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Summary 

This work focuses on the development of new non-invasive methods for the in vivo characterization of 

the individual elastic behavior of the human aortic wall. Due to the physiological function of the elastic 

properties within the cardiovascular system and its change with degenerative processes, this knowledge 

is of direct diagnostic relevance. In addition, the individual material properties are an important, prior 

to the work presented here unknown, determinant of patient-specific finite element models, which have 

been developed to calculate the maximum wall stress and to estimate the rupture risk of abdominal aortic 

aneurysms. 

Using a modified device that provides time resolved 3D echocardiography with speckle tracking (4D 

ultrasound), a non-invasive in vivo full field measurement of human aortic wall motion was established 

in cooperation with industrial and clinical partners. It provided highly resolved motion functions of 

discrete material points and derived in-plane strain tensors for wall surface segments with a sizes be-

tween 1 and about 20 mm2. This new measurement of displacement and strain was validated in an in 

vitro experiment with respect to its agreement with optical full field measurements and to its reproduc-

ibility under identical conditions (test-retest reliability). 

Two different methods for the analysis of aortic wall motion were developed and applied to different 

patient cohorts in clinical studies. A comparison of the cyclic three-dimensional deformation of the 

proximal ascending and the abdominal aorta in terms of length and diameter change and twist provided 

deepened insight in the physiological “Windkessel” function of the ascending aorta. Statistical analysis 

of the distributions of local in-plane strains was used to obtain measures for size and heterogeneity of 

elastic aortic wall deformation (‘strain distribution indices’). A comparative clinical study in young vol-

unteers and two groups of aged cardiovascular patients without and with abdominal aortic aneurysm 

showed that aortic walls reliably can be classified according to their cardiovascular health state by use 

of the obtained strain distribution indices and that these, therefore, are suited as new biomarker for 

cardiovascular health. 

Two approaches were developed to characterize and model the individual elastic properties of the 

aortic wall. Firstly, a local distensibility coefficient has been introduced to linearly approximate and 

identify the heterogeneous local functional elastic properties in the physiological range in vivo. Sec-

ondly, an iterative Finite Element Model Updating approach to the inverse identification of the individ-

ual orthotropic and hyperelastic constitutive behavior of geometrically irregular aneurysmal walls was 

developed. It could be shown that constitutive parameter identification based on heterogeneous full field 
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strain data is feasible even though only two load cases are accessible non-invasively in vivo. The ap-

proach was verified numerically and the effect of the measurement uncertainty on the constitutive pa-

rameter identification was examined. Finally, the approach was applied exemplarily to in vivo data of 

three patients of different age and cardiovascular health state. 
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Zusammenfassung 

Ziel dieser Arbeit war die Entwicklung neuer nicht-invasiver Methoden zur Charakterisierung des indi-

viduellen elastischen Verhaltens der menschlichen Aortenwand. Aufgrund der physiologischen Funk-

tion der elastischen Eigenschaften im Herz-Kreislauf-System und deren Änderung bei degenerativen 

Prozessen und Erkrankungen hat die Kenntnis des individuellen elastischen Verhaltens zum einen un-

mittelbar diagnostische Relevanz. Zum anderen sind die individuellen Materialeigenschaften eine wich-

tige, bislang unbekannte, Bestimmungsgröße Patienten-spezifischer Finite Elemente Modelle, die zur 

Berechnung der maximalen Wandspannung und zur Abschätzung des Rupturrisikos von Bauchaorten-

aneurysmen entwickelt wurden. 

Unter Verwendung eines modifizierten kommerziellen Echtzeit-3D-Echokardiographiegeräts, dessen 

Software über einen Speckle-Tracking-Algorithmus verfügt (4D-Ultraschall), wurde in Zusammenar-

beit mit industriellen und klinischen Partnern eine neuartige Vollfeldmessung der Verformung der Aor-

tenwand etabliert. Die Messung liefert die räumliche Bewegungsfunktion diskreter materieller Punkte 

im Sinne der Kontinuumsmechanik über den Herzzyklus. Diese Daten ermöglichen die Bestimmung 

aller Komponenten des ebenen Dehnungszustandes für Gefäßwandsegmente mit einer Größe zwischen 

ca. 1 mm2 und 20 mm2. Die etablierte Messung der Wandbewegung wurde in einem in vitro-Experiment 

hinsichtlich ihrer Messunsicherheit und ihrer Reproduzierbarkeit validiert. 

Zwei Methoden zur Analyse der Wandbewegung wurden entwickelt und in klinischen Studien 

exemplarisch auf Patientengruppen angewendet. Ein Vergleich der dreidimensionalen Verformung der 

herznahen aufsteigenden Aorta und der Bauchaorta führte zu einem verbesserten Verständnis der phy-

siologischen Windkessel-Funktion der herznahen Aorta. Durch statistische Analyse der aus den Voll-

feldmessungen erhaltenen Verteilungen lokaler Dehnungen wurden neue Maße für Größe und Hetero-

genität der elastischen Verformung der Wand gewonnen, sog. Dehnungs-Verteilungs- oder Wandbewe-

gungs-Kennwerte. In einer vergleichenden klinischen Studie konnte gezeigt werden, dass diese Kenn-

werte zuverlässige Kriterien für die Klassifikation des pathologischen Zustands von Aortenwänden sind 

und sich daher als zusätzliche Biomarker für Erkrankungen der Aortenwand eignen. 

Zur Indentifikation der individuellen elastischen Eigenschaften der Aortenwand wurden im Rahmen 

dieser Arbeit zwei Ansätze entwickelt. Zum einen wurde ein lokaler Distensibilitätskoeffizient einge-

führt. Er kann ohne Modellannahmen auf Basis der 4D Ultraschalldaten und nichtinvasiver Blutdruck-

messungen bestimmt werden und ist proportional zur Inversen des Sekantenmoduls des lokalen nichtli-

near elastischen Materialverhaltens im Bereich physiologischer Belastung durch den Blutdruck. Zum 
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anderen wurde ein iteratives Finite-Element-Model-Updating-Verfahren zur inversen Identifikation des 

individuellen orthotropen und hyperelastischen konstitutiven Verhaltens entwickelt, das auch auf Aor-

ten und Aneurysmen mit geometrisch unregelmäßigen Konfigurationen angewendet werden kann. In 

einem numerischen Verifikationsexperiment konnte gezeigt werden, dass die Identifikation des Materi-

alverhaltens auf Basis der mit 4D Ultraschall gemessenen Dehnungsfelder reproduzierbar möglich ist, 

obwohl nur zwei Lastfälle nichtinvasiv messbar sind. Die Auswirkung der in der Validierungsstudie 

bestimmten Messunsicherheit auf die Parameteridentifikation wurde untersucht. Schließlich wurden 

exemplarisch die elastischen Eigenschaften von drei Patienten identifiziert, die sich nach Alter und 

Herz-Kreislauferkrankungen charakteristisch unterschieden. 
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Nomenclature 

Latin symbols 

𝑎 scalar 𝑎 ∈ 𝐑 

𝒂 vector 𝒂 ∈ 𝐑ଷ: 𝒂 ൌ 𝑎௜𝒆௜ 

𝑨 second order tensor 𝑨 ∈ 𝐑ଷൈଷ: 𝑨 ൌ 𝐴௜௝𝒆௜⨂𝒆௝ 

ℬ଴ load and deformation free natural configuration of a continuum body 

ℬ௥  chosen reference configuration for description of the deformation of a continuum 

body 

ℬ௧ any loaded and deformed current configuration of a continuum body 

𝑪 right CAUCHY-GREEN strain tensor; 𝑪 ∈  𝐑ଷൈଷ is a rotation-free deformation meas-

ure for finite deformations 

𝑬 right GREEN-LAGRANGE strain tensor 

𝑭 deformation gradient, second order tensor; 𝑭 ∈  𝐑ଷൈଷ 

𝑰 second order unity tensor; 𝑰 ∈  𝐑ଷൈଷ 

𝑷ூ 1st PIOLA-KIRCHHOFF stress tensor 

𝑷ூூ 2nd PIOLA-KIRCHHOFF stress tensor 

𝑹,𝑸 rotation tensors 

Qଵ, Qଷ 1st and 3rd quartile, respectively. The interval ሾQଵ, Qଷሿ is the interquartile range. 

Q଴.଴ଶହ, Q଴.ଽ଻ହ 2.5 % and 97.5 % quantile, respectively. The interval ሾQ଴.଴ଶହ, Q଴.ଽ଻ହሿ is the 95 % 

confidence interval. 

𝑺 nominal stress tensor 

𝑼,𝑽 right and left stretch tensor, respectively; 𝑼,𝑽 ∈  𝐑ଷൈଷ 

𝑋 material point, regardless of its reference or current position in space 

𝑿଴ position vector of a material point in its load and deformation free natural con-

figuration ℬ଴; 𝑿଴ ∈  𝐑ଷ 

𝑿 position vector of a material point in its ሺchosenሻ reference configuration; 

𝑿 ∈  𝐑ଷ 

𝑿௜,௝ discrete position vector of a material point 𝑋 in its reference configuration ℬ௥  

𝒙 position vector of a material point in a loaded and deformed current configura-

tion; 𝒙 ∈  𝐑ଷ 
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𝒙௜,௝,௞ discrete current position vector of a material point 𝑋 as obtained from 4D ultra-

sound measurements at time point 𝑘 of the cardiac cycle; indices 𝑖 and 𝑗 refer to 

placement of the discrete material point into subsets the wall motion data as ex-

ported from the Toshiba ACP; 𝑖 indicates the “height” and 𝑗 the “degree” of the 

material point. 

Greek symbols 

𝜺 nominal or BIOT’s strain tensor; 𝜺 ∈  𝐑ଷൈଷ is a rotation-free deformation measure 

for finite deformations 

𝜆௜  principal stretch in direction of basis vector 𝒆௜ , 𝑖 ൌ 1,2,3, 𝜆௜ ∈ 𝐑; eigenvalue of 𝑭 

𝜒:ℬ௔ → ℬ௕  motion function that maps one configuration of a continuum body onto another 

configuration 

Mathematical operators 

∙ scalar or inner product of two tensors 

: double scalar product or double contraction of two second order tensors.  

For 𝑨 ൌ 𝐴௜௝𝒆௜⨂𝒆௝ and 𝑩 ൌ 𝐵௞௟𝒆௞⨂𝒆௟ it is defined as 

 𝑨:𝑩 ൌ 𝐴௜௝𝒆௜⨂𝒆௝:𝐵௞௟𝒆௞⨂𝒆௟ ∶ൌ 𝐴௜௝𝐵௞௟ሺ𝒆௜ ⋅ 𝒆௞ሻ ൫𝒆௝ ⋅ 𝒆௟൯ ൌ 𝐴௜௝𝐵௜௝ ∈ 𝐑. 

⨂ dyadic or outer product of the vectors 𝒂 and 𝒃: 𝒂⨂𝒃 ൌ 𝑎௜𝑏௝𝒆௜⨂𝒆௝ 

o coupling of two mappings 

〈𝒆௜⨂𝒆௝〉, 𝑖, 𝑗 ൌ 1,2,3 gives the basis system of a tensor in matrix representation 

Abbreviations 

2D-/3D-STE time resolved two-dimensional/three-dimensional ultrasound imaging of the 

heart combined with speckle tracking 

3D ultrasound time resolved three-dimensional ultrasound without speckle tracking 

4D ultrasound time resolved three-dimensional ultrasound combined with speckle tracking 

AAA abdominal aortic aneurysm 

A. abd. abdominal aorta 

A. asc. ascending aorta 

ACP Advanced Cardiac Package 

AV atrioventricular 

BMI body mass index 

BP blood pressure 

BC boundary condition 

bpm beats per minute 
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cct, ct counterclockwise twist, clockwise twist, respectively 

cfPWV carotid-femoral pulse wave velocity 

circ. circumferential 

CS circumferential strain 

CT computed tomography 

CV cardio-vascular 

CVD cardio-vascular disease 

cyclic strain peak-to-peak amplitude of the strain that is observed throughout the cardiac  

cycle 

DC distensibility coefficient 

DDI distensibility distribution index 

ECG electrocardiogram 

ECM extracellular matrix 

EVAR endovascular repair 

FE finite element 

FEA finite element analysis 

FEM finite element method 

FEMU Finite Element Model Updating 

fps frames per second 

HI heterogeneity index ≡ coefficient of variation of the distribution of systolic local 

wall strains 

HV healthy volunteer 

ICC intraclass correlation coefficient 

ILT intra-luminal thrombus 

IQR interquartile range 

LSR local strain ratio ≡ ratio of the local peak and the mean of the distribution of local 

systolic wall strains 

LV left ventricle ሺof the human heartሻ 

MDCT  cardiac multi-detector computed tomography 

mmHg millimeter mercury column; 1 mmHg ൌ 1 torr ൌ 133.32 Pa 

MRI magnetic resonance imaging 

PAOD peripheral aortic occlusive disease 

PWV pulse wave velocity 

ref. reference 

RF radio frequency 

ROI region of interest 

sd standard deviation 
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s.e.m. standard error of the mean 

SMC smooth muscle cell 

STE speckle tracking echocardiography 

wt wall thickness 

y.o. years old 

Anatomical direction designations 

caudal towards the tail or buttock 

cranial towards the skull 

ventral towards the abdomen, at the front of the body 

dorsal towards/at the back 

proximal towards or at the center of the body or towards the heart 

distal towards or at the periphery of the body 
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1 Introduction 

1.1 Motivation by the abdominal aortic aneurysm  

rupture risk estimation 

An abdominal aortic aneurysm (AAA) is a degenerative disease of the human aorta, which is character-

ized by its permanent local dilatation to a diameter of ≥ 30 mm, compared to 15 to 20 mm of the healthy 

adult abdominal aorta [Figure 1-1]. Men younger than 55-60 years and women are rarely affected. Main 

risk factors for developing an AAA are age > 60 years, male sex, atherosclerosis, hypertension, ethnicity, 

family history and smoking [Wanhainen et al. 2019]. AAAs occur with a rate between 1.3% and 8.9% 

in men over 60 years and 2.2% in women [Vorp 2007; Nichols et al. 2011]. The main danger of this 

mostly asymptomatic disease is the rupture of the aneurysmal wall [Frömke 2006; Kühnl et al. 2017; 

Wanhainen et al. 2019] with severe bleeding into neighboring tissue and the abdomen. The consequence 

of acute bleeding from the high pressure system is hypovolemic shock and cardiovascular instability, 

which can lead to the death of the patient within minutes. Therefore, AAA rupture still is associated 

with mortality rates ≥ 80% [Debus and Gross-Fengels 2012; Reimerink et al. 2013b; Reimerink et al. 

2013a; LeFevre 2014; Scaife et al. 2016; Kühnl et al. 2017].  

There is no drug therapy available to slow down disease progression or even heal an AAA. Also 

exercise has not proven to stop or reduce AAA growth. The only available therapy is elective repair: 

Open surgical repair and increasingly minimally invasive endovascular repair (EVAR) are available as 

treatment options for non-ruptured AAA [Wanhainen et al. 2019]. In both cases, the treatment consists 

of placing an implant in the abdominal aorta which, instead of the weakened aneurysm wall, absorbs the 

mechanical load of the pulsatile blood pressure and thus prevents its rupture. Several randomized con-

trolled trials have compared the outcome of open surgical repair and EVAR [Greenhalgh et al. 2004; 

Blankensteijn 2005; Becquemin et al. 2011; Lederle et al. 2016]: Consistently, these studies report lower 

perioperative mortality after EVAR (0.5-1.7% vs. 3.0-4.7% for open repair). However, this early sur-

vival benefit is lost after 1-3 years due to the necessity of secondary interventions resulting in compara-

ble long-term survival. In a clinical study (EVAR 1 trial), Greenhalgh et al. [2004] observed increased 

aneurysm related mortality in the EVAR group beyond 8 years after surgery, mostly due to secondary 
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aneurysm sac rupture (7% vs. 1%, Wanhainen et al. 2019). These findings necessitate life-long imaging 

surveillance after EVAR. Some studies even state that, because of perioperative and long-term compli-

cations, short-term survival of AAA patients is decreased and long-term survival is not increased by 

surgical or endovascular treatment compared to pure surveillance [UK Small Aneurysm Trial Partici-

pants 2002; Karthikesalingam et al. 2013]. The “immediate decision about the size at which an aneurysm 

should be repaired is framed by the balance between the risk of aneurysm rupture [...] and the risk of 

operative mortality for aneurysm repair.” [Wanhainen et al. 2019] 

Figure 1-1 Sagittal cross-sectional view of an abdominal aortic aneurysm (AAA) with intra-luminal thrombus 
(ILT) obtained from a CT scan. [Figure reprinted from Buijs et al. 2013 with permission from Elsevier; captions 
in the image were added by A. Wittek] 
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Therefore, the assessment of the individual immediate rupture risk, on which alone the decision on 

a therapeutic intervention is based, is of particular importance. The statistical correlation of the rupture 

risk with the maximum diameter of the AAA and its growth rate has been demonstrated in a number of 

studies [see e.g. Lederle et al. 2002, UK Small Aneurysm Trial Participants 1998, 2002]. The risk dou-

bles in AAA with a diameter between 3.0 and 5.4 cm per 0.5 cm growth [Thompson et al. 2013]. Based 

on these findings, the clinical standard is to monitor "small" AAA with diameters between 3.0 and 5.4 

cm at regular intervals and to treat AAA with diameters ≥ 5.5 cm or a growth rate > 1 cm/year either by 

open surgical or by endovascular repair. However, up to 13% of small AAA (d < 5 cm) rupture [Cronen-

wett et al. 1985] and 54% of untreated large AAA with diameters between 7.1 and 10 cm remain stable 

[Darling et al. 1977]. Thus, the need for additional patient-individual biomarkers for short-term AAA 

rupture risk as basis for improved clinical decision making is widely acknowledged [Vorp 2007; 

Humphrey and Holzapfel 2012; Kontopodis et al. 2015].  

Because the rupture of the AAA wall represents its mechanical failure, the engineering concept of 

mechanical strength verification has been adopted during the past two decades in order to obtain addi-

tional patient-individual rupture risk predictors [Vande Geest et al. 2006; Vorp 2007; Maier et al. 2010; 

Humphrey and Holzapfel 2012; Martufi and Christian Gasser 2013; Farotto et al. 2018]. Mostly, the 

individual wall stress that results from the loading of the wall by pulsatile blood pressure and residual 

stresses is estimated by nonlinear Finite Element (FE) analyses whereas statistical models have been 

proposed to estimate the tensile strength of the individual wall non-invasively [Vande Geest et al. 2006]. 

In order to be able to solve the direct solid mechanical boundary value problem, i.e. calculate resulting 

stress, displacement and strain fields in the aortic wall with the required accuracy and reliability, the 

computational models have to be determined with regard to geometry, material properties and applied 

loads and boundary conditions [Fung 1993; Avril et al. 2008; Humphrey and Holzapfel 2012]. Because 

of the great inter-individual variance of these biomechanical parameters, patient specific computational 

models have to be developed if clinical diagnostic use is intended [Taylor and Figueroa, 2009]. This is 

still a challenge because all in vivo data on which the models are based have to be acquired non-inva-

sively and radiation free for ethical reasons. Thus, most of the proposed FE models are patient-specific 

only with regard to the geometrical configuration which is obtained from medical imaging data and with 

regard to blood pressure as the most relevant load. In contrast, neither the wall thickness, nor the indi-

vidual nonlinear elastic and orthotropic constitutive behavior of the AAA wall are known, cf. e.g. 

Humphrey and Holzapfel [2012], Martufi and Christian Gasser [2013] and Gasser [2016]. Population 

averaged values obtained from post-mortem studies of intraoperatively excised tissue samples are used 

instead. Joldes et al. [2015a] have shown that AAA walls are statically determinate structures and that, 

therefore, the computation of AAA wall stress is independent of the individual elastic properties if the 

deformed current configuration of the wall is known that corresponds to the current pressure load. In 

either approach, the fact that the individual material properties are unknown limits the predictive value 

of the FE analyses for AAA rupture risk: Typically, rupture does not occur when blood pressure of 
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hypertensive patients is well regulated by drugs at rest as is mostly the case during follow up examina-

tions in the clinics, but under strongly elevated pressures. These conditions, however, cannot be assessed 

using the ‘material-free’ approach proposed by Joldes et al. [2015a]. Using population averaged instead 

of individual constitutive parameters, the results of the wall stress analyses will be the more inaccurate 

the further the simulated conditions are from the observed physiological conditions. This deficiency of 

most clinically applied FE analyses makes it understandable that – despite continuous research on this 

topic since about 20 years – “none of the proposed [wall stress based] biomechanical [...] markers are 

conclusively associated with AAA rupture or growth” [Indrakusuma et al. 2016]. 

This work focuses on the development of new non-invasive in vivo methods to assess the locally 

varying, heterogeneous cyclic deformation and the anisotropic and nonlinear elastic properties of the 

individual human aortic and aneurysmal wall. One motivation for this was to provide a tool to overcome 

the described shortcoming of previous AAA wall stress analyses and to contribute to the improvement 

of their accuracy and predictive value. In addition to this, the mechanical environment and the elastic 

properties of arteries, besides biochemical or genetic factors, play an important role in the origin and 

progression of vascular diseases [cf. e.g. Kassab 2006; Thubrikar 2007; Nichols et al. 2011]. It has been 

shown that changes in the individual elastic properties are independent predictors of cardiovascular dis-

ease [Boutouyrie et al. 2002] and, if observed in AAAs, may be related to imminent rupture [Wilson et 

al. 2003]. This opens the perspective to use the more detailed information on the elastic properties of 

the individual AAA wall that is available through the methods developed in this work as indicative 

biomarkers for the pathophysiological state of the aneurysmal wall.

1.2 Organization of the thesis 

Chapter 1 gives an introduction to the pathophysiological background: first, the physiological function 

of the arteries’ elastic properties within the systemic circulation is briefly described. In a second step, 

the microstructural composition and corresponding elastic behavior of the healthy aortic wall are ad-

dressed. Finally, a brief view on the major degenerative changes of the aortic wall with age and devel-

opment of an AAA is taken. 

Chapter 2 outlines the theory of finite nonlinear elastic deformations as the continuum mechanical 

framework of the methods that were developed within this thesis. Particular attention is payed to differ-

ent types of material symmetries. 

Chapter 3 is dedicated to full field deformation and strain measurement of aortic wall motion by 

real-time three-dimensional ultrasound with speckle tracking (4D ultrasound): First, the clinical meas-

urement and the modified data interface are described that provides motion functions of discrete material 

points on the imaged aortic wall. Then, the methods for computation and analysis of the aorta’s cyclic 

deformation are presented that were implemented in this thesis. 
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Chapter 4 is dedicated to the methods and results of the validation of 4D ultrasound measurement 

uncertainty and repeatability. 

Chapter 5 presents the results of a clinical study, in which the developed methods were applied: the 

cyclic 3D deformations of the proximal ascending and of the suprarenal abdominal aortic segments were 

compared. The identified distinct deformation patterns are discussed with regard to the specific aortic 

segment’s physiological function. 

In chapter 6, a local distensibility coefficient is introduced as a novel in vivo measure for the aortic 

wall’s local functional elastic properties in the physiological range. Statistical indices of strain and dis-

tensibility fields are proposed as biomechanical biomarkers that contain condensed information about 

the cyclic elastic behavior and the heterogeneity of the material. The results of a clinical study are re-

ported and discussed in which these methods were applied to different patient collectives, exemplarily, 

in order to test the pathophysiological meaningfulness of the developed methods and biomechanical 

biomarkers. 

Finally, chapter 7 presents a Finite Element Model Updating approach to the in vivo identification 

of the individual orthotropic hyperelastic constitutive behavior of the aortic and aneurysmal wall. The 

uniqueness of the results and the effects of the determined measurement uncertainty on identified pa-

rameters was investigated by means of a numerical verification experiment. Exemplarily, the approach 

was applied to in vivo data. 

Chapters 4 to 7 are concluded by a discussion of the presented results, each.  

In chapter 8 the major results of the work are briefly summarized and discussed.

1.3 The heart and the physiological function of the  

arteries’ elastic properties 

Because of its relevance for the understanding of the cyclic elastic deformation and the function of the 

elastic properties of the aortic wall, a brief sketch of some mechanical aspects of the physiology of the 

cardio-vascular (CV) system is given in this section. Particular attention is paid to the left ventricle (LV) 

of the heart from which the ascending aorta originates. 

1.3.1 Left ventricle and systemic circulation 

The CV system consists of the heart and the blood vessels. It can be subdivided into the pulmonary 

circulation, that includes the right heart and the lung, and the systemic circulation, which, amongst 

others, includes the left heart and the aortic tree and supplies oxygenated and nutrient-rich blood to the 

systemic organs, e.g. the heart itself, skeletal muscle, brain, bone, kidney and others. The left and the 
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right heart [cf. Figure 1-2] consist of an atrium at which blood arrives from the circulation and a ventricle  

from which blood is ejected into circulation. Atria and ventricles are separated by the atrioventricular 

(AV) plane, a fibrous, semi-rigid structure that serves as the “skeleton” of the heart, at which the mus-

culature (myocardium) is fixed that is a principal constituent of the heart wall [Maksuti et al. 2015]. The 

AV plane marks the bases of the conical left and right ventricles, whereas the (lower) caudal endings of 

the ventricles that are attached to the diaphragm are called the apices. The whole heart and the roots of 

the great vessels arriving at and originating from the heart are enclosed by the pericardium, a two layered 

sac that contains the pericardial fluid. The pericardium is fixed to tissues surrounding the heart, in par-

ticular it is fixed at the lower or apical ending to the diaphragm that separates the thorax from the abdo-

men. On the one hand, the pericardium constrains the volume change of the total heart by this fixation 

[Maksuti et al. 2015 and citations therein: Watkins and LeWinter 1993; Fritz et al. 2014]. On the other 

hand, the pericardial fluid provides lubrication and enables the relative sliding motion between the con-

tracting and relaxing myocardium and surrounding structures.  

 

Figure 1-2 Cross sectional scheme of the four chambers of the right (violet) and left (red) heart. Atria and ventricles 
are separated by the atrioventricular (AV) plane (blue dashed line) in which the tricuspid valve and the mitral valve 
are situated that prevent backflow of blood from the ventricles to the atria during ventricular systole. Additionally, 
the origins of the pulmonary artery and of the aorta are located in the atrioventricular plane. Black and red arrows 
indicate the direction of the blood flow. In each cardiac cycle, the left ventricle ejects a blood volume into the 
ascending aorta and thereby supplies the systemic circulation with oxygenated blood. [Figure reprinted from Pape 
et al. 2019 with permission from Thieme, captions in the image were translated by A. Wittek] 
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Within the circulation, the heart functions as a pulsatile pump: its pumping effect results from the 

rhythmical succession of (active) contraction and (passive) relaxation of the myocardium, predomi-

nantly of the by far stronger ventricular musculature. The flow direction within the heart is regulated by 

the heart valves between the atria and the ventricles (tricuspid and mitral valve), the pulmonary valve 

and the aortic valve. All valves are located in the AV plane. [Klinke and Silbernagl 2010] 

 

Figure 1-3 Wiggers diagram of pressure, volume curves and electrocardiogram (ECG) throughout the cardiac cy-
cle. [Image: adh30 revised work by Daniel Chang MD who revised original work of DestinyQx; Redrawn as SVG 
by xavax (https://commons.wikimedia.org/wiki/File:Wiggers_Diagram_2.svg), modified by A. Wittek, 
https://creativecommons.org/licenses/by-sa/4.0/legalcode] 

Because of its relevance for deformation, loading and function of the ascending aorta that originates 

from the LV and is the subject of chapter 5 of this thesis, the phases of the cardiac cycle [cf. Figure 1-3] 

are described here for the LV of a population average young and healthy subject according to Pape et 

al. [2018]: 

Ventricular systole 

(i) Isovolumetric contraction: The LV has arrived at its maximum volume and is fully filled with oxy-

genated blood from the pulmonary circulation whereas the left atrium has its minimum volume. The 

LV myocardium starts to contract actively. Because the mitral valve and the aortic valve are closed, 

the LV pressure increases rapidly without volume change. The starting point of ventricular systole 

is marked in the electrocardiogram (ECG) by the peak (‘R’) of the QRS complex. 
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(ii) Ventricular ejection: As soon as the ventricular pressure exceeds the aortic pressure, the aortic valve 

opens and blood is ejected into the ascending aorta while the myocardium continues to contract and 

the ventricular and aortic pressure increases to its maximum of 120 mmHg (systolic blood pressure).  

Ventricular diastole 

(iii) Isovolumetric relaxation: Having reached its maximum contraction, the myocardium starts to relax 

passively. This leads to a rapid drop to zero pressure in the LV and, consequently, a reversal of the 

pressure gradient between the LV and the aorta, resulting in the closure of the aortic valve that is 

marked in the aortic pressure curve by the so-called incisura. The closed aortic valve prevents back-

flow of ejected blood and guarantees the maintenance of a non-zero blood pressure of about 

80 mmHg in the systemic arteries during diastole. 

(iv) Ventricular filling: During ventricular systole, the left atrium has been refilled by oxygenated blood 

arriving from the pulmonary circulation. Due to the pressure drop in the LV the mitral valve opens 

and the LV refills. In this phase, the myocardium is expanded passively by elastic recoil and blood 

pressure. 

 

Figure 1-4 (a) Illustration of the helical ventricular myocardial band (HVMB) model of the atrial and ventricular 
musculature (myocardium) according to Torrent-Guasp [1957] and Buckberg et al. [2015]. [Image: OpenStax 
College (https://commons.wikimedia.org/wiki/File:2006_Heart_Musculature.jpg), „2006 Heart Musculature“, 
modified by A. Wittek, https://creativecommons.org/licenses/by/3.0/legalcode] (b) The schematic representation 
of the helical arrangement of the left ventricular myocardium illustrates that contraction of the fibers of the epi-
cardial (outer) and endocardial (inner) layer create opposite twisting moments with a resulting nonzero moment 
due to the larger distance 𝑅ଵ of the epicardial layer from the long axis of the ventricle compared to the distance 𝑅ଶ 
of the endocaridal layer. The yellow and blue solid lines indicate the epicardial and endocardial fiber directions, 
respectively. The arrows show the corresponding twist resulting from fiber contraction [Figure reprinted after 
Buckberg et al. 2015 with permission from Oxford University Press] 

Neglecting differentiation into individual fiber tracts, Torrent-Guasp [1957] showed by manual dissec-

tion that the myocardium of the left and right atria and ventricles can be unfolded into a single flattened 
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rope-like band with muscle fibers aligned to its longitudinal direction. Refolding of this band into inter-

connected loops constitutes the four chambers of the heart [Figure 1-4 a]. The weaker atrial musculature 

forms the ‘basal loop’ that exhibits circumferential or horizontal fiber orientation. In contrast, the 

stronger myocardium of the left and right ventricle is formed by the conical ‘apical loop’, the fibers of 

which are arranged helically. In particular, the LV myocardium, which is the strongest section of the 

heart musculature, is formed by an inner (endocardial) helix with a fiber direction of +60° measured 

counterclockwise with respect to the horizontal direction that is covered by an outer (epicardial) helix 

that shows a fiber direction of െ60° [Figure 1-4 b, Buckberg et al. 2015]. Because of this helical ar-

rangement of the ventricular musculature that drives the ejection of blood volume against the arterial 

blood pressure, systolic contraction predominantly results long axis contraction that is coupled with 

twisting of the LV and rotation of the AV plane. 

Based on previous findings by Hoffman and Ritman [1985], Lundbäck [1986] and Carlsson et al. 

[2004; 2007], Maksuti et al. [2015] have modeled the heart as a displacement pump with the AV plane 

as piston unit: “Throughout the cardiac cycle, the AV plane moves back and forth in the [long axis] 

base-apex direction, creating reciprocal volume changes between atria and ventricles while keeping al-

most constant total heart volume. During ventricular systole, the AV plane is pulled towards the apex 

by the shortening of cardiac muscle, generating a volume displacement in the direction of the arteries 

(the stroke volume of the heart). At the same time, this downward movement produces atrial expansion, 

allowing for inflow from the veins to the atria, which results in the quantitatively most important con-

tribution to atrial filling [Steding-Ehrenborg et al. 2013]. During ventricular diastole, the AV plane 

moves back to its initial position, redistributing blood from the atria to the ventricles (the ventricular 

filling volume).”  

 

Figure 1-5 Schematic representation of the Windkessel model of the aorta. [Reprinted from Nichols et al. 2011 
with permission from CRC after Westerhof et al. 2009] 

Only during the ventricular ejection phase, i.e. about 1 3⁄ rd of the cardiac cycle, blood is ejected 

from the heart into the systemic circulation and a pressure gradient between the LV and the systemic 

arteries is built up that drives blood flow towards the peripheral vessels and the organs. Because of its 
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elastic properties, the aortic wall is expanded in this phase by the increasing blood pressure and the LV 

contraction [cf. chapter 5, Wittek et al. 2016b] and portions of blood volume and elastic energy are 

stored in the deformed wall. During isovolumetric relaxation, ventricular filling and isovolumetric con-

traction, the aortic valve prevents the backflow of blood from the aorta into the LV. The pressure gradi-

ent towards the periphery and, consequently, blood flow in the systemic circulation are maintained dur-

ing these phases by the elastic energy stored in the aortic wall: the aortic wall contracts due to elastic 

recoil and the stored blood volume is forwarded to the systemic circulation. This essential contribution 

of the aorta’s and the systemic arteries’ elastic properties to the maintenance of the circulation during 

diastole is called ‘Windkessel’ effect (Figure 1-5). [Westerhof et al. 2009; Pape et al. 2018; Nichols et 

al. 2011; Caro 2012] 

A second important function of arterial elasticity is to prevent constructive interference of initial 

and reflected pressure waves and consequent hypertension as well as the increase of pressure load on 

the left ventricle: The pulse pressure wave that originates from the LV propagates with finite pulse wave 

velocity (PWV) in the elastic arterial tree [Figure 1-6].  

According to the MOENS-KORTEWEG equation [Nichols et al. 2011], that holds for a NEWTONIAN 

fluid in a thin-walled cylindrical tube, the PWV depends on the elastic properties of the systemic arteries: 

 
𝑃𝑊𝑉 ൌ ඨ

𝐸ℎ
𝜌𝑑௜

 , eq. 1-1 

where  

E is the YOUNG’s modulus in circumferential direction, 

h is the wall thickness, 

di is the inner ሺor meanሻ diameter of the tube and 

ρ is the density of blood. 

Since the elastic properties of arterial walls are not linear, E is not a proper YOUNG’s modulus that 

describes the constitutive behavior, but a secant modulus that linearly approximates the elastic response 

of the whole arterial tree in the physiological pulsatile loading range. 

The propagating pulse pressure wave is reflected in part at every discontinuity in the arterial tree 

[Figure 1-6], e.g. at every bifurcation where the vessel diameter changes. Major sites of reflection are 

the branching of the abdominal aorta into the iliac arteries and the transition from the large arteries into 

arterioles and capillaries. In a young and healthy CV system, heart rate and elastic properties (and re-

sulting PWV) are harmonized to one another so that the initial pressure wave is not amplified by con-

structive interference with the reflected wave(s). Moreover, PWV is such that the reflected wave reaches 

the LV again only in early diastole when the aortic valve is already closed. In this way, the elastic 

properties of the arterial walls ensure that the reflected pressure wave does not increase the load against 

which the myocardium of the LV has to work. [O'Rourke et al. 2018] 
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Figure 1-6 Schematic view of the “arterial tree”, i.e. the (elastic) aorta and (muscular) branching arteries. With 
every parting branch, volume flow rate is reduced in each of the branches. Consequently, diameter and wall thick-
ness are reduced continuously along the arterial tree with increasing distance from the heart. [Figure reprinted 
from Nichols et al. 2011 with permission from CRC Press.] 

1.3.2 Elastic and muscular arteries 

The systemic arteries can be subdivided into elastic and muscular vessels. The elastic arteries are large 

conduit vessels that are found close to the heart, e.g. the aorta that is the main subject of this work and 

the common carotid artery. In contrast, the smaller arteries and arterioles that are situated more distally 

to the heart in the limbs and in general in the periphery of the body (e.g. the femoral arteries) are of the 

muscular type. The main difference between both types is the proportion and function of smooth muscle 

cells (SMCs) in the media. Only a smaller amount of smooth muscle cells is found in the media of elastic 
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arteries compared to muscular arteries. Their primary function is the remodeling of the wall by synthe-

sizing and organizing extracellular matrix components such as collagen. Elastic arteries respond passive-

elastically to external loads and their mechanical behavior is determined by the main load bearing com-

ponents, elastin and collagen, and the composition of the extracellular matrix. 

In contrast, the media of muscular arteries and arterioles mainly consists of helically arranged 

smooth muscle cells. These are able to actively change the cross-section of the vessel in response to wall 

shear stress due to blood flow. Thereby, muscular arteries regulate blood pressure and prevent hyper-

tension. [Fung 1993; Nichols et al. 2011; Caro 2012] 

1.4 Microstructural elements and composition 

of the aortic wall 

1.4.1 Microstructural elements of aortic walls 

Aortic walls are composed of different types of living cells and non-living extracellular matrix (ECM) 

elements. One primary function of the cells that are embedded in the wall (smooth muscle cells and 

fibroblasts) is the production and reproduction of the extracellular matrix, which is the load-bearing part 

of the wall. Two phenotypes of smooth muscle cells exist: one of these has an active contractile mech-

anism that is comparable to skeletal muscle, but cannot be controlled consciously. This phenotype is 

found predominantly in arteries of the muscular type. Besides this, a synthetic phenotype of smooth 

muscle cells exists that plays an important part in the remodeling of the aortic wall: it produces growth 

factors, protein degrading enzymes (proteases) and ECM components and organizes the ECM micro-

structure by depositing newly synthesized components, in particular collagen. This synthetic phenotype 

is dominant in elastic arteries such as the aorta. [Lesauskaite et al. 2003; Nichols et al. 2011; Niestrawska 

2019]  

The extracellular matrix consists of structural, fiber-like proteins, elastin and collagen, and of the 

unstructured ground substance that, together with smooth muscle cells, fills the interstices of the struc-

tural elements [Wolinsky and Glagov 1967b]. Due to their high content of elastin, young and healthy 

aortic walls are very distensible under physiological loading. Collagen, in turn provides the passive 

strength of the tissue, sets a limit to the physiological range of deformation and maintains the shape of 

organs and tissues. Moreover, it serves as a scaffold, on which cells can adhere. [Humphrey 2002] 

The ground substance is a hydrophilic gel in which the structural elements of the extracellular matrix 

are embedded. It contains different saccharides (mucopolysaccharides or glycosaminoglycans) and tis-

sue fluid. The amount of bonded water varies depending on various factors and influences the mechan-

ical properties of the tissue. [Fung 1993] 
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Elastin is a protein. In the load-free state, these strand-like macromolecules that are loosely cross-

linked by covalent bridges are arranged in an unstructured, crimped manner. Therefore, elastin behaves 

like an isotropic elastic solid despite its composition of fibers. Under external loading, the rubbery mesh-

work is stretched and the fibers get oriented in loading direction [Alberts et al. 2002, Figure 1-7]. This 

reversible reorganization of elastin under loading provides the high distensibility of elastic biological 

tissues, in particular at low stresses in the physiological domain. Biological tissues with a dominant 

elastin content behave almost linearly elastic in uniaxial tensile tests, even for large deformations. Load-

ing and relief path are not identical, but form a hysteresis indicating the viscoelasticity of the material 

[Fung 1993]. Unlike most other microstructural components, elastin is not subject to continuous remod-

eling but „available data indicate that elastin is very inert and exists [chemically] unchanged in the body 

for decades, if not the whole human life span.“ [Nichols et al. 2011] 

 

Figure 1-7 Arrangement of elastin fibers in the unloaded (relaxed) state and under uniaxial tension (stretched).  
[Image reprinted from Alberts et al. 2007 with permission from Taylor & Francis Group] 

Like elastin, collagen is a protein. In contrast to elastin, the strand-like macromolecules are contin-

uously synthesized by cells in the arterial wall, so that fractured collagen fibers can be replaced. More-

over, collagen molecules are organized in hierarchical order structures at different length scales [cf. 

