
Time-Triggered Architecture
for Online Diagnosis

in Resource-Constrained Systems
with Compressed Data Streams

DISSERTATION
zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften

vorgelegt von
Dipl.-Ing. Simon Julius Meckel

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2021

Betreuer und erster Gutachter
Prof. Dr. Roman Obermaisser
Universität Siegen

Zweiter Gutachter
Prof. Dr. Uwe Brinkschulte
Goethe-Universität Frankfurt am Main

Vorsitzender der Promotionskommission
Prof. Dr. Günter Schröder
Universität Siegen

Tag der mündlichen Prüfung
27. September 2021

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

Abstract

Coping with limited communication resources in distributed real-time systems is a ma-
jor challenge nowadays. With regard to high-dependable and safety-critical systems (e.g.,
flight control systems and advanced driver assistance systems) the use of a time-triggered
architecture is advantageous, since the periodic task executions and message exchanges
according to a static schedule maximize the predictability compared to event-triggered sys-
tems. These systems efficiently realize fault tolerance by means of online and active fault
diagnosis that enables redundancy-based fault-specific recovery or degradation strategies,
e.g., system reconfigurations. In this way, they are able to overcome a failure or malfunc-
tion of some of their constituent components and continue to operate. As many systems
are becoming more and more complex, there is an ever-growing amount of network traf-
fic for monitoring and diagnostic purposes. In many cases, this causes the communication
network to become the limiting resource, which can negatively impact the lengths of sched-
ules, i.e., lead to longer overall service times, and reduce the maximum level of integration
of different services in one system.

The use of data compression can help to reduce network traffic. However, due to the
specific requirements and constraints of both time-triggered systems and diagnostic ap-
plications, some of which are contradictory, classical data compression algorithms cannot
be straightforwardly applied. The difficulty lies in reconciling the needs for guaranteed
data quality as well as temporal guarantees regarding information delivery. Lossless data
compression does not support a certain worst-case compression ratio on short input se-
quences, but produces variable-length outputs. Therefore, it is difficult to guarantee the
amount of information that will be encoded into a time-triggered message or, in turn, to
guarantee the number of messages needed to transmit a certain amount of information.
In lossy data compression, fixed-length outputs can be produced, but the quality of the
reconstructed data might degrade. With respect to fault diagnosis, both incomplete or de-
layed data transmissions and reduced data quality lead to inaccurate fault identifications,
which subsequently affects the fault recovery capabilities.

This thesis addresses the challenge of handling an increasing amount of network traffic
within distributed time-triggered systems, with a particular focus on the data needed for

iii

diagnostic analyses. The thesis first presents a time-triggered architecture definition, in-
cluding a compression model, that enables a systemwide coordination of data compression.
Algorithms are then presented that go beyond the state of the art and realize online data
compression in time-triggered systems. Specifically, the design of the novel algorithms
allows the redundancy between multiple data streams to be exploited for compression
by encoding the data simultaneously as tuples in a dynamic multidimensional product
space. Correlated data streams are found as characteristic patterns in a low-dimensional
subspace, which the compression algorithm covers by dynamically maintained dictionar-
ies. This design also enables compressed data streams to be directly merged and split at
arbitrary nodes within distributed systems, thus providing superior compression perfor-
mance when the sources (or destinations) of multiple data streams are different. As key
features, the presented data compression algorithms provide real-time capability through
short worst-case compression and decompression times and, in addition, a worst-case com-
pression ratio on short input sequences and a mechanism that guarantees a desired data
quality with respect to the application.

The experimental evaluations show the advantages of compressed messages in resource-
constrained real-time systems. Considering the trade-off between the reduction of com-
munication times and the overhead in terms of computation times for compression, the
analyses highlight the reduction potential in the response times of a time-triggered system.
Compression allows to guarantee shorter deadlines and a higher integration of different ser-
vices in one system. Providing a worst-case compression ratio on short input sequences,
the online compression algorithms are not completely lossless, so the impact of degraded
data quality is evaluated using a fault diagnosis use case and multiple test datasets that
allow generalized conclusions. Especially with respect to the ability of the algorithms to
compress multiple correlated data streams simultaneously, the evaluations show the scal-
ability of the compression benefits for large systems. Savings from 40 % up to 56 % of
the bits are observed in the analyzed scenarios. A comparison with other compression
techniques highlights the advantages of the developed online data compression algorithms.

iv

Zusammenfassung

Der Umgang mit begrenzten Kommunikationsressourcen in verteilten Echtzeitsystemen ist
heutzutage eine große Herausforderung. Im Hinblick auf hochzuverlässige und sicherheits-
kritische Systeme (z. B. Flugsteuerungssysteme und moderne Fahrerassistenzsysteme) ist
die Verwendung einer zeitgesteuerten Architektur von Vorteil, da durch die periodischen
Task-Ausführungen und den Nachrichtenaustausch nach einem statischen Zeitplan die Vor-
hersagbarkeit im Vergleich zu ereignisgesteuerten Systemen maximiert ist. Fehlertoleranz
wird in diesen Systemen effizient durch Online- und aktive Fehlerdiagnose realisiert, die
redundanzbasierte fehlerspezifische Wiederherstellungs- oder Degradationsstrategien, z. B.
Systemrekonfigurationen, ermöglicht. Somit sind sie in der Lage, einen Ausfall oder eine
Fehlfunktion einiger ihrer Komponenten zu kompensieren und weiterzuarbeiten. In im-
mer komplexer werdenden Systemen entsteht ein ständig wachsender Netzwerkverkehr für
Überwachungs- und Diagnosezwecke. Dies führt in vielen Fällen dazu, dass das Kommu-
nikationsnetzwerk zur begrenzenden Ressource wird, was sich negativ auf die zeitlichen
Ablaufpläne auswirken kann, d. h. zu längeren Ausführungszeiten der Dienste insgesamt
führt, sowie die maximal mögliche Integration verschiedener Dienste in einem System ver-
ringert.

Der Einsatz von Datenkompression kann zur Reduzierung des Netzwerkverkehrs beitra-
gen. Aufgrund der spezifischen Anforderungen von zeitgesteuerten Systemen einerseits so-
wie Diagnoseanwendungen andererseits, die sich zum Teil widersprechen, können klassische
Datenkompressionsalgorithmen nicht ohne Weiteres angewendet werden. Die Schwierigkeit
liegt in der Vereinbarung der Anforderungen an eine garantierte Datenqualität mit zeit-
lichen Garantien bezüglich der Informationsübermittlung. Verlustfreie Datenkompression
unterstützt kein bestimmtes Worst-Case-Kompressionsverhältnis auf kurzen Eingangsse-
quenzen, sondern erzeugt Ausgaben variabler Länge. Daher ist es schwierig zu garantieren,
wie viel Information in eine zeitgesteuerte Nachricht kodiert werden kann, bzw. die Anzahl
an Nachrichten zu garantieren, die zur Übermittlung einer bestimmten Informationsmenge
benötigt werden. Bei der verlustbehafteten Datenkompression können Ausgaben mit fester
Länge erzeugt werden, jedoch kann die Qualität der rekonstruierten Daten vermindert sein.
Im Hinblick auf Fehlerdiagnose führen sowohl unvollständige oder verzögerte Datenüber-

v

tragungen als auch eine verminderte Datenqualität zu ungenauen Fehleridentifikationen,
was sich wiederum auf die Möglichkeiten zur Fehlerbehandlung auswirkt.

Diese Arbeit befasst sich mit der Herausforderung, den zunehmenden Netzwerkverkehr in
verteilten, zeitgesteuerten Systemen zu bewältigen. Ein besonderer Schwerpunkt liegt dabei
auf für Diagnoseanalysen benötigten Daten. Die Arbeit stellt zunächst eine zeitgesteuerte
Architekturdefinition, einschließlich eines Kompressionsmodells, vor, die eine systemwei-
te Koordination von Datenkompression ermöglicht. Anschließend werden über den Stand
der Technik hinausgehende Algorithmen vorgestellt, die eine Online-Datenkompression in
zeitgesteuerten Systemen realisieren. Insbesondere ermöglicht das Design der neuartigen
Algorithmen die Ausnutzung von Redundanz zwischen mehreren Datenströmen für die
Kompression, indem die Daten in einem dynamischen multidimensionalen Produktraum
gleichzeitig als Tupel kodiert werden. Korrelierte Datenströme werden als charakteristische
Muster in einem niedrigdimensionalen Unterraum erkannt, die der Kompressionsalgorith-
mus durch dynamisch verwaltete Wörterbücher abdeckt. Dieses Design ermöglicht es zu-
dem, komprimierte Datenströme an beliebigen Knoten innerhalb eines verteilten Systems
direkt zusammenzuführen und aufzuteilen, was eine überlegene Kompressionsperformance
ermöglicht, wenn die Quellen (bzw. Senken) mehrerer Datenströme unterschiedlich sind.
Als wesentliche Merkmale bieten die vorgestellten Datenkompressionsalgorithmen Echt-
zeitfähigkeit durch kurze Worst-Case-Kompressions- und Dekompressionszeiten sowie zu-
sätzlich eine Worst-Case-Kompressionsrate auf kurzen Eingangssequenzen und einen Me-
chanismus, der eine gewünschte Datenqualität im Hinblick auf die Anwendung garantiert.

Die experimentellen Auswertungen zeigen die Vorteile von komprimierten Nachrichten
in ressourcenbeschränkten Echtzeitsystemen. Unter Berücksichtigung des Trade-offs zwi-
schen der Reduktion von Kommunikationszeiten und dem Overhead in Form von Re-
chenzeiten für die Kompression verdeutlichen die Analysen das Reduktionspotenzial bei
den Reaktionszeiten eines zeitgesteuerten Systems. Durch eine Datenkompression lassen
sich kürzere Antwortzeiten garantieren sowie eine höhere Integration von verschiedenen
Diensten in einem System realisieren. Da die Online-Kompressionsalgorithmen eine Worst-
Case-Kompressionsrate auf kurzen Eingabesequenzen aufweisen, sind sie nicht vollstän-
dig verlustfrei, sodass die Auswirkungen einer verminderten Datenqualität anhand eines
Diagnose-Anwendungsfalls und mehrerer Testdatensätze evaluiert werden, die verallge-
meinernde Schlussfolgerungen erlauben. Insbesondere im Hinblick auf die Fähigkeit der
Algorithmen, mehrere korrelierte Datenströme gleichzeitig zu komprimieren, zeigen die
Auswertungen die Skalierbarkeit der Kompressionsvorteile für große Systeme. Einsparun-
gen von 40 % bis zu 56 % der Bits werden in den analysierten Szenarien erreicht. Ein
Vergleich mit anderen Kompressionsverfahren unterstreicht die Vorteile der entwickelten
Online-Datenkompressionsalgorithmen.

vi

Acknowledgements

This thesis was created during my employment at the Chair for Embedded Systems at
the University of Siegen in the context of the research project DAKODIS funded by the
German Research Foundation (DFG) under the project number 275601549.

First and foremost, I would like to express my sincere gratitude to the head of the chair
and my advisor Prof. Dr. Roman Obermaisser for his continuous support and the numer-
ous valuable discussions which greatly influenced the outcomes of my research. He opened
excellent opportunities for me to participate in various prestigious research and develop-
ment projects, where I got to know great personalities of the national and international
industrial and scientific community.

I would also like to express my special appreciation to Prof. Dr. Markus Lohrey from the
Chair for Theoretical Computer Science at the University of Siegen, who was our research
partner in the DAKODIS project. I am very grateful for our collaboration, the interesting
discussions and contributions that have led to valuable publications. Moreover, I thank
Prof. Lohrey for his participation in the examination commission.

My sincere thanks go to Prof. Dr. Uwe Brinkschulte who agreed to be the second reviewer
for my thesis. I would also like to thank Prof. Dr. Günter Schröder who agreed to chair
the examination commission.

My special thank-you goes to my colleagues who contributed to the DAKODIS research
project, Seungbum Jo, Damian Ludwig, Setareh Majidi, Ali Behravan and Simon Plasger.
I would especially like to thank Jochen Saßmannshausen, with whom I discussed many
project-related ideas and who provided me with great support during the preparation of
this thesis. Special thanks go to all students who prepared their student theses with me
and contributed to our research. In particular, I would like to mention Pravin Kumar
Jaisawal and Jie-Uei Yang. I would also like to thank all current and former colleagues
from the chair who have made office life a pleasure, especially Stefan Otterbach, Michael
Schmidt, Veit Wiese, Daniel Onwuchekwa, and Hamidreza Ahmadian.

I am grateful to my family, to Vera and to all my friends who supported and motivated
me throughout my studies.

vii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Scope . 4
1.3 Document Structure . 6

2 Basic Concepts 7
2.1 Embedded Real-Time Systems . 7
2.2 Distributed Systems . 9

2.2.1 Characteristics of Distributed Systems 9
2.2.2 Resource Constraints . 11

2.3 Time-Triggered Systems and Scheduling 12
2.4 Dependability . 13

2.4.1 Reliability . 14
2.4.2 Maintainability . 14
2.4.3 Availability . 14
2.4.4 Safety . 15

2.5 Faults, Errors, and Failures . 15
2.5.1 Terminologies . 15
2.5.2 Faults . 16
2.5.3 Errors . 17
2.5.4 Failures . 18

2.6 Fault-Tolerant Systems . 19
2.6.1 Fault-Tolerant System Design . 19

2.6.1.1 Hardware Redundancy . 20
2.6.1.2 Information Redundancy 22

ix

Contents

2.6.1.3 Software Redundancy . 23
2.6.1.4 Time Redundancy . 23

2.6.2 Degradation Steps . 24
2.7 Fault Diagnosis . 25

2.7.1 Introduction to Fault Diagnosis . 25
2.7.2 Fault Detection Methods . 25

2.7.2.1 Single Signal Analysis . 26
2.7.2.2 Signal Models . 26
2.7.2.3 Process Models . 27

2.7.3 Active and Passive Fault Detection 28
2.7.4 Fault Diagnosis Methods . 28

2.7.4.1 Inference Methods . 29
2.7.4.2 Classification Methods . 29

2.8 Data Compression . 30
2.8.1 Introduction to Data Compression 30
2.8.2 Lossy Compression . 32

2.8.2.1 Introduction to Lossy Compression 32
2.8.2.2 Discrete Cosine Transform 33

2.8.3 Lossless Compression . 34
2.8.3.1 Introduction to Lossless Compression 34
2.8.3.2 Huffman Coding . 35
2.8.3.3 Arithmetic Coding . 36
2.8.3.4 Context-Based Compression 38
2.8.3.5 Dictionary Techniques . 39
2.8.3.6 Differential Encoding . 43
2.8.3.7 Other Lossless Compression Techniques 44

3 Related Work 45
3.1 Requirements . 45
3.2 Related Work . 48

3.2.1 Transform Coding . 48
3.2.2 Entropy Coding and Dictionary Techniques 50
3.2.3 Differential Encoding and Predictive Encoding 51
3.2.4 Distributed Source Coding . 53
3.2.5 Off-the-Shelf Algorithms Versus Application-Specific Compression

Algorithms . 54
3.2.6 Data Compression and Scheduling 54

3.3 Summary of the Requirements and Related Work 55

x

Contents

4 DAKODIS Architecture 57
4.1 Architecture Overview . 57
4.2 Physical Model . 58
4.3 Logical Model . 59

4.3.1 Directed Acyclic Graphs . 59
4.3.2 Data Streams . 61
4.3.3 Applications . 61

4.4 Compression Model . 63
4.5 Scheduling Model . 64

5 Online Data Compression for Time-Triggered Communication 67
5.1 Compression of Individual Data Streams 67

5.1.1 Cache-Based Compression Algorithm for Individual Data Streams . 67
5.1.2 Algorithm Enhancements – Reducing Uncertainty and Miss Rate . 71

5.1.2.1 Reducing the Uncertainty 71
5.1.2.2 Reducing the Miss Rate 71

5.1.3 Example of the Cache-Based Compression Algorithm 72
5.1.4 Probability of a Miss . 73
5.1.5 Dynamic Cache-Based Compression Algorithm for Individual Data

Streams . 75
5.1.6 Example of the Dynamic Cache-Based Compression Algorithm . . . 77
5.1.7 Difference Coding for Individual Data Streams 78

5.2 Simultaneous Compression of Multiple Data Streams 80
5.2.1 Preliminaries . 80
5.2.2 Cache-Based Compression Algorithm for Multiple Data Streams . . 81
5.2.3 Dynamic Cache-Based Compression Algorithm for Multiple Data

Streams . 82
5.2.4 Partial Misses . 85
5.2.5 Grouping of Active Hypercubes . 87
5.2.6 Automatic Grouping of Active Hypercubes 90

5.2.6.1 Monitoring the Data Streams 90
5.2.6.2 Static Transmission Dictionary Updates 92
5.2.6.3 Dynamic Transmission Dictionary Updates 95

5.3 Merging and Splitting Compressed Data Streams 96
5.3.1 Routing and Compression Scenarios 96
5.3.2 Merging and Splitting with the Static Cache-Based Algorithm . . . 98
5.3.3 Merging and Splitting with the Dynamic Cache-Based Algorithm . 99

xi

Contents

6 Evaluation and Results 101
6.1 Use Case – Hybrid Electric Vehicle . 101

6.1.1 Hybrid Electric Vehicle Model in Simulink 101
6.1.2 Fault Model and Fault Injection . 103

6.2 Evaluation of the Online Data Compression Algorithms 103
6.2.1 Test Signals . 103

6.2.1.1 Sensor Measurements from the HEV Model 103
6.2.1.2 Generation of Synthetic Test Signals 105

6.2.2 Loss Rates of Individually Compressed Data Streams 107
6.2.3 Loss Rates of Multiple Simultaneously Compressed Data Streams . 110

6.2.3.1 Transmission Regions . 110
6.2.3.2 Scalability of Simultaneous Data Compression 115
6.2.3.3 Signal Selection for Simultaneous Data Compression . . . 119

6.2.4 Time Considerations for Dictionary Searches 120
6.2.5 Comparison with Other Data Compression Techniques 121

6.2.5.1 Compression of Individual Data Streams 121
6.2.5.2 Simultaneous Compression of Multiple Data Streams . . . 122

6.3 Data Compression and Information Redundancy 122
6.4 Influence of Compressed Communication on Schedules 124
6.5 Impact of Data Compression on Fault Diagnosis 128

6.5.1 Classification-Based Fault Diagnosis 128
6.5.2 Fault Diagnosis Use Case . 129

6.5.2.1 Hybrid Electric Vehicle Model 129
6.5.2.2 Condition Monitoring of a Hydraulic System 129
6.5.2.3 Classifier Implementation 130

6.5.3 Constrained Communication Resources and Fault Diagnosis 131

7 Conclusion 137
7.1 Summary and Contribution . 137
7.2 Future Work . 139

Appendix A 141
A.1 Loss Rates of Evaluation Test Signals . 141
A.2 Classification Report for the Fault Diagnosis Use Case 143

Publications 147

Bibliography 149

xii

List of Figures

2.1 Distributed system with four nodes . 9
2.2 Periodic execution of tasks and messages according to a schedule 12
2.3 The fundamental chain of dependability threats 16
2.4 Fault classes . 16
2.5 Failure classes . 18
2.6 Forms of redundancy . 20
2.7 An n-modular redundancy structure with majority voting 21
2.8 Dynamic hardware redundancy . 21
2.9 Fault detection methods . 26
2.10 Fault diagnosis methods . 29
2.11 Data compression methods . 32
2.12 Huffman coding example . 35
2.13 Arithmetic coding example . 37
2.14 LZ77 encoding example . 40

4.1 Architecture overview . 58
4.2 Example of a distributed system . 59
4.3 Example of a directed acyclic graph . 60
4.4 Compressed communication . 64
4.5 Communication at routers . 65

5.1 Cache-based algorithm procedure . 69
5.2 Simultaneous compression of two data streams 83
5.3 Bit distribution in the partial misses strategy 86
5.4 Two-dimensional observation region . 92
5.5 Forming a transmission region with the PCA strategy 94
5.6 Distributed system with communication bottleneck 96
5.7 Merging of multiple data streams at a router 98

6.1 Overview of the HEV model . 102
6.2 Quantized voltage and current signals from the HEV model 104
6.3 Data compression with the static cache-based algorithm 107

xiii

List of Figures

6.4 Data compression with the dynamic cache-based algorithm 108
6.5 Comparison of the static and the dynamic cache-based algorithm 109
6.6 Heat map of hitting squares around the center 110
6.7 Simultaneous compression of two data streams (1) 111
6.8 Simultaneous compression of two data streams (2) 112
6.9 Fixed transmission regions vs. automatically formed regions (1) 113
6.10 Fixed transmission regions vs. automatically formed regions (2) 114
6.11 Formation process of an active region with the PCA strategy 115
6.12 Individual vs. simultaneous compression for two data streams 116
6.13 Scalability of multiple simultaneously compressed data streams 117
6.14 Consecutive losses of simultaneously compressed data streams 119
6.15 Signal selection for simultaneous data compression 120
6.16 Logical model in terms of a directed acyclic graph 124
6.17 Network with allocated tasks and communication 125
6.18 Effect of compressed communication on the length of a schedule 127
6.19 Classification accuracy of the internal pump leakage 132
6.20 Classification accuracy of the hydraulic accumulator pressure 133
6.21 Classification accuracy of the valve condition 133
6.22 F1 score of the valve condition (1) . 134
6.23 F1 score of the valve condition (2) . 134
6.24 Correlation matrix of the sensor signals . 135

xiv

List of Tables

2.1 Development of the dictionary in the LZ78 approach 42

3.1 Overview of the state of the art . 56

5.1 Example codebook for the cache-based compression algorithm 73
5.2 Example codebook for two-dimensional data stream compression (1) 84
5.3 Example codebook for two-dimensional data stream compression (2) 85
5.4 Example codebook for a two-dimensional transmission region 89

A.1 Loss rates of individually compressed test signals (HEV dataset) (1) 141
A.2 Loss rates of individually compressed test signals (HEV dataset) (2) 141
A.3 Loss rates of individually compressed sensor measurements (condition mon-

itoring dataset) . 142
A.4 Classification report for internal pump faults 143
A.5 Classification report for hydraulic accumulator faults 144
A.6 Classification report for valve faults . 145

xv

List of Algorithms

1 Cache-based compression algorithm for 1 data stream 70
2 Dynamic cache-based compression algorithm for 1 data stream 76
3 Cache-based compression algorithm for d data streams 82
4 Dynamic cache-based compression algorithm for d data streams 84

xvii

Acronyms

AAC Advanced Audio Coding
ADC Analog-to-Digital-Conversion
ASCII American Standard Code

for Information Interchange
ASIL Automotive Safety Integrity Level
ATRAC Adaptive Transform Acoustic Coding
AVC Advanced Video Coding

BCH Bose-Chaudhuri-Hocquenghem
BWT Burrows-Wheeler Transform

CBR Constant Bit Rate
CPU Central Processing Unit

DAG Directed Acyclic Graph
DC Direct Current
DCT Discrete Cosine Transform
DFG Deutsche Forschungsgemeinschaft
DIN Deutsches Institut für Normung
DPCM Differential Pulse-Code Modulation
DSC Distributed Source Coding

ETA Event Tree Analysis

FEC Forward Error Correction
FIT Failure in Time

xix

Acronyms

FLAC Free Lossless Audio Codec
FPGA Field-Programmable Gate Array
FTA Fault Tree Analysis

GIF Graphics Interchange Format
GPU Graphics Processing Unit

HEV Hybrid Electric Vehicle
HTTP Hypertext Transfer Protocol

ICE Internal Combustion Engine
IEC International Electrotechnical Commission
IETF Internet Engineering Task Force
IFAC International Federation of Automatic Control
IoT Internet of Things
ISO International Standards Organization
ITG Informationstechnische Gesellschaft
ITU-T International Telecommunication Union –

Telecommunication Standardization Sector

JPEG Joint Photographic Experts Group

LDPC Low-Density Parity-Check
LFU Least Frequently Used
LRU Least Recently Used
LZW Lempel-Ziv-Welch

MILP Mixed-Integer Linear Programming
MOM Message-Oriented Middleware
MPEG Moving Picture Experts Group
MSB Most Significant Bit
MTTF Mean Time to Failure
MTTR Mean Time to Repair

xx

Acronyms

NTG Nachrichtentechnische Gesellschaft

PCA Principal Component Analysis
PGF Progressive Graphics File
PNG Portable Network Graphics
PPM Prediction with Partial Match

RAID Redundant Arrays of Independent
(or Inexpensive) Disks

RPC Remote Procedure Call

SIL Safety Integrity Level

TDMA Time-Division Multiple Access
TMR Triple Modular Redundancy
TSN Time-Sensitive Networking

VBR Variable Bit Rate
VDE Verein Deutscher Elektroingenieure
VDI Verein Deutscher Ingenieure

WCCR Worst-Case Compression Ratio
WCCT Worst-Case Compression Time
WCDT Worst-Case Decompression Time
WCET Worst-Case Execution Time
WLTC World Harmonized Light-Duty Vehicles

Test Cycle
WMA Windows Media Audio
WSN Wireless Sensor Network

xxi

Symbols

0n n many 0-bits
1n n many 1-bits
D Dictionary
bin`(i) The `-bit binary expansion of a value i ∈ N : i < 2`

d Number of data streams
r Length of dictionary index in bits
s Length of value head in bits
t Length of value tail in bits
u Value head
v Value tail
δ Offset
τ Time
N Natural numbers (nonnegative integers)
P(X) Power set of a set X
{0, 1}n n many symbols of a given alphabet
d·e Ceil function
b·c Floor function

xxiii

Chapter 1

Introduction

1.1 Motivation
Systems are referred to as safety-critical systems when a failure or malfunction potentially
results in serious injury or death of people, severe damage or complete loss of (parts of)
the system, or when severe environmental harm is expected. To prevent this, safety-
critical systems must be fault-tolerant, i.e., they must be able to overcome a failure of
some of their constituent components and continue to provide the designated service.
This thesis focuses on distributed embedded real-time systems in safety-critical and high-
dependability applications for which a time-triggered system architecture is advantageous.
In time-triggered systems, the periodic task executions and message exchanges according
to a static schedule maximize the predictability compared to event-triggered systems. The
prior knowledge of the permitted temporal behavior enables the detection and containment
of errors and failures [Obe11, p. 2].

There is a causal relationship between faults, errors, and failures [ALR+01]. From a
system-level perspective, a fault can be the failure of a node in a distributed system, with
the consequence that an incorrect service is provided to the environment. At the component
level, in turn, a fault can be a defective electrical contact (e.g., of a microcontroller) which
potentially leads to a failure in terms of the transmission of incorrect messages (e.g., value
or timing failures). Fault tolerance is mainly concerned with the system level, whereas
validation and maintenance primarily address the component level. In general, a fault as
a cause of an error and eventually of a (total system) failure can originate from various
reasons (e.g., wearout or overstress, or external influences such as voltage peaks) and
exhibit different temporal behavior (e.g., permanent, transient).

Several reliability regimes are defined for safety-critical systems and classify systems
according to their capabilities to handle fault situations. Fail-safe systems enter a safe

1

1 Introduction

system state if a misbehavior is detected. This prevents further danger but also stops the
system from providing its desired services. For instance, a railway signaling system turns
all relevant signals to red to avert the danger for train collisions until the fault situation
is resolved. Fail-operational systems handle fault situations by strategies which keep alive
at least a minimum guaranteed level of service for a certain time. For instance, if an
autonomously driving vehicle experiences a fault in a relevant driver assistance system
(depending on the Automotive Safety Integrity Level (ASIL) according to ISO 26262), it
is supposed to at least maneuver away from the driving lane to not endanger other road
users. Fault-tolerant systems even tolerate faults and continue to work without loss of the
quality of services to be provided. An example for such a system is a control system for
nuclear reactors or a flight control system aboard an aircraft.

Fault-Diagnosis-Based Fault Tolerance and Its System Implication

Redundancy is a key element in fault-tolerant system design. The four main forms of
redundancy are hardware redundancy, software redundancy, information redundancy, and
time redundancy [KK07, p. 3]. In short, redundancy refers to an addition (or replication)
of critical resources (e.g., computations and information) with the aim of increasing the
reliability of a system. With the additional resources, the system is equipped beyond what
is needed for its regular operation, such that the redundancy compensates for failed parts
(e.g., hardware, computations, and information) within the system, thus enabling it to
continue operating instead of failing completely.

There are, naturally, implications on systems which include additional costs and space
requirements with regard to hardware redundancy. Particularly in distributed systems,
information and time redundancy directly increase the amount of data to be stored and
transmitted. The additional network traffic can furthermore lead to additional communi-
cation delays and task execution delays.

Active redundancy strategies overcome fault situations by reconfigurations. In fault-
tolerant computer systems, triple modular redundancy (TMR) with majority voting is
commonly employed. By comparing the results of a triplicated process (potentially exe-
cuted on different computation nodes), one faulty result can be masked without human
intervention. Beyond that, a system’s reliability, availability, and the tolerance against
faults can be further enhanced and efficiently realized, respectively, by utilizing online and
active fault diagnosis. Its ability to detect, identify, and potentially even predict faults
in a system enables application-specific recovery or degradation strategies, e.g., system
reconfigurations after a node failure including rescheduling or service degradation. Natu-
rally, fault diagnosis with corresponding recovery strategies also utilizes redundancy, but
in many situations the use of resources is more efficient, especially with a view to hard-

2

1.1 Motivation

ware savings [Ise06, pp. 348–349]. As an example, a triplication of components can be
overcome with fault diagnosis, as active reconfiguration possibilities based on (diagnostic)
information supersede simple fault masking (as used in TMR).

For this, fault diagnosis monitors the system’s behavior according to its specification
and if a deviation is detected, the faulty behavior is narrowed down from a first symptom
to the root cause. Common fault diagnosis techniques are based on inference and classifi-
cation [Ise06, p. 7]. A primary source of information for diagnosis are sensor measurements
(e.g., currents, voltages, and temperatures) acquired at various locations in a distributed
system, e.g., assume a scenario where multiple interacting robots perform an overall service
in a smart factory [KOK14].

In the same way as the regular system service is subdivided into tasks, the analysis
steps involved in fault diagnosis are task-based and executed on different nodes. The
tasks include trend observations of signals, correlation and plausibility analyses, as well as
classifications all of which involve features extracted from different signals and locations in
the distributed system, respectively. In safety-critical systems with active fault diagnosis,
system reconfigurations in the case of a component failure depend on the results of the
diagnosis. In order to meet the stringent deadlines of those systems, it makes sense to
execute the fault diagnosis at run-time in a time-triggered fashion. The diagnostic tasks
and the required data exchange of the diagnostic inference process then compete with the
tasks and messages of the system’s regular service, since the diagnosis typically runs on
the same (distributed) system.

In general, many such systems are becoming more complex and the computation nodes
more powerful to keep up with computationally intense tasks, including diagnostic tasks.
The communication capacity of the communication network often becomes the limiting re-
source, as data communication is typically considered to be more expensive than data
processing or data storage [DFG16]. The ever-growing amount of network traffic for
monitoring and diagnostic purposes is also subject-matter of many survey papers, e.g.,
[Meh+18]. Some of the analyzed works consider data compression, e.g., [Kol+12], how-
ever, the discussed application domains are non-safety-critical and the main objectives lie
on energy savings and improved data transmission protocols, respectively (see Section 3.2).

Online Data Compression for Time-Triggered Communication

To tackle the challenge of handling an increasing amount of network traffic within dis-
tributed time-triggered systems, in particular with a focus on the data needed for fault
diagnosis, this thesis presents algorithms to utilize online data compression within time-
triggered systems.

3

1 Introduction

The research gap arises from the special requirements and constraints of time-triggered
systems and online diagnosis applications, which are partially contradictory. In partic-
ular, the impossibility of a lossless online compressor to guarantee a certain worst-case
compression ratio (WCCR) on short input sequences and consequently its variable-length
output symbols make it challenging to encode a guaranteed amount of information into
a time-triggered message or, in turn, to guarantee the number of messages needed to
communicate a certain amount of information. However, diagnosis applications in safety-
critical systems require both guaranteed data quality and temporal guarantees regarding
information delivery. On the other hand, lossy online compression is capable of produc-
ing fixed-length outputs, but it has the drawback that the compressed data might not be
fully reconstructable and thus might be of degraded quality. This, in turn, might lead
to inappropriate fault identifications and consequently thwart the essential fault recovery
capabilities in safety-critical systems. For this reason, the main application area of lossy
data compression is the multimedia domain, where the recipients of the data are humans,
who accept a certain loss of quality or transmission delays.

This thesis was prepared in the context of the research project DAKODIS, funded by
the German Research Foundation (DFG), which had the primary objective of establishing
the ability to cope with limited communication resources while providing temporal guar-
antees for online diagnosis in distributed embedded systems using data compression. The
thesis presents online data compression algorithms developed as part of a time-triggered
architecture called the DAKODIS architecture. The designed data compression algorithms
provide WCCRs, short worst-case compression times (WCCTs) and worst-case decompres-
sion times (WCDTs), as well as guaranteed data quality, and are thus able to accommodate
the needs of both time-triggered systems and active diagnosis applications. In addition,
the compression algorithms exploit the fact that data for fault diagnosis often have special
characteristics, such as high correlations between different sensor data of related mea-
surements [VAA04]. This leads to an improved compression performance in terms of the
achievable compression ratio. As a performance measure, this is reflected in a reduced
makespan (i.e., the length of a time-triggered system’s schedule) and ensures that the
deadlines of the applications are met.

1.2 Research Scope

Data compression is deployed in various application domains with considerable advantages
when it comes to the storage and particularly to the communication of large amounts of
data.

4

1.2 Research Scope

The main objective of this work is to develop and implement beyond state-of-the-art
online data compression algorithms applicable for time-triggered communication in dis-
tributed systems, where the communication slots are established with respect to a global
time base. Such a deterministic communication system is common for safety-critical sys-
tems to provide real-time guarantees, fault containment, and certification. Since the relia-
bility and availability of such high-dependable and safety-critical systems is further realized
with online diagnosis techniques in combination with recovery strategies, the focus of this
thesis is on compressing data gathered from sensors as a foundation for determining the
health status of a system.

In order to realize the goals, this thesis presents several main contributions that go
beyond the state of the art:

• The definition of a compression model as part of the DAKODIS architecture
enables a scheduling algorithm to incorporate knowledge regarding achievable WC-
CRs of individual as well as combined data stream compressions. This contributes to
a systemwide coordination of data compression and helps to decrease the makespan,
i.e., the length of the schedule.

• Online data compression algorithms that reconcile the requirements of both
time-triggered communication and fault diagnosis applications. This is realized by
lossless data compression with bounded omissions for sensor data, i.e., the data is
compressed predominantly lossless, and with a low probability omissions of data
values might occur. Yet not the entire information is lost in this case, since these
data values are recovered with only having slightly reduced accuracy.

• Utilizing redundancy between multiple diagnostic sensor data streams for a
superior combined compression of multiple data streams. Following the general goal
of data compression to remove unwanted redundancy from input data, the newly
designed algorithms continuously analyze multiple data streams for their potential
to be compressed together. They are thus able to achieve a better compression ratio
compared to individual data stream compressions.

• Data compression for branching data streams in distributed time-triggered
systems. The ability of the data compression algorithms to perform real-time merg-
ing and splitting of compressed sensor data streams at arbitrary nodes of a distributed
time-triggered system allows a scheduler to plan task allocations and executions as
well as message injections and message paths more efficiently, e.g., with a view to
time or energy savings.

5

1 Introduction

1.3 Document Structure
After highlighting the motivation and the research scope of this work in this chapter,
Chapter 2 introduces the basic concepts and terminologies. It covers the three major
fields of distributed real-time embedded systems, fault diagnosis, and data compression.

Chapter 3 defines the requirements for the research and reviews the state of the art. The
main focus throughout this chapter lies on existing data compression techniques and their
utilization possibilities in the context of time-triggered communication. The comparison
of this work with related works in an overview table emphasizes the research gap.

Chapter 4 presents the system architecture including the formalization of the physical
model, the logical model, the compression model, and the scheduling model. With the
logical model describing an application in terms of a directed acyclic graph (DAG), the
primary focus is on fault diagnosis applications. This is why the chapter takes a closer
look at the specific characteristics and needs of such applications.

Chapter 5 is the core of this thesis and deals with the newly designed online data com-
pression algorithms for individual and simultaneous compression of diagnostic sensor data
streams within distributed time-triggered systems. The working principles and the spe-
cific properties of the algorithms are discussed in detail and supported with meaningful
examples.

Chapter 6 evaluates the data compression algorithms in the context of a fault diagnosis
use case from the automotive domain. Based on test datasets, the performance of the
compression algorithms is first evaluated in terms of the achievable compression ratios with
respect to the omission of data values. Next, the impact of compressed messages on time-
triggered communication is investigated and finally the effect of compressed communication
is evaluated with respect to applications for which the diagnostic use case is used.

Chapter 7 concludes this thesis by summarizing the achievements and providing an out-
look for future work.

6

Chapter 2

Basic Concepts

This chapter introduces the basic concepts and terminologies and provides a foundation
for the remainder of this work. It addresses the three fields of (1) embedded systems with
a special focus on distributed and time-sensitive systems, (2) fault-tolerant concepts and
fault diagnosis techniques applied in reliable embedded real-time systems, and (3) data
compression techniques in the context of time-triggered systems.

2.1 Embedded Real-Time Systems
A computer system that is embedded in a technical context and fulfills a dedicated function
is called an embedded system. As an example, a modern car incorporates many embed-
ded devices for various tasks, some of which are highly time-sensitive, e.g., controlling a
combustion engine requires precise timings for petrol injection and petrol ignition. An em-
bedded real-time system unites real-time capabilities in the form of an embedded computer
system. In order for such a system to show a correct behavior, its computation results must
be logically correct and, in addition, produced before a predefined physical time [Sch05,
p. 39; Kop11, p. 3]. The system behavior refers to the sequence of all its outputs in time.
A deadline refers to the time instant when the system must yield the result. It is not the
goal in embedded real-time computing to produce computation results as fast as possible
but rather exactly within the given temporal boundaries (not too early and not too late),
which are defined by the environment. The plethora of nowadays embedded real-time
systems can be roughly structured according to their characteristics and capabilities.

(1) A first categorization addresses the severity of consequences in case a real-time system
does not meet a deadline. In this regard, one classifies the deadlines and consequently real-
time systems into soft, firm, and hard. This classification is driven by the application.

7

2 Basic Concepts

The output of a soft real-time system (with only soft deadlines) is still somehow useful
in case of a missed deadline, since the definition of the soft deadline can be seen as a
statistical criterion with a certain tolerance range [Sch05, p. 40]. Such a system shows
acceptable average-response times for noncritical events. For many Internet or multimedia
applications, for example, it is desirable that content is delivered on time, whereas in case
of a delay, the negative impact is limited to the user experience.

The output of a real-time system after missing a firm deadline becomes inaccurate or
inappropriate and is useless for the application. Besides this, there is no immediate damage
and the consequences are not catastrophic. An example is an outdated transmission packet
in a telecommunication system, which might lower the audio quality for a limited time and
in a worst case would require the communication channel to be reestablished.

Violating the timing constraints in a hard real-time system can result in a catastrophe,
such as severe harm to humans, loss of live, or vast environmental damage, among others.
When a real-time computer system must meet at least one hard deadline, it is called a
hard (or safety-critical) real-time computer system. Such systems guarantee to provide
correct results within the predefined timing constraints [Kop98; Kop11, p. 3]. Systems that
control safety-critical processes, e.g., chemical processes, nuclear power plants and aircraft
flight control systems are examples for hard real-time systems.

(2) A second categorization addresses the system behavior in the case of a failure. Also
driven by the application, one distinguishes between fail-safe and fail-operational systems.
While the former have the ability to enter a safe state in order to prevent further harm
or damage at the cost of stopping their designated service, the latter type of systems are
designed to provide at least an acceptable quality of service despite the occurrence of a
failure [Koh+16]. Examples for the two categories are a train signaling system which can
transition into a safe state by setting all signaling lights to red, whereas a flight control
system in an aircraft must remain operational at all times. Further details in this regard
are given in Section 2.6.

(3) When it comes to the design of real-time systems, there are several possibilities how
to implement the requirements and specifications. Contrary approaches are event-triggered
and time-triggered real-time systems, where the latter class is often preferred to realize hard
real-time systems [Obe11, p. 2]. Detailed considerations are presented in Section 2.3

(4) There are further categorizations such as guaranteed response versus best effort or
resource-adequate versus resource-inadequate [Kop11, p. 16]. They all refer to different
design approaches and are strongly associated with soft and hard real-time systems, re-
spectively (see Section 2.3).

8

2.2 Distributed Systems

2.2 Distributed Systems

2.2.1 Characteristics of Distributed Systems

Many of the currently existing real-time computer systems are distributed. A so-called
distributed system is built from a set of autonomous computation nodes (in the literature
sometimes also referred to as computation units, processing units, or simply nodes) which
are interconnected by a communication network. Typically, the independent nodes are
physically distributed at different locations and the coordination of data for the tasks exe-
cuted on the nodes is managed by messages via the network. There is no access to a shared
memory. Each node has its own local memory and processor as illustrated in Figure 2.1.
In this way, the nodes interact with each other and perform an overall service [VT02].

Figure 2.1: Distributed system with four nodes that cooperate with each other by exchang-
ing messages over a communication network.

