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ABSTRACT

Statistical hypothesis testing is a central method for the judgement of empirical find-
ings in the medical, social and natural sciences. In recent years, the ongoing problems
with null hypothesis significance testing and p-values have shown that the underly-
ing paradigm for quantifying statistical evidence about a research hypothesis is highly
problematic, and the situation has been termed a replication crisis. In this thesis, the
evolution of statistical hypothesis testing is reconstructed, and it is shown that various
of the recently observed problemswith the reproducibility of research can be attributed
to the underlying statistical theory of widely used inferential statistical methods. In the
first part, the development of an inconsistent hybrid approach to statistical hypothe-
sis testing which emerged out of Fisher’s theory of significance tests, p-values and the
Neyman-Pearson theory is analyzed. In part two, the evolution of Bayesian approaches
to hypothesis testing is detailed with a focus on the Bayes factor. Part three discusses
the development of modern Markov-Chain-Monte-Carlo algorithms and their impact
on Bayesian hypothesis testing. Part four then provides an axiomatic analysis of the
concept of statistical evidence in the context of statistical hypothesis testing and it is
shown that various substantial problems which were observed in the replication crisis
can be attributed to purely axiomatic inconsistencies and conflicts with the likelihood
principle. Based on the axiomatic analysis, it is shown that robust Bayesianmethods, in
particular robust Bayesian hypothesis tests provide a solution to some substantial prob-
lems with the reproducibility of research. Bayesian statistical solutions to the replica-
tion crisis are provided in the fifth part with a focus on widely used Bayesian statistical
models in the biomedical sciences. New results demonstrate that the implicit error con-
trol of Bayesian hypothesis tests is comparable to frequentist tests based on p-values,
and that a variety of Bayesian evidence measures attains reasonable type I error con-
trol and power in practice. Also, a shift towards the Hodges-Lehmann paradigmwhich
advocates testing small interval instead of point null hypotheses is explored, and new
theoretical results show that such a shift may be an appealing additional step towards
increasing the reproducibility of science which has not received enough attention in the
discussion about the validity of statistical hypotheses and the reproducibility of scien-
tific research.
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ZUSAMMENFASSUNG

StatistischeHypothesentests bilden eine zentraleMethode für die Bewertung empirisch-
er Studien in der Medizin, den Sozialwissenschaften und den Naturwissenschaften.
Die zunehmenden Probleme mit der Reproduzierbarkeit wissenschaftlicher Resultate
haben gezeigt, dass die zuGrunde liegendemathematische Theorie zurQuantifizierung
statistischer Evidenz im Kontext statistischer Hypothesentests hochgradig problema-
tisch ist, und die Situation wird weitläufig als wissenschaftliche Reproduzierbarkeits-
krise bezeichnet. In dieser Arbeit wird die Evolution statistischer Hypothesentests
rekonstruiert und gezeigt, dass diverse im Rahmen der Reproduzierbarkeitskrise beo-
bachtete Probleme ursächlich auf die den Verfahren zu Grunde liegende statistische
Theorie zurückgeführt werden können. Im ersten Teil wird die Entwicklung eines
inkonsistenten hybriden Ansatzes statistischer Hypothesentests beschrieben, welcher
sich aus Fisher’s Theorie der Signifikanztestsmittels p-WertenundderNeyman-Pearson-
Theorie entwickelte. In Teil zwei wird die Entwicklung Bayes’scher Ansätze zum Hy-
pothesentesten und insbesondere die Entwicklung des Bayes-Faktors analysiert. Teil
drei zeigt die Entwicklung moderner Markov-Chain-Monte-Carlo-Algorithmen und
deren Bedeutung für die Anwendbarkeit Bayes’scher Hypothesentests auf. Im vierten
Teil bildet eine axiomatische Analyse des Konzepts statistischer Evidenz im Kontext
von Hypothesentests den Ausgangspunkt und es wird gezeigt, dass eine Vielzahl der
Probleme der Reproduzierbarkeitskrise ursächlich auf die axiomatischen Grundlagen
und Konflikte mit dem Likelihood-Prinzip zurückgeführt werden können. Die Ergeb-
nisse der axiomatischen Analyse zeigen, dass robuste Bayes’sche Analysen und Hy-
pothesentests eine Lösung für eine Vielzahl der Probleme mit der Reproduzierbarkeit
wissenschaftlicher Resultate darstellen. Bayes’sche statistische Lösungen für die Re-
produzierbarkeitskrise werden im fünften Teil der Arbeit mit einem Schwerpunkt auf
statistische Modelle aus der Biostatistik und medizinischen Biometrie vorgestellt und
es wird demonstriert, dass robuste Bayes’sche Hypothesentests für den Großteil dieser
statistischenModelle verfügbar sind. Neue Resultate zeigen, dass Bayes’sche Hypothe-
sentests über eine vergleichbare Fehlerkontrolle verfügen wie frequentistische auf p-
Werten basierende Tests, und dass mehrere Bayes’sche Evidenzmaße praxistaugliche
Typ-I-Fehlerraten sowie Trennschärfen erzielen. Zusätzlich wird ein Paradigmenwech-
sel zumHodges-Lehmann-Paradigma analysiert, nachwelchem das Testen von kleinen
Intervallhypothesen an Stelle von präzisen Punkthypothesen für eine Vielzahl von An-
wendungskontexten – insbesondere in der Medizin – realistischer ist. Neue theoretis-
che Resultate zeigen, dass ein solcher Paradigmenwechsel eine attraktive zusätzliche
Lösung der Reproduzierbarkeitsprobleme darstellt, welcher bisher zu wenig Aufmerk-
samkeit erhalten hat.
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John P. Ioannidis
Why most published research findings are false

A few years ago, in March 2016, the American Statistical Association (ASA) pub-
lished a warning about a common statistical method (Wasserstein and Lazar, 2016).
The issue was published in The American Statistician, with several leading statisticians
involved in the publication, suggesting the statistical method was leading to wrong
conclusions, wasting taxpayers money and damaging science and the reputation of sci-
entific work in general. The method named of course was the p-value.

Today, substantial parts of scientific research are heavily influenced and even based
on statistical methods. From clinical trials, epidemiology and psychological studies
over experiments in the domains of physics and engineering to economics, p-values
have been used since their earliest days to back claims for the discovery of significant
e�ects in often noisy data. Statisticians know about these problems since a long time,
so for them, the situation is nothing to be surprised about. Already decades ago scien-
tists warned about the incorrect use or interpretation of statistical methods - especially
p-values - and today the same old problem confronts science again. Statistical inference
as a mathematical discipline is shaped by the turbulent history of change and transfor-
mation in the last century and its evolution was influenced by feuds and debates about
the right approach for a given statistical problem. The debate often centered around
the existence of two competing core models for statistical inference: the frequentist and
the Bayesian approach.

1.1 The Replication Crisis in the biomedical Sciences

Null hypothesis significance testing (NHST) is the leading but also controversial sci-
entific method for establishing new results. The use of hypothesis tests in scientific re-
search has grown steadily over the last decades (Halpin and Stam, 2006; Hubbard and
Ryan, 2000; Hubbard, 2004) and in recent years, more and more problems have been
identified in NHST. These problems undermine the reliability of research and can be
attributed to the overuse of hypothesis tests in research (Kelter, 2020b,d; Nuzzo, 2014)

13



CHAPTER 1. INTRODUCTION

The implication of these problems is the irreproducibility of statistically significant
findings. Therefore, the situation has been termed a reproducibility crisis of science
(Baker and Penny, 2016;Wagenmakers and Pashler, 2012; Ioannidis, 2005b; Colquhoun,
2017) and started a debate about the appropriateness of hypothesis tests for complex
research scenarios like clinical trials, psychological interventions or sociological experi-
ments (Gigerenzer, 2004). Various authors have critisizedNHST, in particular, p-values
(Ioannidis, 2005b). p-values are probably the most widespread statistical tool to sepa-
rate between significant and non-significant research findings, and they are an essen-
tial part of NHST. Technically, the p-value is the probability of observing a result equal
to or more extreme than the one obtained, under assumption of the null hypothesis
H0 : q = q0 (Held and Sabanés Bové, 2014). Here, q is the parameter of interest, and q0
the value specified by the null hypothesis. Although the p-value has a long tradition in
statistical science, the recently rediscovered problems have made the p-value fall into
disrepute (Haaf et al., 2019; Halsey, 2019; Greenland, 2019; Kelter, 2021a).

In 2016 theAmerican StatisticalAssociation (ASA) released a statement on the proper
use and interpretation of p-values (Wasserstein and Lazar, 2016). Although the state-
ment included six principles how to deal with p-values, few has changed since (Hub-
bard, 2019;Matthews et al., 2017). This can be attributed to a lack of alternativemethod-
ologies and precise guidance for researchers how to replace p-values. The situation
did not improve even after a second statement was published three years afterwards
(Wasserstein et al., 2019). What is however clear by now, is that the problems of NHST
and p-values are not overblown (Pashler and Harris, 2012) and that the false-discovery
rate of scientific findings and frequent misinterpretations of p-values slow scientific
progress (McElreath and Smaldino, 2015; Colquhoun, 2014). Evenworse, by now, there
is few consensus how to solve these issues (Wasserstein et al., 2019). Also, the scientific
areas a�ected by these problems range from neuroscience (Button et al., 2013) and the
cognitive sciences (Haaf et al., 2019; Kelter, 2021c; Ly et al., 2020) over political science
(Gigerenzer, 2004; Gelman et al., 2019) to medical research (Kelter, 2020b; Ioannidis,
2005b,a, 2016) which illustrates the dimension of the problem.

Proposed solutions range from stricter thresholds for statistical significance (Ben-
jamin et al., 2018) over various methodological modifications (Benjamin and Berger,
2019; Brownstein et al., 2019; Hurlbert et al., 2019) to proposals like adopting an en-
tirely di�erent paradigm like the Bayesian approach.

Already before the ASA statement in 2016, the scientific discussion heated up with
the beginning of the so-called replication crisis. In 2005, John P.A. Ioannidis published
his landmark paper Why Most Published Research Findings Are False (Ioannidis, 2005b).
In it, Ioannidis modelled a framework for calculating false-positive findings in research
to explain the noticeably high rate of failed replication attempts of some highly presti-
gious research. This research was often assessed by statistical significance in the form
of a p-value.
Ioannidis’ argument went as follows: First, according to Ioannidis (2005b) “both true
and false hypotheses can be made about the presence of relationships.” By denoting R
as the ratio of true relationships #TR to false relationships #FR among all tested in the
research field (a kind of unknown but existing a priori ratio), the pre-study probability
(PSP) of a relationship being true is derived as

PSP =
#TR

#TR + #FR =
#TR
#FR

#TR + #FR
#FR

=
#TR
#FR

#TR
#FR + #FR

#FR
=

R
R+ 1

(1.1)
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CHAPTER 1. INTRODUCTION

The probability of claiming a relationship when none exists is denoted as the type I
error rate a, and one assumes further that c relationships in total are being probed in
the research field. A type II error is defined as a non-significant finding when indeed
there exists a true relationship and the type II error rate is denoted as b. The power
to detect an e�ect when one is present is then given as 1-b. After a relationship has
been claimed as statistically significant, the post-study probability that this relationship
indeed is true and exists is denoted by Ioannidis as the positive predictive value (PPV).
The PPV equals the complement of the false positive report probability, also denoted as
the false discovery rate (FDR).

PPV =P(True Relationship|Significant Finding) (1.2)
FDR =P(False Relationship|Significant Finding) (1.3)

Ioannidis (2005b) then calculated the cells of a 2x2 table with probabilities for all four
combinations of significant findings and true relationships (see Table 1.1).

Significant True Relationship
Finding Yes No Total

Yes c(1� b)R/(R+ 1) ca/(R+ 1) c(R+ a � bR)/(R+ 1))
No cbR/(R+ 1) c(1� a)/(R+ 1) c(1� a + bR)/(R+ 1)
Total cR/(R+ 1) c/(R+ 1) c

Table 1.1: Significant findings and true relationships according to (Ioannidis, 2005a)

By these probabilities one can obtain the PPV via Bayes’ theorem:

PPV ..= P(True Relationship|Significant Finding)

=
c(1� b)R/(R+ 1)

c(R+ a � bR)/(R+ 1))
=

(1� b)R
(R+ a � bR)

=
(1� b)R

(R+ a � bR)
(1.4)

Solving this equation for PPV > 0.5, that is, a significant finding is post-study more
likely to be true than false, results in the condition

PPV
(1.4)..=

(1� b)R
(R+ a � bR)

> 0.5

,(1� b)R > 0.5(R+ a � bR)
,(1� b)R > 0.5R(1� b) + 0.5a

,0.5R(1� b) > 0.5a

,R(1� b) > a (1.5)

As most researchers use the (arbitrary) threshold a = 0.05, Ioannidis (2005b) con-
cluded that a post-study significant finding is more likely true than false if R(1� b) >
0.05due to Equation (1.5). Ioannidis (2005b) then introduced bias as another confound-
ing variable. Therefore, he denoted u as the “proportion of probed analysis that would
not have been “research findings”, but nevertheless end up presented and reported
as such, because of bias.” (Ioannidis, 2005b, p. 2), which is not to be conflated with
findings to be non-significant by chance. He defines bias as procedures entailing ma-
nipulation of data analysis or the reporting of findings, respectively selected reporting
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Significant True Relationship
Finding Yes No Total

Yes (c[1� b]R+ ucbR)/(R+ 1) (ca + uc(1� a))/(R+ 1) c(R+ a � bR+ u� ua + ubR)/(R+ 1))
No (1� u)cbR/(R+ 1) (1� u)c(1� a)/(R+ 1) c(1� u)(1� a + bR)/(R+ 1)
Total cR/(R+ 1) c/(R+ 1) c

Table 1.2: Significant findings and true relationships in the presence of bias according
to (Ioannidis, 2005a)

of findings. Reasonably assuming independence of u from the fact that a true relation-
ship exists or not Ioannidis (2005b) then set up the following probabilities shown in
Table 1.2.

Taking for example the entry for both true relationship and significant finding set
to Yes, the probability has two components:

1. The first, being the product of the c probes made in total with the pre-study prob-
ability R/(R+ 1) of a true relationship, multiplied by [1� b]. Here, [1� b] is the
proportion of findings where no type II error has happened, meaning no true re-
lationship has incorrectly been classified as non-significant. The first component
thus results in c[1� b]R/(R+ 1).

2. The second, being the product of the c probes made in total with the pre-study
probability R/(R + 1) of a true relationship, this time multiplied by b and u.
Again, the fraction of true relationships are the product of cR/(R+ 1). The mul-
tiplication with b results in cbR/(R+ 1), a quantity which describes the fraction
of type II errors made, which is the fraction of true existing relationships which
have incorrectly been classified as non-significant. By finallymultiplyingwith the
bias u, the resulting portion describes the portion of type II errors made, which
have become significant again due to bias. The second component thus results in
ucbR/(R+ 1).

Adding both components results in the probability of the given cell. As the total portion
of true relationships in the underlyingdata does not change, the cellwith a true relation-
ship and no significant finding can be calculated by subtracting the above quantity from
the total quantity for true relationships cR/(R+ 1), resulting in (1� u)cbR/(R+ 1).
Ioannidis (2005b) considered now the cell for no true relationship and a significant
finding. Again, there are two components which build the resulting term:

1. The first, being ca
R+1 . This component is simply the portion of non-true relation-

ships being probed where a type I error is made, resulting in a significant finding
which in reality has no underlying relationship. The term is derived by multi-
plying the total of relationships being probed in the field, c, with the fraction of
non-true relationships in the underlying data, c(1� R

R+1). The term is then mul-
tiplied with a.

2. The second, being uc(1� a)/(R+ 1). This term is derived from the proportion
of relationships being probed in the field with no true relationship in the under-
lying data, c

R+1 . Multiplying with 1 � a results in the fraction of cases where
no true relationship exists and no significant finding is stated, (1�a)c

R+1 . By intro-
ducing bias (like selective reporting or faulty data analysis) through multiplying
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this quantity with u, these correctly non-significant classified cases are then in-
correctly converted to significant research findings although no true relationship
exists. These calculations result in the second term uc(1� a)/(R+ 1).

Adding both terms results then in (ca + uc(1� a))/(R+ 1). Given these derivations,
it is straightforward to carry out the calculations for all other entries in Table 1.2. By
using the probabilities respecting bias Ioannidis (2005b) then calculated the posterior
predictive value (PPV) for a true relationship after a significant finding:

PPV = P(true relationship|significant finding) (1.6)

=
(c[1� b]R+ ucbR)/(R+ 1)

c(R+ a � bR+ u� ua + ubR)/(R+ 1))
(1.7)

=
([1� b]R+ ubR)

(R+ a � bR+ u� ua + ubR)
(1.8)

By regarding a, b and R as constant and calculating the derivative with respect to u
it follows that the PPV as a function of u is decreasing when the condition a � 1� b
holds. When a is set to 0.05, this equals the condition 0.05 � 1� b or b � 0.95. The PPV
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Figure 1.1: PPV calculations for di�erent pre-study odds with test power of .80
(power = 1� b), (Ioannidis, 2005a)

for di�erent pre-study odds can then be calculated. Figure 1.1 shows the PPV values for
di�erent pre-study odds R (rescaled from R/(R+ 1)) with a given test power1 1� b of
0.80. As can be seen from Figure 1.1, the PPV is strongly influenced by bias u and the
pre study odds R. Also, even when assuming only very small bias u = 0.05, when the

1The test power is the probability of correctly stating a significant finding when there exists a true
relationship. Therefore, it is equal to 1� b, the proportion of cases where no type II error (incorrectly
stating no significant finding when indeed there is a true relationship) is made.
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pre study odds R of true relationships among all probed is small, say 12.5%, the PPV
is only about 50%. Thus, one could flip a coin to decide whether a research finding is
true or false instead of testing for statistical significance.

The last argument of Ioannidis (2005b) involved the testing by several independent
research teams and its influence on the PPV. He argued, that when testing by several in-
dependent teams is conducted the post-study probability of no significant finding in all
n teams when a true relationship exists equals cRbn/(R+ 1), derived by the matching
entry of Table 1.1. This term equals the probability that all n teamsmake a type II error,
and that happens exactly with probability bn multiplied with the product of the total
relationships being probed, c, and the pre-study odds R/(R+ 1) for a relationship to be
true. Accordingly, the cell for no significant finding when no true relationship exists is
calculated as the complement and all other cells can be calculated straightforward in the
samemanner by the givenmarginal probabilities of the table, see Table 1.3. Calculation

Significant True Relationship
Finding Yes No Total

Yes cR(1� bn)/(R+ 1) c(1� [1� a]n)/(R+ 1) c(R+ 1� [1� a]n � Rbn)/(R+ 1))
No cRbn/(R+ 1) c(1� a)n/(R+ 1) c([1� a]n + Rbn)/(R+ 1)
Total cR/(R+ 1) c/(R+ 1) c

Table 1.3: Significant findings and True Relationships in the Presence of Multiple Stud-
ies, reproduced from (Ioannidis, 2005a)

of the PPV for di�erent number of studies n shows that for larger n the PPV is smaller.
Thus, when a large number of research groups is working on a single topic, the proba-
bility of reliable results does, paradoxically, not increase, but decrease. The probability
that a research finding is true does not increase when several independent teams work
together. Instead, the PPV is even smaller.2 Finally, Ioannidis (2005b) stated multiple
corollaries of the described derivations, the three most important being:

1. “The smaller the studies conducted in a scientific field, the less likely the research
findings are to be true.” (Ioannidis, 2005b, p. 3). The argument for this corollary
involves that all PPV functions stated above decrease as functions of the power
1� b. The sample size determines the amount of sampling error of a test result.
As decreasing sample size N increases the standard error Ĵp

N
of an unbiased es-

timator Ĵ, smaller sample sizes lead to more sampling error in test results and
therefore less power of accurately stating a significant finding when there is a
true relationship, that is 1� b. Conversely, increasing sample size easily boosts
the statistical power of a hypothesis test (Casella and Berger, 2002).

2. “The greater the financial and other interests and prejudices in a scientific field,
the less likely the research findings are to be true.” (Ioannidis, 2005b, p. 3). This
statement refers to the results of bias-respecting PPV functions above. As bias
increases, the PPV decreases as can easily be seen in Figure 1.1.

2Statistically, this is obvious in the context of hypothesis testing also from the fact that the power of
hypothesis tests is in the frequentist approach a function which depends on the studies sample size n. A
single study with sample size n has much higher power to detect a true e�ect than 10 small studies with
sample sizes n/10.
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3. “The hotter a scientific field (with more scientific teams involved), the less likely
the research findings are to be true” (Ioannidis, 2005b, p. 3). This statement refers
to the results derived by calculating the PPV in the presence of multiple studies,
compare Table 1.3.

While Ioannidis (2005b) derivations raised attention and started a discussion in the
scientific community, one big problem remained, which was the lack of alternatives to
proceed with:

“Better powered evidence, e.g. large studies or low-bias meta-analyses, may
help, (...). However, large studiesmay still have biases (...). Moreover, large-
scale evidence is impossible to obtain for all of the millions and trillions of
research questions posed in current research. Large-scale evidence should
be targeted for research questionswhere the pre-study probability is already
considerably high so that a significant research finding will lead to a post-
test probability that would be considered quite definitive.”
Ioannidis (2005b, p. 3)

As the pre-studyprobability formost research questions is unknownand can only be es-
timated by conductingmeta-studies with noticeable e�ort, following these rules would
strongly increase the amount of required work to do reliable research. Maybe the most
important point stated in the last section of his paper was the following:

“Diminishing bias through enhanced research standards and curtailing of
prejudices may also help. However, this may require a change in scientific
mentality that might be di�cult to achieve.”
Ioannidis (2005b, p. 3)

Importantly, Ioannidis was among the first who argued against the contemporary sci-
entific mentality when it comes to statistical analyses of scientific data. This mentality
encompasses bias in research and the use of inappropriate statistical methods for an-
swering a given research question.

In the same year, Ioannidis (2005a) also conducted a meta-study following his the-
oretical arguments and successfully reported problems concerning the reproducibil-
ity in highly cited clinical research, showing that in 49 medical studies conducted be-
tween 1990 and 2003 the results of 16% were contradicted by future studies, and an-
other 16% found stronger e�ects than their successors (Ioannidis, 2005a). This result
also confirmed the much earlier results from Glick (1992), who conducted a similar
meta-analysis about the period from 1977 to 1990.

While Ioannidis’ work raised concern in some scientific domains, among them es-
pecially clinical research inmedicine and psychology, researchers soonwent on to busi-
ness as usual. In the early 2010s then, the replication crisis reemerged: Simmons et al.
(2011) showed in simulations that small changes in data-analysis decisions could in-
crease the false-positive rate of a single study to 60%, showing clearly that false-positive
conclusions are drawn regularly from research via the current statistical methodology.
In 2012, John et al. (2012) joined the debate and published a study which reported
the results of over 2000 interviews held with psychologists about their research prac-
tices. These research practices were then classified into questionable research practices
(QRPs) like selective reporting or partial publication of the data used for analysis, op-
tional stopping, p-value-rounding or the manipulation of outliers. The results were
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discussed widely (Fiedler and Schwarz, 2016). Indeed, John et al. (2012) were able to
prove that a majority of participants admitted to using at least one of the questionable
QRPs, indicating that there is a definite problem about the validity regarding research
in the cognitive sciences.

Pashler and Harris (2012) argued that all this may be a self-cleansing process of
science itself, necessary to separate research that can withstand the test of time from
non-relevant results. Ioannidis (2012) questioned this and the following years showed
that he was right: Begley and Ellis (2012) showed that only 11% of cancer studies could
be replicated at all, pouring fuel into the already heated discussion. One year later,
Johnson (2013) claimed revised standards for statistical evidence as many others (Be-
gley, 2013) by proposing increased thresholds for significant findings:

“An examination of these connections suggest that recent concerns over the
lack of reproducibility of scientific studies can be attributed largely to the
conduct of significance tests at unjustifiably high levels of significance. To
correct this problem, evidence thresholds required for the declaration of a
significant finding should be increased to 25-50:1, and 100-200:1 for the dec-
laration of a highly significant finding. In terms of classical hypothesis tests,
these evidence standards mandate the conduct of tests at the 0.005 or 0.001
level of significance.”
Johnson (2013, p. 1)

In February 2014, Nuzzo (2014) published an article about the limitations of the often-
used p-value, directly addressing the connections between the replication crisis and the
underlying statistical methods. Nuzzo (2014, p. 150,151) argued, that while p-values
“always had their critics (...) the p value was never meant to be used the way it’s used
today.”. Nuzzo (2014) made an important point in her paper which was missing in
prior search for causes: Next to the scientific mentality criticized by Ioannidis (2005b),
she added the historical perspective. Drafting the invention of the p-value by the british
statistician Ronald Fisher in the 1920s (but leaving out most details as well as the suc-
cessive work of Neyman and Pearson on hypothesis testing), Nuzzo drew the attention
to the historical causes of the situation. Reciting statistician Steven Goodman in her
article she stressed:

“The basic framework of statistics has been virtually unchanged since Fisher,
Neyman and Pearson introduced it.”
Nuzzo (2014, p. 152)

Nuzzo’s paper added the historical perspective to the debate and pointed out an addi-
tional important fact, again reciting Steven Goodman:

“Change your statistical philosophy and all of a sudden di�erent things be-
come important.”
Nuzzo (2014, p. 151)

Similar to Nuzzo (2014), Colquhoun (2014)made the statistical methods and their evo-
lution responsible for the crisis, elaborating the problems of hypothesis testing further
by simulation experiments. Like Ioannidis (2005b), Colquhoun (2014) started with the
definition of the positive predictive value (PPV) and the false discovery rate (FDR):
While Ioannidis (2005b) in his analysis investigated primarily the PPV, Colquhoun
(2014) was interested in the FDR as this rate accurately describes the portion of type I
errors made. To calculate the FDR he first made the following assumptions:
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(i) The test power 1� b is assumed to be 0.80, as this is the test power most often
specified in power analyses before conducting studies or clinical trials (Altman,
2000). The type I error probability a of a test3, is assumed to be 0.05.

(ii) The fraction of relationships which are true out of all relationships tested is as-
sumed to be constant. (which is equal to Ioannidis’ pre-study odds R). This quan-
tity cannot previously be known. For ease of notation, this quantity will also be
called the pre-study odds here.

Colquhoun (2014) then proceeded with two examples, the first being a theoretical
derivation of the FDR for 1000 tests with given pre-study odds of 10%, meaning 10%
of tests conducted will have a true relationship to be discovered or not and 90% will be
cases where there is no true relationship. By considering the 900 tests where there is no
true relationship, according to classical test theory 5% (45)will result in a false positive,
a type I error of stating a significant finding when there is no true relationship. Simi-
lar, in the 100 tests where there is a true relationship, because of the test power of 80%,
exactly 80 tests will result in a significant finding, missing 20 true relationships which
result in non-significant findings by making a type II error in those 20 cases. Therefore,
the portion of false discoveries results in

FDR =P(no true relationship|significant result)

=
P(no true relationship\ significant result)

P(significant result)

=
45
1000

80
1000 +

45
1000

=
45

80+ 45
= 0.36 (1.9)

Therefore, Colquhoun (2014) concluded that in the long run the FDRwill be about 36%
and not only 5% as assured by the type I error rate a = 0.05. He noted:

“It shows that there is a problem, but does not provide all the answers. Once
we go a bit further, we get into regionswhere statisticians disagreewith each
other.”
Colquhoun (2014, p. 5)

His second argument involves a simulation of 100.000 Student’s t-tests for di�erences
between two group means. Therefore, for every test “two groups of simulated ‘obser-
vations’ are generated as random variables with specified means and standard devia-
tions. The variables are simulated as normally distributed, so the assumptions of the
t-tests are exactly fulfilled.” (Colquhoun, 2014, p. 5). Sample sizes of n = 16 are chosen
to match the achieved test power of 80%, and a di�erence of one standard deviation
between means is assumed. Therefore, samples from the first and second group are
simulated from a normal distributed random variable with mean and variance equal
to one. By simulating 100.000 pairs of samples with 16 observations in each group and
running the test, his simulations show that indeed 78% of the p-values fulfill p  0.05,
being near the specified test power of 80%.4 However, in this setting the pre study odds
were 1, that is, every relationship probed was true. Assuming now pre-study odds of

3See Definition C.73.
4The 2% deviation are due to sampling variability in the simulation.
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10%, Colquhoun (2014) concluded that the FDR results in:

FDR =P(no true relationship|significant result)

=
P(no true relationship\ significant result)

P(significant result)

=
0.9 · a

0.9 · a + 0.1 · 0.78 =
0.9 · 0.05

0.9 · 0.05+ 0.1 · 0.78 =
0.045
0.123

⇡ 0.37 (1.10)

Therefore, like in the theoretical derivation, the simulations also back the claim of a
long run FDR of at least 36%. Still, when changing the pre-study odds to 50% the FDR
reduces to ⇡ 0.06, which is close to the assured 5% by p = 0.05. Still, in practice it is
unrealistic to assume that one out of two relationships probed is true:

“(...) there is no reason to think that half the tests we do in the long run will
have genuine e�ects.”
Colquhoun (2014, p. 7)

Furthermore, Colquhoun (2014) questioned that the assumption of 80% power is real-
istic, mentioning the results of

• Cohen (1962), who found average power 1� b in 70 investigated research studies
in psychology of 0.18 for small, 0.48 for medium and 0.83 for large e�ects.

• Button et al. (2013), who found that an optimistic estimation of themedian power
in neuroscience research lies between 8% and 31%.

Preferring the approach ofminimumFDRs as advertised by Sellke et al. (2001a), Colquhoun
(2014) also makes the evolution of statistical inference itself responsible for the replica-
tion crisis, citing Matthews (1998):

“The plain fact is that 70 years ago Ronald Fisher gave scientists a math-
ematical machine for turning baloney into breakthroughs, and flukes into
funding. It is time to pull the plug.”
Matthews (1998) in Colquhoun (2014, p. 12)

One year later, in 2015, Begley and Ioannidis (2015) summarized the current state of
the crisis:

“At the heart of this irreproducibility lie some common, fundamental flaws
in the currently adopted research practices.”
Begley and Ioannidis (2015, p. 116)

After addressing multiple institutionally caused problems in science, Begley and Ioan-
nidis (2015) discussed what constitutes the reproducibility crisis and conclude that
“empirical assessments (...) showed an array of problems, including (...) to use le-
gitimate controls, to validate reagents, and use appropriate statistical tests.” (Begley
and Ioannidis, 2015, p. 117). Next to this problem, the sheer number of publications in-
creased to the staggering number of 15 million scientists publishing at least one article
that was indexed in Scopus in the years from 1996 until 2011, makes it nearly impossi-
ble to stay up to date in the own scientific field. Begley and Ioannidis (2015) present a
meta-analysis conducted inmultiple scientific domains, showing thatwhile the number
of publications increases, the evidence of irreproducibility across most domains grows
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further and further, too. As an example, Begley and Ioannidis (2015) cited studies con-
ducted in neuroscience, pharmacology, bioinformatics, chemistry and computational
biology, all contributing to the claim that reproducibility is problematic and one of the
causes lies in the statistical analyses carried out by researchers (Kenakin et al., 2014;Mc-
Gonigle and Ruggeri, 2014). Other researchers like Winquist et al. (2014) and Marino
(2014) went even further:

“(...) the emphasis on statistical methods in pharmacology has become
dominated by inferential methods often chosen more by the availability of
user-friendly software than by any understanding of the data set or the criti-
cal assumptions of the statistical tests. Such frankmisuse of statisticalmethod-
ology and the quest to reach the mystical a < 0.05 criteria has hampered
research via the publication of incorrect analysis driven by rudimentary sta-
tistical training.”
Marino (2014, p. 1)

Similar findings were made in the fields of computational biology (Sandve et al., 2013),
bioinformatics (Sugden et al., 2013) as well as in chemistry (Davis and Erlanson, 2013).
Begley and Ioannidis (2015) thus concluded that while the number of researchers be-
ing aware of the problems is steadily increasing, few solutions are in sight. Large-scale,
cooperative e�orts to better the situation like the Reproducibility Project5 in the domain
of psychology are rare. Multiple initiatives were started, among them also the Repro-
ducibility Project: Cancer Biology6, which investigates the reproducibility of 50 highly
influential cancer studies. In 2017, Baker and Dolgin (2017) investigated the first re-
sults from the project, resulting in a mixed message about the reproducibility. All in
all, there seems to be no consensus by now. In summary, Begley and Ioannidis (2015)
argued that there are essentially five major points which should be addressed when in-
vestigating causes and possible solutions to the replication crisis (Begley and Ioannidis,
2015, p. 1):

1. The generation of new data and scientific publications is observed at a by-now
unprecedented rate.

2. There is convincing evidence that the majority of new discoveries will not stand
the test of time.

3. The causes of the reproducibility crisis may be seen in the failure to adhere to
good scientific practice and the publish-or-perishmentality across sciences.

4. The problem is a complex multistakeholder problem.

5. There is no solely responsible party, and no single solution will su�ce.

The current situation o�ers the following picture concerning the above five points:

• The first point has been discussed intensively by Siebert et al. (2015) and Parolo
et al. (2015), both of them pointing out that the overflow of data and publications
has an impact on the quality of scientific writing and is one cause for the situation
and the scientific incentive system is entangled with this cause.

5
https://osf.io/ezcuj/

6
https://elifesciences.org/collections/9b1e83d1/reproducibility-project-cancer-

biology
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• The second point can be regarded as proven by the many metastudies conducted
since the beginning of the reproducibility crisis, although no appealing solution
is at hand. Even the causes for the situation are not clear by now.

• Concerning the third and fourth point, social and institutional aspects can be
stated as important factors, but open a completely new discussion. The problem
of the underlying incentive-system in science has its definitive place among the
causes of the crisis. However, institutional aspects and grant review processes
di�er between scientific domains and countries and a unified solution is not in
sight. Still, two-stage analyses and usage of the Open Science Framework7 as rec-
ommended by Nuzzo (2014) could help.

In 2016, Baker and Penny (2016) published an article about the results of a sur-
vey conducted among 1576 international scientists about reproducibility as well as the
causes of the reproducibility crisis. Baker and Penny (2016) showed in their analysis
that low statistical power and poor statistical analysis are among the three top-rated
factors for the irreproducibility of research. Also, respondents were asked to rate dif-
ferent approaches to improving the reproducibility: Nearly 90% ticked ‘better statistics’
(Baker and Penny, 2016, p 454). In the same year the ASA statement mentioned above
was published, which o�ered guidance for the purpose and interpretation of p-values
for researchers (Wasserstein and Lazar, 2016), backing the arguments of Nuzzo (2014)
and Colquhoun (2014):

“What we hope will follow is a broad discussion across the scientific com-
munity that leads to a more nuanced approach to interpreting, communi-
cating, and using the results of statistical methods in research.”
Wasserstein and Lazar (2016, p. 2)

The sixmain principles o�ered in the statementmostly addressedmisconceptions about
p-values:

1. P-values can indicate how incompatible the data are with a specified
statistical model.

2. P-values do not measure the probability that the studied hypothesis is
true, or the probability that the data were produced by random chance
alone.

3. Scientific conclusions and business or policy decisions should not be
based only on whether a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.
5. A p-value, or statistical significance, does not measure the size of an

e�ect or the importance of a result.
6. By itself, a p-value does not provide a good measure of evidence re-

garding a model or hypothesis.
Wasserstein and Lazar (2016, p. 2)

While showing which problems may be the cause for the reproducibility crisis the only
advice given to researchers, namely to supplement or replace p-values with other ap-
proaches, was given by advising methods

7The Open Science Framework: https://osf.io/
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“that emphasise estimation over testing such as confidence, credibility, or
prediction intervals; Bayesian methods; alternative measures of evidence
such as likelihood ratios or Bayes factors; and other approaches such as
decision-theoretic modelling and false discovery rates.”
Wasserstein and Lazar (2016, p. 2)

The discussion followed but one year later Matthews et al. (2017) summarized the im-
plications and what changed (or not) in his article ‘The ASA’s p-value statement, one year
on’. There, he concluded:

“Yet a year on, it is not clear that the ASA’s statement has had any substan-
tive e�ect at all. A quick check of the latest issues of leading journals like
The Lancet or Proceedings of the National Academy of Sciences shows it’s
business as usual - even in papers submitted after the ASA’s statement.”
Matthews et al. (2017, p. 38)

Without few exceptions (one of them the complete banishing of p-values from the sci-
entific journal Basic and Applied Social Psychology (Matthews et al., 2017, p. 39) (which
itself is a consequence of the replication crisis starting earlier in the 2010s and not of
the ASA statement), according to Matthews et al. (2017), the ASA statement has not
changed the habits of researchers at all. Matthews et al. (2017) underlined that the ASA
statement despite its criticism gave no clear vision of which statistical methods should
be used in science instead of p-values. According to him, the “workaday researcher’s
question goes unanswered: howdo I turnmydata into insight?” (Matthews et al., 2017,
p. 40). He argued that for decades the standardmethodology of hypothesis testing was
shaped by the monograph ‘Statistical methods for research workers’ by british statistician
Ronald Fisher. He also questioned Fisher’s “one paragraph dismissal of Bayesian methods
in the introduction to the book.” (Matthews et al., 2017, p. 40), which among the methods
proposed as alternatives to p-values by the ASA.

Somewhat simplifying the situation, Matthews et al. (2017) suggested that nearly
a century after the original publication the take-away message of Fisher’s work has
“seeped into software, lecture courses and countless “statistics for scientists” texts: in-
ference is simply a game - and anyone canplay it” (Matthews et al., 2017, p. 40). Matthews
work shows that an important aspect is the evolution of statistical inference as a math-
ematical concept itself for understanding the replication crisis.

However, it is not clear that Ronald Fisher’s approach seeped into software, lecture
courses and statistic texts for scientists. The situation is more complex: Statisticians
today separate at least between three di�erent kind of inference models: Frequentist In-
ference, Bayesian Inference and Fisherian Inference (Efron, 1998). Inmost discussions about
the replication crisis, Fisher-Inference is set equal to the frequentist approach of statis-
tical inference and in particular to null hypothesis significance testing. However, this
clearly is an incomplete picture of the connections between various modes of inference
as shown in Part I.

1.2 Research Question and Contribution

1.2.1 Research question
While substantial progress has already been made in the last years in identifying the
causes of the replication crisis, one major problem is that the evolution of the underly-
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ing statistical theory and its role in the recent replication crisis has not been analyzed
in detail. The majority of solutions which have been proposed are either motivated
by personal conviction or only give a vague reference that the historical developments
played a key role in the problems observed today (Nuzzo, 2014; Ziliak, 2019). Themain
research question can thus be formulated as follows:

Howcan the problemswith statistical hypothesis testingwhich have been
observed during the scientific replication crisis be solved by changing sta-
tistical practice based on a detailed reconstruction of the evolution of sta-
tistical hypothesis testing?

While it is easy to blame the historical developments partially for today’s situation,
tracing the evolution of hypothesis testing to the points where things started to derail is
di�cult and important to explain the causes of the replication crisis. A detailed analysis
of the evolution of statistical hypothesis testing is thus a preliminary requirement to
develop possible statistical solutions to the replication crisis in a second step.

1.2.2 Contribution
The contribution of this thesis is to investigate the evolution of hypothesis testing and
develop statistical solutions to the scientific replication crisiswith an emphasis on statis-
tical models in the biomedical sciences. Taking the results of Ioannidis (2005b), Nuzzo
(2014), Colquhoun (2014, 2017), Benjamin et al. (2018), Baker and Penny (2016) and
Matthews et al. (2017) as a motivation, in this thesis the evolution of statistical hypoth-
esis testing is reconstructed and it is shown that various of the recently observed prob-
lems with the reproducibility of research can be attributed to the 1) underlying statis-
tical theory, 2) computational obstacles, 3) axiomatic problems, in particular, inconsis-
tencies with the foundations of statistical inference and 4) the application context, that
is, the inappropriate use of a statistical method that was never designed to be used in
such a context. Statistical solutions to some major problems of the scientific replication
crisis are provided based on the results of this reconstruction.

There are four core aspectswhich play a substantial role in the evolution of statistical
hypothesis testing and which need to be taken into account in the reconstruction of the
evolution of statistical hypothesis testing, and before statistical solutions are proposed
in a second step:

1. The evolution of mathematical theory
Without the existence of an adequate mathematical theory to test a hypothesis in
a statistical manner, no research hypothesis in a study or experiment can be ana-
lyzed at all. The analysis of the underlying mathematical theory of the competing
approaches to statistical hypothesis testing is thus a necessary first step.

2. The availability of computational resources
The availability of computational resources comprise the possibility to compute
theoretically sound algorithms backed by a su�cient mathematical theory. While
the existence of a rigid mathematical theory is necessary in the first place, the
availability of computing power may limit the everyday application of methods
used by researchers in the second place, or as Efron (1998, p. 112) stated: “Equip-
ment is destiny in science, and statistics is no exception to that rule. Second, statis-
ticians are being asked to solve bigger, harder, more complicated problems, under
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such names as pattern recognition, DNA screening, neural networks, imaging and
machine learning.” The analysis of the computational obstacles that prevented
a more widespread use are, in particular, relevant in the reconstruction of the
Bayesian approach to statistical hypothesis testing.

3. Philosophical and axiomatic aspects: Whilemathematical correctness is a first re-
quirement for any statistical analysis, philosophical issues arise in practice. These
are connected to the problem of induction (Popper, 1959;Mayo, 2018) and have to
be considered. The underlying scientific theory and justification of statistical ap-
proaches to hypothesis testing from a philosophy of science perspective is impor-
tant. Furthermore, the axiomatic justification of these di�erentmodes of inference
is an important and highly controversial topic in statistical science (Birnbaum,
1962; Berger andWolpert, 1988), and any solution presented to the replication cri-
sis must obey certain axiomatic implications which follow from the foundations
of statistical inference and theoretical statistics. Thus, proposed statistical solu-
tions need to incorporate the results of the reconstruction of both philosophical
and axiomatic aspects.

4. The application context: Althoughmathematical theory, computational resources
and philosophical and axiomatic aspects play a crucial role in the evolution of hy-
pothesis testing, often the context of application is of substantial importance. As
shown in Part I, the two main theories for frequentist hypothesis testing di�er
strongly in the intended application context, which o�ers first insights why the
current status quo of statistical hypothesis testing may be seen as highly prob-
lematic. Also, as shown in Part II and Part IV, statistical hypothesis testing can
be loosely coupled with a supporting theory of science or be designed as such
a theory from the start. Contextual and practical aspects also play a major role
in the development of computational resources as shown in Part III and for the
development of statistical solutions as presented in Part V.

1.2.3 Chapter outline
The first two parts of the thesis are concernedwith the first of the above four points and
they reconstruct the evolution of mathematical theory for statistical hypothesis testing.

Part I: The Evolution of Frequentist Significance- and Hypothesis Testing

In Part I, it is shown that current dominating statistical methodology is the product of
an inconsistent hybrid approach to statistical hypothesis testing which emerged out of
Fisher’s theory of significance tests, p-values and theNeyman-Pearson theory. In Chap-
ter 2 and Chapter 3, the development of Fisher’s theory of significance tests and his
introduction of p-values is detailed. Chapter 4 presents the evolution of the Neyman-
Pearson theory for statistical hypothesis testing andChapter 5 contrasts both approaches,
their application context, the statistical di�erences and the consequences of the pre-
dominant use of an inconsistent hybrid approach which emerged out of both theories
for the replication crisis today. The reconstruction shows why the current status quo
of NHST is highly problematic and clarifies that the dominant approach to statistical
hypothesis testing todaywas never intended by the creators of the underlying statistical
theories in such an application context.
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Part II: The Evolution of Bayesian Hypothesis Testing

In Part II, the evolution of Bayesian approaches to hypothesis testing is detailed with
a focus on the Bayes factor as a possible alternative to the current status quo. Chap-
ter 6 outlines the basics of Bayesian statistics and contrasts these with the frequentist
approach, and Chapter 7 details the evolution of the Bayes factor as an alternative to
frequentist hypothesis tests based on p-values. It is shown that although the Bayes fac-
tor approach did not succeed in the decades that followed, the primary reasons were
mostly computational aspects which prevented a more widespread use of Bayesian
methods across science. Also, the di�erences between the frequentist and Bayesian ap-
proach are analyzed and it is shown that the more appropriate approach for hypothesis
testing in scientific contexts is the Bayesian one.

Part III: The Evolution of Markov-Chain-Monte-Carlo

The followingPart III thendiscusses the development ofmodernMarkov-Chain-Monte-
Carlo algorithms and their impact on Bayesian hypothesis testing and thus is concerned
with the second point above by reconstructing the evolution of statistical hypothesis
testingwith a focus on computational aspects. Chapter 8 provides the basics ofMarkov-
Chain-Monte-Carlo (MCMC), and Chapter 9 details the Markov-Chain-Monte-Carlo
revolution, which introduced a Bayesian renaissance from a statistical perspective. It is
shown that the development of these methods has simplified Bayesian hypothesis test-
ing substantially and that the largest hurdle in employing Bayesian hypothesis tests has
been removed through the advent of modern Markov-Chain-Monte-Carlo algorithms.
Also, it is outlined why the burden of manual calibration of these algorithms has been
taken from researchers through the introduction of modern Hamiltonian-Monte-Carlo
algorithms which present a new generation of MCMC algorithms.

Part IV: On the axiomatic Foundations of Statistical Inference

Part IV then is concerned with the third point above and reconstructs philosophical
and axiomatic aspects in the evolution of statistical hypothesis testing. Chapter 10 pro-
vides a justification why Bayesian inference can be accepted as a probabilistic version of
enumerative induction, and discusses arguments from philosophers of science against
enumerative induction and thus against Bayesian inference as a grounded scientific
theory. It is shown why Bayes’ theorem can be interpreted as a statistical implemen-
tation of probabilistic enumerative induction, which justifies Bayesian hypothesis tests
for use in scientific contexts. Chapter 11 then provides a detailed axiomatic analysis of
the concept of statistical evidence in the context of hypothesis testing. It is shown that
the majority of observed problems in the replication crisis are due to purely axiomatic
reasons and conflicts with the likelihood principle. Based on the axiomatic analysis,
Chapter 11 then shows that robust Bayesian methods, in particular robust Bayesian hy-
pothesis tests provide a solution to some substantial problems with the reproducibility
of research.

Part V: Bayesian statistical solutions to the replication crisis

Bayesian statistical solutions to the replication crisis are provided in Part V with a focus
on Bayesian biostatistical and biometrical models which are widely used in medical re-
search and the cognitive sciences. In this part, the results from the reconstruction of the
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evolution of statistical hypothesis testing are incorporated. While Part I and Part II show
in their analysis of the underlying mathematical theory that the application context as
listed in the fourth point above can be seen as a primary reason why the problems in
the replication crisis are observed, Part III and Part IV provide the justification for the
developed statistical solutions in this Part V from a philosophy of science and axiomatic
perspective. In Chapter 12 it is shown that robust Bayesian hypothesis tests based on
the Bayes factor are available for the majority of statistical models used in biomedical
research. Chapter 13 demonstrates that even complex models like parametric survival
models in medical statistics become tractable by use of the Hamiltonian-Monte-Carlo
algorithms as discussed in Part III. Chapter 14 provides new results which show that
the implicit error control of Bayesian hypothesis tests is comparable to frequentist tests
based on p-values, and that a variety of Bayesian evidence measures attains reasonable
type I error control and power in practice in parametric two-sample tests. Chapter 15
then proposes a shift towards the Hodges-Lehmann paradigmwhich advocates testing
small interval instead of point null hypotheses, and new theoretical results show that
such a shift may be an appealing additional step towards increasing the reproducibility
of science which has not received enough attention in the discussion about the validity
of statistical hypothesis testing. In Chapter 16 the dissertation is concluded by revis-
iting the replication crisis in light of the proposed statistical solutions and provides a
discussion for future research.
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Karl Pearson

This section gives a short overview over the persons who played a major role in
the evolution of frequentist significance and hypothesis testing and who invented the
classical approach of testing hypotheses in a statistical manner. This serves to frame the
classical frequentist theory into its application context later, in particular, in Part IV.

Karl Pearson
Karl Pearson (1857-1936) can be considered as the initiator of modern statistics. Pear-
son studied mathematics in Cambridge and was interested strongly in philosophy and
theology (Porter, 2006). Although the British statistician Ronald Fisher and polish
mathematician Jerzy Neyman basically created the discipline of modern statistics from
scratch, their workwould have been impossiblewithout the previouswork of Karl Pear-
son. Pearson mainly invented two things, which heavily influenced the work of Fisher
and many others:

1. He introduced in 1895 his system of Pearson curves, which today is not used any-
more but at that time was the quasi-standard for defining di�erent probability
densities (Porter, 2006).

2. In 1902, he proposed the method of moments for estimating parameters of the
Pearson curves under given data and thus invented one of the first parameter
estimation techniques (Morant, 1939; Stigler, 2008).1

Principally, the method of moments was Fisher’s first reason to use maximum likeli-
hood in his 1912 paper (Fisher, 1912) although he did not explicitly call it maximum
likelihood then. Also, Fisher was a great admirer of Pearson’s achievements, as can be

1Amodern introduction into the method of moment estimation is given in Rüschendorf (2014, Chap-
ter 5).

33



CHAPTER 2. THE PROTAGONISTS

seen in his early writing style, often referring to Pearson and his achievements in the
newly founded research area of mathematical statistics (Fisher, 1922a).

Next to the two concepts mentioned above, Pearson’s biggest achievement was the
development of the c2-test for the goodness of fit. Until then, the strategy to determine
whether a given series of observations could be assumed to belong to a normal distribu-
tionwas to see if the fit by eyewas acceptable. The c2-test introduced by Pearson o�ered
a quantifiable way that was more reliable and a first statistical test, which established
itself quickly among mathematicians. Next to these achievements, Pearson wrote the
influential book ‘The Grammar of Science’ and founded the first statistics department in
London. Furthermore, his work on the correlation coe�cient, eugenics and psychology
is worth mentioning, for details see Porter (2006).

Ronald Aylmer Fisher
Fisher was born in London, on February 17, 1890 as a surviving twin. George Fisher, his
father, was an auctioneer for fine art. What is known from the biography written by his
daughter Joan Fisher Box, Fisher went to Harrow School in 1904 andwas good inmath-
ematics from the very beginning (Box, 1978). He entered Gonville and Caius College,
Cambridge in 1909 and graduated three years later. His statistical career started with
his 1912 paper. A lot of his early workwas influenced by the correspondence toWilliam
Sealy Gosset, known better under the pseudonym Student. However, in the early work
of Fisher, likelihood was already used but ironically never mentioned. Fisher spent
a postgraduate year in Cavendish Laboratory, Cambridge under supervision of F.J.M.
Stratton, studying the theory of errors. He stayed at Cambridge another year, studying
the theory of errors, and in 1914 he volunteered for military service. He was rejected
due to his poor eyesight and therefore spent the next five years as a high school teacher
for mathematics and physics. Also in 1914, Fisher worked on the exact derivation of the
distribution of the correlation coe�cient r and sent his derivation to Karl Pearson for
publication in the journal Biometrika (Fisher, 1915). Pearson accepted Fisher’s paper but
wrote one two years later together with H.E. Soper, where parts of Fisher’s paper were
criticised for using inverse probability – better known as Bayesian statistics today – in
his derivation (Soper et al., 1917). A feud started between Fisher and Pearson which
resulted in two rejected papers of Fisher in the following years. In the meantime, Fisher
married Ruth Eileen Guiness in 1917 and was o�ered a position as leading statistician
at the Galton Laboratory in 1919. However, he rejected due to concerns regarding his
ability to publish anything in this position as Karl Pearson was involved in the Galton
Laboratory, too. Instead, he accepted a position as statistician at Rothamsted Experi-
mental Station. Rothamsted was an agricultural experimental station in Harpenden, 25
miles north from London (Box, 1978, Chapter 4). After his first year, Fisher’s contract
was extended to a permanent assignment, and he stayed at Rothamsted until 1933. His
workmainly consisted of analyzing agricultural records of the last years, and improving
the methods used in agricultural work. In these years, Fisher’s theory of significance
testing was widely popularized as a framework for statistical hypothesis testing, par-
tially because of his influential textbook Statistical methods for research workers (Fisher,
1925a).

In the same year Fisher quit at Rothamsted and Karl Pearson retired fromUniversity
College London as head of the applied statistics department. The department was split
and his son Egon Pearson followed him as head of the department of statistics, and
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Fisher was assigned head of the department of eugenics so that he never worked as a
professor for statistics.

In 1939, with the beginning ofWWII, Fisher’s department at University College was
evacuated and until 1943, Fisher did not find a new position. Then, he was appointed
to the Arthus Balfour Chair of Genetics at Cambridge University. Until his retirement
in 1957 he remained at Cambridge and spent the remaining years of his life in Australia
at Adelaide until he died in 1962.

Fishers definitive biography has been written by his daughter Joan Fisher Box (Box,
1978). Fisher’s life and especially work has been reviewed also by Savage (1976), Rao
(1992), Efron (1998), Healy (2003) and Stigler (2006). While all of these provide de-
tailed insights to specific aspects of Fisher’s work, none of them has investigated the
evolution of hypothesis testing to which Fisher is directly connected with regard to the
scientific replication crisis. Fisher’s work, as noted by various authors (compare Chap-
ter 1), of course plays a major role in understanding the causes of the replication crisis.

Jerzy Neyman
Jerzy Neyman (1894-1981) was a polish statistician. The first half of his life he spent
in Europe, until he emigrated to America in 1938 where he spent the rest of his life.
He was born in Russia and in 1912 entered the University of Kharkov, majoring in both
physics and mathematics. According to Reid (1982), the lectures of Lebesgue moti-
vated Neyman to focus on mathematics instead of physics, and he read ’Lessons on the
integration and the research of the primitive functions’ by Henri Lebesgue. However,
how strong the influence of this early connections to measure theory were for his later
career remains unknown. It is known that he also visited lectures of Sergei Natanow-
itsch Bernstein which dealt with probability theory (Reid, 1982).

In 1921, Neymanwent toWarsaw towork at the Agricultural Institute in Bydgoszcz.
Later, he switched to the national Meteorological Institute and finally got a position
at the University of Warsaw as an assistant. He obtained his doctorate in 1924 also
at Bydgoszcz for a dissertation titled On the Applications of the Theory of Probability to
Agricultural Experiments. After getting a fellowship he spent a couple of years in London
and Paris to work with Karl Pearson and Émile Borel. In London, he got in touch with
Karl Pearson’s son Egon Pearson who also tried to make a career as a statistician.

In 1926, Egon Pearson sent him a letter with ideas about which statistical problems
to collaborate on, and a collaboration started which yielded the Neyman-Pearson of
hypothesis testing. After the year in Paris, Neyman returned to Warsaw and had a
tough time to work for a minimum living. In 1934, the situation improved, and Egon
Pearsonwas able to o�er Neyman a position as new head of the department of statistics
atUniversityCollege, London. After a year, the positionwas extended into a permanent
one and Neyman could concentrate on his research. Still, 2 years later, in 1937, he was
o�ered a professorship at the University of California at Berkeley, and he went to the
United States. There, he remained professor until his retirement and later death in
1981. His biggest achievement can be seen in theNeyman-Pearson theory of hypothesis
testing, which he developed together with Egon Pearson.

The definitive reference to Jerzy Neyman is his biography by Constance Reid (Reid,
1982). Other references includeKendall et al. (1982), whoprovide insights toNeyman’s
academic contributions in their obituary, and Salsburg (2001). Also, another valuable
source is Pearson (1966).
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William Sealy Gosset (‘Student’)
Next to Karl Pearson, a person who had a crucial impact on the development of the
statistical hypothesis testing was William Sealy Gosset (1876-1937). He studied chem-
istry and mathematics at the New College in Oxford and in 1899 took a position at the
Arthur Guinness Son and Co. brewery. At work he was soon confronted with a lot of
statistical problems for which no solution was available. Therefore, he educated him-
self with textbooks and corresponded with Fisher which resulted in a very productive
cooperation. Gossets most popular achievement was his 1908 publication, in which
he initiated under his pseudonym Student (he was not allowed to publish while work-
ing for Guinness) a completely new statistical approach (Student, 1908b). Gosset’s idea
was basically to test the value of a populationmean, and by 1908, it had been customary
to choose the well-known Student’s t statistic, and compare it to a normal distribution.
Of course, the Student’s t statistic is not normally distributed and therefore, only for
large samples the approximation holds.2 Gosset wanted to find a formula for small
samples, where the approximation did not hold. He obtained his results by restrict-
ing the form of the distribution of the observations to a normal distribution and then
derived his popular small-sample formula. While he was not able to give a definitive
proof, Fisher (1915) obtained the first proof a few years later and both of them worked
together on the correlation coe�cient for small samples. Gosset had already tried to
derive it in another paper earlier (Student, 1908a). Fisher (1921b) found a proof, and
from then on several small sample statistics were derived by themwhich were of signif-
icant help in practical analysis because often the sample size was limited so asymptotic
arguments could not be used to determine the distribution of a statistic of interest. The
collaboration culminated in the publication of Fisher’s 1925 book ‘Statistical Methods for
Research Workers’ (Fisher, 1925b). Gosset can therefore be considered as an important
catalysator for Fisher’s early work. Gosset worked at Guinness until he died at the age
of 61.3

Egon S. Pearson
The last person of interest is the son of Karl Pearson, Egon S. Pearson, who was born
in 1895 and died in 1980. Egon Pearson went to Cambridge to study mathematics and
obtained his degree in 1919. He continued with graduate studies in astronomy and in
1921 finally joined his father’s Department of Applied Statistics at University College,
London as a teaching assistant. Five years later, in 1926 he began to teach on his own and
finally in 1933, when Karl Pearson retired, he was appointed chair of the Department of
Statistics. Egon Pearson took particular interest in Fisher’s 1925 book ‘Statistical Methods

2Expressed di�erently, the tn density converges in probability to a standard normal density j0,1 for
n ! •. For small n, the distribution of the tn density was unknown at that time.

3In 1939, Fisher in an obituary for ‘Student’ noted:

“The untimely death of W. S. Gosset, at the age of 61, in October 1937, has taken one of the
most original minds in contemporary science. Without being a professed mathematician,
he first published, in 1908, a fundamentally new approach to the classical problem of the
theory of errors, the consequences of which are still only gradually coming to be appreci-
ated in the many fields of work to which it is applicable.”
Fisher (1939, p. 1)
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for Research Workers’ as he later wrote:

“I was in a state of puzzlement, and realized that, if I was to continue an
academic career as a mathematical statistician, I must construct for myself
whatmight be termed a statistical philosophy, whichwould have to combine
what I accepted from K. P.’s large-sample tradition with the newer ideas of
Fisher.”
Pearson et al. (1990, p. 77)

He exchanged letters with Gosset and like Gosset already did in the collaboration wish
Fisher, he functioned as a catalysator for theNeyman-Pearson theory of hypothesis test-
ing. Gosset and Pearson exchanged opinions about testing for themean of a sample and
Gosset wrote:

“In your large sampleswith a knownnormal distribution you are able to find
the chance that the mean of a random sample will lie at any given distance
from the mean of the population. (Personally I am inclined to think your
cases are best considered as mine taken to the limit n large.) That doesn’t
in itself necessarily prove that the sample is not drawn randomly from the
population even if the chance is very small, say -00001: what it does is to
show that if there is any alternative hypothesis which will explain the oc-
currence of the sample with a more reasonable probability, say -05 (such as
that it belongs to a di�erent population or that the sample wasn’t random or
whatever will do the trick) you will be very muchmore inclined to consider
that the original hypothesis is not true.”
W.S. Gosset, in Pearson (1939, Letter I, dated May 1926, p. 243)

This had a huge impact on the problems Egon Pearson decided to work on, as Pearson
himself later remembered:

“Gosset’s reply had a tremendous influence on the direction of my subse-
quent work, for the first paragraph contains the germ of that idea which has
formed the basis of all later joint researches of Neyman and myself.”
Pearson (1939, p. 242)

In total, ‘Student‘ therefore not only initiated Fisher’s interest in small sample statistics,
but also gave Egon Pearson an interesting unsolved problem, which was highly impor-
tant in the statistical community then and started the Neyman-Pearson theory. In the
same year, 1926, Egon Pearson started the collaboration with Jerzy Neyman.
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Ronald Aylmer Fisher
Studies in crop variation

Ronald Fisher can be described as the founder of modern statistics. Until the work
of Fisher, statistics was a scientific disciplinewhich had no precise terminology and also
lacked a clear mathematical foundation to answer the practical problems which were
often faced in agriculture, medicine or physics. Although Bayesian inference was well
known since centuries, it was refused bymost statisticians in the early 20th century. The
reasons are twofold: First, modern measure theory was not invented at that time which
troubled the application of Bayesian data analysis. Second, the claim of subjectivity
was often made against the use of Bayesian inference. It remained unclear how to elicit
the prior distribution of a parameter in practice, and as statistical science was only an
emerging subdiscipline of mathematics, researchers searched for objective procedures
which were optimal in some sense (Howie, 2002).

Fisher’s work can be divided roughly into two distinct parts: In the first part of
his career, he mainly worked on deriving his maximum likelihood theory, including a
complete theory of estimation and the necessary statistical vocabulary. This period is
marked by a frequent exchange with W.S. Gosset and the derivation of multiple distri-
butions of practically relevant test statistics.1 At this time, Gosset worked at the Guiness

1A test statistic, from a modern perspective, is a decision rule d : (X ,A ! (D,AD) of the sample
space (X ,A) into a measure space (D,AD), where in practice, often (D,AD) := (Rn,B(Rn)). Examples
are the sample mean d(x) := x̄n := 1

n Ân
i=1 xi or the sample variance d(x) := s2n := 1

n Ân
i=1(xi � x̄n)2.

For details see Appendix C. The exact distribution of these “test statistics” was unknown at that time
(e.g. when the observed data X ⇠ N (µ, s2) one can show that X̄n ⇠ N (µ, s2/n)), but researchers and
statisticians wanted to judge if an observed sample mean or variance indicates strong deviations from
the assumed distribution for the data X.
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brewery and was challenged with a variety of statistical tasks for which no solutions
were available. The exchange with Fisher led to a variety of solutions which Gosset
could apply in his everyday work. For Gosset, the distribution of a specific parameter
(like alcohol percentage of the beer) was a quantity of practical interest. For example,
the empirical mean as a statistic for the mean parameter of a given distribution was of-
ten computed in practice. To decide if a hypothesis about the parameter was reasonable
or not, the distribution of this statistic (under infinite repetition and assumption of the
hypothesis) was required. Based on this distribution, researchers could then decide if
the observed test statistic value was significantly deviating from the value specified in
the hypothesis or not. To follow this general procedure, the corresponding distribu-
tions of practically relevant test statistics had to be derived. Examples of this first part
of Fisher’s work include the derivation of the distribution of the correlation coe�cient
and the derivation of the t-statistic. Over a decade, Fisher and Gosset derived one so-
lution after the other to the problems Gosset faced in his everyday work at Guinness.
However, Fisher himself was more interested in developing a general statistical theory,
while Gosset was inspired more strongly from his everyday work. Together with Gos-
set, Fisher was involved in the creation of statistical hypothesis testing, so investigation
of his foundational papers is essential to understand the replication problems arising
in science today. Fisher’s methodology concerning the testing of hypotheses can be
attributed to one of the earliest approaches that established itself in the scientific com-
munity, as well as the cornerstones for the later development of the Neyman-Pearson
theory (compare Chapter 4).

The second part of Fisher’s career is concerned with a di�erent goal: The focus
of Fisher’s work shifted from estimation theory and the derivation of distributions to
hypothesis testing, or in his words: significance testing. In this second part of his
work, Fisher was head statistician at Rothamsted experimental station, and challenged
with the analysis of agricultural data. Next to significance testing, he was also con-
cerned with minute experimental design and statistical methods to analyze experi-
ments, which can be attributed to his work at Rothamsted station. For example, hy-
potheses like “Is the crop yield larger for a specific sort of potatoes than for another
sort of potatoes?” had to be tested, and therefore the focus of Fisher’s work shifted.

In summary, while the first part of Fisher’s career was concerned both with propa-
gating his maximum likelihood theory as a universal theory for parameter estimation
in statistical models and deriving a variety of distributions for statistics, the second part
shifted towards more applied work which was inspired by the agricultural context at
Rothamsted. There, the importance of hypothesis testing and connecting statistical the-
ory to scientific theory dominated the work of Fisher.

The next section details the achievements of Fisher’s early papers to get an overview
of these early developments.

3.1 Fisher’s Foundation of Estimation Theory
Whereas Fisher’s career started as early as 1912 with the Metron publication (Fisher,
1912), terms like likelihood, su�ciency or even hypothesis in a statistical interpretation
were not invented then. While Fisher in his early papers like (Fisher, 1915), (Fisher,
1918) and (Fisher, 1920) was already interested in the derivation of specific distribu-
tions or characteristics of these, the main vocabulary of modern statistics was laid out
in Fisher’s 1922 article ‘On the mathematical foundations of theoretical statistics’ (Fisher,
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1922b), which is also discussed by Geisser (1980). To see how the basic principles of
modern statistics and hypothesis testing were invented, attention is directed first at the
1922 paper of Fisher.

3.1.1 TheCornerstone: Mathematical Foundations ofTheoretical Statis-
tics

Fisher started his paper with 15 definitions of the necessary vocabulary to distinguish
several mathematical objects. Specifically, in the list for the first time, the terms ’statis-
tic’, ’scaling’, ’su�ciency’, ’location’, ’e�ciency’ and ’consistency’were introduced. Also,
the term ’maximum likelihood’ (ML) was mentioned for the first time in the paper
(Fisher, 1922b, p. 323). Furthermore, one of the most crucial distinctions was made by
Fisher for the first time:

“... it is customary to apply the same name, mean, standard deviation, corre-
lation coe�cient, etc., both to the true value which we should like to know,
but can only estimate, and to the particular value at which we happen to
arrive by our methods of estimation.”
Fisher (1922b, p. 311)

The distinction made by Fisher is important, in that he first separated between the pop-
ulation parameters, which cannot be precisely known from the sample and have to be
estimated, and the statistic which is based only on the sample. Such a statistic2 can be
an estimator (see Appendix C) for the true population parameter. This distinction was
not precisely made before, and Fisher presented a more structured way to work on sta-
tistical topics in general. While some statisticians protested against the use of these new
terms, Fisher’s terminology succeeded. According to Bennett (1990), the mathemati-
cian Arne Fisher (1887-1944) was especially o�ended by the term statistic:

“I am more inclined to quarrel with you over the introduction by you in
statistical method of some outlanding and barbarous technical terms. They
stand out like quills upon the porcupine, ready to impale the skeptical critic.
Where, for instance, did you get that atrocity, a statistic?”
Arne Fisher in Bennett (1990, p. 311-313)

Fisher replied to the latter:

“I use special words as the best way of expressing special meanings. Thiele
and Pearson were quite content to use the same words for what they were
estimating and for their estimates of it. Hence the chaos in which they left
the problem of estimation.”
Ronald Fisher in Bennett (1990, p. 311-313)

Thus, previously statisticians like Karl Pearson did not separate these terms carefully
from each other by the time Fisher published his paper and therefore made the whole
discipline look like an unstructured approach, leavingmuch space for ambiguity. After
the introduction of the fifteen terms, Fisher set the stage for the general aims of statistical
methods:

2As noted above, in modern words, a statistic corresponds to a (randomised) decision rule, which is
an estimator for a parameter of the statistical model, see Appendix C.
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“... to arrive at a distinct formulation of statistical problems, it is necessary to
define the taskwhich the statistician sets himself: (...) the object of statistical
methods is the reduction of data. A quantity of data, which usually by its
mere bulk is incapable of entering the mind, is to be replaced by relatively
few quantities which shall adequately represent the whole, or (...) in other
words, shall contain as much as possible, ideally the whole, of the relevant
information contained in the original data.”
Fisher (1922b, p. 311)

Fisher stated his vague definition of probability directly afterwards:

“This object is accomplished by constructing a hypothetical infinite popula-
tion, of which the actual data are regarded as constituting a random sam-
ple. The law of distribution of this hypothetical population is specified by
relatively few parameters, which are su�cient to describe it exhaustively in
respect of all qualities under discussion.”
Fisher (1922b, p. 311)

Fisher’s probability concept was for the first time explicitly stated in the 1922 paper.
Later on, it played a major role in the feud between Fisher and Neyman-Pearson about
the way hypotheses should be tested. After concentrating on the reduction of data as
the statistician’s first goal, the third chapter of Fisher’s paper then introduced the three
types of problems arising as obstacles for this aim:

1. “Problems of Specification - These arise in the choice of the mathemat-
ical form of the population.

2. Problems of Estimation - These involve the choice of methods of cal-
culating from a sample statistical derivates, or as we shall call them
statistics, which are designed to estimate the values of the parameters
of the hypothetical population.

3. Problems of Distribution - These include discussions of the distribution
of statistics derived from samples, or in general any functions of quan-
tities whose distribution is known.”
Fisher (1922b, p. 313)

The first problem is the well-known model choice problem: As one cannot precisely
know which statistical model for the population is true, there is uncertainty in the
model specification. For example, one could specify a model for the population which
follows a normal distribution, or a Cauchy distribution. Maybe both considered options
are wrong, which complicates the specification of the form of the population.

The second problem refers to parameter estimation for a fixed statistical model.
When a model is selected for the population, its parameters remain unknown. In the
example of the normal distribution under consideration above, the mean and standard
deviation need to be specified. These population parameters need to be estimated via
sample statistics like the empirical mean or the empirical standard deviation. However,
there are multiple available options, and it remains unclear how to derive an estimator,
in general, for a given population parameter.

The third problem aims at hypothesis testing: Even when an estimator is selected
for a given parameter in a fixed statistical model, it remains unknownwhich values can
be expected in practice. However, to decide if a research hypothesis like H0 : µ = 0
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about a population parameter is reasonable or not, one needs to know which values of
the statistic are expected under H0. Mathematically, this requires the distribution of the
sample statistic (like the empirical mean) under the assumption of the hypothesis H0.

To illustrate, in the above example, the distribution of the empirical mean X̄ =
1
n Ân

i=1 Xi is given as X̄ ⇠ N (µ, s2/n), because under the assumption of the statisti-
cal model Xi ⇠ N (µ, s2) for i = 1, ...n where µ = 0, one obtains

E[X̄] = E[
1
n

n

Â
i=1

Xi] =
1
n
· nE[Xi] =

1
n
· n · µ = µ

because of the linearity of the expectation and

V[X̄] = V[
1
n

n

Â
i=1

Xi] =
1
n2

V[
n

Â
i=1

Xi] =
1
n2

· nV[Xi] =
1
n
· s2

because Xi are independent and identically distributed (i.i.d.). As a consequence, ob-
serving a sample statistic value X̄ = 5 under H0 : µ = 0 is quite implausible, because
this value is located in the tails of theN (µ, s2/n) distribution when for example s2 = 1
and n = 10.

Thus, Fisher argued that if the first problem is solved and the model is chosen, the
mathematical form is identified correctly. From today’s perspective, model selection
still plays amajor role in statistics and remains an unsolved problemwhich is addressed
in practice with computational methods. When the second problem is solved and an
estimator is selected, one can calculate estimates from the sample for parameters of
interest. If the third problem is solved, the exact form of the distribution can be deter-
mined by the sample, and then ‘the theoretical aspect of any particular body of data has been
completely elucidated.’ (Fisher, 1922b, p. 314).

Fisher was concerned with the second and third problem over his career. In the
fourth chapter he then gave the three essential properties a good estimator should pos-
sess: consistency, e�ciency and su�ciency.

“The common-sense criterion employed in the problems of estimation may
be stated thus: – That when applied in the whole population the derived
statistic should be equal to the parameter. This may be called the Criterion
of Consistency.”
Fisher (1922b, p. 316)

Using the absolute mean error s1 := 1
n

q
p
2 Â |xi � x̄| and the mean squared error

s2 :=
q

1
n Â(xi � x̄)2 as estimates for the standard deviation of a normally distributed

i.i.d. population, that is, Xi i.i.d. and distributed as N (µ, s2), Fisher showed that both
of these estimates are consistent. Consistency was a crucial property of an estimator
according to Fisher. It was even more important than unbiasedness for him, as Bennett
(1990, p. 196) notes. After demonstrating the property of consistency, Fisher went on
with e�ciency:

“Consideration of the above examplewill suggest a second criterion, namely:
– That in large samples, when the distribution of the statistics tend to nor-
mality, that statistic is to be chosen which has the least probable error. This
may be called the Criterion of E�ciency.”
Fisher (1922b, p. 316)
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As the Cramér-Rao Lower Bound was not discovered then (compare Theorem C.44),
Fisher defined e�ciency by calculating the ratio between the “probable error of the
statistic calculated (...), and that of the most e�cient statistic which could be used.
The square ratio of these two quantities then measures the e�ciency.” (Fisher, 1922b,
p. 316). While there was no general lower bound available in 1922, the idea was the
same which is still used today, see Definition C.48. Using as examples the absolute
mean error s1 := 1

n

q
p
2 Â |xi � x̄| and the mean squared error s2 :=

q
1
n Â(xi � x̄)2 as

estimates for the standard deviation of a normally distributed i.i.d. population, Fisher
argued that the squared error is preferable because of its lower large sample variance.
Fisher then argued that di�erent methods of calculation might tend to the same results
for large samples, but di�er for smaller samples, which motivated the criterion of suf-
ficiency:

“... the statistic chosen should summarise thewhole of the relevant informa-
tion supplied by the sample. Thismay be called the Criterion of Su�ciency.”
Fisher (1920, p. 316)

Fisher added as an explanation:

“Inmathematical language wemay interpret this statement by saying that if
q be the parameter to be estimated, q1 a statistic which contains the whole of
the information as to the value of q, which the sample supplies, and q2 any
other statistic, then the surface of the distribution of pairs of values of q1 and
q2, for a given value of q, is such that for a given value of q1, the distribution
of q2 does not involve q.”
Fisher (1920, p. 316/317)

Comparison with Definition C.50 shows that this concept has been extended into its
measure-theoretic version since the introduction by Fisher in 1922, but the idea has
stayed the same. In fact, the modern measure-theoretic definition contains the original
definition of Fisher, see Schervish (1995). Fisher had already discovered su�ciency in
(Fisher, 1920), but su�ciency was not defined explicitly there.

One of the key elements of the 1922 paper was the first appearance of the termmax-
imum likelihood.3 While Fisher already used likelihood in his very first paper in 1912,
it was only used as an alternative approach to Karl Pearsons system of error curves and
far away from a general estimation theory (Fisher, 1912). In his 1922 paper, Fisher sep-
arated that consistency, e�ciency and su�ciency were properties of an estimator, but
not methods to find any estimator.

“... the criterion of su�ciency (...) is not of direct assistance in the solu-
tion of problems of estimation. For it is necessary first to know the statistic
concerned and its surface of distribution, with an infinite number of other
statistics, before its su�ciency can be tested. For the solution of problems
of estimation we require a method which for each particular problem will
lead us automatically to the statistic by which the criterion of su�ciency is
satisfied. Such a method is, I believe, provided by the Method of Maximum

3A concisemeasure-theoretic introduction tomaximum likelihood estimation is given in Rüschendorf
(2014, Chapter 5). A brief introduction is provided in Appendix C, and an accessible introduction that
assumes no familiarity with measure theory is given in Myung (2003).
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Likelihood, although I am not satisfied as to the mathematical rigour of any
proof which I can put forward to that e�ect.”
Fisher (1922b, p. 323)

Fisher was critical about his work, inviting readers to “form their own opinion as to
the possibility of the method of maximum likelihood leading in any case to an insuf-
ficient statistic.” (Fisher, 1922b, p. 323). Thus, the theory of maximum likelihood was
introduced as a method to find estimators having the desirable property of su�ciency.
In general, maximum likelihood estimates need not be su�cient, but when a su�cient
statistic exist, the maximum likelihood solutions are a function of the su�cient statistic
(Rüschendorf, 2014, Chapter 5).4 While Fisher gave a proof for his intuition, he was not
satisfiedwith itsmathematical rigour. First, he explained themethod ofmaximum like-
lihood as follows: He supposed a random variable X has density f (x|q1, q2, ...qr), where
q1, q2, ... are unknown parameters. Fisher formulated the chance of a single observation
to fall into the range dx as

P(x  X  x+ dx) = f (x|q1, q2, ...qr) · dx (3.1)

Generalizing his idea to a sample of n observations, he proceeded by stating that the
chance of n1 falling into dx1, n2 falling into dx2, and so on is

n!
’p

i=1 ni!

p

’
i=1

{ f (xp|q1, q2, ...)dxp}np (3.2)

Fisher then concluded:

“The method of maximum likelihood consists simply in choosing that set
of values for the parameters which makes this quantity a maximum, and
since in this expression the parameters are only involved in the function f ,
we have to make

S(log f )

a maximum for variations of q1, q2, q3 (...). In this form, the method applies
to the fitting of populations involving any number of variates, and equally
to discontinuous as continuous distributions.”
Fisher (1922b, p. 323/324)

Here, S stands for sum, because Fisher directly maximized the log-likelihood (compare
Definition C.38). This simplifies computations, because the logarithm of products is
turned into a sum of logarithms. After introducing his method, Fisher went on to show
that maximum likelihood estimates are invariant under one-to-one-transformations,
while Bayesian inference does not have this property.

To show that Bayesian inference, in general, does not produce estimates which are
invariant to one-to-one transformations, Fisher presented a counterexample. He con-
sidered a binomial distributionwhere the number of successes x out of n trials is known,

4The existence of a su�cient statistic is related in turn to the statistical model P . If P is dominated,
there exists a su�cient statistic (even minimal su�cient) (Rüschendorf, 2014, Theorem 4.2.9), and the
model being dominated is related to the separability of the underlying metric space (P , dr) with regard
to the total variation norm dr, compare Rüschendorf (2014, Theorem 3.1.17).
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and the probability p is unknown. At this time, it was usual to stick to Bayes’ theorem to
solve this problem. One expressed complete ignorance about a parameter by assigning
a uniform prior f (p) = 1 for all p 2 [0, 1] to p. Bayes’ theorem then yields

f (p|x) µ px(1� p)n�x · 1 µ px(1� p)n�x (3.3)

Fisher then strongly critizised this postulate:

“The postulatewould, if true, be of great importance in bringing an immense
variety of questions within the domain of probability. It is, however, evi-
dently extremely arbitrary. Apart from evolving a vitally important piece of
knowledge, that of the exact form of the distribution of the values of p, out
of an assumption of complete ignorance, it is not even a unique solution.”
Fisher (1922b, p. 325)

He considered the transformation sin(q) = 2p� 1. Complete ignorance about p is the
same as complete ignorance about q then, and therefore f (q) = 1

p ,�p/2 < q < p/2 is
a uniform prior on [�p/2,p/2]. Then the posterior can be written as

f (q|x) µqx(1� q)n�x f (q) µ px(1� p)n�x (3.4)

because the probability to observeX = n successes given q is identical to the probability
to observe X = n successes given p under the uniform prior. By a change of variables
for g : p 7�! q, p 7�! sin�1(2p� 1), and

����
dg�1(q)

dq

���� =
����
dp
dq

���� =
����
dsin(q) + 1

2dq

���� =
1
2
cos(q) (3.5)

from | dpdq |
�1 = 2

cos(q) one obtains

f (p|x) = f (q|x)
����
dp
dq

����
�1

µ px(1� p)n�x 1
cos(q)

(3.6)

As

p
1
2 (1� p)

1
2 = [p(1� p)]

1
2 =


1+ sin(q)

2
· (1� 1+ sin(q)

2
)

� 1
2

(3.7)

=

"
1� sin2(q)

2

# 1
2

=


cos2(q)

2

� 1
2

µ cos(q) (3.8)

because of sin2(q) + cos2(q) = 1, Equation (3.6) is proportional to

px(1� p)n�x 1
cos(q)

µ px(1� p)n�x 1
p1/2(1� p)1/2

= px�1/2(1� p)n�x�1/2 (3.9)

By obtaining this last equation, Fisher demonstrated that this contradictedEquation (3.4).
Therefore, his example showed a problem with inverse probability (in modern lan-
guage, with Bayesian inference): Themissing invariance under parameter-transformations.
For example, the modes of both posterior distributions will, in general, di�er and lead
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to di�ering estimates for the parameter. Fisher then proceeded to show that his maxi-
mum likelihood method was invariant under one-to-one-transformations. He used the
same example as above, the probability p the unknown parameter of the binomial dis-
tribution with n trials and x successes. The likelihood L(p|x) of p is given as

L(p|x) µ px(1� p)n�x (3.10)

Using the one-to-one transformation sin(q) = 2p� 1, the likelihood of q is given by

L(q|x) =
✓
1+ sin(q)

2

◆x ✓1� sin(q)
2

)

◆n�x
(3.11)

µ (1+ sin(q))x(1� sin(q))n�x (3.12)

Di�erentiating the right-hand side of Equation (3.10) Fisher obtained the maximum
likelihood estimate

p̂ =
x
n

(3.13)

Proceeding equally for Equation (3.11), he obtained

q̂ = sin�1
✓
2x
n

� 1
◆

(3.14)

Finally, substituting q = sin�1 �2x
n � 1

�
into sin(q) = 2p � 1, he obtained the same

maximum likelihood estimator p = x/n. With this example Fisher tried to demonstrate
that the results produced by his theory of maximum likelihood were more objective
than the results produced via the Bayesian approach. In general, maximum likelihood
parameters are indeed invariant under one-to-one transformations, compare Held and
Sabanés Bové (2014).5

Next, Fisher turned to another important problem of estimation: The variance of
an estimator, which should be as small as possible.6 He showed that the variance of
estimators obtained via his theory of maximum likelihood were in some sense optimal.
Fisher used an asymptotic argument and assumed

q1 ⇠ N (q, s2) (3.15)

Then, he denoted the density function of q1 as

jq,s2(q1) =
1

s
p
2p

exp
✓
� (q1 � q)2

2s2

◆
(3.16)

The likelihood of q of course is proportional to exp(� (q1�q)2

2s2 ) and has its maximum at

q = q1 (3.17)

5It took 40 years until Zehna (1966) showed that this desirable property of the method of maximum
likelihood also holds in cases when the parameter transformation is not one-to-one. However, notice that
Bayesian parameter estimates are invariant under one-to-one transformations, too, when Je�rey’s prior
is used, compare Chapter 6.

6It is clear from Appendix C, Definition C.48, that a good estimator should possess a small variance.
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Fisher noted, that

∂

∂q
log(jq,s2(q1)) =

q1 � q

s2 (3.18)

∂2

∂q2
log(jq,s2(q1)) = � 1

s2 (3.19)

Fisher then reasoned that j(q1) is the density of all samples for which the statistic has
value q1. He denoted f as the density of such a single sample and therefore the density
of all samples can be written as j = Â f (Fisher, 1922b, p. 328). If f is the density of an
observation in a given sample, then

log f = C+ Â f (3.20)

where C 2 R is a constant which does not depend on the parameters and the sum is
over all observations of the given sample. Using a Taylor series expansion for f around
q = q1, he wrote

log( f (q)) = log( f (q1)) + (q � q1)
∂

∂q
log( f (q1)) +

1
2
(q � q1)

2 ∂2

∂q2
log( f (q1)) + ...

(3.21)

Rewriting the above as

log( f ) = log( f1) + a(q � q1) +
b
2
(q � q1)

2 + ... (3.22)

where

f1 = f (q1) (3.23)

a =
∂

∂q
log f (q1) (3.24)

b =
∂2

∂q2
log( f (q1)) (3.25)

Fisher (1922b, p. 328) obtained

log f =C+ Â log( f1) + (q � q1)Â a+
1
2
(q � q1)

2 Â b+ ... (3.26)

=C+ (q � q1)Â a+
1
2
(q � q1)

2 Â b+ ... (3.27)

where the term Â log( f1) vanished because q1 is the MLE according to Equation (3.17).
By the CLT, it follows that

Â b� nE(b)p
nV(b)

⇠ N (0, 1) (3.28)

This is equivalent to

Â b� nE(b) ⇠ O(n1/2) (3.29)
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In the same way it follows that q � q1 ⇠ O(n�1/2). Fisher therefore concluded, that
“the only terms in log f, which are not reduced without limits, as n is increased” are
(here Equation (3.26))

log f = C+
1
2
n(q � q1)

2E(b) (3.30)

so that finally

f µ exp
⇢
1
2
n(q � q1)

2E(b)
�

(3.31)

Fisher then argued, that the proportionality constant given in Equation (3.31) was ap-
plicable to all samples with the value q1, and therefore also for j. Finally, he obtained
from Equation (3.30)

log jq,s2(q1) = C0 +
1
2
n(q � q1)

2E(b) (3.32)

with C0 = C+ (q � q1)Â a. This led to the equation

∂2

∂q2
logjq,s2(q1) = nE(b) (3.33)

Thus, in result Fisher this way obtained the variance of the MLE as

V(q1) =s2 (3.34)

=� 1
nE(b)

by Equation (3.33) and Equation (3.19) (3.35)

=� 1
nE( ∂2

∂q2
log f (q1))

by Equation (3.25) (3.36)

Fisher in summary showed that the MLE attains the by then not discovered Cramér-
Rao Lower Bound for the variance of an estimator, and thus is in this respect optimal
(compare Theorem C.44). In section 7 of the 1922 paper, he then tried to show that
MLEs are always su�cient. As indicated already above, he was not satisfied by the
rigour of his proof, and indeed he was wrong. MLEs are not always su�cient, but
when a su�cient statistic exists, the MLE is a function of the su�cient statistic.

3.1.2 Significance testing and p-values
The last section showed that the basic concepts of statistical science were introduced
by Fisher in 1922. However, these developments were less concerned with any form of
hypothesis testing, but aimed at providing a coherent framework for parameter estima-
tion in form ofmaximum likelihood theory. Also, properties like su�ciency, optimality
or e�ciency were all properties of estimators, and their purpose was to find good es-
timators. Thus, Fisher’s work was primarily concerned with the second problem of
statistics, the problem of estimation.

Fisher’s first significance test already occured in a 1921 paper calledOn the “Probable
Error” of a Coe�cient of CorrelationDeduced from a Small Sample (Fisher, 1921b). Although
the treatment was far from a full outline of a theory of hypothesis testing, it can be
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interpreted as the first use of significance tests by Fisher. In it, the last section deals with
the example of a correlation coe�cient derived from a sample of twins. The degree
of correlation to be expected between both twins depends on multiple factors and is
assumed to be p = 0.18. After that, Fisher calculates the correlation coe�cient for a
given sample of 39 twins, and notices:

“The value found from39pairs of twins eachmeasured in 6 traitswas�0.016±
[0.048] ...”
Fisher (1921b, p. 23)

Fisher then calculated the distribution of the correlation coe�cient under the hypoth-
esis p = 0.18.7 With reference to the observed di�erence of the sample correlation
coe�cient from the assumed value of p = 0.18, Fisher concluded after the calculations:

“Its di�erence from the point

p = 0.18 (3.37)

is now much more significantly apparent; for using the original estimate,
this di�erence is only 4.1 times its probable error, for which P = 0.0051 (...).
The evidence in favour of a single type of origin for this group of twins is
thus stronger than I had previously imagined.”
Fisher (1921b, p. 23)

The first p-values were calculated as a byproduct of the whole paper, the calculations
are not very detailed, and the procedure seems to be clear to Fisher, not worth any
further explanations.8 He did not even define the symbol P used to calculate p-values.
Most of the ideas probably already took form in the early papers he published with
Student. However, no exact p-values were calculated there. Fisher then distinguished
his procedure from the Bayesian philosophy:

“My treatment of the problem di�ers radically from that of B����. B����
(1763) attempted to find, by observing a sample, the actual probability that
the population value lay in any given range. In the present instance the com-
plete solution of this problemwould be to find the probability integral of the
distribution of p. Such a problem is indeterminate without knowing the sta-
tistical mechanism under which di�erent values of p come into existence.”
Fisher (1921b, p. 24)

Note that Fisher’s primary objection to the solution of Bayes is the challenge to elicit the
prior distribution for p. In the last paragraph of the paper, Fisher summarized that his
approach makes it possible to test statistical hypotheses:

“We may discuss the probability of occurrence of quantities which can be
observed or deduced fromobservations, in relation to any hypotheseswhich
may be suggested to explain these observations. We can know nothing of

7This was a solved problem at that time because of the earlier derivations in his 1915 paper Frequency
Distribution of the Values of the Correlation Coe�cient in Samples from an Indefinitely Large Population (Fisher,
1915).

8On page 214 of the same paper, a p-value is presented in a column of a table which includes various
other estimates. Formally, this is the first p-value Fisher reported, but the first explanations for a p-value
were given by him for the example on page 23 of the paper as cited above.

50



CHAPTER 3. FISHER’S THEORY OF SIGNIFICANCE TESTING

the probability of hypotheses or hypothetical quantities. On the other hand
we may ascertain the likelihood of hypotheses and hypothetical quantities
by calculation from observations (...).”
Fisher (1921b, p. 24)

The first phrasing of significance testing then appears in the 1922 paper ‘The Goodness of
Fit of Regression Formulae and the Distribution of Regression Coe�cients.’ (Fisher, 1922c).
In it, Fisher derived the distribution of regression coe�cients.9 After conducting his
derivations and finding the t-distribution with appropriate degrees of freedom as the
distribution of the regression coe�cients under the null hypothesis, he concluded:

“Tables of the Probability Integral of the above Type VII distribution have
been prepared by “Student” [8], for values of n� p from 0 to 30. These tables
are in a suitable form for testing the significance of an observed regression
coe�cient. For larger samples the curve will be su�ciently normal for most
purposes (...).”
Fisher (1922c, p. 610)

Also, Fisher already reasoned that these derivations also hold for the two-sample t-test.
Together, both papers provide the first appearance of p-values and significance testing,
which would become the main focus of Fisher’s work later in his career. While in 1924
he already frequently used the term tests of significance, the use of p-values appeared
already earlier, and first in the 1921 paper described above. Also, in his 1921 paper
‘Studies on crop variation’ Fisher (1921a), he listed a table (Table II) with p-values and
discussed the results. However, these first hints at hypothesis testing were still far from
a concise, clearly articulated theory.

3.1.3 Fisher’s refining of the statistical theory
Three years later, in 1925, Fisher published his paper ‘Theory of statistical estimation’
(Fisher, 1925c). In this paper, Fisher refined multiple aspects of his 1922 paper and
also introduced ancillary statistics (compare Definition C.60), one of the most contro-
versial heritages of Fisher. At the beginning of the paper, Fisher stated probability as
being a frequency ratio obtained from a hypothetical infinite population:

“It has been pointed out to me that some of the statistical ideas employed
in the following investigation never received a strictly logical definition (...).
The idea of a frequency curve, for example, evidently implies an infinite
hypothetical population distributed in a definitive manner; (...) The idea
of an infinite hypothetical population is, I believe, implicit in all statements
involving mathematical probability. (...) Also, the word infinite is to be
taken in its proper mathematical sense as denoting the limiting conditions
approached by increasing a finite number indefinitely.”
Fisher (1925c, p. 700)

Fisher’s concept of probability later was one of the reasons of a bitter feud between
Jerzy Neyman, Egon Pearson and Fisher himself about the nature of hypothesis testing.
Furthermore, as can be seen from the above, Fisher’s probability concept was far from

9As is well known, these are tn�p distributed, where p and n are the number of parameters used in
the regression and the sample size.
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a modern measure-theoretic definition as Kolmogorov’s axioms were not available at
that time.

The structure of the 1925 paper ‘Theory of statistical estimation’ can be delineated as
follows: The first two sections were quite brief and dealt with the same ideas about
estimation and consistency already introduced in the 1922 paper. Section three dealt
mainly with e�ciency and in section four, Fisher dealt with the ratio of an e�cient and
non-e�cient statistic. Later in the paper, he introduced the method of scoring and gave
a proof for the asymptotic e�ciency of theMLE10. The last section is themost important
as ancillarity is introduced (Fisher, 1925c).

Before the introduction of ancillarity in the last section, the introduction of the infor-
mation number in section 6 of the 1925 paper was a milestone. Today, the information
number is better known as the Fisher-Information (compare Definition C.46). Fisher dis-
cussed it under the name of “intrinsic accuracy of error curves” (Fisher, 1925c, p. 709).

“The variance of e�cient statistics from a distribution of any form a�ords
us a measure of an important property of the distribution itself. (...) We
may thus obtain a measure of the intrinsic accuracy of an error curve, and
so compare together curves of entirely di�erent form. If the variance of an
e�cient estimate derived from a large sample of n is A/n, then the intrinsic
accuracy of the distribution is defined as 1/A.”
Fisher (1925c, p. 709)

Inmodern terms, the intrinsic accuracy can be interpreted as the large sample precision
of an estimator T, where the precision is equal to n ·V�1(T) = 1

nV(T) for n large. Using
his previously derived asymptotic variance of MLEs in Equation (3.36) it can be seen
that the intrinsic accuracy equals

1
nV(T)

= �E

✓
∂2log y

∂q2

◆
(3.38)

Arriving at this point, Fisher gave then a formal definition ofwhat he understood under
the information of one observation:

“What we have spoken of as intrinsic accuracy of an error curvemay equally
be conceived as the [expected] amount of information of a single observa-
tion belonging to such a distribution.”
Fisher (1925c, p. 709)

If the Fisher-Information is small this implies that the corresponding estimator variance
is large, so a single observation yields only a small amount of information. If on the
contrary, the Fisher-Information is large, the variance of the corresponding estimator
needs to be small, and a single observation yields a greater amount of information.11
Thus, when the Fisher information is large, the data provide substantial amount of
information about the parameter to be estimated. By its introduction in the 1925 paper,
Fisher did not know that his information number would later become the key quantity
in the Cramér-Rao Lower Bound (Theorem C.44).

10For a modern proof see Rüschendorf (2014, p. 166-167).
11For details, see Schervish (1995, p. 111).
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Section 7 of the 1925 paper (Fisher, 1925c, p. 710) then started with a proof of the
asymptotic e�ciency of the MLE before introducing ancillarity. The asymptotic e�-
ciency of theMLE is a key property that can be regarded as a reason for the widespread
appeal to maximum likelihood theory.

The last section of Fisher’s 1925 paper then finally introduced ancillary statistics.
Fisher first noted that there might exist no su�cient statistic in some cases:

“(...) there exists no su�cient statistic, and some loss of information will
necessarily ensue upon the substitution of a single estimate for the original
data upon which it was based.”
Fisher (1925c, p. 718)

Fisher introduced the concept of ancillary statistics to solve this problem:
“Since the original data cannot be replaced by a single statistic, without loss
of accuracy, it is of interest to seewhat can be done by calculating, in addition
to our estimate, an ancillary statistic which shall be available in combination
with our estimate in future calculations.
If our two statistics specify the values of ∂L/∂q and ∂2L/∂2q for some central
value of q, such as q̂, then the variance of ∂L/∂q over the sets of samples for
which both statistics are constant, will be that of

1
2
(q � q̂)2

∂2L
∂q3

(3.39)

which will ordinarily be of order n�1 at least. With the aid of such an ancil-
lary statistic, the loss of accuracy tends to zero for large samples.”
Fisher (1925c, p. 724)

Fisher’s reasoning here was as follows: If there exists no su�cient statistic for q at all,
then definitely some information will be lost. Still, this loss can be quantified by using
a Taylor series expansion. For any statistic T, such an expansion of l0(q) around T yields

l0(q) = l0(T) + (q � T)l00(T) +
1
2
(q � T)2l000(T) + ... (3.40)

Fisher then assumed T to be theMLE of q, denoted by q̂ and inferred (due to l0(q̂) = 0),
that

V =
⇥
l0(q)|l0(q̂), l00(q̂)

⇤
= V


1
2
(q � q̂)2l000(T)

�
(3.41)

because the first and second terms of the right-hand side of Equation (3.40) are zero and
constant. Equation (3.41) resembles the equation Fisher gave in the last quotation, and
indeed, is of O(1/n). This way, asymptotically, using the information provided by the
ancillary statistic l00(q̂) reduces the loss of information incurred by using an insu�cient
statistic to zero. Fisher added:

“The function of the ancillary statistic is analogous to providing a true, in
place of an approximate, weight for the value of the estimate.”
Fisher (1925c, p. 724)

In addition to the MLE q̂, the ancillary statistic l00(q̂) provided a measure of the curva-
ture of the likelihood function, and the use of bothMLE and the ancillary statistic l00(q̂),
therefore, result in a statistic with asymptotic su�ciency, even when the MLE itself is
not su�cient.
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3.1.4 Ancillarity
One of the problems with ancillarity from the first appearance in Fisher’s 1925 paper
was the lack of a precise definition. Even in 1962, Savage et al. (1962a, p. 19) argued that
the “concept of ancillary statistic, introduced by Fisher, has been di�cult to grasp and
to define precisely”. While the reasoning above may seem clear from today’s perspec-
tive, it barely was back in 1925 and even years later. Another problem was that Fisher
introduced ancillarity only for hismaximum likelihood theory and not in a general way.
This most probably led to confusion about how to use ancillary statistics separate from
likelihood theory at all. Also, while in theory, the usage of l00(q) may sound convinc-
ing, in multivariate problems, the calculation of the conditional distributions quickly
becomes complicated. In 1934 and 1935, Fisher therefore tackled exactly these prob-
lems and tried to clarify his intentions to a wider audience (Fisher, 1934c, 1935). Only
then, ten years later, ancillarity was accepted more widely. Fisher’s 1934 paper, titled
‘Two new properties of Mathematical Likelihood’, explained how to recover the informa-
tion lost when the location parameter q of a Laplace distribution was estimated via the
method of maximum likelihood. Fisher used as ancillary statistics the configuration of
the sample composed of the i-th order statistics and concluded at the end of the paper:

“The process of taking account of the distribution of our estimate in samples
of the particular configuration observed has therefore recovered the whole
of the information (...).”
Fisher (1934c, p. 303)

In his 1935 paper, ‘The logic of inductive inference’ (Fisher, 1935), Fisher discussed ancil-
larity again:

“It is shown that some, or sometimes all of the lost information may be re-
covered by calculating what I call ancillary statistics, which themselves tell
us nothing about the parameter, but, instead tell us how good an estimate
we have made of it.”
Fisher (1935, p. 48)

This closely resembles the definition still used today, compare Definition C.60. A statis-
tic T is ancillary for a parameter q of interest if its distribution does not depend on q.
Fisher used the 2⇥ 2 table to illustrate ancillarity:

“The use of ancillary statisticsmay be illustrated in thewell-worn topic of the
2⇥ 2-table. Let us consider a classification as Lange supplies in his study on
criminal twins. Out of 13 cases judged to be monozygotic, the twin brother
of a known criminal is in 10 cases also a criminal; and in the remaining 3
cases he has not been convicted. Supposing the data to be accurate, ho-
mogenous, and unselected, we need to know with what frequency so large
a disproportion would have arisen if the causes leading to conviction had
been the same in the two classes of twins. We have to judge this from the
2⇥ 2 table of frequencies.”
Fisher (1935, p. 48)

Fisher then gave the following 2 ⇥ 2-table (see Table 3.1): Fisher’s idea consisted of
taking the information in the margins of the table, which themselves supply no infor-
mation about the ratios of the twins inside the table cells. He proceeded:
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Convicted Not Convicted Total

Monozygotic 10 3 13
Dizygotic 2 15 17
Total 12 18 30

Table 3.1: From (Fisher, 1935), page 48

“If it be admitted that these marginal frequencies by themselves supply no
information on the point at issue, namely, the proportionality of the frequen-
cies in the body of the table, we may recognize the information they supply
as wholly ancillary;”
Fisher (1935, p. 48)

After that, Fisher noted that there were in total 13 possible combinations of margins for
the 2⇥ 2 tables, identified by iterating from 0 to 12 in the dizygotic convict number in
the lower-left cell of the table body. He then used the binomial distribution to model
that (x + 1) are not convicted and (12 � x) are convicted out of the 13 monozygotic
twins12. He assumed p1 = p2 =: p, where these are the probabilities for a conviction
for both groups. In modern terms, this matches the assumption of a null hypothesis
(compare Definition C.65, where in Fisher’s calculation, Q := {(p1, p2) : p1, p2 2 (0, 1]}
and Q0 := {p1 = p2}). So he first wrote

13!
(12� x)!(x+ 1)!

p12�x(1� p)x+1 (3.42)

for the probability that 12� x are convicted while x+ 1 are not convicted out of the 13
monozygotic twins as well as

17!
x!(17� x)!

px(1� p)17�x (3.43)

for the probability that 17 � x are not convicted while x are convicted out of the 17
dizygotic twins (Fisher, 1935, p. 49). The probability of both events was written by
Fisher as the product

13!17!
(12� x)!(1+ x)!x!(17� x)!

p12(1� p)18 (3.44)

Fisher (1935, p. 49) argued that this quantity is proportional (as a function of x) to
1

(12� x)!(1+ x)!x!(17� x)!
(3.45)

and concluded:
“...and on summing the series obtained by varying x, the absolute probabil-
ities are found to be

13!17!12!18!
30!

1
(12� x)!(1+ x)!x!(17� x)!

(3.46)

”
Fisher (1935, p. 49)

12Note that p1 is assumed to be greater than 0 and therefore at least one twin needs to be not convicted
which is the case for x = 0.
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whichmatches the hypergeometric distribution for x = 0, 1, .... The absolute probability
can thus be written as:

( 13
12�x)(

17
x )

Â12
x=0 (

13
12�x)(

17
x )

=
( 13
12�x)(

17
x )

(3012)
, x = 0, 1, 2, ... (3.47)

Fisher then noted:

“...the significance of the observed departure from proportionality is there-
fore exactly tested by observing a discrepancy from proportionality as great
or greater than that observed, will arise, subject to the conditions specified
by the ancillary information.”
Fisher (1935, p. 50)

Fisher then concluded, that as there are 10 monozygotic twins in the table who were
convicted, the probability of a result as large as 10 or larger, is

(1310)(
17
2 ) + (1311)(

17
1 ) + (1312)(

17
0 )

(3012)(
17
0 )

= 0.000465 (3.48)

which shows that the null hypothesis p1 = p2 would be rejected at the 5% significance
level in modern notation. In contrast to his earlier uses of p-values, this example shows
how settled the concept had become a decade later. The derivations are much clearer
and better commented as in the first calculations of p-values by Fisher. The above exam-
ple would later be named a one-sided p-value (compare Definition C.83). The ancillary
statistics of the table margin counts make it possible that the conditional distribution
of x (conditioned on the table margins) is independent of the parameter of interest, p.
While Fisher in 1925 barely did anticipate the paramount importance of such quantities
for the later development and use of hypothesis tests13, he essentially calculated the first
pivot (under the null hypothesis) here, compare Definition C.88. The above test over
time became popular as the exact Fisher test, published first in 1934 in the fifth edition of
‘Statistical Methods for Research Workers’ (Fisher, 1934b, p. 99), and is still widely used in
medical research today (Held and Sabanés Bové, 2014). So in summary, ancillarity di-
rectly led to the first precise formulation of p-values. Furthermore, the exact Fisher test
and the concept of pivots was outlined for the first time in connection with ancillarity.14

3.2 Fisher’s Significance Testing Framework
The above sections detailed how Fisher’s estimation theory was outlined, and how the
central concepts like su�ciency, consistency, maximum likelihood and ancillary statis-
tics were invented. The shift from deriving distributions under specific assumptions
to significance testing and the calculation of p-values was described in the last section

13The principal idea of the p-value seeped into likelihood ratio tests, score tests andWald tests, compare
Held and Sabanés Bové (2014). Also, the p-value often is used in connectionwithNeyman-Pearson tests,
a situation which created the hybrid inconsistent approach of hypothesis testing described in Chapter 5.

14Note that the exact Fisher test – although a procedure following conditional inference as outlined
below – has drawbacks: It rejects a true null hypothesis too often because of the hypergeometric distri-
bution’s discreteness. Therefore, in practice it has a smaller size than 0.05, even if a = 0.05, compare
Definition C.71.
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and seems natural, as these calculations were only possible because of the previous
derivations of the distributions of specific statistics like those of regression coe�cients
or the correlation coe�cient. The previous work allowed Fisher to transition from his
earlier allusions to hypothesis testing as in his 1921 paper or the ancillary statistics twin
example to a thorough treatment of hypothesis tests. As already mentioned, Fisher’s
work can be separated into two quite distinct parts. In the first part of his scientific
career, he was mainly concerned with problems of estimation and deriving a theory to
find, evaluate and compare estimators as shown in the previous sections. This first pe-
riod lasted between the beginning of Fisher’s career in 1912 until the mid of the 1920’s
when the first edition of ‘Statistical Methods for ResearchWorkers’was published. In these
years, Fisher built successively upon his maximum-likelihood-theory, from its first in-
troduction, over the addition ofmore concepts like su�ciency in his 1922 paper (Fisher,
1922a) until the refining of his theory in his 1925 paper ‘Theory of Statistical Estimation’
(Fisher, 1925c). It is not easy to draw a clear line between both periods of Fisher’s work,
because, after the 1922 paper on the mathematical foundations of theoretical statistics,
Fisher’s maximum likelihood method was published in full account. Hypothesis test-
ing started with the 1921 and 1922 papers described above. Therefore the transition is
continuous.15 Additionally, Fisher did not formally introduce his theory of significance
tests: For him, the logic behind these hypothesis tests seemed clear probably because
of the years of earlier work together with Gosset, and as a consequence, the logic of his
significance test was motivated in large parts on intuitive grounds.

3.2.1 Fisher’s Shift from Estimation Theory to Significance Testing:
‘Statistical Methods for Research Workers’

From 1922 on, Fisher’s primary focus shifted gradually from improving his estimation
theory and deriving exact distributions towards the theory of significance tests. Three
years later, when ‘Statistical Methods for Research Workers’ (SMRWI) was published, this
paradigm is clearly articulated in the introduction, where Fisher stated the scope of the
book:

“...the prime object of this book is to put into the hands of researchworkers...
the means of applying statistical tests accurately to numerical data accumu-
lated in their own laboratories.”
Fisher (1925a, p. 17)

Fisher’s book, therefore, was targeted directly at researchers and advocated the use of
his significance tests. He also shaped the way scientific work was conducted by pre-
senting handy tables of the distributions necessary to conduct the significance tests:

“The tables of distributions supplied at the ends of several chapters form a
part essential to the use of the book.”
Fisher (1925a, Introduction, Section 5)

15It should be noted, that the first part of Fisher’s work marked a transition in statistical science. The
older inverse probability approach (which equals a modern Bayesian approach) was demised and re-
jected more and more because of Fisher’s work: “the framework for likelihood, if not the term itself, was
present in 1912, and thus that the break with inverse probability, if not clean, was at least clear.” (Howie,
2002, p. 68).
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In most cases, Fisher assumed normality of the sample, and therefore the choice and
derivation of the appropriate test statisticwere obvious for him. In contrast, whenwork-
ing on estimation theory, the choice of a good estimator was not particularly clear and
di�ered from case to case. Thus, Fisher’s framework in ‘Statistical Methods for Research
Workers’ consisted of choosing the right table which listed tabulated values of the dis-
tribution of the appropriate test statistic and declaring significance of the results for
sample values larger than a specific threshold. Statistically, the only di�cult problem
was to derive the correct distributions – which of course had already been obtained in
earlier years for most standard statistical models and were presented in the book. Once
this step was done and the values were tabulated, everything else could be done in a
nearly algorithmic fashion by plugging in the observed experimental data.

The rest of the first part of ‘Statistical Methods for Research Workers’ treated diagrams
and distributions, the c2-test of goodness of fit, homogeneity and independence.

The second part of SMRWI – starting with Chapter 5 –introduced exact small sam-
ple tests then, specific tests for di�erences of two means and tests for regression coe�-
cients via the use of the t-distribution. In the chapter, it was shown that the t-test, first
introduced for the di�erences of two means, also applies for the testing of regression
coe�cients in linear regression settings. Regarding the level of content, it is worthwhile
to remember that these concepts had been developed by Fisher a few years ago, as de-
scribed above (Fisher, 1922c). The content of the book was therefore not only targeted
at practitioners but also represented state-of-the-art statistical theory of the time.

Chapter 6 then focussed on correlation coe�cients, giving a treatment of the correla-
tion coe�cient p in a bivariate normal distribution including its estimation and judging
the significance of an observed correlation coe�cient r. Chapter 7 extended the previ-
ous ideas to intraclass correlations and tackling tests arising in the analysis of variance,
providing the general ideas of this procedure as well as examples and illustrations for
the use of the appropriate table in the appendix. The last Chapter 8 then showed appli-
cations of the analysis of variance, mainly resulting out of Fisher’s work at Rothamsted:
In one case the analysis is carried out for agricultural plots assigned to di�erent treat-
ments randomly, versus randomized blocks, versus Latin squares. SMRWI also can be
seen as the place where Fisher first advocated the (completely arbitrary) threshold for
his significance tests to reject a hypothesis:

“If P is between .1 and .9 there is certainly no reason to suspect the hypothe-
sis tested. If it is below .02 it is strongly indicated that the hypothesis fails to
account for the whole of the facts. We shall not often be astray if we draw a
conventional line at .05 and consider that higher values of c2 indicate a real
discrepancy.”

This recommendation should become close to a natural law in social and medical sci-
ences over time, as already detailed in Chapter 1. Thus, the guidelines given by Fisher
clearly attributed to the problems which are observed in the reproducibility crisis wit-
nessed today: They can be seen as the mental attitude or established research habits
which were listed as one of the major problems in the replication crisis by Ioannidis
(2005b).

3.2.2 The impact and reception of SMRW
The impact of SMRW was enormous, measured objectively. In eight chapters, Fisher
managed to construct a solid statistical foundation for researchers interested in statis-
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tical analysis of their data. McGrayne (2011, p. 47) entitled SMRW a “cookbook of
ingenious statistical procedures for nonstatisticians”, which “turned frequency into the
de facto statistical method”. Also, according to (McGrayne, 2011, p. 47), “no one today
can discuss statistics – what he called “mathematics applied to observational data” –
without using some of Fisher’s vocabulary”. Still, Fisher’s writing was complex, and as
proofs were intentionally not included, the ideas were even harder to grasp for read-
ers interested in why the analyses and tests worked. Lehmann (2011) analysed some
o�cial reviews published in statistical journals in the period after the publication of
SMRWI, which all show that most readers found it hard to understand and criticised
the lack of proofs. Nevertheless, the first edition was sold out in a short period, and in
1928 Fisher published the second edition, also including no proofs but adding a chap-
ter titled ‘The Principles of Statistical Estimation’, in which he tried to explain the earlier
developed concepts of su�ciency and consistency. Lehmann (2011) noted that while
the reviews for the second edition were slightly more favourable than for the first, most
people still had their issues with the style of presentation of the topics. This remaining
criticism can be attributed to the demanding level of content which was included in the
book.

Some even took Fisher’s maximum likelihood method as “nothing more than an
application of inverse probability with uniform priors” (Howie, 2002, p. 75). The only
favourable reviewwas that of Student, at that time a good friend of Fisher, and asHowie
(2002) notes, “the initial reviews, from the biometricians who still dominated the sta-
tistical community, were uniformly negative.” (Howie, 2002, p. 74) Still, this did not
inhibit the interest of applied researchers, especially “social scientists, who saw Fisher’s
book as a route to objectivity and thus legitimacy.” (Howie, 2002, p. 74)

Regarding the impact, SMRWI achieved to tie together two distinct requirements
of statistics at that time. The small sample tests of Student, as well as the c2-test of
Pearson, had been part of Fisher’s work in the years before publication. They were
presented as modern methods for practical data analysis in SMRWI, although the un-
derlying theory remained mysterious for the reader. Next to giving a compendium of
available tests, it also presented these in realistic situations, a rarity, which attracted
lots of non-mathematicians to the book. The first edition of 1050 copies was sold out
after three years, and Fisher published the second edition two years later. Most of the
other editions also followed in two-year cycles. The size of the editions steadily in-
creased with the popularity of the book, reaching its maximum of 7500 copies of the
eleventh edition published in 1950. The last edition, the fourteenth, was published in
1970 posthumously and incorporated changes based on notes Fisher had made before
his death in 1962 for the next edition. Retrospective, the book was praised by lots of
institutions for its impact as noted by Lehmann (2011, p. 25/26).

The most problematic issue with SMRW was Fisher’s writing style. It was simply
too complicated for mass appeal (Howie, 2002, p. 76) and Fisher’s daughter Joan Fisher
Box wrote in the biography of Fisher, that

“It was GeorgeW. Snedecor ... who was to act as a midwife in delivering the
new statistics in the United States.”
Box (1978, p. 313)

Snedecor (1937) published a book called ‘Statistical Methods’ in 1937 which covered
roughly the same content as Fisher’s SMRWI. The c2-test, two-sample and one-sample
tests, regression, correlation coe�cients, as well as the analysis of variance, were in-
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cluded in it. In contrary to Fisher’s book, it was presented in a much easier way, allow-
ing a broader audience to consume the content and understand it. Snedecors ‘Statistical
Methods’ was sold over 200000 times in multiple editions and can be seen as the acces-
sible translation of Fisher’s SMRW for the masses. Thus, Fisher’s ideas were populated
strongly in by Snedecor’s textbook.

