreElM (Tree based Elemental Mesh) [55]. The domain
decomposition for parallel execution relies on a space-filling curve, allowing
to maintain data locality. All solvers in APES are stencil-based and
require neighbor information for the computation. Due to the tree-based
data structure of the computational mesh and the locality of the data, the
communication during the simulation can be reduced, which is an essential
factor for efficient parallel execution. This property is, in particular, bene-
ficial for the high-order Discontinuous Galerkin solver Ateles that relies on
direct neighbor information. The computational mesh is generated with
the mesh generator Seeder [68].

An important feature of TreElM , that is relevant for this work, is the
load balancing algorithm SPartA [79] [44]. The SPartA algorithm is as
TreElM , based on space-filling curves and individual weights, that provide
the actual load per element. The computation of such element-wise weights
allows an a priori re-partitioning of the computational mesh according to
the actual workload. In order to enable efficient computation and reduce
the computational effort for our simulations in this work, we extended the
weight measurements for the computation of geometries and multilevel
meshes in the solver Ateles [36]. This practice enables to capture the
computational effort precisely and provides a simulation framework that
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4.1. APES simulation framework

allows for a better load balancing on massively parallel systems.

Harvester is the in-house post-processing tool that converts binary files
written during the simulation by the solver to a format that can be visual-
ized. For the visualization, a variety of possibilities are provided by this
tool, such as different canonical shapes, to measure specific variables at
a specific location of the simulation domain or the transformation of the
binary files to vtks used to visualize parts or the entire simulation domain
at a specific simulation time. It can be executed in serial and parallel,
allowing the visualization of different data sizes. The post-processing tool
is closely related to the solver used, as it includes solver-specific infor-
mation, such as the polynomial representation for the solver Ateles. A
highlight of Harvester, especially for the solver Ateles, is the adaptive
mesh refinement based on the polynomial solution. Regions in the sim-
ulation domain are better resolved with higher quality, according to the
variational solution of the polynomials.

4.1.1. High-order Discontinuous Galerkin solver - Ateles

Ateles is based on the high-order modal Discontinuous Galerkin method
(cf. Section 3.1). The solver is based on polynomial representation inside
the elements and flux computation between the element faces. This results
in a strong dependency of the data within the elements and a relatively
loose dependency between them. The discretization in time is according
to the explicit Runge-Kutta method (cf. Section 3.2). In the presence of
geometries in the flow simulation, the implicit-mixed-explicit Runge-Kutta
method is deployed (see Section 5.7). Thus the stability of the Runge-
Kutta method is connected to the CFL condition, as previously mentioned
(cf. Eq. (3.24) and Eq. (3.25)).

The choice of a high-order numerical scheme has several benefits when
compared to low-order schemes. These are:

• Assuming a smooth solution and a high-order scheme, this yields
a high-order convergence rate. Consequently, a high-order approxi-
mation results in high accuracy of the solution with fewer degrees
of freedom (nDoF). Less nDoF has the same meaning as a smaller
amount of memory, which is favorable when considering today’s
supercomputing systems.

• It is well known that the high-order scheme provides a low dissipation
and dispersion error [47], which is beneficial when considering the
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propagation of acoustic waves over a long distance (acoustic far-field).

Legendre polynomials are used as basis functions for the modal high-order
Discontinuous Galerkin discretization. Due to their inherent orthogonal-
ity properties and recursive definition, they can be fastly evaluated, as
in the mass and stiffness matrix. Another advantage of the Legendre
polynomials are the numerical flux computation for linear problems that
can be realized quadrature free, thus in polynomial function space (modal).

Apart from linear problems, nonlinear problems are the main target of
numerical simulations, with operations, that require a representation in
nodal space, as a computation in modal space might not be possible or
more involved in realization. The transformation of the modal information
is required for, e.g., nonlinear flux computation or geometry representation.
Nodal information is then needed in each time step to update the fluxes
or, in the case of the moving geometry, to identify the location of the
geometry (cf. Section 5.3). In these cases, a modal to nodal transformation
is necessary. Different methods may be applied for the transformation, e.g.,
the fast polynomial transformation (FPT) [5] or the direct projection using
numerical quadrature, namely L2 projection. More information about
these methods can be found in [7, 98].

Further, the solver Ateles allows for geometries and their motion in the
simulation domain. Geometrical constraints are embedded in the fluid
dynamic equations to be solved by utilizing the same discretization method
as the flow field. In this work, the motion of geometries in the simulation
domain has been enabled. More about the used technique can be found
in Chapter 5. Additionally, a different set of equations are implemented
in the solver: the Maxwell equations (electrodynamics), the compressible
Navier-Stokes equations, and the inviscid Euler equations (fluid motion).
More information about the solver can be found in [54, 59, 98].

4.1.2. Integrated coupling approach - APESmate

The coupling approach APESmate [60, 68] is fully integrated in the simu-
lation framework APES. It allows the coupling of different solvers in the
framework. The coupling tool supports both surface, and volume coupling
[68]. In surface coupling, data is exchanged at arbitrary exchange points at
the boundaries (coupling interface), the so-called coupling points. For the
high-order Discontinuous Galerkin solver Ateles, the coupling points are
the same as the integration points that are non-equidistantly distributed
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inside an element (cf. Section 5.3). During the initialization process,
each domain provides information of point coordinates, where values are
expected to be exchanged. Those point coordinates are directly evaluated
by the data-providing domains using the polynomial representation in
the solver Ateles. Through a global communicator, data is exchanged at
dedicated coupling points at each synchronization time step. The so-called
synchronization time step is reached when all domains involved in the
coupling have completed a predefined time step, that is, in the current
implementation, a fixed one for all coupling domains. Thus, APESmate
can be deployed for a wide range of applications such as, e.g., the fluid
and acoustics coupling or multi-component flow and the electro-dynamic
field coupling [68]. Even though different domains and solvers are coupled,
this coupling approach has only one executable.

4.2. External coupling approach - preCICE

The black-box coupling approach preCICE is an open library that en-
ables the coupling of arbitrary solvers with each other [19, 91]. The idea
behind the black-box approach is to use input and output data of involved
solvers at the coupling interfaces between the respective coupling domains.
Numerical solvers exchange data at arbitrary coupling points via the cou-
pling approach. Those point positions are, in the first instance, the only
information provided to preCICE. Thus, preCICE has no information
about the numerical discretization method of each solver. Though only
point positions are required for the data exchange, the coupling approach
needs to interpolate the data before providing them to the respective
coupling domain. Therefore, different interpolation methods are available
that can be used according to the needs of each solver with respect to the
accuracy of the solution. More about the interpolation methods and the
accuracy of the solution for the high-order solver Ateles can be found in
Section 7.3. For the data mapping, this approach provides conservative
and consistent mapping, depending on the value to be exchanged, e.g.,
displacement or pressure. To allow the connection between solvers and
preCICE an adapter, e.g., Fortran or C++ interface, is required. Fur-
thermore, this coupling approach enables implicit and explicit coupling,
including Quasi-Newton waveform iteration [82] for implicit time stepping.
Information about recent improvements of this approach can be found
in [65, 78]. In addition, to address load imbalances, this coupling tool
provides a data-based load balancing method based on linear regression. It
can be used to balance the workload between the coupling domains [89].
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5. Embedded boundary method

The high-order Discontinuous Galerkin method has, as mentioned pre-
viously, outstanding advantages and is well suited for highly accurate
numerical simulations on high-performing computing (HPC) systems. This
method is often used to simulate aeroacoustic problems due to its low
dissipation and dispersion error. Thus, information can travel over large
distances and still be captured with high accuracy.

In many engineering applications, simulations are complex and involve
geometries, hence boundaries that need to be modeled appropriately. In
high-order methods, the boundary requirements are even tighter, as a high-
order representation is required to maintain the benefit of the high-order
accuracy. Even though the Discontinuous Galerkin method is also applied
to unstructured meshes, the high-order representation at the boundaries
is often challenging. There exist some techniques for the discontinuous
method based on, e.g., isoparametric elements [46], or the matched deriva-
tive technique [30].

All these methods show significant limitations, in particular for complex
geometries. The challenge we encounter here is, when using a high-order
method, it is preferred to exploit the benefits of this method by using
relatively large elements for the computational mesh. However, when
geometries are involved in the simulation domain, we need to use small
elements close to the geometry to capture the flow features in those re-
gions sufficiently well or utilize super-parametric elements to have curved
physical elements. Combining large elements for the mesh and considering
curved boundaries is complicated and involves mapping strategies and
different kinds of corner cases. The main limitation that appears is linked
to the geometry that needs to be represented. At some point, it becomes
impossible to find a super-parameterization for a sufficiently complex sur-
face. Lastly, this might even result in cases where the generation of a mesh
might not be possible.

This section deals with a different approach. Instead of changing the
computational mesh, the geometry is embedded in the simulation domain,
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5. Embedded boundary method

i.e., represented as an additional function on the computational mesh.
A significant benefit is that a Cartesian mesh can be deployed without
changing the shape of the elements close to the geometry while main-
taining the algorithm as simple as possible. The embedded method is
well suited for different equations but needs to be adjusted to the needs
of the equation system. In this work, this approach is utilized for the
compressible Navier-Stokes equations (cf. Eq. (2.1)) as well as for the
compressible inviscid Euler equations (Eq. (2.11)). The idea behind this
approach is to incorporate additional terms (penalization terms) wherever
the geometry is embedded [73]. The numerical solution is enforced to
a specific solution and the fluid dynamic equations are further solved
inside the geometry. Consequentially, fluid flow is also present inside the
geometry. The penalization terms add source terms to the conservation
law that are discontinuous in space. Therefore the numerical solution
might be affected by the Gibbs phenomenon (cf. Section 3.3 ). However,
as previously mentioned in Section 3.3 those oscillations can be addressed
during post-processing, allowing for highly accurate simulation results.

This method is presented in more detail in the next section, with fur-
ther background information about this approach. Further, the penalized
compressible Navier-Stokes equations are presented.

5.1. State of the art - Geometry representation

If we consider the geometry representation more generally, we can catego-
rize the representation into two methods based on the mesh. The first one
is the well-known body-fitted mesh method [87], where the geometry is
included in the mesh, and the mesh is fitted towards the geometry. With
that, the boundary-layer near curved surfaces can be resolved accordingly.
This method is well suited when geometries do not move and are located at
the exact location throughout the simulation time. However, if geometries
can move or even deform, this method tends to become very costly. The
mesh needs to be adjusted to the motion of the geometry. Further, the state
variables might need to be interpolated from one fitted mesh to another
in each iteration. To overcome the procedure of re-meshing, the second
method, the embedded method [69] can be considered, which is widely
used to model complex geometries. The significant benefit of this method
is that the geometry is not directly linked to the mesh and, therefore, not
included in the mesh generation procedure. Hence it is independent of the
mesh itself in the first place. Furthermore, a simple Cartesian mesh can

36



5.1. State of the art - Geometry representation

be deployed for the simulation. This method is relatively inexpensive in
the generation and well suited for parallelization and high-performance
computing.

In this work, we consider the embedded method as its advantages are
crucial, referring to the Brinkman penalization method. This method
models the geometry as an artificial porous material but tunes its param-
eters to obtain an essentially solid body. First investigations with this
volume penalization method were carried out by Arquis et al. [32]. They
imposed additional penalization terms to the momentum equations. The
main idea behind this approach is to model a complex and arbitrary solid
body by modeling the geometry as a porous material with a porosity φ
and permeability terms approaching zero. The boundary conditions can
be forced to a specific precision while maintaining the numerical method
and the computational mesh. Further, the error estimation of the solution
can be given in terms of the penalization terms [9]. Kevlahan et al. [52]
applied this method for incompressible flows and ran simulations with
non-moving and moving geometries. They considered a pseudo-spectral
method for their work.

Liu and Vasilyev investigated the Brinkman penalization further and
extended their investigation to the compressible Navier-Stokes equations.
They used a wavelet method for the discretization of the equations and
provided an extensive study in terms of dependencies of this method from
the porosity, and permeability terms [67]. They chose for their studies
the viscous permeability η to be defined as η = αφ and the thermal per-
meability as ηT = αTφ with α and αT being scaling factors. With the
chosen relations, a modeling error of O(η1/2φ) for resolved boundary layers
and O((η/ηT )1/4φ3/4) for unresolved boundary layers were obtained. It
needs to be emphasized that since inside the porous material fluid flow is
considered, a boundary layer is found along the geometry surface outside
the geometry and inside, where the fluid is penalized to predefined values.
As the state inside the material evolves, thus the penalization occurs; a
boundary layer can be found inside the porous material. The resolved and
unresolved boundary layer definitions by Liu et al. refer to the boundary
layer inside the porous material. In their studies, they revealed that the
porosity has a larger impact on the error of the solution. However, the error
can be influenced by the choice of the porosity and the permeability. Hence
the modeling error can be reduced by a sufficiently small permeability
factor η, and ηT [67], too. In further investigations, Komatsu et al. [57]
noticed that the equations provided by Liu et al. [67] were not Galilean
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invariant. Hence they corrected the conservation equations with additional
terms.

Keeping the outcomes of Liu et al. in mind, Anand, EP et al. [8] further
investigated in this direction while using a high-order modal Discontinuous
Galerkin method for the discretization of the fluid dynamic equations.
They ascertain that a small value for the porosity leads to stability issues
as it implies strong time-step restriction in their explicit time-stepping
scheme. Furthermore, with imposing φ in the mass conservation equation,
the eigenvalues of the hyperbolic system changed, affecting the stability
detrimentally. Their investigations showed how this method could be used
efficiently by tuning the permeability terms to a tiny factor. As shown in
the equations for the error bounds provided above, the permeability and
porosity can influence the error. They introduced a scaling factor β and
revealed that with sufficiently small permeability terms, the porosity φ
can be set to 1.0, eliminating this term in the mass equation. With an
implicit-mixed-explicit (IMEX) time-stepping scheme (see Section 5.7),
the source terms from the penalization can be efficiently computed implic-
itly. At the same time, the remaining part of the equation is solved in a
straightforward explicit approach. With that, they propose to define the
viscous permeability η to be β2 · φ2 and the thermal permeability ηT to
0.4β · φ, with an expected modeling error of β1/4 · φ3/4. With a scaling
factor of β ≤ 10−6, they were able to achieve the best numerical results
in terms of conservation of momentum and energy.

In the following the Brinkman penalization technique, for the compressible
Navier-Stokes equations is introduced, while the outcomes of Anand, EP
et al. [8] are taken into consideration, with φ = 1.0 and β ≤ 10−6, since
the same numerical scheme is used.

5.2. Volume penalization method - Brinkman penalization

As already mentioned, the Brinkman technique is a volume penalization
method, where the geometry is embedded in the equation system to be
solved. This modeling strategy aims to model the geometry as an artificial
porous material with specific properties. The governing Navier-Stokes
equations for the fluid and the penalized Navier-Stokes equations are
simultaneously solved to model the porous material.

∂tρ+ ∇ · mu = −
[

1
φ

− 1
]
χ∇ · mG (5.1a)
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∂tmu + ∇ · (u ⊗ mu + pI) − ∇τ = pf − χ

η
· (u − uG) (5.1b)

− u

[
1
φ

− 1
]
χ∇ · mG

∂tE + ∇ · (u ((E + p))) − ∇ · (τu+ κ∇T ) = −mu · f (5.1c)

− χ

ηT
(T − TG)

− χ

η
(u − uG) · u

− |u|2

2

[
1
φ

− 1
]
χ∇ · mG

An extension of the incompressible Brinkman penalization method is
required to realize simulations of compressible viscous flows with geometries.
As a result, the conservation laws, namely the mass, momentum, and
energy equations, have to be penalized. Taking this into account, we
obtain Eq. (5.1), where the penalization terms are added to the rhs of the
equations and act as source terms. The term mG = (u − uG)ρ represents
the momentum, with the difference between the fluid velocity u and the
velocity of the geometry uG. The variable TG indicates the temperature
of the geometry, which is considered to be constant (isothermal). The
parameters η and ηT denote the viscous and thermal permeability of the
geometry, respectively, while φ is the porosity of the geometry. The mask
function χ is defined as

χ(x, t) =
{

1 if x ∈ Gi

0 otherwise.
(5.2)

Here Gi denotes the area covered by the porous material, which can be
a composition of more than one area. The function χ in Eq. (5.2) refers
to whether the penalization terms have to be computed or can be neglected.

In Eq. (5.1), in all equations the porous material is considered. However,
as previously mentioned, we consider φ to be 1.0, which leads to a more
simplified mass, momentum, and energy equation, as a small permeability
(viscous and thermal) term is used to keep the modeling error small as
possible. By setting the porosity to 1.0, the mass, momentum, and energy
equation can be rewritten as

∂tρ+ ∇ · mu = 0 (5.3a)
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5. Embedded boundary method

∂tmu + ∇ · (u ⊗ mu + pI) − ∇τ = pf − χ

η
· (u − uG) (5.3b)

∂tE + ∇ · (u ((E + p))) − ∇ · (τu+ κ∇T ) = −mu · f (5.3c)

− χ

ηT
(T − TG)

− χ

η
(u − uG) · u.

It is known as a monolithic approach, where the geometrical constraints
are treated as source terms in the fluid dynamic equations and solved
simultaneously. Forces by the flow field have no impact on the obstacles
in this model, as shown in Eq. (5.3). Hence only the fluid is influenced
by the artificial porous material but not vice versa. Further, it has to be
noticed that conservation is not maintained within the obstacles due to
the introduced source terms. However, as already investigated by Liu et
al. and Anand, EP et al., the impact of conservation violations on the rest
of the domain can be eradicated with sufficiently small boundary layers
inside the porous material. Thus by defining the porosity or in our case
the permeability to a small value. The modeling error is kept small enough
to maintain conservation of mass, momentum, and energy. Through in-
tensive investigations in Chapter 6 this will be again shown in this work,
where we prove that obtained simulation results are in excellent agreement
with known benchmarks from literature, indicating that conservation is
maintained when exploring our modeling scheme.

Introducing this modeling method in our Discontinuous Galerkin scheme,
we need to be aware that a discontinuity is introduced into the system to
be solved due to the masking function. This might be challenging for the
numerical scheme, as the masking function jumps from 0 to 1 throughout
the simulation. Hence, the question arises, how the modal Discontinu-
ous Galerkin scheme can represent the geometry, thus the discontinuity.
Furthermore, the explicit time-stepping scheme is restricted to tiny time
step sizes to allow numerical stability due to the additional source terms
in the fluid dynamic equations. This is due to the permeability terms,
which are defined to be very small. The numerical scheme ends with
drastic dynamics from the source terms since they quickly damp the state
inside the porous material and need to be resolved in the explicit time
integration. Thus, the small permeabilities are only feasible when treated
with an implicit time integration. Therefore, an implicit-mixed-explicit
time-stepping scheme (IMEX) is utilized to allow larger time steps for the
simulation (cf. Section 5.7).
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5.3. Representation of the masking function χ in high-order
Discontinuous Galerkin

In the next section, the geometry representation in our high-order Dis-
continuous Galerkin scheme will be introduced in more detail, where we
explicitly concentrate on how the masking function χ is evaluated.

5.3. Representation of the masking function χ in
high-order Discontinuous Galerkin

As mentioned in Section 5.1 the embedded method is well suited to represent
a complex geometry in high-order, where we aim for large computational
elements to reduce memory consumption for our simulations. In this
section, the geometry modeling in high-order Discontinuous Galerkin is
investigated in more detail when deploying the Brinkman penalization
method (cf. Section 5.2). Furthermore, the numerical scheme has to
handle additional discontinuities due to the masking function introduced
by the modeling method. Finally, the solver is based on the modal high-
order Discontinuous Galerkin scheme [98], hence all conservation quantities
are stored as Legendre polynomials (cf. Chapter 3). Consequently, the
representation of the geometry needs to be in the function space of the
Discontinuous Galerkin solver, which are polynomials, primarily the Leg-
endre polynomials, in our case. These polynomials have the advantages
of building an orthogonal basis with a weight of one on the interval of
[-1, 1]. Figure 5.1 provides an overview of the Legendre polynomials of up
to a polynomial degree of 5. Further, the Legendre polynomials can be
computed according to the three-term recurring relation as

Lj(x) = 2j − 1
j

x Lj−1(x) − j − 1
j

Lj−2(x), with j > 1. (5.4)

With the zero-mode L0(x) = 1, representing the integral mean of the
polynomial (see Figure 5.1 blue constant line) and L1(x) = x being the
first mode of the polynomial. The higher polynomials can be constructed
by Eq. (5.4). Please keep in mind that the zero-mode is the only one
that has a non-zero integral mean, while all higher modes are mean-free
in the interval of the Legendre polynomials. The geometry introduces a
discontinuity, a jump at its interface (see Eq. (5.2)), where the masking
function χ changes from a value of 0 (outside the geometry) to 1 (inside the
geometry). Hence, a step function needs to be projected to the polynomial
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Figure 5.1.: Different curves represent the Legendre polynomials of up to
a polynomial degree of 5, in the interval of [-1, 1].

space while a suitable expansion

Pn(x) =
n∑

j=0

cjLj(x) (5.5)

has to be found, which approximates Eq. (5.2) appropriately. The ex-
pansion coefficients cj have to be computed, in order to obtain Pn(x).
Therefore, the inherent property of the Legendre polynomials, of orthogo-
nality to the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x)dx (5.6)

is considered. In our case the f(x) is replaced by the masking function
χ(x) and g(x) by the Legendre polynomials Lj(x), in order to obtain the
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expansion coefficients cj .

cj = 〈χ(x), Lj(x)〉 =
∫ 1

−1
χ(x) · Lj(x)dx

≈
m∑

i=1

wi · χ(xi) · Lj(xi)
(5.7)

Here m is the number of integration points and wi a weight value for the
numerical integration.

Considering the mentioned equations above, we can represent the masking
function in the same function space as all conserved quantities, allowing for
its appropriate approximation and representation with high-order polyno-
mials. We now continue the investigation of its evaluation in the numerical
scheme in the following section.

5.4. Evaluation of the masking function χ in the numerical
scheme

In order to evaluate the masking function χ, thus the geometry, the
workflow is defined to be as follows:

• Identifying the elements where the geometry can be located

• Evaluating the masking function χ at integration points (nodal
data)

• Converting the nodal data of χ to modal (polynomial modes)

The solver defines geometries as a space-time function, allowing them to
change location over time. To reduce the computational effort, we first
identify computational elements that have geometry properties. More on
the purpose of the identification procedure can be found in Section 5.5. The
next step to be addressed here is the evaluation of the masking function
χ at the integration points (Chebyshev nodes). The evaluation of the
masking function χ is done in each time step, if the motion of the geometry
is intended. As the evaluation can hardly be illustrated in more dimen-
sions, we concentrate on visualizing the problem in a one-dimensional space.

In Figure 5.1a the target masking function χ (thick red line) and the
geometry interface (blue line) are shown. The geometry has a specific
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thickness, covering a certain area in the simulation domain (blue area).
The orange line in the figure depicts the expansion series obtained with
analytical integration, and the black line the numerical integration of the
step function (masking function). The solution for the analytical solution
can be again obtained through Eq. (5.5) and Eq. (5.7). In Eq. (5.7), the
integral limits can be split according to the jump function, resulting in

cj = 〈χ(x), Lj(x)〉 =
∫ 1

−1
χ(x) · Lj(x)dx

=
∫ Jump

−1
χ(x) · Lj(x)dx

+
∫ 1

Jump

χ(x) · Lj(x)dx,

(5.8)

where the integral limit Jump indicates the location of the discontinuity
in the simulation domain. Generally, it is not as straightforward as in this
simple one-dimensional test case to obtain the solution. Thus, numerical
integration is required, where the target function χ has to be evaluated
by a finite number of integration points, in our case the Chebyshev nodes.
The quality of the solution (numerical integration) is strongly coupled with
the number of Chebyshev nodes, which can be given as

xcn = cos
(2 · cn− 1

2N · π
)

cn = 1, ..., N. (5.9)

The number of nodes is even more significant for a moving geometry, where
the geometry changes its location from one time step to the other. The
minimal distance between the Chebyshev nodes is at the element boundary
(in the interval of the Legendre polynomials). It is proportional to N−2,
resulting in smaller distances between the nodes with increasing polynomial
degree. In the case the geometry moves, the most significant error from the
point distribution is introduced by the largest distance between the Cheby-
shev nodes, which is in the middle of an element and proportional to N−1.

We need to keep in mind that the solver is based on the modal Dis-
continuous Galerkin method. Thus the state of the simulation is always
stored in polynomial function space. Therefore, nodal information (point
data) always have to be converted to modal information (cf. numerical
approximation in Figure 5.1). Since the Discontinuous Galerkin solver uses
the Legendre modes cj (cf. Eq. 5.5), that need to be obtained from the
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Figure 5.1.: Polynomial representation of the moving wall (geometry).
Geometry interface moves and is therefore located at different
locations. In (a) at x = 0.1, (b) at x = 0.15, (c) at x = 0.20,
(d) at x = 0.25, (e) at x = 0.30 and in (f) at x = 0.35.
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information of the Chebyshev nodes, a fast polynomial transformation is
applied according to [6]. The evaluation of χ can be undertaken at each
Chebyshev node xcn, that are at the same time, as already mentioned,
the integration points for the numerical approximation. In Figure 5.1
the Chebyshev nodes of N = 16 are indicted by black dotes, resulting
in a polynomial degree of 15. It is of importance to mention here that
the position of the geometry interface is of significant importance for its
representation. If the jump is positioned between two neighboring nodes,
a variation in this area does not result in a different numerical integration.
This effect is an aliasing error, as insufficient integration points are used to
represent the geometry appropriately. Further, this can cause instability in
the numerical scheme as the higher order terms are misinterpreted. They
are mirrored on the lower order terms, leading the Discontinuous Galerkin
scheme to become unstable [46].
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Figure 5.2.: Comparison: Analytical integration and numerical integration
without and with over-integration to improve the numerical
solution. S2 and S4 indicate the over-integration factor of 2
and 4, respectively.

We can observe this behavior between, e.g., Figure 5.1a and Figure 5.1b
as the shifting of the geometry interface results in the same representation
since it is still located between the same two neighboring Chebyshev nodes.
The worst case of the geometry representation in the numerical scheme is
depicted in Figure 5.1a and Figure 5.1e, where the geometry interface is
exactly on the Chebyshev node, with a more significant distance to the
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5.4. Evaluation of the masking function χ in the numerical scheme

neighboring node. Hence resulting in the representation of the geometry
with the largest error when compared to the analytic integration. The
most desirable scenario for the geometry representation would be its lo-
cation strictly between two integration points as in Figure 5.1c, where
the discontinuity can be captured as precisely as the analytic integration.
Thus, it is significant to know how the aliasing effect can be prevented
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Figure 5.3.: Comparison: Analytical integration and numerical integration
without and with over-integration to improve the numerical
solution. The numerical integration without over-integration
is represented by the black line and the respective Chebyshev
nodes by the black dots. Numerical integration with over-
integration of factor 2 (S2 curve), resulting in an approximation
with 16 integration points. Lastly, the numerical integration
for a polynomial degree of 15 without over-integration (rust-
brown) is shown.

and the numerical approximation improved to preserve better numerical
solutions, hence a better representation of the geometry interface. That
is especially important when the geometry moves and is represented at a
different location in the simulation domain. As shown in Figure 5.1 the
motion of the geometry between two integration points always results in
an identical representation. The advance of the jump out of this area
results in a different representation of the geometry and a sudden change
in the numerics. The geometry’s continuous motion is only captured by
the numerical scheme step-by-step when the geometry moves and can be
represented between a ”new pair” of Chebyshev nodes.
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To address this drawback and improve the accuracy of the numerical
integration, we consider more Chebyshev nodes (integration points) N ,
which is also known as over-integration [53]. It provides a smaller distance
between the Chebyshev nodes and, therefore, a more precise representation
of the geometry interface. In Figure 5.2 we exemplarily illustrate how
over-integration can help to improve the numerical solution. With an
over-integration factor of 2 and 4 indicated by S2 and S4. Over-integration
can help to address this issue and control the error for the geometry
representation. An over-integration factor of 2 (S2) is, as illustrated in
Figure 5.2 not enough to improve the solution sufficiently, even though
the amplitude of the Gibbs oscillations decrease. However, Figure 5.2
also demonstrates that an over-integration of 4 is suitable to approximate
the solution and reduce the error sufficiently to achieve a solution that
is in agreement with the analytical integration. An over-integration of
4 has the same meaning as using four times more integration points to
represent the geometry for the numerical integration (cf. Figure 5.1). We
obtain a new polynomial representation of the masking function through
over-integration, representing the discontinuity with higher quality and
avoiding aliasing error.

In Figure 5.3 different curves are depicted to exemplary provide an idea
how the over-integration influences the solution. Again curves provided
show the numerical approximation (black) with the respective Chebyshev
nodes (N8), the analytical approximation (orange), and the numerical solu-
tion when considering an over-integration of two (S2). Further, the curve
(rust-brown) and the respective Chebyshev nodes for a polynomial degree
of 15 are considered to compare the difference between over-integration
and the direct use of the respective polynomial to obtain an improved
representation for the geometry. From Figure 5.3 it is apparent that
through over-integration, the numerical integration is improved. However,
the result does not provide the same representation as directly using a
polynomial degree of 15 for the numerical integration. Thus, when con-
sidering over-integration, the higher modes represent the geometry with
higher accuracy, but those higher modes are removed from the solution
after numerical integration.

We now recall the previous test case from Figure 5.1 and rerun the same
setup by considering an over-integration factor of 4 for the numerical inte-
gration. In all subfigures provided in Figure 5.4 we can observe improved
solutions for the numerical integration when considering over-integration,
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Figure 5.4.: Polynomial representation of the moving wall (geometry). The
geometry interface moves and therefore is located at different
locations, while considering an over-integration factor of 4. In
(a) at x = 0.1, (b) at x = 0.15, (c) at x = 0.20, (d) at x = 0.25,
(e) at x = 0.30 and in (f) at x = 0.35.
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5. Embedded boundary method

even in the case where χ is located at an unfavorable location, a significant
improvement of the numerical integration can be achieved. Further, we
need to recall that due to the introduced discontinuity by the masking
function, the Gibbs phenomenon appears and needs to be taken into
consideration. It is, as mentioned in Section 3.3 done throughout the
post-processing procedure.

5.5. Over-integration - Cost estimation

Due to the motion of the geometry, it can be represented from one time
step to the other differently. As previously mentioned, this introduces
a small error, which can be reduced through over-integration. However,
over-integration is coupled with increasing computational cost. As the
porous material is defined as a space-time function and during initialization
we identify elements that might have geometry properties; we consider
those elements to introduce the over-integration for the masking function.
Hence the additional computational effort is only for χ and only in those
elements, where χ 6= 0. E.g., a rotating object only requires a limited
area of the simulation domain. Hence, in that region, χ is expected, and
more integration points are necessary to approximate the porous material
appropriately. The shape (a box) allows limiting the over-integration only
where required and exclusively for evaluating χ.

We consider a small test case to show how this simple approach can
help to reduce the computational cost. For our investigation, we inves-
tigate four scenarios to define where over-integration for χ is required.
In the first scenario (All: No shape), we do not define any shape where
the geometry (χ) might be. Hence the solver needs to check the entire
simulation domain for the masking function. Further, for this scenario,
over-integration is deployed for all operations, e.g., the expensive flux
computation and boundary elements. In the second case, we only define
the over-integration for the masking function (Mat: No shape); again, we
do not define a shape here and require the solver to apply over-integration
only for χ. Nevertheless, the solver also checks the entire simulation do-
main for the masking function and applies the over-integration, wherever χ
is 1.0. In the third scenario, we predefine a shape, bounding the geometry
motion in that area. The solver only needs to check for χ in that specific
area of the simulation domain and apply over-integration. Again we define
over-integration in the entire domain (All: Shape-based) for this case.
Though, over-integration is done for all terms. However, outside of the
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Figure 5.5.: Comparison: Compute time per iteration, for four different
scenarios, over-integration in the entire domain (All) and just
for the porous material (Mat). We distinguish between shape-
based and no shape, to restrict the area, where the porous
material is or might be.

shape, no material evaluation needs to be done, as the material properties
are seen as constant. Lastly, for the fourth test case, we again define
the shape for the geometry and only require over-integration to evaluate
χ (Mat: Shape-based). Thus, the solver needs to check the state of χ
in the predefined shape and apply over-integration for the masking function.

We consider a small test case, where a wall initially covers half of the
domain and moves during runtime from its original location to the right
side of the domain (similar to Figure 5.4). As we are only interested
in the computational cost, any test case is suitable here. However, this
test case provides a good example, as half of the domain is considered
to be the porous material, and over-integration is done in that area of
the simulation domain. We solve the two-dimensional Euler equations for
100 iterations and keep track of the computational time while neglecting
the initialization time. We use a scheme order of O(8) and 1024 elements
along the length and one element in height, essentially a one-dimensional
simulation domain. For this study an over-integration of 1, 2, 3, 4 and 8
is utilized. As shown in the previous section, it is more likely that an
over-integration of up to 3 or 4 is sufficient for our simulations to enable
an adequate geometry representation and reduce the distance between the
Chebyshev nodes. Thus, the over-integration factors are selected according
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5. Embedded boundary method

to this assumption. In contrast, a factor of 8 is chosen to show how the
computational cost behaves for an even higher over-integration factor.

Results for this study are depicted in Figure 5.5. An over-integration
only in the shape (shape-based) can considerably reduce the computa-
tional cost per iteration compared to the over-integration in the entire
domain without considering the shape for the masking function (no shape).
Comparing the curves with and without shape for over-integration (blue
and orange curves), we can observe that the computational effort can be
reduced with a predefined shape for the masking function. The solver
only needs to check the state of the masking function inside the shape
and apply the over-integration for χ. Further, it is clear that considering
over-integration for χ, where it is needed, can further reduce the computa-
tional effort. Comparing the green and red curves (Mat), we can reduce
the computational time per iteration by roughly 40% in the case of an
over-integration factor of 3. Comparing the blue line (All, no shape) and
the red line (Mat, shape-based), the reduction in computational time is
even higher, with 56% for an over-integration factor of 3. However, we
need to notice that from test case to test case, and the different sizes of the
predefined shape for the masking function and the increase in complexity
of the dimensions, the computational effort varies for the over-integration.
But from the results in Figure 5.5 we can conclude that the best results in
terms of computational cost can be achieved employing the shaped-based
over-integration only for the masking function χ.

5.6. Specification of the masking function χ

In the previous sections, we explained our method of representing geome-
tries with a one-dimensional problem in space to understand the used
concept. We now extend our previous example and have a closer look into
problems in two-dimensional space, where the modeling of geometries can
become tangled. As previously mentioned, geometries are defined as a
space-time function that enables the geometrical motion throughout the
simulation. Depending on the complexity of the geometry, there might
exist an analytical function to describe its surface. It can, e.g., be a
cylinder defined by its radius or a rectangle defined by the length of its
edges. Apart from simple geometries, we are more interested in realizing
simulations with complex geometries that often have a complex surface,
such as, e.g., turbine blades, which have different curvatures and can
hardly be described by a simple function. In order to allow for simulations
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5.6. Specification of the masking function χ

with complex geometries, where the geometrical surface can not be easily
defined, we use a polygonial definition.

(a) (b)

Figure 5.6.: Representation of the geometry interface in the solver. (a)
Through an analytical function and in (b) through a list of
points, that are connected to each other (segments).

The polygon is defined by a list of vertices with linear segments con-
necting them. Polygons can approximate curved surfaces if a sufficient
number of vertices are provided to describe the geometry surface. Thus,
this option enables the representation of arbitrary surfaces. In Figure
5.6 the geometry representation with both options is provided. In one
case the analytical function for the geometry representation (cylinder) is
provided (cf. Figure 5.6a). In the other case, we assume an analytical
function is not available, and a list of six points (blue squares) is used to
define the surface of the cylinder geometry (see Figure 5.6b). The provided
figure considers one computational element and a scheme order of O(5),
resulting in five integration points per direction (black dots) representing
the masking function χ. If an analytical function is available, the cylin-
der can be represented with increasing spatial resolution as good as the
analytical solution. However, if we provide a list of points, the geometry
can be resolved as well as the segments that represent the surface when
increasing the spatial resolution. In order to have a detailed description
of the geometrical surface, more vertices are required to have a better
representation of a curved surface. The influence of the number of vertices
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5. Embedded boundary method

to represent the geometry surface on the computational cost is studied in
more detail in Section 6.7.2.

We now continue with the time integration to address the time restriction
caused by the penalty terms introduced by the modeling method. As
mentioned in Section 5.1, due to tiny values of the permeability terms,
the explicit time-stepping scheme is restricted to small time steps. In
order to allow for larger time steps and enable a feasible computation, an
implicit-mixed-explicit time-stepping scheme is deployed.