According to Van Steen and Tanenbaum [VT02], three main characteristics of distributed
systems are the concurrency of components, the lack of a global clock, and an indepen-
dent failure of components. However, nowadays there are special system architectures that
are based on a synchronized global time, e.g., consider Time-Sensitive Networking (TSN).
Moreover, even autonomous processes that run on a same physical machine, but whose
communication is handled by message exchange, are sometimes referred to as distributed
systems [And00, pp. 291–292]. This means that the term is used in a much broader sense
these days.

In distributed computing, the goal is to encapsulate an overall service to be provided
into multiple tasks that can then be scheduled to different networking computation nodes
[God12]. The execution and communication of such tasks is defined by a logical model and
the entire process becomes temporally and spatially decomposed. This offers great poten-
tial for parallel computation of tasks, as it is often cost-effective to favor multiple low-end
computers over one high-end computer. It can also lead to a significantly increased system
reliability, as a failure of an independent node can be compensated by other nodes via

9

2 Basic Concepts

task redundancy or task rescheduling, see e.g., [Kri14; Erc19]. Another advantage is the
scalability of a distributed system over a single computer system due to the possibility of
adding new computation nodes and extending the communication network with additional
routers. In general, the structure of such a system might be initially unknown and can po-
tentially change during the execution of a distributed process, e.g., in dynamic distributed
systems [Bal+07]. The usage of a distributed system may arise from the nature of an
application in combination with a given physical infrastructure. For instance, if (sensor)
data is generated at a certain physical location (or multiple locations) and subsequent
data processing including data fusion needs to take place at another physical location, a
communication network is used to transport data between multiple nodes. The message
passing procedures in distributed systems can be implemented using various protocols.
Examples are the hypertext transfer protocol (HTTP), remote procedure calls (RPCs),
or a message-oriented middleware (MOM), see e.g., [Mag15]. Due to the message-based
approach, each of the contributing nodes is only aware of a part of the overall process.

There are many examples of distributed systems, e.g., telecommunication networks in-
cluding wireless sensor networks, computer networks (e.g., the Internet, intranets for indus-
trial applications), as well as network applications like peer-to-peer networks or network
file systems. Another broad field is parallel computation including cloud computing or
grid computing.

The hardware that forms the physical infrastructure of a distributed system must be
chosen according to the needs of the designated applications. For example, time-sensitive
applications might demand specialized hardware (e.g., field-programmable gate arrays (FP-
GAs)) in order to comply with strict timing constraints. In this regard, distributed systems
can be composed of multiple identical computation nodes and routers, respectively, such
that the system is considered homogeneous. However, in numerous real-world scenarios,
for instance in the context of the Internet of things (IoT), one finds given physical infras-
tructures consisting of heterogeneous nodes, which are getting loaded with more and more
processes to be executed. As an example for such a system, consider modern industrial
plants in the context of the Fourth Industrial Revolution (Industry 4.0): The hardware
infrastructure is built from many different computers (e.g., embedded devices, CPUs, FP-
GAs, and GPUs) and the applications typically include control tasks, classification tasks,
and diagnostic tasks.

For the special field of distributed real-time systems, the same definitions as given in
Section 2.1 apply. In such a constellation, a common goal is achieved within specified time
boundaries through the cooperation of the nodes [Erc19, p. 41]. For instance, real-time
process control requires strict timing guarantees. Other examples are industrial control
systems or aircraft control systems.

10

2.2 Distributed Systems

2.2.2 Resource Constraints

In many application domains, the resources of embedded systems are constrained. In
this context, the term resource stands for different factors or circumstances, but typically
addresses hardware limitations. In the last decades, the computation speed of computer
systems has in general increased approximately as predicted by Moore’s law. This law
describes an observation formulated by Gordon Moore in 1965 [Moo+65], where the author
predicted that the number of components per integrated circuit would roughly double
every year for at least a decade. Consequently, he expected an increase in the computation
performance. This ratio was later revised to a double every two years in 1975 [Moo+75].
Due to miniaturization and mass production, the cost of computer chips did not increase
to the same extent. Despite this technical evolution, computation speed can be seen
as a limitation of computer systems as there will always be applications for which the
computation speed is insufficient. There are other constraints that come into play with
growing processor and system speeds. An increased energy consumption causes higher costs
and can lead to difficulties in the heat dissipation of the thermal loss. In consequence, these
factors influence the maximum achievable system performance and play a major role in
today’s intentions for energy efficiency.

Considering the plethora of smart devices on the market today, many of which are
battery powered (e.g., wireless sensors, wearables, or communication devices), it becomes
apparent that an optimal utilization of available resources is of greatest importance. In
particular, bottlenecks (e.g., weak connection/communication interfaces) between system
components must be avoided, as they might impair the overall system performance. There
are also space and weight constraints for many systems, especially when they are portable
or mobile. Again, this might affect the available power and performance. Many existing
systems were originally designed for specific purposes but have since been extended as
newer applications demanded an increased performance. As a consequence, one finds
disadvantageous situations where a (distributed) system has only been partly upgraded,
e.g., new high-performance nodes are connected via a slow communication network.

The demanded system reliability can also be seen as a constraint, as it might entail the
need for redundant system hardware, which in turn might be limited by the allowed space,
weight, or power consumptions [KK07, p. 11].

In resource-constrained systems, the goal is always to make the best possible use of
the available resources. In distributed real-time systems, this can only be achieved by
considering the allocation of tasks to appropriate computation nodes in combination with
the required message exchanges over the network. Scheduling algorithms help to solve such
an optimization problem (see Section 2.3).

11

2 Basic Concepts

2.3 Time-Triggered Systems
and Scheduling

A time-triggered system is a design choice (primarily for distributed real-time systems)
where the allocation of tasks to processing nodes, the execution times of tasks and the
message injection times and paths for the data exchange between the nodes via a com-
munication network are predetermined by a schedule [Obe11, pp. 1–2]. Such a schedule is
computed under consideration of a logical model (i.e., dependencies between tasks) and a
physical model (i.e., resources in terms of a network topology that can execute those tasks
and realize their communication), and potentially additional models (e.g., a compression
model). These models provide information such as worst-case execution times (WCETs)
for all tasks as well as constraints, for instance, to which processing nodes certain tasks
can be allotted. Scheduling requirements furthermore describe the scheduling goal, e.g.,
optimization according to certain performance metrics [LM16]. In such a time-triggered
system, every contributing node of the network (processing nodes and routers) is aware
of the schedule. The executions of tasks at processing nodes and the subsequent injection
of messages are then internally triggered, i.e., initiated in a periodical manner (accord-
ing to the schedule) just by the progression of physical time, as illustrated in Figure 2.2.
Therefore, the internal clocks of all nodes must be time-synchronized such that a global
time becomes available at every node to which all events are related. This is contrary to
event-triggered control approaches, where all processing and communication activities are
initiated by (external) events, independent from any physical time. No global time base
is required and to realize this kind of processing, standard interrupt mechanisms can be
applied [Kop11, p. 17].

Figure 2.2: Periodic execution of tasks and messages according to a schedule.

The length of a task schedule is denoted as the makespan. Many scientific works and
research projects pursue the goal of minimizing makespans to enable a shorter period for
the execution of services (e.g., [Tab20]) or to exploit idle times during schedule executions

12

2.4 Dependability

in order to reduce the system’s energy consumption, e.g., through dynamic voltage and
frequency scaling [CK07].

Recalling hard and soft real-time requirements, the time-triggered approach is ideal to
realize hard real-time systems due to its temporal predictability (under consideration of
properly determined WCETs). Moreover, time-triggered systems are suited to accomplish
guaranteed responses and resource adequacy. These attributes refer to peak load situations
of fault scenarios. For hard real-time systems, a fault and load hypothesis must be specified
such that the system is able to guarantee correct behavior in all situations covered by
the hypotheses. Fault-tolerant scheduling particularly provides schedules according to
these specifications [Kri14], possibly also alternative schedules that can be invoked in fault
situations [Pop+07]. A design following the guaranteed response paradigm, again, requires
the availability of adequate resources. To achieve these characteristics, careful planning
and extensive analyses during the design phase of the system are of utmost importance.

[LM16] provides a general taxonomy for scheduling problems. By clustering those prob-
lems into ten groups, it provides an overview of typical up-to-date scheduling problems.
Based on their analysis of numerous research papers, the authors found that solving
scheduling problems for cloud computing infrastructures has recently gained consider-
able attention. The most frequently addressed scheduling problems are (1) scheduling
of workflow tasks in dedicated computing clusters and (2) scheduling of bags of tasks in
heterogeneous, widely distributed federated resources.

2.4 Dependability
In their well-respected 2004 paper [Avi+04], Avižienis et al. stated that computer (com-
puting and communication) systems are characterized by the four fundamental properties
functionality, performance, cost, and dependability. In the context of this thesis, this sec-
tion takes a closer look at the last-mentioned property, the dependability. According to
the dependability tree [ALR+01], the main threats to dependability are faults, errors, and
failures (see Section 2.5). On the other hand, one finds the means to attain dependabil-
ity, which aim at lowering the probability for the above threats through fault prevention,
fault tolerance, fault removal, and fault forecasting. The four most relevant attributes of
dependability, namely reliability, availability, maintainability, and safety [Mar11, p. 5] will
be addressed in the following. They all relate to the quality of service that a system is
able to provide during a certain time interval [Avi+04].

13

2 Basic Concepts

2.4.1 Reliability

The reliability of a system refers to probability that a system will not fail to correctly pro-
vide its designated service before a certain time. Taking as the counterpart the probability
of failure, i.e., the probability that a system will fail within a given interval of time, then
reliability = 1 − probability of failure. To denote this probability of failure, the failure
rate is applied, which measures the average number of failures of devices within a given
time frame. A special measure in this context is failures in time (FIT); more specifically,
1 FIT corresponds to one failure per 109 (i.e., 1 billion) device operating hours. For ex-
ample, in the automotive domain, the norm ISO 26262 [ISO11] defines tolerable FIT rates
of safety-relevant electronic systems to achieve a respective Automotive Safety Integrity
Level (ASIL). According to the SN 29500 from Siemens [SN09], an example for an elec-
tronic component that achieves 1 FIT is a Universal-Diode. Assuming a constant failure
rate, its reciprocal describes the average life-time of a device in hours, i.e., the mean time to
failure (MTTF). The reliability is an important measure for systems where even a short
outage can have a catastrophic impact [KK07, p. 5]. Systems which are required to offer
a failure rate of about 1 FIT are considered to be ultrahigh reliable systems [Kop11, p. 11]
or, alternatively, ultrahigh dependable systems [SWH94].

2.4.2 Maintainability

The maintainability refers to the time and effort that needs to be spent to repair or maintain
a system and bring it back to correct functioning after a (noncritical) failure. According to
Kopetz [Kop11, p. 12], there is a fundamental conflict between a high maintainability and
a high reliability, as easily maintainable systems are often composed of field replaceable
units and serviceable interfaces, which in turn come with much higher physical failure
rates compared with fully integrated systems or components. As a quantifiable measure
of maintainability, the mean time to repair (MTTR) refers to the average time it takes to
reestablish a system’s delivery of correct service.

2.4.3 Availability

The availability is seen as the fraction of time in which a system is ready to provide
its designated service correctly with respect to a certain observation time interval. If
one expects constant failure and repair rates, the (long-term) availability is derived as
MTTF/(MTTF + MTTR) [Kop11, p. 12]. This ratio means that a system is available
before a failure occurs and is unavailable until this failure is repaired. A system that is

14

2.5 Faults, Errors, and Failures

demanded to offer high availability may therefore show a long mean time to failure or a
short mean time to repair. The availability is an important quality of service measure
for systems where downtimes are undesirable and potentially costly, but not immediately
vital [KK07, p. 5]. For instance, an online store should be highly available, since downtimes
can annoy customers and decrease sales, yet short system outages can be tolerated.

2.4.4 Safety

Failures can be classified into critical and noncritical failure modes. Recall Section 2.1, in
safety-critical real-time systems the harm or damage in case of a failure can be extremely
high. The safety can thus be seen as the reliability regarding critical failure modes. De-
pending on the safety integrity level (SIL), systems in these application domains (e.g., an
airplane control system) must be certified by an independent certification agency, which
performs a critical review of the complete system design and can attest the system a
so-called ultrahigh reliability with a failure rate (regarding critical failures) of as low as
about 10−9 failures/h [Kop11, p. 11].

2.5 Faults, Errors, and Failures

2.5.1 Terminologies

The terms faults and failures are widely used in various technological fields, especially
when reliability and fault tolerance play a role. However, the terminology and the defini-
tions throughout the literature are not always consistent. As early as 1988, Omdahl et al.
published the RAM (reliability, availability, maintainability) dictionary [Omd88] as an
approach to standardize the terminology. Later works, e.g., from the International Fed-
eration of Automatic Control (IFAC), the German DIN (e.g., DIN 40041), the VDI/VDE
(e.g., VDI 4001/2, NTG 3004 (now ITG)), and other works (e.g., [Lap92; IB97]) made ef-
forts to come to commonly accepted definitions. Still, often depending on the application
domain, different authors use slightly different terminology and definitions. In particular
the term error has a strong relation to the field of computer systems and refers, for in-
stance, to corrupted h-state data in memory [Kop11, pp. 138–139]. For mechanical systems
(e.g., an axle) such an error state is inappropriate [Ise06].

In Section 2.4, the threats to dependability were identified as faults, errors, and failures.
They stand in a causal relationship as depicted in Figure 2.3. A fault is a cause of an error
and eventually of a failure or a malfunction. Faults and errors are states within a system,
whereas malfunctions and failures are events [Ise06, pp. 20–21; Kop11, pp. 136–141].

15

2 Basic Concepts

Figure 2.3: The fundamental chain of dependability threats [ALR+01].

The following sections define the terminology used throughout this thesis, respecting the
relevant literature in the field. Detailed remarks are provided for each of the terms.

2.5.2 Faults

According to Isermann [Ise06, p. 20], a fault is an unpermitted deviation of at least one
characteristic property of a system from the acceptable, usual, standard condition. Such
an unpermitted deviation refers to a discrepancy between the fault value and the usual
value respecting a certain tolerance range. The IEC 61508 furthermore states that a fault
may ultimately reduce the capability of a functional unit, and consequently of the system,
to fulfill the intended service [IEC10]. A fault might not directly have an impact on the
system. Especially in mechanical systems, faults such as small cracks (e.g., in a gear wheel)
might stay undiscovered for a long time. Numerous faults originate from different reasons,
in different situations, with a different temporal behavior and affect different domains of
a system. Figure 2.4 shows five elementary fault classes and provides the terminology to
properly describe faults.

Figure 2.4: Fault classes.

16

2.5 Faults, Errors, and Failures

Firstly, a fault can be classified regarding its origin. This viewpoint refers to the phase
in which a fault is created or occurs and separates development faults from operation
faults. Faults that originate during the development phase of a system, but also those
which originate during maintenance situations, belong to this class. If, on the other hand,
a fault occurs during the runtime of a system, it is identified as an operational fault.

In the second category, the nature of a fault is considered and a distinction is made
between natural faults and human-made faults. The former category indicates that a
fault is caused by natural phenomena without any human involvement. The human-made
faults include all actions of humans and, in addition, the absence of actions when actions
should have been performed (omission). One further characterizes the underlying objective
of the involved human, which can be malicious or nonmalicious. Characterizing a fault
to be human-made and malicious implies a human’s intent to deliberately effectuate the
system behavior in his or her favor (e.g., access confidential information) or to negatively
influence the functioning (e.g., disrupt the service). Human-made, nonmalicious faults
might still result from deliberate harmful decisions, however, the intention is of different
kind, e.g., a certain trade-off decision might turn into a fault at a later time. Of course,
such faults might also arise without any special awareness. Then it is typically considered
to be an accidental fault. However, if it turns out that a human-made, nonmalicious fault
is introduced without awareness, but results from an inadequate qualification of humans
(e.g., operators, managers), it might be more appropriately described as an incompetence
fault [Avi+04].

The third category identifies a fault in terms of its dimension, meaning that it either
affects the system’s hardware or the software.

The fourth category describes a fault related to the system boundaries. A fault can be
internal and originate from hardware (internal physical fault) or software (internal design
fault). In contrast, external faults arise from either environmental circumstances that
effect the hardware (e.g., lightning stroke) or the software (e.g., inappropriate inputs).

Lastly, faults exhibit a certain temporal behavior (persistence). Permanent faults are
assumed to remain continuously present after their initial occurrence. The presence of
transient faults is bounded in time, their presence might be of periodic or sporadic appear-
ance.

2.5.3 Errors

An error (in a computer system) is an unintended state and it is the consequence of a
fault [Kop11, p. 136]. It might be inactive for a while until, if activated, it leads to a failure.
On the other hand, it can also remain inactive without any impact on the system. The

17

2 Basic Concepts

state error, unlike electrical systems, cannot be appropriately applied to many mechanical
systems [Ise06]. In various examples in the literature, a fault is directly referred to be the
cause of a failure or malfunction, see e.g., [Ise11, p. 20].

2.5.4 Failures

A malfunction as well as a failure is characterized by a deviation of a currently provided
service of a system from the intended service, where a malfunction refers to a temporary
interruption and a failure means a permanent interruption of a system’s ability to provide
its intended service [Ise06, pp. 20–21]. Malfunctions and failures result from one or more
faults. Figure 2.5 provides the terminology to characterize a failure according to four
elementary aspects.

Figure 2.5: Failure classes.

Firstly, a failure has a certain nature, i.e., it occurs in a specific domain, where a dis-
tinction is made between value (i.e., content) and timing failures. A value failure (of a
component) refers to an incorrect output value at the component interface. Failures of
a system in the temporal domain only exist if an intended temporal behavior is speci-
fied (recall Section 2.3). They refer to a violation of the defined temporal behavior when a
value is produced outside the intended real-time interval. One can further distinguish early
temporal failures and late temporal failures [Kop11, pp. 139–141]. Omission failures are a
special case of late failures. Of course, there might also be cases where both the content
and the timing is incorrect. Then one describes the failure either as halt failure (i.e., the
service to be provided is halted), or as erratic failure, where the system is performing some
wrong activities (e.g., babbling) [Avi+04].

18

2.6 Fault-Tolerant Systems

In the second category, perception, a failure is designated as either consistent or incon-
sistent. This category is considered if a system has more than two users (a user in this
context can be, for example, an interconnected system or a node in a distributed system).
If a failure is consistent, all users observe the same failing behavior. An inconsistent failure
manifests itself by exhibiting a different failing behavior for different users. Other terms
for an inconsistent failure in the literature are two-faced failure or Byzantine failure, see
e.g., [Dri+04].

The third category addresses the effect or the consequences of failures. The two most
extreme cases are minor (benign) failures and catastrophic (malign) failures. Other severity
levels in between the aforementioned two can be defined according to criteria such as
tolerable outage duration, possibility of human lives being endangered, or consequences in
case of loss or disclosure of (confidential) data [Avi+04]. Systems whose failure potentially
has disastrous effects on the environment, leads to severe harm to humans, or causes
significant economic loss are referred to as safety-critical systems (recall Section 2.1).

The fourth category describes a failure in terms of its occurrence within a certain time
interval. If it occurs only once, it is denoted as single failure. A further distinction can be
made as to whether a system is able to resume operation after a single failure, in which
case the failure is called a transient failure. Otherwise, the failure is called permanent and
requires repair of the system. In the given time interval, a failure might occur frequently;
then it is called a repeated failure.

In the literature, one might find slightly different failure mode classifications or the level
of detail of the categorization might vary, however, the four failure domains presented in
this work conform to most of the available literature, see e.g., [Ise06; Vac06].

2.6 Fault-Tolerant Systems

2.6.1 Fault-Tolerant System Design

An important step towards a high system reliability and safety is an improvement of the
design and a high quality of all involved components. However, in many (safety-critical)
application domains, the system reliability is demanded to be higher than the reliabilities
of the constituent subsystems or components.

Fault tolerance refers to the capability of a system to tolerate faults by exploiting re-
dundancy, thus preventing an overall system failure. Recalling the causal relationship
between faults, errors, and failures (Section 2.5.1) and taking a distributed system as an
example, the failure of a node (which might result in providing an incorrect service to the

19

2 Basic Concepts

environment) is considered to be a fault from the system-level perspective. Fault tolerance
demands redundant system hardware (e.g., redundant network nodes, redundant mechan-
ical structures) and also involves information redundancy, software redundancy, as well as
time redundancy [KK07, p. 3]. Figure 2.6 illustrates the four major forms of redundancy
in computer science.

Figure 2.6: Forms of redundancy.

2.6.1.1 Hardware Redundancy

The most obvious way to deal with hardware faults is to include extra hardware into the
system design to detect and possibly compensate the effects of failed hardware. Besides
this, information or time redundancy can also help to tolerate hardware faults. With
respect to extra hardware, one basically categorizes fault-tolerant system realizations into
those with static redundancy and those with dynamic redundancy [Ise06; Alf17].

Static Redundancy

Triple modular redundancy (TMR) in electronic systems is an example for static hardware
redundancy, where the outputs of three redundant modules (e.g., computer hardware),
which work on the same inputs, are compared via a voter so that one faulty module can
be overcome by this constellation without any efforts on fault detection. To be consistent
with the common literature, the term module is used here and in the following to refer to
what is tripled in a TMR configuration. It is used as a general term and covers computer
hardware and computations in the same way as electric or mechanic components.

In general, in an n-modular redundant system with an odd number n of redundant
modules, F = (n − 1)/2 faults can be tolerated since a majority voter overwrites faulty
outputs. On the other hand, if, for example, n = 3 and two modules were faulty, a majority
voter would pass through the faulty signal.

Figure 2.7 exemplarily shows an n-modular redundancy structure with a majority voter.
Obviously, every extra module produces additional cost, consumes energy, needs space and

20

2.6 Fault-Tolerant Systems

Figure 2.7: An n-modular redundancy structure with majority voting.

makes a system more complex, which is a disadvantage of the strategy of massive static
redundancy [KK07, p. 11].

Sift-out modular redundancy, originally introduced in [SM78] for digital systems, is a
variation of the above static configuration. Instead of a majority voter, it uses a compara-
tor, a disagreement detector, and a collector, and is thus capable of switching out faulty
modules. With those no longer contributing to the system output, the constellation is able
to achieve a higher fault tolerance of F = n− 2.

Dynamic Redundancy

Dynamic hardware redundancy comes along with fault detection capabilities. In this way,
a minimal configuration utilizes two redundant modules (recall, the minimum number of
modules in static redundancy is three), whereof one is the active module and the other one
is the back-up module. The active module is continuously monitored for faults and the
fault detection in combination with a reconfiguration capability decides when to switch to
the back-up module.

Figure 2.8: Dynamic hardware redundancy.

Figure 2.8 illustrates dynamic hardware redundancy. The dashed blue lines indicate di-
agnostic information gathered from the modules. Utilizing the dynamic redundancy strat-
egy, the back-up module (potentially more than one) can be either kept in cold standby,
i.e., turned off until needed, or in hot standby, i.e., running without using the output. A hot

21

2 Basic Concepts

standby offers a fast transition between modules, but is associated with higher operational
costs and wearout of the back-up modules (vice versa for a cold standby configuration). For
the cold standby configuration, the dotted gray line in Figure 2.8 indicates communication
with the back-up modules.

Hybrid Redundancy

It is also possible to combine static and dynamic hardware redundancy to hybrid redundant
schemes. Assume an n-modular redundant system which has k additional back-up modules.
By comparing the output of the majority voter with each output of the n primary modules,
the faulty one is determined and the reconfiguration unit replaces the faulty module with a
back-up module. According to Koren [KK07, pp. 25–26], such a configuration significantly
increases the system reliability.

2.6.1.2 Information Redundancy

When information in terms of bits is stored, processed or transmitted, it is prone to errors.
In order not to lose information due to such errors (e.g., bit flips), error detection and
correction methods are widely applied. In this regard, coding refers to the strategy of
adding extra bits to the data which allow to verify data correctness and, in some cases,
even to restore corrupted data bits.

A common method for error detection is a cyclic redundancy check, where data is sep-
arated into chunks from which a check value is processed and attached to the chunk.
Repeating the calculation of the check value before usage of the data reveals information
about the data correctness. A class of cyclic error-correcting codes is named after their
inventors Bose-Chaudhuri-Hocquenghem (BCH). As a key feature, these codes allow to pre-
cisely determine the desired number of correctable bits. In general, such an information
redundancy strategy is called forward error correction (FEC) and a main field of applica-
tion is data transmission over noisy communication channels, e.g., mobile communications
or satellite communications.

For example, a BCH code with the parameters m = 4 (m ∈ N : m ≥ 3) and t = 2 (t ∈
N : t < 2m−1) produces code words consisting of n = 2m−1 = 15 bits with k = n−mt = 7
bits holding the information and mt = 8 bits serving as redundancy (i.e., parity-check
digits). The minimum Hamming distance of the code is 2t+ 1. It can detect 2t single bit
errors and correct up to t single bit errors. Considering burst errors, up to k successive bit
errors can be detected [RL09, pp. 111–113]. Other examples of FEC codes are low-density
parity-check (LDPC) codes and turbo codes [Mac05; RL09].

22

2.6 Fault-Tolerant Systems

Contrary approaches to obtain information redundancy include retransmissions of data
in case of data loss, which can be a suitable way to overcome transient link failures.
Such retransmissions are also a kind of time redundancy (see Section 2.6.1.4), but to deal
with permanent link failures, information redundancy is better established by redundant
communication links.

Resilient disk systems based on a data storage virtualization technology called RAID
(redundant arrays of independent (or inexpensive) disks) are another way to realize infor-
mation redundancy through coding. Depending on the required level of redundancy, data
is distributed among multiple disk drives according to different schemes.

One example of the use of data redundancy in distributed systems is data replication,
which aims to consistently provide identical data at different nodes to be able to compen-
sate for node failures.

Data corruption does not only occur during transmission and storage, but also when it
is processed. In the context of efficient data processing, algorithm-based fault tolerance
was designed to protect the computations of large data arrays (e.g., matrix multiplication,
matrix inversion, and Fast Fourier Transform) [KK07, pp. 99–101].

2.6.1.3 Software Redundancy

Software redundancy has the goal to prevent software failures. A well-known approach to
achieve this is multiversion programming [CA78]. Roughly speaking, since large pieces of
software are expected to contain faults (here also referred to as bugs), the strategy is to
independently create multiple versions of software from an unambiguous specification in
different programming languages by different teams which do not interact with each other.
In this way, the risk of these multiple software versions failing on the same inputs or at
the same time is reduced.

Software redundancy can be employed similarly to hardware redundancy, i.e., concur-
rently, or on demand (in combination with fault detection capabilities), and it is also
possible to realize hybrid software redundancy schemes [Sto96].

2.6.1.4 Time Redundancy

A common strategy for establishing time redundancy is to repeat the execution of a pro-
gram or an operation on the same data multiple times on the same computer hardware.
In this way, short-lived, transient hardware faults can be overcome. Time redundancy im-
poses few demands on additional hardware or software, but introduces temporal overhead,

23

2 Basic Concepts

especially if such multiple results need to be compared before further processing is possi-
ble. To reduce this overhead, error detection mechanisms can help to limit reexecutions
to certain instructions of an overall program (recall algorithm-based fault tolerance).

In distributed systems, a retransmission of lost or corrupted messages (e.g., after a link
failure) can also be viewed as a form of time redundancy.

2.6.2 Degradation Steps

Safety-critical systems or systems where a high availability is demanded are usually de-
signed to be fault-tolerant. The required degree of fault tolerance as well as the appropriate
types of redundancy are defined by the application and might vary for different parts of a
system. The term degradation refers to the intended behavior of systems after a fault or
failure appeared and is closely linked to fault-tolerant design decisions. In many applica-
tion domains, a system is required to be either fail-operational or fail-safe. According to
Isermann [Ise06, p. 352], the two degradation steps are characterized as follows:

• Fail-operational systems tolerate one failure, i.e., they are able to provide the desired
service even after one failure. In safety-critical applications, a system must be fail-
operational if no safe state exists which a system could enter after a component
failure.

• Fail-safe systems have a safe state that is entered after a failure occurs. The desired
system service is then interrupted such that further negative impacts on the system
and the environment are prevented.

For instance, a flight control system aboard an aircraft must be fail-operational as there
is no safe state for an aircraft to enter. For such live-critical systems, all four introduced
forms of redundancy must be employed. In this domain, triplex redundant hardware
realizations are essential for many involved components, so that up to two failures can
be tolerated. In any case, if the transition to the back-up strategy (e.g., switching to a
back-up component or entering a safe system state) has external dependencies, such as
electric power, this must be replicated as well.

In distributed systems where the main functionalities are implemented in terms of soft-
ware, a failure of a computation node can often be overcome by migrating the service (i.e.,
the execution of the software) to a different node (rescheduling).

Fail-operational systems might show a reduced performance after component failures.
According to González [Gon+97], a behavior where a system’s performance quality de-
creases in relation to the severity of failures is referred to as graceful degradation. Referring
to the above example, in case the computing capacity on remaining nodes is insufficient to

24

2.7 Fault Diagnosis

keep the full service alive, graceful degradation addresses the desire to keep at least critical
services alive and to interrupt noncritical services only.

2.7 Fault Diagnosis

2.7.1 Introduction to Fault Diagnosis

For more than four decades, many researchers and engineers have been dedicated to the
field of technical fault diagnosis. Based on the demand for an optimization of technical
processes and improved product quality, computer systems were introduced and enabled a
higher degree of automatization and the handling of complex control processes. In many
industrial domains, human workers evolved from producers of products to operators of
automated production processes. This required supervision functionalities, so sensors and
indicator lights were introduced first. In combination with precise process descriptions,
strategies for fault detection and fault diagnosis evolved.

In comparison, the detection of a failure, i.e., the deviation of a system’s behavior from
its specification, is easier than identifying the fault as the root cause of the failure. Strictly
speaking, fault detection refers to an analysis of system or process outputs (e.g., sensor
measurements) based on generated features that capture the system behavior. In a further
step, fault diagnosis analyzes these features in order to classify a fault according to its
type, size, location, and time, among others.

In the literature, the detection steps are often included in the diagnosis steps, so that
the whole process of determining the details about an occurred fault is simply referred
to as fault diagnosis. The following sections provide an overview of widely applied fault
detection and diagnosis methods.

2.7.2 Fault Detection Methods

In order to guarantee an early and accurate detection of faults in technical systems, the
detection mechanisms must be application-specific. The continuous developments in the
diagnosis field over the last decades yielded a variety of strategies and approaches, which
can be categorized according to their inputs and working principles. In the literature,
different categorization approaches can be found, however, a classification into (1) methods
that work on single signals (e.g., sensor measurements) and (2) those which are based on
multiple input signals and models, is widely-used [Ise06; CP12; Alf17]. Based thereupon,
Figure 2.9 gives an overview of typical fault detection methods.

25

2 Basic Concepts

Figure 2.9: Fault detection methods.

2.7.2.1 Single Signal Analysis

The upper branch in Figure 2.9 refers to fault detection strategies which evaluate single
signals from the underlying process. These methods make low demands on computation
resources and system knowledge. Since they are inexpensive and easy to be implemented,
they are widely applied in many industrial domains and processes. In limit and trend eval-
uations, the measured signals from the process are independently compared to a predefined
(adaptive) threshold that marks a tolerance area. A violation indicates an unpermitted
deviation from the usual condition and triggers an alarm, for example, for an operator to
take care of the situation.

2.7.2.2 Signal Models

Model-based fault detection methods are subdivided into those which use signal models
and those which apply process models (see Figure 2.9). The former class brings along
the potential to extract specific information from signals (i.e., features). For example,
spectral analysis (Fourier analysis) is suitable for detecting a faulty behavior of periodic
signals by evaluating them in the frequency domain (e.g., vibration analysis of rotating
parts of mechanical systems). A signal analysis with wavelets is suitable for acyclic signals,
whereas meaningful information from stochastic signals can be extracted with correlation

26

2.7 Fault Diagnosis

as well as with spectral analyses. For an efficient processing, certain features are defined
and derived from the measurements. They form the basis for the analysis. If, for instance,
a periodic signal (e.g., vibration analysis) is evaluated in the frequency domain, special
interest might lie only on a small set of frequencies and their amplitudes, respectively.
The so-called symptoms then capture the discrepancies for further interpretation (i.e., the
subsequent fault diagnosis process). They should be robust against small, unavoidable
variations and disturbances in the process.

2.7.2.3 Process Models

Another model-based fault detection method utilizes process models. This means that the
inputs and outputs of the process to be diagnosed are compared with an analytically or
experimentally derived mathematical model that serves as a replica of the process. These
model-based fault detection methods make use of the fact that faults might change the
behavior of the processes between the inputs and outputs in such a way that a comparison
with the fault-free replica is able to reveal faults which would directly not be measurable.
Obtaining an accurate model of the process is the prerequisite for making sound decisions
on faults. Depending on the available knowledge or data about the process, the two most
extreme modeling cases are (1) white-box models, where the underlying physical relation-
ships as well as all parameters are known, so that the model is set up via linear or nonlinear
differential equations, and (2) black-box models, which purely arise from measurable in-
put/output signals or assumptions about the process (e.g., neural networks). In between,
gray-box models are established by a combination of these input possibilities [Ise06, p. 73].

The difference between the model-produced output and the process output is called
a residual. Ideally, in case of a very accurate model, the residual should be zero in a
fault-free scenario. However, due to disturbances or noise, a certain tolerance interval
must be introduced. The goal is to establish characteristic residuals for particular faults
that show maximized fault sensitivity. Besides, the residuals should be robust against
modeling errors [Ise06, p. 210]. With several different sensors collecting information about
the process, potentially multiple residuals lead to a set of parity equations that form the
basis for the inference on faults. On the other hand, a set of state observers can check the
residuals for discrepancies and is able to reveal a faulty process behavior. In this regard,
the features in model-based fault detection methods are residuals, parameters, or state
variables. Analytical fault symptoms are derived for the subsequent fault diagnosis. The
aspired robustness of these symptoms ensures a fault detection despite inevitably occurring
small process variations and disturbances.

In order to obtain the necessary model accuracy for this kind of fault detection meth-
ods, so-called process identification methods are typically applied before the actual fault

27

2 Basic Concepts

detection, e.g., parameter estimation (see e.g., [Jua94; Ise97; IM10]) or neural networks
are particularly used for black-box models (see e.g., [Ise06]).

2.7.3 Active and Passive Fault Detection

Fault detection primarily pursues the goal of detecting faults while the system is running.
In such cases, one speaks of online fault detection or even online fault diagnosis. The
detection mechanisms are executed during the runtime of the system in parallel to the
actual system service and do not affect or conflict with it. The opposite approach is offline
fault detection, where process data is only recorded for a subsequent analysis. Both of
these strategies fall into the category of passive fault detection, where all the information
necessary to detect faults is obtained only passively, e.g., via sensors.

There is an extended approach that combines these system observations with interac-
tions with the system. It is called active fault detection and is typically accompanied by
the mechanisms of fault diagnosis (Section 2.7.4). In this strategy, the fault detection
and diagnosis procedures can influence and potentially interfere with the process, e.g.,
by (periodically) executing specifically designed input patterns for a fault detection or by
running diagnosis routines for fault identifications after a fault has been detected [PŠ18].
In this regard, such an active approach needs to be planned along with the normal system
operation.

In the literature, one also finds examples where active diagnosis addresses the ability
of a system to utilize fault diagnosis results at runtime for fault-specific fault tolerance or
recovery strategies involving system interactions or reconfigurations, see e.g., [WW11] for
a fault-tolerant control example using a four-wheel independently powered electric ground
vehicle.

2.7.4 Fault Diagnosis Methods

According to the definition of SAFEPROCESS [IB97], the goal of fault diagnosis is to
identify an occurred fault in terms of its type, size, location, and time of occurrence from
the symptoms provided by the fault detection. A plethora of fault diagnosis methods is
presented in the literature, often with slightly different terminology. An overview of widely
used diagnosis techniques is presented in Figure 2.10, where the two major areas inference
methods and classification methods are emphasized [Ise06; Alf17]. The former incorporate
structural knowledge about the process to be diagnosed (i.e., a causal relationship between
symptoms and faults), whereas the latter do not rely on such knowledge.

28

2.7 Fault Diagnosis

Figure 2.10: Fault diagnosis methods.

2.7.4.1 Inference Methods

In inference methods, structural knowledge in the form of causal relations can be imple-
mented in the form of rules, e.g., IF symptom 1 AND symptom 2 THEN fault 1, (binary
reasoning). Here, the symptoms represent a certain condition, whereas the fault (or an
event) represents a certain conclusion. Fault trees or event trees as results of a fault tree
analysis (FTA) or event tree analysis (ETA) visualize such causalities. Approximate rea-
soning can be seen as an enhancement of binary reasoning. Apparently, if symptom values
are continuous in nature, their distance from a given decision threshold can be used to
weight the conclusion and assign a higher or lower confidence, respectively (e.g., fuzzy
logic).

2.7.4.2 Classification Methods

In fault diagnosis with classification methods, the aim is to distinguish a defined number
of different faults from each other by evaluating a certain number of symptoms. The
application of classification methods is particularly useful when no structural knowledge
describing the symptom–fault relation is available. Instead, the required knowledge for a
functional mapping of symptoms to faults is determined experimentally by a training and
validation procedure.

In supervised learning, a classifier sees labeled data samples, i.e., the symptoms of cer-
tain situations with corresponding information about the faults. If the number of samples
(in a dataset) for training the classifier is sufficiently large and covers the possible faults
in various situations, the classifier is able to generalize and becomes capable of prop-
erly classifying previously unseen data in the so-called inference phase. In unsupervised
learning, the training dataset comes without fault labels so that a cluster analysis can be
performed. Recently, artificial intelligence methods (e.g., (deep) neural networks) gained
much attention due to their impressive classification capabilities.

29

2 Basic Concepts

Statistical classification methods include, for example, Bayes classifiers and decision
trees. Apart from that, polynomial classifiers can be mentioned as an example for an
approximation method.

2.8 Data Compression

2.8.1 Introduction to Data Compression

Data compression is subfield of signal processing (here signal processing is synonymous
with data processing). The term data in this context refers to information of arbitrary
kind, such as an image or a text. An initial step in making data processable by a computer
system is the encoding of the data. This refers to the representation of data in the form of
binary sequences. The set of these binary sequences is called a code, with each individual
member of the set being a code word. Every such unique bit sequence is then assigned to a
unique element of an input alphabet, which is a collection of symbols, also called letters (or
a finite range of values) [Say17, p. 27]. As an example, consider the American Standard
Code for Information Interchange (ASCII), where an alphabet of letters, numbers, and
special characters is encoded by 7-bit binary sequences.

In many cases, data originates from sensors that measure continuous physical quantities
such as temperatures or voltages. The initial processing step is then quantization, meaning
digitization of an analog signal. This is often realized by sample and hold circuits, where
the measurement range is covered by a finite range of numbers, so that for every (periodic)
measurement of the input signal a code word is produced by rounding the measurement
to the nearest value of the given range.

Assuming that data is represented in terms of bits, data compression is the process of
encoding the information with fewer bits than the original representation. Thus, both the
memory space required for the data and the transmission time for the data is reduced.
These properties qualify data compression algorithms to be employed in many data com-
munication systems nowadays, e.g., audio and video streaming, mobile communications.
Realizing data compression refers to the general idea of removing redundant information
from the input by finding a different representation of the data. The opposite processing
steps of retrieving the original representation are called data decompression.

In the 19th century, Samuel Morse developed the Morse code, which can be seen as an
early example of data compression. The letters of an alphabet are encoded with dots and
dashes (i.e., two different signal durations) and are prepared for transmission by sound or
light, for example. In many written languages (e.g., English), certain letters occur more

30

2.8 Data Compression

frequently than others. Thus, assigning shorter sequences of dots and dashes to more
frequently occurring letters (e.g., e (·), or t (-)) and longer sequences to less frequently
occurring letters (e.g., p (· - - ·), or q (- - · -)), the average time to transmit messages
(i.e., words or sentences) is reduced. This concept also forms the basis of more advanced
compression schemes like Huffman coding, which is discussed in Section 2.8.3.

There are two fundamentally different approaches for compressing data, namely lossy
and lossless data compression. In lossy data compression, the original data cannot be ex-
actly reconstructed from the compressed representation. In lossless compression, an exact
data reconstruction is possible. In application domains where some loss of information
can be tolerated, e.g., image or audio data compression, lossy data compression is often
preferred. In contrast, if an exact reconstruction is necessary, e.g., for text compression,
lossless compression is applied. Numerous compression algorithms are available for both
strategies, some of which support both lossy and lossless compression (e.g., compressors
for the Progressive Graphics File (PGF) format). Generally, the benefit of a reduced data
size of the compressed data is associated with additional effort for the compression and
decompression, respectively, e.g., time or energy consumption for the computations. The
available compression algorithms exhibit particular characteristics which qualify or dis-
qualify them for certain applications. Some of these are the time required for compression
and decompression, the achievable compression ratio, or special properties of the storage
format.

Two examples from different application domains highlight potential criteria to be con-
sidered when choosing a compression scheme and the corresponding parameters: (1) For
live video broadcasting, a fast lossy compression and decompression is often preferred,
even if this comes with a lower video quality. The priority is on instantaneous content
delivery. (2) When delivering a large amount of program data (e.g., download of operating
system updates by many users), the focus is on maximum lossless data reduction to save
memory and transmission time rather than on the speed of the data compression (resp.,
decompression) algorithm.