3.2.3 The conventional frequency theory of probability and Fisher’s
Conditional Inference

While Fisher from the beginning resented the Bayesian philosophy due to its subjective-
ness of priors, he also had his problems with the traditional frequency interpretation
of probability. Fisher’s interpretation of probability was also crucial in the later debate
about the correct hypothesis testing framework to be used by scientists between him
and Jerzy Neyman and Egon Pearson. Much later, Fisher (1956b) criticised the conven-
tional theory of frequency probability. One of Fisher’s legacies remains in the concept
of so-called conditional inference, which involved the concept of relevant subsets:

“(...) information supplied by a mathematical statement such as: “If a aces
are thrown in n trials, the probability that the di�erence in absolute value
between 1/6 and a/n shall exceed any positive value #, however small, shall
tend to zero as the number n is increased indefinitely”, will seem not merely
remote, but also incomplete and lacking in definiteness in its application to
the particular throw in which he is interested. Indeed, by itself it says noth-
ing about that throw. It is obvious, moreover, that many subsets of future
throws, which may include his own, can be shown to give probabilities, in
this sense, either greater or less than 1/6. Before the limiting ratio of the
whole set can be accepted as applicable to a particular throw, a second con-
ditionmust be satisfied, namely that before the die is cast no such subset can
be recognized. This is a necessary and su�cient condition for the applica-
bility of the limiting ratio of the entire aggregate of possible future throws as
the probability of anyone particular throw. On this condition we may think
of a particular throw, or of a succession of throws, as a random sample from
the aggregate, which is in this sense subjectively homogeneous andwithout
recognizable stratification.”
Fisher (1956b, p. 32-33)

What Fisher (1956b) tried to express in his much later published book ‘Statistical Meth-
ods and Scientific Induction’, was that a concept of probability like the classical frequency-
based concept has to possess two properties. First, the relative frequencies need to con-
verge to a limiting value like in the dice-example given by him. Second, subsequences of
a given sequence need to converge to the same value. Additionally, according to Fisher,
a given sequence must possess no relevant subset. A general subset can be interpreted
as a subset of the sample space. Often, this relevant subset is provided by ancillary
statistics. One of the most prominent examples showing what conditional inference in
Fisher’s sense meant is not given by Fisher (1956b), but by Cox (1958), which is today
known as one of the classic examples in favour of Fisher’s conditional inference. Cox
(1958) wrote in his paper ‘Some problems connected with statistical inference’ about the
following situation:
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“Suppose that we are interested in the mean q of a normal population and
that, by an objective randomization device, we draw either (i) with prob-
ability 1/2, one observation, x, from a normal population of mean q and
variance s2

1 , or (ii) with probability 1/2, one observation x, from a normal
population of mean q and variance s2

2 , where s2
1 , s

2
2 are known, s2

1 >> s2
2 ,

and where we know in any particular instance which population has been
sampled.
The sample space formed by indefinite repetition of the experiment is clearly
defined and consists of two real lines Â1,Â2, each having probability 1/2,
and conditionally on Âi, there is a normal distribution of mean q and vari-
ance s2

i .
Now suppose that we ask, accepting for the moment the conventional for-
mulation, for a test of the null hypothesis q = 0, with size say 0.05, and with
maximum power against the alternative q0 ⇡ s1 >> s2.”
Cox (1958, p. 360)

Cox proceeded by investigating two tests for the given hypothesis H0 : q = 0 against
H1 : q > 0. In the first case, Cox conditionalized on the population samples, and
in the second case, he did not. He supposed a fair coin had been tossed to choose the
population to sample from, and the outcome of the tossed coinwas used as the ancillary
statistic. Thisway, Cox (1958) obtained the rejection regionX > c of the conditionalized
test as

P{X > c|Â
i
} = 0.05 (3.49)

, 1� F
✓

c
si

◆
= 0.05 (3.50)

which yields c = siF�1(.95) = 1.645si for c and where F is the cumulative distribu-
tion function of the N (0, 1) distribution. The rejection region (see Definition C.69) of
the conditionalized test can therefore be written as 1.645s1, if the first population was
chosen by the coin, and 1.645s2, if not.
Cox (1958) then proceeded by investigating the unconditionalized test. The level 0.05
was also chosen, and the rejection region X > c therefore

P{X > c} = 0.05 (3.51)
, P{X > c|Â1}P{Â1}+P{X > c|Â2}P{Â2} = 0.05 (3.52)

, 1
2

h
P{X > c|Â1}+P{X > c|Â2}

i
= 0.05 (3.53)

, 1
2


P{Z >

c
s1
}+P{Z >

c
s2
}
�
= 0.05 (3.54)

, 1
2


1� F(

c
s1
) + 1� F(

c
s2
)

�
= 0.05 (3.55)

,


F(
c
s1
) + F(

c
s2
)

�
= 1.9 (3.56)

where Z ⇠ N (0, 1). For fixed s1 and s2, it is possible to obtain solutions for c then. Cox
(1958) chose as an example s1 = 100, s2 = 1, so that c ⇡ 128.2. Cox (1958) then noted,
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that the problem occurring with the unconditionalized test is, that the average a level
of 0.05 is a mixture of

a1 = P{Z >
c
s1
} = 1� F(

128.2
100

) = 1� F(1.282) = 0.100 (3.57)

a2 = P{Z >
c
s2
} = 1� F(

128.2
1

) = 1� F(128.2) ⇡ 0.000 (3.58)

The quintessence therefore is, that the unconditionalized test maintains its long run
error rate of 0.05 by averaging both these two error rates a1 and a2. For any particu-
lar test at hand, this average error rate - or in modern notation, the test level, compare
Definition C.71 - is simply not attained. If the sample indeed is chosen from the first
population, then the true type I error rate is 0.100. This is too high and therefore unac-
ceptable. If on the other hand the sample is from the second population, the true Type
I error rate is exactly 0.000, so no error occurs at all. Cox (1958) therefore added:

“(...) if the object (...) is to make statements by a rule with certain specified
long-run properties, the unconditional test just given is in order, although
it may be doubted whether the specification of desired properties is in this
case very sensible. If, however, our object is to say “what we can learn from
the data that we have”, the unconditional test is surely no good.”
(Cox, 1958, p. 360)

The dilemma of unconditional inference, therefore, is, that for practical purposes, it is
not helpful according to Cox (1958). Returning to Fisher, this was also his argument
against unconditional inference (Fisher, 1956b, p. 32-33), and the relevant subset in the
above example to obtain a correct probability statement in terms of statistical inference
corresponds to the test actually performed. Fisher’s relevant subsets thus were a vague
formulation of what Cox called conditional inference, and according to Fisher statistical
inference needed to be performed conditional on the relevant subset, that is, conditional
on the observed data and performed experiment or study at hand. Later, this became
a substantial argument for Fisher against the Neyman-Pearson approach of hypothesis
testing, detailed in the next chapter.16

The derivations of Cox (1958) made a strong argument for conditional inference
in the Fisherian sense. Indeed, due to the example given by Cox (1958), the principle
arose that when one of two distinct experiments is chosen randomly and performed in
succession, the inference about the parameter q of interest should be made conditional
only on the chosen experiment. There is no o�cial publication to which this principle
can be rooted back, but most likely the paper of Cox (1958) can be seen as the corner-
stone of the conditionality principle, which will be discussed in part IV in detail. In
Cox’ example, it is directly observable what happens if one ignores the conditionality
principle, that is if an unconditional test is performed. In this case, when for exam-
ple x = 1.9 is observed and s1 = 100, s2 = 1, under the assumption that the second

16After Fisher’s criticism in 1956 Buehler (1959) formalized these ideas with so-called positively and
negatively biased relevant subsets. These subsets are confidence sets which are called positively biased
if they attain a coverage probability of� 1� a, and negatively biased if they attain a coverage probability
 1� a. Applications of these biased relevant subsets were given by Fisher (1956a) in the discussion for
the Behrens-Fisher problem and also by Buehler and Feddersen (1963), who showed that for Student’s
t-statistic there do indeed exist positively biased subsets, doubting the validity of unconditionalized t-
tests.
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population was sampled, the conditional one-sided p-value can be calculated as

P(X � 1.9|X ⇠ N (0, 12)) = 0.02872 (3.59)

while the unconditional p-value is calculated as

1
2P(X � 1.9|X ⇠ N (0, 12)) + 1

2P(X � 1.9|X ⇠ N (0, 1002)) = 1
2(0.028+ 0.492) = 0.2605 (3.60)

So while the conditional test leads to rejection of the null hypothesis H0 : q = 0, the
unconditional frequentist test does not. The conditionality principle therefore can be
traced back to Fisher (1956b) and Cox (1958), and unconditional hypothesis testing or
unconditional statistical inference violate the conditionality principle. The su�ciency
principle and the conditionality principle together provide the likelihood principle (see
Part IV), which also can be traced back to Fisher. In his 1922 paper, Fisher (1922b) still
believed that su�ciency was always provided by maximum likelihood solutions:

“Such a method is, I believe, provided by the Method of Maximum Likeli-
hood.”
Fisher (1922b, p. 323)

Three years later, in his 1925 paper Fisher (1925c) added:

“When su�cient statistics exist, it has been shown that theywill be solutions
of the equations of maximum likelihood.”
Fisher (1925c, p. 714)

A proof of this fact is given by Rüschendorf (2014, Proposition 5.4.18). Another nine
years later, Fisher (1934c) concluded that likelihood,

“(...) when properly interpreted must contain the whole of the information
respecting x which our sample of observations has to give.”
Fisher (1934c, p. 297)

This means that all inference should be done with respect to the likelihood function.17
While Fisher’s idea was conclusive at the time of publication, there was no rigorous
proof. The proof followed nearly three decades later and can be attributed to Birnbaum
(1962), who showed in his landmark paper ‘On the Foundations of Statistical Inference’
that the likelihood principle follows from the su�ciency principle and the conditional-
ity principle (compare Theorem 11.8 and Chapter 11 in Part IV). However, Fisher did
not restrict himself strictly to following the likelihood principle. In his calculations of
p-values, in the example of the 2x2 table given in Fisher (1935), he based his inference
also on observations not made at all. He calculated the probabilities of 11 or more
monozygotic twins in Equation (3.48), which violates the conditionality principle.

In summary, Fisher’s theory of significance testing was present in full account after
his 1925 publication of SMRWI, and the analysis revealed that his significance tests
were intended to be used conditional on an ancillary statistic, which was also reflected
in Fisher’s concept of probability.

17This should not be confused with the statement that the maximum likelihood estimate is su�cient.
In general, this is not the case.
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Jerzy Neyman and Egon Pearson
On the problem of the most e�cient tests of

statistical hypotheses

The Neyman-Pearson collaboration started in the mid-1920s as described in Chap-
ter 2. While Egon Pearson was by then a scholar of the traditional school of statistics,
which was founded by his father, Karl Pearson, he recognised the potential of the new
developments achieved by Fisher’s approach. Also, he was inspired by William Sealy
Gosset as described in Chapter 2 to pursue his ideas on hypothesis testing further and
therefore started the collaboration with Jerzy Neyman. The development of Neyman
and Pearson’s work is well documented. The main sources are Pearson (1966) him-
self as well as Constance Reid’s biography of Jerzy Neyman (Reid, 1982). Also, the
correspondence between Neyman and Pearson in the form of multiple letters has been
archived at the Bancroft Library at the University of California in Berkeley1.

4.1 TheBeginning of a newTheory for statisticalHypoth-
esis testing

TheNeyman-Pearson collaboration startedwith Pearson’s correspondencewithGosset,
who pointed him in the right direction. Pearson (1966) recalls, that after receiving
Gosset’s letter, which was dated 11th May 1926

1The letters cited here are in collection BANC MSS 2008/250, Box 1, Folders number 1� 9; For sim-
plicity, they are not cited separately here. Instead, the dates of the letters are given as identifiers in each
case. See also: https://oac.cdlib.org/search?query=constance%20reid;idT=UCb162807442
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“...a number of new ideas must have begun to take shape. The possibility
of getting a mathematical entry into the problem by specifying a class of
alternative hypotheses which should be accepted as “admissible” for formal
treatment; (...) the “rejection region” in the sample space; the “two sources
of error.” These were points which we must have discussed during autumn
of 1926.”
Pearson (1966)

Pearson (1966) further stressed, that the idea of “determining the choice among possi-
ble contours in the sample space” to compare the hypothesis testedwith the alternatives
from first rough notes finally led to the idea of using the likelihood ratio criterion to de-
termine these contours like it is common practice today, see Definition C.69 and C.75.
In November 1926, Egon Pearson then wrote down some of his ideas and sent them
to Jerzy Neyman. November 1926, therefore, marked the beginning of the Neyman-
Pearson collaboration, which was to last for years. In the beginning, Jerzy Neyman
somehow seemed to lack understanding for what Pearson wanted to work on. In a
letter from the 9th December 1926 he stated:

“(...) it seems to me that this principle is equivalent to the principle leading
to inverse probabilities.”

Moreover, concerning the likelihood ratio idea proposed by Pearson, he added:

“What you have done can be expressed in words: wishing to test the prob-
ability of a hypothesis A we have to assume that all hypotheses are a priori
equally probable and to calculate the probability a posteriori of A.”

which not only shows a Bayesian influence in Neyman’s thoughts but also underlines
how fragile the concepts must have been at that time. While Pearsonmust have roughly
sketched the biggest part of the key ideas like null hypothesis and alternative(s), rejec-
tion regions and the likelihood ratio statistic then, Neyman seemed to misunderstand
them or at least considered solving the problem in a Bayesian manner. Pearson (1966)
also mentioned that

“...in our first joint paper (1928) we agreed to keep the door open by tack-
ling problems in a variety of ways, one of which was based on an inverse
probability approach.”
Pearson (1966)

All these ideas were more clearly expressed two years later in their first joint paper in
Biometrika.

4.2 The Criterion of Likelihood
The first publication was named ‘On the use and interpretation of certain test criteria’ (Ney-
man and Pearson, 1928) and published in 1928. It is divided into two parts, of which
the first is much more important concerning the novelty of the proposed hypothesis
testing approach. The paper starts by introducing the reader to the central problem of
statistical inference:
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“One of the most common as well as most important problems which arise
in the interpretation of statistical results, is that of deciding whether or not
a particular sample may be judged as likely to have been randomly drawn
from a certain population, whose form may be either completely or only
partially specified. Wemay termHypothesis A the hypothesis that the pop-
ulation fromwhich the sample Â has been randomly drawn is that specified,
namely ’. In general, the method of procedure is to apply certain tests or
criteria, the results of which will enable the investigator to decide with a
greater or less degree of confidence whether to accept or reject Hypothesis
A, or, as is often the case, will show him that further data are required before
a decision can be reached.”
Neyman and Pearson (1928, p. 175)

After mentioning the classical and the inverse probability approach, Neyman and Pear-
son (1928) point out the goal of their paper:

“What is of chief importance in order that a sound judgment may be formed
is that the method adopted, its scope and its limitations, should be clearly
understood, and it is because we believe this often not to be the case that
it has seemed worth while to us to discuss the principles involved in some
detail and to illustrate their application to certain important sampling tests.”
(Neyman and Pearson, 1928, p. 176)

Neyman andPearson (1928) next consider twodistinct approaches, which can be termed
likelihood-based and Bayesian. In their words, they separate between

“two distinct methods of approach, one to start from the population ’, and
to ask what is the probability that a sample such as Â should have been
drawn from it, and the other the inverse method of starting from Â and
seeking the probability that ’ is the population sampled. The first is the
more customary method of approach, partly because it seems natural to
take ’ as the point of departure since in practice there are often strong à
priori grounds for believing that this is the population sampled, and partly
because there is a common tendency to viewwith suspicion any method in-
volving the use of inverse probability. But in fact, however strongmay be the
à priori evidence in favour of ’, there would be no problem at all to answer
if we were not prepared to consider the possibility of alternative hypothe-
ses as to the population sampled; and we shall find that it is impossible to
follow the first method very far without introducing certain ideas of inverse
probability–that is to say, arguing from the sample to the population. If on
the other hand we start boldly with assumptions regarding à priori and à
posteriori probability, we reach by an almost simpler method sampling tests
very nearly equivalent to those obtained from the first starting-point. In-
deed the inverse methodmay be considered by some the more logical of the
two; we shall consider first however the other solution.”
Neyman and Pearson (1928, p. 176)

Importantly, although the Neyman-Pearson theory of hypothesis testing later estab-
lished itself as awidely usedmethod and itself is non-Bayesian, the last sentence stresses
a clear, logical preference for the Bayesian viewpoint. Still, because of Fisher’s writings,
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the Bayesian theory of inverse probability was declared as unscientific, which probably
also influenced Neyman and Pearson in favouring the likelihood approach, as both of
them wanted to make a career as a statistician in academia. However, as Howie (2002)
notes, “Despite Fisher’s attacks, then, inverse probability was weak, but still viable, in
1930.” (Howie, 2002, p. 80). A first publication ending in a hostile debate with Fisher
about the appropriateness of Bayesian inferencewould not have helpedwith their goals.

After that, Neyman and Pearson explained that the sample Â is represented as a
point in hyperspace and the acceptance or rejection of the hypothesis depends on a
system of contours in it. These contours need to be chosen in such a way, that moving
out from contour to contour the hypothesis A “becomes less and less probable.” (Ney-
man and Pearson, 1928, p. 176), which resembles a rejection region. In a footnote on
the same page, the separation between likelihood or confidence and probability seems
to be clear to them, as they note:

“the term “probability” used in connectionwith hypothesis Amust be taken
in a verywide sense. It cannot necessarily be described by a single numerical
measure of inverse probability; as the hypothesis becomes less “probable”,
our confidence in it decreases, and the reason for this lies in the meaning of
the particular contour system that has been chosen.”
(Neyman and Pearson, 1928, p. 176)

From this footnote, it seems that Neyman and Pearson (1928) di�erentiate between the
probability of a hypothesis and the confidence in it. After further elaborations, they
introduce the well known two types of error, as given in Definition C.73 and Defini-
tion C.74:

(1) Sometimes, when hypothesis A is rejected, Â will, in fact, have been
drawn from ’.

(2) More often, in accepting hypothesis A, Â will really have been drawn
from ’0.

In the long run of statistical experience the frequency of the first source of
error (or in a single instance its probability) can be controlled by choosing
as a discriminating contour, one outside which the frequency of occurrence
of samples from ’ is very small-say, 5 in 100 or 5 in 1000.
Neyman and Pearson (1928, p. 177)

where ’0 is some alternative population, which has to follow a di�erent distribution
in turn. This analysis shows that next to Fisher, also Neyman and Pearson (1928) pro-
posed a standard threshold for hypothesis testing. It is, however, interesting, that the
two proposals made by Neyman and Pearson (1928) di�er by a factor of ten.

After explaining the general ideas, Neyman and Pearson then turn to apply these to
the problem of testing the mean of a normal distribution. Two settings are considered:
In the first situation, by the null hypothesis, the mean and standard deviation are both
known and by the alternative hypothesis both are unknown. In the second case, the
null hypothesis specifies the mean as known and the standard deviation as unknown
against the alternative hypothesis that both mean and standard deviation is unknown.
What comes next, is the introduction of their ‘criterion of likelihood’ l (Neyman and
Pearson, 1928, p. 187), in exact terms

l =
Likelihood of ’

Likelihood of ’0 (max.)
(4.1)
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which can be expressed in more modern terms as

l =
L(’ |Â)

max’0L(’0 |Â)
=̂

sup
Q0

L(q|x)

sup
Q

L(q|x) (4.2)

compare Equation (C.22), where again ’0 denotes any alternative hypothesis. The idea
is intuitive: If the maximum likelihood is much larger under the alternative hypothesis
’0, then l will become small, indicating that is plausible to reject the null hypothesis ’.
Inmodern terms, the l criterion is called the likelihood ratio as given inDefinition C.75.
After that, they derived the l-test to test hypothesis A, and concluded:

“Without claiming that this method is necessarily the “best” to adopt, we
suggest that the use of this contour system (...) provides (...) one clearly
defined method of discriminating between samples for which hypothesis A
ismore probable and those forwhich it is less probable. It is amethodwhich
takes into account the likelihood of alternative hypotheses...”
Neyman and Pearson (1928, p. 188)

Problematically, in the above they conflate a Bayesian posterior probability with the
likelihood of data given a hypothesis. When discriminating samples for which hypoth-
esis A is more probable, a posterior distribution of A given the data is required. Their
criterion, however, only provides the ratio of marginal likelihoods of the data under
A and the possible alternative hypotheses, and thus does not make any statement in
probability about the hypotheses under consideration.

After finishing the testing problem of hypothesis A, Neyman and Pearson then
turned to the second situation. They noted immediately, that the null hypothesis is
indeed a family of hypotheses, as the mean is known but the standard deviation s has
multiple possible values. Although they mentioned before that they would treat the
situation via likelihood, they ended up noting:

“But B is really amultiple hypothesis concerning the sub-universe of normal
populations, M(’), with means at a and with varying standard deviations.
It only becomes precise upon definition of the manner in which s is dis-
tributed within this sub-universe, that is to say, upon defining the à priori
probability distribution of s.”
Neyman and Pearson (1928, p. 189)

The Bayesian approach seems to appeal to them for treating this second case. However,
as prior elicitation involves the use of inverse probability, they refrain from pursuing
such a solution and move on by using their criterion of likelihood. The idea they pur-
sued consisted of not only maximising the likelihood in the denominator under all al-
ternatives but also maximising the likelihood in the numerator for the null hypothesis
concerning the varying parameter s. This procedure turns out to be a likelihood ratio
test (see Definition C.75), and Neyman and Pearson find that their solution coincides
with the well known Student’s t-test.

Nevertheless, after that Neyman and Pearson eventually treat the problem via in-
verse probability. They propose to put a prior f(a, s) on the population ’, where a is
the mean and s the standard deviation and then conclude:
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“...it is almost impossible to express f in exact terms. We prefer therefore to
follow a line of argument which while really equivalent to the above with f
assumed constant makes use of the principle of likelihood rather than the
somewhat vaguer conception of à posteriori probability.”
Neyman and Pearson (1928, p. 193)

After noting that the inverse probability solution with a flat prior equals their MLE
solution (which can be attributed to Theorem 6.7) they moved on. As the prior specifi-
cation seems too arbitrary, and clear bias against the inverse probability approach was
common at that time because of Fisher’s influential earlier writings, they interpreted
the two formally equal solutions as their MLE solution, but then noted, that likelihood

“...as defined by Fisher is a quantity which cannot be integrated.”
Neyman and Pearson (1928, p. 194)

Neyman and Pearson proceeded by using a transformation and after finishing their
derivations gave their approach via inverse probability with a flat prior a somehow
crude likelihood-termed interpretation. What becomes clear from the 1928 paper is,
that in the early stage of their work Neyman and Pearson both had trouble to position
themselves on one side of the frequentist or Bayesian realm, or at least had di�erent
opinions on which solution to pursue first. While Pearson, of course, was motivated by
his l-test and the proposed theory of rejection regions in the form of contours, Neyman
seemed to struggle with this theory and to behold to Bayesian analysis as a possible
alternative.

Next to the introduction ofmultiple fundamentalmathematical objects for their later
hypothesis testing theory, the analysis of their first joint paper also shows that they had
no clear probability concept when writing it. This fact becomes obvious while they
proceed, and after having found that their likelihood ratio test equals the t-test derived
by Gosset and Fisher they noted:

“Wemay approach the problem bymaking use of the principle of likelihood
and reaching the test given by Fisher. Suppose that we have reason to be-
lieve that two samples have been drawn from normal populations with the
same standard deviation s, but that it is necessary to compare the relative
probability of two hypotheses ...”
Neyman and Pearson (1928, p. 206)

The phrasing of relative probability in the context of their developed likelihood ratio test
is, of course, misleading, as no statements in terms of probability aremade at all by their
procedure. While the Bayesian solution via inverse probability would have yielded
such a statement, the likelihood ratio test only makes statements in terms of likelihood,
or better, plausibility. This fault is in contrast to their earlier paying of attention to
the distinction between confidence in a hypothesis and probability of a hypothesis as
described previously. Again, it shows how fragile the concepts must have been at that
time, neither clearly located in the frequentist philosophy nor in the Bayesian one.

In the second part of the paper, multiple issues are addressed, mainly the extension
of their theory to the concepts of simple and composite hypotheses and adapting the
likelihood ratio to this extension. Also, a goodness of fit test regarding the multinomial
distribution is discussed, and the likelihood ratio test for this scenario is derived, which
turns out to be exactly the well known Pearson c2 test.
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Maybe the quintessence of the paper is summarised by Neyman and Pearson in the
following words, which encompass what should become the new standard for hypoth-
esis testing across science for the next decades and until today:

“The system adopted will provide a numerical measure, and this must be
coordinated in the mind of the statistician with a clear understanding of the
process of reasoning on which the test is based. We have endeavoured to
connect in a logical sequence several of themost simple tests, and in so doing
have found it essential to make use of what R. A. Fisher has termed “the
principle of likelihood.” The process of reasoning, however, is necessarily
an individual matter, and we do not claim that the method which has been
most helpful to ourselves will be of greatest assistance to others. It would
seem to be a case where each individual must reason out for himself his own
philosophy.”
Neyman and Pearson (1928, p. 230)

4.3 Optimality Results and the Neyman-Pearson Lemma
While the first paper of Neyman and Pearson in 1928 was already remarkable, the col-
laboration went on and produced further results. In a letter dated 1st February 1930
from Neyman to Pearson, Neyman sketched ideas on how to improve their theory. In
the letter, he proposed an idea of an experimental proof of the principle of likelihood.
However, although only an idea, it includes as a central argument that the a level (type
I errors) for their tests is fixed in advance, while simultaneously minimising the b level
(type II errors). Neyman formulates the central idea as follows:

“If we show that the frequency of accepting a false hypothesis is minimum
when we use l tests, I think it will be quite a thing!”
Letter from J. Neyman to E.S. Pearson, dated 1st February 1930

Much later it turned out, that this indeed came as enlightenment to Neyman, as Reid
(1982) noted:

“The first real step in the solution of the problem ofwhat today is called “the
most powerful test” of a simple statistical hypothesis against a fixed simple
alternative came suddenly and unexpectedly in a moment which Neyman
has never forgotten. Late one evening in the winter of 1930, he was pon-
dering the di�culty in his little o�ce. Everyone else had gone home, the
building was locked. Hewas supposed to go to amovie with Lola and some
other friends, and about eight o’clock he heard them outside calling for him
to come. It was at that moment that he suddenly understood.”
Reid (1982, p. 92)

After making his discovery, in a letter to Pearson, dated at 20th February 1930, Neyman
introduced his colleague to his findings and for the first time summarised the sca�old
of what later became one of the most influential hypothesis testing theories in science:

“We test a simple hypothesis H concerning the value of some character a =
a0, and wish to find a contour j(x1, ..., xn) = c such that
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(1) the probability P(ja
0) of a sample point lying inside the contour (which

probability is determined by the hypothesis H) is equal

P(ja
0) = # (4.3)

where # is a certain fixed value, say 0.01. (This is for controlling the
errors in rejecting a true hypothesis) and

(2) that the probability P(ja
1)determined by someother hypothesisH0 that

a = a1 6= a0 of a sample lying inside the same contour be maximum.

Using such contours and rejecting H when Â is inside the contour, we are
sure that the true hypothesis is rejectedwith a frequency less than #, and that
if H is false and the true hypothesis is, say, H0, then most often the observed
sample will be inside j =const. and hence the hypothesis will be rejected.”
Letter from J. Neyman to E.S. Pearson, dated 20th February 1930

Here, again Â is the sample point observed, H the null hypothesis tested and H0 the
alternative. The first form of the modern approach of the Neyman-Pearson theory of
hypothesis testing, therefore, was formulated in this letter, and another letter dated on
the eight March written by Neyman expressed it even more clearly:

“To reduce for a given level the errors of rejecting a true hypothesis, we may
use any test. Now we want to find a test which would 1) reduce the prob-
ability of rejecting a true hypothesis to the level  # and 2) such that the
probability of accepting a false hypothesis should be minimum. – We find
that if such a test exists, then it is the l-test.”
Letter from J. Neyman to E.S. Pearson, dated 8th March 1930

Two weeks later, in a letter dated on 24th March, Neyman sent Pearson his proof of
what today is known as the Neyman-Pearson Lemma as given in Lemma C.76.

It took Neyman and Pearson another three years to work out the details until they
finally published their paper ‘On the Problem of the Most E�cient Tests of Statistical Hy-
potheses.’ (Neyman and Pearson, 1933) in 1933. It was a persuasive paper in which
Jerzy Neyman and Egon Pearson described the results of their collaboration. In the in-
troduction, they presented their approach, which consists of searching for rules, which
govern the behaviour of the researcher, and which would become the new standard for
statistical hypothesis testing:

“Without hoping to knowwhether each separate hypothesis is true or false,
we may search for rules to govern our behaviour with regard to them, in
followingwhichwe insure that, in the long run of experience, we shall not be
too often wrong. Here, for example, would be such a “rule of behaviour”: to
decide whether a hypothesis, H, of a given type be rejected or not, calculate
a specified character, x, of the observed facts; if x > x0 reject H, if x  x0
accept H. Such a rule tells us nothing as to whether in a particular case H is
true when x  x0 or false when x > x0. But it may often be proved that if we
behave according to such a rule, then in the long run we shall reject H when
it is true not more, say, than once in a hundred times, and in addition we
may have evidence that we shall reject H su�ciently often when it is false.”
Neyman and Pearson (1933, p. 291)
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WhileNeyman and Pearson clearly outlined that for individual cases, no statements can
bemade at all, the appeal of a clear rule to decide between rejection and acceptance of a
given hypothesis was something Fisher’s theory – which was the predominant theory
by that time – lacked. Indeed, as described in Chapter 3, Fisher’s theory of significance
testing was built upon reasoning case-based and individually, taking into account the
knowledge and experience of the researcher and minute experimental design. While
formally not wrong, Fisher’s theory impliedmuchmore work and no easy solutions for
researchers, in contrast to the Neyman-Pearson theory. Neyman’s and Pearson’s work
was the ideal construct to sacrifice Fisher’s complex and holistic theory of significance
testing for the much clearer behavioural-oriented guidelines the Neyman-Pearson the-
ory o�ered.

The following section ‘Outline of a General Theory’ in their paper presented the var-
ious concepts such as simple and composite hypotheses as well as the two types of er-
rors, and rejection regions. Neyman and Pearson (1933) then formulated the criterion
for the best rejection region among the multitude of available rejection regions:

“We need indeed to pick out from all possible regions for which P0(w) = #,
that region w0, for which P1(w) is a maximum (...); this region (or regions
if more than one satisfy the condition) we shall term the Best Critical Re-
gion for H0 with regard to H1. There will be a family of such regions, each
member corresponding to a di�erent value of #. The conception is simple
but fundamental.”
Neyman and Pearson (1933, p. 297)

Here, P0 and P1 can be interpreted as the probability measures belonging to the Radon-
Nikodymderivatives of the probability densities corresponding to H0 and H1. The plan
of the paper was then summarised as follows by them:

“...it will be shown below that in certain problems there is a common family
of best critical regions for H0 with regard to the whole class of alternative
hypotheses W⇤. In these problems we have found that the regions are also
those given by the principle of likelihood, although a general proof of this
result has not so far been obtained, when H0 is composite.”
Neyman and Pearson (1933, p. 297)

For the case in which there are di�erent best critical regions for H0 with regard to each
of the alternatives constituting the set of all alternative hypotheses, W, Neyman and
Pearson (1933, p. 298) stress that it is “not clear that it has the unique status of the
common best critical region of the former case.”.

The rest of the paper dealswith the above. It introduces theNeyman-Pearson lemma
as given Lemma C.76. In their formulation it states that when testing a simple against
an alternative hypothesis, for a given level a, the test maximising the probability of
rejection is the likelihood ratio test at that level as given in Definition C.75. By doing
so, Neyman and Pearson (1933) introduced the idea of searching optimal testing pro-
cedures. After multiple illustrations of the developed concepts, the next section deals
with testing composite hypotheses and introduces the condition that for every simple
hypothesis included in the composite hypothesis the probability of a type I error must
be fixed at #. If this condition is satisfied, Neyman and Pearson (1933) speak of the
corresponding rejection region w of the composite hypothesis as a size # region. The
remainder of the paper then addresses characterising similar regions and illustrations

73



CHAPTER 4. THE NEYMAN-PEARSON THEORY OF HYPOTHESIS TESTING

of the concepts. In total, the 1933 paper is a landmark for the Neyman-Pearson theory
of hypothesis testing, in that it brings together all of the central concepts and presents
their theoretical results to the readership.

4.4 The Final Steps
After the 1933 paper, there was still a missing point which Neyman and Pearson had
to address, as gets clear from their letters. Already two years earlier, Neyman wrote a
letter dated August, 17th 1931 to Pearson in which he addresses the issue:

“I am considering the question when there is no best critical region with
regard to a given class of admissible hypotheses. What region should we
then choose? I take the most simple case when the whole set of admissible
hypotheses can be divided into two classes such that to each of them corre-
sponds a ‘best critical region’.”
Letter from J. Neyman to E.S. Pearson, dated 17th August 1931

To illustrate his point, he tests s2 = 1, µ = 0 against s2 6= 1, µ = 0 for a normal
distribution. He shows that a best critical region against the alternatives s2 > 1 can
be found, where the variance is bigger than a calculated c2 threshold. Also, against
the alternatives s2 < 1 a best critical region can be found for which a c2 threshold
is smaller than some calculated quantity. After discussing the problem, he comes up
with the option to choose the thresholds in a way such that each tail has #/2 probability,
which leads him to the solution:

“Suppose we have to test a simple hypothesis H0 with regard to a class of
alternatives C with no common B.C.R. It would be no good to use a critical
region w, having the following property: the class of alternatives contains a
hypothesis, say H1, such that #1 is < #. In fact, doing so we shall accept H0
with larger frequency when it is false (and the true hypothesis is H1) than
when it is true. (...) Therefore, the good critical region w0 should be chosen
in such a way that the probability of rejection under H1 is� than that under
H0.”
Letter from J. Neyman to E.S. Pearson, dated 17th August 1931

Here, B.C.R. stands for the best critical region and #1 is the probability of rejection under
H1. This is exactly the idea of an unbiased test as given in Definition C.77. Translating
this into the current notation yields:

Probability of Rejection under H1 = P(reject H0|H1) = 1�P(accept H0|H1) (4.4)
= 1�P(Type II Error) = Eq[j], if q 2 Qc

0 (4.5)

as is the standard notation in terms of a power function in Definition C.72. Therefore,
this letter marks the introduction of the power function or power as an important con-
cept in statistical hypothesis testing. While not clearly defined in 1931, the principal
ideas were already there as the correspondence shows.

The ideas appearing in the letter dated 17th August 1931 did not get published until
1936. While it is unclear why Neyman and Pearson waited so long to publish their
work, the 1936 paper ‘Contributions to the theory of testing statistical hypotheses’ (Neyman
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and Pearson, 1936) can retrospectively be regarded as the full account of the Neyman-
Pearson theory of hypothesis testing. In it, Neyman and Pearson (1936) introduce the
power function for a test as in Definition C.72 and define a test to be unbiased if its
power against the possible alternatives is greater or equal to the power under the null
hypothesis like in Definition C.77. They also came up with the concept of uniformly
most powerful tests as given in Definition C.78 and a big part of the paper deals with
finding a UMP level a test. Therefore, they first looked for an unbiased, critical region
with the maximum local power, which is similar to a search for an unbiased confidence
set (compareDefinitionC.90). Neyman andPearson (1936) proceeded by using the fact
that the power function for an unbiased test of a hypothesis H0 : q = q0 has a minimum
at q0. Therefore, the first derivate at this point is zero, and the test they were looking for
can be found by maximising the second derivative with respect to q. After illustrating
this method by some applications, Neyman and Pearson (1936) moved on by using
their maximisation idea and adding the constraint that the test needs to maximise the
power against all possible alternative hypotheses, too. It is shown that this property is
then close the notion of a UMP level a test, but not identical.

The paper is a great achievement in terms of the impact of the Neyman-Pearson the-
ory. While in Neyman and Pearson (1933), a general and already remarkable theory
was put forward, the 1936 paper can be seen as a completion of the theory of the 1933
paper via the introduction of the power function and UMP tests. From a mathematical
perspective, at this point, the Neyman-Pearson theory of hypothesis testing had grown
out of its early beginnings and become a serious alternative to Fisher’s significance tests.
Its appeal of a decision-theoretic testing procedure and the striving for optimal proce-
dures was something that Fisher’s significance tests via p-values were lacking.

In 1938 then, Neyman and Pearson (1938) published another paper which included
part II and part III as an extension to their 1936 paper. In it, the structure of UMP
level a tests and unbiased tests is investigated further, and it is also concerned with
composite hypotheses which include more than one parameter, building upon a paper
which Neyman (1937) published alone.

In summary, the Neyman-Pearson collaboration can be separated in two parts: The
first parts include the early beginnings, the rough sketching of ideas, putting forward
the principle of likelihood2 as a solution to testing hypotheses and also frequent misun-
derstandings between both statisticians. In this phase of their collaboration, Neyman
and Pearson considered both frequentist and Bayesian perspectives. In the second part
of their collaboration, they dominantly focussed on a frequentist point of view. The
early stages are steered by Egon Pearson, who comes up with the main ideas, and Jerzy
Neyman is the more reluctant of both. Also, Neyman is not as much influenced by the
writings of Fisher as Pearson seems to be, and often considers Bayesian solutions as
a possible alternative. In the second stage of their collaboration, things turn around:
While Pearson put up the basic concepts in the beginnings, Neyman is the one refin-
ing the whole theory later by proving the Neyman-Pearson lemma and introducing the
notion of power functions, unbiased and uniformly most powerful tests into their joint
theory. In total, the collaboration of Egon Pearson and Jerzy Neyman produced ten
papers, of which the most important were described above. In 1938 then, Neyman left

2That is, their l criterion which uses the theory of maximum likelihood of Fisher. This is not to be
confused with the likelihood principle, which is detailed in Part IV and is attributed to Birnbaum (1962).
Indeed, the Neyman-Pearson theory of hypothesis testing violates the likelihood principle, the reasons
of which will be discussed in Chapter 10.
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England for California where he was o�ered a statistics professorship, and the collabo-
ration ended. In light of today’s everyday work in scientific practice, the importance of
their collaboration cannot be overestimated. The 1928 and 1933 papers of them had an
enormous influence on statistical hypothesis testing. Their theory started a shift from
Fisher’s holistic significance testing towards their behavioural approach, whichwas jus-
tified by the long-term error control guaranteed by the Neyman-Pearson fundamental
lemma. Also, as the majority of Fisher’s tests could be justified by their likelihood ra-
tio l criterion, researchers could seamlessly shift to their approachwithout invalidating
their previous test results. As Lehmann (2011, p. 44) notes, theNeyman-Pearson theory
“continues even today to be the most commonly used approach.”, although Neyman
and Pearson themselves stressed that their theory can not provide any statements about
the truth of a given hypothesis in a single, isolated case. Problematically, this is themost
common situation in scientific research, as studies or experiments are performed once,
and are seldom repeated a large number of times. Nevertheless, their theory “became
one of twentieth century’s most influential pieces of appliedmathematics” (McGrayne,
2011, p. 49).
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Ronald Aylmer Fisher
The Nature of Probability

The preceding Chapter 3 and Chapter 4 detailed the development of Fisher’s theory
of significance testing and the competing Neyman-Pearson theory of (uniformly most
powerful) hypothesis tests.1 Fisher developed his theory first, but most of his signifi-
cance tests either assumed normality or had other specific assumptions about the statis-
tic, for which the distribution was subsequently derived to perform the calculation of
a p-value. On the contrary, the Neyman-Pearson theory o�ered a more structured and
situation-independent approach to hypothesis testing via the use of the likelihood ratio
criterion l. This chapter details the emerging debate between both parties about which
theory had to be preferred.

5.1 The Fisher-Neyman-Pearson Dissens
Fisher’s early reaction to the Neyman-Pearson theory was friendly, and he was inter-
ested in the approach. Neyman asked Fisher in a letter dated 9th February 1932 to
review his joint work with Pearson:

“PresentlyDr. Pearson is putting all the results in order. Theywill form apa-
per of considerable size. We would very much like to have them published
in the Philosophical Transactions, but we do not know whether anybody
will be willing to examine a large paper and eventually present it for being

1Uniformlymost powerful tests, inmodern notation, correspond to tests which control the type I error
rate at a prespecified level a > 0, while simultaneouslyminimising the type II error rate, see Rüschendorf
(2014, Chapter 6) and Schervish (1995, Chapter 4.3). The l criterion of Neyman and Pearson led to these
tests, which provide long-term error guarantees under infinite repetition of an experiment.
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printed. The paper contains much of mathematics and not all the statisti-
cians will like it just because of this circumstance. We think that the most
proper critic are you, but we don’t know whether you will be inclined to
spend your time reading the paper...”
Jerzy Neyman in (Bennett, 1990, p. 189)

Fisher’s reply on 12th February 1932 showed his interest and that his focus already had
shifted to hypothesis testing in the preceding years. Unfortunately, Fisher’s review of
Neyman and Pearson’s paper is not available anymore, but based on the fact that the
paper itself was received on August, 31st, in 1932 and published in print on February,
16th in 1933, Fisher must have been quite positive about the content 2. After the paper
of Neyman and Pearson was published (Neyman and Pearson, 1933), Fisher himself
published a paper called ‘Two new properties of mathematical likelihood’ (Fisher, 1934c).
There, he derived the factorization lemma for su�cient statistics.3 He showed that the
existence of a real-valued su�cient statistic implies that the probability distribution
has the form of a one-parameter exponential family.4 This aspect was crucial for the
Neyman-Pearson theory: Based on this fact Fisher (1934c) showed that for a UMP level
a test to exist5, a necessary criterion is the existence of such a real-valued su�cient
statistic. As theNeyman-Pearson theory aims at finding suchUMP level a tests, Fisher’s
1934 paperwas directly related toNeyman’s and Pearson’s theory. His results provided
a criterion for the existence of a UMP level a test.

After this initial interest in Neyman’s and Pearson’s work, Fisher’s attitude changed
over time. The conflict started with Neyman rejecting Fisher’s proposal that Neyman
should lecture only with his book (McGrayne, 2011, p. 50), and by 1936 the quarrel
between, in particular, Neyman and Fisher was becoming open hostility: According to
McGrayne (2011, p. 50), “The two groups occupied di�erent floors of the same build-
ing at University College London but they never mixed. Neyman’s group met in the
common room for India tea between 3:30 and 4:15 p.m. Fisher’s group sipped China
tea from then on.” Fisher envisioned the theory of Jerzy Neyman and Egon Pearson
more and more as a direct competitor to his theory of significance testing. This change
in attitude becomes clear in the personal communications of Fisher. As detailed in Ben-
nett (1990, p. 144), Fisher wrote about the Neyman-Pearson hypothesis tests in a letter
to William Hick in 1951, that

“in fact, I and my pupils throughout the world would never think of using
them.”
Fisher (1951), in (Bennett, 1990, p. 192)

There are two substantial reasons why Fisher clashed with Neyman and Pearson. First,
while both theories “tend to lead to the same numerical results” (Howie, 2002, p. 178),
there are a few important cases inwhich the results produced by each theory di�er (like
Fisher’s exact test and the traditional c2-test). Fisher’s exact test was already briefly
discussed in Section 3.1.4 in Chapter 3, where Fisher argued fervently to condition all
inference on the table margins in a 2⇥ 2 contingency table, while the traditional c2 test
of Karl Pearson ignored this information. The di�erences between both approaches

2https://royalsocietypublishing.org/doi/10.1098/rsta.1933.0009
3Compare Theorem C.51 in Appendix C.
4For a proof see Rüschendorf (2014, Theorem 4.1.21).
5See Appendix C, Definition C.78.
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arose out of theory and not because of di�erences in applied work. However, both
parties quickly understood that because of the di�erences in theory, the results obtained
in practical applications – e.g. when using Fisher’s exact test versus the c2 test, which
can be shown to be a likelihood ratio test in the Neyman-Pearson theory – could di�er.
Clearly, this was unsatisfying for both Fisher and for Neyman and Pearson, although
this happened just in a limited number of situations.

Second, Fisher saw his method of maximum likelihood as a well-founded theory of
scientific inference which had to be preferred over the purely mathematical approach
of Neyman and Pearson. On the other hand, Neyman and Pearson discredited Fisher’s
battery of significance tests as lacking a solid mathematical foundation which o�ered
any optimality properties like the fundamental lemma which demonstrated the opti-
mality of their hypothesis tests based on the likelihood ratio l. However, it should be
stressed that also Fisher’s theory was backed up by su�cient mathematical rigour, but
there was no notion of optimality to his significance tests with regard tomaking a type I
or II error. As a consequence, his formulation of significance tests seemed less objective
than the new Neyman-Pearson tests and his complex writing style did not contribute
to his tests being favoured by practitioners, compare Chapter 3. Fisher’s approach and
his targeted audience also di�ered from the one of Neyman and Pearson. While both
parties claimed to have given the preferable theory for statistical hypothesis testing, the
di�erences become apparent when considering each theory from the context it evolved
in. The next three subsections show that 1) di�erent results, 2) di�erent contexts and
3) di�erent probability concepts can be seen as the reasons why both parties clashed.

5.1.1 Di�erent Results
The first reason for Fisher’s dissent were two cases in which both theories produce dif-
ferent results. One of these cases appeared to be Fisher’s exact test as detailed in Sec-
tion 3.1.4. Fisher (1935) tackled the problem of the 2⇥ 2 table and the exact Fisher test
in his 1935 paper ‘The logic of inductive inference’. There, he advocated the restriction to
the conditional distribution based on the (ancillary) table margins:

“Let us blot out the contents of the table, leaving only the marginal frequen-
cies. If it be admitted that these marginal frequencies by themselves supply
no information on the point at issue namely, as to the proportionality of the
frequencies in the body of the table, we may recognize the information they
supply as wholly ancillary; and therefore recognize that we are concerned
only with the relative probabilities of occurrence of the di�erent ways in
which the table can be filled in, subject to these marginal frequencies.”
Fisher (1935, p. 48/49)

In 1947, Barnard G.A. (1947) proposed an unconditional test and opposed it to Fisher’s
solution. As described in Bennett (1990, p. 2-4), Barnard employed theNeyman-Pearson
theory to guarantee the desired power of the test in the long run, that is, under hypo-
thetical infinite repetition of the experiment. In a reply, Fisher (1948) showed that the
unconditional procedure leads to false probabilities in contrast to his conditional in-
ference via the exact Fisher test. His argument was based on the fact that one could
improve upon fixing the level of significance in small samples and controlling the error
rate via the Neyman-Pearson theory. He showed that his proposed test was better than
the unconditional solution of Barnard G.A. (1947) for small samples, and a test whose
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power could be improved clearly was in contrast to the asserted optimality guarantees
by the Neyman-Pearson theory:

‘Je n’aimerais pas rehausser la signification du résultat qui a été obtenue, en
raison du fait qu’une répétition du test pourrait donner une évidence moins
impérative que celle e�ectivement obtenue. La distribution marginale dans
le premier problème lu’apparaît ainsi analogue au nombre de souris classées
dans le second, et devoir être acceptée comme partie des données du prob-
lème statistique correspondant, indépendamment de sa fréquence de réali-
sation comme résultat d’une répétition physique.’
(Fisher, 1948, p. 213)

Neyman and Pearson attacked Fisher, too, and argued that his theory of significance
testing did not include the type II error probability, which can be much more impor-
tant than the type I error probability (which is gauged by Fisher’s p-value) depend-
ing on the application context. Examples include diagnostic tests for a disease, where
false-positive results are quickly revealed by subsequent tests and diagnostics, the as-
sociated costs of which are often moderate. False-negative results (a type II error) are
more harmful as a patient with a disease receives no treatment and future costs (per-
sonal damage, economic costs for future treatments and medication) will, in general,
be much larger. Also, they criticised that Fisher’s theory of significance testing stood
mathematically on much shallower grounds than the Neyman-Pearson theory, which
appealed with its optimality results.

The second example in which both theories provide di�erent results is the famous
Behrens-Fisher-problem Fisher (1935) put forward in 1935. The Behrens-Fisher prob-
lem arose from the task of extending the Student’s t-test for situations in which the
group variances di�er in both groups. Student’s t-test assumeddata in two groupswere
distributed asN (µ1, s2

1 ) andN (µ2, s2
2 )with s2

1 = s2
2 . The null hypothesis H0 : µ1 = µ2

was tested against its alternative H1 : µ1 6= µ2. However, in practice, the assumption
of equal variances in both groups often is unrealistic, and the Behrens-Fisher problem
corresponds to a statistical test when the situation is generalized to s2

1 6= s2. However,
this leads to the problem that the degrees of freedom k of the resulting test statistic’s
distribution (which is a tk-distribution) are dependent on the group variances s2

1 and
s2
2 . As these are unknown, di�erent solutions were presented by both parties. The

details are well documented by now and can be found in Lehmann (2011, Chapter 4).
As discussed in Section 3.2.3, Fisher (1955) and Cox (1958)made a strong argument

for conditional inference even years later. In the fifth edition of Statistical Methods for
Research Workers, Fisher also included his idea of conditional testing in the exact Fisher
test by conditioning his inference on the marginal totals of the 2⇥ 2 table under study.

In total, the dissent of Fisher was due to the di�erent results provided by each the-
ory and can partially be explained by the fact that the frequentist interpretation of the
Neyman-Pearson theory o�ered noway to respect conditional inference. As Fisher him-
self had also no solution for this problem, he rejected the Neyman-Pearson theory and
stuck to his theory of significance testing. This attitude did not change even years later
when Fisher wrote about the success of the Neyman-Pearson theory of hypothesis test-
ing:

“We are quite in danger of sending highly trained and highly intelligent
youngmen out into the world with tables of erroneous numbers under their
arms, and with a dense fog in the place where their brains ought to be. In

80



CHAPTER 5. THE MODERN HYBRID APPROACH

this century, of course, they will be working on guided missiles and advis-
ing the medical profession on the control of disease, and there is no limit to
the extent to which they could impede every sort of national e�ort.”
Fisher (1958b, p. 274)

5.1.2 Di�erent Application Contexts
The second reasonwhy both parties clashed can be attributed to the di�erent contexts in
which each theory was developed. As Howie (2002) noted, both theories are separated
by a “fundamental di�erence in philosophy.” (Howie, 2002, p. 178). Fisher saw his the-
ory as a self-contained theory for scientific inference andwas a practitioner whosework
was influenced by agricultural work and scientific experimentation. He had the talent
to balance mathematical theory and experimental practice. The strength of Fisher’s sig-
nificance tests consisted in the idea of combining his selection of likelihood-based tests
with careful experimental design and domain-specific knowledge as highlighted for
example by the Latin Square design in agricultural experiments or Fisher’s exact test in
medical statistics.

On the other hand, Jerzy Neyman and Egon Pearson developed a mathematical
theory by pencil and paper. Howie (2002) underlines the important aspect that the
Neyman-Pearson theory was designed to “govern behaviour: it gives a self-contained
decision strategy between courses of action.” (Howie, 2002, p. 178) and “is particularly
suited to practical applications, for which the benefits and penalties associated with
various well-defined hypotheses can often be quantified.” (Howie, 2002, p. 178).6

In the following, the di�erent application contexts are exemplified by considering
two examples: First, a medical test for a disease which is conducted routinely is consid-
ered. A type I error happens, when a healthy patient gets a positive test result, and a
type II error happens if a sick patient gets a negative test result. The Neyman-Pearson
theory is a perfect match for such a situation, as it exactly resembles the idea behind the
theory. The test is conducted repeatedly under (approximately) identical conditions (a
large number of patients, all of which are assumed to be members of a homogeneous
population), and it is assumed that the costs of type I and II errors are known or at least
can be estimated roughly. From amedical and economic perspective, the long-run con-
sequences in the form of costs thus can be evaluated. These may be the individual
costs of su�ering due to an undetected disease or the financial costs of treatment, or
any other quantity previously defined.7 On the other hand, Fisher’s significance test-
ing would consider each test separately, weighing the evidence from case to case and
incorporating expert knowledge as well as a minute experimental design. While for-
mally not wrong, the goal in Fisher’s theory is not to control or minimise the long-run
error frequencies and the associated loss. In the above context, however, minimising the
long-term loss can be seen as the primary goal of the diagnostic test. As a consequence,
in this first example, the Neyman-Pearson theory is an appropriate choice.

6Also, Neyman-Pearson hypothesis tests can be formalised quite easily from a modern decision-
theoretic perspective as shown in Appendix C via the Neyman-Pearson loss function. This presented
another strong justification of their theory through the later work of Wald (1939, 1949). However, quan-
tification of the associated loss of a type I or II error is, in almost all realistic research situations, nearly
impossible (Robert, 2007), which weakens this argument.

7Suchmodelling can easily be incorporated by adapting the used loss function, compare Appendix C.
For example, one can use di�erent losses L0 and L1 in the Neyman-Pearson loss function to quantify the
di�erent losses implied by a type I or II error.
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As a second example, consider a situation in which a new drug is tested and com-
pared to the standard treatment. The study involves a multitude of complex and in-
terdependent factors, including individual properties of the participating patients, the
geographical region where the study is conducted, the associated environmental im-
pacts, and the experimental design. While formally a repetition of a study is possible,
a repetition under exactly the same conditions is extremely di�cult if not impossible to
produce. Even an approximate repetition of a study is challenging and often not possi-
ble.8 This also is the case for agricultural studies, in which the soil type, geographical
region, plant type or fertilizer used play an important role. Such studieswere the every-
day work for Fisher in Rothamsted, which may be seen as another reason why Fisher
rejected the Neyman-Pearson theory.9 Also, the costs of a type I error – that is, con-
cluding that the drug works although it barely has any e�ect – are much more di�cult
to estimate than the costs of a false-positive outcome for a single patient. For exam-
ple, while the economic and individual costs for a false-positive diagnosis of a single
patient can be roughly estimated (although even this task can quickly become challeng-
ing depending on what the test diagnoses), the costs of a false-positive diagnosis in the
context of new drug development are more di�cult to estimate. These depend on the
context and number of patients which are treated with it, the time span the drug will
be used until it is eventually noticed that it has no e�ect, and the economic costs which
then depend on the previous variables. Therefore, in such cases, Fisher’s theory of sig-
nificance testing is the appropriate choice, and the long-term orientedNeyman-Pearson
theory is of limited use. Howie (2002) puts it this way concerning the Neyman-Pearson
theory and hypothesis testing:

“Decisions concern the rational way to behave: what one wants to know is
not whether a given hypothesis is true, but whether one should act as if it
is.”
Howie (2002, p. 178)

On the long run, when acting this way, the Neyman-Pearson theory guarantees that
one does not err too often. Problematically, no statement about the hypothesis tested in
the current study can be made. This questions the usefulness of a Neyman-Pearson hy-
pothesis test, in particular, for scientific research. For Fisher, every experiment had the
goal of revealing new knowledge to the experimenter, and decisions should be made to
reveal the truth about a hypothesis. For Neyman and Pearson, the goal was to guide the
behaviour of scientists to produce predictable results on the long run. As they stressed:

“Without hoping to knowwhether each separate hypothesis is true or false,
we may search for rules to govern our behaviour with regard to them, in
following which we insure that, in the long run of experience, we shall not
be too often wrong.”
(Neyman and Pearson, 1933, p. 291)

The usefulness of the Neyman-Pearson theory, therefore, is dependent on two factors:
First, determining the costs of a type I or II error must be possible. Statistically, the

8Compare the recent replication attempts of various studies in the biomedical and cognitive sciences
(Wagenmakers and Pashler, 2012; Pashler and Harris, 2012) and Chapter 1.

9Regarding Rothamsted, McGrayne (2011) noted that “Fisher’s job was analyzing volumes of data
compiled over decades about horse manure, chemical fertilizers, crop rotation, rainfall, temperature,
and yields.”

82



CHAPTER 5. THE MODERN HYBRID APPROACH

associated loss with a false decision thus needs to be quantified, and the reliability of
this loss estimate determines the validity of the whole theory. This might be a di�cult
if not impossible task, as Howie (2002) notes concerning the complexity in biomedical
research:

“By how much is it better to mistake a genetic factor than to risk defying
publication regarding a possibly remediable disease?”
Howie (2002, p. 179).

Second, the experiment has to be repeatable under the same conditions, which is prob-
lematic if not impossible for studies conducted in the medical, psychological and social
sciences. Exceptions are given especially in the area of quality control, which was an
active interest of Egon Pearson’s research (Pearson, 1933). For example, the Neyman-
Pearson theory is a perfect match for controlling the number of defect items produced
by a machine. This shows the separate areas of application both Neyman and Pearson
as well as Fisher came from, which attributed to the dissent and made the arguments
of the other party di�cult to understand for the other side. In contrast, in Fisher’s ev-
eryday work at Rothamsted, experiments were at best approximately repeatable under
the same conditions, and quantification of the loss whenmaking a type I or II error was
also di�cult, although not impossible.10

Another objection of Fisher to the Neyman-Pearson theory was given by the fact
that in some cases neither the null nor the alternative hypothesis is true, and therefore
none of both hypotheses should be accepted. Both hypotheses can be a bad description
of the exact situation at hand, and Fisher’s significance testing would, in this case, be
consistent in just rejecting the null, but not accepting any alternative (Fisher, 1939).
Of course, this interpretation is only advantageous, if one is concerned with a single
study or experiment at hand. When the long-term error rate needs to be controlled,
the single study or experiment at hand barely matters and as a consequence, accepting
the alternative is perfectly fine to minimise the incurred loss under infinite repetition.
Also, from Neyman’s and Pearson’s perspective, not rejecting the null hypothesis via
Fisher’s p-value does not imply that the alternative is true, so no knowledge is gained
by conducting Fisher’s significance test when a result is not judged to be significant.
However, in contexts like quality control a sample of produced items out of which a
fraction is defect requires to take some action like improving the machine when too
many items are defect, or acting as if themachine produces atmost a specific percentage
of defect items.

Summing up, di�erent application contexts can be seen as the second cause why
both parties rejected the other theory.

10Returning to the agricultural experiments Fisher conducted at Rothamsted station, it would have
been possible to use literally the loss in crop yield when using a di�erent fertilizer, soil type or plant.
However, when testing the e�cacy of a fertilizer, the loss of interest associated with a false decision
would be: What is the loss when we reject the hypothesis of increased e�ciency and do not use this
alternative fertilizer from now on? This loss depends on a variety of aspects: Where would it have been
applied? How large is the true increase in e�cacy? What is the di�erence in crop yield that is lost by not
using the alternative fertilizer? This shows how quickly it becomes impossible to estimate the loss with
a decision, which in this case would be a false-negative one.
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5.1.3 Di�erent Probability Concepts
Another reason for the dissent between Neyman, Pearson and Fisher can be found in
the di�erent probability concepts both parties had. Fisher stated his concept of proba-
bility quite early, in the 1922 paper On the mathematical foundations of theoretical statistics
(Fisher, 1922b):

“Whenwe speak of the probability of a certain object fulfilling a certain con-
dition, we imagine all such objects to be divided into two classes, according
as they do or do not fulfill the condition. This is the only characteristic in
them of which we take cognisance. For this reason probability is the most
elementary of statistical concepts. It is a parameter which specifies a simple
dichotomy in an infinite hypothetical population, and it represents neither
more nor less than the frequency ratio which we imagine such a population
to exhibit. For example, when we say that the probability of throwing a five
with a die is one-sixth, we must not be taken to mean that of any six throws
with that die one, and one only will necessarily be a five; or that of any six
million throws, exactly one million will be fives; but that of a hypothetical
population of an infinite number of throws, with the die in its original con-
dition, exactly one-sixth will be fives. Our statement will not then contain
any false assumption about the actual die, as that it will not wear out with
continued use, or any notion of approximation, as in estimating the proba-
bility from a finite sample, although this notion may be logically developed
once the meaning of probability is apprehended.”
Fisher (1922b, p. 312)

Thus, Fisher’s probability concept, while vague and involving quite unwieldy constructs
like a hypothetical infinite population, was at its heart a frequentist one following the
Laplacian tradition (Salsburg, 2001). Contrary to the epistemic probability concepts
of proponents of the approach of inverse probability, Fisher thought of probability as
an objective quantity which could be measured by precise statistical procedures like
maximum likelihood and rigorous experimental design.

In amuch later paper in 1958 titledTheNature of Probability, Fisher givesmore insight
about his precise definition of probability:

“Probability is, I suggest, the first example of well specified state of logical
uncertainty. Let me put down a short list of three requirements, as I think
them to be, for a correct statement of probability, which I shall then hope to
illustrate with particular examples. I shall use quite abstract terms in listing
them.

(a) There is ameasurable reference set (awell-defined set, perhaps of propo-
sitions, perhaps of events).

(b) The subject (that is, the subject of a statement of probability) belongs
to the set.

(c) No relevant sub-set can be recognized.”

Fisher (1958b, p. 263)

It is important to note that Fisher was concernedwith probability as the quantity which
a statistician needs to use for making inferences, and not with probability from a formal
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mathematical point of view. However, one can reformulate the above three points from
amodern perspective. As an example of themeasurable reference set11, Fisher used the
set of possible throws with a die in his 1922 paper. In modern notation, the measurable
reference set is simply the power set P(W) of the event space W := {1, ..., 6}N. His sec-
ond condition then makes it possible to make a probability statement by requiring the
subject to belong to the measurable reference set, which in modern notation requires
an event A to be a subset A ⇢ P(W) of the s-algebra associated with the event space
W to use any form of probability statements about the event A. The third requirement
states that no relevant subset of such a set may exist having a di�erent probability. When
a relevant subset exists and yields a di�erent probability, Fisher’s conditional inference
mandates to condition the inference on this subset before providing any probability
statement about the set A. The last statement is tied closely to his earlier ideas about
conditional inference, as the existence of a relevant subset means that from the statisti-
cal inference perspective, the probability statement made is ignoring relevant informa-
tion when a relevant subset exists and is ignored. A correct statement of probability in
Fisher’s sense, therefore required to make use of conditional inference. This third re-
quirement shows how strongly Fisher was concernedwith hypothesis tests when think-
ing about probability. Also, as conditioning a (Maximum-Likelihood-)estimator for a
parameter in a statistical model on a su�cient statistic could reduce the variance of
the estimator according to the Cramér-Rao inequality12, Fisher was strongly convinced
of conditional inference even in contexts like parameter estimation. In modern terms,
while Fisher’s concept of probability was based on frequencies, it still can be called
epistemic, as it refers to single events and a measure of rational uncertainty.13

For Neyman (and Pearson), probability had a di�erent definition. Neyman referred
to probability as the frequency of future events, which led to a di�erent hypothesis test-
ing theory. More specific, Neyman detailed his concept of probability in ‘Outline of a
theory of statistical estimation based on the classical theory of probability’ (Neyman, 1937).
He first introduced confidence intervals and by doing so, gave insights about his prob-
ability concept. Neyman first noted:

“... we shall need to define the terms probability, random variable, and
probability law. These definitions are needed not because I introduce some
new conceptions to be described by the above terms, but because the the-
ory which is developed below refers only to some particular systems of the
theory of probability which at the present time exist,* and it is essential to
avoid misunderstandings.”
Neyman (1937, p. 336)

Neyman continued by

“I want to emphasize at the outset that the definition of probability as given
below is applicable only to certain objects A and to certain of their properties

11Fisher’s definition of measurable is not to be confused with the modern measure-theoretic definition
of measurability.

12Compare Chapter 3, and for a modern proof of the Chapman-Robbins inequality, of which the
Cramér-Rao inequality is just a special case, see Rüschendorf (2014, Chapter 5).

13This is not to be conflated with epistemic probability in a sense it often is attributed to the inverse
probability approach, as defended by Je�reys (1931). This concept of probability, while also called epis-
temic, is not based on a frequency definition. For Je�reys (1931), probabilitymeasured belief in a specific
proposition relative to the given data and involved no frequencies.
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B – not to all possible. In order to specify the conditions of the applicability
of the definition of the probability, denote by (A) the set of all objects which
we agree to denote by A. (A) will be called the fundamental probability
set. Further, let (B) denote the set of these objects A which possess some
distinctive property B and finally, ((B)), a certain class of subsets (B0), (B00),
. . ., corresponding to some class of properties B0, B00, etc.
It will be assumed†
(1) that the class ((B)) includes (A), so that (A) # ((B)) and
(2) that for the class ((B)) it was possible to define a single-valued function
m(B), of (B)whichwill be called themeasure of (B). The sets (B) belonging
to the class ((B)) will be called measurable.”
Neyman (1937, p. 336-337)

In assumption (1), # can be read as ✓. The above shows that Neyman already had a
quite modern definition of probability. The quantity (A) may be expressed in modern
terms as the event space W, the set ((B)) as the s-algebra on W, and m as the proba-
bility measure on the s-algebra. Neyman also references Kolmogorov in a footnote on
the same page, and notes that “A systematic outline of the theory of probability based
on that of measure is given by K��������� (1933). See also B���� (1925-1926); L���
(1925); F������ (1937).” (Neyman, 1937, p. 336). Then, Neyman specifies the proper-
ties of the measure m:

“The assumed properties of the measure are as follows:
(a) Whatever (B) of the class ((B)), m(B) � 0.
(b) If (B) is empty (does not contain any single element), then it is measur-
able and m(B) = 0.
(c) The measure of (A) is greater than zero.
(d) If (B1), (B2) ... (Bn) ... is any at most denumerable set of measurable
subsets, then their sum, Â(Bi), is also measurable. If the subsets of neither
pair (Bi) and (Bj) (where i 6= j) have common elements, then m(Â Bi) =
Â•

i=1 m(Bi).
(e) If (B) is measurable, then the set (B) of objects A non-possessing B is
also measurable and consequently, owing to (d), m(B) +m(B) = m(A).
Under the above conditions the probability, P{B|A}, of an object A having
the property B will be defined as the ratio P{B|A} = m(B)

m(A) . The probability
P{B1|A} or P{B1} for short, may be called the absolute probability of the
property B. Denote by B1B2 the property of A consisting in the presence of
both B1 and B2. It is easy to show that if (B1) and (B2) are both measur-
able then (B1B2) will be measurable also. If m(B2) > 0, then the ratio, say
P{B1|B2} =: m(B1B2)/m(B2), will be called the relative probability of B1
given B2. This definition of the relative probability applies when the mea-
sure m(B2) as defined for the fundamental probability set (A) is not equal
to zero.”
Neyman (1937, p. 337)

The above quote shows that although properties like s-additivitywere already required
by Neyman and from his definition P{B|A} = m(B)

m(A) one obtains P{A|A} = 1, so that
the definition of Kolmogorov for a probability measure is recovered from Neyman’s
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specification. Summing up, Neyman had a frequentist probability concept which al-
ready contained modern measure-theoretic concepts like measurability and which ad-
hered to Kolmogorov’s axiomatic. However, at the core this concept was just a Lapla-
cian one like Fisher’s concept of probability, and the important but subtle di�erences
are clarified when investigating the application of the probability concept in statistical
contexts. In what follows, Neyman’s derivation of confidence intervals is outlined to
illustrate the di�erences between Neyman’s and Fisher’s idea of applying a frequentist
probability concept in practice.

In the same paper, Neyman considered random variables X1, ...,Xn following the
probability density p(x1, ..., xn|q1, q2, ..., ql)whichdepends on the parameters q1, q2, ..., ql,
“which are constant (not random variables), and that the numerical values of these
parameters are unknown.” (Neyman, 1937, p. 347). After stating his frequentist inter-
pretation of the observed data (which are the realisation of a random variable) and the
unknown parameter (which is a fixed but unknown constant), Neyman stated the goal:

“It is desired to estimate one of these parameters, say q1. By this I shall
mean that it is desired to define two functions q̄(E) and q(E)  q̄(E), de-
termined and single valued at any point E of the sample space, such that if
E0 is the sample point determined by observation, we can (1) calculate the
corresponding values of q(E0) and q̄(E0) and (2) state that the true value of
q1, say q01, is contained within the limits q(E0)  q01  q̄(E0)”
Neyman (1937, p. 347)

Interestingly, Neyman (1937) first considered the Bayesian approach to such a task as
more appropriate, similar to his earlier preference of the Bayesian approach for hypoth-
esis testing in the correspondence with Egon Pearson at the beginning of their collabo-
ration. He noted:

“...under the influence of Bayes Theorem, we could ask that, given the sam-
ple point E0, the probability of q10 falling within the limits (...) should be
large, say a = .99, etc. If we express this condition by the formula

P{q(E0)  q01  q̄(E0)|E0} = a

we see at once that it contradicts the assumption that q01 is constant.”
Neyman (1937, p. 347-348)

Although the Bayesian approach seemed to be ideally suited to the problem at hand, the
philosophical assumption that the unknown parameter q is fixed and the observed data
E are a random variable14 permitted to proceed. Specifically, when q01 is an unknown,
fixed constant, it follows that

P(1  q01  2) =

(
1, if 1  q10  2
0, if q10 > 2 or q10 < 1

where in the above, the left and right boundaries 1 and 2 can be replacedwith any range
of values. This demonstrates that confidence intervals of the Neyman-Pearson theory
do not allow for any probability statements about the parameter except for the trivial
ones that the parameter is either located in the interval or not. In this example, Neyman

14See Appendix C.
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argued that one cannot say that the probability of the true value q10 falling between one
and two is equal to a. Either, the fixed constant q10 is between one and two in which
case the probability is one (first case above), or q10 is not, in which case the probability
is zero (second case above).

After finding that it is not possible to proceed with the Bayesian approach when
starting from a frequentist perspective, he started again by considering the accuracy of
an estimate T for the unknownparameter q andnoticed that the following two estimates
could quantify the accuracy

q = T � k1ST and q̄ = T + k1ST

which indicate “the limits between which the true value of q presumably falls.” (Ney-
man, 1937, p. 347). In the above, k1, k2 2 R are constants which have to be chosen ap-
propriately and ST is the sample’s standard deviation. Neyman then underlined that
it is possible to consider this probability at all because from a frequentist perspective,
the true unknown value q01 of the parameter q is assumed to be fixed. The functions q
and q̄ from a frequentist perspective are random variables, as they are functions of the
randomly observed data E0. Neyman then required the functions q and q̄ to be chosen
so that the probability of q(E0)  q  q̄(E0) is constant, that is equal to a 2 R. Neyman
called the values q and q̄ lower and upper confidence limit and the range between them
confidence interval. The constant a he called the confidence coe�cient:

“The functions q(E) and q̄(E) satisfying the above conditions will be called
the lower and the upper confidence limits of q1. The value a of the probabil-
ity (...) will be called the confidence coe�cient, and the interval, say d(E),
from q(E) to q̄(E), the confidence interval corresponding to the confidence
coe�cient a.”
Neyman (1937, p. 348)

Neyman then moved on to sketch the three steps to calculate these quantities:

“We can then tell the practical statistician thatwhenever he is certain that the
formof the probability lawof theX’s is given by the function p(E|q1, q2, ..., ql)
which served to determine q(E) and q̄(E), he may estimate q01 bymaking the
following three steps : (a) he must perform the random experiment and ob-
serve the particular values x1, x2, ..., xn of the X’s ; (b) he must use these
values to calculate the corresponding values of q(E) and q̄(E); and (c) he
must state that q(E) < q01 < q̄(E), where q01 denotes the true value of q1.
How can this recommendation be justified?”
Neyman (1937, p. 348)

After giving the justification, which is the strong law of large numbers, Neyman (1937,
p. 349) noted that “it follows that if the practical statistician applies permanently the
rules (a), (b) and (c) for purposes of estimating the value of the parameter q1 in the
long run he will be correct in about 99 per cent. of all cases.”, where a = 0.99. Ney-
man also noted that due to the strong law of large numbers, if the upper and lower
limits q(E) and q̄(E) are calculated properly, “the frequency of actually correct state-
ments will approach a” (Neyman, 1937, p. 349). Therefore, the confidence intervals as
introduced by Neyman do not attain this probability a of correct statements for every
sample size. After that, Neyman finally gave his definition how the statistician should
apply his frequentist probability concept detailed above in practice:
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“It will be noticed that in the above description the probability statements
refer to the problems of estimation with which the statistician will be con-
cerned in the future. In fact, I have repeatedly stated that the frequency of
correct results tend to a.* Consider now the case when a sample, E0, is al-
ready drawn and the calculations have given, say, q(E0) = 1 and q̄(E0) = 2.
Can we say that in this particular case the probability of the true value of q1
falling between 1 and 2 is equal to a? The answer is obviously in the nega-
tive. The parameter q1 is an unknown constant and no probability statement
concerning its value may be made ... ”
Neyman (1937, p. 349)

This passage not only gives Neyman’s personal view on probability as the basis for
his hypothesis testing theory but also provides the reader with a direct warning of the
probably most common misinterpretation of frequentist confidence intervals.15 Some-
how, these warnings have been overlooked by too many researchers over time, so that a
Bayesian credible interval perspective is attributedmost often to frequentist confidence
intervals, leading partially to the problems observed in the replication crisis. The most
severe problem of confidence intervals in the interpretation of Neyman may be given
by the fact, that while they provide the guarantee that one is correct in a percent of the
cases when stating that the parameter is included inside a confidence interval in a large
succession of such intervals, one cannot provide a probability that the parameter lies
inside any single confidence interval with probability a. Thus, inference for the study
at hand is not possible.

The rest of Neyman’s paper is concerned with finding the best – that is, shortest –
confidence intervals which minimize the probability of false coverage. Neyman found
that these intervals are uniformly shortest – also called Neyman-shortest – if the corre-
sponding hypothesis test is a UMP level a test, see Casella and Berger (2002).16

The analysis of the probability concepts of both parties shows, why Fisher, Neyman
and Pearson clashed bitterly. Fisher had an epistemic probability concept which, al-
though at its core a frequentist one, referred to probability as the empirical probability
of singular events. Jerzy Neyman opposed this view with his frequentist concept of
probability which in applications was interpreted as providing statements about future
events. This perspective settled into the Neyman-Pearson theory of hypothesis testing,
which controls the a level only on the long-run, that is, for future events.17 Of course,
this position was not reasonable for Fisher, who treated probability as a concept re-
ferring to the current singular event. For singular events like the study or experiment
currently conducted, the Neyman-Pearson theory could not make any statement, no
matter if the goal were to test a hypothesis or quantify the uncertainty in a parameter
estimate. As noted by Halpin and Stam (2006):

“... unlike Fisher, Neyman considered statistical testing tomake no contribu-
tion to the problem of inductive reasoning (Neyman, 1942, 1950, introduc-
tion). This foundational distinction between Fisher and Neyman regarding

15A review of some more misinterpretations and pitfalls when interpreting frequentist confidence in-
tervals in the spirit of Neyman and Pearson are given in Morey et al. (2016).

16This follows immediately from the duality betweenNeyman-Pearson-tests andNeyman’s confidence
intervals, compare Appendix C.

17Notice that a hypothesis test j for level a in the frequentist interpretation controls the type I error
rate only in expectation. That is, Eq [j]  a, compare Definition C.71. Thus, it is not possible to answer
the question whether in the current study or experiment, a type I error has happened or not.
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the purpose of statistical testing can be traced to their respective conceptions
of probability.”
Halpin and Stam (2006, p. 632)

Therefore, Fisher preferred his case-based procedure of significance testing, which ad-
ditionally incorporated conditional inference. Halpin and Stam (2006) further noted:

“The Neyman-Pearson theory generally has been interpreted as a decision
theory rather than a theory of inference and has found its least problematic
applications in quality control in industry (see Seidenfeld 1979, for a critique
of the Neyman-Pearson approach as an unintended theory of inference).”
Halpin and Stam (2006, p. 632)

Noticeably, the above analysis also reveals that confidence intervals emerged out of
the inapplicability of the Bayesian approach to the frequentist assumptions about the
state of nature concerning the unknown parameter q and the observed data E. Had
Neyman started with the Bayesian assumptions outlined in Appendix C, which regard
the observed data E as fixed and the unknown parameter q to be a random variable, he
could have proceeded perfectly fine. It is remarkable that Neyman seems to have had a
strong preference for the Bayesian approach both when publishing his likelihood ratio
criterion, the fundamental lemma and also when introducing frequentist confidence
intervals. The only reason that prevented him to proceed in a Bayesian way seemed to
be the general rejection of inverse probability at that timedue to Fisher’s earlierwritings.

5.2 Prespecified Test Levels a versus p-values
As described in the preceding section, a major argument for the debate between Fisher,
Neyman and Pearsonwas that Fisher conducted inference conditionally, whileNeyman
and Pearson did not. This di�erence is directly tied to the use of p-values by Fisher
and the use of fixed a levels by Neyman and Pearson. In addition to the advocation
of the conventional .05 threshold in Statistical Methods for Research Workers as described
in Section 3.2.1 and Section 3.2.2, Fisher gave deeper insights into his attitude towards
p-values in a 1926 paper titled ‘The arrangement of field experiments’ (Fisher, 1926), where
he stated that

“...for it is convenient to draw the line at about the level at which we can say:
“Either there is something in the treatment, or a coincidence has occurred
such as does not occur more than once in twenty trials.” This level, which
we may call the 5 per cent. point, would be indicated, though very roughly,
by the greatest chance deviation observed in twenty successive trials...
If one in twenty does not seem high enough, we may, if we prefer, draw
the line at one in fifty (2 per cent. point), or one in hundred (the 1 per
cent. point). Personally, the writer prefers to set a low standard at the 5 per
cent. point, and ignore entirely all results which fail this level. A scientific
fact should be regarded as experimentally established only if a properly de-
signed experiment rarely fails to give this level of significance.”
Fisher (1926, p. 85)

It is important to note that Fisher here implicitly required successful replications of sig-
nificant study results, where the replication studies are required to be conducted un-
der the same conditions. Also, proper experimental design is needed, and if these two
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requirements are fulfilled, the scientific fact of interest is regarded as experimentally
established.

From the above writings, it becomes also clear that the p-value was a continuous
quantity for Fisher, and the advocation of the .05 per cent threshold should not be used
carelessly. Continuous is interpreted here not in the mathematical sense, but indicates
that the p-value is interpreted as quantifying the evidence against the null hypothesis
directly. For example, a p-value p = 0.049 is interpreted di�erent from a p-value p =
0.001 in the continuous interpretation, while in the Neyman-Pearson interpretation,
which is binary, both of the above p-values are simply significant, when a test level
a = 0.05 is chosen. While formally, the Neyman-Pearson theory does not include p-
values, the test levels in the Neyman-Pearson theory are in practice equal to Fisher’s
p-values, as both objects are computed via the same probability, see Appendix C.

Nevertheless, Fisher kept the wording of the 5% threshold in Statistical Methods for
ResearchWorkersuntil the twelfth edition, whichwas published in 1954. In the thirteenth
edition, published in 1958, four years before Fisher died, thiswordingwas changed into:

“The actual value of P obtainable from the table by interpolation indicates
the strength of the evidence against the hypothesis. A value of c2 exceeding
the 5 per cent. point is seldom to be disregarded.”
Fisher (1958a, p. 80)

Here again, the continuous interpretation of p-values as evidence against the null hy-
pothesisH0 in contrast to the binary interpretation of the p-value in theNeyman-Pearson
theory becomes clear. In the thirteenth edition, Fisher warned the reader of a common
misinterpretation of his p-values:

“The term Goodness of Fit has caused some to fall into the fallacy of believ-
ing that the higher the value of P the more satisfactorily is the hypothesis
verified.”
Fisher (1958a, p. 80)

Goodness of Fit here refers to the c2 test for the goodness of fit of an empirical dis-
tribution, often listed in a contingency table for a theoretically assumed distribution
(Pearson, 1900). As the above quote shows, Fisher denoted p-values with a capital P,
which can be read as probability. This is reasonable, as the p-value is the probability of
obtaining a result equal to or more extreme than the one observed under assumption
of the null hypothesis H0. Conceptually, there is no di�erence between p in the modern
notation and P in Fisher’s writings. However, Fisher’s warnings have remained widely
unheard, as the o�cial ASA statement more than half a century later shows when re-
porting some of the most frequent misuses of p-values in today’s research18:

“misconceptions andmisuse of the p-value, are the following: (...) p-values
do not measure the probability that the studied hypothesis is true”
Wasserstein and Lazar (2016, p. 2)

18Gigerenzer (2004) notes: “Early authors promoting the error that the level of significance specified
the probability of hypothesis include Anastasi (1958, p.11), Ferguson (1959, p.133), and Lindquist (1940,
p.14). But the belief has persisted over decades: for instance, in Miller and Buckhout (1973; statistical
appendix by Brown, p. 523), and in the examples collected by Bakan (1966), Pollard and Richardson
(1987), GIgerenzer (1993), Mulaik et al. (1997), and Nickerson (2000).” (Gigerenzer, 2004, p. 597)
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What can be learned further from the various editions of Statistical Methods for Research
Workers is that Fisher was rarely interested in p-values themselves, but much more in
deciding whether or not the results could be deemed significant. This attitude can be
witnessed by checking his examples, in which he nearly always used his 5% level. In
the thirteenth edition, examples 8, 11, 12, 27, 28, 35 and 37 show that he always com-
pared his calculated p-value to the 5% threshold. Below, Fisher’s conclusions regarding
example 8, 12 and 28 are given:

“... c2 = 10.87, the chance of exceeding which value is between .01 and .02;
if we take P = .05 as the limit of significant deviation, we shall say that in
this case the deviations from expectation are clearly significant.”
Fisher (1958a, p. 81)
“For n = 9, the value of c2 shows that P is less than .01, and therefore the
departures from proportionality are not fortuitous.”
Fisher (1958a, p. 89)
“Calculating t from t as before, wefind t = 2.719, whence it appears from the
table that P lies between .02 and .01. The correlation is therefore significant.”
Fisher (1958a, p. 196)

The examples illustrate that although Fisher advocated to report the precise p-value to
quantify the evidence against the null hypothesis H0, in his most influential textbook
he focussed mostly on the significance of the p-value compared to a prespecified thresh-
old like 0.05. This resembles a binary interpretation similar to the Neyman-Pearson
interpretation of p-values, and is contradictory to the case-by-case oriented evidential
perspective Fisher was a fervent proponent of at the same time. Together, this can be
seen as one reason why readers had di�culties in separating Fisher’s from Neyman’s
and Pearson’s methodology and eventually an inconsistent blend of both theories in
form of a hybrid approach emerged. Although Fisher advertised to quantify the p-
value continuously, in nearly all examples he presented the decisions of a significance
test were based on a fixed threshold like 0.05, which strongly resembled the prespeci-
fied test level a in Neyman and Pearson’s hypothesis testing theory.

Chapter 4 already described theNeyman-Pearson theory of hypothesis testing in de-
tail, and Table 5.1 provides an overview of the di�erences between it and Fisher’s theory
of significance testing. In quintessence, theNeyman-Pearson theory tries to provide the
researcher with rules governing the behaviour regarding the acceptance and rejection
of hypotheses19, which on the long run – that is, when the experiment is hypothetically
repeated an infinite number of times – leads to the test level a.20 This is not to be con-
founded with the asymptotic distribution of certain tests, like LRT tests, compare Ap-
pendix C, where the level a is attained asymptotically for convergence in distribution.
These properties mainly address the sample size and are inherent to the asymptotic dis-
tribution of the tests, not to the inferential method itself. The Neyman-Pearson theory

19The emphasis on acting as if the hypothesiswere true stems from the decision-theoretic foundation of
theNeyman-Pearson theory, see Appendix C: In statistical decision-theory, the incurred loss is quantified
when deciding for an action, which in the context of hypothesis testing is either accepting or rejecting H0.
Therefore, the expected loss is minimised when one acts as if H0 (or H1) were true whenever accepting
it. If H0 (or H1) is true, cannot be answered by the Neyman-Pearson theory.

20The idea of long-run error control manifests itself mathematically in the Neyman-Pearson theory
in the form that statements about the error guarantees are made in expectation, see Rüschendorf (2014,
Remark 2.1.8 (d)).
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Fisher’s Significance Test-
ing

Neyman-Pearson Hypoth-
esis Testing

Hybrid ap-
proach

Setup Set up a single statisti-
cal null hypothesis H0.
This hypothesis serves
for the interpretation of
experimental results and
specifies the distribution
under which the exper-
imental data is assessed
mathematically.

Set up two statistical hy-
potheses H0 and H1, set a
fixed level a, b and sample
size n before conducting
the experiment, based on
the costs associated with
a type I and II error, and
the time and costs required
to collect n observations.
These values define a rejec-
tion region for H0.

Set up a sta-
tistical null
hypothesis H0
which supposes
that there is “no
e�ect”.

Analysis A significance test is con-
ducted, and the exact level
of significance is reported,
which is the probability
of obtaining a result equal
to or more extreme than
the one observed under as-
sumption of H0, that is,
the p-value. No conven-
tional threshold like 0.05 is
used, but subject-domain
knowledge must be incor-
porated. If the p-value is
small enough, the result is
significant, and H0 is re-
jected. Otherwise, no con-
clusions are drawn unless
more data is accumulated.

A (decision) rule of induc-
tive behaviour is applied,
which is a hypothesis test
in the Neyman-Pearson
theory. If the data fall into
the rejection region of H0
(which is the case when
P(D|H0) < a)), reject
H0 and accept H1. Else,
reject H1 and accept H0.
Accepting (or rejecting)
an hypothesis means not
to believe in it (or not to
believe in it), but only to
act as if it were true (or
false).

Conduct a
Neyman-Pear-
son test with
test level a (of-
ten, a = 0.05).
Compare the
calculated p-
value to a. If
p < a, the
p-value is sig-
nificant, reject
H0 and report
p < a as well as
the p-value as
the continuous
quantification
of strength
against H0.

Interpre-
tation of
results

Use the procedure only if
little is known about the
situation to be investigated,
and only to draw conclu-
sions as an attempt to un-
derstand reality. If the re-
sult is significant, either the
null hypothesis H0 is false,
or an unlikely event has oc-
curred.

Adopt a specified course
of action corresponding to
which hypothesis has been
accepted. The procedure
is used to control the long-
term error rates of hypoth-
esis tests. Therefore, a, b
and n need to be selected
and balanced carefully.

Interpret the
calculated p-
value as the
strength of ev-
idence against
H0.

Table 5.1: Fisher’s Significance Testing and Neyman-Pearson hypothesis testing

itself can only make statements regarding a under a hypothetically infinite repetition
of the experiment. The advantages, on the other hand, are the direct applicability to a
multitude of situations by the use of the likelihood ratio test as given in Definition C.75.
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In contrast, Fisher’s significance tests use only a null hypothesis instead of a null and
an alternative hypothesis. Additionally, the rejection or acceptance of a hypothesis in a
decision-theoretic way as in the Neyman-Pearson theory is not allowed in Fisher’s sig-
nificance testing. His theory relies on falsification of the null hypothesisH0 by declaring
significance of the observed results. Depending on the size of the p-value, “the strength
of the evidence against the hypothesis.” (Fisher, 1958a, p. 80) is quantified by Fisher’s
significance tests. Also, rigorous experimental design and conditional inference need
to be incorporated for producing reliable conclusions. It is of paramount importance to
underline that a significant result in Fisher’s interpretation is only a provisional insight
into the situation at hand. The ultimate goal of experimentally establishing scientific
facts requires successful replications of an experiment or study according to Fisher:

“A scientific fact should be regarded as experimentally established only if a
properly designed experiment rarely fails to give this level of significance.”
Fisher (1948, p. 85)

In summary, his testing methodology can be regarded as a self-contained scientific the-
ory. The Fisherian methodology also had problems: It was not allowed to accept or
confirm a hypothesis, which is desirable in a variety of research settings. Also, the con-
cept of conditional inference was di�cult to implement for practitioners, and the vague
recommendations of rigorous experimental design complicated things even further. In
contrast, the Neyman-Pearson theory o�ered a clear rule for acceptance or rejection of
a hypothesis without requiringmathematical subtleties like conditional inference or in-
corporating experimental design. As Lehmann (1993) stressed, the di�erences between
the Neyman-Pearson theory and Fisher’s theory condense into the question “What is
the relevant frame of reference? It seems clear to me that even in the situations (...),
no universal answer is possible. In any specific case, the solution will depend on con-
textual considerations that cannot easily be captured by a general theory.” (Lehmann,
1993, p. 1247). Over time, a hybrid approach evolved out of both theories.

5.3 The Evolution of the modern Hybrid Approach
WhenNeyman left Great Britain for the United States in 1938, both Fisher’s significance
testing as well as the Neyman-Pearson theory were fully available and provided a solid
theoretical foundation for hypothesis testing. While both approaches di�ered substan-
tially in 1) their application context, 2) the intended use of the underlying frequentist
probability concept and sometimes even in 3) the resulting tests and their results for
identical data, the di�erences were subtle and di�cult to grasp for non-specialists at
that time. Researchers were soon confronted with the choice between both approaches.
As the mathematical level of the content was quite demanding, both concepts were
hybridized: Elements of the Neyman-Pearson theory, which appealed with its mathe-
matical optimality properties, made their way into scientific practice and were mixed
with Fisher’s significance tests. After Neyman left for the United States interested re-
searcherswere left on their own tomake sense of the existing theories, and in particular,
to make sense of what authors of statistical textbooks made of both theories.

Huberty (1993) analysed 28 of the most popular statistical textbooks in the years
from 1910 to 1949, and reviewed them in terms of presentations of statistical testing.
He investigated the textbook coverage of the p-value (i.e., Fisher) and fixed a level (i.e.,
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Neyman-Pearson) approaches to hypothesis testing. His results show that some of the
textbook presentation can be seen as the cause why the hybrid theory evolved.

Halpin and Stam (2006) showed in a detailed analysis, that writers of statistical
textbooks at that time merged both approaches into one, ignoring the subtle di�er-
ences, which led to a hybrid hypothesis testing approach. Fisher (1958b) himself also
took note of the inconsistent hybrid approach four years before his death, and argued
that it presented a danger for scientific progress.21 Halpin and Stam (2006) investi-
gated whether both Fisher’s and Neyman and Pearson’s approach were coexisting in
the literature and amalgamated later, or whether Fisher’s theory was succeeded by the
Neyman-Pearson theory. Their analysis shows that:

“Technical innovations such as small-sample testing distributions, random
assignments of experimental treatments,ANOVA designs (with their corre-
sponding tests of significance), and his attempts to make these advances ac-
cessible to the research worker in the form of pedagogical texts led to a wide
reception for “Fisher’smethods” in various applied sciences (Hotelling, 1951;
Yates, 1951; Youlden, 1951; see Lovie, 1979, for a more critical discussion
of this reception in psychology). Even Neyman, Fisher’s staunchest critic,
credited him with founding “the theory of experimentaion” as a domain of
study (Neyman, 1967, p. 1456).”
Halpin and Stam (2006, p. 629)

The history of the hybridization of both theories was documented by Halpin and Stam
(2006) through the analysis of two sources: First, they analysed popular statistical text-
books in the years between 1940 and 1960. Second, they analysed the use of statis-
tical hypothesis tests in the journal literature of that time.22 The textbooks analysed
by Halpin and Stam (2006) are Lindquist (1940), Lindquist (1953), Edwards (1950),
Edwards (1954), McNemar (1949) and McNemar (1955), which were the most cited
statistical textbooks in the years 1940-1960 in research articles in the Journal of Exper-
imental Psychology and the American Journal of Psychology.23 The results showed that
Lindquist (1940) provided no bibliography or references at all, but presented Fisherian
concepts like the null hypothesis and tests of significance (Lindquist, 1940, p. 15-16),
but simultaneously elements of the Neyman-Pearson theory like the two types of er-
ror (Lindquist, 1940, p. 16-17). Therefore, “already in 1940, the Fisher and Neyman-
Pearson approaches to statistical testing were hybridized in textbooks.” (Halpin and
Stam, 2006, p. 635). In his second textbook Design and analysis of experiments in psychol-
ogy and education, Lindquist (1953) also “provides incomplete interpretations of testing
outcomes from both approaches in that it discusses neither Fisher’s inductive logic nor

21“We are quite in danger of sending highly trained and highly intelligent young men out into the
world with tables of erroneous numbers under their arms, and with a dense fog in the place where their
brains ought to be.” (Fisher, 1958b)

22A limitation of their results is that the journal literature analysis comprises only the Journal of Exper-
imental Psychology and the American Journal of Psychology. However, they analysed 678 research articles,
which provides a relatively detailed picture at least of the use of hypothesis tests in the cognitive sciences.

23The analysis of Halpin and Stam (2006) also reveals that George Snedecor’s textbook Statistical Meth-
ods – which can be seen as the accessible version of Fisher’s Statistical Methods for Research Workers,
compare Chapter 3 –was among the top three of themost cited statistical textbooks togetherwith Fisher’s
own textbook’s and the ones of Lindquist. Crucially, Halpin and Stam (2006) note that “the influence
of the Neyman-Pearson theory cannot be discerned in his Statistical Methods” (Halpin and Stam, 2006,
p. 634), so that Snedecor did not hybridize both theories.
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Neyman and Pearson’s mathematics of error.” (Halpin and Stam, 2006, p. 636). The
conclusions for the textbooks of Edwards (1950, 1954) are not much better, as also no
citations to the original sources were provided and even worse, the “text propounds
a hybridized version of statistical testing in that both the Fisher and Neyman-Pearson
approaches are presented under a single model” (Halpin and Stam, 2006, p. 639). The
books of McNemar (1949, 1955) show even more precisely how the hybridization has
happened: While in the first textbook, McNemar (1949) uses concepts from both ap-
proaches without citations, in the second textbook, McNemar (1955) notes in the pref-
ace that the text has been revised to include the Neyman-Pearson principles of hypoth-
esis testing. However, as noted by Halpin and Stam (2006, p. 639), McNemar (1955)
makes the crucial mistake to interpret the Neyman-Pearson theory as being able to
make statements about the truth of a single research hypothesis under consideration
(that is, gives it an evidential interpretation in the Fisherian sense):

“An experiment is carried out which yields sample values, p1 and p2, and
the di�erence we get between p1 and p2 is used to test H0 against H1; that
is, on the basis of the obtained di�erence we are to make a decision as to
whether H0 or H1 is true.”
McNemar (1955, p. 61-62)

In the above quote, italics have been added to emphasize the di�erence to the original
interpretation of Neyman and Pearson: No statement about the truth of a single hy-
pothesis can be made at all by the Neyman-Pearson theory, and the only thing which is
guaranteed is, that the long-term loss incurred when acting as if H0 (or H1) were true
(depending onwhich hypothesis is accepted in each case), is minimised. In the context
of hypothesis testing this equals the control of type I and II error rates. Formally, the
statement is even falsewhen trying to summarise Fisher’s significance tests, as they also
do not allow for probabilistic statements about a hypothesis, but only can quantify the
plausibility of a hypothesis via the p-value. For a probabilistic statement about a hy-
pothesis, the only option is provided by Bayesian inference.24 In summary, researchers
“were left in the lurch with regard to the interpretation of testing outcomes.” (Halpin
and Stam, 2006, p. 641). The analysis of Halpin and Stam (2006) shows that the newly
introduced elements of the Neyman-Pearson theory like the two types of error, power
analysis and statements about the confidence about a procedurewere incorporated and
integrated into the much simpler theory of Fisher by writers of statistical textbooks in
the years between 1940 and 1960.

Switching to the use of hypothesis tests in the journal literature in these years, Figure
5.1 summarizes the analysis ofHalpin and Stam (2006): The number of research articles
in the 637 articles submitted to the Journal of Experimental Psychology and the American
Journal of Psychology between 1940 and 1960 is shown, and the category non p-value
testing refers to older methods of hypothesis testing like critical ratios or probable er-
rors. Although no explicit use of Neyman-Pearson tests can be observed, the data show
that “an inference revolution occurred” (Halpin and Stam, 2006, p. 643).25 The analysis

24This shows how strong the natural appeal of researchers was to Bayesian concepts without any for-
mal reference to them, similarly as the Bayesian approach appealed to Neyman when he introduced his
confidence intervals.

25Halpin and Stam (2006) stress: “It can be seen that the proportion of articles using exact p value
methods of statistical testing substantially increased from 1940 to 1960 and that this was accompanied
by a decrease in the older methods.” (Halpin and Stam, 2006, p. 643).
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Figure 5.1: Frequencies of di�erent hypothesis testing methods between 1940 and 1960
according to the analysis of Halpin and Stam (2006)

shows that the use of p-values increased strongly. However, it also demonstrates that
Neyman-Pearson tests in their original formulation with test levels were rarely if ever
used. Instead, the p-value became the preferred solution. The analyses of Hubbard
et al. (1997) and Hubbard and Ryan (2000) show that in addition to textbooks, the hy-
bridization also happened in the journal literaturewith some delay: Hubbard and Ryan
(2000) showed that the inference revolution came to a stop in 1955. Still, based on their
data, the use of statistical tests in the journal literature increased from 71.7% to 86.1%
between 1950-1954 and 1955-1959. In the period from 1960-1964 the use of statistical
tests decreased slightly to 84.6%.

However, the increased use of p-values itself does not necessarily imply that both
theories were hybridized in the journal literature, too. An answer to this question is
provided in the analysis of Hubbard (2004), which reveals that the hybridized version
also made its way into the journal literature later. Hubbard (2004) analysed a sample
of 1645 papers from 12 psychology journals for the period 1990 through 2002. Hubbard
(2004) noted:

“The confusion arises because researchers mistakenly believe that their in-
terpretation is guided by a single unified theory of statistical inference. But
this is not so: classical statistical testing is a nameless amalgamation of the
rival and often contradictory approaches developed by Ronald Fisher, on
the one hand, and Jerzy Neyman and Egon Pearson, on the other. In partic-
ular, there is extensive failure to acknowledge the incompatibility of Fisher’s
evidential p value with the Type I error rate. (...) The distinction between
evidence (p’s) and errors (a’s) is not trivial.”
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Hubbard (2004, p. 1)

While the results ofHalpin and Stam (2006) show that the hybridization did not happen
in the journal literature between 1940 and 1960, the results of Hubbard (2004) reveal
that from 1990 on, the hybridized version was definitely established in the research lit-
erature. Though it cannot be specified precisely when the hybridized version entered
the journal literature first, the increased use of p-values already in the 1940s and 1950s
shows, that hypothesis testing established itself as the new scientific standard for quan-
tifying experimental evidence. Together with the fact that the textbooks hybridized
both theories, this is highly problematic. One possible reason for the inference revo-
lution towards Fisher’s p-values as the dominating statistical tool according to Halpin
and Stam (2006) is:

“In the research literature reviewed here, the interpretation of testing out-
comes (i.e. “statistical significance”) was uniformly in terms of experimen-
tal evidence, and we did not find any attempts to interpret the general out-
comes of an experiment in terms of long-term decision errors.”
Halpin and Stam (2006, p. 644)

Hubbard (2004) has shown that the interpretation of testing procedures in the spirit of
Neyman and Pearson is still absent from the journal literature, and according to Halpin
and Stam (2006), “after all, researchers are not interested in decision errors but rather
in experimental evidence.” (Halpin and Stam, 2006, p. 646).

However, as Neyman and Pearson provided the stronger theoretical underpinning
of their theory, it appealed to most researchers (Gigerenzer, 2004).26 Most of Fisher’s
tests were constructed on intuitive grounds in the first place and later justified as opti-
mal tests when interpreted as UMP level a tests in the Neyman-Pearson theory. There-
fore, the vocabulary introduced by Neyman and Pearson like the rejection region, type
I and type II error established itself as the new standard over time (Halpin and Stam,
2006; Lenhard, 2006). Gigerenzer (2004) found similar results as Halpin and Stam
(2006) when analysing how the hybridisation took place:

The answer is right there in the first textbooks introducing (...) null hypoth-
esis testing more than 50 years ago. Guilford’s Fundamental Statistics in Psy-
chology and Education, first published in 1942, was probably the most widely
read textbook in the 1940s and 1950s.27 Guilford suggested that hypothesis
testing would reveal the probability that the null hypothesis is true. “If the
result comes out one way, the hypothesis is probably correct, if it comes out
another way, the hypothesis is probably wrong” (p.156).
Gigerenzer (2004, p. 596)

Gigerenzer’s analysis shows what Halpin and Stam (2006) also found: Researchers are
interested in the experimental evidence provided for or against a research hypothesis by

26Still, as already shown in Chapter 4, the driving force of the Neyman-Pearson optimality results
was Jerzy Neyman, and indeed, “Pearson seems to have distanced himself from his earlier writing (and
especially from his association with Neyman’s concept of inductive behavior; see Pearson, 1955, p. 207”
(Halpin and Stam, 2006, p. 629).

27Gigerenzer (2004) provides no arguments for this statement and based on the analysis of Halpin and
Stam (2006) the textbooks of Lindquist, McNemar and Edwards were the most widely established ones,
at least in psychological research.
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the data, which naturally is expressed in terms of probability. Note that Guilford’s state-
ment in Gigerenzer’s quote above is wrong, that is, probability statements about the
research hypothesis of interest (when using Fisher’s significance tests or the Neyman-
Pearson theory) are not possible. Fisher’s significance tests only judge the plausibility
of an hypothesis via the likelihood, while the Neyman-Pearson tests can only guarantee
error control in expectation and also do not allow for probabilistic statements about the
hypothesis. Gigerenzer (2004) concluded:

“He [Guilford]marked the beginning of a genre of statistical texts that vacil-
late between the researchers’ desire for probabilities of hypotheses andwhat
significance testing can actually provide. For instance, within three pages of
text, Nunally (1975, pp. 194-196; italics in the original) used all of the fol-
lowing statements to explain what a significant result such as 5% actually
means:

• “the probability that an observed di�erence is real”
• “the improbability of observed results being due to error”
• “the statistical confidence ... with odds of 95 out of 100 that the observed

di�erence will hold up in investigations”
• the danger of accepting a statistical result as real when it is actually due

only to error
• the degree to which experimental results are taken “seriously”
• the degree of “faith [that] can be placed in the reality of the finding”
• “the investigator can have 95% confidence that the sample mean actu-

ally di�ers from the population mean”
• “if the probability is low, the null hypothesis is improbable”
• “all of these are di�erent ways to say the same thing”

Gigerenzer (2004, p. 596-597)

The remarkable aspect of this collection of statements is that first, both elements of
Fisher’s and the theory of Neyman and Pearson are included, for example statements
about the statistical confidence, or about confidence in general. Second, probabilities
of hypotheses are used, which do neither appear in Fisher’s methodology, nor in the
Neyman-Pearson theory.

Over the years, an inconsistent terminology developed: This is observed for exam-
ple in the existence of an acceptance region for the null hypothesis, although neither
Fisher’s significance testing nor the Neyman-Pearson theory postulates the existence of
such a region. In the latter, the null hypothesis can be accepted, but formally only a
rejection region exists, and acceptance of a hypothesis is not to be interpreted literally
even in the Neyman-Pearson theory.

The results of Halpin and Stam (2006) and Gigerenzer (2004) show that writers
of statistical textbooks specifically began combining both theories by calculating a p-
value of the Fisherian significance testing in place of the Neyman-Pearson test statistic
(e.g., an LRT statistic, Wald statistic or t-statistic) and testing it against the prespecified
fixed Neyman-Pearson a level. The Neyman-Pearson theory thus was primarily only
observed at best as a theoretical underpinning which provided explicit error bounds
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without a clear understanding of its original purpose and limitations (Hubbard, 2004).
As often, researchers want to quantify the experimental evidence concerning their re-
search hypothesis, the precise p-value in Fisher’s interpretation was then reported. Si-
multaneously, the p-value was compared to the predetermined Neyman-Pearson test
level a, like p < 0.05. This makes the impression that a Neyman-Pearson interpretation
is followed, in which the result is either in the rejection region or not. However, when
interpreting the p-value continuously, e.g. two p-values p < 0.05 and p < 0.01 are
reported and it is argued that the latter one provides more evidence, Fisher’s interpre-
tation is taken. In the Neyman-Pearson theory both values are solely in the rejection
region and thus interpreted identically. Associating a Fisherian continuous interpreta-
tion to p-values implies that the second type of error, which only exists in the Neyman-
Pearson theory, vanishes, and the prior sample size and power calculations for n and b
of the Neyman-Pearson theory for the prespecified test level a also become invalid as
Fisher’s significance test do not include these concepts. As a consequence, the long-term
optimality guarantees of the Neyman-Pearson theory are lost when two such p-values
are interpreted continuously. Problematically, this practice has established itself as the
hybridized version, as is also confirmed in the analyses of Huberty (1993), Hubbard
et al. (1997), Hubbard and Ryan (2000) and Hubbard (2004).

The hybrid procedure was called the null ritual by Gigerenzer (2004) – as often, the
null hypothesis, which originally was a well-formulated research hypothesis, degener-
ates to a “no e�ect” hypothesis in this hybrid approach – which is shown in the third
column of Table 5.1. Importantly, in the hybrid approachwhich developed as amixture
between both theories in statistical textbooks as shown by Halpin and Stam (2006), the
researcher “ends up presenting an exact level of significance as if it were an alpha level,
by rounding it up to one of the conventional levels of significance, p < 0.05, p < 0.01, or
p < 0.001. The result is not alpha, nor an exact level of significance.” (Gigerenzer, 2004,
p. 594). Termed di�erently, the hybrid approach tries to combine both Fisher’s eviden-
tial interpretation of p-values with the mathematical and decision-theoretic optimality
properties of the Neyman-Pearson theory, both of which are mutually exclusive.

Thus, in the hybrid approach, researchers started to use the prespecified a level of
the Neyman-Pearson theory and then used Fisher’s p-values to quantify the strength
against the null hypothesis H0 continuously. At the same time, researchers thought
that the long-run objectivity of the Neyman-Pearson theory would still hold, see also
Loftus (1991), by rounding to the next critical value like p < 0.05, which is interpreted
as “We are in the rejection region of the Neyman-Pearson test for a test level a = 0.05”.
However, in the Neyman-Pearson theory, p-values are not defined at all, so no di�er-
ence is made between the location of points in the rejection region. Therefore, in the
Neyman-Pearson theory continuous interpretation of p-values as the strength against
the null hypothesis H0 is not allowed. Instead, only acceptance or rejection of H0 based
on the binary interpretation of p-values is possible. Also, even highly significant re-
search results with tiny p-values have to be interpreted in the same way as results with
moderate p-values. This renders the Neyman-Pearson theory inappropriate for scien-
tific research28, and the ASA also favoured a position resembling Fisher’s continuous
interpretation of p-values in principles one and three in their 2016 statement:

‘1. p-values can indicate how incompatible the data are with a specified sta-
tistical model. (...)

28See also the Principle of Adequacy in Part IV in Chapter 11.
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3. Scientific conclusions and business or policy decisions should not be
based only on whether a p-value passes a specific threshold.’
Wasserstein and Lazar (2016, p. 2)

On the other hand, theASA statement also stressed that p-values alone are problematic,
questioning the usefulness of Fisher’s interpretation for scientific research, too:

‘5. A p-value, or statistical significance, does not measure the size of an ef-
fect or the importance of a result. (...)
6. By itself, a p-value does not provide a good measure of evidence regard-
ing a model or hypothesis.’
Wasserstein and Lazar (2016, p. 2)

This situation becomes even worse, as the majority of studies and experiments in sci-
ence is not replicated, so that the possibility of establishing scientific facts, in general, is
questionable from both Fisher’s and Neyman’s and Pearson’s perspective. When mak-
ing use of the hybrid theory, which incorrectly interprets p-values continuously when
using the Neyman-Pearson UMP level a tests, researchers are tempted to continuously
quantify their results via p-values, although this is simply not allowed. The hybrid
theory which evolved out of both theories still troubles researchers today, as recently
shown by Cassidy et al. (2019) in the context of psychological research: “We exam-
ined 30 introductory-psychology textbooks, including the best-selling books from the
United States and Canada, and found that 89% incorrectly defined or explained sta-
tistical significance” (Cassidy et al., 2019, p. 1). In light of this undesirable situation,
the ASA noted that there are also alternatives to these theories, including approaches
which

“...emphasize estimation over testing such as confidence, credibility, or pre-
diction intervals; Bayesian methods; alternative measures of evidence such
as likelihood ratios or Bayes factors;”
Wasserstein and Lazar (2016, p. 2)

and which hopefully would lead to a “more nuanced approach to interpreting, com-
municating, and using the results of statistical methods in research.” Wasserstein and
Lazar (2016, p. 2). Therefore, the next chapter analyses the evolution of one of the most
promising alternatives noted in the ASA statement, namely Bayesian inference.
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INTERMEDIATE CONSIDERATIONS

Part I showed that current dominating statistical methodology emerged out of both
Fisher’s theory of significance testswhich advocatedp-values, and theNeyman-Pearson
theory of statistical hypothesis testing. The result is an inconsistent hybrid approach
and the reconstruction showed why the current status quo of NHST is highly problem-
atic in scientific research. Also, Part I clarified that the dominant approach to statistical
hypothesis testing todaywas never intended by the creators of the underlying statistical
theories in such an application context.

In the following Part II, the evolution of Bayesian approaches to hypothesis testing
is detailed with a focus on the Bayes factor. Chapter 6 outlines the basics of Bayesian
statistics and contrasts them with the frequentist approach, and Chapter 7 analyses the
evolution of the Bayes factor as an alternative to frequentist hypothesis tests based on
p-values. It is shown that although the Bayes factor approach did not succeed in the
decades that followed, the primary reasons were mostly computational hurdles which
prevented a more widespread use of Bayesian methods in scientific research. Also, the
core di�erences between the frequentist and Bayesian approach are analyzed and it is
shown that the more appropriate approach for hypothesis testing in scientific contexts
is a Bayesian one.
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On certain fundamental principles of scientific

inquiry

This chapter introduces the fundamental concepts and definitions in Bayesian statis-
tics, which are necessary to test hypotheses in the Bayesian approach.

6.1 Elements of Bayesian Statistics
In frequentist inference, the data X are random, and the parameter of interest q is re-
garded to be fixed, and point and interval estimates are functions of this data X.1 Exam-
ples include the sample mean or confidence intervals as introduced byNeyman (1937).
In the Bayesian approach, things are opposite. Here, the observed data X are treated as
fixed (they have been observed) and the parameter q is a random variable. Measure-
theoretic details are provided in Appendix C. Of course, there are multiple philosophi-
cal aspects which provide support or criticism for the frequentist or Bayesian approach,
but these are discussed in Part IV.

While frequentist inference includes the theory of point estimators, confidence in-
tervals, (approximative) pivots and significance tests, Bayesian inference derives an
entire posterior distribution for the parameter q of interest. By incorporating both the
observed data X = x as well as the available prior information about the parameter of
interest, Bayes’ theorem is used to obtain the posterior distribution of q, given the data
X = x.

In Bayesian inference, the prior distribution p(q) of the parameter q is interpreted
as the uncertainty about the actual value of q before conducting a study or experiment,
that is, before data X = x are observed. The shape of the prior distribution p(q) mod-
els the available prior knowledge: Compact, narrow priors can express a considerable
certainty about q, while wide, noninformative priors can express wide ignorance of any

1Here, we loosely speak of random “data” X and fixed “parameter” q, which is of course to be inter-
preted in the measure-theoretic sense outlined in Appendix C.
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knowledge about q. Still, one of the oldest critiques is the subjectiveness involved in the
choice of a suitable prior when conducting Bayesian inference (Howie, 2002).

In the Bayesian approach, the likelihood function f (x|q) expresses the plausibility
for obtaining the data x given a specific value of q. Thus, in total Bayesian inference up-
dates the prior information by multiplying p(q) with the likelihood f (x|q), obtaining
the updated posterior distribution p(q|x).

Prior ⇥ Likelihood µ Posterior

In the above, the sign µ means “proportional to”, and in general, as likelihood is no
probability density, the posterior is only proportional to the product of the likelihood
and prior up to a normalization constant. The basis of this approach is Bayes’ theorem
(Held and Sabanés Bové, 2014, p. 168)2:
Theorem 6.1 (B����). Let A and B denote two events on a probability space (W,B,P)
with 0 < P(A) < 1 and P(B) > 0. Then

P(A|B) = P(B|A) ·P(A)
P(B)

=
P(B|A) ·P(A)

P(B|A) ·P(A) +P(B|Ac) ·P(Ac)
(6.1)

and for a general partition A1, A2, ..., An of W with P(Ai) > 0 for all i = 1, ..., n, we have
that

P(Aj|B) =
P(B|Aj) ·P(Aj)

Ân
i=1P(B|Ai) ·P(Ai)

(6.2)

for each j = 1, ..., n.
Bayes’ theorem is a trivial consequence of the definition of conditional probability:

Equation (6.1) follows from P(A|B) := P(A \ B)/P(B) = P(B|A) ·P(A)/P(B). The
idea in Bayesian inference is to assume a prior distribution µJ with density p(q) for
the unknown parameter q, which is a random variable. The prior p(q) is updated by
the information the data provide through f (x|q), by means of Bayes’ theorem into the
posterior p(q|x). In Bayesian inference, the posterior p(q|x) is the central quantity of
interest. As it contains all information about the parameter q after having observed the
dataX = x, it is used to derive Bayesian point and interval estimates (Held and Sabanés
Bové, 2014, p. 170).
Definition 6.2 (P�������� ������������). Let X = x denote the observed realisation of
a (possiblymultivariate) randomvariableXwith density function f (x|q). Let µJ a prior
distribution with density function p(q). The density function p(q|x) of the posterior
distribution µJ|x is defined as

p(q|x) := f (x|q)p(q)R
f (x|q)p(q)dq

(6.3)

For a discrete parameter q, the integral in the denominator is replaced with a sum
and the densities with probability mass functions. Note that while Bayes’ theorem op-
erates on a single probability space (W,A,P), the posterior distribution is derived by
combining the likelihood and prior, which operate on di�erent spaces: The likelihood

2For a measure-theoretic formulation of Bayes’ theorem see Appendix C.
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is defined on the sample space (X ,A), which is a measure space, compare Appendix
C. The prior distribution operates on the parameter space, which is a probability space
(Q, t, µQ), where µQ is the corresponding probabilitymeasure associatedwith the den-
sity p for q. The parameter q is thus the realisation of a random variable J : W ! Q,
and Bayes theorem’ is used to derive the conditional distribution µJ|X : t ⇥A ! [0, 1]
for J|X – which is called the posterior distribution. After conditioning on the observed
data X, the posterior µJ|X is thus a regular conditional distribution (?), which means
that µJ|X : x 7! µJ|X(B, x) is B-measurable for all B 2 t and B 7! µJ|X(B, x) is a proba-
bility measure on t for almost all x 2 X , where almost all refers to the prior predictive
distribution of the data X (see below and compare Appendix C). The denominator of
the posterior in Equation (6.3) can be written as

Z
f (x|q)p(q)dq =

Z
f̃ (x, q)dq = f (x) (6.4)

and does not depend on q.3 Equation (6.4) shows that the denominator in the posterior
distribution is independent of q. Therefore, the posterior distribution is proportional
to the product of the likelihood and prior distribution (Held and Sabanés Bové, 2014,
p. 170). This is usually written as

f (q|x) µ f (x|q) · p(q) (6.5)

where ‘µ’means ‘proportional to’ and the proportionality constant in this case is 1/ f (x).
The normalizing constant

1
f (x)

=
1R

f (x|q)p(q)dq
Definition C.35

=
1R

L(q)p(q)dq
(6.6)

ensures that the product of likelihood and prior distribution indeed yields a probability
density again, which integrates to unity. For a simple example and minimal interpreta-
tion see Appendix C.

6.2 Bayesian Point and Interval Estimates
In Bayesian inference, point and interval estimates of q are obtained from the posterior
distribution (Held and Sabanés Bové, 2014, p. 171)4:
Definition 6.3 (P�������� ����). The posterior mean E[q|x] is the expectation of the
posterior distribution:

E[q|x] =
Z

q f (q|x)dq (6.7)

Next to Bayesian point estimates like the posterior mean, the analogue to confidence
sets and intervals as introduced inAppendixC.8 are credible intervals (Held and Sabanés
Bové, 2014, p. 172):

3In the above, f̃ denotes the product-density on the product-space (X ⇥ Q,A⇥ t).
4For a decision-theoretic justification as detailed in Appendix C of Bayesian point-estimates see

Rüschendorf (2014, Chapter 2) and Robert (2007, Chapter 2).
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Definition 6.4 (C������� ��������). For fixed g 2 (0, 1), a g · 100% credible interval is
defined by two real numbers tl and tu, which fulfill

Z tu

tl
f (q|x)dq = g (6.8)

The quantity g is called the credible level of the credible interval [tl, tu].

In contrast to the complex and easilymisunderstood interpretation of the confidence
interval – see Definition C.86 and Chapter 5 – this definition indeed implies that the
random variable q is contained in a g · 100% credible interval with probability g, given
the data X = x. The easiest way to construct a credible interval is to use the (1� g)/2-
quantile of the posterior distribution as tl and the (1+ g)/2-quantile of the posterior
distribution as tu. The posterior distribution, however, does not need to be symmetric,
therefore often credible intervals are used that include the parameter values with the
highest posterior density (Held and Sabanés Bové, 2014, p. 177):

Definition 6.5 (H������ P��������D������ I������� (HPD)). Let g 2 (0, 1) be a fixed
credible level. A g · 100% credible interval I = [tl, tu] is called a highest posterior density
interval if

f (q|x) � f (q̃|x) (6.9)

for all q 2 I and q̃ /2 I.

For discrete parameter spacesQ, one drawback of the definition of a credible interval
is that it has to be modified, as it may be impossible to obtain an exact credible level g
due to the discreteness of Q. A g · 100% credible interval I = [tl, tu] for q is then defined
as

Â
q2I\Q

f (q|x) � g (6.10)

When no information is available, a uniform prior, as already used by Bayes and
Price (1763), can be used:

Definition 6.6 (U������ �����). A uniform prior is a prior which is distributed uni-
formly on the parameter space.