Heim et al. 2010, Figure 1-8]. In addition to the properties of the macromolecules themselves, the way 

of their hierarchical arrangement into fibrils and fibers strongly determines the elastic properties of col-

lagenous tissues: The individual macromolecules are left-handed helices. Three of these chains together 

form a right-handed triple helix, which is the characteristic building unit of collagen [van der Rest and 

Bruckner 1993]. The triple helices, in turn, are organized in fibrils: they are arranged in parallel and 

show an offset in longitudinal direction, one against another, so that they overlap. This highly ordered 

microstructure provides the high stiffness, characterized by a YOUNG’s modulus of about 1 GPa and 
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high tensile strength (50-100 MPa) of collagenous tissues. Bundles of fibrils form collagen fibers show-

ing diameters between 0.2 μm and 12 μm. These, in turn, are embedded in fasciae in a wavy configura-

tion [Figure 1-9]. [Fung 1993; Kassab 2006; Holzapfel 2008] 

 

 

Figure 1-8 Scheme of the hierarchical organization of collagen at different length scales. [Figure reprinted from 
Heim et al. 2010 with permission] 

According to variations in their hierarchical organization, 28 types of collagen are distinguished to 

date [Díez 2007] that show markedly different mechanical properties. However, there are important 

mechanical characteristics that are shared by all collagenous tissues: 

 

 

Figure 1-9 Wavy configuration of a collagen fiber shown with the characteristic length 𝑙଴ and angle Θ଴ in the 
unloaded state. [Reproduced after Fung 1993 with permission from Springer Nature] 

(i) Because of its composition of highly ordered fibers and fasciae, most collagenous tissues show 

strongly anisotropic elastic properties. According to the way how the fibers are arranged, these may 
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be two- or three-dimensional, transversally isotropic (ligaments and tendons) or orthotropic (arterial 

walls). 

(ii) Collagen fibers are able to withstand high tensile stresses, but buckle immediately under compres-

sive stresses like a rope. 

(iii) The characteristic high tensile strength (50-100 MPa) and stiffness (≈ 1 GPa) of collagenous tissues 

do not come into effect at low physiological loads because of the wavy configuration of the collagen 

fibers in the load-free state [Figure 1-9]. Only with rising loading, collagen fibers are straightened 

by and by and contribute increasingly to the mechanical response of the tissue which is governed 

by other constituents of the composite tissues, mainly elastin, at lower loading. This results in the 

typical, exponential force-extension (and correspondingly: stress-strain) curves of collagenous tis-

sues under uniaxial loading [Figure 1-10]. Once smoothed, collagen fibers do allow only small ad-

ditional deformation. 

 

Figure 1-10 Force-extension data recorded from an uniaxial tensile test on a porcine aortic specimen. [Image with 
premission: Cell and Vascular Mechanics Group, Goethe University Frankfurt] 

Usually, their recruitment marks the upper boundary of physiological loading and deformation. Col-

lagen fibers prevent tissues against super physiological loading. [Fung 1993]  

Proteoglycans, i.e. a type of macromolecules that consist of a protein to which several carbohydrates 

are covalently bound, are able to regulate residual stresses [cf. 0] in the wall and, thus, influence stress 

distribution inside the wall [Azeloglu et al. 2008; Niestrawska 2019].  

1.4.2 Structural composition of the healthy aorta 

The walls of young and healthy aortae are composed of three layers: intima, media and adventitia [Figure 

1-11, cf. Fung 1993; Holzapfel et al. 2000; Humphrey 2002; Kassab 2006; Caro 2012 as general refer-

ences for the paragraphs of this section]. 
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1.4.2.1 Intima 

The intima constitutes the luminal surface of the arterial wall. In young and healthy arteries, it consists 

of a single layer of endothelial cells. These rest on a basal membrane and a thin subendothelial layer of 

collagen fiber bundles, elastic fibers and some smooth muscle cells. The intima provides an interface to 

the blood flow: mechanically it reduces shear stress between blood flow and the wall. The intima does 

not contribute to the mechanical strength and properties of the wall in young and healthy aortae. 

 

Figure 1-11 a) Schematic view of the layered structure of arterial walls indicating the layers’ dominant structural 
components [Image reprinted from Holzapfel et al. 2000 with permission from Springer Nature]. b) Histological 
micrograph showing a transversal cross section of a healthy porcine aortic wall with Elastica van Gieson staining: 
elastin and collagen fibers appear in dark and light red, respectively. [Image with permission: Cell and Vascular 
Mechanics Group, Goethe University Frankfurt, Germany]. 

1.4.2.2 Media 

The media is the middle layer of the aorta. It is separated from and connected to the intima and the 

adventitia by the internal and external elastic laminae. The media consists of a three-dimensional net-

work of smooth muscle cells and elastin and collagen fibers that is organized in concentric elastic layers. 

Wolinsky and Glagov [1967b] have first identified these layers as building units of the aortic wall that 

can be found in all mammalian species: Each layer is composed of relatively thick elastin bands, whereas 

a network of elastin fibers connects the layers. Collagen fibrils are situated in the interstices in a wavy 

configuration. They are arranged helically in several, layer-specific preferred fiber directions which are 

oriented predominantly in circumferential direction of the vessel: Niestrawska et al. [2016] determined 

two symmetrically arranged fiber directions (given as median [IQR]) of 𝜑ଵ ൌ 24.46°ሾ22.45° െ 30.18°ሿ 

and 𝜑ଶ ൌ 180° െ 𝜑ଵ with respect to the circumferential direction of the vessel in 17 human abdominal 
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aortae from aged donors (mean ± SD = 63 ± 11 years). Smooth muscle cells are present between adja-

cent elastic layers. Wolinsky and Glagov [1967b] showed that size and structure of these elastic lamellar 

units is almost uniform in different mammalian species with body weights ranging from 28 g to approx-

imately 200 kg. According to the different loading conditions that are connected with size and body 

weight, the aortic wall is composed of a different number of lamellar units: Corresponding to the well-

known linear dependency of the circumferential wall stress 𝜎ఝ of a thin-walled pressurized (𝑝) cylinder 

on the ratio of radius 𝑟 and wall thickness ℎ: 𝜎ఝ ൌ  𝑝 ∙  𝑟 ℎ⁄ , the number of lamellar units, and conse-

quently wall thickness ℎ, is nearly proportional to the diameter of the aorta in different species. As a 

consequence, 𝑟 ℎ⁄  and tension per lamellar unit are almost constant for a wide range of species. In the 

human aorta, the media consists of 40 to 70 lamellar units. The number of lamellar units decreases 

proportional to the vessel diameter with increasing distance from the heart.  

1.4.2.3 Adventitia 

The outermost layer of the wall is less organized than the media. It predominantly consists of ground 

substance and thicker bundles of collagen fibers, which are oriented more to the axial direction of the 

vessel (Niestrawska et al. [2016]: median [IQR] = 77.53° [67.04°, 84.02°] with respect to the circum-

ferential vessel direction), and to a smaller extend of elastin. Mechanically, it has a twofold function as 

a protective ‘shell’ of the aortic wall, preventing it against overload under super-physiological condi-

tions, and as a connection and an interface to the surrounding connective and perivascular adipose tissue. 

Extracellular matrix producing cells (fibroblasts) are embedded in the collagen network as well as nerves 

and blood vessels that provide nutrients and remove waste products from the outer aortic wall. 

[Niestrawska 2019]
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1.5 Mechanical properties of the aortic wall 

Uniaxial quasistatic tensile tests in axial and circumferential directions of the vessel as well as biaxial 

tests show the strongly nonlinear and anisotropic elastic properties and the low degree of viscoelasticity 

of the aortic wall in a cyclically loaded physiological state. According to Holzapfel et al. [2000], three 

different characteristic types of mechanical response to external loading can be distinguished [Figure 

1-12]. 

1.5.1 Stress-strain path I: reversible deformation 

An almost isotropic and linear stress response to small strain is followed by an anisotropic exponential 

increase of stress at larger strains. Loading and unloading path are not identical, but form a closed hys-

teresis indicating the time dependent relaxation of the stress response, i.e. viscoelastic behavior. Cyclic 

loading and unloading of excised tissue in the reversible range at first results in a softening of the stress 

response: the stress-strain hysteresis is shifted to the right in the diagram that is shown in Figure 1-12. 

In addition to this, the hysteresis becomes narrower, the loading and unloading paths are closer together. 

After 5 to 10 loading cycles a cyclically stable state with a narrow hysteresis is reached. This corresponds 

to the typical physiological loading condition. 

 

Figure 1-12 Three characteristic types of the aortic wall’s mechanical response to uniaxial loading: (I) reversible 
deformation at low loading, (II) irreversible deformation and (III) reversible deformation after previous irreversi-
ble deformation. [Figure reprinted from Holzapfel et al. 2000 with permission from Springer Nature] 
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1.5.2 Stress-strain path II: irreversible deformation 

Loading beyond point I in Figure 1-12 results in irreversible plastic deformation of the tested tissue 

sample. The transition from reversible deformation to irreversible damage of the tissue is marked by a 

turning point of the stress-strain curve. Compared to viscoelastic deformations, plastic deformations are 

characterized by a considerably enlarged and not closed hysteresis: after complete unloading, the sample 

does not return to its original length, but a residual elongation remains. 

1.5.3 Stress-strain path III: reversible deformation after irreversible, 
plastic deformation. 

If samples that underwent plastic deformation are not exposed to loads beyond the maximum load that 

was reached during plastic deformation, the material will show again viscoelastic behavior under cyclic 

loading like in case I: during the first load cycles a considerable softening of the material is observed 

that is associated with a narrowing of the viscoelastic hysteresis. Eventually, a cyclically stable, station-

ary state with almost identical loading and unloading paths, i.e. almost elastic behavior is reached. How-

ever, compared to case I, the material will exhibit an irreversibly changed, considerably softened elastic 

behavior 

1.5.4 Pseudoelasticity 

The viscoelastic properties of the aortic wall have considerable effects only at the transition from the 

load-free to the loaded state, but become more and more negligible under stationary cyclic loading which 

corresponds to the physiological loading condition. The hypothesis of almost elastic material properties 

under cyclic physiological loading is supported by simultaneous in vivo recordings of the aortic diameter 

and pressure during a single cardiac cycle that were performed by Barnett et al. [1961]: both curves do 

not show any remarkable phase shift [reported in Caro 2012]. Therefore, it is widely accepted to neglect 

the viscoelastic properties of arterial walls in biomechanical modeling since Fung et al. [1979] have 

proposed the concept of pseudoelasticity, i.e. the approximation of the aortic wall’s constitutive behavior 

in the reversible domain by time-independent hyperelastic models. 

1.5.5 Anisotropy 

The experimentally observed two preferred collagen fiber directions that lie in the wall plane and are 

arranged symmetrically to the longitudinal and circumferential directions of the aorta render the elastic 

behavior of the material locally orthotropic [cf. Figure 1-13, cf. chapters 2.3.3 and 6.4 and for more 
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detailed information e.g. Holzapfel 2009; Holzapfel and Ogden 2017; Niestrawska 2019]. These pre-

ferred directions vary layer-specifically [Holzapfel 2009; Badel et al. 2012]. However, it has been shown 

that arterial walls can be adequately modeled continuum mechanically as a single-layered thin shell 

[Marra et al. 2006; Avril et al. 2010]. Then, however, the two directions may model the anisotropy of 

the composite phenomenologically rather than having a physical meaning as preferred fiber directions. 

In some collagenous materials like ligaments and tendons, the collagen fibers and fasciae are almost 

perfectly aligned in parallel so that these tissues show strongly anisotropic behavior. In the aortic wall, 

however, the collagen fibers are not perfectly aligned but dispersed about the preferred directions [Can-

ham et al. 1989; Finlay et al. 1995; Horny et al. 2010; Schriefl et al. 2012]. In contrast to the preferred 

directions, the orientation of single collagen fibers is not restricted to the wall plane so that collagen 

fibers form a three-dimensional network in aortic walls [Fung 1993; Niestrawska 2019]. Depending on 

the degree of fiber dispersion, the degree of anisotropy of the aortic wall may vary. For a completely 

random distribution of the collagen fibers about a preferred direction – as was observed e.g. by Niestraw-

ska et al. [2019] in the remodeled neo-adventitia in some abdominal aortic aneurysms – the elastic prop-

erties are purely isotropic. 

 

Figure 1-13 Schematic illustration of material symmetries and the arrangement of collagen fibers in the aortic wall. 
(a) The preferred in-plane directions of collagen fibers in the medial and the adventitial layer of the wall, 𝜑ெ and 
𝜑஺, are arranged symmetrically to the longitudinal and circumferential directions of the vessel. 𝐻ெ and 𝐻஺ refer 
to the thickness of the medial and the adventitial layers and 𝐷௜ is the inner diameter of the vessel [Image reprinted 
from Holzapfel et al. 2004 with permission from the ASME]. (b) illustrates the dispersion of the collagen fibers 
about the preferred in-plane fiber directions 𝐌ᇱ and 𝐌 in each layer the orientation of which is determined by their 
angle 𝜑 with respect to the unit normal vector 𝐄௵ indicating the circumferential or tangential direction of the vessel 
wall. 𝐄ோ and 𝐄௓ indicate the radial and the axial direction, respectively [Image reprinted from Holzapfel 2009 with 
permission from Springer Nature]. 
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1.5.6 Incompressibility 

Like other biological soft tissues, aortic wall tissue is characterized by a 70% volume fraction of water 

and behaves slightly compressible. As it is impossible to date to exactly quantify the volume change 

under loading in vivo, the incompressibility assumption is widely accepted as a good approximation for 

the purpose of modeling the elastic behavior of the aortic wall [cf. Holzapfel and Weizäcker 1998; Hol-

zapfel et al. 2004; Humphrey and Holzapfel 2012; Farotto et al. 2018 and citations therein]. 

The elastic properties are not homogeneous, but change along the aortic tree [Figure 1-6]. Evidently, 

there will be a difference between elastic and muscular arteries due to the differences in the 

microstructural composition of both types of arteries. But also the stiffness of the aortic wall increases 

with growing distance of the aortic segment from the heart.

1.6 Axial prestretch and residual stresses 

In vivo, the aortic wall is exposed to prestresses as well as to residual stresses, i.e. stresses that are 

present even in the unloaded configuration. Firstly, the aortic wall is loaded by cyclic pulsatile blood 

pressure. The minimum value that is assumed throughout the pulse cycle is about 80 mmHg in healthy 

subjects corresponding to 10.7 kPa so that the wall is inflated permanently in the living organism. More-

over, the aorta is exposed to a constant axial prestress and -stretch in situ, i.e. as long as it is situated in 

the body, even when not loaded by blood pressure [Fung 1993; Kassab 2006; Horný 2015]. Han and 

Fung 1995 have observed in in vitro experiments using canine and porcine aortae that axial in situ pre-

stretch increases along the aortic tree with growing distance from the heart from about  

 𝜆 ൌ
𝑖𝑛 𝑠𝑖𝑡𝑢 𝑙𝑒𝑛𝑔𝑡ℎ
𝑒𝑥𝑐𝑖𝑠𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

ൌ 1.2 eq. 1-2 

in the proximal ascending aorta to 1.4 to 1.5 in the infrarenal aorta. Schulze-Bauer et al. [2003] and 

Sommer et al. [2010] have shown that the axial stretch remains almost constant in iliac and carotid 

arteries under pulsatile loading by pulse pressure. They have hypothesized that this is a principle of 

energetic optimization of arterial function, thereby avoiding cyclic motion of the arterial wall that does 

not contribute to its physiological function of guiding continuous blood flood from the heart to the 

smaller and the peripheral vessels. Horny et al. [2011; 2012; 2013; 2017] extensively have investigated 

the age dependency of axial prestretch and prestress in the human abdominal aorta. They observed that 

population average prestretch decreases exponentially from between 1.2 and 1.4 in 20 y.o. subjects to 

1.0, i.e. no prestretch, in 80 to 90 y.o. subjects. Correspondingly, the reduced axial pretension force 𝐹௥௘ௗ 

that acts on the wall in longitudinal direction indpendently of the pulse pressure, decreases on average 

from about 2 N at the age of 20 y. to 0 N beyond 80 years of age.  
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Compared to the wall stresses due to blood pressure and axial prestretch, the wall shear stresses due 

to blood flow are very small and mechanically negligible: Caro [2012] reports a shear stress of 0.53 Pa 

for the abdominal aorta compared to wall stresses in the kPa range due to physiological hydrostatic 

pressure in the same artery. However, wall shear stresses are sensed by the endothelial cells of the intima 

and play an important role in regulation of the systemic blood pressure by active adaptation of peripheral 

arterial diameter through smooth muscle contraction and relaxation [cf. chapter 1.3.2] and as a trigger 

for the remodeling of arterial walls. 

 

Figure 1-14 Schematic view of (a) the load-free and (b) the stress-free configuration of an excised aortic wall’s 
cross section. The stress-free configuration is characterized by the opening angle α. [Reproduced after Fung 1993 
with permission from Springer Nature]  

Only when excised from the body, the aorta is in a load-free state. However, in arterial and aortic 

walls, this load-free state is not the stress-free state. Fung [1984] and Vaishnav and Vossoughi [1983] 

have observed independently that an excised ring segment of the aortic wall opens up when cut radially 

and its cross section becomes a circle segment with a characteristic opening angle α [cf. Figure 1-14b].  

 

Figure 1-15 (a) Distribution of residual strains across the wall thickness of a porcine left anterior descending artery. 
(b) Comparison of the resulting distributions of circumferential wall stresses across the wall thickness under phys-
iological loading by axial prestretch and blood pressure with and without consideration of residual strain. [Figure 
reprinted from Zhang et al. 2005 with permission from Tech Science Press] 

𝛼

a b
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This behavior indicates the presence of residual bending stresses in tangential or circumferential 

direction of the vessel in the load-free (intact) configuration [Figure 1-14a], i.e. compressive and tensile 

stresses at the luminal (inner) and abluminal (outer) border of the wall and a steady, almost linear pro-

gression and a neutral surface in between [cf. Chuong and Fung 1986, Zhang et al. 2005, Figure 1-15a]. 

Chuong and Fung [1986], Zhang et al. [2005] and Cardamone et al. [2009] have shown that these pre-

stresses prevent peaks of circumferential stress that are observed usually at the luminal border of pres-

surized cylinders [cf. e.g. Ogden 1997; Silber and Steinwender 2005]. The superposition of bending 

stresses and wall stresses due to pressurization result in an almost homogeneous distribution of circum-

ferential stresses across the wall thickness under physiological loading [Figure 1-15b]. 

Holzapfel et al. [2007] have shown that the three layers of human aortic walls exhibit characteristi-

cally diverging configurations when separated from each other experimentally. I.e. even the open ring 

segment does not represent a configuration of the wall that is free of residual stresses, but the three layers 

are tensed together in this common configuration.

1.7 Degenerative changes of the aorta‘s elastic properties 

with age and pathology 

1.7.1 Aging 

Degenerative age-related changes in the large elastic, but not in the muscular arteries are progressive 

throughout life, starting from early adulthood. With age, stiffening, i.e. the increase of the circumferen-

tial secant modulus in the physiological loading domain, and dilation of elastic arteries are observed. 

Both macroscopic changes are effects of changes in the load-bearing media: Elastin fibers and elastic 

laminae, the building units of the media [cf. 1.4.1, 1.4.2], are progressively degenerated and lose their 

orderly arrangement. The elastic laminae undergo thinning, splitting, fraying and fragmentation. [Nich-

ols et al. 2011] 

Concomitant remodeling results in the increase in – by far stiffer – collagenous material and in 

thickening of the intima  due to hyperplasia: Elastin fibers decrease from 32.14% to 20.26% dry weight 

of the thoracic aortic wall between 20 and 80 years of age while collagen fibers increase from 21.44% 

to 32.41% dry weight [Faber and Møller-Hou 1952; Nichols et al. 2011]. For the abdominal aorta, 

Schulze-Bauer and Holzapfel [2003] report a thickness ratio of intima/media/adventitia of about 

13/56/31 in the elderly and a thickness ratio of 20/49/31 was observed for a same age group by Niestraw-

ska et al. [2019]. Calcium is deposited in degenerate elastic laminae, contributing to further stiffening, 

and a decrease in SMC content is observed. In addition to this, there are indications for (chronic) in-
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flammation of arterial walls with age. The mentioned changes can be summarized under the term arte-

riosclerosis. This diffuse, not localized, degeneration affects the media of all arteries of the elastic, but 

not the muscular type. [Cf. Nichols et al. 2011, Teixeira et al. 2015 and citations therein.] 

Nichols et al. [2011] hypothesize that fatigue and fracture of elastin fibers due to cyclic mechanical 

loading by pulsatile pressure and resulting deformation are the principal cause of these age-related 

changes. The by far larger cyclic deformation to which the elastic conduit arteries are exposed compared 

to muscular arteries then could explain the fact that only these are affected by medial degeneration. 

Following early works by Byrom and Dodson [1948] and Byrom [1969], Nichols et al. [2011] consider 

the observed inflammation as a consequence of the destruction of elastin fibers and laminae due to 

mechanical overload (hypertension) or fatigue: inflammatory cells such as macrophages invade the ar-

terial wall to clean up fractured elastin and repair the wall by collagen remodeling. Other groups argue 

that inflammation is not a consequence, but the reason for elastin degradation and draw attention to 

proteolytic (i.e. elastin and collagen degrading) enzymes such as matrix metalloproteinases (MMPs) that 

are produced by inflammatory cells [cf. Niestrawska 2019 for a brief overview of inflammation related 

processes that degrade ECM and inhibit its remodeling]. Regardless of the undecided debate of the 

origin of elastin degradation in elastic arteries, it results in a persistent medial degeneration, since – in 

contrast to other non-living molecular components of cells and ECM – elastin is synthesized only pre-

natally and cannot be remodeled [cf. 1.4.1]. 

Arterial stiffening, in turn, triggers a cascade of adverse changes that have been described as the 

“cardio-vascular (ageing) continuum” in order to emphasize their mutual dependency [Dzau et al. 

2006b, 2006a; O'Rourke 2007; O'Rourke et al. 2010]: Depending on arterial stiffness, PWV is increased 

[cf. 1.3, eq. 1-1]. As a consequence, the phase shift between the initial pressure wave that propagates 

towards the periphery and the reflected wave is diminished and both waves interfere constructively re-

sulting in increased systolic and pulse pressure at constant diastolic pressure, i.e. in systolic hypertension 

[Nichols et al. 2011; Caro 2012; O'Rourke et al. 2018]. This increased cyclic pressure load extends 

further downstream along the arterial tree and causes damages in the capillary vessels of brain and kid-

neys, which may lead to dementia and renal failure [Nichols et al. 2011]. Moreover, with increased 

PWV, the reflected pressure wave returns to the heart before the aortic valve is closed, so that the LV 

has to work against this additional load [Avolio et al. 1983]. It was shown that this hypertensive load 

increases the risk of cardiovascular events, leads to LV hypertrophy and, eventually, cardiac failure 

[Boutouyrie et al. 2002; Nichols et al. 2011]. Though the described ageing changes have universal va-

lidity and have been observed in various populations independent of life style and ethnicity, a large 

variability of individual arterial stiffness is observed at any age [Nichols et al. 2011]. 

In contrast to arteriosclerosis and arterial stiffening, atherosclerosis is not an ageing effect in itself: 

it is ubiquitous among adults in western societies and the most common cause of cardiovascular death 

in the West, but so far it is rarely observed in studies on e.g. aged Chinese population. Atherosclerosis 

affects all large and medium arteries regardless of the difference between elastic and muscular arteries. 
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It refers to the localized presence of lipids in the intima that causes local intimal thickening by inflam-

mation, fibrous remodeling and hyperplasia of the endothelium. These changes predominantly extend 

into the arterial lumen, causing its narrowing (stenosis), reduction of blood flow and, thus, ischemia 

downstream. If the coronary arteries are affected, it may cause coronary heart disease and heart attack. 

The localized spreading of atherosclerotic changes into the media is discussed as a cause of local dila-

tation of the abdominal aorta, i.e. of abdominal aortic aneurysms. [Nichols et al. 2011; Teixeira et al. 

2015] 

1.7.2 Abdominal aortic aneurysm (AAA) 

The development and propagation of an AAA is associated with significant changes in the microstruc-

tural composition and the mechanical behavior of the aortic wall: Tavares Monteiro et al. [2014] ob-

served correlations of aneurysmal maximum diameter [cf. 1] with elastin, collagen and SMC content 

and the infiltration of inflammatory cells into the media [cf. 1.4.2]. Failure stress of the wall was in-

creased [!] with maximum diameter, but no correlation was found between maximum diameter and 

failure strain. Niestrawska et al. [2016] determined micro-calcifications in the intima and media of 

AAAs. Based on histological analysis, Tanaka et al. [2015a], Tanaka et al. [2015b], Kugo et al. [2016], 

Ollikainen et al. [2016], Niestrawska et al. [2016] and Niestrawska et al. [2019] identified increased 

accumulations of lipids and adipocytes (fat cells) in the load-bearing media of AAAs, i.e. sections that 

consisted of components with negligible mechanical strength and extended up to the mm range. Inves-

tigating the reorganization of collagen in AAA walls, Lindeman et al. [2010] were able to show that 

remodeled collagen in some AAAs does not behave as a network any more: The tissue loses its ability 

to distribute mechanical forces resulting in stress concentration in single fibers, potential overload and 

rupture. In most AAAs, intraluminal thrombus (ILT) is present. ILT is a pseudo-tissue with low tensile 

strength that forms mostly from coagulated blood in backwater areas of the AAA lumen [Figure 1-1]. 

Thrombus covered parts of the wall generally show lower structural integrity and strength compared to 

thrombus free parts: walls are thinner and contain significantly less elastin, remaining elastin bands are 

broken and elastic laminae are disorganized to a higher degree [cf. Niestrawska 2019 and citations 

therein]. Moreover, Raghavan et al. [2006] demonstrated that wall thickness may vary locally between 

0.23 mm close to a rupture site and 4.26 mm in a highly calcified area in the same aneurysm. Several 

studies report increased circumferential stiffness and a decreased degree of anisotropy of AAA walls 

[Thubrikar et al. 2001; Pierce et al. 2015; Sassani et al. 2015]. 

Combining microstructural analysis by histology and second harmonic generation imaging with 

macroscopic mechanical characterization by biaxial tensile testing of intraoperatively excised AAA 

tissue, Niestrawska et al. [2019] have recently proposed a systematic classification of AAAs according 

to three stages of disease progression. The three stages were defined by the size of the ‘inflection 

stretch’, i.e. the stretch [cf. chapter 2.1, eq. 2-10] at which the maximum change of slope of the nonlinear 
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stress-stretch curve under equi-biaxial loading was observed [cf. Figure 1-10, Figure 1-12]. It was shown 

that the three stages are distinctly different with regard to the degree of degeneration of elastic 

components, inflammation and collagenous remodeling: 

AAAs that showed an inflection stretch λ comparable to healthy, non-aneurysmal aortae in the range 

of 1.10 ≤ λ < 1.15 were classified as stage 1. Stage 1 AAAs showed significantly reduced contents of 

elastin and SMCs compared to the healthy control (3% vs. 20% and 3.5% vs. 35%, respectively), 

disorganization of the media as well as the three-layered structure of the wall [cf. 1.4.2]: internal and 

external elastic laminae that separate the media from intima and adventitia, respectively, were not 

distinguishable any more. The characteristics of the anisotropic behavior changed from orthotropy with 

two symmetrical preferred directions of collagen fibers to transversal isotropy with collagen fibers 

almost aligned to the circumferential direction [cf. chapter 2.3.4]. 

AAAs that showed increased inflection stretches λ ≥ 1.15 were classified as stage 2. In this sample 

group, elastin and SMC content were further decreased to only 1%, each. The original layers of the wall 

(intima, media, adventitia) were not distinguishable any more. The remains of the original wall showed 

transversely isotropic behavior comparable to stage 1. Abluminally, i.e. outside the original wall, 

remodeling of a new collagenous layer, the so-called ‘neo-adventitia’, was observed that extended over 

9-50% of the total wall thickness with a median value of 18%. Collagenous remodeling correlated with 

the occurrence of (in part disrupted) adipocytes and of inflammatory cells inside the wall that were 

neither found in the healthy control, nor in stage 1 AAAs. 

Stage 3 AAA walls were defined by inflection stretches λ < 1.10 that were smaller compared to the 

healthy control. The original walls were almost completely degraded, only remains of the former 

adventitia were found. The remodeled collagenous neo-adventitia span over about 66% of the total wall 

thickness and exhibited almost isotropic behavior. Compared to stage 2, elastin and SMC content 

decreased even further to 0%. However, two significantly different subtypes of stage 3 walls could be 

identified: A ‘vulnerable’ type showed significant contents of adipocytes and co-localized inflammatory 

cells inside the wall. In contrast, in the walls of a ‘stable remodeled’ type neither of both was found. 

They were characterized by a dense, multilayered collagen network. No difference in maximum 

diameter was seen between the ‘vulnerable’ and the ‘stable’ type. These findings are in accordance with 

Cohen et al. [1988], who showed experimentally that the degradation of elastin (‘elastase’) leads to 

dilatation, but not rupture, of aortic walls, whereas the degradation of collagen (‘collagenase’) results in 

rupture without dilatation. 

The described microstructural changes are reflected by correlations between disease progression 

and parameters of constitutive equations that model the nonlinear elastic anisotropic biomechanical 

behavior of the AAA wall [cf. Holzapfel et al. 2015]. Evidently, the mentioned changes of the preferred 

collagen fiber directions and of the degree of anisotropy are reflected by the corresponding constitutive 

parameters. Moreover, Niestrawska et al. [2019] found significant correlations with parameters that 

determine the stiffness of the material. 
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Alongside with inflammatory processes, increased expression of diverse proteases (e.g. matrix 

metalloproteases 2 and 9 [Freestone et al. 1995; Petersen et al. 2002]) and of cytokines was observed in 

aneurysmal walls. Proteases are enzymes that degrade components of the load bearing ECM such as 

elastin and collagen and contribute directly to the weakening of the wall. In contrast, cytokines such as 

TNF (tumor necrosis factor) and IFN-γ (interferon-gamma) are proteins that may cause the death 

(apoptosis) of collagen synthesizing SMCs or inhibit collagen synthesis by SMCs and fibroblasts. In 

this way, they indirectly promote the weakening of the wall by preventing its repair. Both, proteases and 

cytokines, are produced by inflammatory cells. [Cf. Niestrawska 2019 for a more complete 

representation of these processes and further references to original literature.] 

As already discussed in the context of aging, it is still unclear what is first and initiates AAA 

development: increased fracture and fatigue of load bearing ECM components as a consequence of local 

mechanical overload (e.g. due to locally excessive constructive interference of initial and reflected 

pressure waves or due to turbulent flow) that entails inflammatory processes [He and Roach 1994; 

Niestrawska et al. 2019], or, vice versa, inflammation that originates e.g. from intimal atherosclerotic 

plaque, expands into the media and promotes ECM degradation through the mentioned chemical 

processes. 
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2 Continuum mechanical framework 

The continuum mechanical framework is developed in this section as far as it is necessary for the un-

derstanding of the research that is presented in the subsequent chapters of this thesis. The deformation 

of the aortic wall and its passive elastic properties, i.e. the functional connection of the deformation of 

a continuum body and its stress response, are described based on the theory of finite non-linear elastic 

deformations. The representation in this chapter is limited to homogenous deformations and quasistatic 

processes. 

The chapter is based on the more complete representations in Holzapfel [2010], Ogden [1997], 

Parisch [2003], Silber and Steinwender [2005] and Ogden [2009], which are given here as global refer-

ences for the whole chapter. Unless otherwise stated, the EINSTEIN summation convention is used in this 

chapter. 

 

Figure 2-1 Basic kinematics of a continuum body: The identical material point 𝑋 is shown in its reference config-
uration ℬ௥ and a current configuration ℬ௧. 𝑿 and 𝒙 denote the position vectors of 𝑋 in ℬ௥ and ℬ௧, respectively. 𝒖 
is the displacement of  𝑋 from ℬ௥ to ℬ௧.

2.1 Kinematics of finite deformations 

A continuum body 𝐵 is regarded as a coherent subset of the EUCLIDEAN vector space 𝐑ଷ that consists 

of densely packed material points 𝑋. These are neither mathematical points without extension, nor point 

masses in a physical sense. In contrast, each material point 𝑋 is carrier of physical properties, it has an 
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infinitesimally small volume d𝑉 and mass d𝑚. In its arbitrarily chosen reference configuration ℬ௥ at a 

time point 𝑡௥ ∈ 𝐑 , 𝐵 can be described with regard to a LAGRANGIAN or material reference frame by a 

field of material position vectors 𝑿 ∈  𝐑ଷ: 

 𝑿 ൌ  𝑿ሺ𝑋, 𝑡௥ሻ ൌ 𝑋௜ሺ𝑋, 𝑡௥ሻ𝒆௜  , eq. 2-1 

where 𝒆௜ , 𝑖 ൌ 1,2,3 is a right-handed set of orthonormal basis vectors and 𝑋௜ ∈ 𝐑 [cf. Figure 2-1]. In 

principle, any observed configuration of 𝐵 can be chosen as reference configuration ℬ௥ for the descrip-

tion of its deformation. Often however, the stress and deformation free natural configuration ℬ଴ of a 

body is chosen. Any deformed or current configuration ℬ௧ of 𝐵 is described by the vector field 

 𝒙ሺ𝑋, 𝑡ሻ ൌ  𝑥௜ሺ𝑋, 𝑡ሻ𝒆௜ eq. 2-2 

marking the current spatial position of a material point 𝑋 at a time point 𝑡 ∈ 𝐑. Without loss of gener-

ality, the position vector 𝑿ሺ𝑋, 𝑡௥ሻ and 𝒙ሺ𝑋, 𝑡ሻ are given with regard to the same basis in this work. The 

motion  

 𝒙ሺ𝑋, 𝑡ሻ ൌ  𝝌ሺ𝑿ሺ𝑋, 𝑡௥ሻ, 𝑡ሻ eq. 2-3 

is a – potentially nonlinear – one-to-one mapping of the reference configuration ℬ௥ onto the current 

configuration ℬ௧  at time point 𝑡 : 𝝌:ℬ௥ → ℬ௧ . 𝝌  is a C2-diffeomorphism, i.e. the inverse mapping 

𝝌ିଵ:ℬ௧ → ℬ௥ exists and 𝝌 and 𝝌ିଵ are twice continuously differentiable: 

 𝑿ሺ𝑋, 𝑡ሻ ൌ  𝝌ିଵሺ𝐱ሺ𝑋, 𝑡ሻ, 𝑡௥ሻ eq. 2-4 

For practical purposes, the distinction between the material point 𝑋 and its position vector 𝑿 in ℬ௥ 

is neglected. As initially stated, arterial walls are regarded as purely elastic in this work, i.e. the time 

history between two different configurations of a continuum body 𝐵 has no effect on the current con-

figuration and ℬ௥ and ℬ௧ may be directly compared without regarding the intermediate configurations. 

Therefore eq. 2-3 and eq. 2-4 may be rewritten as 

 𝒙 ൌ  𝝌ሺ𝑿ሻ eq. 2-5 

and 

 𝑿 ൌ  𝝌ିଵሺ𝒙ሻ . eq. 2-6 

In general, 𝝌 can be formulated as 

 𝝌ሺ𝑿ሻ ൌ 𝑿 ൅ 𝒖ሺ𝑿ሻ , eq. 2-7 
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where 𝒖ሺ𝑿ሻ ൌ 𝒙 െ 𝑿 is the displacement field that transforms the reference configuration of the mate-

rial point field into its current configuration. Equations  eq. 2-3 to eq. 2-7 provide a description of the 

deformation of a solid body according to the LAGRANGIAN method, i.e. the motion function follows the 

trajectory of the identical material point over time. In contrast, the EULERIAN description method pro-

vides functions of varying displacement and velocity vectors over time at a fixed location in space, 

which is passed by different material points 𝑋. 

If one considers two neighboring material points located at 𝑿 and 𝑿 ൅ d𝑿 in the chosen reference 

configuration ℬ௥, the infinitesimal line element d𝒙 that connects their positions in the current configu-

ration ℬ௧ can be approximated linearly using the total derivative 

 
d𝒙 ൌ  

𝜕𝒙
𝜕𝑿

∙  d𝑿 ൌ Grad 𝒙 ∙ d𝑿 , eq. 2-8 

where 'ꞏ' is the scalar or inner product and Grad is the gradient operator in ℬ௥. The non-singular second-

order tensor  

 
𝑭 ൌ Grad 𝒙 ൌ

𝜕𝒙
𝜕𝑿

 eq. 2-9 

is defined as the deformation gradient. According to eq. 2-8 it is a linear mapping of the infinitesimal 

line element d𝑿 in the reference configuration onto its current configuration d𝒙 and thus describes the 

deformation of the continuum body in the infinitesimal neighborhood of a material point 𝑋. A homoge-

neous deformation is characterized by the fact that 𝑭 is identical for all material points 𝑋 ∈ 𝐵 or that 𝑭 

is independent of the material position vectors 𝑿. 

Let 𝑙௥ ൌ |d𝑿| be the length of the infinitesimal line element d𝑿 in the reference configuration, 

𝑙 ൌ  |d𝒙| be the length of the same line element in its current configuration and d𝑿ഥ ൌ d𝑿 |d𝑿|⁄  and  

d𝒙ഥ ൌ  d𝒙 |d𝒙|⁄  be the normalized direction vectors of the line element in its respective configuration. 

Then eq. 2-8 with eq. 2-9 may be formulated as 

 𝑙
𝑙௥

d𝒙ഥ ൌ 𝑭 ∙ d𝑿ഥ  . eq. 2-10 

 
𝜆 ൌ

𝑙
𝑙௥

 eq. 2-11 

is defined as the stretch. In addition to this, the deformation gradient 𝑭 provides linear mappings of 

infinitesimal area and volume elements from the arbitrarily chosen reference configurations 

d𝒂௥ ൌ  𝐍d𝐴௥  and d𝑉௥  onto their current configurations d𝒂௧ ൌ 𝒏d𝐴௧  and d𝑉௧ , where 𝑵 and 𝒏 are the 

normal unit vectors on the area element in its respective configuration: 
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 d𝒂௧ ൌ det ሺ𝑭ሻ𝑭ି୘ ∙ d𝒂௥ , eq. 2-12 

 d𝑉௧ ൌ det ሺ𝑭ሻd𝑉௥ . eq. 2-13 

The scalar 

 
𝐽 ൌ  det ሺ𝑭ሻ ൌ

d𝑉௧
d𝑉௥

 eq. 2-14 

is defined as the volume change. 