The following sections give an overview of relevant lossy as well as lossless compression
techniques, as highlighted in Figure 2.11. Many alternative categorizations of data com-
pression schemes are possible (e.g., based on data types or applications), see e.g., [UVD18].
With respect to the diagnostic architecture of this thesis and the specific requirements for
the data compression algorithms (see Section 3.1), further considerations on the suitability
of particular data compression algorithms are provided in Chapter 3 (related work).

31

2 Basic Concepts

Figure 2.11: Data compression methods.

2.8.2 Lossy Compression

2.8.2.1 Introduction to Lossy Compression

It is the nature of lossy compression that part of the original data is lost after compression
and subsequent decompression. If some information in the original data is irrelevant with
respect to a recipient, losing this information is insignificant, e.g., high frequencies in audio
data that a human cannot hear anyway. Lossy data compression is always possible. Of
course, the data reduction potential is application-specific and requires knowledge about
the relevance of the data in order to obtain acceptable results. If one assumes that a lossy
compression algorithm orders some input data by relevance, then the reduction in data
size can be controlled by a threshold that decides whether data is kept or lost.

In lossy compression, there are two basic compression schemes: (1) transform coding and
(2) predictive coding. The main application area for lossy compression is multimedia data
(images, video, or audio). For this type of data, the recipients are typically humans. A
compression algorithm then takes advantage of several facts: Recorded input data exhibits
irrelevant information for humans, e.g., the absence of very high frequencies in audio
data has a marginal impact on the recipient. Moreover, a human brain is a specialist in
reconstructing missing information. It compensates for some missing words in compressed
speech (e.g., in a telephone call) and still captures the meaning of a sentence.

Two widely-used transform-based compression methods are discrete cosine transform
(DCT) coding and wavelet compression (which is actually a variant of DCT coding). The

32

2.8 Data Compression

former is suitable for compressing images, video data, audio data, and speech. The latter
is particularly well suited for representing transients in the data to be compressed. This
refers to sudden distinct changes in the data, for example, audio with percussion sounds
or an image of a night sky with stars.

The DCT is briefly introduced in the following section. In addition, one finds other lossy
compression techniques particularly designed or qualified for certain multimedia applica-
tions. Examples for compressing images are Cartesian Perceptual Compression, fractal
compression, and S3TC texture compression. The Sorenson codec is an example for video
compression. For compressing general audio, adaptive differential pulse-code modulation
and aptX/aptX-HD are widely-used, and particularly for speech compression, linear pre-
dictive coding with many variants has become well-established.

2.8.2.2 Discrete Cosine Transform

Using the discrete cosine transform, a finite set of input data points (e.g., audio samples
or pixels of an images) is represented as a weighted sum of cosine functions with differ-
ent frequencies. The mathematical equations of the transform were originally introduced
in [ANR74] and the DCT has since become highly important for lossy data compression.
After transforming the data into the so-called frequency domain, DCT coefficients are
obtained, the first of which is called the DC coefficient and the others are called AC co-
efficients, respectively. These coefficients are real numbers and they can be positive or
negative. Under ideal conditions (no precision loss during processing), the original data
can be completely recovered via an inverse DCT. Audio and image data in particular con-
sist of many correlated quantities. In the frequency domain, most of the input information
is then concentrated in the lower frequency range, meaning that typically only the first
few DCT coefficients are large. The other coefficients, which hold higher frequency infor-
mation, are typically low or even zero, and therefore do not contain much information. A
reduction of data is done in the frequency domain by quantizing the DCT coefficients. The
small ones are coarsely quantized or even set to zero, whereas the larger ones are typically
rounded to their nearest integer value, which is then stored using fixed- or variable-size
codes. A decompressor performs an inverse DCT based on these coefficients and obtains
a slightly quality-reduced version of the original input information.

Depending on various parameters (e.g., threshold for setting DCT coefficients to zero,
coarseness of the quantization) the quality loss of the input data can be controlled. DCT
coding is the basis for many lossy image compression formats (e.g., JPEG) or for video
compression (e.g., advanced video coding (AVC/H.264/MPEG-4 AVC)). In a modified
version (MDCT), it is also used for compression of general audio (e.g., Dolby Digital,

33

2 Basic Concepts

MPEG Layer III (MP3), advanced audio coding (AAC), windows media audio (WMA))
and for speech compression (e.g., AAC-LD, or Opus).

More technical details to the transform, practical realization examples, and variations
of the basic scheme can be found in [Mac05; SM10; RY14; Say17]. They are not discussed
here as DCT-based compression only plays a minor role in the compression of data relevant
for control systems and diagnosis processes considered in this thesis.

2.8.3 Lossless Compression

2.8.3.1 Introduction to Lossless Compression

Lossless compression is not always possible and requires the data to exhibit some kind of
redundancy. If this is not the case, e.g., if the data is entirely random, the Kolmogorov
complexity [Kol63] precludes lossless compression as there is no shorter description that
is able to produce the data as an outcome, see e.g., [LV+08]. Besides, the pigeonhole
principle can be used to explain why certain data cannot be compressed. It states that if n
objects are to be distributed among m sets (n,m > 0) and if n > m, then there must be
at least one set containing more than one object [Aig+18, Chapter 28]. With respect to
data compression, an analogy can be made to data stored in a memory of size n. Assume
an arbitrary sequence of n bits (n > 1) which should be reduced to at least n − 1 bits.
There are 2n unique binary input sequences, but only 2n−1 unique output sequences, i.e.,
half as many output sequences as input sequences. Here, at least in one case, more than
one input sequence maps to the same output sequence. Since lossless compression has to
be seen as a reversible mapping, it is impossible to reconstruct the correct input from the
output in the above case.

Lossless data compression is the preferred technique to be applied in this work. The
diagnostic data to be communicated among the nodes of a distributed system is mainly
raw data originating from sensors or preprocessed intermediate results, i.e., numbers of
certain limited intervals.

In the following, a selection of widely used lossless compression techniques will be pre-
sented in order to lay the foundation for the further chapters of this thesis. Firstly, a look
at statistical compression methods is taken: Huffman coding as well as arithmetic coding
are two of the most common entropy encoding schemes. Moreover, context-based (text)
compression is highlighted. Dictionary-based methods are introduced thereafter, with a
special focus on the compression techniques by Lempel and Ziv with their many variations.
Finally, differential encoding and predictive encoding, which can be used for both lossless
and lossy data compression, are briefly discussed.

34

2.8 Data Compression

2.8.3.2 Huffman Coding

Huffman coding is named after David Huffman, who introduced the coding scheme in
1952 [Huf+52]. Like most entropy codes, the Huffman code assigns variable-length output
symbols (i.e., code words) to a defined number of fixed-length input symbols. According
to an estimate of the probability of occurrence of the input symbols in the input data
(e.g., how frequently do letters in a certain written language occur), the lengths of the
output code words vary. Similar to the Morse code, the Huffman code assigns shorter
code words to symbols that occur more frequently and vice versa, and thus, reduces the
average number of bits per symbol. Ideally, the (binary) output code word length for
a symbol is −log2P, where P is the probability of occurrence of the input symbol (see
Shannon’s source coding theorem [Sha48]). This results in shorter code words for common
input symbols and larger code words for rarely occurring input symbols. To be uniquely
decodable, the Huffman code must satisfy the Kraft-McMillan inequality, a necessary and
sufficient condition for the existence of a prefix code [Kra49]. A prefix code (i.e., a prefix
free code) requires that no whole output code word is a prefix (i.e., the initial segment) of
any other output code word.

As an example, assume an alphabet A = {a1, a2, a3, a4, a5} with the probabilities of
occurrence of its symbols being P (a1) = 0.4, P (a2) = P (a3) = 0.2, and P (a4) = P (a5) =
0.1. Since P (a1) is largest, one expects its code word c(a1) to be the shortest. An optimal
solution for assigning code words (i.e., bit sequences) to the symbols could then be c(a1) =
1, c(a2) = 01, c(a3) = 000, c(a4) = 0010, and c(a5) = 0011. Being prefix free, Huffman
codes can be represented as binary trees, where the leaves correspond to the symbols, as
exemplarily shown in Figure 2.12.

Figure 2.12: Huffman coding example.

The efficiency of the code can be measured in terms of its redundancy, i.e., the dif-
ference between the entropy and the average length for the code, which is desired to
be close to zero. In the above example, the entropy according to Shannon [Sha48] is
H = −∑5

i=1 P (i)log2P (i) = 2.122 bits/symbol and the average length, calculated from the
probabilities and the number of assigned bits to each symbol, is 0.4 · 1 + 0.2 · 2 + 0.2 · 3 +

35

2 Basic Concepts

0.1 · 4 + 0.1 · 4 = 2.2 bits/symbol. The redundancy then is 0.078 bits/symbol. For detailed
information regarding the design of the code, see [Say17, Chapter 3].

If the probability of occurrence of the input symbols is initially unknown, an adaptive
Huffman strategy can be applied. Then, a two-pass procedure first collects the statistics
from the input data before the actual encoding step.

Many variants of the original approach have been developed based on Huffman’s work
[Huf+52], e.g., nonbinary Huffman codes, adaptive Huffman codes, Golomb codes, Rice
codes, and Tunstall codes. The original Huffman code and its variants pair also well with
other compression algorithms. Huffman codes are applied in many different applications,
such as lossless image compression, text compression, and audio compression.

2.8.3.3 Arithmetic Coding

Arithmetic coding is also a form of entropy encoding. Unlike other implementations, such
as classical Huffman coding, it encodes an entire input message (consisting of multiple
input symbols) into a single, arbitrarily precise number x from the interval [0, 1) = {x ∈
R|0 ≤ x < 1} (which is known to the encoder and decoder). The encoding scheme is
based on the probabilities of the occurrences of the input symbols. Starting with the given
interval [0, 1), the encoding scheme forms sub-intervals according to the probabilities of
occurrence of the symbols. This process is repeated in the sense that the sub-interval that
corresponds to the currently encoded symbol becomes the next interval to be divided into
sub-intervals according to the same model. The order (e.g., an alphabetical order of the
input symbols) in which those sub-intervals are formed, must be known to the encoder and
decoder. This iterative process is terminated by the end of the sequence to be encoded.
The number x is then chosen as a number from the last interval which can be expressed
with as few bits as possible.

As an example, let the symbols of an alphabet A = {a1, a2, a3} have the probabilities of
occurrence of P (a1) = 0.7, P (a2) = 0.2, and P (a3) = 0.1. Let a1, a3, a2 be the input se-
quence. Starting with the initial interval [0, 1), one obtains the three sub-intervals [0, 0.7),
[0.7, 0.9), and [0.9, 1) according to the probabilities. As the first symbol of the input se-
quence is a1, its corresponding interval [0, 0.7) is now divided in the same manner as before,
so the next sub-intervals are [0, 0.49), [0.49, 0.63) and [0.63, 0.7), see Figure 2.13. The next
symbol is a3, so the sub-intervals are now [0.63, 0.679), [0.679, 0.693), and [0.693, 0.7). As
the last symbol of the input sequence is a2, x must lie in the interval [0.679, 0.693), which
can be seen as the current range of information (marked in blue in Figure 2.13). A good
choice for x would be 0.68 (or 0.69). In addition to x, the decoder needs to know the length
of the sequence, or else, an end-of-data symbol has to be transmitted (i.e., additionally
encoded). Based on the same probability model, the decoding process forms sub-intervals

36

2.8 Data Compression

Figure 2.13: Arithmetic coding example.

and iteratively extracts the current symbol by checking in which sub-interval x lies. For
the storage or transmission of the encoded data, one needs to generate a unique binary
representation of x in an efficient manner. From the above example, where both num-
bers 0.68 and 0.69 represent the encoded information equally well, it is apparent that the
use of decimal numbers is somehow inefficient. Better results can be obtained by storing
a different fraction x from the interval, which allows a shorter binary representation than
a decimal to binary conversion of either one of the above values. Further details on the
generation of such binary codes can be found in [Say17, Chapter 4].

There are many variations and extensions of classical arithmetic coding, such as adaptive
arithmetic coding, where the symbol’s probabilities of occurrence can change over time, or
where an adaptive alphabet is used. Arithmetic coding can be found in many standards of
the multimedia domain, e.g., published by the International Standards Organization (ISO)
or the IEC and is applied in image compression, audio compression, and video compression,
among others.

Arithmetic coders are capable of producing near-optimal outputs for arbitrary sets of
symbols and probabilities. For a fair comparison with Huffman codes, one must consider
the alphabet size, the distribution of the probabilities, and the message sizes. Arithmetic
coding requires longer input sequences to work efficiently. For a symbol-wise encoding,
Huffman codes typically perform better [Say17, pp. 125–127]. Encoding longer sequences
of input symbols is also possible, but the codebook for all possible sequences would grow
drastically. When it comes to changing input statistics, arithmetic coding scales better.
Compared with Huffman coding, arithmetic coding is more computationally complex but,
depending on the parameters, for most sources arithmetic coding is able to produce better
results in terms of an ideal code word output length (−log2P). As an example, consider
facsimile, where the alphabet size is rather small and the probabilities are highly unbal-
anced. In such cases, the use of arithmetic coding is generally favored despite its additional
complexity [Say17, Chapter 4].

37

2 Basic Concepts

2.8.3.4 Context-Based Compression

Context-based compression techniques are mainly applied for text compression and take
advantage of the fact that letters (of an alphabet) typically occur in certain contexts. The
probabilities of the letters’ occurrences are important information for an encoder. It was
mentioned in Section 2.8.3.2 (Huffman coding) that it is beneficial for compression if those
probabilities are skewed. This means that certain letters occur with higher probabilities
than others. This information generally depends on many factors, e.g., the language and
the type of text. Context-based compression utilizes the fact that the letters’ probabilities
of occurrence highly depend on their preceding letters (this is referred to as the context).
As an example, in a typical English text, the probability for the letter u to appear is
about 3 % (depending on the analysis; see e.g., the Concise Oxford Dictionary). However,
if the preceding letter was a q, then the probability for a u increases drastically.

Algorithms such as the PPM (prediction with partial match), originally introduced by
Cleary and Witten [CW84], constantly prepare an estimate of the current input letter’s
probability of occurrence based on a preferably long context, in order to obtain an ap-
propriate probability set for a subsequent arithmetic encoder (recall Section 2.8.3.3). In
detail, the PPM encoder maintains a data structure to remember the contexts in which
the letters have occurred. The length of the considered context is assumed to be fixed.
An order-N context includes the last N symbols processed. For every new input letter,
the algorithm checks its data structure for the current order-N context and determines
the probability for the current letter to follow that context, e.g., from counts of how often
certain letters followed that specific context. If the search was successful, the relevant
information is forwarded to an adaptive arithmetic encoder. If there was no match, the
algorithm looks for shorter contexts by reducing the order step by step and, in a success
case, it behaves as above. Determining an order-0 context means that the letter was never
seen in any context, but appeared individually in the text. In the special situation where a
letter has never appeared before, the algorithm uses fixed probabilities delivered with the
alphabet and indicates this via a reduction of the context order to −1. The information
about such a context size reduction needs to be encoded too (e.g., as a special letter of
the alphabet), and its probability has to be properly assigned. The symbol used for the
indication is referred to as escape symbol.

Many variants of the PPM algorithm, e.g., PPMC or PPMX, tackle the problem of
determining precise probabilities of the escape symbol. The former implements a counting
strategy, whereas the latter is based on a Poisson distribution.

The Burrows-Wheeler Transform (BWT), developed in 1994 [BW94], can also be advan-
tageously applied in context-based compression. It utilizes the fact that in many languages
words and syllables start with a limited set of letters, e.g., in English many words start

38

2.8 Data Compression

with the letters s or e (see the Concise Oxford Dictionary). The BWT is part of the bzip2
application for general purpose lossless data compression. In a block-wise manner, the
transform permutes the letters of the input, thus establishing a new sorting in which those
frequently occurring letters or sequences of letters lie close to each other. A subsequently
applied classical context-based compressor such as the PPM is then able to achieve a bet-
ter compression. Of course, the decompression requires the indices of the permutation to
recover the original order of the letters.

2.8.3.5 Dictionary Techniques

Dictionary-based compression utilizes the fact that the outputs of a source (i.e., sequences
of symbols) often show recurring patterns. Assume a written text where the words are
formed from the symbols (i.e., letters) of an alphabet. One typically finds both frequently
recurring sequences of letters within words (e.g., th (in English texts)) and recurring se-
quences of multiple words that belong together (e.g., a lot of). Dictionary-based compres-
sion aims to save bits by storing frequently recurring patterns in a dictionary. Then, if the
output of the source matches such a stored pattern, it can be encoded with the respective
dictionary index instead. This strategy is efficient if the size of the dictionary is smaller
than the number of all possible patterns.

As an example, assume a text consisting of four-letter words based on an alphabet
with 16 letters. Each letter should have the same probability of occurrence. There are
164 = 216 = 65536 possible combinations of such words, and if all of them were equally
likely to occur, one could straightforwardly encode each letter with dlog216e = 4 bits, and
a 4-letter word with 16 bits. Now assume a text where some of the words are more likely
to occur than others. Then, for instance, a dictionary which holds the 32 most likely 4-
letter words addresses each of its entries and consequently the word with dlog232e = 5 bits
(compared to 16 bits for the word if stored as above). Of course, when encoded like this,
the decoder must have the same dictionary and it must know in which way the received
bits are to be interpreted. For this purpose, an indication bit can be added to each stored
bit sequence. So if the source output is found in the dictionary, the encoding requires 6 bits
and 17 bits otherwise. To benefit from the strategy, the average number of bits required
per word must be less than 16 in the example. It depends on the probability P that a
word is found in the dictionary: 6P + 17(1−P) < 16, i.e., P > 0.091. One concludes that
a large number for P is targeted, which means that the dictionary size must be properly
chosen as well as the knowledge about the source must be well-founded. More details on
the analysis of the probability P can be found in [Say17, Chapter 5].

In many works, researchers introduced various dictionary-based compression strategies,
some of which maintain static dictionaries and others utilize adaptive dictionaries. The

39

2 Basic Concepts

two well-known dictionary-based strategies LZ77 and LZ78, which will be discussed in the
following sections, can be seen as foundations for many up-to-date approaches.

LZ77

In their 1977 paper [ZL77] Jacob Ziv and Abraham Lempel introduced a dictionary-based
compression approach which is referred to as LZ77 or LZ1. It is based on a dynamic
dictionary, realized as a fixed size sliding window consisting of two parts (also denoted as
buffers). On the one hand, the sliding window stores a certain number of previously seen
symbols of an input sequence in the search part of the window, e.g., previously seen letters
of a text. Let its size be S bits (with S > 0). On the other hand, it holds some of the
next symbols of the sequence to be encoded in the look-ahead part of the window. Let its
size be L bits (L > 0). In the encoding procedure, the search window is scanned for the
longest matching sequence of symbols which begins with the first symbol of the look-ahead
window. If such a match exists, it is indicated via an offset value o and a length value l,
otherwise both values are set to zero. The encoded data is then stored as triples, each
containing the offset, the length, and lastly the code word corresponding to the first symbol
in the look-ahead window that is not part of the matching sequence. This is graphically
highlighted for an example alphabet A = {a, b, c} in Figure 2.14. The encoded triple is
(6, 4, C(b)), where C(b) corresponds to the code word of the symbol b.

Figure 2.14: LZ77 encoding example.

The encoding process allows the length of the matching sequence to be greater than
the length of the search window; the sequence only has to start in the search window.
This refers to a case where the relevant content of the search window shows a repetitive
behavior in the look-ahead part of the window. For instance, if a triple holds o = 4 and
l = 7, then after decoding the first four symbols via a copy pointer, the pointer is continued
to be moved by three more symbols until the denoted length value is reached. That is,
the first three symbols are decoded again. Consequently, for an alphabet A of size |A|
(with |A| > 0), dlog2Se+ dlog2(S + L)e+ dlog2|A|e bits are needed to store a triple using
fixed-length codes [Say17, p. 136].

The working principle of the LZ77 scheme is rather simple on the encoder and decoder
side. No prior knowledge of the source is required, however, the scheme works under

40

2.8 Data Compression

the premise that recurring patterns of symbols lie close to each other. In a worst-case
scenario, the use of LZ77 might even lead to an expansion rather than a compression of
the original data size. The LZ77 scheme can be straightforwardly combined with other
compression techniques, e.g., further encoding of the triples with a variable-length code
such as a Huffman code is possible. Variants of the original LZ77 scheme are part of many
up-to-date compression techniques, e.g., for the Zip format or PNG image compression
(see the Deflate compression algorithm introduced by Phil Katz).

A well-known variation called LZSS increases the efficiency of the original scheme by
eliminating the need for the triples [SS82]. It only stores the offset and length information
for the dictionary access and concatenates a bit as a flag to each encoding in order to dif-
ferentiate between an individually encoded symbol and a dictionary access. Other variants
of LZ77 have been published by Williams; in [Wil91] he proposes to use hash tables to
find string matches. His ideas also led to the LZRW4 approach, where he added prediction
capabilities to the compression scheme [SM10, p. 364]. This idea was also used in the LZP
variant by Bloom [Blo96].

LZ78

For many sources, the assumption of the previously introduced LZ77 scheme that repeating
sequences of symbols appear close to each other does not hold. In 1978, it was again
Jacob Ziv and Abraham Lempel who introduced another dictionary-based compression
approach, the LZ78 (also named LZ2) [ZL78]. This compression scheme maintains an
explicit dictionary that stores previously seen sequences of symbols during the encoding
process and basically keeps them until further dictionary growing is limited by the available
memory or other constraints.

The working principle of LZ78 is as follows: Initially there is an empty dictionary. The
input symbols to be encoded are stored as a double with two entries. The first entry is an
index of the dictionary and the second entry is a code word of an input symbol. For every
new input symbol, the compression procedure searches the dictionary for a match and, if
successful, the next input symbol is appended to the current symbol. Then the dictionary is
searched for a match for this sequence of two symbols. These steps are repeated until there
is no longer a match. This sequence is then encoded by the dictionary index corresponding
to the longest match and the latest symbol that led to the unsuccessful search. In addition,
the sequence is inserted at a new entry in the dictionary. In this way, the decoder builds
the same dictionary as the encoder. In case of no match, the encoded double contains 0
at its first entry and the code word of the current symbol at the second entry.

As an example, consider the sequence of symbols a b b c b c a b a formed from an alphabet
A = {a, b, c}. Assuming an empty dictionary D, the first encoded double is (0, C(a)), with

41

2 Basic Concepts

C(a) denoting the code word of the symbol a, and the first dictionary entry is consequently
set to a. Table 2.1 illustrates the construction of the dictionary according to the encoder
output for each symbol of the input sequence. The second symbol, b, is encoded in the
same way. Since b gets stored at D[2], the next two input symbols, bc, are encoded as
(2, C(c)) and stored at D[3]. For the following symbols, the longest match is found at
D[3], so bca are encoded as (3, C(a)).

Table 2.1: Development of the dictionary in the LZ78 approach.

Encoder Dictionary
Position Output Index Entry

1 (0, C(a)) 1 a
2 (0, C(b)) 2 b
3 (2, C(c)) 3 bc
5 (3, C(a)) 4 bca
8 (2, C(a)) 5 ba

For practical implementations, an unlimited growth of the dictionary is not useful and
can be prevented, e.g., by replacing some entries with newer ones or by treating the dictio-
nary as a static dictionary once a certain size is reached. An efficient strategy for achieving
optimized code word lengths using online dynamic dictionaries is proposed in [Cho+08].
In any case, the applied strategy of the encoding process must be known to the decod-
ing process. Many variations of the LZ78 have been proposed in the literature, of which
LZW is probably the most commonly applied variation (see next section). Besides, hybrid
approaches of LZ77 and LZ78 have been investigated, e.g., by Fiala and Greene and are
known by the acronym LZFG [FG89].

LZW

A well-known modification of LZ78 was introduced by Terry Welch in 1984 [Wel84] and
is referred to as LZW. In his proposed strategy, the dictionary is initialized with all the
symbols of the source alphabet, so that in any case a symbol can be encoded with a
dictionary entry. This eliminates the need to encode a symbol as a double (as it is done
in LZ78). Further dictionary entries holding longer sequences of symbols are established
during the encoding process.

The LZW compression procedure works as follows: Since every individual symbol has a
match in the dictionary, the algorithm forms a longer sequence from the input symbols,

42

2.8 Data Compression

comparable to LZ78. After every concatenation of a further symbol, the growing sequence
is searched in the dictionary and this process is repeated until there is no match anymore.
In the latter case, the sequence gets stored at a new dictionary entry. The last appended
symbol cannot be encoded in this step, as a decoder does not yet know the new dictionary
entry. Instead, this symbol forms the start of the next sequence, while all other symbols
of the matching sequence are encoded with one dictionary entry. A decoder builds its
dictionary from the decoded symbols analogously to the encoder dictionary.

Similar to LZ78, practical implementations of LZW require a limitation of the dictionary.
As an application example, the Graphics Interchange Format (GIF) utilizes the LZW com-
pression scheme. Several variants of LZW aim for a faster dictionary adaptation compared
to the original approach. For instance, the LZMW strategy assigns sequences of multiple
symbols to a new dictionary entry at once, which however comes at the cost of a more
complex dictionary search procedure [MW85]. The LZAP and LZY variants introduced
by Storer and Bernstein, respectively, modify multiple dictionary entries at once, e.g., by
additionally storing some prefixes of the added sequence. This allows a faster search for
matches (compared to LZMW), but typically requires larger dictionaries, and thus more
bits are needed per dictionary index [SM10; Sto88].

2.8.3.6 Differential Encoding

Differential encoding, also called delta encoding, is a strategy for storing data in terms
of differences with respect to a reference. This is especially useful in case sequential data
needs to be stored. The strategy can be applied in both lossy and lossless forms to many
different kinds of data, such as text files, audio samples, or images. An intuitive example of
differential encoding is revision control software for text files, such as programming code.
Once a complete version is initially stored, it serves as a reference. Future modifications to
the text, which usually affect only a minor part of the entire text, are represented as differ-
ence information from the reference. This difference representation offers great potential
to be reduced in terms of required disk space, e.g., by applying one of the above-mentioned
lossless compression strategies. Sampled sensor data of measured physical quantities as
well as audio data, among others, often show a strong correlation between consecutive data
samples. This means that the differences between these samples are relatively small and
thus the dynamic range as well as the variance of these differences are smaller than those
of the source data [Say17, p. 352]. This leads to a smaller entropy of the difference data,
which can then be advantageously exploited by an entropy-based encoder. In this regard,
(adaptive) differential pulse-code modulation (DPCM) is widely applied. It makes use of
the correlation between consecutive samples and (in a complex version) is able to produce
small difference values with a minimized quantization noise by utilizing some n previous

43

2 Basic Concepts

samples to predict the value of the next sample for the difference computation [Pro+02,
p. 309].

2.8.3.7 Other Lossless Compression Techniques

One straightforward lossless compression technique is run-length encoding. This is ad-
vantageous if data exhibits many sequences in which consecutive repetitions of the same
symbol occur. Roughly speaking, the algorithm then encodes the symbol only once and
additionally stores the count value.

Many lossless compression algorithms are particularly designed or qualified for multime-
dia applications: for raster graphics, e.g., lossless discrete cosine transform, JPEG 2000,
or PNG; for video, e.g., H.264/H.265 lossless, Motion JPEG 2000 lossless; for audio e.g.,
Adaptive Transform Acoustic Coding (ATRAC), or the Free Lossless Audio Codec (FLAC).

Distributed source coding can be used for both lossy and lossless data compression and
is further addressed in Section 3.2.4 (related work). Based on the theoretical foundations
of [SW73] and [Cov75], practical implementations (especially for wireless sensor network
(WSN)) exploit the fact that correlated data sources that cannot communicate with each
other can compress their data advantageously if a common decoder is used that has knowl-
edge about the correlation [ANH16].

The above sections introduced many well-established lossy as well as lossless compression
techniques. Chapter 3 builds upon this knowledge to filter out those candidates of data
compression techniques that can serve as a foundation for the time-triggered architecture
of this thesis. These candidates are reviewed in detail for their capabilities and limitations
in the context of the related work.

For further details on general working principles, variants, or other data compression
algorithms, the reader is referred to the literature, e.g., [Mac05; SM10; Say17].

44

Chapter 3

Related Work

3.1 Requirements

Time-triggered systems play an important role in high-dependability and safety-critical
systems. They allow predictable system behavior even under high-load and in fault sit-
uations, since all task executions and message transmissions are timely scheduled with
respect to a global time base. The prior knowledge about the permitted temporal behav-
ior offers error detection and fault isolation [Obe11, p. 2], and thus enables fault tolerance
in terms of subsequent system reconfigurations, e.g., rescheduling or service degradation
(with regard to nonfunctional properties).

Redundancy (e.g., replication of hardware, computations, and information) is necessary
to realize fault tolerance. Moreover, active fault diagnosis in combination with system
interactions is an efficient way to implement fault tolerance and avoid excessive hardware
redundancy.

Sensor measurements of physical quantities (e.g., currents, voltages, and temperatures)
are a primary source of information for fault diagnosis. Large-scale and complex dis-
tributed systems have numerous sensors placed at different locations (see e.g., [KOK14])
such that their data needs to be made available to the tasks of the diagnostic process via
the communication network. A diagnostic process, which is modeled according to Sec-
tion 4.3, involves different kinds of tasks such as data preprocessing, signal trend analyses,
correlation and plausibility analyses, amongst others. These tasks produce diagnostic (in-
termediate) results which in turn serve as inputs to other tasks of the process which has
the overall goal to narrow down fault symptoms (i.e., a detected deviation of a system from
its specification) to their root cause. This is additional data that would not be needed
without diagnosis.

45

3 Related Work

Since system resources, i.e., computation nodes and the communication network are
typically shared, the network traffic of diagnosis applications competes with the regular
communication of the system. As today’s systems continue to evolve, more and more
tasks are demanded to be integrated. As a consequence, communication resources be-
come bottlenecks and limit the services that can be executed as well as real-time support.
Considering further that transmitting messages between nodes in a distributed system is
generally more expensive (e.g., in terms of energy consumption or data protection) than
computing tasks at the nodes or storing data, compressing data for transmission is an excel-
lent strategy to achieve better utilization of available communication resources. Efficient
usage of communication resources is more significant than optimization of computation
resources [DFG16].

In detail, the following reasons support the goal of this work to utilize online data
compression for time-triggered communication with a special focus on sensor data for
diagnosis applications. The points apply both to newly designed distributed time-triggered
systems, where a key focus today is low energy consumption, as well as to existing time-
triggered systems, where new (additional) services are to be executed as the system evolves.
It also applies to open distributed systems, where new services can join and leave a system
at runtime to contribute to the overall service.

• Compressed messages in time-triggered systems help to optimize schedules, in par-
ticular to decrease the makespan (i.e., the length of a schedule), thus allowing tighter
deadlines to be met and supporting shorter overall service times, e.g., for diagnostic
services.

• Shorter messages contribute to a reduction of network traffic and enable a higher
level of integration and the combination of multiple services in one system, including
online diagnosis.

• Especially during transmissions, data is prone to corruption. By removing unwanted
redundancy, data compression helps to reduce the amount of data to be transmitted.
The space thereby freed up can consequently be used to increase the fault tolerance
of a system, e.g., by protecting such data with deliberately added redundancy (e.g.,
consider forward error correction (FEC)).

• Diagnostic information (e.g., sensor data) often contains redundant parts due to
functional or stochastic dependencies between the information. These signal charac-
teristics can be utilized beneficially for data compression, leading to more efficient
use of available system resources (e.g., memory and communication capacities).

An essential source of diagnostic information is data from sensor measurements of phys-
ical quantities, such as voltages, currents, and temperatures. This work assumes that data
values for online fault diagnosis are initially obtained by physical sensors that produce

46

3.1 Requirements

data samples of real numbers (or tuples of real numbers). These real-valued data sam-
ples are mapped to a finite range of N values identified by the numbers 0, . . . , N − 1.
Standard quantization techniques such as analog-to-digital-conversion (ADC) using sam-
ple and hold circuits are applied for this purpose [SM10; Say17]. Any number from the
range 0, . . . , N − 1 can be encoded with ` := dlog2 Ne bits.

In order to realize the above benefits and fulfill the objectives of this thesis, appropriate
online data compression algorithms beyond the state of the art are required. As listed in the
following, specific requirements arise for the data compression and imply the compression
algorithms to exhibit certain features. They must incorporate the needs of both time-
triggered systems and online diagnosis applications.

R1: In safety-critical real-time systems where the reliability depends on online diagnosis,
the violation of a certain deadline might render a diagnostic result unusable and
subsequently lead to a system failure, e.g., if a system reconfiguration or a back-up
strategy is initiated too late in the event of a fault. Therefore, data compression and
decompression have hard real-time constraints. With respect to time-triggered
systems, the compression algorithms must guarantee short worst-case compres-
sion times (WCCTs) and worst-case decompression times (WCDTs), re-
spectively.

R2: To utilize online data compression for a scheduling process, the compression algo-
rithms must guarantee a certain worst-case compression ratio (WCCR) on
short input data sequences (see also point R3). Furthermore, this WCCR should
be less than 1 for the compression to be useful, i.e., the encoded data has fewer bits
than the input data.

R3: With the primary goal of compressing data for communication, only online (i.e.,
one-pass) data compression techniques must be used. An incoming data value
(or a short (fixed-length) sequence of input data values) must be compressed before
the next one arrives to account for real-time capabilities of online diagnosis. In order
to take into account the temporal dynamics of data streams, the ability to buffer
certain parts of data must be ensured, e.g., to exploit the temporal redundancy of
multiple data streams (see also point R7; for the definition of a data stream, see
Section 4.3.2).

R4: Guaranteed data quality with respect to time-triggered messages: Due to
the impossibility of a lossless compressor to produce fixed-size outputs from fixed-size
inputs, a lossless compression algorithm with bounded omissions is needed (neglect-
ing an initial quantization phase for sensor data, which is lossy). In this regard,
allowing bounded omissions refers to the strategy of either encoding a data value
into a compressed representation that can be exactly recovered, or encoding it into

47

3 Related Work

an indication value that tells the decoder (resp., receiver) that the original data value
is lost and can only be reconstructed with a lower accuracy.

R5: To strictly adhere to the scheduled communication, there is no additional channel
for exchanging overhead information between a sender and receiver. All poten-
tial overhead information, such as synchronization information, must be extracted
from the main data communication channel.

R6: The compression algorithms must be able to dynamically adapt to signals if their
behavior changes over time without compromising compression performance. To
achieve this, the compression algorithms must be able to process signals even if
no prior statistical information about the probability distribution of their data
values is available.

R7: To achieve an optimized compression performance, the algorithms must be able to
exploit redundancies among multiple data streams in terms of their func-
tional, stochastic, or temporal dependencies, e.g., signal correlations.

R8: The compression algorithms must support efficient merging and splitting for
branching data streams at the nodes of a distributed system (without full de-
coding and re-encoding). Such capabilities enable a scheduling algorithm to make
optimal use of data compression on the system level.

3.2 Related Work
The choice of a suitable compression algorithm for a specific application depends on many
considerations. [UVD18] reviews various data compression techniques based on different
categories such as the underlying data type or the application. In the following, an overview
of state-of-the-art data compression techniques is presented and reviewed with respect to
the requirements from Section 3.1.

3.2.1 Transform Coding

Classical lossy compression techniques based on transform coding (e.g., discrete cosine
transform (DCT) [RY14] or wavelet transform [SKR14]) are inherently lossy; the original
data cannot be recovered without some error. These techniques are mainly applied in
multimedia applications (e.g., storing or transmitting video or audio data). This type of
data addresses human recipients, and the compression techniques exploit the insensitivity
of humans for certain parts of the data and also make use of the fact that a human brain is
to some extent able to overcome missing information (e.g., from the context or from past

48

3.2 Related Work

experiences) while stilling capturing the main information (recall Section 2.8.2). Moreover,
humans tolerate a certain decoding delay which might occur from data buffering, e.g., in
(online) video broadcasting. This might not be true for technical processes, which often rely
on strict timing constraints. [RP06] analyzes the decoding times of MPEG-1/2 and 4 video
and concludes that ungraceful quality degradation can arise during the decoding process
due to improper resource management, e.g., caused by the fact that accurate worst-case
decompression times can hardly be determined, since the decoder’s resource usage highly
depends on the video data itself. [Tek12, p. 7] highlights that an MPEG encoder might
fail if the assumed redundancy between successive images (i.e., temporal compression) is
nonexistent, e.g., recording a video of an event where a lot of flash photography is used.

Apart from that, some lossy compression schemes allow to guarantee fixed compres-
sion ratios below one, which is an important requirement for this work. Consider, for
example, the Opus audio coding format (defined in the standards RFC 6716 [VVT12] and
RFC 8251 [VV17] of the Internet Engineering Task Force (IETF)), which works with linear
predictive coding and modified discrete cosine transform. If such multimedia data needs
to be communicated in real-time via a channel with limited capacity, constant bit rate
(CBR) encoding is advantageous as it can constantly utilize all available channel capacity.

A contrary strategy is variable bit rate (VBR) coding where complex signal parts are
encoded with higher bit rates and simple parts with lower bit rates. This adaptation capa-
bility leads to an average bit rate (e.g., of a stored file) and, overall, to better data quality
through more optimal utilization of memory capacity. In combination with buffering and
a maximum bit rate, streaming with a variable bit rate becomes possible (e.g., consider
the audio compression format Vorbis). For special applications such as medical imaging,
where only a certain region of an image might be of interest for diagnostics, a variable
image quality can be explicitly maintained within one image [Men06]. Yet, encoding data
with VBR, the output file size (e.g., of an audio file) is not predictable. If one aims for a
specific file size, a feasible way would be two-pass encoding, where data is analyzed before
the actual encoding takes place.

Besides multimedia, there are safety-critical applications which require audio or video
data to be encoded and transmitted in real-time with guaranteed quality and limited delay,
e.g., for remote controlled vehicles, or for pilot to ground communication. In this context,
evaluations on audio quality with respect to required bit rates and data delay have been
conducted, e.g., in [Gay+04]. Such analyses yielded many compression algorithms that ex-
ploit the special signal characteristics of video and audio data (e.g., the use of key frames),
which however, do not suit the type of data (i.e., time series of sensor measurements) that
this work addresses. Yet, some researchers applied DCT to sensor signals in the context of
data compression [Spa+17], however, the main objective was noise reduction before data
was compressed by an arithmetic coder, which produces variable length outputs.

49

3 Related Work

The above characteristics disqualify data compression based on transform coding in this
work. It is mainly the trade-off between a more constant data quality (VBR encoding) and
a constant bit rate with degraded data quality (CBR encoding), as well as the fact that
technical processes (in particular safety-critical applications), as addressed in this thesis,
do not tolerate and overcome degraded data quality and high decoding time delays as
human recipients do. For a comprehensive overview including lossless video compression
see e.g., [HCS07; SM10; Say17].

3.2.2 Entropy Coding and Dictionary Techniques

Considering the requirements from Section 3.1 regarding time-triggered systems, lossy data
compression techniques are generally not suitable for encoding symbolic data (i.e., letters
and numbers) in real-time. Looking at lossless data compression, a variable bit rate is
mandatory. Otherwise, using a constant bit rate would lead to a contradiction; since the
bit rate would then have to be as high as the source bit rate for error-free reconstruction,
there would be no compression.

Entropy-based data compression schemes, such as Huffman codes, Golomb codes or
arithmetic coding, assign variable-length output sequences to each (fixed-size) input by
exploiting the fact that the input symbols show different probabilities of occurrence (recall
Sections 2.8.3.2 and 2.8.3.3). These schemes work well for various types of data, e.g., im-
ages or text, especially if data gets compressed as a whole (i.e., a data file) and the main
focus lies on storing, such that an average compression ratio is preferred. If the symbol
occurrence probabilities are furthermore (at least initially) unknown, which is assumed in
this thesis, only adaptive versions of the above entropy encoders can be potentially ap-
plied. For some techniques, like adaptive Huffman coding, this increases the computational
complexity significantly, especially if the probability distribution changes over time [Vit87].
With respect to time-triggered systems with fixed-length periodic messages, predetermined
transmission slots and the demanded guarantee for information to reach the receiver in
bounded time, variable-length output compressors raise some problems.

Yoshida et al. [YK15] address the unclear boundary problem of variable-length codes
for text compression, highlighting the difficulty to directly work on the data when the
code word lengths are not constant. They propose to use Tunstall codes, which work
similarly to Huffman codes but map variable-lengths input sequences to fixed-length code
words. In this case, however, like in the dictionary approach LZ77 (Section 2.8.3.5), the
number of required fixed-length output code words to represent a certain information is
unpredictable. This conflicts with the requirement R4 from Section 3.1 that safety-critical
applications demand guaranteed information transmission in real-time.

50

3.2 Related Work

Many variations and optimizations of the original LZ77, LZ78, and LZW data com-
pression schemes have been developed; [Lan13] gives an overview. In [KN10] the au-
thors introduce LZ-End, an improvement to LZ77 which enables to decompress arbitrary
phrases independent from knowing the beginning of the decoded data. The LZ78 and LZW
dictionary-based data compression techniques exploit redundancy in data in terms of en-
coding repeating sequences of symbols with dictionary keys (i.e., indices) that consume
fewer bits than the original symbol sequence would need (recall Section 2.8.3.5).