5.7. Implicit-mixed-explicit Runge-Kutta method

Due to the additional terms in the equations Eq. (5.3), they become more
challenging to be handled, as an additional amount of numerical stiffness by
the permeability terms is introduced to the system to be solved. Therefore
a pure explicit approach in time, as shown in Eq. (3.23) is unfeasible
from the computational perspective, as the time step is restricted to a
tiny one to ensure stability. Hence a hybrid time-stepping approach is
implemented to address this drawback efficiently. The implicit-mixed-
explicit (IMEX) Runge-Kutta time integration [3] allows to deal with
this issue, by discretizing the additional penalization terms in an implicit
approach. The equations in Eq. (5.1) can be split into two parts, one that
is explicitly solved and one which is implicitly computed [8], that results
in

∂tρ = Cξ
ρ + Cι

ρ (5.10a)

∂tmu = Cξ
mu

+ Cι
mu

(5.10b)

∂te = Cξ
e + Cι

e. (5.10c)

Where C denotes the rhs of the equation, with the superscript ι and ξ
representing the implicit and explicit part, respectively. The subscripts ρ,
mu and e denote the variables that have to be conserved. The implicit
part is chosen to be the penalization terms in our numerical scheme of
Eq. (5.10), as they are spatial derivative-free and can be solved pointwise.
They can be written as

Cι
ρ = 0 (5.11a)

Cι
mu

= −χ

η
(u − uG) (5.11b)
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Cι
e = − χ

ηT
(T − TG) − χ

η
(u − uG) · u. (5.11c)

In the first step, we only consider the implicit part of the equations, shown
in Eq. (5.11).

∂tρ = 0 (5.12a)

∂tmu = −χ

η
· (u − uG) (5.12b)

∂tE = − χ

ηT
(T − TG) − χ

η
(u − uG) · u (5.12c)

To obtain a discretized equation system that needs to be solved, we first
apply the Euler backward scheme to Eq. (5.12)

ρ(t+ ∆t) − ρ(t)
∆t = 0 (5.13a)

mu(t+ ∆t) − mu(t)
∆t = −χ

η
(u(t+ ∆t) − uG) (5.13b)

E(t+ ∆t) − E(t)
∆t = − χ

ηT
(T (t+ ∆t) − TG) (5.13c)

− χ

η
(u(t+ ∆t) − uG) u(t+ ∆t).

From Eq. (5.13a) it is apparent, that ρ(t + ∆t) yields to ρ(t + ∆t) =
ρ(t). This simplification can be used to derive from Eq. (5.13b) an
explicit expression for the velocity u(t+ ∆t). We can achieve the explicit
formulation for velocity, when considering the momentum mu being

mu(t+ ∆t) − mu(t)
∆t = ρ(t+ ∆t)u(t+ ∆t) − ρ(t)u(t)

∆t . (5.14)

Eq. (5.13b) can be reformulated to

ρ(t+ ∆t)u(t+ ∆t) − ρ(t)u(t)
∆t = χ

η
(u(t+ ∆t) − uG) , (5.15)

obtained by reordering Eq. (5.15) according to u.

u(t+ ∆t) =
ρ(t)u(t) − χ∆t

η
uG

ρ(t+ ∆t) − χ∆t
η

(5.16)
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Considering the simplification in density ρ, Eq. (5.16) can be further
simplified to

u(t+ ∆t) =
ρ(t)u(t) − χ∆t

η
uG

ρ(t) − χ∆t
η

. (5.17)

Finally, the temperature T can be explicitly determined, where the relation
between energy and temperature can be written as E = 1

2ρuu + p
γ−1 =

1
2ρuu + ρcvT . With this formulation and Eq. (5.13c) we can obtain the
explicit formulation of the energy as

E(t+ ∆t) − E(t)
∆t =

ρ(t+∆t)u2(t+∆t)
2 + cvρ(t+ ∆t)T (t+ ∆t)

∆t

−
ρ(t)u2(t)

2 − cvρ(t)T (t)
∆t

= − χ

ηT
(T (t+ ∆t) − TG)

− χ

η
(u(t+ ∆t) − uG) u(t+ ∆t).

(5.18)

From Eq. (5.18) the temperature can be determined as

T (t+ ∆t) =
χ∆t
ηT

TG − χ∆t
η

(u(t+ ∆t) − uG) u(t+ ∆t)

cvρ(t) + χ∆t
ηT

+
−cvρ(t)T (t) + ρ(t)

2 (u2(t) − u2(t+ ∆t))
cρ(t) + χ∆t

ηT

,

(5.19)

where u(t+ ∆t) can be computed according to Eq. (5.17). These formu-
lations enable solving the implicit part of the time integration scheme,
in an explicit strategy, without introducing much more computational
effort. However, the demonstrated Euler backward method is only 1st

order in time. A third-order Runge-Kutta method is deployed, where the
diagonally implicit Runge-Kutta [3] method is used. It includes three
explicit and four implicit substages. This strategy provides a third-order
accurate result in time and is L-stable. The substages can be computed
when considering matrix-vector notation, as shown below.

Substage 1 - Explicit:

ĥ1 = M−1 · Cξ(û(t+ c1∆t), t+ c1∆t) (5.20a)
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5.7. Implicit-mixed-explicit Runge-Kutta method

Substage 1 - Implicit (embedded part):

û1(t+ c2∆t) = û(t) + α1,1∆tM−1Cι(û1(t+ c2∆t)) (5.20b)

+ ∆tα2,1ĥ1

Substage 2 - Explicit:

ĥ2 = M−1 · Cξ(û1(t+ c2∆t), t+ c2∆t) (5.20c)

Substage 2 - Implicit (embedded part):

û2(t+ c3∆t) = û(t) + α2,1∆tM−1Cι(û1(t+ c2∆t)) (5.20d)

+ α2,2∆tM−1Cι(û2(t+ c3∆t))
+ ᾱ3,1∆th1 + ᾱ3,2∆th2

Substage 3 - Explicit:

ĥ3 = M−1 · Cξ(û2(t+ c3∆t), t+ c3∆t) (5.20e)

Substage 3 - Implicit (embedded part):

û3(t+ c4∆t) = û(t) + α3,1∆tM−1Cι(û1(t+ c2∆t)) (5.20f)

+ α3,2∆tM−1Cι(û2(t+ c3∆t))
+ α3,3∆tM−1Cι(û3(t+ c4∆t))
+ ᾱ4,1∆th1 + ᾱ4,2∆th2 + ᾱ4,3∆th3

Substage 4 - Explicit:

ĥ4 = M−1 · Cξ(û3(t+ c4∆t), t+ c4∆t) (5.20g)

The update rule is given as:

û(t+ ∆t) = û(t) + β1∆tM−1Cι(û1(t+ c2∆t)) (5.20h)

+ β2∆tM−1Cι(û2(t+ c3∆t))
+ β3∆tM−1Cι(û3(t+ c4∆t))

+ β̄1∆tĥ1 + β̄2∆tĥ2 + β̄3∆tĥ3 + β̄4∆tĥ4
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5. Embedded boundary method

The coefficients α, ᾱ, β, β̄ and c are given in the Runge-Kutta tableau in
[98] that are used for this work as well, while Cι and Cξ denote the the
penalization operation and the discrete hyperbolic/parabolic operation. It
has to be noticed that each implicit substage requires a transformation
of the modal (polynomial information) to nodal (pointwise information)
and vice versa, as the material parameters are calculated pointwise. More
information regarding the transformation from modal to nodal and vice
versa can be found in Chapter 3 and [98].

Conclusion The Brinkman volume penalization method is utilized to
model the geometry for numerical simulations in our high-order Discon-
tinuous Galerkin solver. We presented how our implicit-mixed-explicit
time-stepping scheme allows overcoming the additional numerical stiffness
introduced by the penalty terms. Further, the geometrical representation
in our high-order numerical scheme was introduced, where the masking
function χ was evaluated at the integration points to identify the geometry
and its respective location. We illustrated a one-dimensional problem
that the geometry is differently represented in each position due to the
non-equidistant point distribution of the integration points. The most
significant error in the geometry modeling is caused by the largest dis-
tance between the integration points. They can be found in the middle of
an element. Over-integration was introduced to reduce the error in the
modeling caused by the point distribution. Using more integration points
to approximate the masking function, thus the geometry improves the
modeling and reduces the error from the point distribution. This method
yet increases the computational effort; however, it can be reduced by
appropriate measures. The over-integration is only done in the first place
for the approximation of the masking function. Additionally, a limiting
shape (box) is introduced to reduce the computational effort further, as
only inside the shape the masking function is evaluated, and the over-
integration incorporated. The shape defines the area where the geometry
is and might be during the simulation when it moves. E.g., in cases where
the geometry only rotates around a particular center, it will only require
a specific area. This practice allows to reduce the computational effort
further and use over-integration where it is indispensable.

In the following chapter, the validation of the embedded method to ar-
bitrary model geometries and their motion in our high-order scheme is
presented employing test cases known from the literature. They involve
shocks as well as curved boundaries and sharp edges. Those investigations
demonstrate that the embedded method used to model geometries can
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preserve shocks while the underlying Discontinuous Galerkin scheme stays
stable. Furthermore, we can highlight that this method is also suitable for
modeling curved and more complex boundaries.
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In this section, the motion of the geometry, modeled as an artificial porous
material, is validated through different test cases that demonstrate dif-
ferent numerical challenges. Test cases deal, among others, with shocks,
even though it is known that high-order poses some challenges for shock
capturing due to strong discontinuity and the resulting Gibbs oscillations
(see Section 3.3). This chapter aims to validate the porous material used to
model moving geometries. Moreover, investigations in this chapter verify
that more accurate solutions can be obtained when compared to a low-
order scheme (O(2)), even though an additional discontinuity (geometry)
is introduced into the simulation domain.

The first test case deals with an acoustic pulse that moves throughout the
simulation time towards a moving wall and is reflected to a predefined
location in the simulation domain. The second test case focuses on a shock
that travels towards a non-moving wall and is reflected to a predefined
location. This test case is later compared to a shock that moves towards
a moving wall and is reflected. Afterward, we discuss a moving piston,
where a shock is formed ahead of the piston. Exact solutions exist for the
shock and piston test case in the literature, used for comparison. Lastly,
we investigate curved boundaries using a moving cylinder and a moving
wedge test case. In the case of the moving cylinder, an exact solution is
not available; therefore, simulation results are compared to the already
validated non-moving cylinder test case. For the wedge test case, an exact
solution can be found in the literature. With these investigations, we want
to demonstrate that: (i) The porous material acts as a solid geometry
through low permeability for the modeling terms. (ii) Obtained results
are in excellent agreement with known exact solutions. Further, numerical
stability is maintained even though the step function χ introduces a fur-
ther discontinuity. (iii) A high-order scheme still enables more accurate
solutions, even in the vicinity of strong discontinuities.
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6.1. Convergence study - Acoustic pulse

To investigate the ability of the porous material in order to model solid
moving geometries, we apply a simple test case. We start with the L2
error convergence study that Anand, EP et al. [8] have used. However,
this test case is slightly modified, where a moving wall replaces the fixed
wall. All other flow properties, as well as the simulation domain, are kept
the same as in [8].

Test case description: The one-dimensional simulation domain has
a length l of 1 unit length. From x = 0.475 to x = 1.0 the computational
domain is covered by the modeled wall. The pulse is located at x = 0.225,
we expect the pulse at the end of the simulation to be at x = 0.25 com-
paratively to [8], and the wall at x = 0.5. The wall speed is defined to be
0.05 unit speed. The time step is controlled by the CFL condition with a
Courant factor of 0.25 and the inviscid Euler equations are solved. The
Courant factor is chosen to be a moderate value, as the velocity of the
geometry is not considered in the CFL computation, thus a smaller value
is chosen to ensure stability of the numerical simulation.
Initial conditions We prescribe the background pressure pB to be 1/γ,
with γ = 1.4 being the isothermal coefficient. The background density ρB

has a value of 1, resulting in a speed of sound of c = 1. The background
velocity uB is defined to have the same speed as the moving wall. The
pulse is given in terms of deviations from the background values (density
ρ′, pressure p′ and velocity u′), with a maximal deviation of 10−3 (cf. Eq.
(6.1)). Thus at t = 0 the density is ρB + ρ′, the pressure is pB + p′ and
the velocity is uB + u′.

ρ′ = u′ = p′ = 10−3exp

[
− ln 2 (x− 0.225)2

0.004

]
(6.1)

Boundary conditions At the left boundary (Dirichlet boundary condition)
pB , ρB and uB are prescribed. The right boundary is defined as subsonic
outflow, where pB is defined.

In acoustics theory, the reflection is perfectly symmetric, and the re-
flected pulse maintains its shape and size. For this linear test case, the
analytical solution can be easily computed and deployed to investigate the
quality of the numerical solution, considering the modeled porous wall.
Furthermore, it allows for the analysis of the amplitude and the phase
shift of the reflected pulse. Generally, the analytical solution can be used
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as a reference for comparison with the numerical solution. However, as
nonlinear equations are solved, and tiny errors are obtained, the analytical
solution is unsuitable. This is due to the nonlinearity that is not considered
in the analytical solution of the linear equation. Therefore the analytical
solution deviates from the nonlinear behavior, restricting its suitability
for the convergence investigation. For the computation of the L2 error, a
highly resolved solution is used as a reference, for our convergence study.
The reference is computed in a smaller domain of size 0.5 unit length, with
an isothermal wall boundary condition at the right end of the domain. The
same temperature is prescribed for the wall boundary condition. For the
simulation, a polynomial degree of 255 and 120 elements for the computa-
tional mesh are used, which results in a well-resolved solution obtained by
a convergence study.

Simulation results for different scheme orders and 48 elements are pre-
sented in Figure 6.1 (h refinement). The black line represents the reference
solution using a scheme order of O(256), all other curves depict the so-
lution for O(2) up to O(64). Obviously, with higher scheme orders, the
solution resembles more and more the reference solution. However, when
considering a lower scheme order, e.g., O(2) or O(4), a high dissipation
and dispersion error (smaller amplitude and a large phase shift) is notice-
able. Starting from O(16) the numerical solution resembles the reference
solution, where a smaller phase shift can be observed, and the error in
the amplitude is significantly reduced. For a scheme order of O(32) and
O(64), the solution agrees with the reference solution. To allow for a more
detailed investigation of the quality of the solution, a convergence analysis
is conducted. We are interested in the L2 error, which can be computed
according to

|L2 error| =

√√√√ n∑
j=1

|xj − yj |2, (6.2)

where x is the numerical solution, y the high resolved reference solution,
and n the number of measurement points. Point values are obtained by
evaluating the polynomial representation at determined point positions in
the simulation domain. The investigated area is from x = 0 to x = 0.5,
hence only the flow field. Our convergence study is conducted for the last
time step of each simulation, where the pulse has reached its final location.
Measurement points only need to be evaluated during post-processing and
only for the last time step. To avoid aliasing effects, the number of mea-
surement points is three times more than the number of integration points

63



6. Validation of the moving geometry

0.0 0.1 0.2 0.3 0.4 0.5
x/l

1.0000

1.0002

1.0004

1.0006

1.0008

1.0010

1.0012

1.0014
N

or
m

al
iz

ed
P

re
ss

ur
e

O(2)

O(4)

O(8)

O(16)

O(32)

O(64)

Reference

Figure 6.1.: Comparison: Curves represent simulation results for differ-
ent scheme orders, compared to the reference solution. The
simulation domain is discretized with 48 elements.

per element. In Figure 6.2 the convergence study is shown for the variable
pressure. Figure 6.2a presents the error over the number of degrees of
freedom (nDoF); hence the memory requirement for the simulation. Figure
6.2b shows the L2 error against the respective time to solution, executed on
a single node with 48 cores on SuperMUC-NG supercomputing system at
Leibniz Rechenzentrum (LRZ). The investigation starts with 48 elements
in each data series, the leftmost point in both subplots. For the following
points in our study, the element count is continuously increased by a factor
of 2. We consider a wide range of scheme orders starting from O(2) up to
O(64). We do not reach in Figure 6.2 a spectral convergence as expected for
smooth solutions. The error decreases only linearly with increasing scheme
order. However, the high-order discretization is still advantageous when
considering the required memory consumption. In terms of computation,
we can observe a noticeable improvement of the computational effort from
O(2) to O(3) and O(4). Nevertheless, the computational effort increases
again for a higher order than O(16). Even though, the timings depend
on the system the simulations are executed on, however this observation
holds true also on other computing systems.
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Figure 6.2.: Curves represent different scheme orders, while dots indicate
the L2 error for different element counts. (a) L2 error over
the number of degrees of freedom (nDoF) and (b) L2 error
over the computational time. Simulations are conducted on
one single node with 48 cores, using the computing system
Supermuc-NG.

There exist two decisive contributions that diminish the convergence order
for our simulations. The first one is related to the Gibbs phenomenon that
introduces oscillations due to the discontinuity of the masking function
χ (cf. Section 3.3). This error source can be limited by utilizing a re-
projection method, e.g., recommended in [42]. However, this is not used in
this work. The second error source is related to the numerical integration,
hence the Chebyshev nodes and their respective distribution, as previously
discussed in Section 5.3. The inaccuracy coming from the integration
points can be reduced by over-integration. However, as mentioned in
the respective Section 5.3, the node distribution is not equidistant, and
most nodes are found at the element corners. Here the distance towards
the element corners decreases with 2nd order when using over-integration,
while in the middle of the element, this is only of 1st order. Thus the
error from the numerical integration is dominated by the largest distance
between the nodes, which only decreases with 1st order and can be found in
the middle of an element. As the wall moves and is represented differently,
the most significant error dominates our L2 error solution. Even though
the convergence rate drops to 1st order, the solution in the smooth part
of the simulation domain is still of high-order as shown in [8] and [77],
allowing to capture the flow field with high accuracy.
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6. Validation of the moving geometry

Table 6.1.: Comparison of different scheme orders with the same nDoF of
49, 152.

Scheme order L2 error ×10−4 Computational
time [s] ×103

O(2) 3.26396895 11.407
O(4) 0.30412917 17.889
O(32) 0.11621092 61.132

Though the error drops for h and p refinement linearly. However, we
can observe that high-order schemes can still exhibit their advantage by
providing a small L2 error with fewer degrees of freedom (nDoF) as in
Figure 6.2a.

Considering the computational cost in more detail, we can observe that
with increasing scheme order, the time to solution increases as well. It is
due to the explicit time-stepping scheme and the stability criterion (cf.
Section 3.2). Thus, the time step size decreases with increasing scheme
order while the number of iterations increases to achieve the predefined
simulation time. However, when compared to the error achieved with a
higher scheme order, the computational time to attain a small error of e.g.,
10−4, is linked to fewer nDoF as well as computational time. This behavior
can be observed up to O(16), which is obviously cheaper in computation
when compared to O(2), O(3), O(4) and in some point also to O(8).

In order to compare the solution of different scheme orders with the
same nDoF, in Table 6.1 the L2 error and the computational time to reach
the predefined simulation time for the cases O(2), O(4) and O(32), are
provided. We compare the solutions with the same nDoF of 49, 152 per
variable, with 24, 576 elements for O(2), 12, 288 elements for O(4) and
1, 536 elements for O(32). Even though all three cases have the same
number of nDoF, the solutions are different compared to the reference so-
lution. For O(2), the deviation from the exact solution is severe (cf Figure
6.3). It is expected, as the low-order scheme tends to smear the solution
due to numerical dissipation, which diminishes the pulse’s amplitude and
cannot capture the pulse appropriately. For O(32), we can observe an
excellent agreement with the reference solution (cf. Figure 6.3a and Figure
6.3b), this is due to the inherent properties of the high-order scheme,
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Figure 6.3.: Comparison of the reflected pulse with the reference solution,
for the same nDoF of 49, 152. Curves represent the solution
for the scheme orders O(2), O(4) and O(32), with 24, 576,
12, 288 and 1, 536 elements, respectively. Pressure curves are
normalized by the background pressure pB . (b) and (c) present
a zoom-in into the maxima and the lower right of the pulse
solution.

that allows low dispersion and dissipation error. In the case of O(4), the
solution is significantly improved when compared to O(2); however, at the
maxima (cf Figure 6.3a) as well as on the right lower part of the pulse (cf.
Figure 6.3b) we can observe some deviation from the reference solution
again. Comparing the L2 error provided in Table 6.1, we can confirm our
perception from Figure 6.3a, where the error is smaller for O(32), when
compared to O(2) or O(4). Though the desired small error with O(32)
comes with a higher computational cost, one might assume that O(32) is
not reasonable for the computation, as the computational effort is roughly
four times higher, compared to O(4). However, we need to emphasize that
with a scheme order of O(32), the error is almost three times smaller than
for O(4). To achieve the same error as for the case of O(4), yet, with a
scheme order of O(32), the required time to solution is roughly the same.
However the required nDoF, would only be 24, 576 per variable, thus less
memory is needed (cf. Figure 6.2) compared to O(4). On the other hand, if
the same error as obtained for O(32) is desired for a scheme order of O(4),
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6. Validation of the moving geometry

a higher resolution for the computational mesh is required (3×). It leads to
a higher computational effort and a higher memory consumption (393, 216
nDoF per variable) compared to O(32). Even though, in Table 6.1 the
simulation with O(32) might give the impression that it is too expensive
to be considered, we need to keep in mind that this only holds at first glance.

We can conclude from this test case that we can attain numerical so-
lutions, which are in excellent agreement with the reference solution using
high-order schemes. Even though strong discontinuities (moving wall) are
adverse for high-order methods. Additionally, we confirmed that a higher
accuracy of the solutions could be obtained when using a high-order scheme.
In the next section, we examine more complex test cases, which are well
known to pose challenges for high-order schemes, specifically shocks, a
further discontinuity added in the simulation domain.

6.2. Shock capturing - Shock-wall interaction

For many engineering applications, the spontaneous formation of shocks is
unavoidable; even though conservation quantities are smooth, they pose
challenges for the numerical scheme. The major problem with shocks and
high-order discretizations are, as explained previously, the Gibbs oscilla-
tions. However, as mentioned in Section 3.3 there exist different techniques
to address this issue throughout runtime and post-processing. With that, it
is possible to also keep a closer look into shocks when considering a moving
geometry in the simulation domain, and the discretization of the fluid
domain is done with high-order. The question that needs to be answered
here is whether the chosen approach, namely the Brinkman penalization,
can capture shocks appropriately. For a more detailed examination, a shock
test case is investigated. The shock is located at a predefined location and
travels over time towards a wall modeled as a porous material. The shock
is reflected by the wall and travels back to its original position.

6.2.1. Interaction of a shock wave with a non-moving wall
The first investigation is simulated with a non-moving wall that is later
taken into account for comparison with the moving wall test case and the
exact solution. For this investigation, we neglect in the first place the
viscosity of the Navier-Stokes equations, resulting in the inviscid Euler
equations, comparable to the exact solution. This test case has already
been investigated by Piquet et al. [75]. For comparison, we consider the
same test case while the high-order Discontinuous Galerkin scheme is
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6.2. Shock capturing - Shock-wall interaction

Table 6.2.: Description of the shock state
Speed of sound at region 1 c1 1.0
Shock Mach number Mas 1.2
Velocity of the shock us 1.2
Density downstream ρ1 1.0
Pressure downstream p1 γ−1

Velocity downstream u1 0.0
Isentropic coefficient γ 1.4

utilized, studying different polynomial degrees. Even though a high-order
scheme is not ideal for shock representation, this test case should explain
how we can deal with the discontinuity in our numerical scheme.

Test case description: The simulation is realized in a computational
domain of has a length of l = 1 unit length, where the wall is located at
x = 0.5. The wall covers half of the domain (x ∈ [0.5, 1]), modeled as
a porous material, with properties resembling a solid wall. The initial
location of the shock is at x = 0.25. In order to investigate the influence
of the spatial discretization on the solution obtained, we examine the
following configurations 256, 512, 1, 024, and 2, 048 elements (n) in total
(∆x = 1/n) and a scheme order (O) of 32, 16, 8 and 4, respectively. With
these configurations, the nDoF is kept the same by reducing the number
of elements while increasing the scheme order simultaneously.
Initial conditions Initially, the state inside the domain is prescribed accord-
ing to the values defined in Table 6.2 downstream and the values upstream
are computed according to the Rankine-Hugoniot conditions.
Boundary conditions At the left boundary, we prescribe the primitive
variables pressure, density, and velocity corresponding to the values up-
stream. The right boundary is defined as an outflow, where the pressure
downstream is prescribed.

In Table 6.2 the simulation setup is given for the validation. Downstream
values describe the state in front of the shock, denoted by 1 (cf. Figure
6.4 Region 1). Variables in Region 2, hence the state after the shock, are
denoted by 2. This information can be computed by the Rankine-Hugoniot
conditions, considering the shock Mach number Mas. With that, we
obtain

ρ2

ρ1
= γ + 1
γ − 1 + 2Mas

−2 (6.3)
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6. Validation of the moving geometry

for the ratio between the densities ρ1 and ρ2 before and after the shock,
respectively. Further, we take the pressure ratio

p2

p1
= 2γMas

2 − (γ − 1)
γ + 1 , (6.4)

to calculate the relation between the pressures p2 and p1. These relations
can then be used, to finally obtain the ratio between the pressures p3 and
p2 of the reflected shock wave (cf. Eq. (6.5) ) [14].

p3

p2
= Ma2

s(3γ − 1) − 2(γ − 1)
2 +Ma2

s(γ − 1) (6.5)

For the velocity urs of the reflected shock wave, Eq. (6.6) [41] is taken
into account.

urs = 1
Mas

(
1 + 2(Mas

2 − 1)
(γ + 1)/(γ − 1)

)
c1 (6.6)

Considering a shock wave velocity of Mas = 1.2 and Eq. (6.5), the pressure
ratio (p3/p2) across the shock has a value of 1.47826087.

According to [98], the motion of the shock wave from one element to
another causes oscillations. Those oscillations remain in the elements,
even though the shock wave has passed through them. In Figure 6.4 and
Figure 6.5 we try to reproduce the observation of [98], where results of
the shock test case are shown. In this case, the modeled wall at x = 0.5
is replaced by an isothermal wall boundary condition. This measure is
taken to avoid any influence by the modeled wall and to ensure that the
moving shock wave purely causes those oscillations. In Figure 6.4 the
initial condition is shown, with the shock positioned at x = 0.25. The
solution after 0.094 simulation time is presented in Figure 6.5. The shock
wave has moved from its initial position, and oscillations are visible behind
the shock that moves in the opposite direction. Further, a regular pattern
can be recognized. Oscillations remain in the elements, even though the
shock wave has already passed through them. In the direct neighborhood
of the shock, oscillations match with the element interfaces, e.g., from
0.35742 to 0.36133 (two elements). In contrast, oscillations away from
the shock indicate a regular pattern, a plateau, that becomes further flat
over time as the oscillations lose strength and level out (cf. Figure 6.5b).
Further, in Figure 6.5b, the dash lines indicate the element interfaces. In
order to remove those remaining oscillations from the solution, Zudrop [98]
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Figure 6.4.: Initial condition of the predefined shock wave in pressure
that moves during runtime towards an isothermal wall bound-
ary condition and is reflected. The regions denote the state,
with Region 1 describing the downstream and Region 2 the
upstream state of the flow.

recommended using the co-volume filtering during runtime. In the ensuing
investigations, we consider this recommendation and use the co-volume
filtering for our simulations in this section. A weak filter of O(32) is
used, which is sufficient to smoothen the numerical solution and remove
remaining oscillations in the elements that are introduced by the moving
shock.

Figure 6.6 depicts exemplary the reflected shock wave for different spatial
discretizations. Due to the co-volume filtering, we can no longer observe
oscillations coming from the shock wave. The curves represent the solution
of O(8) and 1024 elements and O(4) with 2, 048 elements. Both have
the same number of nDoF, while the last curve for O(8) and 2, 000 ele-
ments shows the solution for a higher computational effort. As previously
mentioned, the exact solution for the pressure ratio across the shock is
1.47826087. Table 6.3 presents the normalized pressure ratio (p3/p2) and
the error in percentage between the numerical solution and the exact
one (Error in p3/p2 in %) close to the reflected shock. Furthermore, the
difference in the shock location as initially set and the position after the
reflection (∆x: shock position) is shown for all configurations. Obviously,
with increasing scheme order, while keeping the number of nDoF the same,
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Figure 6.5.: Visualization of the moving shock wave towards an isothermal
wall boundary condition for t = 0.094 . Due to the strong
discontinuity (shock), oscillations remain behind the shock. In
(a) the normalized shock wave pressure after movement and
in (b) a zoom-in of the area close to the shock is presented.

the error in the numerical solution of the pressure ratio and the shock
position is reduced, even though a discontinuous solution is present.

The obtained results are in agreement with the outcomes of [75] for O(16)
and 512 elements. From the zoom-in in Figure 6.6b it is apparent that the
plateau after the shock is not completely flat but instead has a slope, which
asymptotically attains the exact solution. Besides the lowest scheme order
of O(4), all configurations investigated indicate the plateau, even though
it remains slightly off from the exact value. The remaining error minerror
is presented in Table 6.3 as well. This error has a value of 0.0129 %, which
is in a reasonable range. The results in Table 6.3 were obtained for a wall
located at the edge of an element. As previously discussed, the positioning
of the geometry, thus the wall, is essential for its representation in the
numerical scheme. Therefore, we investigate the influence of the numerical
integration when the wall is located in the middle of a computational ele-
ment, which is, as previously mentioned, the case with the most significant
error coming from the integration points. In Table 6.4 the solutions for
the reflected shock wave are shown. The difference between Table 6.3
and Table 6.4 is the positioning of the wall interface, which is in the case
of Table 6.4, in the middle of an element. Again we can observe that
the error obtained is reduced when increasing the scheme order, while
all configurations have the same nDoF. Further, it can be noticed that
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Figure 6.6.: Curves represent different spatial discretizations, considering
a variation in the scheme orders and elements. (a) Normalized
pressure of the reflected shock wave and (b) zoom-in of the
reflected shock.

the error in the pressure ratio is reduced, in the cases with fewer element
counts, when compared to the results in Table 6.3, where the wall is located
at the element edge. The reason is an additional element introduced here,
resulting in a smaller element size. Further, we can observe that the error
corresponding to the shock location is considerably larger. Due to the
property of the integration points that have a more significant distance
in the middle of an element and represent the wall interface, the error is
more prominent here.

Table 6.3.: Comparison: Results for the porous material located at the
edge of the element

Test case p3/p2 Error in p3/p2 in [%] ∆x ·10−4

n2048, O(4) 1.46053873 1.19885086 32.0161
n1024, O(8) 1.47642541 0.12416375 13.0319
n512, O(16) 1.47700446 0.08499256 8.1828
n256, O(32) 1.47714175 0.07570497 7.6228
n2000, O(8) 1.47740998 0.05755990 7.0317
minerror 1.47806952 0.012944346 −−
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6. Validation of the moving geometry

Table 6.4.: Comparison: Results for the porous material located in the
middle of an element.

Test case p3/p2 Error in p3/p2 in [%] ∆x ·10−4

n2049, O(4) 1.44333420 2.36268639 25.6373
n1025, O(8) 1.47333865 0.33297335 21.5178
n513, O(16) 1.47750687 0.05100577 15.4564
n257, O(32) 1.47751832 0.05023153 13.0052
minerror 1.47801754 0.01646083 −−

In Figure 6.7 the different test cases are shown. Each curve represents
a different location of the modeled wall compared to a wall boundary
condition located at the same place as the modeled wall. The simulation
results are compared to each other for the configuration of O(16). From
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Figure 6.7.: Curves represent the different locations of the porous material
in the element and the solution when using a wall boundary
condition. The location of the porous material is in one case at
the element edge (ElemInterface) and the other at the middle
of an element (ElemMiddle). (a) Normalized pressure of the
reflected shock wave and (b) zoom-in of the front area of the
shock.

Figure 6.7 we can observe that obtained solutions are comparable when
modeling the wall as a porous material and when using the reference wall
boundary condition. Furthermore, we can recognize that the well-known
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6.2. Shock capturing - Shock-wall interaction

Gibbs oscillations in the vicinity of the discontinuities are introduced.
However, apart from that, the shock is well sustained by the underlying
Discontinuous Galerkin scheme. It is unavoidable that oscillations remain
inside the porous material (see Figure 6.7b). Nevertheless, we need to
emphasize that the information inside the material is out of interest. In
both Figure 6.7a and Figure 6.7b we can observe an over- and undershoot.
Since the modeled wall is represented in polynomial space and, according
to the Gibbs phenomenon, a deviation of max. 9% is allowed to maintain
the physical correctness of the solution [22], we investigate the over- and
undershoot in more detail. With the material interface located in the
middle of an element, the overshoot is around 2.052%, and the undershoot
around 8.639%. Placing the material interface at the element interface
results in 1.821% and 7.681% over- and undershoot, respectively.

With the outcomes from this test case, we can continue and set up the same
simulation while moving the wall, modeled as a porous material according
to a predefined velocity. The question, which arises here is, whether we
can reproduce our results from the non-moving porous wall and obtain
solutions, which are comparable to the solutions from this section. It needs
to be noticed here, that due to the movement of the wall in the next test
case, the complexity of this test case increases, as the discontinuity moves
and changes its location throughout the simulation time.

6.2.2. Interaction of a shock wave with a moving wall
We rerun the same test case as in Section 6.2.1, however, we now move
the wall with a predefined velocity. Wall and shock position are, for this
purpose, slightly shifted to the left at the initial condition, though the
distance between shock wave and wall remains the same as in the non-
moving case. Furthermore, the simulation time is predefined such that at
the end of the simulation, the shock wave and the wall have the same final
position as in the non-moving case.

Test case description: The simulation domain is the same as in Section
6.2.1, however the wall position is at x = 0.494340 and the shock position
at x = 0.244340, consequently the porous material, that resembles a solid
wall, covers a larger area of the simulation domain (x ∈ [0.494340, 1])
than in Section 6.2.1. Again, we keep track of the shock wave position
after its reflection and compare it at the end of the simulation time, with
the exact position at x = 0.25. As described in Section 5.3 in order to
represent the wall accordingly, we consider over-integration. In this case,
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Table 6.5.: Description of the shock state
Speed of sound downstream c1 1.0
Shock Mach number Mas 1.2
Shock speed us 1.2
Density downstream ρ1 1.0
Pressure downstream p1 γ−1

Velocity downstream u1 0.012
Isentropic coefficient γ 1.4
Wall speed ws 0.012

an over-integration factor of 3 is used.
Initial conditions Initially we prescribe again the same values as in Section
6.2.1, but for this test case, we need to consider also the background
velocity, which has the same velocity as the wall movement to avoid the
formation of an additional shock. Values are defined downstream according
to Table 6.5 and upstream according to the Rankine-Hugoniot conditions
computed below.
Boundary conditions For the left boundary, we prescribe the modified
primitive variables pressure, density, and velocity, considering the values
upstream. Finally, along the right subsonic outflow boundary, the pressure
downstream is defined.

In Table 6.5 the state downstream (denoted by 1) is presented. With the
shock Mach number Mas we can obtain for the pressures p

p2

p1
= 1 +

2γ(Mas − ws
us

)2 − 1
γ + 1 (6.7)

and for the relation of the densities ρ.

ρ2

ρ1
=

1 + γ+1
γ−1 · p2

p1
γ+1
γ−1 + p2

p1

. (6.8)

Considering these relations, the exact relation of the pressures p3 and p2 of
the reflected shock can be computed according to [14], while additionally,
the speed of the wall ws needs to be incorporated.

p3

p2
=

(Ms − ws
c1

)2(3γ − 1) − 2(γ − 1)
2 + (Ms − ws

c1
)2(γ − 1) (6.9)

76



6.2. Shock capturing - Shock-wall interaction

To compute the speed of the reflected shock wave, Eq. (6.10) [84] is used.

urs = u2 + c2 ·

√
1 + γ + 1

2γ ·
(
p3

p2
− 1
)

(6.10)

Where c2 is defined as
√

γp2
ρ2

and u2 is computed according to

u2 = ws · (ρ1

ρ2
) + us ·

(
1 − ρ1

ρ2

)
. (6.11)

From Eq. (6.9) we are able to compute the exact solution for the pressure
relation p3/p2, that is 1.449111, used to compare with the pressure relation
obtained from the numerical simulation.

In Figure 6.8 the simulation results for the same test case as above are
shown. They are filtered (spectral and co-volume filter) during post-
processing to remove numerical oscillations from the solution (see Section
3.3). As mentioned above, we consider over-integration for the representa-
tion of χ and compare again the numerical solution with the exact solution
known from the Rankine-Hugoniot conditions. We are interested in the
pressure relation as well as the location of the shock. In Figure 6.8 we can
observe oscillations in the solution when compared to the solution of the
non-moving wall in Figure 6.7. Though, those oscillations were addressed
through co-volume filtering, yet, oscillations in Figure 6.8b have a different
nature. They are caused by the motion of the discontinuity of the masking
function. As previously mentioned, the wall is not uniformly represented
(Chebyshev nodes), resulting in remaining oscillations as the discontinuity
of the masking function moves through the simulation domain. However,
those remaining oscillations are small and become smaller in amplitude
with increasing integration points, as the discontinuity can be precisely
represented.