The following result which is immediate from Equation (6.5) gives another con-
nection between Bayesian and frequentist inference and is due to the occurrence of the
likelihood function in the Bayesian approach:

Theorem 6.7. Under a uniform prior, the posterior mode equals the maximum likeli-
hood estimator (MLE).

While Bayes’ theorem o�ers a simple way to obtain the posterior distribution, the
computation of the normalising constant in the denominator makes the computation
e�ortful if not impossible in practice. The earliest approaches to obtain the posterior
distribution were – as there were no computing resources available – limited to the in-
vestigation of conjugate priors (Held and Sabanés Bové, 2014, p. 180). Conjugate priors
have the appealing property, that one precisely knows the form of the resulting poste-
rior after selecting the likelihood and choosing a conjugate prior.
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Definition 6.8 (C�������� �����). Let f (x|q) denote a likelihood function based on
the observation X = x. A class G of distributions is called conjugate with respect to L(q)
if the posterior distribution f (q|x) is in G for all x whenever the prior distribution f (q)
is in G.

When a conjugate prior is chosen for a likelihood, the posterior is again distributed
as the conjugate prior, with updated parameters. This allows for a plug-in procedure:
1) Choose the likelihood, 2) choose a conjugate prior, 3) obtain the resulting posterior
by updating the parameters, where the updating often involves using the data and the
prior parameters to obtain the posterior parameters, and 4) compute point or interval
estimates based on the posterior with updated parameters. For multiple widely used
distributions, there is good knowledge about the conjugate classes: Combining a beta
prior with a binomial likelihood results in another beta posterior with di�erent param-
eters. Combining a Poisson prior with a Poisson likelihood results in another Poisson
posterior with di�erent parameters.

In most realistic cases where multiple parameters are involved, or the likelihood
function has a complicated form, there is no conjugate prior available. This situation
remains the status quo and is the strongest motivation for the use of Markov-Chain-
Monte-Carlo algorithms (Brooks, 2011; Kruschke, 2015) which are discussed in Part III.

If there is little or even no information available, a vague prior with large scale pa-
rameter is often selected. However, if the scale parameter is chosen too large, such a
prior may degenerate until it becomes completely “flat”. While this seems beneficial
and highly objective, a flat prior like p(q) = 1 does not integrate to unity anymore. As
a consequence, such priors violate the definition of a probability density and are called
improper (Held and Sabanés Bové, 2014, p. 184).
Definition 6.9 (I������� �����). A prior distribution with density function f (q) � 0
is called improper if

Z

Q
f (q)dq = • or Â

q2Q
f (q)dq = • (6.11)

for continuous or discrete parameters q, respectively.
When using an improper prior, it is necessary to check that at least the posterior is

a probability density. Otherwise, any information obtained from the posterior is not
valid if the posterior has been obtained from an improper prior. Next to the fact that
improper priors are no probability densities anymore, there is another problem. One
can show when using the naive choice for a improper prior fq(q) = 1, that transform-
ing the parameter q to a parameter f = h(q), where h is a one-to-one di�erentiable
transformation of q, may lead to a non-constant prior for f. As invariance under repa-
rameterisations is desirable, often Je�reys’ prior is used, which is named after Sir Harold
Je�reys (1891-1989) (Held and Sabanés Bové, 2014, p. 186):
Definition 6.10 (J�������’ �����). Let X be a random variable with likelihood function
f (x|q) where q is an unknown scalar parameter. Je�reys’ prior is defined as p(q) µp
I(q), where I(q) is the Fisher-Information as given in Definition C.46.
The use of the Fisher-Information in Je�reys’ prior is another connection between

frequentist and Bayesian inference. Additionally, Je�reys’ prior enjoys exactly the de-
sired property of invariance under reparameterizations (Held and Sabanés Bové, 2014,
p. 186).
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In frequentist inference, point estimates are mainly judged by their variance, com-
pare Appendix C.5. Results like the Cramér-Rao-Lower-Bound (Appendix C, Theo-
rem C.44) or the Rao-Blackwell-Theorem (Appendix C, Theorem C.55) assist in reduc-
ing the variance of an estimator and judging its optimality. Another option is to show
decision-theoretic optimality of an estimator. In Bayesian inference, a decision-theoretic
approach can be used, too, and is based on di�erent decision rules and loss functions,
see Appendix C. For a decision-theoretic justification as of common Bayesian point-
estimates like the posterior mean, median or mode see Rüschendorf (2014, Chapter 2).

Common Bayesian interval estimates can also be derived based on optimality with
respect to specific loss function (Held and Sabanés Bové, 2014, Chapter 6). One impor-
tant aspect is that in the Bayesian approach, not all point estimates necessarily lie within
the obtained interval estimates. Specifically, the posterior mean may not lie within the
HPD if the posterior distribution is skewed. Also, due to Jensen’s inequality (Held and
Sabanés Bové, 2014, Appendix 3.7), Bayes estimates are generally not invariant under
one-to-one transformations, unlike the MLE.

An important question is whether Bayesian point estimates are consistent in the
classical sense, that is if they converge to the true parameter value if the sample size
increases. For discrete asymptotics, this is not possible, but one can show that the prob-
ability mass gets more and more concentrated around the true value for increasing
sample size. In the case of continuous asymptotics, it is possible to show that under
the Fisher-Regularity conditions – see van der Vaart (1998, Chapter 10) – the posterior
distribution is asymptotically normal if the prior is not degenerate (Held and Sabanés
Bové, 2014, Chapter 6). This fact again parallels the asymptotic normal distribution of
the MLE – Theorem C.49 – and allows for a Bayesian interpretation of the MLE and
its standard error. For details, see Held and Sabanés Bové (2014, Section 6.6) and the
Bernstein-von-Mises theorem (van der Vaart, 1998, Chapter 10).

6.3 Bayesian Hypothesis Testing
Testing a hypothesis in the Bayesian approach is formulated as a model selection prob-
lem. The oldest and most widely established method for Bayesian hypothesis tests is
the Bayes’ factor (Je�reys, 1931, 1939, 1935, 1948, 1961; Kass and Raftery, 1995; Held
and Sabanés Bové, 2014; Ly et al., 2016b; Held and Ott, 2018). The two competing hy-
pothesis H0 and H1 are considered asmodels in the Bayesian approach. From this point
of view, these two models M0 and M1 can be assigned prior probabilities P(M0) and
P(M1), where of course P(M0) +P(M1) = 1 has to hold. The hypothesis testing pro-
cedure then can be translated into the calculation of the posterior model probabilities
P(M0|x) and P(M1|x) after observing the data x. By Bayes’ theorem, the posterior
odds P(M0|x)/P(M1|x) can be expressed as5:

P(M0|x)
P(M1|x)| {z }

posterior odds

=
f (x|M0)
f (x|M1)| {z }

Bayes factor BF01

· P(M0)
P(M1)| {z }
prior odds

(6.12)

This leads to the definition of the Bayes factor (Held and Sabanés Bové, 2014, p. 233),
which was invented by Je�reys (1935):

5This follows from applying Bayes’ theorem twice as P(M0|x) = f (x|M0)P(M0)/ f (x) and
P(M1|x) = f (x|M1)P(M1)/ f (x). The ratio P(M0|x)/P(M1|x) is then given as Equation 6.12.
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Definition 6.11 (B���� ������). TheBayes factor BF01 is given by the ratio of themarginal
likelihoods of the two models M0 and M1, that is,

BF01(x) =
f (x|M0)
f (x|M1)

(6.13)

When both models M0 and M1 are completely specified (contain no unknown pa-
rameters), the Bayes factor equals the likelihood ratio. If there are unknown parameters
q (which may be vector-valued), the computations become more involved as these pa-
rameters need to be marginalized out, leading to the prior predictive distribution and
marginal likelihood (Held and Sabanés Bové, 2014, p. 232):
Definition 6.12 (P���� ���������� ������������). The prior predictive distribution for the
model Mi, i = 1, 2 is has the density

f (x|Mi) =
Z

f (x|qi,Mi) f (qi|Mi)dqi, i = 1, 2 (6.14)

where qi is the unknown parameter vector for the model Mi.
Definition 6.13 (M������� L���������). The marginal likelihood is the value of the
prior predictive distribution f (x|Mi) evaluated at x.

Bayesian hypothesis testing, therefore, is most often interpreted as amodel selection
problem of two models M0 and M1 corresponding to the hypotheses H0 and H1. The
Bayes factor quantifies the change in belief from the prior odds towards either of both
hypotheses. The evidence concerning H0 and H1 can also be obtained by calculating
the maximum a posteriori (MAP) model with the largest posterior model probability.
Still, the posterior model probabilities form the posterior model odds, and these odds
depend strongly on the assumed prior odds. The Bayes factor is influenced only by the
data x (and the prior distributions on the parameters, in case any unknown parameters
need to be marginalised out for calculating the marginal likelihoods). Therefore, the
Bayes factor is often preferred in practice as it quantifies the evidence in the data x
regarding H0 and H1, no matter how the prior odds were selected, see Robert (2007)
and ?, Lemma 2.6.
Example 6.14. A simple example demonstrates the application of the Bayes factor. It
contrasts it to the frequentist approach using significance levels or p-values: Let a ran-
dom variable simulate the outcome of a medical disease test which produces either a
‘yes’ or ‘no’ for patients with the disease. Data are assumed to be binomially distributed
with parameters n and p, and the comparison is made for

1. a Model M0 where the probability p is assumed to be p := 0.5 for correctly pro-
ducing a ‘yes’ for a patient with the disease

2. Model M1, where p is unknown (and a uniform prior p(q) = 1
1�0 = 1 is assumed

for p)

Assume a sample of n = 200 patients was taken and the diagnostic tests yield 115
positive and 85 negative results. The likelihood is a binomial distribution

f (X = 115|M0) =

✓
200
115

◆
p115(1� p)85 =

✓
200
115

◆
0.5200 = 0.005956 (6.15)
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Table 6.1: Categorization of Bayes factors BF01  1 into evidence against H0

Bayes factor BF01 Strength of evidence against H0
Je�reys (1961) Goodman (1999) Held and Ott (2016) Lee and Wagenmakers (2013)

1 to 1/3 Bare mention Weak Anecdotal
1/3 to 1/10 Substantial Weak to moderate Moderate Moderate
1/10 to 1/30 Strong Moderate to strong Substantial Strong
1/30 to 1/100 Very strong Strong Strong Very strong
1/100 to 1/300 Decisive Very strong Very strong Extreme
< 1/300 Decisive

Note: Je�reys (1961) actually used the cut points (1/
p
10)a with a = 1, 2, 3, 4, and Goodman

(1999) used the cut points 1/5, 1/10, 1/20 and 1/100 for “weak”, “moderate”, “moderate to
strong” and “strong to very strong”, which have been aligned with the cut points in the left
column to make comparison easier.

and

f (X = 115|M1) =
Z 1

0
f (x|q) · p(q)dp (6.16)

=
Z 1

0

✓
200
115

◆
p115(1� p)85dp =

✓
200
115

◆ Z 1

0
p115(1� p)85dp (6.17)

(1)
=

✓
200
115

◆
· G(116)G(86)

G(116+ 86)
=

1
201

= 0.004975 (6.18)

where (1) follows from the fact that a beta distribution has density fa,b(x) =
xa�1(1�x)b�1

B(a,b)

where B(a, b) = G(a)G(b)
G(a+b) and thus

Z 1

0
p115(1� p)85dp =

Z 1

0
f116,86(p) · B(116, 86)dp = B(116, 86)

Z 1

0
f116,86(p)dp

| {z }
=1

(6.19)

=
G(116)G(86)
G(116+ 86)

(6.20)

Therefore, according to Definition 6.11, the Bayes factor results in

BF01(x) =
0.005956
0.004975

= 1.1971 (6.21)

Multiple thresholds for interpretation of the Bayes factor were proposed over time
(Je�reys, 1961; Kass and Raftery, 1995; Lee and Wagenmakers, 2013; Goodman, 1999;
van Doorn et al., 2021).

Table 6.1 provides the strength of evidence against H0 of the Bayes factor BF01 =
1.1971. In this case, BF01 � 1 and therefore the scale is changed: The evidence for H0
is given by the steps 1  BF01 < 3, 3  BF01 < 10, 10  BF01 < 30, 30  BF01 <
100 and 100  BF01 < 300 and BF01 � 300. Using this scale, the evidence for H0 is
barely worth mentioning according to Je�reys (1961), weak according to Held and Ott
(2018) and anecdotal according to Lee and Wagenmakers (2013), and M0 is therefore
not confirmed by the data x. In summary, the evidence in the data x is not substantial
enough to confirm H0, and it also does not advise against H0.
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While the Bayesian approach does not treat the data as convincing enough to ac-
cept M1 or reject it based on the results, a classical frequentist analysis would have
yielded di�erent results. Let a = .05 be the test level and H0 : p = 1

2 and H1 : p 6= 1
2 .

The probability of getting a figure as extreme as 115 or more extreme, that is P(X �
115|H0) +P(X  85|H0) (we perform a two-sided test), is 0.04, which is smaller than
a = .05. In total, frequentist inference via a p-value (nomatter if in theNeyman-Pearson
or Fisherian interpretation) for the usual threshold 0.05 (in Fisher’s words, significance
level, in Neyman-Pearson language, test level) would reject the hypothesis H0 : p = 1

2
belonging to M0, while Bayesian inference via the Bayes factor would not.

Note that changing the prior model probabilities P(M0) and P(M1) does not in-
fluence the Bayes factor. In contrast, when using a di�erent prior distribution on the
model parameter p in M1, the marginal likelihood f (x|M1) changes and therefore also
the resulting Bayes factor changes, too: Under the uniform prior f (p|M1) µ 1, the
marginal likelihood is given as f (x|M1) =

R
f (x|p,M1) f (p|M1)dp =

R
f (x|p,M1)dp,

while under any nonuniform prior, the marginal likelihood results in

f (x|M1) =
Z

f (x|p,M1) f (p|M1)dp

As the Bayes factor BF01 = f (p|M1)/ f (p|M0) is the ratio of the two marginal likeli-
hoods under M0 and M1, it is influenced by the prior selection.
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Harold Je�reys
Theory of Probability

This chapter outlines the evolution of the Bayes factor, which is the central quan-
tity for Bayesian hypothesis testing. Historically, the invention of the Bayes factor for
testing statistical hypotheses in a coherent Bayesian framework was first introduced by
Harold Je�reys and Dorothy Wrinch. Their methodology was invented as a statistical
theory for use in scientific applications. As a consequence, the context of application
and the underlying probability concept of Je�reys’ theory are in sharp contrast to the
assumptions Fisher and Neyman and Pearson made. Also, the contributions of J.B.S.
Haldane to the development of the Bayes factor will be analysed in this chapter. The
influence of Haldane on the development is also discussed by Etz and Wagenmakers
(2017). Here, the di�erence in analysis and interpretation of observed data between
Je�reys and Haldane will be focussed, and it is shown that the context of application is
substantial to explain these di�erences.

Je�rey’s life and achievements have been analysed in multiple publications, includ-
ing (Aldrich, 2006) and (Howie, 2002). Je�reysmonograph ‘Theory of Probability’ (ToP)
(Je�reys, 1931, 1948, 1961) remains a foundational work of Bayesian statistics until to-
day, although the notation has become apocryphal from a modern perspective. The
achievements in and impact of ToP have been analysed by Robert et al. (2008) and Ly
et al. (2016b,a). While Robert et al. (2008) analyses the monograph in full length, Ly
et al. (2016a) and Etz and Wagenmakers (2017) are more focussed on the Bayes fac-
tor and Je�rey’s (respectively J.B.S. Haldane’s) influence on architecting a Bayesian
methodology for hypothesis testing. Up to date, only Etz and Wagenmakers (2017)
have analysed the influence of J.B.S. Haldane, a Cambridge fellow of Harold Je�reys,
on the invention of the original Bayes factor. They suggest that Haldane may have had
more influence on the development of the Bayes factor than previously thought, and
the di�erence between Je�rey’s and Haldane’s approach plays an especially important
role for the later derivations in Part V.

The emphasis of this chapter is therefore on the timespanwhen the Bayes factor was
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first introduced, including the rivalling approach of J.B.S. Haldane. Moreover, Fisher’s
dissent to Je�reys’ inverse probability approach is discussed, see also Aldrich (2008),
Zabell (1989a), Zellner (1980) and Howie (2002). Historically, what today is called
Bayesian statistics or Bayesian inference, was at that time called inverse probability. In his
introduction to the first edition of Statistical Methods for Research Workers, Fisher (1925a)
wrote: “For many years, extending over a century and a half, attempts were made to
extend the domain of the idea of probability to the deduction of inferences respecting
populations from assumptions (or observations) respecting samples. Such inferences
are usually distinguished under the heading of Inverse Probability, and have at times
gained wide acceptance.” (Fisher, 1925a, p. 10). The phrasing inverse can thus be at-
tributed to the procedure that in the Bayesian approach, instead of deducing inferences
about the parameter from the sample directly, the inverse path is taken and a prior
distribution is first specified about the unknown parameter, before any deduction of
inferences takes place. Another reason for the name inverse probability can be under-
stood by considering a simple urn model: The proportion of coloured balls in a sample
taken with replacement was interpreted as caused by the ratio of colours in the urn.
The strong law of large numbers guaranteed that, in the long run, such causes would
manifest themselves through chance fluctuations when taking a large sample. Con-
sequently, after observing a sample, one could calculate the ratio of coloured balls in
the urn. Interpreting the sample as the observed e�ect, and the ratio as the unknown
causes, “Inverse probability could be used to infer unknown causes from known ef-
fects.” (Howie, 2002, p. 23).

7.1 Wrinch and Je�reys’s Invention of the Bayes Factor
The invention of the Bayes factor as it is used today ismost often attributed to Sir Harold
Je�reys. For a detailed account of Je�reys’ personal life see Howie (2002, Chapter 4)
and Aldrich (2006). Je�reys’ early work on Bayes factors is also described in Etz and
Wagenmakers (2017) and Howie (2002, p. 85-92). Together with his colleague Dorothy
Wrinch, Je�reys wrote four papers which constituted the centrepiece of what was later
introduced in ToP. Je�reys (1980) later recalled the starting point of their work, which
was inspired by the results of Broad (1918), see also Etz andWagenmakers (2017, p. 11).
In the early 20th century, the influence of Laplace’s principle of insu�cient reason was
considerable, as Howie (2002) notes, and this principle built the starting point of the
work of Broad (1918) years earlier:

“Accustomed to the tradition in classical probability, inwhichproblemswere
set up in terms of equally likely cases, Laplace tended to assume what be-
came known as the Principle of Insu�cient Reason – that where we have
no knowledge of causes, or reason to favor one hypothesis over another,
we should assign each the same probability. Thus in his study of comets,
Laplace took all values of the orbit’s perihelion – its nearest point to the Sun
– to be initially equally likely.”
Howie (2002, p. 31)

Laplace’s principle can be identifiedwith an improper, “flat” prior distribution over the
parameter space. Broad (1918) showed in 1918 using Laplace’s principle of insu�cient
reason that when uniform prior probabilities are used in finite populations, the pos-
terior probability of a general law paradoxically never achieves to come close to unity
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unless the whole population is sampled. A general law is a hypothesis like all crows are
black, or all apple trees bear apples, or more generally, a hypothesis with the parameter
q = 1 or q = 0.1

“Broad used Laplace’s theory of sampling, which supposes that if we have a
population of nmembers, r of which may have a property j, and we do not
know r, the prior probability of any particular value of r (0 to n) is 1/(n+ 1).
Broad showed that (...) if we take a sample of number m and find all of
them with j, the posterior probability that all n are j’s is (m+ 1)/(n+ 1).
A general rule would never acquire a high probability until nearly thewhole
of the class had been sampled. We could never be reasonably sure that apple
trees would always bear apples (...). The result is preposterous, and started
the work of Wrinch and myself in 1919-1923.”
Je�reys (1980, p. 452)

A detailed mathematical derivation of this result is given in Zabell (1989b, p. 309/310).
Zabell (1989b) notes that an “important consequence of Broad’s analysis was (...) a
serious setback to the Laplacean program of justifying induction probabilistically, and
was an important impetus for the early work of Je�reys and Wrinch” (Zabell, 1989b,
p. 286). The problem appears when only a fraction of m of the whole population is
sampled. Indeed, when using a uniform prior, the entire population needs to be sam-
pled to yield a posterior probability of one, if the true parameter value is q = 1, or
a posterior probability of zero, if the true parameter is q = 0. That means a general
law that all n population members have the property j, like apple trees are bearing ap-
ples, can never be established until the entire population is sampled. However, when
the whole population is sampled, the use of statistical inference becomes superfluous.
Note that about the same time, Fisher was beginning to object to inverse probability
exactly because of this problem. As Howie (2002, p. 64) observed, “it was necessary
for Fisher to refute the rival of inverse probability. (...) His chief objection was to the
arbitrariness and inconsistency of the Principle of Insu�cient Reason.”

On the other side, Wrinch and Je�reys (1919) had a problem with the conventional
frequency definition of probability by Venn or Fisher because “a statement that it is
probable that the solar system was formed by the disruptive approach of a star larger
than the sun” (Wrinch and Je�reys, 1919, p. 716) of course made no sense when con-
sidering probability as a limiting ratio of events performed in indefinite repetition in
the Neyman-Pearson interpretation or in Fisher’s hypothetical infinite population in-
terpretation. Wrinch and Je�reys (1919) themselves did not define probability at all.
What is more, they even stressed that probability has no definition and maybe is not
even definable. For Je�reys and Wrinch, the goal was to create a theory for quantify-
ing the evidence about scientific hypotheses. Note the contrast to the Neyman-Pearson
theory, which did not include any notion of evidence and was aimed at quality con-
trol situations. Similarly, Fisher’s significance tests were inspired by his agricultural
experimental work at Rothamsted and his collaboration with Sealy Gosset at the Guin-
ness brewery. However, Fisher’s theory of significance testing at least was aimed at
quantifying evidence about a research hypothesis and included a concept of evidence
in contrast to the Neyman-Pearson theory. However, the probability concept was, of
course, a frequentist one, while Je�reys followed the Bayesian approach.

1Here, it is assumed that q 2 [0, 1]. The general case considers q at the boundary of the parameter
space Q then.
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In 1921, Wrinch and Je�reys (1921) published the paper titled XLII. On certain fun-
damental principles of scientific inquiry in The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science. It contained the first version of a Bayes factor and o�ered
a solution to the dilemma that one needed to sample the entire population to obtain a
su�ciently high posterior probability, as discovered by Broad (1918). It is important
to note that both Wrinch and Je�reys started their work while sharing the opinion that
any scientific method must be useable in real research settings:

“In order that a scientific method be of any value, it must satisfy two con-
ditions. In the first place, it must be possible to apply it in the actual cases
to which it is meant to be relevant. In the second, its arguments must be
sound. The main object of science is to increase knowledge of the world,
and if amethod is not applicable to anything in theworld it obviously cannot
lead to any knowledge. This principle is very elementary, and it is probably
for that very reason that it is habitually overlooked in theories of scientific
knowledge.”
Wrinch and Je�reys (1921, p. 369)

The biggest obstacle now was to resolve the paradox resulting from the principle of in-
su�cient reason. With an infinite number of possible hypotheses, the prior probability
of each hypothesis has to be e�ectively zero. Bayes’ theorem then yields that the pos-
terior, proportional to the prior cannot yield any posterior probabilities which can be
distinguished from zero.2 Of course, informative priors would solve for the problem,
but the justification of those was questionable. According to Howie, “the first piece of
the puzzle came to Wrinch during a picnic lunch taken together on Madingley Hill.”
(Howie, 2002, p. 105). Wrinch assumed that one could express every law of physics by
some particular di�erential equation with rational coe�cients, finite degree and order
(Wrinch and Je�reys, 1921, p. 386). Then, all hypotheses – including general laws –
have to form an enumerable set. Ordering this set against the set of the integers and
restricting the prior probabilities assigned to the elements of this ordered set to sum up
to one was the solution, because then no infinitesimal probabilities were needed any-
more.3 Importantly, the number of possible general laws or hypotheses could still be
infinite under the above procedure. Years later, Je�reys (1931) noted this as a postulate
in his book Scientific Inference:

“Every quantitative law can be expressed as a di�erential equation of finite
order and degree, in which the numerical coe�cients are integers.”
Je�reys (1931, p. 45)

The second strikewas the simplicity postulateWrinch and Je�reys (1921) proposed.
Referring to Broad (1918, p. 402), who had also stressed the importance of simplicity
of hypotheses, Wrinch and Je�reys (1921) stated, that simple laws have to be preferred

2From a strictly measure-theoretic perspective, the posterior distribution is absolutely continuous
with respect to the prior predictive distribution, and the prior predictive distribution is itself absolutely
continuous with respect to the prior distribution, compare ?. Thus, any prior distribution that assigns
zero prior probability to a hypothesis (which is the case when an infinite number of hypothesis is consid-
ered and each hypothesis has equal prior probability) results in a posterior that assigns zero probability
to this hypothesis, too. While the example of Broad operates on discrete parameter spaces, the problem
is the same when only enough hypotheses are considered.

3Mathematically, there is no uniform distribution on R or N, so this motivated the ideas of Wrinch,
as Laplace’s principle of insu�cient reason was not applicable.

118



CHAPTER 7. THE EVOLUTION OF THE BAYES FACTOR

over complex laws.4 This way, the prior probability of each law in the sum described
above was determined by the simplicity of the law itself. Simpler laws would be as-
signed higher prior probabilities and more complex laws smaller ones. Together, these
two ideas leveraged inverse probability from the Laplacian tradition of the principle
of insu�cient reason to a modern interpretation, in which slightly informative priors
were used, but the procedure was applied with the claim of high objectivity:

“That scientists prefer simple laws is an empirical fact; it can provide a ba-
sis for ordering prior probabilities. Wrinch and Je�reys announced a ‘Sim-
plicity Postulate’: the simpler the law, the greater its prior probability. The
Bayesian machinery can finally be cranked up.”
Howie (2002, p. 106-107)

The theory they introduced in their 1921 paper attempted to analyse the rules of logic to
solve Broad’s principle of insu�cient reason. According to Wrinch and Je�reys (1921),
the character of science was revealed in the uncertainty of inferences made relative to
a given body of data. Wrinch and Je�reys (1921) also emphasized that prior knowl-
edge should be incorporated into scientific inquiries. In essence, “...no probability is
ever determined from experience alone. It is always influenced to some extent by the
knowledge we had before the experience.” (Wrinch and Je�reys, 1921, p. 381). In order
to make use of probability statements, they then introduced the following formula:

“(...) the problem of the probability to be attached to an inference can be
dealt with. If p denote the most probable law at any stage, and q an addi-
tional experimental fact, we can easily prove that

P(p : q.h)
P(⇠ p : q.h)
| {z }
posterior odds

=
P(q : p.h)
P(q :⇠ p.h)
| {z }
Bayes factor

· P(p : h)
P(⇠ p : h)
| {z }
prior odds

(...) Hence, even if p has not a very large prior probability, a single veri-
fication of a consequence not predicted by the contrary of p may raise the
probability of p to something much greater than that of its contrary;”
Wrinch and Je�reys (1921, p. 387)

In the above notation, the underbraces have been added to improve readability and the
formula follows from a simple application of Bayes’ theorem as shown in Chapter 6. In
modern terms, p and ⇠ p can be read as the null and alternative hypothesis, while q
is the observed data and h the unchanged background knowledge used to model the
prior. Interestingly, while from amathematical perspective the background knowledge
is irrelevant to the above formula (one could easily omit or suppress h in each term),
the fact that Wrinch and Je�reys kept it in the formula underlines the importance of
incorporating the available knowledge into a Bayesian analysis. This is in line with

4The analogy to Occam’s razor is strong, and, remarkably, Wrinch and Je�reys noticed this principle
that early. Until today, the complexity of models, expressed in the number of parameters, is often used as
a penalty in both frequentist and Bayesianmodel selection. Examples are regularized regressionmodels,
or information criteria (Hastie et al., 2015, 2017; Efron and Hastie, 2016; McElreath, 2020; Piironen and
Vehtari, 2017).
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the notion that no probability is determined from experience alone, but always is in-
fluenced to some extent by the knowledge we had before conducting the experiment.5
Wrinch and Je�reys (1921) did not explicitly name the quantity Bayes factor in 1921,
but Etz and Wagenmakers (2017) noted, referencing Good (1988), that the centerpiece
equation given above has been used in literature frequently ever since. Interestingly,
credit to Wrinch and Je�reys (1921) has been given rarely.

After the 1921 paper, two more papers followed. Wrinch and Je�reys (1923a) pub-
lished their joint paper under the name ‘The theory of mensuration’ and delved further
into the previous ideas of probabilistic inference from observed data. Concerning the
Bayes factor, the paper added nothing new. Indeed, in 1923 the collaboration between
both scientists already started to resolve. Je�reys personal situation changed as he
needed to find a permanent academic position, and he moved to Cambridge. Wrinch
herself got married and left for Oxford where her husband had a position (Howie,
2002).6 Je�reys concentrated on geophysics from then on, and his work on seismol-
ogy eventually lead to the detection that the earth’s core is liquid. After the election as
a fellow of the Royal Society in 1925 and appointment as lecturer at the university one
year later, he finally was assigned as a geophysics reader in the year of 1931.

Having settled in his professional position, Je�reys started from the 1930s on to re-
consider his older work with Wrinch. Howie (2002) argued that the earlier work on
applied geophysics caused Je�reys to notice “the practical need for definitive numerical
criteria for the evaluation of hypotheses and the probabilistic combination and reduc-
tion of data.” (Howie, 2002, p. 114) This is one possible interpretation. Another one
is given by the fact that Je�rey’s work in geophysics was partly motivated by the need
to get out of his precarious professional situation, and applying for a permanent aca-
demic position was much easier in geophysics than in probability theory or statistics in
the 1920s. After having settled in an academic position, he could spend more time on
the topic of scientific inference again. Also, statistical aspects in seismology were not
investigated deeply, so that it was an ideal way to apply the methods he developed ear-
lier in collaboration with Dorothy Wrinch. Therefore, Je�reys book Scientific Inference
(Je�reys, 1931)was the first step to a self-contained Bayesianmethodology for scientific
inference. Using the simplicity postulate as well as his andWrinch’s previous ideas, Jef-
freys (1931) introduced their solutions to Laplace’s principle of insu�cient reason as
well as their thoughts about general laws in the first part. In the second part, he went
on to show that his theory was able to “account for the phenomenological development
of real scientific theories.” (Howie, 2002, p. 115). Without the older self-criticism about
prior probabilities, Je�reys stated that by

“...analyzing the processes involved in our forward scientific reasoning we
detect the fundamental postulate that it is possible to learn from experience.
This is a primitive postulate, presumably on the frontiers between a priori

5Themost drastical examples of this assumption are experiments inwhich people are tested for super-
natural abilities like the ability to foresee the future. In these situations, the prior knowledge intuitively
assigns a very low probability to the hypothesis that the tested person indeed has supernatural abilities,
see Kadane (1987), Berger and Delampady (1987), Good (1981), Good (1993), Good (1994) as well as
Robert (2007, p. 229-231), Rao and Lovric (2016), Zumbo and Kroc (2016), Sawilowsky (2016) for dis-
cussions about the existence and appropriateness of precise hypotheses in scientific research in general.

6Wrinch married John Nicholson in 1922, who was appointed at Balliol College, Oxford as a lecturer
in mathematics. After Nicholson found students for her in Oxford, Wrinch moved from Cambridge to
Oxford and the collaboration with Je�reys ended (Howie, 2002).
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and empirical knowledge. The status of the laws of probability and the sim-
plicity postulate is that of inferences from this principle.”
Je�reys (1931, p. 47-48)

Je�reys (1931) built uponWrinch’s idea of assigning prior probabilities to a general law
according to the law’s complexity. Therefore, he used the corresponding di�erential
equation’s degree, order and coe�cients to form a complexity coe�cient so that the
prior probability of any hypothesis could be determined. Nevertheless, the impact of
Scientific Inference remained low. Bennett (1990, p. 164) noted, that in a letter to Fisher
on 5th June 1937, Je�reys wrote that he wanted to redo the entire book again, but as it
was not expected to be sold out in the next decades, there would be no use in such an
e�ort. Also, one major drawback of Scientific Inference according to Howie (2002) was,
that

“Je�reys’s theory of scientific inference shared a status with the eighteenth-
century doctrine of chances. In Je�reys’s case, the ‘men of quality’ were
scientists, whose methodwas simply a sophisticated form of commonsense.
The obligation on these scientists to adopt his assessments of prior distribu-
tions was to ensure consistency and uniformity with the collective approach
to research.”
Howie (2002, p. 120)

However, this consistency could mainly be given a reason when the scientific process
was successful, which was not always the case. Also, the exact form of the prior prob-
abilities remained ambiguous to achieve the consistency desired in Je�reys’s scientific
theory, so that in total, the reception was moderate. While the idea of using a conver-
gent series to describe the prior probabilities was tempting, it remained vague how to
do this in practice. Nevertheless, one important impact was induced on Je�reys’ subse-
quentwork: He started to think about the ‘correct’ form of a prior, moving fromhis idea
of assigning hypotheses an a priori probability according to their simplicity to more so-
phisticatedmethods. Later, these e�orts resulted in Je�reys’ prior (see Definition 6.10),
which enjoys transformation-invariance.

7.2 Haldane’s alternative Approach
John Burdon Sanderson Haldane was a British-Indian scientist mainly known for his
work in evolutionary biology and physiology. Also, he made important contributions
to statistics, and this is where a link between Je�reys and Haldane is revealed.7 Born
in 1892 in Oxford, Haldane left England in 1956 because of his political dissent as a
professing atheist and Marxist. His life and work in India since the 1956s is detailed in
Mcouat (2017) and his work on population genetics in India was analysed by Dronam-
raju (2012) and Dronamraju (2015)8. Haldane’s statistical achievements are detailed in
Etz andWagenmakers (2017), and (Howie, 2002, p. 121-126) describes Haldane’s 1932
paper. Etz and Wagenmakers (2017) noted that Haldane’s work on the foundation of
statistics is limited to a single paper in 1932, entitled ‘A note on inverse probability’, which

7For details on Haldane’s early work on population genetics see Edwards (1993).
8For details on Ronald Fisher’s work on population genetics, see Thompson (1990).
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was published in theMathematical Proceedings of the Cambridge Philosophical Society. Nev-
ertheless, the paper is remarkably innovative, and multiple parallels can be drawn be-
tween Je�reys’ later work on Bayes factors and Haldane’s paper. As the last section
has shown, Je�reys’s early work on the Bayes factor addressed the paradox induced
by Broad’s principle of insu�cient reason. However, his treatment on Bayes factors as
statistical general purpose tools for quantifying the change in belief about two compet-
ing hypotheses was not very mature. Haldane published his paper just a few months
after the publication of Je�reys’s Scientific Inference, and just a short time before Je�reys
extended his theory on Bayes factors and introduced his hypothesis methodology in a
much clearer manner.

Haldane’s paper is analysed in the following to investigate this relation. In his paper,
he designated Fisher’s theory of maximum likelihood as using the principle of insu�-
cient reason by inherently assuming a uniform prior, so that the posterior in a Bayesian
interpretation is proportional to Fisher’s likelihood function (Haldane, 1932, p. 60).
Note, that while Fisher’s maximum likelihood method formally can be interpreted as a
Bayesian approach by combining the likelihood f (x|q) of the data x given the parame-
ter q with a uniform prior f (q) = 1, Fisher sharply objected to this interpretation. For
him, the likelihood was a ‘measure of rational belief, and for that reason is called like-
lihood (...). I stress this because in spite of the emphasis that I have always laid upon
the di�erence between probability and likelihood there is still a tendency to treat like-
lihood as though it were a sort of probability.’ (Fisher, 1930, p. 532). Haldane (1932)
started his paper by questioning the assumption of the principle of insu�cient reason,
which was inherently assumed in Fisher’s theory (at least according to Haldane), and
also in (objective) inverse probability. His goal thus was to find more appropriate a
priori probabilities:

“The problem of statistical investigation is the description of a population,
or Kollektiv, of which a sample has been observed. At best we can only
state the probability that certain parameters of this population lie within as-
signed limits, i.e. specify their probability density. It has been shown by von
Mises (1), that this is only possible if we know the probability distribution
of the parameter before the sample is taken. Bayes’ theorem is based on the
assumption that all values of the parameter in the neighbourhood of that ob-
served are equally probable a priori [referring to the principle of insu�cient
reason]. It is the purpose of this paper to examine what more reasonable
assumption may be made, and how it will a�ect the estimate based on the
observed sample.”
Haldane (1932, p. 55)

Haldane (1932) aimed at examining whether more informed priors could be used in-
stead of a uniform one, and how more informed priors would change the posterior
estimates. He started with a population of which a proportion x possesses a charac-
ter X and of which a sample of n population members was taken. nwas assumed to be
large enough for the Bernstein-von-Mises approximation to hold, that is, to assume that
the posterior is approximately normally distributed (van der Vaart, 1998, Chapter 10),
and he denoted by a the number of individuals in the sample possessing the character
X. Writing f (x) as the prior density of x, Haldane (1932) noted:

“It is an important fact that in almost all scientific problemswe have a rough
idea of the nature of f (x) derived from the past study of similar populations.
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Thus, if we are considering the proportion of females in the human popula-
tion of any large area, f (x) is quite small unless x lies between .4 and .6.”
Haldane (1932, p. 55)

After advocating the use of informative priors constructed from prior knowledge and
previous studies, Haldane (1932) moved on and gave an example from genetics to
demonstrate that obtaining the posterior distribution of the parameter of interest is pos-
sible using such informative priors, see also (Etz and Wagenmakers, 2017, p. 7-9):

“An illustration from genetics will make this point clear. The plant Primula
sinensis possesses twelve pairs of chromosomes of approximately equal size.
A pair of genes selected at random will lie in di�erent chromosomes in 11

12
of all cases, giving a proportion x = 0.5 of “cross-overs”. In 1

12 of all cases
they lie in the same chromosome, the values of the cross-over ratio x ranging
from 0 to 0.5without any very marked preference for any part of this range,
except perhaps for a tendency to avoid values very close to 0.5. f (x) is thus
approximately 1

6 for 0  x < 0.5; it has a discontinuity at x = 0.5, such that
the probability of this value is 11

12 ; while, for 0.5 < x  1, f (x) = 0.”
Haldane (1932, p. 57)

To clarify the above statement, Haldane (1932) considered the random cross-over of
genes which happens in meiosis during reproduction. When such a cross-over hap-
pens, the alleleswhich locate a gene on a chromosome randomly switch from themother’s
to the father’s chromosome (or vice versa). Haldane’s goal was to estimate the cross-
over rate based on the available cross-bred plants. He assumed that when the two al-
leles are on di�erent chromosomes, a cross-over happens with probability 0.5. The
probability that the two alleles are indeed on two distinct chromosomes itself is given
by 11/12. If the two alleles are on the same chromosome, both alleles can switch to
another chromosome during the cross-over, which causes variation in the cross-bred
plants. Therefore, Haldane (1932) assumed that when the two alleles are on the same
chromosome, the probability of a cross-over (in the sense that variation is created and
phenotypically observable) is uniform between 0 and 0.5. The probability that the two
alleles themselves lie in the same chromosomes is given by 1/12. In total, Haldane
(1932) obtained a mixture-prior for the cross-over rate q in the form of

p(q) =
1
12

· 1(0,0.5) · U (0, 0.5) +
11
12

· d(0.5) (7.1)

where d is the Dirac-function, U the uniform distribution’s density, and 1/12 and 11/12
are the prior probabilities of the two models 1) genes lie in the same chromosome and
2) genes lie in di�erent chromosomes.

R 1
0 p(q)dq = 1

12 · 0.5 ·
1

0.5�0 +
11
12 · 1 = 1, so

p(q) is indeed a probability density. U (0, 0.5) and d(0.5) are the prior distributions for
the cross-over rate parameter in the respective model, and the mixture prior results by
combining both models. In summary, Haldane (1932) obtained a mixture distribution
which divides the available prior probability mass into a point mass (when model 1
is true, that is, the genes lie on di�erent chromosomes) and a continuous probability
density (when model 2 is true, that is, the genes lie on the same chromosome). Using
his mixture prior, Haldane (1932) argued:

“Now if a family of 400 seedlings from the cross between a doubly heterozy-
gous plant and a double recessive contains 160 “cross-overs” we have two

123



CHAPTER 7. THE EVOLUTION OF THE BAYES FACTOR

alternatives. The probability of getting such a family from a plant in which
the genes lie in di�erent chromosomes is 11

12
400C1602�400, or 1.185 ⇥ 10�5.

The probability of getting it from a plant in which they lie in the same chro-
mosome is

1
6

400
C160

Z 1
2

0
x160(1� x)240dx

Since this integral is very nearly equal to
Z 1

0
x160(1� x)240dx, or 160!240!

401!

this probability is approximately 1
6⇥401 , or 4.156⇥ 10�4.”

Haldane (1932, p. 57)

The probability 11
12

400C1602�400 is derived from Equation (7.1), where all n = 400moth-
ering and fathering plants have genes on di�erent chromosomes, and with probability
1/2 a cross-over happens, and with probability 1/2 it does not, yielding 11

12
400 as the

probability of obtaining such a sample of plants, where 2�160 · 2�240 = 2�400 is the
probability of getting a = 160 cross-overs and C160 is the respective binomial coe�-
cient.

In case that all n = 400 mothering and fathering plants have genes on the same
chromosomes, Haldane (1932) simplified the calculations a little: This leads to the fac-
tor 1

6
400 in front of the integral instead of 11

12
400: He used that “In 1

12 of all cases they lie in
the same chromosome, the values of the cross-over ratio x ranging from 0 to 0.5without
any very marked preference for any part of this range, except perhaps for a tendency to
avoid values very close to 0.5. f (x) is thus approximately 1

6 for 0  x < 0.5.” (Haldane,
1932, p. 57).

In total, Haldane (1932) thus imagined the experiment to be conducted and that
n = 400 new plants were obtained by cross-breeding the parents, out of which a = 160
plants possessed the character X (e.g. a specific stem or leaf colour). What Haldane
(1932) had calculated here, in modern terms, would be called the marginal likelihood of
the data a = 160 given the model M1 or M2. If the model M1 is assumed, that is, the
genes lie on di�erent chromosomes, this marginal likelihood becomes

f (a = 160|M1) =

✓
400
160

◆
0.5160(1� 0.5)240 =

✓
400
160

◆
0.5400

In the above, the probability q (or x, in Haldane’s notation) of a cross-over is exactly
0.5, as well as the probability of no cross-over happening, and cross-overs appear inde-
pendently in each o�spring plant, leading to a binomial distribution. Note that in the
above, the factor (400160) equals C160 in Haldane’s notation. Under model M2, that is when
genes lie on the same chromosome, the marginal likelihood becomes

f (a = 160|M2) =

✓
400
160

◆ Z 0.5

0
q160(1� q)240dq

Note that by conditioning on model M1 (or M2), the factor 11/12400 (or 1/6400) disap-
pears. Using Bayes’ theorem, Haldane (1932) then arrived at the posterior probabilities
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of both models:

P(Mi|a = 160) =
P(Mi)P(a = 160|Mi)

P(M1)P(a = 160|M1) +P(M2)P(a = 160|M2)

where P(M1) = 1/12 and P(M2) = 11/12. Substituting the above marginal likeli-
hoods and the prior probabilities for both models, yields then

P(M1|a = 160) = 0.028
P(M2|a = 160) = 0.972

Bayes factors and posterior model probabilities are closely related – see Robert (2016)
– but Haldane (1932) here did not introduce any kind of Bayes factor, and also was
not satisfied with the posterior model probabilities. He went on to derive a prediction
for the cross-over rate q. The prior distributions d(0.5) and U (0, 0.5)were also updated,
given the data, leading to the posterior distributions for eachmodel. The Dirac function
is not changed at all by the data, so the posterior stays the same, compare (?, Example
2.3). The uniformpriorU (0, 0.5) changes into an approximately normalN ( 160400 , 0.0245

2)
distribution, seeHaldane (1932, p. 56-57) and Etz andWagenmakers (2017, p. 9). Using
the above calculations, themarginal posterior of the cross-over rate q then also becomes
a mixture given by

p(q|a = 160) = P(M1|a = 160)p1(q|a = 160) +P(M2|a = 160)p2(q|a = 160)

= 0.028 · d(0.5) + 0.972 · N (
160
400

, 0.02452)

where p1(q) and p2(q) are the respective updated posterior distributions given a = 160
under model M1 and M2. Haldane (1932) finally arrived at the prediction for the cross-
over rate q as a model-averaged expectation9

E[q|a = 160] = 0.028 · 0.5+ 0.972 · 160
400

= 0.4028 (7.2)

which matches the results obtained by Haldane (1932):

“Thus the probability that the family is derived from a plantwhere the genes
lie in di�erent chromosomes and x = .5 is .028. Otherwise the mean value
of x is .4, with standard error .0245. The overall mean value, or mathemat-
ical expectation, of x is .4028, and the graph of the probability density dp

dx
is an approximately normal error curve centered at x = 0.4 with standard
deviation .0245, together with an infinity at x = 0.5.”
Haldane (1932, p. 57)

In the above quote, the probability density dp
dx equals the posterior probability density

of the cross-over rate q. In total, the 1932 paper of Haldane is remarkable in multiple
ways: First, Haldane (1932) introduced a mixture prior comprising a point mass com-
ponent and a smoothly distributed component over the remaining parameter values.
This approach was novel in itself and opened the door to Bayesian model-averaging to
obtain the posterior expectation E[q|X]. Second, Haldane (1932) derived the posterior

9Thus, Haldane made explicit use of Bayesian model-averaging to estimate the cross-over rate, com-
pare Claeskens and Hjort (2008).
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distribution of the cross-over rate using Bayes’ theorem and used it to quantify the evi-
dence based on the posterior mean and the standard deviation. What is more, his focus
seems to be estimation under uncertainty, instead of hypothesis testing. This orienta-
tion is in sharp contrast to the emerging trend of hypothesis testing formalism at that
time, compare Chapter 3 and Chapter 4, as well as Je�reys’ earlier work with Dorothy
Wrinch (Wrinch and Je�reys, 1921).

7.3 Je�rey’s Work after Haldane
According to Howie (2002), Je�reys’ work was influenced by Haldane’s pragmatism
regarding prior probabilities. Etz and Wagenmakers (2017) are more reluctant, and
while they state that Je�reys may have knownHaldane’s paper, it remains unclear how
much influence Haldane’s paper exerted on Je�reys. Nevertheless, one major innova-
tion of Haldane (1932)was to use amixture prior, which assigned a fraction of the prior
probability mass to a single parameter value via a Dirac-measure, and distributed the
rest of the probability mass across the remaining parameter values by means of a dif-
ferent distribution. This idea could easily be translated to the problem of the principle
of insu�cient reason. Employing a mixture prior as used by Haldane (1932), one only
needed to assign the extremes q = 0 and q = 1 finite prior probabilities and share the
rest of the probability mass uniformly in between. This idea was adopted by Je�reys to

“...answer finally Broad’s problemof the black crows. Je�reys recommended
packing some finite value of probability, k, into each of the extreme values, 0
and 1, and distributing the rest evenly. He showed that with k independent
of the size of the class (and non-zero), the posterior distribution, following
repeated viewing of black crows, peaks at a value also independent of the
size of the class.”
Howie (2002, p. 125)

Mathematical details can be found in the appendix of Zabell (1989b). Zabell (1989b)
also notes that “Within a year of Broad’s 1918 paper, Je�reys and Wrinch (1919) noted
that the di�culty could be averted by using priors which place point masses at the
endpoints of the unit interval)”, refering to an earlier paper of Wrinch and Je�reys in
1919. In it, Wrinch and Je�reys (1919) wrote:

“Here Mr. Broad’s argument is valid, and no such law can derive a rea-
sonable probability from experience alone; some further datum is required.
One way of arriving at such laws may be suggested here. Suppose we have
an a priori belief that, either every x has the property f or every c has the
property Y. If then a single x, say c, is found to satisfy f but not Y, we
can infer deductively the universal proposition that all x’s satisfy f. Such
cases are fairly frequent: if for instance we consider that either Einstein’s or
Silberstein’s form of the principle of general relativity is true, a single fact
contradictory to one would amount to a proof of the other in every case.”
Wrinch and Je�reys (1919, p. 729)

Thus, while the idea of sharing the probability mass into the two point-masses P(0) =
P(1) = 0.5 shines through, the explicit formulation as a Dirac-mixture-prior p(q) :=
0.5 · d(0) + 0.5 · d(1) in the sense of Haldane (1932) is missing. Haldane (1932) made
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this notion much more explicit. Denoting the parameter as x, he explicitly assigned a
point mass to this value which corresponded to a general law:

“Let us suppose then, that k is the a priori probability that x = 0, and that
the a priori probability that it has a positive value is expressed f (x), where
lim
#!0

R 1
# f (x)dx = 1� k.”

Haldane (1932, p. 59)

Thus, his mixture prior in modern notation could be written as p(q) := k · d0(q) + f (q),
where d0(q) := 1 if q = 0 and else d0(q) = 0, and f (q) > 0 for q > 0 and f (q) = 0
for q  0.10 Haldane then argued that if q = 0 (in his notation, x = 0), the probability
to observe a sample s := (0, 0, ..., 0) of size n which only consists of observations not
having the property of interest is one, that is P(s|q = 0) = 1. Using Bayes’ theorem,
Haldane (1932) then obtains the posterior of the parameter:

Hence the probability, after observing the sample, that x = 0 is

k
k+

R 1
0 (1� x)n f (x)dx

Haldane (1932, p. 59)

In modern notation, this can be expressed as

P(q = 0|s) = f (s|q = 0)P(q = 0)
f (s|q = 0)P(q = 0) + f (s|q 6= 0)P(q 6= 0)

=
1 · k

1 · k+
R 1
0 f (q)(1� q)ndq

(7.3)

Assuming a flat prior f (x) = 1, Haldane (1932) calculated the integral
Z 1

0
f (q)(1� q)ndq =

Z 1

0
(1� q)ndq =

1
n+ 1

In total, the posterior probability of the parameter therefore becomes

P(q = 0|s) = k
k+ 1

n+1
=

kn
kn+ k+ 1

+
k

kn+ k+ 1

Importantly, Haldane’s calculations show that if a point mass k > 0 is assumed for
the prior probability of q = 0 (or x = 0, in his notation), the posterior probability
of a hypothesis corresponding to the general law q = 0 converges to 1 for increasing
sample size n, as kn

kn+k+1 ���!
n!•

1 and k
kn+k+1 ���!

n!•
0. Importantly, for a large point

mass P(q = 0) = k ⇡ 1, the speed of this convergence is much faster compared to
the situation in which only a small point mass P(q = 0) = k ⇡ 0 is assigned to the
general law q = 0. Also, his mixture-prior revealed that the paradox of Broad (1918)

10This prior is proper, as can be seen by calculating
R 1
0 p(q)dq =

R 1
0 d0(q) + f (q)dq =

R 1
0 d0(q)dq +

R 1
0 f (q)dq and using

R 1
0 d0(q)dq = P(q = 0) · 1 + P(q 6= 0) · 0 = P(q = 0) = k and

R 1
0 f (q)dq =

lim
#!0

R 1
# f (q)dq = 1� k.
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disappears, as the probability of the general law can become close to 1 even if only a
small sample size n is observed, when the point mass k is selected ⇡ 1 (or close to 1).

The explicit formulation of a mixture-prior by Haldane led to the desirable situation
in which a general law approached unit probability even before the whole of the popu-
lation had been sampled.11 Still, while Je�reys’ may have been influenced by the paper
of Haldane (1932), the more interesting aspect with a perspective on hypothesis testing
is if Je�reys’ development of the Bayes factor was influenced by Haldane’s paper, too.

It is worthwhile to take a look at a paper Je�reys published two years after Haldane
to analyse the influence Haldane may have exerted on Je�reys. Je�reys (1935) entitled
the paper ‘Some Tests of Significance, Treated by the Theory of Probability’ and published it
in theMathematical Proceedings of the Cambridge Philosophical Society. In it, Je�reys stated
the goal of the paper as follows:

“Suppose that two di�erent large, but not infinite, populations have been
sampled in respect of a certain property. One gives x specimens with the
property, y without; the other gives x0 and y0 respectively. The question is,
whether the di�erence between x/y and x0/y0 gives any ground for inferring
a di�erence between the corresponding ratios in the complete populations.
Let us suppose that in the first population the fraction of the whole pos-
sessing the property is p, in the second p0. Then we are really being asked
whether p = p0; and further, if p = p0, what is the posterior probability dis-
tribution among values of p; but, if p 6= p0, what is the distribution among
values of p and p0.”
Je�reys (1935, p. 203)

Je�reys (1935) further assumed that two large populations (not hypothetically infinite
populations as in Fisher’s definition of probability) have been sampled with respect to
the property of interest. In modern terms, Je�reys opposed two hypotheses or models
M0 and M1, where in the first model p = p0 holds and in the second model p 6= p0. In
modern notation, this equals the models M0 : q0 = q1 and M1 : q0 6= q1. Je�reys then
assigned a prior probability of 0.5 on both models and in the case of M0 being true, so
that p = p0 holds, he set the prior distribution p0(q0) of q0 as uniform on (0, 1), that
is q0 ⇠ U (0, 1). In the case of M1 being true, Je�reys gave q0 and q1 each their own
uniform prior probability distributions p1(q0) and p1(q1), each distributed as U (0, 1).
In summary, he obtained p0(q0) = p1(q0) = p1(q1) = U (0, 1), and by the assumption
of independence (Je�reys, 1935, p. 204) obtained p1(q0, q1) = p1(q0)p1(q1). Je�reys
(1935) then assumed the likelihood functions under the models M0 and M1 to be

f (d|q0,M0) =
(x0 + y0)!
x0!y0!

(x1 + y1)!
x1!y1!

qx00 (1� q0)
y0qx10 (1� q0)

y1 (7.4)

and

f (d|q0, q1,M1) =
(x0 + y0)!
x0!y0!

(x1 + y1)!
x1!y1!

qx00 (1� q0)
y0qx11 (1� q1)

y1 (7.5)

which are simply binomial likelihood functions, see also Etz and Wagenmakers (2017,
p. 15) and Ly et al. (2016b, Appendix D). Here, d denotes the observed data (x, y, x0, y0)
in both groups. Using the prior model probabilities P(M0) = P(M1) = 0.5 on both

11See also (Howie, 2002, p. 125).
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models M0 and M1, Je�reys then derived the posterior distribution p(q0|d,M0) for
the free parameter q0 in the model M0 and the posterior distribution p(q0, q1|d,M0)
for the two free parameters q0, q1 in the model M1. These posterior distributions are
proportional to the corresponding model likelihoods, because by the independence
p(q0,M0) = p(q0)P(M0) one obtains

p(q0|d,M0) µ f (d|q0,M0)p(q0,M0) = f (d|q0,M0)p(q0)P(M0)

= p(d|q0,M0) · 1 · 0.5 µ p(d|q0,M0) (7.6)

and by the independence p(q0, q1,M1) = p(q0)p(q1)P(M1) it follows that

p(q0, q1|d,M1) µ f (d|q0, q1,M1)p(q0, q1,M1) = f (d|q0, q1,M1)p(q0)p(q1)P(M1)

= f (d|q0, q1,M1) · 1 · 1 · 0.5 µ f (d|q0, q1,M1) (7.7)

Therefore, the posteriors for q0 and q1 are obtained as

p0(q0|d) µ qx0+x1
0 (1� q0)

y0+y1 (7.8)
p1(q0, q1|d) µ qx00 (1� q0)

y0qx11 (1� q1)
y1 (7.9)

where p0(·|d) and p1(·, ·|d) are the posterior probability densities of q0 and (q0, q1) in
model M0 and model M1, after observing the data d. By integrating

p(M0, q0|d) µ f (d|M0, q0)p(M0, q0) = f (d|M0, q0)P(M0)p0(q0) (7.10)

with respect to q0, Je�reys (1935) obtained the posterior model probability P(M0|d),
where in Equation (7.10) the priormodel probabilityP(M0) = 0.5 and p0(q0) = U (0, 1)
as detailed above, and f (d|M0, q0) is given in Equation (7.6), which leads to Equa-
tion (7.8). The same procedure leads to the posterior probability P(M1|d) by integrat-
ing

p(M1, q0, q1|d) µ f (d|M1, q0, q1)P(M1)p1(q0)p1(q1) (7.11)

where the independence assumption p1(q0, q1) = p1(q0)p1(q1) is used. Here, P(M1) =
0.5, and p1(q0) = p1(q1) = U (0, 1). Therefore (as the density of a U (0, 1) distribution
and the factor 0.5 can be omitted when removing proportionality constants), the poste-
rior model probabilities are proportional to the likelihoods given in Equation (7.4) and
Equation (7.5). Making use of the identity

Z 1

0
qx00 (1� q0)

y0dq0 =
x0!y0!

(x0 + y0 + 1)!
(7.12)

the integration of p(M0, q0|d) given in eq. (7.10) yields

P(M0|d) µ
(x0 + x1)!(y0 + y1)!

(x0 + x1 + y0 + y1 + 1)!
(7.13)

and the integration of p(M1, q0, q1|d) yields

P(M1|d) µ
x0!y0!

(x0 + y0 + 1)!
· x1!y1!
(x1 + y1 + 1)!

(7.14)
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as p(M1, q0, q1|d)
Equation (7.11)

µ f (d|M1, q0, q1)
Equation (7.5)

µ qx00 (1� q0)y0qx11 (1� q1)y1 and
therefore the integration with respect to q0, q1 can be calculated as

P(M1|d) µ
Z 1

0

Z 1

0
qx00 (1� q0)

y0qx11 (1� q1)
y1dq0dq1

=
Z 1

0
qx00 (1� q0)

y0dq0

Z 1

0
qx11 (1� q1)

y1dq1

Equation (7.12)
=

x0!y0!
(x0 + y0 + 1)!

· x1!y1!
(x1 + y1 + 1)!

(7.15)

Employing the above derivations, Je�reys (1935) finally arrived at his goal: The ratio
of the posterior model probabilities P(M0|d) and P(M1|d) as given in Equation (7.13)
and Equation (7.14) is the ratio of the posterior odds (compare with Definition 6.11).
Therefore, when using the prior probabilities ofP(M0) = P(M1) = 0.5 for bothmodels
(or prior odds P(M0)/P(M1) = 1, not favouring one of both models a priori), the ra-
tio of the posterior model probabilities equals the ratio which today is called the Bayes
factor, which Je�rey aimed at in his derivations. That the Bayes factor can be calcu-
lated from the posterior odds and prior odds, can be seen directly from the following
equation:

f (d|M0)
f (d|M1)| {z }
Bayes factor

=
P(M0|d)
P(M1|d)| {z }

posterior odds

/
P(M0)
P(M1)| {z }
prior odds

(7.16)

Je�reys (1935) summarised his derivation as follows at this point:

“We have in each case considered the existence and the non-existence of
a real di�erence between the two quantities estimated as two equivalent
alternatives, each with prior probability 1/2. This is a common case, but
not general. If however the prior probabilities are unequal the only di�er-
ence is that the expression obtained for P(q|qh)/P(⇠ q|qh) now represents
P(q|qh)
P(⇠q|qh)/

P(q|h)
P(⇠q|h) . Thus if the estimated ratio exceeds 1, the proposition q is

rendered more probable by the observations, and if it is less than 1, q is less
probable than before. It still remains true that there is a critical value of the
observed di�erence, such that smaller values reduce the probability of a real
di�erence. The usual practice is to say that a di�erence becomes significant
at some rather arbitrary multiple of the standard error; the present method
enables us to say what that value should be. If however, the di�erence ex-
amined is one that previous considerations make unlikely to exist, then we
are entitled to ask for a greater increase of the probability before we accept
it, and therefore for a larger ratio of the di�erence to its standard error.”
Je�reys (1935, p. 221)

In the above quote, P(q|h)
P(⇠q|h) are the prior odds and

P(q|qh)
P(⇠q|qh) the posterior odds and q and

⇠ q the null and alternative hypothesis under consideration. In modern terms, this
yields exactly the Bayes factor as given in Equation (7.16).

Etz andWagenmakers (2017) noted, that Je�reys (1935) probably alluded to Fisher’s
significance testing when advertising the independence of newly introduced Bayes fac-
tor from the usual practice to say that a di�erence is significant at an arbitrary multiple
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of the standard error. The Bayes factor as a dimensionless quantity gets calibrated by the
sample size and prior probabilities according to Je�reys (1935). To make his argument,
Je�reys (1935, p. 205) approximated the posterior odds via a normal approximation to
the binomial distribution for large sample size as

P(q|q, h)
P(⇠ q|q, h) ⇡

✓
(x+ x0 + y+ y0)(x+ y)(x0 + y0)

2p(x+ x0)(y+ y0)

◆ 1
2
· e

✓
� 1

2
(x+x0+y+y0)(xy0�x0y)2

(x+x0)(y+y0)(x+y)(x0+y0)

◆

(7.17)

and noted that when the di�erence of sampling ratios xy0 � x0y is small, the quadratic
term (xy0 � x0y)2 in the exponential function becomes close to zero and the exponential
function becomes approximately one. Then, when the sample is su�ciently large, the
first term is larger than one as can be seen from the numerator (remember that x, x0, y
and y0 were the number of specimens in the sample with and without the property)
and “q approaches certainty” (Je�reys, 1935, p. 205)12. On the other hand, if xy0 � x0y is
large, the exponential factor becomes extremely small and “q approaches impossibility”
(Je�reys, 1935, p. 205). Je�reys (1935) summarised

“The theory therefore shows that a small di�erence between the sampling
ratios may establish a high probability that the ratios in the main popula-
tions are equal, while a large one may show that they are di�erent.”
Je�reys (1935, p. 205)

Je�reys (1935) explained further:

“...agreement between the two populations becomes more probable if the
samples are large and the di�erence of the sampling ratios small; when the
ratio is large at xy0 � x0y = 0, a larger value of the exponent is obviously
needed to reduce the product to unity.”
Je�reys (1935, p. 205)

Rephrasing Je�reys idea, if the sampling ratio xy0 � x0y is large, then the exponential
function in Equation (7.17) becomes very small. Nevertheless, if the Bayes factor (of
which Equation (7.17) is an approximation only if equal prior probabilities of 1/2 are
used for the hypotheses under comparison) is large, an even larger first factor in Equa-
tion (7.17) (whose size itself depends on the sample size) is needed compared to the
situation when the sampling ratio xy0 � x0y is close to zero.

If the di�erence xy0 � x0y is approximately zero, the exponential function is close
to one and if the sample is large the first factor in Equation (7.17) also becomes large,
indicating support for q, that is an agreement between the two populations, or p = p0,
or q0 = q1.

So, increasing the sample size yields a larger first factor in Equation (7.17), and
therefore obtaining a small Bayes factor which indicates rejection of the null hypothesis
becomes more di�cult for increasing sample size when xy0 � x0y is small.

Later Je�reys (1939) published critical values of the Bayes factor in ToP (see Ta-
ble 6.1) which are also arbitrary like the p-values introduced by Fisher or the fixed test
level advertised by Neyman and Pearson. However, the interpretation is much more
natural, because a Bayes factor BF01 passing the threshold one indicates that the pre-
dictive ability of the hypothesis H0 under consideration is larger than the predictive

12Note, that proposition q was defined by Je�reys (1935) as p = p0, so in modern words this equals
the null hypothesis of no di�erence between both groups.
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ability of the alternative H1, where the marginal likelihood quantifies the predictive
ability. Thus, a Bayes factor BF01 = 2 can be interpreted as the data being generated
under H0 is two times as likely as the data being produced by H1.

7.4 Comparison of Je�reys’ and Haldane’s Approach
In sum, the last sections showed that both Wrinch and Je�reys (1921), Haldane (1932)
and Je�reys (1935) had their impact on the evolution of the Bayes factor as it is known
today. Etz and Wagenmakers (2017) discussed the personal relationship between Jef-
freys andHaldanewith the conclusion that more credit should be given toHaldane. As
was shown in the preceding section, the more important aspect of these developments
lies in the di�erence between Je�reys’ and Haldane’s goals: While Je�reys (1935) fo-
cussed on the comparison of two competing hypotheses under consideration, Haldane
was interested primarily in the posterior distribution of the parameter q. Also, Haldane
wanted to obtain point and interval estimates likeE[q|X] and quantities to estimate the
uncertainty of the point estimates like the posterior distribution’s parameters µ and s2.
It would have been straightforward for Haldane (1932) to calculate the Bayes factor as
it is known today from his derivations, but he probably saw no use in that.

On the other hand, Je�reys was neither interested in posterior distributions, nor
posterior point or interval estimates. His derivations crystalize the Bayes factor as the
penultimate quantity to quantify the change in belief towards one of two hypotheses
under consideration. Both share the idea of assigning a finite probability to the point
null hypothesis and distributing the rest of the available probabilitymass evenly among
the rest of the parameters’ support. This idea was very clearly articulated by Haldane,
and played a substantial role in solving the paradox of the principle of insu�cient rea-
son. Maybe this enabled Je�reys to proceed with his derivations of the Bayes factor, but
Je�reys (1935) himself was well aware of the possibility to obtain the posterior distri-
bution as a mixture of the null and alternative hypothesis, see Je�reys (1935, p. 222).
However, he regarded it as superfluous since already the Bayes factor could quantify
the necessary change in belief. Nevertheless, two important objections to his Bayes fac-
tor did Je�reys (1935) already mention in his own 1935 paper:

“To raise the probability of a proposition from 0.01 to 0.1does notmake it the
most likely alternative. The increase in such cases, however, dependswholly
on the prior probability, and this investigation therefore separates into two
parts the ratio of the observed di�erence to its standard error needed to
make the existence of a real di�erence more likely than not; the first can
be definitely evaluated from the observational material, while the second
depends wholly on the prior probability.”
Je�reys (1935, p. 221)

First, this means that Je�reys did notice the strong dependence of the Bayes factor on
the prior distributions on the parameters in each model (not on the prior model prob-
abilities)13. Second, this indicates that Je�reys also was aware of his Bayes factor only

13Note that the Bayes factor can also be obtained by manually calculating the ratio of marginal
likelihoods f (x|M0)/ f (x|M1) for two models M0 and M1. The marginal likelihood f (x|Mi) =R

f (x|Mi, qi)p(qi|Mi)dqi is obtained by integrating the likelihood f (x|qi,Mi) with respect to the model
parameters qi in the model Mi under consideration, i = 1, 2. To perform this step, prior probabilities
p(qi|Mi) are needed for each model Mi and these exert influence on the resulting Bayes factor.
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measuring the evidence of the null hypothesis relative to the alternative. Measuring a
relative quantity, a researcher therefore never can be sure if any of two hypotheses is
a good description of the experimental situation. Termed di�erently: “All models are
wrong, but some are useful.” (Box, 1976). Picking two bad models in the form of com-
peting hypotheses, therefore, may yield a high Bayes factor for one of them. However,
even the favoured hypothesis may be an imprecise description of the underlying scien-
tific situation. As can be seen from the quote above, even a large Bayes factor leveraging
the probability of a given hypothesis from 0.01 to 0.1 does not indicate that the hypoth-
esis resembles a good model of the scientific situation at hand. It only indicates the
necessity of a change in belief towards the hypothesis, and after all, the prior model
probabilities are substantial for the resulting conclusion.

7.5 Fisher’s Dissent

It is well-known that Fisher completely rejected any Bayesian methodology.14 Fisher’s
lifelong rejection of the Bayesian approach is described in Aldrich (2008). Interestingly,
Fisher (1936) himself noted concerning inverse probability – which he learned in the
standard curriculum at school, see also Howie (2002, p. 61) – that he “for some years
found no reason to question its validity.” (Fisher, 1936, p. 248) As Howie (2002) noted,
Fisher’s interpretation of probability changedwhenhe accepted the position at Rotham-
sted experimental station in 1919. Due to Pearson’s sharp criticism of Fisher’s first paper
(Fisher, 1912), Fisher probably reconsidered his probability definition at Rothamsted.
His early work was an attempt to reconcile the two rivalling parties of biometricians
and Mendelian geneticists. The former relied on the normal distribution to describe
many traits, while the latter expressed the combination and permutation of genes with
combinatorial methods. Fisher’s frequency definition, which involved the hypothetical
infinite population as given in Chapter 3 probably took form in Rothamsted. Howie
(2002) noted:

“...Mendelism was unique in involving a chance mechanism that generated
with exact and fixed probability one of a set of clearly-defined outcomes.
Genetic probabilities could thus be treated as inherent to the world rather
than reflecting incomplete knowledge.”
Howie (2002, p. 61)

This inherently fixed quantity is a characteristic description of frequentist probability,
in which the true parameter of interest is regarded as a fixed quantity. Fisher’s defini-
tion involving a hypothetical infinite population and the example with a die has strong
analogies to a probability concept which is rooted in Mendelism:

“Mendelism, like throws of a die or tosses of a coin, calls for a frequency
definition of probability. By definition, gametes distribute by chance, and
the long-run frequency of a given genotype in a large o�spring generation
can be predicted exactly from the genetic make-up of the parents and the
rules of combinatorial analysis.”
Howie (2002, p. 62)

14See also Aldrich (1997) and Stigler (2005).
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Another reason for Fisher’s changing probability definition may be seen in his college
education. John Venn, who was a fervent proponent of the frequentist probability def-
inition, was President of Caius College at Fisher’s undergraduate time. Fisher’s proba-
bility concept probably settled at the late 1910s, and at that time his lifelong objection to
inverse probability manifested itself. This objection was also because of the incompati-
bility of the Bayesian approach with the probability definition induced by Mendelism:
Frequencies of genes in a population can naturally be described as a frequency ratio.
The fundamental idea of Bayesian statistics to update the prior with the likelihood into
the posteriormade no sense fromaMendelian perspective, see alsoHowie (2002, p. 70).
The frequency of genes in a population does not change when conducting a study. It
is a fixed parameter of the population. From a Bayesian perspective, of course, this fre-
quency is a random variable which changes due to birth and death processes which
happen in real-time, so that the process of Bayesian inference leads to a ‘less-delayed’
estimate of the continuous, ever-changing frequency of a gene in the population. Al-
ready in the introduction chapter of the first edition of Statistical Methods for Research
Workers, Fisher (1925a) wrote:

“For many years, extending over a century and a half, attempts were made
to extend the domain of the idea of probability to the deduction of infer-
ences respecting populations from assumptions (or observations) respect-
ing samples. Such inferences are usually distinguished under the heading
of Inverse Probability, and have at times gained wide acceptance. This is
not the place to enter into the subtleties of a prolonged controversy; it will be
su�cient in this general outline of the scope of Statistical Science to express
my personal conviction, which I have sustained elsewhere, that the theory of
inverse probability is founded upon an error, and must be wholly rejected.
Inferences respecting populations, from which known samples have been
drawn, cannot be expressed in terms of probability ...”
Fisher (1925a, p. 10)

Therefore it was a vexing trend for Fisher that pioneers like Harold Je�reys or J.B.S.
Haldane introduced a kind of Bayesian renaissance, and championed the use of in-
verse probability despite the presence of Fisher’s theory of maximum likelihood. While
Fisher also disagreed with the Neyman-Pearson theory as analysed in Chapter 5, Ney-
man’s and Pearson’s theory at least was solely based on frequentist grounds.15 After he
read Haldane’s 1932 publication, Fisher (1932) sharply criticised Haldane for trying to
anchor his maximum likelihood method within the theory of inverse probability. The
objectionwas targeted toHaldane’s practice of combining any prior information, which
could be connected with inverse probability, with Fisher’s non-probabilistic likelihood
function:

“Fisher defines the likelihood of x as a quantity proportional to eL(x). This is
a convenience of statement, but the introduction of the a priori probability
density f (x) allows the deduction of Fisher’s results without introducing
concepts other than those found in the theory of direct probability.”
Haldane (1932, p. 60)

15However, as shown in Chapter 4 Neyman mentioned that the Bayesian approach often is “the more
logical of the two” (Neyman andPearson, 1928, p. 176), but theNeyman-Pearson-theory somehowended
upbeing a frequentist approach, probably out of the general rejection of Bayesian inference due to Fisher’s
influential opinion at that time.
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In modern notation, combining a flat prior p(q) µ 1 with the model likelihood f (x|q)
leads to a posterior distribution p(q|x) which is proportional to Fisher’s likelihood:

p(q|x) µ f (x|q)p(q) µ f (x|q)
Therefore, it is possible to interpret Fisher’s likelihood as a Bayesian posterior under
the uniform prior p(q) µ 1 in any statistical model. Fisher was well aware that with
increasing sample size the influence of any prior vanishes, and tried to use this as an
argument against using priors at all. Concerning Haldane’s calculation of the posterior
expectation of the cross-over rate of cross-bred plants given in Equation (7.2), Fisher
(1932) commented:

“Knowing the frequency distribution of x [the cross-over rate] we could, of
course, calculate its mean value, its median – that value which would be
exceeded in 50 trials out of 100 – or any other characteristic that might be re-
quired, and the fact with whichwe are here concerned is that, of the two fac-
tors of which our frequency element is composed, that which is contributed
by, and may be calculated from, our observations, becomes, as the sample is
increased, more and more influential, while the factor f (x)dx, contributed
by our a priori knowledge, becomes less and less influential in determining
these quantities; so that (...) we may say that our conclusions tend to be the
same, as the abundance of our data is increased without limit, whatever the
particular form of our a priori information.”
Fisher (1932, p. 258)

After underlining that the influence of any prior vanishes for increasing sample size
(nomatter how that prior is exactly chosen) Fisher (1932) pointed out the danger when
using erroneous priors:

“We have of course no such assurance of the harmlessness of erroneous a
priori assumptions, when our observations are finite in number, as is invari-
ably the case in practice.”
Fisher (1932, p. 258)

Fisher then went on and criticised Haldane’s arbitrary selection of a uniform prior
f (x) = 1, and after repeating his arguments about the expendability of any a priori
information, he defended his likelihood approach. He struggled with Haldane’s calcu-
lations, in which the prior is combined with the likelihood function to obtain the pos-
terior. For Fisher, no priors were needed at all and combining them with his likelihood
function could not lead to any probability statement16:

“It [the likelihood] is not a probability and does not obey the laws of prob-
ability. It can, however, be shown to provide, not only in the estimation of a
probability, but in the whole field of statistical estimation, as satisfactory a
measure of “degree of rational belief” as a probability could do. For this rea-
son I have termed it, or some arbitrary multiple of it, the likelihood, based
on the information supplied by the sample, of any particular value of x.”
Fisher (1932, p. 259)

16According to Howie (2002), “Je�reys objected to Fisher’s point that priors were irrelevant for in-
duction. On the contrary, since the likelihood function merely summarized the sample, any inference
concerning the whole class required some additional information.” (Howie, 2002, p. 124). Note that this
attitude also was stressed byWrinch and Je�reys (1921) already, who emphasized that prior knowledge
has to be incorporated into any statistical analysis to learn from the observed data.
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The similarity to a Bayesian posteriorwhen reading the above quote is striking. Bayesian
posteriors are also derived neglecting proportionality constants, yielding the same arbi-
trary multiples of a posterior distribution as Fisher does with his likelihood. However,
Bayes’ theorem then ensures that the resulting quantity obeys the rules of probability
theory and is a probability measure.

In addition to the objections to Haldane (1932), Fisher also had an argument with
Je�reys about the definition of probability. It is important to note, that while Fisher
was a proponent of rigorous experimental design who obtained his data mainly from
well-planned agricultural experiments, Je�reys’s work led to an entirely di�erent prob-
ability concept. Je�reys’s work on seismology prohibited the minute design of ex-
periments which Fisher required. Randomization, agricultural designs like the Latin
Square, and independent repetition of an experiment as advertised by Fisher were sim-
ply not possible regarding Je�reys’ work on earthquakes. In contrast, Je�reys had to
observe nature and update his current belief in a hypothesis according to new obser-
vational data at hand combined with a reasonable prior. Therefore, “the probability
calculus thus became for Je�reys a model of the fundamental process of learning. (...)
This cohered with the operational philosophy he had developed from Pearson, and the
associated idea of scientific laws as ever-improving probability distributions.” (Howie,
2002, p. 127). The clash of both men has already been described in detail in (Howie,
2002, Chapter 5) and (Aldrich, 2006). Also, Lane (1980) and Bartlett (1933) give a
good account of the argument. While the initial problem appeared as a solely math-
ematical dispute in which it was discussed if some calculations were allowed or not,
the exchange was, in fact, more profound in that it led both men to recognise that the
probability concept of the other was entirely di�erent and not in line with one’s own
interpretation. Je�reys’s concept of probability was a more subjective, psychological
interpretation of probability which measured the degree of belief in a proposition rela-
tive to a given body of data. Fisher’s frequency concept was based on the hypothetical
infinite population, which included the possibility of repeating an experiment under
the same circumstances again and again like it is the case in genetics or agriculture. For
Fisher, in Je�reys’s concept

“...the idea that a probability can have an objective value, independent of
the state of our information, in the sense that the weight of an object, and
the resistance of a conductor have objective values, is here completely aban-
doned.”
Fisher (1934a, p. 3-4)

For Je�reys, Fisher’s theory was built upon an error. He objected that

“...the hypothetical infinite population does not exist, that if it did its prop-
erties would have to be inferred from the finite facts of experience and not
conversely, and that all statements with respect to ratios in it are meaning-
less.”
Je�reys (1933, p. 533)

Similar to the Fisher-Neyman-Pearson dissent, the di�erence between Fisher and Jef-
freys can be attributed to the di�erent background of both men.17 In the case of the

17Fisher’s position strongly influenced Karl Popper later in developing his theory of falsification and
rational empirism as a theory of science, compare (Popper, 1959) and Chapter 10.
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Fisher-Neyman-Pearson dissent, careful consideration of each test under incorporation
of the experimental design and professional knowledge for Fisher was opposed to prac-
tical guidance for the behaviour of the researcher to control the long-term error proba-
bilities forNeyman andPearson. In the disputewith Je�reys, the objection to the other’s
concept of probability stemmed from Fisher’s roots in Mendelism and genetics where
frequency concepts seem reasonable, and Je�reys’s work in seismology and astronomy,
where anything like a hypothetical infinite population or even the repetition of an ex-
periment seemed absurd. The exchange still had one beneficial e�ect: It clearly showed
the di�ering frequentist versus Bayesian probabilistic concept of both men and made
it di�cult for each of them to discredit the other’s concept. Je�rey’s objection to a fre-
quentist interpretation of probability is expressed nicely in the following quote, which
shows that for him, any parameter of interest was not regarded as fixed:

“...you [Fisher] are regarding a probability as a statement about the compo-
sition of the world as a whole, which it is not and on a scientific procedure
could not be until there was nothing more to do.”
Je�reys in a letter to Fisher, dated 10th April 1934 (Bennett, 1990, p. 160)

Both scientists exchanged multiple letters about their issues with each others proba-
bility concept. For Fisher, Je�reys’s concept of an epistemic probability remained am-
biguous, being prone to subjectivity and lacking the necessary objectivity his frequency
definition o�ered. For Je�reys, objectivity did not exist at all with respect to probability.
For him, not the hypothetical infinite population – which does not exist – was impor-
tant, but only the actual data observed during an experiment.18 Je�reys therefore also
objected to Fisher’s significance testing:

“An hypothesis that may be true is rejected because it has failed to predict
observable results that have not occurred. This seems a remarkable proce-
dure.”
Je�reys (1939, p. 316)

This famous quote from Je�reys challenges the questionable practice of using p-values –
seeDefinitionC.83 –which are defined as probabilities of sets including outcomes of the
experiment or study, which have not occurred. These are the outcomes which are more
extreme than the ones observed in the actual experiment or study, and basing inference
on outcomes which were not observed is highly suspicious according to Je�reys. The
null hypothesis H0 is rejected in Fisher’s significance testing theorywhen it has failed to
predict observable results (the ‘more extreme’ part of the p-value’s definition) which
have not occurred. Fisher later accepted this criticism as valid, one of the very few
situations in which he admitted problems with his own work:

“Objection has sometimes been made that the method of calculating Con-
fidence Limits by setting an assigned value such as 1% on the frequency of
observing 3 or less (or at the other end of observing 3 or more) is unrealistic
in treating the values less than 3, which have not been observed, in exactly

18Note the analogy to the conditionality principle of Cox (1958). As already mentioned in Chapter 3,
Fisher was a fervent proponent of conditional inference, which was in line with the conditionality prin-
ciple that was later established by Cox (1958) and a substantial requirement for the likelihood principle
to hold, see Birnbaum (1962). On the other hand, Fisher violated the conditionality principle by using
p-values in his significance tests, which incorporate data which was not observed during an experiment.
This inconsistency in Fisher’s thinking can be seen as another cause of the dissent with Je�reys.
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the same manner as the value 3, which is the one that has been observed.
This feature is indeed not very defensible save as an approximation.”
(Fisher, 1956b, p. 56)

Of course, the argument of the quantity being an approximation seems a weak attempt
of saving the practice. Je�reys (1933) also sharply criticised Fisher’s routine derivation
of sampling statistics for his tests, where the sampling statistic is the statistic of the
quantity of interest averaged over all possible samples. Je�reys (1933) commented on
Fisher’s routine derivation of such distributions, which were derived as the average
over all samples, that his derivation “...is an absolutely meaningless process. Yet in
Fisher’s constructive, as well as in his destructive work, this process is carried out again
and again.” (Je�reys, 1933, p. 532) In Fisher’s defense, at the time Fisher and Gosset
developed a variety of precise test statistics in the form of sampling distributions few
if anything else was o�ered as an alternative approach in the contemporary statistical
literature. The sampling statistic was a way Fisher could incorporate objectivity into
the analysis and overcome the inverse probability approach he objected strongly, but
Je�reys is right in saying that for the situation at hand, using a statistic being averaged
over all samples is meaningless. Using a posterior distribution which quantifies the
uncertainty of the statistic of interest only based on the actually observed data is more
reasonable. Still, as obtaining such a posterior distribution was only possible via the
use of prior probabilities, Fisher rejected this option.

Also, as the Haldane-Fisher dispute had already shown, Fisher objected strongly
to any priors, and Je�reys saw them as necessary ingredients to get from sampling
alone to a statement about the whole class by the inclusion of the prior information19:
“I simply state my previous ignorance of the composition, and proceed to consider the
consequences of observational data inmodifying this ignorance.” (Je�reys, 1934, p. 12)

Interestingly, Egon Pearson and Jerzy Neyman also had a much more eased per-
spective on priors and inverse probability than Fisher. Pearson (1966) noted, that in
line with Je�reys, for Neyman and him priors were “of no great importance, except in
very small samples, where the final conclusions will be drawn in any case with some
hesitation.” (Pearson, 1966, p. 463).

In summary, the debate between Fisher and Je�reys took place already before Jef-
freys (1935) introduced his Bayesian hypothesis tests as a competitor to Fisher’s sig-
nificance tests. The cause of the dissent was primarily an entirely di�erent concept of
probability as well as a di�erent understanding of the problem at hand. Fisher inter-
preted Je�reys’ Bayesian approach in frequentist terms, leading to a non-compatible
solution. Je�reys argued vice versa, but he hit a weak spot of Fisher when he criticised
that significance tests and p-values violated conditional inference. Nevertheless, the
clash happened only short after Je�reys (1931) published his book Scientific inference,
in which the Bayes factor was already presented.20 There, Je�reys (1931) reproduced

19Je�reys even argued that in seismology there are physical reasons which make fitting polynomials
of a degree higher than a small value to seismologic data absurd, leading to a prior in favour of small
values and approximately zero density at higher values, see Bennett (1990, p. 156).

20After showing that Laplace’s principle of insu�cient reason leads to the paradox that general laws
never achieve a large-enough posterior probability, Je�reys detailed the previous ideas of Wrinch in it.
In essence, “The number of possible laws is certainly infinite. How can an infinite number of mutually
inconsistent laws all have finite probabilities? The answer to this question is provided by mathematics.
Consider the series 1

2 +
1
22 +

1
23 +

1
24 + .... The number of terms in this series is infinite, but every term

is finite, the sum of any number of terms is less than unity, and the sum tends to unity as we take an
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the earlier introduction of the Bayes factor in Wrinch and Je�reys (1921) in nearly the
same words (underbraces were added for improved readability):

“The question of the probability to be attached to a quantitative inference
can now be dealt with. If p is the most probable law on the data at any
stage, and q an additional experimental fact, we have

P(p : q.h)
P(⇠ p : q.h)
| {z }
posterior odds

=
P(q : p.h)
P(q :⇠ p.h)
| {z }
Bayes factor

· P(p : h)
P(⇠ p : h)
| {z }
prior odds

By the hypothesis we have just made about the prior probabilities of laws,
P(p : h)/P(⇠ p : h) is not very small.”
Je�reys (1931, p. 49)

Fisher therefore could have taken notice of Je�reys’s new approach to test hypotheses.
Still, as the attention of both men was clearly directed at the probability concept of the
other one, Fisher probably did not even read Je�reys book due to his general objections.
After the dissent about the proper concept of probability with Je�reys, there was no
chance that the approaches of both scientists could be reconciled without one of them
sacrificing his reputation. Note also that as described by Bennett (1990), the impact of
Scientific Inference was moderate and only few copies were sold after its publication.

After all, the dispute remained unresolved, and while Je�rey seemed to have recog-
nised the reason for it, Fisher’s writings were sometimes obscure. He went back to
business as usual after the dispute, sticking to his complete rejection of inverse proba-
bility.

Had the debate happened just a few years later, maybe Fisher’s position to the Bayes
factor introduced in (Je�reys, 1935, 1936)would have been available today. FromFisher’s
objection to Haldane (1932), nothing regarding his opinion on the Bayes factor can be
inferred. As described in Section 7.2, Haldane’s primary goal was estimation under un-
certainty, not hypothesis testing. Therefore, no explicit introduction of the Bayes factor
was given by Haldane (1932). One may argue that because of Fisher’s strong dissent to
combining any prior with his likelihood (and connecting his theory with inverse prob-
ability, which Haldane (1932) had done), he would have had strong objections to in-
terpreting the likelihood ratio as a Bayes factor.21 Additionally, the likelihood ratio also
was the essential quantity in the Neyman-Pearson tests, which recovered the majority
of Fisher’s impressive battery of significance tests as special cases under their likeli-
hood ratio criterion l. It can safely be assumed that Fisher would not have accepted
the presence of a Bayes factor in his significance tests, as he once stressed that Je�reys
makes

“...a logical mistake at the first page which invalidates all the 395 formulae
in his book.”
R.A. Fisher in (Box, 1978, p. 441)

increasingly large number of terms from the start. The assumption we need is therefore that the prior
probabilities of possible general laws are the terms of a convergent series whose sum to infinity is unity.
We have been led to it purely from the assumption that it is possible to construct a theory of quantitative
inference; if this can be done such an assumption about the prior probabilities of laws must be made.”
(Je�reys, 1931, p. 43)

21The Bayes factor is in fact equal to a likelihood ratio whenever the hypotheses under consideration
are simple hypotheses, that is, H0 : q = q0 and H1 : q = q1, compare (Robert, 2007, p. 227).
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As described in Chapter 5, the Fisher-Neyman-Pearson dissent was based on the fact
that both theories led to di�erent conclusions in some cases. Concerning the dissent
with Je�reys, the objection of Fisher was of much more generality and more profound,
since, in contrast to the competing Neyman-Pearson theory, this time inverse probabil-
ity was involved. The dispute was about the proper probability concept, and not about
di�erent solutions to the same problem. Concerning Je�reys’s Bayes factor, Ly (2017)
stated that “for many cases the Bayesian and Fisherian analyses disagree qualitatively
as well as quantitatively” (Ly, 2017, p. 22). Ly (2017) proposed to use Bayes factors
instead of frequentist hypothesis tests based on p-values because of the well-known
problems with p-values which were observed during the scientific replication crisis,
compare Chapter 1.

Nevertheless, it is a matter of the fact that Je�reys himself stressed that Fisher had a
genuine talent to derive solutions intuitively which were later justified by more rigor-
ous proofs and that the di�erences between Fisher’s approach and the one of Je�reys
rarely di�ered: “I have in fact been struck repeatedly in my own work, after being led
on general principles to a solution of a problem, to find that Fisher had already grasped
the essentials by some brilliant piece of common sense, and that his results would either
be identical to mine or would di�er only in cases where we should both be very doubt-
ful.” (Je�reys, 1939, p. 364-365). Regarding hypothesis testing, Je�reys in 1939 already
used his Bayes factor. Based on the dissent with Fisher about the correct probability
concept his statement is astonishing. On the other hand, it is clear that Je�reys no-
ticed these coincidences, as Fisher’s maximum likelihood solutions can be interpreted
as the posterior mode in the Bayesian approach under quite general conditions (Held
and Sabanés Bové, 2014). Je�reys probably alluded to these situations in his statement.
Concerning hypothesis tests, the di�erences between Bayesian tests via the Bayes factor
and Fisher’s significance tests were profound. For example, the latter could only reject
a hypothesis, while the former could also confirm it.

Interestingly, Fisher himself in the dispute with Je�reys once wrote that the correct
procedure of scientific inference is that “...we are provided with a definite hypothesis,
involving one or more unknown parameters, the values of which we wish to estimate
from the data.” (Fisher, 1934a, p. 7). It is remarkable in that Fisher states the main
goal of scientific inference as estimation under uncertainty, and the hypothesis seems
just like a stylistic apparatus needed to formalize the procedure. Despite Fisher’s crit-
icism of Haldane (1932), this strongly resembles Haldane’s goal of estimation under
uncertainty via the posterior distribution of the parameter. Also, this quote shows that
probably Fisher would not have thought of any Bayes factor as useful, mainly because
all Bayes factors are highly dependent on the priors selected in both models. Also,
Bayes factors are not designed with estimation in mind, so that Fisher’s primary goal
of estimation could not be targeted at all via Bayesian hypothesis tests which employed
Bayes factors.

In summary, the Fisher-Je�reys-debate ended without a resolution of the di�er-
ences. As McGrayne (2011) noted:

“Practically speaking, however, Je�reys lost. For the next decade and for a
variety of reasons frequentism almost totally eclipsed Bayes and the inverse
probability of causes. First, Fisher was persuasive in public, while the mild-
mannered Je�reys was not: people joked that Fisher could win an argument
even when Je�reys was right. Another factor was that social scientists and
statisticians needed objective methods in order to establish themselves as
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academically credible in the 1930s. More particularly, physicists developing
quantum mechanics were using frequencies in their experimental data to
determine the most probable locations of electron clouds in nuclei. Quan-
tum mechanics was new and chic, and Bayes was not. In addition, Fisher’s
techniques, written in a popular style with minimal mathematics, were eas-
ier to apply than those of Je�reys. A biologist or psychologist could easily
use Fisher’s manual to determine whether results were statistically signifi-
cant.”
McGrayne (2011, p. 57)

The two most severe problems that remained for Bayesian inference to be accepted
even after the discourse of Je�reys and Fisher were thus mostly computational hurdles
and the fact that Bayesian statistics was still an undervalued concept which was seen
with suspicion by most researchers. How this situation changed is detailed in the next
Part III. From an objective perspective however, the various problems of Fisher’s sig-
nificance tests and the Neyman-Pearson theory were outlined in Chapter 5, and these
are among the most important causes of the recent scientific replication crisis. Je�reys
noticed the majority of these problems more than half a century ago, and the most im-
portant aspect that separated his approach from Fisher’s and Neyman and Pearson’s as
shown in this chapter is given by the fact that

“Je�reys was interested in making inferences from scientific evidence, not
in using statistics to guide future actions.”
McGrayne (2011, p. 57)

Although in the 1930s Je�reys’ Bayesian approach to statistical hypothesis testing re-
mainedwidely unheard by practitioners, themain obstacle to employing his theorywas
eventually overcome by the advent of modern Markov-Chain-Monte-Carlo algorithms,
which caused a Bayesian renaissance and are discussed in the following Part III.
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INTERMEDIATE CONSIDERATIONS

Part II analysed the evolution of Bayesian approaches to hypothesis testing with a
focus on the Bayes factor. It was shown that although the Bayes factor approach did not
succeed in the decades that followed, the primary reasons were mostly computational
hurdles which prevented a more widespread use of Bayesian methods in scientific re-
search. The core di�erences between the frequentist and Bayesian approach were an-
alyzed and it was shown that the more appropriate approach for hypothesis testing in
scientific contexts is a Bayesian one.

The following Part III discusses the development of modern Markov-Chain-Monte-
Carlo algorithms and their impact on Bayesian hypothesis testing. Chapter 8 provides
the basics ofMarkov-Chain-Monte-Carlo (MCMC), andChapter 9 outlines theMarkov-
Chain-Monte-Carlo revolution which introduced a Bayesian renaissance from a statis-
tical perspective. It is shown that the development of modern MCMC algorithms has
tremendously simplified Bayesian hypothesis testing in practice, and that the largest
hurdle in employing Bayesian hypothesis tests has been removed through the advent
of modern Markov-Chain-Monte-Carlo methods. Also, it is shown why the burden of
manual calibration of MCMC algorithms which presented another obstacle in employ-
ing them in practice, has been taken from researchers through the introduction of mod-
ern Hamiltonian-Monte-Carlo algorithms. Thus, Part III shows that the computational
obstacles which prevented a more widespread use of Bayesian hypothesis tests at the
time Je�reys invented the Bayes factor have been removed through the development of
modern MCMC methods.
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Nicholas Metropolis
The Beginning of the Monte Carlo Method

While the Bayesian approach appeals in its simplicity of interpretation and decision-
theoretic considerations1, the computation of the exact posterior troubles application
in realistic settings. Therefore, simulation methods based on Markov chains were in-
vented. The goal in Markov-Chain-Monte-Carlo (MCMC) algorithms is to obtain a
sample X1, ...,Xn approximately distributed from the density f because direct simula-
tion from f is not possible. Robert and Casella (2004, p. 268) defines such a method as
follows:

Definition 8.1 (Markov-Chain-Monte-Carlo method). AMarkov-Chain-Monte-Carlo
method for simulation of a distribution f is any method producing an ergodic Markov
chain (X(t)) whose stationary distribution is f .

All of the algorithms discussed in this chapter rely on the theory of Markov chains,
especially ergodicity and stationarity as described inMeyn and Tweedie (2009, Chapter
3, Section 13) and (Robert andCasella, 2004, Chapter 6). In theory, for arbitrary starting
values x(0), the chain (X(t)) is constructed using a transition kernel with stationary
distribution f , which ensures convergence in distribution of (X(t)) to f . If the chain is
also ergodic, the influence of x(0) vanishes for t ! •. The invention of Markov-Chain-
Monte-Carlo methods had a profound impact on the rediscovery of Bayesian statistics,
especially for Bayesian inference in hierarchical models Richey (2010). Some historical
remarks about the development of MCMC methods are provided by Diaconis (2009)
and Robert and Casella (2008), and for examples of MCMC methods in the context of

1Furthermore, as will be shown in Chapter 10 and Chapter 11, the Bayesian approach has a sound
basis in philosophy of science and also is strongly mandated by a rigorous axiomatic analysis of the
principles of statistical inference.
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applied Bayesian hypothesis testing see Kruschke (2015), McElreath (2020) and Kelter
(2020c).

8.1 The Metropolis-Hastings-Algorithm
The oldest MCMC algorithm is the Metropolis-Hastings algorithm, which goes back to
Metropolis et al. (1953) and which

“...radically changed our perception of simulation and opened countless
new avenues of research and applications.”
Robert and Casella (2004, p. 267)

Moreover, it can be regarded as the most universal MCMC algorithm. It was refined
into the slice sampler and Gibbs sampler later. It starts with a target density f , which
should be simulated. Therefore, a conditional density q(y|x) with respect to the dom-
inating measure for the model is selected. The only restriction for q is that simulation
of q should be (relatively) easy, and it must be explicitly available up to a multiplica-
tive constant independent of x or symmetric, that is q(x|y) = q(y|x). An important
requirement for the Metropolis-Hastings algorithm is that the target density f must be
available up to a proportionality constant. More specifically, the ratio

f (y)
q(y|x) (8.1)

must be known up to a constant independent of x. If f therefore is a Bayesian posterior,
by Bayes’ theorem this is always the case.

8.1.1 The general Metropolis-Hastings algorithm

Algorithm 1 (Metropolis-Hastings). Given x(t),

1. Generate Yt ⇠ q(y|x(t))

2. Take X(t+1) :=

(
Yt, with probability p(x(t),Yt)

x(t), with probability 1� p(x(t),Yt)
where

p(x, y) := min
n

f (y)·q(x|y)
f (x)·q(y|x) , 1

o

At first sight one might wonder why this innocuous algorithm has caused a Bayesian
revival and allowed for the simulation from nearly arbitrary posterior distributions. In
Chapter 6 itwas detailed that the proportionality constant 1/ f (x) in the denominator of
the posterior distribution in Equation (6.3) can be costly to compute numerically, when
no analytic solutions are available. In the Metropolis-Hastings acceptance probability
p(x, y), however, this constant cancels out. More specific, in the Bayesian approach
when the target density f is the posterior

f (q|x) = f (x|q) f (q)R
f (x|q) f (q)dq

(8.2)
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as in Definition 6.2, the Metropolis-Hastings acceptance probability p(q1, q2) for the
parameter q of interest given the data X = x for the values q1 and q2 reduces to

p(q1, q2) = min
⇢

f (q2|x) · q(q1|q2)
f (q1|x) · q(q2|q1)

, 1
�

= min

8
<

:

f (x|q2) f (q2)R
f (x|q) f (q)dq

· q(q1|q2)
f (x|q1) f (q1)R
f (x|q) f (q)dq

· q(q2|q1)
, 1

9
=

;

= min

8
>>><

>>>:

f (x|q2) f (q2) · q(q1|q2)
f (x|q1)| {z }
likelihood

f (q1)| {z }
prior

· q(q2|q1)| {z }
proposal dist.

, 1

9
>>>=

>>>;
(8.3)

so that the normalizing constant
R

f (x|q) f (q)dq of the posteriors in p(q1, q2) cancels
out. As the prior and likelihood are available in a (parametric) Bayesian analysis, the
acceptance probability can be computed without the need to calculate the normalizing
constant. Thus, steps 1. and 2. in the Metropolis-Hastings algorithm both avoid this
computational burden. Also, whenever the proposal distribution q(q2|q1) is symmetric, it
also cancels out. As q(q2|q1) is explicitly available up to amultiplicative constant C inde-
pendent of q1, this normalizing constant C appears in both the numerator and denom-
inator and also cancels out even when q is not symmetric. In both cases therefore, the
Metropolis-Hastings algorithm involves no computation of the normalizing constantR

f (x|q) f (q)dq (of the Bayesian posterior) and C (of the proposal distribution q) in the
calculation of the acceptance probability p(x, y). A few points are notable about the
Metropolis-Hastings algorithm: First, if the proposal density q is symmetric, the accep-
tance probability is a�ected only by the ratio f (y)/ f (x) of step 2. Second, p(x, y) is only
defined when f (x(t)) > 0. If the chain starts in such a value, all subsequent values have
also positive mass. Third, by convention p(x, y) = 0 , f (x) ^ f (y) = 0. Fourth, the
sample generated byMetropolis-Hastings is not i.i.d., and also, there are constraints on
the support E of f and q. When the support of f is connected, the Metropolis-Hastings
algorithm works as expected. If it is not, it needs to proceed on one connected com-
ponent of the support and the di�erent connected components of the support E must
be linked by the kernel of the Metropolis-Hastings algorithm. Also, there are minimal
conditions which are necessary for the support for f to be the stationary distribution of
theMetropolis-HastingsMarkov chain, as detailed in Robert and Casella (2004, p. 272).
Most importantly, the following has to hold:

supp f ⇢
[

x2supp f
supp q(·|x) (8.4)

Otherwise, stepping into x in a given iteration can result in q(·|x) being not defined
there, resulting in a Metropolis-Hastings algorithm which gets stuck in x.

The theoretical justification of the Metropolis-Hastings kernel stems from the fact
that it satisfies the detailed balance condition (Robert and Casella, 2004, Def. 6.45) and
therefore yields f as the stationary distribution (Robert and Casella, 2004, p. 272):

Theorem 8.2. Let (X(t)) be the chain produced by Algorithm 1. For every conditional
distribution q whose support includes the support E of f ,
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(a) the kernel of the chain satisfies the detailed balance condition with f

(b) f is a stationary distribution of the chain

By use of the Ergodic Theorem – see Robert and Casella (2004, Theorem 6.63) –
and under some non-restrictive assumptions about the proposal distribution q – that
is, positivity in the form q(y|x) > 0 for all (x, y) 2 E ⇥ E – and allowing for the events
{X(t+1) = X(t)}, irreducibility and aperiodicity of the Metropolis-Hastings Markov
chain follow. Irreducibility in turn leads to the chain being recurrent, even Harris re-
current:
Lemma 8.3. If the Metropolis-Hastings chain (X(t)) is f -irreducible, it is Harris recur-
rent.

Irreducibility then justifies the use of the posterior mean as a Bayesian point es-
timate from posterior distributions obtained by a Metropolis-Hastings chain (Robert
and Casella, 2004, p. 274):

Theorem8.4. Suppose that theMetropolis-HastingsMarkov chain (X(t)) is f -irreducible.

(i) If h 2 L1( f ), then

lim
T!•

1
T

T

Â
t=1

h(X(t)) =
Z

h(x) f (x)dx f-a.e. (8.5)

(ii) If in addition (X(t)) is aperiodic, then

lim
n!•

����

����
Z

Kn(x, ·)µ(dx)� f
����

����
TV

= 0 (8.6)

In the above, Kn denotes the Metropolis-Hastings transition kernel. Therefore, un-
der relativelymild assumptions the posteriormean obtained fromaMetropolis-Hastings
chain is a valid approximation of the mean of the true posterior distribution which is
analytically not available, when the number of simulation steps T is large. Then, the
total variation norm || · ||TV of the di�erence of the Metropolis-Hastings kernel Kn(x, ·)
and the stationary distribution f approaches 0 for n ! •. A somewhat less restrictive
condition on f goes back to Roberts and Tweedie (1996):
Lemma 8.5. Assume f is bounded and positive on every compact set of its support E .
If there exist positive numbers # and d such that

q(y|x) > # if |x� y| < d (8.7)

then the Metropolis-Hastings Markov chain (X(t)) is f -irreducible and aperiodic. Fur-
thermore, every nonempty compact set is a small set.

8.1.2 The independent Metropolis-Hastings algorithm
A modification of the original Metropolis-Hastings algorithm is provided by the inde-
pendent Metropolis-Hastings algorithm. The di�erence to the original version is that
now the proposal distribution q does not depend on X(t) anymore. For notational con-
venience, q is now renamed g, and the resulting algorithm is given as follows (Robert
and Casella, 2004, p. 276):
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Algorithm 2 (Independent Metropolis-Hastings). Given x(t),

1. Generate Yt ⇠ g(y)

2. Take

X(t+1) =

8
<

:
Yt, with probability min

⇣
f (Yt)g(x(t))
f (x(t))g(Yt)

, 1
⌘

x(t), otherwise
(8.8)

The convergence properties of the chain X(t) in Algorithm 2 follow immediately, as X(t)

is irreducible and aperiodic (and therefore ergodic), if and only if g is almost every-
where > 0 on the support of f . Stronger results for geometric or uniform convergence
can also be established (Robert and Casella, 2004, p. 277):
Theorem 8.6. Algorithm 2 produces a uniformly ergodic chain if there exists a con-
stant M such that

f (x)  M · g(x), 8x 2 supp f (8.9)

In this case,

||Kn(x, ·)� f ||TV  2
✓
1� 1

M

◆n
(8.10)

where || · ||TV denotes the total variation norm. On the other hand, if for every M,
there exists a set of positive measure where eq. (8.9) does not hold, (X(t)) is not even
geometrically ergodic.

In the light of Equation (8.9), it is natural to compare algorithm 2 with a classic
Accept-Reject algorithm, as the pair ( f , g) could also be used for a simulation viaAccept-
Reject simulation. Indeed, algorithm 2 dominates the Accept-Reject algorithm in that
its expected acceptance probability is at least as high as in a classic Accept-Reject algo-
rithm (Robert and Casella, 2004, p. 278):
Lemma 8.7. If Equation (8.9) holds, the expected acceptance probability associated
with Algorithm 2 is at least 1

M when the chain is stationary.
This result is only one aspect which visualizes the advantages obtained by MCMC

methods overmore traditionalMonteCarlomethods. Nevertheless, it should be stressed
that using MCMC algorithms makes only sense if no direct simulation methods are
available. If direct simulation methods are available, these always dominate MCMC
algorithms in terms of computational e�ciency.

8.1.3 The random walk Metropolis-Hastings algorithm
The original introduction of the Metropolis-Hastings algorithm by Metropolis et al.
(1953) used a symmetric random walk as a proposal distribution g. The convergence
results naturally apply in this case, because by Lemma 8.5, if g > 0 in a neighbourhood
of 0, the chain becomes irreducible and aperiodic and therefore ergodic. The origi-
nal Metropolis-Hastings algorithm was formulated this way as follows (Robert and
Casella, 2004, p. 288):
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Algorithm 3 (Random walk Metropolis-Hastings). Given x(t),

1. Generate Yt ⇠ g(|y� x(t)|).

2. Take

X(t+1) =

(
Yt, with probability min

n
1, f (Yt)

f (x(t))

o

x(t), otherwise
(8.11)

From a theoretical point of view, the di�erent Metropolis-Hastings algorithms detailed
above produce ergodic Markov chains under relatively non-restrictive conditions. Still,
they also do rarely enjoy strong ergodicity properties like geometric of uniform ergod-
icity, for which some results are provided by Robert and Casella (2004, Chapter 7) and
Mengersen K. L. and Tweedie (2012). While there are multiple approaches for opti-
mization, including conditioning and tuning the acceptance rate, the universality of
the class of Metropolis-Hastings algorithms lies in the nearly non-existent restrictions
for the proposal density q. However, this universality comes at the price of computa-
tional e�ciency, and incorporating more restrictions on the proposal density q can lead
to an improved algorithm. This approach leads to the slice sampler.

8.2 The Slice-Sampler
The slice sampler is the firstMCMCalgorithmwhich is based on theMetropolis-Hastings
algorithm and which exploits the local conditional features of the density f . It can be
seen as a generalization of the fundamental theorem of simulation (Robert and Casella,
2004, Theorem 2.15), which is recited below:
Theorem 8.8 (Fundamental Theorem of Simulation). Simulating

X ⇠ f (x) (8.12)

is equivalent to simulating

(X,U) ⇠ U{(x, u) : 0 < u < f (x)} (8.13)

Uniform generation on the subgraph j( f ) of f ,

j( f ) := {(x, u) : 0  u  f (x)} (8.14)

no matter what dimension f has, su�ces therefore and f needs also only be known up
to a normalizing constant.

8.2.1 The 2D Slice sampler
The idea behind the slice sampler is to use a Markov chain with stationary distribu-
tion equal to this uniform distribution on j( f ). A natural solution is to use a random
walk on j( f ), which moves iteratively along the coordinate axes. This procedure was
proposed by Neal (1997) in a technical report, and published six years later in (Neal,
2003):
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Algorithm 4 (2D Slice sampler). At iteration t, simulate

1. u(t+1) ⇠ U[0, f (x(t))];

2. x(t+1) ⇠ UA(t+1) with

A(t+1) = {x : f (x) � u(t+1)} (8.15)

An extremely helpful fact in the context of Bayesian hypothesis testing is that the algo-
rithm remains valid if f = c · f1(x), and f1 is used instead of f . That is, unnormalized
posteriors can be handled in straightforward manner by the slice sampler.

The validity of Algorithm 4 is due to the fact that both steps preserve the uniform
distribution on j( f ), which is shown by Robert and Casella (2004, Chapter 8). The
only major issue with Algorithm 4 is that the simulation of the uniform distribution on
UA(t+1) can be di�cult, as the determination of the set of y’s such that f1(y) � w can
be intractable for complex f1 and given w 2 R. Therefore, the general slice sampler
extends the 2D slice sampler.

8.2.2 The general Slice Sampler
The general slice sampler builds upon the fundamental theorem of simulation, too. It
relies upon a decomposition of the density f (x) into components fi(x) as

f (x) µ
k

’
i=1

fi(x) (8.16)

where, fi(x) > 0 for all x. In a Bayesian context, these may be individual likelihoods
building the complete-sample likelihood. As in the 2D slice sampler, where a single
auxiliary variable is used, the general slice sampler uses k auxiliary variables wi to write
each fi(x) as

fi(x) =
Z

1[0, fi(x)](wi)dwi (8.17)

and f can be written as the marginal distribution of the joint distribution

(x,w1, ...,wk) ⇠ p(x,w1, ...,wk) µ
k

’
i=1

1[0, fi(x)](wi) (8.18)

By introducing a larger dimensionality – similar to the 2D slice samplerwhich uses only
one auxiliary variable – the general slice sampler generalizes Algorithm 4 as follows
(Robert and Casella, 2004, p. 326):

Algorithm 5 (Slice Sampler). At iteration t+ 1, simulate
1. w(t+1)

1 ⇠ U[0, f1(x(t)]
...
k. w(t+1)

k ⇠ U[0, fk(x(t)]

k+ 1. x(t+1) ⇠ UA(t+1) , with

A(t+1) = {x : fi(x) � w
(t+1)
i , i = 1, ..., k} (8.19)
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Tierney and Mira (1999) and Roberts and Rosenthal (1997) investigated the conver-
gence properties of the slice sampler, and Tierney and Mira (1999) showed, that if f1
is bounded and supp f1 is also bounded, the slice sampler as given in Algorithm 5 is
uniformly ergodic. Indeed, the convergence properties of the slice sampler follow from
the convergence properties of the Gibbs sampler, of which the slice sampler itself is a
special case.

8.3 The Gibbs Sampler
The slice sampler is a special case of the class of algorithms called Gibbs samplers,
which rely on using the conditional distributions associated with the target distribu-
tion f . There are two Gibbs samplers: The two-stage Gibbs sampler, and the general
Gibbs sampler. The two-stage Gibbs sampler enjoys even stronger convergence proper-
ties than the general Gibbs sampler and applies in a wide variety of settings. The idea
behind Gibbs sampling is the same as for slice sampling: Instead of a density fX(x),
a joint density f (x, y) on an arbitrary product-space X ⇥ Y is considered. By Theo-
rem 8.8, it su�ces to simulate a uniform distribution on

j( f ) = {(x, y, u) : 0  u  f (x, y)} (8.20)

and use a random walk which moves uniformly in one component at each time step.
Starting at a point (x, y, u) in the support of f , generating

1. X along the x-axis on U{x:u f (x,y)}

2. Y along the y-axis on U{y:u f (x0,y)}, where x0 is the result of Step 1.

3. U along the u-axis on U[u:u f (x0,y0)]„where x0 is the result of Step 1 and y0 the result
of Step 2.

su�ces to simulate f . As the sequence of uniform generations does not matter and
in the limiting case, simulations along the x and u axes can be repeated several times
before moving along the y-axis. In the limiting case of this scenario, where x and u
simulations are repeated an infinite number of times before simulating along the y-
axis, this is equal to a simulation of X ⇠ fX|Y(x|y). In the same way, in the limiting
case, the simulation of Y and U correspond to a simulation of Y ⇠ fY|X(y|x). Simula-
tion of U gets superfluous then, as one is interested in the simulation of f (x, y) rather
than the uniform distribution on j( f ). If both conditionals fX|Y(x|y) and fY|X(y|x) can
be simulated, the three steps above can be decomposed into the limiting case of two
slice samplers, for which stationarity is maintained. Still, the two-stage Gibbs sampler
needs knowledge of the conditional distributions in contrast to the 2D slice sampler.

8.3.1 The two-stage Gibbs sampler
While this is not the way the two-stage Gibbs sampler was derived, it is clear that it
generates a Markov chain (Xy,Yt) as follows (Robert and Casella, 2004, p. 339):
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Algorithm 6 (Two-stage Gibbs Sampler). Take X0 = x0. For t = 1, 2, ... generate

1. Yt ⇠ fY|X(·|xt�1)

2. Xt ⇠ fX|Y(·|yt)

In terms of Algorithm 4, the 2D slice sampler in Algorithm 4 can be interpreted as
a special case of the two-stage Gibbs sampler, in which f (x, y) is the uniform distri-
bution on the subgraph j( f ). Indeed, the slice sampler starts with fx(x) and by the
introduction of an auxiliary variable creates the joint density f (x, u) = 1(0<u< fX(x)),
which is generated artificially in the setting of the slice sampler. For simulation, the
slice sampler then uses the conditional densities fX|U and fU|X, which are exactly the
ones a two-stage Gibbs Sampler as in Algorithm 6 would use. Therefore, the conver-
gence properties of the slice sampler follow by those of the two-stage Gibbs sampler.
While there is a multitude of special properties only holding for the two-stage Gibbs
sampler, the most important convergence properties follow from the properties of the
general Gibbs sampler, of which the two-stage Gibbs sampler itself is again a special
case.2

8.3.2 The multi-stage Gibbs Sampler
The multi-stage Gibbs sampler generalizes the two-stage Gibbs sampler in the same
way the general slice sampler generalizes the 2D slice sampler. While some properties
like the interleaving property, Rao-Blackwellization and the Duality principle do not
hold for the multi-stage Gibbs sampler, there are still enough optimality properties so
that the multi-stage Gibbs sampler can be called the ‘workhorse’ of MCMC, next to the
Metropolis-Hastings algorithm (Robert and Casella, 2004). The derivation is similar
to the two-stage case: for p > 1, a random variable X 2 X is decomposed as X =
(X1, ...,Xp), where Xi 2 R or Rd. If simulation from the univariate full conditionals
f1, ..., fp, given by

Xi|x1, x2, ..., xi�1, xi+1, ..., xp ⇠ fi(xi|x1, x2, ..., xi�1, xi+1, ..., xp) (8.21)

is possible for i = 1, ..., p, the associatedmulti-stageGibbs sampler is given by as follows
(Robert and Casella, 2004, p. 372):

Algorithm 7 (The Gibbs Sampler). Given x(t) = (x(t)1 , x(t)2 , ..., x(t)p ), generate
1. X(t+1)

1 ⇠ f1(x1|x
(t)
2 , ..., x(t)p )

2. X(t+1)
2 ⇠ f2(x2|x(t+1)

1 , x(t)3 ..., x(t)p )
...
p. X(t+1)

p ⇠ fp(xp|x(t+1)
1 , x(t+1)

2 ..., x(t+1)
p�1 )

2Liu et al. (1994) first proved some remarkable structural properties of the two-stage Gibbs sampler,
that is, that the marginal chains (X(t)) and (Y(t)) are reversible and satisfy the interleaving property. If
reversibility of the subchainsmatters, Algorithm 6 can easily be adapted to the reversible two-stageGibbs
sampler, as detailed in (Robert and Casella, 2004, Chapter 9). Also, Diebolt and Robert (1994) built
upon the work of Liu et al. (1994) and introduced the duality principle for interleaving chains. Later,
Gelfand and Smith (1990) proposed a technique calledRao-Blackwellization, which builds uponAppendix
C, Theorem C.55 and the early work of Liu et al. (1994) and Diebolt and Robert (1994).
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Like in the two-stage case, only the conditional densities need to be known. Via a com-
pletion density, the completion Gibbs sampler is derived, for which most convergence
results can be shown. A completion density g of a density f has to satisfy

R
Z g(x, z)dz =

f (x). For p > 1, rewriting y as y = (x, z) and denoting the conditional densities of
g(y) = g(y1, ..., yp) as

Y1|y2, ...yp ⇠ g1(y1|y2, ..., yp) (8.22)
Y2|y1, y3, ...yp ⇠ g2(y2|y1, y3, ...yp) (8.23)

...
Yp|y1, y3, ...yp�1 ⇠ gp(yp|y1, y3, ...yp�1) (8.24)

the completion Gibbs sampler is given as follows (Robert and Casella, 2004, Chapter
10):

Algorithm 8 (Completion Gibbs Sampler). Given (y(t)1 , ..., y(t)p ), simulate
1. Y(t+1)

1 ⇠ g1(y1|y
(t)
2 , ..., y(t)p )

2. Y(t+1)
2 ⇠ g2(y2|y(t+1)

1 , y(t)3 ..., y(t)p )
...
p. Y(t+1)

p ⇠ gp(yp|y(t+1)
1 , ..., y(t+1)

p�1 )

The two-stage Gibbs sampler in Algorithm 6 is therefore a special case of Algorithm 8,
where f is completed in g with x completed as y = (y1, y2) where y1 corresponds to X
and y2 to Y in Algorithm 6, and both conditionals g1(y1|y2) and g2(y2|y1) are available
for simulation. The convergence properties of the Gibbs sampler then follow by the
following result (Robert and Casella, 2004, Section 10.2.1):

Theorem 8.9. For the Gibbs sampler in Algorithm 8, if (Y(t)) is ergodic, then the dis-
tribution of g is a stationary distribution for the chain (Y(t)) and f is the limiting distri-
bution of the subchain (X(t)).