In general, entropy encoding techniques as well as dictionary-based approaches aim for
an average compression ratio, but in a time-triggered system there would be no direct
benefit from occasionally occurring shorter code words, and for safety-critical applications,
inconstant information delivery is not acceptable. So, in addition to R4, there is also a clear
contradiction with the requirement R2, which demands that the compression algorithms
support a WCCR on short input sequences.

3.2.3 Differential Encoding and Predictive Encoding

Delta encoding, as a form of differential compression, exploits the fact that some target
data can often be stored with less bits in the form of differences with respect to source data
(i.e., a reference). This is very useful in incremental text savings, e.g., for revision control.
With a view to the data to be compressed in this work, i.e., numbers of finite intervals,
delta encoding is a feasible way to make use of the expected small differences between
consecutive data values. The representation of such correlated data values in terms of
differences leads to a reduced variance and dynamic range [Kol+12; Say17, p. 325], an
advantageous condition for subsequent lossy or lossless encoding strategies. It needs to be
considered that if a compressor must guarantee to encode all potential differences between
any two consecutive values with a fixed number of bits for error-free value reconstructions,
no bits can be saved. Moreover, delta encoding must ensure to always have a reliable
reference to which a difference is related, e.g., by periodically transmitting synchronization
sequences to prevent a potentially infinite number of corrupted data values. In the context
of wireless sensor network (WSN), the idea of delta encoding is implemented in the LEC-
compressor from [MV09] and [VGM14]. Contrary to the requirements from Section 3.1,
the LEC-compressor is a lossless entropy-based encoder, which makes use of the highly
skewed probabilities of occurrence of the difference values and obviously does not show
a fixed compression ratio. Nevertheless, WSN show some similarities to the systems and
data addressed in this thesis, mainly the distributed character and the limited resources,
which lead to the common objective to decrease message sizes for the communication
of a similar kind of data. The above LEC-compressor from Marcelloni and Vecchio can
be seen as a representative for many other implementations where differential encoding

51

3 Related Work

is combined with entropy encoding. In many other works that address data compression
techniques in WSN, the special focus mostly lies on the energy constraints of these systems,
in particular on the communications unit [SM06; Kol+12]. So the goal of those works is
to compress data, which was gathered at the sensor nodes over a certain time interval, in
order to decrease the amount of bits (or the number of required messages) for a subsequent
transmission [Sri+12; Kol+13; Kol+15]. This implies that time-sensitivity only plays a
minor role, which is significantly different to the requirements R1 and R3 from Section 3.1,
so that the presented strategies can only be partly adopted.

Differential pulse-code modulation (DPCM) can be seen as an extension to simple delta
encoding between consecutive samples as described above. It employs a local model of
the decoder process and predicts every next sample from some previous samples. The
difference value to be encoded is then calculated from the prediction and the real sam-
ple, which is often smaller than the difference between two samples, and thus helps to
minimize the quantization error [Pro+02, pp. 308–309]. The adaptive variant (ADPCM)
offers additional scaling of the quantization levels with respect to the signal. The goal is
to have finer quantization for smaller differences and coarser quantization for larger differ-
ences, respectively, see e.g., the companding algorithms A-law and µ-law used in digital
communication systems defined in the ITU-T G.711 standard [ITU-T00].

The above difference coding strategies work well for individual sampled signals where
consecutive samples show small differences, or where such differences can be well predicted
and a potential error can be tolerated for some time, e.g., in speech coding. They have
also been implemented for other domains, such as prediction-based image compression, see
e.g., [Kum+13]. They can be easily combined with additional data compression strate-
gies and consequently produce fixed-length or variable-length code words and show small
quantization errors if input sequences behave as expected. Lossless as well as lossy data
compression is supported. The cost for saving bits is that either not all possible difference
values can be encoded, or that the uncertainty for a correctly reconstructed value in case of
large sample differences is high. This conflicts with the requirement R4 from Section 3.1 of
accurate value reconstructions for safety-critical applications. The combination of lossless
difference coding with an entropy encoder obviously conflicts with the same requirements
as explained in Section 3.2.2.

Predictive encoding is strongly related to difference encoding. Approaches such as linear
or adaptive predictive coding maintain a statistical model to predict future observations
(e.g., of sensors) and save data by only storing or transmitting new data if it deviates
from the prediction, typically in an event-triggered manner, see e.g., [Des+04]. Predictive
encoding works especially well in speech coding since the underlying prediction models are
able to predict human voice with low error [DO03, p. 41]. Predictive coding approaches
are frequently combined with transform coding, e.g., in [HSR10] (lossy compression).

52

3.2 Related Work

The adverse possibility that an (adaptive) predictor does not properly adapt at some
point, which might lead to dangerous situations in safety-critical applications due to large
errors in subsequent values, in combination with the compression gain based on an event-
triggered transmission strategy, contradicts the requirements from Section 3.1 that data
samples need to be made available to the respective tasks reliably in short and bounded
time.

3.2.4 Distributed Source Coding

In [Sri+12], the authors present a survey on practical data compression in WSN and
distinguish between distributed data compression approaches and local data compression
approaches to exploit spatial and temporal correlation, respectively. Besides an evaluation
of achievable compression rates, algorithm complexity, and energy consumption with a
special focus on low-power mobile devices, the problem of compressing correlated data
streams from multiple sources which do not communicate with each other is highlighted. In
the field of information theory, this is known as distributed source coding (DSC) [DG09].
DSC can be used for lossy as well as for lossless data compression. In the discussed
application scenario of [Sri+12], the technique helps to shift computational complexity for
compression from low-power encoders to a joint decoder. [RBD13] reviews DSC to be a
feasible tool to make use of multiple spatially correlated data streams in sensor networks for
data reduction purposes. According to the theoretical foundations of [SW73] and [Cov75],
multiple correlated data sources (e.g., sensors at different locations in a network) that
cannot directly communication with each other can encode their data advantageously if
they are jointly decoded at one sink that has knowledge about the sources’ statistical
dependence.

Depending on the implementation, DSC is capable of providing real-time guarantees and
a WCCR below one for short input data sequences. Although this approach is mentioned to
be promising for many application scenarios, limitations include an often insufficient prior
knowledge of the data correlations at the different sensors in real systems, which lowers its
effectiveness, as well as a lack of robustness and scalability [RBD13]. Furthermore, the fact
that the correlation between data sources typically varies over time implies an iterative
exchange of the relevant information between the sources and the decoder [ANH16]. With
a view to the architecture addressed in this theses and the requirements from Section 3.1,
a frequently used side channel would contradict requirement R5 and the possibility that
improper statistical knowledge results in degraded data quality conflicts with R4. Another
particular drawback of DSC is the need for a joint decoder.

53

3 Related Work

3.2.5 Off-the-Shelf Algorithms Versus
Application-Specific Compression Algorithms

In the context of compressing sensor data in distributed systems, Sadler et al. [SM06]
state a general trade-off between using off-the-shelf algorithms such as LZW, which are
however not designed for special applications, signals, or hardware, and developing better
performing application-specific compression algorithms, which is usually time-consuming
and costly. The authors came up with a dictionary-based compression approach called S-
LZW (i.e., LZW for sensor nodes) and an improved version S-LZW-MC, which maintains a
mini cache and is optimized for sensor data characteristics like repetitive sample sequences
over short intervals. It is evaluated in terms of energy consumption and compared with
other compression schemes. However, none of the algorithms presented supports a fixed
compression ratio as required according to Section 3.1 (requirement R2).

Another approach is called coding by ordering and was originally introduced in [Pet+03]
for distributed data gathering networks. It reduces the amount of communication needed
to transmit sensor readings from multiple sources to a common data base by aggregating
data of multiple sources within certain regions of interest before those data is combined and
forwarded via a lossless reordering and compression scheme. Pipelined in-network com-
pression [Ari+03] is strongly related to the above approach. It specifically exploits signal
commonalities to reduce redundancy in the temporarily buffered data of multiple sensors
in order to minimize the amount of wireless communication for energy saving purposes. In
their compression scheme, higher latency is traded for lower energy consumption, which
does not comply with the requirements from Section 3.1, particularly with respect to the
demanded real-time capabilities (R1).

3.2.6 Data Compression and Scheduling

Luo et al. [Luo+18] bring together the topics data compression and communication schedul-
ing in data gathering networks. Their work is based on theoretical foundations of [Ber15].
The assumed network topology in both papers consists of many data sources (e.g., sen-
sors) and one data sink (i.e., a data base), a typical constellation of WSNs. A time-division
multiple access (TDMA) scheme is applied to organize the data traffic. The authors aim
for minimizing the length of the schedule (i.e., the makespan), which refers to the periodic
time needed to transfer all data from the sources to the sink. In [Luo+18], an optimization
problem is formulated; data compression and decompression, respectively, need additional
processing time at the sender and receiver, but allow for shorter messages, which helps to
reduce transmission time.

54

3.3 Summary of the Requirements and Related Work

None of the above two papers presents applicable data compression schemes. All con-
siderations that influence the cost-value ratio (e.g., compression and decompression times,
compression ratios) are treated as parameters. It needs to be further analyzed whether
available compressors can fulfill these conditions. [LGL18] extends the above evaluations
for heterogeneous scenarios where different sensors have different data compression ratios,
compression times, and compression costs in terms of energy consumption.

A similar evaluation metric considering the benefits and costs of data compression with
respect to time savings in time-triggered systems is used in [MO19]. The work assumes a
more sophisticated network topology where data is communicated multidirectional among
several computation nodes according to a logical task dependency model. The authors
presume that pairs of jobs which produce correlated data are best allocated to the same
computation nodes so that their outputs can be advantageously combined (i.e., compressed
to shorter messages). For their evaluations, they assume variable parameters for compres-
sion ratios and show that their approach helps to minimize the length of a schedule. In
their model, however, combining messages is only possible if the individual data streams
have the same source node and destination node, respectively. The paper does not present
any compression scheme which meets the stated stringent real-time requirements with re-
spect to WCCT, WCDT, and WCCR (Section 3.1). Nevertheless, the scheduling model
and the evaluation metric are valuable and can be adopted and extended for this thesis.

3.3 Summary of the Requirements
and Related Work

In summary, none of the reviewed works presents data compression techniques that satisfy
all requirements from Section 3.1. Communicating symbolic data in time-triggered sys-
tems primarily demands lossless data compression techniques which offer WCCRs on short
input sequences or constant bit rate compression. Since these are contradicting goals, a
major challenge lies in maximizing the overall benefit in the context of relevant application
scenarios. This thesis addresses the lack of applicable online data compression techniques
from the state of the art and presents an online data compression algorithm (including
several extensions) that is in accordance with the requirements from Section 3.1.

Table 3.1 shows the capabilities of the newly designed online data compression algo-
rithms compared to related works. The table abstracts over individual papers and sum-
marizes the state of research and implementations by their underlying data compression
techniques. An in-depth evaluation of the related works is presented in Section 3.2. In
the table, a check mark reflects the ability of the compression technique (in at least one

55

3 Related Work

implementation possibility) to satisfy the respective requirement, and indicates that corre-
sponding related works are discussed in Section 3.2. A check mark in parentheses indicates
that while it might be technically possible for the data compression technique to support
the requirement, no related work applies the compression in the way needed within the
research scope of this thesis. A dash indicates that the particular data compression tech-
nique is disqualified for the requirement for one or more reasons as discussed in Section 3.2.
The requirements in the first column are labeled from R1 to R8, each with a short form
description. The complete definition of the requirements can be found in Section 3.1.

Tr
an
sfo
rm

co
din

g
En
tro

py
co
din

g
Di
cti
on
ar
y t

ech
niq

ue
s

Di
ffe
ren

tia
l e
nc
od
ing

Pr
ed
ict
ive

en
co
din

g
Di
str
ibu

ted
so
ur
ce

co
din

g

Th
is
wo
rk

R1: Real-time capabilities
(WCCT, WCDT) (3) 3 3 3 3 3 3

R2: WCCR below 1
on short input sequences 3 - - (3) (3) 3 3

R3: Online (one-pass) compression
(i.e., short input sequences) - 3 3 3 3 3 3

R4: Guaranteed data quality with
respect to time-triggered messages - - - (3) (3) - 3

R5: Overhead information
included in data stream 3 3 3 3 3 - 3

R6: No prior statistical
information necessary 3 - 3 3 3 - 3

R7: Combined compression
of multiple data streams - - - - - (3) 3

R8: Support for branching data
streams in distributed systems - - - - - - 3

Table 3.1: Overview of the state of the art.

56

Chapter 4

DAKODIS Architecture

4.1 Architecture Overview
This chapter defines a time-triggered architecture which supports compressed communica-
tion. It is named DAKODIS architecture.

In various application domains, electronic and mechatronics systems are implemented
as distributed systems with numerous nodes, e.g., computation nodes, sensors, and actua-
tors. The communication among all these nodes is realized via messages through a network
of routers or via data bus structures. Particularly in safety-critical application domains,
where online diagnosis techniques with fault tolerance strategies often contribute to an
increased system reliability and availability, the data exchange between different nodes of
such a network is time-sensitive and often a bottleneck. In this regard, online data com-
pression helps to reduce the data size for transmission. However, major challenges become
apparent when considering the contradictions of lossless and lossy online data compression
techniques in the context of the time-triggered paradigm. One-pass lossless data compres-
sion does not provide guaranteed output sizes. Considering the timed messages, this might
lead to incomplete information delivery, which conflicts with safety-critical applications.
In contrast, lossy data compression achieves fixed-size outputs, but has the disadvantage
that data quality cannot be guaranteed.

Time-triggered systems for safety-critical, high-dependable, or mixed criticality systems
have been investigated by many researchers and numerous research projects. For instance,
[Obe11] provides a detailed foundation of time-triggered communication and [BD19] re-
views up-to-date mixed criticality systems.

With support for compressed communications, the DAKODIS architecture is designed
to integrate the online data compression algorithms presented in Chapter 5, and is thus the
first step towards tackling the open research challenge. This chapter formalizes the different

57

4 DAKODIS Architecture

models that are part of the DAKODIS architecture, namely the physical model, the logical
model, the compression model, and the scheduling model. The physical model defines the
physical resources of the system, i.e., it describes the nodes as well as the links between
these nodes. The logical model specifies the application, e.g., the number of tasks with
relevant information such as worst-case execution times (WCETs) and task dependencies
in terms of messages with size, source and destination information. In the literature, some
authors specifically define and distinguish the terms task and job, e.g., [CK07] denotes a job
as an instance of signal processing, computation, or the like, and a task as a sequence of jobs
with similar characteristics and timing requirements. In contrast, in [LM16] a job means a
collection of computational tasks. In many other cases in the literature, such a hierarchy
is omitted and the two terms are used synonymously and imply a sequence of processing
steps. In this thesis, only the term task is used. The compression model holds information
about worst-case compression times (WCCTs), worst-case decompression times (WCDTs),
and worst-case compression ratios (WCCRs) for the messages.

Figure 4.1: Architecture overview.

As illustrated in Figure 4.1, all those models are input to a scheduler (i.e., a scheduling
algorithm), which computes a scheduling model.

4.2 Physical Model
In Time-Sensitive Networking (TSN) prominently Ethernet-based networks are employed.
TSN is gaining more and more importance for applications that require low latency and
high availability for data transmissions, and thus plays an important role in industrial
communication and automation systems [LS19]. This thesis therefore assumes a general
network topology based on routers. Special topologies such as bus-based networks are not
in the focus.

Let C be a set of computation nodes and let R be a set of routers with C ∩ R = ∅.
A network is then represented by a simple graph Net = (V, L), with V = C ∪ R being
the vertices (i.e., nodes) of the graph and L being a subset of P2(V), called the edges

58

4.3 Logical Model

(also referred to as links) of the graph. This means L is a set of two-element subsets of V
and is an undirected edge relation. Such a simple graph does not allow multiple edges
to have the same pair of endpoints (the endpoints refer to the vertices of an edge) and
it is also not allowed to contain loops (i.e., edges that connect a vertex to itself) [BW10,
pp. 148–150]. It is further defined that L ⊆ P2(V) \ P2(C). This definition states that
computation nodes can be directly connected to one or more routers but not to any other
computation node. Routers can be connected to multiple other routers. An edge (i.e., a
pair of nodes) is in L if and only if there is a connection between them. It is defined that
only computation nodes can execute tasks and only routers are able to forward messages.
Routers can additionally perform specific operations to merge and split compressed data
streams while these are communicated through the network.

Figure 4.2: Distributed system with three computation nodes and two routers.

Figure 4.2 exemplarily shows a network with three computation nodes (c1, c2, and c3)
and two routers (r1 and r2). A computation node is equipped with all necessary hardware
resources (e.g., memory, processor) and operating software to execute tasks as defined by
the logical model. The network can consist of different kinds of specialized computational
hardware such as field-programmable gate arrays (FPGAs) or graphics processing units
(GPUs). Different capabilities of computation nodes are reflected in the logical model,
e.g., by indicating for each task to which nodes it can be allocated.

4.3 Logical Model

4.3.1 Directed Acyclic Graphs

A service of a system is accomplished through an interaction of multiple tasks. The
main elements of the logical model are tasks and messages. The logical model formally
specifies a set of tasks T = {t1, t2, . . . , tn} (with n ∈ N) and models their dependencies by
means of a directed acyclic graph (DAG). Let this graph be defined as G = (T,E) with

59

4 DAKODIS Architecture

E ⊆ {(t, t′)|(t, t′) ∈ T 2 and t 6= t′)} being a set of ordered pairs of vertices which model
a precedence relation between two tasks. The directed edges e ∈ E are called (logical)
channels. According to the definition of G (without an incidence function), multiple edges
with the same pair of endpoints are not possible [BW10, p. 148]. For the graph to not
contain cycles, one requires that for a sequence of edges e1, e2, . . . , en−1 (with n ∈ N), there
is a sequence of distinct vertices t1, t2, . . . , tn so that ei = (ti, ti+1) for i = 1, 2, . . . , n − 1
[BW10, p. 162].

The length of a message in bits that is sent via a channel e is denoted as `e ∈ N. Accord-
ing to the requirements from Section 3.1, the compression scheme can act on individual
data values. In an ideal scenario, the length of a data value is equal to the length of a
message. Then a stream of data values is sent over a channel e and every data value is
encoded using `e bits. In a DAG, all predecessors and successors of any task are clearly
identifiable. Task t′ directly depends on task t if and only if (t, t′) ∈ E. A task may depend
on multiple others and in turn may produce outputs as a prerequisite for other tasks. Each
task from T has a unique identifier i ∈ [1, n] and shows a WCETi, which is the time it
takes to complete in the worst case. Depending on the computation capabilities of a node,
the WCET of a task can vary, respectively. A list of nodes on which a task can be executed
is presented by the system designers with the graph.

The directed acyclic graph in Figure 4.3 exemplifies the dependencies between the tasks
t1, . . . , t5 via the messages m1, . . . ,m6. In this illustration, information such as the WCETs
of the tasks and the lengths of the messages are neglected.

Figure 4.3: Directed acyclic graph with five tasks.

60

4.3 Logical Model

4.3.2 Data Streams

Throughout this thesis, the terminology data stream implies that data is constantly and
periodically produced at a source, e.g., data samples from a sensor or other portions of
numeric data at a node. According to the DAG from Section 4.3.1, such data needs to
be communicated among computation nodes of a network where the relevant tasks are
executed. Its transmission is actually realized in the form of time-triggered messages.

4.3.3 Applications

An application that provides a particular service can be viewed as a composition of tasks,
with the tasks being instances of signal processing or computation. An application is
formally described by a logical model, i.e., a DAG, as introduced in Section 4.3.1. Examples
are control applications and diagnosis applications. This thesis has a focus on diagnosis
applications, so some specific properties in this regard will be addressed in the following.

Diagnosis Applications

Fault diagnosis is a key element in fault-tolerant systems with dynamic redundancy (Sec-
tion 2.6.1), as it significantly contributes to improving the system reliability. Online fault
diagnosis implies that its associated tasks are executed in parallel with the tasks of the reg-
ular system application and might compete for computation and communication resources.
The generation of a logical model for a diagnosis application is highly application-specific.
For simplicity, here and in the following, let such a specific logical model be denoted as
diagnostic model. A diagnostic model for a use case scenario is presented in Section 6.4.

Diagnosis Techniques

A variety of different fault diagnosis approaches and techniques exist (recall Section 2.7),
which vary in their suitability for different applications. Essentially, fault diagnosis utilizes
explicit or implicit knowledge about the system or the process being diagnosed in order
to find the root cause of faulty system behavior. [Hen+14] and [Ise11] review diagnosis
techniques for common industrial applications where the underlying diagnostic knowledge
is explicitly provided by human system engineers in the form of signal thresholds and
modeling equations. In [Lei+20], the recent trend towards preparing implicit knowledge
about the process for fault classification with machine learning algorithms is reviewed. It is
also possible to combine multiple fault diagnosis techniques within a DAG in a task-based
manner [MO18].

61

4 DAKODIS Architecture

Explicit Modeling

When explicitly modeling a diagnostic inference process by means of a DAG according to
Section 4.3.1, the system infrastructure influences the encapsulation of processing steps
into diagnostic tasks. For example, significant communication overhead between tasks
can be avoided by taking into account the often different locations at which sensor data
is gathered and naturally preprocessed in a distributed system. In explicit diagnostic
modeling, the following guidelines help to design diagnostic tasks.

• A diagnostic task produces characteristic information for fault detection and fault
inference by means of fault diagnosis methods (Sections 2.7.2 and 2.7.4).

• A task may comprise multiple processing steps.

• For the order of fault reasoning (i.e., searching for confirming or disconfirming infor-
mation for a specific fault), several factors are considered, such as the probability of
a fault’s occurrence and the computational cost of the diagnostic operation required.

• Fault reasoning and intermediate conclusions are allowed in every subgraph.

Implicit Modeling

The generation of a diagnosis model from implicit knowledge requires the availability of
a large amount of data of the system to be diagnosed, which reflects the system behavior
in various faulty and fault-free situations. Machine learning techniques are then able to
extract a model for fault classifications.

It is apparent that the use of implicit knowledge for designing diagnosis models for
modern highly complex systems has significant advantages over human-driven approaches
(e.g., in terms of time and cost), presupposing that sufficient process data is available
for learning algorithms. For example, considering a large-scale scenario, a fault inference
process might integrate multiple neural network classifiers as individual tasks.

In the context of the DAKODIS research project, [Mec+20b] presents the design of a
diagnosis model from implicit knowledge for a use case scenario. Besides the well-known
classification capabilities of the two different approaches, (i) decision tree model and (ii)
convolutional neural networks, the authors highlight the possibility to derive a diagnostic
DAG from a machine learning model.

62

4.4 Compression Model

4.4 Compression Model
The DAKODIS architecture supports different compression schemes. In order to provide
real-time guarantees, the WCCT for compressing data values, the WCDT for decom-
pressing compressed data values, and the WCCR must be known for all those schemes
(e.g., compression of individual data streams, simultaneous compression of multiple data
streams).

Formally, a data compression scheme is a tuple Z = (`, k, τc, τd). With respect to the
requirements from Section 3.1, the compression is performed on preferably short pieces
of information, so ` ∈ N is the length of an input data value in bits, k ∈ N is the
maximal length of a compressed data value in bits, τc ∈ N is the WCCT, and τd ∈ N is
the WCDT, both in terms of (clock) ticks. Here, a tick refers to a fraction of real time
and is used to express a duration of time that abstracts over a real unit of time, such
as microseconds. A compression scheme abstracts from a concrete compression algorithm
that receives a sequence of `-bit strings and transforms it into a sequence of bit strings
of length at most k. The time needed to convert a single `-bit string into its compressed
output (a bit string of length at most k) is at most τc, and the time needed to recover the
original `-bit string from the output is at most τd. A compression scheme is applicable to
a channel as defined in Section 4.3 if the bit length `e of the data values transmitted via
the channel e is `. The WCCR is k/` and one aims for k < ` to benefit from compression.
As this is clearly not possible using lossless compression (recall Section 2.8.3.1), this thesis
implements compression algorithms with k < ` which allow error-free value reconstructions
with a high probability. In rare cases, which depend on the signal characteristics, the
accuracy of data values is lowered but still bounded.

For each message as defined by the logical model, the scheduling model prepares infor-
mation about the achievable WCCR, WCCT, and WCDT, respectively. These times are
added to a task’s WCET if the scheduler decides to compress data.

Figure 4.4 highlights the benefits of compressed communication in terms of time savings.
In the example, taskn transmits the message msgm to taskn+1. The WCETs of the tasks
and the transmission time of the message are visualized by means of a bar chart. From a
theoretical viewpoint, the transmission time of a message depends on the path length (in
the network) and the per-hop transmission time, where the latter is directly related to the
message size (see Section 6.4). In order to generate time savings with respect to a sched-
ule, the reduction of transmission times of compressed messages must be more significant
than the extra times needed for data compressions and decompressions, respectively, see
Figure 4.4. For practical implementations where specific time-triggered communication
protocols are used, the benefits of compressing data become apparent when systems scale
up and the data frames (according to the protocol) are filled with data from multiple tasks.

63

4 DAKODIS Architecture

Figure 4.4: Compressed communication extends the WCETs of tasks and reduces commu-
nication times of messages.

Then compressed data contributes to an improved frame packing, which in turn helps to
optimize schedules, particularly to decrease the makespan. In this way, tighter deadlines
can be satisfied and shorter periods for the overall service can be provided. Moreover, a
reduction of network traffic allows for a higher level of integration of services in a system.

4.5 Scheduling Model
A schedule basically provides information about the allocation of tasks to computation
nodes, the execution times of those tasks, the injection times of messages and the routes
that those messages take through the network. All this has to be managed without violat-
ing resource restrictions and dependency relations. The scheduling model of this thesis is
based on [MO19] and [LO17]. Both works were published in the context of the DAKODIS
research project [ES21]. The former work introduces a scheduling model which also sup-
ports combined data compression of outputs of pairs of tasks using a genetic algorithm.
The latter publication presents a simpler version of the scheduling model with only one
compression algorithm and equal overheads for compression and decompression for mixed-
integer linear programming (MILP) solvers.

A nonpreemptive static scheduling model is used for the proposed architecture. Such
a scheduling model has advantages for multicore systems and distributed systems, as
the overhead for managing tasks is easier to predict compared to preemptive schedul-
ing [Gua16]. The disadvantage of nonpreemptive tasks is reduced system responsiveness,
which is typically not relevant for multicore systems, since the natural parallelism of such
a system can hide this latency [Gua16].

Tasks are mapped to computation nodes by means of an allocation function, which is
a mapping A : T → C. This also yields the distance of tasks in the network and has
impact on the time needed for communicating messages between tasks, and consequently

64

4.5 Scheduling Model

on the makespan. For every channel e = (t, t′) ∈ E and A(t) 6= A(t′), there must be a path
of the form A(t), r1, . . . , rn, A(t′) in the network Net, where r1, . . . , rn ∈ R with n ≥ 1,
(A(t), r1) ∈ L, (ri, ri+1) ∈ L for all 1 ≤ i ≤ n − 1, (rn, A(t′)) ∈ L, and ri 6= rj for i 6= j.
For further considerations, let such a path be fixed and denoted as A(e). Every path A(e)
then has the following properties relevant for scheduling:

• it starts and ends with a computation node,

• only routers are allowed between computation nodes,

• it does not have cycles, i.e., a node does not appear multiple times on the path,

• its length (i.e., the number of nodes on the path) is between 3 and |R|+ 2.

The use of time-division multiple access (TDMA) avoids conflicts of potentially inter-
secting paths in one or more nodes. In this regard, message buffering at the routers with
respective tables or the use of multiple ports at routers can be beneficial. Possible strate-
gies to avoid message collisions include temporal separation and spatial separation. In the
former case, messages are intentionally delayed at a sender so that they arrive later at a
shared resource, and in the latter case, a conflict free path is sought.

Figure 4.5: Communication at routers via ports.

An example for spatial separation is illustrated in Figure 4.5a. The communication
between the nodes c0 and c1 does not conflict with the communication between c2 and c3

at the router r, even if two messages arrive at the same time, because the scheduler
assigned independent sets of ports (as indicated by the filled black squares). In contrast,
if the use of ports is not scheduled, conflicting communication might occur, as highlighted
in Figure 4.5b [Jo+17].

The DAKODIS architecture adds the utilization of data compression to classical schedul-
ing problems such as resource allocation and routing. As stated in Section 4.4, the com-
pression schemes provide real-time guarantees in terms of WCCTs and WCDTs as well as a
guarantee on the WCCR. If the compression scheme Z = (`, k, τc, τd) is used for a channel e
(with `e = `), then the number of transmitted bits is reduced by `−k for every single data

65

4 DAKODIS Architecture

value. On the other hand, the costs τc and τd have to be added to the execution times of
the channel’s end points. Thus, the usage of data compression is a trade-off between less
communication and longer execution times (recall Figure 4.4).

66

Chapter 5

Online Data Compression
for Time-Triggered Communication

This chapter focuses on online compression algorithms for the DAKODIS architecture and
is based on the formal compression model from Section 4.4. The compression requirements
arise from the time-triggered architecture and the diagnostic applications as discussed
in Section 3.1. Specifically, newly designed dictionary-based data compression schemes
are presented where the dictionary is implemented as a cache with common replacement
strategies, e.g., least recently used (LRU). The developed algorithms are therefore referred
to as cache-based compression algorithms in the following.

5.1 Compression of Individual Data
Streams

5.1.1 Cache-Based Compression Algorithm
for Individual Data Streams

In compressing an individual data stream (recall the definition of a data stream from
Section 4.3.2), the goal is to compress a sequence of n-bit data values (for a fixed n ∈ N)
that are produced by a task running on a computation node. Such data originates from
sensors measuring physical quantities and it is assumed that these data values exhibit
some locality for limited time intervals. There are N = 2n possible data values. For the
compression, every n-bit data value is split into s high-order bits (called head) and the
remaining t = n − s low-order bits (called tail) for some s, t ≥ 1 with s ≤ t. Then every

67

5 Online Data Compression for Time-Triggered Communication

value i ∈ [0, N − 1] can be encoded by a bit string of length ` := s+ t by taking the `-bit
binary expansion of i, which is denoted bin`(i) in the following. Such a bit string is called
a code word. Due to locality of consecutive data values, the heads of consecutive values
are expected to have little variation in a limited time interval.

The bit strings of length s (the heads) can be identified with numbers from [0, 2s −
1], which allows to make arithmetic calculations on heads. For example, if s = 4 and
t = 8, then the head and tail of the code word 1001 01110101 are 1001 and 01110101,
respectively. The head u = 1001 corresponds to the number 23 + 20 = 9 (the left-most
bit is the most significant bit (MSB)) and the head u − 1 (resp., u + 1) is 1000 (resp.,
1010). Note that for every fixed head u ∈ {0, 1}s, the set of code words {uv | v ∈ {0, 1}t}
corresponds to an interval [u · 2t, (u + 1) · 2t − 1] ⊆ [0, N − 1] of data values. Referring
to the aforementioned example (s = 4, t = 8), there are 2s+t = 4096 data values covered
by 16 heads comprising 256 entries each.

The compression of the n = s + t bits in a data value to r + t bits (for some r < s) is
realized by a dictionary D that stores the 2r − 1 most recently seen heads at dictionary
entries D[p]. The dictionary index p is an r-bit code different from the reserved sequence
0r (r 0-bits; this notation is used throughout this thesis), i.e., p ∈ {0, 1}r with p 6= 0r. The
index p is also referred to as a compressed head. Initially, the dictionary is either empty
or filled with some heads that are known to frequently occur in a data stream. The heads
that belong to the dictionary are called active heads. Both the sender and the receiver
store the same dictionary at every time instant. The parameters N, s, t, ` = s+ t and r < s

are assumed to be fixed for further considerations.

Input data is now compressed as follows. The algorithm encodes the s bits from the head
to r bits and transmits the t bits from the tail uncompressed. In detail, consider an n-bit
input data value i ∈ [0, N − 1] and let x = uv be the corresponding code word, i.e., the
`-bit binary expansion of i (u ∈ {0, 1}s is the head and v ∈ {0, 1}t is the tail, with |u| = s

and |v| = t). If the head u is stored in the dictionary at entry D[p] (this can be checked in
constant time by implementing the dictionary using a hash table; see Section 5.2.2 for an
example implementation of a hash function), then the (r + t)-bit code pv is transmitted.
In this way, the algorithm saves s−r many bits. Otherwise, a so-called miss occurs, which
is indicated to the receiver by the bit sequence 0r (which is not part of the dictionary).
The sender then transmits the bit sequence 0ru (recall that s ≤ t, so 0ru fits into r + t

bits). The prefix 0r tells the receiver that the next s many bits represent a new head u.
Also, the sender and receiver update their dictionaries by computing a dictionary index
p = fresh(D) and setting D[p] := u. Here, fresh(D) is the index of a free dictionary entry
or, if the dictionary is fully populated, an index computed by a replacement strategy (the
LRU strategy is used throughout this work; other strategies such as least frequently used
(LFU) are also supported).

68

5.1 Compression of Individual Data Streams

In a miss case, the data value is not completely lost, but the sender and receiver recon-
struct a data value from the transmitted head u and the bit sequence 1 0t−1 as the tail
(starting with the MSB), which corresponds to the center value covered by the head. This
means that the accuracy of the reconstructed value is only slightly lower, i.e., the uncer-
tainty of the correct code word is half of its potential range of values (2t/2) of the overall
code word space of N = 2n values. This ensures that the main signal characteristics are
always captured with the compression algorithm and that the information loss of a data
value is limited.

The compression ratio is defined as the quotient of the length of the encoded bit sequence
divided by the length of the input data value and is at most (r+t)/(s+t). Hence, a smaller
compression ratio means better compression. Due to locality in the data values, a small
number of misses over time is expected.

Figure 5.1: Cache-based algorithm procedure; example with s = 4, t = 8, r = 2.

Figure 5.1 graphically demonstrates the transmission procedure for two code words.
The size of the dictionary is three and currently the heads 0000, 0101, and 1001 are active.
The first code word 0000 11011001 is successfully encoded as its head 0000 is active at
D[01]. Since the head 1010 of the second code word is not active (miss case), the head
is communicated as the tail of the compressed code word starting with the prefix 00, i.e.,
the reserved compressed head. A more detailed example with more code words for the
cache-based algorithm including some algorithm enhancements is covered in Section 5.1.3.

69

5 Online Data Compression for Time-Triggered Communication

Algorithm 1 describes the pseudocode of the cache-based compression algorithm, see
also [Mec+19b; Jo+18]. In a success case, the combination of the applicable dictionary
index p and the uncompressed tail of the code word, v, is communicated (line 6). In a miss
case, the compressed code word is formed from the prefix 0r and the missed head u (line 8).
Note that the sender and receiver keep their dictionaries synchronized purely based on the
basis of the transmitted data values according to the LRU update strategy (lines 9–10).
In accordance with the requirements from Section 3.1, no side channel is needed.

Algorithm 1 Cache-based compression algorithm for 1 data stream
1: input : data value i ∈ [0, N − 1]
2: output : bit string of length at most r + t
3: initialize dictionary D as empty hash table of size 2r − 1
4: let x = uv = bin`(i) with |u| = s and |v| = t
5: if there is p with D[p] = u then
6: send pv to the receiver
7: else
8: send 0ru to the receiver
9: p := fresh(D) // use an index of a free dictionary entry

or compute a new index based on the LRU strategy
10: D[p] := u // insert u to D
11: end if

In summary, the main features of the compression algorithm are:

• For each data value, a fixed compression ratio of (r + t)/(s + t) < 1 is achieved.
This is in contrast to classical lossless compression, where only statements about the
average compression ratio are possible. A fixed compression ratio is important for
time-triggered architectures as expressed in requirement R2 from Section 3.1.

• To allow for a fixed compression ratio < 1, occasional misses of data values must be
accepted. In terms of the introduced compression algorithm, a miss means that the
uncertainty of the transmitted data value is slightly increased, but bounded. A small
number of such miss cases is acceptable for many (diagnosis) applications, since the
essential signal characteristics are still captured and diagnostic results are typically
not based on single samples. Furthermore, knowing the maximum uncertainty still
makes a reconstructed value in a miss case useful for many applications.

• The cache-based compression algorithm, unlike classical lossy data compression,
transmits those data values that are not lost without any degradation in accuracy.
Overall, this complies with requirement R4 from Section 3.1 that the application can
rely on guaranteed data quality.

70

5.1 Compression of Individual Data Streams

5.1.2 Algorithm Enhancements – Reducing
Uncertainty and Miss Rate

The requirements for the DAKODIS architecture stated in Section 3.1, particularly with
regard to ensuring data quality for the diagnosis applications, allow only occasional misses.
The goal is to keep these events as rare as possible, yet retaining as much information as
possible about missed code words. The following sections present two improvements to
the basic algorithm from Section 5.1.1. These improvements can be applied if s < t (recall
that s ≤ t). This is a reasonable assumption: choosing t too small means that the heads
only comprise as few as 2t tails, which likely leads to a higher miss rate.

5.1.2.1 Reducing the Uncertainty

In Algorithm 1, in the case of a miss, the head u = b1 · · · bs is communicated, where
b1 · · · bsbs+1 · · · bs+t is the current code word. This information is used to synchronously
update the dictionaries of the sender and receiver. The remaining t bits (the tail) of the
current code word are lost in this case. Thus, the receiver knows the head to which the
current data value belongs. In other words, the potential range of the correct code word
has the size 2t.

This potential range (i.e., the uncertainty of the correct data value) can be further
reduced. In a miss case, the bit sequence 0ru of length r+ s is transmitted to the receiver
(see Algorithm 1, line 8). Recall that a bit string of length r + t > r + s is transmitted
if there is no miss, resulting in a worst-case compression ratio (WCCR) of (r + t)/(s+ t).
The DAKODIS architecture is time-triggered. Since each task is executed according to a
fixed schedule, there is no benefit from potentially shorter messages in the event of a miss.
Instead, the uncertainty of the correct value in this case can be reduced by transmitting
the bit string 0rb1 · · · bt, consisting of the head u = b1 · · · bs and the (t− s) MSBs bs+1 · · · bt
of the tail without increasing the WCCR. This narrows the potential range of the correct
data value to 2s. The compression ratio then becomes (r + t)/(s+ t) in every step.

5.1.2.2 Reducing the Miss Rate

The t− s unused bits in a miss case (line 8 of Algorithm 1) can also be used to reduce the
miss rate in the following way. Recall that in the compression scheme, the prefix 0r tells
the receiver that the next s bits form the head of the current code word in case of a miss.
Thus, the prefix 0r has a reserved meaning and is excluded from the set of compressed
heads (i.e., the entries of the dictionary). However, the bit sequence 0r can still fulfill its

71

5 Online Data Compression for Time-Triggered Communication

purpose even if it is included in the set of compressed heads (then the dictionary has 2r
elements). This requires to reserve the first 2s code words belonging to the head that
is assigned to 0r for the transmission of heads in the event of a miss. This leads to the
following extension of the algorithm:

The sender and receiver reserve one of the 2r many dictionary entries (i.e., compressed
heads) for the miss case; let this entry be p0. Initially, p0 = 0r. A miss occurs if (i)
the head u of the current code word uv does not belong to the dictionary or (ii) the
head u is stored in the dictionary entry p0 (i.e., D[p0] = u) but the tail v belongs to the
first 2s many bit sequences from {0, 1}t, i.e., v ∈ 0t−s{0, 1}s. In both cases, the algorithm
transmits p00t−su. From the fact that the transmitted bit sequence starts with p00t−s,
the receiver concludes that a miss occurred. Moreover, the dictionary entry where the
least-recently-used head is stored becomes p0 on both the sender and receiver sides.

Depending on the application, the priority might be either a lower uncertainty of the
correct data value in a miss case or a reduced miss rate. As a compromise between the
two improvements of the basic cache-based algorithm, one can choose some m ∈ [0, t− s]
and use the m most significant bits of the tail to be transmitted to reduce the uncertainty,
while using 2t − 2s+m additional code words (to transmit data values) with the head that
is currently used to indicate a miss.

5.1.3 Example of the Cache-Based Compression
Algorithm

For the following example of the cache-based compression algorithm, assume that the
samples come from an analog-to-digital-conversion (ADC) with a resolution of 12 bits,
which means that every data value is represented by a 12-bit code word. Splitting these 12
bits into s = 4 bits for the head and t = 8 bits for the tail, there are 24 = 16 heads, each
comprising 28 = 256 code words. Setting r = 2 one obtains 2r − 1 = 3 compressed heads
(01, 10, and 11) and saves s− r = 2 bits for transmission. It is assumed that 3 code words
have already been transmitted, resulting in the dictionary mapping shown in Table 5.1.
The third column denotes the time instant in terms of a counting variable; the lowest
number indicates that the active head was least recently used. The example includes the
improvement from Section 5.1.2.1 (reducing the uncertainty). The following itemization
goes through the algorithm with some code words, beginning at time step 4:

• Time step 4: The first code word is 0101 00001100. Its head is 0101 and its tails is
00001100. The head is active: D[10] = 0101, so 10 00001100 is sent and the time
index corresponding to the dictionary entry is updated to the current time instant 4.