This behavior is shown in Figure 6.9, where different over-integration
factors are shown for the case of O(32) and 256 elements. Curves represent
solutions when using a factor S of 1, 2, 3 and 4. It is apparent that with
an increasing number of points, the amplitude of the oscillations can be
significantly reduced. For a factor of 3 and 4, the amplitude is the smallest;
however, both solutions do not provide a remarkable difference. It justifies
our choice for an over-integration factor of only 3 for the simulations
conducted in this section. For an over-integration of 4, the ratio between
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Figure 6.8.: Different curves represent different discretizations for differ-
ent scheme orders and number of elements. (a) Normalized
pressure of the reflected shock wave and (b) zoom-in of the
reflected shock.

improvement of the solution and computational effort to obtain the solu-
tion is not compatible. For the factors of 2 and 3 or 1 and 2, the amplitude
of those oscillations becomes smaller. Furthermore, with an increasing
over-integration factor, the over- and undershoot can be reduced as well
(cf. Figure 6.9a and Figure 6.9b). We can further observe in Figure 6.8b
that with increasing scheme order and larger elements, the amplitude of
the oscillations increases for the solution of the pressure. However, when
compared to Figure 6.9b for S1 or S2, they are less intense and have a
higher frequency. In Table 6.6 the solutions for the pressure relation
and the location of the shock are shown. Again, the over- and undershoot
close to the shock are investigated (cf. Figure 6.8a). Those over- and
undershoots are traced back to the Gibbs phenomenon (cf. Section 3.3),
and require to be in the range of 9% deviation, as mentioned in the previous
section.

From Table 6.6 we can again observe that even though all test cases
have the same nDoF (8, 192 per variable), with increasing scheme order,
the error in pressure becomes smaller, compared to the exact solution.
Additionally, in all cases, the error is below 0.05% and therefore in excellent
agreement with the exact solution. This behavior is also observed for the
shock location. Only in the case of O(16), this trend is not maintained due
to the location of the wall. Here, the shock reflection occurs when the wall
is in the middle area of an element. The distance between the integration
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Figure 6.9.: Comparison: Curves represent the numerical solution for O(32)
and 256 elements, for different over-integration factors S. The
factor is varied from 1 to 4. (a) Normalized pressure of the
reflected shock wave and (b) zoom-in of the reflected shock.

Table 6.6.: Comparison: Numerical solution for the interaction of the shock
and the moving wall with an over-integration factor of 3.

Test case p3/p2 Error in p3/p2 in [%] ∆x ·10−4

O(4), n2048 1.44845372 0.04538827 6.17999817
O(8), n1024 1.44847062 0.04422237 4.95925779
O(16), n512 1.44858607 0.03625527 5.56962798
O(32), n256 1.44871493 0.02736308 4.34888760

points is the largest, and therefore also the error in the modeling (see
Section 5.3).

Furthermore, we need to emphasize that for the case O(4), the wall
is also located in the middle area of an element when the shock wave is
reflected. However, noticeable is that we can overcome this unfavorable
representation with a higher scheme order and achieve a much smaller
error, such as in the case of O(16). When comparing both cases, namely
O(4) and O(16), the error in the shock location is 0.247% and 0.22%
respectively, and the error in the pressure relation is 0.045% and 0.036%
for O(4) and O(16). Thus with a higher order, we are able to reduce the
modeling error further, even when the representation of the geometry (here
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6. Validation of the moving geometry

wall) is in an unfavorable location inside an element. The undershoot of
the smallest scheme order O(4) and the largest O(32) are given with 1.66%
and 2.56%. For the overshoot, a value of 0.10% in the case of O(4) and
1.44% for O(32) are obtained.

Comparison Considering both cases, the moving and non-moving wall,
we were able to observe several findings, to better understand the modeling
of the embedded method in our high-order numerical scheme. We are aware
that high-order approximation poses some challenges for strong disconti-
nuities, as in our case shocks. However we were able to demonstrate, that
assimilable results can be obtained for the interaction of a shock wave with
a moving and a non-moving wall. In the case the boundary moves (moving
wall), the numerical scheme requires over-integration to approximate the
geometry accordingly. It results in an even more accurate numerical solu-
tion, compared to the case of a non-moving wall (cf. Table 6.3 and Table
6.6). Further, in the case of the moving wall, our observation showed a
less steep slope behind the shock when compared to the non-moving wall,
which is due to the smearing of the solution as the wall moves. It needs to
be highlighted that the same degrees of freedom are used for the different
simulation setups to investigate the shock-wall interaction. Therefore it
is expected to obtain the same quality of the solution. However, we were
able to show that with increasing polynomial degree and decreasing mesh
resolution (element count), the error of the solution can be significantly
reduced. Thus, when using a high-order scheme for our simulations that
deal with shocks, the solution is improved, and no penalty in terms of
accuracy of the solution is expected.

6.3. Shock formation - Moving piston

In the previous section, we investigated a predefined shock wave that is
reflected by a moving wall (cf. Section 6.2.2). In this section, we study the
formation of a shock due to the abrupt motion of an embedded geometry.
We consider a case that has an exact solution for comparison. The test
case deals with a moving piston located inside the simulation domain,
with the fluid initially being at rest. Due to the motion of the piston, a
shock is formed ahead of the piston. Behind the piston, the formation of
rarefaction can be observed. Since this is a one-dimensional problem and
the exact solution neglects the viscosity, we consider a one-dimensional
simulation domain, where we solve the compressible Euler equations. This
problem is well suited to demonstrate that conservation is maintained. If
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6.3. Shock formation - Moving piston

a violation of conservation is existing, no shock will form ahead of the
piston, or it will have a wrong speed that deviates from the exact solution.

Test case description: The simulation domain is of length l = 1.0
unit length, with a piston of thickness 0.04 unit length located at x = 0.4
inside the simulation domain. For the pressure p1 we assume a value of 1
and the density ρ1 is set to 1. The velocity u1 of the fluid is defined as 0.0.
The piston moves throughout the simulation with Mach Mp = 0.4 until it
reaches its predefined location after a simulation time of t = 0.0008. Again
the time step is controlled by the CFL condition with a Courant factor
of 0.2, and an over-integration factor of three is used to approximate the
piston appropriately.
Initial conditions Initially the fluid velocity is 0.0, the pressure and the
density are prescribed.
Boundary conditions At the left boundary, the primitive boundary condi-
tion, and along the right boundary, a subsonic outflow is defined, where
the initial pressure is given.

Due to the sudden motion of the piston, the gas can be distinguished
ahead of the piston into two regions, namely Region 1 and Region 2 (cf.
Figure 6.10). Whereas Region 1 lies to the right of the shock, here the
gas remains in rest and is undisturbed with density, pressure, and velocity
being ρ1, p1 and u1, respectively. Region 2, being the region between the
shock and the piston, the gas is co-moving with the moving piston; hence
its velocity is u2 = vp with vp representing the velocity of the piston.
The quantities in this region are given with density ρ2, pressure p2 and
the velocity u2. From Eq. (6.4) and Eq. (6.3) we can again determine
the conditions downstream of the shock, while replacing Mas with the
piston Mach number Mp = vp/c1 with c1 being the downstream speed of
sound. In order to obtain the exact solution for the rarefaction behind the
piston, that is enclosed by the head and tail (cf. Figure 6.10 Region Fan),
being the characteristics of the speed, we can determine the density ρF an,
pressure pF an and velocity uF an in that area with respect to the following
equations [88]:

ρF an = ρ1

(
2

γ + 1 + γ − 1
(γ + 1) · c1

[
u1 − x

t

]) 2
γ−1

(6.12a)

pF an = p1

(
2

γ + 1 + γ − 1
(γ + 1)c1

·
[
u1 − x

t

]) 2γ
γ−1

(6.12b)
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Figure 6.10.: Normalized density of the exact solution. Different regions
are calculated according to different equations to determine
the exact solution for the entire problem.

uF an = 2
γ + 1

(
c1 + γ − 1

2 ·
[
u1 − x

t

])
. (6.12c)

Behind the rarefaction (cf. Figure 6.10 Region∗) a constant state is ex-
pected, which can be computed according to

ρ∗ = ρ1 ·
(
p∗

p1

) 1
γ

(6.13a)

p∗ = p1 ·
(
c∗

c1

) 2γ
γ−1

(6.13b)

u∗ = u1 −

(
2c1

γ − 1 ·

[(
p∗

p1

) γ−1
2γ

− 1

])
. (6.13c)

With c∗ = c1 − vp·(γ−1)
2 we can solve all equations in Eq. (6.13). The

region Region 1 in Figure 6.10 can again be determined with respect to
the Rankine-Hugoniot conditions (cf. Section 6.2.1). More information
and details about the equations can be found in [88]. For our investigation,
we consider five cases, namely O(2) with 4096 elements, O(4) with 2048
elements, O(8) with a total number of 1024 elements, O(16) with 512
elements and lastly 0(32) with 256 elements. All test cases have the same
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6.3. Shock formation - Moving piston

number of nDoF to allow for a comparative study. The Figure 6.11 depicts
the normalized density, Figure 6.12 the normalized pressure and Figure
6.13 the normalized velocity for all configurations. It is apparent that
with O(2) and O(4), the solution is not as precise as for O(8), O(16) or
O(32). For all quantities, the higher order can reproduce the characteristic
properties of this test case accordingly, even though all test cases have
the same number of nDoFs. Thus expecting all configurations to have
comparable results. However, as shown in Section 6.2.1 and 6.2.2, we
can achieve a much higher accuracy of the solution, even for non-smooth
problems, with respect to the higher order, e.g., O(16) or O(32).

In Figure 6.11 we can observe strong oscillations between the piston
interface and the shock, which are more dominant for this quantity than
for pressure or velocity. Thus, density is a transport quantity and not
penalized. Hence, oscillations appear for this quantity in higher strength
when compared to velocity or pressure. However, the mentioned oscilla-
tions are also apparent for pressure and velocity. They are mainly due to
two decisive factors. The first one is related to the shock, which moves
throughout runtime from one element to another, while oscillations re-
main inside the elements, where the shock had been before (cf. Section
6.2.1). The second one is due to the motion of the piston (discontinuity in
the masking function) and the representation of the masking function by
non-equidistantly distributed integration points. As a result, oscillations
appear, that remain in the solution and do not vanish as the discontinuity
in the masking function moves. However, they stay small in amplitude.
Oscillations induced by the shock can be addressed through an appropriate
filter, in our case, the co-volume filter during runtime, as previously used in
Section 6.2.1. However, using filters during runtime influences the solution.
Some phenomena can be adequately captured, even though a filter is
applied, e.g., the shock wave. On the other hand, filtering might have a
more decisive influence on other phenomena, as it is applied everywhere
in the domain with the same strength. In the case of the piston, our
observations revealed that the shock position is accurately predicted when
applying co-volume filtering throughout the simulation as in Section 6.2.1.
However, the rarefaction, hence the information behind the piston, tends
to be more sensitive. Therefore, filtering in this area results in a decrease
in the numerical solution’s accuracy compared to the exact solution.
Therefore, we consider no filtering during the simulation to be as close as
possible to the exact solution but apply filtering during post-processing
to remove numerical oscillations that are not of interest to the investiga-
tion. As a result, the remaining oscillations in the solution do not destroy
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Figure 6.11.: Comparison of the numerical solution with the exact solution
for the moving piston test case. The normalized density is
presented for different scheme orders and mesh resolutions,
resulting in the same nDoFs of 8, 192 per variable. The upper
right image depicts the shock position’s zoom-in, and the
lower left image is the zoom-in of the rarefaction behind the
piston.

the solution and the characteristics of this test case (shock and rarefaction).

In Figure 6.11, Figure 6.12 and Figure 6.13 we can observe, that the
rarefaction behind the piston can be solved more appropriately with in-
creasing scheme order. For O(2), the numerical solution is far from the
exact solution, and for O(4), the transition from linear decrease to constant
state occurs not at the correct location. However, the highest scheme orders,
namely O16 and O(32), can reproduce this transition more precisely (cf.,
e.g., Figure 6.12 lower right). Furthermore, we can perceive the the benefit
of the high-order scheme, as the smooth part of the solution (expansion
fan), is precisely predicated with increasing scheme order. Additionally,
the shock position can be captured with a higher scheme order more accu-
rately, which is apparent for all quantities (e.g., cf. Figure 6.13 upper right).

We continue the investigation of this test case employing h and p re-
finement. The expectations are that with an increasing number of mesh
elements (h) or increasing scheme order (p), thus a higher spatial resolu-
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Figure 6.12.: Comparison of the numerical solution with the exact solution
for the moving piston test case. The normalized velocity is
presented for different scheme orders and mesh resolutions,
resulting in the same nDoFs of 8, 192 per variable. The upper
right image depicts the shock position’s zoom-in, and the
lower left image is the zoom-in of the rarefaction behind the
piston.

tion, the shock position, and the rarefaction area behind the piston can be
captured more precisely when compared to the exact solution. In Figure
6.14 the numerical solution for this test case is given for the quantity
pressure. Each curve represents one mesh refinement level, starting with
256 elements and ending with 4, 096 elements for a predefined scheme order
of O(16). We can observe that with a higher mesh resolution, the shock
position can be captured accordingly by a steeper gradient in pressure
close to the shock (cf Figure 6.14 upper right). Behind the piston, the
rarefaction is also precisely predicated. 512 elements can capture the
transition from a smooth linear drop to a constant pressure value. With
higher mesh resolution, the oscillations in the constant pressure area be-
come smaller and closer to the exact solution (cf. Figure 6.14 lower right).
Further, we can observe that the solution at the rarefaction is first below
the expected solution with increasing mesh resolution. However, away
from the transition area, the solution is slightly above the exact solution.
This is due to the sudden motion of the piston and the oscillations of
the polynomials used to represent the solution. This oscillatory behavior
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Figure 6.13.: Comparison of the numerical solution with the exact solution
for the moving piston test case. The normalized pressure is
presented for different scheme orders and mesh resolutions,
resulting in the same nDoFs of 8, 192 per variable. The upper
right image depicts the shock position’s zoom-in, and the
lower left image is the zoom-in of the rarefaction behind the
piston.

vanishes as soon as the system has leveled off. However, this oscillatory
behavior is clearly around the exact solution, and eventually, the solution
is in the mean in agreement with the expected solution.

For the p refinement study, we keep the computational mesh for all runs
the same while changing the scheme order. We consider a mesh of 1, 024
elements in total and the scheme orders of O(2), O(4), O(8), O(16) and
O(32). We again zoom in into the area where the shock is expected and
the area behind the piston (rarefaction). In Figure 6.15 results are shown
for the normalized pressure. For the scheme orders O(8), O(16), and
O(32), the numerical results are, as expected, from the previously shown
results, the most accurate ones. The highest scheme order, namely O(32),
provides the most accurate shock position and rarefaction prediction. For
O(4), we can observe the different element interfaces and the jump of the
representing polynomial, which agrees with the Discontinuous Galerkin
scheme. The interfaces are indicated by the solid lines in Figure 6.14
(upper right).
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Figure 6.14.: Comparison of the numerical solution with the exact solution
for the moving piston test case. The normalized pressure is
presented for a h refinement with a scheme order of O(16).
Curves represent the different mesh resolutions using different
element counts for the computational mesh. The upper right
image depicts the shock position’s zoom-in, and the lower left
image is the zoom-in of the rarefaction behind the piston.

Form this test case; we can conclude that the shock formation and its
position are in excellent agreement with the exact solution. Furthermore,
we can ensure that conservation is maintained, as, in all quantities, the
shock position and the rarefaction are correctly predicted. We also proved
that the shock position could be captured with higher accuracy when using
a higher scheme order for the discretization of the equations to be solved.
Further, we illustrated that even though we are aware that high-order
is not suitable for strong discontinuities, we demonstrated that utilizing
high-order does not provide any disadvantages for our simulations. We
can still capture the expected phenomena with higher scheme orders, with
better quality, compared to lower scheme orders.
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Figure 6.15.: Comparison of the numerical solution with the exact solution
for the moving piston test case. The normalized pressure
is shown for a p refinement with 1, 024 mesh elements and
different scheme orders. Curves represent the solution for
different scheme orders. The upper right image depicts the
shock position’s zoom-in, and the lower left image the zoom-in
of the rarefaction behind the piston.

6.4. Curved boundary - Moving cylinder

In the previous sections, investigations were devoted to one-dimensional
test cases. In this part, we extend our investigation to a problem in two-
dimensional space. We examine the motion of a cylinder. The challenge
in this test case is the geometrical surface, which is curved. The question
that needs to be answered is, how the modeling method can handle curved
moving boundaries. Therefore we first investigate the over-integration for
this complex case. Afterward, we study a h refinement to demonstrate
that the convergence of the solution can be achieved compared to the
reference solution. It needs to be emphasized that the solutions obtained
are compared to the non-moving case (reference). The non-moving ge-
ometry representation has been validated in [8, 34]. It allows ensuring
comparability of both solutions as an exact solution is not available.

Test case description: We consider the compressible Euler equations
for the simulations. The simulation domain is of size [1.0 × 1.0] unit
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6.4. Curved boundary - Moving cylinder

length, with a cylinder of diameter d = 0.25 unit lenght located inside
the domain. The pressure and density are set to 1. In the case of the
non-moving cylinder, the flow is streamed into the simulation domain with
Mach 0.5. For the moving cylinder, the fluid enters the domain with Mach
0.25. The cylinder motion is prescribed with Mach 0.25, resulting in a
relative Mach of 0.5. The time step is controlled by the CFL condition
with a Courant factor of 0.25. The simulation time is set to 0.04; for the
non-moving case, the cylinder is located at the same position, where the
moving cylinder will end up at the end of the simulation time. Results are
compared to each other at the end of the simulation time.
Initial conditions The velocity in x-direction, the pressure, and the density
are defined.
Boundary conditions Along the right, upper and lower boundary, a subsonic
outflow is prescribed. At the left boundary, a subsonic inflow is defined.
For the moving cylinder, the velocity in positive x-direction is prescribed
with Mach 0.25. Finally, for the non-moving cylinder, the fluid is streamed
into the domain with Mach 0.5.

For the h refinement examination, we consider a scheme order of O(16).
Our study is carried out using different mesh resolutions, where the coars-
est mesh has only 64 elements in total, hence 8 per spatial direction.
The finest mesh contains 256 × 256 computational elements for this
investigation. In order to prove that also for the two-dimensional case,
an over-integration factor of 3 is sufficient; we run simulations using the
moving case, where we consider in total 256 elements for the mesh and
an over-integration factor of 1, 2, 3 and 4. In Figure 6.16 the simulation
results for the different over-integration factors are presented. It is evi-
dent that a factor of one does not yield the desired accuracy, rather an
aliasing flaw, while a factor of 3 and 4 are in very good agreement with
each other. Only at the maxima (stagnation point) we can observe a
difference between the factor of 3 and 4, which is insignificantly small. The
computational time, to complete the required simulation time, is for the
over-integration factor 1, 2, 3 and 4, 213.700 s, 613.035 s, 1325.00 s and
2381.00 s, respectively. Comparing the ratio between the computational
effort and the accuracy of the obtained solution, we can conclude that
an over-integration factor of 3 is sufficient. Therefore, we consider for all
following simulations in this section an over-integration factor of 3. It needs
to be emphasized that 360 measurement points are used around the cylin-
der geometry interface during post-processing to keep track of the pressure
close to the surface of the cylinder. The measurement points are shifted
by 0.5% away from the cylinder surface. This practice allows avoiding
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the measurement inside the numerical boundary layer around the cylinder.
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Figure 6.16.: Curves represent the solution for the different over-integration
factors used for the numerical approximation. (a) Surface
pressure of the cylinder geometry, (b) zoom-in into the stag-
nation area (maximum) and (c) zoom-in into the area behind
the cylinder.

In Figure 6.17 and Figure 6.18 we examine a h refinement study to
investigate the difference in the behavior of the moving cylinder when
compared to the non-moving geometry, using a finer mesh. Therefore, we
employ different refinement levels for the mesh. Starting from level L5 to
L10, where the mesh of L5 contains 8 × 8 elements (coarsest), L6 has
16 × 16 elements, L7 has 32 × 32 elements, L8 contains 64 × 64 elements,
level L9 in total 128 × 128 elements and level L10, 256 × 256 elements
(finest). With increasing mesh resolution the pressure at the stagnation
point decreases as the representation of the cylinder becomes more precise.
As a result, the pressure curves of the moving and non-moving cylinder
resemble each other properly, starting from level L8. Additionally, Figure
6.17b and Figure 6.18b depicts a zoom-in into the stagnation area in front
of the cylinder. Here a high pressure value (maximum) is expected due
to the compression of the fluid. The pressure curves become smoother
with increasing resolution, too, as the geometry and the flow domain can
be represented with higher accuracy. In Figure 6.17c and Figure 6.18c
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Figure 6.17.: Solution of the moving cylinder for different mesh refinement
levels L over the angle (in degree). (a) Surface pressure
of the cylinder geometry, (b) zoom-in into the stagnation
area (maximum), and (c) zoom-in into the area behind the
cylinder.

the area behind the cylinder is presented. Here the lowest value for the
pressure is encountered due to the expansion of the fluid flow. From
Figure 6.17b and Figure 6.18b it is apparent that with an increasing mesh
resolution, the difference between the moving and non-moving cylinder
decreases further. For L5 and L6, we can observe the highest deviation of
the solution between the moving and non-moving geometry, which is due
to the poor resolution. From L7 on, we can observe how close all solutions
become. In Figure 6.19 only the solutions from L8 up to L10 are provided
to analyze the moving and non-moving cylinder better.

Figure 6.19b and Figure 6.19c illustrate the pressure behavior in front of
the cylinder and behind the cylinder, respectively. We can observe very
dominant peaks for L8 for the non-moving cylinder around the stagnation
area. Those peaks are not noticeable for the same case when the cylinder
moves. This is due to the motion of the cylinder, resulting in an averaging
effect coming from the different wall locations, which have a smoothening
effect on the solution. We can perceive in all cases a smoother solution
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Figure 6.18.: Solution of the non-moving cylinder for different mesh re-
finement levels L over the angle (in degree). (a) Surface
pressure of the cylinder geometry, (b) zoom-in into the stag-
nation area (maximum), and (c) zoom-in into the area behind
the cylinder.

for the moving case compared to the non-moving one. Further, in all
cases both, the moving and the non-moving cylinder resemble each other
with increasing mesh resolution. In Figure 6.20 the solutions for L10 are
presented. We can recognize a small deviation of the moving solution
from the non-moving in the stagnation area (cf. Figure 6.20b). However,
the difference is insignificantly small. Examining the solution behind the
cylinder, we can also observe here an excellent agreement of both solutions
(cf. Figure 6.20c). It needs to be pointed out that a small deviation in
the solution can be expected, as in one case, the fluid is streamed with
Mach 0.5, and the cylinder is at a predefined position (non-moving case).
However, in the moving case, the flow is streamed into the domain with
Mach 0.25, and the cylinder moves with Mach 0.25. Due to the motion,
the cylinder is represented slightly differently, while in the case of the
non-moving cylinder, the cylinder is all time represented with the same set
of integration points. But again, even though the representation differs for
the moving cylinder in each time step, the solution of the non-moving and
moving case is in excellent agreement with each other and demonstrates
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Figure 6.19.: Comparison of the solution for the moving M and non-moving
cylinder NM with the mesh refinement levels L8 up to L10
over the angle (in degree). (a) Surface pressure of the cylinder
geometry, (b) zoom-in into the stagnation area (maximum),
and (c) zoom-in into the area behind the cylinder.

that both converge towards the same solution with finer mesh resolution.

In Figure 6.21 the absolute normalized difference between the moving
and non-moving cylinder for the levels L8, L9, and L10 is shown. With
increasing refinement levels, the difference between the curves becomes
smaller. The most significant difference between the moving and non-
moving cylinder can be found between an angle of 120 and 240, thus the
front area of the cylinder. That is again due to the different representation
of the moving cylinder and the smearing of the numerical solution. The
difference is still below 1% in the case of L10, resulting in an insignificantly
slight deviation. Furthermore, the decrease of the difference between the
moving and non-moving cylinder with increasing mesh resolution indicates
that both cases converge towards the same solution.

In Figure 6.22 the pressure is shown in the background. The pressure
contours are colored by the velocity magnitude for the case of L10. On the
left, the solution for the non-moving, and on the right, the moving cylinder
is shown. The pressure contour lines (white/ gray) of both solutions are
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Figure 6.20.: Comparison of the solution for the moving M and non-moving
cylinder NM with a mesh refinement level of L10 over the
angle (in degree). (a) Surface pressure of the cylinder geome-
try, (b) zoom-in into the stagnation area (maximum), and
(c) zoom-in into the area behind the cylinder.

in excellent agreement. Only in tiny areas, e.g., behind the cylinder, the
solution slightly differs (cf. Figure 6.21), yet, this is insignificantly small.
The color distribution of the contour lines are, as expected, higher in
the non-moving case (left) compared to the moving cylinder, as the fluid
is streamed into the domain in one case with a two times higher Mach
number than in the other case.

According to Bernoulli’s law, an increase in pressure results in the decrease
of the velocity in that area; consequently, we expect everywhere, where
the pressure has a high value, a low velocity, and vice versa. This behavior
can be well recognized in Figure 6.23. The velocity at the stagnation point
is the lowest (≈ 0.0), while the pressure has a maximum. For both cases,
namely the non-moving cylinder (V - NM) and the moving case (V - M)
this behavior can be recognized. Both curves match very well and overlap.
It needs to be noticed that the velocity magnitude shown in Figure 6.23 is
relative to the motion of the geometry.

With this test case, we were able to confirm that the utilized penal-
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Figure 6.21.: Absolute difference of the numerical solutions for the moving
and non-moving cylinder. For the mesh resolutions, L8, L9,
and L10.

Figure 6.22.: Comparison of the non-moving cylinder (left) and the moving
cylinder (right) for the mesh L10. The pressure is shown in
the background, the pressure contours around the cylinder
are colored by the velocity magnitude.
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Figure 6.23.: Comparison of the non-moving cylinder (NM) and the moving
cylinder (M) for the mesh L10. The pressure is shown for
the non-moving (P - NM) and the moving case (P - M). The
relative velocity is presented with V - NM and V - M for the
non-moving and moving cylinder, respectively.

ization method is well suited for curved geometries. However, due to the
motion of the geometry, it is represented throughout the simulation with
a different set of integration points. Therefore the solution slightly differs
from the non-moving geometry. However, we demonstrated that both
cases converge towards the same solution, as shown for the different mesh
resolutions.

6.5. Sharp boundary - Supersonic moving wedge

In the second two-dimensional test case, we examine a moving wedge that
has been extensively studied in literature and has an exact solution. The
purpose of this test case is to confirm that sharp geometrical surfaces
can be accordingly modeled when deploying the Brinkman penalization
method. The test case is about a wedge located close to the right boundary
and moves with a predefined supersonic speed towards the left boundary.
The fluid is initially at rest. Due to the abrupt motion of the wedge, an
oblique shock wave is formed at its nose. The angle of the shock can be
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6.5. Sharp boundary - Supersonic moving wedge

analytically determined and compared to the numerical solution. A time
series of the simulation results for the different configurations are presented
in Section A.3.

Test case description: The simulation domain is shown in Figure 6.24.
The length of the domain L is 10 m, and the height H is defined to be
4 m. In order to ensure the correctness of the simulation results, the exact

βe

θMw

S

S

L

H

Figure 6.24.: Sketch of the simulation domain with a moving wedge.

solution for the shock angle βe is considered. It can be computed according
to [51]:

tan θ = 2
tan βe

Mw
2 sin2 βe − 1

Mw
2(γ + cos(2βe)) + 2

(6.14)

With θ being the deflection angle, βe the shock angle, γ the isentropic
coefficient, and Mw the Mach number with which the wedge moves. The
deflection angle is set to be θ = 15◦ resulting in an exact shock angle of
βe = 45.433◦ with respect to γ = 1.4, the height of the wedge (hw = 1.0 m)
and the wedge Mach Mw = 2.0. The investigation is carried out with
different scheme orders such as O(5), O(6), O(8) and O(10). The time is
controlled by the CFL condition with a Courant factor of 0.3. The final
simulation time is determined to be 0.2 s. The computational mesh is
discretized in all cases with 163, 840 elements, resulting in an element size
of 0.015625 m. In order to stabilize the simulation and avoid the domi-
nation of numerical oscillations, a weak co-volume filter with a filtering
order of O(28) is used throughout the computation. Finally, the shock
angle is computed and compared with the exact solution at the end of the
simulation.
Initial conditions Initially, the state of the simulation domain is set to be
[ρ, u, v, p] = [1.4 kg/m3, 0.0, 0.0, 400 Pa].
Boundary conditions Along the upper and lower boundary slip walls are
prescribed. At the left boundary an inflow, and at the right boundary, a
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supersonic outflow is defined.

Before discussing the numerical results in this section, it is worth to
mention, that the numerical shock angles were manually measured by
fitting two lines towards the computed oblique shock. Hence, the pre-
sented numerical results of the shock angles are subject to sampling error.
In order to provide a better comparison of the numerical and analytical
solutions, lines are included in the figures, reflecting the exact solution.
In Figure 6.25 and Figure 6.26 simulation results for the different runs

are exhibited for the last time step (0.2 s). Red lines at the front of the
wedge indicate the exact shock angle from the analytical solution. All
figures provide very accurate results that improve with increasing scheme
order. Not only the shock angle of the numerical solution βn converges
towards the exact shock angle βe, but also further physical features of
this test case can be captured, e.g., smaller vortices. An important ob-
servation is the sharpness of the shock that accordingly improves with
increasing scheme order from Figure 6.25a to Figure 6.26b. In Figure
6.25a a slight deviation of the numerically obtained shock angle from the
exact solution can be recognized. However, this deviation is less than
1.72%, with βn being the numerical solution, that is 46.1233◦. Further,
flow features such as the shock-wall interaction and the interaction of the
shock with vortices in the middle of the domain are captured, respectively.
The Prandtl‐Meyer expansion waves are physically resolved at the rear
edges of the wedge geometry and can be found in all investigated test cases.

From Figure 6.25a to Figure 6.26b we can notice the oblique shock, which
can be precisely predicted, but also the sharpness of the shock, which is
more accurately represented with increasing scheme order. The solution
of O(6) (cf. Figure 6.25b) can predict the shock angle with an angle of
βn 45.7910◦ very close to the exact solution, with a deviation of less than
1%. In the case a scheme order of O(8) (cf. Figure 6.26a) is used, the
shock angle βn is 45.3590◦, with a difference of 0.03% from the exact
solution. For the case a scheme order of O(10) is used, the oblique shock
angle can be perfectly predicted and is in excellent agreement with the
exact solution, with a value of βn = 45.3445◦. Other than the sharpness
of the shock, all numerical solutions provide very detailed insights into
the occurring physics. E.g., the reflection of the shock at the wall, small
scales that become more apparent with increasing scheme order, and the
instability behind the wedge, which first resembles a ray but breaks into
small scales with increasing scheme order. Please keep in mind that the
inviscid Euler equations are solved here. Thus the physical viscosity is
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(a)

(b)

Figure 6.25.: Comparison: Supersonic flow over a supersonic translating
wedge for different scheme orders and Ms(2)−θ(15◦)−βe

(45.344◦). Red lines indicate the exact solution. In (a) the
scheme order of O(5) with βn(46.1233◦) and in (b) the scheme
order of O(6) with βn(45.7910◦), is shown.

neglected, resulting in a Reynolds number approaching infinity. However,
the numerical viscosity is present, which becomes smaller with increasing
scheme order, thus a higher order approximation of the solution. In the
case of O(6), O(8), and O(10), the numerical viscosity is decreased due to
the high-order approximation. Consequently, the flow becomes more tur-
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(a)

(b)

Figure 6.26.: Comparison: Supersonic flow over a supersonic translating
wedge for different scheme orders and Ms(2)−θ(15◦)−βe

(45.344◦). Red lines indicate the exact solution. In (a) the
scheme order of O(8) with βn(45.3590◦) and in (b) the scheme
order O(10) with βn(45.3445◦, is presented.

bulent (chaotic), resulting in a solution with more small-scale phenomena
in the wake flow when compared to O(5).

This test case confirmed that the underlying high-order scheme can ac-
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cordingly treat supersonic motions of modeled geometries and handle
sharp boundaries that are modeled with high accuracy. The modeling
approach allows for equivalent results when compared to the exact solution.
We demonstrated two crucial challenges in the numerical simulation our
scheme is capable of: (i) The supersonic motion of the geometry and (ii)
the modeling of sharp geometries. They are challenging in the realization
processes and prone to numerical instabilities. However, those cases are
of relevance for many engineering applications and need to be realized
appropriately.

More results and investigations on the embedded method can be found in
Chapter 9 and in [77].

6.6. Reduced computation inside the geometry

As mentioned in Section 5.1 the major disadvantage of the embedded
method is the computation inside the geometry, which is not desired. Due
to the penalization method, the fluid dynamic equations are computed
inside the geometry, too. This unnecessary computation leads to a waste of
computational resources. It would be beneficial to cut out those elements
from the computational domain to reduce the computational effort. How-
ever, this requires changes to the mesh in the first place, which impedes
the parallel execution. Thus, It may involve communication to maintain
proper adjacency and may not be easily convertible, as it also counters
some of the benefits of this method, especially in the context of moving
geometries. A simple solution in high-order discretization is to reduce the
scheme order locally while maintaining the mesh. This procedure can be
achieved by reducing the number of modes, a so-called mode reduction.

One of the most compute-intensive operations in high-order Discontinuous
Galerkin method is the physical flux computation. Consequently, tackling
this operation can decrease the computational cost. Only the integral
mean, which is the zero mode in a Legendre expansion, is computed in
elements covered by the geometry. Thus only the zero mode is used to
compute the physical flux for those elements instead of calculating all
higher modes. The criteria based on which the solver decides to apply
this feature is the masking function χ. The solver distinguishes between
elements that are inside the geometry and those that are outside (see
Eq. (5.2)). The final decision is made by using the state of the element
and the neighbors. If the geometry covers all neighboring elements, the
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fluxes can be computed according to the mode reduction feature for the
specific element. Examining the neighbors ensures that the accuracy of
the solution is maintained in the boundary layer region inside the porous
material, and the computation is consistent.

In Figure 6.27 a small test case is shown to demonstrate when this feature is
applied. The simulation domain is discretized with four elements, one fluid
element (blue) and three elements (gray) that are covered by a geometry
(see Figure 6.27a). The mode reduction can only be applied to the last two
elements, which are covered by the geometry (cf. Figure 6.27b in green) as
they fulfill all criteria. In contrast, the first element in the geometry, the
physical flux computation, needs to be done concerning all higher modes.
This practice is of importance, as the boundary layer inside the geometry
has to be resolved appropriately. A decrease in the polynomial degree in
this region would badly affect the wall modeling and cause instabilities
during runtime. The question arises: how much can the computational cost

(a) (b)

Figure 6.27.: Mode reduction feature for elements inside the geometry
reduces the computational cost for elements covered by the
geometry. (a) Computation of the physical flux with a high
polynomial degree in the entire domain. The simulation
domain contains one fluid element (blue) and three elements
covered by the geometry (gray). (b) Use of mode reduction,
resulting in two elements that can be reduced in computation
(green) due to the reduced approximation of the physical
flux.

be reduced when using this feature and if the physical result is still valid.
Further, we need to ensure that physical results are still valid and in agree-
ment with the case, where no mode reduction is applied. Therefore, further
investigation is conducted with a simple two-dimensional test case, a Gaus-
sian pulse, that travels from an initial position towards a wall modeled as a
porous material. Then, the pulse is reflected and moves to its original posi-
tion. The inviscid compressible Euler equations are solved for this test case.
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Figure 6.28.: Comparison: Solution of the reflected pulse for the density,
normalized by the background density ρB . Curves represent
the numerical solution, when mode reduction is deactivated
(false) and activated (true).

Test case description: The simulation domain has a length of 1 unit
length. From 0.5 to 1.0, the domain is covered by the modeled wall.
The non-dimensionalized value for the background pressure is 1/γ, with
γ = 1.4 being the isothermal coefficient and for the background density is
1, resulting in a value of c = 1 for the speed of sound. A scheme order of
O(64) is used, while the mesh contains 64 elements. The pulse is defined
for all quantities (density, pressure, and velocity) with an amplitude of
0.001 (cf. Section 6.1). It is initially located at x = 0.25. The time step
size is controlled by the CFL condition with a Courant factor of 0.25.
Initial conditions Initially, for all quantities, the pulse is prescribed as for
the test case in Section 6.1.
Boundary conditions Along the left boundary, the primitive variables (den-
sity, pressure, and velocity) are prescribed, and on the right, a subsonic
outflow is defined.

In Figure 6.28 the normalized density is depicted over the length of the
domain. The figure illustrates the solution after reflection at the modeled
wall for the case, when mode reduction is activated (true) and in the case,
it is not used (false). It is apparent that both results are in agreement, and
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Figure 6.29.: Comparison: Computational time for 100 iterations, when
the feature mode reduction is not activated (dashed line) and
when the solver makes use of it (dotted line).

no disadvantages in terms of loss of accuracy of the solution need to be
expected when applying the mode reduction feature. In terms of reduced
compute time, we compare the computational time of 100 iterations when
mode reduction is applied and when it is not used. The compute time
investigated here is the pure computational time, hence without initializa-
tion time. In Figure 6.29 the computational time over the scheme order
is shown. The test case is the same as described above. However, the
scheme order is increased, starting from O(2) up to O(64). The simulation
was sequentially executed to avoid load imbalances. The mode reduction
feature implies load imbalances when the feature is used during runtime.
From the shown figure, we can observe that with increasing scheme order,
the savings in the computational time increases as well when the feature is
applied. The computational time can be reduced by 10.67% up to 16.37%
for the scheme orders of O(2) to O(64). However, it is crucial to keep in
mind that the reduction in computational time depends on the number of
elements covered by the geometry and the scheme order used. This feature
permits the application area of the embedded method for larger geometries
that can cover several elements in the computational mesh. Thus, this
method can decrease the computational effort for those applications to
reduce unnecessary computation and allow for more feasible numerical
simulations.