Since the reference configuration ℬ௥ can be chosen arbitrarily, the effect of a change of the reference 

configuration on the deformation gradient has to be considered. Regard two mappings from different 

reference configurations ℬ௥  and ℬ௥ᇱ  onto the identical current configuration ℬ௧ , 𝝌:ℬ௥ → ℬ௧  and 

𝝌′:ℬ௥ᇱ → ℬ௧. The respective deformation gradients 𝑭 and 𝑭′ are given by 

 
𝑭 ൌ

𝜕𝒙
𝜕𝑿

   and    𝑭′ ൌ
𝜕𝒙
𝜕𝑿′

  eq. 2-15 

Using the chain rule, 𝑭′ can be expressed in terms of 𝑭 

 
𝑭ᇱ ൌ

𝜕𝒙
𝜕𝑿

∙
𝜕𝑿
𝜕𝑿ᇱ

ൌ 𝑭 ∙
𝜕𝑿
𝜕𝑿ᇱ

ൌ 𝑭 ∙ 𝑷ିଵ  ,  eq. 2-16 

where 

 
𝑷 ൌ

𝜕𝑿′
𝜕𝑿

ൌ Grad 𝑿′  eq. 2-17 

is the deformation gradient that transforms an infinitesimal line element d𝑿 in ℬ௥ into the corresponding 

line element d𝑿′ in ℬ௥ᇱ  and describes the mapping 𝜿: ℬ௥ → ℬ௥ᇱ . The transformations of uniaxial stretch 

𝜆 [eq. 2-11] and volume change 𝐽 [eq. 2-14 ] under such a change of reference configuration are given 

by 

 
𝜆′ ൌ

𝑙
𝑙௥

𝑙௥
𝑙௥ᇱ

  , and eq. 2-18 

 
𝐽′ ൌ  

d𝑉௧
d𝑉௥

d𝑉௥
d𝑉௥ᇱ

  . eq. 2-19 

According to the polar decomposition theorem, any deformation gradient 𝑭 can be decomposed 

uniquely into positive definite symmetric second-order tensors 𝑼 and 𝑽 and a proper orthogonal or ro-

tational second-order tensor 𝑹 such that  
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 𝑭 ൌ  𝑹 ∙ 𝑼 ൌ 𝑽 ∙ 𝑹 eq. 2-20 

with 𝑹 ∙ 𝑹் ൌ 𝑰 and det 𝑹 ൌ 1. 

The right and left stretch tensor 𝑼 and 𝑽 are symmetric and positive definite second order tensors. 

Both tensors have the same eigenvalues as 𝑭, the principal stretches 𝜆௜, 𝑖 ൌ 1,2,3. With regard to the 

normalized principal stretch directions 𝑵௜ in the reference or material configuration and 𝒏௜ in the cur-

rent or spatial configuration they are represented as follows: 

 
𝑼 ൌ෍𝜆௜𝑵௜⨂𝑵௜

ଷ

௜ୀଵ

 , eq. 2-21  

 
𝑽 ൌ෍𝜆௜𝒏௜⨂𝒏௜  .

ଷ

௜ୀଵ

 eq. 2-22 

Without loss of generality, the nominal or BIOT's strain tensor may be defined with regard to an or-

thonormal basis system constituted by the principal stretch directions in the reference configuration as  

 
𝜺 ൌ  𝑼 െ   𝑰 ൌ෍ሺ𝜆௜ െ 1ሻ𝑵௜⨂𝑵௜

ଷ

௜ୀଵ

 , eq. 2-23  

and correspondingly the nominal strains are given by 𝜀௜ ൌ  𝜆௜ െ  1 ൌ  Δ𝑙௜ሺ𝑡ሻ 𝑙௜,௥⁄ . Stretches as well as 

nominal strains are direct and intelligible measures of deformation. 

The right and left CAUCHY-GREEN strain tensors, 𝑪 and 𝑩, respectively, are defined by means of the 

deformation gradient as 

 𝑪 ൌ  𝑭் ∙ 𝑭 eq. 2-24 

 𝑩 ൌ 𝑭 ∙ 𝑭୘. eq. 2-25 

From this definition follows immediately that 𝑪 and 𝑩 are positive definite symmetric second order ten-

sors: 

 𝑪 ൌ  𝑪୘ , eq. 2-26 

 𝑩 ൌ  𝑩୘ . eq. 2-27 
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The principal invariants of 𝑪 and 𝑩 are identical and given by 

 𝐼ଵ ൌ trሺ𝑪ሻ , eq. 2-28 

 𝐼ଶ ൌ
1
2
ሾ𝐼ଵ
ଶ െ trሺ𝑪ଶሻሿ , eq. 2-29 

 𝐼ଷ ൌ det𝑪 ൌ 𝐽ଶ . eq. 2-30 

Without loss of generality, the principal invariants may be given in terms of the principal stretches 

𝜆ଵ, 𝜆ଶ, 𝜆ଷ: 

 𝐼ଵ ൌ 𝜆ଵ
ଶ ൅ 𝜆ଶ

ଶ ൅ 𝜆ଷ
ଶ , eq. 2-31 

 𝐼ଶ ൌ 𝜆ଵ
ଶ𝜆ଶ

ଶ ൅ 𝜆ଵ
ଶ𝜆ଷ

ଶ ൅ 𝜆ଶ
ଶ𝜆ଷ

ଶ , eq. 2-32 

 𝐼ଷ ൌ 𝜆ଵ
ଶ𝜆ଶ

ଶ𝜆ଷ
ଶ , eq. 2-33 

and using eq. 2-30 from eq. 2-33 follows 

 𝐽 ൌ 𝜆ଵ𝜆ଶ𝜆ଷ . eq. 2-34 

The case that a continuum body does not undergo any deformation or rigid body motion can be 

regarded as an identical mapping 𝝌:ℬ௥ → ℬ௥. Then 

 d𝑿 ൌ 𝑭 ∙ d𝑿 ⇔ 𝑭 ൌ 𝑰 eq. 2-35 

and consequently 𝑼 ൌ 𝑽 ൌ 𝑪 ൌ 𝑩 ൌ 𝑰. The GREEN-LAGRANGE strain tensor 

 𝑬 ൌ
1
2
ሺ𝑪 െ 𝑰ሻ eq. 2-36 

is defined as a deformation measure that returns the zero vector for the undeformed state. In the unde-

formed state, for any rigid body motion and for any isochoric deformation, the volume change 𝐽 takes 

the value 1. 

Regard an arbitrary motion 𝒙 and a motion 𝒙ෝ with overlaid rigid body rotation 𝑸 and rigid body 

translation 𝒄: 

 𝒙ෝሺ𝑿ሻ ൌ 𝑸 ∙ 𝒙ሺ𝑿ሻ ൅ 𝒄, eq. 2-37 
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where 𝑸 is a proper orthogonal second order tensor [cf. eq. 2-20] and 𝒄 ∈ 𝐑ଷis a vector. Note that both 

motion functions refer to the same reference configuration. According to eq. 2-9, for the motion 𝒙, the 

deformation gradient is given by 𝑭 ൌ ∂𝒙/ ∂𝑿 . In contrast, 𝑭෡ corresponding to 𝒙ෝ reads as  

 
𝑭෡ ൌ

𝜕𝒙ෝ
𝜕𝑿

ൌ
𝜕
𝜕𝑿

ሺ𝑸 ∙ 𝒙 ൅ 𝒄ሻ ൌ 𝑸 ∙
𝜕𝒙
𝜕𝑿

൅
𝜕𝒄
𝜕𝑿

ൌ 𝑸 ∙ 𝑭. eq. 2-38 

The latter equation shows that the representation of the deformation of a continuum body by the defor-

mation gradient is free of translational rigid body motions but not free of rigid body rotations. Note that 

𝑸 and 𝑭 can be understood as two deformation gradients and that the scalar product indicates the se-

quential application of both to the reference configuration: 

 𝑭: ℬ𝒓 → ℬ𝒕 ,  𝑸: ℬ௧ → ℬ෡௧  , and  

 𝑸 ∙ 𝑭 ൌ 𝑸 o 𝑭: ℬ𝒓 → ℬ෡𝒕 eq. 2-39 

In contrast, the right and left stretch tensor 𝑼 and 𝑽, respectively, are free of any rotational elements 

by definition, including any rigid body rotations. That 𝑪 and 𝑩 are unaffected by rigid body rotations 

can be understood from their dependency on 𝑼 and 𝑽, respectively: 

 𝑪 ൌ 𝑭୘ ∙ 𝑭 ൌ ሺ𝑹 ∙ 𝑼ሻ୘ ∙ 𝑹 ∙ 𝑼 ൌ 𝑼୘ ∙ 𝑹୘ ∙ 𝑹 ∙ 𝑼 ൌ 𝑼 ∙ 𝑰 ∙ 𝑼 ൌ 𝑼ଶ , eq. 2-40 

 𝑩 ൌ 𝑭 ∙ 𝑭୘ ൌ 𝑽 ∙ 𝑹 ∙ ሺ𝑽 ∙ 𝑹ሻ୘ ൌ 𝑽 ∙ 𝑹 ∙ 𝑹୘ ∙ 𝑽୘ ൌ 𝑽 ∙ 𝑰 ∙ 𝑽 ൌ 𝑽ଶ . eq. 2-41 

Since 𝑼 describes the deformation state with respect to the normalized principal stretch directions 𝑵௜ in 

the reference configuration [eq. 2-21], 𝑪 ൌ 𝑼ଶ is a material strain tensor, whereas 𝑩 ൌ 𝑽ଶ is a spatial 

strain tensor [eq. 2-22]. 

These deformation tensors as well as the BIOT’s strain tensor, that was defined by means of its 

relation to 𝑼 [eq. 2-23], are suited for the description of finite deformations that may include large rigid 

body rotations as they are commonly observed in aortic wall mechanics [cf. chapters 5 and 6 of this 

thesis].
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2.2  Stress tensors 

According to NEWTON’s 2nd law of motion, the sum of all forces 𝑲 acting on a continuum body (in any 

current configuration ℬ௧) equals the temporal change of its linear momentum 𝒑ሶ ൌ 𝑚𝒗ሶ , where 𝑚 is the 

mass, 𝒗 the velocity of a volume element and the operator 𝒑ሶ ൌ d𝒑 d𝑡⁄ : 

 𝑲 ൌ 𝒑ሶ  . 
eq. 2-42 

 

Figure 2-2 Kinetics of a continuum body: Velocity 𝒗 of an infinitesimal volume element d𝑉௧, body forces 𝒌௏ per 
volume element d𝑉௧ and surface forces 𝒕 per area element d𝑨௧ ൌ 𝒏d𝐴௧ acting on the current configuration of the 
body. 

Distinguishing directed body forces 𝒌௏ that are defined per volume elment d𝑉௧ and directed surface 

forces 𝒕 that are defined per area element d𝑨௧, i.e. stress vectors, the impulse balance eq. 2-42 may be 

formulated without loss of generality for any current configuration ℬ௧ of the continuum body [cf. Figure 

2-2] as follows:  

 
න 𝒌௏d𝑉௧
డ௏೟

൅ න 𝒕 d𝐴௧
డ஺೟

ൌ 𝑚𝒗ሶ  , eq. 2-43 

where 𝜕𝑉௧ is the volume and 𝜕𝐴௧ is the bounding surface of the whole continuum body. 

𝒕𝒏

d𝑉௧ d𝐴 ௧

𝒌 ௏
ℬ௧

𝑚
𝒗
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In the absence of body forces and for the static or quasistatic case, eq. 2-43 reduces to the equilib-

rium equation 

 
න 𝒕 d𝐴௧
డ஺೟

ൌ 𝟎 . eq. 2-44 

According to CAUCHY’s stress theorem, the stress vector 𝒕 ∈ 𝑹 is linearly related to the non-singular 

CAUCHY stress tensor 𝝈 ∈ 𝑹ଷൈଷ by means of the surface normal unit vector 𝒏: 

 𝒕 ൌ 𝝈୘ ∙ 𝒏 . eq. 2-45 

Using eq. 2-45 and the divergence or GAUSS’s theorem, equilibrium eq. 2-44 may be formulated as 

 
න 𝝈୘ ∙ 𝒏 d𝐴௧
డ஺೟

ൌ 𝟎 ⇔ න div 𝝈 d𝑉௧ ൌ 𝟎
డ௏೟

 , eq. 2-46 

where div is the divergence operator on the current configuration. Equation eq. 2-46 must hold for ar-

bitrary volumes 𝜕𝑉௧ and therefore the integrand itself must vanish. This provides the local form of the 

equilibrium equation for the current configuration ℬ௧: 

 div 𝝈 ൌ 𝟎 . eq. 2-47 

In order to fulfill the balance of moments, 𝝈 must be a symmetric tensor: 𝝈୘ ൌ 𝝈 [cf. e.g. Silber and 

Steinwender 2005 for a detailed description]. Using eq. 2-12 and eq. 2-14, eq. 2-46 can be transformed 

to the reference configuration ℬ௥: 

 න 𝝈୘ ∙ 𝒏 d𝐴௧
డ஺೟

ൌ 𝟎 ⇔ න 𝝈୘ ∙ 𝐽 𝑭ି୘ ∙ 𝑵dA௥

డ஺ೝ

ൌ 𝟎 ⇔ න 𝐽𝝈୘ ∙  𝑭ି୘ ∙ 𝑵dA௥

డ஺ೝ

ൌ 𝟎 eq. 2-48 

Following Ogden [2009] the 1st PIOLA-KIRCHHOFF stress tensor, which is denoted here as 𝑷୍, and its 

transpose, the nominal stress tensor designated 𝑺 in this thesis, are defined as 

 𝑷୍ ൌ 𝐽𝝈୘ ∙  𝑭ି୘ , eq. 2-49 

 𝑺 ൌ ൫𝑷୍൯
୘
ൌ 𝐽 𝑭ିଵ ∙ 𝝈 . eq. 2-50 
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Consequently, from eq. 2-48 the local form of the equilibrium equation for the reference configura-

tion ℬ௧ is obtained: 

 Div 𝑺 ൌ 𝟎 , eq. 2-51 

where Div is the divergence operator on the reference configuration. Finally, the 2nd PIOLA-KIRCHHOFF 

stress tensor, denoted in this thesis by 𝑷୍୍, is introduced as 

 𝑷୍୍ ൌ 𝐽 𝑭ିଵ ∙ 𝝈 ∙  𝑭ି୘ ൌ 𝑺 ∙  𝑭ି୘ . eq. 2-52 

2.3 Elastic material properties 

The elastic material equation constitutes the relation between the two state variables of a continuum 

body that have been introduced in the previous sections 2.1 and 2.2: deformation and stress. Therefore, 

it is called constitutive equation. It can be determined experimentally, only.  

2.3.1 Cauchy elasticity 

For a CAUCHY elastic material, the stress response depends on the current deformation state, only, not 

on the deformation history [see Silber and Steinwender 2005 and Silber and Then 2013 for detailed 

discussion of this topic]. The constitutive equation is a symmetrical, tensor valued function of the de-

formation gradient 𝑭: 

 𝝈 ൌ 𝝈ሺ𝑭ሻ,   𝝈 ൌ 𝝈୘ . eq. 2-53 

If 𝑭 describes a deformation with regard to an arbitrarily chosen reference configuration ℬ௥, 𝝈ሺ𝑭ሻ 

gives the stress difference between the current configuration ℬ௧ and ℬ௥. In this case, ℬ௥ may be loaded 

with prestresses that originate from boundary conditions. If, in contrast, the reference configuration is 

an undeformed and load-free natural configuration ℬ଴, it is required that the stress vanishes for the 

undeformed state 𝑭 ൌ 𝑰: 

 𝝈ሺ𝑰ሻ ൌ 𝟎 . eq. 2-54 

Stresses that do not vanish in the load-free configuration are called residual stresses and the corre-

sponding residually stressed configuration is distinguished from the natural configuration. Note that 
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residual stress and corresponding deformation states are necessarily inhomogeneous since the boundary 

region of the unloaded body must be stress free. 

2.3.2 Hyperelasticity 

From the first law of thermodynamics together with the law of the conservation of mass, 

 𝜌௥ ൌ 𝐽𝜌௧  , eq. 2-55 

where 𝜌௥ and 𝜌௧ are the density of the body in its reference and current configuration, the mechanical 

law of power conservation in its local form can be derived [cf. Silber and Steinwender 2005 for detailed 

derivation]: 

 𝜌௥𝑢ሶൌ 𝑷୍୍:𝑬ሶ  . eq. 2-56 

It balances the product of the time derivative of the inner energy of the body per mass unit 𝑢ሶ ൌ  d𝑢 d𝑡⁄  

and the density 𝜌௥ of the body in the reference configuration, on the on hand, and the double contration 

of the 2nd PIOLA-KIRCHHOFF stress tensor and the right GREEN strain rate tensor, on the other hand. Note 

that the density 𝜌௥ in the reference configuration is time independent. Introducing the strain energy po-

tential  

 𝑤 ∶ൌ𝜌௥𝑢 eq. 2-57 

and regarding eq. 2-36, eq. 2-56 can be written as 

 𝑤ሶ ൌ
1
2
𝑷୍୍:𝑪ሶ  . eq. 2-58 

Hyperelastic materials are characterized by the existence of such a strain energy potential 𝑤, that is 

a twofold steadily differentiable, scalar valued tensor function of the current deformation state. I.e. 𝑤 

depends only on the deformation gradient 𝑭: 

 𝑤 ൌ 𝑤ሺ𝑭ሻ . eq. 2-59 

This includes that 𝑤 may depend on 𝑭 through 𝑪ሺ𝑭ሻ, which is chosen here as representation [see e.g. 

Ogden 2009 for alternative formulations]: 

 𝑤 ൌ 𝑤ሺ𝑪ሻ . eq. 2-60 

Regarding the following relation for the time derivative of a scalar valued tensor function [cf. Silber and 

Steinwender 2005] 
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𝑓ሶሺ𝑨ሻ ൌ

𝜕𝑓ሺ𝑨ሻ

𝜕𝑨
: 𝑨ሶ  , eq. 2-61 

it follows immediately that for a hyperelastic material, the 2nd PIOLA-KIRCHHOFF stress tensor can be 

obtained as function of the partial derivative of the strain energy function with regard to the right CAU-

CHY-GREEN strain tensor: 

 
𝑷୍୍ ൌ 2

𝜕𝑤ሺ𝑪ሻ

𝜕𝑪
  . eq. 2-62 

Using the relations given in eq. 2-52 the CAUCHY and the nominal stress tensors can be written as func-

tions of 𝜕𝑤 𝜕𝐂⁄ , too: 

 
𝝈 ൌ 2𝐽ିଵ𝑭 ∙

𝜕𝑤ሺ𝑪ሻ

𝜕𝑪
∙ 𝑭୘ , eq. 2-63 

 
𝑺 ൌ 2

𝜕𝑤ሺ𝑪ሻ

𝜕𝑪
∙ 𝑭୘ . eq. 2-64 

Equations eq. 2-62 to eq. 2-64 hold for hyperelastic materials without any internal constraint such as 

incompressibility. For an incompressible material, the volume change 𝐽 [eq. 2-14] equals 1 for all load-

ing conditions, which is known as the incompressibility condition: 

 𝐽 ൌ det𝑭 ൌ 1 . eq. 2-65 

With 𝐽 ൌ √det𝑪 ൌ √det𝑩 follows  

 det𝑪 ൌ det𝑩 ൌ 1 eq. 2-66 

in case of incompressibility. For such a material, hydrostatic pressures, that are represented by the tensor 

െ𝑝𝑰 with respect to the current configuration, do not induce any deformation of the body, but additional 

stress, which must be determined from the boundary conditions and loading of the body. This hydrostatic 

stress tensor has to be regarded in the CAUCHY stress tensor in addition to its dependency on the defor-

mation through 𝑤ሺ𝑪ሻ. In this case, the CAUCHY stress tensor, that gives the “true” stress with respect to 

the current configuration ℬ௧, reads as 

 
𝝈 ൌ 2𝐽ିଵ𝑭 ∙

𝜕𝑤ሺ𝑪ሻ

𝜕𝑪
∙ 𝑭୘ െ 𝑝𝑰  . eq. 2-67 

By application of the transformation rules that are given in eq. 2-49 and eq. 2-50 to the hydrostatic stress 

tensor –𝑝𝑰, the following representations of the nominal and the 2nd PIOLA-KIRCHHOFF stress tensor are 

obtained that hold for incompressible materials: 
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𝑺 ൌ 2

𝜕𝑤ሺ𝑪ሻ

𝜕𝑪
∙ 𝑭୘ െ 𝑝𝑭ିଵ eq. 2-68 

and  

 
𝑷୍୍ ൌ 2

𝜕𝑤ሺ𝑪ሻ

𝜕𝑪
െ 𝑝𝑪ିଵ  . eq. 2-69 

The total differential of the 2nd PIOLA-KIRCHHOFF stress tensor 𝑷୍୍ with respect to the right CAUCHY 

strain tensor 𝑪 gives the incremental change of stress for an incremental change of deformation [cf. 

Holzapfel 2010, 6.6 for the following]: 

 
d𝑷୍୍ ൌ 2

𝜕𝑷୍୍

𝜕𝑪
∶

1
2

d𝑪 . eq. 2-70 

The partial derivative 

 
ℂ ൌ 2

𝜕𝑷୍୍

𝜕𝑪
ൌ 2

𝜕𝑃௜௝
୍୍

𝜕𝐶𝒌𝒍
𝒆௜⨂𝒆௝⨂𝒆௞⨂𝒆௟ eq. 2-71 

is a 4th order tensor that characterizes the change of the directional components of stress depending on 

the change of the directional components of the deformation tensor. In general, the components ∁௜௝௞௟ of 

ℂ will be nonlinear functions of 𝑪. If they are linearized for a specific multiaxial deformation state, they 

represent the tangent moduli of the nonlinear material in this deformation state. ℂ is called elasticity 

tensor. 

Using eq. 2-62, it is evident that ℂ is the HESSIAN matrix of the strain energy function 𝑤 in 𝑪: 

 
ℂ ∶ൌ 4

𝜕ଶ𝑤ሺ𝑪ሻ

𝜕𝑪ଶ
  . eq. 2-72 

Because of the symmetry of the right CAUCHY strain tensor 𝑪 the elasticity tensor possesses the minor 

symmetries: 

 ∁௜௝௞௟ൌ ∁௝௜௟௞ , eq. 2-73 

and according to the YOUNG’s theorem, it enjoys the symmetry of second derivatives, the so-called 

major symmetries: 

 
∁௜௝௞௟ൌ 4

𝜕ଶ𝑤
𝜕𝐶௜௝𝜕𝐶௞௟

ൌ 4
𝜕ଶ𝑤

𝜕𝐶௞௟𝜕𝐶௜௝
ൌ ∁௞௟௜௝  . eq. 2-74 
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It is required that the strain energy potential vanishes for a natural configuration ℬ଴: 

 𝑤ሺ𝑰ሻ ൌ 0  eq. 2-75 

and that 𝑤 has a global minimum for the undeformed state 𝑪 ൌ 𝑰: 

 𝑤ሺ𝑪 ് 𝑰ሻ ൐ 0  . eq. 2-76 

In order to ensure that the norm of the stress response must be strictly increasing for increasing defor-

mation, 𝑤 has to be strictly convex. This is ensured if the elasticity tensor ℂ is positive definite. 

2.3.3 Objectivity 

Objectivity requires that the strain energy potential of a deformed hyperelastic solid is not changed by 

rigid body motions. In section 2.1 it was already shown that, for a motion 𝒙 with superimposed transla-

tion 𝒄 and rotation 𝑸: 𝒙ෝሺ𝑿ሻ ൌ  𝑸 ∙ 𝒙ሺ𝑿ሻ ൅ 𝒄, the deformation gradient 𝑭෡ ൌ 𝑸 ∙ 𝑭 is independent of 𝒄, 

but not of 𝑸. That means that the strain energy function 𝑤ሺ𝑭ሻ is not objective without additional condi-

tions and it is demanded that 

 𝑤ሺ𝑸 ∙ 𝑭ሻ ൌ 𝑤ሺ𝑭ሻ eq. 2-77 

holds for all proper orthogonal 𝑸 [Ogden 2009]. 

In contrast, the right CAUCHY strain tensor 𝑪 is completely independent of rigid body motions and, 

therefore, is an objective deformation measure in itself. Bearing in mind that 𝑸୘ ൌ 𝑸ିଵ, it follows for 

𝑪 that describes the deformation corresponding to an arbitrary motion 𝒙 and for 𝑪෡ and that corresponds 

to the motion 𝒙ෝ with overlayed rigid body rotation: 

 𝑪෡ ൌ 𝑭෡୘ ∙ 𝑭෡ ൌ ሺ𝑸 ∙ 𝑭ሻ୘ ∙ 𝑸 ∙ 𝑭 ൌ 𝑭୘ ∙ 𝑸୘ ∙ 𝑸ᇣᇤᇥ
𝑰

∙ 𝑭 ൌ 𝑪 . 
eq. 2-78 

Consequently, eq. 2-77 will hold automatically if 𝑤 is formulated as a function of 𝑪 [eq. 2-60] or, equiv-

alently, depends on 𝑪 through its principal invariants 𝐼ଵ, 𝐼ଶ, 𝐼ଷ [cf. eq. 2-28, eq. 2-29, eq. 2-30]: 

 𝑤 ൌ 𝑤ሺ𝐼ଵ, 𝐼ଶ, 𝐼ଷሻ  . eq. 2-79 

According to eq. 2-67 the CAUCHY stress tensor is then obtained by derivation of 𝑤ሺ𝐼ଵ, 𝐼ଶ, 𝐼ଷሻ with re-

spect to the material strain tensor 𝑪 and the subsequent transformation of the obtained stress tensor to 

the current configuration ℬ௥: 
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𝝈 ൌ 2𝐽ିଵ𝑭 ∙
𝜕𝑤ሺ𝐼ଵ, 𝐼ଶ, 𝐼ଷሻ

𝜕𝑪
∙ 𝑭୘ െ 𝑝𝑰 ൌ 2𝐽ିଵ𝑭 ∙ ൤

𝜕𝑤
𝜕𝐼ଵ

𝜕𝐼ଵ
𝜕𝑪

൅
𝜕𝑤
𝜕𝐼ଶ

𝜕𝐼ଶ
𝜕𝑪

൅
𝜕𝑤
𝜕𝐼ଷ

𝜕𝐼ଷ
𝜕𝑪

൨ ∙ 𝑭୘, eq. 2-80 

where  

 𝜕𝐼ଵ
𝜕𝑪

ൌ 𝑰 , eq. 2-81 

 𝜕𝐼ଶ
𝜕𝑪

ൌ 𝐼ଵ𝑰 െ 𝑪 , and        eq. 2-82 

 𝜕𝐼ଷ
𝜕𝑪

ൌ 𝐼ଷ𝑪ିଵ ൌ 𝑪ଶ െ 𝐼ଵ𝑪 ൅ 𝐼ଶ𝑰 . eq. 2-83 

See e.g. Silber and Steinwender [2005] for detailed derivation of eq. 2-81, eq. 2-82 and eq. 2-83. Since 

the three principal invariants represent three independent measures of deformation, the partial deriva-

tives 𝜕𝑤 𝜕𝐼ଵ⁄ , 𝜕𝑤 𝜕𝐼ଶ⁄  and 𝜕𝑤 𝜕𝐼ଷ⁄  represent the change of stored strain energy depending on three in-

dependent types of deformation. In other words, each of these partial derivatives of 𝑤 represents the 

material response to a specific type of deformation and, therefore, can be regarded as an independent 

constitutive equation that describes the mechanical properties of the material [Ogden 2009]. 

2.3.4 Material symmetry 

According to Ogden [2009], material symmetry, identified in the reference configuration ℬ௥, may be 

characterized by the fact that the strain energy 𝑤 remains unchanged if the configuration is changed 

consistently with a symmetry. Regard two reference configurations ℬ௥ and ℬ௥ᇱ  of the identical body 𝐵 

that are related by a rigid body rotation, i.e. by the deformation gradient 

 
𝑸 ൌ Gradᇱ𝑿 ൌ

𝜕𝑿
𝜕𝑿′

 , eq. 2-84 

where 𝑸 is a proper orthogonal second order tensor. According to eq. 2-9, the deformation gradient of 

any current configuration 𝒙 with respect to ℬ௥ is given by 𝑭 ൌ ∂𝒙/ ∂𝑿 [eq. 2-9] and accordingly with 

respect to ℬ௥ᇱ  

 
𝑭ᇱ ൌ

𝜕𝒙
𝜕𝑿ᇱ

ൌ
𝜕𝒙
𝜕𝑿

∙
𝜕𝑿
𝜕𝑿ᇱ

ൌ 𝑭 ∙ 𝑸 . eq. 2-85 

The resulting requirement for material symmetry 
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 𝑤ሺ𝑭ሻ ൌ 𝑤ሺ𝑭 ∙ 𝑸ሻ eq. 2-86 

is not fulfilled automatically by strain energy potentials that are formulated as function of 𝑪: 

 𝑤ሺ𝑪′ሻ ൌ 𝑤൫ሺ𝑭 ∙ 𝑸ሻ୘ ∙ 𝑭 ∙ 𝑸൯ ൌ 𝑤൫𝑸୘ ∙ 𝑭୘ ∙ 𝑭 ∙ 𝑸൯ ൌ 𝑤൫𝑸୘ ∙ 𝑪 ∙ 𝑸൯ . eq. 2-87 

In contrast to the objectivity condition eq. 2-77, the symmetry condition eq. 2-86 that may be for-

mulated in terms of 𝑪 as 

 𝑤ሺ𝑪ሻ ൌ 𝑤൫𝑸୘ ∙ 𝑪 ∙ 𝑸൯ eq. 2-88 

usually will not hold for all rotation tensors 𝑸, but only for a subset that constitutes the symmetry group 

of the material relative to ℬ௥. 

2.3.4.1 Isotropy 

An elastic material is called isotropic in the special case that eq. 2-88 holds for all proper orthogonal 

tensors 𝑸. Thus the strain energy function 𝑤 is automatically isotropic if it depends on the three princi-

pal invariants 𝐼ଵ, 𝐼ଶ and 𝐼ଷ of 𝑪 and 𝑩, [cf. eq. 2-28, eq. 2-29, eq. 2-30], which are defined by their prop-

erty to remain constant for all rigid body motions or changes of basis. I.e. an isotropic material depends 

on three independent measures of deformation: 𝐼ଵ, 𝐼ଶ and 𝐼ଷ: 

 𝑤 ൌ 𝑤ሺ𝐼ଵ, 𝐼ଶ, 𝐼ଷሻ  . eq. 2-89 

According to eq. 2-67 and using the derivatives of 𝐼ଵ, 𝐼ଶ and 𝐼ଷ with regard to the argument tensor 𝑪 [cf. 

eq. 2-81, eq. 2-82], the Cauchy stress tensor for an unconstrained isotropic material and a homogeneous 

deformation reads as 

 
𝝈 ൌ 2𝐽ିଵ𝑭 ∙ ൤

𝜕𝑤
𝜕𝐼ଵ

𝑰 ൅
𝜕𝑤
𝜕𝐼ଶ

ሺ𝐼ଵ𝑰 െ 𝑪ሻ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ𝑪ିଵ൨ ∙ 𝑭୘       

 
⇔ 𝝈 ൌ 2𝐽ିଵ ቈ

𝜕𝑤
𝜕𝐼ଵ

𝑭 ∙ 𝑰 ∙ 𝑭୘ ൅
𝜕𝑤
𝜕𝐼ଶ

ቆ𝐼ଵ𝑭 ∙ 𝑰 ∙ 𝑭୘ െ 𝑭 ∙ 𝑪⏟
𝑭౐∙𝑭

∙ 𝑭୘ቇ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ𝑭 ∙ 𝑪ିଵต
𝑭షభ∙𝑭ష೅

∙ 𝑭୘቉ 

 
⇔ 𝝈 ൌ 2𝐽ିଵ ൤

𝜕𝑤
𝜕𝐼ଵ

𝑩 ൅
𝜕𝑤
𝜕𝐼ଶ

൫𝐼ଵ𝑩 െ 𝑩𝟐൯ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ𝑰൨ . eq. 2-90 

If a homogeneous deformation is considered that is characterized by triaxial tension in an orthonormal 

coordinate system, the tensile directions are the principal axes of the deformation and the left CAUCHY 

strain tensor is given by 
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𝑩 ൌ෍𝜆௜

ଶ𝒏௜⨂𝒏௜

ଷ

௜ୀଵ

 , eq. 2-91 

where 𝜆௜ are the principal stretches and 𝒏௜ are the principal stretch directions with respect to the current 

configuration. Inserting eq. 2-91 into eq. 2-90, the nonzero components of the CAUCHY stress tensor are 

obtained, which are given here in index notation without summation over 𝑖: 

 
𝜎௜௜ ൌ 2𝐽ିଵ ൤

𝜕𝑤
𝜕𝐼ଵ

𝜆௜
ଶ ൅

𝜕𝑤
𝜕𝐼ଶ

𝜆௜
ଶ൫𝐼ଵ െ 𝜆௜

ଶ൯ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ൨  , 𝑖 ൌ 1,2,3 . eq. 2-92 

The shear-free deformation corresponds to a shear-free stress state, i.e. the stress components 𝜎௜௜ are the 

principal stresses 𝜎௜: For an isotropic material the deformation tensor and the corresponding stress tensor 

have the same eigenvectors. 

2.3.4.2 Transverse isotropy 

A transversally isotropic material is characterized by a single preferred direction, which is represented 

by a direction vector 𝒂଴ ∈ 𝑹ଷ in the reference configuration ℬ௥. Additionally, the strain energy potential 

𝑤 must be unchanged by any rotation about 𝒂଴ and by the reversal of the orientation of 𝒂଴: 

 𝑤ሺ𝑭ሻ ൌ 𝑤ሺ𝑭 ∙ 𝑸ሻ eq. 2-93 

for all orthogonal 𝑸 with 𝑸 ∙ 𝒂଴ ൌ േ𝒂଴. 

More conveniently, a transversally isotropic strain energy potential 𝑤 may be formulated as an iso-

tropic function of the right CAUCHY strain tensor and the structure tensor that is formed by the dyadic 

product 𝒂଴⨂𝒂଴ ൌ 𝑎଴௜𝑎଴௝𝒆௜⨂𝒆௝  , 𝑖, 𝑗 ൌ 1,2,3. Regarding relation eq. 2-84, consider the mapping of 𝒂଴
ᇱ  

in ℬ௥ᇱ  onto the corresponding direction vector 𝒂଴ in ℬ௥: 

 𝒂଴ ൌ 𝑸 ∙ 𝒂଴
ᇱ ⇔  𝒂଴

ᇱ ൌ 𝑸୘ ∙ 𝒂଴ . eq. 2-94 

Having in mind that the transpose of a vector is identical with the original vector, it can be seen that the 

structure tensor transforms between two different reference configurations in the same way like 𝑪: 

 𝑤ሺ𝑪ᇱ,𝒂଴
ᇱ ⨂𝒂଴

ᇱ ሻ ൌ 𝑤 ቀ𝑸୘ ∙ 𝑪 ∙ 𝑸, ൫𝑸୘ ∙ 𝒂଴൯⨂൫𝑸୘ ∙ 𝒂଴൯ቁ 

eq. 2-95 

  ൌ  𝑤൫𝑸୘ ∙ 𝑪 ∙ 𝑸,𝑸୘ ∙ 𝒂଴⨂𝒂଴ ∙ 𝑸൯ . 

Thus, the symmetry requirement for a transversely isotropic material may be formulated as follows: 
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 𝑤ሺ𝑪,𝒂଴⨂𝒂଴ሻ ൌ 𝑤൫𝑸୘ ∙ 𝑪 ∙ 𝑸,𝑸୘ ∙ 𝒂଴⨂𝒂଴ ∙ 𝑸൯ eq. 2-96 

for all proper orthogonal 𝑸. This requirement is fulfilled automatically if the strain energiy potential of 

an unconstrained hyperelastic material is given as a function of the three principal invariants of 𝑪 and 

two additional invariants (often called “pseudo-invariants”) that depend on the structure tensor 𝒂଴⨂𝒂଴ 

in addition to 𝑪: 

 𝑤 ൌ 𝑤ሺ𝐼ଵ, 𝐼ଶ, 𝐼ଷ, 𝐼ସ, 𝐼ହሻ , eq. 2-97 

where 

 𝐼ସ ൌ 𝑪:𝒂଴⨂𝒂଴ ൌ 𝒂଴ ∙ 𝑪 ∙ 𝒂଴  and eq. 2-98 

 𝐼ହ ൌ 𝑪ଶ:𝒂଴⨂𝒂଴ ൌ 𝒂଴ ∙ 𝑪ଶ ∙ 𝒂଴ . eq. 2-99 

The derivatives of 𝐼ସ and 𝐼ହ with respect to 𝑪 are given by 

 𝜕𝐼ସ
𝜕𝑪

ൌ 𝒂଴⨂𝒂଴  and eq. 2-100 

 𝜕𝐼ହ
𝜕𝑪

ൌ 𝒂଴⨂𝒂଴ ∙ 𝑪 ൅ 𝑪 ∙ 𝒂଴⨂𝒂଴ . eq. 2-101 

The derivation of eq. 2-100 and eq. 2-101 is shown in detail in appendix A. The CAUCHY stress tensor 

for an arbitrary homogeneous deformation, is given by 

 
𝝈 ൌ 2𝐽ିଵ𝑭 ∙ ൤

𝜕𝑤
𝜕𝐼ଵ

𝑰 ൅
𝜕𝑤
𝜕𝐼ଶ

ሺ𝐼ଵ𝑰 െ 𝑪ሻ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ𝑪ିଵ ൅
𝜕𝑤
𝜕𝐼ସ

𝒂଴𝒂଴

൅
𝜕𝑤
𝜕𝐼ହ

ሺ𝒂଴⨂𝒂଴ ∙ 𝑪 ൅ 𝑪 ∙ 𝒂଴⨂𝒂଴ሻ൨ ∙ 𝑭୘    
 

 
⇔ 𝝈 ൌ 2𝐽ିଵ ቈ

𝜕𝑤
𝜕𝐼ଵ

𝑩 ൅
𝜕𝑤
𝜕𝐼ଶ

൫𝐼ଵ𝑩 െ 𝑩𝟐൯ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ𝑰 ൅
𝜕𝑤
𝜕𝐼ସ

𝑭 ∙ 𝒂଴⨂𝒂଴ ∙ 𝑭୘

൅
𝜕𝑤
𝜕𝐼ହ

ቆ𝑭 ∙ 𝒂଴⨂𝒂଴ ∙ 𝑪⏟
𝑭౐∙𝑭

∙ 𝑭୘ ൅ 𝑭 ∙ 𝑪⏟
𝑭౐∙𝑭

∙ 𝒂଴⨂𝒂଴ ∙ 𝑭୘ቇ቉ 
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⇔ 𝝈 ൌ 2𝐽ିଵ ൤

𝜕𝑤
𝜕𝐼ଵ

𝑩 ൅
𝜕𝑤
𝜕𝐼ଶ

൫𝐼ଵ𝑩 െ 𝑩𝟐൯ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ𝑰 ൅
𝜕𝑤
𝜕𝐼ସ

𝒂⨂𝒂

൅
𝜕𝑤
𝜕𝐼ହ

ሺ𝒂⨂𝒂 ∙ 𝑩 ൅ 𝑩 ∙ 𝒂⨂𝒂ሻ൨, 
eq. 2-102 

 

where 𝒂⨂𝒂 is the structure tensor in the current configuration. Considering again a shear-free triaxial 

deformation along the principal axes of 𝑪 and 𝑩 according to eq. 2-91 the following nonzero compo-

nents of 𝝈 are obtained: 

 
𝜎ଵଵ ൌ 2𝐽ିଵ ൤

𝜕𝑤
𝜕𝐼ଵ

𝜆ଵ
ଶ ൅

𝜕𝑤
𝜕𝐼ଶ

𝜆ଵ
ଶሺ𝐼ଵ െ 𝜆ଵ

ଶሻ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ ൅ ൬
𝜕𝑤
𝜕𝐼ସ

൅ 2
𝜕𝑤
𝜕𝐼ହ

𝜆ଵ
ଶ൰ 𝑎ଵ𝑎ଵ൨ , 

𝜎ଶଶ ൌ 2𝐽ିଵ ൤
𝜕𝑤
𝜕𝐼ଵ

𝜆ଶ
ଶ ൅

𝜕𝑤
𝜕𝐼ଶ

𝜆ଶ
ଶሺ𝐼ଵ െ 𝜆ଶ

ଶሻ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ ൅ ൬
𝜕𝑤
𝜕𝐼ସ

൅ 2
𝜕𝑤
𝜕𝐼ହ

𝜆ଶ
ଶ൰ 𝑎ଶ𝑎ଶ൨, 

𝜎ଷଷ ൌ 2𝐽ିଵ ൤
𝜕𝑤
𝜕𝐼ଵ

𝜆ଷ
ଶ ൅

𝜕𝑤
𝜕𝐼ଶ

𝜆ଷ
ଶሺ𝐼ଵ െ 𝜆ଷ

ଶሻ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ ൅ ൬
𝜕𝑤
𝜕𝐼ସ

൅ 2
𝜕𝑤
𝜕𝐼ହ

𝜆ଷ
ଶ൰ 𝑎ଷ𝑎ଷ൨ , 

𝜎ଵଶ ൌ 𝜎ଶଵ ൌ 2𝐽ିଵ ൭
𝜕𝑤
𝜕𝐼ସ

൅
𝜕𝑤
𝜕𝐼ହ

ሺ𝜆ଵ
ଶ ൅ 𝜆ଶ

ଶሻ൱ 𝑎ଵ𝑎ଶ , 

𝜎ଵଷ ൌ 𝜎ଷଵ ൌ 2𝐽ିଵ ൭
𝜕𝑤
𝜕𝐼ସ

൅
𝜕𝑤
𝜕𝐼ହ

ሺ𝜆ଵ
ଶ ൅ 𝜆ଷ

ଶሻ൱ 𝑎ଵ𝑎ଷ , 

𝜎ଶଷ ൌ 𝜎ଷଶ ൌ 2𝐽ିଵ ൭
𝜕𝑤
𝜕𝐼ସ

൅
𝜕𝑤
𝜕𝐼ହ

ሺ𝜆ଶ
ଶ ൅ 𝜆ଷ

ଶሻ൱ 𝑎ଶ𝑎ଷ . 

eq. 2-103 

 

Note that despite the shear-free deformation, the shear stresses do not vanish necessarily. Therefore, 

𝜎ଵଵ,𝜎ଶଶ,𝜎ଷଷ are not principal stresses in general, but only in the special case that 𝑎௜𝑎௝ ൌ 0 for 𝑖 ് 𝑗, i.e. 

only if the preferred direction 𝒂଴ of the material in the reference configuration is identical with one of 

the principal axes of the deformation state. In this case, only one of the three components of 𝒂଴ : 

𝑎଴ଵ, 𝑎଴ଶ, or 𝑎଴ଷ – and correspondingly of 𝒂 – is nonzero, and therefore only the square of this nonzero 

component that does correspond to one of the normal stress components, necessarily, will not vanish. 