72

5.1 Compression of Individual Data Streams

Table 5.1: Example codebook of size 3 for the cache-based compression algorithm at time
instant 4.

Compressed
head

Active
head

Least recently used
at time

01 0000 1
10 0101 2
11 1001 3

• Time step 5: The code word is 0000 11011001. As D[01] = 0000, the algorithm sends
01 11011001 and the least-recently-used time becomes 5.

• Time step 6: The code word is 1010 00111110 with the head 1010. This head is
currently not active, so there is a miss. According to the current state of the dic-
tionary, the head 1001 stored at entry 11 was least recently used, and consequently
gets replaced, i.e., D[11] = 1010 is set. Since t − s = 4, the four most significant
bits 0011 of the tail 00111110 are sent to reduce the uncertainty of the correct data
value. The transmitted bit sequence is 00 1010 0011: 00 to indicate the miss, 1010
for the new active head, and 0011 for the four MSBs of the tail. The time index is
updated to 6.

• Time step 7: The code word is 1010 00111110, i.e., the same as the previous one. This
time the head 1010 is active and stored at dictionary entry 11. Thus, 11 00111110 is
sent.

• Time step 8: The final code word is 1001 10101011. Its head 1001 is no longer active
(it was removed from the dictionary at time step 6), so there is another miss. This
time, the least-recently-used head is D[10] = 0101 (at time instant 3). The algorithm
sends 00 10011010 and sets D[10] = 1001.

5.1.4 Probability of a Miss

This section analyzes the probability of a miss of the cache-based compression algorithm.
For this, a sequence of code words x1x2x3 · · · is modeled as a stochastic process. Recall that
there are N = 2s+t different code words. For comparison, it is first assumed that successive
code words are identically and independently distributed, resulting in what is called an i.i.d.
process. This is described by a single probability distribution (P [x] ∈ [0, 1])x∈{0,1}s+t on the
set of code words, where P [x] is the probability that the code word x occurs (the letter P

73

5 Online Data Compression for Time-Triggered Communication

is used to represent probabilities throughout this section). Whether a particular code word
leads to a miss depends only on the head of the code word. From the probabilities P [x],
the probability pu that a particular head u ∈ {0, 1}s appears can be computed as

pu =
∑

v∈{0,1}t

P [uv]. (5.1)

For a uniform distribution (i.e., pu = pu′ for all heads u, u′), the probability of a miss is
calculated with the number of heads in the dictionary and the total number of heads to
1 − (2r − 1)/2s. Based on the analyses of [FGT92] from the field of caching, for given
head probabilities pu the miss probability can be calculated in principle with the following
formula:

1−
∑

u∈{0,1}s

p2
u ·

k−1∑
q=0

(−1)k−1−q
(

2s − q − 2
2s − k − 1

) ∑
|J |=q,u 6∈J

1
1− PJ

, (5.2)

where k = 2r−1 is the size of the dictionary and PJ = ∑
v∈J pv. As also noted in [FGT92],

this formula is not accurate for practical calculations of the probability of a miss, since
the introduced independent reference model simplifies that in reality the references (i.e.,
the items to be accessed) exhibit some locality. Franaszek and Wagner [FW74] consider
the expected ratio Flru/Fopt, where Flru is the miss probability under the LRU strategy
and Fopt is the miss probability of an optimal replacement strategy. The latter stores the
k − 1 heads with the highest probabilities in the dictionary. The remaining dictionary
entry is used for the miss indication. Note that the optimal strategy assumes knowledge
about the above probabilities pu. Using the relevant parameters of this thesis, the result
from [FW74] states that

Flru

Fopt
≤ 1 + (2r − 1)(1− β)

1 + (2r − 2)β , (5.3)

where β is the sum of the smallest 2s−2r+1 many head probabilities pu. Again, the result
assumes that the sequence of code words is produced by an i.i.d. process.

To compare with practice, in the measurement of physical quantities, consecutive data
values are highly interdependent. In particular, the locality typically observed in physical
processes implies that a data value is highly probable to be in a small neighborhood of its
preceding value. In such a setting, the cache-based compression algorithms presented in
this chapter show a much lower probability of a miss than in the above i.i.d. setting. This
is demonstrated by the experimental data in Chapter 6.

74

5.1 Compression of Individual Data Streams

5.1.5 Dynamic Cache-Based Compression Algorithm
for Individual Data Streams

It is a characteristic of the cache-based compression algorithm from Section 5.1.1 that the
dictionary is updated only after a miss occurred. Analyses of several signals of interest
for this thesis show that consecutive data values (e.g., samples from a measurement of
a physical quantity such as a voltage or current measurement) often rise or fall in one
direction in the short term, especially when the sampling rate is relatively high [SM06]
(see also the test signals used in the evaluation chapter). Such signal behavior leads to
frequent misses, i.e., as soon as a data value is no longer covered by an active head, meaning
that the head u of a required code word x = uv is not in the dictionary. Utilizing this
knowledge, a dynamic version of the online compression algorithm overcomes this issue
by adding some flexibility using offsets in the dictionary entries. This unfixes the static
relation between a value i (a quantization level) and its corresponding code word x.

Consider a sequence of values S = a1, a2, . . . , ak on a single data stream such that for
all i with 1 ≤ i < k, |ai − ai+1| < 2t−1 but bai/2tc 6= bai+1/2tc (again s and t are the
size of the head and tail, respectively). This defines the maximum difference between two
consecutive values and states that they are covered by different heads. If S is compressed
using the cache-based compression algorithm from Section 5.1.1 with a dictionary of size 1
(i.e., r = 1), this will result in k misses since there are no consecutive values in S with
the same head. To handle this case, every dictionary entry D[p] becomes a pair (u, δ) of
a head u ∈ {0, 1}s and an offset δ ∈ [−2t−1, 2t−1 − 1] (initially, δ = 0). The offset affects
the mapping between data values and code words. Here and in the following, heads (resp.,
tails) are identified with numbers from the interval [0, 2s− 1] (resp., [0, 2t− 1]) using their
binary representation. Moreover, the corresponding interval I[p] = [u2t+δ, u2t+δ+2t−1]
is defined. In this manner, p covers the data values in the interval I[p]. The cache-based
compression algorithm from Section 5.1.5 can be considered as the special case where δ is
always 0. Let (u[p], δ[p]) stand for D[p].

Consider an example with s = 4, t = 8, and the head u = 0000. If the corresponding δ at
D[p] is zero, then the data values in I[p] = [0+ δ[p], 0+ δ[p]+28−1] = [0, 255] are encoded
by the first 2t = 256 code words (with the head u = 0000). If the offset is increased to
δ[p] = 1, then the data values from [1, 256] are encoded by the code words with the head
u[p]. Now, when a sender transmits a code word x = uv, where u (resp. v) is the head
(resp., tail) of x, the sender first checks whether there is a dictionary index p covering x.
Since δ[p] ∈ [−2t−1, 2t−1 − 1], one must have u[p] ∈ {u − 1, u, u + 1}. Suppose that the
dictionary contains an index p that covers x (otherwise, the sender transmits 0ru and adds
the pair (u, 0) to the dictionary). The sender takes the smallest such p and transmits pv to
the receiver (see line 8 of Algorithm 2). It then updates its dictionary such that x becomes

75

5 Online Data Compression for Time-Triggered Communication

the center of an interval I[q] for some dictionary index q. For this, it first ensures that
u[q] = u holds for a unique index q. Then it sets the offset δ[q] to v − 2t−1 (line 20–21).
In this way, x becomes the center of the interval I[q]. The receiver reconstructs x from p

and v and updates its dictionary analogously. This means that the covering head in the
dictionary is potentially replaced by its neighboring head (i.e., by the head that covers the
value by default (with zero offset)) to ensure that the maximum offset remains within the
defined interval. It can be easily observed that in the above example, only a1 is lost with
this dynamic cache-based compression algorithm, while maintaining a dictionary of size 1.

The algorithm enhancements from Section 5.1.2 can be straightforwardly applied to the
dynamic version of the cache-based compression algorithm. In particular, the strategy for
reducing the uncertainty in a miss case can be extended to allow an offset value to be
computed even in a miss case, provided s < t. The potential range of the correct data
value is then narrowed down from 2t to 2s and it is a good choice to reconstruct the center
value of this range. Let the tail v′ correspond to this center value. The offset for the newly
inserted head then becomes v′ − 2t−1 on the sender and receiver sides.

Algorithm 2 Dynamic cache-based compression algorithm for 1 data stream
1: input : data value i ∈ {0, 1}ni

2: output : bit string of length at most r + t
3: miss : variable for indicating the event of a miss
4: initialize dictionary D as empty hash table of size 2r − 1
5: let x = uv = bin`(i) with |u| = s and |v| = t
6: if there is p ∈ {0, 1}r \ {0r} covering x then
7: let p be the smallest index covering x
8: send pv to the receiver
9: miss := 0

10: else
11: send 0ru to the receiver
12: miss := 1
13: end if
14: if there is no q with u[q] = u then
15: q := fresh(D)
16: u[q] := u
17: δ[q] := 0
18: end if
19: if miss = 0 then
20: let q be the unique index with u[q] = u
21: δ[q] := v − 2t−1

22: end if

76

5.1 Compression of Individual Data Streams

5.1.6 Example of the Dynamic Cache-Based
Compression Algorithm

Suppose 12-bit code words, each consisting of a 4-bit head and an 8-bit tail, are to be
compressed to at most 10 bits by maintaining a dictionary D with 22 − 1 = 3 entries
(D[01], D[10], and D[11]) for active heads. As before, the bit string 00 indicates a miss.
Each head can have an offset from [−28−1, 28−1 − 1] = [−128, 127]. Let the dictionary be
initially empty. Using the dynamic cache-based compression algorithm from Section 5.1.5,
a sender compresses and transmits the three data values 384, 434, 534 as follows:

1. Transmit 384: Since bin12(384) = 0001 10000000, the head of this string is u = 0001.
There is no active head in the current dictionary, so the data value is lost. The sender
sends 00 0001 to the receiver and inserts 0001 with offset 0 into the dictionary. Let
D[01] = 0001. The receiver then reconstructs a default value from the received head u
and the bit sequence 1 0t−1, which forms the tail. Clearly, at this point it would be
a good strategy to also insert some adjacent heads of 0001 into the dictionary to
increase the value coverage, especially since free entries are available. However, this
approach is not followed in this example.

2. Transmit 434: Now bin12(434) = 0001 10110010. The head of this bit sequence is
0001, which is stored at dictionary entry 01 and currently has an offset of 0. The data
value is covered by an active head, so the sender transmits the compressed string
01 10110010 to the receiver and the new offset of 0001 is calculated from the current
tail v (v corresponds to the remainder of 434/28, i.e., 178) to v−2t−1 = 178−27 = 50.

3. Transmit 534: The head of the string bin12(534) = 0010 00010110 is 0010. It is
not active in the current dictionary. With the nondynamic cache-based algorithm
(Section 5.1.1) the data value would be lost in this case, but with the dynamic
cache-based algorithm a successful data transmission is possible: The offset of the
currently active head 0001 (at D[01]) is 50, so it covers all data values in [28 + 50, 2 ·
28 + 49] = [306, 561]. Since 534 belongs to this interval, there is a success in lines 7–
9 of Algorithm 2 with u = 0001. Considering the offset of the covering head, the
current tail v′ is the remainder of (534−50)/28, i.e., 228. The new accumulated offset
becomes 50+(228−27) = 150. Since 150 is not in [−128, 127], the algorithm replaces
the covering head with its neighboring head (in the respective direction), which is
obviously the default head of bin12(534) (i.e., the head covering the value with zero
offset). So it sets D[01] = 0010 and the offset δ[01] then refers to this head and is
v−2t−1 = 22−128 = −106. In this way, the data values in [2 ·28−106, 3 ·28−107] =
[406, 661] are now covered.

77

5 Online Data Compression for Time-Triggered Communication

5.1.7 Difference Coding for Individual Data Streams

The DAKODIS architecture requires online data compression algorithms that guarantee
low message delay. In addition, the time-triggered architecture relies on a WCCR. A
fixed compression ratio optimally combines a compression benefit with the architectural
requirements. The cache-based algorithm, in its basic and extended versions, satisfies these
two prerequisites at the cost of sporadic losses of samples, which then have a lower accuracy.
To deal with these events, the algorithms possess a robust strategy that allows a signal to
be reconstructed to the greatest extent possible even in extremely volatile situations, such
as high signal fluctuations due to faults in the system.

In the discussion of the related work in Chapter 3, differential encoding was introduced
as a well-known technique for efficient compression of sensor data, where locality of con-
secutive data values can be assumed. Recall that sensor data in this context refers to
measurements of physical quantities such as voltages and currents. This section presents a
modified difference encoding algorithm that adopts some of the features of the cache-based
compression algorithms. It is partially able to fulfill the requirements from Section 3.1, and
thus serves for comparison purposes. The general idea of differential encoding applied to
sensor data is to relate consecutive data values to each other and encode their difference,
which is assumed to require fewer bits (see Section 3.2.3). Of course, if the number of data
values to be encoded is N, one needs n = dlog2 Ne bits per corresponding code word. In or-
der to cover the difference between any two consecutive data values (i.e., code words), one
would need N values for this as well, and consequently, n bits to express such a difference
value. A compression scheme that is not demanded to produce compressed code words of
a fixed size (and WCCR below one) directly benefits from a potentially larger number of
shorter compressed code words (e.g., entropy codes). However, with fixed-size compressed
code words, such as those required for the DAKODIS architecture, the number of available
bits to encode a difference value of two consecutive data values might be insufficient, thus
making a correct value reconstruction impossible. Such a case might lead to a series of
incorrect value reconstructions due to the dependence on a correct reference value (e.g.,
the previous value).

In the following, the same notation as for the cache-based compression algorithm is
used, but now s < r < s + t for some s, t, r ≥ 1. For each data value i ∈ [0, N − 1],
there is a code word x = uv with |u| = s and |v| = t. The parameters s and t (in bits)
determine the number of heads and the number of tails that each head comprises. A
data value can be expressed by the difference from its predecessor value. For example,
a sender wants to communicate a value ik (k ≥ 0) to a receiver. The sender transmits
dk = ik − ik−1 ∈ [1 − N,N − 1], i.e., the difference between the current value ik and the
previous value ik−1. The previous value serves as a reference for calculating the difference.

78

5.1 Compression of Individual Data Streams

The receiver reconstructs the current value ik from the received difference dk and the stored
previous value ik−1.

The strategy of the algorithm is as follows: A static dictionaryD is defined. It contains 2r
entries, of which 2s entries are used to store all heads u. The remaining 2r − 2s entries
are used to store all differences d ∈ [−(2r − 2s)/2, (2r − 2s)/2− 1] ⊆ [1−N,N − 1]. Both
the sender and the receiver generate the same dictionary. All entries of the dictionary are
mapped to code words w of length r. In this strategy, not all possible differences of two
consecutive values are mapped to code words. If the current difference dk is stored in D[p]
(p ∈ {0, 1}r), then the code word w = p (the dictionary indices are interpreted as code
words) is transmitted and the receiver successfully reconstructs the value from the received
difference and the previously reconstructed value. If dk is not stored in the dictionary, there
is a miss. In this case, the head u of bin`(ik) is computed and the unique p with D[p] = u

(every head u is stored in the dictionary) is sent. Because of the identical dictionaries
of the sender and receiver, the latter knows that this code word stands for a head and
not for a difference value. With this information, a new reference value for the difference
calculation is established at both sides, specifically the center value u2t+2t−1 of the interval
[u · 2t, (u+ 1) · 2t− 1] covered by the head. The compression ratio of the difference coding
algorithm is r/(s + t) in every step. The first value of a data transmission is inevitably a
miss, since there is no reference value at the receiver. So the initial transmission is always
the code word w, corresponding to the head u of the first data value bin`(i). Large tail
sizes (i.e., few heads) may persistently prevent the algorithm from reconstructing values
correctly. After a miss occurred and the new reference value is established as the center
value of the reconstructed head, the differences of subsequent values to this center value
may permanently lie outside the interval [−(2r − 2s)/2, (2r − 2s)/2 − 1]. For the case
s = 1, only two heads are available to indicate a miss. They tell the receiver that the
required difference does not belong to [−(2r− 2s)/2, (2r− 2s)/2− 1]. In this case, a better
reference value can be calculated in terms of the last successfully reconstructed data value
plus −(2r− 2s)/2 or (2r− 2s)/2− 1, depending on the received head. This may reduce the
distance to the actual data value and hence the probability of many consecutive misses.

Difference Coding with Value Predictions

In general, differential encoding and predictive encoding are closely related (see Sec-
tion 3.2.3). Value prediction can help to further reduce the difference values to be encoded
in order to save bits or have fewer misses. Consider linear prediction as an example. Let a
current value be denoted as ik and its two predecessor values ik−1 and ik−2. The correspond-
ing differences are then dk = ik−ik−1 and dk−1 = ik−1−ik−2. In the above difference coding
algorithm, if dk ∈ [−(2r− 2s)/2, (2r− 2s)/2− 1], the corresponding code word is transmit-
ted, otherwise there is a miss. Using linear prediction, d′k = dk−dk−1 = ik−2ik−1 + ik−2 is

79

5 Online Data Compression for Time-Triggered Communication

computed. Since in many cases |d′k| < |dk|, e.g., for (linearly) increasing value sequences,
transmitting d′k (if possible) will lead to fewer misses. The receiver reconstructs the value ik
(in the non-miss case) from the previously reconstructed values and d′k. The miss case is
handled analogously to the difference coding algorithm presented above.

The adopted miss handling strategy allows to apply value prediction with the difference
coding algorithm. As a general point, it should be noted that there is an adverse possibility
that an (adaptive) predictor might eventually fail to adapt properly to the signals, thus
producing large errors in subsequent values.

5.2 Simultaneous Compression of Multiple
Data Streams

5.2.1 Preliminaries

The cache-based compression algorithm introduced in Section 5.1 in its static and dynamic
version handles each data stream individually. For the compression, it utilizes the fact
that measurements of physical quantities can often be covered with only a part of the total
code word space for certain time intervals. With a view to the overall system architecture,
much data for monitoring and diagnostic purposes (e.g., voltages, currents or vibration
measurements) of complex mechatronic systems is gathered and processed at different
locations and needs to be exchanged over a network. Often, many of these data streams
are highly correlated due to redundant measurements or physical relations of the measured
signals. The extended compression scheme presented in the following takes advantage of
both facts, the locality assumption and the signal correlations. In time-triggered systems,
all data traffic is scheduled so the transmission paths are predetermined. In particular,
when the source and destination nodes of two or more data streams are located close to
each other or are the same, the overall message sizes for transmitting the data can be
reduced, leading to advantageous scheduling results (e.g., a shorter makespan) [MO19].
For the following considerations, a strong temporal dependency of the data streams is
assumed, as this is the prerequisite for combining the samples of multiple data streams
into one combined code word at a certain point in time. In time-triggered systems, this is
a valid assumption.

80

5.2 Simultaneous Compression of Multiple Data Streams

5.2.2 Cache-Based Compression Algorithm
for Multiple Data Streams

To exploit correlations between data streams, the cache-based compression scheme is
adapted to encode multiple data streams at once, i.e., simultaneously. Assume some d
data streams and let xi (1 ≤ i ≤ d, d ∈ N) be the current data value of the i-th stream.
Further, xi is assumed to be an ni-bit data value. Analogous to Section 5.1.1, for each
i ∈ [1, d] a partition ni = si + ti is fixed and xi is split into xi = uivi with |ui| = si
and |vi| = ti. The bit sequence ui (resp., vi) is the current head (resp., tail) of the i-th
stream. It is not assumed si = sj or ti = tj for i 6= j. In the following, let s = ∑d

i=1 si
and t = ∑d

i=1 ti. One could apply the compression scheme from Section 5.1.1 to each of
the d data streams separately by choosing numbers ri < si and maintaining a dictionary
of size 2ri − 1 for every i with 1 ≤ i ≤ d. This leads to an overall compression ratio of
(∑d

i=1 ri+ t)/(s+ t). On the other hand, due to correlations between the data streams, the
tuples of data values (x1, . . . , xd) will be scattered around a low-dimensional subspace of
the d-dimensional product space. For example, if d = 2 and x2 = f(x1) for a function f ,
then all tuples belong to a one-dimensional curve in the two-dimensional plane. In such a
case, a better compression ratio of (r+t)/(s+t) can be achieved by using a single dictionary
of size 2r−1 for some r < ∑d

i=1 ri that stores tuples of heads u = (u1, . . . , ud), which need s
bits. A compressed data value then consists of the dictionary index p ∈ {0, 1}r where u
is stored and the concatenation v1v2 · · · vd of the current tails. In the case of a miss, 0r is
transmitted followed by u. This leaves t− s unused bits. Similar to the extensions of the
original algorithm (Section 5.1.2), these bits can be used to transmit parts of the tails. In
the multidimensional case, there are several possibilities:

• Transmit as many tails as possible completely and fill the remaining bits with the
MSBs of the next tail,

• transmit the same number of MSBs for each tail,

• transmit MSBs for each tail where the number of MSBs is weighted by the complete
tail length.

Note that with this approach all d data values from (x1, . . . , xd) are lost in case of a
miss. Consequently, this method is a trade-off between a better (i.e., lower) compression
ratio and a higher number of lost data values. Yet, it has a major advantage in that it
allows for a better allocation of available bits among the different streams through the
shared dictionary. In contrast to compressing the data streams individually, the number
of active heads for one data stream can vary. It is automatically determined by the LRU
replacement strategy for the dictionary entries.

81

5 Online Data Compression for Time-Triggered Communication

For example, in the two-dimensional case with r = 3, the dictionary stores seven 2-tuples
of active heads. It is possible that all active heads corresponding to one of the streams
are equal. If the seven dictionary indices are identified with numbers from [1, 2r − 1] and
u[p, i] = ui is defined, then possibly D[p, 1] = u for all p = 1, . . . , 2r − 1. That is, the
number of currently active code words per data stream is flexible. Recall that in the
compression of individual data streams, each stream i (1 ≤ i ≤ d) has a corresponding
dictionary with a fixed size 2ri − 1, which is also the number of active heads and hence the
number of active code words per stream. In a scenario where there is not much fluctuation
in one data stream but there is in the other, the new method is expected to perform better.
The ti are fixed for both methods, of course, but do not affect the above considerations.

As mentioned in Section 5.1.1, the dictionary can be implemented using a hash table,
which is a structure that maps keys to values. For this, every tuple of heads is translated
into a unique key, which can then be checked in constant time. A naive way is to use
the numbers from the interval

[
0,∏d

i=1 2si − 1
]
. For an arbitrary combination of d heads

the key is then calculated according to ∑d
i=1(2si)i−1ui. This corresponds to the value of

the concatenation of the si-bit-long binary representations of the heads u1, . . . , ud. More
information and other implementation possibilities of hash functions can be found in the
relevant literature, e.g., [Cor+09].

Algorithm 3 Cache-based compression algorithm for d data streams
1: input : data values xi ∈ {0, 1}ni (1 ≤ i ≤ d)
2: output : bit string of length at most r + t
3: initialize dictionary D as empty hash table of size 2r − 1
4: let xi = uivi with |ui| = si and |vi| = ti for 1 ≤ i ≤ d
5: if there is p with D[p] = (u1, . . . , ud) then
6: send pv1v2 · · · vd to the receiver
7: else
8: send 0ru1u2 · · · ud to the receiver
9: p := fresh(D)

10: D[p] := (u1, . . . , ud)
11: end if

5.2.3 Dynamic Cache-Based Compression Algorithm
for Multiple Data Streams

For an efficient compression of highly correlated multiple data streams, when each stream
has consecutive data values with small gaps, Algorithm 3 is made dynamic, analogous to
Algorithm 2, see also [Mec+19b]. Each dictionary entry D[p] stores a d-tuple (u1, . . . , ud)

82

5.2 Simultaneous Compression of Multiple Data Streams

of heads (ui ∈ {0, 1}si) and an offset vector (δ1, . . . , δd) with δi ∈ [−2ti−1, 2ti−1 − 1]. It is
defined that u[p, i] = ui, δ[p, i] = δi and the interval

I[p, i] = [ui2ti + δi, ui2ti + δi + 2ti − 1].

It is said that p covers the data values in the d-dimensional hypercube

H[p] :=
d∏
i=1

I[p, i]. (5.4)

This hypercube is called an active hypercube and the union of all active hypercubes is
called the set of active data tuples. Now consider the case where a sender sends a tuple
x = (x1, . . . , xd) of data values from d data streams to a receiver. Let xi = uivi be as
in Section 5.2.2. Then the sender first checks if there is a dictionary index p covering x
(otherwise it transmits 0ru1 · · · ud and adds (u1, . . . , ud) with the offset vector (0, . . . , 0) to
the dictionary). For every i with 1 ≤ i ≤ d, one must have u[p, i] ∈ {ui−1, ui, ui+1}. The
sender again takes the first such p and sends pv1v2 · · · vd to the receiver. Then it makes
the same updates in each dimension as described above for the case d = 1. Algorithm 4
summarizes the procedure, see also [Mec+19b].

Figure 5.2: Simultaneous compression of two data streams.

Figure 5.2 illustrates a two-dimensional constellation of 3 active hypercubes (here squares)
as blue squares and Table 5.2 represents the corresponding dictionary. For the hypercube

83

5 Online Data Compression for Time-Triggered Communication

at the bottom left (heads u1 = 0110 and u2 = 1010), the possible coverage range according
to the maximum allowed offset values is exemplarily highlighted in light blue color. One of
the hypercubes shown (u1 = 1000, u2 = 1011) is currently offset from its nominal position
by some δ, indicated by the blue arrow pointing from the default center value towards the
current center value. In the example, −2t−1 < δ2,1 < 0 and 0 < δ2,2 < 2t−1 − 1, where
the subscripts denote the dictionary index and the data stream index, respectively, see
Table 5.2.

Table 5.2: Example codebook of size 3 for two-dimensional data stream compression.

Dictionary index p u[p, 1] u[p, 2] δ[p, 1] δ[p, 2]

01 0110 1010 0 0
10 1000 1011 δ2,1 δ2,2
11 1001 1100 0 0

Algorithm 4 Dynamic cache-based compression algorithm for d data streams
1: input : data values xi ∈ {0, 1}ni (1 ≤ i ≤ d)
2: output : bit string of length at most r + t
3: miss : variable for indicating the event of a miss
4: initialize dictionary D as empty hash table of size 2r − 1
5: let xi = uivi with |ui| = si and |vi| = ti for 1 ≤ i ≤ d.
6: if there is p ∈ {0, 1}r \ {0r} covering (x1, . . . , xd) then
7: let p be the smallest index covering (x1, . . . , xd)
8: send pv1v2 · · · vd to receiver
9: miss := 0

10: else
11: send 0ru1u2 · · · ud to receiver
12: miss := 1
13: end if
14: if there is no q with u[q] = (u1, . . . , ud) then
15: q := fresh(D)
16: u[q] := (u1, . . . , ud)
17: δ[q] := (0, . . . , 0)
18: end if
19: if miss = 0 then
20: let q be the unique index with u[q] = (u1, . . . , ud)
21: δ[q] := (v1 − 2t1−1, . . . , vd − 2td−1)
22: end if

84

5.2 Simultaneous Compression of Multiple Data Streams

5.2.4 Partial Misses

When compressing d data streams simultaneously, a miss occurs if there is no p covering x.
Missing only one head ui in the multidimensional product space leads to a miss in all data
streams. Consider an example with d = 2 streams where s1 = s2 = 4, t1 = t2 = 8, and
r = 2, i.e., the dictionary D is of size 2r−1 = 3. Referring to Section 5.2.3, Table 5.2 is an
example of such a dictionary. For now, all offsets are assumed to be zero. The dictionary
index 00 is reserved for indicating the miss case and is not shown in the table. If the
heads of the current data values x1 and x2 are assumed to be u1 = 1001 and u2 = 1101,
respectively, there is a miss because the required concatenation of heads (u1u2) is not in
the dictionary. Hence, the tail bits are used to send the new head combination u1u2 to the
receiver. In Figure 5.2 the missing data value is marked as a red cross.

In the above situation, both data values x1 and x2 are lost. The strategy presented
in the following overcomes this drawback of the algorithm in many cases and allows to
successfully communicate the current data values corresponding to some of the streams.
This is realized by reserving an additional dictionary index (i.e., the bit sequence 0r−11)
to indicate a so-called partial miss (in contrast to a full miss which is indicated by 0r).
This reduces the dictionary size to 2r − 2. The number of bits transmitted per time step
is r + t (i.e., the length of the dictionary index plus the length of all tails), as before. In
the case of a partial miss, the bit sequence following 0r−11 is interpreted differently than
in the original algorithm. Table 5.3 shows the updated full dictionary for this example.

Table 5.3: Example codebook of size 4 for two-dimensional data stream compression.

Dictionary index p u[p, 1] u[p, 2]

00 reserved for full miss
01 reserved for partial miss
10 1000 1011
11 1001 1100

If there is no dictionary index p that covers the entire tuple of data values (x1, . . . , xd),
the algorithm searches for a p that covers at least some of the data values. For this, the
set M [p] = {i ∈ [1, d] | xi /∈ I[p, i]} of those dimensions is defined where p does not cover
the corresponding data value. In the example (u1 = 1001 and u2 = 1101), M [10] = {1, 2}
and M [11] = {2}. The algorithm tries to encode as many entries from the input tuple
(x1, . . . , xd) as possible by looping over all dictionary indices p ∈ {0, 1}r \ {0r, 0r−11}.
Consider a specific index p. Suppose the receiver is told p and the set M [p]. This leaves

85

5 Online Data Compression for Time-Triggered Communication

t−r−d bits from the initial r+ t bits (one needs r bits for the partial miss indicator 0r−11,
r bits for p, and d bits for M [p]). These t − r − d bits can be used to send the following
data to the receiver:

1. All tails vi for i ∈ [1, d] \M [p]. Note that for i ∈ [1, d] \M [p], the receiver can obtain
the head ui of xi (and consequently the data value xi) from the dictionary entry D[p]
as in Section 5.2.3. Note that ∑i∈[1,d]\M [p] ti bits are needed for these tails.

2. All differences ui − u[p, i] for every dimension i ∈M [p]. Note that one bit is needed
for each difference to encode the sign of the difference. Note also that the differences
ui − u[p, i] (i ∈ M [p]) together with the index p allow to reconstruct the missed
heads ui (i ∈M [p]) on the receiver side, which is necessary to update the dictionary.

For the differences in point 2 there are

h =
∑

i∈M [p] ti − r − d (5.5)

bits available. If all differences from point 2 fit into these h bits, then p is a valid choice for
the algorithm and all data values xi with i ∈ [1, d] \M [p] are correctly transmitted. For
more than 2 missed heads, the h many bits must be split among all missed heads according
to a predefined scheme known to the sender and receiver.

Figure 5.3 illustrates the bit distribution of the available r + t bits among the different
segments and their order in the frame. After the partial miss indicator (pind), the index
phit refers to the dictionary entry with at least one covering head. The set M [p] takes d
bits and is followed by all valid tails. The remaining bits are distributed among all head
differences.

Figure 5.3: Bit distribution in the partial misses strategy.

In the example, if p = 11, then M [11] = {2} and the only difference needed is u2 −
u[11, 2] = 1. Calculating h = t2− r− d = 8− 2− 2 = 4 and reserving one bit for encoding
the sign of the difference value, one has a valid choice for p and can communicate the data
value of stream 1 (via pv1) without loss of accuracy and the head of the data value of
stream 2 via its difference from the head currently stored at the transmitted dictionary
index p. If it turns out that there is more than one valid choice for p, then one could

86

5.2 Simultaneous Compression of Multiple Data Streams

choose that p that allows to transmit the maximum number of data values. There might
also be scenarios where some of the data streams are more important; then one would give
priority to those streams. If no valid index p is found, then a full miss is indicated via the
bit sequence 0r.

Especially for large dictionary sizes, where r is large, h becomes small. However, for
a large dictionary (e.g., r > 6), one has the option of using more than one dictionary
index to indicate a partial miss without significantly increasing the number of misses. If
one decides to reserve 2k dictionary indices (for some k < r) to indicate partial misses
(resulting in a dictionary size 2r − 1 − 2k), k additional bits can be assigned to h since
each of the 2k reserved indices now refers to a particular part of the dictionary which can
be encoded with fewer bits.

The use of d bits to tell the receiver the set M [p] allows all possible combinations of
partial misses to be encoded. For example, if d = 3, there are 6 possible combinations, i.e.,
there could be a single head miss in any one of the data streams, or any combination of two
heads could show misses. If the sender and receiver agree to allow only certain combinations
of partial misses, e.g., only single head misses, the number of bits to communicate this
information can be reduced from d to dlog2 de.

5.2.5 Grouping of Active Hypercubes

For the cache-based compression algorithm from Section 5.2.2 (where all offsets are zero),
each active hypercube is maintained individually in terms of its corresponding head tuple in
the dictionary, i.e., only in the case of a miss, the sender and receiver synchronously update
their dictionaries by replacing the least-recently-used head tuple with the missed head
tuple. The dynamic version of the algorithm from Section 5.2.3 uses an offset parameter
to center an active hypercube around the transmitted sample to achieve a better coverage
of the sample’s neighborhood.

The evaluation results of the presented compression strategies show that for the same
compression ratio, smaller dictionaries with larger hypercubes outperform larger dictionar-
ies with smaller hypercubes, although the latter constellation manages more active values
than the former, e.g., in Figure 6.5 (in the evaluation chapter) compare the constellation
d = 1, r = 3, and t = 8 (i.e., (23 − 1) · 28 = 1792 active values) against r = 1 and
t = 10 (i.e., 1024 active values). In many cases, a newly inserted small active hypercube
is not able to cover the next data value, especially when t is small compared to n (e.g.,
t = n/2). New strategies for combining multiple adjacent active hypercubes into larger
active regions that cover more values around the last transmitted sample overcome this
disadvantage. This can be applied both to individual data stream compression and to the

87

5 Online Data Compression for Time-Triggered Communication

simultaneous compression of multiple data streams. In the latter case, various possibilities
exist for forming a so-called region of active hypercubes. Such a region is characterized
by a subset of active hypercubes H[p], one of which is defined as the center hypercube.
An active region must be connected in the following sense: Take the graph whose vertices
are the (d-dimensional) hypercubes from the region, and where two hypercubes are con-
nected by an edge if and only if they intersect in a d′-dimensional sub-hypercube for some
0 ≤ d′ < d. Then this graph must be connected. A region of active hypercubes is specified
by a set P ⊆ {0, 1}r \ {0r} of (usually consecutive) dictionary indices, all having the same
offset vector (which is called the offset of the region): δ[p] = δ[p′] for all p, p ∈ P with
p 6= p′. This means that if one hypercube is shifted (by changing the corresponding offset
vector), then all other hypercubes from the region are shifted in the same way. Moreover,
there is a distinguished pc ∈ P, such that H[pc] is the center hypercube of the region and
u[pc] is called the center head of the region. The active region corresponding to P is

R[P] =
⋃
p∈P

H[p]. (5.6)

The same restriction as in Section 5.1.5 is imposed on the offset vectors, i.e., offset vectors
must belong to ∏d

i=1[−2ti−1, 2ti−1 − 1]. After every successful transmission (successful in
the sense that no miss occurs), the heads and the common offset for the region R[P]
that covers the current tuple of data values x = (x1, . . . , xd) are updated in a way that x
becomes the center of the center hypercube. Let xi = uivi, where ui is the head of xi and vi
is the tail of xi. Assume that x belongs to the region R[P], i.e., no miss occurs. Then
every head u[p] and offset δ[p] are updated for p ∈ P by u[p] := u[p] + (u1, . . . , ud)− u[pc]
and δ[p] := (v1 − 2t1−1, . . . , vd − 2td−1). Some care has to be taken in case a head u[p] is
out of the allowed range (e.g., contains a negative entry).

One may use only one active region (i.e., all dictionary indices contribute to the region)
or multiple regions that can be moved independently. If the data values are clustered
around several areas in the product space, then ideally one active region per cluster is
used. In a miss case, there are several possibilities as to which region is moved to cover the
current tuple of data values, such as the least-recently-used region or the nearest region.

In the one-dimensional case, a region is formed from a certain number (say k) of adjacent
intervals, yielding a single interval I = [u2t+δ, u′2t+δ−1], where u, u′ ∈ {0, 1}s, k = u′−u,
and δ is the common offset for the region. The size of this interval is k2t ≥ 2t. This large
interval provides better coverage around the current data value and (under the locality
assumption) leads to a higher probability that the next data value will also be covered
by I.

The grouping technique shows its full potential in the compression of multiple corre-
lated data streams. Multiple correlated signals often exhibit characteristic behavior in

88

5.2 Simultaneous Compression of Multiple Data Streams

Table 5.4: Head combinations for a two-dimensional transmission region of 7 squares.

Dictionary index p u[p, 1] u[p, 2]

001 u1 − 1 u2 − 1
010 u1 − 1 u2
011 u1 u2 − 1
100 u1 u2
101 u1 u2 + 1
110 u1 + 1 u2
111 u1 + 1 u2 + 1

the d-dimensional product space in the sense that they are concentrated around a low-
dimensional subspace of the overall product space. This fact is exploited in multi-stream
compression with grouping and allows to significantly reduce the number of misses. For
example, the data values of two physically related signals might rise and fall in a similar
manner. They are predominantly covered by regions that cover imaginary slopes in the two-
dimensional product space. The algorithm supports predefined fixed d-dimensional regions
with different number of hypercubes for different dictionary sizes. Symmetric regions are
defined based on one center hypercube, e.g., a square or rectangle in the two-dimensional
case, or a cuboid in the three-dimensional case, where the length of the hypercube in each
dimension i is defined by the tail sizes ti.

Table 5.4 shows an example for a dictionary defining a single active two-dimensional
region consisting of 7 squares (the region corresponds to the 7 squares in Figure 6.6 with
the black perimeter). Comparing the covered region of values with individual-stream
compression, one would need to concatenate 3 intervals in each data stream to cover a
square that encloses the defined region for the two-dimensional product space. For this,
the individual-stream compression requires more bits (e.g., r1 = r2 = 2, r = r1 + r2 = 4
compared to r = 3 for the combined compression). This effect scales for larger regions,
making multi-stream compression superior to single-stream compression due to its ability
to save bits by limiting the value coverage to the specific region of interest. It should be
noted that the grouping technique from this section can be combined with the partial miss
strategy from Section 5.2.4.

89

5 Online Data Compression for Time-Triggered Communication

5.2.6 Automatic Grouping of Active Hypercubes

The formation of a suitable region by grouping active hypercubes according to Section 5.2.5
requires knowledge about the expected behavior of some correlated signals in the product
space. This can be obtained by analyzing the hit rate of hypercubes (e.g., see Figure 6.6
in the evaluation chapter). It is obvious that an unsuitable group constellation drastically
decreases the performance of the algorithm. Furthermore, if the signal behavior changes
over time, an initially optimal group constellation might not capture the signals well at
a later time. The following sections present an extended strategy for the cache-based
compression algorithm that automates the grouping of active hypercubes, thus eliminating
the need for a manual signal analysis and design of group constellations.

5.2.6.1 Monitoring the Data Streams

By synchronously monitoring the hit rate of those hypercubes that cover the samples
(hits and misses within a defined subspace of the overall product space) on the sender
and receiver side, a region is automatically formed and maintained, and adapts to the
signals as their characteristics change. To do this, the sender and receiver each maintain
two dictionaries of different sizes, the smaller of which is referred to as the transmission
dictionary and the larger as the observation dictionary. The former plays the role of
the dictionary D used so far throughout Chapter 5, with the dictionary index p (an r-bit
code) becoming part of the transmitted code word. In this extended strategy, however, the
dictionary does not store the most recently seen heads at D[p], but stores some indices that
address entries of the observation dictionary. For clarity, from now on the transmission
dictionary will be denoted by Dtrans and the observation dictionary by Dobs.

The dictionary Dobs stores some heads that form a specially designed static region which
is called observation region. The hypercubes of this region form a d-dimensional grid with
an odd side length in each dimension. Neighboring hypercubes in the grid intersect in a
(d−1)-dimensional hypercube. For simplicity, the same side length is chosen for the grid in
each dimension (one could also choose different side lengths). Since this is an odd number,
the center hypercube of the grid can be defined in the obvious way. The maximum side
length of this grid, and hence the number of entries needed in the observation dictionary,
depends on the size of the active region (ntrans = 2rtrans−1) maintained in the transmission
dictionary. Let this region be called transmission region.

In an extreme case, all hypercubes of the transmission region are linked in a one-
dimensional chain of length ntrans. This defines the maximum side length of the grid
forming the observation region in each dimension. For example, if d = 2 and rtrans = 2,
the number of hypercubes of the transmission region is ntrans = 3 and consequently the

90

5.2 Simultaneous Compression of Multiple Data Streams

maximum number of hypercubes of the observation region is ndtrans = 9. In practice, it
turned out that a smaller observation region is sufficient. Experimental analyses showed
that the number nobs of hypercubes of the observation region should be chosen depending
on d and satisfy 3d−1 ·ntrans ≤ nobs ≤ ndtrans. Then the observation region is a d-dimensional
grid of side length

⌈
n

1/d
obs

⌉
.