104



6.7. Scalability and computational cost of the embedded method

6.7. Scalability and computational cost of the embedded
method

This section investigates the scalability and the additional computational
effort required when considering moving geometries in the simulation do-
main. We first examine the scalability of the solver when incorporating
the penalization terms for a test case in two-dimensional space. We expect
that the scalability of the solver is maintained, as the communication
pattern remains unchanged. Afterward, we mainly focus on the additional
computational cost due to the evaluation of the masking function through-
out the simulation. Therefore a simple test case in three-dimensional space
is used, where the compressible viscous Navier-Stokes equations and the
compressible inviscid Euler equations are solved. This investigation aims
to provide an estimation for the additional costs due to the presence of
moving geometries. The expectation is that the evaluation of χ has a
minor impact on the computational effort when solving the Navier-Stokes
equations. However, when solving the Euler equations, we anticipate a
more significant impact on the computational cost.

6.7.1. Scalability of the embedded method
In this part, we examine the scalability of the embedded method in our
numerical scheme. Due to the motion of geometries, the masking function
χ has to be evaluated throughout the simulation. It might be seen as a
bottleneck and might influence the scalability of the numerical simulation
when geometries are present in the simulation domain and can even move.

To investigate the scalability of the solver, in the case geometries are present
in the simulation domain, a strong scaling measurement is conducted. The
same test case as in Section 6.5 is utilized, with a computational mesh that
contains 163, 840 elements. The scheme order is O(8), and the inviscid
Euler equations are solved. Simulations are executed on Supermuc-NG,
with up to 320 nodes, resulting in 15, 360 cores in total. The simulation is
completed after 100 iterations, where the initialization time is neglected
and only the computational time is measured.

In Figure 6.30 the measurement for the mentioned test case is shown.
The dotted line represents the ideal scaling for this problem, and the
dashed line presents the actual compute time per iteration. The scaling
behavior is in excellent agreement with the ideal scaling for the investigated
node count. For the scaling measurement, the number of allocated nodes
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Figure 6.30.: Strong scaling measurement of the solver for a flow simulation
with a moving wedge (cf. Section 6.5), with up to 320 nodes
(48 cores per node) on Supermuc-NG computing system. The
dotted line represents the ideal scaling and the dashed line
the actual compute time required per iteration.

was doubled for each subsequent data point in Figure 6.30, starting from
5 nodes up to 320 nodes. The excellent performance of the solver was
expected, as it is highly parallel, and the introduced method to model
geometries does not negatively affect the solver’s scalability. Furthermore,
as previously mentioned, the high-order Discontinuous Galerkin method
allows for little communication between the computational elements, as
only the flux information needs to be communicated between the element
faces. Nevertheless, the information inside the element is tight and re-
mains local. Therefore the introduced modeling terms do not change the
communication pattern, allowing to maintain the scalability of the solver.

6.7.2. Computational cost of the embedded method
In the previous section, we illustrated the scalability of the solver, which
is maintained, even when incorporating the Brinkman penalization terms,
to model geometries. An important question that needs to be answered
here is how the computational effort is affected by moving geometries in
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the simulation domain. To answer this question, we carry out several
simulations, where we once solve the fluid dynamic equations without the
Brinkman penalization terms and once where those terms are incorporated.
As already mentioned, our study includes the compressible Navier-Stokes
equations and Euler equations since those equations are primarily used in
this work.

To model arbitrary complex geometries, the solver requires a list of points
for its interface identification. Each list of points is evaluated at each
integration point. This practice is required to obtain the state of the
masking function χ (inside or outside of the polygon (geometry)). The
more complex the geometry becomes, the more points are necessary to
define the geometrical surface to represent, e.g., corners or curved areas.
Consequentially, our investigation is mainly dedicated to the variation
of the number of vertices for the polygon (geometry) computation. The
primary purpose of this work is to simulate flows with complex and moving
geometries.

Test case description: The simulation domain is of size [4 × 4 × 4] unit
length with an element length of 0.125 unit length, resulting in 32, 768
computational elements in total. The three-dimensional domain is once
solved by the compressible Navier-Stokes equations with and once without
the Brinkman penalization terms. The same procedure is also done for
the inviscid Euler equations. The fluid dynamic equations are discretized
with a scheme order of O(7). The time is controlled by the CFL condition
with a Courant factor of 0.3. The solver needs to identify the state of
the masking function for all integration points (11, 239, 424) inside the
domain. We ensure not to have different types of elements that might
result in a different workload in the simulation domain. If the modeling
terms are considered, we introduce only one vertex, which serves as a
moving geometry. The velocity of the geometry (vertex) is set to be 0.01
only in x-direction. This practice is essentially needed, as the solver has
to identify the position of the geometry throughout the simulation time,
which influences the computational time further. The examined test case
is close to the large simulation conducted in this work.
Initial conditions The velocity is defined to be 0.0. The pressure and
density are defined to be 1.
Boundary conditions All boundaries are defined to be periodic; thus, the
domain has an infinite length in all spatial directions.

In Figure 6.31 the strong scaling measurement for all four test cases
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Figure 6.31.: Strong scaling measurement and comparison of the computa-
tional time between the cases, when no geometry is defined
(Navier-Stokes and Euler), and when geometry is present
(Navier-Stokes (geometry) and Euler(geometry)). Scaling
measurements were conducted on Supermuc-NG with 8 nodes
(384 cores) up to 512 nodes (24,576).

is presented. The strong scaling investigation was conducted on Supermuc-
NG, from 8 compute nodes (384 cores) to 512 compute nodes (24,576
cores). The number of compute nodes is doubled for the subsequent runs.
Thus, all shown compute times are always for 100 iterations. Examining
the red curve, representing the case where the original Euler equations
are solved and no penalization terms considered, we can observe how the
computational effort reduces with increasing node count. Though for the
last data point, the curve is flat and does not yield any further reduction in
compute time. At this point, communication dominates the computational
effort, and no further benefits can be achieved when using more compute
nodes. Each core receives in the case of 512 nodes 1.33 elements. Since
each core requires at least one complete element for the computation, some
cores receive one while others process two. Furthermore, the computa-
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tional cost, when compared to the other three curves, is the lowest, as
(i) viscous terms are neglected for these equations and (ii) no Brinkman
penalization terms are incorporated. The green curve illustrates the case
when the modeling terms are computed as well. The computational cost
increases considerably, yet, we can observe how well the computational cost
is reduced with increasing node counts. When comparing the red curve
(Euler) and the green curve (Euler (geometry)), our observation provides
a better scaling for the green curve when compared to the red curve for
the last node count. This behavior is due to the increased computation
inside the elements, as the masking function needs to be evaluated. Hence
the computational effort dominates compared to the communication time.

The black (Navier-Stokes) and blue (Navier-Stokes (geometry)) curves
manifest similar behavior. Focusing on the black curve, we notice that
the curve does not become flat for the last data point compared to the
red curve (Euler). This behavior is due to the expensive gradient com-
putation for these equations that dominate the computation. Therefore,
even for the last data point, a reduction in computational time can be
observed when increasing the number of compute nodes. Furthermore,
we notice that the introduced modeling terms do not significantly impact
the computational cost when comparing the black and blue curves. The
gradient computation is still the dominating part of these equations, which
is advantageous compared to the Euler equations. The physical viscosity
needs to be taken into account for simulations of real-world problems,
and incorporating the Brinkman terms in the Navier equations does not
influence the computation as much as it does for the Euler equations.

Comparing the scaling and the compute time each test case requires
to attain the predefined 100 iterations for the simulation, we need to
emphasize that: (i) The original Euler equations are the cheapest (red
curve), followed by (ii) the Euler equations with penalization terms (green
curve) and (iii) the original Navier-Stokes equations (black curve), and
lastly (iv) the Navier-Stokes equations with Brinkman terms (blue curve).
Keeping this order in mind, we obtain from Figure 6.31 the ratio between
Euler and Euler (geometry), of about 3 and between Navier-Stokes and
Navier-Stokes (geometry), of approximately 1.5. We can also give the
relation in computational cost between the Navier-Stokes and Euler case,
which is nearly 3.5 times more expensive than the Euler equations. To con-
clude the outcome of this examination, we obtain the following ratio when
comparing all four test cases: Euler: Euler (geometry): Navier-Stokes:
Navier-Stokes (geometry) = 1 : 3: 3.5: 5. Remember that this ratio is
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only valid for this particular test case with the used scheme order and the
number of mesh elements. However, the mentioned ordering will stay valid
for different orders and mesh resolutions.
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Figure 6.32.: Computational time per element (factor) for simulations with
geometries compared to simulations without geometries. Ver-
tices represent the geometrical surface and can vary in num-
ber, depending on the complexity of the geometries. Linear
fits (yN and yE) show how the computational effort increases
with an increasing number of vertices for this particular test
case.

In this work, we are particularly interested in the modeling of arbitrary
complex geometries that can move. To model such geometries, which are
polygons, the solver requires a list of points used to define the geometrical
boundaries (cf. Section 5.6). Thus, the computational effort is influenced
by the number of points (vertices) provided to the solver. Therefore de-
pending on the number of vertices, the computation at each integration
point also increases when evaluating the masking function. The solver has
to do the following procedure at each integration point: (i) Determining
the interface of the polygon, and (ii) determining the state of the masking
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Table 6.7.: Computational time per element for different number of vertices
to represent the geometrical surface. In (a), the compute
time per element for the compressible viscous Navier-Stokes
equations and (b) for the compressible inviscid Euler equations
are presented. The last column in (a) and (b) present the
compute time per element for the respective equations when
no geometry is present (reference).

Vertices Compute time
per element [s]

20 1.2482
40 1.4395
80 1.6946
160 2.2693
200 2.5764
– 0.7246

(a)

Vertices Compute time
per element [s]

20 0.7254
40 0.9056
80 1.15962
160 1.7427
200 2.0622
– 0.2024

(b)

function χ at the integration point. To give an overview on how the
number of vertices influences the computational cost, we consider the test
case configuration aforementioned, namely the Navier-Stokes (geometry)
and the Euler (geometry) case (cf. Figure 6.31). For comparison, the cases
without geometries (Navier-Stokes and Euler) are used. In Figure 6.32
the computational effort against the number of vertices is presented. As
previously shown, the presence of geometries in the computational domain
is more noticeable for the Euler equations from the computational perspec-
tive compared to the case where the Navier-Stokes equations are solved
(cf. Figure 6.31). This trend can be further observed when increasing the
number of vertices to represent the geometrical surface. When solving the
Navier-Stokes equations, the computation roughly increases by a factor of
1.55, determined through the equation yN (cf. Figure 6.32). For the Euler
equations the computational cost has a constant factor of roughly 2.91
per element (cf. Figure 6.32), noticeable from equation yE in the shown
figure, that increases by nearly 1% per vertex (slope). In Table 6.7 the
computational cost per element is given, used to calculate the factor, with
which the computational effort increases, illustrated in Figure 6.32. In
Table 6.8a the compute time per element for the Navier-Stokes equations
is shown, while in Table 6.8b the respective times for the Euler equations
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Figure 6.33.: Computational time per integration point for simulations
with geometries, when compared to the simulations without
geometries. Vertices represent the geometrical surface and
can vary in number, depending on the complexity of the
geometries. Linear fit (y) shows how the computational
effort increases.

are presented. The last column in each table provides the compute time
per element for the cases where no geometry is present, which serves
as the reference time for the investigation shown in Figure 6.32. Please
note that provided timings are for 100 iterations, as previously mentioned.

We now break down the problem further and investigate the compu-
tational effort per integration point. It allows to give a more general
rule, independent from the scheme order or the number of elements used
in the computational mesh. In Figure 6.33 the computational cost per
integration point is depicted against the number of vertices used to model
complex geometries. We know that the evaluation of the masking function
χ is independent of the equations solved, but it depends on the number
of integration points used to solve the problem. Therefore we expect,
that the computational cost per integration point is the same for both
cases (Navier-Stokes (geometry) and Euler (geometry)). From Figure 6.33
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it is apparent that this is indeed the case, and both curves increase in
computation with an increasing number of vertices. Both have the same
slope and result in the same computational effort for one integration point
compared to the number of vertices used to describe the geometrical sur-
face. Hence through the given equation in Figure 6.33 we can approximate
the additional computational effort for the simulation when geometries
are present depending on the number of vertices. However, we need to
emphasize that the computational time used to provide this equation is
dependent on the system the measurements were done and might deviate
when running on a different system.

Assuming 500 vertices to define the geometry and a computational mesh
of 100, 000 elements, while the scheme order is O(6), we can predict the
additional computational effort using the equation provided in Figure 6.33
for 100 iterations. With the mentioned scheme order and the number of
elements, we obtain 21, 600, 000 integration points in the computational
domain. The computational effort per integration point for 500 vertices is
circa 0.0117 s. Multiplying this number with the total number of integra-
tion points, we obtain an additional computational time to evaluate the
geometry of roughly 253, 649 s. The equation provided in Figure 6.33 is as
mentioned for 100 iterations. In Eq. (6.15), the equation per iteration is
provided to allow for a better generalization of the prediction model. Our
equation can be rewritten as

yinter = 2.1286 · 10−7 · x+ 1.1000 · 10−5, (6.15)

with yinter being the time per iteration and integration point and x the
number of vertices. Thus, we can estimate the computational effort before
executing our simulations. In Section 9.2.1 a more complex simulation is
presented, where we prove that our prediction model accordingly works
to predict the additional compute time for the simulation with complex
geometries. The compute time per integration point from Figure 6.33 is
presented in Table 6.9. In Table 6.10a the compute time per integration
point for the Navier-Stokes equations is presented and in Table 6.10b
the respective timings for the Euler equations. Both tables provide the
compute time after subtraction of the compute time from the reference
compute time per integration point.
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Table 6.9.: Computational time per integration point for a different num-
ber of vertices to represent the geometrical surface. In (a),
the compute time per integration point for the compressible
viscous Navier-Stokes equations and (b) for the compressible
inviscid Euler equations are presented. The last row in (a) and
(b) presents the compute time per integration point for the
respective equations when no geometry is present (reference).

Vertices Compute time per
integration point [s]

20 0.0015
40 0.0021
80 0.0028
160 0.0045
200 0.0054
– 0.0021

(a)

Vertices Compute time per
integration point [s]

20 0.0015
40 0.0021
80 0.0028
160 0.0045
200 0.0054
– 0.0006

(b)

Conclusion In this chapter, the validation of the Brinkmann penalization
technique in our high-order Discontinuous Galerkin scheme was presented.
We were able to prove that the mentioned technique can deal with (i)
arbitrary complex shapes such as geometries with curved surfaces or sharp
corners by introducing additional terms in the conservation equations to
be solved. (ii) The approximation of the flow domain and the embedded
geometry is with the same discretization method. (iii) Even though strong
discontinuities are not desirable for high-order discretization, our approach
(up to the investigated scheme order of O(32)) was able to provide more
accurate solutions for the same number of degrees of freedom compared
to a low-order scheme. Further, we studied through a test case from the
literature that conservation of mass, momentum, and energy is maintained
when modeling the geometry as an artificial porous material. In [34] we
have further examined the boundary layer when solving the compressible
Navier-Stokes equations for our simulations. Our investigations involved
straight and curved boundaries. Obtained results demonstrated that the
Brinkman penalization technique utilized in our high-order Discontinuous
Galerkin solver also provides the expected results in the boundary layer
region compared to solutions from the literature.
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Additionally, through a strong scaling measurement, we were able to
confirm that the solver scales further as expected, even when incorpo-
rating the penalization terms, to enable the motion of geometries. We
further explained how geometries influence the computational effort for the
compressible Navier-Stokes equations and the Euler equations. Our inves-
tigations revealed that the computational effort more noticeably increases
for the Euler equations (factor of 2.91) than the Navier-Stokes equations
(factor 1.55). Here the gradient computation is still the dominant part of
the computation. The solver expects a list of points (vertices) to represent
the geometrical boundaries accordingly (e.g., sharp interfaces). Therefore,
the computational effort increases with the increasing number of vertices,
as the masking function χ needs to be evaluated for the list of vertices at
each integration point. In order to predict the additional computational
effort, we introduced a linear equation that allows determining the addi-
tional computational cost a priori.

Furthermore, through our investigation, we pointed out that the relation
between Euler: Euler (geometry): Navier-Stokes: Navier-Stokes (geome-
try) is roughly equal to 1 : 3 : 3.5 : 5 for the computational cost in this
particular test case. Even though this ratio is only valid for the used
setup yet, the ordering, when using the mentioned equations with and
without the penalization terms, remains valid, even for, e.g., a different
scheme order. This outcome is of importance for later consideration of
large-scale simulations (cf. Chapter 8) and their load balancing for efficient
computation.
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The simulation of fluid-structure-acoustics (FSA) interaction is a typical
engineering problem involving multi-scales and multi-physics. We can
distinguish between two sound sources: structurally induced noise and
flow-induced noise. Different scales and physics are involved, and each
has to be appropriately resolved. These kinds of simulations demand a
high amount of computational power. Thus the use of massively parallel
supercomputers is inevitable. Since the sound effects in the far-field are the
target of our simulations, a direct numerical simulation of a FSA problem
becomes too expensive in realization when solving the entire problem
with the same equations and spatial discretization. Assuming the far-field
is far enough from the sound source, where a homogeneous background
flow can be expected, we can restrict the simulation in this area of the
computational domain to the propagation of acoustic waves. As a result,
linear equations can be solved, allowing to reduce the computational effort
accordingly. Furthermore, we can assume that far away from the sound
source, viscous effects do not play a role anymore and can be neglected, as
only nonlinear phenomena are present. Therefore an appropriate strategy
is required to facilitate such complex simulations feasibly.

Generally, we can decompose such a FSA problem into three spatially
separable domains, where each is solved with a tailored configuration to
ensure a dedicated physical treatment. Thus, we end up with a setup
where we have to deal with three domains, each considering a different
set of equations and spatial discretization. In this context, we can take
advantage of the high-order Discontinuous Galerkin method, where we
can utilize the properties of this method for the acoustic far-field and
consider simplified equations, a higher scheme order, and a coarser mesh.
A higher order provides the benefits of low dissipation and dispersion error,
ensuring that acoustics information can travel with high accuracy up to
the far-field and requires a smaller amount of memory for the computation.
Additionally, in areas where viscous effects can be neglected, the mesh
does not have to be as fine as close to the structure, where small scales
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are dominating. The decomposition of such a complex problem however,
introduces new challenges that are i.a.: (i) Multi-scales in space and time
(small scales close to the structure and acoustic waves in the far-field).
(ii) Different spatial discretization (h/p refinement) for each domain. (iii)
Load balancing challenges due to unequal computational workload per do-
main depending on the occurring physics. Engineering applications of such
complex problems can be found in various technical systems, such as wind
turbines, fans in air conditioners, turbines, or airfoil design. Therefore, an
efficient strategy is required to address those challenges and realize these
complex engineering problems properly.

7.1. State of the art - Coupled problems

The interaction of fluid and structure (FSI) plays a prominent role in many
engineering applications and other scientific fields. However, a compre-
hensive study of such complex problems remains challenging due to their
inherent nature of strong nonlinearity and multidisciplinary [11, 31]. Due
to the recent advances in computer architecture and the computational
power of new supercomputers, sophisticated and complex simulations have
become more feasible. With that, advances in many scientific fields can be
observed, where FSI simulations have become possible for many complex
problems. FSI applications are among others in the field of aerodynamics
[97], magneto-hydrodynamic flows [43], hemodynamics [28] and sedimenta-
tion [94]. Furthermore, many more applications in the medical field have
been investigated, e.g., the interaction of blood flow and stenosed artery.
The procedure of these FSI problems can be categorized into a monolithic
approach and a partitioned approach.

In the context of the monolithic approach, the treatment of the structure
and fluid dynamics is as a single large system of equations that must
be solved simultaneously. The interface conditions are kept implicit for
the computation of the solution. It is possible to achieve a more accu-
rate solution applying this approach when considering multidisciplinary
problems. However, this requires an immense amount of computational
resources [13, 40]. The opposite strategy is the partitioned approach, where
fluid and structure are treated as different computational fields, solved
by different numerical algorithms, and have different spatial resolutions.
Therefore the flexibility is higher when choosing suitable solvers for each
of the domains. However, this approach has its challenges and limitations,
including stability, accuracy, and efficiency between domains to be coupled.
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In [17] numerous monolithic as well as partitioned approaches have been
proposed and investigated in more detail. Investigations in literature were
mostly restricted to FSI simulations, and the acoustic near-field due to
the expensive computation [66].

Schwarzkopff [83] moved a step further and investigated in his work the
acoustic far-field, where he enabled the surface coupling of the flow domain
and the acoustics far-field using ghost elements for the coupling. They
provide the necessary information for the numerical scheme and allow the
coupling of different numerical methods. Based on his work, Utzmann
[93] contributed to a more generalized approach for the coupling of the
flow domain and the acoustics far-field. He enabled the data exchange at
the Gauss integration points in the previously introduced ghost elements
in his work. This change provided a more efficient coupling and a more
generalized approach to allow the coupling of different numerical methods.
A step further and a more flexible method is based on the black-box
coupling. Each domain is treated as a black box with arbitrary surface
data and solved by a dedicated numerical method. The coupling tool is
responsible for the data exchange between the different domains, e.g., [65].
Various tools are available that support this kind of black-box couplings,
such as MpCCI [2] developed by the Fraunhofer department SCAI or
preCICE [18] developed as a joint project by the University of Stuttgart
and the University of Munich.

Both approaches have been further developed in the past years. How-
ever, preCICE has shown to be more efficient in parallel execution when
compared to MpCCI. The coupling tool MpCCI is based on client-
server communication, thus limiting parallel efficiency. At the same time,
preCICE employs point-to-point communication, which is efficient for
large-scale simulations on HPC systems. More information on the coupling
approaches can be found on their respective pages. Due to the mentioned
reason, we utilize preCICE for our investigations in the following section,
where simulation results are compared to the white-box tool APESmate.

As introduced in Chapter 5, in this work, we consider a one-directional
coupling of fluid and structure. The geometrical properties are embedded
in the fluid dynamic equations and simultaneously solved in a monolithic
manner (cf. Chapter 5). Due to the presence of the geometry, the fluid flow
is disturbed and eventually becomes turbulent, while noise is induced that
propagates to the far-field (flow-induced noise). We are particularly inter-
ested in the simulation of the far-field, which has become even more critical

119



7. Multi-scale problems - An efficient strategy

in recent years in the strife for noise reduction. Thus, an efficient approach
is indispensable to realize such compute-intensive problems. Therefore a
partitioned approach is utilized to couple the flow- and acoustic field. In
the upcoming section, we focus on the coupling strategy we apply in this
work to couple the flow field and the acoustics far-field, highlighting the
advantages and limitations of the used approach.

7.2. Partitioned coupling

Considering the simulation of fluid-structure and acoustics interaction,
the complexity of the simulation increases compared to an FSI simulation.
However, these interactions are common in many engineering applications.
They have to be enabled in a feasible practice as numerical simulations
have become indispensable in, e.g., the design optimization process of
devices. Intensive research has been conducted in recent years in order to
address these complex simulations (cf. Section 7.1). Often, the question
arises whether the partitioned coupling approach is suitable compared
to the monolithic approach in terms of computational efficiency and the
accuracy of the solution. In the partitioned approach, the computational
domain is decomposed into subdomains according to the occurring physics.
All subdomains are connected to the corresponding neighboring subdo-
main via a coupling tool. This methodology gives each subdomain certain
independence regarding the set of equations to be solved and the spa-
tial resolution. Furthermore, the partitioned approach allows for efficient
computation when considering the increasing complexity of problems and
available compute power. Thus, it can accentuate its advantages, especially
when the acoustics far-field is of interest.

(a)
(b)

Coupling tool

(c)

Figure 7.1.: Decomposition of the large simulation domain into smaller
subdomains coupled together through a coupling approach for
multi-scale simulations.
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The principle of the partitioned coupling is explained in Figure 7.1. Each
subdomain is solved with a different set of equations and spatial resolution
(cf. Figure 7.1b), and connected at a joint interface via a coupling approach
(cf. Figure 7.1c). The expensive equations (marked in red in Figure 7.1)
are only solved in the subdomain, where the geometry (cylinder) is located.
It requires a finer mesh to capture small scales close to the geometry. Away
from the geometry and the small scales, the fluid dynamic equations can
be simplified according to the physics (highlighted in green in Figure 7.1b)
and a coarser mesh used.

In order to confirm, that the idea of the partitioned coupling allows
the realization of complex numerical simulations more efficiently, we inves-
tigated this approach in terms of accuracy and computational efficiency
compared to the monolithic approach for a small test case, that can be
still realized monolithically. In this work we investigate the accuracy of
the solution and refer to [35, 36, 60, 65] for analysis of the computational
efficiency. The partitioned approach is based on the decomposition of
the entire simulation domain into subdomains, that are connect to enable
the data exchange at their boundary interface (cf. Figure 7.1c). This
strategy is realized through a coupling approach, a so-called white-box
and a black-box approach. The white-box approach is within the same
simulation framework as the solver. Thus it knows the internal data-
structure. On the other hand the black-box approach, that does not know
the solver used for the simulations, expects interface definitions, where the
domains are coupled together. Thus, this results in an approach, which
is less flexible in terms of coupling different solvers (white-box), but can
provide accurate results (see Section 7.3.3), while the black-box approach
is more flexible in terms of coupling different solvers, however, the accu-
racy of the solution may suffer, when using this approach (cf. Section 7.3.1).

The next sections are devoted to the two coupling approaches, namely
the black-box approach preCICE (cf. Section 4.2) and the white-box
approach APESmate (cf. Section 4.1.2), where their advantages and
disadvantages in terms of accuracy of the solution are studied in more
details.

7.3. Quality of the solution - Data mapping

The major concern, when deploying partitioned coupling is the loss of ac-
curacy, due to the decomposition and the different numerical treatment of
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each subdomain. In this section we demonstrate, how we can maintain the
quality of the solution with both coupling approaches. We first investigate
the black-box coupling approach preCICE, surveying the different inter-
polation methods provided by this approach. Afterward, we examine the
method used by the white-box approach APESmate. Lastly, we analyze
the numerical solutions obtained by both coupling approaches with the
monolithic solution, through a test case, a Gaussian density pulse.

7.3.1. Interpolation
preCICE is, as previously mentioned, a black-box coupling approach,
allowing the coupling of different solvers, considering them as a black-box.
This approach requires the point positions at dedicated coupling bound-
aries, at which data has to be exchanged. Those points are called coupling
points and can have an arbitrary distribution. preCICE provides dif-
ferent interpolation methods for the data exchange, which are reviewed
in the following. The task of the coupling approach is to provide values
throughout the simulation at requested coupling point positions. There-
fore, interpolation methods are used to compute those values from point
values of one domain to the other and vice versa, resulting in the update
of the state at the boundaries at predefined time steps. The accuracy of
the solution at the coupling boundaries is of importance for the overall
solution. Therefore, it is of interest to know which interpolation method
can maintain the accuracy of the solution close to the monolithic solution,
even though a non-matching coupling interface (cf. Figure 7.4) increases
the challenge in preserving the overall accuracy.

B

A

(a)

B

A

(b)

Figure 7.2.: Sketch of the (a) Nearest-Neighbor method and (b) Nearest-
Projection interpolation method provided by preCICE [18]
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The easiest applicable interpolation method to use is the Nearest-Neighbor
(NN) method (see Figure 7.2a) [18]. The solver merely needs to provide the
point positions of the coupling points and the variables to be exchanged.
Coupling from one subdomain (B) to the other (A), the closest neighboring
point on B is detected, while the value is copied to the requested point on
A. Though this method is straightforward to apply, the major disadvantage
is its accuracy. For example, in the case of Figure 7.2a more than one
point of domain A is close to one of the coupling points in domain B; this
results in the same point values for all those points in A from domain B.
Therefore, this method is only valid in terms of accuracy if both coupling
interfaces have the same number of points and the same point distribution,
thus matching interfaces (cf. Figure 7.4a). The Nearest-Projection (NP)
method (see Figure 7.2b ), in contrast, is more involved and provides more
accurate solutions as it is a 2nd order accurate method. This method
searches in domain B for the closest neighboring points, required for the
points in A, while the closest point is projected from B to A and vice versa
[18]. However, in order to use this method, the solver needs to provide
additional connectivity information (cf. Figure 7.3). For a two-dimensional
simulation, the coupling interface is only a line. Hence preCICE requires,
in this case, additional edge information at the coupling interface. In the
case of a three dimensional case, additional triangle information (see Figure
7.3b) are necessary. Please keep in mind that the coupling points in our
case are the integration points of the underlying high-order Discontinuous
Galerkin scheme (cf. Figure 7.3a), which are non-equidistantly distributed
inside the element (cf. Section 5.3). To avoid additional implementa-
tion, while still using a 2nd order interpolation, the Radial-Basis-Function
method (RBF) can be considered. This method does not rely on any
neighboring information and is internally implemented in preCICE as

g(x) =
∑NB

i=1
γi · φrbf (||x− xi||) + q(x). (7.1)

It creates for the mapping a global interpolant on B, which is evaluated
on domain A. The bases are radially symmetric basis functions, centered
at the coupling points of domain B. To ensure the correct interpolation of
constant and linear functions, an additional 1st order global polynomial
q(x) for the bases is taken into consideration. In Eq. (7.1), the variable
φrbf gives the user the flexibility to select between different basis functions.
However, according to [18], the quality of the solution is comparable. In this
work, we consider the Gaussian function, which requires the computation
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(a) (b)

Figure 7.3.: Sketch of (a) the Discontinuous Galerkin point distribution,
(b) the connectivity information (edge and triangle) for the
NP interpolation method for a three-dimensional test case,
provided to the black-box approach.

of the shape-parameter s by the user.

s =
√

− ln(10−9)
m · h (7.2)

In Eq. (7.2), m defines the number of coupling points to be covered
by the Gaussian function, while h is the average distance between the
points. We need to emphasize that the distribution of the coupling points
is essential for the quality of the solution and the convergence rate of the
linear equation system solved for this method. As previously discussed
and shown, e.g., in Figure 7.3a the coupling points are the same as the
integration points and therefore non-equidistantly distributed inside an
element. The points are denser in the element’s corners, while the points
have a more significant distance in the center of an element. The choice
of the shape-parameter has a notable impact on the convergence rate of
the equation system that has to be solved. A high value of m can improve
the accuracy of the solution; however, it has an oppositional effect on the
equation system to be solved, as the convergence rate increases as well,
resulting in a high condition number [64]. For our computations, h is
defined according to the largest distance between the integration points,
the middle of an element. This practice allows covering all points inside
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the element. The computation of the distance h is according to

hmax =
[

cos
(

2 · (nh + 1) − 1
2 · nO ·π

)
− cos

(2 · nh − 1
2 · nO ·π

)]
· dx2 . (7.3)

Here nO is the scheme order, nh the used scheme order divided by two, and
dx the size of the computational element at the coupling interface. Another
drawback we face here is that not equidistantly distributed points result
in instability of the convergence of the matrix to be solved. In contrast,
equidistant points can solve this issue [64]. However, in the context of
a high-order Discontinuous Galerkin method, this method would require
additional effort (equidistant points) to achieve accurate simulation results.
Keeping these challenges in mind, it is apparent that a different method
is necessary to overcome these challenges while maintaining the accuracy
of the solution. Therefore in the next section, we discuss the white-box
coupling approach APESmate, which uses a different method to allow for
accurate data exchange.

7.3.2. Data mapping by evaluation
The coupling approach APESmate (cf. Section 4.1.2) is integrated into
the simulation framework APES (cf. Section 4.1); hence it has access to
solver specific data and the underlying common data structure used by
all solvers. Consequently, it can enable the data exchange at an arbitrary
set of exchange points for the high-order Discontinuous Galerkin solver.
Therefore non-equidistant point distribution is not a drawback for the cou-
pling, as the polynomial representation can be evaluated at requested point
coordinates by each coupling domain. This approach, therefore, allows
maintaining the high-order accuracy of the solution. More information on
this coupling tool can be found in [59, 68].

To investigate the quality of the solution, we examine the error of the
solution compared to the solution obtained from a classical monolithic run.
For the black-box approach preCICE, we review all three interpolation
methods mentioned in Section 7.3.1. We aim to identify a well-suited
method for multi-scale simulations with non-equidistant coupling points as
in the context of the high-order Discontinuous Galerkin method. Further,
it needs to be mentioned that some results in the following section have
been published in [35].
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7.3.3. Error investigation
Due to the decomposition and the different treatment of each subdomain,
a significant concern of the partitioned coupling approach is the accu-
rate data exchange between the subdomains. Furthermore, since different
scheme orders can be used for each of the domains, the accuracy of the
solution is limited to the lowest scheme order used. Therefore, it is even
more important to maintain the solution’s accuracy over the different
subdomains. Thus, a small academic test case is used to investigate the
accuracy of the coupled simulation for both coupling approaches. In the
first step, the entire simulation domain is monolithically solved and later
used as a reference for the investigation. In the next step, the monolithic
domain is divided into two subdomains and solved with different spatial
resolutions and scheme orders while solving the same set of equations. For
the investigation, a density pulse is used that travels from the left side of
the domain towards the right boundary. Therefore, the simulation domain
is divided into two parts for the coupled scenario, namely the left and right
domains. They are coupled together through the coupling approaches and
exchange data at their respective coupling points, the Chebyshev nodes.

Test case description: A 4 × 4 unit plane is used for the simulation
domain, which is decomposed into two subdomains for the coupled scenario.
For all test cases, the inviscid compressible Euler equations are solved.
The amplitude of the pulse is defined to be 1.0, with a halfwidth of 0.316.
The pressure p and density ρ are 1.0 and 1.0, respectively. The velocity
is prescribed as ~v = [12.5, 0.0, 0.0]. The pulse travels due to advection in
positive x-direction from the left to the right domain while crossing the
coupling interface for the coupled scenario. For the examination, three
different test cases are used. In test case (a), both domains have the same
scheme order and mesh resolution, hence a matching coupling interface
(boundary interface). In test case (b), the left domain is kept as (a), while
the right domain has a coarser mesh and a higher scheme order, resulting in
a non-matching scenario. Finally, test case (c) has the same configuration
again in the left subdomain as in (a) while the right domain has an even
coarser mesh and the same scheme order as in (b), thus an increasing
non-matching coupling interface.

In Table 7.1 the setup of all three test cases are shown; it provides an
overview of the different setups of each test case. Test cases (b) and (c) are
essential for the investigation and provide insights into the accuracy of the
solution. Furthermore, they accentuate how well the numerical solution

126



7.3. Quality of the solution - Data mapping

can be preserved. In Figure 7.4 the point distribution for each test case is

(a) (b) (c)

Figure 7.4.: Point distribution in elements, when using the Discontinuous
Galerkin method: (a) Matching test case (a), (b) non-matching
test case (b), and (c) non-matching test case (c).

shown. For test case (a), both domains have the same point distribution
(cf. Figure 7.4a), in (b) the element size of the right domain is two times
bigger than the left one (see Figure 7.4b) and in (c) the right domain
covers four elements of the left domain (cf. Figure 7.4c). Furthermore, the
point distribution is non-equidistant; points are more concentrated at the
element’s corners than the middle part. Therefore, the interpolation error
for the data mapping is dominated by the distance of the point distribution
[33, 35].