The following Lemma, first proved by Tierney (1994), shows the condition on the
Gibbs transition kernel:
Lemma 8.10. If the transition kernel associated with Algorithm 8 is absolutely contin-
uous with respect to the dominating measure, the resulting chain is Harris recurrent.

In total, the condition of absolute continuity with respect to the dominating mea-
sure on the Gibbs transition kernel implies by Lemma 8.10 the irreducibility and Harris
recurrence of (Y(t)). If (Y(t)) is also aperiodic, by Robert and Casella (2004, Definition
6.47, Theorem 6.51, Theorem 10.10) the ergodicity of (Y(t))with stationary distribution
g follows.
Therefore, ergodicity for the two-stage Gibbs sampler as well as the 2D- and general
slice sampler follow immediately. The multi-stage and two-stage Gibbs samplers in-
herit ergodicity and convergence to the stationary distribution f because they are spe-
cial cases of the completion Gibbs sampler. The general slice sampler and the 2D slice
sampler inherit their convergence behaviour from the multi-stage Gibbs sampler. The
multi-stage Gibbs sampler can also be interpreted as a composition of p Metropolis-
Hastings kernels, also leading to the convergence properties of the multi-stage Gibbs
sampler (Robert and Casella, 2004, p. 381):
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Theorem 8.11. The Gibbs sampling method of Algorithm 8 is equivalent to the com-
position of p Metropolis-Hastings algorithms, with acceptance probabilities uniformly
equal to 1.

From a probability theory perspective, the Hammersley-Cli�ord theorem provides
another theoretical justification why the Gibbs sampler works next to the formal results
presented above. It highlights that the full conditional distributions su�ce to recover
the complete information of the joint distribution f (x, y), while the marginal distribu-
tions fail to do so:
Theorem 8.12 (Hammersley andCli�ord (1971)). Under the positivity condition (see
Robert and Casella (2004, Definition 9.1), the joint distribution g satisfies

g(y1, ..., yp) µ
p

’
j=1

glj(ylj |yl1 , ..., yl�1, y0l+1, ..., y
0
lp)

glj(y
0
lj
|yl1 , ..., yl�1, y0l+1, ..., y

0
lp)

for every permutation l on {1, 2, ..., p} and every y 2 Y .
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Wilfred Keith Hastings
Monte Carlo Sampling Methods Using Markov

Chains and Their Applications

Chapter 3, Chapter 4 and Chapter 5 described the evolution of frequentist hypoth-
esis testing by following the early beginnings of Fisher’s Significance Testing to the al-
ternative Neyman-Pearson-Theory and the hybrid approach which is commonly used
today and evolved out of both theories. On the other hand, Chapter 6 and Chapter 7
introduced Bayesian statistics and the evolution of the Bayes factor as an alternative to
the frequentist theories of hypothesis testing. The last chapter outlined Markov-Chain-
Monte-Carlo methods, which have historically provided a significant simplification of
Bayesian inference in practice, as they allowed to obtain a posterior distribution numer-
ically instead of analytically. While there is a spectrum of statistical models for which
analytic inference via Bayes’ theorem – see Held and Sabanés Bové (2014) orMarin and
Robert (2014) for an overview – is possible, the majority of complex and hierarchical
statistical models in realistic applications escapes an analytical treatment. As a con-
sequence, no closed-form expressions can be derived for the posterior distribution of
the parameters of interest. As Chapter 8 already detailed, this is where Markov-Chain-
Monte-Carlo methods are needed and have shown to be a highly e�cient way to obtain
posterior distributions of previously not tractable statistical models. In fact, MCMC al-
gorithms also o�ered solutions to some substantial problems in frequentist inference
and hypothesis testing:

“Whenwe leave the exponential family setup, we face increasingly challeng-
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ing di�culties in using maximum likelihood techniques. One reason for
this is the lack of a su�cient statistic of fixed dimension outside exponential
families1, barring the exception of a few families such as uniform or Pareto
distributions whose support depends on q (Robert 2001, Section 3.2). This
result, known as the Pitman-Koopman-Lemma (see Lehmann and Casella
1998, Theorem 1.6.18), implies that, outside exponential families, the com-
plexity of the likelihood increases quite rapidly with the number of obser-
vations, n and thus, that its maximization is delicate, even in the simplest
case.”
Robert and Casella (2004, p. 10)

MCMCmethods could easily be applied to such problems and did not su�er from sim-
ilar problems when a suitable prior distribution was chosen on the model parameters.

“Similar computational problems arise in the determination of the power of
a testing procedure in the Neyman-Pearson approach (see Lehmann 1986,
Casella and Berger 2001, Robert 2001). For example, inference based on a
likelihood ratio statistic requires the computation of quantities such as

Pq(L(q|X)/L(q0|X)  k), (9.1)

with fixed q0 and k, where L(q|x) represents the likelihood based on observ-
ing X = x. Outside of the more standard (simple) settings, this probability
cannot be explicitly computed because dealing with the distribution of test
statistics under the alternative hypothesis may be quite di�cult.”
Robert and Casella (2004, p. 12)

In the above cases, the posterior can be obtained numerically via MCMC with nearly
arbitrary (instead of conjugate) priors. Maximisation is then achieved by computing
the posterior mode from distribution of the Markov chain samples.

Hypothesis testing from a Bayesian perspective traditionally relied strongly on the
calculation of the Bayes factor as detailed in Chapter 7. However, with the advent of
Markov-Chain-Monte-Carlo techniques, next to the derivation of posteriors in previ-
ously untractable statisticalmodels, newpossibilities for testing hypotheses in a Bayesian
manner emerged. The introduction of MCMC, therefore, elevated Bayesian inference
onto the same level of applicability as frequentist estimation and hypothesis testing. Re-
cent developments – especially the availability of highly capable computing resources
and probabilistic programming languages and MCMC samplers like JAGS (Plummer,
2003) and STAN(Carpenter et al., 2017) – havemade the Bayesian approachmuchmore
popular and accessible as detailed in Chapter 1. This chapter reconstructs the mile-
stones of the evolution of Markov-Chain-Monte-Carlo methods and shows that these
methods have opened the door to obtaining a Bayesian posterior in an algorithmic fash-
ion. Furthermore, they have allowed to performBayesian hypothesis testing in the same
manner for nearly arbitrary statistical models2 In cases where no analytic derivation of

1See (Rüschendorf, 2014, Chapter 4) for a simple proof.
2We do not discuss this point in detail in this thesis, as this is outside of the scope of the main text,

but notice that examples where MCMC methods have considerably eased the application of Bayesian
hypothesis testing are bridge sampling (Gronau et al., 2017, 2019) and the Savage-Dickey density ratio
(Dickey and Lientz, 1970; Verdinelli and Wasserman, 1995; Wagenmakers et al., 2010), which is used
to obtain the density under the alternative H1 via MCMC samples and subsequently calculate the Bayes
factor. For other approaches to Bayesian hypothesis testing based onMCMC see Kelter (2020a,e), Pereira
and Stern (2020) and Makowski et al. (2019a) as well as Chapter 14.
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the Bayes factor was possible before the availability of MCMCmethods, this presents a
definite plus for the applicability of Bayesian methods to hypothesis testing.

9.1 AnOverviewof theEvolution ofMarkov-Chain-Monte-
Carlo

The MCMC algorithms introduced in Chapter 8 root back to the invention of the orig-
inal MCMC method, introduced in 1953 by Metropolis et al. (1953). The invention of
MCMC starts with this single publication, and there are no previous papers on which
the ideas introduced inMetropolis et al. (1953) are built. While in frequentist statistical
inference, a few people, namely Ronald Fisher, Jerzy Neyman and Egon Pearson can be
attributed as the driving forces, the development of MCMC methods was achieved by
various people. The cornerstonewas laid in LosAlamos afterWorldWar II byMetropo-
lis et al. (1953), and it took a long time until the ideas developed in the 1950s were
rediscovered and refined. There are five milestones, which can be seen as a chain of
succeeding developments leading to the modern theory of MCMC as it is available to-
day:

1. The birth hour of MCMC: Equations of State Calculations by Fast Computing Ma-
chines, published in 1953 byMetropolis et al. (1953), where the famousMetropolis-
algorithm (see Algorithm 3) was introduced.

2. The formal justification of the original Metropolis algorithm: Hastings (1970)
publication of the paper Monte Carlo Sampling Methods Using Markov Chains and
Their Applications in 1970.

3. Thirty years after the publication of the originalMetropolis algorithm, Kirkpatrick
et al. (1983) published their paper Optimization by Simulated Annealing, which in-
troduced simulated annealing.

4. One year later, in 1984 the brothers Geman and Geman (1984) published the pa-
per Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images,
which introduced the Gibbs-sampler (see Algorithm 7).

5. Finally, in 1990, Gelfand and Smith (1990) wrote the paper called Sampling-Based
Approaches to Calculating Marginal Densities, in which the Gibbs sampler was pre-
sented as a general-purpose inference tool in a purely statistical context.

While there are multiple other papers which also attributed to the development of
MCMC – for example the later introduction of the slice sampler as given in Algorithm 5
by Neal (1997) and Neal (2003) – the foundations were developed in the above five pa-
pers, and their impact can hardly be overstated. According to Google Scholar3, the
paper of Metropolis et al. (1953) was cited 38827 times, Hastings (1970) paper was
cited 13168 times, the paper of (Kirkpatrick et al., 1983) 43035 times, the paper of (Ge-
man and Geman, 1984) 22277 times and the paper of Gelfand and Smith (1990) 7803
times, so that in total the four papers above were cited 86380 times, which indicates the
huge impact they had. Also, the Metropolis-Hastings-Algorithm was titled one of the
ten most important algorithms invented in the whole century (Dongarra and Sullivan,

3Data obtained at the first of April, 2019.
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2000).

Much has been written about the early work at Los Alamos, especially about the
firstMonteCarlo approaches byAnderson (1986), Hitchcock (2003), Gubernatis (2005)
andMetropolis (1987) himself. Also, the emerging of theMonte Carlomethod from the
need for particle physics simulations for the development of the nuclear bomb has been
detailed by Harlow and Metropolis (1983). Robert and Casella (2008); Robert (2015)
provides a rough overview about the purpose and historical aspects of Markov-Chain-
Monte-Carlo, leaving out themodern developments likeHamiltonianMonteCarlo, and
also leaving out a discussion of the possibilities ofMarkov-Chain-Monte-Carlomethods
with regards to Bayesian hypothesis testing. Richey (2010) gives an overview about the
development of MCMCmethods in general and a detailed account of the introduction
of simulated annealing into the statistical community, but also does not addressMCMC
as a door-opener to Bayesian hypothesis testing.

This chapter, therefore, focusses on themilestones described above. In the following
sections, these main developments are reconstructed and, in particular, the resulting
consequences for Bayesian hypothesis testing are discussed.

9.2 The Introduction of the originalMetropolisAlgorithm
The Metropolis-algorithm was born out of the Monte Carlo methods developed and
utilised in Los Alamos as described by Metropolis (1987). The development of nuclear
weapons was one of the central goals of the applied physical research in Los Alamos,
and one problem of interest constituted itself in the estimation of the behaviour of large
particle collections inside nuclear weapons. As the physical laws describing the be-
haviour of such particles are often probabilistic, like the probability of an electron being
located in a particular molecular orbital or suborbital, traditional analytical methods
did not su�ce to derive any useable results. Metropolis (1987) noted, that at that time,
the idea of simulating the state of a complex system like that of a large collection of par-
ticles emerged in the form of theMonte Carlomethod, but that even the simulationwas
a di�cult task, as computing powerwas rarely available and slow. Nevertheless, the sit-
uation was considerably better than before WorldWar II, when no computing power at
all was available, so that simulation of complex systems was at least conductible with-
out having to perform handwritten calculations. The idea of using simulation to solve
such problems can be attributed to Ulam Stan, who wrote about that time years later
(Ulam, 1991). Also, Eckhardt (1987) gave a recollection of the early Monte Carlo ideas
in Los Alamos. In 1946, Stanislaw Ulam had to stay at a hospital for a few days and
often played Solitaire for his entertainment with his visitors (Ulam, 1991). In the ver-
sion Ulam played, once the cards were dealt the outcome of the game was completely
determined, and he wondered about the probability of winning. The combinatorial
problem was of a much too large scale because of the number of cards, and he came
up with the idea of programming the ENIAC computer in Los Alamos to simulate the
outcome of a game. Therefore, first, the shu�ing of cards needed to be simulated, and
subsequently, the rules of the solitaire version needed to be applied4. While Stanislaw

4ENIAC was an acronym for Electronic Numerical Integrator and Computer. The ENIAC was the first
electronic general-purpose computer which was Turing-complete. Its original purpose was to calculate
ballistic tables for the military and not combinatorial problems in card games.
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Ulam never pursued this idea for the solitaire game, he proposed his approach for the
simulation of particles at his work for the nuclear weapon research in Los Alamos to
his good friend John von Neumann. One year later, in 1947, von Neumann and his
colleagues were indeed working on the estimation of neutron di�usion and multipli-
cation rates in nuclear fission with a particular interest in nuclear weapons (Eckhardt,
1987). Together with Ulam, von Neumann proposed to follow the idea of randomly
simulating a large number of neutrons and their evolution over time at nuclear fission.
After stopping the simulation, they counted the number of electronswhich remained to
estimate the rates of interest. Richey (2010) noted that the speed of simulation was ex-
tremely slow. In essence, StanislawUlam and John vonNeumannwere able to simulate
100 neutrons with 100 collisions which took about five hours for the simulation to com-
plete on the ENIAC. Nevertheless, the approach was a methodologic breakthrough. It
combined the slowly emerging computing power with the century-old strong law of
large numbers to obtain posterior expectations of quantities of interest. From this point
on, randomized simulations became an important new technique. Metropolis (1987)
recalled that the name Monte Carlo method was his idea:

“Itwas at that time that I suggested an obvious name for the statisticalmethod
– a suggestion not unrelated to the fact that Stan had an uncle who would
borrow money from relatives because he “just had to go to Monte Carlo.”’
(Metropolis, 1987, p. 127)

Two years later, in 1949, Metropolis and Ulam published the ideas in a joint paper and
noted, that computing machines are “extremely well suited to perform the procedures
described.” (Metropolis and Ulam, 1949, p. 339). They outlined their ideas in the 1949
paper, but only four years later, the seminal paper introducing the original Metropolis-
Hastings algorithm was published (Metropolis et al., 1953).

The introduction of the algorithm by Metropolis et al. (1953) was motivated par-
tially by the goal to infer properties of the well-known Boltzmann distribution used
in statistical mechanics, where, in particular, the average behaviour of large particle
systems was of interest. A detailed account of the ideas behind the Boltzmann distri-
bution can be found in (Richey, 2010), and here only the most important points are
detailed. In the 1950s, the scientific branch of statistical mechanics tried to describe a
collection of particles by a configuration w, with w 2 W, the configuration space. In
the usual scenario, a finite set of N particles is given, and every particle is modelled
using its position and velocity, each in three-dimensional space. The dimension of the
configuration space W follows as dim(W) = 6 · N because W is a subset of R6·N. An-
other common approach is to model the particle system by assigning ±1 to every grid
point of the integer lattice in the plane, resulting in a bounded subset of W. The state
+1 could indicate the presence of a particle at the grid point of the lattice, and �1 the
absence, thus describing the motion of the whole particle system dependent on time.
The dimension of the configuration space then reduces to dim(W) = 2N. In statistical
mechanics, one uses an energy function E : W �! R+ to model quantities like poten-
tial energy in the continuous case. The particle system is modelled in its equilibrium
state via the relative frequency of a configuration w in form of its so-called Boltzmann
weight e�E(w)/k·T, with the temperature T and the Boltzmann’s constant k. The Boltzmann
distribution then uses the following Boltzmann probability to model the probability of the
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particle system being in a specific configuration:

B(w) =
e�E(w)/k·T

Âw̃2W e�E(w̃)/k·T (9.2)

Richey (2010) noted that for any realistic setting, the denominator in Equation (9.2) is
analytically intractable and no closed-form expression is available. In statistical physics,
quantities like the total energy of the particle system

hEi := Â
w2W

E(w) · B(w) =
Âw2W e�E(w)/k·TE(w)

Âw̃2W e�E(w̃)/k·T (9.3)

are of interest, which in a statistical interpretation are often ordinary an expectation.
Standard Monte Carlo techniques which were just invented at 1947, could be utilised
to randomly generate w1, ...,wK with K 2 N uniformly on W (that is, wi ⇠ U (W)), and
approximate Equation (9.3) via the use of the empiricalmean. The validity follows from
the strong law of large numbers. One particular drawback of this approach was that
the random sampling procedure included also configuration states w̃ with a very small
Boltzmann probability B(w̃) in the approximation of the expectation in Equation (9.3).
This iswhatMetropolis et al. (1953) addressed in the paper introducing theMetropolis-
Hastings algorithm. They considered a square of N particles, where each cell’s value
in the square either indicated the presence or absence of a particle:

“Thus the most naive method of carrying out the integration would be to
put each of the N particles at a random position in the square (this de-
fines a random point in the 2N-dimensional configuration space), then cal-
culate the energy of the system according to Eq. (1), and give this config-
uration a weight exp(�E/kT). This method, however, is not practical for
close-packed configurations, since with high probability we choose a con-
figuration where exp(�E/kT) is very small; hence a configuration of very
low weight. So the method we employ is actually a modified Monte Carlo
scheme, where, instead of choosing configurations randomly, then weight-
ing them with exp(�E/kT), we choose configurations with a probability
exp(�E/kT) and weight them evenly.”
(Metropolis et al., 1953, p. 1088)

To follow this strategy, Metropolis et al. (1953) needed to be able to simulate random
numbers wi from the Boltzmann distribution B(w), instead of the uniform distribu-
tion on a compact set. Mathematically, instead of wi ⇠ U (W), Metropolis et al. (1953)
needed to simulate wi ⇠ B(wi). As the denominator of Equation (9.2) – also called
the partition function – is not available in realistic settings, direct simulation of random
numbers from the Boltzman distributionwas not possible and this constituted themain
challenge of the entire procedure. The trick of the Metropolis-Hastings algorithm was
to construct a Markov chain which has the Boltzmann distribution as stationary distri-
bution. The crucial property of the algorithm is that it does only need the Boltzmann
weights, that is, the numerator of Equation (9.2). After stating their idea, Metropolis
et al. (1953) introduced the algorithm as the solution to obtaining random numbers
from the Boltzmann distribution as follows: They started with a finite configuration
space W and an energy function E with temperature T, where T was fixed. Augment-
ing the configuration space W then leads to a (possibly larger) space Ŵ, where Ŵ is a
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sample of configurations w 2 W selected with replacement. Metropolis et al. (1953)
then followed the strategy to add and remove configurations w from Ŵ until the sam-
ple Ŵ approximately became a sample from the Boltzmann distribution. By doing so,
Metropolis et al. (1953) then derived the now well-known detailed balance condition
(see Robert andCasella (2004, Def. 6.45)), which needs to be fulfilled forMarkov chains
to converge to the correct stationary distribution. Suppose that |Ŵ| = N̂ and the num-
ber of occurrences of w 2 Ŵ is denoted as N̂w. If the sample can be interpreted as being
one from the Boltzmann distribution, Metropolis et al. (1953) argued, that then

N̂w

N̂
µ exp (�E(w)/k · T) (9.4)

which holds if and only if

N̂w0

N̂w
=

exp (�E(w0)/k · T)
exp (�E(w)/k · T) = exp (�DE/k · T) (9.5)

for two configurations w,w0 and DE := E(w0) � E(w). Metropolis et al. (1953) then
introduced an irreducible, aperiodic Markov chain on W with a symmetric kernel Pw,w0

to model the moves between two configurations w,w0. Because of the symmetry of
the kernel, Pw,w0 = Pw0,w holds for all w,w0 2 W. This Markov chain was called the
proposal transition. Metropolis et al. (1953) reasoned, that for configurations w,w0

with E(w) < E(w0) transitions Pw0,w from w0 to w should always be allowed, as the
particle system then moves to more balanced states in terms of energy. That means,
the probability P(w0,w) of moving (or transitioning from state w0 to state w) is one
in this case: P(w0,w) = 1. They denoted the number of occurrences of such transi-
tions as Pw0,w · N̂w0P(w0,w) = Pw0,w · N̂w0 . Here, N̂w0 is the number of occurrences of
w0 2 Ŵ. Pw0,w is the probability that the Markov kernel proposes to move from w0 to w,
so that the product N̂w0 · Pw0,w is the number of transition proposals from w0 to w. Lastly,
P(w0,w) is the acceptance probability of such proposals. Metropolis et al. (1953) ar-
gued further, that to fulfill the condition in Equation (9.4), alsomoves from w to w0 with
E(w) < E(w0) need to be allowed with a specific probability P(w,w0). The number of
those moves being allowed is calculated analogue to the above as Pw,w0 N̂wP(w,w0).
Then, they calculated the di�erence in the total number of transitions from w to w0 and
w0 to w as

Pw0,wN̂w0 � Pw,w0 N̂wP(w,w0)
(1)
= Pw,w0 N̂w0 � Pw,w0 N̂wP(w,w0) (9.6)
= Pw,w0(N̂w0 � N̂wP(w,w0)) (9.7)
(2)
= Pw,w0(N̂w · exp(�DE/k · T)� N̂wP(w,w0)) (9.8)

wherein (1) the symmetry of the kernel P and in (2) the fact that N̂w0 = N̂w · exp(�DE/k ·
T) resulting from Equation (9.5) was used. If Equation (9.5) holds, the distribution of
energy matches the Boltzmann distribution of energy, and then the flow of energy in
Equation (9.6) should be zero. This immediately implies that due to Equation (9.8)
P(w,w0) = exp(�DE/k · T) needs to hold. Metropolis et al. (1953) argued that this
probability of occasional moves to configurations with higher energy in total guaran-
tees that the Markov chain converges to the stationary distribution, the Boltzmann dis-
tribution. They did not deliver a mathematical proof, but their argument is convinc-
ing and went as follows: They assumed there were too many configurations with high
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energy E(w0) compared to configurations with low energy E(w), that is N̂w0/N̂w >
exp(�DE/k · T). The total number of transitions between configurations w with en-
ergy E(w) and configurations w0 with energy E(w0) of energy given in Equation (9.6)
is positive then, and this means the number of incoming transitions from w0 to w is
larger than the number of outgoing transitions from w to w0. Therefore, there will be
more transitions from configurations w0 with Energy E(w0) to states w with energy
E(w) than reversed transitions from w to w0 with corresponding energy values E(w)
and E(w0). This implies that the inequality N̂w0/N̂w > exp(�DE/k · T) will move a
step towards becoming equality, and the distribution of energies in Ŵ will move a step
towards the Boltzmann distribution. If this step is repeated, in the long run, the whole
process generates a distribution of energies which converges to the Boltzmann distri-
bution. Starting with the assumption of too many configurations, w with low energy
E(w) yields the same conclusion. Based on these ideas, the original Metropolis algo-
rithm was then given as follows:

Algorithm 9 (The original Metropolis algorithm). For w 2 W, the transition to a con-
figuration w⇤ is defined as follows:

1. From an arbitrary proposal transition, select w0.

2. A) If the energy E(w0) < E(w), that is, if B(w0) � B(w), let w⇤ = w0.
B) If the energy E(w0) > E(w), that is, if B(w0) < B(w), let w⇤ = w0 with probability

B(w0)
B(w)

= exp(�DE/k · T)

and else let w⇤ = w.
While Metropolis et al. (1953) were satisfied by their intuition, they noted that the rate
of convergence remained unknown. The first formal proofs of the convergence of the
algorithm were given by Hammersley and Handscomb (1964) and Hastings (1970),
but Metropolis et al. (1953) already took notice of the remarkably important fact that
the proposal parameter – in their original notation a – needed to be chosen carefully for
the algorithm to run e�ciently:

“The above argument does not, of course, specify how rapidly the canonical
distribution is approached. It may be mentioned in this connection that the
maximum displacement a must be chosen with some care; if too large, most
moves will be forbidden, and if too small, the configuration will not change
enough. In either case it will then take longer to come to equilibrium.”
Metropolis et al. (1953, p. 1089)

To tune theMetropolis algorithmwith just the right proposal parameter values became
one of the major challenges of MCMC later, in particular in high-dimensional models
(Robert, 2015).

The original Metropolis algorithm as given in Algorithm 9 has some major advan-
tages, which are the reason it was possible to employ it for simulation of random num-
bers from the previously untractable Boltzmann distribution. First, it does not need
the denominator of Equation (9.2), which is not available in most realistic situations
(compare Chapter 6). Second, it defines the irreducible, aperiodic Markov chain on the
state space without specifying the whole transition kernel. This allowed for straightfor-
ward application of the algorithm even in large-dimensional spaces where specifying
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the transition kernel would quickly become e�ortful. Third, the computational steps
are mostly elementary. The first application of the algorithm in the original 1953 paper
of Metropolis et al. (1953) was an analysis of the hard spheres model, a physical model of
molecules which do not overlap (for example, a gas):

“We set up the calculation on a system composed of N = 224 particles (i=0,
1, .. 223) placed inside a square of unit side and unit area. The particles
were arranged initially in a trigonal lattice of fourteen particles per row by
sixteen particles per column, alternate rows being displaced relative to each
other ...”
Metropolis et al. (1953, p. 1090)

After running the algorithm in this 224-dimensional space, the simulated results ob-
tained by Metropolis et al. (1953) matched closely the analytical results which were
available by employing more traditional methods. Also, the calculation time was mod-
erate, where moderate means that a single calculation, of which there were hundreds
to conduct, took about four to five hours on Los Alamos’ MANIAC computer.

9.3 The Introduction of theMetropolis-HastingsAlgorithm
After the introduction of the originalMetropolis algorithm in 1953,mathematicians and
statisticians took little notice of the method. While the application in the area of statisti-
cal mechanics was promising, few if any researchers had access to computing resources
at that time, so that application was simply not possible for the majority of scientists.
Also, the contextwas quite specific andmasked the universality the algorithmprovided
for solving statistical problems. In particular, the algorithm had no apparent relation-
ship to Bayesian statistics. Furthermore, the 1950s were a decade in which di�erent
statistical areas were topics of interest, see for example Cox (1958); Fisher (1950, 1955).
This situation did not change until the 1980s, even though in 1970, Hastings (1970) pub-
lished a generalisation of the original Metropolis algorithm. The only interest in Monte
Carlo methods from statisticians can be found in Hammersley and Handscomb (1964),
who included a short section about MCMC algorithms in their monograph on Monte
Carlo methods.

At the same time, physicists started to use theMetropolis algorithm for applications
to the Ising model and di�erent other spin models. A prominent example is found in
(Glauber, 1963), who used the Metropolis algorithm to simulate the sequential move-
ment through lattice sites, where at the ith site, the spin wi is set according to the (local)
Boltzmann weight P(wi = s) = exp(�s Âhi,ji wj)/k · T with the summation being over
the nearest neighbor sites hi, ji of i. Other application in the branch of statistical me-
chanics can be found in (Barker, 1969) and (Flinn, 1974). Interestingly, Barker (1969)
constructed a di�erentMarkov chain than the original one proposed byMetropolis et al.
(1953), so that the question arose, how many Metropolis-like algorithms do exist, and
if there is any bestMetropolis algorithm. The first answer to this problem came upwith
the seminal paper of Hastings (1970), who introduced not only a formal proof of con-
vergence of the original Metropolis algorithm but also a generalisation. Luckily, there
is an interview with Hastings himself available in (Rosenthal, 2005). In it, Hastings
recalled:

“When I returned to the University of Toronto, after my time at Bell Labs,
I focused onMonte Carlomethods and at first onmethods of sampling from
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probability distributionswith noparticular area of application inmind. [Uni-
versity of Toronto Chemistry professor] John Valleau and his associates con-
sulted me concerning their work. They were using Metropolis’s method to
estimate themean energy of a system of particles in a defined potential field.
With 6 coordinates per particle, a system of just 100 particles involved a di-
mension of 600. When I learned how easy it was to generate samples from
high dimensional distributions using Markov chains, I realised how impor-
tant this was for Statistics, and I devoted all my time to this method and its
variants which resulted in the 1970 paper.”
Hastings (2005), in (Rosenthal, 2005)

Hastings paperwas a quantum leap as it allowed for the simulation of probability distri-
butions which were untractable previously. In it, he uncoupled the original Metropolis
algorithm from its context of statistical mechanics and applied it to a variety of stan-
dard distributions to simulate from. He provided a generalisation of the original algo-
rithm which included both the algorithm of Metropolis et al. (1953) and Barker (1969)
as special cases. Therefore, the original Metropolis algorithm is often also called the
Metropolis-Hastings algorithm. Hastings (1970) started with the goal to sample from
a distribution p. After selecting a proposal transition Q = (qij) on the state space W
as in (Metropolis et al., 1953), Hastings (1970, p. 100) defined the transition matrix
P = (pij) of the Markov chain as

pij =

(
qij · aij, if i 6= j
1� Âk 6=i pik, if i = j

with aij =
sij

1+ pi
pj

qij
qji

(9.9)

In contrast to the original Metropolis algorithm, the proposal transition Q did not need
to be symmetric, and the values sij needed only to fulfill the conditions sij = sji for all
i, j and aij 2 [0, 1]. Hastings (1970) then noted, that

“Two simple choices for sij are given for all i and j by

sMij =

8
<

:
1+ piqij

pjqji
(

pjqji
piqij

� 1),

1+ pjqji
piqij

(
pjqji
piqij

 1)

sBij = 1

With qij = qji and sij = sMij we have the method devised by Metropolis et al.
(1953) (...)”
Hastings (1970, p. 100)

In Hasting’s original notation, 1+ piqij
pjqji

(
pjqji
piqij

� 1) can be read as 1+ piqij
pjqji

, if (pjqji
piqij

� 1).
To show that indeed the original Metropolis algorithm (and the one of Barker (1969))
are recovered, Hastings (1970) noted that aM

ij corresponding to sMij is given as follows:

“(...) when qij = qji, we have

aM
ij =

(
1, (pj/pi � 1),
pj/pi(pj/pi < 1),

”
Hastings (1970, p. 100)
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which follows directly from the previous definition of sMij and Equation (9.9). After
these derivations, Hastings (1970) stated what is known today better as theMetropolis-
Hastings acceptance probability:

“More generally, we may choose

sij = g[min{(piqij)/(pjqji), (pjqji)/(piqij)}]

where the function g(x) is chosen so that 0  g(x)  1+ x for 0  x  1
and g(x) may itself be symmetric in i and j.”
Hastings (1970, p. 100)

It is straightforward to use the last definition of sij together with Equation (9.9) to
derive the acceptance probability inAlgorithm 2. Therefore, Hastings (1970) noted that

“For example, we may choose g(x) = 1+ 2(12x)
g with the constant g � 1,

obtaining s(M)
ij with g = 1 and s(B)ij with g = •.”

(Hastings, 1970, p. 100)

For this selection of g in the originalMetropolis algorithm, under the assumption (with-
out loss of generality) of min{(piqij)/(pjqji), (pjqji)/(piqij)}) = (piqij)/(pjqji), the
quantity sij becomes

1+ 2(
1
2
min{(piqij)/(pjqji), (pjqji)/(piqij)})1 = 1+ (piqij)/(pjqji)

exactly if (pjqji)
(piqij)

>
(piqij)
(pjqji)

. This is equivalent to pjqji > piqij ,
pjqji
piqij

> 1, which is the

original notation in s(M)
ij of Hastings (1970).5 Thus, the resulting acceptance probabil-

ity is aM
ij above, which is precisely the acceptance probability of Algorithm 2 when g

is symmetric, and which is precisely the acceptance probability of the random walk
Metropolis-Hastings algorithm given in Algorithm 3.

Hastings’ student Peskun (1973) showed three years later that among all choices
for the quantities sij, the special case leading to the original Metropolis algorithm was
indeed optimal. It asymptotically leads to the smallest variance of the ergodic aver-
age obtained by the simulation. The intuition of Metropolis et al. (1953) thus was not
only correct, but the convergence rate was even optimal, which is remarkable. While
Hastings’ achievement of generalising the Metropolis algorithm provided a theoretical
justification, the result of Peskun (1973) even added that is was optimal to use the aver-
ages obtained via the algorithm. Nevertheless, in the years following the publications
of Hastings (1970) and Peskun (1973), little attention was given to these results.

9.4 The Introduction of Simulated Annealing
While the paper of Hastings (1970) placed the original Metropolis algorithm on firmer
theoretical grounds, the method was still far from being widely acknowledged. The
first breakthrough came with the 1983 publication of Scott Kirkpatrick, C.D. Gelatt and
M.P. Vecchi, named Optimization by Simulated Annealing (Kirkpatrick et al., 1983). In it,

5For the case that min{(piqij)/(pjqji), (pjqji)/(piqij)}) = (pjqji)/(piqij), derivations are analogue.
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Kirkpatrick et al. (1983) considered combinatorial optimisation problems, in which de-
terministic problemswere solved using theMetropolis algorithm. The algorithm suited
the large combinatorial spaces extremely well. Instead of random number simulation,
the primary goal of Kirkpatrick et al. (1983) was to find a global minimum value of a
cost function inside of huge but discrete state spaces.

The context of Kirkpatrick’s paper was how one should place electronic circuits like
transistors onto computer silicon chips to optimize the signals and communication on
the chip. While circuits near each other – that is, transistors on the same chip – have
short signal ways, it is no easy task to position the transistors e�ciently so that the total
communication costs becomeminimal. Placing all transistors on one chip is not possible
either. The problem can be formalised as a combinatorial one: Assuming that N circuits
need to be positioned onto two separate silicon chips, using the statistical mechanics’
terminology of Metropolis et al. (1953), a configuration w can be modelled as an N-
dimensional vector w = (w1,w2, ...,wN). For just two silicon chips, it su�ces to use
wi = ±1 to indicate on which of the two chips the ith circuit is positioned. Kirkpatrick
et al. (1983) reasoned

“If we have connectivity information in a matrix whose elements aij are the
number of signals passing between circuits i and j, and we indicate which
chip circuit i is placed on by a two-valued variable µi = ±1 then Nc, the
number of signals that must cross a chip boundary is given by

Â
i>j

(aij/4)(µi � µj)
2

Calculating Âi µi gives the di�erence between the numbers of circuits on
the two chips. Squaring this imbalance and introducing a coe�cient, l, to
express the relative costs of imbalance and boundary crossings, we obtain
an objective function, f for the partition problem:

f = Â
i>j

✓
l �

aij
2

◆
µiµj

”
Kirkpatrick et al. (1983, p. 674)

Kirkpatrick et al. (1983, p. 674) then noted, that the above objective function had the
form of a Hamiltonian, or energy function which is studied in the theory of random
magnets, where the common assumption is that the spins µi can only be oriented up or
down. More precisely, they observed:

“A typical optimizationproblemwill containmanydistinct, noninterchange-
able elements, so a regular solution is unlikely. However, much research in
condensed matter physics is directed at systems with quenched-in random-
ness, in which the atoms are not all alike. An important feature of such
systems, termed “frustration,” is that interactions favoring di�erent and in-
compatible kinds of ordering may be simultaneously present (9). The mag-
netic alloys known as “spin glasses,” which exhibit competition between fer-
romagnetic and antiferromagnetic spin ordering, are the best understood
example of frustration (10). It is now believed that highly frustrated sys-
tems like spin glasses have many nearly degenerate random ground states
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rather than a single ground state with a high degree of symmetry. These
systems stand in the same relation to conventional magnets as glasses do
to crystals, hence the name. The physical properties of spin glasses at low
temperatures provide a possible guide for understanding the possibilities of
optimizing complex systems subject to conflicting (frustrating) constraints.”
Kirkpatrick et al. (1983, p. 673)

Furthermore, spin glasses resemble the Ising model with a modified energy function

E(w) = Â
i>j

(U �Uij)wiwj (9.10)

and the resemblance to the objective function f for the circuits above is striking. In
spin glass models, the quantitiesUij model ferromagnetic forces between neighbouring
states or particles and these competewith repulsive anti-ferromagnetic forcesmodelled
by U, therefore the phrasing frustrated, because both requirements cannot be satisfied
simultaneously. Kirkpatrick et al. (1983) then came up with the idea, that because of
this problem the original Metropolis algorithm as given in Algorithm 9 needed to be
tuned carefully to identify low-temperature states in the state space due to the inher-
ent repulsiveness of the influencing forces in the model. The trick was to slowly de-
crease the temperature T so that the system could converge to a low-energy state while
retaining enough energy to move away from local minima into partitions of the state
space where the global minimum exists. In particular, this procedure guaranteed that
the simulation was not getting attracted too much by local minima. The temperature
schedule, of course, needed to be tuned accordingly to allow such broader exploration
in the beginning and after su�cient exploration, the decreasing temperature prevented
larger moves more and more.6 Kirkpatrick et al. (1983) summarised:

“Using the cost function in place of the energy and defining configurations
by a set of parameters {xi}, it is straightforward with the Metropolis pro-
cedure to generate a population of configurations of a given optimization
problem at some e�ective temperature. This temperature is simply a con-
trol parameter in the same units as the cost function. The simulated anneal-
ing process consists of first “melting” the system being optimized at a high
e�ective temperature, then lowering the temperature by slow stages until
the system “freezes” and no further changes occur. At each temperature,
the simulation must proceed long enough for the system to reach a steady
state. The sequence of temperatures and the number of rearrangements of
the {xi} attempted to reach equilibrium at each temperature can be consid-
ered an annealing schedule.
Annealing, as implemented by the Metropolis procedure, di�ers from it-
erative improvement in that the procedure need not get stuck since transi-
tions out of a local optimum are always possible at nonzero temperature.
A second and more important feature is that a sort of adaptive divide-and-
conquer occurs. Gross features of the eventual state of the system appear at

6The technical details are omitted here due to space reasons. However, excellent theoretical intro-
ductions to simulated annealing from a statistical perspective (e.g. for finding the maxima or minima in
posterior distributions) are given in Robert and Casella (2004). Good introductions to practical imple-
mentations of simulated annealing can be found in Robert and Casella (2010). Conceptually, all these
implementations follow the early ideas of Kirkpatrick et al. (1983).
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higher temperatures; fine details develop at lower temperatures.”
(Kirkpatrick et al., 1983, p. 672/673)

Kirkpatrick et al. (1983) applied their simulated annealing procedure to several diverse
problems, showing promising results. Richey (2010) noted that it took some time un-
til simulated annealing found widespread application. The hesitation ended with the
development of a sound mathematical basis in the publications of Johnson et al. (1989,
1991), Laarhoven and Aarts (1987) and van Laarhoven (1988). Especially the work of
Laarhoven introduced not only applications of simulated annealing, but also compared
it to existing solutions and analysed its theoretical properties.

9.5 The Invention of the Gibbs-sampler

After the introduction of simulated annealing by Kirkpatrick et al. (1983), the next
major step into the modern era of MCMC methods was achieved by the two brothers
Donald and Stuart Geman. In 1984, just one year after simulated annealing was pre-
sented, they published their joint paper called Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images (Geman and Geman, 1984) in which they applied
a Metropolis algorithm to the problem of reconstructing a blurred image. Their pa-
per, from today’s perspective, marks the birth hour of the general-purpose statistical
algorithm which is now called Gibbs sampling.

Geman and Geman (1984) investigated the problem of a Bayesian analysis of im-
ages, which can be modelled as a grid of N pixels. Each pixel takes on colour values
from a set S = {1, ...,M}, so that in terms of statistical mechanics an image can be rep-
resented by a configuration w 2 W, where w = (w1, ...,wN) is defined by the allocation
of values si 2 S to each wi for all i. This quickly leads to huge configuration spaces:
An image with eight possible colours per pixel (that is, S = {1, ..., 8}) of 1000⇥ 1000
pixels leads to a configuration space with |W| = 81000000 elements. The task Geman and
Geman (1984) set themselves was then to reconstruct blurred images after transforma-
tions and noise have been applied to them. During this process, the original configu-
ration w is transformed into a blurred configuration w̃. After that, one wants to find
out what configuration w most probably may have been the original unblurred image.
One easy example of blurring an image is given by adding additive noise in the form
of w̃ = w + K with K = (k1, ..., kN) and ki ⇠ N (0, s2), for a fixed s2 > 0. After the
raw blurring, the resulting values are rounded to values in S to get a valid image in the
configuration space W. Geman and Geman (1984) then considered to Bayes’ theorem
to reconstruct an original image w out of a blurred one w̃:

p(w|w̃) =
p(w̃|w)p(w)

p(w̃)
(9.11)

Following Bayes’ theorem, Geman and Geman (1984) needed to derive which configu-
ration w has the highest probability of being the original image, given the blurred ver-
sion. Due to the extremely large spaces in image analysis, this taskwas di�cult. Geman
and Geman (1984) therefore came up with the idea to adapt the original Metropolis al-
gorithm to their needs. They first noted that the denominator in Equation (9.11) did
not depend on w and therefore was not necessary for the application of a Metropolis
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algorithm.7 The likelihood p(w̃|w) could be computed as

p(w̃|w) µ ’N
j=1 exp

✓
�

k2j
2s2

◆
= ’N

j=1 exp
✓
� (w̃j�wj)

2

2s2

◆
= exp

⇣
� 1

2s2 ÂN
j=1(w̃j � wj)2

⌘
(9.12)

because w̃j = wj + kj with kj ⇠ N (0, s2) and therefore the likelihood simply models
kj = w̃j � wj. The real issue then was to select a suitable prior distribution p(w), and
this is where Geman and Geman (1984) saw a parallel between statistical mechanics
and image reconstruction. They characterised an image by having patterns of some
kind in it, because if there are no neighbored regions of similar pixel values, the im-
age degenerates to white noise. This notion resembles the di�erences between an Ising
lattice in balance or equilibrium and an Ising lattice which is unbalanced or not in equi-
librium. Inspired by the analogy, Geman and Geman (1984) selected the Boltzmann
probability in Equation (9.2) with the energy function of the Ising model EI as a possi-
ble prior:

“AGibbs distribution relative to {S,G} is a probabilitymeasure p on W with
the following representation:

p(w) =
1
Z
e�U(w)/T

where Z and T are constants and U (...) the energy function ...”
Geman and Geman (1984, p. 725)

Omitting the constant 1
Z and choosing the energy function EI(w) = �J Âhi,ji wiwj �

H ÂN
i=1 wi of the Ising model8, one obtains

p(w) µ exp(�EI(w)/k · T) (9.13)

The final trick then was to set k · T < Tcrit to obtain correlated pixel values, where Tcrit
is the critical threshold below which transitions occur in the Ising model. Following
these ideas, the posterior in Equation (9.11) then could be written as

p(w|w̃) µ exp
✓
�ÂN

j=1(w̃j�wj)
2

2s2

◆
· exp(�EI(w)) = exp


�
✓

ÂN
j=1(w̃j�wj)

2

2s2 + EI(w)

◆�
(9.14)

The analogy to the statistical mechanics domain becomes apparent when considering
the exponent of the exponential function in the posterior probability above to be an

7Asmentioned in Chapter 8, this presented amajor advantage of theMetropolis algorithmwhichwas
first exploited by Geman and Geman (1984) systematically in their work.

8Here, J > 0 models the nearest-neighbour a�nity, H > 0 describes the external field, and hi, ji
indicates the set of nearest neighbours i and j which share at least a horizontal or vertical bond. For
simplicity of calculations, no external field was assumed, so that H = 0 and J = 1. Then, the energy
function reduces to EI(w) = Âhi,ji wiwj. The Isingmodel has long interested statistical physicists because
of phase transition. A phase transition occurs when a quantity is a�ected by a substantial change as a
parameter passes a critical value. The most familiar example of a phase transition is water as it freezes
or boils and the critical value is zero or 100 degrees Celsius. For details on the Ising model see Robert
and Casella (2010).
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energy function, that is

E(w|w̃) :=
ÂN

j=1(w̃j � wj)2

2s2 + EI(w) =
ÂN

j=1(w̃j � wj)2

2s2
| {z }

=:(A)

+ Â
hi,ji

wiwj

| {z }
=:(B)

(9.15)

with the definition of the energy function EI(w) of the Ising model. Minimising the en-
ergy function EI(w) in Equation (9.15) then leads to the maximisation of the posterior
probability in Equation (9.14) (Geman and Geman, 1984, p. 729). Here, the first com-
ponent (A) can be interpreted as a penalty for too large di�erences between the blurred
and original image, and the second component (B) is a term which gets small if neigh-
boring pixels cluster in patterns of equal values (otherwise the products wiwj become
large). These two terms need to be balanced to get an optimal result. For example,
an image w can be quite di�erent from w̃ so that term (A) is large, but neighbouring
pixels can cluster strongly in it so that term (B) becomes small. A balanced solution
yields a slightly di�erent image with lots of clustered pixels, balancing terms (A) and
(B). Geman andGeman (1984) then proceeded by introducing theirmodification of the
Metropolis scheme, called Gibbs sampling. To solve the constrained minimisation prob-
lem, they introduced the nearest neighbors for a pixel wi and argued that in pictures in
general always local patterns exist, so that wi is only influenced by its neighbors, and
not by all pixels in total. Statistically speaking, conditional on all other pixels wj, j 6= i,
wi depends only on its direct neighbors. Therefore, the dependence on the blurred im-
age w̃ as a whole is equal to dependence on the direct neighboring pixels, and Geman
and Geman (1984) therefore reasoned that

p(wi|w1, ...wi�1,wi+1, ...wN) = p(wi|wj 2 hi, ji) µ exp(�EI(wi|wj 2 hi, ji)) (9.16)

holds, where hi, ji denotes the direct neighbours of wj. Geman and Geman (1984) ex-
pressed this as follows:

“Here, the computational problem is overcome by exploiting the pivotal
observation that the posterior distribution is again Gibbsian with approx-
imately the same neighborhood system as the original image, together with
a sampling method which we call the Gibbs Sampler. Indeed, our principal
theoretical contribution is a general, practical, and mathematically coherent
approach for investigating MRF’s by sampling (Theorem A), and by com-
puting modes (Theorem B) and expectations (Theorem C).”
Geman and Geman (1984, p. 722)

whereMRF stands for Markov random field. Accordingly, the energy function for pixel
wi then changes to

Ei(wi|wj 2 hi, ji) = (w̃i � wi)2

2s2 + Â
hi,ji

wiwj (9.17)

Here, the index i instead of I indicates that the energy function is applied only to the
pixel wi, and therefore the sum over all pixels is omitted (compare Equation (9.15)).
Geman and Geman (1984) then argued that it su�ces to use a method which visits all
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of the pixels infinitely often (e.g. by iteration over all rows and columns), and at the
pixel wi the posterior probability of wi = k is then given by

p(wi = k|w̃)
Equation (9.14)

µ exp

0

@� (wi � w̃i)2

2s2 � Â
hi,ji

wiwj

1

A

wi=k
= exp

0

@� (k� w̃i)2

2s2 � Â
hi,ji

k · wj

1

A (9.18)

Easing the restriction of dependence on the whole blurred image in the posterior in
Equation (9.14) to dependence only on the direct neighbours in Equation (9.16) in to-
tal leads to the posterior given in Equation (9.18), which gives the probability of the
pixel wi having a specific colour value k 2 {1, ...,M}. Repeating this procedure a large
number of times for all pixels and colour values then gives a distribution of the posterior
image. This is the essence of Gibbs sampling.

While Gibbs sampling was introduced in the context of image reconstruction via
Bayesian analysis by Geman and Geman (1984), the whole procedure can be obtained
as a special case of the Metropolis-Hastings algorithm as derived by Metropolis et al.
(1953) and Hastings (1970). To see this, it su�ces to set the acceptance probabilities
aij = 1 for all i, j in Equation (9.9) and let qij := p(wi = j|w̃) as defined in Equa-
tion (9.18). Then, the proposal transitions are simply the posterior probabilities for
the single pixels wi, and the acceptance probabilities are always equal to one. Detailed
proofs of the convergence to the posterior p(w|w̃) can be found in Hammersley and
Handscomb (1964), Gelfand and Smith (1990) and Casella and George (1992). Later,
it was even shown that the Gibbs sampler could be interpreted as the composition of
p Markovian Metropolis-Hastings kernels, for details see Robert and Casella (2004,
p. 381).9 Geman and Geman (1984) summarised their Gibbs sampling procedure as
follows:

“(...) our work is largely inspired by the methods of statistical physics for
investigating the time-evolution and equilibrium behavior of large, lattice-
based systems. There are, of course, many well-known and remarkable fea-
tures of these massive, homogeneous physical systems. Among these is the
evolution to minimal energy states, regardless of initial conditions. In our
work posterior (Gibbs) distribution represents an imaginary physical sys-
tem whose lowest energy states are exactly the MAP [Maximum A Posteri-
ori] estimates of the original image given the degraded “data.”
All that is required is that the posterior distribution have a “reasonable”
neighborhood structure as a MRF [Markov Random Field], for in that case
the computational load can be accommodated by appropriate variants (such
as the Gibbs Sampler) of relaxation algorithms for dynamical systems.”
(Geman and Geman, 1984, p. 734)

The name Gibbs sampling goes back to the original introduction of so-called Gibbs dis-
tributions, which are probability distributions whose conditional probabilities depend
only on neighbourhood systems. The first mentioning of these distributions is found

9More specific: The Gibbs sampler is a composition of pMarkovianMetropolis-Hastings kernels with
acceptance probabilities uniformly equal to one, compare Theorem 8.11.
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in Dobruschin (1968), who chose the name in honour of the physicist Josiah Willard
Gibbs (1839-1903).

9.6 Markov-Chain-Monte-Carlo as a generalised statisti-
cal Simulation Technique

After the introduction of Gibbs sampling by Geman and Geman (1984), all the neces-
sary theory was available to make use of it in Bayesian statistics. Hastings (1970) had
already shown that the Metropolis algorithm was a powerful general-purpose tool for
sampling, although few took notice of that fact. In particular, the intuitive appeal of the
procedure (to numerically obtain previously untractable posterior distributions) was
now also justified theoretically. Geman and Geman (1984) built upon the work of Kirk-
patrick et al. (1983) and it becamemuch clearer through theirwork that Gibbs sampling
was just a special case of the concatenation of p independent Markovian Metropolis-
Hastings kernels. This justified the procedure from another perspective. The technique
was nevertheless first adoptedwidely by the statistical community after the publication
of the paper Sampling-Based Approaches to Calculating Marginal Densities by Gelfand and
Smith (1990). In their paper, Gelfand and Smith (1990) compared three di�erent strate-
gies of sampling, namely Gibbs sampling, the data augmentation algorithm by Tanner
and Wong (1987) and importance sampling by Rubin (1987). The paper marked the
first solely statistical interpretation of Gibbs sampling as a general-purpose tool for sta-
tistical inference. Previously to that paper, Besag (1986) presented his paper On the
Statistical Analysis of Dirty Pictures at the meeting of the Royal Statistical Society in 1986.
While similar to the work of Geman and Geman (1984), the paper was more a review
than an introduction of a new method, and it discussed, in particular, the Gibbs sam-
pler proposed by the Geman brothers two years earlier. In a comment to the paper,
J. Haslett from Trinity College in Dublin emphasized regarding the question how to
obtain a posterior distribution in Bayesian statistics

“(...) that all such questions can be answered (in principle) by su�cient
simulations (...) under Geman and Geman’s method (...). It seems, there-
fore, that we are being o�ered no alternative, as statisticians, to the route of
vast raw computing power being pioneered by the Gemans.”
Comment of J. Haslett in (Besag, 1986)

While Besag (1986) had some concerns regarding the necessary computing power for
Gibbs sampling to work e�ciently, the paper pointed out the advantages of the pro-
cedure quite clearly. The definitive breakthrough of Gibbs sampling came in the form
of the two papers Sampling-Based Approaches to Calculating Marginal Densities (Gelfand
and Smith, 1990) and Illustration of Bayesian inference in normal data models using Gibbs
sampling (Gelfand et al., 1990), which showed the high e�ciency of the Gibbs sampler
in Bayesian hierarchical models. In the first paper, Gelfand and Smith (1990) set out
the goal as follows:

“In relation to a collection of random variables, U1,U2, ...,Uk, suppose that
either (a) for i = 1, ..., k, the conditional distributions Ui|Uj(j 6= i) are avail-
able, perhaps having for some i reduced forms Ui|Uj(j 2 Si ⇢ {1, ..., k}),
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or (b) the functional form of the joint density ofU1,U2, ...,Uk is known, per-
hapsmodulo the normalizing constant, and at least oneUi|Uj(j 6= i) is avail-
able, where availablemeans that samples ofUi can be straightforwardly and
e�ciently generated, given specified values of the appropriate conditioning
variables.
The problem addressed in this article is the exploitation of the kind of struc-
tural information given by either (a) or (b), to obtain numerical estimates of
nonanalytically available marginal densities of some or all of the Ui (when
possible) simply by means of simulated samples from available conditional
distributions, andwithout recourse to sophisticated numerical analyticmeth-
ods. (...) All that the user requires is insight into the relevant conditional
probability structure and technique for the e�cient generation of appropri-
ate random variates.”
Gelfand and Smith (1990, p. 398)

The novelty of this work was that the formulated goal was entirely uncoupled from
the early beginnings of MCMC algorithms in statistical mechanics and circuit design.
Instead, the paper was framed in a purely statistical context. Gelfand and Smith (1990)
argued, that the full conditionals f (xi|x1, ...xi�1, xi+1, ..., xN) completely specify the joint
distribution f (x1, x2, ..., xN) as these are essentially (large) neighbourhood systems as
introduced byGeman andGeman (1984). Formally, this relationshipwas clarified com-
pletely first by the proof of the well known Hammersley-Cli�ord-Theorem (compare
8.12). The theoremwas already proven in 1971 by John Hammersley and Peter Cli�ord
in an unpublished paper (Hammersley and Cli�ord, 1971). Robert and Casella (2004,
p. 377) noted, that Hammersley and Cli�ord did not publish it because they were un-
satisfied with it and wanted to generalize it to hold also for densities which do not have
strictly positive mass. Three years later, Moussouris (1974) gave a counterexample and
showed that such a generalization is not possible. Only in 1990 then, Cli�ord (1990)
published their results, long after others gave proofs. Peter Cli�ord wrote in a com-
ment to Julian Besag who gave another proof of the Hammersley-Cli�ord theorem in
1974:

“My final comment concerns the paper by Hammersley and myself. What-
ever the historical reasons for not publishing in 1971 the paper has clearly
been superseded by the work of others and notably by the excellent exposi-
tion we have heard today.”
Commentary of Peter Cli�ord in (Besag, 1974, p. 228)

Gelfand and Smith (1990) therefore only needed to use the necessary theory available
and they argued that because of the Hammersley-Cli�ord-theorem

“(...) the full conditional distributions alone, [X|Y,Z], [Y|Z,X], and [Z|X,Y],
uniquely determine the joint distribution (and hence the marginal distribu-
tions) in the situation under study. An algorithm for extracting themarginal
distributions from these full conditional distributions was formally intro-
duced by Geman and Geman (1984) and is known as the Gibbs sampler.
An earlier article by Hastings (1970) developed essentially the same idea
and suggested its potential for numerical problems arising in statistics.”
(Gelfand and Smith, 1990, p. 400)
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where [X|Y,Z] denotes the conditional distribution X|Y,Z. Gelfand and Smith (1990)
then stated the Gibbs algorithm in its modern form as given in Algorithm 7:

“Given an arbitrary starting set of valuesU(0)
1 ,U(0)

2 , ...,U(0)
k , we drawU(1)

1 ⇠
[U1|U

(0)
2 , ...,U(0)

k ],U(1)
2 ⇠ [U2|U(1)

1 ,U(0)
3 , ...,U(0)

k ],U(1)
3 ⇠ [U3|U(1)

1 ,U(1)
2 ,U(0)

4 ,
...,U(0)

k ], and so on, up to U(1)
k ⇠ [Uk|U

(1)
1 , ...,U(1)

k�1]. Thus each variable is
visited in the natural order and a cycle in this scheme required K random
variate generations. After i such iterationswewould arrive at (U(i)

1 , ...,U(i)
k ).”

Gelfand and Smith (1990, p. 400)

Via the use of this Gibbs sample, inference for the parameters is easily obtained: Choos-
ing for example the third component, the Gibbs sample x(1)3 , x(2)3 , ..., x(i)3 can be used to
approximate the marginal probability distribution of x3, that is a random sample from

f (x3) =
Z

x1

Z

x2

Z

x4
...
Z

xN
f (x1, x2, ..., xN)dxN...dx4dx2dx1 (9.19)

can be simulated by taking the distribution of the subsample x(1)3 , x(2)3 , ..., x(i)3 of the
whole Gibbs sample. In the same way, the expectation E[X3] of the third component
X3,

E[X3] =
Z

x3 f (x3)dx3 (9.20)

can be approximated by the mean of the Gibbs subsample, that is, 1
i Âi

j=1 x
(j)
3 . Other

quantities, like credible intervals, can be obtained equivalently. While the paper did
not formally introduce a new algorithm, it leveraged Gibbs sampling into the statistical
community by achieving the same what Hastings in 1970 had achieved regarding the
originalMetropolis algorithm: Generalising a procedure developed in a specific context
to a purely statistical routine. Next to this, they provided good examples. In section 3.2
of their paper, Gelfand and Smith (1990) considered hierarchical models, which were
mostly untractable from a Bayesian viewpoint at that time. They introduced the fa-
mous nuclear-pump model of Gaver and O’Muircheartaigh (1987), which since then
has become a benchmark model for performance analysis of MCMC algorithms. De-
tails and the Gibbs sampler for this model can be found in the paper of Gaver or in
Robert and Casella (2004, Example 10.17). After showing the power of Gibbs sampling
withmultiple examples in their paper, they provided evenmore illustrations from a sta-
tistical perspective in a second paper which was published soon after the first (Gelfand
et al., 1990). In it, they advertised the Gibbs sampler as a general-purpose tool for sta-
tistical inference. By doing so, Gelfand and Smith (1990) managed to bring MCMC
algorithms finally into the realms of statistical science. In their first paper, Gelfand and
Smith (1990) also gave a hint about what would become one of themajor research areas
for the next decade concerning MCMC methods:

“There are important practical problems in tuningmonitoring and stopping-
rules procedures for iterative sampling in large-scale complex problems”
(Gelfand and Smith, 1990, p. 407)
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9.7 HamiltonianMonte Carlo and further Developments
After the paper ofGelfand and Smith (1990),MCMCmethods finally receiveddeserved
attention as a flexible general-purpose tool in statistical research and practice. The de-
velopments after Gelfand’s publication can be structured into a few distinct branches
of research.

9.7.1 Convergence assessment
Already in 1970, Hastings (1970) noted, that

“...even the simplest of numerical methods may yield spurious results if in-
su�cient care is taken in their use, and how di�cult it often is to assess the
magnitude of the errors. The discussion above indicates that the situation
is certainly no better for the Markov chain methods and that they should be
used with appropriate caution.”
(Hastings, 1970, p. 105)

While Gelfand and Smith (1990) just advised readers to use a trace plot of the param-
eters q(t) of the Markov Chain against the time t, no formal convergence assessment
was introduced. Convergence assessment, as detailed in Robert and Casella (2004) is
concernedwith (i) monitoring the convergence to the stationary distribution, (ii) mon-
itoring the convergence of averages and (iii) monitoring to i.i.d. sampling. Robert and
Casella (2004) noted, that

“Historically, there was a flurry of papers at the end of the 90s concerned
with the development of convergence diagnoses. This flurry has now qui-
eted down, the main reason being that no criterion is absolutely foolproof
(...).”
Robert and Casella (2004, p. 461)

MCMC convergence diagnosis was approached by those papers mainly by a few main
strategies. One of the earliest of those strategies was to simply use multiple chains and
the between-chain and within-chain variance to indicate convergence to the stationary
distribution. If all of the chains converge to the same distribution, whichmeans that the
chains are mixing well, this indicates that the stationary distribution has been reached.
One problem with this approach is that the slowest chain determines the speed of con-
vergence when following such a criterion and more severely, this method su�ers from
the “you’ve only seen where you’ve been”-defect. If the chains are not dispersed well,
that is, they start in similar regions – in the worst case, all near a local mode – the cri-
terion is not helpful at all. The most popular statistic resulting from these papers is
the Gelman-Brooks-Rubin R̂2 (Gelman and Rubin, 1992). Raftery and Lewis (1992) pro-
posed another technique called binary control as a method for assessing convergence.
Other approaches can be found in Tierney (1994). Ritter and Tanner (1992), Brooks
et al. (1997) and Brooks and Roberts (1998) developed so called distance evaluations for
convergence assessment, see also Robert and Casella (2004, Chapter 12). Philippe and
Robert (2001) proposed an approach called missing mass, which is useful but not use-
able in higher dimensions. For other approaches based on renewal theory and methods
based on normality tests like the Kolmogorov-Smirnov test, see Geyer (1992). Cowles
and Carlin (1996) wrote a comparative review of the available methods, and another
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later review can be found in Mengersen et al. (1998). Both reviews conclude that no
penultimate method can be chosen to satisfy all needs in all circumstances so that di-
agnosis stays a problematic task.

Even after more than three decades, convergence assessment of MCMC algorithms
remains a challenging task, as profound theoretical knowledge is required to judge
the simulation results and understand the di�erent criteria for assessing convergence.
However, Craiu and Rosenthal (2014) reviewed the current state of a�airs concerning
MCMC convergence assessment and concluded that while there is still no foolproof
solution to MCMC convergence diagnosis, combining multiple of the existing criteria
o�ers reasonable security in judging the simulation outputs. Also, Vats and Knud-
son (2018) recently proposed a refinement of the popular Gelman-Rubin-Brooks R̂2

statistic, which remains (maybe because of its simplicity) the gold standard of MCMC
convergence assessment until today.

9.7.2 Adaptive MCMC
Another branch of research on MCMCmethods emerged out of the problem that most
MCMC algorithms need a proper scaling of parameters to work e�ciently. For exam-
ple, the random-walk Metropolis-Hastings algorithm as given in Algorithm 3 can be
used with a normal proposal N (µ, s2), where often µ = 0 is a common choice, and
s2 needs to be set to a specific value. Choosing a value of s2 too small will lead to a
high acceptance rate, but simultaneously to slow exploration of the posterior distribu-
tion. However, choosing a value of s2 too large will also yield a high rate of rejections
in the Metropolis scheme and result in an ine�cient exploration of the posterior. As
the tuning parameter s2 needs to be chosen just right, this problem inherent to most
MCMC algorithms (e.g. Algorithm 1, Algorithm 2 and Algorithm 3) has been entitled
Goldilocks principle in the statistics community, see also Craiu and Rosenthal (2014) and
Rosenthal (2014, Section 6.5).10 Out of this problem, in the 2000s statisticians came up
with the idea to automatically adapt the tuning parameters in theMCMC algorithms at
runtime. For example, one could try to decrease s2 when the last 50 iterations yielded
a rejection rate which was above a specific threshold, say d 2 [0, 1]. Similarly, one could
increase it when the last 50 iterations yielded a rejection rate which was below another
threshold g 2 [0, 1], thus balancing the rejection rate into an optimal region. One prob-
lem when following this idea was that when modifying an MCMC algorithm, it often
loses its property of convergence to the correct stationary distribution. To be more spe-
cific, the resulting process is not Markovian anymore, and asymptotic ergodicity needs
to be verified for every single modified algorithm, see also Craiu and Rosenthal (2014,
Section 5.2). The strategy to change the tuning parameter (e.g. s2) ‘on the fly’ when
running the algorithm, byusing the information of previous iterations, has beenutilised
by Haario et al. (2001), Andrieu et al. (2005) and Roberts and Rosenthal (2007). An-
drieu andThoms (2008) andRoberts andRosenthal (2009) gave examples and technical
introductions to adaptiveMCMC, promoting the approach. Bai et al. (2011), Rosenthal
(2014), as well as Yang and Rosenthal (2017) and Yang et al. (2019), showed how adap-
tive MCMC algorithms could be improved even further by including regional informa-
tion for the adaptation scheme and by using multilevel-algorithms which include two
separate phases for first tuning the parameters and second running the algorithm of in-

10The name Goldilocks principle is taken from the tale Goldilock and the Three Bears, where a little girl
called Goldilock tastes bowls of porridge, which should be neither too hot, nor too cold, but just right.
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terest. Themost important theoretical advances have beenmade by Roberts and Rosen-
thal (2007), who showed that in general adaptive MCMC algorithms need to fulfil two
conditions to preserve ergodicity. By denoting the transition kernel from Xn to Xn+1
as PGn with each fixed kernel Pg having the stationary distribution p(·) and Gn being
random indices chosen based on the past algorithm steps from an index set Y , Roberts
and Rosenthal (2009) defined M#(x,g) := inf{n � 1 : ||Pn

g(x, ·)� p(·)||TV  #} for the
time the kernel Pg needs to converge to the stationary p(·) with a precision of # > 0
when starting in x 2 X , where X is the state space and || · ||TV the total variation dis-
tance. They showed that under the two conditions of diminishing adaption

lim
n!•

sup
x2X

||PGn+1(x, ·)�PGn(x, ·)|| = 0 in probability (9.21)

and bounded convergence, that is, the set

{M#(Xn, Gn)}•
n=0 (9.22)

needs to be bounded in probability for all # > 0, the resulting adaptive algorithm is
ergodic, see Theorem 1 in Roberts and Rosenthal (2007). Roberts and Rosenthal (2009,
Section I) give an accessible introduction. While these conditions have simplified veri-
fying the ergodicity of a given adaptive MCMC algorithm, it remains a challenge and
necessity to verify the ergodicity on a case-by-case basis for each adaptive MCMC al-
gorithm. Therefore, adaptive MCMC methods have not found widespread use until
today, although they are very versatile when proven to retain their convergence prop-
erties inherited from non-adaptive MCMC algorithms.

9.7.3 Hamiltonian Monte Carlo
Another branch of research emerged after the spread of MCMC methods due to the
paper of Gelfand and Smith (1990) in 1990. This branch indeed goes back to another
earlier paper by Duane et al. (1987), which united approaches that emerged out of the
area of molecular dynamics with the existingMCMC theory. Duane et al. (1987) called
their method – like the title of their paper –HybridMonte Carlo. The original application
of their method was concerned with lattice field theory simulations of quantum chro-
modynamics. These simulations made use of the Hamiltonian dynamics of particle
physics to exploit the geometry of the posterior distribution of interest when exploring
it via anMCMCalgorithm. Since then, this approach has become known asHamiltonian
Monte Carlo (HMC).11 The first statistical applications of HMC started with improve-
ments of traditional MCMC methods via Hamiltonian dynamics in (Neal, 1993), and
the work on neural network models by Neal (1996). Early work on HMC include ap-
plications in generalised linear models (Ishwaran, 1999), as well as the papers of Liu
(2004) and Schmidt (2009).

HMC became popular among statisticians after Radford Neal (who also introduced
the slice sampler as given in Algorithm 5, see (Neal, 2003)) published a chapter called
MCMC Using Hamiltonian Dynamics (Neal, 2011) in Steve Brooks’ Handbook of Markov-
Chain-Monte Carlo (Brooks, 2011). In it, he explained the ideas underlying HMC and

11The idea of Hamiltonian Monte Carlo is similar to the intuition behind adaptive MCMC. Both meth-
ods aim for a dynamic exploration of the posterior distribution instead of a static exploration as achieved
byMetropolis-Hastings algorithms. While HamiltonianMonte Carlo exploits the geometry of the poste-
rior distribution to sample from the posterior more e�ciently, adaptive MCMC automatically scales the
proposal distribution to yield a similar behaviour.
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introduced simple examples, connecting the terminology of particle physics with that
of MCMC from a Bayesian perspective. The advantage of HMC is summarized by him
as follows:

“The first step is to define a Hamiltonian function in terms of the probabil-
ity distribution we wish to sample from. In addition to the variables we are
interested in (the “position” variables), we must introduce auxiliary “mo-
mentum” variables, which typically have independent Gaussian distribu-
tions. The HMC method alternates simple updates for these momentum
variables withMetropolis updates in which a new state is proposed by com-
puting a trajectory according to Hamiltonian dynamics, implemented with
the leapfrog method. A state proposed in this way can be distant from the
current state but have a high probability of acceptance. This fact bypasses
the slow exploration of the state space that occurs whenMetropolis updates
are done using a simple random-walk proposal distribution.”
Neal (2011, p. 113-114)

The so-called leapfrog integrator often used in HMC algorithms results from the need
to discretize the Hamiltonian di�erential equations involved in the approach. Therefore,
although the method seems to evade the inherent problems of tuning the proposal pa-
rameters in common MCMC algorithms, it has itself to be tuned properly. The stepsize
and number of leapfrog steps are two parameters which determine the acceptance rate of
HMC. Therefore, while improving the exploration, raw HMC does not solve the prob-
lem of tuning MCMC algorithms. Neal (2011) and Betancourt (2017) give excellent
introductions to the theory behind HMC. In what follows, the most substantial foun-
dations of HMC are outlined.

Augmentation of the parameter space

The general idea behind HMC can be summarized as follows: Hamiltonian dynam-
ics are observed on a 2d-dimensional space, which is an augmentation of the original
parameter space. If a statistical model M (e.g. a posterior distribution of interest) in-
volves d parameters q1, ..., qd of interest, then every qi, i 2 {1, ..., d} is augmented via the
introduction of a corresponding variable gi, i 2 {1, ..., d}. In physical interpretations,
the original variables of interest qi are the position variables, each of which is associated
with a correspondingmomentum variable gi, augmenting the d-dimensional parameter
space into a 2d-dimensional space. Denoting p := (q1, ..., qd) and q := (g1, ...,gd), a
Hamiltonian function H(p, q) is introduced which describes the Hamiltonian dynamics
of the whole system.

Describing Motion with Hamilton equations

To describe the change over time of the system, one uses partial derivatives of the po-
sition and momentum variables for i = 1, ..., d. Therefore, the following Hamilton equa-
tions are assumed:

∂qi
dt

=
∂H
∂pi

(9.23)

dpi
dt

= �∂H
∂qi

(9.24)
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To describe the change over time of the whole system via these Hamilton equations,
one needs to specify the Hamiltonian function H in the above, which usually is written
as

H(q, p) = U(q) + K(p) (9.25)

Here, K(p) is called the kinetic energy, and is usually defined as

K(p) := pTM�1 p
2

(9.26)

with a symmetric, positive-definite matrix M which describes the mass (typically di-
agonal). The potential energy U(q) above is usually defined as the negative of the log
probability density of the distribution for the parameters q := (q1, ..., qd) which one is
interested in sampling from (Neal, 2011, Section 5.2). Choosing the Hamiltonian this
way, one immediately obtains the updated Hamilton equations

dqi
dt

= [M�1p]i (9.27)

dpi
dt

= �∂U
∂qi

(9.28)

for i = 1, ..., d. To implement the Hamiltonian dynamics in a simulation, one needs
to approximate these di�erential equations by discretizing time with a stepsize # > 0.
The discretization then can be used to calculate the state of the Hamiltonian system at
di�erent times, e.g. #, 2#, 10# and so on. While the choice of the Hamiltonian function
as given in Equation (9.25) can be a di�erent one, for simplicity of computation often
the above choice is used and also the assumption of M being diagonal is added (Neal,
2011, Section 5.2.3). Denoting the diagonal elements m1, ...md, one obtains12

K(p) =
d

Â
i=1

p2i
2mi

(9.29)

Approximating the Hamilton equations via Euler’s Method or the Leapfrog Integra-
tor

In principle, there aremultiplemethods to approximate theHamilton di�erential equa-
tions, the most popular ones being Euler’s Method and the Leapfrog Method. Euler’s
method iteratively performs the following two steps:

pi(t+ #) = pi(t) + # · dpi(t)
dt

(1)
= pi(t)� # · ∂U

∂qi
(q(t)) (9.30)

qi(t+ #) = qt(t) + # · dqi
dt

(t)
(2)
= qi(t) + # · pi(t)

mi
(9.31)

where in (1) Equation (9.28) and Equation (9.25) was used, and in (2) Equation (9.27)
and Equation (9.25)was used aswell as Equation (9.29). Via use of Equation (9.30) and
Equation (9.31) one can then proceed by starting at t = 0with fixed values pi(0), qi(0)
and simulate for a given step size # > 0 the trajectory of position and momentum val-
ues for example at the points #, 2#, 3#, ..., and so on. This procedure is called Euler’s

12For a simple derivation seeNeal (2011, p. 119).
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method and has the disadvantage that it diverges in some cases – see (Neal, 2011) or
(Betancourt, 2017) – and via a modification of Euler’s method or by using the leapfrog
integrator better results can be obtained. The modification of Euler’s method simply
uses the new value for the momentum variables pi, when the new value for the posi-
tion variable qi is computed. The modification of Euler’s method, therefore, results in
the following two steps:

pi(t+ #) = pi(t)� #
∂U
∂qi

(q(t)) (9.32)

qi(t+ #) = qi(t) + #
pi(t+ #)

mi
(9.33)

The leapfrog integrator is an evenmore sophisticatedmodification of the original Euler
method and uses the following iterative update scheme (compare Neal (2011, Section
5.2.3.3)):

pi(t+ #/2) = pi(t)� (#/2)
∂U
∂qi

(q(t)) (9.34)

qi(t+ #) = qi(t) + #
pi(t+ #/2)

mi
(9.35)

pi(t+ #) = pi(t+ #/2)� (#/2)
∂U
∂qi

(q(t+ #)) (9.36)

The scheme shows the origin of the name leapfrog integrator. The algorithm starts with
half a step (or jump) for the momentum variables pi, adding a full step (or jump) for
the position variables qi and another half step (or jump) for the momentum variables
pi resembling the movement of a jumping frog.

Theoretical considerations of HMC

As Hamiltonian dynamics expand the parameter space artificially, the geometric prop-
erties of the new space need to fulfil some conditions. There are four important prop-
erties of Hamiltonian dynamics which need to be fulfilled. First, there needs to be a
one-to-one mapping from a starting point and the endpoint of a trajectory obtained via
Euler’s method or the leapfrog integrator. This requirement is called reversibility. Sec-
ond, invariance of the Hamiltonian is required, which results in the invariance of accep-
tance probabilities when using Metropolis updates in HMC. Third, volume preservation
is necessary, because otherwise, one would have to adjust Metropolis acceptance prob-
abilities due to the change in volume in the augmented parameter space. The fourth
and last requirement is symplecticness, which itself causes the Hamiltonian dynamics
to preserve volume.13. It is possible to show that when approximating the Hamilto-
nian equations for example by using the leapfrog integrator, reversibility, preservation
of volume as well as symplecticness are maintained, so HMC does not cause theoreti-
cal problems which could invalidate the procedure in practice. This is important and
guarantees thatHMC still converges to the stationary distribution andmaintains ergod-
icity.14 While the discretization of the Hamilton equations via the leapfrog integrator
or Euler’s method inevitably leads to the introduction of an error term, this error term

13For technical details about these properties, see Neal (2011) and Betancourt (2017)
14An accessible proof of both properties can be found in Neal (2011, Section 5.3).
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behaves benignly in the way that when the stepsize # goes to zero, the error term does,
too. For a detailed account, see Leimkuhler and Reich (2004).

Applying Hamiltonian dynamics to sample from a posterior

To sample more e�ciently from a posterior distribution, one needs to define the pos-
terior in terms of a Hamiltonian function as given in Equation (9.25). The density is
translated into the potential energy, and the artificial momentum variables are intro-
duced. Therefore, one uses an energy function E(x) for a state x of a physical system
(compare Section 9.2 and Section 9.4), for which the canonical distribution over states
has the probability density

P(x) =
1
Z
exp

✓
�E(x)

T

◆
(9.37)

where T is the temperature of the system as already introduced in Section 9.4 and Z
is the normalising constant (Neal, 2011). If the goal is to sample a probability den-
sity f (x), one can rewrite it as a canonical distribution of a physical system by setting
T = 1 and E(x) = � log( f (x))� log(Z) with Z 2 R+.15 Expanding these ideas to the
augmented parameter space, the Hamiltonian as given in Equation (9.25) can be inter-
preted as an energy function for the augmented space, defining a joint distribution for
both position and momentum via

P(p, q) =
1
Z
exp

✓
�H(p, q)

T

◆
(1)
=

1
Z
exp

✓
�U(q)

T

◆
exp

✓
�K(p)

T

◆
(9.38)

where (1) follows fromEquation (9.25). To sample fromaposterior P(q|x) µ L(q|x)p(q)
with prior p(q) and likelihood L(q|x) for q given the data x, it su�ces to use the assump-
tion T = 1 and write the posterior as a canonical distribution with a potential energy

U(q) := � log (L(q|x)p(q)) (9.39)

Hamiltonian Monte Carlo operates then by sampling from the joint canonical distri-
bution for p and q given in Equation (9.38) after specifying the kinetic energy K(p)
as given in Equation (9.26). This results in p having a N (0,M) distribution because

exp
⇣
�K(p)

T

⌘
in Equation (9.38) then becomes exp

✓
� pTM�1 p

2
1

◆
= exp

⇣
� p2

2M

⌘
. Thus,

incorporation of the posterior as a joint canonical distribution yields a product of the
log density of the posterior (omitting proportionality constants) and amultivariate nor-
mal. The simplest HMC algorithm then proceeds in two steps:

1. New values for the momentum variables pi are drawn from their Gaussian distri-
butions N (0,M), independently from the position variables qi.

2. A Metropolis acceptance step is performed, where Hamiltonian dynamics are
used to propose a new state. Therefore, the leapfrog integrator starts at (q, p) and
computes a trajectory of L stepswith stepsize # > 0. The variables (q̃, p̃) at the end
of the trajectory are then taken as proposal value and accepted with probability

min{1, exp (�H(q̃, p̃) + H(q, p))} = min{(1, exp (�U(q̃) +U(q)� K( p̃) + K(p))}
15Then, P(x) = 1

Z · exp(�(� log( f (x))�log(Z))
1 ) = 1

Z exp(log( f (x)) · exp(log(Z)) = f (x).
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This approach is similar to Algorithm 3. However, here the proposal from an arbitrary
proposal density is replaced with the result of the leapfrog integrator, which approxi-
mates the solutions to the Hamiltonian di�erential equations. In total, this leads to the
endpoints q̃, p̃.While it may not seem obvious from this perspective, the ultimate quan-
tity of interest, the original model parameters q := (q1, ..., qd) are then readily available
by simply repeating this process a large number of times T like in normal MCMC and
using the simulated values of e.g. q̃(i)1 , that is q̃(1)1 , q̃(2)1 , ..., q̃(T)1 . Of course, q1, ..., qd could
each be multidimensional depending on the statistical model M for which posterior
inference is required. Posterior point and interval estimates like the mode and credible
intervals are then easy to obtain. While the posterior is rewritten as a canonical distribu-
tion in Equation (9.39), the joint distribution of (p, q), that is P(p, q) = 1

Zexp
⇣
�H(p,q)

T

⌘

as given in Equation (9.38) is used to obtain posterior estimates of both the parameters
q and p of the posterior. This is necessary, as the momentum variables p are the main
reason why HMC improves traditional MCMCmethods. While the posterior estimates
of p are available too, these are not used for inference in the model M. Extracting the
posterior chain q̃(1)i , q̃(2)i , ..., q̃(T)i for parameter qi for a large T su�ces to draw inference
about the parameters of interest q := (q1, ..., qd). Illustrations of HMC can be found
in (Betancourt, 2017) and (Neal, 2011) as well as multiple others like (Ho�man and
Gelman, 2014) and (Gelman et al., 2015).

The key property why HMC has performed so well in practice is that the invari-
ance of H when using Hamiltonian dynamics implies that a trajectory computed by the
leapfrog or any other integrator will (if simulated with a su�ciently small error) lie
in a hyperplane of constant probability density value. Therefore, moves to points (q̃, p̃),
which are far away from the original destination (q, p) still have a fairly goodprobability
of being accepted (if the approximation error is not too large so that the trajectory has
approximately constant density). This situation is in sharp contrast to normal MCMC
methods like random-walk Metropolis-Hastings, where jumps far away from the cur-
rent state are often rejected due to the di�erence in probability density, slowing down
the parameter space exploration.

Introduction of the No-U-Turn-Sampler

After the initial introductions of HMC into the statistical community, interest in this
method grew and one of the most substantial advances was the recent introduction
of the No-U-Turn-Sampler (NUTS) of Ho�man and Gelman (2014), which automati-
cally sets the path lengths # and leapfrog steps L in the HMC algorithm. This property
removed the challenge of manual calibration and tuning of MCMC from researchers.
The idea of the No-U-Turn-Sampler can be summarised as aborting the leapfrog length
whenever the curvature of the planned trajectory indicates that the next step will move
back to its original position similar like a boomerang. This condition guarantees that
the parameter space is explored e�ciently without the sampler returning to its latest
position in each successive step.

9.7.4 Probabilistic Programming Languages
Next to work on adaptive MCMC methods, a new branch of research emerged in the
form of probabilistic programming languages to facilitate the use and spread of MCMC
methods in science and practical applications. In general, any programming language

184



CHAPTER 9. THE EVOLUTION OF MARKOV-CHAIN-MONTE-CARLO

can be used to implement MCMC algorithms. Due to the heavy computational load re-
quired by even low-dimensional statistical models, programming libraries which o�er
e�cient reference implementations in fast programming languages like C or C++were
developed in the 2000s. The general idea behind probabilistic programming languages
consists in defining a statistical model in the probabilistic programming language, that
is, the model code. The software package then parses this model code into executable
– that is, compiled – code (e.g. C or C++ code), which then is used to generate a sam-
ple from the posterior distribution of interest. Probabilistic programming languages,
especially software packages to simplify the use of MCMC methods have become in-
creasingly popular in the last years, see for example Lunn et al. (2009).

BUGS and WinBUGS

Thefirst probabilistic programming languagewasBUGS. BUGS is an acronym forBayesian
Inference Using Gibbs Sampling and the BUGS project started in 1989 after the huge suc-
cess of the Gibbs sampler as a solution to previously untractable hierarchical models in
statistics. BUGS itself was developed by researchers of the Imperial College School of
Medicine in London and the MRC Biostatistics Unit at Cambridge University. To sim-
plify the use of BUGS, the software package WinBUGS was developed for Microsoft
Windows and made it possible to use the BUGS language with a graphical user inter-
face. With BUGS, one could specify a statistical model which was then compiled into
executable code. This code was run to obtain a sample from the posterior distribu-
tion of interest. While WinBUGS was known to statisticians involved in the research
of MCMC methods, it did not become prevalent in other scientific domains due to the
need of manual programming each model as well as the computational limitations of
that time (Lunn et al., 2009). In 2007, the last version 1.4.3 of WinBUGS was released,
and the development team switched to OpenBUGS, which was already started in 2005
and is an open-source version of the original BUGS software (Lunn et al., 2009).

OpenBUGS

OpenBUGS had some important advantages over WinBUGS: First, it was open source,
making use and adaptation of the source code to one own’s needs much easier. Second,
it was platform-independent, which allowed users of the commonly used operating
systems to use the program. Third, it was accessible from the statistical programming
language R, which by thenwas alreadywidespread amongmathematicians, physicists,
statisticians and data scientists. Another di�erence to WinBUGS lied in its simplicity
of use: The package automatically chose the updating algorithm for the class of con-
ditional distributions of each stochastic node in the statistical model. This property
yielded higher flexibility of the algorithms OpenBUGS used for obtaining the poste-
rior distribution (Lunn et al., 2009). As in WinBUGS, the model code was specified
via the probabilistic programming language BUGS, and then parsed and compiled into
executable code by OpenBUGS to obtain a sample from the posterior distribution of in-
terest. From the beginning, OpenBUGSwas specifically developed to run with the pro-
gramming language S-Plus, the predecessor of the statistical programming language R.
Therefore, OpenBUGS works seamlessly with S-Plus and R, and there are R packages
like R2OpenBUGS16 and BRugs17 which catalyse the use of OpenBUGS and BUGS in R.

16See https://cran.r-project.org/web/packages/R2OpenBUGS/index.html for details
17See https://cran.r-project.org/web/packages/BRugs/index.html for details
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This constituted a strong advantage of OpenBUGS.18

JAGS

Next to OpenBUGS, in 2007 the software package JAGS was o�cially released. JAGS
is an acronym for Just Another Gibbs Sampler and was developed by Martyn Plummer
already since 2003 (Plummer, 2003). Since its o�cial release in 2007, JAGS has been
used in a broad spectrum of disciplines, for example in biology (Semmens et al., 2009),
medicine (McKeigue et al., 2010), management (Johnson andKuhn, 2013) and psychol-
ogy and the cognitive sciences (Kruschke, 2015).

One of the main reasons for the widespread use of JAGS is that it was included in a
lot of Linux distributions and written in C++ (while OpenBUGS and WinBUGS were
written in Component Pascal, a less widely popular programming language) (Lunn
et al., 2009). Also, there are convenient packages for R like rjags19 as well as command-
line support for scripts and 64-bit support for modern and more capable processors.20
JAGS uses the hierarchical BUGSmodels to sample from the posterior of interest. After
handing a BUGS model to JAGS, in which the relationships between the variables of
the statistical model are specified, JAGS identifies the likelihoods as functions defining
a variable for which observations are available (Plummer and Northcott, 2017). Sub-
sequently, the distributions in the model are analysed, and before sampling, JAGS au-
tomatically chooses an appropriate MCMC algorithm. In general, this will be a Gibbs
sampler as given in Algorithm 7. If the full conditionals are not available, JAGS resorts
to Metropolis-Hastings-algorithms like Algorithm 1, Algorithm 2, or Algorithm 3 or
even slice sampling as introduced by Neal (2003) and given in Algorithm 5. Plummer
and Northcott (2017) and (Coro, 2017) provide an overview about the details of the
parsing process of the BUGSmodel into stochastic nodes which are subsequently trans-
formed into a sample from the corresponding posterior. The automaticity of selecting
an appropriate MCMC algorithm for sampling made the use of JAGS easier than pre-
vious programming packages for MCMC methods, and this can be seen as the main
reason why JAGS has been used successfully in so many scientific branches since its
publication.

STAN

In 2012, the probabilistic programming language STAN was released by researchers of
the Columbia University (Ho�man et al., 2012; Stan Development Team, 2018). The
software name was chosen in honour of Ulam Stan, who participated in the invention
of the original Monte Carlo method, as detailed in Section 9.2. STAN is a probabilis-
tic programming language similar to BUGS, which allows users to specify a statisti-
cal model. In a second step, multiple MCMC algorithms are available to sample from
the posterior. STAN also includes the No-U-Turn-Sampler of Ho�man and Gelman
(2014). Thereby, STAN makes it possible to adaptively set the path lengths in Hamil-
tonian Monte Carlo via the No-U-Turn-Sampler and removed the burden of manual
MCMC tuning from users. Since its introduction, it has been maintained and extended

18A comprehensive overview about OpenBUGS written by the author of the R2OpenBUGS R package
Neal Thomas can be found at http://www.openbugs.net/w/Overview.

19See https://cran.r-project.org/web/packages/rjags/index.html for details
20The code repository for JAGS can be found at https://sourceforge.net/p/mcmc-jags/code-0/

ci/default/tree/ and the o�cial website is located at http://mcmc-jags.sourceforge.net.
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(Gelman et al., 2015). Stan has caused a significant breakthrough in terms of the ap-
plication of Bayesian statistics in more applied areas because the No-U-Turn-Sampler
provided a nearly automatic way to obtain a posterior distribution without the need of
detailed theoretical or programming knowledge (Kruschke and Liddell, 2018b). Also,
STAN can be accessed from a variety of programming languages, including R, Python,
Matlab, Julia, Stata or the shell, making it accessible to a wide audience. In contrast to
WinBUGS, OpenBUGS or JAGS, STAN implements gradient-basedMCMC algorithms,
in particular HMC, which exploit the geometry of the posterior distribution of interest.
This property accelerates the speed of simulations and has allowed for successful use
even when the computational capacities are only moderate. Also, it supports multiple
other algorithms for variational Bayesian inference as well as gradient-based optimisa-
tion (Gelman et al., 2015). The “workhorse” of STAN for Bayesian inference, however,
is the No-U-Turn sampler as introduced by Ho�man and Gelman (2014) and outlined
above21. The main advantage of this algorithm is given by the fact that the sampler
automatically chooses the steplength L and stepsize # > 0 in the leapfrog integrator
to obtain optimal performance when sampling. This feature speeds up the simulations
and results in better exploration of the parameter space compared to traditionalMCMC
methods. The No-U-Turn-Sampler can be interpreted as an algorithmic solution to the
challenge of Goldilocks principle as detailed in Section 9.7.2.

Due to the implementation of state-of-the-artMCMC algorithms and broad support
of di�erent programming languages, STAN has already been used in a variety of fields
like social sciences (Goodrich et al., 2012), medical imaging (Gordon et al., 2018) and
pharmaceutical statistics (Natanegara et al., 2014) since its introduction.

9.8 The Impact ofMarkov-Chain-Monte-Carlo onBayesian
Hypothesis Testing

In Chapter 6, the basics of Bayesian hypothesis testing were introduced. It was shown
that a key problem with Bayesian inference in practice is presented by obtaining the
posterior distribution, which quickly becomes untractable analytically in complex sta-
tisticalmodels. This chapter detailed the evolution ofMarkov-Chain-Monte-Carlo algo-
rithms from the early beginnings in Los Alamos until the modern Hamiltonian Monte
Carlo methods, which are now implemented in freely available software. Together,
these algorithms solve the di�cult task of obtaining a posterior distribution even in
complex and possibly high-dimensional models. Thus, no analytical calculations are
required anymore when MCMC algorithms are used for inference.

As shown in Chapter 6, the use of Bayes factors for Bayesian hypothesis testing is the
most popular approach and has the longest history (Je�reys, 1961). A substantial ad-
vantage of the Bayes factor was given by the fact that it could be calculated analytically
for some standard models. Still, for increasingly complex statistical models, calcula-
tion of the Bayes factor analytically in a closed-form expression becomes challenging
quickly. The advent of MCMC methods as detailed in this chapter thus had three sub-
stantial e�ects on Bayesian hypothesis testing.

First, the availability of MCMC algorithms led to the development of multiple new
indices of significance and e�ect size next to the Bayes factor (Makowski et al., 2019b).

21See also the Stan reference manual (Stan Development Team, 2018).
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The uniting approach of these indices is to use some combination of the prior distri-
bution, likelihood and posterior distribution to quantify the evidence regarding a null
hypothesis H0 or alternative hypothesis H1. Most often, MCMC algorithms obtain the
posterior distribution numerically in practice, and thus provide a previously not exist-
ing freedom in using these di�erent ingredients for quantifying the statistical evidence
about a hypothesis. Examples include the e-value (Pereira and Stern, 1999; Pereira et al.,
2008; Pereira and Stern, 2020) and the Full Bayesian Significance Test (FBST), the MAP-
based p-value (Mills, 2018), the probability of direction (PD) (Makowski et al., 2019b),
the region of practical equivalence (ROPE) (Kruschke, 2013; Kruschke and Liddell,
2018b; Kruschke, 2018) and the support interval (Wagenmakers et al., 2020). These
indices are discussed in detail in Part IV in Chapter 14.

Second, MCMC methods made it possible to compute Bayes factors numerically
after the posterior distribution was simulated via an MCMC sample. An example is
given by the Savage-Dickey density ratio method (Dickey and Lientz, 1970; Verdinelli and
Wasserman, 1995; Wagenmakers et al., 2010), which provides a closed-form expression
for the Bayes factor and only requires the prior and posterior density for the calcu-
lation. Thus, even when no closed-form derivations of the Bayes factor are available,
thesemethods now o�er a numerical solutionwhen at least the posterior distribution of
the parameter of interest can be obtained. Employing probabilistic programming lan-
guages like JAGS or STAN, this latter requirement is nearly always fulfilled. Therefore,
even for complexmodels, MCMCmethods have opened the door to an algorithmicway
to compute Bayes factors.

Third, as a consequence of the second point, MCMC algorithms made it possible
for the first time to derive Bayesian versions of a variety of frequentist hypothesis tests.
For example, Wetzels et al. (2009) used WinBUGS to derive a Bayesian equivalent of
the frequentist two-sample Student’s t-test. Other examples include Kruschke (2013),
who presented another Bayesian alternative to the one- and two-sample Student’s and
Welch’s t-test by using STAN and JAGS, or van Doorn et al. (2020), who derived a
Bayesian version of the Wilcoxon-rank-sum test via MCMC methods. While some of
these tests like the one presented by van Doorn et al. (2020) use customised MCMC
techniques like data augmentation (Tanner and Wong, 1987) or Gibbs sampling after
deriving the full conditional distributions, others rely only on standard MCMC sam-
plers like STAN or JAGS (Kruschke, 2013). Another example is given in Chapter 15,
where a new Bayesian solution to the Behrens-Fisher-problem based on the Hodges-
Lehmann-paradigm is presented, which provides a new Bayesian two-sample t-test.

Summing up, the advent of modern MCMC algorithms has removed the necessity
of analytic derivations for each statistical model from Bayesian hypothesis testing and
replaced it with a simulation-based approach. In this approach, a variety of alternatives
to the Bayes factor are available, and posterior distributions are routinely obtained nu-
merically via Markov-Chain-Monte-Carlo algorithms.
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INTERMEDIATE CONSIDERATIONS

The first two parts have shown that statistical hypothesis testing has been evolved out
of two main schools of statistical thought: On one side, there is the frequentist school,
founded by Fisher, Neyman and Pearson, which is based on a deductive argument of
rejecting hypotheses to draw inferences. In the frequentist school, hypothesis testing
is performed by employing the distribution of the data and treating the parameter as
an unknown, fixed quantity. In contrast, there is the Bayesian school, which goes back
to Laplace, Je�reys and others and proceeds by accumulating evidence in light of the
observed data. In the Bayesian school, hypothesis testing is primarily performed based
on the posterior distribution, for example in form of the Bayes factor. This part showed
that the problems of conducting Bayesian hypothesis tests from a computational point
of view have been solved largely by the introduction of modern MCMC algorithms,
because these allow to obtain a posterior distribution numerically in the majority of
cases. However, both statistical philosophies have their benefits and drawbacks: The
frequentist philosophy is based on falsification which from Neyman’s and Pearson’s
perspective is aimed at long-term performance and type I error control, while from
Fisher’s perspective an individual case-based situation should be considered. Chap-
ter 5 has shown that eventually, the Neyman-Pearson framework succeeded, while the
methodology that is actually used today often resembles a hybrid of Fisherian signif-
icance testing and the original Neyman-Pearson theory. The long-term false-positive
control inherited from the original Neyman-Pearson theory can be seen as a benefit
which yields control over the type I errors in the long run (if the necessary assump-
tions are met), but at the same time it is guaranteed that false positive results will occur
with a fixed percentage, even for huge sample sizes and otherwise perfect experimental
design. While the reconstruction in Chapter 4 showed that the Neyman-Pearson theory
was never intended as a theory for hypothesis testing in scientific contexts, Chapter 5
showed that it has become the standard for hypothesis testing in the biomedical, social
and cognitive sciences.

The Bayesian philosophy does not incorporate explicit error control, but states rela-
tive degrees of belief in a hypothesis via the posterior distribution of parameters about
which the hypothesis makes a statement. The goal can therefore be rejection, but also
confirmation of a hypothesis, and it is possible to judge evidence for the study or ex-
periment conducted, instead of relying on long-term performance guarantees. While
error rates cannot be predetermined, in practice they can be estimated via Monte Carlo
studies as will be demonstrated in Chapter 14.

However, by now it has not been clarified which scientific theories underpin each
of the two statistical philosophies. Therefore, the following part is structured into two
chapters: Chapter 10 analyses the current situation from a philosophical perspective.
In particular, the recent philosophical interpretation of the replication crisis of Mayo
(2018) is analysed, which leads to the traditional problems of induction. It is shown
that the often stated criticism to induction and thereby Bayesian inference are not ten-
able, and that induction (and thereby Bayesian statistics) cannot be rejected when im-
plemented as a version of probabilistic a�rming the consequent. In fact, it will be argued
that Bayes’ Theorem itself is a direct implementation of probabilistic a�rming the con-
sequent which itself is a weaker form of enumerative induction, and that Bayes’ Theo-
rem therefore presents an appealing scientific theory for judging the statistical evidence
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about research hypotheses in a statistical model.
The second Chapter 11 is split into two parts and the first part builds upon Chap-

ter 10 by analysing the replication crisis from an axiomatic perspective. It is shown that
based on the arguments of Birnbaum (1962) and Berger and Wolpert (1988) only very
elementary principles can be assumed – similar to Kolmogorov’s axioms in probabil-
ity theory – which lead to the likelihood principle, already mentioned in Part I. It is
discussed why based on the likelihood principle both the classic Fisherian significance
tests and Neyman-Pearson tests are not tenable in scientific contexts, and why the like-
lihood principle itself can hardly be rejected based on a purely axiomatic point of view.
Also, various of the currently experienced problems in the scientific replication crisis
are explained on the basis of these violations of axiomatic principles of statistical infer-
ence. The second part of Chapter 11 then discusses whether robust Bayesian inference
is a possible replacement of null hypothesis significance tests in scientific contexts. It is
discussed whether robust Bayesian inference is suitable to mitigate the problems expe-
rienced in the scientific replication crisis.
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Karl Popper
The Logic Of Scientific Discovery

10.1 The traditional Problem of Induction
From a of philosophy of science perspective, both frequentism and Bayesianism can
be interpreted as realisations of scientific theories, see Mayo (2018). The most widely
adopted perspective is that frequentism can be seen as a statistical implementation
of Karl Popper’s falsificationism, which itself is rooted deeply in deductive reasoning
(Popper, 1959). Fisher’s significance testing strongly influenced Popper’s falsification-
ism, as Mayo (2018) notes: “Early on, Popper (1959) bases his statistical falsifying
rules on Fisher, though citations are rare.” (Mayo, 2018, p. 83). The name falsifica-
tionism goes back to Lakatos and Musgrave (1970), who dubbed Popper’s philosophy
‘methodological falsificationism’ (Lakatos and Musgrave, 1970, p. 109). Popper wrote
his highly influential monograph ‘The Logic of Scientific Discovery’ in 1959, and at that
time frequentist statistics in the form of Fisher’s significance testing or the Neyman-
Pearson theory were already standard in university classes. The major achievement of
Popper (1959) can be seen in framing the statistical approach of frequentism under his
newly developed theory of science, that is, under falsificationism. On the other hand,
Bayesian statistics with Bayes’ theorem at its core can be interpreted as an implemen-
tation of inductive reasoning (Mayo, 2018). The reason is that Bayes’ theorem can be
interpreted as an implementation of probabilistically a�rming the consequent, as will
be discussed in this chapter. The debate between frequentism and Bayesianism, there-
fore, can be reallocated to the decision between induction and deduction. In the dis-
cussion about the appropriateness of induction or deduction for judging the relevance
of new scientific findings the more relevant question, however, is whether induction is
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a suitable method. While deduction builds on axioms and the conclusions follow from
these, induction is a method of reasoning where the premises are interpreted as sup-
plying some amount of evidence, but not full assurance of the truth of the conclusion
of interest. Thus, from a statistical point of view, induction is of immediate interest be-
cause in scientific contexts the validity (or probability) of a research hypotheses needs
to be judged in light of the observed data, which can only provide some evidence but
not full assurance of the hypothesis unless the whole population is sampled.

In this chapter, the focus is on the recent work of Mayo (2018) because her account
is also discussing these philosophical aspects in light of the replication crisis, and her
perspective is rooted in the critical rationalism of Popper (1959), which builds on the
earlier logical empirism of Carnap (1950). Popper’s critical rationalism thus provides
the central scientific theory – falsificationism – which is implemented in the frequentist
null hypothesis significance tests of Fisher andNeyman and Pearson. Awidely debated
argument is that probability is no good measure of corroboration for a scientific theory
or hypothesis, and the original argument goes back to Popper (1959). This provides a
challenge for inductive approaches, including the Bayesian approach. In this chapter,
the traditional problem of induction is discussed and several arguments against enu-
merative induction and its probabilistic implementation in the form of Bayes theorem
are analyzed. It is shown that these arguments are based on a variety of misconcep-
tions and thus do not show that enumerative induction and Bayesian inference cannot
be used as a scientific theory.

The traditional problem of induction can be described as seeking to justify a specific
type of argument, which takes the form of enumerative induction (EI) (Mayo, 2018).
EI tries to infer:

E���������� ���������
Premise: All observed A1, A2, ..., An have been B’s.
Conclusion: Therefore H : all A’s are B’s.

The problem thus can be translated in plain words as inferring a general rule H in the
sense of Wrinch and Je�reys (1923b) when only a subset of the whole set of all existing
elements has been observed. Clearly, the argument is deductively invalid because the
premise EI can be true, although the conclusion H is false. The traditional problem of
induction, therefore, reduces to justifying the method of enumerative induction itself.
One needs to seek an argument for the conclusion that EI is rationally justified and a
reliable rule. Using any kind of inductive argument itself to justify EI is impossible
because inductive enumeration itself is not justified so it cannot be used in the proof.
This situation inevitably pushes the enquiry into a spiral of circular reasoning. One
would be using the method one is trying to justify, to justify the very same method.
As this logical fallacy does not allow to proceed this way, di�erent options to justify EI
need to be considered. A di�erent option to justify EI would be to use a deductively
valid argument. Mayo (2018, p. 62) argued that one possible premise may be

Premise 1: EI has been reliable in a set of observed cases.

The premise can be true, but clearly, EI need not be reliable in general. Mayo (2018,
p. 62) thus proposed to add a second premise:

Premise 2: Methods that have worked in past cases will work in future cases.
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This premise is exactly the statement of EI, so it lands the enquiry again in a circle. Mayo
(2018) (and others) called this the logical problem of induction, because all attempts to
justify EI collapse into assuming EI in the first place. Therefore, from the 1930s to 1960s,
philosophers of science were looking for logics which represented plausible inductive
reasoning. The general approach at that time – also called logical positivism – was to
build logics which embodied EI. Mayo (2018, p. 63) called these attempts evidential-
relation (ER) logics, and gave the following example:

E���������-�������� �����
Premise 1: If H: all A’s are B’s, then all observed A’s (A1, A2, ..., An) are B’s.
Premise 2:All observed A’s (A1, A2, ..., An) are B’s.
Conclusion: Therefore, H: all A’s are B’s.

The first added premise, of course, is true. However, the second premise can be true,
but the conclusion still is false, because one cannot infer that all A’s are B’s when only all
observed A’s (A1, ..., An) are B’s. Therefore, the above logic is not a deductively valid
argument. Still, logics or arguments like this are often called a�rming the consequent
(Mayo, 2018). While any logic which is a�rming the consequent is not deductively
valid, analytical philosophers tried to solve the problem by weakening the logic into a
probabilistic version of it. This probabilistic version was called probabilistic a�rming the
consequent. The idea behind logics which are probabilistic a�rming the consequent is
that the conclusion does not follow, but only becomes more probable or ‘gets a boost in
confirmation of probability’ (Mayo, 2018, p. 63), often called a B-Boost.

What is gained by lowering the strength of the argument of enumerative induction
into a probabilistic version of it? The original problemwas that EI could not justify EI, so
there is no inductive argument available. Also, EI itself is no valid deductive argument.
In total, EI can neither be justified via an inductive nor via a deductive argument. Inter-
estingly, when switching to the probabilistic version of EI this problem disappears. The
reason is that now a deductively valid argument can be found, which is exactly Bayes’
theorem. Bayes’ theorem indeed can be formalised as a valid deductive argument, when
an underlying formal system of probability – that is, a probability space (W,A,P) - is
assumed:

B���� T������
Premise: P(H1), ...,P(Hn) are the prior probabilities of an exhaustive set of
hypotheses on the parameter space Q; data x are given and the likelihoods
P(x|Hi) are defined for each i = 1, ..., n.
Conclusion: It follows that

P(Hi|x) =
P(x|Hi)P(Hi)

P(x|H1)P(H1) + ...+P(x|Hn)P(Hn)

The above argument shows that Bayes’ Theorem is a valid deductive argument for prob-
abilistic a�rming the consequent. Therefore, enumerative induction can be justified by
changing EI into its probabilistic version EIp:

P������������ ����������� ���������
Premise: All observed A1, A2, ..., An have been B’s.
Conclusion: Therefore the probability of H : all A’s are B’s is increased (by
employing Bayes’ theorem).
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Note that employingBayes’ theorem is the reason for this probabilistic version to remain
a deductively valid argument, whichwas the goal. As a consequence, probabilistic enu-
merative induction can be justified as a valid deductive argument by involving Bayes
theorem. It should be stressed that this idea is often used to interpret Bayes’ theorem as
a plausible confirmation theory, because it probabilistically justifies EI by embodying
probabilistically a�rming the consequent.

Historically, the central question when proceeding this way was how to obtain the
probabilities defined byP and, in particular, the probabilitymeasureP itself. The ques-
tion, therefore, was how to define the measure P on the probability space (W,A,P)
used in Bayes’ theorem. Only then, probabilistic a�rming the consequent is achieved
in a meaningful way.1 One of the most ambitious programs to resolve this issue was
the one of Carnap (1962), who tried to assign probabilities to hypotheses by deducing
these from the “logical structure of a particular (first order) language” (Mayo, 2018,
p. 63). In short, history showed that this attempt was not successful at all. Also, it was
vehemently opposed especially by Salmon (1966, 1988). Therefore, it remained unclear
(at least for philosophers of science) how to define the measure P in Bayes’ theorem to
provide meaningful inference.

This confusion can be attributed primarily to two aspects:

1. The first point is the lack of mathematical background of both Popper and Mayo.
For example, Mayo (2018, p. 86) noted from personal correspondence: “When
Popper wrote me “I regret not studying statistics”, my thought was “not as much
as I do”.”. When Bayes’ theorem is used from a modern statistical perspective,
the foundations of measure theory precisely define which measure P is used on
the parameter space Q. If, for example Q := Rd for d � 1, then the Borel s-
algebra B(Rd) with the standard Lebesgue measure ld defines the probability
space (W,A,P) = (Rd,B(Rd),ld). Thus, in almost all realistic situations, the
answer to the question of how to ‘define the probabilities’ assigned to sets by the
measureP follows frommodernmeasure-theory. In the case of themost common
setting of continuous parameter spaces, only a single solution presents itself by
the foundations of measure theory. In these cases, including the example above,
the measure used most often is the Lebesgue measure l, see also Rüschendorf
(2014) and Bauer (2001). In discrete settings, the counting measure presents the
standard solution. Situations in which the measure P can be defined in multiple
ways do thus not exist for practical applications. The question of how to select the
measure P is, therefore, less a relevant question, as already recognised byWrinch
and Je�reys (1921).

2. While the first point makes the choice of measure from a mathematical point of
view less debatable, themore important question for practice is how to select prior
probabilities for each hypothesis, of which there may be an infinite number to be
considered. Wrinch and Je�reys (1921) answered this question from a theoretical
perspective so that the selection of prior probabilities is handled both for the finite
and infinite case. Their solution consisted of assigning the parameter a mixture
prior distribution as detailed in Chapter 6. This made it possible to test a hypoth-

1Note the similarity to Wrinch and Je�reys (1921). For them, the selection of the measure P was
less a problem, and the more important question was how to assign an infinite number of hypotheses
a prior probability which is distinguishable from zero. Their approach used trans-finite series to assign
the hypotheses prior probabilities, but the resonance was only moderate.
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esis even when the parameter space was continuous and a uniform distribution
could not be assigned to parameter spaces like Rd for d 2 N.

The second point in the confusion about how to select a prior probability measure
clearly is more relevant for practice. However, even when the number of hypotheses
to be considered through the statistical model is infinite, the finite measurement preci-
sion in any experiment or study implies that a finite number (which still may be huge)
of hypotheses su�ces to be considered in practice. The problem that no uniform dis-
tribution may exist on a continuous noncompact parameter space is therefore softened,
as the measurement process always is finite and therefore only discretisations of con-
tinuous parameter spaces are measured.

Nevertheless, for Popper (1959), it was a serious problem that one could use di�er-
ent measures P, which may be attributed to the fact that he was not aware of the nec-
essary measure-theoretic concepts. Therefore, he declared a lack of a clear justification
of the probabilistic version of enumerative induction. Influenced by Popper’s writings,
Hacking (1980) postulated in 1980 that “there is no such thing as a logic of statistical
inference” (Hacking, 1980, p. 145). What is more, he also added that the attempts of
probabilistic a�rming the consequent were “founded on a false analogy with deduc-
tive logic” (Hacking, 1980, p. 145). His reasons for the statement were that probability
is not a good measure for confirmation based on an argument which in turn was based
on an example Popper (1959) gave years earlier to discredit probabilistic a�rming the
consequent.

10.2 Popper’s Criticism to Inductive Reasoning
So, the choice of the measure P in Bayes’ Theorem is clear from a modern measure-
theoretic perspective. However, Popper (1959) argued that even when putting this
problem aside for a moment, there remain problems. According to him, it remains
unclear how to update or boost the probability of a hypothesis when using probabilis-
tic a�rming the consequent in form of Bayes’ theorem. This caused Popper (1959) to
state that probability is no good measure of confirmation.2 He reasoned:

“By ‘the problemof degree of corroboration’ Imean the problem (i) of show-
ing that there exists a measure (to be called degree of corroboration) of the
severity of tests to which a theory has been subjected, and of the manner in
which it has passed these tests, or failed them; and (ii) of showing that this
measure cannot be a probability, or more precisely, that it does not satisfy
the formal laws of the probability calculus.”
Popper (2005, p. 402)

2For space reasons the famous Popper-Miller argument against probability is not discussed at length
in this chapter, but the interested reader is referred to the excellent monograph of Sprenger and Hart-
mann (2019) for more details, in particular Variation 9 in Sprenger and Hartmann (2019). Interestingly,
Sprenger and Hartmann (2019) in their explication of a probabilistic measure of corroboration arrive at
the Kemeny-Oppenheim measure (Kemeny and Oppenheim, 1952) which is ordinally equivalent to the
weight of evidence, which is the log-Bayes factor, compare the early results of Good (1960, 1968) and
Good (1985). Good (1985) credits Turing (1942) for the original explication of the weight of evidence as
the appropriate measure for corroboration. Thus, the analysis of Sprenger and Hartmann (2019) essen-
tially arrives at the same conclusion that this chapter points at: That the Bayes factor is a well-justified
probabilistic measure of corroboration. For a more detailed discussion of induction from a philosophy
of science perspective the reader is also referred to Sprenger (2016).
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The second problem thus presented an unsurmountable obstacle for Popper to accept
enumerative induction in the form of Bayes theorem. Popper thus advocated a

“mathematical refutation of all those theories of induction which identify
the degree to which a statement is supported or confirmed or corroborated
by empirical tests with its degree of probability in the sense of the calculus
of probability. The refutation consists in showing that if we identify degree
of corroboration or confirmation with probability, we should be forced to
adopt a number of highly paradoxical views”
Popper (2005, p. 405)

Thus, his goal was to present an example which shows that the degree of confirmation
of a scientific theory is not well described via probability:

“It is often assumed that the degree of confirmation of x by y must be the
same as the (relative) probability of x given y, i.e., that Co(x, y) = P(x, y).
My first task is to show the inadequacy of this view.”
Popper (1959, p. 396)

In the above Co(x, y) denotes the confirmation of x by y and P(x, y) = p(x&y)/p(y)
the definition of conditional probability. Popper’s P is equal to the measure P in Bayes’
Theorem. He presented the following example:

Consider the (...) throw with a homogeneous die. Let x be the statement
’six will turn up’; let y be its negation, that is to say, let y = x; and let z be
the information ’an even number will turn up’.
(Popper, 2005, p. 406)

Popper argued that these events have the probabilities

p(x) =
1
6

p(y) =
5
6

p(z) =
1
2

(10.1)

where the use of p implies that the same probability measure P is used for these count-
ing densities. Thus, all of these probability statements are based on the same proba-
bility mass function p with respect to the counting measure. However, Popper did not
define how the data are modelled: For example, if interest lies in the number of dice
rolls which turn out as a six, a binomial model would be appropriate. If interest lies in
each of the dice faces, a multinomial model would be required. Popper first calculated
the conditional probabilities

p(x|z) = 1
3

p(y|z) = 2
3

(10.2)

which are obtained as

p(x|z) = p(z|x)p(x)
p(z)

=
1 · 16
1
2

=
1
3

(10.3)

p(y|z) = p(z|y)p(y)
p(z)

=
2
5 ·

5
6

1
2

=
2
3

(10.4)

and thus Popper argued that “x is supported by the information z, for z raises the prob-
ability of x from 1/6 to 2/6 = 1/3” (Popper, 2005, p. 406). Likewise, the probability
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p(y) = 5
6 decreases to p(y|z) = 2

3 . Therefore, based on the conditional probabilities
based on z the probability for x increases and the probability for y decreases. However,
Popper then inspected the change in probabilities before conditioning on z and after
conditioning on z, which is given as

p(x|z)
p(x)

=
1
3
1
6
= 2 > 1 (10.5)

p(y|z)
p(y)

=
2
3
5
6
=

4
5
< 1 (10.6)

Now, Popper denoted Co(x|z) as the event that p(x|z) > p(x) and then argued based
on the above:

“There exists statements x, y, and z which satisfy the formula

Co(x|z)& ⇠ Co(y|z)&p(x|z) < p(y|z) (10.7)

... we have established by our example: that x may be supported by z, and
y undermined by z, and that nevertheless x, given z, may be less probable
than y, given z.”
Popper (2005, p. 406-407)

In the above, ⇠ Co(y|z) denotes that p(y|z)  p(y). Clearly, based on the probabilities
Popper assumed for x, y and z, Co(x|z) and⇠ Co(y|z) holds due to Equation (10.5) and
Equation (10.6), and p(x|z) < p(y|z) follows fromEquation (10.3) andEquation (10.4).
Popper thus concluded:

“Thus we have proved that the identification of degree of corroboration or
confirmation with probability (and even with likelihood) is absurd on both
formal and intuitive grounds: it leads to self-contradiction.”
Popper (2005, p. 407)

Summing up, the above reasoning led Popper (1959) to reject any kind of probabilis-
tic a�rming the consequent because it also was based on probability to quantify the
uncertainty about a hypothesis, and thus he proceeded with deductive reasoning, fol-
lowing the paths which pioneers like Fisher or Neyman and Pearson had already paved
intuitively. He also claimed that

“the probability of a statement ... simply does not express an appraisal of
the severity of the tests a theory has passed, or of the manner in which it has
passed these tests.“
Popper (1959, p. 394-395)

10.2.1 Mayo’s Interpretation of Popper’s Example
Mayo (2018) followed Popper’s approach closely in constructing her error statistical
account. Therefore, she introduced the terms absolute and relative B-Boost:
Definition 10.1 (Incremental / relative B-Boost). The hypothesis H is confirmed by
data x if and only if P(H|x) > P(H), H is disconfirmed by x if and only if P(H|x) <
P(H), where P(H|x) + P(⇠ H|x) = 1 and ⇠ H is the set complement of H, that is,
⇠ H := Q \ H where Q is the parameter space.
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Definition 10.2 (Absolute B-Boost). The hypothesis H is confirmed by data x if and
only if P(H|x) is high, at least P(H|x) > P(⇠ H|x), where P(H|x) + P(⇠ H|x) = 1
and ⇠ H is the set complement of H, that is, ⇠ H := Q \ H where Q is the parameter
space.