It should be pointed out that the size of the observation dictionary does not affect
the transmitted code word lengths. Due to better adaptation capabilities of the active
hypercubes to the signals, a larger nobs might lead to fewer miss cases. Nevertheless, it is
advantageous to limit the size for several reasons. The presented compression algorithms
are specifically designed to compress correlated signals (see Section 3.1). Therefore, an
alignment of many hypercubes in one dimension is unlikely. A limitation can help to
prevent overfitting of the transmission region to the signals. This refers to the fact that
short-term signal characteristics are well captured, but even the slightest signal changes
lead to more misses. As a general rule, the performance of the algorithm decreases if
overfitting occurs. Moreover, the time complexity of dictionary searches depends on the
practical implementation and has to be considered with respect to the demanded real-
time capability of the online data compression. Worst-case access times might drastically
increase for larger dictionaries [Cor+09].

The strategy for an automatic composition of a transmission region aims to select ntrans =
2rtrans−1 indices from the observation dictionary. The hypercubes H[p] (see Equation (5.4))
that are determined by the selected indices p define the transmission region; it is a subset
of the observation region. The transmission dictionary stores the selected indices of the
observation dictionary. The observation region behaves as described in Section 5.2.5, i.e.,
after every transmission, the tuple of input data values x lies in the center hypercube
of the observation region. Moreover, the observation dictionary stores the offset vector.
For the above selection procedure, a sliding window stores W (for a fixed constant W)
observation dictionary indices. For each new tuple of input data values, the index pobs of
the observation dictionary that covers x is determined; pobs is added to the sliding window
and the oldest index is removed from the sliding window. If x does not belong to the
observation region (and thus is not covered by an index of the observation dictionary),
then the sliding window is not affected. These operations are performed synchronously
on the sender and receiver sides. Note that it may happen that x does not belong to
the transmission region (in which case a miss occurs), but does belong to the observation
region. In this case, the sender and receiver modify the sliding window in the same way.

91

5 Online Data Compression for Time-Triggered Communication

5.2.6.2 Static Transmission Dictionary Updates

After a predefined period of time, say τ1 (e.g., some seconds), the sliding window is analyzed
by counting for every observation dictionary index the number of its occurrences in the
sliding window. The ntrans observation dictionary indices p1, . . . , pntrans with the highest
count are determined. The new transmission region is finally ⋃ntrans

i=1 H[pi]. Accordingly, the
transmission dictionary is updated with the selected indices p1, . . . , pntrans . In this way, the
transmission region reflects the temporal occurrence of data tuples with respect to their
precursors. A predefined transmission region can be initially implemented on the sender
and on the receiver side.

A successful data transmission is possible if there is a transmission dictionary index ptrans

such that Dtrans[ptrans] (which is an index of the observation dictionary) covers the current
tuple of data values x. If such an index ptrans does not exist, then there is a miss, which is
indicated by the reserved entry of the transmission dictionary. Moreover, the observation
region is centered around the approximation of x that is obtained from the transmitted
tuple of heads (which is also known to the receiver).

Figure 5.4: Two-dimensional observation region of 3 × 3 hypercubes for an active trans-
mission region of 3 hypercubes.

Figure 5.4 illustrates an observation region for a two-dimensional case with rtrans = 2.
Given the intended size of the transmission region (here ntrans = 2rtrans− 1 = 3), the size of
the observation region in each dimension is 3 and every index of the observation dictionary
has dlog2(32)e = 4 bits (i.e., 24 = 16 dictionary entries, of which 9 are actually used). The
squares in the figure are named with numbers from 0, . . . , 8 and represent the 9 entries (i.e.,
indices) of the observation dictionary. In the shown constellation, H[4] forms the center

92

5.2 Simultaneous Compression of Multiple Data Streams

hypercube. Moreover, the figure exemplarily shows hit counts for all observation dictionary
indices as a result of a sliding window evaluation. It can be seen that in 93.93 % of the
cases the data tuple to be transmitted was covered by the center hypercube. The active
transmission region is consequently formed by the three hypercubes H[3], H[4] and H[5]
marked with the blue perimeter. The transmission dictionary entries are then set as follows:
Dtrans[01] = 3, Dtrans[10] = 4, and Dtrans[11] = 5. Adding up all the percentages shown
reveals that a certain small portion of samples was not captured by the observation region.

The time interval τ1 in which the transmission region is renewed influences the adapt-
ability to the signals. If a change in the signal behavior occurs, a short time interval
provides the possibility to adapt quickly. However, a typical problem then is a low count
value for many of the observation dictionary indices in the sliding window. This might
prevent a well-founded composition of the transmission region. For example, if the trans-
mission region is supposed to consist of 31 hypercubes, but only 20 different indices occur
in the sliding window, the strategy fails to compose the transmission region. Increasing the
length of the sliding window might help, but a longer sliding window potentially contains
more outdated information. The following paragraphs describe a strategy for filling the
transmission region in the case there are not enough observation dictionary indices with a
nonzero count in the sliding window.

The centers of the hypercubes H[p], where p is an index of the observation dictionary
(let them be called observation hypercubes in the following), form a set of points in a
d-dimensional space. Each such point then corresponds to a unique observation dictionary
index. The center of the center hypercube is declared to be the origin of the above point
set. After an analysis of the sliding window, all such points are replicated with the number
of occurrences of their corresponding observation dictionary index in the sliding window to
weight their contribution. In order to determine the main direction of the signal behavior
in the d-dimensional observation space that should be covered by the transmission region,
a principal component analysis (PCA; see e.g., [Jol02, Chapter 8]) is performed. Roughly
speaking, the principal components of such a set of points are a sequence of orthogonal
basis vectors, which are determined as follows. First, a best fitting line (a vector) through
the set of points is computed such that the average squared distance from the points to
the line is minimized. A next best-fitting line must then have a direction perpendicular to
the first, and in general this process is repeated so that the i-th vector that best fits the
data is orthogonal to the first i− 1 vectors.

Figure 5.5 shows an example from two test signals from the evaluation chapter (see
Section 6.2.1.1). The transmission region is supposed to be formed by 15 hypercubes
(r = 4), but only 11 were selected from the sliding window analysis (marked in blue).
In the two-dimensional observation space of size 9 × 9 hypercubes, the first principal
component (pc1) highlights the main direction of the signal behavior (usually only one

93

5 Online Data Compression for Time-Triggered Communication

main signal direction is expected; especially when d > 2, the magnitudes of the principal
components reveal the importance of adding hypercubes of the respective direction to the
active region). It is a good choice to extend the transmission region in that direction.

Figure 5.5: Forming a transmission region with the PCA strategy in case the number of
different observation dictionary indices in the sliding window is insufficient.

To determine additional observation hypercubes (or equivalently, the corresponding in-
dices of the observation dictionary) to be added to the transmission region, for each point
the minimal distance to the origin of the principal components is calculated. In addition, a
hypercube is formed whose edges are parallel to the principal components in the respective
directions. The lengths of the edges are given by the maximum (resp., minimum) values
of the points with respect to the new orthogonal basis. Let the center of this hypercube
be the origin of the principal components, so that the hypercube is referred to as enclosing
hypercube.

The distance values are sorted in ascending order, i.e., the point closest to the origin
comes first. Recall that each point corresponds to a unique observation hypercube. Only
if a point lies within the enclosing hypercube, its corresponding observation hypercube is
a potential candidate to be added to the transmission region. The transmission region
is then filled with observation hypercubes in the sorted order until the desired size is
reached. Of course, only hypercubes that are not already part of the transmission region
are selected. In the example in Figure 5.5, the transmission region is extended by the four

94

5.2 Simultaneous Compression of Multiple Data Streams

hypercubes drawn in gray with a black dashed perimeter. To ensure that the transmission
region always gets completely filled, the size of the enclosing hypercube is consistently
and iteratively enlarged as needed. This strategy is indicated in the figure by the red
dash-dotted lines that extend the principal components. When this strategy is applied,
the shape of the transmission region also depends on the size of the observation region.
Limiting the observation region to a reasonable size (recall that 3d−1 ·ntrans ≤ nobs ≤ ndtrans)
prevents the transmission region from becoming wide-stretched.

Furthermore, the following strategy is proposed to allow a fast adaptation in case the
signal behavior changes drastically within a short time interval (consider also the case
that a fault occurs in the system). A second time interval τ2 is defined, which is shorter
than the fixed renewal period τ1 for the transmission region. Whenever possible (a certain
number of different indices in the sliding window is required), the principal components
are processed after τ2 time steps. As long as the transmission region accurately reflects
the signals, the direction of the first basis vector (pc1) of two consecutive τ2-cycles does
not vary much. However, an abrupt change in the direction indicates a changing signal
behavior, so that the formation of a new region can be triggered in between the normal
τ1-cycles, which works well if the sender and receiver realize the strategy based on the
same parameters.

5.2.6.3 Dynamic Transmission Dictionary Updates

The above strategy for updating the transmission region is based on fixed time intervals (τ1

and τ2). One can make this updating process more flexible once a transmission region has
been formed with the above strategy. For this purpose, the misses that occur within the
observation region are monitored. This implies cases where a data tuple is covered by an
observation dictionary index which is, however, not stored in the transmission dictionary.
These misses frequently occur when the shape of a transmission region does not cover the
data tuples well and might indicate a change in the signal behavior. In each such miss
case, the sliding window is evaluated (synchronously at the sender and receiver). The
unique observation dictionary index with the lowest count that is part of the transmission
dictionary is searched. Let this be p1 stored at Dtrans[p′]. This count is then compared to
the count of the observation dictionary index where the miss occurred, let this be p2. If p2

occurs more frequently in the sliding window than p1, there is a high chance that upcoming
data tuples will be covered by p2. Therefore, p1 is replaced by p2 in the transmission
dictionary by setting Dtrans[p′] = p2. Otherwise, the transmission dictionary remains
unaffected.

This dynamic update process of the transmission region offers the potential to immedi-
ately and smoothly respond to changes in the signal behavior. However, since the updates

95

5 Online Data Compression for Time-Triggered Communication

are triggered by miss events and only refer to a single observation dictionary index at one
time step, it does not provide the forward-looking character that the principal-component-
based strategy offers. A combination of both strategies is possible. The transmission
region is then completely renewed after the period τ1. In between this time interval, the
dynamic renewal process adjusts the transmission region to the signals as needed. In fact,
the evaluation from Chapter 6 shows that without any prior analysis of the signal behavior
in the d-dimensional product space over time, the strategy of automatic grouping of active
hypercubes outperforms the other schemes due to its ability to automatically adapt to the
signals and optimally form new regions.

5.3 Merging and Splitting Compressed
Data Streams

5.3.1 Routing and Compression Scenarios

For a simultaneous compression of some values x1, . . . , xd of d different data streams into
a combined code word, the presented cache-based compression algorithms require that all
corresponding individual code words are present at one processing node, i.e., the source
node. Analogously, the decompression of such a combined code word into all constituent
data values is performed at one destination node.

Figure 5.6: Distributed system with communication bottleneck.

Figure 5.6 shows a distributed system with six computation nodes (c1, . . . , c6) and four
routers (r1, . . . , r4). Assume that two highly correlated data streams need to be communi-
cated from c1 to c4. The only possible path for the messages is via the routers r1, r2, and r3.
Since the source and destination of the messages are identical, simultaneous compression of
the two data streams can be accomplished using the cache-based algorithm. Note that the

96

5.3 Merging and Splitting Compressed Data Streams

decision whether to actually combine some multiple data streams for compression is made
by the DAKODIS scheduling algorithm as part of a systemwide organization of the data
compression. The information about achievable (reduced) message sizes (with respect to
the tolerable loss rate) for various scenarios (e.g., individual or simultaneous data stream
compression) is stored in the compression model.

In Figure 5.6, assume a different scenario with two highly correlated data streams a1

and a2, both of which need to be communicated to computation node c4, but this time
one of them originates from c1 and the other from c2. According to the definition of
the physical model from Section 4.2, only computation nodes can execute tasks. For the
following considerations, routers are capable of performing compression operations on data
streams. It is not assumed that routers can generally execute tasks similar to computation
nodes. This reflects real-world scenarios where, for example, routers of a time-triggered
system are implemented as field-programmable gate arrays (FPGAs), and it provides the
ability to merge and split compressed data streams at routers. With the routers capable of
executing the cache-based compression algorithms, an advantageous compression solution
for the above example scenario could be an individual compression of the first data stream
from c1 to r1 and an individual compression of the second data stream from c2 to r1, from
where both data streams take the same path. The cache-based compression algorithm for
multiple data streams then creates a combined code word from the two individual code
words at r1 and transmits it to c4.

Since compression and decompression operations consume time and energy, the goal is
to keep their number and computational cost as low as possible. The intended strategy
combines (resp., splits) incoming data values at a router (r1 in the above example) without
first fully decompressing them. The process of creating combined code words from multiple
input code words at a router is called merging data streams. Likewise, splitting a data
stream at a router means decoding incoming combined code words into their constituent
code words.

Referring to the above example, the code words of the two data streams a1 and a2

are supposed to arrive synchronously at router r1 (at different ports) with the goal of
forwarding them as a combined code word from r1 to c4. It is not straightforward to adopt
the combined encoding strategy of the cache-based algorithm from Section 5.2.2 (with a
joint dictionary), since a potential miss would occur only at the combining node, i.e., the
router, without being known to the source nodes due to the absence of a side channel in
the DAKODIS architecture. Dictionary synchronicity, and thus data consistency, can only
be ensured if the router maintains multiple dictionaries and partially decodes incoming
code words, as described in the following sections.

97

5 Online Data Compression for Time-Triggered Communication

5.3.2 Merging and Splitting with the Static
Cache-Based Algorithm

Let a router have k input ports and at each such port j ∈ [1, k] arrive a compressed data
stream. The incoming data is of the form pjVj, i.e., a dictionary index pj of a dictionary Dj,
where the respective heads Uj = uj,1, . . . , uj,dj

of the data tuple Xj = xj,1, . . . , xj,dj
are

stored, and the tails Vj = vj,1 · · · vj,dj
of some dj compressed data streams, see Figure 5.7.

In the following, let dj = d, i.e., all incoming data streams are combinations of d data
streams. The router maintains separate dictionaries for each port. To merge these k input
data streams, the dictionary Dm (the subscript m denotes that it is the merging dictionary)
of size 2rm − 1 with rm <

∑k
j=1 rj (to benefit from simultaneous compression) is used at

the router (r refers to the number of bits per dictionary entry, recall Section 5.1.1).

Figure 5.7: Merging of multiple data streams at a router.

Without fully reconstructing all data values arriving at the multiple ports, the merging
procedure directly takes the tuple of the heads U1, . . . , Uk of those data streams to be
merged. In total, these are ∑k

j=1 dj heads. It is then checked whether there is a dictionary
index pm ∈ {0, 1}rm \ {0rm} of Dm where such a combination of heads is stored, see
Figure 5.7. If successful, the bit sequence pmV1V2 · · ·Vk is transmitted to the receiver,
which synchronously maintains a dictionary of the same size, according to the original
cache-based algorithm. On a miss, the strategy behaves as in Section 5.2.2 and sends
0rmU1 · · ·Uk to the receiver and updates its dictionary according to the LRU replacement
strategy.

Splitting a combined code word into constituent code words (possibly formed from a
subset of heads of the incoming combined code word) at a router works in an analogous
manner. The router then serves as the sender and maintains dictionaries for each output
port where the required new code words are composed. Misses are handled in the obvious
way, i.e., by forming the code word from the reserved dictionary index and the missed
heads.

98

5.3 Merging and Splitting Compressed Data Streams

5.3.3 Merging and Splitting with the Dynamic
Cache-Based Algorithm

In the dynamic version, where the heads have offsets, merging and splitting data streams
is more complex. Now all dictionaries Dj as well as Dm additionally maintain offset
vectors. For the following considerations, the grouping strategy from Section 5.2.5 (with
one active region) will be applied to all involved compressions. This means that the
involved dictionaries each maintain only one offset vector.

The above strategy for checking Dm for the heads U1, . . . , Uk of those data streams to
be merged can be straightforwardly applied. It is extended such that Dm takes over the
offsets belonging to the heads U1, . . . , Uk. This eliminates the need to fully reconstruct
the input data values and check their coverage in Dm considering the offsets. However,
consider the case where a miss occurs at a router during the merging process, i.e., the
required combination of heads U1, . . . , Uk is not in Dm. Due to the freshly inserted heads
inDm (with zero offsets), a mismatch occurs with the offsets stored in Dj, which invalidates
further merging. In general, as long as there is no consistency between these offsets, one
must fully decode all Xj = xj,1 · · · xj,d and check the coverage of the combined data tuple
inDm including the offsets. As the evaluations from Chapter 6 show, it is likely that a value
following a miss case is covered again. Then the offset vector in Dm gets resynchronized
so that further checking can be avoided. In order to increase the chance of fast offset
restoration, the compressors involved can agree to omit small offsets and set them to zero,
or to periodically reset all offsets. Splitting a combined code word into constituent code
words works in an analogous way.

99

Chapter 6

Evaluation and Results

The goal of this chapter is to evaluate the presented online data compression algorithms by
means of test scenarios. The chapter is divided into several parts and demonstrates that
the compression algorithms meet the requirements from Section 3.1. First, an automotive
use case based on a Simulink model is introduced. The automotive domain is a typical
example for the application of fault diagnosis. Especially the trend towards assisted and
autonomous driving leads to more and more safety-critical systems where online fault di-
agnosis contributes to achieve fault tolerance, see e.g., [Gor19]. In the second part, the
focus is on the performance of the data compression algorithms in terms of achievable
compression ratios with respect to data value omissions (i.e., loss rates). In this context,
both the compression of individual data streams and the simultaneous compression of mul-
tiple data streams are discussed. Next, the impact of compressed messages on scheduled
communication is examined from a system-level perspective. In particular, the possibilities
for reducing schedule lengths are investigated. Finally, the effect of compressed communi-
cation is evaluated in terms of applications, for which also a diagnostic use case based on
real data is used.

6.1 Use Case – Hybrid Electric Vehicle

6.1.1 Hybrid Electric Vehicle Model in Simulink

This section introduces a Simulink model of a hybrid electric vehicle (HEV), which serves
as a use case for the demonstration of fault diagnosis and the evaluation of the presented
data compression algorithms. The base model was published by Miller [Mil20]. It offers a
simulation of the vehicle’s speed behavior according to a driving cycle input (i.e., a speed
profile).

101

6 Evaluation and Results

Figure 6.1: Overview of the HEV model [MOY18].

As shown in Figure 6.1, the HEV model integrates electrical and mechanical parts
(printed in blue and green, respectively) with various components in terms of a control
application. The main components of the high-voltage electrical system include an electric
motor and a generator in a parallel arrangement, which are connected to a battery via a
voltage (i.e., DCDC) converter. The mechanical part comprises a power split device (i.e.,
a planetary gear) that combines an internal combustion engine (ICE) with the generator
and the driveshaft, while the electric motor is directly connected to the driveshaft. Via
the power split device, the combustion engine performs two tasks: supporting the electric
motor to drive the vehicle and extending the vehicle’s operating range by charging the
battery via the generator. An operating control logic (printed in light blue) manages the
interaction between these components according to the system input (i.e., set value) and
the measurements that describe the current driving situation. The mode logic distinguishes
two main modes, namely motion mode and brake mode. The former is divided into start
mode and normal mode, where in start mode the combustion engine is switched off and
the vehicle drives purely electrically. In normal mode, both the combustion engine and
the electric motor operate, so the vehicle is either in the so-called accelerate mode or in
cruise mode. In cruise mode, the generator is activated if the battery needs to be charged.
This is managed by a battery controller. In brake mode, regenerative braking is performed
to charge the battery. Many built-in sensors, such as voltage sensors, current sensors,
torque sensors, or tachometers, allow the components to be monitored in various driving
situations and conditions. The temperature of different components as well as the mode
logic signals are also tracked. The HEV model is built from a broad range of predefined
building blocks offered by the Simulink library. Thereby, certain components (e.g., the
high-voltage battery) are compositions of multiple smaller units. Connections between the
components can be mechanical (green) or electrical (blue, within the subsystem). A black
line connection indicates the exchange of control signals and sensor measurements. Vehicle
dynamics such as wind speed, road inclination and tire slip are also taken into account in
the control loop.

102

6.2 Evaluation of the Online Data Compression Algorithms

In order to carry out fault diagnosis analyses, the Simulink base model was extended
in the context of the DAKODIS research project. For this, fault injection capabilities
were incorporated so that component failures can be simulated, as addressed in [MOY18;
Mec+20b; ES21]. For a general introduction to HEVs, see e.g., [Hof14].

6.1.2 Fault Model and Fault Injection

Faults in a system originate from various causes, such as a faulty design of a compo-
nent, wearout, overload, software faults, and erroneous user operations. As described in
Section 2.5.2, faults are classified according to their origin, nature, dimension, system
boundaries, and persistence. In the context of the simplified use case of this thesis, only
permanent component failures will be considered. From the system-level perspective, a
component failure is a fault. These failures can occur abruptly or incipiently at any point
in time during run-time. The affected component then either fails suddenly and without
prior indication within measurements, or its failure unfolds over a certain period of time
(degrading performance).

The mechanism for simulating the above component failures is called fault-injection.
Simulink modeling blocks that abstract real-world components (e.g., an electric drive) are
typically not designed for failures. Rather, they simulate the ideal component behavior. To
be more realistic, influences such as heat loss or noise must be additionally implemented.
Consequently, the realization of fault injection requires component interventions in the
sense of a targeted behavior manipulation, e.g., a deliberate power loss of an electric drive.

6.2 Evaluation of the Online Data
Compression Algorithms

This section evaluates the performance of the presented compression algorithms in terms
of the achievable loss rate with respect to the compression ratio.

6.2.1 Test Signals

6.2.1.1 Sensor Measurements from the HEV Model

The Simulink HEV model allows sensor measurements and state variables on the various
electrical and mechanical components included to be realistically simulated as the vehicle
travels the speed profile.

103

6 Evaluation and Results

Figure 6.2 illustrates the voltage and current measurements at the DCDC converter from
a simulation based on theWorld harmonized Light-duty vehicles Test Cycle (WLTC) class 3
driving cycle [Uni13]. The measurements are mapped to corresponding quantization levels

Chapter 1

First chapter

Let the document start here with some example text that goes at least over some lines so
that we mark the frame end for cutting images. Let the document start here with some
example text that goes at least over some lines so that we mark the frame end for cutting
images. Let the document start here with some example text that goes at least over some
lines so that we mark the frame end for cutting images.

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

·103

time in s

qu
an

tiz
at

io
n

le
ve

l

voltage at DCDC converter current at DCDC converter

Let the document end here with some example text that goes at least over some lines so
that we mark the frame end for cutting images. Let the document end here with some
example text that goes at least over some lines so that we mark the frame end for cutting

1

Figure 6.2: Quantized voltage and current signals at the DCDC converter of the HEV
model.

(analog-to-digital conversion). The voltage signal is shown as a blue line and the current
signal as a densely dashed red line. Each dataset contains Ns = 180100 samples, quantized
with n = 16 bits at a sampling frequency of 100 Hz. With regard to the data compression
algorithms, the signals offer challenging signal behavior and can be seen as representatives
of signals that are often to be analyzed in fault diagnosis. They include a broad coverage
of quantization levels, both slowly varying and rapidly varying signal sequences. Moreover,
the two signals exhibit a correlation based on their physical relationship, i.e., they rise and
fall in a similar manner, often with different offsets.

This correlation can be quantified with the Pearson correlation coefficient ρ ∈ [−1, 1],
which is a suitable measure of the similarity of two signals, since it indicates a linear
correlation. For example, a value of ρ = 1 expresses a completely positive linear correlation,
0 means no linear correlation, and −1 indicates a completely negative linear correlation.
Let the two signals from Figure 6.2 be denoted by Sc (current) and Sv (voltage). The
Pearson correlation coefficient for the two signals over the entire length is

ρ(Sc, Sv) = cov(Sc, Sv)
σ(Sc) · σ(Sv) ≈ 0.813, (6.1)

104

6.2 Evaluation of the Online Data Compression Algorithms

where cov is the covariance and σ is the standard deviation. The standard deviation of Sc

is given by

σ(Sc) =

√√√√ 1
Ns

Ns∑
i=1
|Sc[i]− µ(Sc)|2 (6.2)

(σ(Sv) is calculated analogously) and the covariance of two signals is defined as

cov(Sc, Sv) = 1
Ns

Ns∑
i=1

(Sc[i]− µ(Sc)) · (Sv[i]− µ(Sv)) (6.3)

(in both equations Bessel’s correction is not considered), where µ refers to the means of
the signals:

µ(Sc) = 1
Ns

Ns∑
i=1

Sc[i] and µ(Sv) = 1
Ns

Ns∑
i=1

Sv[i]. (6.4)

For further analyses, a dataset containing several measurements on different components
of the vehicle was created based on a WLTC class 3 driving cycle simulation. The following
list summarizes the most important components and measurements, some of which are used
for the evaluations in Section 6.2.2 and Section 6.2.3.

• DC bus (voltage)
• Mode logic states
• Combustion engine (engine speed, torque)
• Generator (voltage, current, torque, rotational speed)
• Electric motor (voltage, current, torque, rotational speed)
• Car scopes (vehicle speed, accelerator, drive torque, power)
• Battery (voltages, currents, state of charge, cell temperatures)

6.2.1.2 Generation of Synthetic Test Signals

In addition to the simulated sensor measurements from the Simulink HEV model, this
section presents a signal generator capable of synthesizing generic test signals from statis-
tical parameters. In particular, the ability to produce a plethora of signals with specific
correlation characteristics allows to evaluate the scalability of the developed compression
algorithms. Using test datasets of real measurements published by companies would also
be a good choice, but due to confidentiality and intellectual property protection, the avail-
ability of such test data is limited.

From the working principles of the presented data compression algorithms it is evident
that losses tend to occur when the difference between consecutive data values is large.

105

6 Evaluation and Results

Histograms are suitable for visualizing distributions of numerical data. Here, the distri-
bution of differences between consecutive data values is of interest. To create a histogram
from a signal, the entire range of input data values is divided into a series of consecutive,
non-overlapping intervals. These so-called bins are adjacent to each other and of equal
width, as they represent the steps between quantization levels. After counting for each
bin how many of the input values belong to the corresponding interval, rectangles with
a height proportional to the bin count (i.e., the frequency) can be erected over each bin
for a graphical representation (assuming the bins are of equal width). In a normalized
histogram, relative frequencies are plotted, i.e., the proportion of cases that fall into the
respective bin. Then the sum of the heights of all rectangles is one.

In order to generate test signals for the evaluation of the data compression algorithms,
a test signal generator was developed that applies the idea of a histogram in reverse. The
goal is to synthesize desired signals based on difference values (i.e., differences between
quantization levels), obtained using one or more Gaussian (i.e., normal) distributions de-
fined by the parameters mean µ and standard deviation σ according to the probability
density function

1
σ
√

2π
e−

1
2

(
x−µ
σ

)2

. (6.5)

In case of using multiple (normalized) Gaussian distributions to specify difference values,
one must have ∑n

i=1 µi = 0, i.e., the sum of the respective mean values of n distributions
must be zero so that the occurrence of positive and negative values is equal. This prevents
the signal from drifting away from its initial value. Specifying a signal in this way enables
both slowly as well as rapidly varying signal parts to be accounted on the basis of probabil-
ities. The signal generation procedure then prepares an array of the desired signal length
so that the value counts of the difference values reflect the above signal specifications. The
permutation of the values in the array according to a discrete uniform distribution yields
the final (difference) signal.

The signal generator also provides the possibility to add peaks to the final signal, which
are modeled in the form of several successive rapidly increasing and decreasing (resp.,
decreasing and increasing) data values. These peaks reflect common signal behavior ob-
served in many voltage and current signals. Other predefined signal patterns can also be
incorporated in this way. Resampling can be performed as another postprocessing step.
The generation of multiple correlated signals is supported by iteratively synthesizing signal
parts that satisfy previously defined Pearson correlation coefficients. Overall, the signal
generator also allows system designers to generate signals for modeling specific system
behaviors for which real systems cannot be used, e.g., simulating signal behaviors in fault
situations.

106

6.2 Evaluation of the Online Data Compression Algorithms

6.2.2 Loss Rates of Individually Compressed Data
Streams

The data compression algorithms from Chapter 5 were developed to meet the requirements
stated in Section 3.1. One of the main challenges was to reconcile the requirements of
realizing a worst-case compression ratio (WCCR) below one on short input sequences
(requirement R2) while ensuring data quality with respect to time-triggered messages
(requirement R4). This led to a design of online data compression algorithms capable of
producing fixed-size outputs from fixed-size inputs when a low probability of data values
being reconstructed with slightly lower but bounded accuracy is accepted. The following
analyses address these so-called loss cases and establish a relation between the statistics
of input signals and expectable value losses. For preparing the figures in this section,
the current measurement at the DCDC converter obtained from a WLTC simulation with
the Simulink HEV model, as described in Section 6.2.1.1, is used as a test signal. Thus,
although the specific values in the following figures are derived from the test signal, general
conclusions about the behavior and performance of the compression algorithms can still
be drawn. In all cases, the dictionary is initially empty.

0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375

1.0

2.0

3.0

4.0

5.0

6.0 1

2

3

1

2

31

2
31
2

compression ratio (r + t)/(s + t)

lo
ss

ra
te

(in
%
)

t = 8
t = 9
t = 10
t = 11

Figure 6.3: Individual compression of a data stream with the static cache-based algorithm.
Comparison of different dictionary and tail sizes.

Figure 6.3 exemplarily examines the performance of individually compressed signals with
the static cache-based algorithm from Section 5.1.1. It shows the relationship between the
loss rate and the compression ratio (r+ t)/(s+ t) for different settings of the parameter t.
Recall that n = s + t; an n-bit input data value is split into a head (s bits) and a tail

107

6 Evaluation and Results

(t bits). Since each line in the figure is computed for a constant tail size t, the corresponding
head size s is also constant. Here and in Figure 6.4, the parameter r that determines the
dictionary size (and consequently the compression ratio) is written to the first three data
points of each line; r increases by 1 for every further data point. Since t ≥ s, the lowest
possible compression ratio (with r = 1) is 9/16 = 0.5625 and the highest reasonable
compression ratio is 15/16 = 0.9375 in the example with t = 8. The dotted lines between
the data points are shown for illustration only. For all specific compression ratios, the
figure shows that combinations of smaller dictionary sizes and larger tail sizes result in
lower loss rates, e.g., at a compression ratio of 0.75, the square (where r = 4, t = 8) marks
the highest loss rate and the triangle (where r = 1, t = 11) indicates the lowest loss rate.
This is due to the larger coverage of values in the neighborhood of the current sample
(determined by t) while the signal traverses the entire range of values. Small tail sizes lead
to an increased number of loss cases, especially if there are large gaps between successive
data values of the input signal.

0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375

0.5

1.0

1.5

2.0

2.5

3.0 1
2

3

1
2

3

1 2
3

1 2

compression ratio (r + t)/(s + t)

lo
ss

ra
te

(in
%
)

t = 8
t = 9
t = 10
t = 11

Figure 6.4: Individual compression of a data stream with the dynamic cache-based algo-
rithm. Comparison of different dictionary and tail sizes.

The results in Figure 6.4 for the dynamic cache-based algorithm are based on the same
test signal as used for Figure 6.3. Again, as indicated in the legend, t and consequently s
are constant for each line, so the compression ratio is determined by the varying parame-
ter r (see the annotations at the markers). In comparison, here the loss rate is lower for
all compression ratios. This is firstly due to the dynamic adaptation of the value coverage
of the covering head to the current sample, and secondly due to the mechanism that au-
tomatically activates a neighboring head when the covering head’s offset exceeds a certain
threshold. This enables dictionary updates without a prior value loss.

108

6.2 Evaluation of the Online Data Compression Algorithms

0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375

1.0

2.0

3.0

4.0

5.0

6.0 1,8

2,8

3,8

1,9

1,10

1,8

2,8 3,8

1,9

1,10

compression ratio (r + t)/(s + t)

lo
ss

ra
te

(in
%
)

t = 8, static alg.
r = 1, static alg.
t = 8, dynamic alg.
r = 1, dynamic alg.

Figure 6.5: Comparison of the static and the dynamic version of the cache-based compres-
sion algorithm for different parameters of r and t.

Figure 6.5 compares the performance of the static cache-based algorithm with the dy-
namic cache-based algorithm for different parameters of r and t. According to the legend,
the blue line with the square markers and the orange line with the circle markers are
computed keeping the tail size t (resp., the head size s) constant, i.e., the increasing r
determines the compression ratio in terms of an increasing dictionary size. For the red
line with the diamond markers and the green line with the triangle markers, on the other
hand, the dictionary size (i.e., r) is kept constant, while the compression ratio is deter-
mined by the increasing t (resp., decreasing s). In the figure, the first three data points
of each line are annotated with r and t; for each additional data point, the variable pa-
rameter increases by 1, e.g., the first three squares of the blue line where r is variable are
labeled 1, 8, 2, 8 and 3, 8. From the figure it can be concluded that the static cache-based
compression algorithm can outperform its dynamic version depending on the parameters,
e.g., at a compression ratio of 0.75, the red line with the diamond markers (r = 1, t = 11)
lies below the orange line with the circle markers (r = 4, t = 8). The reason for the lower
performance of the dynamic cache-based algorithm in this case arises from the individually
maintained offsets of the multiple active heads, which leads to an unfavorable coverage of
neighboring data values around the current data value. In turn, the diamond marker at
a compression ratio of 0.75 is produced maintaining only one active head (r = 1) that
consequently accounts for a broad coverage of values around the current data value.

The strategy of reducing the loss rate by using the t − s unused bits of the reserved
head in order to store more active values in the dictionary (Section 5.1.2.2) can be applied
to the static as well as to the dynamic version of the cache-based compression algorithm.

109

6 Evaluation and Results

Evaluations with test signals revealed that the loss rate can be approximately decreased
up to 1 % at the different compression ratios for the test signals, where the impact of the
algorithm improvement is more significant for the static cache-based algorithm.

To preserve as much information as possible in a loss case, the strategy of reducing
the uncertainty from Section 5.1.2.1 can be applied here and also to the simultaneous
compression of multiple data streams. It is directly related to requirement R4 (guaranteed
data quality with respect to time triggered messages) from Section 3.1. Through bounded
omissions, R4 is already satisfied by the design of the data compression algorithms, but
the strategy improves the preservation of information.

6.2.3 Loss Rates of Multiple Simultaneously
Compressed Data Streams

6.2.3.1 Transmission Regions

A key element of the algorithms for simultaneous compression of multiple correlated data
streams is the strategy of grouping active hypercubes to form a transmission region. The
performance is significantly affected by the definition of an appropriate shape of an active
region in the sense of Section 5.2.5.

Figure 6.6: Heat map (logarithmic scale) of the hitting squares around the center. The
active region consists of 49 hypercubes (here squares).

110

6.2 Evaluation of the Online Data Compression Algorithms

The heat map in Figure 6.6 shows a region with 7 × 7 = 49 squares and the relative
center u1 = u2 = 0. The experiment uses the DC bus voltage and current signals from the
Simulink HEV model as introduced in Section 6.2.1.1. For the analysis, r = 6 was set and
only 49 out of the available 63 dictionary entries were used. According to Section 5.2.3, the
region is always centered around the last transmitted data tuple. From darker to lighter
colors, one sees that consecutive data tuples are covered by squares that lie on a diagonal
of the region. This is to be expected if two signals rise and fall in a similar manner. Based
on this analysis, a subset of the squares shown can be used for smaller dictionary sizes
(see Table 5.4), or more squares can form larger regions. A white square indicates that no
input sample was covered by that square, meaning that this square is dispensable and can
be removed from the region without increasing the number of lost data values.

0.53125 0.59375 0.65625 0.71875 0.78125 0.84375

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0 1

2

3
2

3 1

2

2

compression ratio (r + t)/(s + t)

lo
ss

ra
te

(in
%
)

t1 = t2 = 8
t1 = t2 = 8, with partial misses
t1 = t2 = 10
t1 = t2 = 10, with partial misses

Figure 6.7: Simultaneous compression of two data streams. Comparison of the cache-based
algorithm with its improved version supporting partial misses.

Figure 6.7 demonstrates a two-dimensional data compression scenario where the cor-
related DC bus signals from Section 6.2.1.1 are simultaneously compressed using the
static cache-based algorithm (Section 5.2.2) extended by the grouping technique from
Section 5.2.5. One predefined active region is maintained for all dictionary sizes. The
figure presents the relationship between the loss rate (the total number of lost data values
divided by the total number of data values in all streams) and the compression ratio for
different settings for the parameters r and t. Again, the values for r are written to the
first three data points of every line in Figure 6.7 and in all following figures that evaluate
the loss rate; r increases by 1 for every further data point. The figure also highlights the
strategy from Section 5.2.4 (partial misses), which reduces the loss rate for all compres-

111

6 Evaluation and Results

sion ratios, e.g., compare the blue line with the square markers with the red line with the
diamond markers. Since s ≤ t, the lowest possible compression ratio for the two settings
is (r + t1 + t2)/(s1 + s2 + t1 + t2) = (1 + 16)/32 = 0.53125 and (1 + 20)/32 = 0.65625,
respectively. The benefit of the strategy becomes less significant at higher compression
ratios, as a larger number of grouped active hypercubes inherently provides a better value
coverage around the current data tuple. Further evaluations also showed that while the
strategy can be applied with the dynamic version of the compression algorithm as well,
the positive effect on the loss rate is less significant than with the static version of the
algorithm.

0.5625 0.5938 0.6250 0.6563 0.6875 0.7188 0.7500 0.7813 0.8125

0.5

1.0

1.5

2.0

2.5

3.0

2
3

4

2

3

4

2 3
4

2

3

4

compression ratio (r + t)/(s + t)

lo
ss

ra
te

(in
%
)

t1 = t2 = 8
t1 = t2 = 8, 1 active region
t1 = t2 = 9
t1 = t2 = 9, 1 active region

Figure 6.8: Simultaneous compression of two data streams. Comparison of individually
maintained hypercubes and a region of hypercubes.

Figure 6.8 demonstrates the improvements of the dynamic simultaneous compression of
two data streams (Section 5.2.3) when the hypercubes in the dictionary are maintained as
one region according to Section 5.2.5. For the tail lengths t1 = t2 = 8 (compare the blue
line with square markers with the red line with diamond markers), the loss rate drops from
2.2 % to 0.34 % at a compression ratio of 0.625. Moreover, one sees that larger dictionaries
with smaller hypercubes (here squares) enable to better adjust them to the signal, e.g., at
a compression ratio of 0.625, the red diamond marker is below the green triangle marker.

Figure 6.9 compares the loss rate of the data transmission of the described test signals
for differently shaped fixed regions. In Figures 6.9 and 6.10, the values for r are written
to the first three data points of the red lines with the diamond markers. They are valid
for all lines at the corresponding compression ratio. Moreover, the side lengths of the grid
forming the two-dimensional observation region (here √nobs) are written in brackets and

112

6.2 Evaluation of the Online Data Compression Algorithms

0.5625 0.5938 0.6250 0.6563 0.6875 0.7188 0.7500 0.7813 0.8125

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0 2

3

4

(3)

(7)

(9)
(13)

(17) (23)
(29) (41) (57)

compression ratio (r + t)/(s + t)

lo
ss

ra
te

(in
%
)

perfectly adapted region
coarsely adapted region
automatically formed region

Figure 6.9: Comparison of different fixed regions with the automatic region forming strat-
egy for the voltage and current test signals.

belong to the orange lines with the circle markers. For example, at a compression ratio of
0.5938, r = 3 and the region consists of at most 23− 1 = 7 squares in the two-dimensional
product space.

Recalling Figure 6.6, the analysis of the hit rates reveals the 7 squares within the perime-
ter to be the best solution to form a region, whereas any other combination of 7 squares
would lead to significantly higher loss rates. This procedure is analogously applied for all
simulated region sizes. Based on these predefined regions, which show excellent sample
coverage, the blue line with the square markers is processed according to the dynamic
simultaneous compression (Section 5.2.3) and shows the lowest loss rate. The red line with
the diamond markers represents a more realistic scenario, where more general shapes of
regions are applied that better cover the sample’s neighborhood in directions other than
the predominant one. This has an advantage in terms of robustness, but comes at the
cost of a higher loss rate. Still, certain knowledge is involved in the region formations, i.e.,
consecutive samples typically describe a movement on the diagonal from bottom left to
top right, and so regions are set to exhibit symmetry around a line with the slope 1 in the
two-dimensional product space. If no predominant direction of the samples in the product
space can be expected within a certain time interval (i.e., no strong dependence between
the signals), the compression strategies still work but will not be able to reach their full po-
tential. The orange line with the circle markers is processed according to the strategy from
Section 5.2.6.2 with the extension from Section 5.2.6.3 (automatic grouping of active hy-
percubes supporting dynamic transmission dictionary updates). This combination shows
the best performance, as the dynamic transmission dictionary updates explicitly help to

113

6 Evaluation and Results

reduce the number of lost data values within the observation region. It is concluded that
this method provides a loss rate basically as low as the manual strategy based on prior
signal analysis, but here no prior knowledge of the expected signal behavior is needed.

0.5625 0.5938 0.6250 0.6563 0.6875 0.7188 0.7500 0.7813 0.8125

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0 2

3

4

(3)

(7)

(9)

(13)
(17) (23) (29) (41) (57)

compression ratio (r + t)/(s + t)

lo
ss

ra
te

(in
%
)

perfectly adapted region
coarsely adapted region
automatically formed region

Figure 6.10: Comparison of different fixed regions with the automatic region forming strat-
egy for the manipulated voltage and current test signals.