As the investigated test case is small enough, we can obtain a mono-
lithic simulation, running the entire test case in a single domain (non-split)
and using this as a reference to investigate the coupling error. We split the
domain into halves while keeping the same element size and scheme order.
I.e., all differences between split and monolithic simulation results are due
to the coupling error (test case (a)). In the following, we then change the
settings in the right domain to adopt the scheme order and element size
to the needs of the domain (test cases (b) and (c)), resulting in additional
errors due to the non-matching conditions at the coupling interface. For
the monolithic simulation, the configuration is the same as for test case
(a). The error is obtained from the difference between the solution from
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Table 7.1.: Three test cases for the investigation of the interpolation meth-
ods

Test case (a) Test case (b) Test case (c)
matching non-matching non-matching
left right left right left right

Number of
elements 512 512 512 256 512 128
Number of
coupling points 128 128 128 128 128 64
Scheme order 8 8 8 16 8 16

(a) (b)

Figure 7.5.: (a) Monolithic solution from the numerical simulation and (b)
error in the solutions, when compared to the exact solution.

the simulation and the analytical solution [88]. Therefore, the error should
provide an approximate error we can compare with later when computing
the L2 error in Table 7.3. In the middle area of the simulation domain ((cf.
Figure 7.5b)), a remaining error can be observed. This error is due to the
location of the pulse at the beginning of the simulation. The pulse was
located too close to the left boundary, and oscillations appear that remain
in the domain. However, this error does not influence the coupled scenario
and the comparison of the different methods. Moreover, since they appear
in the monolithic scenario (reference) and the coupled case, this error is
diminished in the solution when the difference between reference and the
coupled test cases is determined. The main focus of this section is devoted
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(a) (b) (c)

Figure 7.6.: Error for the NN method provided by the black-box approach
preCICE compared to the monolithic approach (reference).
(a) Matching interface (test case (a)), (b) non-matching inter-
face (test case (b)) and (c) non-matching interface (test case
(c)).

to the error investigation introduced by the interpolation/evaluation of
the coupling approaches; therefore, the left subdomain is neglected for the
visualization. Interested readers may consider [35] for the visualization of
the left subdomain. In [35] it was already explained that the difference
between the monolithic approach and the coupled simulation could be
found in the right subdomain. This is due to the density pulse that crosses
the coupling interface. Hence the coupling approaches have to interpo-
late/evaluate the solution from one subdomain to the other. As can be
observed from Figure 7.6 the error in the solution drastically grows with
increasing mismatched coupling interfaces for the interpolation method
NN. In Table 7.3 the L2 error for all three test cases are calculated using
the analytic solution as a reference.
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(a) (b) (c)

Figure 7.7.: Error for the NP interpolation method provided by the black-
box approach preCICE compared to the monolithic approach
(reference). (a) Matching interface (test case (a)), (b) non-
matching interface (test case (b)) and (c) non-matching inter-
face (test case (c)).

For the NN method, the L2 error increases such that the error of the
interpolation method dominates the solution; hence it is not suited for
coupled simulations with non-matching coupling interfaces. For the match-
ing test case (a) (cf. Figure 7.6a), the error is, as expected very small,
since both coupling interfaces have the same number of coupling points,
scheme order, and element size. Therefore, this method is not suitable
for non-matching coupling interfaces, as it is only 1st order accurate and
not able to reconstruct the solution accurately. Though, this method is
eliminated for further investigations.
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(a) (b) (c)

Figure 7.8.: Error for the RBF interpolation method provided by the black-
box approach preCICE compared to the monolithic approach.
(a) Matching interface (test case (a)), (b) non-matching inter-
face (test case (b)) and (c) non-matching interface (test case
(c)).

The NP method is as mentioned in Section 7.3.1 a 2nd order accurate
interpolation method. Therefore, the expectation for this method is to
provide a smaller error compared to the NN method. As shown in Table
7.3 the L2 error for this method is smaller than for NN. However, on the
other hand, an increasing L2 error can be observed when the non-matching
degree at the coupling interface increases, e.g., in the case of the test case
(c). The error, when compared to the monolithic approach, is depicted
in Figure 7.7, also here the increasing error from test case (a) to (b) and
from (b) to (c) can be observed.

The third interpolation method we investigate is the RBF method. Even
though the user does not have to provide neighborhood information; how-
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Table 7.2.: Shape-parameter for non-equidistant point distribution for the
RBF interpolation method

Test case hmax m s

left right left right left right
a 0.0244 0.0244 4 4 46.642 46.642
b 0.0244 0.0245 4 3 46.642 61.936
c 0.0244 0.0245 4 2 46.642 46.452

(a) (b) (c)

Figure 7.9.: Error of the evaluation provided by the white-box approach
APESmate, compared to the monolithic approach. (a) Match-
ing interface (test case (a)), (b) non-matching interface (test
case (b)) and (c) non-matching interface (test case (c)).
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Figure 7.10.: Equidistant points (black dots) are provided to preCICE for
the interpolation to provide data on non-equidistant points
(red dots) requested by the solver.

ever, the shape-parameter has to be provided to the coupling approach.
In Eq. (7.2) the shape-parameter is defined. This method is challenging
as an equation system needs to be solved by the coupling tool, while the
convergence rate depends on the shape parameter itself. Hence, the user
needs to examine the shape-parameter a priori to find a suitable one,
allowing the equation system’s convergence for each test case. Figure 7.8
illustrates the error, which increases with increasing mismatching coupling
interfaces. In Table 7.2 the different shape-parameters for the different test
cases are presented. The parameter hmax determines the largest distance
between the integration points, which are the same as the coupling points.
This distance is set to be the maximum, as points in the middle area of an
element have a larger distance and need to be taken into account. Finally,
in Table 7.3 the L2 error for this method is presented. The error is when
compared to NN and NP smaller yet presents an increase for the test cases
(b) and (c), while the error is smaller when compared to the error of the
2nd order NP interpolation method (cf. Figure 7.8).

For comparison, we simulate the same test cases applying the white-
box approach APESmate, where no interpolation but an evaluation of
the underlying polynomial representation is used to exchange data at pre-
defined coupling points. With that, this approach can maintain the overall
accuracy, and the error can be kept small for all three test cases, even when
the non-matching at the coupling interface increases from test case (a) to
(b) and from (b) to (c). Figure 7.9 illustrates the error when compared to
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(a) (b) (c)

Figure 7.11.: Error for the RBF interpolation method when using equidis-
tant points for the interpolation provided by the black-box
approach preCICE compared to the monolithic approach.
a) Matching interface (test case (a)), (b) non-matching inter-
face (test case (b)) and (c) non-matching interface (test case
(c)).Equidistant points (black dots) are provided to preCICE
for the interpolation to provide data on non-equidistant points
(red dots) requested by the solver.

the monolithic run for all three test cases. This method allows the direct
evaluation of the underly polynomial at requested coupling points. In
Table 7.3 the L2 error is shown, all simulation results provide outstanding
results; even though the coupling interface considerably changes, the error
is smaller for all three test cases compared to the interpolation methods
provided by the black-box approach.

To conclude all outcomes up to here, we can summarize that the in-
terpolation methods provided by the black-box approach preCICE lack
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the desired accuracy for the solution for coupled simulations when the
coupling points are non-equidistantly distributed. However, the withe-box
approach APESmate can maintain the overall accuracy of the solution,
even for those test cases, where all preCICE interpolation methods re-
sulted in a significantly larger L2 error. Further, with the coupling tool
preCICE, we can only achieve an accuracy of the solution of up to 2nd

order. With the coupling approach, APESmate, the accuracy of the
solution is only dependent on the scheme order used in the domains.

In order to reduce the error for the coupled scenario, when using preCICE,
the conclusion of Lindner et al. [64] is considered, where equidistant points
are provided to the coupling approach for the interpolation instead of the
non-equidistant points. Due to this change, the solver has additional work
since two sets of points must be provided to preCICE. The equidistant
points have the same amount of points as the non-equidistant ones but
are equally distributed. They are used, as mentioned, only for the in-
terpolation, while the second set of points are used to receive data from
preCICE, as the solver requires values at the non-equidistant coupling
points (see Figure 7.10). Figure 7.11 presents the results when using

Figure 7.12.: Equidistant point distribution is used to improve the inter-
polation with preCICE. More points are considered (an
over-sampling factor of two) to reduce oscillations and de-
crease numerical error. Red dots indicate the original non-
equidistant Discontinuous Galerkin integration points, for
which data is requested.
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Figure 7.13.: Error for the NP interpolation method, when using two times
more equidistant points for the interpolation (oversampling),
compared to the monolithic approach.

equidistant coupling points for the interpolation in preCICE, while still
requesting values for the solver at non-equidistant points. Therefore the
solver needs to evaluate the polynomial representation of the state at
equidistant points for the interpolation with preCICE. This practice
does not provide satisfactory numerical solutions. The different test cases
clearly show how the quality of the solution is dominated by oscillations
appearing in the upper and lower area of the domain. Those oscillations
become more apparent with increasing non-matching coupling interface,
hence the change in the number of coupling points from test case (a) to
(b) and from (b) to (c). This phenomenon (oscillations) is well known
and referred to as Rung’s phenomenon [38]. It is observed when using
equidistant points to construct high-order polynomials, as in this test
case. To reduce oscillations further, more equidistant points are used for
the interpolation. This practice results in more points near the element’s
corners; hence a better approximation can be achieved. Since the RBF
method with equidistant points is more complex and challenging when,e.g.,
considering the computation of a suitable shape-parameter, the NP method
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is investigated further, where more equidistant points for the interpolation
are used.

The NP method only needs the connectivity information and does not have
to solve an equation system, which is more attractive in terms of usability
and computational efficiency. For example, in Figure 7.12 is shown how we
try to improve the solution through oversampling, thus providing preCICE
only for the interpolation two times more equidistant points (black dots).
Nevertheless, the solver requires point values at non-equidistant points (red
dots) from preCICE. Figure 7.13 depicts exemplary the improvement of
the error when considering the interpolation method NP with equidistant
points while using two times more equidistant points for the interpolation
(referred to as oversampling) for the test case (c), where the non-matching
level of the coupling interface is the largest among the investigated cases.
The computed L2 error in density is closer to the solution of the white-box
approach APESmate, with 1.279 · 10−4. In [33] the error behavior for
equidistant and non-equidistant points has been examined in more detail.
Interested readers are referred to this publication for more information.

Table 7.3 provides an overview of all investigated methods and the L2 error
for each test case. When comparing the error with the monolithic approach,
it is apparent that only the evaluation method provided by the white-box
approach APESmate can produce for all test cases a small error, even
when considering the increasing non-matching coupling interface from test
case (a) to (b) and from (b) to (c). In contrast, all interpolation methods
provided by the black-box approach preCICE produces a higher L2 error
with increasing non-matching coupling interface. It is also clearly shown
that providing equidistant points for the RBF method does not signifi-
cantly improve the solution’s quality for this particular test case. This
method is dependent on the selection of the shape-parameter. In [33] the
RBF method with equidistant points showed for that particular test case
better simulation results than the RBF interpolation with non-equidistant
points. Therefore, it is difficult to conclude whether this method provides
sufficiently accurate results for the coupled scenario. Furthermore, the
compute time varies from test case to test case as a convergence of the
system needs to be obtained. Though for the NP method with equidistant
points, the quality of the solution is significantly improved for the investi-
gated test cases in [33] as well as for the test case considered here. For
an oversampling factor of two with equidistant points, the solution of the
NP method is improved when considering, e.g., test case (c). The L2 error
drops from 1.716 · 10−4 to 1.522 · 10−4 (see Table 7.3) for this interpolation
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method. Therefore the error is smaller than for both investigated RBF
methods with and without equidistant points. It is challenging to improve
the quality of the solution using oversampling for the RBFs as well, as
with an increasing number of points, the condition of the equation system
to be solved becomes worse, too [64].

Table 7.3.: Comparison of the L2 error with respect to the analytical
solution for the different methods

×10−4 (a) (b) (c)
Nearest-Neighbour 0.642 15.711 41.875
Nearest-Projection 0.642 1.252 1.716
Radial-Basis-Function: Non-Equidistant Points 0.642 1.124 1.861
Radial-Basis Function: Equidistant Points 1.150 2.885 2.788
APESmate 0.642 0.901 1.279
Monolithic 0.423

From the L2 error, we can conclude that when applying the black-box
approach preCICE, the NP method with equidistant points and an over-
sampling of those points for the interpolation can provide comparable
results as for the white-box approach APESmate. For more information,
the interested reader is referred to [33]. A general overview of the connectiv-
ity information of the NP method is shown in Section A.1. The outcomes
of our investigation in this section were used for a FSA coupled simulation,
where the Finite-Volume solver FASTEST [58] and the high-order Dis-
continuous Galerkin solver Ateles were coupled via the coupling approach
preCICE. The FSI part for this simulation was realized by FASTEST ,
while the acoustics far-field was simulated by Ateles. Additional challenges
regarding the simulated test case and the coupling of different solvers are
discussed in [65].

In this work, the in-house solver Ateles is used for all simulations; there-
fore, the in-house coupling approach APESmate is utilized for coupled
simulations. The white-box coupling approach can maintain the overall
accuracy of the solution regardless of the point distribution. In the fol-
lowing chapter, we focus on the challenging part of partitioned coupling,
namely load balancing, that can be foreseen and needs to be appropriately
addressed due to the different workload of each subdomain.
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Conclusion In this chapter we demonstrated, that partitioned coupling
can maintain the overall solution compared to the classical monolithic
approach. We investigated two coupling approaches, namely the black-
box approach preCICE and the white-box approach APESmate. The
quality of the solution is comparable to the monolithic approach, using
the white-box coupling approach. We improved the solution considerably
for the black-box coupling tool preCICE, utilizing more and equidistant
coupling points for the interpolation. In addition, we highlighted that the
interpolation method NP provides comparable solutions in terms of quality
compared to the white-box approach’s evaluation method. However, when
deploying the solver Ateles, which is part of the simulation framework
APES, applying the white-box coupling approach is advantageous, as it
can maintain the quality of the solution without additional information
provided by the user.
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problems

The goal of load balancing (LB) is to reduce performance overhead and max-
imize parallel performance. Thereby, the workload is ideally distributed
among available processes such that the available computing power is
used to its full capacity. Load balancing particularly is of importance for
highly parallel applications and is critical for efficient usage of resources
for computation [10]. However, even slight imbalances of the workload can
cause severe performance and a scalability penalty. In terms of numerical
simulations, especially in coupled simulations, they typically involve com-
munication between subdomains. The imbalances become even worse due
to the communication and data exchange at predefined synchronization
time steps. Further, the decrease in performance is dependent on the load
imbalance pattern. For example, a single process that has an overload of
work will significantly reduce the overall performance. This is due to the
waiting time of all other processes involved, which need to wait until the
communication can continue again through synchronization. On the other
hand, a less severe pattern might be when a few processes are underloaded,
which will have a more negligible impact on the overall performance. In
general, load imbalance can be classified into static and dynamic. Dynamic
load imbalance occurs if the workload distribution varies over time. This is
often the case when, e.g., adaptive meshes or the adaptation of equations
is required throughout the simulation time. On the other hand, a workload
that is independent of time, thus when it is constant, can be addressed
through static load balancing (SLB) [16]. Since all simulations in this
work do neither change the computational mesh nor the scheme order
of the discretization method or the equations to be solved inside each
subdomain, we consider SLB to address load imbalance for our simulations.

In the context of coupled simulations, we can distinguish between two
sources of load imbalance. Load imbalance due to different workload of
each subdomain referred to as inter-subdomain and load imbalance oc-
curring inside each subdomain (intra-subdomain). The intra-subdomain
load imbalance is further increased due to the coupling and the respective
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coupling elements and the elements covered by the geometry. Both levels
of load imbalance have to be addressed to enable efficient computation
and the scalability of the coupling strategy.

8.1. Intra-subdomain

Intra-subdomain load imbalance can cause losings in the overall perfor-
mance of a coupled simulation; different factors influence it. For example,
considering a discretized computational domain with several elements,
each of those elements might have a different workload due to the nu-
merical scheme to be solved. If those elements are distributed among
several processes with ideally the same workload in a parallel distributed
computation, then load imbalances do not occur. Thus, we would expect
perfect performance and scalability of the highly parallel and distributed
simulation. However, we are aware that this is impossible without appro-
priate measures to enable an even workload distribution among available
processes, especially when the computational elements’ workload is diverse.
The workload of each element is determined by, e.g., its position in the
simulation domain (boundary element) and whether specific properties are
prescribed to it (source terms/ boundary conditions).

Here, we discuss several influencing factors that cause load imbalance
inside a subdomain. The focus is especially devoted to coupling elements
and the source terms for geometries inside the domain and the feature of
mode reduction (cf. Section 6.6). We can distinguish in the first place
between three different workloads inside the subdomain: (i) Elements
inside the geometry can be approximated with a reduced polynomial degree
due to the mode reduction feature (reduced elements). (ii) Fluid elements,
that only solve the conservation equations (non-coupling elements). (iii)
Coupling elements at the boundaries have additional workload as they
communicate with the coupling approach (coupling elements) and have to
compute the conservation equations additionally. Figure 8.1 illustrates the
different types of elements in the simulation domain. The mode reduction
feature can reduce the computational effort inside the geometry. This
feature allows approximating the solution inside the geometry with only
1st order, as those elements are not of interest for the numerical solution
(highlighted in green). Those elements are the most inexpensive ones in
the computational domain. Elements located at the domain boundary and
those located inside the domain (colored in orange) are more expensive in
computation due to the high-order approximation. The most expensive
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Figure 8.1.: Elements with different workloads inside a subdomain: 1.
Green elements with reduced costs inside the geometry when
using mode reduction. 2. Orange elements computing the
physical equations only. 3. Red elements at the coupling
interface have to compute the fluid dynamics equations and
communicate with the coupling approach.

elements are those involved in the coupling (marked in red). These types
of elements need to solve the conservation equations with a high-order
approximation and communicate with the coupling approach. Please keep
in mind that different element types might have a different workload, e.g.,
typical boundary elements again elements that are not coupling elements
or the transition from a fine element to a coarser one in the context of
multilevel meshes. The workload of other elements is also considered in
our examination but not shown in the sketch above.

In coupled simulations, an essential so-called synchronization step at a
predefined time is executed. During synchronization, coupled subdomains
exchange data and update time step information with their respective cou-
pling partners at their boundary interfaces. The synchronization time step
needs to be ideally reached by all processes at the same time. Considering
processes that have less workload than other processes, they would need
to wait and sit idle until processes with a larger workload complete their
respective work.

Figure 8.2 presents an example of workload distribution among four pro-
cesses, indicated by the different columns. The color indicates the different
workloads of each element. In this small example, each process has to
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Figure 8.2.: Comparison: (a) Uneven and (b) even workload distribution
among 4 processes: 1. Green elements with reduced costs
inside the geometry when using mode reduction. 2. Orange
elements computing only the conservation equations. 3. Red
elements at the coupling interface, compute the conservation
equations and communicate with the coupling approach.

compute six elements. The time axis indicates the amount of time required
to compute each element per process.

In Figure 8.2a the element distribution among all process is illustrated.
Two processes have only elements with a reduced computational effort
and elements with a higher computational cost but are not involved in
the coupling (non-coupling elements). However, the other two processes
have expensive elements to compute, namely coupling elements and non-
coupling elements. With this distribution, it is obvious that those two
processes without coupling elements have less workload for the computa-
tion. They can complete the computation of a time step much faster. Thus,
they reach the synchronization time step sooner, resulting in idling time of
those processes until the other two processes complete the respective time
step. Figure 8.2b demonstrates the ideal workload distribution between
the processes. All processes receive, i.a., one coupling element for the
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computation. This results in an equally distributed workload, where all
processes reach the synchronization time step at a shorter time, and the
overall computational effort can accordingly be reduced.

In order to reduce the load imbalance on the intra-subdomain level, we
focus in the next section on the LB strategy, which we pursue in our simu-
lation framework, to avoid load imbalances, namely the SPartA algorithm.

8.2. SPartA algorithm

To enable load balancing (LB) for our simulations, we utilize the SPartA
algorithm [44, 79], which is implemented in the common data structure
TreElM of the APES simulation framework. This algorithm aims to
move elements from one process to another to achieve the same or similar
workload per process. SPartA is based on space-filling curves to obtain
a one-dimensional ordering of all elements among partitions. Individual
weights are used that provide information about the actual load of each
element inside the domain. The algorithm is well suited for simulations
with fixed configurations, such as non-changing computational meshes or
equations. Timers (time dimension) are placed around compute-intensive
routines to determine the individual weights of each element. The actual
workload can be determined with high accuracy as those dominant and
time-consuming routines can be captured. They are the main target of the
MPI_Wtime timers. Routines included in the measurements are, i.a., the
compute-intensive physical flux computation and the projection onto the
test function. Additionally, timers are used for elements involved in the
coupling [59], for multilevel meshes, and for the computation of elements,
where geometry is defined [36]. Timers are primarily placed in element
loops to allow for precise measurements of the element weights.

In a parallel execution on nProctotal processes, we refer to each by its rank
in the range of 0 ≤ rank < nProctotal. In order to balance the workload,
the prefix sum needs to be determined.

prefix(N) =
N−1∑
k=0

wk (8.1)

In Eq. (8.1) the prefix(N) is the workload for N elements and per
definition prefix(0) = 0. The total workload is the sum of wk. An optimal
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Table 8.1.: Example for the SPartA algorithm, using 16 elements and 4
ranks

Rank before LB R0 R1 R2 R3
Weight of elements 5 3 1 2 4 6 1 3 1 3 1 1 1 9 1 1

Prefix sum 0 5 8 9 11 15 21 22 25 26 29 30 31 32 41 42
Optimal range 0 < 10.75 10.75 − 21.5 21.5 − 32.25 > 32.25
Rank after LB R0 R1 R2 R3

workload per process is defined as

wopt = wglobal

nProctotal
. (8.2)

Assuming the workload of each element is captured precisely, then wopt

is the optimal weight per process, and wglobal is the total weight for all
elements over all processes using MPI_Allreduce. Re-distributing the
workload according to Eq. (8.2), each rank should have elements for the
computation, that are in the prefix range of [rank ·wopt, (rank+ 1) ·wopt]
[79]. In Table 8.1 a small example with 16 elements and four ranks is
shown. In this example, the total weight is 43, resulting in an optimal work
distribution over all four processes with 10.75. Considering this prefix value
for each rank, the new positions for partitioning can be locally determined.
In the next step, each process needs to loop over all elements and compare
the element weight against the prefix value to identify the new destination
of each element, hence keeping the element or moving it to the following
process. Before balancing the load, the maximum workload per process
was 14, and on process R1, resulting in an imbalance of 14

10.75 ≈ 1.302
after re-distribution, this can be reduced to 10

10.75 ≈ 0.930.

Applying this approach for our simulations, we first dump a weight file
into the disk after a successful run. This practice allows capturing the
workload of each element after an actual run. Afterward, the simulation
is restarted using SPartA for re-partitioning. SPartA reads out those
weight files for each subdomain and re-distributes the elements inside
each subdomain across available processes [36]. This procedure is only
done at the beginning of the simulation, thus only once for each simulation.

As mentioned previously, besides the intra-subdomain load imbalance,
we need to address a different level of load imbalance. The second source
of load imbalance for coupled simulations is the so-called inter-subdomain
load imbalance explained in the upcoming section.
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8.3. Inter-subdomain

8.3. Inter-subdomain

In coupled simulations, the different numerical treatment of each subdo-
main through different equations, scheme order, and mesh resolution lead
to individual workload for each subdomain. An example can be the cou-
pling of two subdomains, where one subdomain solves the nonlinear flow
equations such as the Euler equations (cf. Eq. (2.11)) and the equations
are discretized with a high-order polynomial representation. The second
domain is discretized with an even higher polynomial degree and solves the
linearized Euler equations (see Eq. (2.12)). The different treatment of each
domain leads to a different workload for each of them. Load imbalances are
unavoidable if each subdomain does not receive the appropriate amount of
processes for the computation. Assuming each subdomain’s configuration
is fixed and does not change over the simulation time, such as the compu-
tational mesh, the polynomial degree, or the equations to be solved, then
SLB is sufficient to address load imbalances introduced by the different
numerical treatments of each subdomain. Furthermore, an appropriate
processes distribution among all subdomains ensures an approximate same
computational time to complete a time step (synchronization).

The worst scenario for the inter-subdomain load imbalance is when one
subdomain does not receive the expected amount of processes for the
computation, resulting in the idling of all other subdomains. Thus their
respective processes are unavoidable. Thus, load imbalance on this level is
severe, as it is a barrier to the coupling approach’s scalability.

To assign the correct number of processes to each subdomain and avoid
inter-subdomain load imbalance, we consider the following equation to
re-distribute the processes accordingly.

nProci = wi∑k

i=2 wi

· ptotal (8.3)

Where nProci is the number of processes to be used for each subdomain,
wi the the timing needed for each subdomain individually, obtained from
the sum of the weights per subdomain and ptotal the total number of
processes available for the coupled simulation. With that, we can ensure
to minimize the idling time between the subdomains; interested readers
are referred to [44, 59, 79] for more information.

147



8. Load balancing - Coupled multi-scale problems

8.4. Optimization of the gradient computation

As aforementioned, elements involved in the coupling have a more signifi-
cant workload than other elements in the subdomain. The computational
effort can increase even further depending on the values to be exchanged
at the coupling interface. For example, assuming the coupling of two
subdomains, where an inner and an outer subdomain is defined (see Figure
8.3) and coupled at their joint interfaces. The inner subdomain is solved
with the compressible Navier-Stokes equations, while the outer subdomain
solves the compressible inviscid Euler equations. The inner domain has
all boundary elements involved in the coupling since the outer domain
surrounds it. Since the outer domain solves the inviscid Euler equations,

Figure 8.3.: Coupling two subdomains, the inner subdomain is solved
for the compressible Navier-Stokes equations and the outer
subdomain for the compressible inviscid Euler equations. The
computational cost for the coupling elements is different. The
outer domain (red) has to compute additional gradient values
requested by the inner subdomain. Elements in the inner
domain (orange) only have to provide the state variables for
the outer domain.

it requires only the conservative variables from the inner subdomain. How-
ever, the inner subdomain solves the compressible Navier-Stokes equations;
hence, it depends on the conservative variables and their gradients. Thus
the outer subdomain needs to compute the gradients for coupling elements
of the inner subdomain (at the coupling interface). Therefore, the outer
domain’s coupling elements are more compute-intensive than those of the
inner domain. Considering a three-dimensional simulation and primitive
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8.4. Optimization of the gradient computation

variables, this results in nine components for the velocity gradient, three
components for the density gradient, and three components for the pressure
gradient. In total, the outer subdomain needs to compute fifteen additional
variables besides the five primitive state variables. These gradients have to
be computed in each time step. However, we need to emphasize that only
the gradients in the normal direction are of interest; not all components
are required when, e.g., one direction has periodic boundaries or is not
involved in the coupling.

Therefore, we improve the access pattern of the gradients from volume-data
to gradient information per direction. Krupp [59] carried out an intensive
examination on the coupling elements and the computation of the gradients.
However, her investigations were based on the old implementation; thus,
the gradient information was computed for all spatial directions. They
are then later internally extracted by the solver to obtain the gradients
in the normal direction. More on her investigation can be found in [59].
With the new implementation in this work, only gradients in the normal
direction to the coupling interface must be computed; thus, they can be
directly accessed. This change allows decreasing the number of gradients
to be computed from the previous fifteen to only ten, when boundaries
are, e.g., periodic. In this work, coupled simulations have periodic bound-
ary conditions in the z-direction. This change can further decrease the
computational effort. In order to investigate this new implementation
in terms of computational time, a simple test case is used, where an in-
ner subdomain with 2 × 16 × 1 elements and an outer subdomain with
6 × 20 × 1 elements is simulated. The mesh elements have the same size for
both subdomains. In the outer domain, 2 × 16 × 1 elements are removed
in the middle of the domain to provide the space for the inner domain.
This three-dimensional test case has four coupling interfaces that have to
communicate with the coupling tool. The inner subdomain is solved with
the compressible Navier-Stokes equations and the outer domain with the
inviscid Euler equations. Simulations were executed on a single process
(sequential) for each subdomain.

The investigation involves two studies. In the first study, the scheme
order of the outer domain is kept the same. However, at the same time,
it is changed in the inner subdomain, resulting in more coupling points
in the inner domain, hence more points, where the outer domain must
provide additional gradient information. For the second examination, the
inner subdomain always solves the same scheme order, while the scheme
order is varied for the outer domain. This change results in the same
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Figure 8.4.: Comparison of the computational time per iteration of the
gradient computation. In (a), the scheme order of the inner
domain (Navier-Stokes) is changed, resulting in more coupling
points. The outer domain has a scheme order of O(8). In
(b), the scheme order in the outer domain (Euler) is changed,
while for the inner domain, a scheme order of O(4) is used.

number of coupling points, for which the outer domain has to provide the
gradient information. However, the changing scheme order of the outer
subdomain affects the gradient computation. Therefore, the scheme order
is varied, and the gradient computation is done with the high-order scheme.

In Figure 8.4 the variation of the scheme order, hence the computational
time per iteration over the different number of coupling points for the
gradients, is depicted. In the case where the scheme order is changed for
the inner domain (cf. Figure 8.4a), the scheme order of the outer domain
is defined to be O(8). Furthermore, in the case the scheme order of the
outer domain is varied (cf. Figure 8.4b), the inner subdomain maintains a
scheme order of O(4). The scheme order varies from O(2) to O(21), while
the scheme order is increased for each subsequent run for both investiga-
tions, respectively. In the Figure 8.4a the computational cost per iteration
for the gradient calculation is shown. The blue line depicts the gradient
computation in all directions (volume gradient), and the orange line the
computation only in the normal direction (new implementation). In both
cases, the computational effort is constant, independent from the increasing
number of coupling points; thus, the scheme order. As the number of
coupling points at the outer domain is the same, the innermost subdomain
must provide information for a predefined list of coupling points. However,
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8.5. Load balancing for a 3-field coupled simulation

the outer domain needs to provide more point information as the number
of coupling points increases in the inner domain with increasing scheme
order. However, the point evaluation is done with the same scheme order in
the case of the outer domain. Comparing the time needed to compute one
iteration, the curve representing the gradient computation in the normal
direction is roughly by a factor of two faster when compared to the old
implementation, where the volume data was computed (gradients in all
directions).

In the second examination, the scheme order is varied in the outer domain.
Figure 8.4b illustrates both curves, once where the gradient computation
is only in the normal direction and once where the gradient is computed
in all spatial directions. The computational cost rises for both cases with
increasing scheme order (cf. Figure 8.4a and Figure 8.4b). However, in
the case of the gradient computation only in the normal direction, the
computational effort is reduced by two. Noticeable is that the computa-
tional cost is almost constant in the case where the inner domain is varied.
However, if the outer domain is varied, the computational effort increases
with increasing scheme order. This behavior is due to the evaluation of
the polynomial at the requested points. The polynomial degree in the
outer domain increases in Figure 8.4b, hence the evaluation requires more
time for the computation of the respective gradients. that have to be
additionally computed by the outer domain. In the case presented in
Figure 8.4a though, the evaluation of the coupling points is done with the
same polynomial degree by the outer domain. Therefore the computation
is constant as the requested point values for the inner domain are always
computed with the same scheme order.

8.5. Load balancing for a 3-field coupled simulation

Through the SPartA algorithm, the load inside the subdomain can be
re-balanced to avoid intra-subdomain load imbalance. As previously men-
tioned in Section 8.1, the workload per element inside the domain might
differ. Therefore, a three-dimensional test case is used in this section to
demonstrate how load imbalances can be reduced through the LB method
exploit in this work. We consider a 3-field coupled simulation, with an
airfoil profile acting as a sound source and decomposing the simulation
domain into three subdomains.

Test case description: The configuration of the 3-field coupled sim-
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ulation is presented in Table 8.2, with the different number of elements and
scheme orders used in each of the subdomains. The innermost subdomain
solves the compressible Navier-Stokes domain, with a moderate scheme
order and a fine mesh, to capture small scales around the airfoil profile
(NACA0012). Next, the outermost subdomain solves the linearized Euler
equations with the highest scheme order used for this test case. Finally,
the middle domain solves the compressible Euler equations. All lengths

Table 8.2.: Small setup for 3-field coupled simulation
Innermost Middle Outermost

Domain length [x, y, z] [4, 2, 2] [12, 6, 2] [12, 3, 2]
Number of elements 94516 8192 1152
Scheme order 4 6 9
nDof 30,245,120 8,847,360 4,199,040

have been normalized by the chord length of the airfoil profile. In the
innermost subdomain, a jet-inlet (cf Section 10) is defined that injects
the airfoil geometry. It is exactly located in the middle of the domain
and has a diameter of 0.5 unit length. The kinematic viscosity µ is set to
1.49 · 10−5. The velocity at the inflow is linearly ramped and reaches a
value of ~v = [0.1 ·

√
(γ · p/ρ), 0.0, 0.0] after a simulation time of 0.75. The

isothermal coefficient γ is 1.4, the background pressure pB and the density
ρB have a value of 1.0.
Initial conditions The pressure and density value are initially set for all
subdomains. In the outermost subdomain, the perturbation is defined to
be 0.0 for all quantities.
Boundary conditions Along the left boundary of the innermost subdomain,
the jet-inlet is prescribed, with inflow boundary conditions. At the left
boundaries of the middle and the outermost subdomain primitive bound-
ary conditions are defined. The upper, lower and the right boundary of
the outermost subdomain are outflows. Along the right boundary of the
middle domain outflow boundary condition is prescribed as well. All other
domain boundaries are involved in the coupling. Physical results of this
test case can be found in [36].

The purpose of this test case is to show that due to the additional improve-
ments introduced in this work, namely the mode reduction and the gradient
computation only in the normal direction to the coupling interface, the
workload inside the domains has increased in diversity, thus has different
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8.5. Load balancing for a 3-field coupled simulation

element types. As a result, load imbalance can be foreseen and is severe
for the scalability and the performance of such large-scale simulations.
Therefore the test case introduced before should help to demonstrate that
load imbalance on the intra-subdomain level is a barrier for the scalability
of large-scale simulations on HPC systems. However, the computational
cost and thus the load imbalance can be reduced through the LB strategy
deployed in this work.

To demonstrate that our load balancing strategy can properly address
load imbalances, two cases are examined. In one case, the scalability mea-
surements are performed using intra-subdomain and inter-subdomain load
balancing. For the second case, only the inter-subdomain load balancing is
used, where each subdomain receives a dedicated number of processes. As
the workload inside the subdomains differs, depending on the elements and
the location, we anticipate better scalability when the intra-subdomain
load imbalance can be addressed through the SPartA algorithm. The
scalability measurements were performed on the SuperMUC-NG system,
with 10, 20, 40, 80, 160, 320 and 640 nodes, each node is equipped with 48
cores. The runtime is defined to be 100 iterations. To balance the workload
on both levels, weights were first written out and used to re-balance the
workload. Afterward, the re-balanced simulation is rerun. IIn Figure 8.5
both cases are depicted. In the case we only distribute the total number
of cores among the subdomains depending on their workload (cf. Figure
8.5a), the computational effort is higher compared to the case where intra-
and inter-subdomain load balancing (cf. Figure 8.5b) is addressed. In the
case only inter-subdomain load balancing is used, the load inside each sub-
domain is not appropriately distributed, leading to idling time inside the
subdomains, indicated by the gaps between the curves of each subdomain.
Considering only inter-subdomain load balancing shown in Figure 8.5a,
we can recognize that load imbalances introduce, as awaited, a barrier for
the scalability. With increasing node count, the curve, presenting the total
computational time, deviates more and more from the ideal scaling as load
imbalance increases and becomes severe for the scalability. Furthermore,
the vertical distance between the curves becomes larger when compared to
Figure 8.5b, where intra- and inter-subdomain load balancing is used. The
large distance indicates the load imbalance, hence the idling time between
the subdomains. While the innermost and middle domains have a similar
computational time, the outermost domain is much faster in computation,
and therefore, again, idling of the respective cores can be predicted.

In Figure 8.5b we can observe a similar performance of the total time with
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Figure 8.5.: Comparison: Load balancing (LB) for a 3-field coupled sim-
ulation. Runs were executed on SuperMUC-NG from 10 up
to 640 nodes by doubling the node count for each subsequent
data point. (a) Load balancing only between the subdomains
(inter-subdomain). (b) Load balancing for intra- and inter-
subdomain, considering the SPartA algorithm in the simula-
tion framework.

increasing core count when compared to the ideal compute time; thus, the
coupled simulation scales further as expected. Additionally, from the differ-
ent curves representing the scalability of each subdomain, we can perceive
in Figure 8.5b, where both levels of load imbalance are addressed, that the
computational time per iteration of all three subdomains is approximately
the same. Thus, load imbalances are appropriately reduced (see Figure
8.5b) by utilizing the load balancing approach in the simulation framework.
Further, the vertical distance between the curves is smaller compared to
Figure 8.5a. Comparing the total computational time in Figure 8.5a and
Figure 8.5b e.g., 80 nodes, the total compute time differs by around 32%.
At the same time, obviously, for the simulation, where both levels of load
imbalance are addressed, the computation is faster. Using two times more
nodes for this simulation does not provide the desired speed up (2×). We
need to recall that the LB approach we utilize allows relocating elements
along the space-filling curve; hence it has only one degree of freedom for
the relocation (cf. Section 8.2). Furthermore, coupling elements are more
compute-intensive and have a higher workload, even though they might
be distributed on different processes. However, they can still be a barrier
for the scalability when a distribution is reached that allows no further
relocation. Please remember that the coupling also has a certain workload
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Table 8.3.: Strong scalability measurements: Core distribution among the
3-field coupled subdomains

Inter-subdomain LB
Total core (node) count Innermost Middle Outermost
480 (10) 465 13 2
960 (20) 930 25 5
1920 (40) 1860 50 10
3840 (80) 3720 100 20
7680 (160) 7440 200 40
15360 (320) 14880 400 80
30720 (640) 29760 800 160

included in the total compute time. Therefore we do not expect the sum
of the three curves (innermost, middle, and outermost) to result in the
total computational time. The total computational time includes e.g. the
waiting time between the subdomains and the evaluation of the point
values.