2.3.4.3 Materials with two preferred directions, orthotropy 

Because of its particular importance for modeling the elastic constitutive behavior of the aortic wall, the 

case of two preferred directions 𝒂଴ఈ and 𝒂଴ఉ in the reference configuration is considered, finally. 𝒂଴஑ 

and 𝒂଴ஒ determine a plane that is chosen as the 1-2 plane with respect to an orthonormal basis 𝒆ଵ, 𝒆ଶ,𝒆ଷ: 
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 𝒂଴஑ ൌ sin𝜗஑ 𝒆ଵ ൅ cos𝜗஑ 𝒆ଶ eq. 2-104 

 𝒂଴ஒ ൌ sin𝜗ஒ 𝒆ଵ െ cos𝜗ஒ 𝒆ଶ eq. 2-105 

Initially, it is neither required that 𝒂଴ଵ and 𝒂଴ଶ are orthogonal with respect to each other, nor that they 

are symmetric with respect to the 1- and 2-axes [Figure 2-3]. 

 

Figure 2-3 View of a material volume with two preferred directions 𝒂଴஑ and 𝒂଴ஒ in the 𝒆ଵ,𝒆ଶ-plane of an orthonor-
mal coordinate system. 

Each preferred direction is modelled by two (pseudo-) invariants according to eq. 2-98 and eq. 2-99: 

 𝐼ସ஑ ൌ 𝑪 ∶ 𝒂଴஑⨂𝒂଴஑ ൌ 𝒂଴஑ ∙ 𝑪 ∙ 𝒂଴஑ ,        𝐼ହ஑ ൌ 𝑪ଶ:𝒂଴஑⨂𝒂଴஑ ൌ 𝒂଴஑ ∙ 𝑪ଶ ∙ 𝒂଴஑ , eq. 2-106 

 𝐼ସஒ ൌ 𝑪 ∶ 𝒂଴ஒ⨂𝒂଴ஒ ൌ 𝒂଴ஒ ∙ 𝑪 ∙ 𝒂଴ஒ ,         𝐼ହஒ ൌ 𝑪ଶ:𝒂଴ஒ⨂𝒂଴ஒ ൌ 𝒂଴ஒ ∙ 𝑪ଶ ∙ 𝒂଴ஒ . eq. 2-107 

In addition to this, another invariant, 𝐼ఈఉ, is introduced for the coupling of the two fiber directions. In 

literature 𝐼ఈఉ is often referred to as eigth invariant 𝐼 : 

 𝐼஑ஒ ൌ 𝑪 ∶ 𝒂଴஑⨂𝒂଴ஒ ൌ 𝒂଴஑ ∙ 𝑪 ∙ 𝒂଴ஒ . eq. 2-108 

The derivation of 𝐼஑ஒ with respect to 𝑪 is given in detail in Appendix A. and reads as 

 𝜕𝐼஑ஒ
𝜕𝑪

ൌ
1
2
൫𝒂଴ఈ⨂𝒂଴ఉ ൅ 𝒂଴ఉ⨂𝒂଴ఈ൯ . eq. 2-109 

For an arbitrary homogenous three-dimensional deformation, the CAUCHY stress tensor of an uncon-

strained material has the form: 

𝒆ଵ

𝒆ଶ
𝒂଴஑

𝒂଴ஒ

𝜗஑

𝜗ஒ
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𝝈 ൌ 2𝐽ିଵ𝑭 ∙ ቈ

𝜕𝑤
𝜕𝐼ଵ

𝑰 ൅
𝜕𝑤
𝜕𝐼ଶ

ሺ𝐼ଵ𝑰 െ 𝑪ሻ  ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ𝑪ିଵ                                                    

൅
𝜕𝑤
𝜕𝐼ସ஑

𝒂଴஑⨂𝒂଴஑  ൅
𝜕𝑤
𝜕𝐼ହ஑

ሺ𝒂଴஑⨂𝒂଴஑ ∙ 𝑪 ൅ 𝑪 ∙ 𝒂଴஑⨂𝒂଴஑ሻ       

൅
𝜕𝑤
𝜕𝐼ସஒ

𝒂଴ஒ⨂𝒂଴ஒ ൅
𝜕𝑤
𝜕𝐼ହஒ

൫𝒂଴ஒ⨂𝒂଴ஒ ∙ 𝑪 ൅ 𝑪 ∙ 𝒂଴ஒ⨂𝒂଴ஒ൯

൅
1
2
𝜕𝑤
𝜕𝐼஑ஒ

൫𝒂଴஑⨂𝒂଴ஒ ൅ 𝒂଴ஒ⨂𝒂଴஑൯቉ ∙ 𝑭୘      

eq. 2-110 

 
⇔ 𝝈 ൌ 2𝐽ିଵ ቈ

𝜕𝑤
𝜕𝐼ଵ

𝑩 ൅
𝜕𝑤
𝜕𝐼ଶ

൫𝐼ଵ𝑩 െ 𝑩𝟐൯ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ𝑰                                                  

൅
𝜕𝑤
𝜕𝐼ସ஑

𝒂஑⨂𝒂஑ ൅
𝜕𝑤
𝜕𝐼ହ஑

ሺ𝒂஑⨂𝒂஑ ∙ 𝑩 ൅ 𝑩 ∙ 𝒂஑⨂𝒂஑ሻ   

൅
𝜕𝑤
𝜕𝐼ସஒ

𝒂ஒ⨂𝒂ஒ ൅
𝜕𝑤
𝜕𝐼ହஒ

൫𝒂ஒ⨂𝒂ஒ ∙ 𝑩 ൅ 𝑩 ∙ 𝒂ஒ⨂𝒂ஒ൯            

൅
1
2
𝜕𝑤
𝜕𝐼஑ஒ

൫𝒂஑⨂𝒂ஒ ൅ 𝒂ஒ⨂𝒂஑൯ ቉ 

eq. 2-111 

The deformed preferred directions 𝒂஑ and 𝒂ஒ are obtained as [cf. eq. 2-8] transformation of a line ele-

ment]: 

 𝒂௜ ൌ 𝑭 ∙ 𝒂଴௜  , 𝑖 ൌ α, β . eq. 2-112 

For the shear-free triaxial deformation according to eq. 2-91, the deformation gradient is 

𝑭 ൌ  diagሾ𝜆ଵ, 𝜆ଶ, 𝜆ଷሿ and thus 

 𝒂஑ ൌ 𝜆ଵ sin𝜗஑ 𝒆ଵ ൅ 𝜆ଶ cos𝜗஑ 𝒆ଶ eq. 2-113 

 𝒂ஒ ൌ 𝜆ଵsin𝜗ஒ 𝒆ଵ െ 𝜆ଶcos𝜗ஒ 𝒆ଶ . eq. 2-114 

Consider the three structure tensors for this case (𝑖, 𝑗 ൌ 1,2,3ሻ: 

 
𝒂஑⨂𝒂஑ ൌ ቌ

𝜆ଵ
ଶ sinଶ 𝜗஑ 𝜆ଵsin𝜗஑ 𝜆ଶcos𝜗஑ 0

𝜆ଵsin𝜗஑ 𝜆ଶcos𝜗஑ 𝜆ଶ
ଶcosଶ 𝜗஑ 0

0 0 0
ቍ 〈𝒆௜⨂𝒆௝〉  eq. 2-115 

 
𝒂ஒ⨂𝒂ஒ ൌ ቌ

𝜆ଵ
ଶ sinଶ 𝜗ஒ െ𝜆ଵsin𝜗ஒ 𝜆ଶ cos𝜗ஒ 0

െ𝜆ଵsin𝜗ஒ 𝜆ଶ cos𝜗ஒ 𝜆ଶ
ଶ cosଶ 𝜗ஒ 0

0 0 0

ቍ 〈𝒆௜⨂𝒆௝〉 , eq. 2-116 
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𝒂஑⨂𝒂ஒ ൌ ቌ

𝜆ଵ
ଶ sin𝜗஑ sin𝜗ஒ െ𝜆ଵsin𝜗஑ 𝜆ଶ cos𝜗ஒ 0

 𝜆ଶ cos𝜗஑ 𝜆ଵsin𝜗ஒ െ𝜆ଶ
ଶcos𝜗஑ cos𝜗ஒ 0

0 0 0

ቍ 〈𝒆௜⨂𝒆௝〉 . eq. 2-117 

Note that 𝒂஑⨂𝒂஑  and 𝒂ஒ⨂𝒂ஒ  are symmetric second order tensors whereas 𝒂஑⨂𝒂ஒ  is an antimetric 

tensor. Moreover, 

  𝒂ஒ⨂𝒂஑ ൌ ൫𝒂஑⨂𝒂ஒ൯
୘

. eq. 2-118 

For the shear-free triaxial deformation according to eq. 2-91, the following nonzero components of 

the CAUCHY stress tensor are obtained: 

 
𝜎ଵଵ ൌ 2𝐽ିଵ ቈ

𝜕𝑤
𝜕𝐼ଵ

𝜆ଵ
ଶ ൅

𝜕𝑤
𝜕𝐼ଶ

𝜆ଵ
ଶሺ𝐼ଵ െ 𝜆ଵ

ଶሻ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ  ൅ ൬
𝜕𝑤
𝜕𝐼ସ஑

൅ 2
𝜕𝑤
𝜕𝐼ହ஑

𝜆ଵ
ଶ൰ 𝜆ଵ

ଶsinଶ 𝜗஑  

൅ ቆ
𝜕𝑤
𝜕𝐼ସஒ

൅ 2
𝜕𝑤
𝜕𝐼ହஒ

𝜆ଵ
ଶቇ 𝜆ଵ

ଶsinଶ 𝜗ஒ ൅
𝜕𝑤
𝜕𝐼஑ஒ

𝜆ଵ
ଶ sin𝜗஑ sin𝜗ஒ቉ , 

eq. 2-119 

 
𝜎ଶଶ ൌ 2 𝐽ିଵ ቈ

𝜕𝑤
𝜕𝐼ଵ

𝜆ଶ
ଶ ൅

𝜕𝑤
𝜕𝐼ଶ

𝜆ଶ
ଶሺ𝐼ଵ െ 𝜆ଶ

ଶሻ ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ ൅ ൬
𝜕𝑤
𝜕𝐼ସ஑

൅ 2
𝜕𝑤
𝜕𝐼ହ஑

𝜆ଶ
ଶ൰ 𝜆ଶ

ଶcosଶ 𝜗஑

൅ ቆ
𝜕𝑤
𝜕𝐼ସஒ

൅ 2
𝜕𝑤
𝜕𝐼ହஒ

𝜆ଶ
ଶቇ 𝜆ଶ

ଶcosଶ 𝜗ஒ െ
𝜕𝑤
𝜕𝐼஑ஒ

𝜆ଶ
ଶcos𝜗஑ cos𝜗ஒ቉ ,  

eq. 2-120 

 
𝜎ଷଷ ൌ 2𝐽ିଵ ൤

𝜕𝑤
𝜕𝐼ଵ

𝜆ଷ
ଶ ൅

𝜕𝑤
𝜕𝐼ଶ

𝜆ଷ
ଶሺ𝐼ଵ െ 𝜆ଷ

ଶሻ  ൅
𝜕𝑤
𝜕𝐼ଷ

𝐼ଷ൨ , eq. 2-121 

and finally the in-plane shear component: 

 
𝜎ଵଶ ൌ 𝜎ଶଵ ൌ 2𝐽ିଵ ൥൭

𝜕𝑤
𝜕𝐼ସ஑

൅
𝜕𝑤
𝜕𝐼ହ஑

ሺ𝜆ଵ
ଶ ൅ 𝜆ଶ

ଶሻ൱ 𝜆ଵsin𝜗஑ 𝜆ଶcos𝜗஑

െ ൭
𝜕𝑤
𝜕𝐼ସஒ

൅
𝜕𝑤
𝜕𝐼ହஒ

ሺ𝜆ଵ
ଶ ൅ 𝜆ଶ

ଶሻ൱ 𝜆ଵsin𝜗ஒ 𝜆ଶ cos𝜗ஒ

െ
1
2
𝜕𝑤
𝜕𝐼஑ஒ

൫𝜆ଵsin𝜗஑ 𝜆ଶ cos𝜗ஒ െ  𝜆ଶ cos𝜗஑ 𝜆ଵsin𝜗ஒ൯൩ . 

eq. 2-122 

Note that for an anisotropic material with two preferred directions, the shear stress does not vanish in 

general in response to a shear-free deformation, i.e. the deformation and the stress tensor do not have 

the same eigenvectors or principal directions. In turn, a loading of such a material by principal stresses, 

only, would in general result in a deformation state that includes shear. Equation eq. 2-122 shows that 

𝜎ଵଶ will only vanish, if |𝜗஑| ൌ  ห𝜗ஒห [cf. Figure 2-3] and if  
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 𝜕𝑤
𝜕𝐼ସ஑

ൌ
𝜕𝑤
𝜕𝐼ସஒ

     and  
𝜕𝑤
𝜕𝐼ହ஑

ൌ
𝜕𝑤
𝜕𝐼ହஒ

 .  eq. 2-123 

Remind that each partial derivative of 𝑤 with respect to one of the invariants of 𝑪 can be regarded 

as an independent constitutive equation that contributes to the constitutive behavior of the material. Thus 

eq. 2-123 means: in addition to the “geometrical” symmetry of the two preferred directions with respect 

to the principal directions of the deformation tensor, both preferred directions have to possess the iden-

tical mechanical properties. In this case 𝜎ଵଵ, 𝜎ଶଶ and 𝜎ଷଷ are the principal stresses and 𝝈 and 𝑩 have the 

identical principal directions. Moreover, the material with two preferred directions would be fully sym-

metric with respect to the 1-3 plane and the 3-2 plane. Since both preferred directions are situated in the 

1-2 plane, the “isotropic” direction normal to the 1-2 plane, 𝒆ଷ, can be regarded as third preferred direc-

tion and the behavior of the material is also symmetric with regard to the 1-2 plane. Therefore, such a 

material can be regarded as locally orthotropic. 

The continuum mechanical framework presented in this chapter will be relevant for the interpreta-

tion of the in vivo measurements of deformation and strain of the abdominal aortic wall that are pre-

sented in chapters 5 and 6 of this thesis: despite supposed biaxial tensile loading in longitudinal and 

circumferential direction as a result of transmural pressure and constant axial pretension force [cf. chap-

ters 1.2 and 1.5] cyclic twist and in-plane shear were observed. Moreover, starting from this framework, 

the feasibility of constitutive parameter identification of an orthotropic strain energy function based on 

available in vivo data (cf. chapter 3) will be considered on a theoretical basis [see chapter 7.3]. 
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3 A method for non-invasive full 

field strain measurement 

3.1 Ultrasound measurement of aortic wall deformation 

Ultrasound imaging is based on the propagation of mechanical pressure waves in a fluid or solid me-

dium. The acoustical properties of a medium are characterized by its acoustic impedance 𝑍 that relates 

the local pressure disturbance 𝑝 to the particle velocity 𝑣 in the medium: 

 
𝑍 ൌ

𝑝
𝑣

 . eq. 3-1 

The acoustic impedance depends on the physical properties of the medium: 

 𝑍 ൌ 𝜌𝑐 , eq. 3-2 

where 𝜌 is the density and 𝑐 is the speed of sound in the respective medium. In solid media, the speed 

of sound depends on the elastic properties. E.g. the propagation velocity of transversal waves in a linear-

elastic solid is given by 

 

𝑐௦௢௟௜ௗ,௧௥௔௡௦௩௘௥௦௔௟ ൌ ඨ
𝐸

2𝜌ሺ1 ൅ 𝜈ሻ
ൌ ඨ

𝐺
𝜌

 , eq. 3-3 

where 𝐸 is the elastic modulus, 𝜈 is the POISSON’s ratio and 𝐺 is the shear modulus. Ultrasound waves 

are in part reflected and in part transmitted at boundaries between media with different acoustic imped-

ances if the dimension of the interface exceeds the wavelength 𝜆 by a few times. If, in contrast, the 

dimension of a structure is much smaller than the wavelength of the ultrasound signal, the signal will be 

dispersed in all directions. This effect is observed in soft tissues due to their hierarchical microstructural 

composition [cf. e.g. chapters 1.3.2 and 1.3.3]. 
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Due to the partial reflection at each interface, the scattering at microstructural components and the 

dissipative particle interactions, ultrasonic waves are attenuated when propagating through a medium, 

which sets a limit to their penetration depth. The shorter the wavelength of the ultrasound signal and the 

higher its frequency 

 𝑓 ൌ 𝑐 𝜆⁄  eq. 3-4 

is, the more the signal is attenuated by scattering and the smaller its penetration depth will be. Therefore, 

diagnostic ultrasound measurements of structures such as the abdominal aorta that are located deeply in 

the human body have to balance the contradictory requirements of high resolution and great penetration 

depth: higher frequency and smaller wave length improve spatial resolution, but reduce the penetration 

depth at the same time. In diagnostic ultrasound, frequencies in the range between 1 MHz and 20 MHz 

are used corresponding to wave lengths between 1.6 mm and 0.08 mm.  

In the ‘reflection mode’ that is mostly used in medical ultrasound imaging, the measurements of the 

temporal delay (‘time of flight’, 𝑇𝑜𝐹) between the emission of a wave package that was generated by 

piezoelectric elements, i.e. the transducer, and the registration of the reflected signal by the same ele-

ments provides the possibility to measure the distance 𝑑 between the transducer and the site of reflec-

tion: 

 
𝑑 ൌ

𝑇𝑜𝐹 ∙ 𝑐
2

 , eq. 3-5 

which is the basis of medical ultrasound imaging of internal structures of the body since different tissue 

types exhibit different acoustic properties. 

The representation of the amplitude of the returning reflected wave package over time is called A-

mode ultrasound. The representation of the amplitude as intensity on a gray scale against time is called 

B-mode. Both allow the measurement of a distance between two points in propagation direction of the 

ultrasound signal, e.g. the measurement of the diameter of a blood vessel. Note that this is a two-point 

measurement and that the 3D configuration of a blood vessel can be described only for a chosen site of 

measurement along the arterial tree [cf. Figure 1-6] and assuming a cylindrical shape. M-mode images 

are temporally subsequent B-mode images along the same propagation path plotted against time. The 

result is a two-dimensional image where the vertical axis is the propagation time of the signal corre-

sponding to the distance between transducer and site of reflection according to eq. 3-5, whereas the 

second axis corresponds to the acquisition time of subsequent B-mode images. M-mode images allow 

the measurement of aortic diameter change during a cardiac cycle and, consequently, the computation 

of circumferential strain with regard to a chosen deformed reference configuration. 2D- or 3D-images 

are obtained by rotating (‘phased array’) and/or displacing (‘linear array’) a group of piezoelectric ac-

tors/sensors and combining the B-mode images for each angle or position. 2D greyscale ultrasound 

typically has frame rates between 60 and 80 frames/s, which allows to capture the dynamics of the cyclic 
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deformation of the heart or of blood vessels for usual heart rates at rest between 60 and 80 beats per 

minute. 3D ultrasound provides volumetric images with frame rates ≤ 25 frames/s and it depends on the 

used device whether the cyclic deformation can be measured with sufficient accuracy.  

In addition to M-mode imaging, the Doppler effect and speckle tracking are used to measure tissue 

motion and deformation [cf. Teixeira et al. 2015]. To correctly compute the velocity of a tissue volume 

using a Doppler-based method, however, the angle between the propagation direction of the ultrasound 

wave and the direction of the tissue velocity vector has to be known in advance. Doppler-based motion 

measurements are direction dependent. 

 

Figure 3-1 Displacement field of material points on the wall of a human AAA as measured by real-time 3D 
echocardiography combined with speckle tracking (4D ultrasound) [Image reprinted from Wittek et al. 2019 with 
permission]. 

In contrast, ultrasound speckle tracking imaging provides a direction independent method for 2D- 

or 3D-deformation measurement. Ultrasound speckle tracking imaging uses the fact that ultrasonic 

waves traveling through soft tissue are reflected and scattered by microstructural elements of the tissue. 

Because of the unique inhomogeneous and locally varying composition of biological soft tissues, re-

flected and scattered waves that – depending on the tissue region – interfere destructively or construc-

tively generate speckle patterns that are uniquely related to different regions of soft tissue and remain 
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stable for finite translational as well as rotational deformation observed in the human body [Meunier 

1998]. Thus, the motion of these tissue regions can be traced over the cardiac cycle by cross-correlation 

on radio frequency data [Chen et al. 2005]. This imaging technique does not only allow for the meas-

urement of the global change of shape of the imaged structure but for the local allocation of specific 

tissue regions or material points. Compared to 3D speckle tracking, 2D speckle tracking is more widely-

spread because of its higher frame rate and lower complexity of data acquisition and post-processing. It 

tracks the motion of tissue particles, i.e. the trajectories of material points [cf. chapter 2.1], within the 

2D image plane. Doing so, 2D-speckle tracking ultrasound provides a LAGRANGIAN reference frame 

within the 2D image plane, only. Out of plane motion of the imaged structure – such as long axis con-

traction of the left ventricle [cf. chapter 1.3] when a transversal cross section of the heart is imaged – 

cannot be captured and may result in image decorrelation and measurement of artificial deformation 

[Chen et al. 2005]. Only real-time 3D ultrasound combined with speckle tracking, which is referred to 

as 4D ultrasound in this work, provides a LAGRANGIAN reference frame for 3D deformation measure-

ments and is direction independent. 

The conditions for imaging the blood filled lumen of blood vessels are quite good: the differences 

in the speed of sound and the density of abdominal soft tissues ( 𝑐௦௢௙௧ ௧௜௦௦௨௘௦ ൌ  1540 m s⁄ ,  

 𝜌௦௢௙௧ ௧௜௦௦௨௘  ൎ  1000 kg mଷ⁄ ) and of blood, ሺ𝑐௕௟௢௢ௗ ൌ 1580 … 1600 m s⁄ , 𝜌௕௟௢௢ௗ ൎ 1060 kg mଷ⁄ ሻ at 

the body temperature of 37°C [Goss et al. 1980] result in acoustic impedances of 

𝑍௕௟௢௢ௗ ൌ  1.67 … 1.70 ൈ 10଺ 𝑘𝑔 ሺ𝑚ଶ𝑠ሻ⁄  and 𝑍௦௢௙௧ ௧௜௦௦௨௘ ൌ 1.54 ൈ 10଺ 𝑘𝑔 ሺ𝑚ଶ𝑠ሻ⁄ , meaning a differ-

ence of 9 to 10%. In addition to this, blood has a low echogenicity (no reflectors or scatterers) and will 

appear as black in ultrasound images [Nichols et al. 2011]. Thus the interface between the vessel wall 

and the lumen can be detected very well in all variants of ultrasound imaging. In contrast, the aortic or 

arterial wall and the surrounding connective tissue have almost identical acoustic properties and the 

‘border’ between both is more a continuous transition than a clear interface. This transition can be iden-

tified only in blood vessels, which are located very close to the surface of the body such as the common 

carotid artery. Because of the low penetration depth that is required, very high imaging frequencies can 

be used that allow to detect small scale structural changes of tissue composition. As a consequence, the 

wall thickness of blood vessels which are located deep inside the body such as the abdominal aorta, 

cannot be measured by ultrasound. 

Originally, ultrasound speckle tracking imaging was developed to study the cyclic motion of the left 

and right ventricle of the heart [see e.g. Kapetanakis et al. 2005; Teixeira et al. 2015]. The application 

of 2D speckle tracking ultrasound has been expanded to assess vascular wall mechanics since Oishi et 

al. [2008] performed the first clinical study measuring human cyclic wall deformation by this method. 

In contrast, the application of 4D ultrasound was first established within the interdisciplinary project, 

part of which this thesis is [Karatolios et al. 2013; Teixeira et al. 2015; Derwich et al. 2017]. The term 

4D ultrasound is used in this work for temporally resolved 3D ultrasound combined with speckle track-
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ing, a measurement method that results in spatial trajectories or LAGRANGIAN motion functions of ma-

terial points [cf. chapter 2.1] over the cardiac cycle. Often, this imaging technique is referred to as 3D 

speckle tracking echocardiography (3D-STE) in literature. This terminology is not used in this thesis 

because it implies the imaging of the heart, not the aorta. In contrast to 4D ultrasound or 3D-STE, 3D 

ultrasound is used in this thesis to refer to temporally resolved three-dimensional ultrasound without 

speckle tracking. This technique provides the shape of the imaged object, only, but not the unique allo-

cation of the positions of material points and, consequently, not the local deformation of aortic wall 

surface segments. 

This chapter is organized as follows: First, clinical acquisition of in vivo 4D ultrasound data of aortic 

walls is described [section 3.2]. Two variants of post-processing of the speckle tracking data are pre-

sented: one using the standard version of the proprietary Toshiba speckle tracking software (Advanced 

Cardiac Package (ACP), Toshiba Medical Systems, Otawara, Japan) [section 3.2.2.1] and one using a 

customized data interface of the ACP that provided highly resolved full-field displacement data of ma-

terial points on the aortic wall [section 3.3.1 and 3.3.2]. This customized interface was designed in co-

operation with and provided by Toshiba Medical Systems for the work conducted within this thesis. In 

sections 3.3.3 and 3.3.4 two different metrics of aortic wall deformation data are described that were 

developed and implemented within this thesis based on the newly available highly resolved full-field 

data. In chapters 3.4 and 3.5 first applications of the newly developed highly resolved full-field dis-

placement measurements to in vivo data of volunteers and patients are reported and analyzed: Chapter 

3.4 examines the effect of the increased spatial resolution of strain measurement – or reduction of the 

size of wall surface areas for which independent in-plane strain values can be determined - on the size 

of the measured maximum local strains and on the heterogeneity of the measured strain distributions. 

Chapter 3.5 gives an overview of the average size of three-dimensional displacements of material points 

that were observed in three patient groups that were characteristically different with respect to age and 

cardiovascular health. This study provides an estimate size of the primary measure of time-resolved 3D 

ultrasound combined with speckle tracking that is to be expected in clinical studies. This is an important 

information for the evaluation of the results of the validation of the customized 4D ultrasound full-field 

measurement of aortic wall motion that was performed within this thesis and that is presented  

in chapter 4.
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3.2 Clinical data acquisition and post-processing 

3.2.1 4D ultrasound examination and blood pressure measurement 

Clinical data evaluated and analyzed in this thesis were acquired at the University Heart Center of the 

Philipps University Marburg and the Department of Vascular and Endovascular Surgery of the Goethe 

University Hospital Frankfurt (Main). Data acquisition and further scientific use of the anonymized data 

were approved by the local ethics committees. All volunteers and patients were examined after giving 

informed consent. All measurements were acquired with patients in supine position after 5 minutes rest. 

Minimum (diastolic) and maximum (systolic) blood pressure that occur throughout the cardiac cycle 

were measured at the brachial artery by sphygmomanometry. Volunteers and patients were asked to 

hold their breath during the ultrasound measurements. 4D ultrasound data were acquired by use of a 

commercial real-time 3D-echocardiography system (Artida®, Toshiba Medical Systems, Otawara, Ja-

pan) that was equipped with a 3D transthoracic probe (Toshiba, PST-25SX, 1-4 MHz phased array ma-

trix transducer). Figure 3-2 exemplarily shows five cross sectional views of the volumetric data set of a 

healthy infrarenal aorta.  

 

Figure 3-2 Representative example of a five-plane view of 3D volume ultrasound data. Plane A: longitudinal cross-
sectional view. Plane B: a second longitudinal cross-sectional view orthogonal to plane A. Planes C3, C5 and C7: 
three short axis or transversal cross-sectional views of the volumetric image data. [Image reprinted from: Kara-
tolios, Wittek et al. 2013 with permission from Elsevier] 
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In vivo measurements had a temporal resolution between 12.8 and 31.5 frames per second (fps), 

resulting in the identical number of volumetric images per cardiac cycle if a heart rate of about 60 beats 

per minute (bpm) is assumed [cf. Table 3-1]. This temporal resolution is sufficient to resolve the periodic 

deformation of the aortic wall with negligible error. This is illustrated by Figure 3-3 which exemplarily 

shows the cyclic length and diameter change of a healthy infrarenal aorta [see chapter 3.3.3.1 for detailed 

description of how diameter and segment length were computed from ultrasound data]. By comparison 

of the diameter curve with the typical curve of aortic pressure that is given in Figure 1-3, it can be seen 

that diameter follows pressure. No “singularities” in the pressure curve are to be expected. This is in 

line with the state of research [cf. chapter 1.5]. Only the incisura that indicates the closure of the aortic 

valve is lost. This disturbance in the pressure signal, however, is not relevant for the peak-to-peak am-

plitude of cyclic deformation of the aortic wall. 

Figure 3-3 Cyclic length and diameter change of an abdominal aortic segment. Minimum length and diameter are 
observed at 43% and 0% of the cardiac cycle, respectively. [Image reprinted from Wittek et al. 2016b with per-
mission from Springer Nature] 

For the conversion of the measured time of flight of the ultrasound signal into distances between 

imaged anatomical structures [cf. eq. 3-5], the device assumes a constant speed of sound of 1540 𝑚 𝑠⁄ , 

which holds well for soft tissues in the human abdomen [Goss et al. 1980]. This results in a wave length 

𝜆 ൌ 0.39 mm of the ultrasound signal at a frequency  𝑓 ൌ 4 MHz, which was used for all measurements. 

The voxel size of the volumetric grey scale representation of the ultrasound measurement between 0.28 

and 0.59 mm was in the order of magnitude of the wave length of the signal. 

Full volume data sets of 90° x 90° resulted from 6 sub-volumes of 90° x 15° that were imaged in 

subsequent cardiac cycles. The measurement was triggered by ECG with end-diastole as starting point 

(reference) of each cycle. End-diastole is defined as the point of time within the cardiac cycle when the 

relaxation and expansion of the left ventricle of the heart (LV) reaches its maximum, just before the 
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ejection of blood volume into the arterial system starts due to LV contraction. End-diastole coincides 

with minimum blood pressure in the arterial system. Maximum (systolic) blood pressure within the 

cardiac cycle is reached at the end of the contraction phase of the LV [cf. chapter 1.3].  

3.2.2 Clinical post-processing: wall motion tracking 

Clinical post-processing of the 4D ultrasound data was performed by K. Karatolios, MD, at the Univer-

sity Heart Center of the Philipps University Marburg, by W. Derwich, MD, at the Department of Vas-

cular and Endovascular Surgery of the Goethe University Hospital Frankfurt and by the author himself 

using the proprietary speckle tracking algorithm provided by the Toshiba Advanced Cardiac Package 

(ACP, Toshiba Medical Systems, Otawara, Japan). The data sets were rotated to give two longitudinal 

and three transversal cross-sections of the volumetric data of the imaged aortic segment as shown in 

Figure 3-2 and Figure 3-4 a. The tissue close to the luminal border of the aortic wall as region of interest 

(ROI) for speckle tracking was masked manually in the two longitudinal cross sections [Figure 3-4 a]. 

Figure 3-4 a) Five plane view of an AAA with a maximum diameter of 43.9 mm. The length of the imaged segment 
is about 80 mm. Segmentation of the wall area as region of interest for the wall motion tracking was performed 
manually in the A and B planes. Cross-sectional views C3, C5 and C6 show the automatic completion of the 
segmentation. A and B show the artificial pseudo-apex that is produced by the proprietary software’s template that 
was designed for segmentation of the left ventricle of the heart. b) Field of 1188 discrete material points describing 
the diastolic configuration of the AAA wall as obtained by use of the Toshiba Advanced Cardiac Package. The 
artificial pseudo-apex was already removed from these data. [Image reprinted from Wittek et al. 2018 with premis-
sion from John Wiley and Sons] 

The difference in acoustical impedance between blood and arterial wall as well as the low echo-

genicity of blood [cf. chapter 3.1] allow for a clear detection of the luminal side of the vessel wall, 

whereas the abluminal side of the wall cannot be detected clearly. Therefore, all measurements of wall 

motion were performed on the luminal side of the wall. Based on this information, the ACP completed 
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the three-dimensional ROI automatically. The accuracy of this automatic completion was then con-

trolled by the observer, on the two longitudinal and three transversal cross sections of the volumetric 

data set, which can be shifted along the sample length. If necessary, the reconstructed 3D ROI was 

adjusted manually.  This control was performed by the clinician who had acquired the data set and, for 

a second time, by the author of this thesis, who has developed, implemented and performed further post-

processing of the 4D ultrasound data sets [cf. chapter 3.3].  

The speckle tracking algorithm provided by the ACP divided the defined ROI into cubic template 

volumes of approximately 10×10×10 mm3 for the purpose of pattern recognition in subsequent time 

steps. Motion estimation points were centered in these template volumes [Seo et al. 2009; Seo et al. 

2011]. Since the ACP was designed for imaging the left ventricle of the heart [c.f. chapter 1.2, Figure 

1-2], its segmentation template required an apical closure of the ROI at one end in any case. Thus, during 

the post-processing of each data set, an artificial “pseudo apex” was created, which did not correspond 

to any real structure [Figure 3-4 a] and therefore was removed in further post-processing steps [cf. 3.3.1].  

 

Figure 3-5 Subdivision of the masked region of interest for the speckle tracking algorithm according to the standard 
post-processing by the Toshiba Advanced Cardiac Package: a) The longitudinal cut shows 3 segments in longitu-
dinal direction: base-, mid- and apical segment. b) The transversal cross-section of the base- and mid-segment 
illustrates its subdivision into 6 circumferential segments, each. c) The cross-sectional view of the (pseudo-) apex 
show its subdivision into 4 circumferential segments. 

3.2.2.1 Standard post-processing 

In-plane strain components (longitudinal, circumferential and shear) and radial strain were provided by 

the standard version of the ACP for 16 subsegments of the masked region of interest as shown in Figure 

3-5: Longitudinally, the ROI was subdivided into three sections, base, middle and apex. Base and middle 
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section were divided into 6 circumferential subsegments, each, and the (pseudo-) apex into 4 circumfer-

ential subsegments. Because the apex was an artefact when the device was used for imaging blood ves-

sels, only the strain components computed for the 12 segments of the base- and middle section could be 

used for analysis of aortic wall motion. The ACP standard post-processing provided separate strain val-

ues for each of these segments. This spatial resolution of strain imaging corresponds to the usual post-

processing of 2D speckle tracking ultrasound where circular cross sections of the aortic or the LV wall 

are subdivided into six circumferential segments, for which circumferential and radial strain values and 

out-of-plane shear can be computed. 

 

3.3 Deformation metrics based on customized 4D ultra-

sound wall motion data 

3.3.1 Customized data interface 

In addition to the described standard post-processing provided by the Toshiba ACP, a customized data 

interface was designed within this thesis in cooperation with Toshiba Medical Systems Europe. It al-

lowed for the export of highly resolved wall deformation data compared to the 16 segments (including 

pseudo-apex) for which strain values were provided by the standard post-processing: 3D position vector 

fields of 1296 measuring points on the inner border of the masked ROI could be exported for each 

temporal frame throughout an entire cardiac cycle as ASCII file. These data allowed the computation of 

the complete in-plane strain tensor for wall surface areas with sizes about 2 mm2 in non-aneurysmal 

aortae, compared to surface areas of between 90 mm2 and 170 mm2 when the standard post-processing 

was applied [see chapter 3.4 for a detailed comparison of the results obtained standard and customized 

post-processing]. The measuring points were organized into subsets along the longitudinal axis of the 

imaged wall segment that were called “heights”. Each height contained 36 measuring points that were 

distributed evenly over the circumference of the wall. These circumferential positions within the heights 

were called “degrees”, even though the average distance between two neighboring degrees was 10°. 

“Degree” and “height” are the technical terms by which longitudinal and circumferential position of a 

material point is referred to within the ACP and within the files exported using the customized interface. 

Therefore, these terms are used throughout this thesis. 

The exported data included artificial “measurements” from the pseudo-apical region as well. The 

pseudo-apical closure was removed during post-processing of wall motion data using an in-house finite 

element (FE) preprocessor that was developed within this thesis [cf. chapter 3.3.4]. The apex-free end-
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diastolic reference configuration of the aortic wall segment was visualized using WOLFRAM Mathemat-

ica 9 (or a later release of the software) [cf. chapter 3.3.4] and the author controlled by visual comparison 

with the five plane view of the volumetric ultrasound data [cf. Figure 3-4 a] whether the segmented and 

reconstructed configuration was free of artefacts. Remaining artefact-free fields of between  

17 ൈ 36 ൌ 612 and 33 ൈ 36 ൌ 1188 motion estimation points for each temporal frame throughout the 

cardiac cycle were processed further. The positions of the identical measuring points in subsequent tem-

poral frames describe the trajectory of a material point on the aortic wall throughout the cardiac cycle. 