The absolute B-Boost thus corresponds to the situation when P(H|x) > 1
2 . Then,

she used his example as follows:

“His example consists of a homogeneous die: The data x: an even num-
ber occurs; the hypothesis H: a 6 will occur. It’s given that P(H) = 1/6,
Pr(x) = 1/2. The probability of H is increased by data x, while ⇠ H is
undermined by x (its probability goes from 5/6 to 4/6). If we identify prob-
ability with degree of confirmation, x confirms H and disconfirms ⇠ H.
However, Pr(H|x) < Pr(⇠ H|x). So H is less well confirmed given x than
is ⇠ H, in the sense of (2).”
Mayo (2018, p. 67)

In the above, (2) refers to the absolute B-Boost. Also, Mayo gave two additional argu-
ments for not using probabilistic a�rming the consequent: (1) The paradox of irrel-
evant conjunctions and (2) the inability of B-Boosts to update the evidence in case of
100% reliable sources.

However, Mayo’s treatment conflates the probability of a hypothesis and the prob-
ability of observing data. A hypothesis makes a statement about the parameter q 2 Q
both in the frequentist and Bayesian approach, compare Appendix C. Her hypothesis
H: a 6 will occur thus is no valid hypothesis. It is the value of the probability mass
function p that Popper used. Popper’s original writings show that he did not even for-
mulate a specific hypothesis, and he only intended to obtain paradoxical probability
statements with regard to the sets x, y and z.

Mayo’s argument then is the same as Popper: Given that P(H) = 1/6 and P(x) =
1/2, the probability of H is increased by x, because after observing an even number,
the probability of P(H|x) is obtained via the definition of conditional probability as

P(H|x) = P(x|H)P(H)
P(x)

=
1 · 1/6
1/2

=
1
3

Therefore, H is confirmed in the sense of her incremental B-Boost, see Definition 10.1.
The probability of the negation of H, P(⇠ H|x) is obtained in the same way and de-
creases from 5/6 to 2/3 = 4/6. However, if the absolute B-Boost is now taken as the
degree of confirmation, x disconfirms H and confirms ⇠ H. Mayo concludes this by
noting that

1/3 = 2/6 = P(H|x) < P(⇠ H|x) = 4/6

Therefore, the hypothesis H is still less confirmed by x than its complement ⇠ H in
the sense of the absolute B-Boost. In total this leads to a situation in which the two
interpretations of probabilistic a�rming the consequent – the incremental and abso-
lute B-Boost lead to contradictory inferences about the hypothesis H. However, Mayo’s
interpretation of Popper is clearly inadequate because she misinterprets Popper’s origi-
nal statements which are statements about observing data in the sample space as state-
ments about parameters in the parameter space and then (incorrectly) assigns an ex-
plicit Bayesian prior probability to a set which is contained in the sample space.

200



CHAPTER 10. PHILOSOPHICAL CONSIDERATIONS ON BAYESIAN
STATISTICAL INFERENCE

10.2.2 Argument (1) – The paradox of irrelevant conjunctions
Next to reciting Popper’s counterexample, Mayo’s first argument is based on the fact
that it is possible to attach irrelevant hypotheses J to a given hypothesis H, and if x
confirms H then it also confirms H&J. Note that

P(H|x)
P(H)

=
P(x|H)P(H)
P(H)P(x)

=
P(x|H)
P(x)

so an incremental B-Boost is equivalent to P(x|H) > P(x). Then, two assumptions are
made by Mayo:

1. P(x|H)/P(x) > 1, that is, x causes an incremental B-Boost to H

2. P(x|H&J) = P(x|H), which is interpreted as J being an irrelevant conjunction
Substituting 2. into 1. yields P(x|H&J) > P(x). Mayo (2018) gives the example of
H:‘the general theory of relativity deflection of light e�ect is 1.75’ and J:‘the radioactivity of the
Fukushima water being dumped in the pacific ocean is within acceptable levels’, which shows
the absurdity of the paradox: Whenever the data x cause an incremental B-Boost to H,
they also cause an incremental B-Boost to the irrelevant conjunction J which is entirely
unrelated to H.

10.2.3 Argument (2) – The inability of B-Boosts to update the evi-
dence in case of reliable sources

The second argument of Mayo (2018) follows Achinstein (2001, 2010), who criticised
that a B-Boost is a problematic concept because a certain event cannot be “b-boosted”
anymore. His example consists of the data x :‘the newspaper says Harry won’ (some
prize at a tombola), and the newspaper is never wrong, so the probability of H:‘Harry
has won’ is now one, P(H) = 1. After that, a radio also assumed to be 100% reliable
announces y:‘Harry has won’. According to Achinstein (2001, 2010), the latter should
count as evidence for H, but the probability of 1 cannot be “B-boosted” anymore. Mayo
(2018) agreed.

10.3 Reconstructing theCritiques to InductiveReasoning
The above arguments pose a challenge for Bayesian inference interpreted as probabilis-
tic a�rming the consequent. While the search for the probability measure P on the
parameter space Q is solved from a modern measure-theoretic perspective, the three
open critiques given are the counterexample of Popper (1959) (in its correct original
form, not Mayo’s interpretation) and the two additional arguments of Mayo (2018). In
the following, it is shown that all three arguments against probabilistic a�rming the
consequent do not hold.

10.3.1 Reconstructing Popper’s B-Boost fallacy from a Bayesian per-
spective

In Mayo’s terms, Popper’s counterexample shows that probability and confirmation
cannot be used synonymously because the absolute and relative B-Boost can yield dif-
ferent conclusions. Before reconstructing Popper’s example, it needs to be stressed that
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both the relative and absolute B-Boost are no standard concepts ever used in Bayesian
inference, and neither parameter estimation nor hypothesis testing is based on the rel-
ative or absolute B-Boost in practice.

While Popper thought he had found a counterexample to reject probabilistic a�rm-
ing the consequent in the form of Bayes’ Theorem, his example is just exploiting the fact
that the posterior probability and the ratio of posterior to prior probability do not nec-
essarily need to coincide. It is important to make a few distinctions before discussing
his example from a Bayesian perspective.

First, as Popper’s original “statements” all operate only in the sample space, a full
Bayesian analysis is not possible. Popper’s treatment includes no specifics about the
statistical model P , the unknown parameter(s) q and the hypothesis to be tested. For
a full Bayesian analysis it is necessary to make some assumptions about the statistical
model, the unknown parameter of interest and the prior distributions. Here, it is as-
sumed that the generated data of the dice are distributed as Binomial with n = 1 and
parameter q 2 [0, 1], where q is the probability of obtaining a six. Two hypotheses are
compared then for illustration: The hypothesis H : p = 1 which states that the dice
always yields a six, and ⇠ H : p 6= 1 which states that the dice does not always yield a
six. These two hypotheses are primarily introduced to demonstrate that a di�erence as
observed by Popper in his example between what Mayo calls an absolute and relative
B-Boost is natural and even required for a probability measure to be a desirable method
for quantifying the degree of corroboration of a hypothesis.

Second, Popper’s original example only uses themodel distribution for the observed
data which operate on the sample space. His criticism thus pertains primarily to prob-
ability measures without any reference to Bayesian inference, but his conclusion is that
due to his paradoxical results all methods based on inductive reasoning and probabil-
ity measures need to be rejected. As these include Bayesian methods, Popper’s original
example is taken byMayo to demonstrate that enumerative probabilistic induction and
also Bayesian inferencemust be rejected. However, the reconstruction above shows that
the behaviour observed by Popper is indeed required and no contradiction to probabil-
ity as amethod for quantifying the degree of corroboration. As a consequence, Bayesian
statistics does not su�er from the “paradoxical behaviour”, too.

Now, we reconstruct Popper’s example from a fully Bayesian perspective. The first
option to reconstruct Popper’s example in a fully Bayesian approach is the hypothesis
testing stance: In it, prior probabilities P(H) and P(⇠ H) are used with the constraint
P(H) + P(⇠ H) = 1. The hypothesis H : p = 1 is compared with ⇠ H : p 6= 1 for
illustration. Although Popper introduces no hypothesis, the introduction of these hy-
potheses will demonstrate why his conclusion does not hold. The prior probabilities
P(H) = P(⇠ H) = 1/2 are assigned to the hypotheses, as nothing else is known about
the dice. After fixing the prior probabilities, Bayesian hypothesis testing can be con-
ducted. While Bayesian hypothesis testing is most often concerned with the Bayes fac-
tor, here the posterior probabilities are used to follow Popper’s concept of confirmation,
that is, Mayo’s B-Boosts. Therefore, two statistical models M1 and M2 are compared,
each incorporating one of both hypotheses H : p = 1 vs. ⇠ H : p 6= 1. Thus, model
M1 corresponds to the hypothesis H : p = 1, where the probability p of obtaining a six
with the dice is set to one. Model M2 corresponds to the complement ⇠ H : p 6= 1 of
H, that is to the model where the probability p of obtaining a six with the dice takes
any other value than one. The ratio of posterior model probabilities can be calculated
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as

P(M1|x)
P(M2|x)

=
P(x|M1)
P(x|M2)

· P(M1)
P(M2)

In model M2 a uniform prior p ⇠ U (0, 1) is used, as nothing is known about the true
parameter p. In model M1, a Dirac-prior with density f (p) = 1{p=1}(p) is used, as
one is certain that the probability p of the dice yielding a six is p = 1. Now, Popper’s z
amounted to observing an even number. Suppose that this number is a six, so X = 1.
Then, the binomial likelihood in M1 can be written as

P(X = 1|M1) =

✓
1
1

◆
(1)1(1� 1)1�1 = 1

where the observed data x are modeled as a random variable X counting the successes
(a six occurs). The binomial likelihood for M2 can be written as

P(X = 1|M2) =
Z 1

0

✓
1
1

◆
p1(1� p)1�1dp =

Z 1

0
pdp = 1/2

as now the parameter p is unknown. Assuming the prior probabilitiesP(M1) = P(M2) =
1/2, the ratio of posterior model probabilities can now be calculated as

P(M1|X = 1)
P(M2|X = 1)

=
P(X = 1|M1)
P(X = 1|M2)

· P(M1)
P(M2)

=
1

1/2
· 1/2
1/2

= 2

Due to the constraint P(M1|x) + P(M2|x) = 1 it follows that P(M1|x) = 2/3 and
P(M2|x) = 1/3. Therefore, from the perspective of the absolute B-Boost, H : p = 1 –
or model M1 – is confirmed, because

2/3 = P(M1|x) = P(H|x) > P(⇠ H|x) = P(M2|x) = 1/3

while ⇠ H – or model M2 – is disconfirmed.
Now, we discuss the relative B-Boost. We obtain

2/3 = P(M1|x) = P(H|x) > P(H) = P(M1) =
1
2

which shows that H – or M1 – is confirmed when using the relative B-Boost for inter-
pretation, too. Furthermore, ⇠ H – or M2 – is disconfirmed from the perspective of the
relative B-Boost too, because

1/3 = P(M2|x) = P(⇠ H|x) < P(⇠ H) = P(M2) =
1
2

Summing up, when following a Bayesian interpretation, no contradiction occurs at all
for the relative and absolute B-Boost in the example of Popper (1959). When the ob-
served even number is not a success, that is, X = 0 instead of X = 1, we arrive atP(X =
0|M1) = 0 and P(X = 0|M2) = 1

2 so that P(M1|X = 0) = 0 and P(M2|X = 0) = 1
(after observing a single throw which is not a six the probability of H : p = 1 reduces
to zero) the absolute B-Boost shows confirmation of M2 or ⇠ H : p 6= 1 because

0 = P(M1|X = 0) < P(M2|X = 0) = 1 (10.8)
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and the relative B-Boost

P(M1|X = 0)
P(M1)

=
0
1
2
= 0 <

P(M2|X = 0)
P(M2)

=
1
1
2
= 2 (10.9)

signals the same confirmation of M2. So no matter which even number we observe, the
absolute and relative B-Boost behave identically.

However, it could be argued that the probability of the hypotheses H and ⇠ H was
balanced in this reconstruction, and in Popper’s original example we had p(x) = 1/6
versus p(y) = 5/6, and instead of H and ⇠ H the events x and y were compared in
terms of the absolute and relative B-Boost. For completeness and to show where Pop-
per’s andMayo’s error lies, we change the prior probabilities ofH and⇠ H toP(H) = 1

6
andP(⇠ H) = 5

6 so that they align with Popper’s original example. Note that although
Popper’s probability measure operated on the sample space, the situation is identical:
A probabilitymeasure can be used to quantify the ratio of conditional probability to un-
conditional probability (or posterior to prior probability in a Bayesian interpretation)
or to quantify only the conditional probabilities.

Suppose now the prior probabilities P(H) = 1
6 and P(⇠ H) = 5

6 are used which
implies prior probabilities of 1/6 and 5/6 for M1 and M2 are employed. When the
observed even number is a six, that is a success and X = 1, this leads to posterior
probabilities P(M2|x) = 0.71428 and P(M1|x) = .28572, because

P(M1|X = 1)
P(M2|X = 1)

=
P(X = 1|M1)
P(X = 1|M2)

· P(M1)
P(M2)

=
1

1/2
· 1/6
5/6

=
2
5

(10.10)

Using

P(M1|X = 1)
P(M2|X = 1)

=
2
5
, P(M1|X = 1)

1�P(M1|X = 1)
=

2
5
, P(M1|x) = 0.28572 (10.11)

the relative B-Boost shows that P(M1|x) = 0.28572 > 1/6 = P(M1) and P(M2|x) =
0.71428 < 5/6 = P(M2), confirming M1 and disconfirming M2. The absolute B-Boost
now leads to Popper’s ‘contradiction’ that P(M2|x) = 0.71428 > 0.28572 = P(M1|x),
confirming M2 instead of M1 now.

So where is the mistake Popper made? First, Popper did not clearly specify the sta-
tistical models under consideration, which may contribute to the paradoxical result he
obtained. However, more importantly, when the statistical models Popper used are for-
mally defined as shown above, it is revealed that whenever the prior probabilities for
the hypotheses under consideration are balanced, no contradiction occurs between the
absolute and relative B-Boost. The reason therefore is that in modern terms, the ab-
solute B-Boost is the posterior odds, which are meaningless without normalisation by
the prior odds, compare Equation (6.12). Thus, whenever the prior probabilities are
balanced, the posterior odds are equal to the Bayes factor which precisely quantifies the
relative change in beliefs towards the hypothesis H or ⇠ H.

When unbalanced prior probabilities were used, Popper’s paradoxical result occurs.
The reason is that when an unreasonable bulk of prior probability mass of 5/6 is placed
on model M2, or ⇠ H : p 6= 1, a single observation will not change the posterior dis-
tribution substantially. Therefore, the relative B-Boost yielded that H gets confirmed
by the data, or in Poppers terms 1/3 = P(H|x) > P(H) = 1/6. The absolute B-Boost
led to 1/3 = 2/6 = P(H|x) < P(⇠ H|x) = 4/6 and this led Popper (1959) to reason
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that inductive reasoning is flawed and has to be rejected, because the absolute B-Boost
now confirms ⇠ H instead of H. The reason the absolute B-Boost did confirm ⇠ H
instead of H in Popper’s calculations lies in its very definition: The absolute B-Boost
compares the posterior probabilities P(H|x) and P(⇠ H|x), see Definition 10.2. In the
Bayesian reconstruction with Popper’s unbalanced probabilities above, the same prior
probabilities for H and ⇠ H were used which Popper used for his events x and y with-
out any reference to the Bayesian approach. Thus, the situation is identical: While in
the Bayesian reconstruction, the prior probabilities strongly favour the alternative⇠ H,
Popper (1959) picked an example where nearly all of the available probability mass of
his probability mass function p is assigned to the event y, namely 5/6. From a Bayesian
perspective, as the posterior is produced as a product of likelihood and prior via Bayes’
theorem, the posterior of ⇠ H is barely changed by only a single observation. In Pop-
per’s original example, there is no Bayesian interpretation to x or y, but the probability
measure behaves identical because the events x and y have such a di�erent probability
mass. Thus, the conditional probability in Popper’s example gets smaller (from 5/6 to
4/6), but does not change substantially. In the Bayesian reconstruction, the behaviour is
identical: As the prior distribution assigns 5/6 of the probability mass to⇠ H, the pos-
terior is strongly influenced by the prior. Therefore, the posterior P(H|x) is not larger
than P(⇠ H|x), which is to be expected due to the substantial mass of prior probabil-
ity put on ⇠ H. The behaviour of Popper’s example is indeed to be expected: From
a frequentist perspective, had Popper (1959) chosen an example where the events do
not di�er so drastically in regard to their probability, the paradox would have disap-
peared. From a Bayesian perspective, assigning reasonable prior probability like 1

2 to
each model, the absolute B-Boost and relative B-Boost show identical behaviour.

Summing up, to assign the bulk of available probability mass on one of bothmodels
and then being ba�ed by the fact that a relative comparison of the prior and posterior
probability in the relative B-Boost does not reflect the same behaviour as an absolute
comparison via the absolute B-Boost is no flaw in inductive reasoning, it is just exploit-
ing the fact that the absolute B-Boost is of course sensible to the prior probabilities of
each model (or hypothesis) under consideration. While Popper’s original example has
no Bayesian interpretation, the situation is analogue to the Bayesian reconstruction be-
cause the events x and y are selected identically as the hypotheses H and ⇠ H in the
reconstruction. From a Bayesian point of view, the absolute B-Boost inmodern notation
is simply the posterior model odds. These need to be normalised by the prior odds to
yield the Bayes factor, which in this case then states only anecdotal evidence due to a
single observation. Using the absolute B-Boost, which is the posterior model oddswith-
out normalisation of the prior odds, will lead to the strong influence of the prior odds.
The absolute B-Boost will not reveal the correct evidence for ⇠ H when extreme priors
and tiny sample sizes are used. Still, from a Bayesian perspective, had Popper collected
more and more data, the absolute B-Boost would finally have overcome the strength
of the extreme prior probabilities. Then, even the absolute B-Boost would break the
imbalance of the assigned prior probabilities, and eventually end up indicating evi-
dence for M1 (or H) in the same way the relative B-Boost does.3 The lesson from the
phenomenon observed by Popper is that extreme priors should be avoided when the
amount of collected data is very limited.

Returning to the problem of inductive reasoning, from an explicit hypothesis testing

3Such a resolution of the di�erence between absolute and relative B-Boosts is, of course, not attained
when a strictly frequentist perspective is taken.
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perspective (1) Popper (1959) did not show that inductive reasoning leads to contra-
dictory conclusions. He only discovered that extreme priors require (1) enough data
to be overcome, and (2) the absolute B-Boost is a controversial measure for extremely
subjective inductive (or Bayesian) inference. As from a modern perspective, subjective
Bayes has become a niche, and the commonly agreed on paradigm is the objective or
weakly informative Bayes – see also Held and Sabanés Bové (2014);Wagenmakers et al.
(2018); Ly et al. (2016a,b); Carlin and Louis (2009); Gelman et al. (2013); Kelter (2020b)
– this causes few problems. Also, the relative B-Boost is proportional to the marginal
likelihood, and the absolute B-Boost is the posterior model odds. When normalising
the latter with the prior odds, the resulting Bayes factor yields the evidence about H
and ⇠ H. Popper’s example only works because he is using a single observation com-
bined with extreme prior probabilities and both aspects can be fixed easily. Even when
not fixing the extreme priors, these will eventually be overwhelmed by increasing the
amount of collected data. Using a single observation for testing a hypothesis is absurd
in any real research setting.

Another important point is the apocryphal notation of Mayo (2018), which shows
that the connection of their ‘B-Boosts’ to elementary Bayesian objects which already
have a definition and namewere not recognized. The relative B-Boost is proportional to
themarginal likelihood of the correspondingmodel, and the absolute B-Boost is simply
the posterior model odds. To see this, note that the relative B-Boost P(H|x) > P(H)
thus is equivalent to P(H|x)/P(H) > 1which in turn holds if and only if

f (x|H)/ f (x)
| {z }

µ f (x|H)

> 1

according to Equation (6.12), when the hypothesis H is identified with a model M1.
Therefore, fromaBayesian perspective, the relative B-Boost is proportional to themarginal
likelihood f (x|M1) of the corresponding model M1 (analogue for model M2). Values
larger than one indicate the necessity of a change in belief towards H, which corre-
sponds to M1. The absolute B-Boost from a Bayesian perspective is simply the posterior
odds without incorporation of the prior odds according to Equation (6.12): P(H|x) >
P(⇠ H|x) is equivalent to

P(H|x)
P(⇠ H|x)| {z }
posterior odds

> 1

What is more, incorporation of the prior odds is essential and necessary, because the
prior odds strongly influence the posterior odds as the prior odds are updated by mul-
tiplication with the Bayes factor to yield the posterior odds. In Popper’s example the
probabilities of x and y were chosen identical to the prior odds of H and ⇠ H in the
Bayesian reconstruction, P(H)/P(⇠ H) = (1/6)/(5/6) = 1/5. Therefore, normalis-
ing the posterior odds P(H|x)/P(⇠ H|x) = (1/3)/(4/6) = 1/2 with the prior odds
yields a Bayes factor of BF01 = (1/2)/(1/5) = 2.5, which indicates only weak evidence
for the null hypothesis H : p = 1 which is bare worth mentioning according to Lee
and Wagenmakers (2013), Held and Ott (2018), and Je�reys (1961), see Table 6.1. The
absolute B-Boost can easily be disregarded from any further discussion based only on
the above explanation. Basing any inference on solely the posterior model odds with-
out incorporation of the prior model odds misses the point completely. The relative
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B-Boost P(H|x)/P(H) as shown above equals the marginal model likelihood f (x|H)
which quantifies the predictive ability of the model to predict the data x. The Bayes fac-
tor compares the predictive ability of two hypotheses H and ⇠ H (or equivalently, of
the two models M0 and M1) exactly via the ratio of these marginal model likelihoods,
and thereby expresses the necessary change in beliefs towards either of both models.
What Popper’s example and Mayo’s interpretation in fact show is the di�erence be-
tween objective and subjective Bayesian inference: A subjective Bayesian statistician
will incorporate subjective prior odds into the analysis and report the posterior odds
after computing the Bayes factor and multiplying it with the prior odds. An objective
Bayesian will prefer to solely report the Bayes factor, because the Bayes factor is, in gen-
eral, independent of the prior odds (Kleijn, 2022, Lemma 2.6).

The above analysis showed that Popper’s example can be shown to provide no rele-
vant objection to probability as amethod for quantifying the confirmation of a hypothe-
sis. However, the example is still insightful as it sheds light on another important issue:
It remains open how to use the posterior distribution in the Bayesian approach to test
hypotheses.4 By now, the example of Popper (1959) has been reconstructed in from
the perspective of hypothesis testing. However, as there is just a single observation,
one could also argue for an approach which prefers parameter estimation under uncer-
tainty instead. Neither a frequentist nor a Bayesianwould accept a single observation as
strong evidence for any hypothesis, so this fact directly motivates the second perspec-
tive, which embraces uncertainty and tries only to estimate the parameter p of the dice.
In what follows, Popper’s example is also reconstructed from this second perspective.

In this second perspective no explicit model comparison is conducted. Therefore,
the inference is concerned with estimating the parameter p and inferring, which values
are most probable a posteriori. Reframing Popper’s example into correct statistical ter-
minology, one would use a prior q ⇠ Beta(a, b) where p is replaced by q for notational
convenience. The prior for the probability q 2 [0, 1] of obtaining a six can be shown
to be completely uninformative and equivalent to a uniform prior p ⇠ U (0, 1) when
choosing a = b = 1. Thus, this choice of a Beta(1, 1) prior distribution reflects no
preference for any value of q inside [0, 1]. The likelihood f (x|q) would be modelled as
binomial, where it actually reduces to a Bernoulli likelihood because n = 1 (single dice
toss). The posterior is easily shown to be again Beta distributed with updated parame-
ters Beta(a+Ân

i=1 xi, b+ n�Ân
i=1 xi), see for example Gelman et al. (2013), which here

becomes Beta(1+ 1, 1+ 1� 1) = Beta(2, 1). Figure 10.1 now shows two reconstruc-
tions of Popper’s example, where the parameter p has been replaced by q for notational
convenience. The upper row shows the uniform Beta(1, 1) prior, the Bernoulli likeli-
hood f (q|x), and the Beta(2, 1) posterior (regard the di�erent y-scale) after observing
Popper’s data x = 1, that is, a single six. Note that in Popper’s original formulation,
only an even number was observed, so actually x = {2, 4, 6}. When using this original
model, the Dirichlet model below is required. In the model considered here, we sup-
pose that a six is observed, and then the resulting posterior is Beta(2, 1). If a two or a
four is observed instead of a six, the resulting posterior will be Beta(1, 2), because then
Ân

i=1 xi = 0, that is, we observe no success (where a six equals a success). So perspec-
tive (2) would proceed by first deriving such a posterior and after that, estimate the
most probable values of q given the data x. For example, estimation under uncertainty
would become calculating a 95% highest-density-interval for q and subsequently judg-

4A detailed comparison of available Bayesian evidence measures which helps answering this remain-
ing question is provided in Chapter 14.
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Figure 10.1: Reconstructing Popper’s dice toss example against inductive inferencewith
the beta-binomial model

ing if q = 1 is inside or outside the credible interval. Explicit testing of the hypothesis
H : q = 1 against ⇠ H : q 6= 1 is thus avoided. In this second perspective where an
explicit model comparison is avoided, neither inductivists nor Bayesians explicitly use
B-Boosts (that is, marginal likelihoods or posterior odds) when conducting inference.
Instead, simple estimation under uncertainty is used to draw conclusions. The lower
row of Figure 10.1 shows the situation under a di�erent prior where one assumes a
priori that the dice is likely to be unfair. This results, of course in a di�erent posterior
distribution and shows that no inductivist would be ba�ed by the amount the beliefs
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change from the prior to the posterior distribution of q. Termed di�erently: A single
toss of a dice is poor evidence, nomatter if perspective (1) favouring hypothesis testing
or perspective (2) favouring estimation under uncertainty is applied.

Another option to reconstruct Popper’s example is even more realistic and elemen-
tary: As the experiment uses a dice with six sides, a much more plausible statistical
model for Bayesian inference would require using a vector p = (p1, ..., p6) of probabili-
ties for each dice face. Then, Popper’s original data x = {2, 4, 6} can be modelled even
more explicitly as now each dice face is separated. The standard Bayesian model in this
setting would be the Dirichlet-Multinomial-model, see Gelman et al. (2013, Chapter
3). In this model, a noninformative Dirichlet prior p ⇠ Dir(a1, a2, a3, a4, a5, a6), ai > 0
is combined with a multinomial likelihood M(p1, ..., p6) with pi � 0 and Â6

i=1 pi =
1 for the six faces of the die. The above Dirichlet prior can be shown to be equiv-
alent to a uniform prior on the probability vector p = (p1, ..., p6) for each dice face
(Gelman et al., 2013, Chapter 3), and is a conjugate prior to the multinomial likeli-
hood. Therefore, it follows from standard Bayesian theory that the posterior is given as
f (p1, ..., p6|x) = Dir(a1 + x1, a2 + x2, a3 + x3, a4 + x4, a5 + x5, a6 + x6), which is again
Dirichlet distributed with updated parameters ai + xi, see Gelman et al. (2013). Here
x1, ..., x6 are the observed number of faces one to six in the sample. Thus, when the dice
is rolled for example two times and a six and a four are observed, x6 = 1 and x4 = 1,
and all other xi = 0. Note that in the posterior f (p1, ..., p6|x), x now is the vector of
results obtained. In Popper’s example, either a 2, a 4 or a 6 is observed. Thus, when a
six is observed in Popper’s example, x = (x1, x2, x3, x4, x5, x6) = (0, 0, 0, 0, 0, 1), that is a
single toss yields a six. Using a Dirichlet prior which is equal to the uniform prior, that
is f (p) ⇠ Dir(1, 1, 1, 1, 1, 1), the posterior is given as

f (p1, ..., p6|(0, 0, 0, 0, 0, 1)) = Dir(1, 1, 1, 1, 1, 2)

The conclusions are then identical to the previous model. When a 2 or a 4 are observed,
the posterior changes accordingly.5 Summing up, the argument of Popper (1959) col-
lapses in both models. Why is that? First, all of his reasoning depends on minimal data
and extreme priors in combination with the absolute B-Boost, which is strongly influ-
enced by the extreme prior. In a hypothesis testing perspective (1), balanced priors are
more appropriate and eliminate the “problem”, and if extreme priors are reasonable,
Popper only discovered that larger amounts of data are needed to overcome such prior
assumptions. Then, the evidence stated by the absolute and relative B-Boost is recon-
ciled eventually. Perspective (2) embraces estimation under uncertainty andmakes use
of the whole posterior distribution. In a second step, a credible interval, the Bayes factor
or even point estimates like the posterior mean or median can be computed. Based on
the tiny amount of data, estimation under uncertainty is the more realistic perspective
here. Also, the absolute B-Boost is not used in practice and needs to be normalised
with the prior odds. By this normalisation the Bayes factor is obtained, which states
only anecdotal evidence for both hypotheses. As Je�reys (1939) already noted, strong
a priori beliefs like 1/6 to 5/6 for H : p = 1 need large amounts of data to be overcome.
The Bayes factor highlights that a single dice throw which yields a six necessitates only
an anecdotal change in beliefs about the hypotheses, given the extreme a priori beliefs.
Popper’s counterexample therefore only demonstrates the di�erence between subjec-
tive and objective Bayesians, where the former prefer to report the ratio of posterior to

5One could also roll the dice three times and obtain the sample {2, 4, 6} and the posterior would then
be f (p1, ..., p6|(0, 1, 0, 1, 0, 1)) = Dir(1, 2, 1, 2, 1, 2).
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prior odds and the latter prefer the Bayes factor. The contradiction is therefore in both
cases removed, andprobabilistic a�rming the consequent encompassed byBayes’ theo-
remmust not be rejected based on Popper’s counterexample to probability as ameasure
of corroboration.

10.3.2 ReconstructingMayo’s andAchinstein’s irrelevant conjunctions
paradox

The first of the other two arguments of Mayo (2018) against probabilistic a�rming the
consequent was based on the fact that it is possible to attach irrelevant hypotheses J to
a given hypothesis H, and if x confirms H then it also confirms H&J.

Formally, there is nothing wrong with the argument, but the example is inappropri-
ate for a statistical context. No researcher with common sense would accept inferring a
statement about two completely independent hypotheses, chiefly when the experimen-
tal design, whichMayo (2018) hides in her discussion, is not concerned with one of the
hypotheses. For example, in her reasoning, either the deflection of light is measured or
the radioactivity levels in Fukushima water being dumped in the pacific ocean. Thus,
attaching irrelevant conjunctions and still stating evidence for the conjunction H&J is to
treat scientists as people with no common sense, not being able to connect the statistical
inferences made with the data collected or observed. Problematically, what Mayo and
Achinstein define as irrelevant is an arbitrary definition: P(x|H) = P(x|H&J) does not
imply that J is irrelevant, it only implies that x has the same probability to be observed
when H holds and when both H and J hold. Whether J is relevant or not is implied by
the definition of J: If J is a statement as q 2 Q0 with Q0 a subset of the parameter space
Q, then the probability of observing data x given H&Jwill be influenced and the central
assumption P(x|H) = P(x|H&J) does not does not hold anymore. Whenever J makes
no statement about the parameter q under consideration, it is indeed irrelevant and can
be excluded from any further analysis. Problematically, as any hypothesis is a subset of
the parameter space both in the frequentist and Bayesian paradigm6 an irrelevant con-
junction needs to be a null-set with respect to the dominating measure of the statistical
model P . This immediately shows that J can be omitted from further analysis.

What is more, that the same argument (if taken to be valid) could be applied to
deductive reasoning. Conducting a frequentist hypothesis test (in Fisher’s significance
framework of the Neyman-Pearson theory) which rejects the hypothesis that the de-
flection e�ect in Einstein’s theory of general relativity is 1.75 allows at the same time
to attach the irrelevant conjunction that the Fukushima water being dumped in the pa-
cific ocean is within acceptable levels. The ‘problem’ remains the same as when using
inductive reasoning, but the problem is no problem at all when the statements made
by a hypothesis are restricted to be concerned with the statistical model P under con-
sideration, compare Kleijn (2022).7

Another crucial aspect is that the definition of an irrelevant conjunction is debat-
able. It could well be argued that the irrelevance of a conjunction should be defined
by P(H|x) = P(H&J|x), because then the data x predict H equally well as H&J. This

6Compare Appendix C.
7This holds both in the parametric and nonparametric situation, see Kleijn (2022, Chapter 1).
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invalidates the above reasoning because based on

P(H|x)
P(H)

=
P(H&J|x)

P(H)
> 1 (10.12)

H is confirmed in the sense of a relative B-Boost, but one cannot infer

P(H&J|x)
P(H&J)

> 1 (10.13)

anymore. However, the latter inequality is precisely the relative B-Boost for H and the
irrelevant conjunction J. Thus, whileH is still ‘B-Boosted’ as shown in Equation (10.12),
H&J are not ‘B-Boosted’ anymore as shown by Equation (10.13). The reason is that
we cannot substitute the numerator in Equation (10.12) anymore based on the new
definition P(J|x) = P(H&J|x) of an irrelevant conjunction.

10.3.3 Reconstructing the inability ofB-Boosts to update the evidence
for perfectly reliable sources

The second argument of Mayo (2018) followed Achinstein (2001, 2010), who criticised
that a B-Boost is not possible when a 100% reliable information has been provided. This
whole problem vanishes because the situation described by Achinstein (2001) requires
no inference at all. Talking about B-Boosts becomes useless: If the information from
either the newspaper or the radio is 100% reliable, this can be interpreted as observing
the whole population instead of a sample, and the information is fully available. In this
case, no testing is needed anymore, and no statistical inference, because in enumerative
induction the assumption was that only a proper subset A1, ..., An of all A’s had been
observed:

E���������� I��������
Premise: All observed A1, A2, ..., An have been B’s.
Conclusion: Therefore H : all A’s are B’s.

If Achinstein (2001) argues that the radio or newspaper is absolutely reliable, thismeans
in terms of enumerative induction that all A’s have been observed, which constitutes the
whole population. In this case, looking at all A’s and checking if they are B’s su�ces.
In the newspaper example, no more evidence is needed after getting the 100% reliable
statement that Harry has won by the newspaper in the first place: When the tombola
results are available and the newspaper has checked all tickets, this implies the whole
population (of submitted tickets) is available. The whole inferential situation collapses
at this point, as now statements can bemadewith certainty, and no statistical inference –
in the form of B-Boosts, hypothesis tests, Bayesian or frequentist procedures, deductive
or inductive reasoning – is required anymore.

10.4 Conclusion
The previous section showed that the three main arguments against probabilistic af-
firming the consequent do not hold. This situation makes it possible to use Bayes’
theorem as an implementation of probabilistic a�rming the consequent, and solves
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the problem of enumerative induction by switching to its probabilistic version. Also,
tacking on irrelevant conjunctions is artificial and the argument remains questionable
due to the arbitrary definition of an irrelevant conjunction, while also holding for fre-
quentist testing if taken to be valid. The inability of B-Boosts to update the posterior
in case of reliable resources can be attributed to the fact that the whole population is
available in such cases which questions the point in applying statistical inference, and
Poppers counterexample is just a lesson in extremely subjective priors8, which are not
overcome by a single observation. Also, this inability shows that the ratio of marginal
likelihoods and the posterior model odds do not yield the same conclusions, which is
why an “objective” Bayesian would normalise the latter is in practice by dividing the
posterior model odds through the prior model odds and then obtain the Bayes factor
(which is the ratio of the marginal likelihoods). A “subjective” Bayesian would pre-
fer to report solely the posterior model odds based on his prior model odds. Together,
these problems seem therefore constructed and artificial. Even worse, they do not ar-
gument correctly and provide no substantive reason against probability as a measure
of confirmation of a statistical hypothesis.

Mayo (2018) primarily used these arguments to push her error statistical account in-
cluding severe testing, which is founded on Poppers deductivism and therefore biased
to blame induction as false. Reviews of her recent book ‘Statistical Inference as Severe
Testing: How to Get Beyond the Statistics Wars’ (Mayo, 2018) can be found in Gelman
et al. (2019). From a statistical perspective, her ideas of severe testing are too vague
to be implemented. From a philosophical perspective, she only discredits probabilis-
tic a�rming the consequent by (incorrectly) repeating the criticism of Popper (1959)
(which originally had no direct relationship to Bayesian inference but to contemporary
probability theory in general) and adding the two arguments above.

Christian Robert described the ideas put forward by Mayo (2018) quite well:

”I sort of expected a di�erent content when taking the subtitle, How to get
beyond the Statistics Wars, at face value. But on the opposite the book is
actually very severely attacking anything not in the line of the Cox-Mayo se-
vere testing line. (...) Another subtitle of the book could have been testing
in Flatland given the limited scope of the models considered with one or
at best two parameters and almost always a normal setting. I have no idea
whatsoever how the severity principle would apply in more complex mod-
els, with e.g. numerous nuisance parameters. By sticking to the simplest
possible models, the book can carry on with the optimality concepts of the
early days, like su�ciency (p. 147) and monotonicity and uniformly most
powerful procedures, which only make sense in a tiny universe.”
Christian Robert in (Gelman et al., 2019, p. 16).

8Or a lesson that subjective and objective Bayesian approaches can di�er when extreme priors are
chosen and limited data is observed, which was shown in the di�erence between the posterior model
odds and the Bayes factor.
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Alan Birnbaum
The anomalous concept of statistical evidence

Chapter 10 showed that from a philosophical perspective, there is no sound argu-
ment against using Bayesian inference as an implementation of probabilistic a�rming
the consequent (or probabilistic enumerative induction) by means of Bayes’ theorem.
Therefore, Bayesian inference can be seen as a grounded scientific theory from a philo-
sophical perspective. Still, it is unclear whether the problems inherent in null hypothe-
sis significance testing in the veins of Fisher, or hypothesis testing according to Neyman
and Pearson are avoided by employing Bayesian inference. This chapter analyses a set
of several important axioms underlying statistical inference to investigate this question.
Similar to probability theory, one can start from somefirst principleswhich are assumed
to be true, and successively derive further results with wider implications, in particular
for practical data analysis. In this chapter it is shown that starting from basic principles
of statistical inference inevitably leads to the (relative) likelihood principle (LP), and that
the LP itself is in conflict with both Fisher’s significance testing and the Neyman and
Pearson theory of hypothesis testing. The implications of this result are profound, since
based on these results, the dominating practice of statistical hypothesis testing in con-
temporary science stands in direct conflict with the axiomatic foundations of statistical
inference. As discussed in Chapter 5, the Neyman-Pearson theory and Fisher’s theory
di�er substantially, and as noted by Lehmann (1993), “specification of the appropriate
frame of reference takes priority, because it determines the meaning of the probabil-
ity statements.” The conflict between unconditional Neyman-Pearson and conditional
Fisher inference demonstrated that “a fundamental gap in the theory is the lack of clear
principles for selecting the appropriate framework.” (Lehmann, 1993, p. 1248).

The axiomatic analysis in this chapter therefore shows that many of the recent prob-
lems like failed replications of research results can be attributed to violations of the LP
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by both Fisher’s significance tests and Neyman-Pearson tests. While Fisher’s theory of
significance testing will be shown to be more in line with a frame of reference that is
adequate for scientific research, both frequentist theories violate principles which are
themselves consequences of the LP like the censoring principle (CP) and stopping rule
principle (SRP). After discussing the violation of the LP by classic frequentist hypoth-
esis testing, it is shown that Bayesian inference can be interpreted as a natural imple-
mentation of the likelihood principle. As a consequence, Bayesian inference avoids the
problems of null hypothesis significance testing in the spirit of Fisher or Neyman and
Pearson (Birnbaum, 1962; Berger andWolpert, 1988). As proposed by Lehmann (1993),
this chapter thus shows that Bayesian inference is coherent with an important set of sta-
tistical principles from an axiomatic point of view, and provides an appropriate frame
of reference for statistical hypothesis testing in scientific research.

11.1 Principles of Statistical Inference
Principles of statistical inference have a long tradition in statistical science, see Fisher
(1955), (Popper, 1959), Je�reys (1931), Cox (1958), and Birnbaum (1962). In math-
ematics, axioms are mostly structural ones in the sense that they provide the rules to
work with like in group or set theory. Importantly, these structural axioms are not of
normative nature in that they argue for or against how themathematical objects should
be used. In sharp contrast, principles of statistical inference can be interpreted as ax-
ioms which are strongly normative. They provide fundamental rules how to judge the
evidence provided by data in a practical statistical analysis and thus are di�erent from
structural mathematical axioms. Nevertheless, these normative fundamental statisti-
cal axioms can be used to derive more farreaching results identically to non-normative
structural mathematical axioms. Interestingly, in the early beginnings of modern statis-
tics, neither Fisher, Neyman and Pearson nor Je�reys startedwith clear statistical princi-
ples as shown in Part I and Part II. For example, Fisher’smethod ofmaximum likelihood
and, in particular, the tests he developed with Gosset were justified mostly by mathe-
matical intuition and the practical problems to be solved. As detailed in Section 3.2.3,
Fisher’s position was that his likelihood function,

“when properly interpreted must contain the whole of the information re-
specting x which our sample of observations has to give.”
(Fisher, 1934c, p. 297)

While Fisher’s idea that the likelihood function must give the whole of the information
available in the data was appealing, there was no rigorous proof. The proof followed
nearly three decades later and can be attributed to Birnbaum (1962), who showed in his
landmark paper ‘On the Foundations of Statistical Inference’ that the Likelihood Principle,
intuitively assumed by Fisher, follows from the Su�ciency Principle and the Weak Con-
ditionality Principle (compare Theorem 11.8). Birnbaum’s work can be seen as the first
structured attempt to clarify the axiomatic foundations of statistical inference while
simultaneously discussing the concept of mathematical and statistical evidence in a
broad sense. Historically, Fisher’s intuition led him to the likelihood principle without
formal proof, but he did not strictly adhere to it. He violated the likelihood principle
himself when introducing his methodology of significance tests as described in Part I,
Appendix C.6. By calculating his p-values, for example in the 2 ⇥ 2 tables given in
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(Fisher, 1935), he based his inference on data which were not observed at all, namely
on the probabilities of observing 11 or more monozygotic twins, also compare Equa-
tion (3.48). Therefore, his inference was not based solely on the likelihood function as
required by the likelihood principle. It is therefore not di�cult to recognize that the
likelihood principle as proven by Birnbaum (1962) is not compatible with frequentist
inference in the form of Fisher’s significance tests.1

The first structured approach to principles of statistical inference can indeed be at-
tributed to Birnbaum (1962), who showed that the likelihood principle follows from the
more elementary su�ciency principle and conditionality principle in the discrete case.
The su�ciency principle states that the evidence provided by a statistic which captures
all information in the data without any loss is identical to the evidence provided by the
original experimental data. The conditionality principle states that experiments not ac-
tually performedmust be irrelevant to the conclusions drawn. The likelihood principle
states that all evidence obtained from an experiment about an unknown quantity q is
contained in the likelihood function for q for given data x. While the implications of
the likelihood principle are farreaching, Berger and Wolpert (1988) stressed that the
principle and its implications have “been ignored by most statisticians” (Berger and
Wolpert, 1988, p. 1). Acceptance of the likelihood principle is maybe the central dif-
ference between Frequentists and Bayesians. Therefore, it is so important to clarify the
foundations of statistics before arguing for or against a particular school of thought in
the practical use of a method like hypothesis testing.

11.2 The Principle of Adequacy

Before the likelihood principle is discussed, this section outlines maybe the most ele-
mentary principle of statistical inference. It was introduced by Pratt (1977), who named
it the Principle of Adequacy (AP). It is useful to quote an example to understand Pratt’s
reasoning2:

Example 11.1 (Berger and Wolpert (1988)). Suppose H0 : q = �1 and H1 : q = 1 are
two competing hypothesis and the data are observed as X ⇠ N (q, .25). The rejection
region X �, 0 of the Neyman-Pearson theory, gives a test with error probabilities (type
I and II) of .0228. When x = 0 is observed, it is permissible to state that H0 is rejected
and that the corresponding error probability of a type I error is a = .0228. Common
sense, however, indicates that x = 0 fails to provide any evidence for or against one of
both hypotheses, as it is located exactly between q = �1 and q = 1. On the other hand,
suppose x = 1 is observed. Then pre-experimentally theNeyman-Pearson theory again
can only state that x = 1 is in the rejection region X � 0 so H0 can again be rejected at
a = .0228, but this time the evidence against H0 : q = �1 seems overwhelming.

In particular, the type I error probability is calculated straightforward: The probabil-
ity of a type I error is given as P(X 2 [0,•)|H0) =

R •
0 j�1,.25(x)dx = 1� F�1,.25(0) =

1 � 0.9772499 = 0.0227501 ⇡ 0.228. Here, j�1,.25(x) is the probability density of
the N (�1, .25) distribution, where µ = .25 and s2 = .25, and F�1,.25 is the corre-
sponding distribution function. Similarly, the type II error probability is calculated as

1As Fisher’s exact test is an example of conditional inference, this shows that conditioning on an
ancillary statistic as recommended by Fisher and Cox may be useful but can still violate the LP.

2For more details see (Berger and Wolpert, 1988, p. 17).
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P(X 2 (�•, 0)|H1) =
R 0
�• j1,.25(x)dx ⇡ 0.228. Clearly, the intuitive evidence obtained

by observing x can be quite di�erent from the pre-experimental evidence, which the
Neyman-Pearson theory is targeted at. While the intuitive evidence of x = 1 against
H0 is much larger than the intuitive evidence against H0 obtained from x = 0, the
Neyman-Pearson test rejects H0 in both cases at the a = .0228 level without quantify-
ing the strength of the evidence. The only goal is the type I error control, as indicated by
the test level a. (Berger andWolpert, 1988, p. 7) noted that this issue has “ledmany fre-
quentists to prefer the use of P-values to fixed error probabilities”. Interestingly, this is
another reasonwhy the hybrid of Fisher’s significance testing and the Neyman-Pearson
theory has evolved as detailed in Chapter 5. Many statisticians and practitioners were
simply not satisfied by a measure which does not gauge the strength of the evidence,
but only provides a binary decision threshold into significant and non-significant re-
sults. Therefore, the p-valuewas often used as a complement in addition to a conducted
Neyman-Pearson test, even though this is not allowed as discussed in Chapter 5. Based
on this situation, Pratt (1977) reasoned as follows:

“Even for simple hypotheses, the question arises whether the tail probabili-
ties (...) are to correspond to the particular data observed, or are to be fixed
in advance with only ’accept’ or ’reject’ determined by the data. The lat-
ter seems to me clearly a very inadequate expression of the evidence. (The
Principle of Adequacy: a concept of statistical evidence is (very) inadequate
if it does not distinguish evidence of (very) di�erent strengths.) This ac-
cords with the view that a F-value (critical level) is preferable to a report
of ’significant’ or ’not significant’ in usual current practice where only tail
probabilities under the null hypothesis are seriously considered in the final
analysis.”
Pratt (1977, p. 62)

In the Neyman-Pearson theory it is not allowed to complement a test with a p-value, as
there exists no concept of a p-value in the theory. Still, as shown inChapter 5 researchers
combined both theories and Fisher’s p-value succeeded as the reported evidence mea-
sure, althoughNeyman-Pearson tests arewidely used in practice. This shows howmost
scientists intuitively reject the dichotomous separation into ’significant’ and ’not signifi-
cant’ in favour of a continuousmeasure of evidence that employs the size of the p-value
(or test statistic). Pratt’s principle, therefore, can be assumed as valid and is stated be-
low.

Principle of Adequacy (AP). A concept of statistical evidence is (very) inadequate if it does
not distinguish evidence of (very) di�erent strengths.

Note that there are exceptions to this principle, like quality control, where the target
is to minimise the number of defects, or the construction of medical tests, where the
goal is to develop a test which will reliably indicate if a patient has a disease or not.
Still, in the latter case, it can be discussed if long term type I error control as dictated
by the Neyman-Pearson theory is desirable. The results of false-positive diagnosis of
disease are revealed quickly in the routinely following examinations. In contrast, a
false-negative result (a patient with the disease is told she is healthy) is much more
severe in practice. Type II error control, therefore, may be preferable to type I error
control in these situations.
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11.3 The Likelihood Principle
The likelihood principle makes a statement about the evidence obtained by an experi-
ment. More specific, it states that the evidence provided by data x for a parameter q of
the assumed statistical model depends solely on the likelihood function q 7! L(q; x) =
fq(x). From a mathematical perspective, the likelihood principle (LP) makes a state-
ment about settings in which the random variable X has density fq(x) with respect to
some measure n for all q 2 Q. The likelihood function L(q; x) = fq(x) for q 2 Q as
usual is the density evaluated at the observed data x and interpreted as a function of q
instead of x.

A preliminary note on notation: The notation and formulation of certain definitions
and statistical principles di�ers between authors. Di�erent influential notations have
been used at least by Birnbaum (1962), Birnbaum (1972), Basu (1975), Dawid (1977),
Kalbfleisch et al. (1986), Berger and Wolpert (1988) and Gandenberger (2015). For
each definition or principle used in this chapter, a reference is provided immediately
after its first statement to make clear which notation is used. As Berger and Wolpert
(1988) provide the most coherent treatment of the likelihood principle up to date, most
definitions and principles are taken from their notation.

11.3.1 Birnbaum’s work on the foundations of statistical inference
The first proof of the likelihood principlewas given by Birnbaum (1962), who derived it
from the intuitivelymore plausible principles of su�ciency and conditionality. The lim-
itation of his proof was that it does only hold for discrete densities. However, based on
philosophical arguments given later this still su�ces for practice. Birnbaum explained
the goal of his work in the introduction of his 1962 paper as follows:

“This paper treats a traditional and basic problem-area of statistical theory,
which we shall call informative inference, which has been a source of contin-
uing interest and disagreement. The subject-matter of interest here may be
called experimental evidence: when an experimental situation is represented
by an adequate mathematical statistical model, denoted by E, andwhen any
specified outcome x of E has been observed, then (E, x) is an instance of sta-
tistical evidence, that is, a mathematical model of an instance of experimental
evidence. Part of the specification of E is a description of the range of un-
known parameter values or of statistical hypotheses under consideration,
that is, the description of a parameter space W of parameter points q. The
remaining part of E is given by a description of the sample space of possible
outcomes x of E, and of their respective probabilities of densities under re-
spective hypotheses, typically by use of a specified probability density func-
tion f (x, q) for each q.”
Birnbaum (1962, p. 269-270)

Birnbaum then separated two problems: First, the task to find an appropriate math-
ematical characterization of statistical evidence as such, and second, the problem of
evidential interpretation. The former aims solely at characterizing statistical evidence
without providing any guidance how to interpret the resulting mathematical charac-
terization, while the latter is only concerned with determining concepts and terms ap-
propriate to interpret statistical evidence. Birnbaum set out for the first problem by
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introducing the symbol Ev(E, x) for the evidential meaning of an instance (E, x) of sta-
tistical evidence:

“that is, Ev(E, x) stands for the essential properties (which remain to be clar-
ified) of the statistical evidence, as such, provided by the observed outcome
x of the observed specified experiment E.”
Birnbaum (1962, p. 270)

Birnbaum’s main idea to mathematically characterize statistical evidence consisted in
finding conditions under which one would assert that two instances (E, x) and (E0, y)
of statistical evidence are equivalent and he denoted such an assertion of evidential
equivalence as Ev(E, x) = Ev(E0, y). To investigate the necessary conditions to make
such an assertion, he introduced the principle of su�ciency first:

“A first condition for such equivalence, which is proposed as an axiom, is
related to the concept of su�cient statistic which plays a basic technical role
in each approach to statistical theory. This is:
The principle of su�ciency (S): If E is a specified experiment, which outcomes
x; if t = t(x) is any su�cient statistic; and if E0 is the experiment, de-
rived from E, in which any outcome of x of E is represented only by the
corresponding value t = t(x) of the su�cient statistic; then for each x,
Ev(E, x) = Ev(E0, t) where t = t(x).”
Birnbaum (1962, p. 270)

A translation into modern notation is postponed until the next section, and for now it
su�ces to note that a su�cient statistic captures all information in the data without any
loss. Thus, the evidence Ev(E, x) provided by the original data x in E is equivalent to
the evidence Ev(E0, t) in the experiment E0 where the original data x have been replaced
by the su�cient statistic t and only t is reported. The second statistical principle that
Birnbaum proposed as an axiom was the conditionality principle:

“A second condition for equivalence of evidential meaning is related to con-
cepts of conditional experimental frames of reference; such concepts have
been suggested as appropriate for purposes of informative inference bywrit-
ers of several theoretical standpoints, including Fisher and D.R. Cox. (...)
The second proposed axiom, which many statisticians are inclined to accept
for purposes of informative inference, is:
The principle of conditionality (C): If E is any experiment having the form of a
mixture of component experiments Eh, then for each outcome (Eh, xh) of E
we have Ev(E, (Eh, xh)) = Ev(Eh, xh). That is, the evidential meaning of any
outcome of anymixture experiment is the same as that of the corresponding
outcome of the corresponding component experiment, ignoring the over-all
structure of the mixture experiment.”
Birnbaum (1962, p. 271)

Clearly, as shown in Part I, Fisher was a fervent proponent of conditional inference, and
Cox also argued for hypothesis testing conditional on the sub-experiment actually per-
formed when considering a mixture experiment. Fisher made this notion explicit by
arguing that conditioning on an ancillary statistic (like the margin totals in the 2⇥ 2-
contingency tables discussed in Chapter 3) is necessary for correctly performing statis-
tical inference. Also, this notion even seeped into his concept of probability through his
idea of relevant subsets which the statistician needs to condition on.
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The last statistical principle included in Birnbaum’s paper was the likelihood princi-
ple, which “has been proposed and supported as self-evident principally by Fisher and
G.A. Barnard, but which has not hitherto been very generally accepted.” (Birnbaum,
1962, p. 271). Birnbaum therefore introduced what it means when two likelihood func-
tions are the same, and then stated the likelihood principle:

“This condition concerns the likelihood function, that is, the function of q,
f (x, q), determined by an observed outcome x of a specified experiment E;
two likelihood functions f (x, q) and g(y, q) are called the same if they are
proportional, that is if there exists a positive constant c such that f (x, q) =
cg(y, q) for all q. This condition is:
The likelihood principle (LP): If E and E0 are any two experiments with the
same parameter space, represented by density functions f (x, q) and g(y, q);
and if x and y are any respective outcomes determining the same likelihood
function; then Ev(E, x) = Ev(E0, y). That is, the evidential meaning of any
outcome x of any experiment E is characterized fully by giving the likelihood
function c f (x, q) (which need to be described only up to an arbitrary positive
constant theory), without other reference to the structure of E.”
Birnbaum (1962, p. 271)

While the likelihood principle has a less immediate natural justification, Birnbaum
translated it informally as the “irrelevance of outcomes not actually observed” (Birn-
baum, 1962, p. 271). Birnbaum’s achievement was to show based on these three sim-
ple principles, that (S) and (C) together are equivalent to (L). This proof provided a
solution to a mathematical characterization of statistical evidence, because it showed
that the likelihood function is the mathematical object to quantify evidence provided
through data and the likelihood principle gives the conditions under which evidential
equivalence is established in two experiments:

“The fact that relatively few statisticians have accepted (L) as appropriate
purposes of informative inference, while many are inclined to accept (S)
and (C), lends interest and significance to the result, proved herein, that (S)
and (C) together are mathematically equivalent to (L). When (S) and (C) are
adopted, their consequence (L) constitutes a significant solution to the first
problem of informative inference, namely that a mathematical characteriza-
tion of statistical evidence as such is given by the likelihood function.”
(Birnbaum, 1962, p. 271)

Frequentist statistics was built on the shoulders of concepts like su�ciency and condi-
tional inference as shown in Part I and thus (S) and (C) were readily accepted by most
frequentist statisticians. However, there was little reason for frequentists to accept (L)
from an axiomatic perspective. What is today called Birnbaum’s theorem, was named
by himself only Lemma 2 and was stated as follows:

“Lemma 2. (L) implies, and is implied by, (S) and (C).”
Birnbaum (1962, p. 284)

11.3.2 A simple proof of Birnbaum’s theorem
The proof is elementary and went as follows (using Birnbaum’s original notation): He
denoted E and E0 as twomathematical models of experiments with common parameter
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space W and probability density functions f (x, q) and g(y, q) on their samples spaces
S and S0 which are regarded to be distinct, disjoint spaces. The hypothetical mixture
experiment E⇤ is considered whose components are E and E0 with equal probabilities
1
2 . Birnbaum denoted z as a generic sample point of E⇤ and C as the set of points z so
that C = A [ B with A ⇢ S and B ⇢ S0. Then, the probability that Z is in C given q is
given as

Prob(Z 2 C|q) = 1
2
Prob(A|q, E) + 1

2
Prob(B|q, E0)

=
1
2

Z

A
f (x, q)dµ(x) +

1
2

Z

B
g(y, q)dn(y)

where A and B are measurable sets (and in modern notation, f (x, q) and g(y, q) are
the µ� and n-densities of the measures PX and PY which operate on S and S0). The
probability density function of E⇤ therefore can be written as

h(z, q) =

(
1
2 f (x, q), if z = x 2 S
1
2g(y, q), if z = y 2 S0

(11.1)

Each outcome z of the mixture experiment E⇤ has a representation

z =

(
(E, x), if z = x 2 S
(E0, y), if z = y 2 S0

Now, to show that (C) and (S) together imply (L), Birnbaum first used (C) and it fol-
lows that

Ev(E⇤, (E, x)) = Ev(E, x) for each x 2 S and (11.2)
Ev(E⇤, (E0, y)) = Ev(E0, y) for each y 2 S0 (11.3)

Suppose x0 and y0 are two outcomes of E and E0 respectively which determine the same
likelihood function, that is

f (x0, q) = cg(y0, q) (11.4)

for all q, where c is some positive constant. Then, h(x0, q) = ch(y0, q) for all q, too. Thus,
the two outcomes (E, x0) and (E0, y0) determine the same likelihood function.

Now, if two outcomes x, x0 of one experiment E determine the same likelihood func-
tion (that is, if for some positive c one has f (x, q) = c f (x0, q) for all q), then there exists
a (minimal) su�cient statistic t such that t(x) = t(x0).3 Thus, if two outcomes x, x0
of any experiment E determine the same likelihood function, then they have the same

3This follows from the Neyman-Fisher factorization theorem, compare Theorem C.51: By assump-
tion, f (x, q) = c f (x0, q) for all q for c > 0, which can be expressed in more familiar notation as f (x|q) =
c f (x0|q). The Neyman-Fisher factorizations f (x|q) = g(T(x)|q)h(x) and f (x0|q) = g(T(x0)|q)h(x0) to-
gether with f (x|q)

f (x0 |q) = c imply that g(T(x)|q)h(x)
g(T(x0)|q)h(x0) = c, which is equivalent to g(T(x)|q)

g(T(x0)|q) = h(x0)
h(x) c. The

right-hand side is constant for all q and given x, x0, and this implies that the left hand-side also is con-
stant for all q and given x, x0. The left-hand side, however, is only constant for all q and given x, x0 if
and only if T(x) = T(x0) holds. Furthermore, the existence of such a (minimal) su�cient statistic is
always guaranteed as long as the statistical model P is separable with regard to the total variation norm,
compare Rüschendorf (2014, Theorem 4.2.9), so the assumption is very weak and non-restrictive.
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evidential meaning Ev(E, x) = Ev(E, x0), because from (S) it follows that Ev(E, x) =
Ev(E0, t(x)) = Ev(E0, t(x0)) = Ev(E, x0).4

As the two outcomes (E, x0) and (E0, y0) determine the same likelihood function,
from (S) and the above it follows that

Ev(E⇤, (E, x0)) = Ev(E⇤, (E0, y0)) (11.5)

Using Equation (11.2), Equation (11.3) and Equation (11.5) it now follows that

Ev(E, x0) (11.2)
= Ev(E⇤, (E, x0)) (11.5)

= Ev(E⇤, (E, y0)) (11.3)
= Ev(E0, y0) (11.6)

for any two outcomes x0 2 S, y0 2 S0 of any two experiments E, E0 with the same param-
eter space W. But Equation (11.6) states that based on the assumption Equation (11.4),
(S) and (C), the evidential meaning of x0 in E and y0 in E0 is identical, that is, (L) holds.

To show that (L) implies (C) Birnbaum noted that this follows immediately from
the fact that the likelihoods in the mixture experiment (E⇤, (Eh, xh)) and the mixture
component (Eh, xh) are proportional (which is immediate from the expression of h(z, q)
above in Equation (11.1), and the proportionality constant is c = 1

2). To show that (L)
implies (S) Birnbaum supposed t to be su�cient in E := (W, S, f ) and considered the
experiment E0 = (W, S0, f 0) with transformation t := t(x), S0 := t(S) and density

f 0(t, q) = Â
x2S:t(x)=t

f (x, q)

From the earlier considerations, a statistic t(x) is su�cient in E = (W, S, f ) only if t(x) =
t(x0) implies that for some c > 0, f (x, q) = c f (x0, q) for all q.5 As the summands in
f 0(t, q) all fulfill the condition that they aremapped to the same su�cient statistic value
t, the likelihoods of them are proportional to each other, and proportional to f (x, q). As
a consequence, f 0(t, q) has the form f 0(t, q) = c f (x, q), where t = t(x), for some c > 0.
This implies that by assumption of the likelihood principle, that Ev(E, x) = Ev(E0, t)
where t = t(x), which is the statement of (S).6

The implication of Birnbaum’s theorem that (S) and (C) together are equivalent to
(L) were profound. Traditional frequentist statisticians widely accepted (S) and (C),
but did not adhere to (L), because both Fisher’s significance tests and the Neyman-
Pearson theory explicitly violate (L), as will be shown below. In contrast, (L) implies

4Birnbaum formulated this as Lemma 1 in his paper, which follows from (S).
5Again, this follows from the Neyman-Fisher factorizations f (x|q) = g(T(x)|q)h(x) and f (x0|q) =

g(T(x0)|q)h(x0), the ratio of which is equal to f (x|q)
f (x0 |q) = g(T(x)|q)h(x)

g(T(x0)|q)h(x0) . As the su�cient statistics t(x) =

t(x0) (here denoted as T(x) and T(x0)) are equal, it follows that g(T(x)|q) = g(T(x0)|q) and thus f (x|q)
f (x0 |q) =

h(x)
h(x0) . As the right-hand side h(x)

h(x0) is constant as a function of q for given x, x0, it follows from t(x) = t(x0)
(here denoted as T(x) = T(x0)) that the left-hand side is also constant as a function of q for given x, x0.
Thus, f (x|q) = c f (x0|q) for some c > 0. The fact that c is strictly positive follows from theNeyman-Fisher
factorization theorem, because the function h needs to be strictly positive, compare Rüschendorf (2014,
Theorem 4.1.15) and Theorem C.52.

6Birnbaum’s original argument was much shorter in his Birnbaum (1962) paper, and consisted pri-
marily of stating that the implication that (S) follows from (L) is due to Lemma 1 in his paper. The
arguments presented above were given by Birnbaum (1972) as a separate Theorem later for clarification
(Birnbaum, 1972, Theorem 2). However, as the much more important implication in the 1962 paper was
that (S) and (C) imply (L), this lack of claritywas of little importance regarding the practical implications
of Birnbaum’s theorem.
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that no data other than the observed can be used in statistical inference, and rejecting
(L). Birnbaum’s theorem implied that it was only possible to reject (L) when simulta-
neously rejecting either (S) or (C). However, both (S) and (C) were essential concepts
of frequentist statistical inference was detailed in Part I, and thus rejection of either (S)
or (C) questioned the core concepts of frequentism in statistical inference.

11.3.3 The reception of Birnbaum’s theorem
After the original introduction by Birnbaum, his theorem was widely discussed and
the result came as a shock to many frequentist statisticians. L.J. Savage noted in the
discussion of Birnbaum’s paper:

“Without any intent to speak with exaggeration or rhetorically, it seems to
me that this is really a historic occasion. This paper is a landmark in statistics
because it seems tome improbable thatmany peoplewill be able to read this
paper or to have heard it tonight without coming away with considerable
respect for the likelihood principle.
I, myself, like other Bayesian statisticians, have been convinced of the truth
of the likelihood principle for a long time. Its consequences for statistics
are very great. A person who after an experiment like those discussed by
Birnbaum proposes to use an analysis which is not in conformity with the
principle, it seems to me, will have to think quite hard of his excuses for
doing so.”
Savage et al. (1962b, p. 307)

Other reactions included that although the result was preposterous, earlier writers like
Fisher, Neyman or Pearsonwerewell acquaintedwith all of this, but noticed that report-
ing a sole likelihood function or conducting a Bayesian analysis was no solution. Irwin
Bross fervently criticized Birnbaum’s result and tried to defend frequentist statistics:

“Finally, I would like to point out that the basic themes of this paper were
well-known to Fisher, Neyman, Egon Pearson and others, well back in the
1920’s. But these men realized, as the author doesn’t, that the concepts can-
not be used directly for scientific reporting. So, theywent on to develop con-
fidence intervals in the 1930’s, and these proved to be very useful. The au-
thor here proposes to push the clock back 45 years, but at least this puts him
ahead of the Bayesians, who would like to turn the clock back 150 years.”
Irwin Bross in Savage et al. (1962b, p. 310)

However, for the majority of discussants Birnbaum’s theorem came as a shock. Jerome
Cornfield noted in his comment that

“I haven’t quite recovered from the shock of seeing that two principles I had
thought reasonable and onewhich I had thought doubtful imply each other.
It is clear that I must either believe all three of disbelieve at least one of the
two reasonable ones.”
Jerome Cornfield in Savage et al. (1962b, p. 309)

George E.P. Box added:
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“I believe, for instance, that it would be very di�cult to persuade an intel-
ligent physicist that current statistical practice was sensible, but that there
would be much less di�culty with an approach via likelihood and Bayes’
theorem.”
George E.P. Box in Savage et al. (1962b, p. 311)

With regard to statistical hypothesis testing, one of the most important comments was
made by A.P. Dempster in the discussion of Birnbaum’s paper, who stressed:

“(L) implies the exclusion from any role in evidential meaning of signifi-
cance tests, confidence statements, and even so basic a concept as the mean
square error of an estimator. To eradicate such concepts from the thought
process of statisticianswould require dprodigious brain-washingprogram.”
A.P. Dempster in Savage et al. (1962b, p. 318)

11.3.4 Refinement of Birnbaum’s theorem
Birnbaum’s theorem presented a shock for frequentist statisticians who were routinely
using Fisher’s significance tests, Neyman-Pearson tests, confidence intervals and, in
general, methods which uses data that was not actually observed in an experiment.
Acceptance of the su�ciency and conditionality principle built the foundation of the
frequentistmode of statistical inference, and thus the equivalence to the likelihood prin-
ciple presented a serious challenge to proceed with the current practice of statistical
inference. However, in 1962, the only alternative was to use Bayesian methods which
were di�cult to use because the lack of MCMC theory and computing resources, and
pure likelihood inference was of little use as stressed in the comment of Irwin Bross
above.

Birnbaum’s result was later refined and extended by Berger and Wolpert (1988)
to the continuous case. In this section, Birnbaum’s result is translated into modern
notation and more precise definitions are provided. Illustrating examples also clarify
why (S) and (C) should be accepted as axioms. In this section, the underlying joint
probability space W7 is therefore assumed to be a discrete space like in Birnbaum’s
paper, and an experiment E is now defined as follows:
Definition 11.2 (Experiment (Berger and Wolpert, 1988)). A statistical experiment
E is a triple (X, q, { f (·|q}), where X is a random vector on W with probability mass
function f (·|q) for q 2 Q.

The experiment is thus modeled by a family of probability densities for a random
variable X according to which the observed data x is assumed to be generated. How-
ever, the probability densities are parameterized by the parameter(s) q, which remain
unknown. The observed data x provide information about the unknown parameter
q and are used to estimate it, or test a hypothesis about q. For more details see Ap-
pendix C. Birnbaum (1962) denoted the inference or conclusion about q the evidence
Ev(E, x) about q which arises from E and x, based on the observed data X = x and the
experiment E. He presupposed nothing specific about what this evidence might be.8
Thus, his definition was:

7See Appendix C for a measure-theoretic perspective: The space W in this section can be interpreted
as the joint probability space W := X ⇥ Q as given in Appendix C.

8Birnbaums understanding of mathematical and statistical evidence has been debated in the litera-
ture, for details see Giere (1977).
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Definition 11.3 (Evidence (Berger andWolpert, 1988)). When experiment Ewas per-
formed and X = x is observed

Ev(E, x) (11.7)

denotes the evidence about q arising from E and x.
Evidence in the sense of Birnbaum (1962) is therefore quite abstract. While ‘ev-

idence’ could be associated with traditional statistical measures of evidence like p-
values, significance levels or Bayes factors, this is purposely not done in Birnbaums
derivations. Thus, Birnbaum (1962) stayed as general as possible. As outlined above,
Birnbaumstartedwith theConditionality Principle (CP) (henceforth abbreviated as (CP)
instead of (C) as in Birnbaum’s original notation), which essentially states that if an
experiment is selected by a randommechanism (independent of q) out of many exper-
iments, only the experiment actually performed is relevant for the evidence obtained.
While Birnbaum (1962) used the CP in his derivations, Basu (1975) showed that the
evenWeakConditionality Principle (WCP) su�ces for Birnbaum’s derivations.9 TheWCP
is weaker than the CP because it does not allow for an arbitrary number of mixture ex-
periment components, but exactly two components with equal mixing probabilities:

WeakConditionality Principle (WCP, (Berger andWolpert, 1988)). Suppose that E1 =
(X1, q, { f1(·|q)}) and E2 = (X2, q, { f2(·|q)}) are two experiments, where only the unknown
parameter q needs to be common between the two experiments. Consider the mixed experiment
in which the random variable J is observed, where P(J = 1) = P(J = 2) = 1

2 (independent
of q, X1 or X2), and then experiment EJ is performed. Formally, the experiment performed is
E⇤ = (X⇤, q, { f ⇤(·|q)}), where X⇤ = (j,Xj) and f ⇤(x⇤|q) = f ⇤((j, xj)|q) = 1

2 f1(x1|q) +
1
2 f2(x2|q). Then

Ev(E⇤, (j, xj)) = Ev(Ej, xj) (11.8)

Onemay askwhy theWCP should be accepted froman axiomatic perspective. There
are indeed many examples which show that rejecting the WCP would be completely
unreasonable and even contradict common sense. Here, an example given by (Berger
and Wolpert, 1988, p. 6) is repeated for clarification:
Example 11.4 (Berger andWolpert (1988)). Suppose a substance (e.g. a blood sample
of a patient) needs to be analyzed and can be sent either to a laboratory in New York
or California. Both labs are equally good, so a fair coin is flipped to decide between
them, where heads denotes the lab in New York will be chosen and tails denotes the
lab in California will be chosen. The coin is flipped and comes up tails, so the Cali-
fornia lab is chosen. Finally, the results from the lab arrive and a conclusion needs to
be reached about the sample. Should the conclusion take into account the fact that the
coin could have been heads, and therefore that the experiment in New York might have
been performed instead?

Of course, common sense allows only to incorporate the information from the ex-
periment actually performed. This implies to use only the information from the lab the
sample was actually sent to. Note, that this example of Berger and Wolpert (1988) is
a copy of the famous example of Cox (1958) as discussed in Part I, Chapter 3. Cox ar-
gued that a mixed experiment in which a fair coin is flipped and either a test for level

9See also Berger and Wolpert (1988, p. 25) and Casella and Berger (2002, p. 293)
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a = 0 or a = .10 is performed, leads to a total test level of a = .05 (see Section 3.2.3).
Also, according to Cox (1958), in this case, the conditional test which bases inference
only on the experiment actually conducted should be used. This test either has the test
level a = 0 or a = 0.10 instead of a = 0.05. While the unconditional test will attain
the level a = 0.05 under repetition eventually, for the actual inference at hand either
a = 0 or a = 0.10 holds, which is why the original argument of Cox (1958) is a strong
argument for conditional inference instead of unconditional inference. The WCP for-
malises the example of Cox (1958) in a certain sense and states that evidence should
only depend on the experiment conducted. Based on this reasoning, Cox (1958) ar-
gued that experiments which were not realized should be irrelevant to the inference
obtained.10 The WCP, therefore, can be attributed to Cox (1958) and is the first corner-
stone in the development of Birnbaum (1962). The second cornerstone of Birnbaum’s
development as outlined abovewas the su�ciency principle. Next to the conditionality
principle, also the su�ciency principle can be weakened and the proof of Birnbaum’s
theorem still holds. This weaker version of the su�ciency principle was called theWeak
Su�ciency Principle (WSP), and the name di�ers between authors: While Casella and
Berger (2002) call it the Formal Su�ciency Principle, Berger and Wolpert (1988) denote
it theWeak Su�ciency Principle, which is also used here. Held and Sabanés Bové (2014,
p. 47) denote it simply the Su�ciency Principle. The original notation of Weak Su�-
ciency Principle is attributed to Dawid (1977), and before stating the WSP it is useful to
consider the definition of a su�cient statistic T, see Definition C.50:
Definition 11.5 (Su�ciency). A statistic T(X) is a su�cient statistic for q if the condi-
tional distribution of the sample X given the value of T(X) does not depend on q.

Thus, a statistic T(X1:n) is su�cient for q if the conditional distribution of X1:n given
T = t is independent of q, that is, if

f (X1:n|T = t) (11.9)

does not depend on q, compare Held and Sabanés Bové (2014). Here, X1:n denotes
the sample (X1, ...,Xn) of size n. Thus, when the statistic T has been observed for the
sample X, the distribution of the data conditional on the value of this statistic does
not depend on the unknown parameter q anymore, because all information about q
is already contained in T which has been observed. The WSP makes the following
statement:

Weak Su�ciency Principle (WSP, (Berger and Wolpert, 1988)). Consider the experi-
ment E = (X, q, { f (x|q)}) and let T(X) a su�cient statistic for q. If x and y are sample
points satisfying T(x) = T(y), then Ev(E, x) = Ev(E, y).

The intuitive motivation for the trustworthiness of the WSP is the fact that a su�-
cient statistic T captures all information in the data without any loss, compare Defini-
tion C.50.11 The main reason for accepting the WSP, therefore, is that a statistic which

10However, Example Example 11.4 di�ers from the example of Cox in the detail that the hypothesis
tests considered by Cox are not ‘equally good’, when equally good is interpreted as the specified test level
a. The labs in Example 11.4 are equally good, but one could easily omit this detail and the conclusion
would stay identical: Any inference can only be based on the data observed and the experiment actually
performed, even when the quality of both labs is di�erent.

11Note that Fisher had a talent to give his concepts very appealing and useful names. What better
name could one give a statistic, which captures all information in the data, than su�cient?
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summarizes all relevant information in the observed data so that it only compresses the
information but does not lose any of it su�ces to draw inferences. However, this moti-
vation serves primarily for accepting the original su�ciency principle as used by Birn-
baum. The WSP, however, follows immediately from the original su�ciency principle,
because from the su�ciency principle in Birnbaum’s version, it follows that Ev(E, x) =
Ev(E, T(x)) when T is a su�cient statistic in the experiment E for the parameter of in-
terest. As a consequence, one obtains for two sample points x, ywith T(x) = T(y) from
the su�ciency principle that Ev(E, x) = Ev(E, T(x)) = Ev(E, T(y)) = Ev(E, y). Thus,
whenever T(x) = T(y) for two sample points x, y it follows that Ev(E, x) = Ev(E, y),
which is precisely the statement of theWSP, and theWSP follows from the original suf-
ficiency principle. According to the WSP, if in an experiment the su�cient statistic T
yields the same value for two hypothetical sample realizations x and y, the statistical
evidence Ev(E, x) and Ev(E, x) provided by x and y is the same. The following example
shows why the WSP is reasonable as an axiom:
Example 11.6. Suppose a person flips a single coin twenty times. Consider two hypo-
thetical realizations A and B of the experiment:

A : 10110110001000010010
B : 01000010010010101101

Here, success is defined as ‘coin comes up heads’ or 1, and failure as ‘coin comes up
tails’ or 0. In A, the twenty flips yield 8 successes in the first 8 flips and 12 failures
in the last 12 flips. In B, the order is reversed. Assume the situation is modelled as
the observed data X being binomially distributed with n = 20 and unknown success
probability q 2 [0, 1]. The value Xi = 1 indicates a success and Xi = 0 indicates no
success. It is well known that the number of successes T(X1, ...,X20) := Â20

i=1 Xi is a
su�cient statistic for the unknown parameter q of the coin yielding a success.12 Now,
should the inference drawn about the parameter q be di�erent in A and B?

As T((X1, ...,X20)) := Â20
i=1 Xi = 8 is a su�cient statistic for the unknown parameter

q, the statistical evidence about q of course should be the same in both hypothetical re-
alizations A and B. In both cases 8 successes are observed, and the only di�erence is the
ordering when these are observed. The evidence obtained for the success rate parame-
ter q is the same and q would be estimated as 8/20 in both A and B. It would contradict
common sense to infer a di�erent conclusion about q in both possible realizations. The
WSP formalizes this intuition.

Now, Berger and Wolpert (1988) refined Birnbaum’s original proof by weakening
the original su�ciency and conditionality principles to theWCPandWSP. They showed
that then the Likelihood Principle (LP) still follows, and (WSP) and (WCP) together are
equivalent to (LP).

Formal Likelihood Principle (LP, (Berger and Wolpert, 1988)). Suppose that we have
two experiments, E1 = (X1, q, { f1(x1|q)}) and E2 = (X2, q, { f2(x2|q)}) where the unknown

12This is shown by calculating fq(X|Â20
i=1 Xi = t), which is the conditional density of the sample data

X given T(X) = t. From the definition of conditional probability, it follows that

fq(X|
20

Â
i=1

Xi = t) =
qt(1� q)20�t

(20t )q
t(1� q)20�t

=
1
(nt)

Thus, the conditional density fq(X|T(X) = t) is independent of q and it follows that T is su�cient for q.
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parameter q is the same in both experiments. Suppose x⇤1 and x⇤2 are sample points from E1 and
E2, respectively, such that

L(q : x⇤2) = C · L(q : x⇤1) (11.10)

for all q and for some constant C that may depend on x⇤1 and x⇤2 but not q. Then

Ev(E1, x⇤1) = Ev(E2, x⇤2) (11.11)

In its simplest case C(x, y) = 1, the LP states that if two sample points result in the
same value of the likelihood function for all parameter values q, the inference made
should be identical for both points. This special case of course can hardly be rejected,
but of more interest is the general case in which C 6= 1. The more farreaching conse-
quences of accepting the LP become clear when considering this general case, which
is highlighted in the following classic example, taken from (Berger and Wolpert, 1988,
Chapter 3):
Example 11.7. In this example, two experiments are compared where the only di�er-
ence between them is the rule when to stop experimenting. Therefore, let Y1,Y2, ... be
independent and identically distributed (iid) Bernoulli random variables with success
parameter q. In experiment E1, we assume that a fixed sample size of 12 observations
is taken (the experiment is stopped after n = 12 observations), and suppose the su�-
cient statistic T1(y1, ..., y12) = Â12

i=1 yi to be 9. Experiment E2 proceeds by taking indefi-
nitely many observations until a total amount of 3 zeros has been observed and is then
stopped. We assume that by coincidence, T2(y1, ..., y12) = Â yi again turns out to be 9.
The distribution of T1 in E1 is binomial with density

t1 7! f1(t1|q) =
✓
12
t1

◆
qt1(1� q)12�t1 (11.12)

which leads for t1 = 9 to the likelihood function

q 7! L1(9; q) =
✓
12
9

◆
q9(1� q)3 (11.13)

The distribution of T2 in E2 is negative binomial with density

t2 7! f2(t2|q) =
✓
t2 + 2
t2

◆
qt2(1� q)3 (11.14)

which leads for t2 = 9 to the likelihood function

q 7! L2(9; q) =
✓
11
9

◆
q9(1� q)3 (11.15)

First, the LP states that for experiment Ei all information about q is contained in
Li(9 : q) alone. The more striking consequence here is that as L1(9 : q) and L2(9 : q) are
proportional as functions of q, L1(9 : q) = C · L2(9 : q) with proportionality constant
C = (129 )/(

11
9 ), the information about q in E1 and E2 is identical. According to the LP, this

implies that it does not matter if the fixed sample size 12 is chosen pre-experimental,
or if the experiment is conducted until enough successes have been observed. The evi-
dence in both cases must be identical. While it seems reasonable to base any inference
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only on the observed likelihood function and not on the intentions of the researchers
or design of the experiment, accepting or rejecting the likelihood principle can lead to
entirely di�erent conclusions in the above example.

Now, consider a frequentist who conducts a significance test according to Fisher
or Neyman-Pearson. The p-value or test statistic is of course di�erent for both exper-
iments, because in E1 the p-value or test statistic is calculated based on the binomial
distribution, while in E2, it is based on the negative binomial distribution. It now can hap-
pen that the test in E1 based on the binomial distribution will become significant while
the test in E2 based on the negative binomial distribution does not. Then, di�erent con-
clusions are drawn for E1 and E2, although the likelihood functions are proportional.
Therefore, frequentist significance tests in the sense of Fisher or Neyman and Pearson
violate the LP. In the above example this is shown as follows: A p-value for the null hy-
pothesis of a fair coin H0 : q = 0.5 versus H1 : q < 0.5 is calculated as the probability of
obtaining a result equal to or more extreme than the one observed under assumption of
H0 : q = 0.5. We define the observed zeros as the result of interest here. In the binomial
experiment, three zeros were observed in twelve iterations. The probability of three or
fewer zeros (we compare H0 : q = 0.5 against H1 : q < 0.5) under the assumption of
H0 : q = 0.5 is

P(t1 � 9|H0) =

✓✓
12
9

◆
+

✓
12
10

◆
+

✓
12
11

◆
+

✓
12
12

◆◆✓
1
2

◆12
⇡ 0.073

This is the type I error probability. Using a significance threshold of a = 0.05, the null
hypothesis H0 : q = 0.5 cannot be rejected. In contrast, for the negative binomial ex-
periment, the type I error probability is the probability of needing to conduct twelve
or more experiments to obtain three zeros. The probability density of the negative bi-
nomial density is given by f (k) = (k+r�1

k ) · pr · (1� p)k, where k 2 {0, 1, 2, 3, ...} is the
number of failures, p 2 (0, 1) the single-toss success probability and r > 0 the number
of successes until sampling stops. In the above example, a success is a zero, so sam-
pling is done until r = 3 zeros are obtained. The type I error probability therefore
is P(k + r � 12|H0, r = 3), which equals the probability P(k � 9|H0) of obtaining
nine or more failures (twelve or more experiments are conducted until three zeros are
obtained):

P(k+ r � 12|H0, r = 3) = P(k � 9|H0) = 1�P(0  k  8|H0)

= 1� [

✓
8+ 3� 1

8

◆✓
1
2

◆3 ✓1
2

◆8
+

✓
7+ 3� 1

7

◆✓
1
2

◆3 ✓1
2

◆7
+ ...+

✓
0+ 3� 1

1

◆✓
1
2

◆3
]

= 1� [

✓
10
8

◆✓
1
2

◆11
+

✓
9
7

◆✓
1
2

◆10
+

✓
8
6

◆✓
1
2

◆9
+

✓
7
5

◆✓
1
2

◆8
+

✓
6
4

◆✓
1
2

◆7

+

✓
5
3

◆✓
1
2

◆6
+

✓
4
2

◆✓
1
2

◆5
+

✓
3
1

◆✓
1
2

◆4
+

✓
2
0

◆✓
1
2

◆3
] ⇡ 0.0327

Using a = 0.05, the null hypothesis H0 : q = 0.5 is rejected this time. Therefore,
although the likelihood functions of the binomial and negative binomial experiment are
proportional to each other, a significance test rejects the null hypothesis H0 : q = 0.5 in
one experiment, while it does not in the other. The above example therefore highlights
the following problematic fact:
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F���. F���������� ������������ ����� �� ��� �������������� �� F����� ��� �����������
���������� ����� �� ��� �������������� ��N����� ��� P������ ������� ��� ����������
���������.

As stressed above, the axiomatic basis of frequentist statistical hypothesis tests was
given by the su�ciency and conditionality principles, and frequentists readily accepted
these two cornerstones of statistical inference. The likelihood principle was, on the
contrary, accepted by few statisticians as an axiom (even Fisher violated it via his sig-
nificance tests although he advocated it, compare Part I). The violation of the LP by
frequentist statistical hypothesis tests thus implied that the likelihood principle needed
to be rejected to be able to perform hypothesis tests in the spirit of Fisher or Neyman
and Pearson. However, due to the equivalency relationship between the LP and WSP
and WCP, Birnbaum’s theorem demonstrated that when rejecting the likelihood prin-
ciple, either theWSP or theWCP or possibly even both need to be rejected. As theWSP
and WCP presented the cornerstone of frequentist hypothesis testing, this presented a
major challenge for frequentist statistics.

A direct corollary expresses the conflict between frequentist null hypothesis signif-
icance testing the LP even more radically:

Likelihood Principle Corollary (Berger and Wolpert (1988)). If E = (X, q, { f (x|q)})
is an experiment, then Ev(E, x) should depend on E and x only through L(q : x).

Clearly, null hypothesis significance tests in the spirit of Fisher or Neyman and Pear-
son are not based solely on the likelihood function.

Dealingwith Example 11.4, as an alternative consider a Bayesianwho faces the same
situation: As the likelihood functions are proportional, and q is the same parameter in
both E1 and E2 (compare the assumption of the LP), a Bayesian can select only a single
prior distribution p(q) for q. The posterior p1(q|9) in E1 is then given as

p1(q|9) =
L1(9; q)p(q)

f1(x)
=

L1(9; q)p(q)R
Q f1(x|q)p(q)dq

(D)
=

◆◆C · L2(9; q)p(q)
◆◆C ·
R

Q f2(x|q)p(q)dq
(11.16)

=
L2(9; q)p(q)

f2(x)
= p2(q|9)

where fi(x) =
R

Q fi(x|q)p(q)dq is themarginal likelihoodunder Ei, i = 1, 2 and L1(9; q) =
C · L2(9; q)was used. Thus, the above shows that the posterior density p1(q|9) is identi-
cal to p2(q|9). As a consequence, the posterior distributions in E1 and E2 are equal (up
to null sets). As for Bayesians, all inference follows from the posterior distribution, all
subsequent steps like the computation of a Bayes factor will yield identical results in E1
and E2.

The assumption that q is the same in both experiments is crucial here, as otherwise
two priors p1(q) and p2(q) could reasonably be chosen by a Bayesian without violat-
ing the LP. Then, di�erent conclusions could be drawn even though likelihoods are
proportional even when opting for a Bayesian approach. This also manifests in Equa-
tion (11.16), because when q is not the same in E1 and E2, the prior density p(q) can be
selected as p1(q) in E1 and p2(q) in E2, and the equality (D) in Equation (11.16) does
not hold anymore.

A Bayesian analysis thus accords with the LP.13

13Note that this follows even when not specifying which Bayesian method is used: In the above, a
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Berger andWolpert (1988) thenprovedBirnbaum’s fundamental theoremwithweak-
ened versions of the su�ciency and conditionality principle, the WSP and WCP:
Theorem 11.8 (Birnbaum (1962)). The Formal Likelihood Principle follows from the
Weak Su�ciency Principle and theWeak Conditionality Principle. The converse is also
true.

Proofs of Birnbaum’s Theorem based only on the WSP and WCP and the Likeli-
hood Principle Corollary can be found in (Casella and Berger, 2002) and (Berger and
Wolpert, 1988, Chapter 3) and do only require basic probability theory, so they are not
repeated here. However, from the outline of Birnbaum’s original proof above it is im-
mediate that Birnbaum actually used only the WCP (his mixture experiment consisted
of two sub-experiments with equal mixing probabilities), and he made use of the WSP
only via the Fisher-Neyman-factorization.

11.3.5 Arguments for and against Birnbaum’s development
After the original publication of Birnbaum (1962), a variety of criticisms were o�ered,
most of which did not stand the test of time. While the original derivations of Birn-
baum (1962) lacked some clarity, these were quickly resolved afterwards and did not
limit the validity of his theorem, see also Birnbaum (1972), Basu (1975), Joshi (1976)
and Godambe (1979) for further details. Importantly, from a philosophic perspective,
Basu (1975) argued that the discrete case handled by Birnbaum (1962) su�ces for any
practical purposes. The reason for this is that in reality, any sample space W is finite
in any physically realisable experiment because one can only observe data with finite
precision. Therefore, one may be completely satisfied with the discrete case. Still, there
are various other ways to attack the LP, which principally consist of questioning the
axiomatic assumption of the WSP and WCP.

There are also some criticisms which arise from the misapplication or misinterpre-
tation of the LP, which are also detailed in Berger and Wolpert (1988) and which are
less convincing as serious criticism against the LP:

1. Criticism: The LP applies only when q includes all unknowns relevant to the prob-
lem, but in practice, there is a palette of techniques like latent-variable analy-
sis, models including nuisance parameters, sequential analysis, and many more,
where important unknowns often include more than just q, the parameter in the
probability model.
Solution: The LP can be reformulated to include such unknowns, see (Berger and
Wolpert, 1988, Section 3.5), especially the details about nuisance parameters, the
Marginalization Principle (MP) and theNoninformative Nuisance Parameter Principle
(NNPP). These additional principles guarantee that the LP also holds in models
with nuisance parameter. Furthermore, the LP makes only a statement condi-
tioned on two selected statistical models for the experiments E1 and E2. Thus, if
the model does not parameterize important unknowns, this is no defect of the LP
but a model choice problem which comes before any inference.

2. Criticism: In some cases like quality control or medical tests for a specific disease,
long-run performance is the main target. Therefore a frequentist measure like a

hypothesis test based on the Bayes factor or the computation of the posterior median could be chosen.
Other options would be to calculate an interval estimate. No matter which kind of analysis is selected,
the results will be identical in E1 and E2, as all inference is based on the posteriors p1(q|x⇤1) and p2(q|x⇤2).
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test level in the Neyman-Pearson theory is the appropriate object to proceedwith.
This thought is sometimes used as a counterexample to the LP.
Solution: Such situations cause no counterexample to the LP but are situations in
which indeed the interest is not in evidence about the situation at hand in every
single case, but about the long-run performance. Therefore, the LP does not apply
in such situations, because the evidence is not of interest here. However, this
criticism is considered inmore detail later as it aims at the appropriate application
context of the LP.

3. Criticism: There can be ambiguities in the definition of the likelihood function,
especially in the continuous case detailed below.
Solution: These problems can be resolved via measure-theoretic considerations,
especially by treating sets ofmeasure zero similar to the identification ofmeasures
in Lp which di�er only on Lebesgue null-sets by changing to the quotient space
Lp; for details see (Berger and Wolpert, 1988, Section 3.4)

4. Criticism: There are periodical attempts to prove the LP wrong. Most of these are
using likelihood-based methods which give bad results.
Solution: The LP does not state which method to use and also nothing about the
e�ciency of solutions obtained with any particular method. A bad result is no
argument against the LP itself.

5. Criticism: The LP is not applicable to situations in which information is conveyed
via di�erent parameters from di�erent experiments, for example two binomial-
distributed experiments with parameter q1 and q2 in E1 and E2. The LP states that
the conclusions reached need to be identical, but as q1 and q2 could measure en-
tirely di�erent things, this is a contradiction to the LP.
Solution: The LP only applies when q1 and q2 are the same parameter in both ex-
periments E1 and E2 and are physically (or at least conceptually) the same quan-
tity, compare ?? . If q1 measures the success rate of a flipped coin, and q2 the
e�cacy of a drug, observing 10 successes out of 15 may lead to entirely di�erent
conclusions about the coin and the e�cacy of the drug, as the LP does not ap-
ply. Still, even in these cases the statistical evidence is obtained by the likelihood
function. The statistical evidence obtained in both experiments could, therefore,
argued to be the same, while the scientific evidence (what can be learned when
incorporating other elements than only the statistical analyses) has not to be iden-
tical in the case the parameters q1 and q2 mean entirely di�erent things.

Next to these more superficial misconceptions, the main criticisms against Birnbaum’s
proof can be structured roughly into four areas:

1. Criticisms targeting the model assumption

2. Criticisms targeting the evidence assumption

3. Criticisms targeting the WCP

4. Criticisms targeting the WSP
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Criticisms targeting the model assumption

Often the LP is criticized because it assumes a particular parametric model with a den-
sity for X. This assumption does not always hold, for example, when considering non-
parametric statistics. Still, even for situations in which no particular parametric model
can be assumed, there do exist multiple models which are under consideration. The LP
then still states that all information is in the data for any model under consideration,
even if the information now cannot be associated with information about a parameter
q in a parametric model, but only with the information about which model is the most
suitable one. Berger and Wolpert (1988) formalized this by letting q represent various
models, and in the situation when X is discrete and the sample space W is given as
W := {x1, x2, ...}, they denoted q = (q1, q2, ...) as a point in the infinite-dimensional
simplex Q := {q : 0  qi  1,Â qi = 1} ✓ RN. Then, Berger and Wolpert (1988)
defined Pq(xi) = qi on W = (x1, x2, ...), which is the class {Pq} of all probability dis-
tributions on W. This formalization su�ces for a completely nonparametric setup in
which no parametric model can be assumed for X.

The philosophical argument of finite-precision measurements detailed above indi-
cates that the discrete case here su�ces because even for continuous nonparametric
settings the measurement precision will be finite, so a discrete sample space W suf-
fices. When comparing an infinite number of models, a discrete approximation again
su�ces due to the inability to separate in practice between, for example N (0, 1) and
N (0, 1.00000000001) depending on the measurement precision. While it could be ar-
gued that there are cases in which one deals with a non-dominated family, so that there
is no Radon-Nikodym derivative, there is the relative likelihood principle detailed in
section 11.3.5 below which establishes the LP also in this situation. Also, in almost all
realistic applications the statisticalmodelP is dominated, see Kleijn (2022). Otherwise,
the underlying metric space (P , dr) is not separable with regard to the total variation
norm dr, compare Rüschendorf (2014, Theorem 3.1.17), which quickly narrows down
the options to model the observations via a metric space.

Criticisms targeting the evidence assumption

Another branch of criticisms of the derivation of Birnbaum (1962) aims at his definition
of evidence, which is questioned. Option one is to question the existence of evidence
at all, which leads inevitably to philosophical discussions. However, the general notion
is that the data, in some form, provide that evidence. Otherwise, the whole statistical
enterprise should be stopped. The second option is to question the meaning and espe-
cially the uniqueness of Ev(E, x), which is not defined precisely. Still, Birnbaum (1962)
never argued that there needs to be a single measure of evidence. There could be multi-
ple to proceed with, and therefore this argument does not limit the validity of the LP.
Other authors have argued to replace evidence with inference patterns (Dawid, 1977),
whichmakes it possible to include specific inference patterns like p-values, significance
tests, Bayes factors or others in the set of patterns considered. In practice, however, this
is rarely if ever done so statistical evidence as an abstract concept is still widely used
(Giere, 1977).
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Criticisms targeting the WCP

Criticisms about the WCP are more severe and show an essential reconnection to the
historical reconstruction in Part I, especially Chapter 4. Frequentists can reject the weak
conditionality principle if a position is taken in which one says theWCP is based on the
mistaken belief that it is possible to obtain evidence about a particular parameter value
q from a particular experiment. Interestingly, Neyman (1957) took this perspective
years after publishing his theory with Egon Pearson. His argument consisted of stating
that it is only possible to guarantee the performance of a procedure in repeated use,
and this should in some kind include averaging over both experiments E1 and E2 in
the mixture experiment E⇤ defined in the WCP. Still, in all his applications, long-term
performance or quality control were the main goals and this position is in sharp con-
trast to the scientist who obtains single results which cannot be reproduced in precisely
the same fashion and for which it is necessary to draw conclusions in direct succession
to the single experiment or study conducted. This situation is the routine in scientific
practice, at least in medical and social sciences. One may argue that natural sciences
like physics or chemistry yield experiments which can be repeated and indeed should
deliver nearly the same results so that long-term performance could be a reasonable
goal. However, in most of these cases a causal model exists and experiments serve only
to investigate or confirm these causal relationships. Here, interest lies in evidence about
a scientific theory or causal model after all, too. Therefore, Neyman’s position is ques-
tionable from a perspective which focusses on the application of hypothesis testing in
scientific contexts. This also answers the second criticism above about the appropriate
context of the LP in routine applications like quality control: There, the primary interest
is not statistical evidence, but long-termminimisation of a prespecified loss. In scientific
contexts, however, the argument that successful replications with simultaneous mini-
mization of type I errors are the primary goal, for example in experimental sciences like
physics or chemistry, does not hold. From a decision-theoretic perspective, following
such a behaviour is inferior regarding the incurred losses, as was first shown by Berger
and Wolpert (1988). These details will be discussed in Section 11.4, where Neyman’s
position is identified with the Confidence Principle. As will be shown there, next to the
decision-theoretic problems the confidence principle also lacks an axiomatic justifica-
tion in contrast to the (relative) likelihood principle. The relative likelihood principle
is the extension of the LP for continuous densities.

Criticisms questioning the WSP

The last category of criticism targets the weak su�ciency principle, and this is indeed
the most serious criticism. The first issue is that if one faces a decision in which the
consequences depend on the observed data x, and not just on the action taken and
unknown parameter q, the WSP needs not be valid.

Example 11.9 (Continuation of Example 11.6). Reconsider Example 11.6 and assume
a decision rule d which always reports the estimate q̂ = 1

2 whenever the last flip is a
success, and otherwise the percentage of successes in the twenty coin flips. Thus, the
decision rule d : X ! Q which maps from the sample space X to the parameter space
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Q now depends on the observed data and can be written as follows:

d(X1, ...,X20) :=

(
1
20 Â20

i=1 Xi if X20 = 0
1
2 , if X20 = 1

(11.17)

Based on d we can easily construct two sequences as given in Example 11.6 which yield
di�erent decisions (or estimates) for the unknown success rate parameter q: For se-
quence A we have X20 = 0 and thus we arrive at d(X1, ...,X20) = 8

20 , while for B we
have X20 = 1 and we arrive at d(X1, ...,X20) = 1

2 . Thus, when we interpret the esti-
mates provided by d as the statistical evidence provided by the experiment E, we have
Ev(E, A) 6= Ev(E, B) for the sequences A and B, but still T(A) = T(B). The WSP
would require to assert evidential equivalence due to T(A) = T(B), but we can violate
the WSP.

The reason, however, is that the decision rule (or the statistic) d is not su�cient:
While for the case X20 6= 0 it uses the su�cient statistic T(X1, ...,X20) = 1

20 Â20
i=1 Xi,

for X20 = 1 it picks the arbitrary constant 1
2 as an estimate. Thus, d violates the WSP

explicitly, and when the WSP is adopted, selecting d would not be allowed. Luckily,
these situations are quite rare, and in fact they can be handled by reformulating the
LP to Ev(E, x) should depend on L(q; x) and x. Details are omitted here because most
examples are quite artificial and reformulating the LP solves the appearing problems
(Berger and Wolpert, 1988, p. 46-50).

A second criticism targets the legitimacy to apply the concept of su�ciency to mix-
ture experiments. Kalbfleisch (1975) argued that this is not allowed, but gave no argu-
ment why a restriction of the concept of su�ciency to non-mixture experiments should
hold. Also, a strong argument against this criticism is raised by (Berger and Wolpert,
1988, p. 47), who argue that it is ‘impossible to clearly distinguish between mixture
and non-mixture experiments’14 so that if the criticism of Kalbfleisch (1975) would be
taken seriously, su�ciency as a concept could not be used anymore. This, in turn, would
severely limit the results of classical statistics, which seems absurd, because su�ciency
is one of the most elementary and central concepts to classical statistics, as detailed in
Chapter 3. This would imply that there are no statistics which compress the data with-
out any loss of information, and there are various easy counterexamples of exactly the
statistics fulfilling precisely the definition of su�ciency by including all information
available in the data. In summary, the criticism of Kalbfleisch (1975), therefore, is not
well justified.

The most severe criticism targets the fact that Birnbaum (1962) represented the
experimental structure solely via probability distributions on W indexed by the un-
known parameter q. Dawid (1977) entitled this assumption the Distribution Principle
(DP), see also the discussions in Birnbaum (1962), as well as Basu (1975), Fraser (1963,
1969, 1972) andWilkinson (1977). The representation of the experimental structure via
probability distributions seems natural because probability distributions are the cen-
tral building blocks of parametric models in statistics and probability theory after all.
Still, one could question this assumption, especially when considering nonparametric
models. No matter if this criticism is taken seriously or not, the implications only hold

14Of course, only unless one explicitly uses a randomization device like flipping a coin to decide which
experiment to conduct. In practice however, data are observed and the true data generating mechanisms
remain unknown. As a consequence, the true nature of this mechanism – mixture or non-mixture – can
never be known with certainty.
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for settings in which a description of the experiment with probability distributions is
judged to be inappropriate.

The answer to this criticism is quite involved. First attempts included a theory of an
axiomatic development of the LP which incorporated structural information by Berger
(1984). Four years later Berger andWolpert (1988) noted that this attempt was “some-
thing of a failure, containing a suspect axiom from the above viewpoint.” (Berger and
Wolpert, 1988, p. 47). Finally, it was shown that from the decision-theoretic perspective,
violation of the LP leads to inadmissible decisions which do not minimise the incurred
loss. Berger andWolpert (1988, Section 3.7) entertained the project to demonstrate that
violating the LP leads to such inadmissible decisions under repeated use. While their
derivations are not a direct answer to the criticism of the DP, it unarms the criticism
because not following the LP is eventually shown to lead to inadmissible or incoher-
ent behaviour, so that a larger loss is incurred from a decision-theoretic perspective.
Therefore, when not following the distribution principle, the decision-theoretic anal-
ysis of Berger and Wolpert (1988) shows that this behaviour is inferior to following
the distribution principle and the likelihood principle. This situation can, in turn, be
seen as an argument for the DP, or at least as an argument that the DP needs not to be
questioned from a decision-theoretic perspective which judges the losses incurred by
following the LP. Berger and Wolpert (1988) summarized the idea as follows:

“We will not argue that measures of long-run performance have an impor-
tant practical role in statistics (as frequentists would argue), but we will ar-
gue that they have the important theoretical role of providing a test for pro-
posed methodologies: it cannot be right (philosophically) to recommend
repeated use of a method if the method has “bad” long run properties. Both
of the main approaches to long run evaluation, decision theory and betting
coherency, will be discussed.”
(Berger and Wolpert, 1988, p. 51)

Berger and Wolpert (1988) started from the WCP which implies

Ev(E⇤, (j, xj)) = Ev(Ej, xj)

where E⇤ is again the mixture experiment, in which J = 1 or 2 is performed with prob-
ability 0.5 each and subsequently experiment EJ is performed afterwards. Then, they
assumed the LP is violated intentionally which means that

f (x1; q1) = C · f (x2; q2)

for all q but the evidence obtained is not identical in both experiments:

Ev(E1, x1) 6= Ev(E2, x2) (11.18)

Combining the last equations leads to conclusions

Ev(E⇤, (1, x1))
WCP
= Ev(E1, x1)

Equation (11.18)
6= Ev(E2, x2)

WCP
= Ev(E⇤, (2, x2))

To illustrate their point, Berger and Wolpert (1988) showed that such behaviour is in-
ferior under repeated use, thereby indicating that even from a frequentist perspective,
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the DP cannot be questioned. Note that the only way out of the implications of the re-
sults shown by Berger andWolpert (1988) is to reject theWCP, which again leads to the
setting described in Section 11.3.5.

The derivations of Berger and Wolpert (1988) are formally no answer to the crit-
icism of assuming the distribution principle. However, they provide a strong coun-
terargument against the position of Neyman (1957): His long-term performance goal
was shown to be inferior from a decision-theoretic perspective, leading to inadmissible
decisions and a higher incurred loss compared to when following the DP and LP. This
proven fact disarms the criticism of Neyman (1957) evenwhen considering experimen-
tal sciences like physics or chemistry, in which long-term control of type I errors could
be the primary goal after all. Next to the analysis of Berger andWolpert (1988), another
appealing solution to the criticism is to note that the LP makes a statement conditional
on two selected statistical models in E1 and E2. Questioning that the distributional as-
sumptions made in these models su�ce to model the real-world problem correctly is
no defect of the LP itself. It just implies that the model – parameterized in this form –
may not capture all relevant information to draw any conclusion.

Criticisms questioning the discreteness assumption

While the discrete case handled by Birnbaum (1962) su�ces from a philosophical per-
spective, in practice continuous probability distributions are useful and necessary to
simplify computations and obtain a variety of results. Therefore, Berger and Wolpert
(1988) extended the discrete proof of Birnbaum (1962) to the continuous case, leading
to theRelative Likelihood Principle (RLP). Onemain reason for developing such an exten-
sion is the question if a likelihood function of a continuous model di�ers from that of
the discrete model it is intended to approximate, which cannot be safely rejected in all
generality. Therefore, the validity of the LP in discrete problems may extend to validity
in approximating continuous problems, but it also may not. Berger andWolpert (1988)
therefore extended the original results of Birnbaum to the continuous case, which led
to the relative likelihood principle. The relative likelihood principle ensures that Birn-
baum’s theorem holds also in continuous probability spaces, with modified versions of
the WSP and WCP. The extension to the continuous case is mostly of technical nature
and presents no conceptual challenge to the validity of Birnbaum’s result, and details
are provided in Appendix B.

11.4 Implications of the (relative) Likelihood Principle
The implications of the LP (or RLP) are farreaching, and the most important conse-
quences are concerned with hypothesis testing, stopping rules and censoring of ob-
served data.

11.4.1 Implications on Hypothesis Testing
The most striking implication of the likelihood principle is the incompatibility with
frequentist hypothesis testing in the sense of Fisher’s significance testing detailed in
Chapter 3 and the Neyman-Pearson testing framework described in Chapter 4. Also,
the hybrid approach which evolved out of both methodologies – see Chapter 5 – is
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incompatible with the likelihood principle. Berger and Wolpert (1988) expressed the
problem with all these approaches as follows:

“The philosophical incompatibility of the LP and the frequentist viewpoint
is clear, since the LP deals only with observed x, while frequentist analyses
involve averages over possible outcomes.”
(Berger and Wolpert, 1988, p. 65)

Thus, as p-values or rejection regions are calculated as the tails of the test statistic’s
probability distribution under assumption of the null hypothesis, the evidence obtained
depends not only on the likelihood function but on also on values which were not ac-
tually observed. In Example 11.7, the p-values for the fixed size experiment were based
on the binomial distribution and in the variable size experiment on the negative bino-
mial distribution. In the binomial experiment, the probability P(t1 � 9|H0)which was
calculated for the p-value is based on data t1 = 9, t1 = 10, and so on, until t1 = 20, but
the data that was observed was only t1 = 9. Thus, data that was not observed during
the experiment is used. The same holds for the calculation of the p-value P(k � 9|H0)
in the negative binomial experiment. Therefore, the resulting evidence in both exper-
iments di�ers, and in general, di�erent conclusions are reached when frequentist hy-
pothesis testing is applied. Of course, Example 11.7 is not just a special case in which
this happens, but in much wider generality frequentist test statistics or p-values will be
calculated di�erently even though the likelihood functions may be proportional in any
two given experiments. Even in cases when the proportional likelihoods lead to identi-
cal conclusions in frequentist hypothesis testing – in Example 11.7 this wouldmean that
the tail probabilities of the binomial and negative binomial coincide for the observed
data x – frequentist hypothesis testing still violates the LP because not only the likeli-
hood function is used for obtaining the evidence Ev(E, x) as required by the Likelihood
Principle Corollary . In general, frequentist reasoning is based on a test statistic, which
averages in some way over the possibly obtained data, or a p-value, which is defined as
a probability over unobserved data. In both cases, more than just the likelihood func-
tion is used for drawing conclusions. The problem with averaging over ‘more extreme’
observations in the spirit of p-values or rejection regions is highlighted in another ex-
ample of Cox (1958).
Example 11.10 (Cox (1958)). Consider that the random variable X has the distribu-
tions as specified in the table below under P0 and P1:

x 0 1 2 3 4
P0(x) .75 .14 .04 .037 .033
P1(x) .70 .25 .04 .005 .005

Table 11.1: Example of Cox (1958) against averaging over observations more extreme
in frequentist hypothesis testing

Cox (1958) used the test statistic T(x) = x then for a significance test between the
two competing hypotheses P0 and P1. Large values of x are considered as extreme and
when x = 2 is were observed, the significance level against P0 could be written as

P0(X � 2) = .04+ .037+ .033 = .11
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and the significance level against P1 as

P1(X � 2) = .04+ .005+ .005 = .05

Cox (1958) did not really want to decide between P0 and P1, but instead wanted to
focus on both the significance tests against P0 and P1 with significance levels .11 and
.05. The first thing to note based on the above is that P1 can be rejected at the 5% level
after observing x = 2, while P0 cannot even be rejected at the 10% level. Cox (1958)
pinpointed the paradox now by looking at the likelihood ratio when considering P0
and P1 simultaneously as possible models: The likelihood ratio between P0 and P1 is

P0(2)
P1(2)

=
.04
.04

= 1

so that both P0 and P1 are equally supported by x = 2. The indi�erence which is
based only on the observed data is in contrast to the strong evidence against P1 when
conducting significance tests instead, which average over more extreme observations
than the observation actually observed. This questionable logic behind averaging over
more extreme observationswas already criticized by Je�reys (1939) in his famous quote
as detailed in Part II, Chapter 6:

“...a hypothesis which may be true may be rejected because it has not pre-
dicted observable results which have not occurred.”
(Je�reys, 1939, p. 316)

In the example of Cox (1958), P1 is rejected because it does not predict the values x = 3
and x = 4 which have not occurred. The only reason that P1 is rejected is that P1 pre-
dicts the unobserved values x = 3 and x = 4 even less than does P0. This problem is
important in practice because averaging over more extreme observations virtually al-
ways has a profound e�ect on the obtained results of statistical analysis, see also Berger
and Wolpert (1988) and Edwards et al. (1963).15 Even Fisher himself accepted this
criticism, one of the very few situations in which he admitted problems with his own
work:

“Objection has sometimes been made that the method of calculating Con-
fidence Limits by setting an assigned value such as 1% on the frequency of
observing 3 or less (or at the other end of observing 3 or more) is unrealistic
in treating the values less than 3, which have not been observed, in exactly
the same manner as the value 3, which is the one that has been observed.
This feature is indeed not very defensible save as an approximation.”
(Fisher, 1956b, p. 56)

This quote shows that Fisher was aware that his significance tests violated conditional
inference. However, the connection between the LP and WCP was unknown at that
time and thus he was not forced to decide between conditional inference as mandated

15Note that an often stated criticism that the LP fails to consider which observations might have oc-
curred is based on shallow grounds: The LP can incorporate this by specifying the likelihood function
for the random variable X observed in a way so that the variation over possibly observed values is ex-
pressed in the form of the likelihood function itself. This way, no averaging over (more extreme) values
is necessary at all, as all information about this is made explicit in the design of the experiment, which
determines the likelihood function.
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by theWCP and his significance tests, which are deniedwhen accepting the LP. Another
excellent example which highlights the untrustworthiness of results based on averages
over more extreme values was given by Berger and Sellke (1987), who adapted the
example from Edwards et al. (1963).
Example 11.11 (Edwards et al. (1963)). Consider X = (X1, ...,Xn) is observed with
Xi ⇠ N (µ, s2) i.i.d. and s2 is known. The standard test statistic for H0 : µ = µ0 against
H1 : µ 6= µ0 is (following the CLT, see also Rüschendorf (2014))

T(X) =
p
n| 1
n

n

Â
i=1

Xi � µ0|/s (11.19)

with X̄ := 1
n Ân

i=1 Xi being the sample mean. If T(x) = t is observed, the significance
level is

p = 2(1� F(t)) (11.20)

with F(t) being the standard normal cumulative density function. Reconsidering the
situation from a likelihood perspective with H1 given as H1 : µ = µ1, it would be
natural to use the likelihood ratio

Lµ1 = fµ0(x)/ fµ1(x)

As H1 consists of all µ 6= µ0, this does not su�ce of course, but a lower bound on the
above likelihood ratio L can simply be given as

L̄ = fµ0(x)/ sup
µ 6=µ0

fµ1(x)

Therefore, the evidence against H0 is no stronger than L̄, and an easy calculation16

shows that in this example L̄ = exp(� 1
2 t

2), where t := (x� µ0)/s.

One can now calculate the lower bound L̄ for various values of t, and give the asso-
ciated significance levels for these t-values, see Equation (11.19) and Equation (11.20).
Berger and Sellke (1987) did this and the above lower bound is therefore often called
the Berger-Sellke lower bound in the literature. A summary of their calculations is given
in (Berger and Wolpert, 1988, p. 108), who provided the following table:

The striking di�erence which reveals itself now is that while a p-value of .05 ascer-
tains that the odds are 20 to 1 for the alternative hypothesis H1 (once in 20 trials one
expects a type I error at the .05 level), the lower bound L̄ is much larger: The evidence
against H0 certainly is no stronger than L̄, but for p = .05, the lower bound L̄ equals

16Note that

L̄ =
Z
ZZ
1p
2ps

exp[� 1
2s2 (x� µ0)2]

sup
µ 6=µ0

Z
ZZ
1p
2ps

exp[� 1
2s2 (x� µ)2]

�
exp[� 1

2s2 (x� µ0)2]

exp(0)
= exp(�1

2
t2)

because 1
2s2 (x�µ)2 � 0due to s � 0 and therefore exp[� 1

2s2 (x�µ0)2] 2 (0, 1] so that sup
q 6=q0

exp[� 1
2s2 (x�

µ0)2] = 1 = exp(0). See also Edwards et al. (1963, p. 227), substituting µ and µ0 for l and l0 in their
notation.
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t 1.645 1.960 2.576 3.291
p-value .10 .05 .01 .001
L̄ .258 .146 .036 .0044
L̄g .644 .409 .123 .018

Table 11.2: Di�erent t-values and the corresponding lower bound values L̄, correspond-
ing p-values, and Sellke-Berger lower bound values L̄g (see below)

.146, so the odds are at best 7 to 1 for the alternative hypothesis H1, and not 20 to 1 as
indicated by the p-value of .05. The situation gets even worse when considering the
results of Berger and Sellke (1987), who argued that the lower bound L̄ is misleadingly
small due to the maximization of the likelihood under the alternative in the likelihood
ratio. Therefore, Berger and Sellke (1987) considered to use an average of fq(x) over all
values q 6= q0, which led them to a weighted likelihood ratio

Lg :=
fµ0(x)R

{µ 6=µ0} fµ(x)g(µ)dµ
(11.21)

where g is some density, which in a Bayesian interpretation would be chosen to be the
conditional prior density on H1, so that Equation (11.21) becomes the Bayes factor as
given in Definition 6.11.17 Using any density g which is nonincreasing as a function
of |q � q0|, Berger and Sellke (1987) showed that the weighted likelihood ratio Lg is at
least as large as L̄g given in Table 11.2.18 Therefore, if one considers p = .05, a more
realistic interpretation of the true odds of H1 against H0 is not 7 to 1 as indicated by
the lower bound L̄, but 2.5 to 1, as indicated by the corresponding value L̄g = .409
for p = .05. So, a significant observed t-value of 1.960 (which is based on the original
sample X = (X1, ...,Xn)), which corresponds to a p-value of exactly p = .05 is barely
stating strong evidence against H0 when interpreted from a realistic perspective, which
incorporates a weighted likelihood ratio.19 Even if any Bayesian reasoning is rejected,
the lower bound L̄ states nomore than odds of 7 to 1 forH1 instead of 20 to 1 as indicated
by the frequentist p-value.