In Table 8.3 the core distribution is provided for each run. The required
core ratio between the subdomains is kept the same; as neither the mesh
nor the equations to be solved change over runtime in each subdomain.
From the core distribution shown in Table 8.3, we can recognize that the
innermost subdomain requires most of the cores for each run, which is
approximately 97% of the total core count. Only 3% are used for the
middle and outermost subdomain, with 2.6% and 0.4%, respectively. Even
though the innermost subdomain covers the smallest volume in this 3-field
configuration, it includes most mesh elements since an airfoil structure
is located there and viscous effects play a dominant role, requiring an
appropriate resolution.

Conclusion Partitioned coupling has shown in many studies to be an
efficient strategy to reduce the computational effort of complex multi-
scale simulations. However, this strategy requires an appropriate handling
of load imbalance. The decomposition of the simulation domain into
subdomains and the different treatment of each of them results in differ-
ent workloads. This leads to two sources of load imbalance, namely the
intra-subdomain and inter-subdomain load imbalance. Furthermore, each
subdomain certainly has load imbalance inside the subdomain, as, e.g.,
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coupling elements are more compute-intensive due to the communication
with the coupling tool or elements that are covered by geometry and
have a different workload. Further load imbalance inside and between the
subdomains (intra- and inter-subdomain) is severe as it acts as a barrier
for computational efficiency. With the LB algorithm used in this work,
we can address this bottleneck for coupled multi-scale simulations using
timers that capture the workload per element through actual runs on the
computing system. This approach is adequate for the simulations in this
work, since neither the mesh inside each subdomain nor the scheme order
or the equations to be solved change throughout the runtime. Furthermore,
we were able to show that idling of processes due to inappropriate load
balancing inside the domain can be tackled using the SPartA algorithm
implemented in the simulation framework. In the context of large-scale
coupled simulations, the load balancing can become even more elaborate
when different executables are used for each subdomain. We used the
white-box approach in this work, which uses only one executable for the
entire coupled simulation. The number of executables is essential when
addressing workload imbalances and the distribution of allocated cores
among subdomains. On some HPC systems, sharing one node by several
executables might not be supported (e.g., Supermuc-NG). Thus, each
subdomain has to receive complete nodes, even though this is not required
or might increase the load imbalance further. This is, e.g., comparable to
our investigation in Section 8.5, where the outermost subdomain needed
less than one node for the load balancing procedure.

156



9. Application examples - Complex moving
geometries

This chapter is dedicated to numerical results for different simulation
setups. First, simulation results with the geometry modeled as an artificial
porous material are presented. The focus is on arbitrary shapes of geome-
tries and their motion. Further, we extend our investigation from Chapter
6 and present further challenging test cases, among others, the rotation
of an airfoil profile or the collision of spheres. Finally, we demonstrate
how the numerical method, namely the high-order Discontinuous Galerkin
method, can deal with different numerical challenges. We must emphasize
that all test cases are configured to preserve computational efficiency for
all configurations. Therefore for all cases, we consider large computational
elements and a high-order scheme, which allows for fewer memory require-
ments on the computational system compared to a low-order scheme with
fine mesh elements. It further reduces the unnecessary computation inside
the geometry. Afterward, we exemplary provide performance analysis of
two test cases, where physical results are shown.

9.1. Numerical results - Moving geometry

In this section, different numerical challenges are presented when modeling
moving geometries. Examinations are first dedicated to simulations in
two-dimensional space, where the supersonic motion of a cylinder test case
is shown, and the solution is compared to the literature. Afterward, the
rotation of an airfoil profile is presented, the preparation for the coupled
simulation in Chapter 10. We then move forward and extend the third
dimension in space. Here the collision of two spheres is examined in more
detail. After that, solutions of three spheres are shown; this test case
exemplifies the additional capabilities of the modeling method, where it is
insignificant how many geometries are involved for the simulation; they
can all be modeled by the utilized penalization approach. Lastly, a test
case common in the engineering field, a rotating fan, is presented. It
allows covering the case where a device is a composition of more than one
geometry.
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9.1.1. Supersonic flow - Moving cylinder
The formation of shocks in engineering applications is a common phe-
nomenon. Therefore, it is important that in numerical simulations, the
underlying scheme can deal with those strong discontinuities. They cause
abrupt changes in the state, and stability issues may occur. For high-order
approximation, the challenge is even more difficult to overcome, as we
consider the polynomial series to represent the state. It leads to high
oscillations of the polynomials, which are unavoidable and have to be
appropriately addressed. This test case covers the following numerical
challenges: (i) Moving cylinder with supersonic speed, (ii) shock-wall
interaction and (iii) shock-vortices interaction.

Test case description: A cylinder with diameter d = 0.25 · H is lo-
cated inside the simulation domain, which has the dimensions of [L × H]
[4.0 × 1.0] unit length, with L being the length of the domain and H the
height of the domain. The element size is defined to be H/128 resulting in
a total number of 65,536 elements. The polynomial approximation is of
degree five, and the CFL condition controls the time step, which is fixed
to a factor of 0.3. The geometry is located near the outflow boundary.
The cylinder moves with Mach 1.5 from the outflow towards the inflow
throughout the simulation. It leads to an upstream motion of the cylinder,
and the fluid is streamed into the domain with Mach 1.5. The relative
Mach number is 3.0 for the simulation. Pressure and density have a value
of 1, respectively. We consider a weak co-volume filter of O(24) during
runtime to control oscillations.
Initial conditions Initially, the fluid has a velocity in positive x-direction of
Mach 1.5; the pressure and density are prescribed with the given values.
Boundary conditions Along the upper and lower boundaries, slip walls
are defined. At the left boundary, a supersonic inflow, and on the right
boundary, a supersonic outflow is imposed.

In Figure 9.1 the density is presented for the entire domain. The po-
sition of the cylinder at different stages in time is shown in Figure 9.1a up
to Figure 9.1e. The initial values can be observed ahead of the bow shock,
while behind the shock, density and pressure increase. Behind the cylinder,
the density is decreased due to the supersonic speed of the geometry. The
pressure attained a value that is lower than the atmospheric pressure.
Furthermore, in Figure 9.1a the flow behind the cylinder resembles a light
bulb, which is due to the sudden motion of the cylinder. Additionally,
the flow pattern is influenced by the slip wall boundary conditions at the
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upper and lower boundaries, where the flow is reflected in the normal
direction (cf. Figure 9.1d or Figure 9.1e). Along the upper and lower slip
walls, a vortex street can be recognized, known as Richtmyer-Meshkov
instability, that is well resolved as a high-order scheme is used. Further-
more, the results confirm that the numerical scheme can deal with strong
discontinuities and supersonic motions. The geometry represented here
is well modeled, and its motion can be seen as physically accurate when
considering all appearing phenomena expected from this test case. These
results are in agreement with the report of P. Hu et al. [50]. They also
used the Discontinuous Galerkin method to discretize the fluid dynamic
equations while considering a level-set approach for modeling the geometry.
Comparing the outcomes of our work and those of P. Hu et al., we can
observe that our simulation results are well resolved, with appearing small
scales that are not apparent in their outcomes. However, in [23] the same
test case is used, there we can recognize small scales as in our case, as
they use a very fine computational mesh for the simulation. All physical
phenomena occurring in this test case can be reproduced and compared to
both works [23, 50]. In Figure 9.2 the velocity magnitude for the same test
case is shown. Again, we can discern how well small scales are resolved.
The physical phenomena are as expected, e.g., the high velocity magnitude
behind the cylinder due to the supersonic motion of the cylinder.

We can conclude that this test case provides different numerical chal-
lenges, which are troublesome for many algorithms and may cause stability
issues, resulting in not realizable simulations. The challenges can be seen
as (i) high-order spatial discretization and supersonic flows, (ii) supersonic
motion of the geometry and (iii) strong discontinuities (shocks). High-
order methods are mostly avoided for simulations with strong discontinuity,
as they imply the Gibbs phenomenon. The results show that the utilized
high-order discretization can simulate these kinds of problems despite the
mentioned challenges.

The simulation of supersonic flows is therefore challenging as the high
velocity can provoke stability issues, resulting in small mesh elements
(increasing resolution) and tiny time steps. However, due to appropriate
co-volume filtering, the overall solution can be smoothed by maintaining
high oscillations of the underlying scheme under control and therefore
stabilizing the simulation without further refinement in space. This is also
the case for the motion of the geometry, which implies a sudden change
in the flow field. Furthermore, due to the high-order used for the spatial
discretization of the fluid dynamic equations, the different scales can be
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(a)

(b)

(c)
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Figure 9.1.: Cylindric geometry moves from an initial location near the
outflow towards the inflow with a relative Mach of 3.0. The
movement is captured showing the density after a simulation
time of (a) 0.35, (b) 0.5, (c) 0.8, (d) 1.2 and (e) 1.5.
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(a)

(b)

(c)

(d)

(e)

Figure 9.2.: Cylindric geometry moves from an initial location near the
outflow towards the inflow with a relative Mach of 3.0. The
movement is captured showing the velocity after a simulation
time of (a) 0.35, (b) 0.5, (c) 0.8, (d) 1.2 and (e) 1.5.
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captured with high resolution as well as the shock structure. Hence we can
conclude that even though we consider supersonic flow, the movement of
the geometry upstream, and high-order polynomials for the approximation,
we can still achieve a detailed insight into occurring physical phenomena.

9.1.2. Rotating airfoil
The next test case is about a rotating airfoil of type NACA0012, where the
ability of the embedded boundary method for more complex geometries
is further examined. The fluid is at rest, while this changes with the
rotational motion of the airfoil.

Test case description: The airfoil profile NACA0012 has a chord length
of c and is located with its leading-edge at P(0.0, 0.0). Initially, the angle
of attack is 0.0 for the airfoil. The domain size is of size [8.0c × 8.0c].
The pressure has a value of 1, and the density is 1. The velocity is 0.0
in all spatial directions. We use a polynomial degree of five; the mesh is
refined with an element size of c/32. The spatial resolution is chosen to be
fine enough to capture small scales produced by the rotating airfoil. The
rotational motion of the airfoil is anti-clockwise, with a rotational speed
of 2πfr, with r = c and the frequency f = 6.283 · 1/t. The time step size
is controlled by the CFL condition with a Courant factor of 0.5.
Initial conditions The fluid is at rest, and the pressure and density are
defined as mentioned before.
Boundary conditions The boundary conditions along the domain bound-
aries are set to Dirichlet boundary conditions, prescribing all quantities
in primitive variables. It allows avoiding stability issues of the numerical
simulation, as the formation of vortices is expected, which will eventually
travel to the outer boundaries without dissipating since physical viscosity
is neglected.

As previously mentioned, this test case is only a showcase. We want
to demonstrate that our approach can be used for modeling more complex
geometries and their motion, common for different engineering applications.
In the time series of the simulation results (see Figure 9.3), the Schlieren
image (density gradient) is shown. We can observe how the fluid, initially
in rest, is influenced by the rotating geometry and causes the formation of
vortices. Since this test case is simulated in two-dimensional space and
no physical viscosity is present, vortices travel throughout the simulation
domain without dissipating. Therefore vortices keep their shape or increase
in size when merging with other vortices.
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(a) (b) (c)

(d) (e) (f)

Figure 9.3.: NACA0012 profile modeled as an embedded geometry rotates
in the simulation domain, where the fluid is at rest at the
beginning of the simulation. The rotational motion is captured
by showing the Schlieren image (density gradient) after a
simulation time of (a) 0.0. (b) 0.2, (c) 4.0, (d) 8.0, (e) 12.0
and (f) 14.0.

Since the boundary conditions are set to Dirichlet for all quantities, vortices
are trapped inside the domain. They can not leave the simulation domain
when reaching the outer boundaries (see Figure 9.3f). Further, due to
the rotational motion of the airfoil, occurring vortices are influenced by
the rotating airfoil, which can be noticed in, e.g., Figure 9.3d or Figure
9.3f. Keeping track of this change, we can recognize how most vortex
structures are concentrated around the geometry, as the airfoil prevents
their motion. The strongest vortices (black) are due to the first movement
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of the airfoil, causing the sudden disturbance of the flow field that was at
rest (cf. Figure 9.3a). Furthermore, we can observe that the trailing edge
of the geometry causes perturbations resulting in strong waves traveling
towards the boundaries. Again the strongest perturbation is caused due to
the motion at the beginning of the simulation. As the boundary conditions
try to fulfill the predefined state, reflections appear that influence the fluid
motion further (see, e.g., Figure 9.3c upper boundary). The mentioned
reflections are not of importance for this test case, as the purpose is differ-
ent, but it can be addressed through sponge layers (cf. Section A.4) that
absorb those reflections at the boundaries.

9.1.3. Collision of two moving spheres
In Section 9.1.1 and Section 9.1.2 we presented different challenges that
are common in engineering applications, first the formation of shocks and
second the rotation of devices (in our case, airfoil profile). To further
investigate the embedded geometry modeling, an additional aspect is its
suitability for colliding objects. It might be challenging, as the geometries
reach their respective interfaces and part ways according to a predefined
function. Further, this is from the numerical perspective not always easily
practicable, as, in the area where the geometries interact, high compres-
sion of the fluid occurs, leading to high density and pressure gradients.
Therefore a three-dimensional simulation is examined, where two spheres
move with a cosine function and initially have no distance to each other.
Throughout the simulation, both spheres move away from each other, reach
a maximum position and move back to their respective origin, where they
again touch.

Test case description: The simulation domain has a size of [L × H × W ]
= [4.0 × 4.0 × 1.0] unit length. The computational elements have a
size of W/16 resulting in 65,536 elements in total. Both spheres are lo-
cated in the middle of the domain, with their contacting interface being at
x = 0.0, y = 0.0 and z = 0.0. The original center position of the first sphere
is at C1(0.0, 0.2, 0.0), the second sphere is located at C2(0.0,−0.2, 0.0) (cf.
Figure 9.4d). The translational movement is described by a cosine function
Y (t) = Y0 +A · cos(2π · t) in y-direction, and its time derivative gives the
velocity of the spheres. Where Y0 is the shift of the sphere position in
y-direction at t = 0 and A the amplitude. The amplitude is defined to be
0.1 and the simulation time is 10 unit time. The diameter of each sphere is
0.4 ·W . The Euler equations are discretized with a scheme order of O(8).
The high-order scheme allows to model the geometries accordingly and
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capture flow features with high accuracy. A co-volume filter of O(24) is
applied to keep numerical oscillations small enough to maintain stability.
The time step size is controlled by the CFL condition and a Courant factor
of 0.3.
Initial conditions At time t = 0.0 the velocity in all spatial directions is
set to be 0.0, while the density and pressure are prescribed with a value of
1.0, respectively.
Boundary conditions The boundary conditions are defined to Dirichlet
conditions, where all primitive variables are defined. The z-direction is
defined to be periodic. The choice of primitive boundaries allows avoiding
stability issues when vortices travel towards them over the simulation time.
Integrating a sponge layer at the outer boundaries would tackle the stabil-
ity issue and absorb vortices at the boundaries. However, this measure
requires a larger computational domain to place the artificial sponge layers
(cf. Section A.4). As this section aims to give a small overview of the
application possibilities of the modeling method introduced in this work,
the Dirichlet boundary conditions are used.

In Figure 9.4 the motion of both spheres away from each other and towards
each other is shown for different simulation times. The figures illustrate
the different positions of the spheres throughout the simulation. In Figure
9.4a, Figure 9.4e and Figure 9.4i both spheres are moving from their initial
position, towards their maximum position, which they reach in Figure 9.4b,
Figure 9.4f and Figure 9.4j. Afterward, both geometries move again back
to their original position, that can be observed in Figure 9.4c, Figure 9.4g
and Figure 9.4k, which they finally reach in Figure 9.4d, 9.4h and Figure
9.4l. This is also the point, where both spheres touch each other. Zoom-in
into the contact region between the two spheres at t = 9.8 (left) and t = 10
(right) for the variable density. White lines indicate the computational
mesh. Due to the motion of the spheres, waves can be recognized that
move towards the outer boundaries. In the position where both spheres
touch each other, the fluid is strongly compressed and squeezed out of the
contact area. The density and pressure end up with strong gradients in
that region (cf. Figure 9.5 and Figure 9.6 right zoom-in). However, the
numerical scheme stays stable and can excellently control this situation.
In Figure 9.5 and Figure 9.6 a close-up of the contact area is presented.
The numerical solution of density and pressure is shown on the left side
of each figure after t = 9.8, on the right for t = 10, respectively. White
lines in the background indicate the computational mesh. The pressure
and density values between the two spheres are low as both geometries
move towards each other. The fluid in between can ”escape” from this
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9.4.: Interaction of spheres, modeled as an embedded porous geom-
etry. Translation movement according to a sine function, with
the fluid initially being at rest. The sinusoidal movement is
captured by showing the velocity magnitude after a simulation
time of (a) 0.25. (b) 0.5, (c) 0.75, (d) 1.0, (e) 5.25, (f) 5.5,
(g) 5.75, (h) 6.0, (i) 9.25, (j) 9.5, (k) 9.75 and (l) 10.0. The
central point of the upper cylinder is at C1(0.0, 0.2, 0.0) and
the central point of the lower cylinder is at C2(0.0, -0.2, 0.0)
during initialization.

situation by moving to the left and right sides. A closer examination of the
contact area, e.g., in Figure 9.5 (the figure on the right), reveals that the
contact point is approximated with limited accuracy. While this inaccuracy
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Figure 9.5.: Zoom-in into the contact region between the two spheres at
t = 9.8 (left) and t = 10 (right) for the variable density. White
lines indicate the computational mesh.

Figure 9.6.: Zoom-in into the contact region between the two spheres at
t = 9.8 (left) and t = 10 (right) for the variable pressure.
White lines indicate the computational mesh.
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becomes apparent in a close-up solution inspection, it does not lead to
numerical instability. Thus, this setup illustrates nicely how the embedded
boundary enables a straightforward high-order discretization of arbitrary
geometries. Small features, like gaps or cavities, are gracefully taken care
of, with a resolution up to the accuracy of the employed discretization.
Due to the collision of the spheres, small jet-like phenomena appear that
migrate towards the outer boundary.

This example in three-dimensional space presented the simulation result
of a typical scenario in the engineering field, the collision of two objects.
The underlying high-order numerical method maintained stability, and
the utilized modeling method allowed for appropriate modeling of both
spheres. Even though we used a high-order of O(8), no stability issues were
encountered. Moreover, the high-order Discontinues Galerkin scheme can
handle collision of geometries accordingly, which faces high pressure and
density gradients at the contact interface. Furthermore, the geometries
are adequately modeled, and the high-order scheme nicely provides the
simulation results.

9.1.4. Collision of three moving Spheres
In the former section, a three-dimensional simulation with two spheres
was examined. The next test case presented here involves three spheres.
The geometries are located close to each other so that they get in contact.
Throughout the simulation, they move in different directions until a prede-
fined maximum position is reached, where they again take the same path
to return to their respective original location. The simulation domain is
comparable to the previous test case shown in Section 9.1.3.

Test case description: The three-dimensional test case has a length
of L = 1 unit length, a height of H = 1, and a width W of 2.6 unit
length. The first sphere is located at C1(−0.1, 0.0, 0.0), the second at
C2(0.0, 0.45, 0.0) and the third one at C3(0.0, 0.0,−0.45). In each spatial
direction, we have located one moving sphere. The first sphere moves
in x-direction and has a diameter of L/10, the second sphere moves in
y-direction and has the same diameter as the third sphere, which moves in
the z-direction and has a diameter of W/5. A cosine function controls the
motion of the geometries, that is defined as C0 +A · cos(2πt) with A being
the amplitude, which is 0.1 and C0 is the displacement in each direction.
The first sphere is shifted by -0.1 in x-direction, the second sphere by 0.45
in y-direction and the third sphere by −0.45 in z-direction. The velocity
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is prescribed to be the time derivative of the displacement function. The
compressible Euler equations are discretized with a scheme order of O(8).
For the computational mesh, an element size of L/64 is defined, resulting in
98, 304 elements in total. The time step is controlled by the CFL condition
with a Courant factor of 0.3. The problem is simulated for 10 time units.
A co-volume filter of O(24) is used to keep numerical oscillations small.
Initial conditions Initially, the fluid is at rest, and the spheres are in
contact. Further, the density and the pressure are defined to be 1.0 and
1.0, respectively.
Boundary conditions Along the upper, lower, left, and right boundary, the
Dirichlet boundary conditions are applied, where all primitive variables are
defined. Along the width of the domain, we prescribe periodic boundary
conditions to allow for an endless array of motion of the geometry.

(a) (b) (c)

Figure 9.7.: Collision of three spheres with different starting positions.
In the background, the velocity magnitude is depicted. In
(a), the maximum position of the spheres, the largest distance
between the geometries after 9.5, is presented. (b) The spheres
move towards their original location after 9.8 simulation time,
and in (c), the spheres have reached their respective original
position after 10 of simulation time.

Figure 9.7 illustrates three different positions of the spheres during the
simulation. The first image presents the position of each sphere when
reaching the predefined maximum position (cf. Figure 9.7a), which is also
the largest distance between the spheres. In Figure 9.7b the spheres move
again towards each other, between the geometries, we can observe how
the fluid is pressed out of that region, noticeable through the high velocity
value. The spheres return to their original location at t = 10, depicted
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(a) (b)

Figure 9.8.: Collision of three spheres at t = 9.8, when the spheres move
towards each other. In the background, in (a) the density and
in (b), the pressure is shown.

in Figure 9.7c. Here we can observe that the fluid close to the contact
region has a high velocity value. It previously was between the geometries
and has been pressed out, resulting in high velocity magnitude. Further
in all figures in Figure 9.7 we notice how the fluid that initially was at
rest has been disturbed by the motion of the spheres, resulting in vortex
structures (cf. Figure 9.9). In Figure 9.8 the solution for density and
pressure are shown in the background for the simulation time t = 9.8. For
both variables, we can observe high values in the vicinity of the contact
area between the middle and upper spheres. As the spheres move towards
each other, the upper sphere moving downwards and the middle sphere
moving from the right to the left side of the domain, the fluid is compressed
between the surfaces of the upper and middle sphere. This results in high
pressure and density values in that region (cf. Figure 9.8b and Figure
9.8a). With the motion of the middle geometry, the fluid is directed by
the geometry to the left (cf. Figure 9.7b). In Figure 9.9 the Q-criterion for
a value of 7.0 is shown. The velocity magnitude colors the contours. The
high velocity magnitude can be found between the geometries, where the
fluid is compressed. Away from the geometries, small and larger contours
are visible, caused by the motion of the spheres, as the fluid initially was
at rest. Further, throughout the simulation time, the spheres move ten
times towards and away from each other, resulting in further disturbance
of the fluid flow. This test case demonstrated how well the numerical
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Figure 9.9.: Contour plot of the Q-criterion for a value of 7.0, colored by
the velocity magnitude after 9.6 simulations time.

scheme could deal with multiple geometries that move and collide. The
main concern of such a simulation is the numerical stability, which the
solver excellently handled.

9.1.5. Rotating fan
The previously shown simulation results were simulated with the com-
pressible inviscid Euler equations. We now include the physical viscosity
and solve the compressible Navier-Stokes equations for a rotating fan with
three NACA0012 airfoil profiles. The purpose of this test case is to show
that the numerical scheme can deal with complex geometries, which are a
composition of more than one geometry and can move. This test case is
especially of interest, as many engineering devices are composed of different
geometrical parts.

Test case description: The simulation domain has a length of L = 10,
a height H of 10 and a width W of 2 unit length. The computational
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domain is discretized with 102, 400 cubical mesh elements, with an element
size of W/16. The fluid dynamic equations are discretized with a scheme
order of O(6). The chord length c of the airfoil is defined as L/10 and is
extruded in the z-direction with respect to the width of the domain. The
arrangement of the three blades of the fan is as follows: Initially, the first
blade is positioned at an angle of 90, the second blade at 210 and lastly,
the third blade at 330. The fan rotates counter-clockwise with a frequency
of 6.283 · 1/t around the center point P(0,0,1). The Reynolds number has
a value of 67, 114 with respect to the chord length and the Mach number
is 0.1. The rotational speed of the fan, is 2πfr, with r = c.
Initial conditions The background pressure is 1, the density is 1, and the
fluid is initially at rest.
Boundary conditions At almost all boundaries of the domain, Dirichlet
boundaries are defined, where the background pressure and density are
prescribed. Further, all gradients of the state variables are predefined to
0.0. The width of the simulation domain has periodic boundaries.

In Figure 9.10 the time evolution of the rotating fan for the simulation
times of 5, 10, 15 and 20 is shown from Figure 9.10a to Figure 9.10d,
respectively. The pressure is normalized by the background pressure and
is shown as a color field in Figure 9.10. White streamlines illustrate the
velocity pattern in the vicinity of the rotating geometry. For example, in
Figure 9.10a three strong vortices appear that is due to the initial motion
of the fan. Those vortices are still visible in Figure 9.10d, which have
moved towards the boundaries and are far away from the obstacle. At the
tip of the blades, the meeting point of the highest and lowest pressures
can be found. Pressure waves are nicely presented and propagate through
the computational domain with a spiral pattern. New waves disturb the
outgoing pressure waves as from Figure 9.10b to Figure 9.10d. In the
vicinity of the fan, the flow is captured in circulation areas confined by the
blades, which is noticeable through shown streamlines in that area. Thus,
the numerical scheme wsell represents the geometries, and the observed
behavior agrees with the expectations from the physical perspective, e.g.,
high pressure values at the tip of the blades. Further, the modeling method
utilized in this work allows for the composition of more than one geometry
without any restrictions from the modeling perspective, and the underlying
high-order scheme maintains numerical instability.
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(a) (b)

(c) (d)

Figure 9.10.: Rotation of a fan composed by three NACA0012 airfoil pro-
files. The pressure is normalized by the background pressure.
The rotational motion is captured after: (a) 5, (b) 10, (c)
15 and (d) 20 unit time. The normalized pressure is shown
in the background. The streamlines (white) illustrate the
velocity flow pattern.
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9.2. Performance results - Moving geometry

This section is dedicated to the performance study of the previously shown
test cases. Our investigation includes the rotating fan test case (see Section
9.1.5) and the collision of three spheres (cf. Section 9.1.4). Both test cases
are in three-dimensional space, while in the first test case, the compressible
Navier-Stokes equations are solved, and in the second test case, the inviscid
Euler equations. Due to the presence of the geometries, the computational
elements have different workloads. They, therefore, require a dedicated
strategy to allow for efficient computation and the reduction of load
imbalance. As mentioned in Section 8.2 the SPartA algorithm is deployed
to address load imbalances inside the simulation domain. Simulations
are carried out on German’s national supercomputing system Supermuc-
NG, hosted by the Leibniz-Rechenzentrum der Bayerischen Akademie der
Wissenschaften in Munich. Each simulation is executed for 100 iterations to
obtain the computational weights for the load balancing with SPartA. They
are dumped to the disc, and the simulation is restarted for the predefined
iterations. The weights are the summation of the computational time per
element for 100 iterations to level out jitters.

9.2.1. Rotating fan
A detailed description of this test case and physical results are presented in
Section 9.1.5. This test case has, as previously mentioned, a computational
mesh that contains in total 102, 400 elements. A box of size L × H × W
= [1.125 × 1.125 × 1.125] unit length is used to limit the search space for
the masking function χ (cf. Section 5.5) by the solver. The box allows for
efficient computation, as only in the predefined area the solver is required
to search and update the state of the moving geometry throughout the
simulation time. Consequentially, only in that area, additional computa-
tion is necessary. The number of elements that are covered by the box
is 4, 608, with 18 elements in x-direction, 16 elements in y-direction and
16 elements in z-direction, resulting in 995, 328 degrees of freedom per
variable. Only the fluid dynamic equations are solved for the rest of the
domain, resulting in 97, 792 elements, with 21, 123, 072 degrees of freedom
per variable in total. The area outside of the box has roughly 21× more
degrees of freedom. In Figure 9.11 the computational weights for the
elements in the simulation domain are exemplary shown. Figure 9.11a
illustrates the entire simulation domain and Figure 9.11b a zoom-in into
the area where the fan is present and the limiting box is located. Fur-
ther, white contour lines indicate the location of the fan geometry inside
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(a) (b)

Figure 9.11.: Computational weights are presented for the rotating fan. In
(a), the entire computational domain is shown, where white
lines indicate the contour of the fan. In (b), a zoom-in into
the location of the fan is provided.

the simulation domain. We need to emphasize that the representation
of the fan is based on polynomials as required by the numerical scheme
used in this work. For visualization purposes, we consider voxelization to
allow for further analysis. Therefore the odd appearing fan blade at an an-
gle of 90 is only a post-processing artifact compared to the other two blades.

From the color scale, we can observe that elements outside the box have a
similar compute time (weight). That is also the case for elements inside
the box, even though they are slightly diverse. Elements solving only the
fluid dynamic equations (blue) require a compute time of roughly 0.5 s
for 100 iterations, while elements embraced by the predefined box need
around 4× more time for the computation.

Assuming the computational weights are not provided in this section,
then we can estimate the computational effort per element inside the
box, using Eq. (6.15). Our test case is a polygon, where the surface of
the fan is represented through three blades. Each blade has its list of
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vertices for the surface representation. The list includes 64 vertices for
one blade, which results in a computational time of 7.3869 · 10−3 s for all
vertices (3 blades) per integration point for 100 iterations. Considering
one element, that has a total number of 63 = 216 integration points,
then each element has an additional computational time of approximately
7.3869 · 10−3 s · 63 = 1.5956 s, thus we can estimate the required compute
time as 1.5956 s+ 0.5 s = 2.0956 s for elements, that are covered by the
limiting box. Comparing our estimation and the weights shown in Figure
9.11, we can emphasize that our estimation is in excellent agreement with
the actual computational time from the simulation.

In Figure 9.11b one element has a lower computational weight (yellow)
inside the fan wing at an angle of 210, which is due to the mode reduction
feature introduced in Section 6.6. It allows avoiding expensive computation
inside the geometry, where it is not of interest. However, as previously
mentioned, we intend to use significantly large computational elements
and a high-order scheme to allow for efficient and accurate computation.
Therefore the test cases introduced in Section 9.1 are configured with
the aim of efficient computation, where large elements are used and a
high-order scheme utilized. One might expect to find the same reduced
element in the wing on the left side at an angle of 330. However, we need
to keep in mind that the integration points represent the fan. Any tiny
shift in its positioning on the computational mesh can break the symmetry
and result in a slightly different geometry representation. The element
is no longer entirely inside the respective element but has a tiny part of
the geometry boundary. By that, it is no longer qualified for the mode
reduction feature.

In Figure 9.12 the strong scaling measurement and the parallel efficiency
are presented. The investigation starts with 4 compute nodes (192 cores)
up to 256 nodes (12,288 cores), where the node count is always doubled
for the following data point. Three curves are shown in the figures, repre-
senting the ideal scaling (red), the strong scaling without load balancing
(blue), and the scaling with load balancing (black). The load balancing
strategy utilized in this work can adequately reduce the load imbalance.
The computational effort is reduced by around 33% compared to where
no load balancing is used for this particular test case. Furthermore, the
computational effort still decreases with an increasing number of cores
(black curve). After the third data point, the black curve deviates from
the ideal scaling curve with a doubling core count, yet the computational
time decreases further.
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Figure 9.12.: Strong scaling and parallel efficiency measurements for the
rotating fan test case with 4 nodes, up to 256 nodes on
Supermuc-NG. Each compute node is equipped with 48 cores.
In (a) the strong scaling measurement and in (b) the parallel
efficiency is shown.

To explain the reason for this deviation, we consider a small example,
shown in Table 9.1. Our example takes 16 computational elements into
account. Some have a weight of 1, while others of 4, as in our test case, with
elements inside the box roughly 4× more expensive in the computation.
Furthermore, the 16 elements are distributed among 8 ranks (cores) for
the computation. Through the summation of all element weights, the total
computational effort is 28. If no load balancing strategy is incorporated
for the simulation, the computational elements are equally distributed
among available ranks. However, not all elements have the same workload.
This practice will affect the performance badly, as R2 and R5 have all
compute-intensive elements to process (cf. Table 9.1 second row). This
is comparable to our observation in Figure 9.12b, where the efficiency is
badly affected (cf. blue curve), as the computational elements are not
accordingly distributed. However, with load balancing (LB), the prefix is
for each rank 28/8. Thus the total sum of the weights is divided by the
number of ranks, resulting in 3.5. The SPartA algorithm can re-distribute
the elements according to the prefix, yet, it needs to follow the space-
filling curve for the re-distribution. It allows for one degree of freedom
for the relocation of the elements among available ranks. The last row
in Table 9.1 presents the new distribution after LB. We can observe that
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Table 9.1.: Example of the SPartA algorithm, using 16 elements and 8
ranks

Rank before LB R0 R1 R2 R3 R4 R5 R6 R7
Weight of elements 1 1 1 1 4 4 1 1 1 1 4 4 1 1 1 1

Prefix sum 0 1 2 3 4 8 12 13 14 15 19 23 24 25 26 27
Optimal range 0 < 3.5 3.5 − 7.0 7.0 − 10.5 10.5 − 14.0 14.0 − 17.5 17.5 − 21.0 21.0 − 24.5 > 24.5
Rank after LB R0 R1 R2 R3 R4 R5 R6 R7

the algorithm tries to re-distribute the elements such that each rank has
a similar workload. However, we can also recognize the limitation of our
load balancing strategy due to the restriction given by the space-filling
curve. Some ranks still have less workload to process. We further need to
emphasize that each rank has to process at least one computational element.

In our example, all ranks have less workload when compared to the defined
prefix. For example, R1 has only one element as well as R2. Suppose the
number of ranks is further increased, it is impossible to find a distribution
that further reduces the computational effort, as those compute-intensive
elements already occupy a rank on their own. Furthermore, as we restrict
the SPartA algorithm to follow the space-filling curve, we have a specific
redistribution limitation. However, we must emphasize that even though
this limitation exists, the imbalance can be accordingly reduced, as shown
in Figure 9.12. Thus the deviation from the ideal scaling can be explained
by the limitation we encounter when redistributing the computational ele-
ments and only allowing for relocation according to the space-filling curve.
Further, we can observe from Figure 9.12b that the parallel efficiency is
much higher compared to the case where no LB is used (blue curve). The
efficiency drops for the case with LB (black curve), but we can still achieve
a parallel efficiency of over 80% for up to 6, 144 cores. With 12, 288 cores,
the efficiency drops to 65%, which is much higher compared to the case
where no LB is used. The parallel efficiency there (blue curve) attains a
value of less than 30%. We need to emphasize that the reference time used
to compute the parallel efficiency is the first data point of the balanced
test case. Since this test case is too large to be executed sequentially, the
first balanced data point serves as reference for both test cases (no LB
and with LB).

We now continue our performance investigation with a second test case,
the collision of three spheres, as shown in Section 9.1.4.
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9.2.2. Collision of three moving Spheres
In Section 9.1.4 we already have shown the physical results of this test case.
We now continue our investigation in terms of performance examination.
Again the strong scaling behavior, as well as the parallel efficiency, is
studied (cf. Figure 9.13). For efficient computation, the search space of
the masking function χ is again limited to a box of size L × H × W
= [0.7 × 0.85 × 0.85] unit length, thus 12 elements in the x-direction, 14
in the y-direction and 14 elements in the z-direction. The computational
domain contains 98, 304 elements in total, where 2, 352 elements are inside
the box used to find and update the location of the masking function.
Thus, 95, 952 elements only have to compute the fluid dynamic equations
and, therefore, have a smaller workload than the 2, 352 elements that
additionally need to compute the masking function. Elements inside the
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Figure 9.13.: Strong scaling measurement and parallel efficiency for the
collision of three spheres, using 8 nodes up to 128 nodes on
Supermuc-NG. Each compute node is equipped with 48 cores.
In (a) the strong scaling measurement and in (b) the parallel
efficiency is shown.

box approximately make 2.45% compared to elements that are outside
of the box. In Figure 9.13a the strong scaling measurement is presented,
starting with 8 nodes (384 cores), up to 128 nodes (6, 144 cores). Obviously,
without LB (blue curve), the computational effort is significantly higher
than the case where LB is considered (black line). With load balancing
measures, the computational cost for 100 iterations can be reduced by
around 29%, compared to the case where no load balancing is used. Thus,
even though the scaling behavior is not equal to the ideal scaling, it is
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9. Application examples - Complex moving geometries

very close and provides exceptional savings in the computation compared
to the case where no load balancing is used. The same behavior can be
observed for the parallel efficiency (cf. Figure 9.13b), with an efficiency of
over 70% for 128 nodes. However, the parallel efficiency for the case, where
no load balancing is used, is worse and results in less than 20 %. Thus
the load balancing strategy utilized in this work allows for the decrease of
load imbalance and efficient computation.

Conclusion In this chapter, we presented two- and three-dimensional
simulation results of curved geometries in motion. The setups are specifi-
cally chosen to highlight possible troublesome scenarios for the high-order
discretization. Presented simulation results are in excellent agreement
with physical expectations and highlight how well the deployed method
can overcome different challenges. Furthermore, due to the presence of
geometries and the limiting box used to identify the masking function and
reduce unnecessary computation, the workload inside the simulation do-
main is diverse. Elements inside the box have a more significant workload,
while elements outside the box are less compute-intensive. It results in
load imbalance that can be accordingly addressed through the SPartA
algorithm utilized in this work. Finally, we demonstrated how well the
computational cost could be reduced by employing strong scaling measure-
ments and parallel efficiency plots. In both explained cases, the decrease
in computational time was more than 28% and the efficiency over 60% for
the highest node count.