The major advantage of the automatic grouping strategy (Section 5.2.6) becomes visible
in Figure 6.10. For demonstration purposes, one of the test signals was partly modified
to force a change in behavior in the two-dimensional product space over time, i.e., the
current signal (the densely dashed red line in Figure 6.2) is inverted for about half of
the time so that the signal correlation is reversed. Such signal modifications exemplify
changing signal behavior over time. Simulating a transient or a permanent fault in a
sensor, e.g., by holding the values of a data stream for a certain time, is also a situation
where the correlation between multiple signals varies and decreases. It is apparent that
the previously introduced fixed regions perform substantially worse in this scenario. For
instance, comparing Figures 6.9 and 6.10 at a compression ratio of 0.75, the loss rate of the
blue line with the square markers increases from a value close to 0 % to about 0.75 %. The
automatically formed regions are able to adapt to the signal changes, so that the orange
line with the circles has about the same low loss rate for both scenarios.

Figure 6.11 visualizes an example of the procedure of forming an active region using the
PCA strategy from Section 5.2.6.2 for d = 3 data streams. The active region is supposed
to consist of 31 hypercubes. Only the hypercubes marked in blue showed hits, yielding
an incomplete transmission region. The hypercubes marked in red then complete the
transmission region. The transparency of the printed hypercubes allows to recognize the
first three principal components and their origin. The lengths of the vectors are determined

114

6.2 Evaluation of the Online Data Compression Algorithms

from the minimum and maximum values, respectively, of the point set representing the
centers of the hit hypercubes after transformation into the principal component space
(recall Section 5.2.6.2).

Figure 6.11: Formation process of an active region with the PCA strategy for d = 3.

The evaluations show that the algorithms handle the compression of data without prior
statistical knowledge (requirement R6 from Section 3.1). The compression can be initial-
ized with an empty dictionary, and as the signal behavior changes over time, the automatic
grouping strategy adapts to the signal variations in the multidimensional product space.

6.2.3.2 Scalability of Simultaneous Data Compression

While the previous sections used one- or two-dimensional data compression scenarios to
illustrate and evaluate specific working principles of the algorithms and their extensions,
this section examines the scalability of the data compression for the case where also more
than two data streams are simultaneously compressed.

115

6 Evaluation and Results

By design, the data compression algorithms are able to provide a WCCR on short input
sequences (requirement R2 from Section 3.1) for any number of simultaneously compressed
data streams. Moreover, the working principle that maps fixed-size inputs to fixed-size
outputs is consistent with R3, which requires one-pass data compression.

0.5625 0.5938 0.6250 0.6563 0.6875 0.7188 0.7500 0.7813 0.8125

0.5

1.0

1.5

2.0

2.5 1,1

2,2

3,3

1,1

2,2

3,3

2

3

4

compression ratio (r + t)/(s + t)

lo
ss

ra
te

(in
%
)

individual compression, t1 = t2 = 8
individual compression, t1 = 8, t2 = 9
simultaneous compression, t1 = t2 = 8

Figure 6.12: Comparison of the dynamic simultaneous compression of two data streams
with the compression of the individual data streams.

Loss Rates

Firstly, Figure 6.12 compares the simultaneous compression of the two test data streams
(according to the dynamic cache-based algorithm with the improvements from Section 5.2.4
and Section 5.2.5) with the two data streams compressed individually (dynamic cache-
based algorithm with d = 1 and grouping according to Section 5.2.5), where the loss rate
is calculated from the overall number of lost data values in both streams divided by the
overall number of transmitted data values. To have comparisons for all compression ratios,
two simulations were performed for the individual stream compressions, one where the tail
sizes are t1 = t2 = 8 (blue line with square markers) and another with t1 = 8, t2 = 9
(red line with diamond markers). The results show that the simultaneous compression
of the two data streams outperforms the individual data stream compression up to com-
pression ratios of about 0.75, since the orange line with the circle markers is the lowest.
Furthermore, the calculation of the loss rates for the two individually compressed data
streams (square markers and diamond markers) actually hides the information that one
data stream potentially suffers significantly more losses than the other. So another advan-

116

6.2 Evaluation of the Online Data Compression Algorithms

tage of simultaneous data compression is that both data streams share the available bits
in terms of the shape of the transmission region.

0.5625 0.6250 0.6875 0.7500 0.8125

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
1

2

3

2

3

4

3

4

5

4

5

6

compression ratio (r + t)/(s + t)

lo
ss

ra
te

(in
%
)

individual compression, t = 8
simultaneous compression of 2 data streams
simultaneous compression of 3 data streams
simultaneous compression of 4 data streams

Figure 6.13: Analysis of the scalability of multiple simultaneously compressed data
streams.

Figure 6.13 uses a scenario where d = 4 correlated data streams have approximately
the same loss rate when individually compressed (i.e., < ±0.25 % difference) and Pearson
correlation coefficients (measured over the entire lengths of the input signals) of greater
than 0.95 between any two data streams. Detailed information about the four test signals
can be found in Appendix A.1. The blue line with the square markers exemplarily rep-
resents one of these signals. In the setup, t1 = t2 = t3 = t4 = 8 bits. The other signal
parameters are as described above for the test signals, i.e., 16 bits per sample. It can be
seen that a simultaneous compression of two of these data streams significantly reduces
the loss rate for all compression ratios in the region of interest up to a compression ratio
of 0.8125. For example, at a compression ratio of 0.5625, the loss rate decreases by 1.4 %.
This improvement originates from the use of a common dictionary that enables hypercube
grouping in combination with the fact that the correlated signals are scattered around
a low-dimensional subspace of the d-dimensional product space of all the data streams.
From the orange line with the circle markers and the green line with the triangle markers
in the figure, it can be further concluded that this effect becomes more significant with
more correlated data streams included in the simultaneous compression. All results are
calculated using the dynamic cache-based compression algorithm with automatic grouping
of active hypercubes.

117

6 Evaluation and Results

One can also evaluate the benefits in terms of bit savings. Assuming a loss rate of
below 1 % is demanded (i.e., the respective marker must be below 1), compressing the
four data streams individually per sample is possible at a compression ratio of (4 · (3 +
8))/(4 · 16) = 44/64 = 0.6875. This means that over 30 % of bits can be saved compared
to an uncompressed communication. Taking the red line with the diamond markers as an
example and compressing two times two of the data streams simultaneously, only 2 · (4 +
2 ·8) = 40 bits are needed, so a compression ratio of 40/64 = 0.625 becomes possible. If all
four data streams are simultaneously compressed, even more bits can be saved, enabling
a compression ratio of (5 + 4 · 8)/64 = 0.578. Compared to compressing the data streams
individually, this is another saving of about 16 % of the bits.

Consecutive Losses

The loss rates shown in the previous figures consider the accumulated number of loss
cases related to a certain number of samples. It does not reveal whether these losses
were scattered or consecutive. Therefore, interpreting the number of consecutively lost
data values in a data stream is an important evaluation. Recall that in a loss case, the
uncertainty of the correct data value from the i-th stream is only half of its potential range
of 2ti/2 if the center value corresponding to the missed head is reconstructed. For many
applications, this uncertainty is acceptable if it does not happen too many times in a row.
Such losses might only indicate harsh and short-lived signal conditions, e.g., voltage spikes.
In turn, if an online analysis of loss occurrences monitors multiple such incidences, the
signal behavior might have permanently changed, such that the established transmission
region became inappropriate. The strategy for automatic grouping active hypercubes from
Section 5.2.6 tackles this case. In any case, no additional channel is needed to exchange
overhead information in case of a loss, as demanded by requirement R5 (from Section 3.1)
to be able to strictly adhere to scheduled communication.

The stacked bar charts in Figure 6.14 visualize the occurrence of consecutive losses with
respect to all loss situations. Based on the compression scenario of Figure 6.13, the bar
charts are exemplarily computed for the loss occurrences at a compression ratio of 0.625. It
was concluded from Figure 6.13 that at a specific compression ratio, the loss rate decreases
with more correlated data streams simultaneously compressed. Besides this positive effect,
the color-coded percentages in Figure 6.14, which refer to the number of consecutive losses,
emphasize another benefit. For instance, the dark blue portions of the stacked bars denote
the percentage of loss cases where only one data tuple is lost before the active region again
covers further data tuples, e.g., for d = 1, this happens only in 21 % of the loss cases. The
percentages in each stacked bar add up to 100 %. The parameter d, which increases from
top to bottom, indicates the number of simultaneously compressed data streams.

118

6.2 Evaluation of the Online Data Compression Algorithms

48%

44%

43%

21%

21%

18%

11%

17%

10%

11%

8%

10%

8%

10%

8%

7%

10%

9%

5%

11%

3%

4%

6%

8%

10%

3%

6%

6%

7%

12%

d=4

d=3

d=2

d=1

1 2 3 4 5 6 7 8 >8

Figure 6.14: Consecutive losses of different numbers of simultaneously compressed data
streams.

In the example with the tail sizes t1 = t2 = t3 = t4 = 8 bits and sample sizes n1 = n2 =
n3 = n4 = 16 bits, the uncertainty of the correct code word in each of the d directions is
only 2t1/2 = 128 values of the overall code word range of 2n1 = 65536 values. With respect
to the goal of preserving as much information as possible during data compression, fewer
consecutive loss occurrences are targeted.

From the upper to the lower bar, it can be seen that, overall, the proportions of single
loss events or few consecutive loss events increase, while at the same time the unfavorable
cases with many consecutive loss events significantly decrease. Recalling Figure 6.13,
as indicated by the different r values, the dictionary to achieve the same compression
ratio is larger when more data streams are compressed simultaneously. When the input
signals are correlated, this offers more hypercubes to better fit the data tuples in the
multidimensional product space. Proportionally, a larger active coverage region capable of
reducing situations with many consecutive losses can thus be provided.

6.2.3.3 Signal Selection for Simultaneous Data Compression

The strategy that automatically adapts the active region to the input signals in the d-
dimensional product space helps to achieve beneficial compression results in terms of a
minimized loss rate, even if the correlation between the involved signals is nonconstant or
low.

Figure 6.15 analyzes the impact of signal selections for a simultaneous data compression
with respect to their Pearson correlation coefficient. Four signals based on the test dataset
from Section 6.2.1.1 are used for the analyses, two of which each are simultaneously com-
pressed. Let the signals be denoted as S1, S2, S3, and S4. Again, the number of bits per

119

6 Evaluation and Results

0.5625 0.6250 0.6875 0.7500 0.8125

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

3

4

2

compression ratio (r + t)/(s + t)

lo
ss

ra
te

(in
%
)

S1 and S2
S3 and S4
S1 and S4
S2 and S3

Figure 6.15: Selection of suitable signals for simultaneous data compression.

sample is 16 and for the compression, the tail lengths are t1 = t2 = t3 = t4 = 8 bits.
The loss rates of these four individually compressed signals can be found in Appendix A.1.
The Pearson correlation coefficients between S1 and S2 and between S3 and S4 are con-
stantly high (> 0.95). For all other pairing possibilities, the absolute value of the Pearson
correlation coefficient is less than 0.67. The blue line with the square markers and the
red line with the diamond markers in Figure 6.15 show that the benefit of a simultaneous
compression is significantly higher when the signals are more correlated. The loss rates in
this case are lower for all compression ratios compared to the other two lines in the figure,
which show the result for a different pairing setup. For a proper selection of advantageously
compressible signals, prior analyses on achievable loss rates with respect to the compres-
sion ratio are important information for a scheduler, as described in Section 4.4. It is thus
important for the online data compression algorithms to track the signal correlations and
the loss rate over time. The analyses show that the data compression algorithms are able
to exploit redundancies among multiple data streams to achieve an optimized compression
performance, as demanded by requirement R7.

6.2.4 Time Considerations for Dictionary Searches

The simultaneous compression of more data streams naturally requires more computational
effort for the involved processing steps. When implementing the dictionary using a hash
table, finding a match takes on average constant time, i.e., O(1) in big O notation [Cor+09,
p. 253]. However, due to potential hash collisions, in the worst-case all dictionary entries

120

6.2 Evaluation of the Online Data Compression Algorithms

must be checked, so the access time behavior becomes O(n) when the number of entries
is n [Cor+09, p. 253]. There is also a technique called perfect hashing. By using static
keys, it is possible to achieve a worst-case access time behavior of O(1), but this involves
larger hash tables [Cor+09, pp. 277–278]. The choice of an implementation design must
therefore be evaluated with consideration of the cost of communicating messages through a
distributed system. In general, considering the time complexities of dictionary-based data
compression algorithm implementations, the online compression algorithms developed in
this thesis are capable of compressing and decompressing data in real-time, thus fulfilling
requirement R1 from Section 3.1.

6.2.5 Comparison with Other Data Compression
Techniques

6.2.5.1 Compression of Individual Data Streams

Given the related work and the requirements discussed in Chapter 3, differential encoding
schemes are closest to the cache-based compression algorithm developed in this thesis
and therefore serve for performance comparisons. Similar to the cache-based algorithm,
the modified delta encoding scheme from Section 5.1.7 exploits the fact that differences
between consecutive samples of sensor measurements of many physical quantities are often
small in practice (considering a sufficiently high sampling rate) and can thus be encoded
with fewer bits. As an improvement over classical delta encoding, it is able to automatically
recover a reference value and it allows a limited uncertainty range in the case of a loss.

In a direct comparison of the achievable loss rates of individual data stream compressions,
both the compression algorithms perform equally well for different tail sizes, i.e., with
the same bounded uncertainty. However, the cache-based compression algorithm is more
complex. To achieve equivalent results, grouping of active hypercubes (in one dimension) as
well as the algorithm extension that increases the dictionary size to 2r from Section 5.1.2.2
must be applied.

In any case, delta encoding requires a reference value to which the differences refer. If
this is corrupted, or in the implementation of the modified difference coding algorithm
from Section 5.1.7, if a next difference value cannot be encoded based on a reconstructed
reference, multiple consecutive losses are to be expected. An advantage of the modified
difference coding algorithm is that lower compression ratios can be realized, since the
compression ratio does not depend on the choice of the parameter t (i.e., the tail size). This
is different from the cache-based compression algorithm, where the minimum achievable
compression ratio depends on t and is limited due to t ≥ s. However, evaluations with small

121

6 Evaluation and Results

compression ratios showed that the loss rate increases drastically, limiting the potential
usefulness of low compression ratios for practical implementations.

6.2.5.2 Simultaneous Compression of Multiple Data Streams

Due to the specific design of the dictionary of the cache-based compression algorithm,
specific transmission regions can be formed according to Section 5.2.5. As the evaluations
from the previous sections show, this significantly improves the compression performance
in terms of reduced loss rates and fewer consecutive losses. This property is not possi-
ble to be realized with the modified difference coding algorithm. It can only form one
large hypercube in the multidimensional product space whose side lengths correspond to
the dictionary sizes, but this is basically the same as compressing multiple data streams
individually.

In general, the following benefits of the cache-based compression algorithm compared
to the modified difference coding algorithm emerge: (i) the cache-based algorithm shows
better scalability for compressing multiple data streams simultaneously. (ii) due to the
possibility of forming arbitrary transmission regions, multiple such regions can be simulta-
neously active and beneficially cover signals that frequently jump between different levels.
(iii) the cache-based algorithm is more robust since it does not rely on a reference value
to reconstruct an encoded data value.

It is also a unique feature of the cache-based algorithm that, by design, it is able to merge
and split compressed data streams at arbitrary nodes in distributed systems, as described
in Section 5.3. The dynamic dictionaries in combination with the automatic grouping of
hypercubes into multidimensional transmission regions thus enable the algorithm to fulfill
requirement R8.

6.3 Data Compression and Information
Redundancy

As mentioned in Section 2.8.1, the general idea of data compression is to remove unwanted
redundant information in terms of bits from some input data. On the other hand, in the
context of fault-tolerant system design, information redundancy was described as the strat-
egy of adding extra bits to some input data in order to be able to verify data correctness or
even to restore corrupted data (i.e., wanted redundancy). By combining these strategies,
information redundancy can be achieved without increasing the original data size. This is
demonstrated in the following using the developed data compression algorithms.

122

6.3 Data Compression and Information Redundancy

Recall Section 2.6.1.2, linear block codes such as Bose-Chaudhuri-Hocquenghem (BCH)
codes are often used in the context of forward error correction (FEC). From a certain
fixed number k of input bits, they produce a larger fixed number n of output bits, thus
providing error detection and correction capabilities. The code is said to act on blocks of
data bits. The construction rules of a block code define the possible relation between the k
information bits and the n− k redundancy bits. For example, in a t-error-correcting BCH
code, the relation is given by two integers m and t, where n = 2m − 1 with m ≥ 3 and
k = n−mt with t < 2m−1 [RL09, p. 111].

The online data compression algorithms of this thesis are designed to work on short
input data sequences in order to meet the requirements from Section 3.1, especially to
enable real-time capabilities. Consequently, the output size n of an applied block code
must not be large. Assuming a scenario where single bit errors (i.e., t ≥ 1) in k = 16 bit
data values must be tolerated using a BCH code, one must have m ≥ 5 in which case
n = 31. Then t ≤ b(n− k)/mc (here t ≤ 3) single bit errors can be corrected, but at the
cost of almost doubling the amount of input data bits. To achieve a smarter utilization of
information bits with respect to the requirements (i.e., t = 1 in this example), consecutive
input data values can be distributed among multiple output blocks or aggregated into one
larger output block if a certain delay is acceptable. For example, if n = 31 and t = 1,
there are k = 26 information bits available per block, so it is possible to transmit 3 input
data values (i.e., 48 information bits) using 2 · n = 62 output bits (i.e., 2 blocks) of the
BCH code.

Applying data compression before adding redundant bits via a block code generally
enables smarter utilization of information bits (as long as the tolerable loss rate is not
exceeded). By adjusting the WCCR, the compression algorithms allow the compressed
data to better fit the available number of information bits per block (or across multiple
blocks). In the above example, if data values are compressed from 16 to 11 bits prior to
the FEC, a block output size of n = 15 including 4 redundancy bits is sufficient to correct
a single bit error while a compression ratio below 1 is still achieved. The strategy can be
straightforwardly applied to the simultaneous compression of multiple data streams.

The adjustment of the WCCR to optimally make use of the information bits of a block
code can be done by either modifying the dictionary size or the tail sizes of the data
streams, which has a different effect. As discussed in Section 5.1.2, whether to aim for a
smaller uncertainty of the correct data value in a loss case or a reduced loss rate depends
on the application.

It should be noted that there are other strategies besides block codes to achieve infor-
mation redundancy. For example, convolutional codes can operate bitstream-based rather
than block-based, so the above considerations play only a minor role. Nevertheless, ac-

123

6 Evaluation and Results

cording to the rate of a convolutional encoder, several output bits are generated for each
input bit, so a benefit of compressed data is directly evident due to the reduced data size.

6.4 Influence of Compressed
Communication on Schedules

The design of scheduling algorithms that aim for determining an optimal allocation of
tasks to computation nodes, task execution times, message injection times and paths for
the messages through the network, goes beyond the scope of this thesis. In the context of
the DAKODIS research project, other researchers have addressed the field of scheduling,
see e.g., [LO17; MO19]. The following considerations are based on examples for which no
specific scheduling algorithm is required. Yet, the influence of compressed communication
on schedules can be shown and generalized to some extent.

Figure 6.16: Logical model in terms of a directed acyclic graph with 7 tasks.

For the DAKODIS research project, several diagnosis use cases have been prepared
using the fault injection capabilities of the extended Simulink HEV model introduced in
Section 6.1, see [Jo+17; MOY18; Mec+20b]. The diagnostic directed acyclic graph (DAG)
from Figure 6.16 is based on [Jo+17] and was modeled explicitly using expert domain
knowledge. An approach to implicitly model a DAG for a fault diagnosis use case based
on machine learning is presented in [Mec+20b]. Since the following considerations have a

124

6.4 Influence of Compressed Communication on Schedules

focus on scheduling, the explicit diagnostic purpose of the logical model from Figure 6.16
is not relevant. It serves as an example of a logical model which gets scheduled to a
network in order to analyze the computation times and communication times of the tasks
and messages, respectively.

Figure 6.17: Network with allocated tasks and communication.

Figure 6.17 shows a network with the 7 tasks A,B, . . . , G of the logical model assigned to
the three computation nodes (c1, c2, and c3) and the communication links. For simplicity,
the network is designed in a way that each channel can use two completely disjoint routes
via the routers r1 and r2. Due to the network design and the allocation, there is no
need to consider collisions. The stated allocation was chosen for demonstration purposes.
Note that it does not exploit the concurrency of tasks C and D and is therefore not
optimal. The dashed directed edges between the involved computation nodes indicate the
communication pattern of the diagnostic DAG. The edges are labeled with channels (recall
Section 4.3). A group of channels surrounded by curly braces means that these channels
are mapped to disjoint communication paths (via the two routers). For the computation
of the makespan, such a group can be consequently considered as one channel. Note that
the two channels (B,G) and (E,G) are not present in Figure 6.17 because the three tasks
B,E,G are mapped to the same computation node. In the following, the term tick again
refers to a fraction of real time and is used to express a duration of time that abstracts
over a real unit of time, e.g., microseconds. For example, assuming a worst-case execution
time (WCET) of 6 ticks per task and a per-hop transmission time of 12 ticks per message,
the makespan is 7 · 6 + 5 · (2 · 12) = 162 ticks (i.e., 7 tasks, each requiring 6 ticks, and 5
(groups of) channels, each mapped to a communication path of length 2). Note that the

125

6 Evaluation and Results

two topological orderings (which result from the two different orderings of C and D) have
no influence on the makespan.

Whether the goal of decreasing the makespan can be achieved depends on the com-
pression parameters. Assuming a WCCR = 0.75 for all communications and worst-case
compression (resp., decompression) times WCCT = WCDT = 1 tick, this is possible. Be-
ing the first task, A only has to handle one compression for channel (A,B) and analogously
G has to handle only one decompression for channel (F,G), so both tasks end up with
accumulated WCETs of 7 ticks. Tasks C, D and F must each perform one compression and
one decompression, so their WCETs become 8 ticks each. The remaining tasks B and E
must process two compressions and one decompression (B) and one compression and two
decompressions (E), respectively. So both tasks have a WCET of 9 ticks. The per-hop
transmission time of the messages is reduced according to the WCCR to 12 ·0.75 = 9 ticks.
The makespan of the DAG with compression becomes 2 · 7 + 3 · 8 + 2 · 9 + 5 · (2 · 9) = 146
ticks, which is a reduction of about 10 %.

In the above example, the specific choice of the compression parameters in relation to all
other parameters (e.g., WCETs of tasks, message sizes) helped to reduce the makespan. In
the following, the effect of the compression parameters on the makespan is analyzed from
a general perspective. For this purpose, the involved parameters are brought into relation
with each other.

The support for compressed communication is the main goal of the time-triggered
DAKODIS architecture. System improvements from compressed messages can be of dif-
ferent kinds, e.g., (i) optimized (shorter) schedules allow tighter deadlines to be met and
support shorter service times to be provided, (ii) reduced network traffic enables higher
levels of integration and combining multiple services in one system, or (iii) saved data bits
can be used for FEC to increase the system reliability and availability.

The following analyses have a focus on the first-mentioned point. In the DAKODIS
architecture, time savings with respect to a schedule can only be expected if the reduction
of transmission times is more significant than the extra times needed for data compressions
and decompressions (recall Figure 4.4). Since data compression only affects messages,
it seems natural that the higher the proportion of communication time relative to task
computation time (in a schedule), the greater the potential for system improvements.

In order to generalize the influence of relevant system parameters, in the following ex-
periment a logical model is assumed to be a directed simple graph with n nodes and n− 1
edges, such that the first edge directs from node 1 to node 2, the second edge directs from
node 2 to node 3, and so on. In this way, no concurrency of task executions or message
injections is possible, and the makespan can be calculated straightforwardly by considering
the time needed for computations (of tasks) and the time needed for communicating mes-

126

6.4 Influence of Compressed Communication on Schedules

sages (all in ticks). The total time for computations in the makespan is the product of the
number of tasks and the ticks per task (i.e., the WCET of the task), which is increased by
the WCCT and WCDT if messages are compressed and decompressed, respectively. The
total time for communications is the product of the number of messages, the number of
hops per message (in a network), and the transmission time per hop, which is weighted by
the WCCR in the case of compressed messages.

0.1 0.2 0.5 1 2 5 10 20 50 100

0.7

0.8

0.9

1

1.1

1.2

communication time/processing time

m
ak

es
pa

n
re
du

ct
io
n
(in

%
)

compression ratio 0.9
compression ratio 0.8
compression ratio 0.7

Figure 6.18: Effect of compressed communication on the length of a schedule.

Figure 6.18 shows the potential for reducing the makespan (in %) for different ratios
of communication time to processing time in a schedule. Note the logarithmic scaling of
the time ratios. According to the above descriptions, the following specific parameters
to obtain the curves are assumed to be constant: n = 10 tasks, n − 1 = 9 messages,
WCET = 90 ticks per task, WCCT = WCDT = 9 ticks (i.e., 10 % of the WCET). In this
way, the total time for computations in the schedule is constant. The transmission time per
hop is assumed to be 10 ticks. Increasing the number of hops per message changes the time
effort towards additional time for communications. The figure shows the outcome for three
different compression ratios. Generally, the higher the proportion of communication time
in the schedule, the closer the makespan reduction converges towards its maximum value,
i.e., the compression ratio. Only if a curve is below one, there is a benefit from compressed
messages. For schedules where the proportion of communication time is small, the benefit
from compressed messages is negated by the additional times needed for compressing and
decompressing the data. The specific results of this plot apparently depend on the choice
of the proportion of WCCT (resp., the WCDT) relative to the WCET. Due to the linear

127

6 Evaluation and Results

relationships in this example, the behavior of the graphs is not affected by the number of
tasks.

It has to be pointed out that the logical models of real-world applications are cer-
tainly more complex. Scheduling algorithms will make use of task concurrency and decide
when messages are compressed and in which cases an uncompressed transmission is ad-
vantageous. An estimation of potential makespan reductions then becomes more complex.
Nevertheless, the above findings can positively influence system design decisions.

6.5 Impact of Data Compression on Fault
Diagnosis

6.5.1 Classification-Based Fault Diagnosis

In fault diagnosis, classification methods such as statistical classification, pattern recog-
nition, and artificial intelligence methods are commonly applied. As described in Sec-
tion 2.7.4, classification methods aim to distinguish a certain number of faults from each
other by evaluating fault symptoms. These symptoms refer to a change in an observable
quantity from its normal behavior. The symptoms are often obtained from sensor mea-
surements, where additional processing steps are involved. This is called feature extraction
and refers to the steps necessary to produce meaningful values for the subsequent fault
diagnosis, e.g., variances, amplitudes, and frequencies. The use of fault classification (as
compared to fault inference) is particularly beneficial when sufficient process data is avail-
able to allow a classifier to extract a model of the process, i.e., to learn the behavior of
a process (or a system) in all (fault) situations that should be classifiable from labeled
data. In the context of machine learning, this is referred to as supervised learning. If the
so-called mapping function has been accurately learned, a classification algorithm correctly
infers the class labels for unseen data.

Typical performance metrics for classifiers include the classification accuracy, which is
the ratio of the number of correct predictions to the total number of predictions made.
In addition, the F1 score (with F1 ∈ [0, 1]) as the harmonic mean between the so-called
precision and recall indicates how precise and how robust a classifier is. Precision is
the fraction of the number of correct positive predictions and the number of all positive
predictions by the classifier:

precision = true positives
true positives + false positives

128

6.5 Impact of Data Compression on Fault Diagnosis

Recall is the fraction of correct positive predictions and all relevant (i.e., positive) instances:

recall = true positives
true positives + false negatives

The F1 score then is:

F1 = 2
1

precision + 1
recall

= 2 · precision · recall
precision + recall

In general, a higher F1 score implies a better performance of the classifier. The goal is to
find a good balance between precision and recall.

6.5.2 Fault Diagnosis Use Case

6.5.2.1 Hybrid Electric Vehicle Model

In the context of the DAKODIS research project, the HEV model from Section 6.1 served
as fault diagnosis use case in several publications, see e.g., [MO18; MOY18]. In the recent
work [Mec+20b], an active fault diagnosis strategy based on a convolutional neural network
was developed that achieved fault classification accuracies of over 98 %. In particular, the
paper analyzed the temporal impact on the diagnostic performance. The results showed
that less accurate conclusions about a faulty system behavior can be made immediately
after a fault occurs, and that the decision becomes more confident as time progresses and
more data is analyzed. This, in combination with the outcomes from Section 6.4, leads to
the conclusion that shorter service times of diagnostic tasks based on compressed messages
contribute to the improvement of the overall diagnostic performance.

6.5.2.2 Condition Monitoring of a Hydraulic System

To investigate the impact of data compression on fault diagnosis in detail, a more complex
use case is needed. The use case for the following evaluations is based on a public dataset
from the condition monitoring of a hydraulic system. The dataset was created by the Cen-
tre for Mechatronics and Automation Technology (ZeMA), Saarbrücken [HPS15a], and can
be downloaded from the University of California Machine Learning Repository [UCI21].
The dataset contains raw process data from 17 sensors of a hydraulic test rig which con-
sists of a primary working and secondary cooling filtration circuit connected via an oil

129

6 Evaluation and Results

tank [HPS15b]. Measurements (e.g., pressures, temperatures, volume flow rates, power)
were obtained from repeated working cycles, each considering different load situations,
while the condition of the hydraulic components was intentionally degraded over time, i.e.,
faults of different severity were introduced. The dataset considers faults on four involved
components, i.e., a valve, an internal pump, a hydraulic accumulator, and a cooler. As an
example, consider the valve. Its condition may show (1) optimal switching behavior, (2)
small lag, (3) severe lag, (4) behavior close to total failure. In general, the task of a clas-
sifier with this dataset is to identify faulty system behavior by evaluating the symptoms
derived from the measured values.

Overall, the dataset was chosen for several reasons. First, it is data from a real-world
process with the purpose of performing fault classification. Second, the type of sensor
data is suitable for the presented online data compression algorithms, especially since
there is a high correlation between many of the recorded signals. And third, the dataset
is predestined for classification-based fault diagnosis because it is possible to extract the
classification model purely from the (labeled) data without the need for expert domain
knowledge.

6.5.2.3 Classifier Implementation

The open source XGBoost library provides a high-performance implementation of gradient
boosted decision trees. In contrast to the classical machine learning technique using single
model decision trees, boosting is an iterative approach where multiple machine learning
models are combined and trained successively. This means that each new model is trained
to correct potential errors that previous models made.

In order to evaluate the impact of compressed data on fault classification, a model is
first trained and tested with the original data using XGBoost. Here, using 12 out of the
available 17 sensor measurements is sufficient to achieve an accuracy of nearly 100 % for
the fault classification (using more features does not improve the results). Each sensor
produces 12-bit data values. Assuming equal sampling rates, 144 bits are produced per
time step. The measurements directly serve as input features for the training and inference
process. In total, there are 2205 labeled instances of time-series data from each sensor.
To train and test the classifier, the data was partitioned into sets following the usual split
percentage of 80 to 20.

130

6.5 Impact of Data Compression on Fault Diagnosis

6.5.3 Constrained Communication Resources
and Fault Diagnosis

For the following evaluations, a scenario is assumed where the sensor data must be trans-
mitted from the hydraulic test rig to the classifier (which is a task executed on a computa-
tion node) via a network. Due to limited communication resources, it is further assumed
that bits must be saved for the transmission. This reflects real-world scenarios where, for
example, multiple data streams from different tasks compete with each other for communi-
cation resources, so that certain applications must be constrained in their communication
load. With respect to the above example, a system designer obviously has several op-
tions to save data and consequently reduce network traffic in terms of bits, e.g., reducing
the sampling rate of sensors, reducing the resolution of the quantizer. For the moment,
however, these parameters are assumed to be fixed, since they come from the given dataset.

Another possibility to save bits is to reduce the number of features involved in the
classification. Obviously, one would use the so-called predictor importance to omit the
features with the least importance for the classification first. Figures 6.19 to 6.21 show
the fault classification accuracy for three different components, i.e., the internal pump, the
hydraulic accumulator, and the valve. In each plot, the accuracy is abstracted over the
different severities of the respective faults. It is generally calculated based on all correct
and incorrect classifications, respectively. The annotations at the markers indicate the
number of features used for the classification. The complete classification report can be
found in Appendix A.2.

For example, the blue line with the square markers in Figure 6.19 shows that the max-
imum fault classification accuracy is achieved when all 12 features are used. By saving
bits in the sense of transmitting fewer features (i.e., fewer sensor signals), the classification
accuracy continuously decreases, i.e., there is an increasing number of incorrect classifica-
tions of the system condition. This potentially results in dangerous situations where, for
instance, an existing fault is not found at all or is incorrectly identified as a different fault.
For comparison purposes, the red line with the diamond markers shows how the cache-
based data compression algorithm allows to keep the number of transmitted features high
(and consequently the fault classification accuracy) because it saves the bits by compress-
ing the individual data values of each data stream. For a fair comparison, for each feature
that is omitted in the blue curve, one bit per feature is saved for calculating the results in
the red curve. This is done by splitting for each data stream the n = s + t = 12 bits per
sample into t = 6 tail bits (resp., s = 6 head bits), and adjusting the dictionary size using
r ∈ [1, 5] so that the desired number of bits per sample is saved. Per definition, t ≥ s,
so saving on average more than 50 % of the bits per sample is only possible if the data
values are simultaneously compressed with the presented data compression algorithms. In

131

6 Evaluation and Results

0 8.33 16.67 25 33.33 41.67 50 58.33
0.8

0.85

0.9

0.95

1

12

11
10

9

8

7

6

5

12 12 12 12 12 12

11

9

bits saved (in %)

cl
as
sifi

ca
tio

n
ac
cu

ra
cy

using fewer features
compressing data

Figure 6.19: Classification accuracy of the internal pump leakage.

the figure, when using only 6 features (i.e., 72 bits, blue curve), an individual data stream
compression that should not need more bits, would require to reduce the number of fea-
tures to 10 (i.e., 10 · 7 bits, with r = 1 and t = 6). However, assuming high correlations
among several data streams, a simultaneous compression of multiple data streams enables
to transmit 11 features, i.e., using 11 · 6 bits for the tails and the remaining 6 bits for
combined dictionaries. The same principle is true for the last comparison point. On the
blue curve, 5 features consume 60 bits and on the red curve, the cache-based compres-
sion algorithm allows to transmit 9 features using combined dictionaries. Looking at the
red line with the diamond markers, there is no obvious decrease in the fault classification
accuracy for the first six data points although a certain number of omissions occurred
during the compression, transmission, and decompression process. In general, when data
is compressed using the cache-based algorithm, the loss rate and tolerable data recovery
uncertainty of the respective signals must be considered when selecting the most important
features for fault classification. Table A.3 in the appendix presents a complete overview
of the loss rates of all sensor signals, compressed over their full lengths using the dynamic
cache-based compression algorithm. Figures 6.20 and 6.21 present analogue analyses and
refer to the fault classification accuracy of the hydraulic accumulator pressure and the
valve condition, respectively.

While Figures 6.19 to 6.21 use the classification accuracy as the performance metric
and abstract over the different severities of the respective component faults, Figure 6.22
exemplarily shows the F1 score for the different valve conditions. In principle, the F1 score
is also a measure of the accuracy of a test, as described in Section 6.5.1. Assuming again

132

6.5 Impact of Data Compression on Fault Diagnosis

0 8.33 16.67 25 33.33 41.67 50 58.33
0.85

0.9

0.95

1

12

11

10

9
8

7
6

5

12 12 12 12 12 12

11

9

bits saved (in %)

cl
as
sifi

ca
tio

n
ac
cu

ra
cy

using fewer features
compressing data

Figure 6.20: Classification accuracy of the hydraulic accumulator pressure.

0 8.33 16.67 25 33.33 41.67 50 58.33
0.8

0.85

0.9

0.95

1
12 11

10

9
8

7
6

5

12 12 12 12 12 12 11

9

bits saved (in %)

cl
as
sifi

ca
tio

n
ac
cu

ra
cy

using fewer features
compressing data

Figure 6.21: Classification accuracy of the valve condition.

133

6 Evaluation and Results

0 8.33 16.67 25 33.33 41.67 50 58.33
0.4

0.5

0.6

0.7

0.8

0.9

1
12 11 10 9 8 7 6 5

bits saved (in %)

F 1
sc
or
e

close to total failure
severe lag
small lag
optimal switching behavior

Figure 6.22: F1 score of the valve condition. Bits are saved by using fewer features for the
fault classifications.

0 8.33 16.67 25 33.33 41.67 50 58.33
0.5

0.6

0.7

0.8

0.9

1
12 12 12 12 12 12 11 9

bits saved (in %)

F 1
sc
or
e

close to total failure
severe lag
small lag
optimal switching behavior

Figure 6.23: F1 score of the valve condition. Bits are saved by using the cache-based
compression algorithm.

134

6.5 Impact of Data Compression on Fault Diagnosis

the same scenario as above, bits are saved by transmitting fewer features for the fault
classification, as indicated by the annotations at the data points. They are written only
to the top line and apply to all lines at the respective compression ratios.

The figure shows that a total valve failure can be accurately identified even with few
features, but especially the predictive character of the fault diagnosis in terms of classifying
small lags decreases drastically. The comparison results are presented in Figure 6.23. With
the cache-based data compression algorithm, the equivalent amount of bits is saved directly
in the sensor data streams so that the F1 score remains constantly high.

Figure 6.24: Correlation matrix of the sensor signals.

In order to find out which of the sensor signals are suitable to be simultaneously com-
pressed (recall Section 6.2.3.3), Figure 6.24 shows the correlation matrix, i.e., the pairwise
linear (Pearson) correlation coefficients of the 12 signals over the 2205 measured instances.
The signals are denoted according to the measured quantity, e.g., PS represents a pres-
sure, EP represents electric power, and FS stands for volume flow. As indicated by the
colors, many of the signals show either high positive or negative linear correlations, while
there are few signals with a low correlation coefficient. As described above, this fact is
exploited in the experiment. The simultaneous compression and transmission of multi-

135

6 Evaluation and Results

ple data streams resulted in a better utilization of the communication resources and thus
improved diagnostic results.

In summary, in resource-constrained systems where data traffic is the limiting factor,
there might be a necessity for applications to operate with less data than desired. The
above use case demonstrates such a scenario. The advantages of using the cache-based data
compression algorithm to reduce the amount of data for communication compared to other
reduction possibilities were highlighted by evaluating the fault classification accuracy. In
particular, when a significant amount of data needs to be saved (e.g., more than 30 % of the
bits), using the cache-based data compression algorithm prevents a significantly decreased
fault classification accuracy.

136

Chapter 7

Conclusion

7.1 Summary and Contribution
This thesis was prepared in the context of the DFG-funded research project DAKODIS.
As the main contribution, the thesis presents online data compression algorithms for sen-
sor data streams that go beyond the state of the art and are applicable to time-triggered
communication in distributed systems where the communication slots are established with
respect to a global time base. Time-triggered systems play an important role in high-
dependable and safety-critical systems. Their advantage is a maximized predictability
compared to event-triggered systems, due to periodic task executions and messages ex-
changes according to a static schedule. In many such systems, fault tolerance is efficiently
implemented through online fault diagnosis with active recovery strategies, which results
in diagnostic tasks competing for resources with regular system service tasks. The need to
utilize data compression for communicating data in high-dependable time-triggered sys-
tems arises from the ever-growing complexity with increasingly computationally intensive
tasks that produce large amounts of data, causing communication resources to become
bottlenecks.

First, this thesis defines the so-called DAKODIS architecture, which is a time-triggered
architecture including a compression model that enables systemwide coordination of data
compression (Chapter 4). The thesis then presents online data compression algorithms that
enable short input data sequences to be compressed with a worst-case compression ratio
below one while guaranteeing data quality for the applications (Chapter 5). In this way,
the specific requirements of both time-triggered communication and the investigated (fault
diagnosis) applications could be reconciled. A characteristic feature of the algorithms is
the ability to exploit redundancy among multiple sensor data streams and compress them
simultaneously in a multidimensional product space, thus achieving improved compression

137

7 Conclusion

ratios with significantly reduced cases of data degradation. The design of the algorithms
based on dynamically maintained dictionaries in combination with the introduced archi-
tectural models makes it possible to directly merge and split compressed data streams at
arbitrary nodes of a distributed system. This is a prerequisite for a scheduling algorithm
to optimize the (compressed) data communications in terms of reducing the lengths of
schedules, which subsequently enables tighter deadlines to be met and shorter overall ser-
vice times of applications to be supported. With a special focus on real-time capability,
the novel algorithms compress data online (i.e., one pass) and are able to guarantee short
worst-case compression and decompression times. This is realized by implementing the in-
volved dictionaries in the form of a cache with common replacement strategies that allow
dictionary operations in constant time. Another feature of the algorithms is that they are
fully self-synchronizing concerning the dictionaries on the sender and receiver nodes, i.e.,
they do not rely on a side channel to exchange overhead information, which is an important
issue in time-triggered systems. Also, the data compression can be performed even if no
prior statistical knowledge is available. Yet, if it is available, it can be beneficially incorpo-
rated and support the formation of suitable transmission regions in the multidimensional
product space (Section 5.2.5).