3.3.2 Motion function 

The exported measuring points can be understood as current position vectors 𝒙 ∈ 𝑹ଷ of discrete finite 

tissue volumes, i.e. discrete material points 𝑋 in the aortic wall plane in a continuum mechanical sense. 

Material points and corresponding position vectors describing different configurations are given with 

indices in order to emphasize that the obtained field functions are of a discrete, not properly continuous 

character: 

 
𝒙௜,௝,௞ ൌ 𝒙൫𝑋௜,௝ , 𝑡௞൯ , eq. 3-6 

where    

𝑖 ൌ 1, … ,𝑛, 𝑛 ൑ 36   refers to the “height” or position along the longitudinal axis of the  

  aortic segment,  

𝑗 ൌ 1, … ,36  refers to the “degree” or circumferential position as identified in the 

ASCII file that was exported from the Toshiba ACP and  

𝑡௞ , 𝑘 ൌ 0, …𝑚  marks the 𝑘௧௛  temporal frame throughout the cardiac cycle for which 

wall motion data were obtained.  

In each temporal frame, the position vector field 𝒙௜,௝,௞  determined the current 3D configuration 

ℬ௞ ൌ  ℬ௧ሺ𝑡௞ሻ of the imaged aortic wall segment [Figure 3-6]. The ECG-triggered measurement by the 

Toshiba Artida provided the end-diastolic configuration [cf. 3.2.1] as deformed reference configuration 

ℬ௥ that coincided with minimum aortic blood pressure [cf. chapter 1.3], i.e. the minimum cyclic load 

acting on the wall that could be observed non-invasively in vivo. It was defined by the position vector 

field 𝑿௜,௝ ൌ 𝑿௜,௝ሺ𝑋, 𝑡௥ሻ. In contrast, the position vector field  𝑿଴ሺ𝑋ሻ that defined the natural, load- and 

stress-free configuration ℬ଴ [cf. chapter 2.1] of the aortic wall could not be observed in vivo and was 

unknown. 

According to eq. 2-7, the displacement vector field 𝒖௜,௝,௞ [Figure 3-1] that maps the chosen reference 

configuration ℬ௥ onto any observed current configuration ℬ௞ was obtained as 

 𝒖௜,௝,௞ ൌ 𝒙௜,௝,௞ െ 𝑿௜,௝  . eq. 3-7 
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Using this displacement field, the discrete cyclic motion function 𝜒:ℬ௥ → ℬ௞ , 𝑘 ൌ 0, … ,𝑚 of the aortic 

wall is given by 

 
𝒙௜,௝,௞ ൌ 𝝌൫𝑿௜,௝ , 𝑡௞൯ ൌ 𝑿௜,௝ ൅ 𝒖௜,௝,௞ . eq. 3-8 

3.3.3 Quantification of the size and global deformation of aortic wall 
segments 

In this section, deformation metrics are described that approximate the “global” deformation of whole 

imaged aortic wall segments based on the assumptions that these segments a) have a cylindrical shape 

and b) deform homogeneously. In a comparative clinical study of the wall motion of the proximal as-

cending aorta and the infrarenal abdominal aorta [cf. chapter 5], these metrics were used to analyze the 

cyclic 3D deformation of non-aneurysmal, young and healthy human aortae in vivo. The imaged seg-

ments exhibited diameters between 14 mm and 28 mm [cf. Table 5-2] and lengths between 20 mm and 

40 mm [cf. Table 5-1]. The described deformation metrics were computed by use of in-house software 

that was designed and coded by the author in Visual Basic for Applications in Excel (Microsoft Corp., 

Redmond, WA, USA). 

 

Figure 3-6 Visualization of primary data underlying global deformation analysis: Fields of position vectors of 
discrete material points describing two current configurations of an abdominal aortic wall segment of a 25 y.o. 
male volunteer as viewed from its caudal to its cranial end. In orange the lumen centerline is shown that was 
determined from the configuration that is shown in blue. [Image reprinted from Wittek, Karatolios et al. 2016b 
with permission from Springer Nature] 
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3.3.3.1 Lumen centerline, length, radius of curvature, diameter and volume 

Current lumen midpoints along the aortic segment were calculated for each temporal frame as the cen-

troids of the warped circumferential lines of each height [Figure 3-6] according to 

𝒄௜,௞ ൌ
∑

𝒙௜,௝ାଵ,௞ ൅ 𝒙௜,௝,௞
2 ∙ ฮ𝒙௜,௝ାଵ,௞ െ 𝒙௜,௝,௞ฮ

ଷ଺
௝ୀଵ

∑ ฮ𝒙௜,௝ାଵ,௞ െ 𝒙௜,௝,௞ฮ
ଷ଺
௝ୀଵ

, 

 

eq. 3-9 

where     𝒙௜,௝,௞ is the current position of the  𝑗th discrete material point within the ith “height” or 

subset, 𝑖 ൌ  1, …𝑛, at the 𝑘௧௛ temporal frame along the length of the imaged seg-

ment; for 𝑗 ൌ  36: 𝒙௜,௝ାଵ ൌ 𝒙௜,ଵ,   

and ‖∎‖ is the norm of a vector. 

These midpoints defined a curved centerline. The length of the aortic segment was obtained as the sum 

of the spatial distances between neighboring lumen midpoints. An averaged or global radius of curva-

ture of the aortic segment was determined as the radius of the circle that was defined by the two end 

points and the mid-point of the curved centerline in the reference configuration ℬ௥. The centroid 𝒄௚ of 

the lumen centerline was obtained as 

𝒄௚ ൌ
∑

𝒄௜ାଵ,௞ ൅ 𝒄௜,௞
2 ∙ ฮ𝒄௜ାଵ,௞ െ 𝒄௜,௞ฮ

୬ିଵ
௜ୀଵ

∑ ฮ𝒄௜ାଵ,௞ െ 𝒄௜,௞ฮ
௡ିଵ
௜ୀଵ

 . eq. 3-10 

The current global diameter was determined for each time step 𝑘 as follows: A straight centerline 

was defined by the lumen midpoints of the two end cross-sections. Local radii 𝑟௜,௝,௞ were determined as 

minimum distance between each material point 𝒙௜,௝,௞ on the aortic wall and the centerline. The average 

radius 𝑟௞ of the aortic segment at each imaged time step throughout the cardiac cycle was calculated as 

mean of these local radii. Eventually the average or global diameter was obtained. 

The current volume 𝑉௞ ൌ 𝑉ሺ𝑡௞ሻ was obtained from average radius and length as 

𝑉௞ ൌ  𝜋 ൈ  𝑟௞
ଶ  ൈ  𝑙௞ . eq. 3-11 

Rotation 𝜗௞ ൌ 𝜗ሺ𝑡௞ሻ was defined as the angle between the radial line connecting the lumen mid-

point of the cross-section to a specific material point on the wall at different time points throughout the 

cardiac cycle [Sengupta et al. 2008]. Without any limitation to the generality, the possible range of 𝜗௞ 

can be restricted to values between െ𝜋 2⁄ ൏ 𝜗௞ ൏ 𝜋 2⁄ , since rotations even close to േ𝜋 2⁄  are not 

physiological. In accordance with the right-hand rule and the definitions that are usually applied to the 

left ventricle of the heart, positive values mean counter clockwise rotation and negative values mean 
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clockwise rotation as seen in direction of blood flow, i.e. from a position that is proximal to the heart in 

distal direction. The average global rotation of an aortic segment was obtained as mean of the rotation 

values that were calculated for all single discrete material points. The peak-to-peak rotation amplitude, 

describing the maximum range of rotational motion of an aortic segment throughout the cardiac cycle, 

was defined as the difference of maximum (counter clockwise) and minimum (clockwise) rotation.  

3.3.3.2 Axial displacement and velocity 

An overall axial unit vector 𝒂௦௘௚ of an aortic segment was defined in direction of the straight line be-

tween the luminal midpoints of the two end cross sections of the segment. The displacement of a material 

point 𝑋௜,௞ in direction of 𝒂௦௘௚was obtained as 𝒖௜,௝,௞,௔௫௜௔௟ ൌ 𝒖௜,௝,௞ ∙ 𝒂௦௘௚. Velocity in direction of 𝒂௦௘௚ 

was determined from displacement data by means of numerical differentiation with respect to time: 

𝒖ሶ ௜,௝,௞ ൌ
𝒖௜,௝,௞ାଵ െ 𝒖௜,௝,௞

∆𝑡
 . eq. 3-12 

Displacement and velocity along the aortic tree towards the heart were signed positively.  

3.3.3.3 Longitudinal and circumferential strain, relative volume change 

and twist 

Longitudinal strain 𝜀௟,௞, circumferential strain 𝜀௖,௞ and the relative volume change 𝑉𝐶௞ were defined as: 

𝜀௟,௞ ൌ
𝑙௞ െ 𝑙௠௜௡
𝑙௠௜௡

 , eq. 3-13 

𝜀௖,௞ ൌ
𝑑௞ െ 𝑑௠௜௡
𝑑௠௜௡

 , eq. 3-14 

𝑉𝐶௞ ൌ
𝑉௞ െ 𝑉௠௜௡
𝑉௠௜௡

 , eq. 3.15 

where 𝑙௠௜௡, 𝑑௠௜௡ and 𝑉௠௜௡ are minimum length, diameter and volume that were observed during the 

cardiac cylce, respectively. 𝑙௞, 𝑑௞ and 𝑉௞ indicate the corresponding values measured at the 𝑘௧௛ tem-

poral frame. The cyclic strain was defined as the peak-to-peak strain amplitudes Δ𝜀௟, Δ𝜀௖ and Δ𝑉𝐶. It 

was obtained for 𝑙௞, 𝑑௞ and 𝑉௞ assuming maximum cyclic values. 𝑉𝐶 is a biaxial measure combining 

longitudinal and circumferential deformation. 

As already stated above, the end-diastolic initial frame of the ECG-triggered 4D ultrasound image 

acquisition [cf. Figure 3-3] coincides with minimum blood pressure that occurs at end-diastole of the 
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cardiac cycle [cf. chapter 1.3]. The minimum blood pressure is related to the minimum diameter of an 

aortic segment, whereas maximum diameter is related to maximum or systolic blood pressure. Conse-

quently, the end-diastolic configuration is the reference for the computation of cyclic circumferential 

strain according eq. 3-14. Note that, in contrast, minimum or maximum values of length and volume 

were not necessarily observed at the same time steps [cf. Figure 3-3]. I.e. the measures for cyclic strain 

according to eq. 3-13, eq. 3-14 and eq. 3-15 do not describe the deformation of the aortic segment with 

regard to a common reference configuration. End-diastole serves as reference configuration for the de-

scription of cyclic circumferential deformation, only. Different configurations may serve as reference 

for the description of cyclic longitudinal and volumetric deformation. Therefore, eq. 3-13 and eq. 3-15 

imply a change of reference configuration [cf. chapter 2, eq. 2-18 to eq. 2-19] with respect to the end-

diastolic reference configuration provided by the ECG-triggered image acquisition. 

The twist of an aortic segment was calculated as: 

𝛾௞ ൌ
𝜗ௗ௜௦௧௔௟,௞ െ 𝜗௣௥௢௫,௞

𝑙௘ௗ
 , eq. 3-16 

where 𝜗ௗ௜௦௧௔௟,௞ is the rotation of the cross-section distal to the LV along the aortic tree, 𝜗௣௥௢௫,௞ is the 

rotation of the proximal cross-section and 𝑙௘ௗ is the end-diastolic length of the aortic segment, which 

was chosen as reference for this purpose. Twist peak-to-peak amplitude 𝛤 was obtained from the differ-

ence of maximum (counter clockwise, cct) and minimum (clockwise, ct) twist that were observed and 

is given as absolute value: 𝛤 ൌ ‖𝛾௠௔௫ െ 𝛾௠௜௡‖. 

In addition to the peak-to-peak amplitudes of cyclic deformation, systolic-diastolic longitudinal and 

volumetric deformation was defined relating the systolic-diastolic length change 𝑙௦௬௦ െ 𝑙ௗ௜௔ and volume 

change 𝑉௦௬௦ െ  𝑉ௗ௜௔ to the diastolic length 𝑙ௗ௜௔ and volume 𝑉ௗ௜௔: 

𝜀௟,௦௬௦ିௗ௜௔ ൌ
𝑙௦௬௦ െ 𝑙ௗ௜௔

𝑙ௗ௜௔
 , eq. 3-17 

𝑉𝐶௦௬௦ିௗ௜௔ ൌ
𝑉௦௬௦ െ 𝑉ௗ௜௔

𝑉ௗ௜௔
 . eq. 3-18 

Systolic-diastolic twist was defined as 𝛤ୱ୷ୱିୢ୧ୟ ൌ ฮ𝛤௦௬௦ െ 𝛤ௗ௜௔ฮ. Diastole and systole were identi-

fied as the time steps where minimum and maximum diameters were observed, respectively, and dias-

tolic and systolic segment length, volume and twist were obtained from the corresponding time steps. 

All imaged geometries of the arterial segments represent – compared to a load free geometry of an 

excised aortic segment – deformed configurations under physiological loading. Therefore, neither the 

cyclic peak-to-peak amplitudes, nor the systolic-diastolic deformation measures describe the “true” 

strains with regard to a natural, stress- and deformation-free configuration ℬ଴ of the aorta. 
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3.3.3.4 Phase shift of longitudinal and circumferential strain 

The time points 𝑡௟,୫ୟ୶ and 𝑡ௗ,୫ୟ୶ where maximum longitudinal and circumferential strain occured, re-

spectively, were identified. The phase shift of the maxima of longitudinal and circumferential strain was 

defined as 

𝜑௠௔௫ ൌ
𝑡௟,௠௔௫ െ 𝑡ௗ,௠௔௫

𝑡௖௖
 , eq. 3-19 

where 𝑡௖௖ is the total time of one cardiac cycle. 

3.3.3.5 Conclusion 

In this section 3.3.3, a method for the quantification of the global multiaxial deformation of non-aneu-

rysmal aortic segments based on full-field displacement measurements by 4D ultrasound was presented. 

The high temporal resolution of the displacement data available via the customized data interface was 

used to assess the full extent of multiaxial cyclic wall motion with regard to different reference config-

urations for different in-plane deformation components. Moreover, the fact that 4D ultrasound allows 

the LAGRANGIAN description of the motion 𝝌ሺX, 𝑡ሻ [cf. section 2.1 and eq. 3-8] of a field of discrete 

material points 𝑋 was used: It was ensured that the measurements at different time points of the cardiac 

cycle, which served as basis for the quantification of the deformation, were taken at the same site of the 

observed object. An imaging method that provides an EULERIAN reference frame, by which measure-

ments at the identical site within the field of view of the measurement device are obtained at different 

time points, might result in chimerical deformations if the observed object performs (large) rigid body 

motions within the field of view. In contrast, the spatial resolution of the discrete motion function 𝝌ሺX, 𝑡ሻ 

was not fully exploited, but metrics for the global, homogeneous deformation of aortic segments were 

presented. 

3.3.4 Highly resolved fields of local in-plane strains  

Additionally, a method for the highly spatially resolved full-field imaging of aortic wall motion was 

developed within this thesis: 4D ultrasound data were used to generate a finite element model of the 

imaged aortic or aneurysmal segment and to determine all in-plane components of the BIOT’s strain 

tensor [cf. chapter 2.1, eq. 2-23] for aortic wall segments with sizes ranging from ൑ 2 mmଶ  to 

൒  20 mmଶ. The steps of the finite element preprocessing – reconstruction and discretization of the 

reference configuration, computation of the displacement boundary conditions, definition of local coor-

dinate systems and input-file generation – were performed using an in-house software that was written 
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in Microsoft Visual Basic for Applications in Excel (Microsoft Corp., Redmond, WA, USA). The com-

mercial FE solver Abaqus® 6.12 (Dassault Systems, Paris, France) was used for solving the direct bound-

ary value problem. 

3.3.4.1 Discretization of irregular aortic and aneurysmal wall geometries 

Careful masking of the aortic wall with the Toshiba ACP [cf. chapter 3.2.2 and Figure 3-4] resulted in 

regular patterns of the exported discrete material points that allowed an automated FE meshing of the 

chosen reference configuration ℬ௥  [Figure 3-7]. The discretization of the end-diastolic reference config-

uration was performed as suggested by Kroon and Holzapfel 2008 and Kroon 2010 based on virtual 

data: each position vector 𝑿௜,௝ [cf. section 3.3.1] was preserved as node of a 4-node structural element 

𝑒௜,௝, 𝑖 ൌ  1, … ,𝑛 െ 1, 𝑗 ൌ 1, … ,36 in the model. The quality of the mesh was checked using the standard 

settings of the commercial finite element preprocessor Altair Hypermesh and, if necessary, masking of 

the wall segment was repeated. 

 

Figure 3-7 Post-processing and strain computation based on the exported 4D ultrasound wall motion data: a) dis-
cretized end-diastolic configuration with local axial (1-axis) and circumferential (2-axis) directions. The discrete 
material points [cf. Figure 3-4 b] are preserved as nodes of the mesh. b) Systolic displacement field. c) Distribution 
of local circumferential strains. [Image reprinted from Wittek et al. 2018 with permission from John Wiley and 
Sons] 

3.3.4.2 Definition of local CARTESIAN coordinate systems 

In order to obtain physiological meaningful in-plane strain components describing the longitudinal or 

axial and circumferential deformation of the vessel, local orthonormal basis systems were defined on 

the end-diastolic reference configuration for each material point that is represented as node in the FE 

model and each vessel wall region that is represented as element [Figure 3-7 a]: A preliminary overall 

axial vector 𝒂௦௘௚ was defined by the straight line between the luminal midpoints of two cross sections 

of the aortic or aneurysmal segment [cf. section 3.3.3.1]. Depending on the shape and complexity of the 



3 Full field strain measurement 70 

 

imaged geometry, either one “global” axial vector was defined for the complete imaged aortic section, 

or several axial vectors were defined for different sections along the length of the vessel which resulted 

in a curved, segmentally linear centerline. The minimum size of an axial section for which separate axial 

vectors were defined was determined by the distance between two neighboring subsets of discrete ma-

terial points in longitudinal direction (“heights”). Using the position vectors of the neighboring material 

points, the preliminary unit vectors 𝒆ොଵ,𝒆ොଶ in approximate axial and circumferential direction were con-

structed that were tangential to the 3D surface in the respective material point. Then, a preliminiary local 

“radial” vector was obtained as 𝒆ොଷ ൌ  𝒂௦௘௚ ൈ 𝒆ොଶ. The local axial unit vector was obtained by projection 

of 𝒆ොଵonto the plane that is defined by 𝒂௦௘௚  and 𝒆ොଷ 

𝒆ଵ ൌ
1
𝑁
ൣ൫𝒆ොଵ ∙ 𝒂௦௘௚൯𝒂௦௘௚ ൅ ሺ𝒆ොଵ ∙ 𝒆ොଷሻ𝒆ොଷ൧ , eq. 3-20 

where   𝑁 ൌ ฮ൫𝒆ොଵ ∙ 𝒂௦௘௚൯𝒂௦௘௚ ൅ ሺ𝒆ොଵ ∙ 𝒆ොଷሻ𝒆ොଷฮ . 

The final local radial unit vector 𝒆ଷ was obtained from the cross product of the local axial unit vector 

𝒆ଵ (global axial direction and tangential to the surface) and the preliminary vector 𝒆ොଶ that is tangential 

to the surface and not parallel to 𝒆ଵ: 𝒆ଷ ൌ 𝒆ଵ ൈ 𝒆ොଶ.  Finally, the local orthonormal basis system was 

completed by the circumferential unit vector 𝒆ଶ ൌ 𝒆ଷ ൈ 𝒆ଵ. The appropriateness of the local axial and 

circumferential directions was checked visually by the author and, if necessary, adjustment was possible 

by defining an additional rotation of the local coordinate systems about the local radial direction. In 

large-displacement analyses, the local element coordinate systems rotate with the average rigid body 

motion of the material point, whereas the local nodal coordinate systems are a set of fixed Cartesian 

axes [Abaqus 6.12 2012c, 2012a].  

 

Figure 3-8 Local coordinate system defined in material point 𝑿. 𝒆ଵ – longitudinal axis of the vessel, 𝒆ଶ – circum-
ferential or tangential axis, 𝒆ଷ – radial axis. [Image reprinted fom Wittek et al. 2017a with permission from SPIE] 
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3.3.4.3 Computation of BIOT’s in-plane strain fields with regard to a chosen de-

formed reference configuration 

In order to implement the discrete motion function given in eq. 3-8 that was obtained from 4D ultrasound 

measurements in a finite element model using Abaqus 6.12, the displacements 𝒖௜,௝,௞ were applied as 

boundary conditions (BCs) to each node 𝒙௜,௝,௥ of the FE model in the chosen reference configuration. 

The in-plane components of the BIOT’s strain tensor 𝜺 with regard to the defined local coordinate sys-

tems were obtained for each element by numerical differentiation. Since every degree of freedom is 

constrained in the model, the resulting local strain values are independent of the ascribed material prop-

erties. For this study, a hyperelastic NEO-HOOKEAN material with 𝐶ଵ଴ ൌ 0.01 MPa was used [Abaqus 

6.12 2012a]. In Abaqus/Standard first order finite-strain membrane elements of type M3D4R with re-

duced integration and hourglass control were used. [Abaqus 6.12 2012b].  

Note: In-plane strain components 𝜀௞௟ , 𝑘, 𝑙 ൌ 1,2, with regard to a deformed reference configuration 

are obtained by this method, only, no “true” strains with regard to a load-free and undeformed configu-

ration that cannot be accessed in vivo . 

In addition to the components of the BIOT’s strain tensor, the Area Change Ratio (𝐴𝐶𝑅) or area 

strain, i.e. the ratio of the current area and the reference area of an element or surface section 𝑒௜,௝, was 

introduced as comprehensive measure of the biaxial in plane deformation: 

𝐴𝐶𝑅௜,௝,௞ ൌ 𝐴𝐶𝑅൫𝑒௜,௝ , 𝑡௞൯ ൌ
∆𝐴൫𝑒௜,௝ , 𝑡௞൯

𝐴଴൫𝑒௜,௝ , 𝑡௥൯
  

ൌ 𝜆ଵ൫𝑒௜,௝ , 𝑡௞൯ ∙ 𝜆ଶ൫𝑒௜,௝ , 𝑡௞൯ െ 1 

ൌ ൫𝜀ଵ൫𝑒௜,௝ , 𝑡௞൯ ൅ 1൯ ∙ ൫𝜀ଶ൫𝑒௜,௝ , 𝑡௞൯ ൅ 1൯ െ 1 

eq. 3-21 

where 

∆𝐴൫𝑒௜,௝൯ ൌ 𝐴൫𝑒௜,௝ , 𝑡௞൯ െ 𝐴଴൫𝑒௜,௝ , 𝑡୰൯, 

𝑖 ൌ 1, … ,𝑛 െ 1 refers to the “height” or position along the longitudinal axis of the aortic 

segment ሺ𝑛 ൑ 36ሻ,  

𝑗 ൌ 1, … ,36 refers to the “degree” or circumferential position as identified in the 

ASCII file that was exported from the Toshiba ACP,  

𝑡௞ , 𝑘 ൌ 0, …𝑚  marks the 𝑘௧௛  temporal frame throughout the cardiac cycle for which 

wall motion data were obtained,  

𝐴൫𝑒௜,௝ , 𝑡௞൯ is the current area of element or surface section 𝑒௜,௝ , 

𝐴଴൫𝑒௜,௝ , 𝑡୰൯ is the reference area of element or surface section 𝑒௜,௝ , 

𝜆ଵ൫𝑒௜,௝ , 𝑡௞൯, 𝜆ଶ൫𝑒௜,௝ , 𝑡௞൯ are the principal stretches of element 𝑒௜,௝  in ሺlongitudinalሻ 1 and 

ሺcircumferentialሻ 2 direction at 𝑡௞  and 
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𝜀ଵ൫𝑒௜,௝ , 𝑡௞൯, 𝜀ଶ൫𝑒௜,௝ , 𝑡௞൯ are the principal BIOT’s strains of element 𝑒௜,௝ in ሺlongitudinalሻ 1 and 

ሺcircumferentialሻ 2 direction at 𝑡௞ , as computed by Abaqus 6.12 regard-

ing rotational transformation of principal directions for finite defor-

mation. 

In order to quantify the full range of cyclic deformation, the time steps that showed the minimum 

and maximum mean strain with regard to the end-diastolic reference configuration throughout the car-

diac cycle were identified for each strain component, separately. Then peak-to-peak strain amplitudes 

were calculated as difference between the local strain values of the configuration with maximum mean 

strain and those of the configuration with minimum mean strain: 

∆𝜀௟,௜,௝ ൌ  𝜀௠௔௫ሺ௟ሻ,௜,௝ െ 𝜀௠௜௡ሺ௟ሻ,௜,௝  , eq. 3-22 

where    

𝑖, 𝑗   give the “height” and “degree” of the element 𝑒௜,௝ ,  

𝑙   denotes the strain component: 1 െ longitudinal, 2 െ circumferential and 

12 – in-plane shear,  

𝑚𝑎𝑥ሺ𝑙ሻ and 𝑚𝑖𝑛ሺ𝑙ሻ  indicate the time steps within the cardiac cycle at which maximum 

and minimum mean values of strain component 𝑙 were observed.  

These peak-to-peak strain amplitudes are referred to as cyclic strains in this work. 

Note: Minimum and maximum mean values of the different strain components do not necessarily 

occur at the same time point within the cardiac cycle. Thus, the cyclic strains quantify the full range of 

deformation throughout the cardiac cycle for each strain component. However, the computation of cyclic 

strain according to eq. 3-22 separately for each component of the in-plane strain tensor, may imply the 

choice of a different reference configuration for each strain component [cf. section 3.3.3.3]. 

 

3.4 Effects of increased spatial resolution on  

in vivo strain measurement 

The objective of the clinical study presented in this section [Karatolios, Wittek et al. 2013] was to in-

vestigate whether the method for imaging and calculation of highly resolved local wall strains that was 

described in sections 3.3.1, 3.3.2 and 3.3.4 of this chapter provides any additional benefit compared to 

the “standard post-processing” provided by the Toshiba ACP [cf. section 3.2.2.13.2.2.1] and to other 3D 

imaging methods that provide global changes of aortic shape and therefore allow the determination of 

homogeneous deformation metrics, only. For this purpose, cyclic circumferential peak-to-peak strain 
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amplitude was determined in three different ways. All three approaches were based on the identical 4D 

ultrasound data. Thus, all three approaches shared the identical frame rate and used the end-diastolic 

configuration of the imaged aortic segment as reference for the computation of strain. But the three 

methods differed in the spatial resolution or the size of aortic wall surface segments for which separate 

strain values were computed. 

3.4.1 Study collective and in vivo data acquisition 

The study was approved by the local Ethics Committee of the University of Marburg. Six adults without 

cardiovascular risk factors (e.g. no history of smoking, diabetes, hypertension and obesity) and without 

evidence of aortic disease were examined at the Clinics for Cardiac and Thoracic Vascular Surgery of 

the University Hospital Marburg after giving informed consent. Clinical variables including age, gender, 

body weight and blood pressure were obtained from each volunteer and patient [Table 3-1]. From each 

healthy subject and patient 4D ultrasound data of the epigastric or upper (proximal to the truncus coeli-

acus) segment of the abdominal aorta were recorded according to chapter 3.2.1. 

Table 3-1 Clinical characteristics of study population [Reprinted from Karatolios, Wittek et al. 2013 with permis-
sion from Elsevier] 

Patient ID Age 

 in years 

Sex BMI 

in kg/mଶ 

Heart rate 

in bpm 

 Systolic BP 

in mmHg 

Diastolic BP 

in mmHg 

V1 19 male 22 67  110 75 

V2 20 male 26 60  120 70 

V3 22 male 24 68  130 80 

V4 44 male 26 71  120 80 

V5 24 male 24 53  125 70 

V6 49 male 25 49  130 75 

Mean ± sd 29.7 ± 13.2  24.5 ± 1.5 61.3 ± 8.9  122.5 ± 7.6 75 ± 4.5 

3.4.2 Computation of circumferential in-plane wall strain with 
different spatial resolutions 

Firstly, assuming a perfectly cylindrical shape of the aorta, the average circumferential strain of com-

plete imaged wall segments with lengths between 20 mm and 40 mm was calculated as the ratio of 
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systolic diameter change ∆𝑑 ൌ 𝑑௠௔௫ െ 𝑑௠௜௡  and minimum (end diastolic) reference diameter. This 

value is referred to as “diameter ratio” in this section: 

 
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 ൌ

𝑑௠௔௫ െ 𝑑௠௜௡
𝑑௠௜௡

 . eq. 3-23 

This method corresponds to clinical practice where diameter, diameter change and circumferential 

strain are determined mostly by means of two-point measurements performed on just one cross section 

of the wall along the aortic tree. The results are then taken as representative for aortic segments with a 

length of several cm. Imaging data of single aortic cross sections can be obtained by standard 2D ultra-

sound data with appropriate temporal resolution [cf. chapter 3.1]. 

Secondly, the standard post-processing of the Toshiba ACP, as implemented in the UltraExtend 

workstation (Toshiba Medical Systems Corporation, Otawara, Japan) by default, was used to compute 

systolic circumferential strain [cf. section 3.2.2.1]: The tracked segment of the aorta was divided into 

sixteen 3D subsegments (including the pseudo-apex) automatically and wall strains were calculated for 

these. For strain analysis, the 12 base and middle segments could be used. The 4 segments of the 

"pseudo-apex" had to be excluded. 

Thirdly, highly resolved strain fields were computed according to the customized post-processing 

described in chapter 3.3.4. 

3.4.3 Dependency of the strain values and distributions on the spatial 
resolution 

The diameter ratio provides one average strain value for each data set, only. In contrast, distributions of 

local strain values with different spatial resolution are obtained by standard and customized post-pro-

cessing. The mean, the local peak value, the coefficient of variation and the ratio of the local peak value 

and the standard deviation of the obtained distributions of local strain values were determined for each 

data set (“wall motion indices”). The coefficient of variation of the distribution of local wall strains is 

referred to as heterogeneity index , the ratio of local peak value and standard deviation is called local 

strain ratio [cf. chapter 6.3]. 

Statistics was performed using WOLFRAM Mathematica 10.3 (Wolfram Research, Champaign, IL, 

USA). In order to compare the distributions of wall motion indices that were obtained for each data set, 

data were tested for normality first using the function ‘DistributionFitTest’. If both of two samples that 

were to be compared by means of a hypothesis test were distributed normally, values were given as 

mean ± sd and a Student t test for matched pairs (t) was performed. Else, values were given as median 

[Q1, Q3], where Q1 and Q3 are the 1st and 3rd quartile, respectively and a Mann-Whitney U test (U) was 

performed. If more than two samples were compared, the Bonferroni-Correction for multiple testing 

was observed. 
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Table 3-2 Dimensions of imaged aortic wall segments and resolution of US-imaging and wall motion tracking 
data. [Reprinted after Karatolios, Wittek et al. 2013 with permission from Elsevier] 

Patient ID Length 
in mm 

Minimum 
diameter 
in mm 

Maximum 
diameter 
in mm 

Voxel size 
in 

mm/voxel 

Frame rate 
in Hz 

Wall section area in mm2 

standard customized 

V1 36.1 14.9 18.0 0.59 15.9 141.2 2.0 

V2 40.0 15.0 17.9 0.59 12.8 158.0 2.1 

V3 33.9 15.6 17.2 0.59 13.5 139.4 2.1 

V4 33.0 16.9 19.0 0.59 14.1 145.2 2.1 

V5 22.6 14.7 15.8 0.35 17.9 87.0 1.2 

V6 33.3 19.0 20.7 0.39 14.5 165.3 2.4 

Mean ± sd 33.2 ± 5.8 16.0 ± 1.7 18.1 ± 1.7 0.52 ± 0.11 14,8 ± 1.9 139.4 ± 27.6 2.0 ± 0.4 

3.4.4 Results 

Table 3-2 gives the dimensions of all imaged aortic segments and the average end diastolic wall section 

area sizes obtained by standard and customized post-processing. The diameter ratio was determined for 

six healthy aortic segments with a length of 33.2 ± 5.8 mm and a minimum (diastolic) diameter of  

16.0 ± 1.7 mm corresponding to a mean surface area of about 1700 mm2. Using the standard post-pro-

cessing, the imaged abdominal aortic wall segments were divided into 12 sections with a size of 

139.4 ± 26.7 mm2, for which separate strain values were computed. The customized post-processing 

procedure allowed the calculation of strains for 864 sections with an average size of 2.0 ± 0.4 mm2 in 

the same aortic segments. 

Table 3-3 gives a comparison of the results of the applied three different methods to compute the 

systolic circumferential strain of the abdominal aortae of 6 volunteers without cardiovascular risk fac-

tors. Mean values obtained for each single data set by standard and customized post-processing were in 

good agreement with the diameter ratio Δd/d0. Observing the Bonferroni correction for multiple testing 

(p > 0.0167), no statistically significant differences were observed in the spatially averaged or global 

deformation of the wall segments as estimated by the diameter ratio and the means (Mean) of standard 

and customized circumferential strain distributions.  

In contrast, the statistical indices characterizing the heterogeneity of local strain obtained by stand-

ard and by customized post-processing were significantly different. Local peak values (Peak, p ≤ 0.01), 

the heterogeneity index (HI, p ≤ 0.01) and the local strain ratio (LSR, p ≤ 0.05) derived from standard 

post-processing were significantly lower compared to the corresponding values determined based on the 

customized post-processing procedure for the computation of highly resolved strain fields. 
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3.4.5 Discussion 

In this section, three methods to determine and characterize cyclic circumferential strain of an abdominal 

aortic segment based on 4D ultrasound data were applied exemplarily to six young and healthy volun-

teers. The main difference between the three methods, the diameter ratio, standard and customized post-

processing, was the size of the aortic wall segments, for which circumferential strain was computed, 

separately. The increased spatial resolution of the customized post-processing resulted in the detection 

of significantly higher local peak strains and, eventually, in a more appropriate mapping and quantifi-

cation of heterogeneous strain distributions. This capability to detect locally confined peak strains and 

heterogeneous strain distributions, has the potential to gain clinical and diagnostic relevance in the mon-

itoring of aortic aneurysms [cf. chapter 6]. 

Heterogeneous distributions of cyclic circumferential strain were observed in all aortic segments by 

both methods that allowed for the determination of local strain values, the standard and the customized 

post-processing. This finding is not trivial in aortae of young and healthy subjects. Mechanical homeo-

stasis, i.e. the existence and uniform distribution of a physiologically optimal stress and strain state in 

blood vessel walls, which is maintained by active growth and remodeling of the wall in healthy arteries, 

is a widely accepted axiom in physiology and medicine [Kassab 2006; Cyron and Humphrey 2017]. A 

too narrow and literal understanding of mechanical homeostasis which might suppose completely ho-

mogeneous stress and strain distributions would contradict the current findings. 

Moreover, often the human aorta is modelled mechanically as a hollow cylinder loaded with pulse 

pressure as suggested by using the Law of LAPLACE for calculating aortic wall stress [Kassab 2006; 

Pape et al. 2018; Astrand et al. 2011, 2011; Caro 2012]. This approach results in one strain value for an 

aortic segment, which represents a totally homogenous strain distribution in the aortic wall. However, 

justified this approach may be for many purposes, the findings of this study draw the attention to the 

limits of such an approach when applied to a biological structure with irregular geometry, varying wall 

thickness and elastic properties. 

3.5 Characteristic size of aortic wall motion in vivo 

The motion function 𝒙௜,௝,௞ ൌ 𝑿௜,௝ ൅ 𝒖௜,௝,௞ [cf. eq. 3-8 and eq. 3-6 for the explanation of the indices] of 

discrete material points is the primary measure obtained from the highly resolved, customized 4D ultra-

sound measurements. In order to quantify the relevant range of magnitude of the displacements 𝒖௜,௝,௞, 

the in vivo 3D displacements of the infrarenal aortic segments of three characteristically different groups 

of volunteers and patients were evaluated. 



3 Full field strain measurement 78 

 

Table 3-4 Patient data are given as median ሾQଵ, Qଷሿ, where Qଵ and Qଷ are the first and third quartile, respectively. 
Pulse pressure was obtained as difference of the maximum and minimum blood pressure observed throughout the 
cardiac cycle. For the groups of volunteers < 60 y. of age and > 60 y. of age the average diameter along the length 
of the imaged aortic segment is given, whereas for the group of AAA patients, the maximum diameter is given as 
measured clinically. [Reprinted from Wittek et al. 2017a with permission from SPIE] 

 < 60 y.o. > 60 y.o. AAA 

n 20 20 20 

Age in y. 27.6 [26.7, 29.6] 71.0 [64.5, 74.0] 70.5 [64.5, 74.0] 

Pulse pressure in mmHg 47.5 [40.0, 60.0] 60.0 [50.0, 70.0] 50.0 [50.0, 67.5] 

Diameter in mm 14.1 [13.3, 15.5] 17.4 [13.9, 19.4] 44.0 [39.7, 51.5] 

3.5.1 Study group 

Data of 60 male patients and volunteers presented at the Clinics for Vascular and Endovascular Surgery 

of the University Hospital Frankfurt am Main were evaluated for this study. The study was approved by 

the local ethics committee. Patient data were divided into three groups: “young” patients < 60 y.o. with-

out known cardiovascular risk factors (n = 20), “elderly” patients > 60 y.o. suffering from various car-

diovascular diseases (in particular, arteriosclerosis) but without AAA (n = 20) and AAA patients > 60 

y.o. (n = 20). An abdominal aorta was defined as aneurysmal when its maximum diameter exceeded 

3.0 cm. Maximum diameter of the imaged AAAs as determined by clinical measurement was 

49.0 ± 10.3 mm (mean ± sd). 

3.5.2 Data acquisition and customized post-processing 

Data acquisition was carried out according to the protocol described in section 3.2.1. Temporal resolu-

tion of ultrasound imaging was median [Qଵ, Qଷ] = 21.61 s-1 [20.09 s-1, 32.21 s-1] in the young group, 

20.09 s-1 [20.09 s-1, 23.59 s-1] in the elderly group and 23.56 s-1 [22.55 s-1, 25.49 s-1] in the AAA group. 

Length of the imaged aortic and aneurysmal segments was 26.4 mm [25.4 mm, 30.5 mm] in the young, 

40.0 mm [32.7 mm, 44.8 mm] in the elderly and 69.7 mm [57.1 mm, 77.3 mm] in the AAA group. Pa-

tient data for the three groups are shown in Table 3-4. The elderly and the AAA groups were age 

matched. Pulse pressure as the dominant load leading to cyclic deformation of the aortic and aneurysmal 

wall was increased in the elderly and the AAA group compared to the young group. The difference 

reached statistical significance at the 5% level, though, only for the comparison of the young and the 

elderly group according to the Bonferroni correction for multiple testing (𝑝 ൏  0.167). 

Customized post-processing of the 4D ultrasound data was performed according to sections 3.2.2 

and 3.3.1 and the displacements of material points throughout the cardiac cycle were calculated using 
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eq. 3-7. Calculations were carried out with the in-house software for post-processing of the customized 

4D ultrasound data that is described in section 3.3.3. 