With the outcomes of this and the previous section, we continue our
investigation. We realize a 3-field coupled simulation with a moving airfoil
that perturbs the fluid flow throughout the simulation time and acts as a
sound source.
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10. Numerical results - Coupled 3-field
simulation

In this section, numerical solutions for a coupled multi-scale problem
are presented. We investigate the test case where an airfoil varies its
angle of attack throughout the simulation time and perturbs the fluid
flow. The primary purpose of this study is to capture the flow-induced
noise due to the jet-inflow and the geometry’s motion. Moreover, we
aim to demonstrate that the coupled simulation is well suited to produce
meaningful physical results and efficiently computes multi-scale problems.
The coupled simulation was executed on the hawk system hosted by the
High-Performance Computing Center (HLRS) in Stuttgart, Germany.

Test case description: The simulation domain is decomposed into
three subdomains. First, in the innermost domain, the compressible
viscous Navier-Stokes equations are solved. Here an airfoil profile of type
NACA0012 is located. Next, the fluid dynamic equations are simpli-
fied away from the viscous effects, and the compressible inviscid Euler
equations are solved in the middle domain. Finally, away from all nonlin-
ear effects, the equations can be further simplified. Here the outermost
subdomain is located, and the linearized Euler equations are solved. A
sketch of this coupled simulation is shown in Figure 10.1. The width of
all subdomains is considered to be 4 m, with periodic properties at the
boundaries. The Mach number is set to 0.4 and the Reynolds number Re
is 10, 790, 418, with respect to the chord length and the kinematic viscosity
µ = 1.532 · 10−5 m2/s. The time step ∆t is predefined to 1.5 · 10−6 s for
all subdomains.

Innermost subdomain: Navier-Stokes domain This domain solves
the Navier-Stokes equations. A NACA0012 airfoil is located with its center
leading edge at P(0.0, 0.0, 0.0). It has a chord length of 1 m, a wingspan
of 4 m (infinity, due to periodicity) and a maximum thickness of 0.12 m.
The airfoil moves throughout the simulation time with a predefined sinus
function, that is defined as α(t) = A · sin(2π · t). The amplitude A has a
value of 0.213, and the time is given with t. We consider, as previously
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10. Numerical results - Coupled 3-field simulation

(a)

Innermost 

(b)

Middle 

(c)

Figure 10.1.: Sketch of the 3-field coupled simulation: Decomposition of
the problem size into smaller subdomains. (a) The inner-
most subdomain includes a NACA0012 airfoil and solves the
compressible Navier-Stokes equations. (b) In the middle sub-
domain, the Euler equations are solved, and a coarser mesh
is used. (c) The outermost subdomain solves the linearized
Euler equations and has an even coarser computational mesh.
Different mesh levels are highlighted through more signifi-
cant elements. Gray areas close to the boundaries indicate
the location of the sponge layers. Dark blue lines mark the
boundaries involved in the coupling.

mentioned, an implicit-mixed-explicit (IMEX) time-stepping scheme for
the discretization in time, where the stability of the numerical scheme is
dependent on the CFL condition, which can be computed according to Eq.
(3.24). From Eq. (3.24), we know that the time step is ∼ h2/O4 with O
signifying the scheme order and h the element length of the computational
mesh. A moderate scheme order of O(4) is used, enabling a reasonable
simulation time with larger time steps. Small mesh elements are chosen to
capture small-scale phenomena. This practice permits larger time steps,
as the element size only affects the stability criterion by a power of 2.
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Further, we need to emphasize that the previously mentioned time step
size of 1.5 · 10−6 s for the coupled simulation is restricted by the stability
of this subdomain.

The mesh of this subdomain is the finest when compared to the mid-
dle and outermost subdomains. It consists of two different element lengths.
Close to the airfoil geometry, the elements are chosen to be smaller, being
1/32 of the chord length of the airfoil. It allows resolving the boundary
layer at the geometry interface. Away from the airfoil, the mesh elements
become larger by a factor of 2. This subdomain has a size of [-2, -2, -2]
x [4, 2, 2] m (cf. Figure 10.1a). The smaller cubical elements have an
edge length of 0.03125 m and the coarser ones a length of 0.0625 m. In
total this subdomain contains 511, 488 elements, with 16, 128 elements
involved in the coupling (coupling elements), resulting in a total number of
258, 048 coupling points. The Prandtl number Pr is 0.716, with a thermal
conductivity of 0.02587 W/(mK) and a specific heat of 1003.691 J/(kgK).
The ideal gas constant R is 287.078 J/(kgK) and the temperature T is
initially 20 ◦C.

Initial conditions Initially, the fluid is at rest with ~v = [0.0, 0.0, 0.0] m/s.
The background pressure is 101325 Pa and the background density is
1.204 kg/m3.

Boundary conditions The fluid is streamed into the simulation domain
from the left boundary through a jet-inflow. The fluid velocity is ramped
over a time of 0.15 s into the domain using a sine function sin(π/4 · t).
The fluid velocity that enters the simulation domain through the jet is
defined as

ux = ûx · 0.5 ·
(

1 + tanh
[
r0

2d

])
(10.1)

with ûx = Ma · c, whereas c is the speed of sound and has a value of
343.25 m/s and r0 is the radius of the jet with a size of 0.5 m. The jet
center is all time located at J(0.0, 0.0, 0.0) and the momentum thickness
is predefined as d = r0

20 . The velocity in y- and z-direction is defined to be
0.0 m/s. The density is adapted to the ramped inflow velocity, according
to the Crocco-Busemann relation [15]

ρ = ρ̂ ·
(

1 + 0.5 · (γ − 1) ·Ma2 · ux

ûx
·
(

1 − ux

ûx

))−1
. (10.2)
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10. Numerical results - Coupled 3-field simulation

Apart from the left boundary, all other boundaries are involved in the
surface coupling, where the coupling partner provides the required vari-
ables and vice versa. The boundary in the z-direction is, as previously
mentioned, defined as periodic.

Middle subdomain: Euler domain The middle subdomain solves the
compressible inviscid Euler equations. The domain size is defined to [-2, -10,
-2] x [47, 10, 2] m, where an area of [-2, -2, -2] x [4, 2, 2] m is removed from
the simulation domain, since the innermost subdomain is located there (cf.
Figure 10.1b gray crossed box). With that both subdomains coincide only
at their interfaces (cf. Figure 10.1b). This domain is located between the
innermost and the outermost subdomain. The primary purpose of this
subdomain is to allow for smooth transport of the information from the
innermost subdomain up to the outermost subdomain, as both domains
(innermost and outermost subdomain) require different configurations due
to the different scales that have to be resolved in each of them, respectively.
An abrupt change of the physical equations and the spatial configura-
tion from the innermost subdomain directly to the outermost can result
in numerical instability and visible discontinuities at the coupling interface.

The mesh is coarser in this domain while the scheme order is increased.
Thus, as shown in Section 6.1, we can attain with the same number of
degrees of freedom a numerical solution that has a smaller error for higher
scheme orders compared to the case, where a low-order scheme (e.g., O(2))
is used. In [33] we further showed for a 2-field coupled scenario that in
order to achieve a similar approximate accuracy in the solution with a
scheme order of O(4) and a computational element of length 0.0625 m a
higher scheme order of O(6) can be thought of, with corresponding mesh
elements of size 0.125 m. Even though in both mentioned investigations,
the test cases were different from the test case introduced in this chapter,
we can still use those observations for our test case to determine a spatial
discretization that allows us to capture scales of interest and maintain
the computational efficiency for the middle subdomain. As mentioned,
to have a similar resolution in the innermost and middle subdomain, the
middle domain can be resolved with a scheme order of O(6) and mesh
elements with an edge length of 0.125 m. Hence, elements that are two
times larger compared to the coarse elements of the innermost subdomain.
However, this configuration would lead to a setup that resolves small scales
further, which were necessary for the innermost subdomain but have a
minor influence on the evolution of the far-field acoustics. As our aim
is the efficient computation of such extensive simulations, and we know
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that large scales significantly contribute to the evolution of the acoustics
far-field, the spatial resolution is chosen to be not as high as in the in-
nermost subdomain. The scheme order in this domain is O(6), and an
element length of 0.25 m is used, resulting in a level jump of 4 compared to
the innermost subdomain. This practice allows for efficient computation,
as only scales of interest are resolved, and the memory consumption of
this subdomain is reduced. The mesh has a total number of 186, 368
elements. Around 960 elements are coupled to the innermost subdomain,
thus maintaining communication with the coupling tool, resulting in a total
of 34, 560 coupling points. Further, this subdomain has 36, 160 coupling
elements to the outermost subdomain, with 1, 301, 760 coupling points at
the interface.

Initial conditions The background pressure and the density are prescribed
with the same values as for the innermost subdomain. The fluid is also
here initially at rest.

Boundary conditions At the left boundary, Dirichlet boundary conditions
are defined, with the same pressure and density values as for the initial
condition. The fluid is at rest. In z-direction, periodic boundaries are de-
fined. All other boundaries are coupling interfaces and are involved in the
coupling procedure. The upper, lower, and right boundaries are coupled
to the outermost subdomain. While inside the domain, it is coupled to
the innermost subdomain.

Outermost subdomain: Linearized Euler domain In the outermost
subdomain, the linearized Euler equations are applied. They are inexpen-
sive in the computation, as they can be computed quadrature-free, and only
at the coupling interfaces, a transformation of modal data to nodal data
and vice versa is necessary (cf. Section 4.1.1). Therefore, we can utilize
a high-order of O(9) to discretize the equations, which offers an accurate
transport of acoustic pressure waves and efficient computation. The choice
of high-order allows using even larger elements for the computational mesh
compared to the innermost subdomain. The numerical scheme provides
low dissipation and dispersion error, offering the accurate transportation
of acoustic information up to the far-field. The simulation domain is of
size [-2, -100, -2] x [198, 100, 2] m, while again [-2, -8, -2] x [47, 8, 2]
m is cut out (cf. Figure 10.1c gray crossed box), to enable the surface
coupling to the middle domain. The mesh contains 127, 758 elements in
total, while 2, 280 elements are involved in the coupling to the middle
subdomain, thus in total 184, 680 coupling points. The computational
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10. Numerical results - Coupled 3-field simulation

mesh contains multiple mesh levels for the simulation domain. Close to
the outer boundaries, the mesh becomes coarser. Here the computational
elements are the largest with a length of 2 m and 4 m. Everywhere else,
the mesh elements have a length of 1 m (cf. Figure 10.1c). Close to the
outer boundaries, the elements become even coarser, leading to only one
element in the z-direction. They have an element length of 4 m. This
practice is utilized to increase the influence of the numerical viscosity to
smear the numerical solution before reaching the outer boundaries. Hence,
we try to reduce the possibility of reflections by outgoing acoustic waves.

Additionally, sponge layers are positioned in the vicinity of all outer
boundaries of this subdomain to reduce the possibility of further reflec-
tions [39] (cf. Section A.4). The sponge layers act as source terms on the
rhs of the conservation equations. It forces the solution to the desired
value, reducing the magnitude of the density, pressure, and velocity before
reaching the boundaries. A linear damping function is used for the sponge,
which slowly reduces the fluctuations’ magnitude to zero. The strength
of the sponge is computed with the speed of sound, divided by the width
of the sponge, and multiplied by the total simulation time. The width is
14 m, and the resulting strength of the sponge is 24.5, with respect to the
speed of sound c = 343.25 m/s and the simulation time of t = 1 s.

Initial conditions The pressure and the density are prescribed as background
values, likewise for the innermost subdomain. Initially, all perturbation
values of the state variables are defined to be 0.0.

Boundary conditions In z-direction, periodic boundaries are defined. Fi-
nally, outflow boundary conditions are prescribed at all other outer bound-
aries, where the pressure perturbation is 0.0, while all other values are
extrapolated. The coupling interfaces are only in the inner part of the
domain, where the middle subdomain is located. Sponges are positioned
at the upper, lower, and right boundaries to suppress reflections.

To allow initial shock waves to leave the computational domain and enable
the simulation to level out, a startup computation with reduced spatial
scheme order is used. This startup phase is run for 1 s, which is equal to
one period of the used sine function for the motion of the airfoil. A scheme
order of O(2) is used, and a time step size of 8.0 · 10−6 s. This practice
is used to save computational resources, as not only do the initial shock
waves need to leave the simulation domain, but it is also helpful, as flow
needs to evolve. The simulation is restarted after 1 s and the previously
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Figure 10.2.: A Sketch of the 3-field coupled simulation: Composition of
all subdomains (innermost, middle, and outermost) to the
large simulation domain.

mentioned scheme orders are used for the respective subdomains. Con-
sequently, the computational time can be reduced accordingly, requiring
about 2.9 Mio. core-h for the entire simulation, where the startup phase
needed 300.000 core-h and the simulation with the high-orders further 2.6
Mio. core-h for another 1 s. We need to emphasize that the simulation
would have required 5.2 Mio. core-h, in the case, the startup phase would
also have been simulated with a high-order scheme. In the following, the
simulation results are discussed in more detail. We need to emphasize
that the startup phase is neglected and the physical results shown are
only for the times where the high-order scheme is deployed. Therefore,
the results shown in the following sections are per our definition starting
from t = 0.0 s. The focus is first devoted to the results of the innermost
subdomain that we will analyze in more detail. Afterward, the middle
domain is attached to the innermost subdomain, and obtained results are
further discussed. Hereafter, the outermost subdomain is attached to the
middle domain for further investigation. Lastly, the coupling interfaces
are shown for critical areas in the simulation domain. Please keep in mind
that the simulation is executed all-time with all three subdomains and
only for better analysis detached.
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10. Numerical results - Coupled 3-field simulation

10.1. Innermost subdomain: Compressible Navier-Stokes

In the innermost subdomain, the moving airfoil is positioned. The fluid
is initially at rest; however, the flow field is disturbed due to the jet
stream and the moving airfoil. In Figure 10.3 the velocity in the innermost
subdomain at different simulation times is shown. The time series also
presents the motion of the trailing edge, first downwards and later upwards.
A complete period requires 1 s simulation time. We need to emphasize
that due to the airfoil’s motion, we can capture the change in the flow
field for various angles of attack of the airfoil. In Figure 10.3a the initial
position of the airfoil is shown. The simulation has been restarted after
the initial shock waves have left the simulation domain, and the scheme
order is increased from O(2) (startup phase) to the higher order of O(4).
The airfoil moves according to the predefined sine function throughout
the simulation time, first in a downwards motion (cf. Figure 10.3b and
Figure 10.3c). Figure 10.3c illustrates the position of the trailing edge
after 0.25 s, where a maximum angle of attack of 12.2◦ is attained, before
it moves back upwards, towards its original position in Figure 10.3e. At
t = 0.5 s the airfoil is finally back at its initial position, while being still
in motion in upwards direction (cf. Figure 10.3f and Figure 10.3g). In
Figure 10.3g an angle of attack of −12.2◦ is attained. The angles of attack
in Figure 10.3b and Figure 10.3f are 8.6◦ and −8.6◦, respectively. We
need to emphasize that the motion of the airfoil is continuously according
to the predefined sine function, and in Figure 10.3 we always capture an
instantaneous angle of attack of the airfoil as well as the flow field. The
time series presents how the jet flow is disturbed by the moving airfoil. At
the nose, the stagnation point can be identified, noticeable in all figures
in Figure 10.3. Thus, the jet flow is divided into an upwards and a down-
wards stream. Behind the airfoil, the flow field is further disturbed by the
trailing edge, causing a downstream wake that is turbulent. The velocity
magnitude has decreased considerably away from the geometry towards
the end of the simulation domain compared to the flow entering the domain.

Due to the changing angle of attack of the airfoil, the stagnation point
is slightly shifted upwards in the case of downwards motion and shifted
downwards when the trailing edge moves upwards (cf. e.g., Figure 10.3b
and Figure 10.3g). Furthermore, the flow is no longer laminar close to
the geometrical surface due to the inflow and the geometry’s presence,
which changes its angle of attack throughout the simulation. Thus, we can
observe in the time series how the transition from the laminar boundary
layer to the turbulent boundary layer occurs, depicted in, e.g., Figure
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.3.: The time series of the innermost subdomain for the quan-
tity velocity magnitude in the negative z-normal. The ve-
locity magnitude and the different angle of attacks of the
airfoil are captured after (a) 0.0 s (0◦), (b) 0.125 s (8.6◦),
(c) 0.25 s (12.2◦), (d) 0.375 s (8.6◦), (e) 0.5 s (0◦), (f)
0.625 s (−8.6◦), (g) 0.75 s (−12.2◦), (h) 0.875 s (−8.6◦)
and (i) 1.0 s (0◦).

10.3c. The trailing edge moves downwards, and the angle of attack changes
from originally 0.0◦ to 12.2◦. The fluid particles that move on the top
surface of the airfoil encounter a change in pressure. First, from high
pressure in front of the airfoil to low pressure over the surface of the airfoil.
Lastly, back to the high pressure behind the airfoil profile. The fluid moves
from low to high pressure (adverse pressure gradient), resulting in flow
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PL PT

SBL 

Figure 10.4.: Zoom-in of Figure 10.3h (t = 0.75 s) at the boundary layer
region, close to the airfoil surface. The point PL depicts
the region up to the laminar boundary layer. The area
between PL and PT presents the approximate area, where
the transition from laminar to turbulent boundary layer
occurs and the point where separation of the boundary layer
occurs (PT ). SBL indicates the area where flow separation
has happened.

separation. In this case, the pressure gradients become large enough to
overcome the fluid inertial forces, and the flow separates from the airfoil
surface. As the pressure gradient increases with the increasing angle of
attack, flow separation occurs earlier for higher angles of attack of the
airfoil. This behavior is noticeable in Figure 10.3, where the largest angle
of attack (12.2◦) causes flow separation, which happens much earlier than
for an angle of 0.0◦ or 8.6◦. The early flow separation can also be observed
in Figure 10.3g.

In Figure 10.4 a close-up of the velocity field close to the airfoil is il-
lustrated. Different areas are highlighted by points, indicating the change
of the boundary layer behavior. PL indicates the end of the laminar
boundary layer and the transition to the turbulent boundary layer. PT

marks the separation of the turbulent boundary layer (SBL). In this area,
the fluid flow is reversed, resulting in a recirculation region.

This can be properly observed through streamlines, shown in Figure
10.5. Figure 10.5a and Figure 10.5c. They illustrate the streamlines for the
entire domain when the airfoil has reached its final position in downwards
and upwards direction, respectively. Figure 10.5b and Figure 10.5d present
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a close-up of the upper and lower surface of the airfoil. In Figure 10.5c at
the jet-inflow vortices can be observed. They are close to the boundary of
the jet-inflow, where the flow is reduced in motion due to the surround-
ing fluid at rest and the domain boundary. Furthermore, the previously
mentioned boundary layer separation and the reverse flow behavior can
be identified at the lower surface of the airfoil, in the respective zoom-in
in Figure 10.5d. The streamlines close to the geometrical surface are not
attached anymore. Comparing Figure 10.5b and Figure 10.5d, both images
provide very similar flow fields, with the flow pattern being turbulent.
Please note that polynomial series represent simulation results, and for
visualization, they are voxelized during post-processing. Thus the airfoil
geometry appears rough. However, this does not influence the actual
solution and is only a post-processing artifact.

A more detailed examination of the pressure is provided in Figure 10.6.
The pressure field is shown for the same point in time as in Figure 10.3.
We can observe high pressure values at the airfoil nose, where the flow
velocity is close to 0, and the pressure has reached a high value (cf. Figure
10.6b, Figure 10.6f and Figure 10.6i). Furthermore, high pressure values
are present at the trailing edge of the airfoil, which are among others
responsible for the disturbance of the fluid flow and the generation of
noise (cf. Figure 10.6g or Figure 10.6d). This behavior is well known from
various investigations, numerical simulations, and experimental studies.
The high pressure values arise around the moving airfoil, as the fluid is
compressed in the case of the downwards motion, close to the airfoil’s
lower surface (pressure surface), and the case of an upwards motion at the
upper surface of the geometry. Consequently, at the suction surface, the
pressure is much lower compared to the surrounding flow.

We continue our examination by tracing the change in lift and drag around
the geometrical surface. Measurement points (200) are equidistantly dis-
tributed around the airfoil to capture the change in pressure. The profile
is tracked at the center in the z-direction (z = 0.0) during post-processing.
Pressure values are used to compute the lift coefficient CL and the drag
coefficient CD, respectively.

FL = CL · ρB

2 · vF S
2 ·As (10.3a)

FD = CD · ρB

2 ∗ ·vF S
2 ·As (10.3b)
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(a) (b)

(c) (d)

Figure 10.5.: Streamlines colored by the velocity magnitude at a t = 0.25 s
and (c) t = 0.75 s, when the airfoil geometry has an angle
of attack of 12.2◦ and −12.2◦, respectively. Zoom-ins of
the boundary layer area are depicted in (b) and (d) for the
mentioned simulation times.

Eq.(10.3) [51] provides the necessary equations for the computation of the
respective coefficients. Here FL and FD denote the lift and drag forces, vF S

the free stream velocity, ρB the background density and As the reference
surface of the airfoil.

In Figure 10.7a the pressure coefficient CP is presented for the angles
of attack of 0.0◦ and 12.2◦. As expected at the nose of the airfoil (stagna-
tion point), both curves have a pressure value of around 1.0. In the case of
an angle of attack of 0.0◦ starting from x/l = 0.2 the CP value fluctuates
around an approximate value of 0.0. We need to emphasize that the airfoil
moves throughout the simulation time. Thus, the flow field is perturbed
all time, and the dynamic of the motion influences the flow field further.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.6.: Time series of the innermost subdomain for the variable
pressure is shown in negative z-normal. The pressure is
captured after (a) 0.0 s, (b) 0.125 s, (c) 0.25 s, (d) 0.375 s,
(e) 0.5 s, (f) 0.625 s, (g) 0.75 s, (h) 0.875 s and (i) 1.0 s.

Comparing the curve representing an angle of attack of 0.0◦ and 12.2◦, we
recognize some differences, especially in the first half of the airfoil geometry.
In the case of an angle of attack of 12.2◦ up to approximately x/l = 0.42,
a high pressure coefficient can be identified. Due to the high pressure
gradients in that area, the pressure coefficient attains a value of 3.8. The
boundary layer separation occurs in this area, as previously shown, and the
lift coefficient and the drag coefficient react oppositional (cf. Figure 10.7b).
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Figure 10.7.: In (a), the pressure coefficient Cp is presented for an angle of
attack of 0.0◦ and 12.2◦. In (b), the angle of attack is shown
against the global CL and global CD. 200 measurement points
are equidistantly positioned around the airfoil at coordinate
z = 0.0.

In Figure 10.7b both CL and CD are plotted against the angle of at-
tack. Since the airfoil moves, we can capture different angles of attack
throughout the simulation time. For our investigation shown in Figure
10.7b, we consider the upwards motion of the airfoil. Thus, when the
airfoil moves from the maximum position at an angle of 12.2◦ up to an
angle of −12.2◦. The CD values are represented by the blue curve and the
CL values by the black line. With increasing angle of attack (from 0◦ up
to 12.2◦), the lift coefficient increases simultaneously. Up to an angle of
11.2◦, this inclination can be observed. However, for an angle of attack
of 12.2◦ the lift coefficient decreases. The decrease of the lift coefficient
at 12.2◦ is in agreement with the previously mentioned flow separation
shown in Figure 10.4 and Figure 10.5. At the same time, the CD value
increases, attaining a higher value for this angle of attack. From this
point on, no lift is generated anymore, and an even higher angle of attack
will not correspond to a higher lift coefficient. The same behavior can be
observed for negative angles of attack, where the lift coefficient decreases
with increasing angles of attack as the airfoil moves upwards. Here again,
at an angle of −12.2◦ the curve has an oppositional behavior compared
to, e.g., an angle of attack of −11.2◦. It is again as shown in Figure 10.5
due to the flow separation, where the lift is no longer generated. The CD

has a high value for this angle of attack as supposed. One might wonder
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why the CL value does not attain a value of 0.0 at an angle of attack of
0◦, which is a little bit off compared to the expected value. We need to
emphasize that the tiny offset is due to the motion of the geometry that
continuously moves throughout the simulation time.

From previous studies we know, that flow separation occurs between
an angle of attack of 10.0◦ and 15.0◦ depending on the Reynolds number.
Moreover, the solutions for negative and positive angles of attack are evi-
dent that the solution obtained correlates with the expected flow behavior,
which is in agreement with observations by [1, 21, 61, 90], who conducted
investigations for Reynolds numbers of up to 3 · 106. However, we need
to keep in mind that the experimental data and simulations conducted in
those mentioned publications were always for a non-moving airfoil with a
predefined angle of attack. Thus the dynamic of the motion of the airfoil
was not considered in their investigation.

All figures presented in this section demonstrated that the simulation
results agree with physical expectations known from the literature. In the
following, the middle subdomain is attached to the innermost subdomain
for further analysis.

10.2. Innermost and middle subdomain: Compressible
Navier-Stokes and Euler

In this section, the transition of the fluid flow from the innermost subdo-
main to the middle subdomain is of interest. In Figure 10.8 both domains
are attached at their respective coupling interfaces, and the velocity field
is shown. The velocity is captured for the simulation times of 0.125 s,
0.25 s, 0.375 s, 0.5 s, 0.625 s, 0.75 s, 0.875 s and 1.0 s. In none of the
shown snapshots, a discontinuity at the coupling interfaces is visible. The
transition occurs smoothly from the innermost to the middle subdomain.
Additionally, changes in the flow pattern are captured precisely by the
middle domain. Due to the varying angle of attack of the airfoil, the
flow field is correspondingly affected. For example, in Figure 10.8a and
Figure 10.8b the trailing edge of the airfoil moves downwards until finally
attaining an angle of attack of 12.2◦. Thus, the expectation is that the jet
is also directed in this direction. This foreseen behavior is observable as
the flow evolves and moves further along the length of the middle domain.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.8.: Time series of the innermost and middle subdomain for the
quantity velocity is shown in negative z-normal. The velocity
is shown after (a) 0.125 s, (b) 0.25 s, (c) 0.375 s, (d) 0.5 s,
(e) 0.625 s, (f) 0.75 s, (g) 0.875 s and (h) 1.0 s.

Figure 10.8c and Figure 10.8d illustrate the velocity field when the airfoil
moves to its initial location. The flow field in the vicinity of the geome-
try changes according to the motion of the airfoil. Large eddies can be
recognized, which travel from the innermost to the middle subdomain.
Vortices directed downwards due to the downwards moving airfoil, e.g., at
t = 0.25 s, continue their path in the respective direction. In Figure 10.8e
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and Figure 10.8f the angle of attack has changed in upwards direction.
Thus the jet is guided accordingly, resulting in upwards moving vortices
close to the airfoil. Vortices generated due to the initial motion of the
airfoil have now traveled a specific distance (cf. Figure 10.8g downwards
traveling vortices). In addition, they have formed a vortex cluster that
moves further in a downwards direction, towards the lower coupling in-
terface of the middle subdomain (cf. Figure 10.8h). Since the inviscid
Euler equations are solved in the middle subdomain and a higher scheme
order is used, vortex structures are transported and maintained due to low
dissipation of the scheme.

Figure 10.9 presents the pressure field for the innermost and middle
subdomain for the same simulation times as in Figure 10.8. Close to
the geometry, the highest pressure values are encountered, as previously
mentioned in section 10.1. Additionally, pressure waves can be observed
that travel from the innermost subdomain to the middle domain. Further
a large vortex cluster can be identified, that moves towards the outer
boundaries of the middle domain (cf. Figure 10.9f, Figure 10.9g and Figure
10.9h). Besides the left boundary, all other subdomain boundaries are
involved in the coupling with the outermost subdomain, where only the
linearized Euler equations are solved. Hence the expectation might be to
encounter stability problems at the coupling interface due to simplifying
the fluid dynamic equations in that subdomain. Moreover, due to the
vortex cluster, significant changes in the flow field at the coupling interface
might be expected as vortices approach the lower boundary interface. A
more detailed investigation of the outermost subdomain will be presented
in the next section. The transition from the middle to the outermost
subdomain will be further discussed in Section 10.4.

In Figure 10.10 and Figure 10.11 the Q-criterion for the simulation times of
t = 0.625 s and t = 1.0 s are depicted. A clip in normal z-direction is used
to provide a more detailed insight into the flow field (cf. Figure 10.10b and
Figure 10.11b). An additional zoom-in at the coupling interface presents
a comprehensive view of the area, where the flow leaves the innermost
subdomain and enters the middle domain (cf. Figure 10.10c and Figure
10.11c). In Figure 10.10a and Figure 10.11a vortex structures of different
sizes can be found. Moreover, the expansion of the fluid flow along the
width of the domain can be observed. Vortices that are away from the
airfoil have, as expected, a lower velocity, while along the jet stream, they
have a higher magnitude (cf. Figure 10.10b and Figure 10.11b). From
Figure 10.11a and Figure 10.10a, no noticeable difference in the solution
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.9.: Time series of the innermost and middle subdomain for the
variable pressure is shown in negative z-normal. The pressure
field is shown after (a) 0.125 s, (b) 0.25 s, (c) 0.375 s, (d)
0.5 s, (e) 0.625 s, (f) 0.75 s, (g) 0.875 s and (h) 1.0 s.

is visible, indicating a smooth transition from the innermost subdomain
to the middle domain, where a different configuration for the simulation
domain is used. A distinction between the subdomains is hardly visible.

Considering the zoom-in into the area, where both domains are cou-
pled together, and information transferred from one side to the other and
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(a)

(b) (c)

Figure 10.10.: Q-criterion of 4000 colored by the velocity magnitude for
the simulation time t = 0.625 s. The angle of attack of
the airfoil is −8.6◦. In (a) the Q-criterion is depicted for
both subdomains and in (b) a vertical clip along the z-
normal is used to illustrate further the transition from the
innermost subdomain to the middle subdomain. A black
frame indicates the innermost subdomain. In (c), a zoom-in
of (b) at the coupling interface is shown. The coupling
interface is marked through a vertical line.

vice versa, both appear very similar, even though a different scheme order
and mesh resolution, as well as equations, are applied. However, a closer
consideration of Figure 10.11c and Figure 10.10c portrays slight differences

199



10. Numerical results - Coupled 3-field simulation

(a)

(b) (c)

Figure 10.11.: Q-criterion of 4000 colored by the velocity magnitude for
the simulation time t = 1.0 s. The angle of attack of
the airfoil is 0◦. In (a), the Q-criterion is depicted for both
subdomains. In (b), a vertical clip along the z-normal further
illustrates the transition from the innermost subdomain
and the middle subdomain. A black frame indicates the
innermost subdomain, and in (c), a zoom-in of (b) at the
coupling interface is shown. The coupling interface is marked
through a vertical line.

at the coupling interface. In the innermost subdomain, smaller vortices
appear due to the physical viscosity and the resulting energy cascade,
where large eddies break down into smaller ones until dissipation occurs
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and kinetic energy is transferred to heat. Those small vortices reach the
coupling interface but are not present in the middle subdomain. This loss is
due to the lower resolution in the middle domain, which cannot capture the
more minor scales (vortices). However, those vortices are not of interest,
as only large eddies with a higher energy level have a remarkable impact
on the flow field and the evolution of the acoustics far-field. Therefore,
those scales are resolved and further transported. Resolving those smaller
scales would only lead to their transportation to the middle domain, as
physical viscosity is neglected. Moreover, they would require a higher
computational effort as a higher spatial resolution would be necessary.
Hence choosing the resolution according to the larger scales allows for
more efficient computation and the possibility to resolve scales that are
relevant for the problem to be solved.

Other than that, no noticeable differences between the innermost sub-
domain and the middle domain can be observed. Thus no indication of
any wrong physical representation of any phenomena can be identified.
Remarkable is that only a close-up, hence a high zoom-in level, was able
to highlight this neglectable difference at the coupling interface.

10.3. Innermost, middle and outermost subdomain:
Navier-Stokes, Euler and Linearized Euler

We now continue and attach the last subdomain for further examinations
of the flow field. The outermost subdomain is the largest domain of all
three subdomains. However, it has fewer elements when compared to the
other two subdomains. Here, we are only interested in the transport of
acoustic waves. Due to the underlying high-order Discontinuous Galerkin
method, small perturbations can be transported over a large area with low
dissipation and dispersion error. On the other hand, a low-order scheme
would require a much finer mesh in order to be able to transport that
information up to the far-field as low-order schemes are very dissipative
and would smear the solution considerably. A scheme order of O(9) is
used in this subdomain, while the finest elements have a uniform element
length of merely 1 m.

Figure 10.12 presents the velocity perturbation in the simulation domain
over the time. The velocity field is captured form t = 0.125 s up to t = 1.0 s
using 0.125 s intervals. The velocity scaling is adjusted to the outermost
subdomain to capture small perturbations, which are very tiny compared
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10.12.: The perturbation of the velocity is shown for different sim-
ulation times. The velocity magnitude in m/s is captured
after (a) 0.125 s, (b) 0.25 s, (c) 0.375 s, (d) 0.5 s, (e) 0.625 s,
(f) 0.75 s, (g) 0.875 s and (h) 1.0 s.

to the innermost or middle subdomain. In Figure 10.12a, Figure 10.12b,
Figure 10.12c and Figure 10.12d the evolution of the velocity field over the
time is shown. Vortices are visible, which travel from the innermost subdo-
main to the middle domain, as shown in the previous section. Due to the
motion of the airfoil geometry, the flow is accordingly directed downwards
and upwards. Therefore in Figure 10.12e, Figure 10.12f, Figure 10.12g and
Figure 10.12h a high value for the velocity perturbation can be observed
close to the lower boundary of the middle domain, in the vicinity of the
respective outermost subdomain (cf. e.g., Figure 10.8h). From the previous
section we know, that in Figure 10.12h the vortex cluster has reached the
coupling interface, noticeable through the high velocity value in that region.

As it is hardly visible to distinguish the different subdomains and the
occurring physics close to the outermost subdomain, a close-up of the
coupling interface is presented in Figure 10.13. The flow field is shown for
different simulation times to demonstrate how the flow features appear
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close to the coupling interface. From Figure 10.13a to Figure 10.13d, it
is apparent, how as mentioned before, the vortex cluster moves towards
the coupling interface. However, the transition from the middle to the
outer subdomain is smooth, and no discontinuity can be recognized in the
outermost subdomain. A discontinuity at the coupling interface would
indicate that the solution is not approximated accordingly. Hence a false
physical representation for the solution is used. However, this is not the
case at the coupling interface; we can assume that the solution has not
yet advanced, and this information has not propagated into the outermost
subdomain. Furthermore, in this case, nonlinear effects would have been
further transported to the outermost subdomain. As a result, we might
encounter stability issues, as the linearized equations cannot capture the
dynamics of these nonlinear phenomena. Eventually, they will approximate
the solution incorrectly and deviate from the physically correct solution.
Further, we need to emphasize that linearization is only allowed when the
perturbation is tiny. This requirement is satisfied for our simulations as the
information has not propagated into the outermost subdomain. Therefore
the obtained results are still meaningful and physically correct. However,
suppose the simulation would be restarted for a longer simulation time.
In that case, the middle subdomain necessitates being extended further in
the y-direction to avoid vortices in the vicinity of the coupling interface to
the outermost subdomain.

We need to emphasize that information at the coupling interface is always
exchanged in both directions, e.g., from the middle to the outermost do-
main and vice versa. Thus, the propagation of vortices in the outermost
subdomain and its false representation can result in physically wrong
values exchanged at the coupling interface from the outermost subdomain
to the middle domain.

In Figure 10.14 the pressure perturbation for different points in time
is illustrated. From Figure 10.14a up to Figure 10.14h the pressure pertur-
bation in all three subdomains for the simulation times of t = 0.125 s up
to t = 1.0 in an interval of 0.125 s is illustrated. In the far-field (outer-
most subdomain) a homogenous flow field is encountered. Furthermore,
cylindrical waves can be observed that travel towards the outer boundaries
generated by the jet-inflow and the presence of the airfoil. Both jet-inflow
and airfoil disturb the flow field and cause, among others, those waves.
Close to the boundaries, the waves are smeared due to the larger mesh ele-
ments. Further, the sponge layers actively damp the pressure perturbation
close to the outer boundaries to avoid reflections by the outflows. Figure
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(a) (b)

(c) (d)

Figure 10.13.: Zoom-in into the region close to the coupling interface be-
tween the middle and the outermost subdomain. The per-
turbation of the velocity magnitude is presented after(a)
0.625 s, (b) 0.75 s, (c) 0.875 s and (d) 1.0 s. White frames
highlight the coupling interfaces.