The examples of Edwards et al. (1963) and Berger and Sellke (1987) show how
severely frequentist averaging over more extreme values deteriorates the results ob-
tained from hypothesis tests. A more realistic approach uses all results instead of only
more extreme results as it is, for example, done by employing the weighted likelihood
ratio Lg. Here, the conditional prior density g on H1 incorporates all other results, and
not onlymore extreme results. Also, the incorporation happens in the parameter space,

17To identify Equation (11.21) with the Bayes factor in this case, it is necessary to assign a mixture
prior to the parameter q which assigns a positive amount of probability mass to the point null value µ0,
see Robert (2007, p. 229) and compare Chapter 7.

18The assumption that the prior g is nonincreasing as a function of |q � q0| is reasonable as it can be
interpreted as a prior which is centered on the null hypothesis value q0. Also, the restriction is not severe,
as for example flat priors can be chosen in the Berger-Sellke derivation, too.

19The Berger-Sellke lower bound therefore gives the maximum Bayes factor which can be obtained
under the class of priors g – as chosen in Berger and Sellke (1987) – from a p-value at the specified level.
The relationship shows how overreadily frequentist significance measures state evidence against a null
hypothesis compared to Bayesian methods, see also Edwards et al. (1963).
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as g is a prior distribution, instead of the sample space. The average is thus not taken
over samples not actually observed, so no violation of the LP occurs.

Nevertheless, there exist frequentist procedures like Fisher’s conditional inference
– see Section 3.2.3 – which are not in conflict with the LP. Still, these procedures do not
include hypothesis testing because both main frequentist hypothesis testing theories
use more than just the likelihood function to obtain evidence Ev(E, x) by observing
data x in an experiment E. As a consequence, frequentist null hypothesis significance
testing is not allowed when the LP or RLP is accepted. It does not matter if hypothesis
testing is interpreted as significance testing according to Fisher (1925a) via p-values, or
as hypothesis testing in the spirit of Neyman and Pearson (1933) via test statistics and
rejection regions.

Berger and Wolpert (1988) even argued that in many situations frequentist normal
distribution theory inference yields the same numerical measures as non-informative
prior conditional Bayesian inference, and therefore noted that a “cynicmight argue that
frequentist statistics has survived precisely because of such lucky correspondences.”
(Berger and Wolpert, 1988, p. 65). In fact, Bayesian theory o�ers more than just a few
striking examples for this phenomenon, compare Appendix C, Theorem 6.7 and (Held
and Sabanés Bové, 2014, Chapter 6).

11.4.2 Implications on Stopping rules
One of the most important consequences of the LP is the Stopping Rule Principle (SRP),
which states that the reason for stopping the experimentation, also called the stopping
rule of the experiment, is not relevant for the conclusions drawn about the unknown
parameter q. The SRP follows directly from the LP, and in the continuous case, a more
general version can be derived from the RLP.Without exaggeration, Berger andWolpert
(1988) note that

“The theoretical and practical implications of the SRP to such fields as se-
quential analysis and clinical trials are enormous.”
Berger and Wolpert (1988, p. 74)

The reason is that when the SRP is adopted, researchers are allowed to stop recruiting
participantswhen already a fraction of the data showoverwhelming evidence for either
of both hypotheses under consideration and report their results. However, when the
SRP is violated, the dependence of the outcome of statistical inference on the stopping
rule implies that in the former situation researchers are forced to continue their study
as otherwise all calculations will be invalidated.

The first introduction of the SRP goes back to Barnard G.A. (1947, 1949) in the con-
text of sequential analysis. Barnard’s position was that an experimenter’s intention
should not influence the conclusions drawn from the data. The intention to stop after
a fixed sample size or to stop only when money or time runs out should not influence
the inference. Based on this idea, the SRP was shown to be a consequence of the LP by
Barnard et al. (1962). There are various discussions about the implications of the prin-
ciple, for example, in medical contexts by Anscombe (1963). General discussions are
given in Bartholomew (1967), Basu (1975), Berger (1980) and Edwards et al. (1963).
The SRP is concerned with the stopping rule in a sequential experiment. Therefore, the
concept of a stochastic process is required. A stochastic process is defined as follows
(Brémaud, 2020, Definition 5.1.1):
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Definition 11.12 (Stochastic process). A stochastic process is a family {(Xt)}t2I of
random elements defined on the probability space (W,F ,P) and taking their values in
the measurable space (Z,Z).

Thus, Let (W,F ,P) a probability space, (Z,Z) a measurable space with s-algebra
Z and T 6= ∆ an index set. A stochastic process X is then a family of random variables
Xt : W ! Z for t 2 T, that is

X : W ⇥ T ! Z, (w, t) 7! Xt(w) (11.22)

is an F �Z-measurable map for all t 2 T. Z is called the state space of the process and
contains the valuesX can take. In practice, most often the index set T := R+ or T := N0,
and the state space Z often is equal to R with the Borel-s-algebra B(R). A sequence of
s-algebras (Ft)t2I is called a filtration (in F), when Ft ✓ Fs when t  s (Brémaud,
2020, Definition 5.3.4). A process is called adapted to the filtration F := (Ft)t2I when
each Xt is Ft-measurable for all t 2 I (Brémaud, 2020, Definition 5.3.5). A stopping
rule is then defined as follows (Brémaud, 2020, Definition 5.3.10):
Definition 11.13 (Stopping rule). Let {Ft}t2I be a filtration with non-empty index set
I. The random variable t : W ! T defined on the probability space (W,F , P) with
values in T := [0,•) is called a stopping rule with respect to the filtration F := (Ft)t2I
when

{t  t} 2 Ft (11.23)

for all t 2 T holds.
Most often, the index set I := R, and the condition that {t  t} 2 Ft can be

interpreted as at each time t is is known whether the event of interest has happened or
not. Based on the above, a sequential experiment can be formalised as follows:
Definition 11.14 (Sequential Experiment). A sequential statistical experiment Et is a
triple (X, q, { f (·|q)}) where X = (X1, ...,Xn) is a stochastic process on W with proba-
bility density function f (·|q) for q 2 Q and unknown sample size n which depends on
a stopping rule t.

The SRP states the following (Berger and Wolpert, 1988, p. 76):

Stopping Rule Principle (SRP Berger and Wolpert (1988)). In a sequential experiment
Et, with observed final data xn, Ev(Et, xn) should not depend on the stopping rule t.

In the above, xn denotes the realization X1(w) = x1,X2(w) = x2, ...,Xn(w) = xn of
X for w 2 W, and the sample size n is determined by the stopping rule t : W ! [0,•)
with t(w) = n. Recall Example 11.7, where a fixed sample size binomial experiment
was compared with a variable sample size experiment. It demonstrated that null hy-
pothesis significance testing could yield di�erent conclusions based on the tail proba-
bilities of the binomial and negative binomial distribution under the null hypothesisH0,
which violates the LP. What is more, the SRP now states that the stopping rule t in the
example – that is, stopping after fixed or variable sample size – should not influence the
evidence Ev(Et, xn) in the sequential experiment Et. Therefore, null hypothesis testing
does violate not only the LP but also the SRP. This fact was to be expected as the SRP is
a consequence of the LP. The stopping rules for fixed sample size can be expressed as

t : W ! [0,•), t(w) := 12 (11.24)
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which always stops at n = 12.20 For the variable sample size setting, t can be expressed
as

t : W ! [0,•), t(w) := 1Ân
i=1 Xi=n�3(X1, ...,Xn) (11.25)

and we stop when t(w) = 1. In Example 11.7, the experiment was stopped after ob-
serving r = 3 zeros, which is equal to observing n� 3 successes, which is equivalent to
Ân

i=1 Xi = n� 3 for n flipped coins.21
Indeed, the SRP follows immediately from the LP in the discrete case. Therefore,

one just needs to assume a sequential experiment Et yielding a sequence (X1,X2, ...)
of observations with common density fq and a stopping rule t, which takes values
(An)n2N) ✓ P , where P is the power set of W, and we stop if and only if xn =
(x1, ..., xn) 2 (A1, ..., An), and sampling continuous if xn /2 (A1, ..., An). The stopping
time t then corresponds to the random index n for which (x1, ..., xn) 2 (A1, ..., An).
Then the probability density of the random outcome XN = (X1,X2, ...,Xt(w)) is

f t
q (x

n) = 1A1,...,An(x
n)

n

’
i=1

fq(xi) (11.26)

Now, Equation (11.26) is the likelihood function when interpreted as function of q,
which is proportional22 to ’n

i=1 fq(xi). This latter product term does not depend on the
stopping rule, and therefore the likelihood principle states that if two di�erent stopping
rules t and t0 are chosen, the only term influenced in Equation (11.26) is 1A1,...,An(x

n).
As both likelihood functions therefore are proportional as functions of q, the evidence
is the same according to the LP, nomatter if t or t0 is used. The proportionality constant
in the LP in this case is just a quotient of indicator functions not depending on q.

As already noted, the di�erence between fixed sample size and variable sample size
(also called optional stopping, see Hendriksen et al. (2020) and Kelter (2020b)) in Ex-
ample 11.7 is striking when viewed from a frequentist perspective. Optional stopping,
which is presumably the rule rather than the exception in a variety of research, therefore
causes a major problem for classical frequentist statistics, especially frequentist hypoth-
esis testing. The situation is complicated even further:

“Honest frequentists face the problem of getting extremely convincing data
too soon (i.e. before their stopping rule says to stop), and then facing the
dilemma of honestly finishing the experiment, even though a waste of time
or dangerous to subjects, or of stopping the experiment with the prema-
turely convincing evidence and then not being able to give the frequency
measures of evidence.”
(Berger and Wolpert, 1988, p. 77)

20As {t  t} = {w 2 W : t(w)  t} = {w 2 W : 12  t} = {W,∆} (either 12  t, so it holds for all
w 2 W, or 12 > t, then it holds for no single w), t is a stopping rule.

21As each Xi is Ft-measurable by the assumption that X is a stochastic process adapted to F :=
(Ft)t2[0,•), the sum Ân

i=1 Xi is also Ft-measurable, and therefore 11Ân
i=1 Xi=n�3(X1,...,Xn) is also Ft-

measurable. Thus, {1Ân
i=1 Xi=n�3(X1, ...,Xn)  t} 2 Ft for all t 2 [0,•) and t is a stopping rule.

22Note that Equation (11.26) when interpreted as the likelihood which treats x as fixed and maps
q 7! f t

q (x
n) is proportional to ’n

i=1 fq(xi), while the probability density which treats q as fixed and
maps x 7! f t

q (x
n) of course is not.
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It is therefore undesirable from a scientific perspective to violate the SRP. In some situ-
ations, especially in the biomedical sciences it may even be questioned if it is ethically
legitimate to use frequentist measures of evidence. In presence of the risk,participants
are exposed to in clinical trials and given the need for fast development of new drugs
or treatments the use of frequentist measures of evidence seems to be hardly justifiable.
Even when no ethical conflicts are implied by violating the SRP, the costs and time in-
vested are much higher compared to the situation where optional stopping is allowed
(that is, when the SRP and in turn the LP is accepted): When it is mandatory to run the
analysis until the fixed sample size n is reached, even if a tenth of the samples planned to
be taken already yield overwhelming evidence, the experiment has to be conducted un-
til all n observations are taken because otherwise, the frequentist measure of evidence
stated will be false in the sense that the reported measure would not be the correct one
as shown in Example 11.7. There, starting with the plan of a fixed sample size n which
implies a frequentist measure of evidence based on the binomial setting, and stopping
then after some m < n observations make it impossible to use the binomial frequentist
measure anymore. The correct frequentist measure needs to be based on the negative
binomial setting.23

The quintessence of the SRP is expressed nicely by Edwards et al. (1963) in their
discussion about the relevance of stopping rules to statistical inference:

‘The irrelevance of stopping rules to statistical inference restores a simplic-
ity and freedom to experimental design that had been lost by emphasis on
significance levels (in the sense of Neyman and Pearson) (...). Many exper-
imenters would like to feel free to collect data until they have either con-
clusively proved their point, conclusively disproved it, or run out of time,
money, or patience.’
(Edwards et al., 1963, p. 239)

What is more, they stressed:

‘The irrelevance of stopping rules is one respect in which Bayesian proce-
dures are more objective than classical ones. Classical procedures (...) in-
sist that the intentions of the experimenter are crucial to the interpretation of
data, that 20 successes in 100 observations means something quite di�erent
if the experimenter intended the 20 successes than if he intended the 100 ob-
servations. According to the likelihood principle, data analysis stands on its
own feet. The intentions of the experimenter are irrelevant to the interpre-
tation of data once collected, though of course they are crucial to the design
of the experiments.’
(Edwards et al., 1963, p. 239)

The distinctionmade by Edwards et al. (1963) is subtle but important, in that the exper-
imenter may very well design di�erent experiments, for example a fixed and variable

23One could argue that the correct sampling distribution could be selected after performing the ex-
periment in frequentist hypothesis testing. It is illusionary to assume that this is routinely done in prac-
tice, in particular, because the standard tests developed by Fisher and Gosset assume fixed sample sizes,
compare Part I. Also, Neyman-Pearson tests are conducted in practice after a power analysis, wherein the
necessary sample size n is determined to obtain the desired test power b for a fixed test level a. Therefore,
most available frequentist tests assume fixed sample sizes and practitioners often use optional stopping
as funding or time runs out (Ioannidis, 2016; Kruschke and Liddell, 2018b).
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sample size experiment as in Example 11.7. However, as soon as data analysis starts the
intentions of the experimenter need to be irrelevant, and data analysis has to stand on
its own feet.

For completeness, it should be mentioned that the SRP can be generalized to the
continuous case (Berger and Wolpert, 1988, p. 86-87):
Continuous Stopping Rule Principle (CSRP (Berger and Wolpert, 1988)). From the
RLP, it follows that for any (proper) stopping rule t,

Ev(Et, (n, xn)) = Ev(En, xn)

for {Pt
q}-almost everywhere (n, xn), that means the evidence concerning q in Et is identical

with that for the fixed sample size experiment En (with the observed n), so that t is irrelevant.
A proof can be found in Berger and Wolpert (1988, Section 4.2.6). In their treat-

ment Berger and Wolpert stressed that while a Bayesian may also not be able to avoid
such considerations as the prior probability construction may be influenced by the ex-
perimenters’ intentions, too, these intentions are made explicit in the prior formulation.
The prior elicitation is available and made transparent in any Bayesian analysis.24 Fre-
quentist hypothesis testing shoves these intentions under the rug when reporting the
results. The intentions are at best implicit, while it may be reasonable to argue that in
many cases, no distinction – although necessary – between di�erent stopping rules is
made at all by (especially statistically untrained), the majority of researchers in the em-
pirical sciences belong to. If no new analysis is conducted when changing the stopping
rule, the reported frequentist measure of evidence will be incorrect.

The above analysis explains various of the experienced problems observed in the
replication crisis detailed in Chapter 1 on a purely axiomatic basis. Importantly, these
errors are forced by the scientific system, because when money or time runs out in a
study so that the planned sample size cannot be reached, optional stopping happens. If
no new analysis is conducted, an error occurs inevitably based on the above consider-
ations (unless the statistical analysis is completely recalculated, which is very unlikely
to happen in practice, given the standard tests of Fisher andNeyman-Pearson, compare
Part I).

11.4.3 Implications on Censoring
Next to the strong implications on hypothesis testing and stopping rules, the (relative)
LP also has consequences for censoring. Censored data are often observed in medical
and social science, when an event like death, job change or divorce can be observed
in a specified time window, but if it is not data are censored. The status of the event
remains unknown to the experimenter. This is the case when time or money runs out,
and a study ends, but the event was not observed until then. For example, a participant
may not show up for the second and third of three follow-up examinations of a study
so it remains unknown if the event of interest (for example, death) has happened or
not when the study ends. Thus, the observation is censored after the first follow-up
examination and the investigators do now know whether and if so, when the event
happened. The most popular method for analyzing censored data is survival analysis,
and details can be found in Klein et al. (2014) and Ibrahim et al. (2001).

24They also noted concerning frequentist inference, that ‘...we have to know what the experimenter’s
intentions were. Trying to analyze hard data by guessing what the experimenter was thinking before
doing the experiment seems rather strange.’ (Berger and Wolpert, 1988, p. 79)
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Definition 11.15 (Censoring). Censoring happenswhen instead of observing the ran-
dom variables X1, ...,Xn for n 2 N, only the following variables are observed:

(Yi, di) with Yi := Xi and di = 1 if Xi is actually observed (11.27)
(Yi, di) with Yi < Xi and di = 0 if Xi > Yi (11.28)

In the first case, di = 1 indicates that no censoring happened and the original Xi is
observed. In the second case, di = 0 indicates that it is known that Xi > Yi, but only
Yi is observed. In the latter case, Yi for Xi > Yi is called a censoring time (Klein et al.,
2014). In practice, often fixed censoring is assumed, so that the censoring time is not a
random variable itself. This happens, for example, when a study ends after a fixed time
and this time is known in advance:
Definition 11.16 (Fixed censoring). Fixed censoring occurs, when instead of the ran-
dom variable X, the censored variable Y := g(X) is observed, where g is a known
function which maps from W to W̃. The experiment performed therefore changes from
E = (X, q, {Pq}) to Eg = (Y, q, {Pq � g�1}) where for A ⇢ W̃, g�1(A) = {x 2 W :
g(x) 2 A}.

Thus, a fixed censoring mechanism can be interpreted as a function which maps the
original data (X1, ...,Xn) to the data (Y1, ...,Yn), which are complemented by the vari-
ables (d1, ..., dn) and which indicate whether observation Xi is a censoring time. From
the perspective of a practitioner it is problematic that the mechanisms which cause the
censoring can be quite complicated. For example, in survival analysis, a censored ob-
servation may happen due to the death of a patient (no more measurements are taken
after the death), or due to the last follow-up session in the study, after which the study
was terminated due to financial limits (no more measurements are taken either in this
case). In most cases, the LP will imply the Censoring Principle (CeP), which states that
only the results of the censoring and not of the censoring mechanism itself are relevant
for inference about the unknown parameter q. Maybe the most important implication
of the CeP is that the impact of an uncensored observation on the obtained evidence
is the same, no matter if the observation was observed in an experiment in which cen-
soring was possible or in an experiment with no censoring. Originally, this principle
can be attributed to the discussion of Pratt (1961) of Erich Lehmann’s influential mono-
graph Testing Statistical Hypotheses and to Pratt (1965). While the CeP seems reasonable
to be assumed, the original example of Pratt in the discussion of Birnbaum’s 1962 paper
strikingly shows why the CeP should hold in practice to avoid absurd situations:
Example 11.17 (Pratt (1962)). An engineer draws a random sample of electron tubes
and measures the plate voltages under certain conditions with a very accurate volt-
meter, accurate enough so that the measurement error is negligible to the variability
in tubes. A statistician takes a look at the measurements which seem to be normally
distributed and vary from 75 to 99 volts with mean µ = 87 and standard deviation
s = 4. He makes an ordinary normal analysis which yields a confidence interval for
the mean µ. Later, he visits the engineer’s laboratory and notices that the volt-meter
measures only up to 100 volts, so the data technically are now “censored”. Therefore,
a new analysis based on the censored data is necessary if the statistician is conserva-
tive. The engineer now says he has another volt-meter of equal accuracy which reads
up to 1000 volts, which he would have used if any voltage would have been above 100.
Therefore, the statistician is relieved because the population was not censored at all
technically. Next day, the engineer calls the statistician and tells him on the telephone
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that his high-range voltmeter was broken at the day he did his experiment. The statisti-
cian then ascertains that a new analysis will be required, as now the data are censored
at 100 volts. The engineer is astonished, replying that the experiment turned out just
the same as if the high volt-meter had been working and the precise voltages were ob-
tained anyway, so he learned exactly what he would have learned if the high volt-meter
had been working correctly.

The example of Pratt demonstrates that traditional frequentistmethods lead to para-
doxical conclusions when data are censored.25 This conflict is an immediate conse-
quence of frequentist confidence intervals violating the likelihood principle. As the
likelihood function changes, depending on which censoring mechanism is applied, the
evidence obtained is di�erent depending on which censoring mechanism exactly is at
work in the current experiment. Therefore, first, the analysis needs to be changed from
an uncensored likelihood to a censored one when the statistician gets to know that the
volt-meter reads up only to values of 100 volts (the influence to the likelihood function
of any observation x yielding � 100 volts is then from a truncated normal distribution,
see Klein et al. (2014)). When the engineer ascertains him that the high volt-meter
would have been used, if any particular value had been over 100 volts, the situation is
nowuncensored. Nomeasurement happened to be censored at 100 as the values ranged
from 77 to 99 volts, so no censoring occurred at all (the influence to the likelihood func-
tion of any observation x is not truncated, so the uncensored case is recovered, see
Klein et al. (2014)). More importantly, the engineer would have been technically able
to proceed with the high volt-meter if any censoring had happened. When the next
day, the engineer now calls and states that the high volt-meter was broken, the likeli-
hood conceptually changes back to a censored likelihood at value 100. The reason is
that the engineer now would not have been able to use the high volt-meter, even if an
observation turned out to yield 100 volts on the low volt-meter.

Now, in the censored case the 1� a confidence interval for q has no longer a coverage
probability of at least 1� a, because a di�erent analysis is required based on the now
censored likelihood function

L(x; q) =
n

’
i=1

1xi<100 f (xi|q) + 1xi�100

Z •

100

1
(2p)1/2s

e�
1

2s2
(xi�q)2dx (11.29)

As the likelihoods are di�erent, they can (and most probably will) lead to di�erent
evidence in each case when using frequentist analyses. Pratt argued that this situation
is absurd because the functionality of an instrument which was not actually used in
the experiment changes the evidence obtained. It is remarkable that Pratt found such
a compelling example in direct succession to the publication of Birnbaum’s theorem.
He showed that when the LP is violated, the censoring mechanisms can play a crucial
role. Also, he clarified that if the LP is accepted the censoring mechanisms play no role
for the evidence obtained and the paradoxical situation in his example vanishes. This is
because the CeP below follows from the LP, and according to the CeP, the evidence of an
observation from the censored experiment Ev(Eg, g(x)) is equal to the evidence of an
observation from the uncensored experiment Ev(E, x), if the censoring transformation
g is bijective, that is, g�1(g(x)) = x for all x 2 A holds. The latter equality holds if

25Savage et al. (1962b) pinpointed the problemwith frequentist CIs which occurs in Pratt’s example as
follows: “The only use I know for a confidence interval is to have confidence in it.”, also referring to the
inability of confidence intervals to make probabilistic statements about the parameter of interest except
for a coverage probability, compare Chapter 5.
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and only if no observation is censored at all, because only then the reconstruction of x
from g�1(g(x)) is possible.26 In the example of Pratt, the evidence therefore is always
the same, because both for the low and high volt-meter, no real censoring occurred and
thus g�1(g(x)) for all x 2 A holds, whereby Ev(Eg, g(x)) = Ev(E, x) follows from the
CeP below. Thus, although the censored and uncensored likelihood functions may not
be proportional to each other, as can be seen from Equation (11.29), the evidence is
the same according to the CeP when the censoring mechanisms are equivalent. When
considering two fixed censoring mechanisms g1 and g2, these are said to be equivalent
on A ⇢ W if

g�1
1 (g1(x)) = g�1

2 (g2(x)) for all x 2 A (11.30)

A special case is when a single fixed censoring mechanism g is considered, which is
said to be equivalent to no censoring on A ⇢ W if for all x 2 A, g�1(g(x)) = x holds. The
CeP now makes the following statement:

Censoring Principle (CeP (Berger and Wolpert, 1988)). If Eg1 and Eg2 are two experi-
ments arising from censoring mechanisms equivalent on A for an experiment E, then

Ev(Eg1 , g1(x)) = Ev(Eg2 , g2(x)) (11.31)

for all x 2 A. In the special case when g�1(g(x)) = x for all x 2 A, then Equation (11.31)
can be replaced by

Ev(Eg, g(x)) = Ev(E, x) (11.32)

In the continuous case, the CeP holds {Pq}-almost everywhere. The CeP itself fol-
lows from the LP as shown by Berger and Wolpert (1988, p. 94-95). Therefore, when
accepting the LP, the problem of Pratt’s example vanishes by employing the CeP. To
see that CeP is a consequence of the LP it su�ces to note that the censored experiment
Eg = (Y, q, {Pq � g�1}) uses the family of measures {Pq � g�1}. Therefore, whenmech-
anism g1 is used, the censored experiment Eg1 uses the family of measures {Pq � g�1

1 },
and if g2 is used, the censored experiment Eg2 uses the family of measures {Pq � g�1

2 }.
Now, as g1 and g2 are equivalent by assumption of the CeP, Equation (11.30) holds.
Therefore, in Eg1 the probability of the set g1(x) is

Pq � g�1
1 (g1(x)) = Pq(g�1

1 (g1(x))
Equation (11.30)

= Pq(g�1
2 (g2(x)) = Pq � g�1

2 (g2(x))
(11.33)

so that the probability of g1(x) in Eg1 and g2(x) in Eg2 are identical, where in eq. (11.33)
the equivalency of g1 and g2 is used. Now, as the probabilities of the left and right
hand side are identical for all q, the resulting likelihood functions (where it is implic-
itly assumed Radon-Nikodym derivatives to the measures {Pq} exist), which are the

26The motivation behind this is clear, since when g�1(g(x)) = x holds for all x 2 A, the original
observation x 2 A can be retrieved from g(x) by applying the inverse g�1 of the censoring mechanism g
on g(x), that is, g�1(g(x)). If any true censoring occurs, so that g e.g. censors data at the value 10, then
for x1, x2 2 A, x1 6= x2, g(x1) = g(x2) = 10 is possible. Then, g�1(g(x1)) = g�1(10) = {x1, x2}, so it is
unclear if the original observation was x1 or x2 and the original data x1 cannot be reconstructed from the
censored data g(x1), if g truly censors the data in any form. The same idea holds for Equation (11.30),
where the reconstructions of g1 and g2 need to be identical for all x 2 A.
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corresponding densities when interpreted as functions of q for fixed x, are identical,
and the LP with proportionality constant C = 1 then states that the evidence obtained
needs to be the same in Eg1 and Eg2 .27 The general case follows from the RLP in a sim-
ilar way, for details see Berger and Wolpert (1988, Chapter 4), where also the case of
random censoring is treated, which leads to a modified version of the CeP (Berger and
Wolpert, 1988, Theorem 7). Finally, it should be stressed that the CeP does not state
that censoring, in general, is irrelevant for statistical inference. It only states that the
evidence provided through an uncensored observation is identical in the experiment
(Eg, g(x)) where censoring was possible and in the experiment (E, x) where censoring
was not possible: This is precisely the statement in Equation (11.32), because when
g�1(g(x)) = x for all x 2 A, no censoring occurred in (Eg, g(x)), and then from the
CeP the evidence Ev(Eg, g(x)) in the experiment Eg where censoring was possible (but
where no single observation was censored by applying the censoring mechanism g to
the observed data x) is equal to the evidence Ev(E, x) in the experiment (E, x) where
no censoring was possible. The contradiction to this rational principle was the cause of
the paradoxical situation in the example of Pratt.

11.5 An axiomatic basis for Frequentists –TheConfidence
Principle

Next to the LP (or RLP), which can be derived axiomatically from theWCP (or CWCP)
andWSP (or CWSP), one may reason what axiomatic basis can be revealed behind the
long-term performance perspective taken by the Neyman-Pearson theory. Maybe the
most natural motivation for a frequentist perspective is to argue that frequency mea-
sures are objective and can be assigned a physical interpretation. As science needs ob-
jective measures, frequency measures are the natural candidate to proceed with. Also,
the use of frequency measures incorporates the desire of repeatable experiments, at
least at first glance, because the evidence obtained should be obtained again under ex-
act repetition of the experiment. As a consequence, long-term performance is not an
unimportant aspect to consider. Berger and Wolpert (1988, p. 66,67,71) coined the fol-
lowing principle, which goes back to Neyman (1957) and should be followed if long-
term performance is the goal:

Confidence Principle (CoP (Berger and Wolpert, 1988)). A procedure d is to be used for
a sequence of problems consisting of observing Xi ⇠ Pqi . A criterion, L(qi, d(xi)), measures
the performance of d in each problem (with small L being good). One should report, as the
confidence in use of d,

R(d) = sup
q̃

lim
n!•

1
n

n

Â
i=1

L(qi, d(xi))

assuming that the limit exists with probability one.
27Suppose no censoring happens and consider Equation (11.29) again: When no data are censored

(which is a special case of equivalent censoring mechanisms, see the CeP), the indicator function 1xi�100
in the second summand in Equation (11.29) is always zero. Thus, the likelihoods are even identical with
proportionality constant C = 1. The LP mandates that evidence is the same in the experiment where
censoring was possible but did not occur and in the experiment where no censoring was possible from
the beginning.
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In the above, L(qi, d(xi)) can be associated with a loss function, and d(xi) with a
decision rule (compare Appendix C). The term 1

n Ân
i=1 L(qi, d(xi)) can be interpreted

as the average loss for n repetitions of the experiment (or making n instead of a single
observation), and thus R(d) describes an upper bound on the asymptotic risk of using
the decision rule d. The benefit of the CoP is that when following it, the actual average
performance of the procedure d is assured to be at least as good as the reported perfor-
mance R̄(d). For example, in the Neyman-Pearson theory the reported test level a may
be larger than the actually calculated p-value.

Formally, the CoP does not contradict the principle of adequacy, but its most promi-
nent implementation, the NP-theory, violates the principle of adequacy. By now, it has
not been shown that the CoP follows from one of the previously introduced principles,
that is for example from the WSP andWCP (or any other principles, which are reason-
able to assume). Thus, the confidence principle lacks a solid axiomatic foundation.

An even severer problem with the CoP is that its motivations are questionable: For
example, Box (1980) argued that the objectivity assumption of frequentist measures
does not hold, simply because choosing a specific model is precisely as subjective as
choosing a specific prior in Bayesian inference.28 In total, objectivity is not an argument
for frequentistmeasures, at least notmore as it is for noninformative Bayesian inference.
For a detailed discussion about the truthfulness of the statement that repeatability is
desirable when the goal is to judge the evidence, see Berger andWolpert (1988, Section
4.1.5). There, counterexamples are provided which demonstrate that it is improbable
to be able to reproduce results at all.

Due to the model assumptions, the reported performance is only an upper bound
if the model assumptions made are true, which is hard or even impossible to judge in
practice. Therefore, the claim that a Neyman-Pearson test errs in only a per cent of the
cases needs to be reduced to the statement that it errs in a per cent of the cases only if
the model assumptions made by the test are correct. In practice, most often this does
not hold, and even slight violations of themodel assumptions increase the upper bound
drastically, see for example Rochon et al. (2012); Kelter (2021a). Consider the following
example, which is adapted from Colquhoun (2014):
Example 11.18 ((Colquhoun, 2014)). Consider hypothesis testing between two point
hypothesesH0 andH1. TheUMP level a := 0.05 test is used, so onewould be tempted to
state that with 5% probability a false-positive result is obtained in the long run, that is,
R̄(d) = 0.05 for q equal to the null value of H0. Assume the test has power of b := 0.05,
so it does reject H0 in 5% of the cases if H1 is true. Taking n hypotheses H1

0, ...,H
n
0

where half of them is true, and half is false, the number of rejections of hypotheses is
equal to n/2 · a + n/2 · b, where the number of false-positive results, is n/2 · a. Using
n hypotheses leads to a false-positive rate of

a · n/2
a · n/2+ b · n/2 =

0.05 · n/2
0.05 · n/2+ 0.05 · n/2 = 0.5

that means half of the rejections will be in error, not 5% of them. Note also, that while
it may be argued that the test power b is artificially small, in practice, it is much more

28Also, Berger (1985) and Berger and Wolpert (1988) argued that even nonparametric frequentist
statistics are prone to this criticism because the choice of a statistical procedure instead of a paramet-
ric model causes the same problems. On the other hand, the often observed equality of results between
frequentist and nonsubjective Bayesian procedures makes a strong argument for the use of these non-
subjective Bayesian procedures, because statements about uncertain quantities should be made proba-
bilistically, see de Finetti (2017).
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realistic to assume that only a few of the hypotheses proposed are true. So even when
increasing b to .8, and assuming 1 out of 20 hypotheses is true, the situation does not
become much better.

Therefore, the upper bound R(d) often says little about the true long-term perfor-
mance. Next to this problem, it needs to be computed first. Except for traditional
Neyman-Pearson tests, derivation of the upper bound R̄(d) is complicated for most
problems. Putting these conceptual problems aside for amoment, themost severe prob-
lem with the CoP was maybe given by Berger and Wolpert (1988), who stressed that
when interpreted as the basis for Fisher’s significance testing or the Neyman-Pearson
theory

“...it conflicts with the LP. (...) In choosing between the LP and the Confi-
dence Principle, it is important to recall the simple axiomatic basis of the LP,
and to realize that no such basis has been found for the Confidence Princi-
ple.”
(Berger and Wolpert, 1988, p. 73-74)

Clearly, reporting R̄(d) violates the LP, as R̄(d) is not based solely on the likelihood
function.

11.6 Axiomatic Map

Figure 11.1 visualizes the axiomatic foundations of statistics. In it, arrows indicate that
the target principle is implied by the source principle(s). For example, the su�ciency
principle implies the weak su�ciency principle. Filled circles indicate that the princi-
ple is not implied by the source principle. For example, the su�ciency principle is not
implied by the weak su�ciency principle as shown by Birnbaum (1972). Filled squares
indicate that the principles are compatible with each other, that is, neither the source
principle implies that the target principle does not hold, nor does the target principle
imply that the source principle does not hold. For example, the principle of adequacy
and the likelihood principle are compatible. Empty squares indicate that all source
principles with empty squares are required to imply the target principle with an arrow,
and that each of the principles with an empty square is implied by the principle with
the arrow. For example, the su�ciency and conditionality principle together imply the
likelihood principle, and the likelihood principle implies both the su�ciency principle
and the conditionality principle. However, neither the su�ciency principle nor the con-
ditionality principle alone imply the likelihood principle. Empty circles indicate that
the source principles are required to solve certain criticisms against the proof of Birn-
baum’s theorem that the weak su�ciency principle and weak conditionality principle
imply the likelihood principle. For example, the distribution principle is required to an-
swer the assumption of Birnbaum that the experiment can be represented by a family of
probability distributions. Themost elementary principle is theAdequacy Principle (AP),
which requires a measure of evidence to be able to separate between di�erent magni-
tudes of evidence. Based on this principle, both the Relative Likelihood Principle (RLP)
and the Confidence Principle (CoP) could be used. In what follows, three perspectives
are discussed.
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Figure 11.1: Overview and connections between the principles of statistical inference

The Fisherian perspective

The p-value in Fisher’s significance tests fulfills the requirement of the AP. Fisher in-
terpreted his p-value as a continuous measure of evidence against the assumed null
hypothesis, and thus his theory complies with the AP. As shown in Chapter 3, Fisher
strongly advocated conditional inference, so his position would agree with the condi-
tionality and weak conditionality principle. Also, he created the concept of a su�cient
statistic and made it a cornerstones of his theory of estimation. Therefore, he would
also agree with the su�ciency principle andweak su�ciency principle. Together, these
principles imply the RLP, and the evidential interpretation of a p-value would also lo-
cate Fisher’s theory of significance testing at the RLP because primary interest for him
was judging the statistical evidence about a scientific experiment. When interpreting
Fisher’s position in this way, acceptance of the RLP implies also the stopping rule and
censoring principle.

However, Fisher also had long-term performance in mind, which is why he coined
the standard threshold of .05. Also, his significance tests violated the RLP as shown
above. Therefore, one would locate Fisher’s significance testing at the CoP. Still, Part I
showed that Fisher’s concept was much more in the spirit of the RLP, as he preferred
to interpret his p-values continuously and rejected the Neyman-Pearson theory. Thus,
Fisher’s position conflictswith both the confidence principle andBayes’ principle, which
states that all inference follows from the posterior distribution (Grossman, 2011).

Fisher’s position is thus somewhat self-contradictory: While he accepted the su�-
ciency and conditionality principle, his significance tests violated the consequence of
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these two principles, which is the likelihood principle. Also, his tests violate the stop-
ping rule principle as shown in Example 11.7, and Example 11.17 demonstrated that
basing the statistical analysis on observations that were not actually observed violates
the censoring principle. Fisher’s p-value bases the statistical analysis on observations
which were not actually made, so Fisher’s perspective conflicts with the CeP, too. Thus,
Fisher’s perspective can be seen as the precursor of a frequentist perspective which in-
corporates the results of Birnbaum (1962): While Fisher implicitly accepted the RLP as
noticed by Birnbaum (1972, p. 271), he did not strictly adhere to it and this presented no
axiomatic inconsistency because Birnbaum’s theoremwas not proven then. In the same
year Birnbaum published his theorem, Fisher died, so it remains speculation if Fisher
would have abandoned his significance tests that were in conflict with the RLP to save
the cornerstones of his maximum likelihood theory, the su�ciency and conditionality
principle.

The Neyman-Pearson perspective

As shown in Chapter 4, the Neyman-Pearson theory separates only between significant
and non-significant results, so that test result which corresponds to a Fisherian p-value
of p = 0.04 is interpreted identically to a test result which corresponds to a Fisherian
p-value of p = 0.01 for a fixed test level a = 0.05. Thus, the NP-theory needs to be
located at the CoP, and this is the perspective advocated by Neyman (1957). Neyman’s
and Pearson’s perspective conflicts with the conditionality principle and weak condi-
tionality principle. While they would agree with the su�ciency and weak su�ciency
principle, this does not su�ce to imply the RLP, and also the AP is violated by their the-
ory of hypothesis testing. As shown in Chapter 4, Neyman and Pearson did not reject
Bayes’ principle as Fisher did, and they considered it even as an alternative solution for
testing statistical hypothesis and estimating confidence sets, but eventually, their theory
ended up being a frequentist one.

The Bayesian perspective

Bayesian indices of significance like the Bayes factor which was detailed in Chapter 7
match the requirement of the AP, too. As Je�reys’ Bayes factors is concerned with the
evidence provided by the data about both hypotheses under consideration, the Bayesian
approach is located at the RLP. Also, as stressed by Birnbaum and shown above, Bayes’
principle implies the RLP, so the Bayesian perspective does not require to accept the suf-
ficiency principle or the conditionality principle as axioms. However, the conditionality
and su�ciency principle are implied by the RLP, so Bayesians accept these principles as
consequences of Bayes’ principle. Interestingly, the Fisherian perspective – accepting the
su�ciency and conditionality principle – are thus immediate consequences of accept-
ing Bayes’ principle. This may be seen as the primary reason why Bayesian inference
and frequentist inference in Fisher’s interpretation often agree, at least asymptotically
(which was also noted by Je�reys’ when he compared Fisher’s solutions with his own,
compare Chapter 7). Bayes’ principle does not conflict with the CoP, but it also lacks
a clear relationship with it. Furthermore, Bayes’ principle is compatible with the AP
and the censoring principle and stopping rule principle are implied by Bayes’ principle
through the RLP.
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An axiomatic basis for hypothesis testing in scientific contexts

Based on Figure 11.1, the following axiomatic perspective for hypothesis testing in sci-
entific contexts presents itself: Based on the above sections, the AP is a natural require-
ment for hypothesis testing in scientific contexts, compare Example 11.1, and violation
of the RLP implies that the SP and the CeP are violated, the undesirable consequences
of which were highlighted by Example 11.7 and Example 11.17. Thus, any axiomatic
basis thusmust obey the RLP andAP. Based on this requirement, Fisher’s perspective is
inadequate as an axiomatic basis for hypothesis testing in scientific contexts. As shown
above, although Fisher accepted the AP, his theory of significance tests violates the RLP,
and thus also the CeP and SP are violated. Also, Neyman’s and Pearson’s perspective
rejects the AP and opts for the CoP and is thus inadequate as an axiomatic basis, too.
Neyman-Pearson tests violate the SP as shown in Example 11.7, conflict with the RLP
and with the WCP. Acceptance of the RLP is the only option to benefit from the SP and
CeP when these are not accepted as axioms.

From a frequentist perspective, the RLP can thus either be accepted as an axiom
or as a consequence of accepting the WSP and WCP. However, the RLP escapes a di-
rect axiomatic motivation as noted by Birnbaum (1962), while acceptance of the WSP
andWCP are more natural for frequentists. The Neyman-Pearson theory conflicts with
the WCP, so the only option for frequentists is to follow Fisher’s perspective. How-
ever, Fisher’s significance tests conflict with the RLP, too, so this change in perspective
presents no solution. In summary, neither the Fisherian perspective nor the Neyman-
Pearson perspective obey the RLP and AP.

From a Bayesian perspective, the RLP follows immediately from Bayes’ principle
as shown above. The CeP and SP are implied by the RLP, and Bayesian hypothesis
testing based on the Bayes factor or on posterior probabilities as outlined in Chapter 7
are compatible with the AP. Interestingly, the conditionality and su�ciency principle
follow from Bayes’ principle, too, as they are consequences of the RLP. Thus, Bayes’
principle presents an axiomatic basis for hypothesis testing in scientific contexts which
does not conflict with the RLP or AP.

However, some additional principles need to be assumed to answer some criticisms
against Birnbaum’s proof when accepting Bayes’ principle as an axiom: The Distribu-
tion Principle (DP) as proposed by Dawid (1977) may be seen as a requirement for the
RLP, but one can also interpret the principle as superfluous as discussed above. Also,
to handle models which include nuisance parameters, the Noninformative Nuisance Pa-
rameter Principle and the Marginalization Principle need to be assumed to answer some
criticisms, see Berger and Wolpert (1988).

11.7 Implementation of the Likelihood Principle
Andrei Kolmogorov stressed in his Foundations of the Theory of Probability that

“The theory of probability, as a mathematical discipline can and should be
developed from axioms in exactly the same way as geometry and algebra.
This means that after we have defined the elements to be studied and their
basic relations, and have stated the axioms bywhich these relations are to be
governed, all further exposition must be based exclusively on these axioms,
independent of the usual concrete meaning of these elements and their re-
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lations.”
Kolmogorov (1950, p. 1)

The axiomatic analysis above showed that, in particular, due to the results of Birnbaum
a similar development is possible for the theory of statistics. Such a development from
statistical axioms or principles strongly encourages the acceptance of the likelihood
principle, and thus serves as a first step towards solving some of the problems observed
in the replication crisis today. Based on the axiomatic analysis above, all further expo-
sition must be based exclusively on compatibility with the likelihood principle and the
adequacy principle to recite Kolmogorov. Bayes’ principle as an axiom implies both of
these principles, while frequentist theories like Fisher’s theory of significance tests or
the NP-theory violate either the RLP, the AP, or both.

When following the LP, the remaining question is how to implement it in practice.
There are essentially two options available:

1. Conduct purely likelihood-based reasoning, which does only involve maximum
likelihood estimation based on L(q; x) and reasoningwhich is based on likelihood
ratios L(q1; x)/L(q0; x). The likelihood function, as well as corresponding max-
imum likelihood estimates, are reported. This mode of inference is called pure
likelihoodism29 (Grossman, 2011; Royall, 1997).

2. Conduct Bayesian inference, which combines the likelihood function L(q : x)with
a prior p(q) to produce the posterior p(q|x) of q given the data x. Subsequently,
use posterior indices for significance or the size of an e�ect like the Bayes factor.
Alternatively, one can report posterior point or interval estimates like the posterior
mean, median or mode and credible or highest density intervals.

While the first option sounds appealing, concerning hypothesis testing, it prevents prac-
titioners from using any of the tests developed by Fisher or Neyman and Pearson. Even
when refraining from hypothesis testing and focussing on parameter estimation alone,
the proposal brings multiple problems with it: Informative nuisance parameters often
occur in realistic models in practice and make these di�cult to analyse via pure maxi-
mum likelihoodmethods (Berger andWolpert, 1988, Chapter 5). While multiple meth-
ods have been developed to deal with these problems occurring in purely likelihood-
based reasoning – for example maximizing over nuisance parameters – these often lead
to degenerate solutions or even fail to provide solutions at all. Examples include the fa-
mous Kiefer-Wolfowitz mixture (Kiefer andWolfowitz, 1956), which is also detailed in
Frühwirth-Schnatter (2006). As highlighted there, this problem holds especially for in-
creasingly high-dimensional models (without the need of any nuisance parameters at
all), making the situation even worse as the dimensionality of models is getting larger
and larger in themodern era of big data. Especially statistical models in the life sciences
include hundreds to thousands of parameters in practical applications, causing much
trouble to analytic or numerical purely likelihood-based solutions to work properly.
Due to this restrictions, Berger and Wolpert (1988) noted that:

“The only situations in which pure likelihood methods are completely con-
vincing are simple ones (such as testing two simple hypotheses), where

29Mayo (2018) called people proceeding this way Likelihoodists. Note that a Likelihoodist will not ac-
cept any form of null hypothesis significance testing in the veins of Fisher or Neyman-Pearson, because
comparison of pointwise likelihoods in the form of likelihood ratios can cause contradictions to hypoth-
esis tests, especially when involved with composite hypotheses, see (Mayo, 2018).
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they, in fact, correspond to Bayes procedures.”
Berger and Wolpert (1988, p. 125)

As shown in Part I, from a historical perspective these simple low-dimensional models
are exactly what these procedures were developed for in the first place. Now, given that
the dimensionality of models has exploded and simple (and often, even complex) sta-
tistical models are at best an approximation to reality, these methods are questionable
from both a conceptual and practical perspective.

The second option is to use Bayesian inference instead to implement the LP. Indeed,
Bayesian inference could be used to implement the LP: Birnbaum (1962) noted in his
original derivation of the LP, that the likelihood principle

“...is an immediate consequence of Bayes’ principle, when the latter (with
any interpretation) is adopted.”
(Birnbaum, 1962, p. 283)

When using Bayes’ theorem as a grounded scientific theory which implements prob-
abilistic enumerative induction as detailed in Chapter 10, the LP follows immediately:
By incorporation of a prior density p(q) on q, the posterior density p(q|x) is given as

p(q|x) = f (x|q)p(q)
f (x)

(11.34)

where f (x) :=
R

Q f (x|q)p(q)dq is the marginal density. Therefore, the posterior p(q|x)
depends on the experiment E only through the likelihood f (x|q) above, andnot through
the prior p(q), assuming that the selection of p(q) is independent of E and the observed
x. Note that the elicitation of the prior p(q) involves the a priori knowledge about the
parameter, for example information from previous studies or incorporation of subject-
domain knowledge. The prior elicitation does not depend on the experiment E itself.30

Therefore, when using Bayes’ theorem as a grounded theory of science which im-
plements probabilistic enumerative induction, the evidence Ev(E, x) depends only on
the likelihood function L(x; q) ( f (x|q) in the above), as required by the RLP. As all
Bayesian inference is obtained from the posterior distribution, “the LP is an immediate
consequence of the Bayesian paradigm.” (Berger and Wolpert, 1988, p. 23). As noted
above, the principle to draw all inference from the posterior distribution, which is in-
herent in any mode of Bayesian analysis, is called Bayes’ principle Grossman (2011).
Phrased in this way, Bayes’ principle implies the RLP.

What is more, if the likelihood functions L1(q; x) and L2(q; x) are proportional for
two experiments E1 and E2 under consideration, and the same prior p(q) is used (which
must necessarily be the case as one cannot have two di�ering beliefs about the same
parameter at the same time), the resulting posteriors are identical, compare Equation
(11.16). Therefore, the resulting evidence in the form of point or interval estimators
like the posterior median, mean or mode, or a posterior highest density interval will be
the same for both experiments.

30Importantly, this demonstrates that approaches like empirical Bayes methods in which the prior dis-
tribution is estimated from the data x are, in general, problematic whenever the same data x is used
twice for prior elicitation and the final inference (Kleijn, 2022). When the same data x is used to elicit
p(q) and obtain p(q|x) subsequently, the posterior p(q|x) depends on the data x not solely via the like-
lihood f (x|q), but also via the prior p(q) that itself now depends on x. Thus, empirical Bayes methods
violate the RLP unless data x is split into two sets and the set used for estimating the prior is discarded
for the final analysis.

256



CHAPTER 11. AXIOMATIC CONSIDERATIONS ON THE FOUNDATIONS OF
STATISTICAL INFERENCE

Attempts to argue that Bayesian inference violates the RLP, for example because one
could choose two di�erent priors in E1 and E2 with proportional likelihood functions
L1(q; x) and L2(q; x) also fail. As the parameter q is required to be the same in both
experiments according to the RLP, it is not allowed to use two di�erent priors for the
same parameter. Thus, the RLP implicitly denies to select two di�erent priors in the
two experiments for the same parameter q. As long as the parameter resembles the
same physical quantity in both experiments, or is at least identical conceptually in both
statistical models, only a single prior can be chosen.31 Remember the analogy of two
experiments, in the first of which a coin is flipped twenty times to estimate the suc-
cess probability, and in the second of which a heart surgery is conducted at twenty
patients. Although the parameters are mathematically the same in both experiments,
namely the success parameter in a binomial model, they do not model the same real-
world quantity. As a consequence, the RLP does not apply. For example, if all patients
who have undergone surgery were high-risk patients, one would judge eight successes
out of twenty surgeries as more scientifically relevant than eight successes out of ten
coin flips. This observation shows that it is intuitively allowed to choose di�erent pri-
ors in the coin flips and heart surgery experiment32 which is again related to the fact
that the parameters are not the same in both experiments and the RLP thus does not
apply. When the priors are identical in both experiments, the statistical evidence coin-
cides when the same number of successes is observed in both experiments. However,
when di�erent priors are used, the evidence can di�er even when the same number of
successes is observed. The scientific evidence about the surgery procedure or the coin
will, in general, be di�erent.

Furthermore, even when an extremely subjective prior is used in E1 and E2, the
evidence in form of the obtained posteriors p(q|x) both in E1 and E2 depends only on
the likelihood functions, and not on the extremely subjective prior chosen, as indicated
by Equation (11.34). Thus, subjective Bayesian inference does not contradict the RLP.

Summing up, Bayesian inference has multiple advantages compared to a purely
likelihood-based view:

1. Conceptual advantages: The Bayesian paradigm treats the likelihood L(q : x) as a
probability density with respect to the presumed prior measure for q. As Berger
and Wolpert (1988) noted:

“...probability is the language of uncertainty, so the uncertainty about
q, reflected in L(q : x), should be expressed probabilistically.”
Berger and Wolpert (1988, p. 126), notation changed for consistency

This argument is appealing, and few if any objections can be raised against it. Note
thatmisinterpretations of the likelihood as a probability distribution are common,
a phenomenon which already Fisher (1932) was aware of:

“It [the likelihood] is not a probability and does not obey the laws of
probability.”
Fisher (1932, p. 259)

31Note that when q does not describe the same physical quantity in E1 and E2, choosing di�erent priors
is allowed, and of course the evidence Ev(E1, x) and Ev(E2, x) can di�er. However, then the RLP does
not apply.

32Judging eight successes in the heart surgery experiment as stronger evidence for the procedure to
work when all patients had high risk is equivalent to assuming a prior for the success rate q which is not
uniform on [0, 1]. In fact, the prior will be shifted towards values < 0.5 then.
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Fisher’s approach of fiducial probability showed that he also acknowledged the
advantages of obtaining probabilistic statements about a parameter. However, the
fiducial approach turned out to be not successful, see Howie (2002).

2. Practical advantages: Statistical inference requires to compare subsets of Q to an-
other, for example, a null and alternative hypothesis H0 and H1, both of which
are subsets of Q. Therefore, some kind of averaging over L(q; x) is necessary
when H0 or H1 is a composite hypothesis, which consists of more than a single
parameter value. Comparing every parameter value with another does not work
anymore in the common non-discrete setting, which is why heuristics like the
likelihood ratio test as given in Definition C.75 were developed. There, the idea
is to use at least lower or upper bounds for the likelihood ratio.33 Therefore, a
purely likelihood-based perspective is left with (1) providing a uniquemaximum
likelihood estimate, which is not always possible in practice or (2) sticking with
simple likelihood ratio comparisons, which is a stab in the dark in non-discrete
high-dimensional models.34

In contrast to the problems inherent to likelihood-based averaging, the Bayesian
approach simply proceeds by averaging over the range of credible values q de-
termined by the form of the prior distribution p(q), which in turn influences the
values of L(q; x) over which the averaging is done when producing the poste-
rior subsequently. Whether it is a posterior probability of the subset H0 ⇢ Q or
H1 ⇢ Q or a posterior index like the Bayes factor to compare H0 against H1, the
averaging in the Bayesian approach is explicit in the prior formulation and causes
the problems inherent to purely likelihood-based methods to resolve. Unreason-
able prior selectionmay very well end upwith the same problems as encountered
in averaging overmore extreme observations. This holds especially for completely
uninformative, flat priors like p(q) = 1.35 Still, any rational Bayesian analysis will
report the used prior, so that the conclusions reached simply can be rejected if
the prior seems unreasonable. Also, for a large variety of models, there is wide
agreement on which priors to use. These turn out to be weakly informative in
most cases to make complex models treatable via a slight restriction of the param-
eter space through the prior p(q), see Gelman et al. (2013) andMcElreath (2020).
What is more, incorporating prior information is often seen as a drawback of the

33The same holds for the Berger-Sellke lower bound as given by (Berger and Sellke, 1987), but here the
averaging is done over the parameter space by introducing a prior g(q). Thus, no violation of the RLP
occurs.

34Note that one could argue that due to the finite precision ofmeasurements the sample space is always
finite so a finite number of comparisons of likelihood ratios su�ces. The problem with this argument is
that even when the parameter space is discretized as an approximation to the true continuous parameter
space, the number of likelihood ratio comparisons necessary to compare all parameter values with each
other grows exponentially with the dimension of the model. Assume any reasonable measurement pre-
cision, and suppose n grid points are used for each dimension with n = 1000. A 100-dimensional model
(which is not untypical in biomedical research) would produce a 100-dimensional grid with 1000100
points. The number of likelihood ratio comparisons is the number of unordered sequences (likelihood
ratios L(q1; x)/L(q2; x) are not distinguished for practical purposes from L(q2; x)/L(q1; x) here) without
replacement of size n = 2, which is (1000

100

2 ). The number of necessary comparisons quickly becomes
prohibitively large.

35Schervish (1995, p. 21) stresses that “an alternative to using improper priors is to do a robust Bayesian
analysis.”, a suggestion which is followed in this thesis. Note also that a flat prior p(q) = 1 is no proba-
bility density anymore, as

R
q f (q)dq 6= 1 in general.
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Bayesian approach, but frequentist procedures also include subjectivity in form
of selecting a parametric family of distributions (or even nonparametric families
of distributions):

“Some people seem to think that choosing a prior distribution intro-
duces subjectivity into the analysis of data but choosing a parametric
family does not. These people are mistaken. Each choice one makes in-
troduces subjectivity.”
Schervish (1995, p. 19-20)

Importantly, even if Bayesian inference adds a layer of subjectivity by introduc-
ing a prior on the relevant parameters, the influence of this modeling vanishes
for large samples (which still can be problematic for small to moderately sized
samples), and the influence can be kept minimal.36

Due to these conceptual and practical advantages, Bayesian inference is themost attrac-
tive option when searching

(i) a philosophically grounded scientific theory, which is given by Bayes theorem’ as
an implementation of probabilistic enumerative induction

(ii) an axiomatically justified procedure which follows the RLP to avoid violation of
the SRP and CeP for practical reasons and which complies with the AP

(iii) an (easy) applicablemethod for awide variety ofmodels and settings in scientific
and statistical practice, in particular for hypothesis testing

The remaining problem is the selection of the prior distribution p(q). The elicitation of
the prior is not easy, which calls out for a robust Bayesian analysis as detailed in Berger
(1985). The idea of robust Bayesian analysis is to use a class K of suitable prior distri-
butions and use this class of priors instead of a single guess p(q). If the conclusions
drawn are essentially the same for all the posteriors produced by all the priors in K,
one can regard the problem as solved, or robust to the prior selection. However, this
is not always the case, and in practice, making a decision may be warranted without
further delay. In many cases, as also noted by Berger and Wolpert (1988), it is possible
to restrict further the class of considered priors K based on prior knowledge so that
a unified answer is provided by the class of priors considered. If this is not the case,
collecting more data is another option, even if costly.

Carrying out such a robust Bayesian analysis has for a long time been impossible
for practitioners. It is argued in this thesis, that this situation has dramatically changed
through the advent of modern MCMC algorithms and available software in the last
decade. Therefore it is shown that carrying out a robust Bayesian analysis is straight-
forward. As Berger and Wolpert (1988) noted already 30 years ago

“A second reason for possible violation of the LP (...) is that many users
of statistics will be unable to perform careful robust Bayesian analyses. For
these users we must provide simple Bayesian procedures with “built in”

36For example, Schervish (1995) noted: “Philosophy aside, suppose that one finds it di�cult to specify
a prior distribution because one does not have much idea where the parameter is likely to be located. In
such cases, one may wish to do calculations based on a prior distribution that spreads the probability
very thinly over the parameter space.” (Schervish, 1995, p. 20).
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robustness. In part, this robustness should be measured in frequency sense,
since the procedures will be used repeatedly (i.e., for di�erent X).”
Berger and Wolpert (1988, p. 139-140)

Therefore, the biggest obstacle in following the RLP via robust Bayesian analysis is to
enable practitioners to conduct such robust Bayesian analyses, and to guarantee that
these robust Bayesian procedures also enjoy a good, stable long-term performance.
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INTERMEDIATE CONSIDERATIONS

The last chapters showed that Bayesian inference is justified from a philosophical point
of view and even more importantly, strongly mandated by an axiomatic analysis of the
foundations of statistical inference. The axiomatic analysis of the preceding chapter
implies that there is – with the exception of purely likelihood-based reasoning – no al-
ternative to Bayesian inference for quantifying statistical evidence in scientific research.
This includes, in particular, statistical hypothesis testing in scientific contexts. Thus,
the following Part V contributes several statistical solutions to the ongoing replication
crisis from a Bayesian perspective.

First, Chapter 12 shows that computational tools make it possible to perform robust
Bayesian hypothesis tests easily for the majority of widely used statistical models in
the biomedical sciences. This is a direct and straightforward option to improve the
reliability of research by shifting towards robust Bayesian hypothesis tests instead of
null hypothesis significance tests in the sense of Fisher or Neyman and Pearson.

Second, Chapter 13 shows that the more advanced Bayesian HMC algorithms pro-
vide richer insights than frequentist counterparts, in particular for models like survival
analysis which are widely used in the biomedical sciences. Furthermore, it is demon-
strated that even complex and highly customised statistical models can be analysed by
employing the HMC algorithms which were detailed in Chapter 8.

Third, Chapter 14 studies the behaviour of Bayesian evidence measures and poste-
rior indices and obtains long-term performance results. Although these long-term per-
formance results are not of theoretical nature but based on Monte-Carlo simulations
because of the strongly di�ering theory of the available posterior indices for Bayesian
hypothesis testing, they remain beneficial in practice and allow for quantification of
long-term performance and error rates of Bayesian hypothesis tests in the two-sample
setting, which is among the most widely used research designs in the biomedical sci-
ences.

Fourth, as noted by Berger andWolpert (1988, p. 139-140), robust Bayesianmethods
need to be evaluated with regard to their long-term properties to measure the asserted
robustness also in a frequency sense. Chapter 14 shows that it is possible via simulation-
based approaches to obtain type I and type II error rates for Bayesian procedures, in par-
ticular for Bayesian hypothesis tests. This provides a strong justification for using such
Bayesian procedures even without formal adoption of the confidence principle. In fact,
such results can show that Bayes’ principle in Figure 11.1 is compatible with the confi-
dence principle. Although theU.S. Food andDrug administration stressed in its section
on Bayesian Adaptive Designs for Clinical Trials of Drugs and Biologics that “Bayesian
statistical properties aremore informative than Type I error probability” (U.S. Food and
DrugAdministrationCenter forDrug Evaluation andResearch andCenter for Biologics
Evaluation and Research, 2019, p. 20), it is also acknowledged that “Bayesian adaptive
and complex trials (...) rely on computer simulations for their design.” (U.S. Food and
Drug Administration Center for Drug Evaluation and Research and Center for Biolog-
ics Evaluation and Research, 2019, p. 1). Thus, investigating the resulting error rates
of Bayesian hypothesis tests can help in judging the reliability of these tests in biomed-
ical research. Furthermore, Chapter 14 shows that Bayesian methods do not only re-
spect the likelihood principle, but often also enjoy long-term performance properties
like balancing the type I and II errors more evenly than their frequentist counterparts.
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The results show that Bayesian evidence measures – in general – treat the hypothesis
testing problem more symmetrical than traditional Neyman-Pearson tests.

Fifth, Chapter 15 provides a new Bayesian solution to the Behrens-Fisher problem
and a new method to test for di�erences between groups. The results indicate that
a convenient solution to solve various problems of the replication crisis is to consider
small interval hypotheses instead of precise point null hypotheses in practice. This
approach goes back at least to Hodges and Lehmann (1954), and theoretical results
demonstrate the superiority of the approach to traditional frequentist hypothesis tests.

Finally, Chapter 16 discusses the results, revisits the replication crisis and the pro-
vided solutions and presents a perspective on future research venues.
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12.1 Introduction

Null hypothesis significance testing (NHST) remains the dominating inferential ap-
proach in medical research (Altman, 1982; Altman et al., 1983; Altman, 1991b,a). The
results of medical research therefore stand on the shoulders of the frequentist statisti-
cal philosophy, which goes back to the early days of Fisher (1925a) and Neyman and
Pearson (1936) as reconstructed in Part I. This chapter presents Bayesian alternatives
to null hypothesis significance testing based on p-values and demonstrates, that for the
majority of statistical models used in the biomedical sciences robust Bayesian hypoth-
esis tests are available. The use of these tests is directly motivated by the results of the
axiomatic analysis in Part IV.

The centerpiece of frequentist inference is a test statistic T, which can be computed
from the raw data, and which is known to have a specific distribution F under the null
hypothesis H0. If the observed value of the test statistic passes a given threshold, which
is located in the tails of F, then the null hypothesis H0 is rejected, because observing
such a value would be quite unplausible if H0 were true. The well known p-value
states exactly the probability of observing a result as extreme as the one observed or
even more extreme when the null hypothesis H0 were true. To solve the problems in-
herent to NHST (compare Chapter 1), researchers from the University of Amsterdam
have developed the open-source statistical software JASP (JASP Team, 2019), which is
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an acronym for Je�reys Awesome Statistics Package, referring to Harold Je�reys (compare
Part II). JASP is available for all common operating systems and provides both frequen-
tist NHST as well as Bayesian hypothesis tests. Also, to foster reproducible medical re-
search, JASP o�ers a seamless integration to the Open Science Framework (Center for
Open Science, 2020) as well as shareable JASP-files which include all data and analy-
ses, to promote collaboration between researchers and transparency of statistical data
analysis.1

In both the hypothesis testing aswell as parameter estimationperspective in Bayesian
inference, the role of the prior is crucial. The prior distribution quantifies the prior in-
formation about any parameters in the model before the data x are actually observed.
While thismay bring a subjective flavourwith it, selecting an appropriate prior is a topic
of huge relevance in Bayesian literature, as extreme priors can shrink the posterior esti-
mates of a parameter or the obtained Bayes factor into a desired direction specified by
the prior shape. Luckily, there is an unspoken agreement to use uninformative priors
in most cases (McElreath, 2016; Kruschke, 2015), especially when no prior information
(for example in form of results of pilot studies) is available. This makes it easy for most
standard tests and methods to select a suitable prior. For example, in the biomedical
and cognitive sciences most often the e�ect size d of Cohen (1988) is important. The
e�ect size is used to quantify the e�ect of a treatment (e.g. between a treatment and
control group) and a priori it is reasonable to assume that very large e�ects |d| > 1
are less probable than small e�ects |d|  1, as often in the biomedical and cognitive
sciences small to medium e�ect sizes (0.2  |d| < 0.5) are observed (Rouder et al.,
2009). Common choices of prior distributions for the e�ect size are the normal distri-
bution (Rouder et al., 2009), t-distribution and the Cauchy distribution (Je�reys, 1961).
A common approach also includes to use uniform priors or priors with extremely large
scale parameters likeN (0, 500) if no information is available for the parameter of inter-
est (Kruschke, 2015). However, this approach is problematic and should be avoided,
as it can be shown that the a priori assumption then often degenerates to statements
which believe much more probability mass in the tails as in the center of the distribu-
tion, essentially making the prior distributional assumption questionable. For exam-
ple, a N (0, 500) prior will tend to put much more probability mass on unreasonable
parameter values than reasonable ones. To be more specific, this prior implies that one
believes a priori that P(|q| < 250) < P(|q|) > 250), which is easily shown by calculat-
ingP(�250 < q < 250) ⇡ 0.38. Evenworse, pioneers of Bayesian inference like Je�reys
(1961) already noticed that such unrealistic overdispersed priors can lead to situations
in which the Bayes factor always signals evidence for the null hypothesis H0, even if the
data x are indeed generated by the alternative H1, a situation which has been entitled
the Je�reys-Lindley-paradox, see Lindley (1957) and Robert (2014). To prevent such
problems, often slightly informative or weakly informative priors are used, which span
a realistic range of values of the parameter a priori, but are not completely flat (Gelman
et al., 2013, 2015; McElreath, 2020).

1Recently, various papers have emerged both in the statistical and methodological literature which
detail certain aspects of JASP. The latter range from reporting guidelines (van Doorn et al., 2021) to
discussions of how to carry out specific analyses which are popular in certain scientific areas (e.g. in
psychiatry, compare Quintana and Williams (2018)). These articles include van Doorn et al. (2021),
Faulkenberry et al. (2020), Ly et al. (2021), Quintana and Williams (2018), van den Bergh et al. (2021),
and this chapter focusses on discussing Bayesian hypothesis testing in JASP for biomedical research.
Therefore, a sample of the most widely used statistical tests in medical research is taken and it is shown
how to carry out these tests from a Bayesian perspective in JASP and report the analysis.
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If a reasonable weakly informative prior is selected, typically Bayes factors between
1/100 and 100 are observed in the biomedical and cognitive sciences, and the report-
ing guidelines for JASP are therefore built on this scale (van Doorn et al., 2021). While
there are multiple o�ers for translating a Bayes factor into a qualitative statement about
the evidence it resembles (Je�reys, 1961; van Doorn et al., 2021; Good, 1950; Kass and
Raftery, 1995; Held and Ott, 2018; Goodman, 1999; Lee andWagenmakers, 2013), these
proposals do not di�er drastically (compare Chapter 6) and one benefit is that by re-
porting the actual Bayes factor instead of “moderate evidence“ or “strong evidence“
researchers can quantify the evidence based on the reported Bayes factor themselves if
desired. The oldest classification or labeling scheme goes back to Je�reys (1961), and
the reporting guidelines of JASP are an adoption of the original Je�reys scale. The JASP
guidelines seperate between “anecdotal“, “moderate“, “strong“, “very strong“ and “ex-
treme“ relative evidence for a hypothesis based on the size of the Bayes factor obtained.
Details about the scale can be found in van Doorn et al. (2021), see also Kelter (2021b)
for an overview about the various scales that exist and Table 6.1. While any scale is arbi-
trary, the scheme of Je�reys o�ers a good starting point for judging the relative evidence
for the alternative hypothesis compared to the null hypothesis in light of the observed
data x. Note that not all circumstances and research contexts require the same scaling:
The obtained Bayes factor depends on the prior selected, so that heavily unrealistic hy-
pothesis should require much larger Bayes factors to confirm the a priori unprobable
statement2 in contrast to highly likely hypotheses, which have been confirmed in mul-
tiple previous studies already. A research hypothesis with low prior probability will
therefore require a convincing Bayes factor such that the evidence overcomes the ini-
tial skepticism and the model attains considerable posterior credibility. Therefore, it is
important to consider the prior odds carefully when performing such analyses instead
of using isolated Bayes factors only. Nevertheless, the scheme proposes a consensus
which researchers can use to orient at when reporting results. In particular, it is a good
starting point when a weakly informative prior is used. Such priors are prebuilt into
JASP and can be selected there.

JASP includes both frequentist andBayesianmethods, and this is a particular strength,
as few competitors include that broad a palette of Bayesian methods. Next to this flex-
ibility, ease-of-use is supported through an interactive live view where analyses are
performed in real time and added to the results page. The interface of JASP is intuitive
and consists of a data page displaying the loaded data set, an analysis page, displaying
the analyses which are carried out on this data set, and a results page which includes
all results and plots of conducted analyses. In summary therefore, JASP can be judged
as flexible and easy to use.

12.2 Methods and Results
To demonstrate how straightfoward the application of Bayesian hypothesis tests in JASP
is, three typical questions arising in biomedical research are used as a sca�old: (1) Do
multiple groups (treatment one, treatment two, control) di�er on an observed metric
variable, and if so, how large is the e�ect size? (2) Do two groups (treatment, control)
di�er on an observedmetric variable, and if so, how large is the e�ect size between both

2See the discussion about Popper’s counterexample against probability as a reasonable measure of
confirmation of a hypothesis in Chapter 10.
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groups? (3) How strong is the relationship between two observed variables? Usually
NHST in form of (1) an analysis of variance (ANOVA) (2) a two-sample t-test and (3)
linear regression is used to reject a null hypothesis via the use of p-values. In the fol-
lowing, it will be shown that Bayesian versions of these statistical procedures can com-
plement NHST and provide even richer information. A compelling feature here is, that
both traditional as well as the Bayesianmethods can be run in JASP seamlessly (Wagen-
makers et al., 2018; Etz and Vandekerckhove, 2016), so that methodological flexibility
is guaranteed.

The results show that the transition fromNHSTand p-values towards robust Bayesian
analyses can be achieved almost e�ortlessly, as JASP o�ers an intuitive graphical in-
terface and covers a wide range of Bayesian counterparts for commonly used tests in
medical research with rich annotations for correct interpretation and reporting.

Three datasets from medical research were used to compare NHST and Bayesian
tests in JASP. The first dataset is from Moore and colleagues (Moore et al., 2012), and
consists of 800 patients which had to exercise for six minutes. After the six minutes,
heart rates of male and female patients were recorded. All patients were additionally
classified as runners or sedentary patients, depending on averagingmore than 15miles
per week or not, so that in total two treatment and two control groups of size 200 each
sum up to 800 participants.

12.2.1 Question (1) – Analysis of variance (ANOVA)
A typical question in medical research would be to find out any di�erences between
gender aswell as both groups, leading to the setting of a 2⇥ 2 between subjects ANOVA
for the variables group and gender. More specifically, a test for the hypothesis of dif-
fering average heart rates between gender and control and treatment groups is desired.
The results of the frequentist ANOVA conducted in JASP are shown in Table 12.1. The

Table 12.1: ANOVA - Heart Rate

Cases Sum of Squares df Mean Square F p VS-MPR* h2

Gender 45030.005 1.000 45030.005 185.980 < .001 1.296e+35 0.110
Group 168432.080 1.000 168432.080 695.647 < .001 1.264e+107 0.413
Gender * Group 1794.005 1.000 1794.005 7.409 0.007 11.062 0.004
Residual 192729.830 796.000 242.123

Note. Type III Sum of Squares

output shows that both gender and group are significant variables as well as the in-
teraction term for gender and group. All quantities of the ANOVA calculations, sum
of squares, degrees of freedom, mean square, F-statistic, h2 and the p-value are given.
Also, the Vovk-Sellke Maximum Ratio (VS-MPR) is given based on the p-value, which
is the maximum possible odds in favor of H1 over H0.3

3The Vovk-Sellke Maximum Ratio is similar to the Berger-Sellke upper bound as detailed in Chap-
ter 11, and its name is attributed to the seminal papers of Vovk (1993) and Sellke et al. (2001b). Sellke
et al. (2001b, p. 66) showed that a lower bound on the Bayes factor of testing H0 : p ⇠ U(0, 1) against
H1 : p f (p|x) is given as �ep log(p) for p < e�1, where p is the p-value, and f (p|x) is a beta-density
B(x, 1). The result uses the fact, that the p-value is uniformly distributed under H0, and the inverse of
their bound �1/(ep log(p)) for p  0.37 provides an upper bound on the Bayes factor for H1 against
H0. For the relationship of the Vovk-Sellke maximum ratio to the Berger-Sellke lower bound see (Sellke
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One nice feature of JASP is that it o�ers the option to include assumption checks
for the tests conducted: For the ANOVA, homogeneity of variance is required, and the
included assumption check in form of Levene’s test is given in Table 12.2, showing that
the assumption is violated. Still, investigating the provided Q-Q-plot in JASP (see Fig-

Table 12.2: Test for Equality of Variances (Levene’s)

F df1 df2 p VS-MPR*
5.562 3.000 796.000 < .001 59.104

ure 12.1a) shows that due to the balanced design of 200 participants in each sample
and a high power due to 800 participants in total, the ANOVA will be relatively robust
to the violations. Conducting a Bayesian ANOVA on the same data in JASP yields the

(a) (b)

Figure 12.1: Q-Q-plots for the traditional andBayesianANOVA for the heart rate dataset
of Moore and colleagues produced by JASP

results given in Table 12.3. There are five distinct models for each of which the prior

Table 12.3: Model Comparison

Models P(M) P(M|data) BFM BF10 error %
Null model 0.200 2.281e-126 9.124e-126 1.000
Gender + Group + Gender * Group 0.200 0.790 15.047 3.463e+125 2.485
Gender + Group 0.200 0.210 1.063 9.207e+124 1.068
Group 0.200 6.651e-36 2.661e-35 2.916e+90 2.683e-95
Gender 0.200 1.797e-107 7.186e-107 7.876e+18 2.699e-23

probability P(M), the posterior probability P(M|data), the change from prior odds to
posterior odds BFM for each model, and the Bayes factor BF10 for the relative evidence

et al., 2001b, Example 3).

269



CHAPTER 12. BAYESIAN ALTERNATIVES TO NULL HYPOTHESIS
SIGNIFICANCE TESTING IN THE BIOMEDICAL SCIENCES WITH JASP

of the alternative hypothesis H1 compared to the null hypothesis H0 as well as the er-
ror in percent is given. This is necessary, because for some analyses the results are
based on numerical algorithms such as Markov chain Monte Carlo (MCMC), which
yields an error percentage (for more details on the computation see van Doorn et al.
(2021)). The error percentage thus is an estimate of the numerical error in the com-
putation of the Bayes factor via Gaussian quadrature in the BayesFactor R package
(Morey and Rouder, 2018) JASP uses internally, and values below 20% are deemed ac-
ceptable (Bergh et al., 2019). If the error percentage is deemed too high, the number of
samples can be increased to reduce the error percentage at the cost of longer computa-
tion time. Also, the BFM column shows the change from prior odds to posterior odds
for each model. For example, for the full model including both main e�ects as well
as their interaction e�ect, the prior odds are 0.2/(1� 0.2) = 0.25, while the posterior
odds are 0.790/(1� 0.790) = 3.761905, leading to a ratio of 3.761905/0.25 = 15.04762,
as shown in the BFM column. All models are compared to the null model here, where
the null model includes no predictor variables at all, and the full model includes both
variables gender and group as well as their interaction term. It is clear that the BF10 of
3.463e + 125 is largest for this last most complex model, indicating extreme evidence
for this model according to the scale of Je�reys and the reporting guidelines for JASP
(van Doorn et al., 2021). Also, the BF10 column contains the Bayes factor that quantifies
evidence for this model relative to the null model with no variables included, therefore
it is 1 for the null model row. While the BFM column thus states that the most complex
model is the most probable a posteriori (because the prior odds were identical for all
models, so that BFM is largest i� P(M|data) is largest), the BF10 column also adds that
the data support this model best when ignoring the prior odds (the Bayes factor is, in
general, independent of the prior odds, see Kleijn (2022)). It may be of interest to ob-
tain a Bayes factor BF10(Mmain e�ects vs. full) for comparison of the full model including
the interaction e�ect, and the model with both main e�ects. This is straightforward, as
due to the transitivity of the Bayes factor, it is clear that

BF10(Mmain e�ects)
BF10(Mfull)

=

p(x|HMmain e�ects
1 )

p(x|HMnull
0 )

p(x|HMfull
1 )

p(x|HMnull
0 )

=
p(x|HMmain e�ects

1 )

p(x|HMfull
1 )

= BF10(Mmain e�ects vs. full)

because the denominators p(x|HMnull
0 ) cancel each other out, so that dividing the main

e�ects model Bayes factor BF10(Mmain e�ects) = 9.207e+ 124 by the full models Bayes
factor BF10(Mfull) = 3.463e + 125 yields a Bayes factor BF10(Mmain e�ects vs. full) ⇡
0.2658677 for comparing the main e�ects model to the full model, which also indicates
that the full model is to be preferred. This Bayes factor can also be calculated in JASP
by selecting compare to best model instead of compare to null model in the user interface.
Figure 12.1b shows a Q-Q-plot for the residuals of the Bayesian ANOVA, showing that
it is quite robust to the deviations from normality.

A compelling feature of the Bayesian way now is that posterior credible intervals on
all variables of interest are easily obtained. While often frequentist confidence intervals
are interpreted as containing the true parameter q with 95% probability, this is actually
the correct interpretation of a Bayesian credible interval, after observing the data x as
discussed in Chapter 4. Table 12.4 shows the model averaged posterior summaries of
the full model for both variables and the interaction term. From the table, one can easily
see that females have a posterior mean of 7.448, that is an increased heart rate of 7.448
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Table 12.4: Model Averaged Posterior Summary

95% Credible Interval
Variable Level Mean SD Lower Upper
Intercept 124.490 0.551 123.168 125.426
Gender Female 7.448 0.559 6.339 8.553

Male -7.448 0.559 -8.586 -6.373
Group Control 14.474 0.557 13.334 15.551

Runners -14.474 0.557 -15.584 -13.367
Gender * Group Female & Control 1.465 0.547 0.378 2.577

Female & Runners -1.465 0.547 -2.586 -0.387
Male & Control -1.465 0.547 -2.586 -0.387
Male & Runners 1.465 0.547 0.378 2.577

beats per minute, while males have a posterior mean of �7.448, indicating a decreased
heart rate of the same magnitude compared to the global mean. Thus, the heart rate
seems to be di�ering between males and females. Specifically, after observing the data
x the average heart beat of females lies in the range of values [6.339, 8.553] with 95%
probability, so that with 95% we can be sure that females have an increased heart rate
of at least 6.339 ⇡ 6 beats per minute after exercising 6 minutes compared to the global
mean. The 95% credible intervals of males and females do not overlap, so we can be
quite confident that there is a true di�erence.

Other inferences are obtained in identical manner from Table 12.4. Note that the fre-
quentist MLE estimates and confidence intervals cannot o�er this flexibility. The values
in Table 12.4 can also be obtained as plots in JASP, showing the posterior densities, see
Figures 12.2a , 12.2b and 12.2c.

(a)
(b) (c)

Figure 12.2: Posterior plots for all variables and interaction terms for the heart rate data
of Moore and colleagues produced by JASP
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12.2.2 Question (2) – Paired samples t-test
Another common situation in medical research is the paired samples t-test which com-
pares the means µ1 and µ2 of the same population at two di�erent timepoints (pre-
treatment vs. after treatment). The dataset used is again from Moore and colleagues
(Moore et al., 2012), and provides the number of disruptive behaviours by demen-
tia patients during two di�erent phases of the lunar cycle. The hypothesis tested is
H0:“Average number of disruptive behaviours in patients with dementia does not dif-
fer between full moon and other days“ against the alternative H1 of a di�ering aver-
age numbers of disruptive behaviours. Table 12.5 shows the results of the frequentist

Table 12.5: Paired Samples t-Test

t df p Mean Di�erence
Moon - Other 6.452 14 < .001 2.433

paired-samples t-test, indicating with p < .001 that H0 can be rejected. The paired sam-
ples t-test therefore suggests that the data (or more extreme data) are unlikely to be ob-
served if the average number of disruptive behaviours was identical during full moon
days and other days in patients with dementia. Note that this is not what researchers
actually want to know: The desired answer is which hypothesis is more probable after
observing the data, which is exactly quantified by the posterior oddsP(H1|x)/P(H0|x),
of which the BF10 is a key ingredient (the posterior odds are the product of the Bayes
factor and the prior odds). A large BF10 therefore necessitates a change in beliefs to-
wards H1. Assumption checks include a Shapiro-Wilk test on normality, which is not
significant with p = .148. Now, the Bayesian paired-samples t-test shown in Table 12.6

Table 12.6: Bayesian Paired Samples t-Test

BF10 error %
Moon - Other 1521.058 5.014e-7

yields BF10 = 1521.058, indicating extreme evidence for H1. JASP produces also a plot
of the prior and posterior distribution of the e�ect size d according to Cohen (1988),
which is of interest in most medical research settings (van Doorn et al., 2021). Figure
12.3a shows this prior and posterior plot of the e�ect size d as well as the corresponding
BF10. A large advantage of the Bayesian paradigm reveals itself here: The posterior of
the e�ect size d precisely estimateswhich e�ect size ismost probable after observing the
data x. The frequentist paired-samples t-test did not yield any information about the
e�ect size. Although the test was significant, it did not state anything about whether
the observed e�ect is small, medium or large. The prior-posterior plot shows how the
prior probability mass is reallocated to the posterior via observing the data and shows
that with 95% probability, the true e�ect size d is in [0.818, 2.345] and the posterior me-
dian is 1.527, indicating a large e�ect. Another benefit is given by the robustness check
plot given in Figure 12.3b: Di�erent prior distributionwidths are used for the e�ect size
d and the Bayes factor BF10 is computed. Specifically, the prior width g of the Cauchy
prior C(0,g) on the e�ect size d is increased gradually, showing how the prior shape
influences the resulting BF10. Figure 12.3b shows that even when changing the prior
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(a)
(b)

Figure 12.3: Prior and posterior plot and robustness check for the heart dementia data
of Moore and colleagues produced by JASP

from the user prior, which equals a medium C(0,
p
2/2) prior, to a wide C(0, 1) or even

ultrawide C(0,
p
2) prior, the Bayes factor for H1 stays above 1000. Thus, the influence

of the prior is negligible here, so that only an inconsequential amount of subjectivity
goes into the analysis. Such an analysis shows how straightforward an implementation
of robust Bayesian hypothesis tests can be.

12.2.3 Question (3) – Linear Regression
One of the most widespread methods in biomedical research and clinical trials is linear
regression (Altman, 1991a). The dataset used here is from Mestek et al. (2008) pub-
lished in the Journal of American College Health. The study provided 100 participants’
Body Mass Index (BMI) and average daily number of steps, investigating this relation-
ship with linear regression models. A traditional linear regression with the BMI as de-
pendent variable and the average number of daily steps (in thousands) of participants
as explanatory variable yields the results given in Table 12.7. The table shows that phys-
ical activity (PA) is a significant predictor of the BMI of participants, as p < .001. While

Table 12.7: Coe�cients

Unstandardized Std. Error t p
(Intercept) 29.578 1.412 20.948 < .001
PA -0.655 0.158 -4.135 < .001

JASP also o�ers to provide confidence intervals, these are counterintuitive to interpret,
and therefore the Bayesian linear regression given in Table 12.8 is preferred. Again,
the change from prior to posterior odds for the model BFM and the Bayes factor for the
alternative BF10 are given, as well as the models prior probability P(M) and the poste-
rior model probability P(M|data) after observing the data. One can conclude from the
results, that the BFM = 284.327 of the physical activity model shows extreme evidence
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Table 12.8: Model Comparison

Models P(M) P(M|data) BFM BF10 R2

Null model 0.500 0.004 0.004 1.00 0.00
PA 0.500 0.996 284.327 284.33 0.15

for the model including the variable. Also, the identical BF10 for the alternative H1 rel-
ative to H0, where H1 states that the regression coe�cient for the PA variable di�ers
from zero, shows that the coe�cient for the variable is most probably non-zero. The
null hypothesis H0 of a regression coe�cient of size zero for the PA variable can thus be
rejected based on this result, and even better, the alternative H1 can be regarded as con-
firmed, which would not be allowed when using p-values because accepting hypotheses
is generally not allowed in frequentist NHST when interpreted in the sense of Fisher’s
significance testing. Note that when interpreted from the Neyman-Pearson theory of
hypothesis testing, accepting a hypothesis is allowed, but as the Neyman-Pearson the-
ory is only concerned with long-term type I error control, nothing can be said about
the hypothesis tested in the performed study or experiment. As Neyman and Pearson
(1933, p. 291) state explicitly, their theory “tells us nothing as to whether in a particular
case H is true”. In fact, the only meaning one can associate to accepting a hypothesis
in the Neyman-Pearson sense is to act as if it were true to minimise the long-term loss,
but not to actually believe in it, compare Chapter 5.

Furthermore, the PAmodel explains 15% of the variance observed in the data as can
be seen from Table 12.8. Table 12.9 shows the posterior summary of coe�cients for the
Bayesian linear regression, yielding 95% credible intervals so that inference about the
most probable range of coe�cient values given the data x can be made. Figure 12.4a

Table 12.9: Posterior Summaries of Coe�cients

95% Credible Interval
Coe�cient Mean SD P(incl) P(incl|data) BFinclusion Lower Upper
Intercept 23.939 0.366 1.000 1.000 1.000 23.244 24.615
PA -0.609 0.157 0.500 0.996 284.327 -0.908 -0.326

shows a plot of the posterior coe�cients obtained from the Bayesian linear regression
for the BMI data produced by JASP. The Mean and 95% credible intervals are shown,
indicating that the PA coe�cient is with 95% probability in [�0.908,�0.326], compare
Table 12.9. Figure 12.4b shows a residual plot to check the assumption of normally
distributed residuals, which seems fine for the Bayesian linear regression model. JASP
internally uses the BAS package for R (Clyde, 2020) for these computations.

12.3 Discussion
The comparison of NHST and Bayesian methods in JASP revealed that robust Bayesian
analysis, in particular robust Bayesian hypothesis tests are straightforward to perform
for the majority of statistical models used in biomedical research. Not only does ro-
bust Bayesian inference complement traditional frequentist hypothesis tests and pro-
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(a) (b)

Figure 12.4: Posterior coe�cients with credible intervals and residual plot for the BMI
data of Mestek et al. (2008) produced by JASP

vide richer information. Robust Bayesian hypothesis tests also avoid the axiomatic con-
flicts with the likelihood principle, so researchers can benefit from the irrelevance of
censoring mechanisms and stopping rules as discussed in Chapter 11. Both of these
benefits can be achieved with JASP easily, and the transition from NHST and p-values
towards robust Bayesian analyses as an implementation of the likelihood principle is
seamless.

Not only can Bayes factors be used to quantify the relative evidence for the alterna-
tive hypothesis H1 compared to H0 in JASP, but additional parameter estimation with
easy to interpret credible intervals allows for richer and easier-to-interpret inference
compared to traditional methods. Also, model comparisons and robustness checks can
be included into themain analysis to assess the degree to which the conclusions change
with background assumptions like the chosen priors, nomatter if a t-test, an analysis of
variance or a linear regression model is the method of choice. Also, detailed plots and
visualisations of results can be created, allowing simple interpretation and communi-
cation of the results of a Bayesian hypothesis test. Furthermore, a complete analysis in
JASP can be saved in a single JASP-file, which makes it possible to send a conducted
analysis to a colleague or even share it publicly. This fosters reproducibility and makes
checking results easier for colleagues and reviewers of journals.

There is a large palette of more options for eachmethod (like prior specification, de-
scriptive statistics, providing BF01 instead of BF10, inclusion probability for coe�cients,
and so on) not described here due to space reasons.

Still, although a good spectrum of statistical tests and methods is available in JASP,
there are also limitations. Especially for medical research there are some important
methods missing. For example, JASP o�ers no options for survival analysis, which is
strongly important in clinical trials (Klein et al., 2014; Ibrahim et al., 2001). Also, more
complex generalized linear models are missing, for example there is no Bayesian logis-
tic regression available, a method of large importance for the biomedical and cognitive
sciences (Faraway, 2016). Recently, machine learning algorithms like clustering, penal-
ized regression models, linear discriminant analysis and classification and regression

275



CHAPTER 12. BAYESIAN ALTERNATIVES TO NULL HYPOTHESIS
SIGNIFICANCE TESTING IN THE BIOMEDICAL SCIENCES WITH JASP

trees have been added in form of a machine learning module.

12.4 Conclusion
To demonstrate how straightforward it is to carry out a robust Bayesian hypothesis test,
the open-source software JASP was presented, and three worked out examples of com-
mon situations in the biomedical and cognitive scienceswere provided. These consisted
of an ANOVA, a paired t-test and a linear regression model. Conducting and interpret-
ing an analysis in JASP is straightforward and guided by an intuitive interface, and
assumptions of a wide variety of tests can be included into the main analysis.

In summary, the results show that JASPprovides easy access to advanced (Bayesian)
statisticalmethods, and the transition fromNHST towards Bayesian hypothesis tests via
the Bayes factor is thus straightforward for practitioners. Also, the e�ect size which of-
ten is of large relevance in biomedical research can be easily estimated in JASP alongside
a hypothesis test. In summary, in its current state JASP o�ers a wide range of Bayesian
versions of hypothesis tests which are routinely used in the biomedical and cognitive
sciences, and allows seamless transition fromNHST to robust Bayesian analysis, in par-
ticular, robust Bayesian hypothesis testing.
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The last section demonstrated that robust Bayesian analysis (including Bayesian hy-
pothesis tests) in most standard models in the biomedical and cognitive sciences can
be conducted via JASP. However, there exist of course more complex and specialised
statistical models, which are not implemented by now. This section shows that for
such models, the availability of Hamiltonian Monte Carlo samplers like Stan (Carpen-
ter et al., 2017) provides a straightforward option to implement robust Bayesian analy-
sis. As an example, this section demonstrates how parametric survival models can be
analysed via these methods. Survival analysis is an important method in the biomed-
ical and cognitive sciences. Also known under the name time-to-event analysis, this
method is also of use in the social sciences and model fitting as well as parameter es-
timation commonly is conducted via maximum-likelihood. Bayesian survival analysis
o�ers multiple advantages over the frequentist approach, but computational di�cul-
ties havemitigated interest in Bayesian survival models in the last decades. This section
shows that even complex statistical models like Bayesian survival models can be fitted
in a straightforward manner via the probabilistic programming language Stan, which
o�ers full Bayesian inference through Hamiltonian Monte Carlo algorithms. Illustra-
tions show the benefits of a robust Bayesian analysis in contrast to traditional frequentist
methods, which highlights that due to the advent of capable HMC algorithms, a robust
Bayesian analysis is possible even in complex statistical models.

13.1 Introduction

Survival analysis or time-to-event analysis deals with censored data. This type of data
is most often observed in clinical trials where the event often equals death, or in social
science, where the event could be divorce or job change of a person. Censored data
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usually consists of the time xi 2 R+ and the censoring status ni. If ni = 1, xi is ob-
served without censoring (e.g. death, divorce), and if ni = 0, xi is censored so it is
unclear what happens after xi (e.g. because the study time ends or a patient is lost to
follow-up). The usual approach for survival data analysis is based on maximum like-
lihood estimation (MLE), the most prominent approach being the Cox proportional
hazards model (Klein et al., 2014). Bayesian analysis on the other hand uses poste-
rior distributions of model parameters to draw inference about them. These posterior
distributions are obtained via Markov-Chain-Monte-Carlo (MCMC) algorithms in re-
alistic settings (compare Part III), and Bayesian survival models also rely on MCMC
(Ibrahim et al., 2001). In practice, algorithms like Gibbs sampling are necessary to pro-
vide posterior inference. This fact made good knowledge of probability theory a must
for researchers willing to apply Bayesian methodology to survival analysis. Still, in the
last decades, flexible modeling languages for Bayesian inference have grown in pop-
ularity. The BUGS language (Lunn et al., 2009) was the first widely used language
(Monnahan et al., 2017), and was then made platform-independent in the OpenBUGS
language (Lunn et al., 2009). Also, JAGS (Plummer, 2003) was a popular alternative,
and these approaches have made Bayesian inference more accessible for practitioners.
Stan (Carpenter et al., 2017) can be seen as a relatively new successor to thesemodeling
languages, implementing a new and more e�cient Hamiltonian Monte Carlo (HMC)
algorithm than its competitors. Instead of Gibbs sampling, most often used by JAGS or
OpenBUGS, Stan uses the No-U-Turn sampler as introduced by Ho�man and Gelman
(2014) and outlined in Chapter 9. This section focusses on Stan and demonstrates that
survival analysis can be carried out in Stan following the Bayesian paradigm.

Stan requires the user first to specify a log density function in its own probabilis-
tic programming language. After that, parameter estimation can be achieved via full
Bayesian inference with HMC sampling. Next to this, parameter estimation can be
done by approximative Bayesian inference via variational inference (Azevedo-Filho and
Shachter, 1994) and the third option is to conduct penalized maximum likelihood esti-
mation with optimization (Carpenter et al., 2017; Gelman et al., 2015).

13.2 Flexibility and Application

Next to its competitive algorithms, Stan o�ers a highly flexible built-in probabilistic pro-
gramming language which makes it possible to code nearly arbitrarily complex models
for inference. This has benefits and drawbacks, as users can adapt a given model to
their specific needs but require at least some theoretical and programming knowledge
to do so. Also, Stan’s palette of algorithms does include multiple MCMC algorithms
like NUTS or plain HMC. The additional possibility to conduct optimization and vari-
ational inference o�er a wide range of application contexts. Regarding statistical mod-
elling, with a particular focus on survival models, Stan o�ers to recreate a multitude
of models, to modify or extend existing models and thereby can foster a flexible mod-
elling process. In summary Stan can be judged as a highly flexible but equally complex
solution, which requires some time to become acquainted with, and to successfully in-
corporate it into a data analysis workflow based on one of the supported programming
languages.
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13.3 A detailed Example – Parametric Survival Analysis
To illustrate how robust Bayesian analysis can be achieved even for complexmodels like
survival models, a parametric survival model is used as an example. Most Bayesian
survival analyses in clinical research are carried out using parametric survival models
(Brard et al., 2017). Therefore, the example presented below uses the parametric ex-
ponential model. The exponential model is the most basic model for Bayesian survival
analysis and assumes that the survival times y := (y1, y2, ..., yn) are each distributed
exponentially with parameter l, that is

f (yi|l) := l exp(�lyi) for i = 1, ..., n (13.1)

Denoting the censoring indicators as n := (n1, n2, ..., nn) where ni = 0 if yi is right cen-
sored (lost to follow-up) and ni = 1 if yi is a failure time (death, divorce, job change),
the survival function, which is the probability of surviving past the time point yi is
given by

S(yi|l) := P(T � yi|T � 0) = 1� F(yi|l) = 1� [1� exp(�lyi)] = exp(�lyi)
(13.2)

where F(·|l) is the cumulative distribution function of the exponential distribution
with parameter l, and T a random variable modeling the survival time. The observed
data D are composed of the number of observations n, the observations y themselves
and the censoring status n, and the likelihood can be written as

L(l|D) =
n

’
i=1

f (yi|l)nS(yi|l)1�ni (13.3)

The likelihood is simply a product of f (yi|l) for all observations with censoring status
ni = 1 (death observed) and the survival function S(yi|l) for all observations with
censoring status ni = 0. It is possible to use conjugate priors to reach a closed-form
posterior, but if one does not want to limit modeling to the Gamma conjugate family of
prior distributions for l, Stan can be used for more flexible modeling.

Covariates need to be incorporated into the model now. One could for example
set l = x0ib for a p ⇥ 1 covariate vector xi and a p ⇥ 1 regression coe�cients vector
b, where x0i is the transposed vector to xi. The reason that usually l = exp(x0ib) is
used as a predictor instead of li = x0ib is simple: Typically, one wants to interpret
increasing coe�cients b as increasing risk, that is as a decreasing survival function.
First, if l = exp(x0ib), then l is larger than zero for all coe�cients b. Second, if b
increases, l does, too. Third, if b and subsequently l increases, the survival function
S(t|l) = exp(�l · t) decreases, leading to the desired behaviour. In summary, the
exponential survival model can be written as

yi|ni ⇠ f (yi|l)n + S(yi|l)1�ni = (l exp(�lyi))
ni + (exp(�lyi))

1�ni (13.4)
l ⇠ p(l) (13.5)
l = exp(x0ib) (13.6)

where p(l) is the prior on l. Listing 1 shows the Stan model code for the exponential
survival model where the model is specified directly as a string in the programming
language R (?).

279



CHAPTER 13. BAYESIAN SURVIVAL ANALYSIS IN STAN VIA
HAMILTONIAN-MONTE-CARLO

1 Stan_exponential_survival_model <-"

2 data{

3 int <lower=1> N_uncensored;

4 int <lower=1> N_censored;

5 int <lower=0> numCovariates;

6 matrix[N_censored ,numCovariates] X_censored;

7 matrix[N_uncensored ,numCovariates] X_uncensored;

8 vector <lower =0>[N_censored] times_censored;

9 vector <lower =0>[N_uncensored] times_uncensored;

10 }

11 parameters{

12 vector[numCovariates] beta; // regression coefficients

13 real alpha; // intercept

14 }

15 model{

16 beta ~ normal (0,10); // prior on regression coefficients

17 alpha ~ normal (0 ,10); // prior on intercept

18

19 target += exponential_lpdf(times_uncensored | exp(alpha+X_uncensored*

beta)); // log -likelihood part for uncensored times

20 target += exponential_lccdf(times_censored | exp(alpha+X_censored*beta

)); // log -likelihood for censored times

21 }

22 generated quantities{

23 vector[N_uncensored] times_uncensored_sampled; // prediction of death

24 for(i in 1:N_uncensored) {

25 times_uncensored_sampled[i] = exponential_rng(exp(alpha+X_uncensored

[i,]*beta));

26 }

27 }

28 "

Listing 13.1: Exponential Survival Model in Stan

The Stan model code consists of three core blocks: The data block, the parameters and
the model block. Also, the generated quantities block is added here, which is op-
tional. The data block contains all data variables handed to the Stan model. Here,
the number of uncensored and censored observations are defined form of the vari-
ables N_uncensored and N_censored. numCovariates is the number of covariates used,
which will be one in the example below. Then, the design matrices X_censored and
X_uncensored for the censored and uncensored observations are defined. The last data
handed to Stan as input are the observations yi, split into the censored and uncen-
sored observations in form of the vectors times_censored and times_uncensored. The
parameters block includes all parameters posterior MCMC draws are desired from.
Interest lies in l = exp(x0ib), and more specific in the coe�cients b, denoted as beta.
Also, the intercept term is modelled directly via the parameter alpha instead of assum-
ing that a design matrix with the first column consisting only of ones. The model block
then proceeds by computing the likelihood for all observations. The first line beginning
with target += uses the log-exponential probability density function for the uncen-
sored observations. Note that l = exp(x0ib) so that exp(alpha+X_uncensored*beta) is
the parameter of the log-exponential density. The following line proceeds by adding
the log-complement cumulative distribution function for the censored times. The log-
complement cumulative density function is defined as 1� F(x), where F(x) is the cu-
mulative distribution function. This is exactly the survival function S(t). Finally, in the
generated quantities block failure (death) times for the uncensored observations of
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the input data are generated. This way, failure times for each uncensored observation
yi can be predicted. The priors for b and a are defined as N (0, 10) here, which is a
weakly-informative prior.

The Listing below shows the R-Code to fit the Stan model to the ovarian dataset via
the interface rstan, which is the o�cial interface for R to Stan. The ovarian dataset con-
tains survival times in a randomised clinical trial comparing two treatments for ovarian
cancer and can be accessed by installing the survival package in R from CRAN.1. The
predictor used in the example is the treatment used, where the first treatment is coded
as 1 and the second treatment as 2. First, the data is prepared into the formats defined
in the data block of the Stan model, and after that Stan is run.

1 # Prepare data

2 set.seed (42);

3 require(tidyverse);

4 N <- nrow(ovarian);

5 X <- as.matrix(pull(ovarian , rx));

6 is_censored <- pull(ovarian ,fustat)==0;

7 times <- pull(ovarian ,futime);

8 msk_censored <- is_censored == 1;

9 N_censored <- sum(msk_censored);

10

11 # Put data into a list for Stan

12 Stan_data <- list(N_uncensored=N-N_censored , N_censored=N_censored ,

13 numCovariates=ncol(X), X_censored=as.matrix(X[msk_censored ,]),

14 X_uncensored=as.matrix(X[!msk_censored ,]),

15 times_censored=times[msk_censored],

16 times_uncensored = times[!msk_censored ])

17 Stan_data

18

19 # Fit Stan model

20 require(rStan)

21 exp_surv_model_fit <- Stan(model_code = Stan_exponential_survival_model ,

22 data=Stan_data)

23

24 # Print model fit

25 exp_surv_model_fit

26 mean se_mean sd 2.5% 25% 50% 75%

27 beta [1] -0.67 0.02 0.62 -1.90 -1.06 -0.67 -0.27

28 alpha -6.25 0.03 0.92 -8.17 -6.84 -6.21 -5.64

Listing 13.2: Exponential Survival Model fit in R via Stan

The model fit shows that the treatment coe�cient b1 has a posterior mean of �0.67,
indicating that the second treatment (coded as two) may increase the survival proba-
bility of patients. Still, as the 2.5%quantile is�1.90, the estimate is somewhat uncertain.
However, as the 75% quantile is still below zero, the e�ect of treatment two is benefi-
cial with at least 75% probability. Computing other quantiles like a 97.5% quantile is
of course possible, too. A likelihood based exponential model would yield a MLE for
the treatment coe�cient of �0.596with a Standard error of 0.587, indicating that there
is a slightly beneficial e�ect in the second treatment on the survival time. Still, the p-
value would be p = 0.3, indicating no significance. However, with only 26 patients
the approximations used for computation of the standard error and p-value are highly
questionable, making the obtained results questionable as well. The advantage of the
Bayesian model is that uncertainty is embraced, and the increased flexibility via the

1See https://cran.r-project.org/web/packages/survival/index.html
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prior modeling. Few researchers would accept a weakly-informative prior if previous
studies indicated evidence of a positive e�ect for one of both treatments. By modify-
ing the prior parameters, such prior knowledge can be incorporated into the analysis
easily, while a frequentist analysis does not o�er this option. A second advantage is
that it is easy to construct survival functions S(t|l, xi = j) for given covariate values
xi = j. In the above example, there is only one covariate x1 which is either 1 if the
first treatment is used, or 2 if the second treatment is used. Thus, one can compare the
estimated posterior survival functions S(t|l, xi) = exp(�lyi) = exp[� exp(x0ib)yi] for
di�erent treatments now, where S(t|l, xi = 1) = exp[� exp(b)yi] and S(t|l, xi = 2) =
exp[� exp(2b)yi]. Figure 13.1 shows the posterior survival functions for the first and
second treatment using the posterior mean of b1, as well as the 2.5% and 97.5% quan-
tiles (lower and upper dotted lines). Overlayed are various survival functions using a
range of credible posterior values of b1. It is clear that while the survival function of
the first treatment group decreases much faster, the credible ranges of survival func-
tions for both groups overlap widely. Thus, while a traditional survival analysis using
the Cox proportional hazards model would yields a single p-value and at best a point-
estimator with confidence intervals, the Bayesian parametric exponential model em-
braces the uncertainty in the very small dataset of just 26 patients by providing a whole
posterior distribution for the treatment coe�cient b1 which in turn leads to a range of
credible survival curves, given the data, or given specific covariate values. With regard
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Figure 13.1: Posterior survival functions per treatment group for the ovarian dataset

to hypothesis testing via the Bayes factor, numerical methods like the Savage-Dickey
density ratio (Dickey and Lientz, 1970; Verdinelli andWasserman, 1995; Wagenmakers
et al., 2010; Kelter, 2020b) or bridge sampling (Gronau et al., 2017, 2019) allow for com-
putation of the Bayes factor solely based on the prior and posterior densities. As Stan
provides the posterior, computing Bayes factors in the above example is therefore also
straightforward. For example, testing H0 : b1 = 0 against H0 : b1 6= 0, the Bayes factor
representation according to the Savage-Dickey density ratio is given as

BF01(x) =
p(0|x)
p(0)

(13.7)

282



CHAPTER 13. BAYESIAN SURVIVAL ANALYSIS IN STAN VIA
HAMILTONIAN-MONTE-CARLO

where the prior and posterior are computed under H1 : b1 6= 0. In the example, the
resulting Bayes factor based on the Savage-Dickey representation is BF01 = 9.33, which
indicates moderate evidence for the null hypothesis H0 : b = 0. Thus, the Bayes fac-
tor confirms what Figure 13.1 already visualised: The di�erence in risk between both
groups is not convincing enough to accept the alternative H1 : b1 6= 0, and the posterior
survival functions per treatment group overlap considerably.

13.4 Conclusion
Stan o�ers some excellent features for Bayesian inference, which include a highly perfor-
mative algorithm, interfaces to a wide range of programming languages and customiz-
able program output. The learning curve of Stan is steep, which is in part due to its
limitations in form of a highly technical documentation and the missing graphical user
interface, but even more to the fact that both programming experience as well as solid
theoretical knowledge of Bayesian inference are needed to (1) code the correct model
in Stan’s probabilistic programming language and (2) run the model via a program-
ming language interface (like the rstan package used in the example above). However,
as shown in the preceding section, the e�ort is only necessary for non-standard models
which are not covered by JASP: The survival analysis example illustrated that not only is
Bayesian inference possible for complex models and simplified by using Stan, also the
uncertainty of parameter estimates is embraced, gauging the reliability of the results
better than via traditional maximum likelihood based point-estimates. Also, measure-
ment can be seen as associated with the probability model generating the quantities
measured, and here Stan plays out another major strength: The probabilistic program-
ming language o�ers to code complex and highly customizable models of a real phe-
nomenon, therefore enabling researchers to build and subsequently analyse otherwise
untreatable probability models in a reasonable amount of time. Only by this added
layer of complexity the processing of the results in form of a credible range of survival
curves for each treatment in the ovarian example could be achieved. Also, obtaining
a Bayes factor without the Hamiltonian-Monte-Carlo algorithm and making use of the
Savage-Dickey-density ratiowould be di�cult. This in turn allows for a precisemeasur-
ing of the predicted survival time for each treatment condition, and the model could be
extended to predict survival time for each patient, each gender or combinations thereof.
Also, it allows for a simple application of a Bayes factor test without the need to resort
to analytical calculations for each model under consideration.
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Chapter 12 showed that robust Bayesian analysis is possible for most standard sta-
tistical models in the biomedical and cognitive sciences and Chapter 13 even complex
models can be fitted by using HamiltonianMonte Carlo algorithms. Bayesian hypothe-
sis testing via the Bayes factor can be carried out easily in both cases. However, although
the previous sections showed that robust Bayesian analysis is possible for a variety of
statistical models, all of the previous discussions focussed on the Bayes factor as the
measure which quantifies the evidence about a hypothesis.

In NHST, testing for the significance of an e�ect is the standard approach, but the
significance of an e�ect does not imply that the discovered relationship is also scien-
tifically meaningful. It only means that the observed e�ect is unlikely to be observed
under the assumption of the null hypothesis, no matter how large or small it is, com-
pare Part I. Also, a non-significant result does not indicate that the null hypothesis is
correct, and together these drawbacks of NHST can be seen as the reason whymultiple
measures of significance andmagnitude of an e�ect based on the posterior distribution
have been proposed recently in the Bayesian literature. In practice, drawing conclu-
sions from the posterior distribution is achieved by using di�erent posterior indices or
evidence measures. There are measures which state the significance of an e�ect, and
measures which also gauge the size of it. Among them is the Bayes factor introduced by
Je�reys (1961), the region of practical equivalence (ROPE) championed by Kruschke
and Liddell (2018b), the probability of direction (PD) as detailed in Makowski et al.
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(2019b), the MAP-based p-value proposed by Mills (2018), and the Full Bayesian Sig-
nificance Test (FBST) featuring the e-value, which was introduced by Pereira and Stern
(1999) and Pereira et al. (2008). The appropriateness of these indices is still debated in
the literature, which makes it challenging to choose among them because by now there
is no explicit agreement on which measure researchers should use to report the results
of a robust Bayesian analysis (Robert, 2016; Ly et al., 2016a,b; Kruschke, 2018; Kelter,
2020b,a).

What is missing are investigations which of the available measures of significance
and e�ect size are appropriate for a specific Bayesian hypothesis test. The results of
such studies can guide researchers in the selection of an appropriate index to assess the
results of the Bayesian hypothesis test. In order to provide such guidance, this section
investigates the behaviour of common Bayesian posterior indices for the presence and
size of an e�ect in the setting of the two-sample Student’s and Welch’s t-test, which is
among the most widely used parametric two-sample tests in the biomedical and cog-
nitive sciences: Nuijten et al. (2016) showed in a meta-analysis that of 258105 p-values
reported in journals between 1985 and 2013, 26% belonged to a t-statistic, see also Wet-
zels et al. (2011).

14.1 Bayesian Posterior Significance and E�ect Size In-
dices

In this subsection, the existing Bayesian indices of significance and magnitude of an
observed e�ect are briefly outlined which are compared subsequently.

14.1.1 The Bayes factor (BF)
The oldest and still widely used index is the Bayes factor BF01, the evolution of which
has been analyzed in Part II, and which measures the change in relative beliefs about
both hypotheses H0 and H1 given the data x:

P(H0|x)
P(H1|x)| {z }

Posterior odds

=
f (x|H0)
f (x|H1)| {z }
BF01(x)

· P(H0)
P(H1)| {z }
Prior odds

(14.1)

The Bayes factor BF01 can be rewritten as the ratio of the two marginal likelihoods of
bothmodels, which is calculated by integrating out the respectivemodel parameters ac-
cording to the prior distribution of the parameters. Generally, the calculation of these
marginals can be complex for non-trivial models. In the setting of the two-sample Stu-
dent’s t-test, the Bayes factor is used for testing a null hypothesis H0 : d = 0 of no
e�ect against a one- or two-sided alternative H1 : d > 0, H1 : d < 0 or H1 : d 6= 0,
where d = (µ1 � µ2)/s is the e�ect size according to Cohen (1988, p. 20), under the
assumption of two independent samples and identical standard deviation s in each
group. An often lamented problem with Bayes factors as detailed in Kamary et al.
(2014) and Robert (2016) is the dependence on the prior distributions assigned to the
model parameters. Nevertheless, the Bayes factor has deep roots in Bayesian thinking
as detailed in Part II and is one of the most widely used Bayesian evidence measures
for hypothesis testing. Over the years, several authors including Je�reys (1961), Kass
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and Raftery (1995), Goodman (1999), Lee and Wagenmakers (2013), Held and Ott
(2018) or van Doorn et al. (2021) have o�ered thresholds for interpreting di�erent val-
ues of it. As detailed in Chapter 12, according to van Doorn et al. (2021), a Bayes factor
BF10 > 3 can be interpreted as moderate evidence for the alternative H1 relative to
the null hypothesis H0, and a Bayes factor BF10 > 10 can be interpreted as strong evi-
dence. The Bayes factor BF10 can be obtained by inverting BF01 in Equation (14.1), that
is: BF10 = p(x|H1)/p(x|H0) = 1/BF01. So, if for example BF01 = 4 states moderate
evidence for the null hypothesis H0 : d = 0, then BF10 = 1/BF01 is obtained as 1/4 for
the alternative hypothesis H1 : d 6= 0.

14.1.2 The region of practical equivalence (ROPE)

The region of practical equivalence was championed by Kruschke (2015), who stressed
that such a region is often observed in di�erent scientific domains under di�erent names
“such as indi�erence zone, range of equivalence, equivalence margin, margin of nonin-
feriority, smallest e�ect size of interest, and good-enough belt” (Kruschke, 2018, p. 272).
The essential idea is that in applied research, parameter values can often be termed
practically equivalent if they lie in a given range. Starting from the posterior distribu-
tion of the parameter of interest, researchers should interpret values inside the region
of practical equivalence (ROPE) as equivalent. For example, when conducting a clini-
cal trial which compares the weight in kilograms of patients in two groups, one could
define that the di�erence of means µ2 � µ1 is practically equivalent to zero if it lies in-
side the ROPE [�1, 1]. That means a di�erence of only one kilogram is interpreted as
practically equivalent to zero. If the posterior distribution of µ2 � µ1 now is entirely
located inside the ROPE, the di�erence µ2 � µ1 is interpreted as practically equivalent
to zero a posteriori. On the other hand, if the total probability mass of the posterior
distribution µ2 � µ1 is located outside the ROPE, the null hypothesis µ2 = µ1 of no
di�erence can be rejected. The same procedure can be applied to any parameter, q of
interest. If the probability mass of the posterior lies partially inside and outside the
ROPE, the situation is inconclusive.

There are twoversions of theROPE, one inwhich the 95%Highest-Posterior-Density-
Interval (HPD) is used for the analysis (95%ROPE), and one inwhich the full posterior
distribution is used (full ROPE). For the e�ect size d, Kruschke (2015) proposed to use
[�0.1, 0.1] as the ROPE for the null hypothesis H0 : d = 0 of no e�ect, which is half of
the e�ect size necessary for at least a small e�ect according to Cohen (1988) (a small
e�ect is defined as 0.2  d < 0.5 or �0.5 < d  �0.2 according to Cohen (1988)).

The default ROPEs for e�ect sizes or regression coe�cients are inspired both by
mathematical arguments (Kruschke and Liddell, 2018a; Kruschke, 2015) and o�cial
guidelines from the U.S. Food and Drug Administration Center for Drug Evaluation
and Research (2001), the U.S. Food and Drug Administration Center for Veterinary
Medicine (2016) and the U.S. Food and Drug Administration Center for Drug Evalua-
tion and Research and Center for Biologics Evaluation and Research (2016). Also, the
ROPE itself was independently proposed in a variety of scientific areas, see Carlin and
Louis (2009); Hobbs and Carlin (2007); Schuirmann (1987); Lakens (2017); Westlake
(1976); Kirkwood (1981).
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14.1.3 The probability of direction (PD)
The probability of direction is detailed in Makowski et al. (2019b) and varies between
50% and 100%. It is defined as the proportion of the posterior distribution of the pa-
rameter that is of the posterior median’s sign:

PD :=
Z

A
p(q|x)dq (14.2)

In the above, A := {q 2 Q : sign(q) = sign(qMED)}, qMED is the posterior median
and sign denotes the sign function. As a consequence, if for example the posterior
distribution assigns probability mass to both positive and negative parameter values,
and the median is positive, it is the percentage of the posterior distributions probability
mass located on the positive real numbers (0,•) (analogue for dimensions larger than
one).