3.5.3 Wall displacement in young, elderly and AAA patients 

The median value of cyclic 3D displacements was of a similar size in all three groups (young: median 

[1st quartile, 3rd quartile] = 0.89 mm [0.77 mm, 1.06 mm], elderly: 1.00 mm [0.56 mm, 1.36 mm], AAA: 

0.98 mm [0.77 mm, 1.28 mm]). I.e. for the majority of patients and volunteers in all groups average 

displacements with a size of about 1 mm were observed in vivo. In particular, in 86% of the investigated 

AAA average displacements exceeding 0.7 mm were observed. In these data sets, only 

15.5% [5.9%, 36,6%] of the material points showed displacements smaller than 0.7 mm and 

2.9% [0.7%, 11.8%] of the material points showed displacements smaller than 0.5 mm. [Wittek et al. 

2017b]  

These findings are particularly noteworthy because several comparative studies performed by the 

author and collaborators showed for similar patient collectives that cyclic in-plane strain was signifi-

cantly reduced from the young through the elderly to the AAA group [cf. Derwich et al. 2016; Wittek 

et al. 2017a; Wittek et al. 2018 and chapter 6 of this thesis]. The reduction of cyclic circumferential 

strain in the elderly and the aneurysmal patient groups indicated considerable stiffening of the wall tissue 

compared to younger subjects, which is in accordance with known degenerative changes of microstruc-

ture and elastic properties of the aortic wall due to ageing and AAA development [cf. chapter 1.7]. 

Almost constant 3D displacements of the aortic wall together with significantly reduced deformation or 

strain might indicate increased rigid body motion of the aortic wall in the elderly and the AAA group 

compared to the young. This hypothesis fits well with the known decrease of axial prestretch with age 

and AAA development [cf. chapter 1.6 and further literature cited there], but has to be proven in further 

research. 
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4 In vitro validation of full-field wall 

motion measurement  

4.1 Introduction 

4D ultrasound-based measurement and reconstruction of the 3D geometries of the heart and of large 

blood vessels has been validated previously in vivo and in vitro [Soliman et al. 2008; Seo et al. 2009; 

Park et al. 2011; Seo et al. 2011; Bihari et al. 2013; Alessandrini et al. 2016; Derwich et al. 2016]. 

However, none of these previous studies was transferable to the use of 4D ultrasound in this thesis in all 

relevant points: to the particular device [cf. 3.2.1], the high resolution of the full-field displacement data 

available via the customized data interface [cf. chapters 3.3.1 and 3.4], the global and local strain metrics 

that were computed based on this new type of in vivo full-field data [cf. chapters 3.3.3 and 3.3.4] and 

the application of 4D ultrasound to the aortic wall that was established within this thesis in cooperation 

with clinical partners: Originally, the used device was designed and validated for the assessment of left 

ventricular wall motion [Seo et al. 2009; Seo et al. 2011]. In the current project, it was used to measure 

the motion of the aortic wall, which is a far thinner structure undergoing smaller deformations, compared 

to the left ventricular wall. Thus, validation of 4D ultrasound measurement for this specific application 

seemed to be necessary. 

Since 3D echocardiography combined with speckle tracking has been developed as an imaging 

method for clinically assessing left ventricular myocardium and function, several of the previous studies 

refer to deformation parameters of the myocardium that are indicative for left ventricular function [So-

liman et al. 2008; Seo et al. 2009; Seo et al. 2011; Alessandrini et al. 2016]. Other studies have used 

other ultrasound devices, post-processing algorithms and routines than the ones that were applied within 

this thesis [Park et al. 2011; Kok et al. 2015]. Finally, an earlier validation study of the application of 

the Toshiba Artida and the Toshiba Advanced Cardiac Package to aneurysm-like structures, that was 

performed by one of the clinical cooperation partners involved in the project presented in this work, the 

Department of Vascular and Endovascular Surgery of the Goethe University Hospital [Bihari et al. 

2013], did use silicone phantoms instead of aortic soft tissue and performed tests in distilled water at 
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room temperature. Both, specimen ሺ𝑐௦௜௟௜௖௢௡௘ ൎ 1000 𝑚 𝑠⁄ ሻ and medium, showed deviating speeds of 

sound compared to soft tissue ൫𝑐௦௢௙௧ ௧௜௦௦௨௘ ൎ 1540 𝑚 𝑠⁄ ൯ which might have impaired the results of the 

validation. 

The objectives of the validation study that was performed in this thesis and is presented in this 

chapter were to quantify the uncertainty and the reproducibility of 4D ultrasound full-field displacement 

measurement of aortic wall tissue and derived strain fields (cf. Altman and Bland [1983] and Bland and 

Altman [1986] for methods and concepts of validation of measurement techniques). The validation ad-

dressed the measurement by use of the Toshiba Artida device itself, combined with post-processing with 

the customized ACP. Possible sources of uncertainty and impaired reproducibility of 4D ultrasound 

measurements were, firstly, inherent in its physical principle, e.g. the wavelength of the ultrasound wave 

might have restricted spatial resolution of the measurement. Secondly, the observer dependency of the 

ሺ𝑐 ൎ 1483 𝑚 𝑠⁄ ሻmeasurement itself (hand-held probe) and of the semi-automatic segmentation of the 

vessel wall, which defined the initial geometrical shape and the region of interest for the speckle tracking 

algorithm, were possible sources of uncertainty. Finally, the parameters of the measurement such as the 

forming of the used wave packet, focusing and beamforming of the RF signal by control of the phased-

array matrix probe and the post-processing of the RF data including the speckle tracking algorithm were 

proprietary technology and unknown to the author and the other collaborators of the project. It was the 

aim of the presented study to quantify the resulting mingled or lumped effect of different sources of 

uncertainty on the measurement. To identify and weight the influence of different sources of uncertainty 

was beyond the scope of this work. The uncertainty and reproducibility of a single 4D ultrasound meas-

urement was to be quantified because measurements for diagnostic purposes are taken only once, in 

clinical practice.  

Measurement uncertainty was assessed as agreement of the 4D ultrasound measurement with optical 

reference measurements. The reproducibility of the 4D ultrasound measurement was assessed in terms 

of its test-retest reliability, i.e. the degree of reproducibility of a measurement under identical circum-

stances (subject, device, observer) [Shrout and Fleiss 1979; Koo and Li 2016]. For this purpose, an 

Analysis of Variances of repeated ultrasound measurements under identical conditions was performed. 

The current chapter is organized as follows: In section 4.2 the methods that were applied in the 

validation study are presented. Section 4.2.1 outlines the overall concept of the study. The experimental 

setup, the sample and the performed experiments are described in section 4.2.2. Section 4.2.3 is dedi-

cated to the methods that were applied to assess the first objective of the validation study, i.e. the quan-

tification of the agreement of 4D ultrasound and of optical measurements. Section 4.2.4 presents the 

approach for determining the test-retest-reliability of the 4D ultrasound deformation measurement, 

which was based on the evaluation of repeated measurements and post-processing. The results of the 

validation experiment are reported in section 4.3: Section 4.3.1 is dedicated to the agreement of ultra-

sound and optical measurements whereas section 4.3.2 addresses the reproducibility of the ultrasound 
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measurements. The chapter is concluded by the discussion of the validation results [section 4.4] and the 

limitations of the study [section 4.5].

4.2 Methods of the in vitro validation study 

4.2.1 Design of the study 

Using an existing custom built inflation-extension testing device [cf. 4.2.2.3], a tubular specimen of 

porcine aorta [cf. 4.2.2.1] was loaded physiologically by axial prestretch and cyclic pressure change that 

was applied with a frequency of 1 Hz [cf. chapters 1.2 and 1.5]. Eleven different combinations of axial 

prestretch, inner base pressure and cyclic pulse pressure were applied to the same specimen. From these 

eleven load cases, five were chosen for further evaluation that provided characteristically different de-

formed reference geometries (diameter, wall thickness) and cyclic deformation [Table 4-1].  

Table 4-1 Parameters of the five different load cases that were applied to the porcine aortic specimen and charac-
teristic values describing the deformed reference configuration and the cyclic deformation for each load case as 
obtained from optical reference measurements. ref. wt ≡ wall thickness in the deformed reference configuration, 
circ. ≡ circumferential.  

 
C01 C02 C04 C07 C08 

Max./min. p in mmHg 113/26 105/83 128/45 101/94 158/68 

Pulse pressure Δp in mmHg 87 22 83 7 90 

Axial prestretch 1.31 1.31 1.42 1.61 1.61 

Circ. prestretch 0.95 1.06 0.94 1.07 1.00 

Deformed ref. wt in mm 1.6 1.4 1.4 1.3 1.2 

Reference diameter in mm at pmin 17.6 20.2 18.0 20.3 19.0 

Cyclic diameter change in mm 3.60 0.87 3.23 0.23 2.82 

For the purpose of quantifying the agreement of 4D ultrasound measurements with optical reference 

measurements, the resulting deformation was measured in parallel by 4D ultrasound and optically [Fig-

ure 4-1, cf. sections 4.2.2.5]. From optical data, one reference measurement was obtained for each load 

case as the mean of 3 subsequent load cycles. Post-processing of the optical data was fully automatized 

and performed only once for each load case [cf. 4.2.2.6]. In contrast, two successive 4D ultrasound 

measurements of each load case were taken. All 4D ultrasound measurements were taken by the same 

experienced observer. The ultrasound probe was not hand-held, but fixed by a custom-made mount, 

reducing the observer influence and standardizing the measurement procedure. Post-processing of each 

of the 10 4D ultrasound data sets was performed 10 times by one experienced observer, including the 
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observer dependent semi-automatic segmentation of the aortic wall as region of interest and the appli-

cation of the proprietary speckle tracking algorithm. In total, 20 4D ultrasound evaluations were availa-

ble for each load case. Results of repeated experiments were recorded, stored and analyzed in the se-

quence of their acquisition or generation. Each of the 100 4D ultrasound data sets was compared to the 

corresponding optical reference measurement. In contrast, for the purpose of quantifying the reproduc-

ibility of the 4D ultrasound measurement, an Analysis of Variances of the repeated ultrasound measure-

ments and evaluations was performed [cf. section 4.2.4]. 

 

Figure 4-1 Illustration of the basic concept of the validation experiments performed to validate the measurement 
accuracy of 4D ultrasound full-field displacement measurement. 

The post-processed 4D ultrasound data sets included the effects of all above-mentioned random 

sources of uncertainty. They did not include any fixed effects, such as the influence of different observ-

ers. All measurements and repeated post-processing were taken under identical circumstances. 

The design of the validation study was developed by the author of this thesis in close cooperation 

with C. Blase (Cell and Vascular Mechanics Group, Department of Biology, Goethe University Frank-

furt). The inflation-extension experiments with parallel 4D ultrasound and optical measurement [cf. 

chapter 4.2.2.5] were performed by C. Blase and W. Derwich (Department of Vascular and Endovascu-

lar Surgery, Goethe University Hospital Frankfurt). Post-processing of the optical data as described in 

section 4.2.2.6 of this chapter was performed by C. Blase. “Clinical” post-processing of the 4D ultra-

sound data including segmentation and speckle tracking using the customized version of the Toshiba 

ACP [cf. chapter 3.2] was done by the author.  

4D ultrasound and optical measurements were not directly comparable: 4D ultrasound provided the 

fully three-dimensional motion function of discrete material points [eq. 3-6] on the inner or luminal 

surface of the wall as described in chapter 3. In contrast, optical measurements provided 2D diameter 
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measurements and 2D displacement fields from two mutually orthogonal views of the outer surface of 

the specimen. Moreover, ultrasound and optical data did neither share a common spatial, nor a common 

temporal reference system. Both data types did show diverging spatial and temporal resolution. The 

temporal synchronization and spatial registration of the ultrasound data and the optical data, which was 

a necessary precondition for the comparison of the measurement results from both sources, was devel-

oped and performed by the author of this thesis [cf. chapter 4.2.3.3 for synchronization and registration 

of diameter, diameter change and strain measurements and chapter 4.2.3.4 for synchronization and reg-

istration of full-field displacement measurements]. Finally, the statistical evaluation of the experimental 

results was conceived and performed by the author of this thesis. 

 

Figure 4-2 Preparation of the porcine aortic specimen. a) Abdominal aortic sample separated from attached tissue 
and side branches, b) shortened tubular segment that was chosen for the experiments with sealed ostia of removed 
side branches, c) fixation of the tubular specimen to custom mounts using custom made O-ring-like structures, d) 
mounted specimen with applied speckle pattern and marks for optical deformation measurement, e) view of the 
illuminated tank from top, in which a tubular specimen is mounted vertically. [Images: C. Blase, Cell and Vascular 
Mechanics Group, Goethe University Frankfurt] 

4.2.2 Sample and experimental set up 

4.2.2.1 Sample preparation 

Thoracic aortas of young pigs (10 – 12 months) were obtained from a local slaughterhouse and stored 

in phosphate buffered saline (pH 7.2) with 10 % (v/v) dimethyl sulfoxide (DMSO) at -20°C. A straight 

tubular specimen of porcine aorta with dimensions of 15 mm x 130 mm (luminal diameter ൈ length 

in its load-free configuration) was carefully separated from attached tissue and side branches. The ostia 

of the side branches were sealed by careful sewing. The specimen was fixed to custom mounts using 

custom made O-ring-like structures. An irregular speckle pattern and additional marks were applied to 
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the surface of the specimen for the purpose of optical measurement of global axial deformation and the 

assessment of local deformation by means of digital image correlation (speckle tracking). [Figure 4-2] 

4.2.2.2 Wall thickness measurement 

After the experiments, ring-shaped cross sections were cut from both ends of the region of interest of 

the aortic specimen and were photographed [Figure 4-3]. Using ImageJ v. 1.48  [Schneider et al. 2012], 

the average load-free wall thickness of the specimen was determined to be 𝑠଴ ൌ 1.93 mm. 

 

Figure 4-3 Ring-shaped cross sections of the porcine aortic specimen for optical measurement of its load-free wall 
thickness. Handwritten notes give the sample number (“V15”) and identify the longitudinal position of the sample 
from which the two rings were cut (“unten”, “oben”). [Image: C. Blase, Cell and Vascular Mechanics Group, 
Goethe University Frankfurt.] 

4.2.2.3 Experimental set up 

A custom built inflation-extension set up that was previously available in the Cell and Vascular Me-

chanics Group (Goethe University Frankfurt/Main) was used to perform the experiments. A scheme of 

the experimental set up is given in Figure 4-4. The specimen was mounted in a cuboid water bath with 

heated saline (37°C, 0.9 % (w/v) NaCl) in order to provide acoustic properties of the medium close to 

the in vivo conditions, in particular, the sound velocity of 1540 m/s in human abdominal soft tissue 

[Goss et al. 1980]. Axial extension of the specimen could be adjusted by a manual linear guide, dynamic 

inflation was achieved by a pneumatic cylinder (CRDSNU, Festo, Esslingen, Germany), whose piston 

was driven by a linear motor (Electroforce LM1, Bose Corp., Framingham, MA, USA). The pressure 

difference between sample interior and water bath was measured by a differential pressure transducer. 

The axial force was measured by a force sensor. The deformation of the specimen was recorded by two 

8-bit CMOS cameras (1.3 Megapixels, Ximea, Münster, Germany) with 8 mm focal length objectives 

(Tamron, Cologne, Germany), which provided two mutually orthogonal 2D views of the specimen. The 
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specimen was illuminated by eight LED strips fixed in the corners of the water bath to ensure uniform 

illumination of the specimen surface. The ultrasound transducer was directly coupled to the water bath 

through an opening in the side. Image and sensor data acquisition was controlled by custom LabVIEW 

programs (LabVIEW 2011, National Instruments, Austin, TX, USA) on a PC. 

 

Figure 4-4 Inflation-extension testing device equipped with 4D ultrasound and optical measuring devices: 1) 
heated bath, 2) heat exchanger, 3) rotary pump, 4) differential pressure sensor, 5) tank (front), 6) axial force sensor, 
7) sample (porcine aorta), 8) US probe fixed by custom made mount, 9) optical cameras, 10) pressuring tube, 11) 
tank, 12) illumination (LED), 13) trigger, 14) 4D ultrasound device, 15) linear motor, 16) coupling, 17) pressure 
cylinder. [Image: Bannenberg und Hegner 2014, Studienprojekt, Cell and Vascular Mechanics Group, Goethe 
University Frankfurt]
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4.2.2.4 Load cases 

In 5 experiments, constant axial prestretches of 1.31, 1.42 and 1.61 and pressure peak-to-peak ampli-

tudes ranging from 7 mmHg to 90 mmHg were applied resulting in diameter changes from 0.19 mm to 

3.66 mm [Table 4-1]. The loading of the specimen with cyclic pulse pressure at varying, but for each 

performed experiment constant, axial prestretch resulted in cyclic radial displacement. In contrast, cyclic 

length change could not be assessed using this experimental set up. 

4.2.2.5 Simultaneous ultrasound and optical deformation measurement 

The cyclic deformation of the specimen was measured in parallel by 4D ultrasound and optically. Figure 

4-5 shows a scheme of the spatial arrangement of the 4D ultrasound probe and the two CMOS cameras 

in relation to the imaged aortic specimen together with the ultrasound probe coordinate system. The 𝑥-

axis corresponded to the longitudinal direction of the specimen. The 𝑦-axis corresponded to the domi-

nant propagation direction of the ultrasonic waves. Optically visible steel reference axes of coordinates 

[Figure 4-6 b] were used for the alignment of camera 2 in line with, and of camera 1 orthogonal to the 

𝑦-axis of the ultrasound probe coordinate system [Figure 4-5]. Camera 2 gave a 2D view of the specimen 

as seen from positive 𝑦-direction, camera 1 was mounted orthogonal to camera 2 and to the propagation 

direction of the ultrasonic waves and gave a 2D view of the specimen as seen from positive 𝑧-direction 

of the transducer coordinate system. A reference for a common origin of the 𝑥-axis was defined by 

identifying the position of the tip of a plummet from ultrasound and optical measurements, which are 

shown in Figure 4-6 a and b, respectively. From ultrasound imaging data, the position of the tip was 

obtained as the mean of 10 evaluations of the data in order to minimize the random error of the meas-

urement.  

 

Figure 4-5 Set-up of ultrasound probe (“US probe”) and two CMOS cameras for simultaneous measurements. 
Camera 2 was positioned in line with and camera 1 was positioned orthogonal to the 𝑦-axis of the ultrasound 
probe coordinate system. 
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By 4D ultrasound, the three-dimensional position and deformation of the specimen’s luminal sur-

face was measured resulting in a discrete motion function of up to 1080 material points as described in 

detail in section 3.3. The lumen centerline of the specimen was calculated according to eq. 3-9. Charac-

teristic dimensions of the aortic wall’s deformed reference configurations as imaged by 4D ultrasound 

and 4D ultrasound imaging parameters are given in Table 4-2. 

 

Figure 4-6 a) Ultrasound and b) optical reference measurements of a plummet as basis for transformation of both 
data types to a common coordinate origin in x-direction. The milled steel reference coordinate axes (b, bottom) 
were used for the alignment of the CMOS cameras with the ultrasound probe coordinate system [cf. Figure 4-5] 
Plummet and milled steel reference axes are highlighted in yellow for better recognizability. 

Table 4-2 Characteristic dimensions of the aortic wall segments as imaged by 4D ultrasound and 4D ultrasound 
imaging parameters 

 
C01 C02 C04 C07 C08 

Segment length in mm 31.4 േ 0.9 29.9 േ 0.5 36.2 േ 0.6 33.0 േ 0.4 36.3 േ 0.6 

Luminal diameter in mm 14.3 േ 0.2 16.8 േ 0.2 15.2 േ 0.2 16.6 േ 0.3 16.3 േ 0.4 

Frame rate in Hz 35.6 35.6 30.4 30.4 35.6 

Spatial dist. of material points at deformed reference configuration in mm 

Axial direction 1.4 േ 0.04 1.3 േ 0.02 1.6 േ 0.02 1.4 േ 0.02 1.6 േ 0.03 

Circ. direction 1.3 േ 0.02 1.5 േ 0.02 1.3 േ 0.02 1.5 േ 0.03 1.4 േ 0.04 

Simultaneously, the deformation of the specimen’s outer surface was measured optically by two 8-

bit CMOS cameras with a resolution of 1280 x 1024 pixels corresponding to a pixel size on the specimen 
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surface of approx. 0.1 mm. Temporal resolution of optical measurements was about 25 images/s. Cam-

era 1 and camera 2 captured the 𝑥𝑦- and 𝑥𝑧-components of the 3D displacement, respectively. This 

spatial arrangement allowed for the separate assessment and comparison of the accuracy of the 4D ul-

trasound measurement in propagation direction (𝑦-axis) of the RF signal and orthogonal to the propa-

gation direction (𝑧-axis). 

4.2.2.6 Post-processing of optical deformation data 

Optical reference values were obtained for each experiment as the means of three subsequent measure-

ments in order to minimize the measurement uncertainty. 

Alignment and spatial calibration of the optical measurements was done separately for each camera 

by using a custom target. Linear functions for the pixel scale factor along the 𝑥-axis and the respective 

optical axis (𝑧-axis, camera 1 and 𝑦-axis, camera 2) were established based on these data. Local refer-

ence diameter 𝑑௥௘௙
௢௣௧ሺ𝑥௢௣௧ሻ and diameter change ∆𝑑௥௘௙

௢௣௧ሺ𝑥௢௣௧ሻ of the specimen, spatially resolved along 

the 𝑥-axis of the optical coordinate system, were determined in the 𝑥𝑦-plane applying an in-house 

threshold-based edge detection method [Figure 4-7]. 

 

Figure 4-7 Determination of locally resolved diameter from optical image data by threshold-based  
edge detection. 

Temporally resolved 2D displacement fields 𝑢𝑦
𝑜𝑝𝑡൫𝑥௥௘௙,𝑦௥௘௙, 𝑡௞൯ and 𝑢𝑧

𝑜𝑝𝑡൫𝑥௥௘௙, 𝑧௥௘௙, 𝑡௞൯ in the xy- and 

the xz-plane, respectively, were determined using a digital image correlation (DIC) code proposed by 

Jones et al. [2014] [Figure 4-8]. Both, edge detection and DIC, were coded using MATLAB (The Math-

works, Inc., Natick, Massachusetts, USA). The subset region for the DIC was adjusted to different val-

ues, to check for bad or missing correlations for the displacement estimation. A subset size of 31 was 

chosen for all evaluations, since this gave robust results in all load cases while maintaining a high spatial 
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resolution. A threshold of the normalized 2D cross-correlation coefficient of 0.7 was used to exclude 

non correlating regions and avoid artificial displacement values. 

 

Figure 4-8 Exemplary displacement fields 𝑢௬
௢௣௧ (a) and 𝑢௭

௢௣௧ (b) as obtained from optical measurements using a 
DIC code that was coded in MATLAB. 

Eventually, the 3D-centerline was constructed from the spatially resolved diameters in the 𝑥𝑦- and 

𝑥𝑧-plane, respectively. For each 𝑥-position along the specimen, the 𝑦- and 𝑧-component of the center 

point was determined as the center of the diameter in the respective plane. 

4.2.3 Quantification of the agreement of 4D ultrasound and optical 
measurements 

4.2.3.1 The need for the registration of 4D ultrasound and optical data 

Post-processing of optical measurements provided two types of data: 2D diameter as seen from camera 1 

[cf. Figure 4-7] and 2D displacement fields as obtained from two mutually orthogonal views by camera 1 

and 2 [cf. Figure 4-8]. Both types of data were obtained from optical measurements by means of different 

computational tools and resulted in different data formats. As a precondition for the comparison of ul-

trasound and optical measurements, comparable 2D data, i.e. diameter in one plane and two 2D dis-

placement fields, had to be derived from the fully three-dimensional discrete motion function and reg-

istered on the different data sets obtained from optical measurements: ultrasound and optical data had 

to be synchronized and transformed to a common coordinate system, the field of view for which data 
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from both sources were available had to be identified, measurement points within the field of view with 

missing data from one source had to be identified and excluded from analysis and spatial and temporal 

resolution had to be adjusted. Because of the different data formats of optical reference data, this process 

was performed and, therefore, is described separately for diameter [section 4.2.3.3] and displacement 

field data [section 4.2.3.4]. Each step of this process implied editing of the data from both sources and 

care has been taken not to alter or manipulate the data in such a way that the agreement of the measured 

values appeared better than it actually was. All steps of the registration and comparison of 4D ultrasound 

and optical data were coded using WOLFRAM Mathematica 10 (Wolfram Research, Champaign, IL, 

USA). 

4.2.3.2 Wall thickness correction of ultrasound data 

In order to register the fully three-dimensional ultrasound data that were measured on the inner or lu-

minal surface of the specimen on the two 2D sets of optical image data of the outer surface of the spec-

imen, 4D ultrasound data were corrected for the deformed wall thickness, first. Using the incompressi-

bility constraint [cf. chapter 1.5 for the incompressibility of aortic walls and chapter 2.3.2, eq. 2-65 for 

the incompressibility condition]: 

 

𝐽 ൌ
𝑉ሺ𝑡ሻ

𝑉଴
ൌ 𝑑𝑒𝑡𝑭 ൌ 𝜆ଵሺ𝑡ሻ ∙ 𝜆ଶሺ𝑡ሻ ∙ 𝜆ଷሺ𝑡ሻ ൌ 1 , eq. 4-1 

where   

𝑉଴  is the reference volume of the load-free and undeformed solid, 

𝑉ሺ𝑡ሻ  is the volume of the solid in any deformed current configuration  

at time point 𝑡 

𝐽  is the volume change and 

𝜆ଵሺ𝑡ሻ, 𝜆ଶሺ𝑡ሻ, 𝜆ଷሺ𝑡ሻ are the principal stretches in longitudinal, circumferential and  

radial direction, respectively, 

the average deformed wall thickness 𝑠௥ was computed for each of the five load cases (subjects) for the 

chosen deformed reference configuration, i.e. the minimum deformed diameter that was observed 

throughout cyclic loading: 

 

𝑠௥ ൌ
1

𝜆ଵ,௥ ∙ 𝜆ଶ,௥
∙ 𝑠଴ , eq. 4-2 

where 𝑠଴ ൌ 1.93 mm is the average load-free wall thickness and 𝜆ଵ,௥and 𝜆ଶ,௥ are the axial and circum-

ferential prestretch, respectively. Prestretches and resulting deformed wall thickness are given for each 

load case in Table 4-1. Using the local nodal coordinate systems that were constructed for each data set 

by means of the in-house FEM preprocessor as described in section 3.3.4.2 [cf. Figure 3-8], the deformed 
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wall thickness was applied as radial offset to each material point 𝑿௜,௝ in the chosen reference configura-

tion ℬ௥ . 

4.2.3.3 Registration and comparison of 4D ultrasound and optical measurements 

of diameter, diameter change and circumferential strain 

Transformation to a common origin of the x-axis 

Using the optical and 3D ultrasound reference measurements of the tip of a plummet [cf. Figure 4-6], a 

translational coordinate transformation was performed on optical diameter data and ultrasound data, so 

that data from both sources shared a common origin of the 𝑥-axis that corresponded to the longitudinal 

direction of the sample. After transformation of the 𝑥-coordinates onto a common origin, the common 

𝑥-interval was determined for which optical and 4D ultrasound diameter data were available. 

Since the axial length of the specimen was held constant throughout the load cycle in each of the 

performed experiments [cf. section 4.2.2] the identification of the common field of view in longitudinal  

(𝑥-)direction could be performed prior to the synchronization of ultrasound and optical data. 

 

Figure 4-9 Identification of material points with minimum and maximum y-values from 4D ultrasound motion 
data. 

Determination of diameter, diameter change and circumferential strain from 4D ultrasound motion data 

In order to compare 4D ultrasound measurements to the available optical diameter measurements, di-

ameter and its change in the 𝑥𝑦 -plane were extracted from the 4D ultrasound motion function 

𝒙௜,௝,௞
௨௦ ൌ  𝝌௨௦൫X௜,௝ ,  𝑡௞൯, where 𝑖 refers to the “height” or axial position of the discrete material point 𝒙, 𝑗 

refers to its “degree” or circumferential position and 𝑘 refers to the temporal frame [cf. section 3.3.2, 
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eq. 3-6]. The 𝒙௜,௝,௞
௨௦  showing the minimum and maximum 𝑦-values, 𝒙௜,୫୧୬ሺ௬೔ሻ,௞

௨௦  and 𝒙௜,୫ୟ୶ሺ௬೔ሻ,௞
௨௦ , respec-

tively, were identified for each height 𝑖 along the 𝑥-axis and for each temporal frame 𝑘 throughout the 

measurement cycle [Figure 4-9]. For each frame 𝑘, 3rd order Hermite interpolation of minimum and 

maximum 𝑦-values along the 𝑥-axis was performed, separately, using the built-in WOLFRAM Mathe-

matica function “Interpolation”. Interpolation functions 𝑦௠௜௡ሺ𝑥ሻ and 𝑦௠௔௫ሺ𝑥ሻ were evaluated for the 𝑥-

positions of the lumen centerpoints 𝒄௜,௞ [cf. eq. 3-9] and the local diameter 𝑑௜,௞ was obtained as the 

difference of the maximum and minimum 𝑦-values, related to 𝒄௜,௞: 

 

𝑑௜,௞
௨௦ ൌ 𝑑൫𝒄௜,௞

௨௦൯ ൌ 𝑦𝒎𝒂𝒙 ቀ𝒙൫𝒄௜,௞
௨௦൯ቁ െ 𝑦𝒎௜௡ ቀ𝒙൫𝒄௜,௞

௨௦൯ቁ. eq. 4-3 

Because diameter was obtained as the difference of the maximum and minimum 𝑦-values from image 

data, a deviation in the 𝑦௠௜௡- and 𝑦௠௔௫-positions which describe the contour, had no effect on the meas-

urement result. Therefore a coordinate transformation to a common 𝑦-axis was not necessary. 

Local diameter change ∆𝑑௜,௞
௨௦  was computed for each longitudinal position or “heigth” 𝑖 with regard 

to the temporal frame 𝑟 showing the minimum mean diameter 𝑑̅௥௨௦  ∶ൌ min൛𝑑̅௞
௨௦|𝑘 ൌ 1, … ,𝑚ൟ, where 

𝑑̅௞
௨௦ ൌ mean൛𝑑௜,௞

௨௦  | 𝑖 ൌ 1, …𝑛ൟ as measured by ultrasound: 

 
∆𝑑௜,௞

௨௦ ൌ 𝑑௜,௞
௨௦ െ 𝑑௜,௥

௨௦ , eq. 4-4 

Finally, local circumferential strain was obtained as 

 

𝜀௜,௞
௨௦ ൌ

∆𝑑௜,௞
௨௦

𝑑௜,௥
௨௦  . eq. 4-5 

The configuration showing the minimum mean diameter was regarded as deformed reference con-

figuration 𝑿௥௨௦ for all further evaluation of ultrasound data. 

Adjustment of the spatial resolution of optical diameter data 

Diameter values that were obtained from optical measurements showed a higher spatial resolution com-

pared to ultrasound data. Ultrasound data sets were organized in 24 subsets or heights along the 𝑥-axis, 

typically, i.e. 24 local diameter values along the 𝑥-axis were obtained for each temporal frame. In con-

trast, about 350 local diameter values were obtained from optical data along the 𝑥-axis in the common 

field of view. In order to compare optical and ultrasound diameter measurements, the spatial resolution 

of optical data was reduced. The field of view was subdivided into 𝑖 intervals along the 𝑥-axis corre-

sponding to the lumen centerpoints 𝒄௜ of the ultrasound measurement [cf. section 3.3.3.1, eq. 3-9]:  
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𝑥௜
௢௣௧ ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧ ቈ𝑥ሺ𝒄௜

௨௦ሻ െ
𝑥ሺ𝒄௜ାଵ

௨௦ ሻ െ 𝑥ሺ𝒄௜
௨௦ሻ

2
,  𝑥ሺ𝒄௜

௨௦ሻ ൅
𝑥ሺ𝒄௜ାଵ

௨௦ ሻ െ 𝑥ሺ𝒄௜
௨௦ሻ

2
቉ ,  𝑖 ൌ 1

       ቈ𝑥ሺ𝒄௜
௨௦ሻ െ

𝑥ሺ𝒄௜
௨௦ሻ െ 𝑥ሺ𝒄௜ିଵ

௨௦ ሻ

2
, 𝑥ሺ𝒄௜

௨௦ሻ ൅
𝑥ሺ𝒄௜ାଵ

௨௦ ሻ െ 𝑥ሺ𝒄௜
௨௦ሻ

2
቉ , 1 ൏ 𝑖 ൏ 𝑛 

ቈ𝑥ሺ𝒄௜
௨௦ሻ െ

𝑥ሺ𝒄௜
௨௦ሻ െ 𝑥ሺ𝒄௜ିଵ

௨௦ ሻ

2
, 𝑥ሺ𝒄௜

௨௦ሻ ൅
𝑥ሺ𝒄௜

௨௦ሻ െ 𝑥ሺ𝒄௜ିଵ
௨௦ ሻ

2
቉ ,  𝑖 ൌ 𝑛

 . eq. 4-6 

Since the sample dimension and ultrasound and optical fields of view were held constant in axial or  

𝑥-direction throughout the load cycle, this division of the field of view along the 𝑥-axis was performed 

once, only, for the initial frame, and then applied to all other frames. The arithmetical mean of the optical 

local diameter values within each interval was  determined and assigned to the 𝑥-position of the corre-

sponding center point: 𝑑௜,௞
௢௣௧ൣ𝑥൫𝒄௜,௞൯൧. Local diameter change ∆𝑑௜,௟

௢௣௧  was computed with regard to the 

temporal frame showing the minimum mean diameter 𝑑̅௥
௢௣௧

 ∶ൌ min൛𝑑̅௟
௢௣௧|𝑙 ൌ 1, … , 𝑜ൟ, where 𝑜 is the 

number of temporal frames of the optical measurement and 𝑑̅௟
௢௣௧ ൌ mean൛𝑑௜,௞

௢௣௧  | 𝑖 ൌ 1, …𝑛ൟ: 

 
∆𝑑௜,௟

௢௣௧ ൌ 𝑑௜,௟
௢௣௧ െ 𝑑௜,௥

௢௣௧  . eq. 4-7 

Finally, local circumferential strain was obtained as 

 

𝜀௜,௟
௢௣௧ ൌ

∆𝑑௜,௟
௢௣௧

𝑑௜,଴
௢௣௧  . eq. 4-8 

The configuration showing the minimum mean diameter was regarded das deformed reference con-

figuration 𝑿௥
௢௣௧ for all further evaluation of optical data. 

Note: For optical and ultrasound measurements, the respective minimum diameter values, 𝑑̅௥
௢௣௧and 

𝑑̅௥௨௦, were chosen as reference to compute diameter change. These minimum values were not necessarily 

observed at the same time or frame within the loading cycle by ultrasound and optical measurement. 

Temporal resolution and synchronization 

Optical and ultrasound measurements did neither have a common temporal reference, nor the same 

frame rate. Therefore, 3rd order Hermite interpolation of the local optical diameter values over time was 

performed using default settings of the built-in WOLFRAM Mathematica function ‘Interpolation’. The 

resulting interpolation function was evaluated for the (normalized) time points 𝑡௞ within the loading 

cycle for which ultrasound measurements were available. This resulted in vectors of local optical diam-

eter measurement 

 
𝑑௜
௢௣௧ ൌ ൛𝑑௜

௢௣௧ሺ𝑡ଵሻ,𝑑௜
௢௣௧ሺ𝑡ଶሻ, … ,𝑑௜

௢௣௧ሺ𝑡௠ሻൟ,  𝑖 ൌ 1, … ,𝑛 eq. 4-9 
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that corresponded to the ultrasound measurement with regard to the (x-) position along the longitudinal 

axis of the specimen (𝑖௧௛ “height”) and the time point 𝑘 of evaluation. 

Because of the missing common reference signal for ultrasound and optical measurements, both 

signals showed a varying mutual temporal delay and were synchronized for the purpose of comparison. 

In order to determine the temporal delay 𝜏 of the optical measurement with regard to the ultrasound data, 

the cross-correlation between the temporally resolved ultrasound and optical diameter change data was 

determined. Due to its particular importance for the evaluation of the maximum range of aortic defor-

mation and elasticity in vivo, only the section of diameter change data throughout the load cycle were 

used as basis for the synchronization that showed increasing diameter. starting with the minimum diam-

eter and ending with the maximum diameter. First, the mean diameter change along the 𝑥-axis was 

calculated and frames with minimum (1) and maximum diameter change (q) were identified for both 

data types: 

 

∆𝒅തതതത௞
௨௦ ൌ

1
𝑛
∙෍∆𝒅௜,௞

௨௦

௡

௜ୀଵ

 , 
 

eq. 4-10 

 

∆𝒅തതതത௞
௢௣௧ ൌ

1
𝑛
∙෍∆𝒅௜,௞

௢௣௧ ,

௡

௜ୀଵ

 
 

eq. 4-11 

where  

𝑖 ൌ 1, … ,𝑛,𝑛 ൑ 36  refers to the “height” or position along the longitudinal 𝑥-axis of the 

aortic segment and   

𝑡௞ , 𝑘 ൌ 0, …𝑚     marks the 𝑘௧௛ of in total 𝑚 temporal frames throughout the load cycle. 

The optical diameter change series was shifted cyclically using time increments of the size of one 

temporal frame of the ultrasound measurement: 

 

∆𝒅തതതത௞
௢௣௧ → ∆𝒅തതതത௢

௢௣௧ ,  𝑜 ൌ ൜
𝑘 ൅ 𝜏,  𝑖𝑓 𝑘 ൅ 𝜏 ൏ 𝑚
𝑘 ൅ 𝜏 െ𝑚,  𝑒𝑙𝑠𝑒

ൠ ,  𝜏 ൌ 0, … ,𝑚. eq. 4-12 

The non-parametric SPEARMAN‘s Rank correlation coefficient 𝜌൫∆𝒅തതതത௞
௎ௌ ,∆𝒅തതതത௢

௢௣௧൯ that is based on the 

evaluation of rank differences was calculated for the ultrasound diameter change time series, 

∆𝒅തതതത௞
௨௦ , 𝑘 ൌ  0, … , 𝑞, (!) and each of the 𝑚 cyclically shifted time series of optically measured diameter 

change. The maximum of the resulting correlation coefficients 𝜌൫∆𝒅തതതത௞
௎ௌ ,∆𝒅തതതത௢

௢௣௧൯ was chosen and the tem-

poral delay 𝜏 of the optical measurement with regard to the ultrasound measurement was determined. 

The local optical diameter, diameter change and strain data were shifted accordingly in order to obtain 

optimal synchronization between ultrasound and optical signals: 
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𝑓௜
௢௣௧ሺ𝑡ሻ → ቊ

𝑓௜
௢௣௧ሺ𝑡 ൅ 𝜏ሻ, 𝑡 ൅ 𝜏 ൏ 𝑚

𝑓௜
௢௣௧ሺ𝑡 ൅ 𝜏 െ 𝑚ሻ, 𝑡 ൅ 𝜏 ൒ 𝑚

ቋ , eq. 4-13 

where 

𝑚 is the number of frames recorded during one load cycle, 

𝑖 indicates the 𝑖௧௛ subset along the height of the sample and, correspondingly, the 

𝑥-position and  

𝑓 may denote local diameter, diameter change or circumferential strain. 

Figure 4-10 exemplarily illustrates the synchronization of ultrasound and optical data. 

Figure 4-10 Optimal synchronization of ultrasound and optical time series: a) Original and b) cyclically shifted 
signals. 