The presented online data compression algorithms are evaluated in Chapter 6 by means
of two fault diagnosis use cases. As a typical example for the application of fault diagnosis,
the first use case comes from the automotive domain and is based on a hybrid electric vehi-
cle model in Simulink (Section 6.1). The various simulated sensor signals from this model
serve as test signals for the evaluation of the online compression algorithms (Section 6.2),
where also the advantages and the scalability of a simultaneous compression of multiple
correlated data streams are demonstrated from a high-level perspective, i.e., the relation-
ship between the reduction potential of the amount of data and the information loss in
terms of loss of accuracy of data values (Section 6.2.3.2). A more complex fault diagnosis
use case based on a public dataset of real-world hydraulic system condition monitoring
data is used to evaluate the impact of compressed sensor data streams on the diagnostic
performance (Section 6.5.2.2). Using a comparative scenario, it is shown that a significant
amount of approximately 40 %–50 % of data bits can be saved while still achieving highly
accurate diagnostic results. In turn, such saved network traffic can be used to improve the
reliability of a system, e.g., by implementing information redundancy or, in other systems,
by increasing fault tolerance through online fault diagnosis. The particular advantages of
a simultaneous compression of multiple correlated data streams are also confirmed by this
use case scenario. In general, the outcomes of the use case analyses underline the feasibility
of the novel online data compression algorithms to be deployed in systems where the com-
munication resources are limited (Section 6.5.3). Thereby, the analysis of the influence of
compressed messages on the lengths of schedules exemplifies the time reduction potential

138

7.2 Future Work

that depends on the proportion of communication time relative to task computation time
in a schedule.

7.2 Future Work
The plans for future work refer to two aspects. On the one hand it is about a direct
extension of the achieved results of this thesis and on the other hand it is about ideas for
future research projects, which have arisen in the context of this thesis.

The primary goal of this thesis was to establish the ability to cope with limited com-
munication resources while providing temporal guarantees for online diagnosis applica-
tions in distributed real-time systems using data compression. The use cases used in the
evaluation give an impression of how real systems can benefit from the developed data
compression algorithms. However, since the algorithms were developed in the context of
fundamental research, they are not yet optimized for real-world applications, but have only
been prototypically implemented. Future considerations regarding the beneficial impact of
compressed messages on schedules need to take real network protocols into account, e.g.,
FlexRay and Time-Triggered Ethernet. In addition, more complex application scenarios
with task concurrency should be analyzed using advanced scheduling algorithms. An inter-
esting question is also how the compression algorithms need to be modified or extended to
manage other types of data. Of course, the measurements of physical quantities considered
in thesis are a primary source of information for fault diagnosis, but symbolic data also
plays a role.

The second aspect of future work relates to new ideas for future research projects that
have emerged in the context of the DAKODIS project. To give two examples: Combin-
ing online fault diagnosis with organic computing to realize highly reliable self-organizing
systems was first published in [Bri+19] and led to a successfully acquired DFG research
project (project number 445555232). In addition, [Mec+19a] presents an approach to
improve automotive fault diagnosis with knowledge extracted from web resources. The
respective proposal AUTODIREKT was submitted and positively evaluated.

139

Appendix A

A.1 Loss Rates of Evaluation Test Signals

Table A.1: Loss rates of the individually compressed test signals (HEV dataset) used
in Figure 6.13.

Compression ratio
0.5625 0.625 0.6875 0.75 0.8125 0.875

Loss rate (in %)
S1 4.2621 2.0122 0.8029 0.1793 0.0189 0.0022
S2 4.1027 1.8962 0.7279 0.1483 0.0183 0.0023
S3 3.9411 1.8123 0.6552 0.1160 0.0144 0.0017
S4 3.9306 1.7951 0.6385 0.1110 0.0139 0.0017

Table A.2: Loss rates of the individually compressed test signals (HEV dataset) used
in Figure 6.15.

Compression ratio
0.5625 0.625 0.6875 0.75 0.8125 0.875

Loss rate (in %)
S1 4.1643 1.9167 0.7507 0.1605 0.0183 0.0022
S2 3.9306 1.7951 0.6385 0.1110 0.0139 0.0017
S3 3.3453 1.0222 0.3132 0.0988 0.0122 0.0072
S4 2.9878 0.9145 0.2760 0.0755 0.0111 0.0067

141

Appendix A

Table A.3: Loss rates of the individually compressed sensor measurements (condition
monitoring dataset) used in Section 6.5.3.

Compression ratio
0.5833 0.6667 0.75 0.8333 0.9167

Loss rate (in %)
PS2 0.450 0.233 0.167 0.100 0.033
PS3 0.617 0.083 0.067 0.033 0.017
PS5 0.017 0.017 0.017 0.017 0.017
PS6 0.017 0.017 0.017 0.017 0.017
EP1 0.183 0.033 0.017 0.017 0.017
FS2 0.167 0.167 0.167 0.167 0.167
TS1 1.667 1.667 1.667 1.667 1.667
TS2 1.667 1.667 1.667 1.667 1.667
TS4 1.667 1.667 1.667 1.667 1.667
VS1 3.333 1.667 1.667 1.667 1.667
CE1 1.667 1.667 1.667 1.667 1.667
SE1 21.67 20.00 16.67 8.333 5.000

142

A.2 Classification Report for the Fault Diagnosis Use Case

A.2 Classification Report for the Fault
Diagnosis Use Case

Table A.4: Classification report for internal pump faults.
Fault labels: (1) severe leakage, (2) weak leakage, (3) no leakage.

Features Accuracy Label Precision Recall F1-score

12 0.98
1 0.98 0.98 0.98
2 0.98 0.93 0.95
3 0.98 1.00 0.99

11 0.95
1 0.93 0.90 0.92
2 0.94 0.89 0.91
3 0.96 0.99 0.98

10 0.94
1 0.90 0.90 0.90
2 0.92 0.85 0.88
3 0.95 0.98 0.97

9 0.92
1 0.88 0.83 0.85
2 0.88 0.85 0.87
3 0.95 0.98 0.97

8 0.90
1 0.83 0.83 0.83
2 0.90 0.80 0.84
3 0.93 0.98 0.95

7 0.88
1 0.76 0.88 0.81
2 0.85 0.72 0.78
3 0.94 0.95 0.95

6 0.86
1 0.74 0.81 0.77
2 0.77 0.74 0.75
3 0.95 0.94 0.94

5 0.82
1 0.72 0.74 0.73
2 0.71 0.69 0.70
3 0.90 0.91 0.91

143

Appendix A

Table A.5: Classification report for hydraulic accumulator faults.
Fault labels: (4) close to total failure, (5) severely reduced pressure, (6) slightly
reduced pressure, (7) optimal pressure.

Features Accuracy Label Precision Recall F1-score

12 0.99

4 1.00 0.99 0.99
5 0.97 0.95 0.96
6 0.95 1.00 0.97
7 1.00 1.00 1.00

11 0.97

4 0.97 0.99 0.98
5 0.95 0.95 0.95
6 0.95 1.00 0.97
7 1.00 0.96 0.98

10 0.95

4 0.96 0.97 0.97
5 0.94 0.87 0.90
6 0.86 1.00 0.92
7 1.00 0.94 0.97

9 0.93

4 0.97 0.94 0.95
5 0.94 0.84 0.89
6 0.73 1.00 0.85
7 1.00 0.91 0.95

8 0.92

4 0.97 0.94 0.95
5 0.94 0.82 0.87
6 0.75 1.00 0.86
7 1.00 0.94 0.97

7 0.91

4 0.94 0.94 0.94
5 0.97 0.82 0.89
6 0.77 1.00 0.87
7 1.00 0.93 0.96

6 0.90

4 0.92 0.92 0.92
5 0.91 0.79 0.85
6 0.78 1.00 0.88
7 1.00 0.93 0.96

5 0.86

4 0.89 0.94 0.91
5 0.75 0.63 0.69
6 0.73 0.83 0.78
7 0.95 0.91 0.93

144

A.2 Classification Report for the Fault Diagnosis Use Case

Table A.6: Classification report for valve faults.
Fault labels: (8) close to total failure, (9) severe lag, (10) small lag, (11) optimal
switching behavior.

Features Accuracy Label Precision Recall F1-score

12 1.00

8 1.00 1.00 1.00
9 0.98 1.00 0.99
10 1.00 0.97 0.98
11 1.00 1.00 1.00

11 1.00

8 1.00 1.00 1.00
9 0.98 1.00 0.99
10 1.00 0.97 0.98
11 1.00 1.00 1.00

10 0.90

8 1.00 1.00 1.00
9 0.91 0.95 0.93
10 0.74 0.65 0.69
11 0.90 0.91 0.90

9 0.87

8 1.00 1.00 1.00
9 0.91 0.95 0.93
10 0.64 0.52 0.57
11 0.86 0.89 0.88

8 0.86

8 1.00 1.00 1.00
9 0.92 0.93 0.92
10 0.58 0.48 0.53
11 0.84 0.89 0.87

7 0.85

8 1.00 1.00 1.00
9 0.93 0.90 0.91
10 0.56 0.47 0.51
11 0.83 0.87 0.85

6 0.84

8 1.00 1.00 1.00
9 0.88 0.90 0.89
10 0.52 0.42 0.46
11 0.83 0.87 0.85

5 0.82

8 1.00 1.00 1.00
9 0.88 0.88 0.88
10 0.46 0.35 0.40
11 0.81 0.86 0.84

145

Publications

This thesis uses content which was published in the following publications:

Journal Publications

[Mec+20a] S. Meckel, M. Lohrey, S. Jo, R. Obermaisser, and S. Plasger. “Combined
compression of multiple correlated data streams for online-diagnosis systems”.
In: Microprocessors and Microsystems 77 (2020).

[Mec+20b] S. Meckel, T. Schuessler, P. K. Jaisawal, J.-U. Yang, and R. Obermaisser.
“Generation of a diagnosis model for hybrid-electric vehicles using machine
learning”. In: Microprocessors and Microsystems 75 (2020).

[Jo+18] S. Jo, M. Lohrey, D. Ludwig, S. Meckel, R. Obermaisser, and S. Plasger. “An
architecture for online-diagnosis systems supporting compressed communica-
tion”. In: Microprocessors and Microsystems 61 (2018).

Conference Publications

[Mec+19a] S. Meckel, J. Zenkert, C. Weber, R. Obermaisser, M. Fathi, and R. Sadat.
“Optimized automotive fault-diagnosis based on knowledge extraction from
web resources”. In: 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE. 2019.

[Mec+19b] S. Meckel, M. Lohrey, S. Jo, R. Obermaisser, and S. Plasger. “Combined
compression of multiple correlated data streams for online-diagnosis systems”.
In: 2019 22nd Euromicro Conference on Digital System Design (DSD). IEEE.
2019.

[BMO19] A. Behravan, S. Meckel, and R. Obermaisser. “Generic fault-diagnosis strat-
egy based on diagnostic directed acyclic graphs using domain ontology in
automotive applications”. In: AmE 2019-Automotive meets Electronics; 10th
GMM-Symposium. VDE. 2019.

147

Publications

[Bri+19] U. Brinkschulte, R. Obermaisser, S. Meckel, and M. Pacher. “Online-diagnosis
with organic computing based on artificial DNA”. In: 2019 First International
Conference on Societal Automation (SA). IEEE. 2019.

[MO18] S. Meckel and R. Obermaisser. “Component-based combination of online-
diagnosis methods using diagnostic directed acyclic graphs”. In: 2018 7th
Mediterranean Conference on Embedded Computing (MECO). IEEE. 2018.

[MOY18] S. Meckel, R. Obermaisser, and J.-U. Yang. “Generation of a diagnosis model
for hybrid-electric vehicles using machine learning”. In: 2018 21st Euromicro
Conference on Digital System Design (DSD). IEEE. 2018.

[Beh+18] A. Behravan, R. Obermaisser, D. H. Basavegowda, and S. Meckel. “Automatic
model-based fault detection and diagnosis using diagnostic directed acyclic
graph for a demand-controlled ventilation and heating system in Simulink”.
In: 2018 Annual IEEE International Systems Conference (SysCon). IEEE.
2018.

[Jo+17] S. Jo, M. Lohrey, D. Ludwig, S. Meckel, R. Obermaisser, and S. Plasger. “An
architecture for online-diagnosis systems supporting compressed communi-
cation”. In: 2017 Euromicro Conference on Digital System Design (DSD).
IEEE. 2017.

From these publications, the following figures, tables and algorithms are used in a similar
or in an adapted version:

© 2018 Elsevier B.V.

Figures 4.5, 5.1, 6.16, 6.17. Table 5.1. Algorithms 1, 2.

© 2020 Elsevier B.V.

Figures 5.2, 5.4, 5.5, 6.1, 6.2, 6.6, 6.7, 6.8, 6.9, 6.10, 6.12. Table 5.4. Algorithms 3, 4.

148

Bibliography

[ANR74] N. Ahmed, T. Natarajan, and K. R. Rao. “Discrete cosine transform”. In:
IEEE Transactions on Computers 100.1 (1974).

[Aig+18] M. Aigner, G. M. Ziegler, K. H. Hofmann, and P. Erdős. Proofs from the book.
6th ed. Springer, 2018.

[Alf17] S. Alfes. “Modell- und signalbasierte Fehlerdiagnose eines automatisierten
Nutzfahrzeuggetriebes für den Off-Board und On-Board Einsatz”. PhD thesis.
Technische Universität Darmstadt, 2017.

[ANH16] A. J. Aljohani, S. X. Ng, and L. Hanzo. “Distributed source coding and its
applications in relaying-based transmission”. In: IEEE Access 4 (2016).

[And00] G. R. Andrews. Foundations of multithreaded, parallel, and distributed pro-
gramming. Vol. 11. Addison-Wesley Reading, 2000.

[Ari+03] T. Arici, B. Gedik, Y. Altunbasak, and L. Liu. “PINCO: a pipelined in-
network compression scheme for data collection in wireless sensor networks”.
In: Proceedings of the 12th International Conference on Computer Commu-
nications and Networks. IEEE. 2003.

[Avi+04] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic concepts and
taxonomy of dependable and secure computing”. In: IEEE Transactions on
Dependable and Secure Computing 1.1 (2004).

[ALR+01] A. Avižienis, J.-C. Laprie, B. Randell, et al. Fundamental concepts of depend-
ability. University of Newcastle upon Tyne, Computing Science, 2001.

[Bal+07] R. Baldoni, M. Bertier, M. Raynal, and S. Tucci-Piergiovanni. “Looking for a
definition of dynamic distributed systems”. In: International Conference on
Parallel Computing Technologies. Springer. 2007.

[BW10] E. A. Bender and S. G. Williamson. Lists, decisions and graphs. S. Gill
Williamson, 2010.

[Ber15] J. Berlińska. “Scheduling for data gathering networks with data compression”.
In: European Journal of Operational Research 246.3 (2015).

149

Bibliography

[Blo96] C. Bloom. “LZP: a new data compression algorithm”. In: Data Compression
Conference. IEEE Computer Society. 1996.

[BD19] A. Burns and R. Davis. “Mixed criticality systems - a review”. In: Department
of Computer Science, University of York, Tech. Rep (2019). https://www-
users.cs.york.ac.uk/burns/review.pdf, [12th ed.; online; accessed 04-Jan-
2021].

[BW94] M. Burrows and D. Wheeler. “A block-sorting lossless data compression al-
gorithm”. In: Digital SRC Research Report. Citeseer. 1994.

[CK07] J.-J. Chen and C.-F. Kuo. “Energy-efficient scheduling for real-time systems
on dynamic voltage scaling (DVS) platforms”. In: 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2007). IEEE. 2007.

[CP12] J. Chen and R. J. Patton. Robust model-based fault diagnosis for dynamic
systems. Vol. 3. Springer Science & Business Media, 2012.

[CA78] L. Chen and A. Avižienis. “N-version programming: a fault-tolerance ap-
proach to reliability of software operation”. In: Proceedings of the 8th IEEE
International Symposium on Fault-Tolerant Computing (FTCS-8). Vol. 1.
1978.

[Cho+08] S. Chowdhury, A. Chowdhury, S. R. Bhadra Chaudhuri, and C. T. Bhunia.
“Data transmission using online dynamic dictionary based compression tech-
nique of fixed & variable length coding”. In: 2008 International Conference
on Computer Science and Information Technology. IEEE. 2008.

[CW84] J. Cleary and I. Witten. “Data compression using adaptive coding and partial
string matching”. In: IEEE Transactions on Communications 32.4 (1984).

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. 3rd ed. MIT Press, 2009.

[Cov75] T. Cover. “A proof of the data compression theorem of Slepian and Wolf for
ergodic sources”. In: IEEE Transactions on Information Theory 21.2 (1975).

[DO03] L. Deng and D. O’Shaughnessy. Speech processing: a dynamic and
optimization-oriented approach. CRC Press, 2003.

[Des+04] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong.
“Model-driven data acquisition in sensor networks”. In: Proceedings of the
Thirtieth International Conference on Very Large Data Bases. Vol. 30. 2004.

[DFG16] DFG Forschungsprojekt DAKODIS. Data Compression for Active Diagnosis.
http://gepris.dfg.de/gepris/projekt/275601549. 2016–2021, [online; accessed
05-March-2021].

150

https://www-users.cs.york.ac.uk/burns/review.pdf
https://www-users.cs.york.ac.uk/burns/review.pdf
http://gepris.dfg.de/gepris/projekt/275601549

Bibliography

[DG09] P. L. Dragotti and M. Gastpar. Distributed source coding: theory, algorithms
and applications. Academic Press, 2009.

[Dri+04] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona. “The
real byzantine generals”. In: The 23rd Digital Avionics Systems Conference
(DASC). Vol. 2. IEEE. 2004.

[ES21] Embedded Systems group, University of Siegen. DFG research project -
Data Compression for Active Diagnosis (DAKODIS). https : //networked -
embedded.de/es/index.php/dakodis.html. 2021, [online; accessed 05-March-
2021].

[Erc19] K. Erciyes. Distributed real-time systems: theory and practice. Springer, 2019.

[FG89] E. R. Fiala and D. H. Greene. “Data compression with finite windows”. In:
Communications of the ACM 32.4 (1989).

[FGT92] P. Flajolet, D. Gardy, and L. Thimonier. “Birthday paradox, coupon col-
lectors, caching algorithms and self-organizing search”. In: Discrete Applied
Mathematics 39.3 (1992).

[FW74] P. A. Franaszek and T. J. Wagner. “Some distribution-free aspects of paging
algorithm performance”. In: Journal of the ACM (JACM) 21.1 (1974).

[Gay+04] M. Gayer, M. Lutzky, G. Schuller, U. Krämer, and S. Wabnik. “A guideline
to audio codec delay”. In: Audio Engineering Society Convention 116. Audio
Engineering Society. 2004.

[God12] B. Godfrey. A primer on distributed computing. https://billpg.com/bacchae-
co-uk/docs/dist.html. 2012, [online; accessed 19-Mar-2020].

[Gon+97] O. González, H. Shrikumar, J. A. Stankovic, and K. Ramamritham. “Adap-
tive fault tolerance and graceful degradation under dynamic hard real-time
scheduling”. In: Proceedings Real-Time Systems Symposium. IEEE. 1997.

[Gor19] K. Gorelik. “Energy management system for automated driving”. PhD thesis.
Universität Siegen, 2019.

[Gua16] N. Guan. Techniques for building timing-predictable embedded systems.
Springer, 2016.

[HSR10] J. Han, A. Saxena, and K. Rose. “Towards jointly optimal spatial prediction
and adaptive transform in video/image coding”. In: 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE. 2010.

[HCS07] L. Hanzo, P. Cherriman, and J. Streit. Video compression and communica-
tions: from basics to H.261, H.263, H.264, MPEG4 for DVB and HSDPA-
style adaptive turbo-transceivers. John Wiley & Sons, 2007.

151

https://networked-embedded.de/es/index.php/dakodis.html
https://networked-embedded.de/es/index.php/dakodis.html
https://billpg.com/bacchae-co-uk/docs/dist.html
https://billpg.com/bacchae-co-uk/docs/dist.html

Bibliography

[HPS15a] N. Helwig, E. Pignanelli, and A. Schütze. “Condition monitoring of a complex
hydraulic system using multivariate statistics”. In: 2015 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC) Proceed-
ings. IEEE. 2015.

[HPS15b] N. Helwig, E. Pignanelli, and A. Schütze. “Detecting and compensating sensor
faults in a hydraulic condition monitoring system”. In: Proceedings SENSOR
2015 (2015).

[Hen+14] H. Henao et al. “Trends in fault diagnosis for electrical machines: a review of
diagnostic techniques”. In: IEEE Industrial Electronics Magazine 8.2 (2014).

[Hof14] P. Hofmann. Hybridfahrzeuge: Ein alternatives Antriebssystem für die
Zukunft. 2nd ed. Springer, 2014.

[Huf+52] D. A. Huffman et al. “A method for the construction of minimum-redundancy
codes”. In: Proceedings of the IRE 40.9 (1952).

[ITU-T00] International Telecommunication Union. G.711: Pulse code modulation
(PCM) of voice frequencies. Tech. rep. https://www.itu.int/rec/T-REC-
G.711. ITU-T, 2000.

[Ise97] R. Isermann. “Supervision, fault-detection and fault-diagnosis methods”. In:
Control Engineering Practice 5.5 (1997).

[Ise06] R. Isermann. Fault-diagnosis systems: an introduction from fault detection to
fault tolerance. Springer Science & Business Media, 2006.

[Ise11] R. Isermann. Fault-diagnosis applications: model-based condition monitor-
ing: actuators, drives, machinery, plants, sensors, and fault-tolerant systems.
Springer Science & Business Media, 2011.

[IB97] R. Isermann and P. Ballé. “Trends in the application of model-based fault de-
tection and diagnosis of technical processes”. In: Control Engineering Practice
5.5 (1997).

[IM10] R. Isermann and M. Münchhof. Identification of dynamic systems. Springer
Science & Business Media, 2010.

[Jol02] I. T. Jolliffe. “Principal components in regression analysis”. In: Principal
Component Analysis, 2nd ed. Springer, New York, NY, 2002.

[Jua94] J.-N. Juang. Applied system identification. Prentice Hall, Inc., 1994.

[Koh+16] A. Kohn, R. Schneider, A. Vilela, A. Roger, and U. Dannebaum. Architectural
concepts for fail-operational automotive systems. Tech. rep. SAE Technical
Paper, 2016.

152

https://www.itu.int/rec/T-REC-G.711
https://www.itu.int/rec/T-REC-G.711

Bibliography

[Kol63] A. N. Kolmogorov. “On tables of random numbers”. In: Sankhyā: The Indian
Journal of Statistics, Series A (1963).

[Kol+13] J. G. Kolo, L.-M. Ang, S. A. Shanmugam, D. W. G. Lim, and K. P. Seng.
“A simple data compression algorithm for wireless sensor networks”. In: Soft
Computing Models in Industrial and Environmental Applications. Springer,
2013.

[Kol+15] J. G. Kolo, S. A. Shanmugam, D. W. G. Lim, and L.-M. Ang. “Fast and
efficient lossless adaptive compression scheme for wireless sensor networks”.
In: Computers & Electrical Engineering 41 (2015).

[Kol+12] J. G. Kolo, S. A. Shanmugam, D. W. G. Lim, L.-M. Ang, and K. P. Seng.
“An adaptive lossless data compression scheme for wireless sensor networks”.
In: Journal of Sensors 2012 (2012).

[Kop98] H. Kopetz. “The time-triggered architecture”. In: Proceedings of the First In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’98). IEEE. 1998.

[Kop11] H. Kopetz. Real-time systems: design principles for distributed embedded ap-
plications. Springer Science & Business Media, 2011.

[KK07] I. Koren and C. M. Krishna. Fault-tolerant systems. Morgan Kaufmann, 2007.

[Kra49] L. G. Kraft. “A device for quantizing, grouping, and coding amplitude-mo-
dulated pulses”. PhD thesis. Massachusetts Institute of Technology, 1949.

[KN10] S. Kreft and G. Navarro. “LZ77-like compression with fast random access”.
In: 2010 Data Compression Conference. IEEE. 2010.

[Kri14] C. M. Krishna. “Fault-tolerant scheduling in homogeneous real-time systems”.
In: ACM Computing Surveys (CSUR) 46.4 (2014).

[Kum+13] A. Kumar, R. Kumaran, S. Paul, and S. Mehta. “A low complex ADPCM im-
age compression technique with higher compression ratio”. In: International
Journal of Computer Engineering and Technology 4.6 (2013).

[KOK14] A. A. Kumar S., K. Ovsthus, and L. M. Kristensen. “An industrial perspec-
tive on wireless sensor networks – a survey of requirements, protocols, and
challenges”. In: IEEE Communications Surveys & Tutorials 16.3 (2014).

[Lan13] A. Langiu. “On parsing optimality for dictionary-based text compression –
the Zip case”. In: Journal of Discrete Algorithms 20 (2013).

[Lap92] J.-C. Laprie. “Dependability: basic concepts and terminology”. In: Depend-
ability: Basic Concepts and Terminology. Springer, 1992.

153

Bibliography

[Lei+20] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi. “Applications
of machine learning to machine fault diagnosis: a review and roadmap”. In:
Mechanical Systems and Signal Processing 138 (2020).

[LV+08] M. Li, P. Vitányi, et al. An introduction to Kolmogorov complexity and its
applications. Vol. 3. Springer, 2008.

[LS19] L. Lo Bello and W. Steiner. “A perspective on IEEE time-sensitive networking
for industrial communication and automation systems”. In: Proceedings of the
IEEE 107.6 (2019).

[LM16] R. V. Lopes and D. Menascé. “A taxonomy of job scheduling on distributed
computing systems”. In: IEEE Transactions on Parallel and Distributed Sys-
tems 27.12 (2016).

[LO17] D. Ludwig and R. Obermaisser. “Scheduling of datacompression on dis-
tributed systems with time- and event-triggered messages”. In: International
Conference on Architecture of Computing Systems. Springer. 2017.

[LGL18] W. Luo, B. Gu, and G. Lin. “Communication scheduling in data gathering
networks of heterogeneous sensors with data compression: algorithms and
empirical experiments”. In: European Journal of Operational Research 271.2
(2018).

[Luo+18] W. Luo, Y. Xu, B. Gu, W. Tong, R. Goebel, and G. Lin. “Algorithms for
communication scheduling in data gathering network with data compression”.
In: Algorithmica 80.11 (2018).

[Mac05] D. J. C. MacKay. Information theory, inference and learning algorithms.
Cambridge University Press, 2005.

[Mag15] L. Magnoni. “Modern messaging for distributed sytems”. In: Journal of
Physics: Conference Series. Vol. 608. 1. IOP Publishing. 2015.

[MO19] S. Majidi and R. Obermaisser. “Genetic Algorithm for Scheduling Time-
Triggered Communication Networks with Data Compression”. In: IEEE In-
ternational Conference on Industrial Cyber-Physical Systems (ICPS). 2019.

[MV09] F. Marcelloni and M. Vecchio. “An efficient lossless compression algorithm
for tiny nodes of monitoring wireless sensor networks”. In: The Computer
Journal 52.8 (2009).

[Mar11] P. Marwedel. Embedded System Design. 2nd ed. Springer, 2011.

[Meh+18] A. Mehmood, N. Alrajeh, M. Mukherjee, S. Abdullah, and H. Song. “A survey
on proactive, active and passive fault diagnosis protocols for WSNs: network
operation perspective”. In: Sensors 18.6 (2018).

154

Bibliography

[Men06] G. Menegaz. “Trends in medical image compression”. In: Current Medical
Imaging 2.2 (2006).

[Mil20] S. Miller. Hybrid-Electric Vehicle Model in Simulink. https://github.com/
mathworks/Simscape-HEV-Series-Parallel. 2020, [online; accessed 05-March-
2021].

[MW85] V. S. Miller and M. N. Wegman. “Variations on a theme by Ziv and Lempel”.
In: Combinatorial Algorithms on Words. Springer, 1985.

[Moo+65] G. E. Moore et al. “Cramming more components onto integrated circuits”.
In: Electronics. Vol. 38. 1965.

[Moo+75] G. E. Moore et al. “Progress in digital integrated electronics”. In: Electron
Devices Meeting. Vol. 21. 1975.

[IEC10] Norm IEC 61508: Functional safety of electrical/electronic/programmable
electronic safety-related systems. International Electrotechnical Commission
(IEC). 2010.

[ISO11] Norm ISO 26262: Road vehicles – functional safety. International Organiza-
tion for Standardization (ISO). 2011.

[Obe11] R. Obermaisser. Time-triggered communication. CRC Press, 2011.

[Omd88] T. P. Omdahl. Reliability, availability, and maintainability (RAM) dictionary.
American Society for Quality Control, 1988.

[Pet+03] D. Petrovic, R. C. Shah, K. Ramchandran, and J. Rabaey. “Data funneling:
routing with aggregation and compression for wireless sensor networks”. In:
Proceedings of the First IEEE International Workshop on Sensor Network
Protocols and Applications. IEEE. 2003.

[Pop+07] P. Pop, K. H. Poulsen, V. Izosimov, and P. Eles. “Scheduling and voltage scal-
ing for energy/reliability trade-offs in fault-tolerant time-triggered embedded
systems”. In: Proceedings of the 5th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis. 2007.

[Pro+02] J. G. Proakis, M. Salehi, N. Zhou, and X. Li. Communication systems engi-
neering. 2nd ed. Vol. 2. Prentice Hall, Inc., 2002.

[PŠ18] I. Punčochář and J. Škach. “A survey of active fault diagnosis methods”. In:
IFAC-PapersOnLine 51.24 (2018).

[RY14] K. R. Rao and P. Yip. Discrete cosine transform: algorithms, advantages,
applications. Academic Press, 2014.

155

https://github.com/mathworks/Simscape-HEV-Series-Parallel
https://github.com/mathworks/Simscape-HEV-Series-Parallel

Bibliography

[RBD13] M. A. Razzaque, C. Bleakley, and S. Dobson. “Compression in wireless sensor
networks: a survey and comparative evaluation”. In: ACM Transactions on
Sensor Networks (TOSN) 10.1 (2013).

[RP06] M. Roitzsch and M. Pohlack. “Principles for the prediction of video decoding
times applied to mpeg-1/2 and mpeg-4 part 2 video”. In: 2006 27th IEEE
International Real-Time Systems Symposium (RTSS’06). IEEE. 2006.

[RL09] W. Ryan and S. Lin. Channel codes: classical and modern. Cambridge Uni-
versity Press, 2009.

[SM06] C. M. Sadler and M. Martonosi. “Data compression algorithms for energy-
constrained devices in delay tolerant networks”. In: Proceedings of the 4th
International Conference on Embedded Networked Sensor Systems. 2006.

[SM10] D. Salomon and G. Motta. Handbook of data compression. 5th ed. Springer
Science & Business Media, 2010.

[Say17] K. Sayood. Introduction to data compression. 5th ed. Morgan Kaufmann,
2017.

[Sch05] P. Scholz. Softwareentwicklung eingebetteter Systeme: Grundlagen, Model-
lierung, Qualitätssicherung. Springer-Verlag Berlin Heidelberg, 2005.

[Sha48] C. E. Shannon. “A mathematical theory of communication”. In: Bell System
Technical Journal 27.3 (1948).

[SN09] Siemens Norm 29500: Ausfallraten Bauelemente. Siemens AG. 2009.

[SW73] D. Slepian and J. Wolf. “Noiseless coding of correlated information sources”.
In: IEEE Transactions on Information Theory 19.4 (1973).

[SM78] P. T. de Sousa and F. P. Mathur. “Sift-out modular redundancy”. In: IEEE
Transactions on Computers 100.7 (1978).

[Spa+17] H. Sparka, R. Naumann, S. Dietzel, and B. Scheuermann. “Effective lossless
compression of sensor information in manufacturing industry”. In: 2017 IEEE
42nd Conference on Local Computer Networks (LCN). IEEE. 2017.

[SKR14] S. Sridhar, P. R. Kumar, and K. V. Ramanaiah. “Wavelet transform tech-
niques for image compression – an evaluation”. In: International Journal of
Image, Graphics and Signal Processing 6.2 (2014).

[Sri+12] T. Srisooksai, K. Keamarungsi, P. Lamsrichan, and K. Araki. “Practical data
compression in wireless sensor networks: a survey”. In: Journal of Network
and Computer Applications 35.1 (2012).

[Sto88] J. A. Storer. Data compression: methods and theory. Computer Science Press,
Inc., 1988.

156

Bibliography

[SS82] J. A. Storer and T. G. Szymanski. “Data compression via textual substitu-
tion”. In: Journal of the ACM (JACM) 29.4 (1982).

[Sto96] N. R. Storey. Safety critical computer systems. Addison-Wesley Longman
Publishing Co., Inc., 1996.

[SWH94] N. Suri, C. J. Walter, and M. M. Hugue. Advances in ultra-dependable dis-
tributed systems. IEEE Computer Society Press, 1994.

[Tab20] N. Tabassam. “Minimizing the makespan of diagnostic multi-query graphs in
embedded real time systems”. PhD thesis. Universität Siegen, 2020.

[Tek12] Tektronix. Guide to MPEG fundamentals and protocol analysis. https : / /
download.tek.com/document/25W-11418-10.pdf, [online; accessed 09-Mar-
2021]. 2012.

[Uni13] United Nations Economic Commission for Europe - World Forum for Harmo-
nization of Vehicle Regulations. Proposal for a new global technical regulation
on the Worldwide harmonized Light vehicles Test Procedure (WLTP). https:
//www.unece.org/fileadmin/DAM/trans/doc/2014/wp29/ECE-TRANS-
WP29-2014-027e.pdf. 2013, [online; accessed 04-May-2021].

[UVD18] J. Uthayakumar, T. Vengattaraman, and P. Dhavachelvan. “A survey on data
compression techniques: from the perspective of data quality, coding schemes,
data type and applications”. In: Journal of King Saud University - Computer
and Information Sciences (2018).

[Vac06] G. J. Vachtsevanos. Intelligent fault diagnosis and prognosis for engineering
systems. Vol. 456. Wiley Hoboken, 2006.

[VV17] J.-M. Valin and K. Vos. Updates to the Opus audio codec. RFC 8251. https:
//rfc-editor.org/rfc/rfc8251.txt. RFC Editor, 2017.

[VVT12] J.-M. Valin, K. Vos, and T. Terriberry. Definition of the Opus audio codec.
RFC 6716. https://rfc-editor.org/rfc/rfc6716.txt. RFC Editor, 2012.

[VT02] M. Van Steen and A. Tanenbaum. “Distributed systems principles and para-
digms”. In: Network 2 (2002).

[VGM14] M. Vecchio, R. Giaffreda, and F. Marcelloni. “Adaptive lossless entropy com-
pressors for tiny IoT devices”. In: IEEE Transactions on Wireless Communi-
cations 13.2 (2014).

[Vit87] J. S. Vitter. “Design and analysis of dynamic Huffman codes”. In: Journal of
the ACM (JACM) 34.4 (1987).

[VAA04] M. C. Vuran, Ö. B. Akan, and I. F. Akyildiz. “Spatio-temporal correlation:
theory and applications for wireless sensor networks”. In: Computer Networks
45.3 (2004).

157

https://download.tek.com/document/25W-11418-10.pdf
https://download.tek.com/document/25W-11418-10.pdf
https://www.unece.org/fileadmin/DAM/trans/doc/2014/wp29/ECE-TRANS-WP29-2014-027e.pdf
https://www.unece.org/fileadmin/DAM/trans/doc/2014/wp29/ECE-TRANS-WP29-2014-027e.pdf
https://www.unece.org/fileadmin/DAM/trans/doc/2014/wp29/ECE-TRANS-WP29-2014-027e.pdf
https://rfc-editor.org/rfc/rfc8251.txt
https://rfc-editor.org/rfc/rfc8251.txt
https://rfc-editor.org/rfc/rfc6716.txt

Bibliography

[WW11] R. Wang and J. Wang. “Fault-tolerant control with active fault diagnosis for
four-wheel independently driven electric ground vehicles”. In: IEEE Transac-
tions on Vehicular Technology 60.9 (2011).

[Wel84] T. A. Welch. “A technique for high-performance data compression”. In: Com-
puter 6 (1984).

[Wil91] R. N. Williams. “An extremely fast Ziv-Lempel data compression algorithm”.
In: 1991 Data Compression Conference. IEEE Computer Society. 1991.

[YK15] S. Yoshida and T. Kida. “An efficient variable-to-fixed length encoding using
multiplexed parse trees”. In: Journal of Discrete Algorithms 32 (2015).

[UCI21] ZeMA gGmbH. Condition monitoring of hydraulic systems data set. https:
//archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+
systems. 2021, [online; accessed 14-April-2021].

[ZL77] J. Ziv and A. Lempel. “A universal algorithm for sequential data compres-
sion”. In: IEEE Transactions on Information Theory 23.3 (1977).

[ZL78] J. Ziv and A. Lempel. “Compression of individual sequences via variable-rate
coding”. In: IEEE Transactions on Information Theory 24.5 (1978).

158

https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems

	Title page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Symbols
	Introduction
	Motivation
	Research Scope
	Document Structure

	Basic Concepts
	Embedded Real-Time Systems
	Distributed Systems
	Characteristics of Distributed Systems
	Resource Constraints

	Time-Triggered Systems and Scheduling
	Dependability
	Reliability
	Maintainability
	Availability
	Safety

	Faults, Errors, and Failures
	Terminologies
	Faults
	Errors
	Failures

	Fault-Tolerant Systems
	Fault-Tolerant System Design
	Hardware Redundancy
	Information Redundancy
	Software Redundancy
	Time Redundancy

	Degradation Steps

	Fault Diagnosis
	Introduction to Fault Diagnosis
	Fault Detection Methods
	Single Signal Analysis
	Signal Models
	Process Models

	Active and Passive Fault Detection
	Fault Diagnosis Methods
	Inference Methods
	Classification Methods

	Data Compression
	Introduction to Data Compression
	Lossy Compression
	Introduction to Lossy Compression
	Discrete Cosine Transform

	Lossless Compression
	Introduction to Lossless Compression
	Huffman Coding
	Arithmetic Coding
	Context-Based Compression
	Dictionary Techniques
	Differential Encoding
	Other Lossless Compression Techniques

	Related Work
	Requirements
	Related Work
	Transform Coding
	Entropy Coding and Dictionary Techniques
	Differential Encoding and Predictive Encoding
	Distributed Source Coding
	Off-the-Shelf Algorithms Versus Application-Specific Compression Algorithms
	Data Compression and Scheduling

	Summary of the Requirements and Related Work

	DAKODIS Architecture
	Architecture Overview
	Physical Model
	Logical Model
	Directed Acyclic Graphs
	Data Streams
	Applications

	Compression Model
	Scheduling Model

	Online Data Compression for Time-Triggered Communication
	Compression of Individual Data Streams
	Cache-Based Compression Algorithm for Individual Data Streams
	Algorithm Enhancements – Reducing Uncertainty and Miss Rate
	Reducing the Uncertainty
	Reducing the Miss Rate

	Example of the Cache-Based Compression Algorithm
	Probability of a Miss
	Dynamic Cache-Based Compression Algorithm for Individual Data Streams
	Example of the Dynamic Cache-Based Compression Algorithm
	Difference Coding for Individual Data Streams

	Simultaneous Compression of Multiple Data Streams
	Preliminaries
	Cache-Based Compression Algorithm for Multiple Data Streams
	Dynamic Cache-Based Compression Algorithm for Multiple Data Streams
	Partial Misses
	Grouping of Active Hypercubes
	Automatic Grouping of Active Hypercubes
	Monitoring the Data Streams
	Static Transmission Dictionary Updates
	Dynamic Transmission Dictionary Updates

	Merging and Splitting Compressed Data Streams
	Routing and Compression Scenarios
	Merging and Splitting with the Static Cache-Based Algorithm
	Merging and Splitting with the Dynamic Cache-Based Algorithm

	Evaluation and Results
	Use Case – Hybrid Electric Vehicle
	Hybrid Electric Vehicle Model in Simulink
	Fault Model and Fault Injection

	Evaluation of the Online Data Compression Algorithms
	Test Signals
	Sensor Measurements from the HEV Model
	Generation of Synthetic Test Signals

	Loss Rates of Individually Compressed Data Streams
	Loss Rates of Multiple Simultaneously Compressed Data Streams
	Transmission Regions
	Scalability of Simultaneous Data Compression
	Signal Selection for Simultaneous Data Compression

	Time Considerations for Dictionary Searches
	Comparison with Other Data Compression Techniques
	Compression of Individual Data Streams
	Simultaneous Compression of Multiple Data Streams

	Data Compression and Information Redundancy
	Influence of Compressed Communication on Schedules
	Impact of Data Compression on Fault Diagnosis
	Classification-Based Fault Diagnosis
	Fault Diagnosis Use Case
	Hybrid Electric Vehicle Model
	Condition Monitoring of a Hydraulic System
	Classifier Implementation

	Constrained Communication Resources and Fault Diagnosis

	Conclusion
	Summary and Contribution
	Future Work

	Appendix
	Loss Rates of Evaluation Test Signals
	Classification Report for the Fault Diagnosis Use Case

	Publications
	Bibliography