14.1.4 The MAP-based p-value
The MAP-based p-value was proposed by Mills (2018), and can be related to the odds
that a parameter has against the null hypothesis: It is defined as the ratio of the poste-
rior density at the null value and the value of the posterior density at the maximum a
posteriori (MAP) value, which is the equivalent of themode for continuous probability
distributions:

pMAP :=
p(q0|x)

p(qMAP|x)
(14.3)

The rationale behind theMAP-based p-value is that whenever the value p(q0|x) is small
compared to p(qMAP|x), the null hypothesis value q0 has a low posterior density value
compared to the MAP-value, and thus H0 : q = q0 should be rejected.

14.1.5 The e-value and the Full Bayesian Significance Test (FBST)
The Full Bayesian Significance Test (FBST) was originally developed by Pereira and
Stern Pereira and Stern (1999) and created under the assumption that a significance
test of a sharp hypothesis had to be conducted. A sharp hypothesis refers to any sub-
manifold of the parameter space of interest, see Pereira et al. (2008), which includes for
example point hypotheses like H0 : d = 0. Considering a standard parametric statistical
model, where q 2 Q ✓ Rp is a (vector) parameter of interest, f (x|q) is the likelihood
function associated to the observed data x, and p(q) is the prior distribution of q, the
posterior distribution p(q|x) is proportional to the product of the likelihood and prior
density:

p(q|x) µ f (x|q)p(q)

Ahypothesis Hmakes the statement that the parameter q lies in the corresponding null
set QH then. Following Pereira and Stern (2020) in notation, the Full Bayesian Signifi-
cance Test (FBST) then defines two quantities: ev(H), which is the e-value supporting
(or in favour of) the hypothesis H, and ev(H), the e-value against H, also called the
Bayesian evidence value against H, see Pereira and Stern Pereira and Stern (1999). First,

288



CHAPTER 14. ANALYSIS OF BAYESIAN POSTERIOR SIGNIFICANCE AND
EFFECT SIZE INDICES FOR THE TWO-SAMPLE T-TEST

the posterior surprise function s(q) and its maximum s⇤ restricted to the null set QH are
denoted as

s(q) :=
p(q|x)
r(q)

, s⇤ := s(q⇤) = sup
q2QH

s(q)

In the definition of the posterior surprise function s(q), the denominator r(q) is a refer-
ence density. If the improper flat prior r(q) µ 1 is used, the surprise function becomes
the posterior distribution p(q|x). Otherwise, a noninformative prior distribution can
be used as a reference density, see Pereira and Stern (2020). The next step towards the
e-value is to define

T(n) := {q 2 Q|s(q)  n}, T(n) := Q \ T(n)

and T(s⇤) is then called the tangential set to the hypothesis H, which contains the points of
the parameter space with higher surprise (relative to the reference density r(q)) than
any point in the null set QH. Integrating the posterior p(q|x) over this set can be inter-
preted as the Bayesian evidence against H, the e-value ev(H):

ev(H) := W(s⇤), W(n) :=
Z

T(n)
p(q|x)dq

In the above, W(n) is called the cumulative surprise function, and W(n) := 1�W(n).
The e-value ev(H) supporting H is obtained as ev(H) := 1� ev(H). Therefore, large
values of ev(H) indicate that the hypothesis H traverses low-density regions (or equiv-
alently, that the alternative hypothesis traverses high-density regions) so that the evi-
dence against H is large. The theoretical properties of the FBST and the e-value(s) have
been detailed in Madruga et al. (2001, 2003), Stern (2003), Borges and Stern (2007),
Pereira et al. (2008) and Pereira and Stern (2020). In this chapter, the focus is on the
behaviour of the e-value ev(H) against H : d = 0 in the context of the Bayesian two-
sample t-test. While one can use ev(H) to reject H if ev(H) is su�ciently small (or
when ev(H) is large), it is not to confirm H via ev(H), which may be seen as a draw-
back of the FBST. The reason is that ev(H) is the posterior probability of parameters
which attain a smaller or equal surprise than the null hypothesis value, and in the al-
ternative hypothesis there may very well exist a parameter value q0 which even attains
higher surprise. Thus, ev(H) is no evidence against the alternative. There also exist
asymptotic arguments via the distribution of ev(H) which make it possible to obtain
critical values based on this distribution to reject a hypothesis H, similar to p-values
in NHST. Details are provided in Kelter and Stern (2020). However, in the simulation
study below, no asymptotic arguments are used and solely the e-value ev(H) against H
is reported.

Figures 14.1 and 14.2 show the di�erent posterior Bayesian indices for significance
and size of an e�ect for a Bayesian two-sample t-test. Group one was simulated as
N (0.5, 1) and group two as N (2, 1) each with n = 10 samples and the true e�ect size
is d = �1.5. The FBST is visualised in Figure 14.1, where the left plot shows a Cauchy
prior C(0, 1) (dashed line) and the resulting posterior p(d|x) (solid black line), which
is obtained by the Bayesian two-sample t-test of Rouder et al. (2009). s⇤ is computed as
s(0) = 0.1103 (indicated by the blue point) and the integral W(0) over the set T(0) is
shown as the red area under the posterior. This area is ev(H), which is 0.0418 in this
case. The blue area corresponds to the integral W(0) over the set T(0), which consists
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Figure 14.1: The e-value and FBST using a flat reference prior r(d) µ 1 (left) and wide
Cauchy reference prior C(0, 1) (right) against H0 for the Bayesian two-sample t-test; the
blue area indicates the integral over the tangential set T(0) against H0 : d = 0, which
is the e-value ev against H0; the red area is the integral over T(0), which is the e-value
ev(H) in favour of H0 : d = 0

of all parameter values d attaining a posterior density p(d|x) larger than p(0) = 0.1103,
indicated by the horizontal dashed blue line. The value of this integral is the evidence
against H0 : d = 0, ev(H) = 0.9582, which advises the researcher to reject H0 : d = 0
if a threshold of ev(H) > 0.95 is used for making a decision in light of the obtained
evidence. The right plot in Figure 14.1 shows the same situation, but now the refer-
ence function r(d) used in the surprise function has been changed from the improper
flat prior r(d) µ 1 to the wide Cauchy prior C(0, 1) which is also used on the e�ect
size model parameter in the Bayesian two-sample t-test of Rouder et al. (2009). There-
fore, the surprise function values di�er (see the scaling of the y-axis) and values of
p(d|x)/p(d) > 1 indicate that the posterior p(d|x) assigns a larger probability to a
given parameter value than the prior p(d). This can be interpreted as the data having
increased this parameters probability.

The Bayes factor BF10 of H0 : d = 0 against H1 : d 6= 0 is shown in the upper left plot
of Figure 14.2 and can be interpreted as the ratio of the prior density at the point-null
value d0 = 0 visualised as the grey lollipop and the posterior density at the point-null
value d0 = 0 visualised as the red lollipop.1 After observing the data, H0 becomes less
probable, which is reflected in the Bayes factor of BF10 = 3.38. Thismagnitude indicates
only moderate evidence for H1, which is due to the small sample size of n = 10.

The MAP-based p-value is shown in the upper right plot and is defined as the ratio
of the height of the posterior density at the null value d0 = 0 and the MAP-value dMAP,
themaximum a posteriori parameter. As can be seen, theMAP estimate is near d = �1,

1This general relationship was first discovered and proven by Dickey and Lientz (1970) and sub-
sequently titled the Savage-Dickey density method (or ratio). Details are provided in Verdinelli and
Wasserman (1995) andWagenmakers et al. (2010) (for a simple proof of the representation of the Bayes
factor see the appendix in Wagenmakers et al. (2010)), and the Savage-Dickey density ratio essentially
makes it possible to obtain the Bayes factor as long as the posterior distribution can be obtained via some
MCMC or HMC algorithm as shown in Chapter 13 for the parametric exponential survival model. An
accessible proof of this relationship is given in the appendix of Wagenmakers et al. (2010).
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Figure 14.2: Di�erent Bayesian posterior indices for significance and size of an e�ect for
a Bayesian two-sample t-test

indicating a clear shift away from the null hypothesis. Still, the MAP-based p-value is
given as pMAP = 0.203, which is not significant when a threshold like 0.05 is used to
declare significance.2

The lower left plot visualises the 95% and full ROPE, where the ROPE is defined
as [�0.1, 0.1], following the recommendations of Kruschke (2013). 2.38% probability
mass of the posterior distribution is located inside the ROPEwhen using the 95% ROPE
and 3.00% is located inside the ROPE when using the full ROPE. In a test of practical
equivalence, where the null is only rejected if the posterior is located entirely outside
the ROPE, the null hypothesis H0 cannot be rejected based on the ROPE. Still, if an
estimation-oriented perspective is used, avoiding the classical testing stance, the ROPE-
analysis shows evidence for the alternative H1 for both the 95% and full ROPE.

The lower right plot in Figure 14.2 shows the probability of direction (PD). It enjoys
some desirable properties: First, it clearly shows that the e�ect is more likely to be of
negative than positive sign, as 97.70% of the posterior is located on the negative real
numbers. Also, the PD embraces estimation under uncertainty instead of hypothesis
testing, in the same way as the ROPE does when avoiding an explicit testing stance.

2Note that theMAP-based p-value has no connection to traditional test levels like the ones used in the
Neyman-Pearson theory, compare Chapter 4. As a consequence, no decision-theoretic optimality can be
associated with using a significance threshold for the MAP-based p-value.
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The posterior distribution can then be used in a second step to obtain, for example, the
mean and standard deviation as estimates for the parameter. Still, hypothesis testing
is also possible via rejecting the null H0 : d � 0 if at least 95% of the posterior of d is
located on the negative real axis.

14.2 Methods
A simulation study was performed to analyse the behaviour of the di�erent Bayesian
evidence measures for hypothesis testing in the setting of Welch’s two-sample t-test
(Rüschendorf, 2014). Pairs of data were simulated, consisting of two samples, one for
each group, each normally distributed. Four settingswere selected: In the first, no e�ect
is present, and both groups are identically distributed as standard normal N (0, 1). In
the second, a small e�ect is present, and the first group is simulated as N (2.89, 1.84)
and the second as N (3.5, 1.56), resulting in a true e�ect size of

d =
(2.89� 3.5)p

((1.842 + 1.562)/2)
⇡ �0.357 (14.4)

In the third simulation setting, a medium e�ect is present. The first group is simulated
as N (254.08, 2.36) and the second as N (255.84, 3.04), resulting in a true e�ect size of

d =
(254.08� 255.84)p
((2.362 + 3.042)/2)

⇡ �0.646 (14.5)

The last setting uses N (15.01, 3.4) and N (19.91, 5.8) distributions for the first and sec-
ond group, yielding a true e�ect size of

d =
(15.01� 19.91)p
((3.42 + 5.82)/2)

⇡ �1.03 (14.6)

For each of the four e�ect size settings, 10000 datasets following the corresponding
group distributions as detailed above were simulated. This procedure was repeated
for di�erent samples sizes n, ranging from n = 10 to n = 100 in steps of size 10 to
investigate the influence of sample size on the indices. In each case, the traditional p-
value, the Bayes factor BF10, the ROPE 95%, the full ROPE, the probability of direction,
the MAP-based p-value and the e-value ev(H0), that is the evidence against H0 : d = 0
were computed. The Bayes factor was calculated as the Je�reys-Zellner-Siow Bayes
factor for the null hypothesis H0 : d = 0 of no e�ect against the alternative H1 : d 6=
0, see Rouder et al. (2009) and Gronau et al. (2020). More precisely, the calculated
quantities are (1) the Bayes factor, a single number that quantifies the evidence for the
presence or absence of an e�ect and (2) the posterior distribution, which quantifies
the uncertainty about the size of the e�ect under the assumption H1 : d 6= 0 that it
exists. This posterior distribution (2) of the e�ect size d was then used to compute the
95% ROPE, the full ROPE, the PD and the MAP-based p-value as well as the e-value
ev(H0). The traditional p-value was obtained via a two-sample Welch’s t-test with test
level a = 0.05.

The above procedure was conducted three times with the prior on the e�ect size
d set to three di�erent hyperparameters to investigate the influence of the prior mod-
elling: A noninformative Je�rey’s prior was always put on the standard deviation of
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the normal population, while a Cauchy prior was placed on the standardised e�ect
size. The Cauchy prior C(0,

p
2/2) was used in the first setting, C(0, 1) in the second

and C(0,
p
2) in the third, corresponding to a medium, wide and ultrawide prior on

the e�ect size d. This way, the influence of the prior modelling on the resulting indices
can be measured. To get more insights about the e-value ev(H0), for each prior set-
ting ev(H0)was once computed using a flat improper reference function r(d) µ 1 (that
is, the surprise function equals the posterior distribution), and once using the Cauchy
prior assigned to d as a reference density in the surprise function s(d).

Finally, the above procedure was repeated for fixed sample size to investigate the
influence of noise. Thus, n = 30 samples were simulated in each group to control for
the influence of sample size and Gaussian noiseN (0, #)was added to the group data x
and y, where # varies from # = 0.5 to # = 5 in steps of 0.5.

The percentage of significant results was computed for samples of increasing size n
as the number of significant results divided by 10000. This number is a Monte Carlo es-
timate for the type I error probabilities of the indices, a crucial quantity for reproducible
research (McElreath and Smaldino, 2015). Significant is defined here as a Bayes factor
BF10 � 3. A posterior distribution using the 95%ROPE or full ROPE is significant when
it is located completely outside the corresponding ROPE [�0.1, 0.1] around d = 0. The
MAP-based p-value is significant when pMAP < 0.05. The p-value is significant when
p < 0.05. The PD is significant when PD = 1 or PD = 0, and the e-value is significant
when ev(H) > 0.95 (nomatter whether a flat reference density or the Cauchy reference
density was used).

The statistical programming languageRwas used (?) for the simulations. The Bayes
factor was computed via Gaussian quadrature in the BayesFactor R package (Morey
and Rouder, 2018), which was also used to obtain the posterior distribution of d un-
der the alternative H1 of an existing e�ect. The package bayestestR (Makowski et al.,
2019a) was used to compute the 95% ROPE, full ROPE, PD and MAP-based p-value.
The evidence ev against H0 : d = 0 in the FBST was computed with the posterior
Markov-Chain-Monte-Carlo draws of the posterior distribution of d provided by the
BayesFactor package (Morey and Rouder, 2018). These posterior draws were interpo-
lated to construct a posterior density of d, which was then integrated numerically over
the tangential set to H0 as required for ev(H0).

14.3 Results

14.3.1 Influence of sample size and prior modelling
Figure 14.3 shows the dependence of the Bayesian indices on sample size for four dif-
ferent e�ect sizes using the ultrawide prior C(0,

p
2). The four plots in each row show

the succession of the results for no e�ect, a small e�ect, a medium e�ect and finally a
large e�ect, while the x-axis shows increasing sample size n = 10 to n = 100 in each
group in steps of 10. The left plot of the first row shows that the p-value is distributed
uniformly under the null hypothesis H0 : d = 0. If the alternative H1 : d 6= 0 is true,
the three plots right beneath show that for increasing sample size n, the p-value be-
comes significant, where the necessary sample size for stating significance decreases
with increasing actual e�ect size d. The second row shows the succession for the Bayes
factor BF10. The left plot indicates that under the null hypothesis H0 : d = 0 the Bayes
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Figure 14.3: Influence of the sample size n on Bayesian e�ect significance and size in-
dices for small, medium, large and no existing e�ect using an ultrawide prior C(0,

p
2)

on the e�ect size d

factor correctly converges to zero (in contrast to the p-value). This property opens the
possibility of confirming the null hypothesis, which is not possible via a p-value. The
three figures right beneath this plot show the progression of the Bayes factor BF10 for
increasing e�ect size: The Bayes factor accumulates more and more evidence for the
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alternative H1 : d 6= 0 for small, medium and large e�ect sizes. For more substantial
e�ect sizes, the Bayes factor requires a much smaller sample size to state evidence for
the alternative. The plots are limited to a y-range of [0, 100] (except for the first plot)
for better visibility, as BF10 becomes very large quickly.

The third and fourth row shows the results for the 95% and full ROPE [�0.1, 0.1]
around the e�ect size d = 0. Under the null, in both cases, the percentage of the poste-
rior’s probability mass inside the ROPE increases. As d = 0 under the null, for n ! •,
the posterior will eventually concentrate completely inside the ROPE, but the neces-
sary sample size can be substantial. For n = 100, about 50% of the probability mass of
the posterior is located inside the ROPE [�0.1, 0.1] around d = 0. For increasing sample
size n, this percentage will eventually attain 100%. Considering the 95% and full ROPE,
even for small sample sizes like n = 10 the majority of values shows that at least 10%
of the posterior is located inside the ROPE so that hardly any false-positive statements
are produced.

Under the alternative H1 : d 6= 0, both the 95% and full ROPE show that the percent-
age of the posterior located inside the ROPE [�0.1, 0.1] of no e�ect converges to zero
for increasing sample size n. For increasing e�ect size d, the necessary sample size n
needed to reject the null hypothesis H0 becomes smaller.

The fifth row shows the results for the probability of direction (PD). Under the null
hypothesis H0 : d = 0, the PD is not uniformly distributed as was the case for p-values.
The PD concentrates at about 70% here (see the scaling of the y-axis), which does not
reflect the true e�ect size of d = 0, which should yield a PD near 50%. Still, under the
alternative H1 : d 6= 0, the PD converges to 100% if sample sizes grow. The speed of
convergence is faster for larger e�ect sizes d 6= 0.

The MAP-based p-value shown in the sixth row shows a behaviour similar to the
classic p-value. One di�erence is that under the null hypothesis H0, it is much larger
on average than the traditional p-value. Still, this behaviour is robust to increasing
sample size n and as correct interpretation of the MAP-based p-value only allows to
state significancewhen pMAP is smaller than a significance threshold. Interpreting large
pMAP as evidence for H0 is not allowed at all. Under the alternative H1, the behaviour
is quite similar to the classic p-value: For increasing sample size n, the MAP-based p-
value becomes significant, where the necessary sample size n for stating significance
decreases with increasing e�ect size d.

The evidence ev(H0) (in the following denoted as ev) under the flat improper ref-
erence density r(d) µ 1 is shown in the seventh row and concentrates around d = 0.5
under the null hypothesis H0 : d = 0. The reason for this can be seen in the fact that the
posterior of d concentrates for n ! • around d = 0 if H0 : d = 0 is true, and the poste-
rior density p(d|x) also concentrates around d = 0 with slight fluctuations happening
due to the randomness in simulation. However, as the FBST measures the ratio of pos-
terior mass inside and outside the tangential set, this ratio jitters for increasing sample
size between zero and one. The only thing that changes when increasing sample size n
is thus the concentration of the posterior p(d|x) around the null value, so that ev is not
influenced into either direction by increasing sample size. From a measure-theoretic
perspective, any point null value has zero prior probability mass under a prior which
is absolutely continuous with respect to the Lebesgue measure. As a consequence, the
posterior probability of any point null value q0will be zero, too (Schervish, 1995; Robert,
2007). Thus, the FBST cannot accept a point null hypothesis primarily due to measure-
theoretic reasons, and the Bayes factor achieves confirmation of a point null value only
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via the use of themixture prior structurewhichwas detailed in Chapter 7. For the FBST,
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Figure 14.4: Influence of the sample size n on Bayesian e�ect significance and size in-
dices for small, medium, large and no existing e�ect using a wide prior C(0, 1) on the
e�ect size d

the support for H0 can easily be obtained by calculating ev(H0) = 1� ev(H0), which in
this case also concentrates around 0.5, instead of concentrating around 1. If on the other
hand H1 : d 6= 0 is true, ev quickly signals evidence against H0 for increasing sample
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size n and increasing e�ect size d, as shown by the three right-hand plots in the seventh
row. When using the medium Cauchy prior C(0,

p
2/2) instead of the improper refer-

ence density r(d) µ 1, the situation is similar, but the plots in the last row in Figure 14.5
show that the evidence ev against H0 accumulate faster then if H1 is true.

Figure 14.4 shows the results of the simulation when using a wide prior C(0, 1) in-
stead of the ultrawide prior C(0,

p
2). The classic p-value is of course not a�ected at all

from this prior change. The BF10 shown in the second row is slightly larger under the
alternative H1 : d 6= 0, as the wide prior C(0, 1) becomes more informative compared
to the ultrawide prior C(0,

p
2). The probability mass located around d = 0 becomes

more concentrated when using the wide C(0, 1) prior instead of the ultrawide C(0,
p
2)

prior, and therefore BF10 for small and medium e�ects is increased (compare the box-
plots in the second and third column in Figures 14.3 and 14.4), while for large e�ects
the influence is less apparent (see the fourth column in Figures 14.3 and 14.4).

For the same reasons, the percentage of probability mass inside the 95% and full
ROPE increases under the null H0 : d = 0, as shown by the third and fourth row in
Figure 14.4. More prior mass around d = 0 due to the narrower C(0, 1) prior on d leads
to more posterior mass inside the ROPE [�0.1, 0.1] around d = 0. Under the alternative
H1, the 95% and full ROPE su�er from this change, as shown in the boxplots for small,
medium and large e�ects in rows three and four, which are shifted up slightly. The
increase of probability mass near d = 0 draws the posterior towards d = 0, and it
becomes harder for the posterior to concentrate outside of the ROPE. Nevertheless, for
increasing sample size, the ROPEs finally reveal evidence for the alternative H1. Note
that due to the concentration of probability mass around zero when using the C(0, 1)
prior, the boxplots of the ROPEs are shifted slightly up under the null hypothesis of no
e�ect.

The same holds for the PD, which also needs a larger sample size now to achieve
the same evidence for the alternative when an e�ect is present. No matter whether a
small, medium or large e�ect size is present, all boxplots shift down slightly, indicating
that less probability mass is strictly positive in the posteriors produced. The narrower
prior distribution shrinks the complete posterior distribution towards smaller values,
leading in turn to a smaller PD.

The MAP-based p-value is also influenced by the narrower prior: Due to the in-
creased probability mass near d = 0, the MAP-estimate of d shrinks towards d = 0.
The ratio of the posterior density value p(d0|x) at the point-null value d0 = 0 and the
posterior density value p(dMAP|x) at the MAP-value thus gets closer to one compared
to the ultrawide prior setting. This leads to a larger MAP-based p-values and slightly
upshifted boxplots under the alternative H1.

The last two rows show ev under the improper reference density r(d) µ 1. Barely
any change can be observed compared to the setting using the ultrawide priorC(0,

p
2),

which is confirmed in the seventh row. Under the wide Cauchy prior reference density
r(d) = C(0, 1), the evidence against H0 : d = 0 again concentrates around ev = 0.5,
indicating neither strong evidence against H0 nor support for H0. Compared to the
ultrawide prior used in Figure 14.3, under the alternative H1 : d 6= 0 the evidence ev
against H0 : d = 0 also barely changes. These results show that the e-value is quite
robust against variations both in the reference density and prior selection.

Figure 14.5 shows the results when using a medium prior instead of a wide one.
The classic p-value is again not a�ected from this prior, so the results are identical. In
contrast to Figures 14.3 and 14.4, the Bayes factor now accumulates evidence even faster,
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Figure 14.5: Influence of the sample size n on Bayesian e�ect significance and size in-
dices for small, medium, large and no existing e�ect using a medium prior C(0,

p
2/2)

on the e�ect size d

because the medium prior is even more informative than the wide and ultrawide one.
The 95% and full ROPE boxplots are shifted up even higher therefore under H0,

showing that switching from the noninformative ultrawide and weakly informative
wide prior to the medium prior yields larger percentages of the posterior distributions
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probability mass inside the ROPE under the null hypothesis H0 as even more proba-
bility mass concentrates around d0 = 0 now. From a Bayesian perspective, the null
hypothesis is thus faster confirmed. Under the alternative H1 : d 6= 0, the medium
prior makes it now even harder for the 95% and full ROPE to reject the null hypothesis.
This is again due to the fact that under the medium prior C(0,

p
2/2) the prior allocates

even more probability mass to values near d0 = 0 than under the wide C(0, 1) or ultra-
wide Cauchy prior C(0,

p
2). Therefore, the posterior shifts more slowly away from the

ROPE [�0.1, 0.1] of no e�ect, and for the same sample size n, the probability mass lo-
cated inside the ROPE is larger when using the medium prior on d. Still, for increasing
sample size, this e�ect vanishes and even under the medium prior, the concentration
of posterior mass inside the ROPE converges to zero.

The same phenomenon holds for the PD and the MAP-based p-value. Here too,
under the alternative the narrower prior on d around zero makes it harder for the PD
and MAP-based p-value to accumulate evidence for the alternative H1. For increasing
sample size n, both the PD and the MAP-based p-value eventually reject the null hy-
pothesis. For a fixed sample size n, the same is achieved faster under the wide and
ultrawide prior, which distribute less prior probability mass near d0 = 0.

Considering ev in the last two rows, under the improper reference density r(d) µ 1
again barely any changes can be observed compared to the setting in which the wide
C(0, 1) or ultrawide C(0,

p
2) prior were used, which is confirmed in the seventh row

of Figure 14.5. Under the medium Cauchy prior reference density r(d) = C(0,
p
2/2),

the evidence against H0 : d = 0 again concentrates around ev = 0.5, indicating neither
strong evidence against H0 nor support for H0. Compared to the ultrawide and wide
priors used in Figures 14.3 and 14.4, under the alternative H1 : d 6= 0 the evidence ev
against H0 : d = 0 again is barely influenced by shifting to the medium Cauchy prior,
showing strong robustness of the e-value against the prior modelling.

At this point, the results show that both the MAP-based p-value, the classic p-value
and the e-value ev cannot state evidence for the null hypothesis. These Bayesian evi-
dencemeasures can only reject the null hypothesisH0 and o�er no possibility to confirm
it. For practical research, this is limiting. Also, the PD stabilises around 75%, which is
the middle of its possible extremes, 50% and 100%. It would be desirable that the PD
converges to 50% under the null H0 : d = 0, to show that both a positive and negative
e�ect are equally possible. Given the behaviour of the PD under the null, it seems that
the PD favours the directed alternative d > 0 although the null H0 : d = 0 is true.
Under the alternative, H1 : d 6= 0, the PD as well as the p-value and MAP-based p-
value behave as expected. Note that Pereira and Stern (1999) created the e-value to test
a sharp hypothesis H0, and rejection of H0 was the intended goal of the procedure. In
fact, the FBST does not make the (unrealistic) prior assumption of assigning a mixture
prior in Je�reys’ sense to the parameter. Thus, the inability of the FBST to confirm a
point null hypothesis can be seen as the price for this measure-theoretic coherence. In
contrast to the p-value andMAP-based p-value, the e-value enjoys amultitude of highly
desirable properties like compliance with the likelihood principle, being a probability
value derived from the posterior distribution, and being invariant to alternative param-
eterisations, see also Pereira et al. (2008). Therefore, the e-value is preferable over the
standard p-value and MAP-based p-value, also because of its robustness to the prior
selection.

The Bayes factor BF10, the 95% and full ROPE have two desirable properties: Under
the null, all three measures indicate evidence for H0 : d = 0 while under the alterna-
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tive H1 : d 6= 0, they indicate evidence for H1.3 It is somehow problematic while not
astonishing that both constructs accumulate evidence faster under the null H0 using
a medium prior, than when using a wide or ultrawide prior. Under the alternative,
evidence for H1 accumulates faster when using a wide or ultrawide prior instead of a
medium one. Thus, when using a medium prior, finding evidence for H0 is easier than
finding evidence for H1 both with the BF and the ROPEs Using a wide or ultrawide
prior, finding evidence for H1 is easier (when H1 postulates a su�ciently large e�ect)
than finding evidence for H0 with the BF and the ROPEs. Therefore, it is recommended
to use the wide prior C(0, 1), which places itself in the middle between these two ex-
tremes. Using a medium or ultrawide prior needs further justification, because other-
wise, some kind of cherry-picking could happen by combining Bayes factors or ROPEs
with a medium, wide or ultrawide prior depending on the goal of rejection or confir-
mation of the null hypothesis after the data have been observed. The e-value showed
strong robustness to the prior selection. Therefore, if the rejection of a research hypoth-
esis is the formulated goal of the scientific enterprise, the e-value based on the FBST
procedure with the corresponding Cauchy prior as reference density in the surprise
function may prevent such cherry-picking.

In summary, the combination of prior and significance and e�ect size measure to-
gether can make it easier to find evidence for some hypotheses, which underlines the
importance of robustness checks as shown in Chapter 12. Also, taking into account that
the focus of a variety of research is to reveal relevant di�erences (clinically, in biomed-
ical research for example), it is recommended to use at least n = 100 participants in
each group to ensure that also small e�ects can be detected reliably.

14.3.2 Influence of noise
Figure 14.6 shows the results for the influence of noise on Bayesian indices of signif-
icance and e�ect size. As expected and shown in the first row, the influence of noise
on the classic p-value under the null H0 is negligible. Under the alternative, the p-
value gets disturbed more and more with increasing noise #. The number of significant
p-values reduces for increasing noise as shown by the boxplots, which are shifted up-
wards more and more when noise # increases.

The BF10 has the same problems: When the null hypothesis H0 : d = 0 is true, the
Bayes factor is not influenced much by noise. When on the other hand H1 : d 6= 0 is
true, adding noise to the observations makes it more di�cult for the Bayes factor to
state evidence for the alternative H1 : d 6= 0. This behaviour is also revealed when
comparing Figure 14.3 and Figure 14.6: The boxplots in the fourth plot of the second
row in Figure 14.3 show that the Bayes factor achieves higher values compared to the
situationwhere noise is present, as shown in the fourth plot of the second row in Figure
14.6.

The 95% ROPE and full ROPE also su�er from increasing noise. Under the null hy-
pothesis, the noise the noise does not influence the percentage of posterior mass inside
the ROPE, but under the alternative H1 increasing noise # causes increasing amounts

3As noted above, the price paid by the Bayes factor for this ability is the introduction of a mixture
prior as introduced first by Je�reys and Haldane, see Part II. The assignment of positive probability to
a Lebesgue-null-set is not without problems, as discussed in further detail in Rao and Lovric (2016),
Sawilowsky (2016) and Zumbo and Kroc (2016), the arguments of which go back at least to Hodges and
Lehmann (1954).
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Figure 14.6: Influence of noise # on Bayesian significance and e�ect size indices for
small, medium, large and no existing e�ects using an ultrawide prior C(0,

p
2) on the

e�ect size d and sample size n = 30 in each groups

of posterior mass to be located inside the ROPE. This behaviour makes it harder for the
ROPE to signal evidence for the alternative H1 : d 6= 0.

The PD su�ers from the same problem, as increasing noise causes the posterior to
be more and more symmetric around d0 = 0, indicated by the boxplots successively
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shifted down for increasing noise under H1.
The MAP-based p-value is also not influenced by noise under the null hypothesis

H0, but the boxplots are shifted up under the alternative, indicating that increasing
noise leads to larger p-values and less significant ones, which makes it harder for the
MAP-based p-value to reject the null hypothesis in the presence of noise.

The e-value ev is also barely influenced by noise under the null hypothesis H0 both
when used in combinationwith the flat reference density r(d) µ 1 and thewide Cauchy
reference density r(d) = C(0, 1). Under the alternative, increasing noisemakes it harder
for ev to state evidence against H0 as shown in the last two rows of Figure 14.6.

14.3.3 Sensitivity and type I error rates

Type I error rates and sensitivity of Bayesian posterior indices

Index n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80 n = 90 n = 100
No Effect

p-value 0.0483 0.0500 0.0552 0.0508 0.0507 0.0500 0.0491 0.0499 0.0520 0.0529

BF10 0.0221 0.0175 0.0192 0.0124 0.0137 0.0120 0.0104 0.0100 0.0100 0.0094

95% ROPE 0.0145 0.0159 0.0172 0.0127 0.0130 0.0107 0.0088 0.0083 0.0085 0.0069

Full ROPE 0.0002 0.0001 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

PD 0.0003 0.0003 0.0000 0.0004 0.0004 0.0006 0.0003 0.0003 0.0004 0.0002

MAP-p-value 0.0060 0.0075 0.0118 0.0096 0.0120 0.0111 0.0107 0.0107 0.0121 0.0117

ev 0.0225 0.0273 0.0311 0.0342 0.0362 0.0383 0.0404 0.0386 0.0393 0.0391

ev with C(0, 1) 0.0490 0.0470 0.0477 0.0459 0.0480 0.0471 0.0487 0.0458 0.0481 0.0474

Small Effect

p-value 0.1081 0.1990 0.2807 0.3457 0.4224 0.4890 0.5534 0.6149 0.6655 0.7092

BF10 0.0559 0.1045 0.1490 0.1835 0.2319 0.2682 0.3221 0.3648 0.4150 0.4562

95% ROPE 0.0433 0.0945 0.1423 0.1752 0.2238 0.2526 0.3014 0.3374 0.3831 0.4165

Full ROPE 0.0005 0.0012 0.0024 0.0047 0.0061 0.0107 0.0139 0.0186 0.0235 0.0289

PD 0.0010 0.0034 0.0090 0.0144 0.0265 0.0333 0.0538 0.0747 0.0953 0.1175

MAP-p-value 0.0222 0.0590 0.1082 0.1539 0.2137 0.2593 0.3219 0.3746 0.4369 0.4878

ev 0.0671 0.1417 0.2252 0.2976 0.3720 0.4415 0.5171 0.5659 0.6175 0.6755

ev with C(0, 1) 0.1164 0.1972 0.2763 0.3436 0.4180 0.4835 0.5527 0.5976 0.6459 0.7018

Medium Effect

p-value 0.2762 0.5149 0.6930 0.8193 0.8899 0.9417 0.9717 0.9831 0.9907 0.9951

BF10 0.1709 0.3443 0.5013 0.6519 0.7439 0.8342 0.8928 0.9269 0.9561 0.9741

95% ROPE 0.1392 0.3247 0.4850 0.6389 0.7303 0.8197 0.8779 0.9165 0.9464 0.9685

Full ROPE 0.0017 0.0170 0.0382 0.0752 0.1282 0.1944 0.2769 0.3504 0.4386 0.5050

PD 0.0044 0.0320 0.0801 0.1635 0.2620 0.3830 0.4986 0.6010 0.6878 0.7606

MAP-p-value 0.0694 0.2431 0.4249 0.6039 0.7196 0.8256 0.8930 0.9317 0.9605 0.9779

ev 0.1779 0.4373 0.6244 0.7698 0.8714 0.9256 0.9584 0.9752 0.9882 0.9951

ev with C(0, 1) 0.2773 0.5227 0.6880 0.8083 0.8953 0.9376 0.9663 0.9807 0.9908 0.9960

Large Effect

p-value 0.5824 0.8814 0.9746 0.9955 0.9987 1.0000 0.9999 1.0000 1.0000 1.0000

BF10 0.4438 0.7776 0.9254 0.9801 0.9937 0.9986 0.9999 0.9999 1.0000 1.0000

95% ROPE 0.3844 0.7584 0.9185 0.9787 0.9928 0.9984 0.9997 0.9999 1.0000 1.0000

Full ROPE 0.0182 0.1252 0.3133 0.5407 0.7192 0.8535 0.9259 0.9664 0.9851 0.9929

PD 0.0268 0.2052 0.4704 0.7217 0.8597 0.9450 0.9795 0.9933 0.9969 0.9997

MAP-p-value 0.0694 0.2431 0.4249 0.6039 0.7196 0.8256 0.8930 0.9317 0.9605 0.9779

ev 0.4486 0.8367 0.9597 0.9927 0.9990 0.9996 1.0000 1.0000 1.0000 1.0000

ev with C(0, 1) 0.5800 0.8862 0.9743 0.9945 0.9992 0.9998 1.0000 1.0000 1.0000 1.0000

Table 14.1: Percentage of significant Bayesian indices of e�ect significance and magni-
tude for varying sample size

Table 14.1 showsMonte Carlo estimates for the type I error rates and the percentage
of significant indices based on the results of the simulations. For increasing sample size
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n, the type I error rates were estimated as the number of significant indices divided by
10000 when no e�ect was present.
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Figure 14.7: Sensitivity of Bayesian significance and e�ect size indices for small,
medium, large and no existing e�ects using a wide prior C(0, 1) on the e�ect size d
and varying sample size n

Figure 14.7 visualises the results: The left plot corresponds to the table row of no
e�ect and shows the type I error rates of the indices. As shown in the figure, the classic
p-value fluctuates around its nominal significance level of a = .05, although there is no
e�ect present. In contrast, most Bayesian indices have lower type I error rates about half
the size as the classic p-value. A comparison of the Bayesian posterior indices reveals
three groups: The first group consists of the Bayes factor BF10, the 95% ROPE and the
MAP-based p-value. These indices concentrate around a false-positive rate of about 1%
for increasing sample size. Still, the Bayes factor and ROPEmake more type I errors for
small sample size, while the MAP-based p-value errs more often for large sample sizes.
The second group consists of the PD and the full ROPE, both of which make practically
no type I error independent of the sample size n. This fact can be attributed to the quite
conservative behaviour of both indices compared to the indices in group one. The third
group consists of the e-value with improper or wide Cauchy prior, which achieves type
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I error rates slightly smaller than the traditional p-value, but more massive than the
other Bayesian indices.

The second plot corresponds to the small e�ect part of Table 12.10. Now the desired
behaviour is that the indices detect the existing e�ect for the smallest possible sample
size n. The classic p-value has the most liberate behaviour in stating that an e�ect is
present, which reflects the often criticised fact that p-values overstate the significance
of an e�ect compared to other indices of e�ect size and significance, see Wasserstein
and Lazar (2016) and compare Chapter 1 and the Berger-Sellke upper bound in Chap-
ter 11. The Bayesian indices signal evidence for the alternative more slowly than their
frequentist counterparts, and the three groups already discovered in the first plot reveal
themselves again: The BF10, the 95%ROPE and theMAP-based p-value detect the small
e�ect more often than the indices of the second group, which again includes the full
ROPE and the PD. The third group consisting of the two versions of the e-value shows
similar behaviour as the p-value: They signal the existence of an e�ect more quickly
than their Bayesian competitors, which comes at the cost of increased type I errors as
shown in the left plot previously.

The third and fourth plot correspond to the medium and large e�ect part of Table
14.1 and confirm the previous analysis. The p-value and e-value(s) state significance
more often than every other index, but BF10, the 95%ROPE and theMAP-based p-value
yield a similar behaviour for increasing e�ect size d now. Also, from the succession of
the PD and full ROPE, it becomes clear that the PD more often states the presence of
an e�ect in contrast to the full ROPE, which is more conservative, even for increasing
e�ect size. Still, for increasing sample size, these “slow“ indices eventually state the
presence of the e�ect, too. Interestingly, theMAP-based p-value has a similar behaviour
for large e�ect sizes as the full ROPE and PD, as shown in the right plot of Figure 14.7.
The behaviour of the e-value again shows substantial similarity to the behaviour of the
p-value under the medium and large e�ect setting.

14.4 Discussion
This chapter studied the behaviour of common Bayesian evidence measures for hy-
pothesis testing in the setting of two-sample Welch’s t-test, which is often applied in
the biomedical and cognitive sciences. To guide researchers in choosing an appropri-
ate evidence measure when the Bayesian counterpart to Welch’s two-sample t-test as
proposed by Rouder et al. (2009) is used instead, an extensive simulation study was
conducted to analyse the influence of sample size n, the prior modelling and noise #.
Also, the type I error rates and sensitivities to detect an existing e�ect were studied.

The results show that one can split Bayesian significance and e�ect indices into two
categories: Indices which can state evidence for the null hypothesis H0 : d = 0 and the
alternative H1 : d 6= 0, and indices which can only state evidence for the alternative.
The first group consists of the Bayes factor, the 95% and full ROPE. The MAP-based p-
value, the PD and the e-value belong to the second group, the MAP-based p-value and
the e-value showing a similar behaviour as the classic p-value. On the other hand, the
e-value showed the best performance compared to all other indices when H1 was true,
and based on its other properties – for a review see Pereira et al. (2008) and Kelter and
Stern (2020) – it is preferable over the MAP-based p-value, PD and classic p-value. The
PD su�ers from the fact that under H0 it stabilizes at about 0.7, which is unintuitive and
has to be interpreted as a tendency to favour evidence for the alternative when in fact
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the null hypothesis H0 is true, see Figures 14.3, 14.4 and 14.5. Thus, when rejection of
a null hypothesis is the goal, it is recommended to use the FBST and report the e-value
based on the corresponding Cauchy prior as reference density in the surprise function.
Also, the e-value is coherent with the likelihood principle and is very robust against
the prior modelling. Importantly, it requires very little change in methodology when
transitioning from frequentist p-values to Bayesian hypothesis tests and it is widely
applicable as long as the posterior distribution can be obtained via MCMC, which is
nearly always the case through the advent of modern Hamiltonian-Monte-Carlo algo-
rithms, compare Part III. Thus, the e-value may be an attractive option to improve the
reproducibility of research. However, a clear disadvantage is that the FBST is not able
to confirm a hypothesis.

If the goal of the scientific enterprise is to confirm a research hypothesis, based on
the results, the Bayes factor, the 95% ROPE or the full ROPE should be considered. All
three indices show similar behaviour regarding increasing sample size n, and state both
evidence for H0 and H1 depending on the presence of an e�ect.

The prior modelling showed that both the ultrawide and medium prior on d could
possibly lead to cherry-picking by combining a selected index like a ROPE or BF with
the prior: For example, choosing a medium prior when the goal is to confirm H0, evi-
dence for H0 accumulates faster than when using a wide or ultrawide prior. If the goal
is to find evidence for the alternative, evidence for H1 accumulates faster when using a
wide or ultrawide prior instead of a medium one.

Therefore, to safeguard an analysis, it is recommended to use the wide prior C(0, 1)
when the goal is to confirm a hypothesis, as this choice places itself in the middle be-
tween the two other extremes and prevents cherry-picking in the case where no prior
information is available. Also, robustness analyses are recommended which analyse
how results change under di�erent prior assumptions as discussed in Chapter 12.

The analysis of the influence of noise showed that all Bayesian indices su�ered from
increasing noise under H1 with no apparent patterns or regularities, or one of the in-
dices being more robust to noise than the others.

The type I error rates, and the sensitivity to detect an existing e�ect revealed that all
Bayesian indices should be preferred to the classic p-value, although the e-value showed
only slightly reduced type I error rates compared to the traditional p-value. This result
is essential, as the control of type I error rates is one of themost critical aspects in clinical
trials, see McElreath and Smaldino (2015) and Ioannidis (2016). The results showed
further that the full ROPE and the PD achieve the best control of type I errors. As the
PD cannot transparently state evidence for the null as shown previously, the full ROPE
may be the better choice to control type I errors in clinical trials where often the goal
is confirmation of a hypothesis (U.S. Food and Drug Administration Center for Drug
Evaluation and Research and Center for Biologics Evaluation and Research, 2019).

While the Bayes factor, the MAP-based p-value, the e-value and the 95% ROPE are
more sensitive and detect more e�ects when using the same sample size n, their type I
error control is weaker.

14.5 Conclusion
To guide researchers in the selection of an appropriate index for the biomedical and
cognitive sciences, this section provided various new results. Based on these results,
the following guidelines can be provided: Whenever type I error control has priority,
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it is recommended to use the full ROPE. Like the Bayes factor and 95% ROPE, the full
ROPE can state evidence for both the null and the alternative hypothesis. The influence
of sample size n, noise # and prior modelling is similar for all three indices, but the
type I error rate control is better for the full ROPE. The slightly weaker sensitivity to
existing e�ects can be overcome by increasing the study sample size n, as shown in
Figure 14.7: For sample sizes of n = 100, the sensitivity is equal to the sensitivity of
the Bayes factor and 95% ROPE when a large e�ect is present. When medium or small
e�ects are present, larger sample sizes are required, but as often multiple hundreds
of patients participate in clinical trials, the benefits of type I error control overshadow
the higher costs incurred by increased sample size. However, in situations where it is
di�cult or costly to recruit enough study participants (e.g. the study of rare diseases)
it is recommended to opt for the Bayes factor because the Bayes factor achieves slightly
better power than the full ROPE.

When rejection of a hypothesis is the goal, the e-value is the recommended choice,
as it has the best sensitivity to detect an existing e�ect of all indices, and is an attractive
a Bayesian replacement of the traditional p-value. For more details see also Kelter and
Stern (2020), who provide computational details.
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Testing the Approximate Validity of Statistical
Hypotheses

15.1 Introduction
The last chapter outlined how the error rates and power of Bayesian indices for signif-
icance and size of an e�ect can be quantified in practice. Simulation studies provide
insights similar to traditional power analyses or theoretical error guarantees which are
used in combination with frequentist hypothesis tests. This ensures that even for com-
plicated trial designs simulation studies can reveal the long-term properties, in par-
ticular, the resulting error rates of Bayesian hypothesis tests although the Bayesian ap-
proach formally has no concept of a type I and II error. Such results can help in improv-
ing the reliability of Bayesian hypothesis tests and the acceptance of Bayesian adaptive
designs in clinical trials, compare (U.S. Food and Drug Administration Center for Drug
Evaluation and Research and Center for Biologics Evaluation and Research, 2019).

In this chapter, a conceptually di�erent approach to Bayesian hypothesis testing is
pursuedwhich tackles one of themost important issues of statistical hypothesis testing:
The validity of point null hypothesis for scientific research. The approach proposed in
this chapter builds on the Hodges-Lehmann paradigm which was first proposed by
Hodges and Lehmann (1954), and advocates replacing the test of a precise null hy-
pothesis with the test of a small interval hypothesis.

One of themost important criticisms of hypothesis testing includes the “vexing issue
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of the relevance of point null hypotheses” (Robert, 2016, p. 5). The criticism that point
null hypotheses are not realistic goes back at least to Savage (1954), and has evolved
as the result of an ongoing debate between statisticians and philosophers of science
over the last decades. Savage (1954, p. 332-333) already noted that “null hypotheses
of no di�erence are usually known to be false before the data are collected” and that
“their rejection ... is not a contribution to science”. Also, Good (1950, p. 90) argued
when testing the fairness of a die that “From one point of view it is unnecessary to look
at the statistics since it is obvious that no die could be absolutely symmetrical.”. In a
footnote, he added: “It would be no contradiction (...) to say that the hypothesis that
the die is absolutely symmetrical is almost impossible. In fact, this hypothesis is an
idealised proposition rather than an empirical one.” (Good, 1950, p. 90). Meehl (1967,
p. 108) argued similarly, and stressed the “universal agreement that the old point-null
hypothesis (...) is [quasi-] always false in biological and social science.”. The same
argument was brought forward by Cohen (1990, p. 1308), who pointed out that the
null hypothesis “taken literally (...) is always false in the real world. It can only be true
in the bowels of a computer processor running a Monte Carlo study (and even then a
stray electron may make it false).”. Also, in the discussion of Berger and Delampady
(1987), Kadane (1987, p. 347) commented that for the “last 15 or so years I have been
looking for applied cases in which I might have some serious belief in a null hypothesis.
(...) I do not expect to test a precise hypothesis as a serious statistical calculation.”.

On the other hand, Good (1994, p. 241) argued that there is at least one example of
a precise hypothesis, which states that there is no extrasensory perception. However, in
Good (1950, p. 90) he already admitted that his earlier remark for the case of a throw of
a die “applies to all experiment – even the ESP experiment, since there may be no way
of designing it so that the probabilities are exactly equal to 1

2 .”.
1 Another example of a

true null hypothesis was presented by Berger and Delampady (1987) as the hypothesis
that talking to plants has no e�ect on their growth. However, like Good (1950), they ad-
mitted that minor biases in the experimental design (e.g. in randomization) may result
in statistical significance again so that ultimately the hypothesis becomes false a priori.
One approach to save point null testing was also presented by Berger and Sellke (1987)
who showed that for reasonably small interval hypotheses, point null hypotheses are at
least useful approximations of such small interval hypotheses (Berger and Delampady,
1987, Theorem 2). Good (1994) argued similarly and pointed out that the precise null
hypothesis is simpler and “often a good enough approximation” (Good, 1994, p. 241).
However, Bernado (1999) showed that this approximation breaks down for su�ciently
large sample size, and Rousseau (2007) showed that for such large sample sizes, also
the Bayes factor for a point null hypothesis is no reasonable approximation of the Bayes
factor for an interval hypothesis anymore, unless the interval sizes are extremely small.
This is problematic, because today large amounts of data are observed, and the times
of small to moderate samples which were collected during the early days of statistics
when Fisher or Neyman and Pearson proposed their theories of statistical hypothesis
testing have long gone by. Thus, the argument that point null hypotheses are reason-
able approximations of small interval hypotheses does not hold anymore. In summary,
there is near consensus in the literature that “sharp null hypotheses are seldom exactly
true.” (Good, 1994, p. 241) and a “null hypothesis can usually be made more realis-

1In his conclusion, Good (1950, p. 94-95) remarked that “if n is very large, the test will probably give
a significant result, because the chances p1, p2, ..., p6 can hardly be exactly equal.”, which is an implicit
assertion that the null hypothesis is always false.
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tic in principle by “spreading” the hypothesis over a small region in parameter space.”
(Good, 1994, p. 241).2

In this chapter, Good’s proposal is followed and a new Bayesian hypothesis test for
the Behrens-Fisher problem is proposed which replaces the test of a point null hypoth-
esis with the test of a (small) interval hypothesis. The performance of the procedure is
compared to the traditional frequentist solution to this problem, Welch’s two-sample t-
test, and theoretical results show that the proposed Bayesian test enjoys desirable prop-
erties. As the principal approach of testing small interval hypotheseswas first proposed
by Hodges and Lehmann (1954), the resulting test is called a Hodges-Lehmann test.

In medical research, the t-test is one of the most popular statistical procedures con-
ducted. In randomized controlled trials (RCT), the goal often is to test the e�cacy of
new treatments or drugs and find out the size of an e�ect. Usually, a treatment and
control group are used, and di�erences in a response variable like blood pressure or
cholesterol level between both groups are observed. The gold standard for deciding if
the new treatment or drug is more e�ective than the status quo treatment or drug is the
p-value, which is the probability, under the null hypothesisH0, of obtaining a di�erence
equal to or more extreme than what was actually observed. The dominance of p-values
when comparing two groups in medical (and other) research is overwhelming Nuijten
et al. (2016).

The original two-sample t-test belongs to the class of frequentist solutions. These are
based on sampling statistics, which allow to reject the null hypothesis via the use of p-
values. The misuse and drawbacks of p-values in medical research have been detailed
in Chapter 1. On the other side, Bayesian versions of the two-sample t-test have become
more popular recently. Examples include the proposals in Gönen et al. (2005), Rouder
et al. (2009), Wetzels et al. (2011), Wang and Liu (2016) and Gronau et al. (2020). All
of these focus on the Bayes factor (BF) for testing a null hypothesis H0 : d = 0 of no
e�ect against a one- or two-sided alternative H1 : d > 0, H1 : d < 0 or H1 : d 6= 0.
Bayes factors themselves are also not without problems: (1) Bayes factors are sensi-
ble to prior modeling Kamary et al. (2014); (2) Bayes factors require the researcher to
calculate marginal likelihoods, the calculations of which can be complex except when
conjugate distributions exist; (3) In the setting of the two-sample t-test, Bayes factors
weight the evidence for H0 : d = 0 against the evidence for H1 : d 6= 0 (or H1 : d < 0,
or H1 : d > 0) given the data x. In the case when BF10 = 20, H1 is 20 times more
likely after observing the data than H0. The natural question following in such cases
is: How large is d? A Bayes factor cannot answer this question and was not designed
to answer such questions, but often this is of most relevance in applied biomedical re-
search. Last, in most applied research, estimation of the e�ect size d is more desirable
than a mere rejection or acceptance of a point or composite hypothesis (Kruschke and
Liddell, 2018b).

Of course, Bayes factors can be computed alongside posterior estimates, so testing
and estimation do not mutually exclude each other. However, the mixture prior which
is required to calculate a Bayes factor which can confirm a research hypothesis as de-
tailed in Chapter 7 is unreasonable from a parameter estimation perspective: Assigning
a prior probability to a point value q0 contradicts the usual prior beliefs about the pa-

2Earlier, Good (1993) proposed to change the current terminology: “when a statistician says that a
hypothesis is rejected it would usually be better to say that the hypothesis is probably inexact (...). For
the above reason (...) the words should be replaced by some other word, such as inexactify.” (Good,
1993, p. 91).
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rameter when the goal is parameter estimation. However, to be able to test a point null
hypothesis via a Bayes factor one is forced to adopt Je�reys’ and Haldane’s mixture
prior representation.

In this chapter, this problem is bypassed by replacing the point null with an inter-
val hypothesis, and reformulating the statistical model of the test as a two-component
Gaussian mixture with known allocations. Also, the region of practical equivalence
(ROPE) is employed as a criterion in the resulting test. Instead of focussing on rejec-
tion or confirmation of hypotheses, the proposed method’s focus lies on estimation of
the e�ect size under uncertainty. Together, the approach is an implementation of the
Hodges-Lehmann paradigm as proposed byHodges and Lehmann (1954) and Rao and
Lovric (2016).

15.2 Methods

15.2.1 Modeling the Bayesian t-test as a mixture model with known
allocations

In this section, the two-sample t-test is modelled as a two-component Gaussianmixture
with known allocations. It is helpful to recite the idea of a mixture distribution:

“Consider a population made up of K subgroups, mixed at random in pro-
portion to the relative group sizes h1, ..., hK. Assume interest lies in some
random feature Y which is heterogeneous across and homogeneous within
the subgroups. Due to heterogeneity, Y has a di�erent probability distri-
bution in each group, usually assumed to arise from the same parametric
family p(y|q) however, with the parameter q di�ering across the groups.
The groups may be labeled through a discrete indicator variable S taking
values in the set {1, ...,K}.
When sampling randomly from such a population, we may record not only
Y, but also the group indicator S. The probability of sampling from the
group labeled S is equal to hS, whereas conditional on knowing S, Y is a
random variable following the distribution p(y|qS) with qS being the pa-
rameter in group S. (...) The marginal density p(y) is obviously given by
the following mixture density

p(y) =
K

Â
S=1

p(y, S) = h1p(y|q1) + ...+ hKp(y|qK)

” Frühwirth-Schnatter (2006, p. 1)

Clearly, this resembles the situation of the two-sample t-test, in which the allocations
S are known. While traditionally mixtures are treated with missing allocations, in the
setting of the two-sample t-test these are known, leading to a “degenerate” mixture3.
While this assumption does not only remove computational di�culties (these include
problems like label switching, see Frühwirth-Schnatter (2006)), it also makes sense
from a practical perspective: the inherent assumption of a researcher is that the popu-
lation is indeedmade up of K = 2 subgroups, which di�er in a random featureYwhich

3The mixture is called degenerate here, because when allocations are known, the likelihood is not
mixed in the classical sense.
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is heterogeneous across groups and homogeneous within each group. The group indi-
cator S of course is recorded. When conducting a randomized controlled trial (RCT),
the clinician will choose the patients according to a sampling plan, which could be
set to achieve equally sized groups, that is, h1 = h2. Therefore, when sampling the
population with the goal of equally sized groups, the researcher takes samples with
equal probability from the population. For example, when a treatment group is com-
pared to a control group, the block-randomization design ensures that the clinician pre-
scribes the drug to a prespecified percentage h1 of participants, and in balanced designs
h1 = h2 =

1
2 . After the RCT is conducted, the resulting histogram of observed Y values

will take the form of the mixture density p(y) above and express bimodality due to the
mixture model of the data-generating process.4 After fixing the mixture weights, the
family of distributions for the single groups needs to be chosen. The above considera-
tions lead to consider finitemixtures of normal distributions, as these “occur frequently
in many areas of applied statistics such as [...] medicine” (Frühwirth-Schnatter, 2006,
p. 169). The components p(y|qi) become fN(y; µi, s2

i ) for i = 1, ...,K in this case, where
fN(y; µi, s2

i ) is the density of the univariate normal distribution. Parameter estimation
in finite mixtures of normal distributions consists of estimation of the component pa-
rameters (µi, s2

i ), the allocations Si, i = 1, ..., n and the weight distribution (h1, ..., hK)
based on the available data yi, i = 1, ..., n. In the case of the two-sample Bayesian t-test,
the allocations Si (where Si = 0 if yi belongs to the first component and else Si = 1) are
known for all observations yi, i = 1, ..., n. Also, theweights h1, h2 are known. Therefore,
inference is concerned only with the component parameters µk, s2

k given the complete
data S, y.
Definition 15.1 (Bayesian two-sample t-test model). Let S, Y be random variables
with S taking values in the set {1, 2} and Y in R. If Y|S = i ⇠ N (µi, s2

i ) for i = 1, 2,
so conditional on S the component densities of Y are Gaussian with unknown param-
eters µi and s2

i , and if the marginal density is a two-component Gaussian mixture with
known allocations, with marginal density

p(y) = h1 fN(y; µ1, s2
1 ) + h2 fN(y; µ2, s2

2 )

where h2 := 1
n Ân

i=1 1Si=1(yi, Si) and h1 = 1 � h2, the complete data S,Y are said to
follow the Bayesian two-sample t-test model.

15.2.2 Inference via Gibbs Sampling
From the above line of thought it is clear that due to the representation via a mixture
model with known allocations, no prior is placed directly on the e�ect size d := µ1�µ2

s
itself, where

s :=

s
(n1 � 1)s21 + (n2 � 1)s22

n1 + n2 � 2

and s21 and s22 are the empirical variances of the two groups, see also Cohen (1988).
This is the common approach in existing Bayesian t-tests (Gronau et al., 2020). Instead,

4If unbalanced groups are the goal, the weights could be adjusted accordingly. As in most cases
equally sized groups are considered, h1 = h2 = 0.5 is a justified assumption regarding the sampling
process in the study or experiment.
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in the proposed mixture model, priors are assigned to the parameters of the Gaussian
mixture components µ1, µ2 and s2

1 , s
2
2 . This has several benefits: Incorporation of avail-

able prior knowledge is easier achieved for the mixture component parameters than for
the e�ect size, which is an aggregate of these component parameters. Consider a drug
where from biochemical properties it can safely be assumed that the mean in the treat-
ment group will become larger, but the variance will increase, too. Incorporating such
knowledge on µi and si is much easier than incorporating it in the prior of the e�ect size
d. This situation holds in particular, when group sizes n1, n2 are not balanced. These
practical gains of translating prior knowledge into prior parameters comes at a cost: In
contrast to existing solutions the model implies that no closed form expression for the
posterior of d (or the Bayes factor) is available anymore. Therefore, MCMC sampling
is used here, to first construct the joint posterior p(µ1, µ2, s1, s2|S, y) and subsequently
use a sample

⇣
(µ(1)1 , µ(1)2 , s(1)

1 , s(1)
2 ), ..., (µ(m)

1 , µ(m)
2 , s(m)

1 , s(m)
2 )

⌘

of size m, to produce a sample (d(1), d(2), ..., d(m)) of d, where d(i) := µ
(i)
1 �µ

(i)
2

s(i)
and

s(i) =

s
(n1 � 1)(s(i)1 )2 + (n2 � 1)(s(i)2 )2

n1 + n2 � 2

In summary, via Gibbs sampling (compare Chapter 8 and Robert and Casella (2004)),
the posterior of d can be simulated via Markov-Chain-Monte-Carlo. In order to apply
Gibbs sampling, the conditional distributions need to be derived.

15.2.3 Derivation of the full conditionals using the independenceprior
To derive the full conditionals, the prior distributions for the mixture component pa-
rameters need to be selected. There are multiple priors available, the most prominent
among them the conditionally conjugate prior and the independence prior (Escobar
and West, 1995; Frühwirth-Schnatter, 2006). While the conditionally conjugate prior
has the advantage of leading to a closed-form posterior p(µ, s2|S, y), themain di�culty
in the setting of the Bayesian two-sample t-test is that while a priori the component pa-
rameters qk = (µk, s2

k ) are pairwise independent across both groups, inside each group
the mean µk and variance s2

k are dependent. This is in contrast to the assumption in the
setting of the Bayesian two-sample t-test, and therefore the independence prior is cho-
sen, which is used in Escobar and West (1995) and Richardson and Green (1997). The
independence prior assumes the mean µk and the variance s2

k are a priori independent,
that is p(µ, s2) = ’K

k=1 p(µk)’K
k=1 p(s

2
k ), with µk ⇠ N (b0, B0) and s2

k ⇠ IG(c0,C0),
where IG(·) denotes the inverse Gamma distribution. The normal prior on the means
µk seems reasonable as the parameters b0 and B0 can be chosen to keep the influence
of the prior only weakly informative.5 The inverse Gamma prior is chosen because for
a two-component Gaussian mixture to show any signs of bimodality – in which case
one would assume di�erences between two subgroups in the whole sample – the vari-
ance should not be huge, because otherwise the modes (or the bell-shape) of the two

5Another option would be a tn prior, but this would also imply another free hyperparameter to be
estimated simultaneously, which would be the degrees of freedom n of the tn-distribution.
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normal-components of the mixture will flatten out more and more, until unimodality
is reached. Thus, the inverse Gamma prior connects this model aspect by giving more
probability mass to smaller values of s2

k , while extremely large values get much less
prior probability mass.6 The hyperparameters c0 and C0 then o�er control over this
kind of shrinkage on s2

k towards zero. In the simulation study below the prior sensitiv-
ity will also be studied briefly. The independence prior is therefore used and leads to
the following full conditionals:
Theorem 15.2. For the Bayesian two-sample t-test model, the full conditional distri-
butions under the independence prior

p(µ, s2) :=
K

’
k=1

p(µk)
K

’
k=1

p(s2
k )

with µk ⇠ N (b0, B0) and s2
k ⇠ IG(c0,C0) (where IG(·) denotes the inverse Gamma

distribution) are given as:

p(µ1|µ2, s2
1 , s

2
2 , S, y) = p(µ1|s2

1 , S, y) ⇠ N (b1(S), B1(S))
p(µ2|µ1, s2

1 , s
2
2 , S, y) = p(µ2|s2

2 , S, y) ⇠ N (b2(S), B2(S))
p(s2

1 |µ1, µ2, s2
2 , S, y) = p(s2

1 |µ1, S, y) ⇠ IG(c1(S),C1(S))
p(s2

2 |µ1, µ2, s2
1 , S, y) = p(s2

2 |µ2, S, y) ⇠ IG(c2(S),C2(S))

with B1(S), b1(S), B2(S), b2(S) as defined in Equations (A.12) and (A.13), and c1(S),
c2(S), C1(S) and C2(S) as defined in Equations (A.14) and (A.15) in Appendix A.1.

Proof. See Appendix A.2, which builds on the derivations in Appendix A.1.

Note that when h1 6= h2, N1(S) and N2(S) in the Appendix just need to be changed
accordingly. For example, if the first group consists of 30 observations, and the second
group of 70, settingN1(S) = 30 andN2(S) = 70 implies h1 = 0.3 and h2 = 0.7, handling
the case of unequal group sizes easily.

15.2.4 Derivation of the single-block Gibbs sampler
Based on the full conditionals derived in the last section, this section now derives a
single-block Gibbs sampler to obtain the joint posterior distribution

p(µ1, µ2, s2
1 , s

2
2 |S, y)

given the complete data (S, y). The resulting Gibbs sampler is given as follows:

Corollary 15.3 (Single-block Gibbs sampler for the Bayesian two-sample t-test). The
joint posterior distribution

p(µ1, µ2, s2
1 , s

2
2 |S, y)

in the Bayesian two-sample t-testmodel can be simulated under the independence prior
as follows:
Conditional on the classification S = (S1, ..., SN):

6Another option would be an exponential prior with parameter l, but as the exponential distribution
is just a special case of the gamma distribution, and the inverse gamma distribution is directly related to
the gamma distribution, the more general inverse gamma prior is selected here.
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1. Sample s2
k in each group k, k = 1, 2 from an inverseGamma distribution IG(ck(S),Ck(S))

2. Sample µk in each group k, k = 1, 2, from a normal distribution N (bk(S), Bk(S))

where Bk(S), bk(S) and ck(S),Ck(S) are given by equations (A.12), (A.13), (A.14) and (A.15)
in Appendix A.1.

Proof. See Appendix A.3.

15.2.5 The Hodges-Lehmann paradigm and the region of practical
equivalence (ROPE)

Hodges and Lehmann (1954) discussed the validity of statistical hypotheses more than
half a century ago, and concluded that testing small interval hypotheses is more realis-
tic:

“When testing statistical hypotheses, we usually do not wish to take the ac-
tion of rejection unless the hypothesis (...) is false to an extent su�cient to
matter. For example, we may formulate the hypothesis that a population is
normally distributed, but we realize that no natural population is ever ex-
actly normal.”
Hodges and Lehmann (1954, p. 261)

They proposed to introduce “into the space of parameters a measure, say D(q) of the
distance of q from H0 on a scale reflecting at least roughly the materiality of departures
from H0, and then define H1 as the set of those q for which D(q) does not exceed a speci-
fied value D0.” (Hodges and Lehmann, 1954, p. 262). Their approach can be formalized
as testing

H0 : q 2 [q0 � D0, q0 + D0] versus H1 : q /2 [q0 � D0, q0 + D0] (15.1)

instead of

H0 : q = q0 versus H1 : q 6= q0 (15.2)

As discussed in the introduction section, a Hodges-Lehmann test is more realistic in
the majority of situations faced in the biomedical, social and natural sciences than a
hypothesis test for a precise point null hypothesis.

One proposal which is very similar to the approach of Hodges and Lehmann is the
one of Kruschke and Liddell (2018b), which advocates the region of practical equivalence
(ROPE) that was already studied in Chapter 14. As they note: “ROPE’s go by di�erent
names in the literature, including “interval of clinical equivalence”, “range of equiv-
alence”, “equivalence interval”, “indi�erence zone”, “smallest e�ect size of interest,”
and “good-enough belt” ...” (Kruschke and Liddell, 2018b, p. 185), where these terms
come from a wide spectrum of scientific domains, see Carlin and Louis (2009), Freed-
man et al. (1983), Hobbs and Carlin (2007), Lakens (2014) and Schuirmann (1987).
The uniting idea is to establish a region of practical equivalence around the null value
of the hypothesis, which expresses “the range of parameter values that are equivalent
to the null value for current practical purposes.” (Kruschke and Liddell, 2018b, p. 185).
With a caution not to slip back into dichotomic black-and-white thinking, the following
decision rule was proposed by Kruschke and Liddell (2018b): Reject the null value, if
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the 95% highest posterior density interval (HPD) falls entirely outside the ROPE. Ac-
cept the null value, if the 95% HPD falls entirely inside the ROPE. In the first case, with
more than 95% probability the parameter value is not inside the ROPE, and therefore
not practically equivalent to the null value. A rejection of the null value then seems
legitimate. In the second case, the parameter value is inside the ROPEwith at least 95%
posterior probability, and therefore practically equivalent to the null value. It seems
legitimate to accept the null value. Of course, it would also be possible to accept the
null value i� the whole posterior is located inside the ROPE, leading to an even stricter
decision rule. The ROPE is thus a direct implementation of the Hodges-Lehmann ap-
proach when it is interpreted as an interval hypothesis. Below, the ROPE is formalized
this way:
Definition 15.4 (ROPE). The region of practical equivalence (ROPE)R for (or around)
a hypothesis H ⇢ Q is a subset of the parameter space Q with H ⇢ R.

Given the above definition, a statistical hypothesis H is now described via a region
of practical equivalence R. For example, the hypothesis H : d = d0 can be described as
R := [d0 � #, d0 + #] for # > 0. Thus, the ROPE is precisely a hypothesis in the Hodges-
Lehmann paradigm when formalized as in the above definition. Also, by definition,
any set R ⇢ Q with H ⇢ R is allowed to describe H, and should be selected depending
on how precise the measuring process of the experiment or study is assumed to be.
Next, two options for the ROPE are defined:
Definition 15.5 (Correctness). Let R ⇢ Q a ROPE around a hypothesis H ⇢ Q, that is
H ⇢ R, where H makes a statement about the unknownmodel parameter q. If the true
parameter value q0 lies in R, that is q0 2 R, then R is called correct, otherwise incorrect.

A correct ROPE therefore contains the true parameter value q0, while an incorrect
one does not.

15.2.6 Boundary elicitation for the interval hypothesis
While the Hodges-Lehmann approach is conceptually appealing, a major challenge
is the selection of the interval hypothesis boundaries (which are ROPE boundaries).
However, there is a vast range of options to determine these boundaries:

1. Lakens et al. (2018) proposed to base the selection on resource availability: Ac-
cording to them, researchers often know better which sample sizes are attainable
in their field of work than which e�ect sizes can expected to be observed in a
study. As the amount of available data limits the e�ect size that can be detected,
researchers can derive the smallest e�ect size which they can detect after selecting
a test level a and their sample size n and use this smallest detectable e�ect size as
the equivalence boundary. Note that although it seems that this method primar-
ily applies to frequentist tests because the Bayesian paradigm contains no concept
of a type I error, the simulation study conducted in Chapter 14 showed that it is
straightforward to study the smallest detectable e�ect size and the resulting error
rates also for Bayesian tests, see also Kelter (2020a,e) andMakowski et al. (2019b).

2. The U.S. Food and Drug Administration has set equivalence bounds for establish-
ing bioequivalence (U.S. Food and Drug Administration Center for Drug Eval-
uation and Research, 2001), which can be interpreted as the interval hypothesis
bounds. For a thorough discussion of current challenges see also Senn (2001).
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3. Cook et al. (2014, 2018) proposed three methods for determining the bounds:
First, the anchor method for determining the minimally clinical important dif-
ference (MCID), where the judgement of relevant stakeholders is used, see also
Jaeschke et al. (1989). Second, the distribution method, where both the standard
error of ameasurement and the smallest detectable di�erence of a statistical test is
employed. Third, the health economic method which aims at optimising the cost
of a “unit of health” for the amount of money spent: Termed di�erently, which
e�ect is necessary in “health units” to justify the amount of money spent for the
treatment or therapy?

4. Weber and Popova (2012) recommended to incorporate subject-domain knowl-
edge from meta-analyses to determine the boundaries in a more principled way.

5. Simonsohn (2015) proposed to set the boundary at the e�ect size that a previous
study would have had ⇡ 33% power to detect. For details on the motivation and
justification of this so-called small-telescopes approach see also Lakens et al. (2018).

6. Ferguson (2009), Beribisky et al. (2019) and Rusticus and Eva (2016) have argued
for incorporating pilot studies for boundary selection.

7. Other approaches and examples which base the equivalence bound selection on
previous research are given by Perugini et al. (2014) and Kordsmeyer and Penke
(2017).

8. In case none of the other justifications of interval hypothesis boundaries is possi-
ble, Maxwell et al. (2015) recommended to use a trivially small value like an e�ect
size of d = .10 according to Cohen (1988) as the boundary of the equivalence re-
gion. Lakens et al. (2018) underlined that this is the weakest possible justification
of such a boundary.

9. Kruschke (2018) provided an in-depth discussion of selecting the boundaries for
the ROPE in the Bayesian approach. Kelter (2020a,e) andMakowski et al. (2019b)
provided simulation-based insights which relate the ROPE width to statistical
quantities like type I and II errors and the sensitivity and specificity of a test in
the context of two-sample tests and regression settings. This allows for selecting
the ROPE boundaries based on objective criteria like a desired maximum type I
or type II error rate.

10. Ultimately, “the ideal decision about a specific meaningful e�ect should be made
through a multi-faceted decision-making process, standardized context-free ef-
fect sizes provide helpful additional information when there are no other viable
alternatives” (Beribisky et al., 2019, p. 5), see also Rogers et al. (1993).

In summary, there is a vast range of techniques that allow transitioning from precise to
interval hypothesis testing according to the Hodges-Lehmann paradigm. The selection
of the interval hypothesis boundaries may feel subjective. However, the selection of a
precise point null hypothesis is equally subjective. The fact that current practice pri-
marily consists of using strawman null-e�ect or null-di�erence hypotheses (compare
the development of the inconsistent hybrid approach in Chapter 5) only masquerades
the problem that inmost situations, these precise null hypotheses aremeaningless: One
would not entertain the e�ort to study the e�cacy of a new drug or the outcome of an
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educational intervention if the a priori belief would be that there will be no e�ect after
all. In practice, researchers often invest time and e�ort because they believe that there
has to be at least some non-negligible e�ect, and the null hypothesis is not what most
scientists are interested in. The no-e�ect hypothesis H0 : d = 0 is only put up to reject
it and conclude that there is indeed a non-zero e�ect. However, it could be argued that
this is evident a priori as there will always be any e�ect (although maybe a negligibly
small one).7 In contrast, a reasonable null hypothesis would postulate an e�ect q0 and
interest lies in investigating if an e�ect is at least as large or at least as small as a pre-
specified value q0. That is, then the one-sided hypothesis testing setting H0 : q  q0
(or H0 : q � q0) is recovered, and selection of the value q0 is equally arbitrary as the
selection of the boundaries for the ROPE. In summary, although the boundary selection
presents a challenge for practical research, it is a challenge to face, not to evade.8

15.2.7 Implementing the Hodges-Lehmann paradigm

The twomajor drawbacks of the proposal of Kruschke (2018) are that the ROPE still fa-
cilitates hypothesis testing, enforcing a binary decision of rejection or acceptance, while
it is also unclear what to do when the 95%-HPD lies partly inside and partly outside
the ROPE. Therefore, a di�erent proposal is made here, which is estimation of themean
probable e�ect size (MPE) in the proposed two-sample t-test. The method can be gener-
alized for other tests analogue. First, the acceptance or rejection of a hypothesis H can
be formalized as follows:

Definition 15.6 (a-accepted / a-rejected). Let q the unknown parameter (or vector of
unknown parameters) in an experiment E := {X, q, { fq}}, where the random variable
X taking values in R and having density fq for some q ⇢ Q, is observed. Let p(q|x)
the posterior distribution of q (under any prior p(q)), and let Ca the corresponding
a% highest density interval of p(q|x). Let R ⇢ Q a ROPE around the hypothesis H of
interest, which makes a statement about q. Then, if Ca ⇢ R, the hypothesis H is called
a-accepted, else a-rejected. If a = 1, then H is simply called accepted, else rejected.

Thus, ifCa lies completely inside the ROPE R and if a = 1, the entire posterior proba-
bility mass indicates that q is practically equivalent to the values described by the ROPE
R. Thus, H can be accepted. If a < 1, the strength of this statement becomes less with
decreasing a. For example, if H is 0.75-accepted for a given ROPE R, 25% of the poste-
rior indicate that q may take values di�erent than the ones included in the ROPE R. It is
clear that the use is limited if the value of a is small or close to zero when speaking of a-
acceptance. Therefore, instead of forcing an acceptance or rejection (which only makes
sense for substantial values of a, a perspective focussing on continuous estimation is
preferred:

7This also weakens Bayes factor tests for precise point null hypotheses, because confirmation of a
hypothesis which is a priori known to be false is of little use. However, there are modifications of Bayes
factor tests like interval Bayes factors that bypass this problem, compare Morey and Rouder (2011).

8This is in close analogy to the prior selection in the Bayesian paradigm: Selecting so-called unin-
formative or flat priors leads to paradoxical behaviour in Bayesian hypothesis testing like the Lindley-
paradox Lindley (1957), see Kelter (2020b). Thus, it is recommended to elicit a prior in a meaningful
way instead of resorting to reference or default solutions. As Je�reys once stated: “There are practical
di�culties in assessing the prior probability in many cases as they actually arise. This is not a situation
to evade, but one to face.” (Je�reys, 1931, p. 34)
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Definition 15.7 (Posteriormass percentage). Let p(q|x) the posterior density for q and
dMPE := E[q|x] the mean posterior e�ect size (where the expectation E is taken with
respect to the posterior probability measure). Let R1, ...,Rm be a partition of the sup-
port of the posterior p(q|x) into di�erent ROPEs corresponding to di�erent hypotheses
H1, ...,Hm, which make statements about the unknown parameter (vector) q. Without
loss of generality, let Rj the ROPE for which dMPE ⇢ Rj, j 2 {1, ...,m}. The posterior
mass percentage PMPRj(dMPE) of dMPE is given as

PMPRj(dMPE) :=
Z

Rj
p(q|x)dq

that is, the percentage of the posterior distribution’s probability mass inside the ROPE
Rj around dMPE.

For simplicity of notation, the subscript Rj is omitted whenever it is clear which
ROPEs Rj are used for partitioning the support of p(q|x). Now, in contrast to strict a-
acceptance or a-rejection rules based on the ROPE Rj, it is proposed to use dMPE and
PMP(dMPE) together to estimate the e�ect size d under under uncertainty, and to quan-
tify this uncertainty via PMP(dMPE). If dMPE is non-zero, the t-test found a di�erence
between both groups. The size of this di�erence is quantified by dMPE itself. The un-
certainty in this statement is quantified by PMP(dMPE). For the developed two-sample
t-test, the following procedure is proposed:

1. For a fixed credible level a, the e�ect size range (ESR) should be reported. That is,
which e�ect sizes d are assignedpositive probabilitymass by the a%HPD interval,
0  a  1. The ESR is a first estimate of credible e�ect sizes a posteriori.

2. The support of the posterior distribution p(d|S,Y) in the Bayesian t-test model
is partitioned into the standardized ROPEs of the e�ect size d of Cohen (1988),
leading to a partition P of the support as given in the definition of PMP(dMPE).

3. Themean posterior e�ect size dMPE is calculated as an estimate of the true e�ect size
d. The surroundingROPE Rj with dMPE ⇢ Rj of the partitionP is selected, and the
exact percentage inside Rj is reported as the posterior mass percentage PMP(dMPE).

The above procedure leads to a simultaneous estimation of the e�ect size d under uncer-
tainty in combinationwith an interval hypothesis test in theHodges-Lehmannparadigm.
Additionally, next to the posteriormean dMPE, the posteriormass percentage PMP(dMPE)
gives a continuous measure of the trustworthiness of the estimate ranging from 0% to
100% (actually from zero to one, but for better interpretability the percentage of poste-
rior probability mass which is located in the ROPE Rj will be used henceforth). dMPE
estimates with PMP(dMPE) > 0.5 (or 50%) could be interpreted as decisive, but do not
need to. PMP(dMPE) can be treated as a continuous measure of support for the e�ect
size estimated by dMPE. There are multiple advantages of using a ROPE Rj and com-
bining it with dMPE and PMP(dMPE), the most important of which may be expressed
in the following result:
Theorem 15.8. Let Rj ⇢ Q a ROPE around dMPE, that is dMPE ⇢ Rj. If Rj is correct,
that is, the true parameter q0 ✓ Rj, then PMP(dMPE) ! 1 for n ! • almost surely, and
if Rj is incorrect, then PMP(dMPE) ! 0 for n ! • p-almost surely, except possibly on
a set of p-measure zero for any prior p on q.
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Proof. See Appendix A.4.

Using dMPE together with PMP(dMPE) therefore will eventually lead to the correct
estimation of d in the sense that when a correct ROPE is chosen, the posterior mass
percentage will converge to one, and if an incorrect ROPE is chosen, the posterior mass
percentage will converge to zero. Thus, the procedure indicates whether d is practically
equivalent to the values given by the ROPE or not. If necessary, explicit hypothesis
testing can be performed via a-rejection. The advantages compared to p-values and
Bayes factors which favour an explicit hypothesis testing perspective are:

1. As Greenland et al. (2016, p. 338) stressed with regard to the dichotomy induced
by hypothesis testing, “estimation of the size of e�ects and the uncertainty sur-
rounding our estimates will be far more important for scientific inference and
sound judgment than any such classification.”

2. In contrast to the Bayes factor (BF) the ROPE and dMPE have important advan-
tages: they do not encourage the same automatic calculation routines as Bayes
factors. For example, Gigerenzer and Marewski (2015) warned explicitly against
Bayes factors becoming the new p-values due to the same automatic calculation
routines, and the approach via the ROPE fosters estimation and judging the evi-
dence based on the continuous support for dMPE provided by PMP(dMPE), instead
of using thresholds. Also, the explicit assignment of positive probability mass to
a point null value which has Lebesgue measure zero as is required for a Bayes
factor calculation is avoided in the proposed procedure. The Hodges-Lehmann
approach is thus uniting parameter estimation and hypothesis testing from the
perspective of prior elicitation.

3. In practice, measuring is always done with finite precision (like blood pressure,
or the heart rate), and therefore the goal rarely is to show (or reject) that the e�ect
size d is exactly equal to zero, but much more that d is negligibly small to deny the
existence of any existing, (clinically) relevant e�ect. Therefore, invariances like
d = 0 can be interpreted as not existing, at least not exactly, and the search for
approximate invariances, as described by a ROPE R = (�.2, .2) around d = 0
is (more) compelling. A clinician will be satisfied by the statement that the true
e�ect size is not exactly zero, but with 95% probability negligibly small.

15.2.8 Illustrative example
To clarify the above line of thought, the following example illustrates the use of the
developed Bayesian t-test in the Hodges-Lehmann paradigm. The Gibbs sampler, the
ROPE, dMPE and PMP(dMPE) are used to test an interval hypothesis in the two-sample
setting. The illustrative example uses data from Wagenmakers et al. (2015), who con-
ducted a randomized controlled trial in which participants had to fill out a personality
questionnaire while rolling a kitchen roll clockwise or counter-clockwise. The mean
score of both groups was compared afterwards. A traditional two-sided two-sample
Welch’s t-test indicates that there is no significant di�erence between both groups, yield-
ing a p-value of 0.4542. What is missing is the e�ect size, which is of much more in-
terest. Note that computing the e�ect size from the raw study data does not quantify
the uncertainty in the data, which is undesirable. From the p-value, a clinician can
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only judge that the results are unlikely to be observed under the null hypothesis. How-
ever, if the e�ect is clinically relevant or negligible remains unknown (or at best only
based on the raw sample e�ect size). In this case, as the p-value is quite large, and the
null hypothesis of no e�ect can not be rejected. Also, it is not possible to state with
certainty that there is indeed no e�ect in the sense of confirming the null hypothesis.
Thus, the only option is to collect more data before drawing a conclusion. In contrast,
Figure 15.1 shows an analysis of the posterior of d that is produced by the Gibbs sam-
pler for the Bayesian two-sample t-test model. In it, the ROPE, dMPE and PMP(dMPE)
are used. The posterior distribution of d is given in the upper plot and shows that the
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Figure 15.1: Posterior distribution of the e�ect size d and analysis for the kitchen roll
RCT of Wagenmakers et al. (2015) via dMPE and PMP(dMPE)

posterior mean is 0.149 and the posterior mode 0.156, that is, the mean posterior e�ect
size given the data is 0.149, no e�ect discernible from zero. The 95% highest density in-
terval ranges from 0.114 to 0.182, showing that with 95% probability, there is no e�ect
discernible from d = 0, given the data. Even when taking the 100% highest posterior
density interval (HPD), this situation does not change as indicated by the upper plot.
The coloured horizontal lines and vertical dotted lines represent the boundaries of the
di�erent e�ect size categories according to Cohen (1988). The lower plot shows the
results of partitioning the posterior mass of d into the ROPEs that correspond to the
di�erent e�ect sizes, which are standardized as small, if d 2 (�0.5,�0.2] [ [0.2, 0.5),
medium, if d 2 (�0.8,�0.5] [ [0.5, 0.8) and large, if d 2 (�•,�0.8] [ [0.8,•) (Co-
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hen, 1988). Now, 100% of this posterior probability mass is located inside the ROPE
(�0.2, 0.2) of no e�ect. So dMPE = 0.149 indicates that no e�ect discernible from zero
(in the sense that e�ect sizes ||delta| < 0.2 are interpreted as scientifically not relevant)
is apparent, and the posterior mass percentage PMP(dMPE) = 1 (or 100%) shows that
the estimate dMPE is trustworthy, as the entire posterior probability mass is located in-
side the ROPE (�0.2, 0.2) of no e�ect (also indicated by the upper plot). Based on this
analysis, one can conclude that given the data, it is highly probable, that there exists
no e�ect. The method provides more insight than the information a p-value is giving:
In the example, the p-value cannot reject the null hypothesis H0 : d = 0 and neither
can the null hypothesis be confirmed. Even if the p-value would have been significant,
this means only that the result will unlikely have happened by chance under the null
hypothesis. The non-significant p-value of 0.4542 in this case does not allow to accept
the null hypothesis H0 : d = 0 of no e�ect. The proposed procedure in contrast does.
Importantly, it allows to accept the interval hypothesis H0 : d 2 (�0.2, 0.2) which is
much more meaningful for practical research. The value dMPE = 0.149 indicates that
there is a non-zero e�ect, but for the situation at hand it is too small to be considered
relevant.

Note also that a Bayes factor would have to be combined with estimation to yield
the same information, and a Bayes factor alone of course would not have provided this
information. In the example, the Bayes factor BF01 of H0 : d = 0 against H1 : d 6= 0
is BF01 = 5.015 when using the recommended wide Cauchy C(0, 1) prior of Rouder
et al. (2009), which indicates only moderate evidence for the null hypothesis H0 : d = 0
according to van Doorn et al. (2021). This is in sharp contrast to the PMP(dMPE) value
of 100%, which strongly suggests that the null hypothesis H0 : d = 0 is confirmed. The
posterior in Figure 15.1 is obtained by the Gibbs sampler given in Corollary 1.

15.3 Simulation study
Primary interest now lies in the ability to correctly estimate di�erent sizes of e�ects via
the combination of the derived t-test, dMPE and PMP(dMPE). The e�ect size ROPEs are
oriented at the standard e�ect sizes of Cohen (1988), where an e�ect is categorized as
small, if d 2 [0.2, 0.5) or d 2 (�0.5,�0.2], medium, if d 2 [0.5, 0.8] or d 2 (�0.8,�0.5]
and large, if d � 0.8 or d  �0.8. Secondary interest lies in analysing if the Gibbs
sampler achieves better performance regarding the type I and II error compared with
Welch’s t-test, the standard NHST solution. The plan of the simulation study is there-
fore as follows: If there is indeed an e�ect, the Gibbs sampler should lead to a poste-
rior distribution of d which lies outside the ROPE (�0.2, 0.2), which is equivalent to
the rejection of the interval null hypothesis H0 : d 2 (�0.2, 0.2). The precise estima-
tion of the size of an e�ect is a second task, one which is more demanding than the
sole rejection of H0 : d 2 (�0.2, 0.2). If the sampler correctly rejects the null hypoth-
esis, because the posteriors concentrate in the set (�•,�0.2] [ [0.2,•), this indicates
that it makes no type II error and subsequently achieves a power of nearly 100%. Of
course, this will depend on the sample sizes in both groups. If additionally, the 95%-
credible intervals of the posteriors concentrate in the set {(�0.5,�0.2][ [0.2, 0.5)}, then
the Gibbs sampler is also consistent for small e�ect sizes, again depending on the sam-
ple size. The same rationale applies for medium e�ect sizes and the interval hypothesis
H0 : d 2 (�0.8, 0.5] [ [0.5, 0.8) and for large e�ect sizes and the interval hypothesis
H0 : d 2 (�•, 0.8] [ [0.8,•). Therefore, three two-component Gaussian mixtures have
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been fixed in advance, each representing one of the three e�ect sizes. For the small
e�ect, the first component is N (2.89, 1.84) and the second component N (3.5, 1.56), re-
sulting in a e�ect size of d = (2.89� 3.5)/

p
((1.562 + 1.842)/2) = �0.35. For amedium

e�ect, the first and second group are simulated asN (254.08, 2.36) andN (255.84, 3.04),
yielding a true e�ect size of

d =
(255.84� 254.08)p
((3.042 + 2.362)/2)

= 0.6467 ⇡ 0.65

For the large e�ect, the first and second group are simulated from normal distributions
N (15.01, 3.42) and N (19.91, 5.82), yielding a true e�ect size of

d =
(19.91� 15.01)p
((5.82 + 3.42)/2)

= 1.03

In each of the three e�ect size scenarios, 100 datasets of the corresponding two-component
Gaussian mixture were simulated for di�erent sample sizes and the Gibbs sampler was
run for each of the 100 datasets for 10000 iterations, using a burnin of 5000 posterior
draws which are discarded. Based on the resulting posterior, dMPE, the ESR and the
ROPE criterion together with a-acceptance are applied, that is, the hypothesis H stat-
ing a small, medium or large e�ect size is a-accepted if the 95%-HPD lies completely
inside the corresponding ROPE {(�0.5,�0.2][ [0.2, 0.5)}, {(�0.8,�0.5][ [0.5, 0.8)} or
{(�•,�0.8] [ [0.8,•)}. This implies that the interval null hypotheses H0 is speci-
fied as H0 : d 2 (�0.5,�0.2] [ [0.2, 0.5), H0 : d 2 (�•, 0.8] [ [0.8,•) or H0 : d 2
(�•, 0.8][ [0.8,•). The recommended wide prior was used for all simulations, which
is detailed later in the prior sensitivity analysis.

In total, the Gibbs sampler should stabilize around the true e�ect size d.9

15.3.1 Results
The upper row of Figure 15.2 shows the results for small e�ect sizes. The two left plots
show the results for n = 100 and n = 200 observations in each group. It is clear that
the 95%-HPDs in both cases fluctuate strongly, indicating that anything from no e�ect
to a medium e�ect is possible. The two right plots of the upper row show the results
when increasing to n = 300 and n = 700 observations per group. The 95%-HPDs get
narrower and stabilize inside the ROPE. While for n = 300 there are still some outliers,
for n = 700 all HPDs have concentrated inside the ROPE of a small e�ect – that is
PMP(dMPE) = 1 (100%) for all iterations – and the estimates dMPE (blue points) have
already converged closely to the true e�ect size indicated by the solid black line. The
necessary sample size for this precision is not small, but the setting of a small e�ect
requires a large sample size to be detected. Also, the applied criterion is very strict in
the sense that it requires PMP(dMPE) = 1, whichmeans the entire posterior distribution
needs to be located inside the ROPE. Less strict requirements like PMP(dMPE) = 0.95
will require smaller sample sizes.

The middle row of Figure 15.2 shows the results for medium e�ect sizes. The two
left plots show the result for n = 100 and n = 200 observations in each group for a
medium e�ect size. Increasing the sample size to n = 400 and n = 600 leads to the

9Here, balanced groups are used, but unbalanced groups could also be treated easily by setting N1(S)
and N2(S) accordingly, as described above.
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Figure 15.2: Posterior Means dMPE and 95% credible-intervals for dMPE for 100 datasets
consisting of sample sizes 2n, with n observations in each group; dotted lines represent
the ROPE boundaries; upper row: Small e�ect size;middle row: Medium e�ect size; lower
row: Large e�ect size

results shown in the two right plots. These figures show that even for sample sizes
of n = 100 in both groups, no 95% HPD lies completely inside the ROPE (�0.2, 0.2)
around d0 = 0 of no e�ect, indicating that while the size of the e�ect may still not be
estimated accurately, a null hypothesis of no e�ect d0 = 0 could always be rejected
when using sample sizes of at least n = 100 in each group and the underlying e�ect has
medium size. When it comes to precisely estimating the size of the e�ect, larger sample
sizes similar to those needed to detect small e�ect sizes are necessary, as shown by the
right plots of the second row.

The lower row of Figure 15.2 shows the results for large e�ect sizes. About n = 50
observations in each group su�ce to produce dMPE and PMP(dMPE) which estimate
small to large e�ects, and thereby reject a null hypothesis of no e�ect, while about n =
150 to n = 200 seem reasonable to precisely estimate a large e�ect size. When using
dMPE (blue points) as an estimator for d, sample sizes of n = 200 produce an estimate
close to the true e�ect size, which in this case was d0 = 1.030723.
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15.3.2 Controlling the type I error rate
In frequentist NHST, the Neyman-Pearson theory aims at controlling the type I error
rate a, which is the probability to reject the null hypothesis H0 falsely, when indeed
it is correct. In the setting of the two-sample Bayesian t-test this equals the rejection
of H0 : d 2 (�0.2, 0.2) although the true e�ect size d0 2 (�0.2, 0.2). Following Co-
hen (1988), an e�ect is considered small if the e�ect size is at least |d| � 0.2, so e�ect
sizes in the interval (�0.2, 0.2) can be considered as noise, or practically equivalent to
zero. Therefore, a ROPE of (�0.2, 0.2) is set around the null value d0 = 0 to compare
the type I error rate of the proposed method against the standard frequentist NHST
solution, Welch’s t-test. That is, the interval hypothesis H0 : d 2 (�0.2, 0.2) is tested
against its alternative H0 : d /2 (�0.2, 0.2). Again, 100 datasets of di�erent sample sizes
are simulated where the true e�ect size d0 is set to zero. The Gibbs sampler should
produce a posterior distribution of d which concentrates inside the ROPE, so that the
null hypothesis H : d0 = 0 is a-accepted. To facilitate comparison with the frequentist
solution, a is set to a = 0.95, see Definition 15.6. Thus, if the 95%-HPD interval lies
(entirely) outside the ROPE R := (�0.2, 0.2), this equals a-rejection for a = 0.95, or in
frequentist terms the rejection of the null hypothesis H0 : d0 = 0 of no e�ect and there-
fore the commitment of a type I error. From the perspective of the proposed Bayesian
two-sample t-test this implies that the interval hypothesis H0 : d 2 (�0.2, 0.2) is falsely
rejected. The following two definitions formalize the type I and II error building on the
concept of a-rejection for the proposed Hodges-Lehmann test:
Definition 15.9 (a type I error). An a type I error happens if the true parameter value
d0 2 H, with H ⇢ R for a ROPE R ⇢ Q, but H is a-rejected for a.
Definition 15.10 (a type II error). An a type II error happens if the true parameter
value d0 /2 H and d0 /2 R, with H ⇢ R for a ROPE R ⇢ Q, but H is a-accepted for a.
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Figure 15.3: Posterior means dMPE and 95% credible-intervals for d for 100 datasets con-
sisting of di�erent sample sizes 2n, with n observations from aN (148.3, 1.34) distribu-
tion and n observations from a N (148.3, 2.04) distribution; dotted lines represent the
ROPE (�0.2, 0.2) of no e�ect size around d = 0; posterior distributions are based on
10000 iterations of the Gibbs sampler with a burnin of 5000 iterations

The left plot in Figure 15.3 shows the results of 100 datasets of size n = 50 in each
group. The first group was simulated as N (148.3, 1.34), and the second group was
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simulated as N (148.3, 2.03). The true e�ect size is

d0 =
µ2 � µ1q
(s2

1 + s2
2 )/2

= 0

The blue points represent dMPE and the blue dotted lines the 95%-HPDs of the posterior
of d. While the estimates fluctuate strongly for n = 50, increasing sample size in each
group successively to n = 200 as shown by the progression of the plots from left to
right shows that false-positive results – a type I errors with a = 0.95 – get completely
eliminated for su�ciently large sample size. The right plot with sample size n = 300
shows that no a type I errorwith a = 0.95 occurs anymore. Also, dMPE stabilizes around
the true value d0 = 0 of no e�ect, indicating its convergence to the true e�ect size d.

The simulations show that the a type I error rate converges to zero when the sample
size is increased. The number of credible intervals which lie partly inside and partly
outside the ROPE R = (�0.2, 0.2) (or equivalently, outside the interval hypothesis H0 :
d 2 (�0.2, 0.2)) decreases to zero. In contrast, p-values are uniformly distributed under
the null hypothesis, so that no matter what size the samples in both groups are, in the
long-run one will still obtain a% (most often 5%) type I errors. Conducting Welch’s
t-tests will thus inevitably lead to a type I error rate of 5% for the corresponding test
level. If the sample size is at least n = 200 in each group, the proposed Bayesian t-test
together with dMPE and PMP(dMPE) performs better with respect to control the a type
I error rate. From a theoretical perspective, it is of course of interest for which values
of a this fact does hold, and indeed, using the two generalized types of type I and II
errors, it can also be shown that the number of type I (type II) errors converges to zero
for any a 6= 0, when a correct (incorrect) ROPE is chosen:
Theorem 15.11. For the Bayesian two-sample t-test model, the probability of making
an a type I error for any a 6= 0 converges to zero for n ! • for any correct ROPE R
around the hypothesis H which makes a statement about the unknown parameter d,
where n is the sample size. Also, the probability of making an a type II error for any
a 6= 0 converges to zero for n ! • for any incorrect ROPE R.

Proof. See Appendix A.5.

The implications of Theorem 3 are that if a correct ROPE R is chosen (that is, the
selected interval hypothesis contains the true parameter value), then the probability of
making a a type I error will eventually become zero for large enough sample size n.
As a special case, this implies that when the ROPE R includes the true parameter d0,
eventually the hypothesis H will be a-accepted for a = 1, that is, accepted, because the
entire posterior concentrates inside the interval hypothesis. If on the other hand an in-
correct ROPE is selected, which does not include the true parameter d0, then eventually
the probability of making a a type II error – that is, accepting H although d0 /2 H – will
converge to zero for growing sample size n.

15.3.3 Prior sensitivity analysis
Section 15.2.3 detailed the independence prior used in themodel, and of specific interest
is of course the influence of this prior on the results produced by the proposed Bayesian
t-test which implements the Hodges-Lehmann paradigm. Therefore, three di�erent
hyperparameter settings were selected to resemble a wide, medium and narrow prior,

325



CHAPTER 15. A NEW BAYESIAN TWO-SAMPLE T-TEST FOR THE EFFECT SIZE
BASED ON THE HODGES-LEHMANN PARADIGM

where the shrinkage e�ect on the standard deviations s2
k , k = 1, 2 caused by the inverse

Gamma prior IG(c0,C0) on s2
k increases with the prior getting narrower (that is, s2

i
is shrunken towards zero). The same applies for the normal prior N (b0, B0) on the
means µk, k = 1, 2. The following hyperparameters were chosen for the three di�erent
settings: For the wide prior, b0 := x̄ and B0 := 10 · s2(x) where x̄ and s2(x) are the
complete sample mean and variance. c0 and C0 were selected as both 0.01 for the wide
prior, implying fatter tails of the inverse Gamma prior than in the medium or narrow
prior. For the medium prior, B0 was decreased to 5 · s2(x), and c0 and C0 decreased to
0.1 both. For the narrow prior finally, B0 := s2(x) and c0 = C0 = 1, which is the most
informative of all three priors.

Subsequently, 100 datasets with n = 100 observations in each group were simu-
lated, where the first group was generated as N (0, 1) and the second as N (1, 1). The
Gibbs sampler was run for 10000 iterations with a burn-in of 5000 once for each prior
on each dataset. Figure 15.4 shows the results of the simulations. Here, the resulting
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Figure 15.4: Prior sensitivity analysis for the N (b0, B0) prior on the means µk and in-
verse Gamma prior IG(c0,C0) on the variances s2

k , k = 1, 2 for 100 datasets with first
group simulated as N (0, 1) and the second as N (1, 1)

posterior densities of dMPE are overlayed in Figure 15.4, and it becomes clear that the
wide andmediumprior do result in barely di�ering posteriors. When using the narrow
prior the shrinkage moves the posterior slightly towards smaller values of d. The lower
plot in Figure 15.4 also shows the posterior distributions of di�erences between means
obtained from the three priors: The left hand plot shows the posterior distribution of
di�erences between dMPE obtained via a wide and a medium prior. The middle plot
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shows the posterior distribution of di�erences between dMPE obtained via a wide and a
narrow prior, and the right hand plot the posterior distribution of di�erences between
dMPE obtained via a medium and a narrow prior. The results show that in all cases the
di�erences are of tiny magnitude, indicating that the proposed t-test is quite robust to
the prior hyperparameter selection. Of course, it can happen that dMPE will be drawn
towards smaller values when switching from the wide to the narrow prior, but the pos-
terior mass percentage supporting a large e�ect will not vary much as shown by the
nearly identical resulting posterior densities in Figure 15.4, which is a strength of the
continuous quantification through PMP(dMPE). Based on the sensitivity analysis all
three hyperparameter settings di�er only slightly, and therefore the wide prior seems
suitable for most applications, as it places itself between the other two priors.

15.4 Discussion
The theory presented in this chapter proposed a new Bayesian two-sample t-test which
focusses on e�ect size estimation and implements the Hodges-Lehmann approach by
replacing a traditional point null hypothesis with an interval hypothesis. Following
the proposal of a shift from hypothesis testing to estimation under uncertainty, a Gibbs
sampler was constructed for the Gaussian mixture model that underlies the proposed
test. Statistical inference is performed for the e�ect size d, which is the quantity of in-
terest in most biomedical research like clinical trials. Also, the dichotomy of the ROPE
decision rule of Kruschke and Liddell (2018b) was resolved by introducing the mean
probable e�ect size dMPE as an estimator of d, combined with the posterior mass per-
centage PMP(dMPE), a continuous measure which quantifies the support for the evi-
dence suggested by dMPE. In summary, the proposal shows that a Hodges-Lehmann
test for an interval hypothesis is more reasonable than a test of a point null hypothesis.

Theorems 15.8 and 15.11 showed that the use of the proposed test leads to a con-
sistent estimation procedure which shifts from hypothesis testing to estimation under
uncertainty in the spirit of the Hodges-Lehmann paradigm which was proposed first
by Hodges and Lehmann (1954) and advocated later by Rao and Lovric (2016). Un-
der any correct ROPE R, the number of introduced a type I errors converges to zero
a.s. under any prior p on d, while under any incorrect ROPE (which means the ROPE
picked by the researcher does not cover the true parameter value d0), the number of
introduced a type II errors converges to zero a.s. under any prior p on d. The ROPE
models an interval hypothesis in the Hodges-Lehmann approach here. Together, these
properties and the introduced concept of a-rejection make the proposed method an at-
tractive alternative to existing solutions via p-values or the Bayes factor for a precise
point null hypothesis.

One important limitation of the approach is that the results depend on the chosen
priors for µi and si. Although quite robust, especially the choice of the inverse Gamma
prior for the variances may be questioned. A sensitivity analysis using di�erent priors
for the variances could be useful, and one remedy which allows changing the priors
would be to switch to di�erent sampling techniques, for example Hamiltonian Monte
Carlo in Stan (Carpenter et al., 2017). Also, the speed of convergence to an entire elim-
ination of type I errors which depends on the sample size may be slow, although the
simulation results are promising. However, while here a Gibbs sampler was derived,
the availability of modern MCMC methods allows to apply the idea presented in this
chapter to a wide variety of models, compare Chapter 9 and Chapter 13. Thus, one
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could implement a similar test for the regression coe�cients in the survival model con-
sidered in Chapter 13 by using Stan without the need to derive a Gibbs sampler. The
same holds for other tests like the ones considered in Chapter 12.

The proposed method is thus widely applicable and can easily be generalized to
other statistical models. Also, in light of the theoretical results, it may be helpful in im-
proving the reproducibility of biomedical research, especially by reducing the number
of false-positive results, which is one of the biggest problems of the biomedical sciences,
seeMcElreath and Smaldino (2015). Finally, it should be noted that the approach is dif-
ferent both from Bayes factors and p-values, as a precise hypothesis is replaced with an
interval hypothesis. The proposed method has the benefit that hypothesis testing is
performed with respect to a more realistic hypothesis, and e�ect size estimation under
uncertainty is built into the procedure from the start. Therefore, the main advantage
may be seen in the shift towards interval hypothesis testing in the spirit of Hodges and
Lehmann (1954) and simultaneous e�ect size estimation.
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Ian Hacking
Trial by number

Statistical hypothesis testing has become the central method for the judgement of
empirical findings in the biomedical, social and cognitive sciences. As discussed in
Chapter 1, in recent years, the ongoing problems with null hypothesis significance test-
ing and p-values have shown that the underlying paradigm for quantifying statistical
evidence about a research hypothesis is highly problematic, and the situation has been
termed a scientific replication crisis.

The Evolution of Statistical Hypothesis Testing
In this thesis, the evolution of statistical hypothesis testing was reconstructed and it
was shown that major problems of the replication crisis are due to the misapplication
or application of theories outside of their intended contexts.

In Part I it was shown that various recently observed problems with the repro-
ducibility of research findings can be attributed to the underlying statistical theory:
The inconsistent hybrid approach which emerged out of Fisher’s theory of significance
tests and the Neyman-Pearson theory that itself was created for applications like qual-
ity control can be seen as a primary reason of the unsatisfactory status quo of statistical
hypothesis testing in science. The blend of p-values and test levels is not allowed and
was neither intended by Fisher nor by Neyman and Pearson. Part II contrasted the
development of these frequentist theories of statistical hypothesis testing with the evo-
lution of Bayesian approaches, in particular, the Bayes factor. It was shown that these
approaches are much more in the veins of a theory for testing statistical hypotheses
in scientific research. However, computational obstacles have historically prevented a
more widespread use of Bayesian hypothesis tests as shown in Part III, and the recent
advent of Markov-Chain-Monte-Carlo and Hamiltonian-Monte-Carlo algorithms have
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solved this main hurdle e�ectively now. The philosophical considerations in Part IV
showed that Bayes theorem can be interpreted from a philosophy of science perspective
as a statistical implementation of probabilistic enumerative induction. The following
axiomatic analysis in Part IV demonstrated that the currently experienced replication
problems can be attributed in large parts to the axiomatic foundations of statistical in-
ference. The violation of certain principles of statistical inference is highly undesirable
from a scientific perspective, and the conflict of frequentist hypothesis testing theories
with the likelihood principle presents a profound problem for application of these the-
ories in scientific contexts. In contrast, Bayesian theories of hypothesis testing are more
adequate for application in scientific research contexts due to their coherence with the
likelihood principle, and the resulting stopping rule and censoring principle. Thus,
Bayesian hypothesis tests present an attractive alternative to mitigate the replication
problems in biomedical research from a purely axiomatic point of view.

Bayesian Statistical Solutions to the Replication Crisis
Based on the axiomatic foundations discussed in Chapter 11, it was shown that a shift
towards robust Bayesian analysis is required to improve the reproducibility of research.
The new results and solutions presented in Part V demonstrated that for the majority
of statistical models in the biomedical and cognitive sciences robust Bayesian hypoth-
esis tests are available, compare Chapter 12. Also, it was shown in Chapter 13 that
even complex statistical models are tractable through the use of modern Hamiltonian-
Monte-Carlo algorithms, and the Bayes factor can be obtained in such situations based
only on the posterior MCMC sample. Also, new results in Chapter 14 demonstrated
that the implicit error control of Bayesian hypothesis tests is comparable to frequen-
tist tests based on p-values, and that a variety of Bayesian evidence measures attains
reasonable type I error control and power in practice. This provides a further justifi-
cation for Bayesian hypothesis tests and allows to select between competing Bayesian
evidence measures for hypothesis testing. Furthermore, robust Bayesian hypothesis
tests can be interpreted as slightly more conservative than frequentist tests based on p-
values, and as false-positive results are among the biggest problems in the replication
crisis (Smaldino and McElreath, 2016; McElreath and Smaldino, 2015), a shift towards
these Bayesian hypothesis tests is an attractive solution, compare Chapter 14.

A Paradigm Change towards Hodges-Lehmann Tests
Next to shifting towards robust Bayesian hypothesis tests, an important step to im-
prove the reproducibility of science is a shift towards what could be called the Hodges-
Lehmann paradigm. Statistical hypothesis testing has become a dominating inferential
procedure in a wide range of sciences (Howie, 2002), and since the foundational contri-
butions of Fisher, Neyman and Pearson to frequentist hypothesis testing, and Wrinch,
Je�reys and Haldane to Bayesian hypothesis testing, the focus on precise point null hy-
potheses has barely changed. The frequentist hybrid approach has been adopted by
more and more researchers (Halpin and Stam, 2006) to test what is today well-known
as a point null hypothesis. While Bayesian hypothesis tests are becoming more pop-
ular, the majority of these also focusses on point null hypotheses, which is primarily
due to the fact that the underlying mathematical models were easier to handle when
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Je�reys’ and others developed first Bayesian hypothesis tests based on the Bayes fac-
tor, compare Chapter 7. However, the availability of modernMCMC algorithms allows
to transition easily towards more realistic interval hypotheses as shown in Chapter 15.
The application of point null hypothesis testing has been debated extensively since its
investigation, both by statisticians and non-statisticians. Early critics include Buchanan-
Wollaston (1935), and in the last decades the proposal of an entire ban of the method
has grown in popularity (Lindley, 1972; Hunter, 1997; Gigerenzer, 2004). As shown
in Part I, the root of all problems is often declared to be the p-value in Fisher’s theory
of significance testing. Still, one of the most important criticisms of statistical hypoth-
esis testing includes the relevance and validity of a precise point null hypothesis for
scientific research:

“The decision whether or not to formulate an inference problem as one of
testing a precise null hypothesis centers on assessing the plausibility of such
an hypothesis. Sometimes this is easy, as in testing for the presence of ex-
trasensory perception, or testing that a proposed law of physics holds. Often
it is less clear. In medical testing scenarios, for instance, it is often argued
that any treatment will have some e�ect, even if only a very small e�ect,
and so exact equality of e�ects (between, say, a treatment and a placebo)
will never occur.”
Berger et al. (1994, p. 145)

In a vast range of research in the biomedical and cognitive sciences the test of a precise
point null hypothesis like H0 : d = 0 is only of limited use. In exploratory research,
there may be no precise point null hypothesis available. Also, in settings with lim-
itedmeasuring precision or moderate measurement error a precise null hypothesis will
eventually be rejected because even if the null hypothesis is true data cannot be mea-
sured with infinite precision. Furthermore, researchers are often less interested in re-
jecting or accepting a precise point null hypothesis, but in the size of an observed e�ect
and its relevance from a scientific perspective in the application context. Researchers
oftenwant to knowwhether a parameter value is located inside or outside some bound-
aries which separate relevant from negligible e�ects. Rouder et al. argued:

“It is reasonable to ask whether hypothesis testing is always necessary. In
many ways, hypothesis testing has been employed (...) too often and too
hastily. (...) As a rule of thumb, hypothesis testing should be reserved for
those cases in which the researcher will entertain the null as theoretically
interesting and plausible, at least approximately.”
Rouder et al. (2009, p. 235)

Hodges and Lehmann (1954) discussed the validity of statistical hypotheses more than
half a century ago, and their proposal was widely ignored over the course of time. Al-
though the debate about the validity of point null hypotheses never came to an end,
interest in it was only moderate which probably was also due to computational obsta-
cles and the fact that for moderate amounts of data, a point null hypothesis provides
a reasonable approximation of a small interval hypothesis (Berger and Delampady,
1987). However, in times where big data are becoming abundant, sample sizes grow
larger and data sets are often high-dimensional, this argument does not hold anymore.

Thus, Hodges and Lehmann1 identified onemajor flaw in the appropriateness of the
status quo for scientific contexts when proposing the test of small interval hypotheses

1Erich Leo Lehmann was PhD student of Jerzy Neyman.
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more than half a century ago: Point null hypotheses are of questionable use and were
chosen primarily because they were mathematically easy to handle. Alan Birnbaum2

provided the axiomatic analysis which ultimately demonstrated the severe problems
of frequentist hypothesis tests for scientific research as discussed in Chapter 11. A
shift toward robust Bayesian hypothesis test presents an attractive solution as shown
in Chapter 11. However, most of these Bayesian tests also concentrate on testing pre-
cise hypotheses. Recently, Rao and Lovric (2016)3 have argued for a shift towards
the Hodges-Lehmann paradigm as a more realistic approach to statistical hypothesis
testing. Section 15 provided a first step towards the Hodges-Lehmann paradigm, and
the approach presented there can easily be generalized to a wide range of statistical
models as long as the posterior distribution is obtainable via Markov-Chain-Monte-
Carlo. However, more work is required to transition from testing precise hypotheses
towards testing small interval hypotheses in the Bayesian approach. Shifting towards
Bayesian Hodges-Lehmann tests can be seen as the next important step in the evolu-
tion of statistical hypothesis testing, and to increase the reproducibility of science. So-
lutions to the replication crisis should thus focus on establishing robust Bayesian hy-
pothesis tests as the standard in scientific research and transitioning towards Bayesian
Hodges-Lehmann tests. Although these Bayesian statistical solutions are only a piece
in the puzzle of the solution to the replication crisis in the biomedical sciences, it may be
worthwhile to keep in mind Alan Birnbaum’s words when developing new statistical
hypothesis tests from a Hodges-Lehmann perspective in the future:

T�� ���� �������� ����� ��� �������� ��������, ��� �� �������� ����� ���
�������� ����������� �������� ��� ��� �������������� �� ���������� ��������
��������, ��� B�������.
Alan Birnbaum
The anomalous concept of statistical evidence, 1964

2Alan Birnbaum was PhD student of Erich Leo Lehmann.
3Calyampudi Radhakrishna Rao was PhD student of Ronald Fisher.
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A.1 Derivation of the single-block Gibbs sampler
This appendix provides the basis for the derivation of the joint posterior and full con-
ditionals for the single-block Gibbs sampler in Appendix A.2.

Bayesian parameter estimation for known allocations
In this section, for the setting when the allocations S are known the posterior distribu-
tion of µk, s2

k given the complete data S, y are derived. Theweights (h1, ..., hK) are known
in this case because for every observation yi 2 (y1, ..., yN) it is known to which group yi
belongs, that is, the quantities Si = k, k 2 {1, ...K} are available for all i 2 {1, ...,N}. In
the setting of a two-sample t-test between two groups with equal sample sizes n1 = n2
and n1 + n2 = N, the belonging of an observation yi to its group is known for all ob-
servations i 2 {1, ...,N}. The underlying data generating process therefore can be as-
sumed to consist of a mixture of K = 2 components with weights h1 = h2 = 0.5. This
makes inference in the mixture model much easier compared to the case when both the
weights (h1, ...hK) as well as the component parameters (µ1, ..., µK) and (s2

1 , ..., s
2
K) are

unknown. To conduct inference about the unknown parameters, the necessary group-
specific quantities are the number Nk(S) of observations in group k, the within-group
variance s2y,k(S) and the group mean ȳk(S):

Nk(S) := |{i : Si = k}|

ȳk(S) :=
1

Nk(S)
Â

i:Si=k
yi

s2y,k(S) :=
1

Nk(S)
Â

i:Si=k
(yi � ȳk(S))2

where | · | denotes the cardinality of a set. These quantities depend on S, so the clas-
sification of the observation yi to the component Si = k needs to be available. When
Si = k for an observation yi holds, then the observational model for observation yi is
N (µk, s2

k ) and yi contributes to the complete-data likelihood p(y|µ, s2, S) by a factor of

1q
2ps2

k

exp
 
� 1
2s2

k
(yi � µk)

2

!
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Taking into account all observations y1, ..., yN, the complete data likelihood function
can be written as

p(y|µ, s2, S) =
K

’
k=1

(
1

2ps2
k
)Nk(S)/2 · exp(�1

2 Â
i:Si=k

(yi � µk)
2

s2
k

)

The complete-data likelihood is a product of K components, of which each summarizes
the information about the i-th group, i 2 {1, ...,K}. These K factors are then combined
in a Bayesian analysis with a prior. Interest lies in the posterior of both µk, s2

k , and
first two di�erent cases are considered, which will eventually lead to the solution of
the joint posterior for µk and s2

k . In the first case, when the variance s2
k is fixed, the

complete-data likelihood function as a function of µ is the kernel of a univariate normal
distribution (Held and Sabanés Bové, 2014, p. 181). Choosing a N (b0, B0)-distribution
as a conjugate prior, the posterior density of µk given s2

k and the Nk(S) observations in
group k can be derived as

p(µk|s2
k , S, y) µ p(y|µk, s2

k , S) · p(µk, s2
k , S)

(1)
= p(y|µk, s2

k , S) · p(µk)

= (
1

2ps2
k
)Nk(S)/2 · exp(�1

2 Â
i:Si=k

(yi � µk)
2

s2
k

)

· 1p
2pB0

exp(�1
2
(µk � b0)2

B0
) (A.1)

where in (1) the fact that s2
k is assumed to be given and the allocations S are known

constants, too, was used. For a sample of size n from aN (µ, s) distributionwith known
variance s2, a standard Bayesian analysis yields, see e.g. (Held and Sabanés Bové, 2014,
p. 181), that the likelihood

L(µ) µ exp
⇣
� n
2s2 (µ� x̄)2

⌘

when combined with a prior µ ⇠ N (n, t2) leads to the posterior

µ|x ⇠ N
 ✓

n
s2 +

1
t2

◆�1
·
✓
nx̄
s2 +

n

t2

◆
,
✓

n
s2 +

1
t2

◆�1
!