Approach to the comparison of ultrasound and optical diameter and strain measurements 

After registration, ultrasound and optical diameter, diameter change and strain data of both sources were 

directly comparable with regard to the field of view, the coordinate system, spatial and temporal reso-

lution and time sequence. 

The deviation 𝑒 (for “error”) of the ultrasound measurements from the corresponding optical meas-

urements of the same subject or load case was evaluated for local values along the length of the specimen 

with regard to: 

(i) diameter: 𝑒௜,௞
ௗ ൌ 𝑑௜,௞

௎ௌ െ 𝑑௜,௞
௢௣௧, eq. 4-14 

(ii) diameter change: 𝑒௜,௞
∆ௗ ൌ ∆𝑑௜,௞

௎ௌ െ 𝑑௜,௞
௢௣௧ and eq. 4-15 

(iii) circumferential strain: 𝑒௜,௞
ఌ ൌ 𝜀௜,௞

௎ௌ െ 𝜀௜,௞
௢௣௧

eq. 4-16 
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and for “average” values, i.e. the arithmetical mean of the local values along the sample length with 

regard to 

(i) diameter: 𝑒௜,௞
ௗത ൌ 𝑑̅௜,௞

௎ௌ െ 𝑑̅௜,௞
௢௣௧, eq. 4-17 

(ii) diameter change: 𝑒௜,௞
∆ௗത ൌ ∆𝑑̅௜,௞

௎ௌ െ 𝑑̅௜,௞
௢௣௧ and eq. 4-18 

(iii) circumferential strain: 𝑒௜,௞
ఌത ൌ 𝜀௜̅,௞

௎ௌ െ 𝜀௜̅,௞
௢௣௧  . eq. 4-19 

All repeated measurements and evaluations of the ultrasound data were compared to the identical 

optical reference measurement, separately. Results of the comparison were given as median [IQR] where 

IQR is the interquartile range. For the agreement of local strain values, a Bland-Altman analysis was 

performed [Altman and Bland 1983; Bland and Altman 1986]. 

4.2.3.4 Registration and comparison of local displacement fields in the 𝑥𝑦- and 

the 𝑥𝑧-plane 

4D ultrasound provided a temporally resolved full 3D motion function of discrete material points [cf. 

eq. 3-6]. In contrast, from optical image data two 2D functions of motion components in the 𝑥𝑦- and the 

𝑥𝑧-plane were obtained: 

𝒙௫௬,௟,௢
௢௣௧ ൌ 𝑿௫௬,௟,ଵ

௢௣௧ ൅ 𝒖௬,௟,௢
௢௣௧   , eq. 4-20 

𝒙௫௭,௠,௢
௢௣௧ ൌ 𝑿௫௭,௠,ଵ

௢௣௧ ൅ 𝒖௭,௠,௢
௢௣௧  , eq. 4-21 

where 𝑿௫௬,௟,ଵ
௢௣௧  and 𝑿௫௭,௠,ଵ

௢௣௧  are the initial configurations of the 𝑙௧௛ material point in the 𝑥𝑦- and of the

𝑚௧௛  material point the 𝑥𝑧-plane, respectively, as obtained from optical measurement and 𝒖௬,௟,௢
௢௣௧  and

𝒖୸,௠,௢
௢௣௧  are the displacements of the respective material points at frame 𝑜 ൌ 1, … 𝑞. Both 2D data sets 

showed the same temporal and spatial resolution but did not share a common field of view and differed 

in the number (𝑙,𝑚) of motion estimation points. Motion estimation points in the 𝑥𝑦- and the 𝑥𝑧-plane 

could not be related with each other without assumptions on the cross-sectional shape of the specimen. 

In addition, the 3D centerline of the aortic volume was available for each frame throughout the load 

cycle from ultrasound data. In contrast, the 3D centerline was available for the initial (reference) frame 

of the optical measurements, only. 
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Initially, optical and ultrasound displacement field data did neither share common temporal, nor 

spatial reference frame or resolution. Therefore, temporal resolution of the optical data had to be 

Figure 4-11 Exemplary illustration of the result of the registration of three-dimensional motion field data obtained 
by ultrasound on two-dimensional displacement field data in two planes as derived from optical image data. Red 
dots mark the 3D motion estimation points (discrete material points) as obtained from ultrasound measurements. 
Bottom right, the view in positive 𝑥- or longitudinal direction on the 3D ultrasound data describing a deformed 
configuration of the specimen is shown. Upper right, the 2D projection of the ultrasound motion estimation points 
visible by camera 1 on the optical field data in the 𝑥𝑦-plane is shown. Bottom left the 2D projection of the ultra-
sound motion estimation points that are visible by camera two [cf. Figure 4-5] on the optical field data in the 𝑥𝑧-
plane is given. Ultrasound motion estimation points without corresponding optical data are highlighted in pink. 
The centerlines of the specimen as obtained from optical and from ultrasound measurements are shown as orange 
and green dots, respectively. 

adjusted to the ultrasound frame rate and optical and ultrasound times series had to be synchronized and 

transformed to a common reference frame. Moreover, data from both sources had to be transformed to 

a common basis, 4D ultrasound motion functions of the optically visible material points of the specimen 

[cf. Figure 4-5] had to be identified and registered on the available 2D motion functions in the 𝑥𝑦- and 
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the 𝑥𝑧-planes that were available from optical measurements, Finally, spatial resolution of both data 

sources had to be adjusted. Figure 4-11 illustrates the registration task. 

Transformation of the displacement field data to a common x-axis 

As first step, optical and ultrasound displacement data were transformed to a common 𝑥-axis using the 

reference measurement of the tip of a plummet [cf. section 4.2.2.5, Figure 4-6 a, b] and the common x-

interval, for which data from both sources were available, was identified. 

Further steps of construction of and transformation to a common basis were carried out after tem-

poral synchronization of the displacement time series and used the 3D-centerlines of the aortic lumen 

that were available from both data sources. 

Temporal resolution and synchronization of optical displacement field data 

Compared to optical diameter measurements, optical full-field data were derived independently and us-

ing a different method from the primary image data and showed a diverging temporal resolution and 

delay 𝜏 with regard to the ultrasound time series. Thus adjustment of the temporal resolution, determi-

nation of the temporal delay 𝜏 and synchronization with regard to the ultrasound measurement had to be 

performed seperately for the optical displacement field data. The applied method followed the steps that 

are described in detail for the synchronization of the diameter time series in the previous section. The 

time series of the norm of the means of the absolute values of the (positive and negative) displacement 

components in 𝑦- and 𝑧-direction were determined for ultrasound and optical data in the common field 

of view: 

𝑢௥௘௦,௞ ൌ ට൫𝑚𝑒𝑎𝑛ൣห𝑢௬,௜,௞ห൧൯
ଶ
൅ ൫𝑚𝑒𝑎𝑛ൣห𝑢௭,௝,௞ห൧൯

ଶ
 , eq. 4-22 

where 𝑖 ൌ 1, … ,𝑛 and 𝑗 ൌ 1, … ,𝑚 are the available measurements points for 𝑦- and 𝑧-displacement, re-

spectively, an 𝑘 ൌ 0, … , 𝑜 indicates the temporal frame. These time series were used as benchmarks for 

temporal synchronisation. As a result, the initial frame of the unsynchronized optical data, for which the 

3D centerline was available, was shifted to frame 1 ൅ 𝜏 of the common time reference. 

Transformation of the displacement field data to a common y- and z-axis 

The centroid 𝒄௚ of the lumen centerline [cf. 3.3.3, eq. 3-10] was used as origin of the common basis. It 

was estimated separately from 4D ultrasound and from optical data for frame 1 ൅ 𝜏: 𝒄௚, ଵାఛ
௨௦  and 𝒄௚

௢௣௧, 

respectively.  

The translational transformations 

𝒙ෝ௜,௝,௞
௨௦ ൌ 𝒙௜,௝,௞

௨௦ െ 𝒄௚, ଵାఛ
௨௦  eq. 4-23 
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𝒙ෝ௫௬,௟,௞
௢௣௧ ൌ 𝒙௫௬,௟,௞

௢௣௧ െ 𝒄௚,௫௬
௢௣௧

eq. 4-24 

𝒙ෝ௫௭,௟,௞
௢௣௧ ൌ 𝒙௫௭,௟,௞

௢௣௧ െ 𝒄௚,௫௭
௢௣௧

eq. 4-25 

were applied to the 3D motion function obtained from 4D US and the 𝑥𝑦- and 𝑥𝑧-2D motion functions 

obtained from optical measurements, respectively. 

In order to correct for possible angular deviation of the ultrasound and the optical 𝑥-axis, straight 

2D centerlines in the 𝑥𝑦- and the 𝑥𝑧-plane were determined for optical and ultrasound data, each, by 

fitting linear models to the respective curved centerlines by linear regression using the WOLFRAM Math-

ematica function ‘LinearModelFit’: 𝑦௖௨௦ሺ𝑥ሻ,𝑦௖
௢௣௧ሺ𝑥ሻ, 𝑧௖௨௦ሺ𝑥ሻ, 𝑧௖

௢௣௧ሺ𝑥ሻ. The direction vectors of the cen-

terlines in the 𝑥𝑦- and 𝑥𝑧-planes, 𝒄௫௬௨௦ , 𝒄௫௬
௢௣௧ , 𝒄௫௭௨௦  and 𝒄௫௭

௢௣௧ , were obtained as: 𝒄 ൌ ሾ1,  𝑓ሺ1ሻ െ 𝑓ሺ0ሻሿ , 

where 𝑓 is the respective linear fit of the centerline. 

The deviation angles 𝜑௫௬ and 𝜑௫௭ between the optical and the ultrasound centerlines in the 𝑥𝑦- 

and the 𝑥𝑧-plane were determined as 

𝜑௫௬ ൌ 𝑎𝑟𝑐𝑐𝑜𝑠 ൭
𝒄௫௬
௢௣௧ ∙ 𝒄௫௬௨௦

ห𝒄௫௬
௢௣௧ห ∙ ห𝒄௫௬

௨௦ ห
൱ , eq. 4-26 

𝜑௫௭ ൌ 𝑎𝑟𝑐𝑐𝑜𝑠 ቆ
𝒄௫௭
௢௣௧ ∙ 𝒄௫௭௨௦

ห𝒄௫௭
௢௣௧ห ∙ |𝒄௫௭

௨௦|
ቇ . eq. 4-27 

Properly orthogonal rotation matrices 𝑸௭ and 𝑸௬ were constructed as 

𝑸௭ ൌ ቆ
𝑐𝑜𝑠൫𝜑௫௬൯ െ𝑠𝑖𝑛൫𝜑௫௬൯

𝑠𝑖𝑛൫𝜑௫௬൯ 𝑐𝑜𝑠൫𝜑௫௬൯
ቇ , eq. 4-28 

𝑸௬ ൌ ൬
𝑐𝑜𝑠ሺ𝜑௫௭ሻ 𝑠𝑖𝑛ሺ𝜑௫௭ሻ
െ𝑠𝑖𝑛ሺ𝜑௫௭ሻ 𝑐𝑜𝑠ሺ𝜑௫௭ሻ

൰  , eq. 4-29 

where 𝑸௭ describes the rotation in the 𝑥𝑦-plane about the 𝑧-axis and 𝑸௬ describes the rotation in the 

𝑥𝑧-plane about the 𝑦-axis. Position vectors 𝒙௫௬,௜,௝,௞
௨௦ and 𝒙௫௭,௟,௠,௞

௨௦ of all current configurations that were 

observed throughout a measurement cycle were rotated about the 𝑧- and 𝑦-axis, respectively, to correct 

for angular deviation of the longitudinal or 𝑥-axis: 

𝒙ෝ௫௬,௜,௝,௞
௨௦ ൌ 𝑸௭ ∙ 𝒙௫௬,௜,௝,௞

௨௦  eq. 4-30 
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𝒙ෝ௫௭,௟,௠,௞
௨௦ ൌ 𝑸௬ ∙ 𝒙௫௭,௟,௠,௞

௨௦  . eq. 4-31 

Derivation of 2D motion functions from 3D ultrasound data 

The optically visible discrete material points in the 𝑥𝑦- and the 𝑥𝑧-plane were identified among all dis-

crete material points 𝒙௜,௝,௞
௨௦  provided by the ultrasound measurement [Figure 4-12].  

Figure 4-12 Derivation of the 2D reference configuration from 3D ultrasound data: a) Material points that are in 
the FOV of camera 1 [cf. Figure 4-6] are highlighted in red among all available 4D US material points, b) isolated 
and c) projected onto the 𝑥𝑦-plane. 

Two-dimensional motion functions for these optically visible material points in the 𝑥𝑦- and the 𝑥𝑧-

plane were derived from the 3D motion function using the 𝑥- and 𝑦-components and the 𝑥- and 𝑧-com-

ponents of the postition vectors of the selected material points in their current configurations, respec-

tively: 

𝒙ෝ௫௬,௜,௝,௞
௨௦ ൌ ቆ

𝑥ො,௜,௝,௞

𝑦ො௜,௝,௞
ቇ , eq. 4-32 

𝒙ෝ௫௭,௟,௠,௞
௨௦ ൌ ൬

𝑥ො௟,௠,௞

𝑧̂௟,௠,௞
൰  . eq. 4-33 

Transformation of 4D ultrasound and optical displacement field data to a common reference configu-

ration 

Displacement fields were computed from 4D ultrasound as well as from optical data with regard 

to the respective configuration showing the minimum mean resulting yz-displacement 

𝑢௥ ൌ  min ൛𝑢௥௘௦,௞ , 𝑘 ൌ 1, … ,𝑚ൟ [cf. eq. 4-22].  



103  4.2 Methods 

 

For ultrasound data, 2D displacement fields were obtained as 

 
𝒖௬,௜,௝,௞
௨௦ ൌ 𝒙ෝ௫௬,௜,௝,௞

௨௦ െ 𝑿෡௫௬,௜,௝
௨௦  , eq. 4-34 

 
𝒖௭,௟,௠,௞
௨௦ ൌ 𝒙ෝ௫௭,௟,௠,௞

௨௦ െ 𝑿෡௫௭,௟,௠
௨௦  , eq. 4-35 

where 𝑿෡௫௬,௜,௝
௨௦ and 𝑿෡௫௭,௟,௠

௨௦  are the chosen 2D reference configurations corresponding to the frame in 

which minimum resulting mean 𝑦𝑧-displacement 𝑢௥௘௦௨௦  was observed. 

The reference configuration of optical displacement measurements was changed from the initial 

configuration 𝑿௫௬,௣,ଵ
௢௣௧ , 𝑿௫୸,௤,ଵ

௢௣௧  to the configuration 𝑿௫௬,௣,୰
௢௣௧ , 𝑿௫୸,௤,୰

௢௣௧  corresponding to the temporal frame 

for which the minimum mean resulting yz-displacement 𝑢௥
௢௣௧ ൌ min ൛𝑢௥௘௦,௞

௢௣௧ , 𝑘 ൌ 1, … ,𝑚ൟ  was ob-

served. 𝑝, 𝑞 indicate the 𝑝௧௛  and 𝑞௧௛  optical measurement point in the 𝑥𝑦- and the 𝑥𝑧-plane, respec-

tively. The new reference configurations in the respective planes were obtained as  

𝑿௫௬,௣,௥
௢௣௧ ൌ  𝑿௫௬,௣,ଵ

௢௣௧ ൅ 𝒖௫௬,௣,௥
௢௣௧          and   𝑿௫௭,௤,௥

௢௣௧ ൌ 𝑿௫௭,௤,ଵ
௢௣௧ ൅ 𝒖௫௭,௤,௥

௢௣௧  . eq. 4-36 

Displacements 𝒖ෝ௫௬,௜,௞
௢௣௧ , 𝒖ෝ௫୸,௜,௞

௢௣௧  with regard to the changed reference configuration were then obtained as  

 
𝒖ෝ௫௬,௜,௞
௢௣௧ ൌ 𝒙௫௬,௜,௞

௢௣௧ െ 𝑿௫௬,௜,௥
௢௣௧              and           𝒖ෝ௫௭,௜,௞

௢௣௧ ൌ 𝒙௫௭,௜,௞
௢௣௧ െ 𝑿௫௭,௜,௥

௢௣௧  . eq. 4-37 

Adjustment of the spatial resolution of the optical displacement field data 

Local optical displacement data showed a higher spatial resolution compared to ultrasound data  

[Figure 4-11]. Therefore, spatial resolution of optical data was reduced. For each visible 2D material 

point of the ultrasound measurement in the 𝑥𝑦- and the 𝑥𝑧-plane, 𝒙ෝ௫௬,௜,௝,௞
௨௦  and 𝒙ෝ௫௭,௟,௠,௞

௨௦ , a neighbour-

hood was defined by the means of the half distances to its four neighboring material points accounting 

for the varying distances between two-dimensional material points that resulted from the projection of 

nearly equidistant material points on the surface of an almost cylindrical three-dimensional solid onto 

the 𝑥𝑦- and the 𝑥𝑧-planes [cf. Figure 4-12]. All optical measurement points in their (transformed) ref-

erence configuration 𝑿௫௬,௣,୰
௢௣௧ , 𝑿௫୸,௤,୰

௢௣௧  that were situated within this neighborhood of the 4D US material 

points were identified. The arithmetical mean of their displacements was calculated for all temporal 

frames and assigned to the chosen reference configuration, 𝑿෡௫௬,௜,௝
௨௦  or 𝑿෡௫௬,௟,௠

௨௦ , of the corresponding dis-

crete material point that was obtained from 4D US measurements. Eventually, local optical and ultra-

sound 2D displacement fields in the 𝑥𝑦-plane (𝒖௬,௜,௝,௞
௢௣௧ , 𝒖௬,௜,௝,௞

௨௦ ) and the 𝑥𝑧-plane (𝒖௭,௟,௠,௞
௢௣௧ , 𝒖୸,௟,௠,௞

௨௦ ), 

where 𝑙,𝑚 indicate the position of the material point within the array of 4D ultrasound data and 𝑘 indi-

cates the temporal frame [cf. section 3.3.2], were obtained, that showed the same temporal and spatial 

resolution. 



4 In vitro validation study 104 

 

Approach to comparison of ultrasound and optical displacement field measurements 

In contrast to the approach to the comparison of diameter, diameter change and circumferential strain, 

optical and ultrasound displacements were not compared for all frames, but only the displacement fields 

showing the maximum mean displacement were compared:  

𝒖௬,௜,௝௠௔௫
௢௣௧  ,      with       𝒖ഥ௬,௠௔௫

௢௣௧ ൌ 𝑚𝑎𝑥൛𝒖ഥ௬,௞
௢௣௧ ,  𝑘 ൌ 1, … ,𝑛ൟ , eq. 4-38 

𝒖௭,௜,௝,௠௔௫
௢௣௧  ,      with        𝒖ഥ௭,௠௔௫

௢௣௧ ൌ 𝑚𝑎𝑥ሼ𝒖ഥ௭,௞
௢௣௧ ,  𝑘 ൌ 1, … ,𝑛ሽ, eq. 4-39 

𝒖௬,௜,௝,௠௔௫
௨௦  ,      with        𝒖ഥ௬,௠௔௫

௨௦ ൌ 𝑚𝑎𝑥ሼ𝒖ഥ௬,௞
௨௦ ,  𝑘 ൌ 1, … ,𝑛ሽ, eq. 4-40 

𝒖௭,௜,௝,௠௔௫
௨௦  ,      with         𝒖ഥ௭,௠௔௫

௨௦ ൌ 𝑚𝑎𝑥ሼ𝒖ഥ௭,௞
௨௦ ,  𝑘 ൌ 1, … ,𝑛ሽ. eq. 4-41 

This was done because of the particular importance of the state of maximum deformation for the in vivo 

deformation estimation [see chapter 3.3.4.3, eq. 3-22], the in vivo determination of the local distensibil-

ity coefficient [cf. chapter 6.2, eq. 6-11] as well as for the approach to the inverse identification of the 

aortic wall‘s nonlinear and anisotropic constitutive behavior [cf. chapter 7]. 

4.2.4 Methods for the quantification of the test-retest reliability 

Analysis of variance was performed for the maximum values of the 

(i) mean and local diameter, 

(ii) mean and local diameter change and 

(iii) mean and local circumferential strain, 

that were obtained throughout the load cycle from 4D ultrasound measurement of the deformation of a 

porcine aortic specimen. A one-way random effects model [Altman and Bland 1983; Rencher and 

Schaalje 2008; Hartung et al. 2012; Li et al. 2015] was chosen for the analysis of variance of the results 

of repeated ultrasound measurement (2 times per load case) and post-processing (10 times per measure-

ment) of the porcine aortic specimen’s deformation under 5 different load cases [cf. section 4.2.1, Table 

4-1]: 

𝑦௜௝ ൌ 𝜇 ൅ 𝑆௝ ൅ 𝑒௜௝  , eq. 4-42 

where    

𝜇 is the overall population mean, 

𝑆௝ is the deviation of the 𝑗௧௛ subject, 𝑗 ൌ 1, … 5, from the population mean and 
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𝑒௜௝ is the random error in the measurement of the 𝑗௧௛ subject in the 𝑖௧௛ repetition of 

the test, 𝑖 ൌ 1, … 20. 

No fixed effect or systematic error was included in the model because the repeated ultrasound measure-

ments and post-processing steps were carried out under identical conditions (operator, ultrasound device 

and settings, speckle tracking algorithm) and differences in the results were due to random sources, only. 

This assumption was verified by testing whether the succession of repeated experiments and post-pro-

cessing showed any significant effects. The position of the median and the variance of the results of the 

20 repeated evaluations of each of the 5 load cases were tested for dependency on the sequential position 

in the row of repetitions using the built-in WOLFRAM Mathematica 10 functions ‘LocationEquiva-

lenceTest’ and ‘VarianceEquivalenceTest’, respectively.  

Data were non-normally distributed. Therefore, non-parametric rank methods were used for the as-

sessment of variances. The KRUSKAL-WALLIS test was used to test whether the distributions of the 

results from 20 repeated measurements and post-processing of the same load case were significantly 

different between 5 load cases, i.e. whether 4D ultrasound measurement was capable of significantly 

distinguishing the examined load cases. The KRUSKAL-WALLIS test was performed using the corre-

sponding built-in WOLFRAM Mathematica 10 function. 

In order to assess the test-retest reliability of a single measurement the intraclass correlation coeffi-

cient ICC(1,1) [Shrout and Fleiss 1979; Hartung et al. 2012; Li et al. 2015] was determined:  

𝐼𝐶𝐶ሺ1,1ሻ ൌ
𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 െ 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 ൅ ሺ𝑘 െ 1ሻ ∙ 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
 , eq. 4-43 

where 𝑘 ൌ 20 is the number of repeated tests. In literature [ibid.], the ICC is found as a measure for the 

reproducibility of normally distributed data, only. A closer look at the usual definition of the ICC reveals 

that this restriction results from the way of calculating the variations between and within subjects as the 

variance of normally distributed data. Since most of the data showed non-parametric distributions, var-

iation between and within subjects was estimated in this work as follows using non-parametric rank 

methods: 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 ൌ
𝑘

𝑛 െ 1
෍൫𝑟̅௝ െ 𝑟̅. . ൯

ଶ
௡

௝ୀଵ

 , eq. 4-44 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 ൌ
1

𝑛ሺ𝑘 െ 1ሻ
෍෍൫𝑟௝௜ െ 𝑟̅௝൯

ଶ
௡

௝଴ଵ

௞

௜ୀଵ

 eq. 4-45 

where   

𝑟̅.. is the mean of the ranks of all observations for all subjects, 
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𝑟̅௝  is the mean of the ranks of all observations for subject 𝑗 and 

𝑟௝௜  is the rank of the 𝑖௧௛ observation for subject 𝑗. 

Ranks were determined from all samples pooled. According to Koo and Li [2016], ICC values ൏ 0.5 

indicate poor reliability, values between 0.5 and 0.75 indicate moderate reliability, values between 0.75 

and 0.9 are indicative of good reliability and values ൐ 0.9 mean excellent reliability. The ICC was pro-

grammed using WOLFRAM Mathematica 10.

4.3 Results of the validation study 

4.3.1 Agreement of 4D ultrasound and optical measurements 

Table 4-3 gives an overview of the deviations of the 4D ultrasound measurements of average and local 

diameter, diameter change, circumferential strain in the 𝑥𝑦-plane according to equations eq. 4-14 to eq. 

4-19 and local displacements in 𝑦- and 𝑧-direction with the corresponding results of the optical reference 

measurement as obtained from the evaluation of all load cases pooled. 

Table 4-3 Absolute deviations of the results of the 4D ultrasound measurements with respect to optical reference 
measurements. Results are given as median ሾIQRሿ. 

 Average Local 

Deviation of diameter in xy-plane and derived quantities   

Deviation of diameter in mm െ0.52 ሾ0.79ሿ െ0.55 ሾ0.96ሿ 

Deviation of diameter change in mm െ0.01 ሾ0.16ሿ 0.00 ሾ0.22ሿ 

Deviation of circumferential strain in % െ0.01 ሾ0.98ሿ 0.04 ሾ1.21ሿ 

Deviation of displacements   

Deviation of 𝑢௬ in 𝑥𝑦-plane in mm  െ0.04 ሾ0.21ሿ 

Deviation of 𝑢௭ in 𝑥𝑧-plane in mm  0.01 ሾ0.18ሿ 

Average and local diameter change, strain and local displacement measurement in 𝑦- and 𝑧-direc-

tion did not show any systematic error compared to optical reference measurements. In contrast to all 

other geometrical parameters that were assessed in this study, the measurements of the average and the 

local diameter values exhibited a systematic deviation: Compared to the optical reference measurement, 

ultrasound systematically underestimated the diameter of the specimen by more than 0.5 mm. Figure 

4-13 illustrates the differences in the systematic and random error of the measurements of diameter and 

diameter change. Average and local diameter measurements showed the by far largest random errors of 

IQR ൌ 0.79 mm and IQR ൌ  0.96 mm, respectively, corresponding to the 95% confidence intervals 
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Figure 4-13 Spatially averaged diameter (left column: a, b, c, d, e) and diameter change (right column: f, g, h, i, j) 
over one load cycle that were observed for the five different load cases: C01 (a, f), C02 (b, g), C04 (c, h), C07 (d, 
i) and C08 (e, j). For each load case, the results of the opitical reference measurement and the results of the 1st 

evaluation of the 1st ultrasound measurement, not the means of repeated measurements and evaluations, are shown, 
exemplarily. 
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Figure 4-14 Illustrative comparison of the results of local displacement measurement in the 𝑥𝑦-plane as obtained 
by 4D ultrasound (left column: a, b, c, d, e) and optically (right column: f, g, h, i). Exemplarily, the results of single 
ultrasound measurements and evaluations, not the means of repeated measurements and evaluations, are shown 
for the five load cases: C01 (a, f), C02 (b, g), C04 (c, h), C07 (d, i) and C08 (e, j). Therefore, this comparison 
illustrates the random error of a single measurement and evaluation, which is large compared to the negligible 
systematic error of repeated measurements and evaluations [cf. Table 4-3]. 
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ሾQ଴.଴ଶହ, Q଴.ଽ଻ହሿ ൌ  ሾെ1.58 mm,  0.70 mmሿ  for average values and ሾെ1.78 mm,  0.79 mmሿ  for local 

values. In contrast to this, a smaller random error of IQR ൌ  0.16 mm or a 95% confidence interval of 

ሾെ0.32 mm,  0.27 mmሿ was found for average diameter change. 

Compared to measures of average deformation along the length axis of the sample, local defor-

mation measures exhibited slightly larger random error values, characterized by similar 

IQR ൎ   0.2 mm  and 95% confidence intervals of ሾെ0.41 mm,  0.31 mmሿ for diameter change in the 

𝑥𝑦-plane, ሾെ0.47 mm,  0.49 mmሿ for local displacements in the 𝑥𝑦-plane and ሾെ0.32 mm,  0.52 mmሿ 

for local displacements in the 𝑥𝑧-plane. Figure 4-14 gives a comparison of single 4D ultrasound full-

field displacement measurements (not the mean of repeated measurements and evaluations) with the 

optical reference measurements for each of the five different load cases. Therefore, it illustrates the 

larger random error of a single 4D ultrasound measurement and evaluation, not the negligible systematic 

error of repeated measurements and evaluations. Though this is an exemplary representation of the val-

idation results, only, it is worth noting that the displacement fields [see Figure 4-14 d, i] resulting from 

the load case with the smallest pulse pressure of 7 mmHg, only [cf. Table 4-1, C07], show the most 

considerable qualitative deviations. 

 

Figure 4-15 Bland-Altman plot showing the agreement of 4D ultrasound local strain measurements with optical 
reference measurements. The horizontal axis gives the mean and the vertical axis shows the deviation of 4D 
ultrasound and optical measurement. The horizontal solid and dashed lines mark the median and the borders of the 
95% confidence interval of the distribution of local deviations, respectively. Dimensionless strain values are not 
given in %, here. 

For circumferential strain, a random error of IQR ൎ 1%  was observed for spatially averaged  

and local values, the random error of local strain measurement ሺIQR ൌ  1.21%,

ሾQ଴.଴ଶହ, Q଴.ଽ଻ହሿ ൌ  ሾെ2.1 %,  2.0 %ሿ ሻ being slightly larger than the random error of averaged strain 

ሺIQR ൌ  0.98%, ሾQ଴.଴ଶହ, Q଴.ଽ଻ହሿ ൌ  ሾെ1.6 %,  1.6 %ሿሻ. The Bland-Altman plot of the agreement of lo-

cal strain measurements by 4D ultrasound with the optical reference measurement is given in Figure 

4-15. It shows that there is no clear dependency of the size and direction of the random error on the size 
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of measured strain. The absence of a relevant systematic error is shown in this diagram by the fact that 

the solid median line of the deviation distribution is almost identical with the zero line. 

Table 4-4 Absolute error of averaged and local diameter, diameter change and circumferential strain for the five 
examined load cases. 

 
C01 C02 C04 C07 C08 

Absolute error of average values for  

Diameter in mm െ0.31 ሾ0.30ሿ െ0.78 ሾ0.35ሿ 0.04 ሾ0.50ሿ െ1.17 ሾ0.42ሿ െ0.50 ሾ0.71ሿ 

Diameter change 

in mm 
െ0.03 ሾ0.12ሿ െ0.13 ሾ0.25ሿ 0.04 ሾ0.08ሿ 0.13 ሾ0.21ሿ 0.00 ሾ0.12ሿ 

Circumferential 

strain in % 
െ0.1 ሾ0.8ሿ െ0.6 ሾ1.2ሿ 0.2 ሾ0.6ሿ 0.7 ሾ1.1ሿ 0.1 ሾ1.1ሿ 

Absolute error of local values for  

Diameter in mm െ0.28 ሾ0.70ሿ െ0.76 ሾ0.57ሿ 0.11ሾ0.59ሿ െ1.17 ሾ0.57ሿ െ0.44 ሾ0.99ሿ 

Diameter change  

in mm 
0.00 ሾ0.21ሿ െ0.13 ሾ0.21ሿ 0.04 ሾ0.15ሿ 0.10 ሾ0.22ሿ 0.00 ሾ0.21ሿ 

Circumferential 

strain in % 
0.1 ሾ1.2ሿ െ0.6 ሾ1.0ሿ 0.2 ሾ0.9ሿ 0.6 ሾ1.1ሿ 0.1 ሾ1.4ሿ 

Table 4-4 reports the results for the agreement of ultrasound and optical diameter, diameter change 

and circumferential strain for each of the five load cases, separately. It is noteworthy that the two load 

cases with the smallest deformation (C02: ∆𝑑̅ ൌ 0.87 mm, C07: ∆𝑑̅ ൌ 0.23 mm, [cf. Table 4-1]) ex-

hibited the largest absolute values of systematic deviation and values of absolute random error that were 

of the same size as the ones that were observed for load cases with larger deformations (C01: ∆𝑑̅ ൌ

3.60 mm, C04: ∆𝑑̅ ൌ 3.23 mm, C08: ∆𝑑̅ ൌ 2.82 mm, [cf. Table 4-1]). This combination of large abso-

lute error values and small deformation measures resulted in large relative systematic and random error 

values of up to 63.4% and 100%, respectively, for the small deformation load cases [Table 4-5]. In 

contrast, for large deformation load cases the observed sizes of systematic relative error of average and 

local diameter, diameter change and strain were between −3.8% and 0.2%, −0.9% and 1.3% and −0.4% 

and 1.1%, respectively. Corresponding values of random relative deviations were between 1.7% and 

9.2%, the relative random error of local values being slightly larger than the relative random error of 

averaged values [Table 4-5]. 
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Table 4-5 Relative error of averaged and local diameter, diameter change and circumferential strain for the five 
examined load cases. 

 
C01 C02 C04 C07 C08 

Relative error of average values in % for 

Diameter െ1.7 ሾ1.7ሿ െ3.9 ሾ1.7ሿ 0.2 ሾ2.8ሿ െ5.7 ሾ2.1ሿ െ2.6 ሾ3.8ሿ 

Diameter change െ0.9 ሾ3.5ሿ െ15.1 ሾ28.6ሿ 1.2 ሾ2.5ሿ 56.7 ሾ93.2ሿ െ0.03 ሾ4.3ሿ 

Circumferential strain െ0.4 ሾ4.0ሿ െ14.3 ሾ27.8ሿ 0.9 ሾ3.6ሿ 63.4 ሾ102.3ሿ 0.8 ሾ7.4ሿ 

Relative error of local values in % for 

Diameter െ1.6 ሾ4.0ሿ െ3.8 ሾ2.8ሿ െ0.6 ሾ3.3ሿ െ5.8 ሾ2.8ሿ െ2.3 ሾ5.2ሿ 

Diameter change െ0.1 ሾ5.9ሿ െ15.1 ሾ24.1ሿ 1.3 ሾ4.8ሿ 43.1 ሾ94.8ሿ 0.0 ሾ7.5ሿ 

Circumferential strain 0.4 ሾ5.7ሿ െ13.5 ሾ23.4ሿ 1.1 ሾ4.9ሿ 50.4 ሾ103.8ሿ 0.3 ሾ9.2ሿ 

Table 4-6 Results of the repeated measurements and post-processing of five different load cases and the analysis 
of variances. H test refers to the KRUSKAL-WALLIS test. 

 Diameter in mm Diameter change in mm Circumferential strain in % 

 average local average local average local 

C01 17.75 [0.22] 17.86 [0.22] 3.47 [0.27] 3.63 [0.10] 20.1 [1.7] 20.9 [0.9] 

C02 17.44 [0.29] 17.56 [0.34] 0.68 [0.05] 0.75 [0.03] 3.4 [0.3] 3.8 [0.2] 

C04 18.35 [0.30] 18.56 [0.50] 3.23 [0.13] 3.29 [0.03] 18.0 [1.2] 18.1 [0.7] 

C07 16.84 [0.38] 17.05 [0.50] 0.42 [0.26] 0.50 [0.26] 2.2 [1.3] 2.6 [1.3] 

C08 19.05 [0.57] 19.08 [0.76] 2.84 [0.10] 2.94 [0.09] 15.3 [1.0] 15.8 [1.2] 

IQR 0.32 0.41 0.12 0.05 1.0 0.6 

H test, 𝑝 ൏ 0.001 ൏ 0.001 ൏ 0.001 ൏ 0.001 ൏ 0.001 ൏ 0.001 

ICCሺ1,1ሻ 0.92 0.90 0.96 0.97 0.96 0.97 

 



4 In vitro validation study 112 

 

4.3.2 Reproducibility of 4D ultrasound measurements 

4.3.2.1 Dependency on the sequence of performed test and evaluations 

The successive order of the repeated measurement and evaluation ሺ𝑘 ൌ 20ሻ of the examined load cases 

did not show any significant effect on the median (ANDERSON-DARLING K-Sample test, 𝑝 ൒ 0.99) or 

the variance (LEVENE test, 𝑝 ൒ 0.98) of the average and local results of diameter, diameter change and 

strain measurement. This result justified the assumption of a one-way random effects model for the 

analysis of variances and the choice of the ICC(1,1) for the rating of the repeatability [cf. 4.2.4]. 

4.3.2.2 Test-retest reliability and intraclass correlation coefficient 

An overview of the results for repeated measurements and evaluations of the five different load cases 

[cf. 4.2.1] is given in Table 4-6. Repeated determination of average and local diameter showed a clearly 

larger IQR of 0.32 mm and 0.41 mm, respectively, compared to the variation of the repeated determina-

tion of average and local diameter change, which was characterized by an IQR of 0.12 mm and 0.05 

mm, respectively. Figure 4-16 illustrates the differences in the repeatability of the measurement and 

evaluation of average diameter and diameter change, exemplarily. For repeated measurements of aver-

age and local strain, IQR values of 1.0% and of 0.6% were determined, respectively. These latter values 

are in the range of the random deviation of 4D ultrasound measurements from optical reference meas-

urements [cf. Table 4-3] 

The KRUSKAL-WALLIS test for non-parametric distributions proofed that the median values of the 

results of repeated tests were significantly different ሺ𝑝 ൏ 0.001ሻ between the examined load cases for 

all deformation parameters. As well, for all examined deformation parameters ICC(1,1) values ≥ 0.90 

were observed indicating excellent test-retest reliability of the 4D ultrasound displacement and strain 

measurement (including post-processing). The capacity of 4D ultrasound to characteristically distin-

guish the five load cases that were examined in this study is illustrated in Figure 4-17, Figure 4-18 and 

Figure 4-19 with regard to local diameter, diameter change and strain. 
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Figure 4-16 Exemplary illustration of the reproducibility of the measurement (including post-processing) of diam-
eter and diameter change by 4D ultrasound. The left column (a, b, c) shows three repeated ultrasound measure-
ments (red dots) of average diameter over time, each time compared to the identical optical reference measurement 
(blue dots) of the same experiment. The right column (d, e, f) shows three repeated ultrasound measurements (red 
dots) of average diameter change over time, each time compared to the identical optical reference measurement 
(blue dots) of the same experiment. 

 

Figure 4-17 Results for the test-retest reliability of the measurement of the maximum value of local diameters 
along the sample that were observed throughout one load cycle. The distributions of 20 repeated evaluations of 
the 4D ultrasound measurement of five different loading conditions (C01, C02, C04, C07, C08, cf. Table 4-1) are 
compared.  Boxes show the median and range of Qଵ to Qଷ, whiskers extend to minimum and maximum values, 
respectively (outliers are indicated by filled circles). KRUSKAL-WALLIS test 𝑝 ൏ 0.001, ICC(1,1) = 0.90. 
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Figure 4-18 Results for the test-retest reliability of the measurement of the maximum value of local diameter 
change along the sample that was observed throughout one load cycle. The distributions of 20 repeated evaluations 
of the 4D ultrasound measurement of five different loading conditions (C01, C02, C04, C07, C08, cf. Table 4-1) 
are compared.  Boxes show the median and range of Qଵ to Qଷ, whiskers extend to minimum and maximum values, 
respectively (outliers are indicated by filled circles). KRUSKAL-WALLIS test 𝑝 ൏ 0.001, ICC(1,1) = 0.97. 