10.14c up to Figure 10.14h demonstrate that sponge layers act as expected
since no reflection of the outgoing pressure waves can be observed. Finally,
in Figure 10.15 a zoom-in close to the coupling interface is shown, where
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10.14.: The transport of pressure waves is shown for different sim-
ulation times. Results are presented after (a) 0.125 s, (b)
0.25 s, (c) 0.375 s, (d) 0.5 s, (e) 0.625 s, (f) 0.75 s, (g)
0.875 s and (h) 1.0 s.

pressure waves are transported from the middle domain to the outermost
subdomain. The transition of the waves from one domain to the other is
smooth and precise. Moreover, in both shown simulation times in Figure
10.15a and Figure 10.15b the pressure waves are transported as foreseen.

From Figure 10.14 we know that the pressure perturbation attains a
value of up to roughly 60 Pa. Moreover, we know that linearization is
only allowed if the perturbation is sufficiently small compared to the at-
mospheric pressure. The pressure perturbation is approximately 0.06 %
of the background pressure (101325 Pa) for our test case. Therefore
the change of the fluid dynamic equations to the linearized Euler equa-
tions in this subdomain is from the physical perspective allowed and valid.

For further analysis and to give an overview of how strong those pressure
waves are, thus how high the sound pressure level (SPL) might be, we
continue our investigation by utilizing sound pressure level plots. Thus the
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(a) (b)

Figure 10.15.: Zoom-in into the region, where pressure waves are trans-
ported from the innermost subdomain to the middle and
finally to the outermost subdomain. The pressure pertur-
bation is presented after (a) 0.125 s and (b) 0.25 s. Black
lines highlight the coupling interface.

sound level is provided in decibel (dB) against the frequency spectra in
Hertz (Hz). Four microphones are positioned in the outermost subdomain,
capturing the pressure perturbation in each iteration, thus resulting in
over 400.000 data values for the spectral analysis for each microphone.
The microphones are located at M1(65.0, 60.0, 0.0), M2(65.0, 60.0, 0.0),
M3(180.0, 30.0, 0.0) and M4(180.0,−30.0, 0.0). Thus the distance from
the microphones to the sound source (airfoil leading edge) is 63.0 m and
178.0 m in x-direction, respectively. The microphones are located away
from the absorbing sponges to avoid any influences by them. The time
signal and the frequency spectra are illustrated in Figure 10.16, where the
sound pressure level is plotted over the frequency and, in the case of the
time signal, the pressure perturbation over time. For the computation of
the sound pressure level Eq. (10.4) is used.

SPL = 20 · log10

(
pRMS

pref

)
(10.4)
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Where pRMS is the root mean square of the pressure and pref is the refer-
ence pressure, which has a value of 2 · 10−5 Pa with a sound frequency of
1 kHz. This is the lowest hearing threshold of a young and healthy ear [27].
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Figure 10.16.: Measurement results of four microphones (M1, M2, M3
and M4) positioned at different locations in the outermost
subdomain. In (a), the pressure perturbation over time
for M1, and M2 and in (c), the corresponding frequency
range and the pressure level are shown. In (b) the pressure
perturbation over time for M3 and M4 and (d) the respective
frequency range and the pressure level are depicted.

From the time signal in Figure 10.16a and Figure 10.16b the recorded
signal is first relatively constant, that is due to pressure waves that have
not yet reached the respective microphones. Since the pressure waves move
with the speed of sound, it requires some time until they finally reach the
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respective microphones. However, after some time, a very dominant peak
and a fluctuating behavior of the pressure perturbation can be observed
(pressure waves). The strong peak represents the abrupt motion of the
airfoil and its representation with higher order after the startup phase.
When comparing Figure 10.16a and Figure 10.16b we notice that the first
strong pressure wave, indicated by the highest peak in the spectra, arrives
at M1 and M2 earlier, as the positioning is closer to the airfoil, compared
to M3 and M4. On the other hand, M3 and M4 (cf. Figure 10.16b) record
the strong wave at a later point in time, as they are even further away
from the geometry and the jet-inflow.

For the Fourier Transformation (FT), we neglect those areas and only
include for M1 and M2 the time from 0.4 s to 1.0 s and in the case of M3
and M4 the simulation time of 0.6 s to 1.0 s. Consequently, the influence
of the first pressure wave is removed. The respective FT spectra are shown
for the different microphones in Figure 10.16c and Figure 10.16d. The
recorded sound, thus the sound pressure level for the first two microphones,
is, as expected, higher. Here, a pressure level of up to 100 dB can be cap-
tured. The measuring points M3 and M4 can record the respective signal
with up to 95 dB. However, starting from a frequency of approximately
500 Hz (cut-off frequency) the sound pressure level decreases drastically as
the numerical resolution is too low to provide more information on those
higher frequencies. We need to emphasize that the slight deviation of M1
and M2, and M3 and M4 is due to the motion of the airfoil. It influences
the flow field according to the direction of its motion.

For the microphones M1 and M2 the approximated mean sound pres-
sure level is 80 dB, for the microphones M3 and M4 the mean value is
roughly 70 dB (cf. Figure 10.16c and Figure 10.16d). Comparing those
sound levels to daily occurrences, we can associate 70 dB and 80 dB to
typical traffic jams and a standard vacuum cleaner. Humans’ hearing
system can recognize the sound from 20 Hz up to 20.000 Hz. According to
the World Health Organization, with a frequency of 500 Hz and a sound
pressure level between 41 dB and 60 dB, the noise can cause moderate
impairment. A sound level between 61 dB and 80 dB in this frequency
range can even result in severe impairment [96]. In both frequency spectra
shown, the mean audible range is above 60 dB. Considering the inverse
square law, we know that a reduced sound pressure level of 6 dB is obtained
by doubling the distance to the noise source. Assuming the simulation
domain is larger than shown in this work, roughly 1.5 km, the sound
pressure level measured at that distance is approximately 42 dB, thus still
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in the range that can impact a human’s hearing system.

In recent years research has been conducted to reduce noise pollution
further by deploying shape optimizations in the design process and special
measures, e.g., serration at the trailing edge of airfoils. Even though no
further improvements on the airfoil design have been incorporated in this
work, the shown results provide first numerical solutions and demonstrate
that the utilized techniques, namely the embedded method and the cou-
pling strategy, enable such complex and large-scale simulations efficiently.

In the following the coupling interfaces of the different subdomains are
investigated in more detail.

10.4. Coupling interfaces of the 3-field coupled simulation

The previously discussed examination of the 3-field coupled simulation is
continued in this section, where mainly the coupling interfaces are investi-
gated. Moreover, the decomposition practice and the change of the fluid
dynamic equations in each subdomain are further studied.

We first begin with the innermost subdomain, where the compressible
Navier-Stokes equations are solved. Additionally, an airfoil is located in
this subdomain. It requires, in any case, the consideration of physical
viscosity. Therefore, there is no question on the equations to be solved in
this subdomain. Then, however, the question arises, where a simplification
is allowed, thus where the physical viscosity in the fluid dynamic equations
can be neglected. The simplification is permitted when the viscous fluxes
are reduced considerably compared to the area where it is mandatory,
thus close to the airfoil, as shear stresses at the geometrical boundary are
present and have to be physically captured. Therefore we focus on the
second derivative of the velocity (∆v), which has to be small enough, indi-
cating that physical viscosity can be neglected and simpler fluid dynamic
equations can be solved. Thus, we first visualize the innermost subdomain,
where the second derivative of the velocity is of importance. In Figure
10.17 two different views of the innermost domain are illustrated, one in
z-normal (Figure 10.17b) and one that allows a border view (Figure 10.17a),
allowing to also keep track of the coupling interface to the middle domain.
From Figure 10.17a it is apparent that the second derivative of the velocity
is the highest close to the airfoil. Away from the geometry, the quantity
loses in magnitude. Close to the coupling interface (cf. Figure 10.17b right
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(a) (b)

Figure 10.17.: Velocity magnitude of the 2nd derivative of the velocity,
an indicator for the simplification of the fluid dynamic
equations.

end of the subdomain) the magnitude is already reduced by a factor of
over 50. The flow behind the airfoil has reached a comparable velocity
magnitude similar to the flow above the airfoil. Further, in the figure, we
can observe oscillations (similar to waves) due to the state’s polynomial
representation. However, those oscillations do not affect occurring phenom-
ena and can be removed through filtering in the post-processing procedure.
Moreover, they are only visible, as the 2nd derivative of the velocity is
shown, which presents small details, only noticeable in a logarithmic scale.
In the previous sections, we already demonstrated that the transition of
the fluid flow from the innermost subdomain to the middle subdomain
happens very precisely, without any loss of information, which is essential
for the evolution of the far-field.

The innermost and the middle subdomain are connected through three
coupling interfaces: One at a y-z plane (right side) and two at a x-z plane
(up and down). At those boundaries, information is exchanged. However,
as explained in the previous sections, the coupling interface at the right
end of the innermost subdomain is of interest since most vortices have to
cross this coupling interface to reach the middle domain. Furthermore,
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the lower coupling interface connecting the middle subdomain and the
outermost domain is crucial as vortices move from the middle domain
towards this interface. Therefore those two interfaces are further examined
for the quantities: Velocity, pressure, and density. In Figure 10.18 the

(a) (b) (c)

(d) (e)

Figure 10.18.: Coupling interface between the innermost and middle sub-
domain at the right boundary of the innermost subdomain.
In (a) the velocity in x-direction, in (b) the velocity in y-
direction, in (c) the velocity in z-direction, in (d) the density,
and (e) the pressure is shown. In each subfigure on the left,
the coupling interface of the innermost subdomain and on
the right the corresponding coupling interface of the middle
subdomain is depicted. Black dashed lines separate the
domains for visualization purposes. Slices are captured for
t = 1.0 s.

coupling interface between the innermost and the middle subdomain; thus,
the right end of the innermost subdomain is shown. On the left side of
the subfigures, the innermost interface is presented. On the right, the
interface of the middle subdomain is depicted. A black dashed line between
both domains separates the images for comparison. Figure 10.18a, Figure
10.18b and Figure 10.18c show the velocity components in all three spatial
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directions. In all figures, the velocity pattern of the innermost subdomain
resembles the corresponding interface at the middle domain. As previously
mentioned, the resolution in the middle domain is slightly reduced than
for the innermost subdomain as only large scales are considered for the
evolution of the far-field. Therefore only large-scale phenomena cross the
interface, while smaller ones can not be captured. In the case of the density
and pressure, illustrated in Figure 10.19d and Figure 10.18e respectively,
we can observe the same behavior as for the velocity. Here smaller scales
are smeared, while larger ones are adequately captured.

(a) (b) (c)

(d) (e)

Figure 10.19.: Coupling interface between the middle and outermost sub-
domain at the lower boundary of the middle subdomain.
The velocity perturbation is shown for (a) the velocity in
x-direction, (b) the velocity in y-direction, (c) velocity in
z-direction, (d) density, and (e) pressure. In each subfigure
on the upper side, the coupling interface of the middle sub-
domain, and on the lower side, the corresponding coupling
interface of the outermost subdomain is depicted. Black
dashed lines separate both images. Slices are captured for
t = 1.0 s.

In Figure 10.19 the coupling interface at the middle and outermost subdo-
main is depicted for the velocity, density and pressure perturbation. As
vortices move towards the lower coupling boundary of the middle domain,
this interface is of interest. Only the linearized equations are solved in the
outermost subdomain, and therefore, the dynamic of nonlinear phenomena
is neglected. Though, the expectation might be, as nonlinear information
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travels from the middle subdomain to the outermost subdomain towards
the end of the simulation time, that those nonlinear phenomena cause (i)
discontinuity at the coupling interface and (ii) stability issues of the numer-
ical simulation. However, none of those mentioned points have occurred
for the shown quantities. Nonlinear flow features have only reached the
coupling interface and have not yet advanced into the respective simulation
domain. In Figure 10.19a, Figure 10.19b and Figure 10.19c the velocity
perturbation in all spatial directions are presented. As vortices exist at
the coupling interface, they are transported from the middle subdomain
to the outermost subdomain (cf. Figure 10.19b), accordingly. However, as
the outermost subdomain solves the linearized Euler equations, it cannot
capture the dynamics of nonlinear effects. Nevertheless, we can also not
detect any flaw in the solution at the interface. For density and pressure
(cf. Figure 10.19d and Figure 10.19e), though, slight differences can be
observed, which are not apparent for the velocity components. Those
differences are due to the vortices that travel from the middle subdomain
towards the outermost subdomain. However, due to the linearization,
the occurring dynamic can not be similarly represented as in the middle
domain.

10.5. Performance

We now investigate the scalability of the 3-field coupled problem on the
Hawk supercomputing system. Measurements were conducted from 16
compute nodes up to 256 nodes, each equipped with 128 cores. In addition,
intra- and inter-subdomain load balancing are deployed to distribute the
workload among allocated processes equitable (cf. Section 8). In Figure
10.20 the strong scaling measurement is presented. The dash-dotted line
highlights the ideal scaling, while the dashed line presents the actual
compute time per iteration. The dashed line curve includes the compute
time of each subdomain, the evaluation, the data exchange at the coupling
points, and the waiting time between the subdomains to complete one
iteration (synchronization). The computational resources are distributed
according to the ratio of 92% : 3% : 5% for the innermost, the middle,
and the outermost subdomain. The innermost subdomain requires most
computational resources due to the costly compressible Navier-Stokes equa-
tions and the computational domain with the highest amount of mesh
elements. Furthermore, the moving airfoil geometry is located there as well.
The middle domain is when compared to the outermost subdomain, less
compute-intensive. It has more elements than the outermost subdomain
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and is involved in the surface coupling with the innermost and outermost
subdomain. However, the outermost subdomain solves a higher scheme
order and is required to solve additional source terms on the rhs of the
fluid dynamic equations (sponge layer).
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Figure 10.20.: Strong scaling measurement of the 3-field coupled simu-
lation on Hawk supercomputing system, hosted by the
High-Performance Computing Center in Stuttgart, Germany.
Measurement includes up to 256 nodes, each equipped with
128 cores.

From Figure 10.20 we can observe how the total compute time (dashed
line) scales with increasing core count. Even though it does not strictly
follow the ideal scaling, the efficiency for the last data point with 256 nodes
is approximately 74%. Furthermore, in section 6.7.1, we confirmed the scal-
ing of the solver, where we present a perfect strong scaling behavior. The
decisive difference between the measurement here and the measurement
shown in Section 6.7.1 is the introduced coupling strategy. As already
explained in Section 8.1 coupling elements have a higher workload, as
they have to compute the fluid dynamic equations and are involved in
the coupling procedure. Therefore, e.g., coupling elements at the domain
corner are more compute-intensive than other coupling elements as they
usually have three coupling interfaces.
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Furthermore, coupling elements in the middle subdomain that provide
boundary information to the innermost subdomain have a different work-
load than coupling elements between the middle and the outermost subdo-
main. Therefore, due to the higher workload and the fact that coupling
elements are only present at the outer boundaries of each subdomain,
they can limit the scalability of the coupled simulation. This limitation is
due to the small number of those elements compared to those that only
compute the fluid dynamic equations. With increasing cores, coupling
elements are distributed among available compute resources, and at some
point, a distribution is reached, where each coupling element is on one core.
When reaching such a distribution, the scaling of the coupled simulation
is eventually limited, and no further reduction in computational time can
be achieved with increasing core count.

In our case, in the innermost subdomain, only 16, 128 elements are in-
volved in the coupling compared to the total number of elements in the
computational mesh (511,488 elements); those elements make less than
3.15% of the total number of mesh elements. On the other hand, in
the middle domain, 960 elements are included in the coupling procedure
to the innermost subdomain and 36, 160 elements to the outermost sub-
domain. However, the coupling elements to the innermost domain are
more compute-intensive, as they need to additionally compute the gradi-
ents of the state variables for the innermost subdomain. Thus it is not
surprising that the scaling is limited due to the compute-intensive elements.

Conclusion In this section, we presented a large-scale 3-field coupled
simulation. The large simulation domain is decomposed into three sub-
domains, each configured with a dedicated configuration for the spatial
discretization and solved with different fluid dynamic equations. Presented
results are in agreement with expected physical phenomena. In the in-
nermost subdomain, the compressible Navier-Stokes equations are solved.
Moreover, an airfoil geometry is located inside this subdomain, which
moves throughout the simulation time. The lift and drag coefficients are
examined in detail, which can be captured for various angles of attacks
due to the airfoil motion. With the changing angle of attack, the jet flow
is also disturbed, resulting in vertex structures at the trailing edge of the
airfoil. They travel from the innermost subdomain towards the middle
subdomain, where they can be further captured accordingly, as the inviscid
Euler equations are solved. Due to the jet-inflow and the airfoil structure,
cylindrical pressure waves can be identified that move with the speed of
sound from the innermost up to the outermost subdomain. In the out-
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ermost subdomain, the inexpensive linearized Euler equations are solved.
Microphones located in this subdomain capture the pressure perturbation
used to provide information on the sound pressure level. Even though the
microphones’ location is far from the jet-inflow and the airfoil geometry,
they captured perturbations precisely, indicating that pressure waves have
been transported accordingly due to the high-order scheme. As a result,
pressure waves become more significant over time (higher frequency) and
move towards the outer boundaries of the outermost subdomain, where
artificial sponge layers absorb them. Thus, they damp the state values to
a predefined target state and avoid reflections at the boundaries.

Furthermore, we illustrated that the coupling approach acts as expected.
The exchange of information at the coupling interfaces agrees with each
other, highlighting the accurate information transfer and transport over
the respective coupling interfaces. Presented results also confirm that the
different subdomains can hardly be distinguished without indication of
the coupling interfaces. Finally, we performed a strong scaling measure-
ment, where we pointed out that with increasing node count, the compute
time can be considerably decreased. However, our measurement deviates
from the ideal scaling due to the limitation of the utilized load balancing
approach.
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This work presented an efficient method to model moving geometries in
compressible flows utilizing the high-order Discontinuous Galerkin method.
We introduced a straightforward method to model moving geometries with
the same discretization method as for the fluid dynamic equations, namely
the Brinkman penalization method. This volume penalization technique
is an embedded or immersed boundary method, where the geometrical
constraints are incorporated in the fluid dynamic equations to be solved. It
allows the separate treatment of geometries from the computational mesh,
chosen as a simple Cartesian grid. This procedure is desirable in the case
of moving geometries as the mesh remains unchanged over the simulation
time and necessitates to be generated only once a priori. Consequently, no
special treatment of the moving geometry in the computational mesh and
additional mesh adaptation are required due to its motion. We demon-
strated how this method is incorporated in our numerical scheme and
realized in polynomial function space. In addition, further optimization is
introduced to reduce the computational cost for the geometry throughout
the simulation.

With the obtained knowledge, we validated this method using known
one-dimensional and two-dimensional benchmarks from literature. Sim-
ulations are conducted from the reflection of an acoustics pulse to the
formation of shocks, from subsonic flows to supersonic flows, and from
straight to curved and sharp geometrical boundaries. In all cases, the nu-
merical solutions are in excellent agreement with available exact solutions.
Furthermore, we exposed in our studies that with the same number of
degrees of freedom, the numerical solution has a higher accuracy when
utilizing a high-order scheme with fewer computational elements than a
low-order scheme and a fine mesh (more elements). This observation holds,
even in the vicinity of shocks, where the error convergence order breaks
down. Conducted simulations with sharp and curved moving geometries
presented, how this method can provide exact solutions, even when the
mesh is not adapted towards the geometrical boundary. Often engineering
applications are a composition of more than one component and may
include the collision of different geometries. Our studies also incorporated
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these scenarios, where the geometry is a composition of more than one
object and moves throughout the simulation time. Additionally, the colli-
sion of multiple geometries is presented. These studies evidenced that the
modeling method and the high-order discretization can deal with complex
applications, independent of the geometry composition and its motion.
Furthermore, we presented a prediction model to estimate the additional
computational effort for complex moving geometries (polygons). Thus, it
allows estimating the required computational time before an actual run
on HPC systems.

For the efficient computation of multi-scale problems, especially when
the simulation of the acoustics far-field is of interest, we utilize a parti-
tioned coupling approach. The large simulation domain is decomposed into
smaller subdomains, according to the occurring physics in the respective
areas of the flow field. Each subdomain receives a dedicated configura-
tion that permits capturing occurring physics accordingly. The spatial
discretization of the domains is controlled by the computational mesh and
the polynomial approximation. To further enhance the efficiency of this
method, each subdomain is solved by a dedicated set of equations. It
permits to neglect terms in the fluid dynamic equations that do not play
a role from the physical perspective. For example, this is the case in the
acoustics far-field, where a homogeneous flow field is encountered. Thus,
only wave propagation occurs, viscous effects and nonlinear phenomena
can be ignored. Therefore, a simplified set of equations is sufficient to
specify the physics there. Examinations conducted in this work for the
partitioned approach include the quality of the solution at the coupling
interface while comparing two coupling approaches. Coupling tools enable
the data exchange at the subdomain boundaries. The white-box approach
is part of the simulation framework used in this work and has knowledge
about the underlying scheme. The black-box approach, on the other
hand, has less knowledge about the coupling domains. Therefore, coupled
simulations using the white-box approach permit a high accuracy for the
numerical solution, which is close to the classical monolithic approach
(no coupling). In the case of the black-box approach, additional features
are required to attain a similar solution error compared to the white-box
approach. However, due to the flexibility of the black-box approach, the
coupling of different solvers is possible.

To achieve more efficient computation for the coupled simulation, im-
provements are introduced to reduce the data exchange. Additionally, load
balancing is used to address load imbalances occurring on the intra- and
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inter-subdomain levels. With this, the varying workload of the geometry
and the computational mesh is considered, which can be finer or coarser in
some areas (multi-level) of the simulation domain. Thus, we can achieve
savings in the computation for the coupled simulation through the men-
tioned appropriate measures, allowing for even more efficient simulations.
Lastly, we showed a large-scale simulation, where we investigated the
near-field, the turbulent flow, and the acoustics far-field. Even though
the simulation domain is decomposed, the transition from one subdomain
to the other is smooth, with no observable degradation at the coupling
boundaries.

This work can be continued in different directions. First investigations
may be conducted to a better re-projection method for the post-processing
to capture shocks more precisely up to the point of discontinuity. Here the
Gegenbauer re-projection or the Pade approximation can be considered.
However, these methods imply additional parameters for post-processing.
Furthermore, the geometry modeling can be further extended by incorpo-
rating the full interaction of fluid and structure. It requires including the
flow response on the geometry, enabling the structure to capture deforma-
tions due to the fluid flow. Additionally, it is worth further investigating
the update of the geometry during run time. The geometry position was
tracked and updated in each substage of the time-stepping scheme in this
work. This practice is, of course necessary, to maintain stability and the
accuracy of the solution. However, in the case the motion of the geometry
is small, it might be possible to reduce the computational effort in our
case to 1/4. Hence the position of the geometry is only tracked once per
time step.

Improvements in the direction of partitioned coupling can be the cou-
pling in time that necessitates being investigated and enabled. Different
phenomena often have different scales in space and time and have to be
resolved accordingly. Due to the a priori decomposition of the simulation
domain, e.g., the viscous/inviscid nonlinear domain might be chosen larger
or smaller than required. Therefore an adaptive approach is helpful, where
the overall domain is not decomposed. At the same time, the solver utilizes
an adaptive approach to distinguish when, e.g., nonlinear effects can be
neglected, and the linearization of the equations is allowed. It enables
more efficient computation of the simulation domain and a more immediate
transition to solve the linearized equations as soon as physically allowed.
Indicators might be, e.g., energy or momentum. Thus the change in the
conserved quantities, as presented, e.g., in [56].

219



11. Conclusion

In this work, we presented an overview of possible applications to model ge-
ometries and efficiently computed multi-scale problems. The methods used
in this work can be deployed in different research areas. We demonstrated
how the high-order approach is suited for modeling moving geometries,
utilizing the same discretization method as the fluid flow, and how it only
introduces little numerical dissipation. Thus, it can be deployed for, e.g.,
compressible turbulence investigations or aeroacoustic noise generation of
transonic or even supersonic flows. The application area of high-order dis-
cretization methods, the embedded method, and the partitioned coupling
is diverse and enables the investigation of various fluid dynamic problems.
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A.1. Multi-scale simulations - Partitioned coupling with
preCICE

As mentioned in Section 7.3.3 in order to achieve accurate solutions from
the numerical simulation, when considering the black-box coupling ap-
proach preCICE, different interpolation methods can be used for the data
exchange. This section shows how the connectivity information for the
Nearest-Projection method is generated and provided to the coupling tool
for the interpolation. In Section 7.3 we already mentioned that in order to
couple the solver with the coupling tool preCICE, an API (application
programming interface) is used. It is required to allow for communication
between the coupling tool and the solver. Through the interface, they can
exchange information such as the coordinates of the coupling points, at
which data is sent and received. Furthermore, the interface is essential
since the solver Ateles is written in Fortran programming language, while
preCICE is based on C. Usually, only coupling points are communicated
between the solver and the coupling tool. However, as discussed in Section
7.3.3 to obtain accurate simulation results at the coupling interface and
increase the accuracy of the solution, we consider the 2nd order interpola-
tion method Nearest-Neighbor. For this interpolation, not only a list of
coupling points is required, but also connectivity information. Therefore,
the coupling points are connected for the connectivity, and a mesh based
on triangular mesh elements is built. The coupling tool then uses the
mesh for interpolation purposes of the coupling variables that have to be
provided to the solver.

In Algorithm 1 the connectivity for the interpolation method is created.
Neighboring elements are connected through edges. For example, to create
triangular elements, the four edges that build a rectangular element are di-
vided into two triangular elements through a diagonal edge. Two for-loops
are used to capture both interface directions. As for three-dimensional
simulations, a coupling interface is only a two-dimensional plane.
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Algorithm 1 Generate connectivity information for Nearest-Projection
1: for i = 1, nCouplingPointsPerDir do
2: for j = 1, nCouplingPointsPerDir do
3: if i ≤ nCouplingPointsPerDir
4: & j ≤ nCouplingPointsPerDir -1 then
5: Create the vertical edges using two neighboring
6: points and give them an ID
7: end if
8: if ≤ nCouplingPointsPerDir
9: & i ≤ nCouplingPointsPerDir -1 then

10: Create the horizontal edges using two neighboring
11: points and give them an ID
12: end if
13: if i ≤ nCouplingPointsPerDir -1
14: & j ≤ nCouplingPointsPerDir -1 then
15: Create the diagonal edges using two vertices
16: and give them an ID
17: Create triangles using three edgeIDs (horizontal,
18: vertical and diagonal)
19: end if
20: end for
21: end for

Afterward, the information on the edges must be provided to preCICE
for each element face. Thus the information is gathered element-wise and
provided to the coupling tool. Finally, preCICE needs the vertexIDs,
which are the same as the coupling points. In order to create the respective
edges, both vertexIDs and the respective edgeIDs has to be provided (cf.
Algorithm 2).
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Algorithm 2 Provide connectivity information to preCICE
1: if Dimension > 1 thens
2: for iFace = 1, nFaces do
3: for iEdge = 1, nEdges do
4: Call the preCICE interface and provide the
5: meshID, FirstVertexID, SecondVertexID and the EdgeID
6: end for
7: end for
8: end if
9: if Dimension > 2 then

10: for iFace = 1, nFaces do
11: for iEdge = 1, nTriangles do
12: Call the preCICE interface and provide the
13: meshID, FirstEdgeID, SecondEdgeID and the ThirdID
14: end for
15: end for
16: end if

The meshID is used to identify all information belonging to the respective
coupling domain. Each subdomain has its unique meshID, with that
preCICE, can gather and identify information belonging to a certain
domain.

A.2. Reduced computation inside the geometry - Code

In Section 6.6 we introduced how the disadvantage of the embedded method
is tackled using the reduced computation inside elements that are covered
by the geometry. They only use the integral mean for the approximation of
the solution. The following steps are conducted in the solver, in order to (i)
identify elements that are covered by the geometry, (ii) check the state of
the neighboring elements, and (iii) reduce the order for the approximation
of the physical flux to the integral mean only.

First, elements that are covered by the geometry have to be identified.
Therefore inside the routine, where the masking function χ is evaluated, we
examine the state of the function in each element that has no constant ma-
terial property. When the geometry is present, an element has no constant
state, thus χ 6= 0. The state of the masking function χ is determined in
each of those elements. For example, if the state of χ is 1.0, the element is
tagged as a potential candidate for the reduced approximation. Afterward,
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the neighboring elements are identified, and their state is confirmed. If
both neighboring elements for a one-dimensional problem have χ = 1.0,
then the element is supposed to be used for reduced computation. Oth-
erwise, the reduction is not utilized during computation (cf. Algorithm
3).

Algorithm 3 Check the state of the masking function of each element
1: for iElem = 1, nElems do
2: Check the state of χ for this element
3: if State of χ = 1.0 then
4: Tag element as potential candidate for reduced computation
5: end if
6: end for
7: for iElem = 1, nElems do
8: Element is tagged with χ == 1
9: for iNeighbor= 1, nNeighbors do

10: Check the state of the neighboring elements
11: if Neighboring element has χ = 1.0 then
12: Neighboring element is inside the geometry
13: end if
14: end for
15: The computational element is surrounded by elements that are

inside
16: the geometry. Therefore, it can be reduced in computation.
17: end for

The during computation of the physical flux, the solver, considers the
tagged elements and proceeds with only computing the integral mean (first
mode) for those identified elements.

A.3. Sharp boundary - Supersonic moving wedge

In this section, the time series of the wedge test case, previously discussed
in Section 6.5 is presented. A wedge is close to the right boundary and
moves with a predefined supersonic speed towards the left boundary. The
fluid is initially at rest. An oblique shock wave is formed at the nose of
the wedge. The angle of the shock can be analytically determined and
compared to the numerical solution. More details on the configuration of
this test case can be found in Section 6.5. All figures depict the solutions
for different scheme orders and at simulation times of 0.05 s, 0.1 s, 0.15 s,
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(a) (b)

(c) (d)

Figure A.1.: Time evolution of a supersonic translating wedge for scheme
order O(5) and Mw(2) − θ(15◦). The numerical solution is
shown after: (a) 0.05 s, (b) 0.10 s, (c) 0.15 s and (d) 0.2 s.

and 0.2 s. In Figure A.1 the time series for the solution with a scheme
order of O(5) is provided. Figure A.1a depicts the solution after 0.05 s.
Due to the wedge’s supersonic motion, the flow field, which was initially at
rest, is disturbed. Furthermore, the formation of an oblique shock ahead
of the wedge can be recognized. From Figure A.1b to Figure A.1d the
interaction of the shock with the upper and lower wall can be observed.
Additionally, in all figures, the formation of vortices of different scales is
noticeable.

The figures are shown in Figure A.2 illustrate the time evolution of the
solution for a scheme order of O(6). Again the shock-wall interaction can
be recognized as well as the shock formation at the wedge nose. Compared
to Figure A.1 more and smaller scales are resolved, observable in the middle
of the domain. Further, as mentioned in Section 6.5 the shock angle is
captured more precisely in the case of O(6) than for O(5). Furthermore,
due to the higher scheme order, the spatial resolution is improved. Thus
more integration points are available to represent the geometry with higher
accuracy. It positively influences the wedge modeling, and the oblique

225



A. Appendix

shock is sharper at the nose, as the wedge can be represented more pre-
cisely. Comparing the solutions of O(6) with those of O(8) illustrated in

(a) (b)

(c) (d)

Figure A.2.: Time evolution of a supersonic translating wedge for scheme
order O(6) and Mw(2) - θ(15◦). The numerical solution is
shown after: (a) 0.05 s, (b) 0.10 s, (c) 0.15 s and (d) 0.2 s.

Figure A.3, we can recognize that not only more features of the flow are
resolved (e.g., smaller vortices) but also the sharpness of the shock is im-
proved. In Figure A.3d the sharpness of the oblique shock can be observed.
Furthermore, the previous curvy form of the shock is now improved and
provides only a neglectable deviation from the exact solution as shown in
Section 6.5. Lastly, in our examination, the solutions for the simulation
with a scheme order O(10) are shown in Figure A.4. The last configuration
allows capturing the exact solution by the numerical solution (shock angle).
Thus, the sharpness of the shock is perfectly predicted. Moreover, all
characteristics of this problem are resolved likewise the previously shown
solutions of the scheme orders O(5), O(6) and O(8).
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(a) (b)

(c) (d)

Figure A.3.: Time evolution of a supersonic translating wedge for scheme
order O(8) and Mw(2) − θ(15◦). The numerical solution is
shown after: (a) 0.05 s, (b) 0.10 s, (c) 0.15 s and (d) 0.2 s.
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(a) (b)

(c) (d)

Figure A.4.: Time evolution of a supersonic translating wedge for scheme
order O(10) and Mw(2) − θ(15◦). The numerical solution is
shown after: (a) 0.05 s, (b) 0.10 s, (c) 0.15 s and (d) 0.2 s.
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A.4. Sponge - Reduced boundary reflections

Due to the limitation of the simulation domain by boundary conditions,
reflections or even numerical instability caused by the outgoing informa-
tion occur at the boundaries. In order to avoid this scenario for our
large-scale coupled simulation and prevent outgoing pressure waves in the
outermost domain from being reflected into the simulation domain, we
consider sponge layers. Sponge layers can be seen as artificial areas in the
simulation domain, placed in the vicinity of inflow or outflow boundaries
to enforce the information close to the boundaries to a particular state
before reaching the boundary itself. It allows reducing the intensity of the
state variables, thus the reflection of, e.g., acoustics waves back into the
simulation domain. The sponge layer used in this work was introduced by
J.B. Freund [39]. He investigated the sponge layer and presented promising
results. It is available in the high-order solver Ateles used in this work
and can be utilized by all equations implemented in the solver.

The working principle of the sponge layer is given in Eq. (A.1), where the
linearized Euler equations are presented. In addition, a damping function
σ is introduced on the rhs of the conservation equations. It is used to
reduce the intensity of the state variables to a predefined one. Thus the
sponge layer acts as a source term in the conservation equations.

∂t ρ
′ + ∇ ·

(
ucρ

′ + ρcu′)︸ ︷︷ ︸
:=mu

= −σ · (ρ′ − ρ′
target) (A.1a)

∂t u′ + ∇ ·
(

ucu′ + 1
ρc
p′
)

= −σ ⊗ (u′ − u′
target) (A.1b)

∂t p
′ + ∇ ·

(
ucp

′ + γpcu′) = −σ · (p′ − p′
target). (A.1c)

A target state (target) is defined, to which the state is slowly damped in
space over time, depending on the function σ utilized. This can be either
a linear decrease to the target state or, e.g., a quadratic one. The damping
function depends on the width of the sponge layer and the damping factor
(σI). The damping factor defines how strong the sponge layer is. If this
factor is chosen too strong, then the outgoing information will be reflected
into the computational domain before reaching the domain’s boundaries,
which is counterproductive. Therefore the damping factor has to be cho-
sen accordingly to deploy its benefits and avoid reflections of outgoing
information.
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Figure A.5.: Principle of the sponge layer for a one-dimensional test case.
Simulation domain with two boundary conditions on the right
and left sides. In the vicinity of each boundary, a sponge
layer is located to avoid reflections by the boundaries.

Our investigation has shown that: (i) The width of the sponge layer
has to be thick enough to damp the state to the desired value. On the
other hand, a too-thin layer does not allow appropriate damping. Thus the
state has to be damped down in a short interval, causing strong gradients
and resulting in strong oscillations of the polynomial representation. (ii)
The strength of the sponge, hence the damping factor can be calculated
according to the width of the sponge layer and the speed of sound. It
allows achieving reflection-free results. Further, the choice of the damping
exponent (αd) allows to determine how fast the outgoing information is
reduced in intensity before reaching the boundaries (cf. Eq. (A.2). An
exponent of 1 results in a linear decrease. Thus the state is slowly reduced
in intensity, while a quadratic one results in a faster intensity reduction.
For simplicity reasons and a better understanding of the principle of the
sponge layer, a small one-dimensional test case is shown in Figure A.5. On
both sides of the domain, a sponge layer is positioned before the boundaries,
located between the physical domain. Both sponge layers have a width of
Wl and Wr, respectively. The sponge region is physically not relevant for
the solution. However, it helps to overcome reflections or even instabilities
caused by strong nonlinearities, e.g., vortices at the boundaries.

Corresponding to Figure A.5, a linear function is used to damp the solution
to a target state in one-dimensional space, which is computed as

σ(x) =


σIl ·

(
Wl−x

Wl

)αd

0 ≤ x < Wl

0 Wl ≤ x < Xmax −Wr

σIr

[
x−(xmax−Wr)

Wr

]αd
Xmax −Wr ≤ x ≤ Xmax.

(A.2)
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Here Wl and Wr define the width of the left and right sponge layer,
respectively. Xmax determines the maximum length of the domain and
σIl and σIr the damping factor that defines how strong the sponge layer
is. From Eq. (A.2), it is apparent that the sponge has its maximum in
the damping process close to the boundaries of the domain, where the
end part of the sponge can be found. In the area facing the physical
domain, the strength of the sponge is the lowest. It is designed such that
the information that travels to the boundary loses in amplitude before
reaching it. More on this method can be found in [39].
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systems for highly resolved simulations. Applications, as well as numerical 
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This work presents an effi cient strategy to facilitate large-scale simulations of 
aeroacoustics induced by rigid body motion. A Discontinuous Galerkin method, 
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