(A.2)

Substituting n = b0 and t2 = B0 for the prior of µ as well as µk for µ and s2
k for s2 in

the likelihood, the posterior p(µk|s2
k , S, y) in Equation (A.1) based on Equation (A.2)

becomes

p(µk|s2
k , S, y) ⇠ N

0

@
 
Nk(S)

s2
k

+
1
B0

!�1

·
 
Nk(S)ȳk(S)

s2
k

+
b0
B0

!
,

 
Nk(S)

s2
k

+
1
B0

!�1
1

A

(A.3)

By Equation (A.3), the posterior can be written as

µk|s2
k , S, y ⇠ N (bk(S), Bk(S))
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with

Bk(S)�1 = B�1
0 + s�2

k Nk(S) (A.4)
bk(S) = Bk(S)(s�2

k Nk(S)ȳk(S) + B�1
0 b0) (A.5)

where for an empty group k the term Nk(S)ȳk(S) is defined as zero. In the second case,
if the mean µk is regarded as fixed, the complete-data likelihood as a function of s2

k is
the kernel of an inverse Gamma density. Choosing the conjugate inverse Gamma prior
s2
k ⇠ IG(c0,C0), a standard Bayesian analysis – for details, see Held and Sabanés Bové

(2014, p. 181) – yields the posterior of s2
k |µk, S, y as

p(s2
k |µk, S, y) ⇠ IG(ck(S),Ck(S)) (A.6)

with

ck(S) = c0 +
1
2
Nk(S) (A.7)

Ck(S) = C0 +
1
2 Â

i:Si=k
(yi � µk)

2 (A.8)

The case of interest here is when both µk and s2
k are unknown, and in this case a closed-

form solution for the joint posterior p(µk, s2
k |S, y) does exist only under specific condi-

tions. That is, the prior variance of the mean µkof group k must depend on s2
k through

the relation B0,k =
s2
k

N0
, where N0 is a newly introduced hyperparameter in the prior of

µk, that is, the prior µk ⇠ N (b0, B0) becomes µk ⇠ N (b0, s2
k/N0). The joint posterior

then can be rewritten as

p(µ, s2|S, y) = p(µ1, ..., µK, s2
1 , ..., s

2
K|S, y)

(1)
=

K

’
k=1

p(µk, s2
k |S, y)

(2)
=

K

’
k=1

p(µk|s2
k , S, y)| {z }

=:(A)

· p(s2
k |S, y)| {z }
:=(B)

(A.9)

where (1) follows from the fact that the group parameters µk, s2
k are assumed to be

independent across groups and (2) follows from factorising the joint posterior as

p(µk, s2
k |S, y) =

p(µk, s2
k , S, y)

p(S, y)
=

p(µk, s2
k , S, y)p(s

2
k , S, y)

p(S, y)p(s2
k , S, y)

=
p(µk, s2

k , S, y)
p(s2

k , S, y)
p(s2

k , S, y)
p(S, y)

= p(µk|s2
k , S, y) · p(s2

k |S, y)

As the factors (A) and (B) in Equation (A.9) were already derived in Equation (A.3)
and Equation (A.6) (Equation (A.6) still needs to be marginalized with respect to µk to
match factor (B)) for arbitrary k, and the factor (A) of the posterior in Equation (A.9)
is normal-distributed N (bk(S), Bk(S)) with parameters

Bk(S)
(1)
=

1
B�1
0 + s�2

k Nk(S)
(2)
=

1
s�2
k N0 + s�2

k Nk(S)
=

1
N0 + Nk(S)

s2
k (A.10)
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and

bk(S)
(3)
= Bk(S)(s�2

k Nk(S)ȳk(S) + B�1
0 b0)

(4)
= Bk(S)(s�2

k Nk(S)ȳk(S) +
N0

s2
k
b0) (A.11)

(5)
=

1
N0 + Nk(S)

s2
k (s

�2
k Nk(S)ȳk(S) +

N0

s2
k
b0)

=
Nk(S)ȳk(S) + N0b0

N0 + Nk(S)

=
N0

Nk(S) + N0
b0 +

Nk(S)
Nk(S) + N0

ȳk(S)

where in (1) Bk(S)�1 = B�1
0 + s�2

k Nk(S) from Equation (A.4) was used and in (2) the
relation B0 = B0,k =

s2
k

N0
, where N0 is the newly introduced hyperparameter. In (3),

Equation (A.5) was used, in (4) again the relation B0,k =
s2
k

N0
, in (5) the right-hand side

of Equation (A.10) was substituted for Bk(S) in Equation (A.11). The remaining term
(B) of Equation (A.9) is the marginal posterior of s2

k , that is

(B) := p(s2
k |S, y) =

Z
p(s2

k |µk, S, y)dµk

and by integrating out µk, a standard Bayesian analysis shows that the marginal pos-
terior of s2

k is distributed as inverse Gamma IG(ck(S),Ck(S)), where ck(S) is already
given in Equation (A.7), and the parameter Ck(S) in Equation (A.8) changes to

Ck(S) = C0 +
1
2

✓
Nk(S)s2y,k(S) +

Nk(S)N0
Nk(S) + N0

(ȳk(S)� b0)2
◆

This is, because by combining an inverse-gamma prior with the normal likelihood with
known mean yields an inverse-gamma posterior as shown above and marginalising
this posterior for the variance yields exactly another inverse-gamma distribution with
di�erent parameters. For details see Held and Sabanés Bové (2014).

Application to the two-sample t-test – Derivation of the marginal and
joint posterior distributions

In the case of the two-sample t-test, the general derivations above can be specifiedmore
precisely. For two groups, the mixture can be interpreted as a data generating process
consisting ofK = 2 components. Theweights h1 and h2 are both equal to 1/2 for equally
sized groups, that is, N = n1+ n2 with n1 being the sample size of group one and n2 the
sample size of group two and n1 = n2. Taking into account all observations y1, ..., yN,
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the complete data likelihood function can be written as

p(y|µ, s2, S) =
2

’
k=1

(
1

2ps2
k
)Nk(S)/2 · exp(�1

2 Â
i:Si=k

(yi � µk)
2

s2
k

)

= (
1

2ps2
1
)N1(S)/2 · exp(�1

2 Â
i:Si=1

(yi � µ1)2

s2
1

)

· ( 1
2ps2

2
)N2(S)/2 · exp(�1

2 Â
i:Si=2

(yi � µ2)2

s2
2

)

where N1(S) = N2(S) = N/2. The posteriors p(µk|s2
k , S, y) for k = 1, 2 in Equation

(A.1) are then N (bk(S), Bk(S))-distributed with

Bk(S) =
1

N0 + Nk(S)
s2
k (A.12)

bk(S) =
N0

Nk(S) + N0
b0 +

Nk(S)
Nk(S) + N0

ȳk(S) (A.13)

where also N1(S) = N2(S) = N/2 are half of total sample size and ȳk(S) is the mean
of group k = 1, 2. After choosing the conjugate prior µk ⇠ N (b0, B0), these posteriors
can be computed. The posteriors

s2
k |µk, S, y ⇠ IG(ck(S),Ck(S))

with

ck(S) = c0 +
1
2
Nk(S) (A.14)

Ck(S) = C0 +
1
2 Â

i:Si=k
(yi � µk)

2 (A.15)

for k = 1, 2 become

s2
1 |µ1, S, y ⇠ IG

 
c0 +

1
2
N1(S),C0 +

1
2 Â

i:Si=1
(yi � µ1)

2

!

s2
2 |µ2, S, y ⇠ IG

 
c0 +

1
2
N2(S),C0 +

1
2 Â

i:Si=2
(yi � µ2)

2

!

and again, after selecting a conjugate inverse-gamma prior s2
k ⇠ IG(c0,C0) for k = 1, 2,

these posteriors are also completely determined. The necessary marginal posteriors for
s2
k for k = 1, 2 are then obtained, following the derivations in the above section, as

p(s2
1 |S, y) ⇠ IG

✓
c0 +

1
2
N1(S),C0 +

1
2

✓
N1(S)s2y,1(S) +

N1(S)N0
N1(S) + N0

(ȳ1(S)� b0)2
◆◆

and

p(s2
2 |S, y) ⇠ IG

✓
c0 +

1
2
N2(S),C0 +

1
2

✓
N2(S)s2y,2(S) +

N2(S)N0
N2(S) + N0

(ȳ2(S)� b0)2
◆◆
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These marginal posteriors are completely determined, once c0,C0 is given by the se-
lected prior IG(c0,C0) and the group variances s2y,1(S) and s2y,2(S) are calculated. Again
here, N1(S) = N2(S) = N/2 due to equal sizes of both groups, and the ȳ1(S) and ȳ2(S)
are the means of the two groups. The joint posterior, which is the ultimate quantity of
interest, then can be rewritten as

p(µ, s2|S, y) = p(µ1, µ2, s2
1 , s

2
2 |S, y) =

2

’
k=1

p(µk, s2
k |S, y) =

2

’
k=1

p(µk|s2
k , S, y)| {z }

=:(A)

· p(s2
k |S, y)| {z }
:=(B)

= p(µ1|s2
1 , S, y)p(s

2
1 |S, y) · p(µ2|s2

2 , S, y)p(s
2
2 |S, y)

A.2 Proof of Theorem 15.2 – Derivation of the full condi-
tionals for the single-block Gibbs sampler

Proof. To make Gibbs sampling possible, the full conditionals of

p(µ, s2|S, y) = p(µ1, µ2, s2
1 , s

2
2 |S, y)

need to be derived. These are given as

p(µ1|µ2, s2
1 , s

2
2 , S, y)

p(µ2|µ1, s2
1 , s

2
2 , S, y)

p(s2
1 |µ1, µ2, s2

2 , S, y)
p(s2

2 |µ1, µ2, s2
1 , S, y)

The first conditional distribution p(µ1|µ2, s2
1 , s

2
2 , S, y) is given as:

p(µ1|µ2, s2
1 , s

2
2 , S, y) =

p(µ1, µ2, s2
1 , s

2
2 , S, y)

p(µ2, s2
1 , s

2
2 , S, y)

=
p(µ1, µ2, s2

1 , s
2
2 |S, y)⇠⇠⇠⇠p(S, y)

p(µ2, s2
1 , s

2
2 |S, y)⇠⇠⇠⇠p(S, y)

(1)
=

’K
k=1 p(µk|s2

k , S, y)p(s
2
k |S, y)

p(µ2, s2
2 |S, y)p(s2

1 |S, y)
(2)
=

p(µ1|s2
1 , S, y)⇠⇠⇠⇠⇠⇠p(s2

1 |S, y)⇠⇠⇠⇠⇠⇠⇠⇠
p(µ2|s2

2 , S, y)⇠⇠⇠⇠⇠⇠p(s2
2 |S, y)

⇠⇠⇠⇠⇠⇠⇠⇠
p(µ2|s2

2 , S, y)⇠⇠⇠⇠⇠⇠p(s2
2 |S, y)⇠⇠⇠⇠⇠⇠p(s2

1 |S, y)
= p(µ1|s2

1 , S, y)

where in (1) the independence of s2
1 from µ2, s2

2 wasused, so p(µ2, s2
1 , s

2
2 |S, y) = p(µ2, s2

2 |S, y) ·
p(s2

1 |S, y) holds, and p(µ1, µ2, s2
1 , s

2
2 |S, y) = p(µ1, s2

1 |S, y)p(µ2, s2
2 |S, y) uses the inde-

pendence between groups. Also, p(µ1, s2
1 |S, y) = p(µ1|s2

1 , S, y)p(s
2
1 |S, y) and p(µ2, s2

2 |S, y) =
p(µ2|s2

2 , S, y)p(s
2
2 |S, y). In (2), the factorization p(µ2, s2

2 |S, y) = p(µ2|s2
2 , S, y) · p(s2

2 |S, y)
was used.
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The full conditional of µ2 is given by p(µ2|µ1, s2
1 , s

2
2 , S, y), which is derived as

p(µ2|µ1,s2
1 , s

2
2 , S, y) =

p(µ2, µ1, s2
1 , s

2
2 , S, y)

p(µ1, s2
1 , s

2
2 , S, y)

=
p(µ2, µ1, s2

1 , s
2
2 |S, y)⇠⇠⇠⇠p(S, y)

p(µ1, s2
1 , s

2
2 |S, y)⇠⇠⇠⇠p(S, y)

=
’K

k=1 p(µk|s2
k , S, y)p(s

2
k |S, y)

p(µ1, s2
1 |S, y)p(s2

2 |S, y)

= ⇠⇠⇠⇠⇠⇠⇠⇠
p(µ1|s2

1 , S, y)⇠⇠⇠⇠⇠⇠p(s2
1 |S, y) p(µ2|s2

2 , S, y)⇠⇠⇠⇠⇠⇠p(s2
2 |S, y)

⇠⇠⇠⇠⇠⇠⇠⇠
p(µ1|s2

1 , S, y)⇠⇠⇠⇠⇠⇠p(s2
2 |S, y)⇠⇠⇠⇠⇠⇠p(s2

1 |S, y)
= p(µ2|s2

2 , S, y)

where the reasoning is the same as in the derivation of the conditional distribution for
µ1. The conditional distribution of s2

1 is p(s2
1 |µ1, µ2, s2

2 , S, y), which is derived as:

p(s2
1 |µ1, µ2, s2

2 , S, y) =
p(s2

1 , µ1, µ2, s2
2 , S, y)

p(µ1, µ2, s2
2 , S, y)

=
p(s2

1 , µ1, µ2, s2
2 |S, y)⇠⇠⇠⇠p(S, y)

p(µ1, µ2, s2
2 |S, y)⇠⇠⇠⇠p(S, y)

=
p(s2

1 , µ1, µ2, s2
2 |S, y)

p(µ1, µ2, s2
2 |S, y)

(1)
=

’2
k=1 p(s

2
k |µk, S, y) · p(µk|S, y)

p(µ1|S, y) · p(µ2, s2
2 |S, y)

(2)
=

p(s2
1 |µ1, S, y) ·⇠⇠⇠⇠⇠⇠p(µ1|S, y) ·⇠⇠⇠⇠⇠⇠⇠⇠

p(s2
2 |µ2, S, y) ·⇠⇠⇠⇠⇠⇠p(µ2|S, y)

⇠⇠⇠⇠⇠⇠p(µ1|S, y) ·⇠⇠⇠⇠⇠⇠⇠⇠
p(s2

2 |µ2, S, y) ·⇠⇠⇠⇠⇠⇠p(µ2|S, y)
= p(s2

1 |µ1, S, y)

where in (1) first the independence of parameters between both groups was used,
that is, the independence of µ1, s2

1 and µ2, s2
2 and second (as a special case of this

fact) the independence of µ1 and µ2, s2
2 was used. Therefore, p(s2

1 , µ1, µ2, s2
2 |S, y) =

p(s2
1 , µ1|S, y)p(s2

2 , µ2|S, y) holds, and as p(s2
1 , µ1|S, y) = p(s2

1 |µ1, S, y)p(µ1|S, y) and
p(s2

2 , µ2|S, y) = p(s2
2 |µ2, S, y)p(µ2|S, y), it follows that

p(s2
1 , µ1, µ2, s2

2 |S, y) =
2

’
k=1

p(s2
k |µk, S, y) · p(µk|S, y)

Also, p(µ1, µ2, s2
2 |S, y) = p(µ1|S, y) · p(µ2, s2

2 |S, y) because of the independence of µ1
from µ2, s2

2 . In (2) the factorization p(µ2, s2
2 |S, y) = p(s2

2 |µ2, S, y) · p(µ2|S, y)was used.
The derivation of the conditional distribution p(s2

2 |µ1, µ2, s2
1 , S, y) of s2

2 proceeds
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similarly as follows:

p(s2
2 |µ1, µ2, s2

1 , S, y) =
p(s2

1 , µ1, µ2, s2
2 , S, y)

p(µ1, µ2, s2
1 , S, y)

=
p(s2

1 , µ1, µ2, s2
2 |S, y)⇠⇠⇠⇠p(S, y)

p(µ1, µ2, s2
1 |S, y)⇠⇠⇠⇠p(S, y)

=
p(s2

1 , µ1, µ2, s2
2 |S, y)

p(µ1, µ2, s2
1 |S, y)

(1)
=

’2
k=1 p(s

2
k |µk, S, y) · p(µk|S, y)

p(µ2|S, y) · p(µ1, s2
1 |S, y)

(2)
= ⇠⇠⇠⇠⇠⇠⇠⇠

p(s2
1 |µ1, S, y) ·⇠⇠⇠⇠⇠⇠p(µ1|S, y) · p(s2

2 |µ2, S, y) · p(µ2|S, y)
p(µ2|S, y) ·⇠⇠⇠⇠⇠⇠⇠⇠

p(s2
1 |µ1, S, y) ·⇠⇠⇠⇠⇠⇠p(µ1|S, y)

= ⇠⇠⇠⇠⇠⇠p(µ2|S, y) · p(s2
2 |µ2, S, y)

⇠⇠⇠⇠⇠⇠p(µ2|S, y)
= p(s2

2 |µ2, S, y)

where in (1) first the independence of parameters between both groups, that is, the
independence of µ1, s2

1 and µ2, s2
2 and second (as a special case of this) the indepen-

dence of µ2 and µ1, s2
1 was used. Therefore, p(s2

1 , µ1, µ2, s2
2 |S, y) = ’K

k=1 p(s
2
k |µk, S, y) ·

p(µk|S, y) holds and one also has p(µ1, µ2, s2
2 |S, y) = p(µ1|S, y) · p(µ2, s2

2 |S, y) because
of the independence of µ from µ2, s2

2 . In (2) the factorization p(µ1, s2
1 |S, y) = p(s2

1 |µ1, S, y) ·
p(µ1|S, y) was used. In total, the full conditionals thus are given as follows:

p(µ1|µ2, s2
1 , s

2
2 , S, y) = p(µ1|s2

1 , S, y)
p(µ2|µ1, s2

1 , s
2
2 , S, y) = p(µ2|s2

2 , S, y)
p(s2

1 |µ1, µ2, s2
2 , S, y) = p(s2

1 |µ1, S, y)
p(s2

2 |µ1, µ2, s2
1 , S, y) = p(s2

2 |µ2, S, y)

When using the independence prior, based on Appendix A.1, the full conditionals are
therefore given as

p(µ1|µ2, s2
1 , s

2
2 , S, y) = p(µ1|s2

1 , S, y) ⇠ N (b1(S), B1(S)) (A.16)
p(µ2|µ1, s2

1 , s
2
2 , S, y) = p(µ2|s2

2 , S, y) ⇠ N (b2(S), B2(S)) (A.17)
p(s2

1 |µ1, µ2, s2
2 , S, y) = p(s2

1 |µ1, S, y) ⇠ IG(c1(S),C1(S)) (A.18)
p(s2

2 |µ1, µ2, s2
1 , S, y) = p(s2

2 |µ2, S, y) ⇠ IG(c2(S),C2(S)) (A.19)

with b1(S), B1(S), b2(S), B2(S), c1(S), c2(S),C1(S) andC2(S) as specified in theAppendix
A.1 in Equations (A.12), (A.13), (A.14) and (A.15), which completes the proof.

A.3 Proof of Corollary 15.3
Proof. From standard MCMC theory, see e.g. Robert and Casella (2004), it follows that
the full conditionals derived in Theorem 15.2 can be used to construct a Gibbs sampler,
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by iteratively updating each parameter via simulating step by step from the full con-
ditionals (A.16) to (A.19). Using (A.16) to (A.19), this leads to the following Gibbs
sampling algorithm:

1. Sample s2
k in each group k, k = 1, 2 from an inverse Gamma distribution

IG(ck(S),Ck(S))

(which depends on µk).

2. Sample µk in each group k, k = 1, 2, from a normal distribution

N (bk(S), Bk(S))

(which depends on s2
k ).

where Bk(S), bk(S) and ck(S),Ck(S) are given by equations (A.12), (A.13), (A.14) and
(A.15). The convergence to the joint posterior p(µ1, µ2, s2

1 , s
2
2 |S, y) then follows then

from standard MCMC theory, see Robert and Casella (2004, Theorem 10.8, Theorem
10.10 (ii)), where absolute continuity of the transition kernel of the Gibbs chain follows
from choosing the Lebesgue-measure l as the dominating measure.

A.4 Proof of Theorem 15.8
Proof. In the case the ROPE Rj is correct, Rj includes the true e�ect size d0, so that
d0 ⇢ Rj. Estimation of d via dMPE is then consistent: The posterior µn is said to be
consistent for the parameter d0, if for every neighbourhood U of d0, µn(U)

a.s.���!
n!•

1 p-
almost surely for any prior p on d. By Theorem 1 in Ghosal (1996) the consistency of
the posterior follows for any prior p when choosing any ROPE U which contains the
true parameter d0, except possibly on a set of p-measure zero.1 As a direct consequence
one therefore obtains: If the ROPE Rj 6= ∆ is correct and contains the true parameter
d0, any prior p leads to a consistent posterior for which µn(Rj)

a.s.���!
n!•

1 p-almost surely.
This implies that

PMP(dMPE) =
Z

Rj
p(q|x)dq

p�a.s.���!
n!•

1

If on the other hand Rj is incorrect, then d0 /2 Rj. Then there exists a neighbourhood
N := (d0 � #, d0 + #) for # > 0 around d0, so that N \ Rj = ∆. Then, as µn(N)

p�a.s.���!
n!•

1

almost surely it follows that on the complement Nc, µn(Nc)
p�a.s.���!
n!•

0 and because of

Rj ⇢ Nc also that µn(Rj)
p�a.s.���!
n!•

0 p-almost surely Thereby it follows that

PMP(dMPE) =
Z

Rj
p(q|x)dq

p�a.s.���!
n!•

0

1This result is also known as Doob’s consistency theorem, compare Doob (1949).
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A.5 Proof of Theorem 15.11
Proof. An a type I error happens if the true parameter value d0 2 H, with H ⇢ R for
a ROPE R ⇢ Q, but H is a-rejected for a. If any correct ROPE R is selected around
the hypothesis H ⇢ Q which makes a statement about the unknown parameter d, then
by Definition 15.5 the true value d0 of d is inside R, that is d0 ✓ R. Then, under any
prior p on d, the posterior µn(R)

p�a.s.���!
n!•

1 except on a set of p-measure zero, compare
Ghosal (1996). Therefore, the corresponding a%HPD intervalCa which is based on the
posterior density p(d|x) lies inside R for n ! •, too, that is: Ca ✓ R, and by definition,
H is then a-accepted. As a 2 [0, 1] was arbitrary, the above holds in particular without
loss of generality for a = 1, and therefore, H is accepted always for n ! • p-almost
surely for any correct ROPE R around the hypothesis H. This in turn implies that H
can only be a-rejected for a = 0 under the above conditions. However, a rejection of H
for a = 0 is only stating that zero percent of the HPD interval are located outside the
ROPE R around H, which implies that the a% HPD lies fully inside the ROPE. Thus,
a-rejection of H for a = 0 is equivalent to a-acceptance of H for a = 1, and thus H is
also accepted when a = 0.

An a type II error happens if the true parameter value d0 /2 H and d0 /2 R, with
H ⇢ R for a ROPE R ⇢ Q, but H is a-accepted for a. If any incorrect ROPE R is
selected around the hypothesis H ⇢ Q which makes a statement about the unknown
parameter d, then the true value d0 of d is not inside R, that is d0 /2 R. Then, under
any prior p on d, the posterior µn(R)

p�a.s.���!
n!•

0 , compare Ghosal (1996). Therefore,
the corresponding a% HPD interval Ca which is based on p(d|x) lies not inside R for
n ! •, which means Ca /2 R, and by definition, H is then a-rejected. As a 2 [0, 1] was
arbitrary, the above holds in particular for a = 1, and therefore, H is rejected always
for n ! • p-almost surely under any prior p and for any incorrect ROPE R around
the hypothesis H. This also implies that H can only be a-accepted for a = 0 under the
above conditions. Furthermore, a-acceptance of H for a = 0 can be interpreted as zero
percent of the HPD interval Ca being located inside the ROPE R around H, and this is
equivalent to a-rejection of H for a = 1. Thus, in this case, H is also rejected and no a
type II error happens.
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B.1 The Relative Likelihood Principle
To extend the LP to the continuous case, Berger andWolpert (1988) assumed an experi-
ment with random variable X having probability distributionPq without assuming the
existence of a density. Also, the sample space W was assumed to be a locally-compact
Hausdor� space whose topology admits a countable base. The treatment of Berger and
Wolpert (1988) only assumed the measures Pq to be Borel measures.

The first di�culty are sets of measure zero. The likelihood function cannot be spec-
ified in a unique way anymore now, because if there exists no single s-finite measure
n on W whose null sets are identical to the Borel null sets N with Pq(N) = 0 for all
q 2 Q, the consequence is that no likelihood function exists. Even when there is a
s-finite measure n fulfilling this property the Radon-Nikodym derivatives

f (x|q) = Pq(dx)
n(dx)

are determined only up to null sets of n.1 The solution of Berger and Wolpert (1988,
p. 30) was to specify a particular version of Pq(dx)

n(dx) by defining Wx as an open neigh-
bourhood of x 2 W and setting

L(q; x) := inf
V2Wx

sup
U2Wx,U⇢V

Pq(U)
n(U)

for all x in the support of n and L(q; x) := 0 elsewhere. The idea was to construct
n-almost everywhere continuous equivalents of the WCP and WSP and derive a con-
tinuous version of the LP, the relative LP. The generality achieved is huge, and the solu-
tion is applicable for experimentswith discontinuous density functions or no likelihood
function at all. Still, Berger and Wolpert (1988) noted, that

“The pricewe pay for such generality is that our conclusionswill all beweak-
ened by the qualification “for all x 2 W outside a fixed set NwithPq(N) = 0

1Note the strong analogy to the spaces Lp and Lp in measure theory, where the solution is to use
the quotient space and identify the Radon-Nikod˝m density as a representant of the equivalence class,
where the representants di�er only in their values on the null sets, see also Bauer (2001).
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for all q”, which we shall abbreviate “for {Pq} a.e. x”.”
(Berger and Wolpert, 1988, p. 31), where notation has been modified for
notational consistency in this appendix

Now, the only assurance that the actually observed values x are not in N is the ‘faith
that events of probability zero do not happen.’ (Berger and Wolpert, 1988, p. 31). This
is no severe limitation anyway, and the main steps were to first reformulate the WCP
and WSP to the continuous equivalent, see Berger and Wolpert (1988, p. 31).

Continuous Weak Conditionality Principle (CWCP (Berger and Wolpert, 1988)).
Consider the mixture E⇤ of two experiments Ei := (Xi, q, {Pi

q}) for i = 1, 2, defined as
E⇤ = (X⇤, q, {P⇤

q}), with X⇤ = (J,XJ), J = 1 or 2 (as EJ is performed) with probability
1
2 each independent of q and

P⇤
q(A) =

1
2
P1

q({x1 : (1, x1) 2 A}) + 1
2
P2

q({x2 : (2, x2) 2 A})

Then,

Ev(E⇤, (j, xj)) = Ev(Ej, xj)

for {P⇤
q}-almost everywhere (j, xj).

The concept of su�ciency is extended to the continuous case by starting with an ex-
periment E = (X, q, {Pq}) and ameasurablemap T : W ! W̃ from W̃ to another locally-
compact Hausdor� space W̃ whose topology admits a countable base. The statistic T
determines a family {PT

q } of Borel measures on W̃ given by the push-forwardmeasures

PT
q (A) = Pq(T�1(A))

and thereby a new experiment ET = (T, W̃, {PT
q }). In general, unless T is one-to-one,

the ‘compressed’ experiment ET will yield less information about q than the original
experiment E. The concept of su�ciency was then defined as the exceptional case in
which no information is lost, which also includes any one-to-one measurable mapping,
see (Berger and Wolpert, 1988, p. 32):
Definition B.1 (Su�ciency (Continuous) (Berger andWolpert, 1988)). For the exper-
iment ET, suppose there exists a family (gt : t 2 W̃) of Borel probability measures on W̃
satisfying

Pq(A) =
Z

W̃
gt(A)PT

q (dt) =
Z

W
gT(x)(A)Pq(dx)

for all Borel sets A ⇢ W̃. Then T is called su�cient (for q).2

Based on this definition, Berger andWolpert (1988) defined the continuous version
of theWSP simply as the principle that if the measurable map T is su�cient, then T(w)
in W̃ yields the same evidence (about q) as x in the original space E:

2For more information on the measure-theoretic motivation of this definition see Rüschendorf (2014,
Chapter 2) and Rüschendorf (2014, Definition 4.1.1). Essentially, the continuous definition of su�ciency
guarantees that the Radon-Nikod˝m equation for conditional probabilities and expectation holds, see
also Definition C.50 and Equation (C.19).
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Continuous Weak Su�ciency Principle (CWSP (Berger and Wolpert, 1988)). If T :
W ! W̃ is su�cient, then

Ev(E, x) = Ev(ET, T(x))

for {Pq}-almost everywhere x 2 W.

Based on these two principles, Berger and Wolpert (1988) showed that

1. For two experiments Ei = (Xi, q, {Pi
q}, i = 1, 2 with countable sample space de-

void of outcomes impossible under all q, the LP and RLP are equivalent (Berger
andWolpert, 1988, p. 34, Theorem 2). This is important, because this implies that
the RLP is a valid extension of the LP, which does not lead to contradictory results
when applying it in the discrete case.3

2. Themost important aspect: TheCWCPandCWSP together imply theRLP (Berger
and Wolpert, 1988, p. 35, Theorem 3), which is stated below.

Relative Likelihood Principle (RLP (Berger and Wolpert, 1988)). Let f : U1 ! U2 be
a Borel bimeasurable one-to-one mapping fromU1 ⇢ W ontoU2 ⇢ W̃, and suppose there exists
a strictly positive function c on U1 such that 8q 2 Q

P2
q(A) =

Z

f�1(A)
[1/c(x1)]P1

q(dx1) for A ⇢ U2

Then, Ev(E1, x1) = Ev(E2, f(x1)) for {P1
q}-almost everywhere x1 2 U1.

3Note again the analogy to extending contents on algebras to measures on s-algebras if the content is
continuous in zero, see Bauer (2001).
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This appendix outlines the measure-theoretic foundations of statistical inference from
a frequentist and Bayesian perspective.

First, the measure-theoretic foundations of frequentist inference will be outlined.
Second, Bayesian inference will be discussed and contrasted with the frequentist ap-
proach. Subsequently, both approaches will be embedded in the framework of sta-
tistical decision theory which shows how frequentist and Bayesian approaches di�er
concerning parameter estimation, hypothesis testing or confidence set estimation.

C.1 Frequentist statistics
Frequentist statistical inference procedures consist of three ingredients: 1) The observa-
tion of data, 2) a statistical model and 3) an estimation procedure. Frequentist inference
assumes that observing data X(·) during an experiment or study has a definite but un-
known underlying probability distribution. The observed data is mathematically given
by a realisation X(w) of a random variable X : (W,B, µ) ! (X ,A)whichmaps from an
unknown probability space (W,B, µ) into a measure space (X ,A), which is called the
sample space, compare Figure C.1. The sample space is assumed to be a measure space
to enable the consideration of probability measures on X , which formalise the uncer-
tainty in observing X(w) 2 X for w 2 W. The probability space (W,B, µ) is unknown
in practice, and if it would be known – which would imply the precise distribution un-
der which data X(w) 2 X is observed would also be known – no randomness would
be involved anymore. In practice, frequentist statistics hinges on the assumption that
there exists a true probability measure P0 on the sample space (X ,A)which represents
the “true distribution of the data”. This means, X ⇠ P0, or expressed di�erently, for all
A 2 A the probability P0(A) is given by the measure induced by µ:

P0(A) := µ({w 2 W : X(w) 2 A})

Assuming the existence of such a P0 is quite strong, but allows for answering questions
like “What does the data tell us about P0?”. So, from a frequentist perspective the data
are realisations of a random variable X into a measurable space (X ,A), where the true
distribution P0 of X is unknown but assumed to exist on (X ,A). A statistical model
formalises this notion:
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(W,B, µ)(X ,A)

X : W ! Xsample
space

Figure C.1: Measure-theoretic background of frequentist inference

Definition C.1 (S���������� �����). The triple E := (X ,A,P) is called statistical
model, if (X ,A) is a measurable space and P ⇢ M1(X ,A) is a class of probability
distributions on the space (X ,A), where M1(X ,A) is the set of probability distribu-
tions on (X ,A).

When it is clear which space the model refers to, P is simply called the statistical
model. The model P can be interpreted as the distributions on (X ,A) the statistician
finds reasonable to explain the uncertainty in observing the data X(w) 2 X . To draw
any inference about the true distribution P0, an important assumption of frequentist
methods is that the true distribution P0, according towhich dataX(w) 2 X is observed,
is contained in P , compare (Kleijn, 2022, Definition 1.6):
Definition C.2 (W���-���������). A statistical model P is well-specified if it contains
the true distribution P0 of the data X. That is, P0 2 P .
ExampleC.3. Supposewemeasure the deviation of reaction times of patients in a clin-
ical trial from a known reference reaction time. After patients have been administered
the drug, reaction times are recorded and the deviations from a reference reaction time
are calculated. Suppose a sample of 50 patients is recruited andwe are interested in the
mean deviation from the reference reaction time. The data are shown in Figure C.2.

Let (X ,A) := (R50,B(R50)), that is, the observed data is vector (x1, ..., x50) with
xi 2 R, and B(R50) is the Borel-s-algebra on R50. Let P ⇢ M1(X ,A) be any subset of
M1(X ,A).

Now, the probability measures Pq in a statistical model are commonly described by
a parameterization, compare (Kleijn, 2022, Definition 1.4):
Definition C.4 (P���������������). A statistical model P is parameterized with pa-
rameter space Q, if there exists a surjective map Q ! P : q 7! Pq, called the parame-
terization of P .

Note that the set Q, which is also called the parameter space is only a set and no
measure space. Thus, there is no associated s-algebra for Q, nor a probability measure
in the frequentist approach. However, if the parameterization is injective (and then,
because of the last definition also bijective), one calls a parameterization identifiable,
because each parameter q 2 Q identifies exactly one probability measure Pq 2 P , com-
pare (Kleijn, 2022, Definition 1.5):
Definition C.5 (I�����������). A parameterization of a statistical model P is called
identifiable, if the map Q ! P : q 7! Pq is injective.

Figure C.3 shows how the parameter space Q (which is only a set, but is still called
space in the frequentist approach) parameterizes themodelP which is assumed on the
sample space (X ,A). Thus, the statistical model can be written as P := {Pq : q 2 Q}.
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Figure C.2: Histogram of deviations from the reference reaction time for a sample of
n = 50 patients. Data were simulated from a N (0, 1) distribution.

Example C.6 (Continuation of Example B.1). In the situation of Example B.1, select
Q := R, and an identifiable parameterization is given by q 7! Pq, where Pq := N (q, 1)(50).

(W,B, µ)

Q(X ,A)

X : W ! X

sample
space

parameter
space

q 7! Pq

Figure C.3: Measure-theoretic background of frequentist inference with an identifiable
parameterization Q ! P : q 7! Pq

The most important distinction in (frequentist) statistics is between parametric and
non-parametric models. A model P is called parametric of dimension d, if there exists
an identifiable parameterization Q ! P : q 7! Pq where Q ⇢ Rd with non-empty
interior Q̊ 6= ∆. If there is no finite-dimensional Q which parameterizes the model P ,
then P is called non-parametric model.

Often in the statistical literature, models are described as families of probability den-
sities rather than working with probability measures directly. From a mathematical
perspective, to guarantee the existence of Radon-Nikod˝mdensities, an absolutely con-
tinuous s-finite measure is required, which leads to the following definition, compare
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(Kleijn, 2022, Definition 1.3):

Definition C.7 (D��������). If there exists a s-finite measure n : A ! [0,•] such
that for all P 2 P , P ⌧ n, the model is dominated (notation: P ⌧ n).

The Radon-Nikod˝m theorem guarantees that in dominated models one can work
with probability densities dP/dn : X ! [0,•) instead of working with the measures
P 2 P .

ExampleC.8 (Continuation of Example B.2). In the situation of Example B.2, the prob-
ability measures Pq, are dominated by the Lebesgue measure l(n), that is Pq ⌧ l(n) for
n = 50 and all q 2 Q.

The third ingredient of a frequentist procedure is amethod for estimation. Although
hypothesis testing and confidence sets seem at first glance di�erent from estimation, all
three tasks can be formalised under the framework of statistical decision theory, where
the above method for estimation becomes a decision rule.

Definition C.9 ((P����) E��������). A point-estimator (or estimator) for P0 is a map
P̂ : X ! P , which represents the “best guess” P̂ 2 P for P0 based on the data X(w) 2
X .

Note that P̂(X) is random and depends on the observed X(w) 2 X . If the model is
parameterized, one can equivalently define a (point) estimator as amap Q̂ : X ! Q for
q0, from which one obtains P̂ = PQ̂ as an estimator for P0. If the model is identifiable,
assume the measure P0 := Pq0 (that is, the true model) corresponds to the parameter
q0. Estimation of q0 in Q is then equivalent to estimation of P0 in P , see Figure C.4.

(W,B, µ)

Q(X ,A)

X : W ! X

sample
space

parameter
space

q 7! Pq

Q̂ : X ! Q

Figure C.4: Measure-theoretic background of frequentist inference with an identifiable
parameterization Q ! P : q 7! Pq and a (point) estimator Q̂ : X ! Q

Example C.10 (Continuation of Example B.3). Suppose in the situation of Example
B.3, Q̂ : R(50) ! R is defined as Q̂(x) := 1

50 Â50
i=1 xi for observed data x := X(w) (for

w 2 W). This is simply the sample mean, which estimates the mean parameter q in Pq

in P . For the data shown in Figure C.2, Q̂((x1, ..., x50)) = �0.03 based on two-digits
precision. As data in Figure C.2 were indeed simulated from aN (0, 1) distribution, the
estimator is quite close to the true parameter q0 = 0. Note also that the model is well-
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specified because the precise distribution of X is known. In practice, this is, of course,
not the case.

In summary, a frequentist needs to model a sample space (X ,A) and associate a
family of probability measures P with it, where the family expresses the uncertainty in
observing the random quantity X(w) 2 X . The space (W,B, µ) is unknown in practice,
and via a parameterization (which ideally is identifiable), and an estimation method
(like a (point) estimator), P0 is estimated by the data via P̂ (or Q̂). As the truemodel P0
is assumed to be contained in the chosen familyP , enoughdataX(w) should eventually
“reveal” the true q0 2 Q.

C.2 Bayesian statistics

The preceding section detailed the measure-theoretic foundations of frequentist infer-
ence. In this section, Bayesian statistics is contrasted with the frequentist measure-
theoretic foundations. In the frequentist approach, the parameter q was assumed to
be a fixed but unknown value q0 in the set Q, the parameter space. In the Bayesian
framework, not only are the data X a random variable, but the parameter is random,
too. Now, the parameter space Q is assumed to be a measure space (Q, t) with s-
algebra t and the parameter q is a random variable J which takes values in Q. The
main di�erence in the Bayesian approach now is that one assumes a probability mea-
sure µ : s(X ⇥ t) ! [0, 1] on the product space W := A⇥ t with product s-algebra
B := s(A⇥ t), compare Figure C.5. This probability measure provides a joint proba-

(W := X ⇥ Q,B := s(A⇥ t), µ)

(Q, t)(X ,A)

X : W ! X J : W ! Q

sample
space

parameter
space

product
space

Figure C.5: Measure-theoretic background of Bayesian statistics

bility distribution for (X, J), that is, for the dataX and the parameter J. Importantly, the
choice of this measure on the product s-algebra s(X ⇥ t) defines the statistical model
P in the Bayesian approach, by the possibility to condition the distribution of X on
fixed values J = q 2 Q (Kleijn, 2022, Section 2.1.1). The conditional distribution X|J
(X given J) describes the distribution of the observation X given the parameter J and
as a consequence, the distributions X|J = q can be identified as the elements Pq of the
(identifiably) parameterizedmodelP = {P0 : q 2 Q} also used in frequentist statistics.
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Definition C.11 (M���� ������������). The distribution of the data X conditional on
the parameter J is a regular conditional distribution, µX|J : A ⇥ Q ! [0, 1] which
describes the model distributions Pq.

Now, the Bayesian statistician also needs to incorporate some a priori information
or beliefs about the uncertainty of the parameter q. This is expressed via the prior
distribution. Themarginal distribution of the parameter is called the prior distribution.

Definition C.12 (P���� ������������). The marginal distribution µQ : t ! [0, 1] is
called the prior distribution for the parameter.

Example C.13 (Continuation of Example B.4). In the setting of Example B.4, we iden-
tify the model distribution µX|J : B(R(50))⇥R ! [0, 1] as the distributionsN (q, 1)(50).
Let t := B(R) the Borel-s-algebra on R. Let µQ := N (µ0, s2

0 ) the prior distribution on
t, where µ0 2 R and s2

0 > 0. This prior distribution reflects our a priori information or
beliefs regarding the deviations of the patient reaction time from the reference reaction
time in the clinical trial.

It is important to note that the product measure µ is already constructed by the
Bayesian statistician when a prior distribution µQ is selected for Q and the statistical
model P is chosen. Together, the prior distribution and the model {Pq : q 2 Q} deter-
mine a joint distribution on the product-space X ⇥ Q.

Example C.14 (Continuation of Example B.5). In the setting of Example B.5, sup-
pose that the prior distribution µQ has density fq (which is the Lebesgue density of
the N (µ0, s2

0 ) distribution). Thus, it is implicitly assumed that X is continuous and let
B ✓ X ⇥ W. Then the probability measure µ on s(A⇥ t) is given as

µ((X, J) 2 B) =
Z

R

Z

R
1B(x, q) fX|Q(x|q) fQ(q)dxdq

In the Bayesian approach, X and J are easily recognized as the projection of the
joint space X ⇥ Q to the respective components X and Q. To be more specific, for
s := (x, q) 2 X ⇥ Q, X(s) = x and J(s) = q. The selection of the statistical model is
equivalent to the selection of the conditional distributions µX|J : A⇥ Q ! [0, 1] under
the assumption that the model is parameterized and identifiable. If the prior measure
µQ is selected, too, the measure µ(X , t) ! [0, 1] is induced on the product s-algebra
s(A⇥ t).

Now, central to the Bayesian framework is the conditional distribution for J given X,
called the posterior distribution. In Bayesian statistical inference, all inference about the
parameter is made with respect to the posterior distribution after observing the data X.

Definition C.15 (P�������� ������������). The conditional distribution µJ|X : t ⇥
A ! [0, 1] for J|X is called the posterior distribution.

The transition from prior to posterior is achieved via Bayes’ theorem:

Theorem C.16 (B����’ T������). Assume that the model P = {Pq : q 2 Q} is domi-
nated by a s-finite measure n on (A, t) with densities fq = dPq/dn. Then the posterior
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can be expressed as

µ(J 2 B|X) =
R
B fq(X)dµQR
Q fq(X)dµQ

(C.1)

For a proof of Bayes’ theorem see Kleijn (2022, Theorem 2.2) or Schervish (1995,
1.31).
Example C.17. Let B := q 2 Q and the observed data X(w) := x 2 X . Suppose n is
the Lebesgue-measure l, and P ⌧ l as well as µQ ⌧ l. Let p(·) denotes the density
of the prior measure µQ with respect to the dominating measure n, that is p = dµQ/dl.
Then, Equation (C.1) becomes the more familiar-looking

µ(J = q|X = x) =
R

q fq(X)

=p(q)dlz}|{
dµQR

Q fq(X) dµQ|{z}
=p(q)dl

=

R
q fq(X)p(q)dlR
Q fq(X)p(q)dl

In summary, as shown in Figure C.5, probabilities are calculated in the Bayesian
approach with respect to the probability space (W,B, µ). The observed random sample
is the realisation of a random variable X : W ! X , which is a mapping from W into
the Borel space (X ,A), called the sample space. The statistical model P is associated
with (X ,A) and is known up the unknown model parameter q 2 Q. In the Bayesian
perspective, J : W ! Q is called the parameter and is a random variable, that is, a
measurable function from W into the Borel space (Q, t), where the latter is called the
parameter space.
Example C.18 (Continuation of Example B.6). In the setting of Example B.6, the prior
distribution was µQ := N (µ0, s2

0 ) and the model distribution µX|J := N (q, 1)(50). Stan-
dard calculus then yields the posterior distribution

µJ|X = N

0

@ 1
1

s2
0
+ n

 
µ0

s2
0
+

50

Â
i=1

xi

!
,

1
1

s2
0
+ n

1

A

For details, see Held and Sabanés Bové (2014, p. 181-182). Suppose we choose a prior
N (0, 1) on q, which corresponds to µ0 := 0 and s2

0 = 1. Then the posterior distribution
is given as N (Â50

i=1 xi
51 , 1

51). For the data shown in Figure C.2, Â(50)
i=1 xi = �1.784, so the

posterior is N (�0.034, 0.019). Figure C.6 shows the prior and posterior together with
the histogram of the observed data.

From a mathematical perspective, assuming the existence of a dominating measure
n on (X ,A) for which each Pq as a probability measure on (X ,A) is absolutely continu-
ous is important. The absolute continuity Pq ⌧ n for all q 2 Q guarantees the existence
of Radon-Nikodym densities fq = dPq

dn . One can assume that fq(x) is measurable with
respect to the product s-field A⌦ t.1 As a consequence, one can integrate fq(x) with
respect to measures both on X and W, and for each A 2 A,

µX|J(X 2 A|Q = q) =
Z

A
fq(x)dn(x)

1For a proof, see (Schervish, 1995, p. 13). Schervish (1995) uses the notation fX|q(x|q) for fq(x).
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Figure C.6: Histogram,N (0, 1) prior andN (�0.034, 0.019) posterior for the screwdata.
Data were simulated from a N (0, 1) distribution.

The marginal distribution µX = µ(X 2 A, J 2 Q) can be written as

µX(A) =
Z

W

Z

A
fq(x)dn(x)dµQ(q) =

Z

A

Z

W
fq(x)dµQdn(x)

where the last equality follows from Tonelli’s theorem. From the above equation it
follows that µX is absolutely continuous with respect to n with density

fX(x) =
Z

W
fq(x)dµQ

which is called the prior predictive density of X or marginal density of X. To sum-
marise, the Bayesian procedure consists of four steps:

1. Based on the available background information, the statistician chooses amodelP
of reasonable candidate distributions which express the uncertainty in observing
X. Usually, the model P is parameterised with some (identifiable) parameteriza-
tion Q ! P , q 7! Pq.

2. A prior measure µQ is chosen on (Q, t), which reflects the belief concerning the
possible values the parameter(s) q in the parameterised model P have. Usually,
this is a probability measure on (Q, t).

3. Based on the conditional distributions, the prior, the available data and Bayes’
theorem, the posterior is calculated as afunction of the data X.2.

2For the case of a random i.i.d. sample, see Kleijn (2022, p. 28)
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4. The statistician observes a realization X(w) = x of the data and uses it to calculate
a realisation of the posterior, upon which all further inference is based (e.g. point
estimation, confidence set estimation or hypothesis testing).

ExampleC.19 (Continuation of Example B.8). In the setting of Example B.8, one could
estimate q via the posterior distribution’s mean, which is �0.034.
Notice that Bayesian inference yields a posterior distribution, upon which all further
conclusions are based, while frequentist inference usually provides a point in the model,
that is an estimate Q̂(x) (where x 2 X are the observed data) for the parameter q0
parameterizing the true measure Pq0 (Kleijn, 2022). However, although Bayesian infer-
ence provides a whole posterior distribution, Bayesians usually also use decision rules
based on this posterior distribution which reduce to point estimates like the posterior
mean or median.

C.3 Statistical Decision Theory
The above measure-theoretic theory of both frequentist and Bayesian statistics can be
extended into the framework of statistical decision theory which goes back to Wald
(1939, 1949). In this embedding it becomes apparent that frequentist procedures aim
at minimising the risk with respect to a loss function, while Bayesian statistics aims at
minimising the same risk with respect to the same loss function over the assumed prior
distribution of the parameter. First, a decision space and decision rules (or functions)
are introduced:
Definition C.20 (D������� �����). A decision space (D,AD) is a measure space.

In practice, the decision space contains the actions taken when a statistical problem
is considered. For example, if a parameter needs to be estimated, the decision space
could be modelled as the parameter values which are possible, like R, N or R+. If a
hypothesisH0 is tested against an alternativeH1 (whereH0 ⇢ Q andH1 := Q \H0), the
action space could be D := {a0, a1} = {0, 1}, where a0 means accept the null hypothesis
H0, and a1 means accept H1. Sometimes, the decision space is also called action space.
Definition C.21 (N��-���������� �������� ����). A non-randomized decision rule
d is a mapping d : (X ,A) ! (D,AD). The set

D := {d : (X ,A) ! (D,AD)}

is called the set of non-randomized decision rules.
The above definition states that a decision rule is simply a map from the sample

space (X ,A) into the decision space (D,AD).
Example C.22. For the realisation X(w) = (x1, ..., xn) =: x, the decision d(x) = awith
a 2 D is made (or the action a is taken).

Some statistical problems require a randomized decision rule:
DefinitionC.23 (R��������� �������� ����). Arandomizeddecision rule d is aMarkov
kernel of X to D, that is, d : X ⇥AD ! [0, 1] is a map with
(i) 8A 2 AD : d(·, A) is A� B(R)[0,1]-measurable3

3B(R)[0,1] denotes the Borel-s-algebra restricted to [0, 1].
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(ii) 8x 2 X : d(x, ·) 2 M1(D,AD)

The set of all randomizeddecision functions onX is denoted byD := {d : d is a randomized decision function}.
In contrast to d 2 D, for d 2 D, d(x, A) is the probability of deciding for A 2 AD

when observing X(w) = x 2 X . Note that it always su�ces to treat randomized
decision rules, because for d 2 D the following embedding formalized non-randomized
decision rules as randomized ones:

dd(x, A) :=

(
1, d(x) 2 A
0, d(x) /2 A

The map D ,! D, d ! dd is an injective embedding (that is, D ⇢ D and dd1 6= dd2 ,
d1 6= d2). Therefore, it su�ces to treat only randomised decision rules. Figure C.7

(W,B, µ)

Q(X ,A)

X : W ! X

d : (X ,A) ! (D,AD)

(D,AD)

sample
space

parameter
space

space
decision

q 7! Pq

Figure C.7: Measure-theoretic background of frequentist statistical inference and its
connection to statistical decision theory

shows how the measure-theoretic background of frequentist statistics in Figure C.3 is
extended by statistical decision theory, and Figure C.8 shows the same situation for
Bayesian statistics. Now, to quantify the loss incurred when using a specific decision
rule, a loss function is introduced:
Definition C.24 (L��� ��������). L : Q ⇥ D ! R+ is called loss function, if for all
q 2 Q:

L(q, ·) : (D,AD) ! (R+,B(R)+)

where R+ := R [ {•}. That is, a loss function L(q, a) quantifies the positive loss
incurred by a decision for a 2 D when the parameter is q 2 Q. In practice, there may be
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(W,B, µ)

(Q, t)(X ,A)

X : W ! X Q : W ! Q

d : (X ,A) ! (D,AD)

(D,AD)

sample
space

parameter
space

product
space

space
decision

Figure C.8: Measure-theoretic background of Bayesian statistical inference and its con-
nection to statistical decision theory

multiple decision rules available and the statistician faces the problem to decide which
one to use (nomatter if a frequentist or Bayesian perspective is taken). Using the above
definitions, a statistical decision problem is then formalised as follows:

Definition C.25 (S���������� �������� �������). The triple (E ,D, L) is called a statis-
tical decision problem, if E = (X ,A,P) is a statistical model (also called a statistical
experiment), (D,AD) is a decision space and L a loss function.

As explained above, q is the unknown state of the statistical model P . Statistical
decision theory allows to quantify the loss incurred by using a decision function after
observing x 2 X as follows:

1. Observe x 2 X as the result of the statistical experiment, where x is assumed to
follow the statistical model P .

2. Decide for a 2 D via a chosen non-randomized decision (d(x) = a) or random-
ized decision function (a is randomized via the Markov kernel d(x, ·)).

3. Quantify the incurred loss L(q, a) for a chosen loss function L.

Based on the observation X(w) = x, a decision d(x) is made. To show how broad
the class of statistical decision problems in the statistical decision-theoretic framework
is, the three archetypical examples of statistical inference are presented below.
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C.3.1 Parameter estimation
First, consider parameter estimation. In this case, the decision space D is assumed to
be a normed space: (D, || · ||) where typically D := Rk or D := Lp, AD := B(D) is the
Borel-s-algebra on D. This (standard) setting for parameter estimation is visualised in

(W,B, µ)

(Q, t)(X ,A)

X : W ! X

d : (X ,A) ! D := Qsample
space

parameter
space

Figure C.9: Measure-theoretic background of frequentist statistical inference and its
connection to statistical decision theory for parameter estimation when Q := D

Figure C.9: The action space (D,AD) becomes the parameter space (Q, t). In general,
the goal is to estimate q. Frequently used loss functions in this setting are the Laplace
loss L1 or the Gauß-loss L2, where Lr(q, a) := ||a� g(q)||r or the zero-one-loss

L#(q, a) :=

(
1, ||a� g(q)|| > #

0, ||a� g(q)||  #

The statistical decision problem (E ,D, L) is then called a (parameter) estimation prob-
lem for q.
Example C.26 (Continuation of Example B.4). Return to the setting of Example B.4,
where the estimator Q̂(x) := 1

50 Â50
i=1 xi was used to estimate q. Consider the non-

randomiseddecision rule d : (X ,A) ! (D,AD). Let (D,AD) := (Q, t) = (R+,B(R+)),
then d becomes d : (R(50),B(R(50))) ! (R+,B(R+)). Let d(x) := x̄50 := 1

50 Â50
i=1 xi

which estimates q and let L := L(q, a) = (q � a)2 the Gauß-loss L2. The incurred loss
after observing x 2 X and deciding for d(x) then is given as (x̄50� q)2. In Example B.4,
x̄50 = �0.03, so for q = 0 the loss function yields L(0,�0.03) = (�0.03� 0)2 = 0.0009.

Example B.11 shows that a frequentist estimator is just a special case of a (ran-
domised) decision rulewhen the parameter spaceQ is additionally assigned a s-algebra
to fulfill the definition of a decision rule and (D,AD) := (Q, t). The situation is shown
in Figure C.9.

C.3.2 Confidence set estimation
Second, consider confidence set estimation. Let (Q, t) the parameter space. The map
C : X ! t is called a confidence set for q, if for all q 2 Q:

A(q) := {x 2 X : q 2 C(x)} 2 A (C.2)
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(W,B, µ)

(Q, t)(X ,A)

X : W ! X Q : W ! Q

d : (X ,A) ! (D,AD) := (Q, t)sample
space

parameter
space

product
space

Figure C.10: Measure-theoretic background of Bayesian statistical inference and its con-
nection to statistical decision theory for parameter estimation when (Q, t) := (D,AD)

A(q) that is, the set of all values x 2 X which are located inside C(x) is A-measurable.
A(q) is also called acceptance region of q and is the set of all x 2 X for which the
parameter value q is covered by the resulting confidence setC(x). Let D := t and from a
decision-theoretic perspective, in confidence set estimation one decides for a confidence
set in the corresponding s-algebra t of the parameter space Q which expresses the
uncertainty about the parameter. LetAD := s({Tq : q 2 Q}), where Tq := {B 2 t : q 2
B} is the set of all subsets B 2 t which cover the parameter value q. Then

C : (X ,A) ! (D,AD) , 8q 2 Q : {C 2 Tq} = {x 2 X : q 2 C(x)} 2 A
, C is a non-randomised decision rule

To see this, notice that

C : (X ,A) ! (D,AD)| {z }
=(1)

= C : (X ,A) ! (t, s({Tq : q 2 Q}))

and if C is AD �A-measurable, it fulfills the definition of a non-randomised decision
rule (1) in the above equation. However, this means that for all q 2 Q the set {C 2
s(Tq : q 2 Q)} (or equivalently, {C 2 Tq}) needs to be 2 A for all q 2 Q. But the
set {C 2 Tq} is equal to the set {x 2 X : q 2 C(x)} which – by the definition of a
confidence set in Equation (C.2) above – is 2 A for all q 2 Q. As a consequence, C is
AD �A-measurable, and it also is a non-randomised decision rule because (1) in the
above equation holds.

In practice, the decision functions C are often restricted to subsets of D := t like
convex or closed sets or intervals. A frequently used loss function for confidence set
estimation is the zero-one loss

L(q, B) :=

(
1, q /2 B, 8q 2 Q, 8B 2 D
0, q 2 B, 8q 2 Q, 8B 2 D

That is, when deciding for a subset C(x) = B 2 D, the incurred loss is one if q /2 B, else
zero.
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Example C.27 (Continuation of Example B.4). In the setting of Example B.4, Example
B.11 showed that a point estimator is just a special case of a decision rule. However, a
confidence set incorporates the uncertainty in the estimation procedure more directly
than a point estimator. In the example, Q := R, and Pq := N (q, 1)(50). Define the
two-sided confidence set

C(x) :=

x̄50 �

1p
50

z a
2
, x̄50 +

1p
50

z a
2

�

for a prespecified confidence level a > 0 (typical values are a = 0.01, 0.05 or 0.1. Here,
z a
2
is the a

2 -fractile of the standard normal distribution, that is z a
2
:= F�1(1� a

2 ) where
F is the cumulative distribution function of the N (0, 1) distribution. For a = 0.05, it
follows that z a

2
= 1.96, and in Example B.4 x̄50 was �0.03, so the resulting confidence

set is given by C((x1, ..., x50) = [�0.307, 0.247].
Note that one can also randomise decision rules for confidence set estimation: j :

X ⇥ Q ! [0, 1] is called a randomised confidence set if for all q 2 Q, j(·, q) is measur-
able. One can interpret j(x, q) for x 2 X , q 2 Q as the probability that q is covered by
the resulting confidence set C(x)when observing x 2 X . Notice that again an injective
embedding can be constructed by jC(x, q) = 1A(q)(x) = 1C(x)(q), so it su�ces to treat
randomised confidence sets.

C.3.3 Hypothesis testing
Third, consider hypothesis testing. A hypothesis test from a decision-theoretic per-
spective is a partition of the parameter space Q = H0 [ H1 where H1 := Q \ H0. Let
D := {a0, a1}, AD := P(D), and interpret a0 as deciding for the null hypothesis H0 and
a1 as deciding for the alternative hypothesisH1. A decision function d : X ⇥AD ! [0, 1]
is uniquely identified by

j := d(·, {a1}) : (X ,A) ! ([0, 1],B(R)[0,1])

as d(x, {a0}) = 1 � d(x, {a1}). That is, d is uniquely determined by specifying the
values x 2 X for which a1 is selected. One interprets j(x, {a1}) as the probability for
a decision for the alternative hypothesis H1 when observing x 2 X . Any such map is
called a hypothesis test and the set of hypothesis tests is denoted as F:

F := {j : (X ,A) ! ([0, 1],B(R)[0,1])}

For the hypothesis testing problem, the map of all randomised decision rules D ! F
onto all hypothesis tests is bijective, d ! jd. j 2 F is called a non-randomised test
, 9A 2 A : j = 1A. A common loss function for hypothesis tests is the Neyman-
Pearson loss function. For L0, L1 > 0, let

L(q, a1) :=

(
0, q 2 H1 correct decision
L0, q 2 H0 type I error

and

L(q, a0) :=

(
L1, q 2 H1 type II error
0, q 2 H0 correct decision
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Example C.28 (Continuation of Example B.4). Return to the setting of Example B.4.
Examples B.11 and B.12 already showed that a parameter estimation and confidence set
estimation correspond to specific decision rules. Now, let H0 := (�•, q0] and H1 :=
(q0,•]. Let a a prespecified error level for controlling the type I error rate and za =
F�1(1� a) the (1� a)-fractile of the N (0, 1) distribution. The resulting test under the
Neyman-Pearson-loss function with L0 = L1 = 1 is called Gauß-test j⇤ and is given as

j⇤(x) :=

(
1,
p
n x̄n�q0

1 � za

0,
p
n x̄n�q0

1 < za

for x 2 Rn.4 In Example B.4, for n = 50 patients the point estimate was given as
x̄50 = �0.03. Let a = 0.05 so that za = 1.96. Suppose interest lies in testing H0 :
(�•,�1] against H1 := (�1,•], which implies q0 := �1. This means, one tests if the
mean deviation from the reference reaction time is smaller or equal to �1, against the
alternative that the mean deviation from the reference reaction time is larger than �1.
Thus, the null hypothesis states that the reaction time improves by a decrease from at
least 1 unit from the reference reaction time. Given the data, x̄n�q0

1 =
p
50(�0.03 +

1) =
p
50 · 0.97 = 6.86 � 1.96. As a consequence, H0 : (�•,�1] is rejected and it is

concluded that the mean q of di�erences in reaction times from the reference reaction
time is � �1. Thus, the hypothesis that the reaction time does improve by at least one
unit is rejected.

C.3.4 Di�erences in selecting decision rules between the Bayesian
and frequentist approach

Now, as shown in the preceding section, parameter estimation, hypothesis testing and
confidence set estimation can be unified in the statistical decision-theoretic framework.
However, the above examples were mostly from a frequentist perspective. In this sec-
tion, it is shown that the di�erence in selecting a decision rule between the Bayesian
and frequentist approach primarily lies in how the risk function is minimised, which is
introduced now.

Tomeasure the incurred loss under a selected loss function Lwhen using a decision
rule d, the concept of a risk function is introduced. One cannot compare decision func-
tions directly via the loss function, as the loss L(q, a) = L(q, d(x)) depends on both the
decision rule d and and on the observed x 2 X . As a consequence, the risk function
describes the expected loss under the decision rule d averaged over all x 2 X .
Definition C.29 (R��� ��������). Let (E ,D, L) a statistical decision problem. Themap
R : Q ⇥D ! [0,•),

R(q, d) :=
Z

X

✓Z

D
L(q, y)d(x, dy)

◆
dPq(x)

is called risk function. Rd := R(·, d) denotes the risk function of d as a function on Q.
Now, the risk function still depends on the parameter value q 2 Q. As a conse-

quence, one introduces a partial ordering � on the set D of all randomised decision
rules as the pointwise partial ordering on the set of all risk functions: For all d1, d2 2 D

4For a derivation, see Rüschendorf (2014, Chapter 6).
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let d1 � d2 ,: Rd1  Rd2 for all q 2 Q, see Rüschendorf (2014, Section 2.2). Using this
ordering, a frequentist strives for admissible decision functionswhichminimise the risk
function (the expected loss over X for a fixed decision rule d) over Q:
Definition C.30 (A������������). Let D0 ⇢ D and d 2 D0.

d0 is D0-admissible, if d0 is minimal concerning � in D0, that is, for all d 2 D0:

d � d0 ) d ⇠ d0

where d1 ⇠ d2 , d1 � d2 and d2 � d1. If D0 = D, d0 is called admissible.
The definition of admissibility states that a decision rule d0 is admissible, if no better

decision rule can be found regarding the risk. A frequentist aims at finding an admissi-
ble decision rule whichminimises the risk function Rd0 among all decision rules d 2 D0
(ideally for D0 = D).5 A Bayesian statistician takes a more balanced perspective by in-
corporating his prior distribution to find the decision rule which minimises the risk
with respect to his prior beliefs about the parameter:
Definition C.31 (B���� �������� ����). Let D0 ⇢ D and d 2 D0. Let (Q, t) a measure
space, so that for all q 2 Q, {q} 2 t and let L : (Q, t) ⌦ (D,AD) ! (R̄, ¯B(R)). Let
µ 2 M1(Q, t) a prior distribution for the parameter q. The functional

r(µ, d) :=
Z

Q
R(q, d)dµ(q)

is called the Bayes risk of decision rule d with respect to the prior µ. d0 2 D0 is called
D0-Bayes decision rule with respect to the prior distribution µ, if for all d 2 D0

r(µ, d0)  r(µ, d)

If D0 = D, then d0 is called Bayes decision rule with respect to µ.
In the Bayesian approach, the statistician searches a decision rule which minimises

the risk function with respect to his prior assumptions, expressed in form of the prior
distribution on (Q, t).6 Based on the risk function, statistical decision theory then al-
lows to select decision rules based on specific criteria. The most prominent examples
are admissibility and Bayes rules in the frequentist and Bayesian approach, other ex-
amples include minimaxity, for details see Rüschendorf (2014, Chapter 2).

C.3.5 Frequentist and Bayesian risk procedures from the decision-
theoretic perspective

This section provides some intuitions how point estimation, confidence set estimation
and hypothesis testing di�er from a decision-theoretic perspective in the frequentist
and Bayesian approach. Therefore, a few risk functions are derived and compared.

5Often, frequentists also search for minimax decision rules, that is, decision rules d̃ which minimise
the maximum risk R(q, d̃) := sup

q2Q
R(q, d̃). Although minimax decision rules often exist, they are rather

pessimistic as Kleijn (2022) notes, because they optimise only with respect to the worst-case scenario.
One can show that anyBayesian risk function (that is, the risk function integratedwith respect to the prior
distribution) is upper bounded by the minimax risk, see (Kleijn, 2022, Proposition 2.4). This strongly
questions the use of minimax rules from a Bayesian perspective.

6Note that while it may seem a di�cult task to find a Bayes decision rule, under quite general assump-
tions, a Bayes rule can be found by minimising the posterior expected loss. For details, see Kleijn (2022,
Theorem 2.5) and (Robert, 2007, Chapter 2).
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Example C.32 (Continuation of Example B.4). If d = dd with d 2 D, that is, d is a
non-randomised decision rule, then the risk is given as

R(q, d) := R(q, dd) =
Z

X
L(q, d(x))dPq(x) = Eq[L(q, d)]

For an estimation problem with Gauß loss L2 and D = R, the risk of a non-randomised
decision rule (a non-randomised estimator) d 2 D is

R(q, d) =
Z

X
(d(x)� g(q))2dPq(x) = Eq[(d� g(q))2]

In the situation of Example B.4, d(x) := x̄50 = �0.03 and for theGauß-loss L2, L(d(x), q) =
(�0.03� q)2. The risk is given as Eq[L(q, d)] = Eq[(�0.03� q)2].
Example C.33 (Continuation of Example B.12). In the setting of Example B.12, for the
confidence set C the zero-one-loss yields the risk

R(q,C) = 1 · Pq({x 2 X : q /2 C(x)}) + 0 · Pq({x 2 X : q 2 C(x)})
= Pq({x 2 X : g(q) /2 C(x)})

which is the probability of the parameter q not being covered by C(x).
Example C.34 (Continuation of Example B.13). We return to Example B.13. The risk
function of a hypothesis test under the Neyman-Pearson-loss is given as

R(q, j) =
Z

X

Z

D
L(q, y)dj(x, dy)dPq(x)

=
Z

X

Z

{a0,a1}
L(q, y)dj(x, dy)dPq(x)

=
Z
[L(q, a1)j(x) + L(q, a0)(1� j(x))]dPq(x)

=

(
L0Eq[j], q 2 H0 type I error
L1Eq[(1� j)], q 2 H1 type II error

Notice that the risk of j is dependent only on the expectation Eq[j]. Importantly, this
implies that even tests which minimise the risk (and are then called admissible), only
guarantee statements about error probabilities in expectation, and not for individual
tests carried out for an experiment or a study. This expresses mathematically what
Neyman and Pearson stressed regarding the option to state anything about the truth
of a hypothesis based on a Neyman-Pearson test, compare Chapter 4: The Neyman-
Pearson theory is not able to quantify the truth of a hypothesis or the error probability
of a hypothesis for a single experiment or study. For the Gauß-test in Example B.13, one
can show that the risk function is constant and equal to a, for details see Rüschendorf
(2014, p. 27).

From a frequentist perspective, finding an admissible decision rule d0 with d � d0 )
d ⇠ d0 in the above three examples would be the goal from a decision-theoretic point
of view. From the Bayesian perspective, one would combine the risk functions above
with a prior distribution µQ 2 M1(Q, t) on the Bayesian parameter space (Q, t). Sub-
sequently, a Bayesian would look for a Bayes decision rule by minimising the Bayes
risk

r(µ, d) =
Z

Q
R(q, d)dµ(q) (C.3)
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Thus, for a Bayesian examples B.14, B.15 and B.16 change by plugging the resulting
risk functions R(q, d) in examples B.14, B.15 and B.16 into equation Equation (C.3) and
searching for a Bayes decision rule.

Note that the usually used quantities like the posterior mean or median can be de-
rived as the corresponding Bayes decision rule under a specific loss function (L2 loss for
the mean, L1-loss for the median). Decision theory justifies these “intuitive” Bayesian
estimators for a parameter by guaranteeing that they minimise the risk under a given
loss functionwith respect to the prior distribution. Details can be found inHeld and Sa-
banés Bové (2014) and (Rüschendorf, 2014, Chapter 2). For a decision-theoretic justifi-
cation of Bayesian confidence sets like highest-posterior-density intervals see Schervish
(1995, Section 5.2.5), and for a decision-theoretic derivation of the Bayes factor see
Robert (2007, p. 224-227).

C.4 Maximum-Likelihood estimation
To estimate the unknown parameter q, the method of maximum likelihood presents a
general approach. The likelihood function is defined as
Definition C.35 (L��������� ��������). Let P ⌧ µ and fq = dPq/dµ, q 2 Q. The
density fq as a function of q is called likelihood function, and defined for x 2 X as

L(q; x) = fq(x) = f (x; q) (C.4)

for q 2 Q.
In the above,⌧ denotes absolute continuity between the measures, that is for every

measurable set A, µ(A) = 0 implies P(A) = 0 for all P 2 P . The estimate which
maximises the likelihood is the maximum likelihood estimator:
DefinitionC.36 (M������-L���������-E��������). LetQ be associatedwith a s-algebra
t. A measurable map q̂ML : X 7! Q is called Maximum-Likelihood-Estimator, if

L(q̂ML(x)) := sup
q2Q

L(q; x) Pq-almost surely (C.5)

To simplify notation, often instead of the likelihood function L(q) only the likelihood
kernel is reported and also denoted with L(q), as multiplicative constants have no influ-
ence on q̂ML.
Definition C.37 (L��������� ������). The likelihood kernel is obtained from a likeli-
hood function by removing all multiplicative constants.

The symbol L(q) is used both for likelihood functions and kernels.
Definition C.38 (L��-���������� ��������). The log-likelihood function is given as

l(q; x) := log L(q; x) (C.6)

The log-likelihood function can be used instead of L(q; x) to derive q̂ML as the loga-
rithm is strictly monotone and therefore

q̂ML := arg max
q2Q

l(q; x) (C.7)
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Also in this case, often only the log-likelihood kernel will be reported and depending
on the context, also be denoted by l(q; x). An important property of the maximum
likelihood estimate (MLE) is given by the following fact (compare Held and Sabanés
Bové (2014, p. 24)):
Theorem C.39 (I��������� �� ��� ���). Let q̂ML be the MLE of q, and let f = h(q)
be a one-to-one transformation of q. The MLE of f can be obtained by inserting q̂ML in
h(q), and the MLE of f is given as f̂ML = h(q̂ML).

That is, the MLE is invariant under one-to-one transformations.

C.5 Foundations of Point Estimation
The standard definition of a point estimator expresses the decision-theoretic perspec-
tive outlined above, compare Casella and Berger (2002, Definition 7.1.1), Rüschendorf
(2014, p. 124):
Definition C.40 (P���� E��������). A point estimator is any function d : (X ,A) !
(Y, C) of a random sample (X1, ...,Xn), where (Y, C) is a measure space.

A common choice for parameter estimation is (Y , C) = (Rn,B(Rn)).
If, for example Q := Rn for n 2 N and parameter estimation is the goal, Defini-

tion C.40 can be used by setting D = Rn and AD := B(Rn), and choosing for exam-
ple d as the sample mean or median. A loss function (like the L2 loss) can then be
used to quantify the risk of the estimator d. A point estimator d then becomes a non-
randomized decision function of the decision-theoretic framework. Using the Gauß-
loss L2, also called the mean squared loss or mean squared error (MSE), one can com-
pare di�erent (point) estimators.

To comparemultiple estimators, awidespreadmeasure is given by themean squared
error (MSE), which assumes a quadratic loss function L(q, d) := (q � d)2 for a (point)
estimator d of a parameter q, compare Casella and Berger (2002, Definition 7.3.1) and
Rüschendorf (2014, p. 124):
Definition C.41 (M��� S������ E����). The mean squared error (MSE) of an esti-
mator d of a parameter q is the function of q defined by:

Eq((d� q)2)

Using the MSE and the familiar bias-variance-decomposition (Held and Sabanés
Bové, 2014), one can introduce the concept of bias and unbiasedness of an estimator
naturally, compare Casella and Berger (2002, Definition 7.3.2):
Definition C.42 (B��� �� � ����� ���������). The bias of a point estimator d of a pa-
rameter q is given by

Biasq(d) = Eq(d)� q (C.8)

An estimator whose bias is identically (in q) equal to 0 is called unbiased and satisfies
Eq(d) = q for all q 2 Q.

When searching for the best estimator, that is, the estimator minimizing the MSE in
DefinitionC.41, one often restricts attention to unbiased estimators. Then, only the vari-
ance is of importance as the bias part reduces to zero. Instead of unbiased estimators,
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it is purposeful to direct attention to the class of estimators

Cg = {d : Eq(d) = g(q)}

which includes unbiased estimators if the parameter function g : Q 7! D is selected as
the identity g(q) = q for q 2 Q. This leads to the definition of best unbiased estimators,
compare Casella and Berger (2002, Definition 7.3.7) and Rüschendorf (2014, Definition
5.1.5):
Definition C.43 (B��� �������� ��������� (UMVUE)). An estimator d⇤ is a best unbi-
ased estimator of g(q) if it satisfies Eq(d⇤) = g(q) for all q and, for any other estimator
d with Eq(d) = g(q), we have

Vq(d⇤)  Vq(d) (C.9)

for all q 2 Q. The estimator d⇤ is also called a uniform minimum variance unbiased
estimator (UMVUE) of g(q).

For a comparison of unbiased estimators the Cramér-Rao-Inequality is essential. It
gives a minimum variance bound for unbiased estimators d(X) for a parameter q, so if
an unbiased estimator is found attaining the minimum variance bound, it is a UMVUE.
TheCramér-Rao-Inequality is stated as follows, compareCasella and Berger (2002, The-
orem 7.3.9) and Rüschendorf (2014, Theorem 5.4.6):
Theorem C.44 (C�����-R��-I���������). Let X1, ...,Xn be a random sample follow-
ing probability density function fq := f (x|q), and let d(X) = d(X1, ...,Xn) be any esti-
mator satisfying

∂

dq
Eq(d) =

Z

X

∂

∂q
[d(x) f (x|q)]dx (C.10)

and

Vq(d(X)) < • (C.11)

Then

Vq(d(X)) �
( ∂

∂qEq(d(X)))2

Eq[(
∂
∂q log f (X|q))2]

(C.12)

In the i.i.d. case the Cramer-Rao-Inequality reduces to (Casella and Berger, 2002,
Corollary 7.3.10):
Corollary C.45 (C�����-R��-I��������� (i.i.d. case)). If the assumptions for Theo-
rem C.44 are satisfied, and, additionally X1, ...,Xn are i.i.d. with probability density
function f (x|q), then

Vq(d(X)) �
( ∂

∂qEq(d(X)))2

n ·Eq[(
∂
∂q log f (X|q))2]

(C.13)

Due to the fact that for an unbiased estimator ( ∂
∂qEq(d(X)))2 = ( ∂

∂q q)2 = 1, the
lower variance bound is given by 1

Eq [(
∂
∂q log f (X|q))2] . This is the inverse of the quantity

in the denominator of Equation (C.12) in the Cramér-Rao-Inequality, and the quan-
tity Eq[(

∂
∂q log f (X|q))2] is called the Fisher-Information, compare Rüschendorf (2014,

p. 157)
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Definition C.46 (F����� I����������). The quantity

I(q) := Eq


(
d
dq

log f (X|q))2
�

(C.14)

is called the Fisher-Information of the statistical model P in q.
It can be shown that the Fisher-Information is the variance of the log-likelihood

l(q; x), so that a large Fisher-Information at themaximum likelihood estimate puts trust
into the maximum likelihood estimate, while a small Fisher-Information indicates a flat
likelihood curve, questioning the trust that can be put into the maximum likelihood
estimate. By the Cramér-Rao-Inequality, the best possible e�ciency of an unbiased es-
timator is given by the inverse Fisher-Information and therefore the theorem gives a
lower bound on the variance of a UMVUE.

A desirable large sample property for an estimator is consistency, compare Casella
and Berger (2002, p. 468):
Definition C.47 (C����������). A sequence of (point) estimators dn := dn(X1, ...,Xn)
is a consistent sequence of estimators for the parameter q if, for every # > 0 and every
q 2 Q,

lim
n!•

Pq(|dn(X1, ...,Xn)� q| < #) = 1 (C.15)

A consistent sequence of point estimators converges in probability to the true pa-
rameter q, and therefore, as the sample becomes infinite and n ! • the estimator will
be arbitrarily close to q with probability converging to one. The concept of an e�cient
estimator extends the requirement of unbiasedness of the estimator to additionally at-
taining the Cramér-Rao lower bound for the variance:
Definition C.48 (E���������). A sequence of estimators dn is asymptotically e�cient
for a parameter function g(q), if

p
n[dn � g(q)] d! N (0, n(q)) in distribution and

n(q) =
[g0(q)]2

Eq((
∂
∂q log f (X|q))2)

(C.16)

that is, dn is unbiased for g(q) and the asymptotic variance of dn achieves the Cramér-
Rao Lower Bound.

Now, if the Fisher-Regularity-Conditions hold (see Held and Sabanés Bové (2014,
p. 80) or Rüschendorf (2014, Chapter 5.4)), the MLE is asymptotic normal and e�cient
(Casella and Berger, 2002, p. 516):
Theorem C.49. Let X1,X2, ..., be i.i.d with probability density f (x|q), let q̂ML denote
the MLE of q, and let g(q) be a continuous parameter function of q 2 Q. Under the
Fisher-regularity-conditions on f (x|q) and, hence, L(q; x),

p
n[g(q̂ML)� g(q)] D! N (0, n(q)) (C.17)

where n(q) is the Cramér-Rao Lower Bound. That is, g(q̂ML) is a consistent and asymp-
totically e�cient estimator of g(q).

Next to unbiasedness and consistency, another important element of likelihood in-
ference is the concept of su�ciency (Casella and Berger, 2002, Definition 6.2.1):
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Definition C.50 (S����������). A statistic T(X) is a su�cient statistic for q if the con-
ditional distribution of the sample X given the value of T(X) does not depend on q.

Thus, a statistic T = h(X1:n) is su�cient for q if the conditional distribution of X1:n
given T = t is independent of q, i.e. if

f (X1:n|T = t) (C.18)

does not depend on q, compare Held and Sabanés Bové (2014). Here, X1:n denotes
the sample (X1, ...,Xn) of size n. In an intuitive way, a statistic achieves su�ciency, if it
captures thewhole information of the data at hand, that is no loss of information is asso-
ciated with the reduction of the data to the statistic T(X1:n). From a measure-theoretic
point of view, the compression of data happens when instead of x 2 X , the statistic
T(x) (e.g. a point estimator) is provided. This data compression can be described via
sub-s-algebras B ⇢ A, where su�ciently large sub-s-algebras are su�cient to describe
an experiment E = (X ,A,P). As a consequence, a statistic T is called su�cient, if the
generated s-algebra s(T) is a su�cient s-algebra, for details see Rüschendorf (2014,
p. 82). In general, let (X ,A,P) a probability space and B ⇢ A a s-algebra. A B-
measurable function fA 2 L(X ,B) is then called the conditional probability of A given
B, written fA = P(A|B) if the Radon-Nikod˝m-equation

P(A \ B) =
Z

B
fAdP 8B 2 B

holds. A B-measurable function Y 2 L(X ,B) is called conditional expectation of X 2
L(X ,A), written Y = E[X|B], if

Z

B
XdP =

Z

B
YdP 8B 2 B

The Radon-Nikod˝m theorem guarantees the existence and P-almost sure uniqueness
of the conditional expectation (Bauer, 2001). Now, given a statistical model (E ,A,P),
a s-algebra B ⇢ A is called su�cient for P , if for all A 2 A there exists an fA 2 L(X ,B)
so that

fA = P(A|B) P-almost surely 8P 2 P

which means the Radon-Nikod˝m equation holds (for all A 2 A). A statistic T :
(X ,A) ! (Y, C) is called su�cient forP , if for all A 2 A there exists an fA 2 L(X , s(T)),
so that

fA = P(A|T) P-almost surely 8P 2 P

To understand the definition, suppose B is su�cient for P . Then

P(A) =
Z

B
P(A|B)dP =

Z
P(A|B)dP|B =

Z
fAdP|B (C.19)

where in the last equality the assumption fA = P(A|B), P-almost surely for all P 2 P
was used. As a consequence, the probability measures P 2 P di�er only on the sub-s-
algebra B, and this shows that su�ciency of a sub-s-algebra and a statistic implies no
loss of information, although the transition from the original s-algebra A to the sub-s-
algebra B can be interpreted as a compression of data. Equivalently, the transition from
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the original sample X1, ...,Xn in A to the statistic T(X1, ...,XN) in B can be interpreted
as the compression of data.

The Fisher-Neyman factorization theorem provides a convenient characterization of
a su�cient statistic, compare Casella and Berger (2002, Theorem 6.2.6).
Theorem C.51 (N�����-F����� ������������� T������). Let f (x|q) denote the joint
probability mass or density function of a random sample X. A statistic T(X) is a su�-
cient statistic for q if and only if there exist functions g(t|q) and h(x) such that, for all
sample points x and all parameter points q,

f (x|q) = g(T(x)|q)h(x) (C.20)

Amore precisemeasure-theoretic version of theNeyman-Fisher factorization is given
by Rüschendorf (2014, Theorem 4.1.15):
Theorem C.52 (N�����-F����� ������������� T������). T : (X ,A ! (Y , C) is suf-
ficient for the statistical model P if and only if there exist functions h : (X ,A) !
(R+,B(R+) and for all P 2 P , gP : (Y , C) ! (R+,B(R+) so that

dP
dµ

(x) = gP(T(x))h(x) (C.21)

µ-almost surely, where µ is the dominating measure for the statistical model P , that is,
P << µ.

The concept of minimal su�ciency answers the question for the largest possible
data compression that is possible, see Casella and Berger (2002, Definition 6.2.11) and
Rüschendorf (2014, Section 4.2):
Definition C.53 (M������ ���������� ���������). A su�cient statistic T(X) is called
minimal su�cient if, for any other su�cient statistic T0(X), T(X) is a function of T0(X).

This means, that T0(x) = T0(y) implies T(x) = T(y). To identify minimal su�cient
statistics, the following theorem is helpful (Casella and Berger, 2002, 6.2.13):
TheoremC.54. Let f (x|q) be the joint probabilitymass function or probability density
of a random sample X. Suppose there exists a function T(x), such that, for every two
sample points x and y, the ratio f (x|q)

f (y|q) is constant as a function of q if and only if T(x) =
T(y). Then T(X) is a minimal su�cient statistic for q.

The Rao-Blackwell-Theorem formalizes how one can improve upon an existing un-
biased estimator by using a su�cient statistic, for details see Casella and Berger (2002,
Theorem 7.3.17) and Rüschendorf (2014, p. 130):
Theorem C.55 (R��-B��������). Let d be any unbiased estimator of g(q) (where
g : Q 7! D), and let T be a su�cient statistic for q. Define f(T) := E(d|T). Then
Eq(f(T)) = g(q) and Vq(f(T))  Vq(d) for all q; that is, f(T) is a uniformly better
unbiased estimator of g(q) than d.

Again, the most common case in the above is when g(q) := q is the identity. If
a best unbiased estimator is found (where best is interpreted as the estimator having
minimum variance), one can show that it is unique (Casella and Berger, 2002, Theorem
7.3.19).
Theorem C.56. If d is a best unbiased estimator of g(q), then d is unique.
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To find a best unbiased estimator, the correlation of the estimator at hand with un-
biased estimators of zero is essential (Casella and Berger, 2002, Theorem 7.3.20).
Theorem C.57. If Eq(W) = g(q), d is the best unbiased estimator of g(q) if and only
if d is uncorrelated with all unbiased estimators of 0.

Therefore, if there were no such unbiased estimators of zero, any statistic d would
satisfy Covq(d, 0) = 0 and is a UMVUE. The following property of completeness is
essential, as it guarantees such a situation (Casella and Berger, 2002, Definition 6.2.21):

Definition C.58 (C�����������). Let f (t|q) be a family of probability densities or
probabilitymass functions for a statistic T(X). The family of probability distributions is
called complete ifEq[g(T)] = 0 for all q impliesPq(g(T) = 0) = 1 for all q. Equivalently
T(X) is called a complete statistic.

Completeness in a measure-theoretic interpretation can be introduced by requiring
that a sub-s-algebra T ⇢ A for the statistical model P is su�ciently small, or equiva-
lently, only large enough to separate between all elements inL1(X , T ,P). Interestingly,
complete and su�cient sub-s-algebras are (if they exist) minimal su�cient. From a
measure-theoretic point of view, first, the set of P-zero-estimators is introduced as

D0(P) := { f 2 L1(X , T ,P) : EP[ f ] = 0 for all P 2 P}

A class of distributions P ⇢ M1((X ,A) is complete, if for all f 2 D0, the equality
f = 0 P-almost surely holds (Rüschendorf, 2014, p. 105-106). A statistic T : (X ,A) !
(Y,B) is called complete, if P|s(T) is complete. Note the analogy to Definition C.58.
Phrased di�erently, completeness of a class of distributions P states that there exist
only trivial estimators of zero. The relationship between best unbiased estimators and
completeness is described as follows (Casella and Berger, 2002, Theorem 7.3.23).
Theorem C.59. Let T be a complete su�cient statistic for a parameter q, and let f(T)
be any estimator based on T only. Then f(T) is the unique best unbiased estimator of
its expected value.

Compared with su�cient statistics, a statistic with a complementary purpose is
given by ancillary statistics (Casella and Berger, 2002, 6.2.16):
Definition C.60 (A�������� ���������). A statistic T(X) whose distribution does not
depend on the parameter q is called an ancillary statistic.

Ancillary statistics, when used as a complement for a statistic can help to recover
information that is lost by the statistic. Fromameasure-theoretic perspective, ancillarity
is first defined for s-algebras similar to the concept of su�ciency:
Definition C.61 (A����������). A s-algebra B ⇢ A is called ancillary for P , if for
all B 2 B and P,Q 2 P the following equality holds: P(B) = Q(B). A statistic S :
(X ,A) ! (Y ,B) is called ancillary, if s(S) is an ancillary s-algebra. This is true if and
only if for all P,Q 2 P we have: PS = QS.

While a su�cient statistic contains all relevant information about the parameter(s)
without any loss of information due to data compression, an ancillary statistic contains
no information about the parameter.7

7It is possible to show that an ancillary statistic for the model P has Fisher-information IT(q) = 0,
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Example C.62. In a normal distribution model Pq = N (q, 1)(n), q 2 Q := R1, the
estimator T(x) := x̄n is su�cient for g(q) = q. The function S(x) := 1

n�1 Ân
i=1(xi � x̄n)2

is an estimator for the constant variance s2 = 1 of the statistical model. From S no
information about the parameter q can be obtained. As a consequence, S is an ancillary
statistic. Clearly, for two distributions P and Q from P , the only di�erence is the mean
q, so that one can express this as Q = P0 where it is assumed that q = 0 without loss
of generality, and P = Pq, shifted by some q 2 Q. As a consequence the probability PS

and QS of observing a specific value for S(x) are identical, that is, for any B 2 B with
S(x) 2 B the equality PS(B) = QS(B) holds.

One of the most important connections between minimal su�ciency, completeness
and ancillarity is given by Basu’s Theorem (Casella and Berger, 2002, Theorem 6.2.24):

Theorem C.63 (B���’� T������). If T(X) is a complete and minimal su�cient statis-
tic, then T(X) is independent of every ancillary statistic.

A more measure-theoretic formulation of Basu’s theorem is given by Rüschendorf
(2014, p. 112-113), and a brief statement in the decision-theoretic framework fromabove
is: Let (X,A,P) a statistical model, P = {Pq : q 2 Q} be a family of distribution
indexed by the parameter(s) q, and T and A maps from (X ,A) to some measurable
decision space (D,AD). If T is a boundedly complete su�cient statistic for q, and A is
ancillary to q, then T is independent of A. Here, P is called boundedly complete if for
all f 2 D0 \ B(X ,A) the equality f = 0 holds P-almost surely. B(X ,A) is the set of
bounded A-measurable functions. A statistic T : (X ,A) ! (Y,B) is called boundedly
complete, if P|s(T) is boundedly complete.

Given the appeal of minimal su�cient statistics, one of the main reasons for the
popularity of maximum likelihood estimation as an inference method is due to the fol-
lowing fact (Held and Sabanés Bové, 2014, Chapter 2).

TheoremC.64 (M������ ����������� �� ��� ����������). The likelihood functionL(q;x)
is minimal su�cient.

A measure-theoretic proof can be found in Rüschendorf (2014, Theorem 4.2.9) and
Rüschendorf (2014, Corollary 4.2.9). As a consequence, the likelihood function L(q; x)
achieves themaximumpossible data compressionwithout causing any loss of informa-
tion.

C.6 Foundations of Hypothesis Testing

In a statistical model P = {Pq : q 2 Q} we are interested in the testing problem Q =
Q0 [ Q1, where H0 : q 2 Q0 denotes the null hypothesis and H1 : q 2 Q1 denotes the
alternative hypothesis.

DefinitionC.65 (N��� �������������� ����������). The two complementary hypothe-
ses in a hypothesis testing problem are called the null hypothesis and the alternative
hypothesis. They are denoted by H0 : q 2 Q0 and H1 : q 2 Q1 where Q = Q0 [ Q1 and
Q1 = Q \ Q0.

that is, it contains no information about the model parameter(s). See Rüschendorf (2014, Proposition
5.4.4) for the definition of IT(q) (the Fisher-Information of a statistic T) and a proof.
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In a formal measure-theoretic sense, the hypothesis testing problem is interpreted
as a binary decision problem, where the experimenter either has to accept or reject H0.
It is important to note, that on a philosophical level, this is a strong simplification, as the
decisions ‘accepting H0’ and ‘not rejecting H0’ are two non-identical events. Also, ‘re-
jecting H0’ is a di�erent event as ‘accepting H1’ whenever hypotheses are tested for ex-
ample in scientific research, compare Part I and Part II. However, the measure-theoretic
and decision-theoretic definition of a hypothesis test is as follows (Casella and Berger,
2002, Definition 8.1.3):
Definition C.66 (H��������� ����). A statistical hypothesis test is a (decision) rule
that specifies:

i) For which sample values the decision is made to accept H0 as true.

ii) For which sample values the null hypothesis H0 is rejected and H1 is accepted as
true.

This vague definition is made more precise by introducing critical functions, also
called randomized tests (Rüschendorf, 2014):
Definition C.67 (C������� �������� / ���������� ����). A function

j : (X ,A) 7! ([0, 1],B(R)|[0,1])

is called a critical function (or randomized test), and

F := {j : (X ,A) 7! ([0, 1],B(R)|[0,1])}

is the set of all critical functions (or randomized tests).
Traditionally, hypothesis tests were described by rejection and acceptance regions

(Casella and Berger, 2002).
Definition C.68 (R�������� ��� ���������� ������). The subset R ⇢ Q, for which H0
will be rejected is called the rejection region. The complement Rc ⇢ Q is called the
acceptance region.

In a measure-theoretic interpretation, the value of the critical function (or random-
ized test) is interpreted as the probability to rejectH0. Consequentially, fromameasure-
theoretic interpretation, one can specify the rejection and acceptance region:
Definition C.69 (R�������� ��� ���������� ������). The subset C := {x 2 X :
j(x) = 1} is called the rejection region. The complement is called the acceptance re-
gion.

In practice, the definition of a critical region is central:
Definition C.70 (C������� ������ ��� ����� a). Let a 2 [0, 1]. Then C is called a critical
region for level a for H0 against H1 if

8q 2 H0 : Pq(C)  a

A hypothesis test for level a is then defined as follows:
Definition C.71 (H��������� ���� ��� ����� a ��� H0 ������� H1). A non-randomized
test j is called hypothesis test for level a for H0 against H1, if

Eq[j] :=
Z

jdPq  a
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The power function is important to judge the property of a test to correctly reject the
null hypothesis when it is false:
Definition C.72 (P���� ��������). Let (X ,A,P) a statistical model and Q = Q0 [
Q1 be a partition of the parameter space Q into the null hypothesis H0 : q 2 Q0 and
alternative hypothesis H1 : q 2 Q1. Let j : (X ,A) 7! ([0, 1],B(R)|[0,1]) a randomized
test. Then, the function

Gj : Q 7! [0, 1],Gj(q) := Eq[j]

is called the power function for the randomized test j at q 2 Q.
To evaluate tests, the probabilities of making mistakes is compared in the frequen-

tist Neyman-Pearson theory. Therefore, the classic error probabilities and the power
function are necessary (Casella and Berger, 2002).
Definition C.73 (T��� I E����). If q 2 Q0 but the hypothesis test j incorrectly decides
to reject H0, then the test has made a type I error. The type I error probability is given as
Gj(q) = Eq[j] for q 2 Q0.
Definition C.74 (T��� II E����). If q 2 Q1 but the hypothesis test j incorrectly accepts
H0, then the test has made a type II error. The type II error probability is given as 1�
Gj(q) = 1�Eq[j] for q 2 Q1.

For an overview, see Table C.1: Notice that the power function is the probability of

Decision
Accept H0, x /2 C, j(x) = 0 Reject H0, x 2 C, j(x) = 1

H0, q 2 Q0 Correct decision Type I Error, Eq[j], Pq(C)
Truth

H1, q 2 Q1 Type II Error, 1�Eq[j], 1� Pq(C) Correct decision

Table C.1: Type I and type II errors in hypothesis Tests

making a type I error, if the null hypothesis is true. It is the probability of correctly
rejecting the null hypothesis, if the alternative hypothesis is true. Of course, the ideal
power function would be zero for all q 2 Q0 and one for all q 2 Qc

0, but this is not
possible as type I and type II error probabilities balance each other out.

The most universal method to find a hypothesis test is based on the likelihood func-
tion. This is one of the simplest reasons why likelihood theory and frequentist statisti-
cal hypothesis testing according to the Neyman-Pearson theory have been and are still
widely applied in research. The corresponding statistic is called the likelihood ratio
test statistic, see Casella and Berger (2002, Definition 8.2.1) and Rüschendorf (2014,
p. 189-190).
DefinitionC.75 (L��������� ����� ����). LetQi := {qi} for i = 1, 2, Pi := Pqi with den-
sity fi and L := f1/ f0, where a/0 := • for all a > 0 and 0/0 := 0. f is called likelihood

ratio test, if it has the following form: j(x) =

8
><

>:

1, if L(x) > k
g(x), if L(x) = k P1 + P2 almost surely
0, if L(x)  k

.

k is called critical value of j and {j = k} is called the randomization set.
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TheNeyman-Pearson lemma gives an explicit construction for optimal tests for sim-
ple test problems:
Lemma C.76 (N�����-P������). Let Qi := {qi} for i = 1, 2 and 0 < a < 1. Then

(i) There exists a likelihood ratio test j⇤ with g(x) = g 2 [0, 1] and precise level a,
that is Eq0 [j] = a.

(ii) If j⇤ is a likelihood ratio test with level a, that is, Eq0 [j] = a, j⇤ then it is a best
test for level a.

(iii) If j is a best test for level a, j is a likelihood ratio test and Eq0 [j] < a implies
Eq1 [j] = 1.

A generalization for composite hypotheses which consist of more than a single pa-
rameter value is given by the generalized Neyman-Pearson lemma, see Rüschendorf
(2014, Definition 6.3.7, Theorem 6.3.8). Sometimes, the likelihood ratio test is also writ-
ten as

l(x) =
sup
Q0

L(q; x)

sup
Q

L(q; x)
(C.22)

where l : (X ,A) ! (R,B(R)) and a likelihood ratio test (LRT) is then defined as any
test that has a rejection region of the form

{x 2 X : l(x)  c} (C.23)

where 0  c  1. The rationale behind the LRT is intuitive: If there are parameter
points in the alternative hypothesis H1, for which the observed sample x is a lot more
likely than for any parameter in the null hypothesis H0, reject H0. It is now possible to
choose c so that the restriction of level a is guaranteed. As the definition of a hypothesis
test for level a does not control the type II error probability, it is natural to search for
level a tests for which the probability to reject H0 is higher if q 2 Q1 than if q 2 Q0. This
leads to the definition of an unbiased test, compare Casella and Berger (2002, Definition
8.3.9) and Rüschendorf (2014, Definition 6.4.1):
Definition C.77 (U������� ����). Let Fa := {j 2 F : Eq[j]  a for all q 2 Q0} =
Fa(Q0) the set of all tests for level a with F as given in Definition C.67. A hypothesis
test j 2 F is called unbiased (for level a) if j 2 Fa and

Eq[j] � a 8q 2 Q1 (C.24)

It is natural to demand that a good test in a class of tests C (e.g. LRTs for a specified
level a) has a small type II error probability. If another test in C has a smaller type II
error probability, it would be a better contender. This leads to the definition of the uni-
formly most powerful (UMP) class C test (Casella and Berger, 2002, Definition 8.3.11),
(Rüschendorf, 2014, Definition 6.1.1).
DefinitionC.78 (U������������ �������� ���� ��� ����� a). The hypothesis test j⇤ 2
Fa is called uniformly most powerful (UMP) test for level a, if for all q 2 Q1

Eq[j
⇤] = sup

j2Fa

Eq[j]
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One drawback of the Neyman-Pearson lemma is the fact, that only tests involving
simple hypotheses can be shown to be UMP level a tests. In most realistic applications
and especially exploratory research, however, composite hypotheses are used which
contain more than just a single parameter value:
Definition C.79 (O��-����� ����������). Hypotheses H : q � q0 or H : q > q0, or
H : q  q0 or H : q < q0, for a prespecified q 2 Q are called one-sided hypotheses.
Definition C.80 (T��-����� ����������). Hypotheses H : q 6= q0 for a prespecified
q 2 Q are called two-sided hypotheses.

In realistic applications, a large class of tests to consider consists of one-sided hy-
potheses and probability distributions or density functions with the monotone likeli-
hood ratio property, see Casella and Berger (2002, p. 391) or Rüschendorf (2014, Defi-
nition 6.2.2).
DefinitionC.81 (M������� ���������� ����� ��������). Let (Q,) be totally ordered.
P has a (strictly) monotone density quotient in T : (X ,A) ! (R,B(R)), if for all
q, q 0 2 Q, q  q

0 there exists a (strictly) isotone function fq,q0 : (R,B(R)) ! (R,B(R))
so that

Lq,q0 :=
fq0
fq

= fq,q0 � T Pq + Pq0 almost surely

Phrased di�erently, the likelihood ratio (the density quotient) is a (strictly) mono-
tone function of x 2 X for every q

0 � q (where � becomes > in the case of a strictly
monotone density quotient). As many families fulfill the monotone likelihood ratio
property (e.g. N (µ, s2)with s2 known, µ unknown, any univariate exponential family
with certain conditions, see for example Rüschendorf (2014, Remark 6.2.3)), the Karlin-
Rubin-Theorem answers the question to a UMP level a test for one-sided hypotheses,
compare Casella and Berger (2002, Theorem 8.3.17) and Rüschendorf (2014, Theorem
6.2.6).
Theorem C.82 (K�����-R����). Let Q a totally ordered and identifiable parameteri-
zation (that is, j ! Pj is injective). Suppose P has a monotone density quotient in T
and let a 2 [0, 1] and for q0 2 Q,Q0 := {q 2 Q : q  q0}, Q1 := {q 2 Q : q > q0} 6= ∆.
Then there exists a uniformly most powerful test j̃ for level a for (Q0,Q1) of the form

j̃(x) := j̃c,g(x) :=

8
><

>:

1, if T(x) > c
g, if T(x) = c with c 2 R,g 2 [0, 1]
0, if T(x) < c

The Karlin-Rubin-Theorem applies also to situations where H0 : q � q0, and the
test rejecting H0 : q � q0 in favour of H1 : q < q0 if and only if T < c is a UMP level
a = Pq0(T < c) test.

C.7 p-values
After a hypothesis test is calculated, oneway to report the conclusions drawn is to report
the chosen size a and the decision made to reject or accept H0. The usual heuristic
based on the theory developed in part I is that the rejection of H0 if a is small is fairly
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convincing, while if a is large, it certainly is not. The p-value quantifies the strength of
this argument in Fisher’s sense (Casella and Berger, 2002, Definition 8.3.26):

Definition C.83 (�-�����). A p-value p : (X ,A) ! ([0, 1],B|[0,1]) is a (test) statistic
satisfying 0  p(x)  1 for every sample point x 2 X . A p-value is valid, if for all
q 2 Q0 and for all 0  a  1,

Pq(p(x)  a)  a (C.25)

Small values are often interpreted evidence that H0 is not true, or as evidence for H1
(notice that the latter is a much stronger statement than the former). The left hand side
of Equation (C.25) can be interpreted as the probability to observe a p-value p(x)  a
under assumption of the null hypothesis H0. The right hand side of Equation (C.25)
then restricts a valid p-value to have such a probability of less than or equal to a. If a
valid p-value is found, the construction of a level a test is then possible based on p(x):
A test j rejecting H0 if and only if p(x)  a is a level a test due to Equation (C.25),
because

Eq[j] =
Z

jdPq =
Z

1{p(x)a}dPq =
Z

{p(x)a}
1dPq = Pq(p(x)  a)  a 8q 2 Q0

where in the last equality it was used that p is a valid p-value, compare Definition C.71.
Then, instead of reporting the size a of the test and the decision to accept and reject H0,
one simply reports a test result via a p-value p(x)which quantifies the evidence against
the null hypothesis H0 continuously. Importantly, the p-value resolves the decision-
theoretic dichotomy of ‘Reject H0’ and ‘Accept H0’:

“(...) a p-value reports the results of a test on amore continuous scale, rather
than just the dichotomous decision “Accept H0” or “Reject H0”.”
Casella and Berger (2002, p. 397)

Clearly this is Fisher’s interpretation and not Neyman’s and Pearson’s, compare Part I.
A widespread method to construct a valid p-value is given by Theorem C.84 (Casella
and Berger, 2002, Theorem 8.3.27):

Theorem C.84. Let d(X) be a (test) statistic such that large values of d give evidence
that H1 is true. For each sample point, define

p(x) = sup
q2Q0

Pq(d(X) � d(x)) (C.26)

Then, p(x) is a valid p-value.

The right-hand side of C.26 can be interpreted as the probability of obtaining a test
statistic equal to or more extreme than d(x), maximized over all q 2 Q0. In a compact
way, Held and Sabanés Bové (2014) summarise this as follows:

“The p-value is the probability, under the assumption of the null hypothe-
sis H0, to obtain a result equal to or more extreme than what was actually
observed.”
Held and Sabanés Bové (2014, p. 70)
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C.8 Foundations of Interval Estimation
In realistic applications, also interval estimators are necessary to give not only a sin-
gle value to estimate the parameter q of interest, but instead provide a possible set of
plausible values. The goal of constructing confidence sets is to find a set C(x) based on
the observation x 2 X , which – if q is supposed to be the true parameter – includes a
parameter function value g(q) (which in most cases defaults to the identity g(q) := q)
of q with high probability � 1� a:

Pq({x 2 X : g(q) 2 C(x)}) � 1� a

The confidence set C(x) thus should cover g(q) with high probability. The goal of in-
terval estimation via confidence sets is to find an interval which includes the parameter
g(q) with high probability.
Definition C.85 (C��������� ���). Let g : Q ! G (typically G ⇢ Rk) a parameter
function to be estimated (typically the identity g(q) := q). A function C : X ! P(G)
is called confidence set for g, if A(g0) := {x 2 X : g0 2 C(x)} 2 A for all g0 2 G.

In the above, P(G) is the power set of G. Definition C.86 essentially states that the
function C needs to be A-measurable. Let E the set of all confidence sets for g.
Definition C.86 (C��������� ��� ��� g ���� ���������� ����� 1� a). Let a 2 [0, 1]
and C a confidence set. C is called confidence set for g with confidence level 1� a, if
for all q 2 Q:

Pq({x 2 X : g(q) 2 C(x)}) � 1� a

The set of all confidence sets for gwith confidence level 1� a is henceforth denoted
as E1�a.
Example C.87. To illustrate the definition, let P := {Pq : q 2 Q} with Q := R,
Pq := N (q, s2

0 )
(n) and g(q) := q. Let C2(x) := [x̄n � s0p

nua/2, x̄n +
s0p
nua/2] for x 2 R a

two-sided confidence set, also called confidence interval, where ua/2 := F�1(1� a
2 ) is

the a-fractile of the standard normal distribution. For all q 2 R, it follows that

Pq({x 2 X : g(q) 2 C2(x)}) = Pq({x 2 Rn : q 2 C2(x)})

= Pq

✓⇢
x̄n �

s0p
n
ua/2  q  x̄n +

s0p
n
ua/2

�◆

= Pq

✓⇢
�ua/2 

p
n
x̄n � q

s0
 ua/2

�◆

= F(ua/2)� F(�ua/2) = 1� a

2
� a

2
= 1� a

As a consequence, C2(x) 2 E1�a, and wrong parameter values q0 6= q are covered with
a probability < a.

Importantly, the randomquantity in frequentist confidence set estimation is the con-
fidence set (or interval) C(x) and not the parameter q 2 Q. As can easily be seen from
the definition, the parameter q is fixed and assumed to take a prespecified value. The
probability statement

Pq({x 2 X : g(q) 2 C(x)}) (C.27)
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therefore refers to the random variable X with realisation x 2 X , and not to q 2 Q. As
a consequence, the coverage probability condition Pq({x 2 X : g(q) 2 C(x)}) � 1� a
requires that the resulting confidence interval C(x) for realisation x 2 X covers the
true and fixed parameter q with probability � 1 � a, for any prespecified and fixed
parameter value q 2 Q. In context, this is often interpreted as follows: As randomness
is concerned with C(x) and the random variable X, under indefinite repetition of the
experiment or study at least 1� a percent of the confidence sets C(x1),C(x2),C(x3), ...
need to include the true parameter value q, for any q 2 Q.

The concept of a pivot is helpful when searching for confidence intervals (Casella
and Berger, 2002, Section 9.2.2), and is a generalisation of the confidence set (Rüschen-
dorf, 2014, Definition 7.1.3)

Definition C.88 (P����). Let g : Q ! G. A measurable function T : X ⇥ G ! G is
called pivot (for g), if:

1. Q = PT(·,g(q))
q does not depend on q 2 Q.

2. For B 2 AG and q 2 Q the set

{x 2 X : T(x, g(q)) 2 B}

is 2 A.

CB(x) := {g 2 G : T(x,g) 2 B} is called the confidence set which is induced
through B and T. For q 2 Q, the following equality holds:

{g(q) 2 CB(·)} = {T(·, g(q)) 2 B} 2 A

A pivot generalises the concept of ancillary statistics. This generalisation allows for the
construction of confidence setsCB, where the choice of B determines the geometric form
and the confidence level of CB. The following example demonstrates how useful pivots
are in practice.

Example C.89. Let Q = R⇥R+ and Pq = N (µ, s2)(n) for q = (µ, s2). Interest lies in
constructing a pivot for µ, so let the parameter function g(q) := µ, that is, the projection
of q onto the first coordinate µ (as a consequence, G := R, so g : R⇥R+ ! R). Let

T(x, µ) :=
p
n
x̄n � µ

sn

with

sn =

s
1

n� 1

n

Â
i=1

(xi � x̄n)2

Then, T(x, µ) is a pivotwith distribution PT(·,µ)
q that is given as tn�1 (Casella and Berger,

2002), which is the t-distribution with n� 1 degrees of freedom. Clearly, T : X ⇥ G !
G, and the tn�1 distribution does not depend on q = µ 2 Q. For B 2 AG (where
AG := B(R) is the Borel s-algebra on R) and q 2 Q the set {x 2 X : T(x, g(q)) 2 B}
is 2 A (where A := B(Rn) is the Borel s-algebra on Rn). Consequently, T(x, µ) fufills
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conditions 1. and 2. above and is a pivot for g(q) = µ. To construct a confidence set,
this pivot can be employed. Let C2(x) = [x̄n � snp

n tn�1, a
2
, x̄n + snp

n tn�1,1� a
2
], then

Pq({µ 2 C2}) = Pq({T(·, µ) 2 [tn�1, a
2
, tn�1,1� a

2
]}) = 1� a

because PT(·,µ)
q = tn�1, that is, T(·, µ) is distributed as tn�1. As a consequence, C2 is a

two-sided confidence interval for µ with confidence level 1� a.
It is also possible to construct confidence sets with minimal volume based on a dif-

ferentiation condition via pivots, see Rüschendorf (2014, Theorem 7.1.12) for measure-
theoretic details and Casella and Berger (2002, Theorem 9.3.2) for a more applied treat-
ment.

An important systematic relationship is given between frequentist confidence sets
and hypothesis tests, compare Rüschendorf (2014, Section 7.2). Again, a parameter
function g : Q ! G is specified and a confidence set C : X ! P(G) is of interest. To
state that C(x) should not contain “wrong values” g0 when the true parameter is q, for
example g0 < g(q) for one-sided confidence intervals or g0 2 [g(q)� #, g(q) + #]c for
two-sided confidence intervals, define for q 2 Q subsets H̃0,q ⇢ G which are interpreted
as “correct values” g0 and H̃1,q ⇢ G which are interpreted as “wrong values” g0, where
H̃0,q \ H̃1,q = ∆. The system (H̃0q, H̃1q), q 2 Q is called form hypotheses for g. Using
this notation, the definition of a confidence set for g with confidence level 1� a can be
extended as follows (Rüschendorf, 2014, Definition 7.2.1):
Definition C.90 (U������� ��� ��������� ���� �������� ���������� ���� ���� �����-
����� ����� 1� a). Let (H̃0,q, H̃1,q), given form hypotheses for g and q 2 Q.

(a) A confidence set C is called confidence set for g with confidence level 1� a ,
Pq({g0 2 C}) � 1 � a, 8g0 2 H̃0,q, 8q 2 Q. As previously, the set E1�a :=
E1�a((H̃0,q, H̃1,q)q2Q) denotes the set of all confidence sets for level 1� a.

(b) C⇤ 2 E1�a is called uniformly most powerful confidence set with confidence level
1� a , Pq({g0 2 C⇤}) = inf

C2E1�a

{Pq({g0 2 C⇤}) : C 2 E1�a}, 8g0 2 H̃1,q, 8q 2 Q.

(c) C 2 E1�a is called unbiased confidence set with confidence level 1� a for g ,
Pq({g0 2 C})  1� a, 8g0 2 H̃1,q, 8q 2 Q. E1�a,u denotes the set of unbiased
confidence sets with confidence level 1� a for g.

(d) C⇤ 2 E1�a,u is called uniformlymost powerful unbiased confidence set with confi-
dence level 1� a for g , Pq({g0 2 C⇤}) = inf

C2E1�a,u
Pq({g0 2 C}), 8g0 2 H̃1,q, 8q 2

Q.

If for g(q) = q the form hypotheses are selected as H̃0,q := {q} and H̃1,q := Q \
{q}, q 2 Q, then all parameters g 2 Q with g 6= q are interpreted as wrong, and
a uniformly most powerful confidence set C⇤ should cover as few wrong parameters
g 6= q as possible. This means that C⇤ should be a set with smallest possible volume.
If $ is a volume measure on (Q,AQ) with $({q}) = 0 for all q 2 Q (e.g. the Lebesgue-
measure l), and it is assumed that {q} 2 AQ for all q 2 Q, then

vol$(C) :=
Z

$(C(x))dPq(x)
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is the mean volume of C(x) and

b$(C) :=
Z

Q\{q}
Pq({g0 2 C})d$(g0)

is the mean weighted coverage probability of wrong parameter values g0 6= q, where
the weights are from $. The theorem of Pratt states that these two quantities are equal:
Theorem C.91 (P���� (����)). Let C a confidence set for g(q) = q with C(x) 2
AQ, 8x 2 X . For the form hypotheses H̃0q = {q}, H̃1q = Q \ {q} and the volume
measure $ as defined above, for q 2 Q the following equality holds:

vol$(C) = b$(C)

For a proof, see Rüschendorf (2014, p. 242). As a consequence of Pratt’s theorem,
a uniformly most powerful confidence set for g(q) = q with confidence level 1 � a
also minimises the mean volume of C(x). Thus, UMP confidence sets in the Neyman-
Pearson theory are therefore sometimes also called “Neyman-shortest” (Casella and
George, 1992).

Now, an important dualism between hypothesis tests and confidence intervals is
given as follows: C is a uniformly most powerful (unbiased) confidence set with con-
fidence level 1 � a, if and only if for AC(g0) := {g0 2 C}, the indicator function
1(A(g0))c is a uniformly most powerful (unbiased) non-randomized test for level a for
(H0,g0 ,H1,g0), for all g0 2 G. This fact is established via the correspondence theorem,
compare Rüschendorf (2014, Theorem 7.2.3):
Theorem C.92 (C������������ T������). C⇤ 2 E1�a is a uniformly most powerful
(unbiased) confidence set with confidence level 1� a for g , 8g0 2 G 1(AC⇤ (g0))c is a
uniformly most powerful (unbiased) non-randomized test for level a for the test prob-
lem (H0,g0 ,H1,g0).

Phrased di�erently, the indicator function on the complement of the uniformlymost
powerful (unbiased) confidence set C⇤ (the test rejects H0,g0 when x /2 AC(g0)) with
confidence level 1� a for g is a uniformly most powerful (unbiased) non-randomized
test for level a for H0,g0 against H1,g0 (H0,g0 := H0 : q = g0 2 Q and H1,g0 := H1 :
q 6= g0 2 Q). For an example for the dualism between a uniformly most powerful
(unbiased) confidence set and a uniformlymost powerful (unbiased) non-randomized
test in the normal distribution model, see Rüschendorf (2014, Example 7.2.4).
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