 

Figure 4-19 Results for the test-retest reliability of the measurement of the maximum value of local circumferential 
strain along the sample that was observed throughout one load cycle. The distributions of 20 repeated evaluations 
of the 4D ultrasound measurement of five different loading conditions (C01, C02, C04, C07, C08, cf. Table 4-1) 
are compared.  Boxes show the median and range of Qଵ to Qଷ, whiskers extend to minimum and maximum values, 
respectively (outliers are indicated by filled circles). KRUSKAL-WALLIS test 𝑝 ൏ 0.001, ICC(1,1) = 0.97.
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4.4 Discussion of the validation results 

In this study the uncertainty and the test-retest reliability of 4D ultrasound were assessed. The uncer-

tainty was determined by comparison to optical reference measurements, which, however, were subject 

to uncertainty themselves. The uncertainty of the optical measurements was mainly determined by the 

pixel size of 0.1 mm [cf. 4.2.2.5]. Their random error was minimized by determining the reference 

values as the means of three subsequent measurements. It is worth noting and an indication of the ro-

bustness of the results of this study that the agreement of 4D ultrasound measurements with optical 

measurements were of the same size for diameter change and local displacement (systematic error: me-

dian ≈ 0.0 mm, random error: IQR ≈ 0.2 mm): diameter change and local displacement were derived 

independently and based on different principles from primary optical image data. 

In this study, for the measurement of the diameter, i.e. a relevant dimension of the specimen geom-

etry, a systematic underestimation of about 0.5 mm to 0.6 mm and a 95% confidence interval of about 

2.5 mm that characterized the random error were observed. In contrast, deformation measures such as 

diameter change, circumferential strain and displacement did not show any systematic error. Moreover, 

considerably smaller absolute random error was observed for these relative measurements of geometry 

change: 95% confidence intervals between 0.6 mm and 1.0 mm (corresponding to 

1.96 sd = ± 0.3 mm ... ± 0.5 mm in case of normally distributed data) were determined for diameter 

change and displacement. A possible explanation for this difference in the accuracy of the measurement 

of geometrical dimensions and of deformation or displacement could be the fact that the geometry or 

shape of the measured structure was defined by manual segmentation of the wall in the A- and B-plane 

of the already post-processed and visualized data [cf. chapter 3.2], i.e. that shape measurement is 

strongly observer dependent. Manual segmentation was performed on a computer screen. DICOM im-

age data on which the manual segmentation of the shape was performed typically exhibited a voxel size 

between 0.4 and 0.6 mm and were represented on the screen as images with a size of about 70 ൈ

70 mmଶ, i.e. in a reduced scale. That means that a deviation of 0.5 mm to 1.0 mm from the true shape 

could not be controlled or avoided in the process of manual segmentation. In contrast, the measurement 

of deformation or displacement was performed automatically by the speckle tracking algorithm that was 

implemented in the Toshiba post-processing software (ACP). Starting from the manually segmented 

region, cubic template volumes of approximately 10 ൈ 10 ൈ 10 mmଷ were defined automatically by 

the software. Displacement of the center points of these template volumes in subsequent time steps was 

estimated by means of pattern recognition on the template volumes. Consequently, the uncertainty of 

the spatial location of these template volumes due to variation of manual segmentation and the observed 

systematic error of shape measurement were in the range of the voxel size of the DICOM data, i.e. 

≈ 0.5...1.0 mm. This means that the template volume with at size of 1000 mm3 and the spatial pattern 
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which was the basis of motion estimation by the speckle tracking algorithm were substantially un-

changed by and, consequently, estimated displacements were widely independent of variations due to 

the uncertainty of the manual segmentation, if segmentation was performed carefully. Another aspect 

worth recognizing in this context is, that speckle tracking using the ACP was not performed by digital 

image correlation on already post-processed DICOM data, but by means of cross-correlation on the 

original radio frequency data, which should contribute to a high accuracy and reliability of displacement 

measurements [Chen et al. 2005]. Still, because of the size of the measured structure, i.e. the specimen 

diameter of about 20 mm, which was comparable to the healthy human aorta, the systematic and random 

relative error of diameter measurement was small. Systematic relative error was between -5.8% and 

0.2% and random relative error ranged from 1.7% to 5.2% [cf. Table 4-5]. 

It is noteworthy that the observed uncertainty of 4D ultrasound displacement measurement in 𝑦- and 

in 𝑧-direction were of the same size (systematic error: median ≈ 0.0 mm, random error: IQR ≈ 0.2 mm), 

because the accuracy of the 4D ultrasound measurement depended on completely different measurement 

principles in each direction: the 𝑦-direction corresponded to the propagation direction of the RF signal, 

i.e. the accuracy depended on the characteristics of this signal, wavelength and corresponding frequency, 

type of wave packet and beamforming. In contrast, the measurement accuracy in 𝑧-direction, i.e. orthog-

onal to the propagation direction, depended on the design and sequential control of the matrix array of 

the ultrasound probe. The fact, that equal systematic and relative uncertainty was observed in propaga-

tion direction and orthogonal to the propagation direction may allow the hypothesis that the uncertainty 

of highly resolved 4D ultrasound displacement measurements is direction independent. However, the 

uncertainty of displacement measurement in 𝑥-direction, which is orthogonal to the propagation direc-

tion as well, could not be assessed in this study. 

The chosen load cases resulted in two distinct groups of experiments: three experiments (C01, C04, 

C08) showed diameter changes > 2 mm corresponding to displacements > 1 mm (“large deformations”), 

whereas the two other load cases (C02, C07) resulted in diameter changes < 1.0 mm corresponding to 

displacements < 0.5 mm (“small deformations”). Large deformation load cases showed negligible sys-

tematic error of diameter change and absolute random error values of IQR ൌ  0.08. . .0.21 mm resulting 

in relative random error of IQR ൌ 2.5. . .7.5%. In contrast, systematic deviation of diameter change 

measurement between – 0.13 mm  and ൅0.13 mm  and larger absolute random error of 

IQR ൌ  0.21. . .0.25 mm were observed for the small deformation load cases. These results indicate that 

the absolute error of the speckle tracking algorithm implemented in the ACP is independent of the size 

of the deformation or even requires a minimum deformation to work properly. In combination with the 

smaller size of the measured value, the larger absolute error values for the small deformation load cases 

resulted in large systematic relative errors between െ15.1% and ൅56.7% and even larger relative ran-

dom errors up to IQR ൌ 94.8% [cf. Table 4-4 and Table 4-5]. 
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In order to rate the implications of these results on the uncertainty of in vivo measurements, the 

results of the clinical study presented in chapter 3.5 should be considered. Surprisingly, 3D displace-

ments of material points on aortic wall showed a size of ൎ 1 mm independent of age (൏ 60 y. o. ,൐

60 y. oሻ and cardiovascular health state (healthy, atherosclerosis, AAA) and degree of arterial stiffening, 

which is known to be related to ageing [cf. chapter 1.7] and could be demonstrated in comparative 

clinical studies with similar patient groups [ Derwich et al. 2016; Wittek et al. 2017a; Wittek et al. 2018; 

Disseldorp et al. 2019 and chapters 6 and 7]. That means, as to displacement, which is the primary 

measure of 4D ultrasound, almost all in vivo measurements belong to the large deformation group with 

negligible systematic error and small absolute and relative random error. If however strain as a derived 

deformation measure is observed, representative values are ൏ 5 % in case of aged atherosclerotic and 

AAA patients in vivo. In the current validation study, strain values of this size were observed in the 

small deformation cases, only [cf. Figure 4-19], and were accompanied by very large relative errors. 

However, in the current study, small strains necessarily were the result of small displacements, because 

the available experimental set up did not allow for any rigid body motion of the specimen. Moreover, 

displacements in the validation experiments always were displacements in radial direction. Therefore, 

the question remains unanswered how large are the systematic and random errors of measurements of 

small strains that result from large 3D displacements. 

The assessment of the test-retest reliability of a single measurement showed that 4D ultrasound was 

able to reliably distinguish between the examined load cases and deformations, even in cases where the 

range of the imaged deformations was very similar. Nevertheless, the results of the current study indi-

cate, how the error of displacement and strain measurement of a single aorta or patient, can be reduced 

significantly: The 95% confidence interval of repeated measurements resulted in non-negligible abso-

lute and relative deviations from the reference measurements. These deviations were of approximately 

the same size for local and average values. This indicates that the random error of the distribution of 

repeated measurements represents the possible size of the systematic error of a single measurement. In 

contrast, the deviation of the median of repeated ultrasound measurements that represents the systematic 

error of the measurement method was of negligible size for all examined deformation metrics. There-

fore, displacement and strain measurements of single aortic or aneurysmal wall that are intended for 

diagnostic use should be obtained as means of repeated examinations and evaluations of the same aortic 

segment. 

The in vivo 4D ultrasound data that were collected and evaluated in the clinical studies presented in 

this work were obtained from single measurements and evaluations of individual aortic segments, only, 

not as means of repeated measurements and evaluations. However, in the studies presented in chapters 

5 and 6 of this thesis, no single measurements of aortic walls were compared and tested for statistically 

significant differences, but only mean or median values of patient groups with sizes between 10 and 20 

subjects. The results of the current validation study mean that the random error of a single measurement 

has no relevant effect on the mean or median of a distribution of between 10 and 20 measurements. In 
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chapter 7, single data sets were used as basis for the parameter identification of an anisotropic hypere-

lastic constitutive equation. There, the effect of the observed random – or, in a single measurement, 

possibly systematic – error on the results of the parameter identification was examined in a numerical 

verification experiment [cf. chapters 7.8 and 7.9]. 

4.4.1 Comparison of the validation results with literature values 

3D and 4D ultrasound measurement of cardiovascular geometry and deformation has been validated 

previously in vivo and in vitro by comparison to measurements obtained by other imaging techniques. 

Park et al. [2011] have validated three-dimensional transthoracic ultrasound in an in vivo study by quan-

tifying the agreement of measurements of the aortic-root geometry with cardiac multi-detector computed 

tomography (MDCT). I.e. the study aimed at the measurement of the geometrical dimensions of a struc-

ture. This approach is comparable to the measurement of the average reference diameter in the current 

study. Moreover, relevant dimensions of both examined structures, aortic root and porcine abdominal 

aorta, are of comparable size. For ultrasound data acquisition from the parasternal long-axis view, a 

Philips iE33 ultrasound device was used combined with a X3-1 matrix-array transducer. Post-processing 

was performed offline with the QLAB Advanced Ultrasound Quantification Software Release 8.1 (both, 

device and software, by Philips Medical Systems, Andover, MA, USA). In measurements of the end-

diastolic volume in 12 patients (mean ± sd = 14.1 ± 5.7 mL) they found a mean difference between 3D 

ultrasound and MDCT of 0.5 mL or 3.5%, only, indicating small systematic deviation, which matches 

well with the relative error of average and local diameter measurement that was observed in the current 

study [cf. Table 4-5]. In contrast, the 95% confidence interval of the deviation of the 3D US measure-

ment was 6.7 mL, which means a possible relative deviation of up to 50%. This by far exceeds the 

relative random error of diameter measurement (95% confidence interval ≤ 14%) that was observed in 

the current study.  

Soliman et al. [2008] have assessed the accuracy of the in vivo 4D ultrasound measurement of pa-

rameters that are characteristic for the function of the human LV by comparison to cardiac magnetic 

resonances tomography (MRI) measurements. The in vivo study included 17 patients (10 of them with 

impaired LV systolic function due to ischemia, i.e. with regionally reduced wall motion) and 7 healthy 

volunteers. Agreement of both imaging techniques was assessed by Bland-Altman analysis [Altman and 

Bland 1983; Bland and Altman 1986]. The 95% confidence interval of the relative deviation of 4D-US 

measurements was −3.3 ± 9.2% for the end-diastolic LV volume, −3.4 ± 6.8% for the end systolic LV 

volume and 0.2 ± 6.2% for the LV ejection fraction. These results are well in agreement with the obser-

vations of the current study. This applies in particular to the fact that geometrical dimensions (LV vol-

ume) were systematically underestimated and showed larger random error, whereas no systematic error 

and slightly smaller random error was observed for deformation measures (LV evection fraction). 
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Using a MyLab 70 US system (Esaote, Maastricht, The Netherlands), Kok et al. [2015] have com-

pared the results of CT based and 3D ultrasound based geometry registration of AAA in vivo and report 

similarity indices between 0.74 and 0.91 and Hausdorff distances (median [IQR]) ranging from 4.8 mm 

[3.1 mm] to 13.9 mm [9.9 mm]) in twelve patients. These metrics for the assessment of agreement are 

not comparable directly to the ones that were used in the current study. 

Seo and coworkers [2009] have performed in vivo measurements of the LV of 10 ovine hearts. In 

addition to baseline measurements of the healthy LV, pharmacological stress tests were performed that 

affected LV function and deformation. Moreover, local ischemia and, consequently, local reduction of 

apical wall motion was induced by occluding the distal left anterior descending (LAD) coronary artery. 

Regionally varying longitudinal (LS), circumferential (CS) and radial strain (RS) were measured by 4D 

ultrasound speckle tracking using an Artida ultrasound system (Toshiba Medical Systems Co, Tochigi, 

Japan) and by sonomicrometry. In particular, areas with artificially reduced wall motion could be iden-

tified clearly. Both, 4D ultrasound speckle tracking and sonomicrometry-derived measurements of local 

LS, CS and RS in the apical region were reduced significantly as result of the occlusion of the LAD 

coronary artery. This gives evidence of the capability of 4D ultrasound speckle tracking to capture lo-

cally varying and heterogeneous strain distributions. Agreement between 4D ultrasound and sonomi-

crometry strain measurement was evaluated by Bland-Altman Plots comparing measurements under all 

conditions sampled. From these plots the following approximate means ± 1.96 sd of the absolute devi-

ation between both measurement types could be read off: LS: 1 ± 11%, CS: −3 ± 13%, RS: 3 ± 14%. 

Compared to the results of the current study (median [95% CI] = 0.0 % [-2.1%, 2.0%]), these by far 

larger systematic and random error values may be attributed to the measurement under in vivo condi-

tions, which are less controlled compared to the in vitro experiments that were performed in the current 

study. 

In 2013 our clinical cooperation partner, the Department of Vascular and Endovascular Surgery of 

the Goethe University Hospital has performed a first validation study of the deformation measurement 

of tubular structures using the Toshiba Artida 4D ultrasound system including speckle tracking by the 

ACP (Toshiba Medical Systems Co, Tochigi, Japan). Bihari et al. [2013] have measured the diameter 

and diameter change of silicon tubes under cyclic pressurization in vitro by laser micrometer and by 4D 

ultrasound. Diameter measurements were taken in propagation direction of the ultrasound signal [cf. 

Bihari et al. 2013, Figure 3]. In order to investigate the capability of 4D ultrasound speckle tracking to 

properly resolve local differences, diameter measurements were taken and compared at different posi-

tions along the longitudinal axis of an aneurysm shaped silicone phantom. Laser micrometer diameter 

values were obtained as the average of 4 pump cycles; each measurement was repeated five times. In 

contrast to the current study, Bihari and coworkers found systematic and random measurement devia-

tions of similar size for diameter (mean ± sd = 0.45 ± 0.33 mm) and diameter change (0.48 ± 0.34 mm). 

Larger deviations were observed for maximum cyclic pressure (0.55 ± 0.38 mm) in case of diameter 

measurements and in the middle section of the belly shaped aneurysm phantom (0.76 ± 0.2 mm) in case 
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of diameter change measurement, i.e. in the region where the phantom had its maximum diameter. In 

contrast to the current study, diameter was consistently overestimated by 4D ultrasound in all cases. In 

addition to diameter and its change, 3D displacement of a pattern of 2ൈ4 points on the surface of the 

phantom wall was assessed by comparison to video photogrammetry. Measurement was repeated three 

times. Maximum differences between 4D ultrasound and video analysis were 0.24 mm, 0.54 mm and 

0.76 mm in 𝑥-, 𝑦- and 𝑧-directions, respectively. I.e. in contrast to the current study, considerable dif-

ferences between uncertainty in and orthogonal to the propagation direction y of the RF signal were 

observed. However, Bihari et al. [2013] did use silicone phantoms in a medium of distilled water at 

room temperature instead of aortic soft tissue in a physiological saline solution at 37°C. This might have 

impaired the measurement results because of the different speed of sound of phantom 

ሺ𝑐௦௜௟௜௖௢௡௘ ൎ 1000𝑚 𝑠⁄ ሻ  and medium ሺ𝑐 ൎ 1483 𝑚 𝑠⁄ ሻ  compared to human abdominal soft tissue 

൫𝑐௦௢௙௧ ௧௜௦௦௨௘ ൎ 1540𝑚 𝑠⁄ ൯ for which the 4D ultrasound system is optimized. Lower speed of sound in 

phantom and medium might have resulted in a larger time of flight of the RF signal, which, however, 

was converted into distance by the Toshiba software based on the assumption of 𝑐௦௢௙௧ ௧௜௦௦௨௘. This could 

explain why Bihari et al. [2013], in contrast to the current study, have observed an overestimation of the 

specimen diameter by 4D ultrasound measurement compared to laser micrometer measurement and why 

they found deviations of different sizes in and orthogonal to the propagation direction of the RF signal, 

since the deviation in the speed of sound affects measurement results in propagation direction in a dif-

ferent way than those in orthogonal direction. 

In addition, some previous studies have assessed the reproducibility of 4D ultrasound measure-

ments. Soliman et al. [2008] report values for the interobserver and the intraobserver variability of end-

diastolic and end-systolic LV volume and of LV ejection fraction ranging from 5.1% to 7.6 %. Accord-

ing to Bland and Altman [1986], inter- and intraobserver variability were computed as the absolute 

difference between 2 measurements divided by the average of the two measurements. These values can 

be understood as the percentage of the measurement results that can be explained by the uncertainty of 

repeated measurements. In contrast, the intraclass correlation coefficient that was applied in the current 

study can be understood as the proportion of the variability of the measurements that is explained by the 

variation between the examined subjects. Thus, inter- and intraobserver variability as used by Soliman 

et al. may roughly be related to the ICC as follows: 

intraobserver variability ≈ 1 – ICC. eq. 4-46 

Taken this, the results reported by Soliman et al. correspond to ICC values ranging from 0.949 to 0.924 

which is in agreement with the results of the current study. However, Soliman et al. do neither report 

how many different observers performed which steps of data acquisition and post-processing, nor how 

often each observer performed these steps repeatedly in order to assess inter- and intraobserver varia-

bility 
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Seo et al. [2009] have quantified intra- and interobserver variability to be 8.9% and 9.8% for cir-

cumferential strain and 7.8% and 8.2% for longitudinal strain, respectively. Using eq. 4-46, these values 

correspond to ICC values of 0.911 and 0.902 for circumferential strain and to 0.922 and 0.918 for lon-

gitudinal strain. 

In a recent study, our clinical cooperation partner, the Department of Vascular and Endovascular 

Surgery of the Goethe University Hospital, has investigated the reproducibility of average longitudinal 

and circumferential strain measurement using the methods that were developed in this thesis in an in 

vivo study including nine young and healthy and nine aged and atherosclerotic subjects [Derwich et al. 

2016]. An intraclass correlation coefficient of 0.92 was determined for two observers with repeated 

examination (including all post-processing steps). 

4.5 Limitations of the validation study 

Limitations of this study are that no full 3D data were available as reference measurements and that the 

experimental set up did not allow for the assessment of measurement uncertainty in the 𝑥-direction that 

was orthogonal to the propagation direction of the RF signal and corresponded to the longitudinal direc-

tion of the examined specimen. Despite this, the experimental set up did allow the assessment of the 

measurement uncertainty in and orthogonal to the propagation direction (𝑦- and 𝑧-direction, respec-

tively). Comparably good results were obtained in both cases, indicating that the measurement uncer-

tainty of 4D ultrasound is not direction dependent. 
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5 Comparative Analysis of ascending 

and abdominal aortic wall motion 

5.1 Introduction 

In the study underlying the present chapter [Wittek et al. 2016b], 4D ultrasound imaging was employed 

to quantify the 3D shape and cyclic deformation of the proximal ascending and the abdominal aorta in 

volunteers without known cardiovascular disease [Figure 5-1]. Previously, the cyclic deformation of 

aortic segments has been analyzed mainly in terms of diameter change and derived parameters, such as 

circumferential strain and relative change of the luminal cross-sectional area [cf. Martin et al. 2013 and 

citations therein]. Measuring the three-dimensional and dynamic cyclic deformation of the aorta in vivo 

is still a challenge.  

Most available imaging techniques are either too slow to capture the dynamics of aortic wall motion 

(CT, MRI) or they do not provide 3D geometry data such as 1D and 2D ultrasound or cine phase contrast 

MRI or gated CT scans. It has been emphasized that any measurement of the cyclic deformation of the 

ascending aorta has to take into account its large rigid body motions [Morrison et al. 2009; Bell et al. 

2014; Weber et al. 2014]: Imaging techniques like CT, MRI and 1D or 2D ultrasound usually provide 

measurements of e.g. aortic diameter with regard to an EULERIAN reference frame. The site of measure-

ment is defined as a position (described by coordinates) in the field of view of the imaging device. In 

this case, different cross-sections along the aortic tree are measured at different time points of the cardiac 

cycle in case that the aortic segment moves cyclically in axial direction (“through plane motion”). Even-

tually, this might result in the measurement of chimerical deformations. This measurement error can be 

avoided by using a reference system that is attached to the measured object (LAGRANGIAN reference 

frame). Morrison et al. [2009], Weber et al. [2014] and Bell et al. [2014] have used anatomical landmarks 

such as aortic branches or the sinutubular junction [cf. Figure 5-1] to provide such a reference system 

and to assure that the measurements at different time points of the cardiac cycle are taken at the same 

site of the aorta. 
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Figure 5-1 a) Imaged segment of the aortic root and proximal aorta of a 20 y.o. male volunteer in the long-axis-
parasternal view. RV – right ventricle, LV – left ventricle, LA – left atrium, MV – mitral valve, AA – aortic 
annulus, STJ – sinutubular junction, A. asc. – proximal ascending aorta. The shown image represents a 2D cross-
section of the volumetric image data. The analyzed segment of the proximal ascending aorta is highlighted in red. 
b) Schematic sketch of the aortic tree. Imaged segment of the proximal ascending aorta and the suprarenal ab-
dominal aorta are highlighted in red. 1 – aortic annulus, 2 – ascending aorta, 3 – aortic arch, 4 – diaphragm, 5 – 
suprarenal abdominal aorta, 6 – renal arteries. [Image reprinted from Wittek et al. 2016b with permission from 
Springer Nature]  

To the knowledge of the author, cyclic twisting deformation of the aorta has not been investigated 

previous to the underlying study and only few studies have addressed its cyclic longitudinal deformation. 

The aortic lumen can be easily distinguished from the surrounding tissue in images from various sources 

(MRI, CT, ultrasound) and therefore in most studies diameter and its pulsatile change has been meas-

ured. It is hard, however, to identify markers allowing for length and rotation measurements of a defined 

section of the aorta. Morrison et al. [2009] have used the ostia of aortic branches as markers for the 

determination of longitudinal strain of several segments of the aortic arch and the descending thoracic 

aorta. Bell et al. [2014] have used the aortic cusps and the brachiocephalic origin as anatomical markers 

for length measurements of the proximal aorta.  

4D ultrasound is an imaging technique that has the potential to overcome these difficulties. As al-

ready explained in chapter 3.3, it provides highly resolved fields of trajectories of discrete material 

points of the arterial wall in a LAGRANGIAN reference frame and, thus, allows for the separation of the 

solid’s deformation and its rigid body motion (translation and rotation). Length, diameter, volume and 

rotation, longitudinal and circumferential strain, relative volume change, twist and the phase shift be-

tween longitudinal and circumferential strain were determined for each aortic segment. In addition, the 

axial displacement and velocity of the proximal and distal end cross-section of imaged ascending aortic 

segments was calculated. The methods that were utilized for the determination of these kinematic pa-

rameters are described in detail in chapter 3.3.3. Ascending and abdominal aortic segments were com-

pared with regard to these geometrical parameters. The findings obtained for these distinct aortic sites 
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were compared with respect to their physiological function, in particular, with regard to the mechanism 

of the proximal aorta’s Windkessel function [cf. chapter 1.3]. 

Table 5-1 Patient data. Data were tested for normal distribution by means of the function ‘DistributionFitTest’ that 
is available in Wolfram Mathematica 9. Normal distribution was rejected for p ≤ 0.05. If both of two samples that 
were to be compared by means of a hypothesis test were normally distributed, values were given as mean ± sd and 
an unpaired 2-tailed t test (t test) was performed. Else, values were given as median ሾQଵ, Qଷሿ, where Qଵ and Qଷ 
are the 1st and 3rd quartile, respectively, and a Mann-Whitney U test (U test) was performed. [Reprinted after 
Wittek et al. 2016b with permission from Springer Nature] 

 A. asc. A. abd. test p 

n 8 18   

Age in years 25.5 [20.0, 28.0] 25.5 [23.0, 29.0] U test 0.66 

Diastolic BP in mmHg 72.5 [70.0, 75.0] 75.0 [70.0, 80.0] U test 0.53 

Systolic BP in mmHg 115.0 [110.0, 120.0] 120.0 [110.0, 125,0] U test 0.31 

BMI in kg/m2 23.5 ± 1.9 23.3 ± 2.4 t test 0.86 

Sample length in mm 28.5 [23.5, 32.8] 26.2 [20.9, 37.9] U test 0.68 

Radius of curvature in mm 115.1 ± 73.7 214.1± 149.5 t test 0.09 

5.2 Study collective and in vivo data acquisition 

The study was approved by the local Ethics Committee of the University of Marburg. Eighteen young 

and healthy male adults were examined after giving informed consent. From each volunteer, 4D ultra-

sound data of the suprarenal abdominal aorta were acquired. The ascending aorta was imaged in all 

volunteers by transthoracic ultrasound. Due to the limited field of view in the long-axis parasternal view 

[cf. Figure 5-1 a], data sets could be acquired in eight volunteers, only. Clinical variables were obtained 

from each volunteer [Table 5-1]. Patient data were acquired and speckle tracking was performed offline 

as described in chapter 3.2. Voxel edge length of the image data ranged from 0.24 to 0.59 mm. Temporal 

resolution between 11 and 25 volumes/s resulted in 9 to 21 volumetric images of the aortic segments 

throughout the cardiac cycle [Table 5-2]. Ascending aortic segments ranging from the aortic annulus to 

the mid of the proximal aorta about 10 to 30 mm distal to the sinutubular junction [cf. Figure 5-1 a] were 

imaged from the long-axis-parasternal view. Segments of the suprarenal abdominal aorta were recorded 

by transabdominal ultrasound. 
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Table 5-2 4D ultrasound imaging parameters. Data were tested for normal distribution by means of the Wolfram 
Mathematica function ‘DistributionFitTest’. Normal distribution was rejected for p ≤ 0.05. If both of two samples 
that were to be compared by means of a hypothesis test were normally distributed, values were given as mean ± 
sd and an unpaired 2-tailed t test (t test) was performed. Else, values were given as median ሾQଵ, Qଷሿ, where Qଵ and 
Qଷ are the 1st and 3rd quartile, respectively, and a Mann-Whitney U test (U test) was performed. [Reprinted after 
Wittek et al. 2016b with permission from Springer Nature]  

 A. asc. A. abd. test p 

Voxel size in mm/pix 0.59 [0.43, 0.59] 0.32 [0.28, 0.59] U test 0.017 

Frame rate in Hz 16.19 ± 2.54 17.40 ± 3.70 t test 0.411 

Frames 13 [11, 14] 17 [14, 18] U test 0.123 

5.3 Statistics 

Statistical analysis was performed by means of WOLFRAM Mathematica 9 (Wolfram Research, Cham-

paign, IL, USA). Data were tested for normal distribution by means of the function ‘DistributionFitTest’. 

Normal distribution was rejected for p ≤ 0.05. Since all geometrical parameters that were determined in 

this study were averaged values of the motion of a field of material points, values were given as 

mean ± s.e.m. and, unless specified differently, an unpaired 2-tailed t test (t test) was performed if both 

of two samples that were to be compared by means of a hypothesis test were normally distributed. Else, 

values were given as median ሾQଵ, Qଷሿ, where Qଵ and Qଷ are the 1st and 3rd quartile, respectively, and a 

MANN-WHITNEY U test (U test) was performed. SPEARMAN’s rank correlation coefficient was used as 

nonparametric measure for the statistical dependency of two variables. 

In order to adequately describe the complete range of cyclic deformation, longitudinal and circum-

ferential strain, relative volume change and twist were determined for each data set according to chapter 

3.3.3 and then mean or median values of these values are presented in the results section [Figure 5-3 to 

Figure 5-5, Figure 5-7, Figure 5-8]. When average time points of the occurrence of maximum values 

within the cardiac cycle are given in the text, the time point of occurrence was determined for each 

single data set and then mean ± s.e.m. or the quartiles of the distribution of the different data sets was 

calculated. The values given in Figure 5-2 to Figure 5-5, Figure 5-7 and Figure 5-8 as well as 

mean ± s.e.m. or median ሾQଵ, Qଷሿ are the exact values, on which statistical hypothesis tests were based. 

In contrast, deformation curves over time that are shown in Figure 5-6, Figure 5-9 and Figure 5-10, were 

obtained by averaging deformation values that were measured in different volunteers at the same point 

of time of the normalized cardiac cycle with respect to the end-diastolic reference frame [cf. chapter 
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3.2.1]. Because the maximum deformation values occurred at slightly different stages of the cardiac 

cycle in different volunteers, these curves show lower maximum values than the exact values. As well, 

the time of the maximum/minimum values in these curves may defer from the exact value given in the 

text because of the different way of averaging. These figures are suited to illustrate some distinguishing 

features of ascending and abdominal aortic kinematics qualitatively, rather than giving the quantitatively 

exact values.

 

Figure 5-2 Minimum and maximum diameter of the ascending and abdominal aortic segments. *** means 
p ≤ 0.001. [Reprinted from Wittek et al. 2016b with permission from Springer Nature] 

 

Figure 5-3 Cyclic longitudinal (a) and circumferential (b) strain and volume change (c) of the ascending and the 
abdominal aorta. ***means p ≤ 0.001 and * means p ≤ 0.05. [Reprinted from Wittek et al. 2016b with permission 
from Springer Nature] 
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5.4 Multiaxial deformation of the ascending and the ab-

dominal aorta 

Compared to the abdominal aortic segments, the systolic (maximum) and diastolic (minimum) di-

ameters of the ascending aortic segments were on average 11.3 mm and 10.2 mm larger, respectively 

[Figure 5-2]. Ascending and abdominal aorta showed comparable cyclic circumferential strains. In con-

trast, the ascending aorta was subjected to significantly larger cyclic longitudinal strain and volume 

change than the abdominal aorta [ 

Figure 5-3].  

 

 

Figure 5-4 Absolute values of cyclic rotation amplitude of the ascending and the abdominal aorta. *** means 
p ≤ 0.001. [Reprinted from Wittek et al. 2016b with permission from Springer Nature] 

Moreover, significantly larger rotation [Figure 5-4] and twist amplitudes and counter clockwise 

twist were observed in the ascending aorta compared to the abdominal aorta, whereas no significant 

difference was found in clockwise twist [Figure 5-5]. The ascending aorta exhibited clockwise twist (ct) 

and counter clockwise twist (cct) of similar size during the cardiac cycle [Figure 5-5]. Maximum clock-

wise twist was observed in early systole at 22.1 ± 9.0% of the cardiac cycle, whereas maximum counter 

clockwise twist took place significantly later in end systole at 54.3 ± 9.5% of the cardiac cycle (paired 

t test, p = 0.027, illustrated qualitatively by Figure 5-6). In contrast, the examined abdominal aortae 

could be subdivided into two groups showing either almost only counter clockwise twist (n = 12, 

cct = 0.99 °/cm [0.59 °/cm, 1.29 °/cm] vs. ct = 0.02 °/cm [0.00 °/cm, 0.20 °/cm], WILCOXON Signed 

Rank test, p = 0.005) or clockwise twist (n = 6, cct = 0.16 ± 0.08 °/cm, ct = 2.03 ± 0.73°/cm, paired 

t test, p = 0.029). 
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Figure 5-5 Absolute values of cyclic twist amplitude (a), counter clockwise (b) and clockwise twist (c) of the 
ascending and the abdominal aorta. ** means p ≤ 0.01 and n.s. means p > 0.05. [Reprinted from Wittek et al. 
2016b with permission from Springer Nature] 

 

Figure 5-6 Mean curves of cyclic twist of the ascending aorta and two sub-groups of the examined abdominal 
aortae that show dominantly clockwise (n = 6) or counter clockwise (n = 12) twist. [Reprinted from Wittek et al. 
2016b with permission from Springer Nature] 

Compared to the cyclic deformation, systolic-diastolic [cf. chapter 3.3.2] longitudinal strain was 

significantly smaller in the ascending as well as the abdominal aorta [Figure 5-7 a, Figure 5-8 a]. In 

contrast, no significant difference was found in the cyclic and the systolic-diastolic volume change [Fig-

ure 5-7 b, Figure 5-8 b]. Cyclic twist amplitude was significantly larger than systolic-diastolic twist in 

the ascending as well as the abdominal aorta [Figure 5-7 c, Figure 5-8 c]. 
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Figure 5-7 Cyclic and systolic-diastolic longitudinal (a), volumetric (b) and twist (c) deformation in the ascending 
aorta. * means p ≤ 0.05, *** means p ≤ 0.001. Paired t tests were performed. [Reprinted from Wittek et al. 2016b 
with permission from Springer Nature] 

 

 

Figure 5-8 Cyclic and systolic-diastolic longitudinal (a), volumetric (b) and twist (c) deformation in the abdominal 
aorta. *** means p ≤ 0.001.  Paired t test was performed for volume change, WILCOXON signed rank test was 
applied to longitudinal strain and twist data. [Reprinted from Wittek et al. 2016b with permission from Springer 
Nature] 
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Figure 5-9 Mean curves of cyclic longitudinal and circumferential strain and of relative volume change in the 
ascending (a) and abdominal aorta (b). [Reprinted from Wittek et al. 2016b with permission from Springer Nature] 

Cyclic changes of longitudinal and circumferential strains were not synchronous. Maximum longi-

tudinal strain in the ascending aorta was reached 14.2 ± 5.4% of the cardiac cycle (paired t test, p ≤ 0.05) 

after maximum circumferential strain, which is illustrated qualitatively by Figure 5-9 a. In contrast, in 

the abdominal aorta the mean phase shift of െ8.1 ± 6.7% between longitudinal and circumferential 

strain was not statistically significant (paired t-test, p = 0.24). Nonetheless, a marked phase shift could 

be found in all but two of the imaged abdominal aortae. This was evident when considering the absolute 

values of the phase shift in the abdominal aorta: 24.6 ± 3.5% (paired t-test, p ≤ 0.001). However, twelve 

of the samples showed a negative phase shift (−24.6 ± 3.2%, peak longitudinal strain precedes peak 

circumferential strain), whereas six of the samples showed a positive phase shift (24.8 ± 8.1%). For 

illustration cf. Figure 3-3 and Figure 5-9 b. All six volunteers with predominant clockwise twist exhibit 

negative phase shift and, accordingly, all volunteers with positive phase shift exhibit counter clockwise 

twist (chi-square test for independence, p ≤ 0.05). 

 

Figure 5-10 Mean axial displacements (a) and velocities (b) of the nodal points that define the end cross-sections 
of the imaged aortic segments. Proximal and distal end of the abdominal aorta were defined with respect to the 
distance from the heart. “delta” signifies the difference of proximal and distal displacement. Displacements along 
the aortic tree towards the heart are positively signed. [Reprinted from Wittek et al. 2016b with permission from 
Springer Nature] 



5 Ascending and abdominal aortic wall motion  132 

 

The mean displacement and velocity along the vessel axis was determined for the proximal and 

distal end cross-sections of the imaged ascending aortic segments [cf. Figure 5-10 for qualitative illus-

tration]. The distal cross-section was located 10 - 30 mm distally to the sinutubular junction. The prox-

imal cross section was located close to the aortic annulus. The maximum displacement of the distal 

cross-section (7.8 ± 0.8 mm) was significantly smaller than the displacement of the proximal cross-

section (10.3 ± 0.7 mm, paired t test, p ≤ 0.05) as illustrated by Figure 5-10 a. During the first and second 

half of the cardiac cycle, greater velocity towards and away from the LV apex [cf. chapter , respectively, 

was observed at the aortic annulus, compared to mid-ascending aorta [Figure 5-10 b].

5.5 Relations between deformation patterns and 

physiological function 

The cyclic three-dimensional deformation (longitudinal, circumferential, volumetric, rotation and twist) 

of eight proximal ascending and 18 suprarenal abdominal aortic segments was determined from 4D 

ultrasound imaging data that were acquired from young male volunteers without known cardiovascular 

disease and risk factors. Differences between the two segments of the aorta were found in the amplitude 

of length change, volume change, rotation and twist which were higher in the ascending aorta. The time 

course of the pulsatile deformation differed as well. Maximum length was reached approximately 15% 

(of the cardiac cycle) later than maximum diameter in the ascending aorta [cf. Figure 5-9 a]. The exam-

ined abdominal aortae did not show uniform behavior in this respect: in 12 cases, maximum longitudinal 

strain preceded maximum circumferential strain by about 25% of the cardiac cycle, in 6 cases maximum 

longitudinal strain was observed about 25% later in the cardiac cycle than maximum circumferential 

strain. Moreover, the ascending aorta exhibited alternating clockwise (in early diastole) and counter 

clockwise twist (in end-diastole) during the cardiac cycle, while the abdominal aorta was characterized 

by almost unidirectional, either clockwise (n = 6) or counter clockwise twist (n = 12) with respect to the 

end-diastolic reference frame. A statistical dependency between positive or negative phase shift (be-

tween circumferential and longitudinal strain) and predominantly counter clockwise or clockwise twist, 

respectively, was observed in the abdominal aorta. 
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5.5.1 Comparison with literature 

Systolic and diastolic diameters and the circumferential strains that were observed in this study using 

4D ultrasound were in the range of the values that have been reported previously from measurements 

with other imaging techniques [Table 5-3]. Compared to the present study, Martin et al. [2013] reported 

larger diameters of the ascending aorta. This difference may be attributed mainly to the higher age of 

the study collective that was examined by Martin et al. [2013]. Several studies have reported an increase 

of the ascending aortic diameter with age [Morrison et al. 2009; Martin et al. 2013]. Hickson et al. [2010] 

have shown that this increase is strongest in the ascending aorta (0.96 mm per decade).  

Morrison et al. [2009] and Martin et al. [2013] have observed smaller circumferential strains than 

the present study. This may be due to aortic stiffening associated with higher age of the patient groups 

examined in these studies [cf. chapter 1.7.1]. Both studies have reported the decrease of circumferential 

strain with age. 

So far, there are very few works reporting in vivo data on cyclic longitudinal strains in humans. 

Morrison et al. [2009] have measured longitudinal strains of 2.0 ± 0.5% of the descending thoracic aorta 

in a collective of seven patients (31 to 51 yrs. old). This value is close to the cyclic strain that was 

observed in this study for the suprarenal abdominal aorta which is directly adjacent to the descending 

thoracic aorta downstream along the aortic tree [cf. Figure 1-6]. Longitudinal strain in the abdominal 

aorta is small, compared to circumferential strain. Bell et al. [2014] have investigated longitudinal strain 

of the proximal ascending aorta in a group of 375 patients (72 to 94 yrs. old). They observed a length-

ening of the aortic root of 22% [17%, 32%] in men and of 21% [15%, 26%] in women. In the ascending 

aortic segment between the sinutubular junction and brachiocephalic origin they have measured 8.5% 

[6.9%, 10.3%] and 6.7% [5.1%, 8.2%] in men and women, respectively. 

5.5.2 Physiological function of longitudinal strain  
in the ascending aorta 

The observations of the current study regarding the abdominal aorta are in accordance with the widely 

accepted hypothesis that cyclic length change of arteries as response to cyclic pressure and diameter 

changes is minimized by axial prestrain of the vessel in situ [Schulze-Bauer et al. 2003; Schulze-Bauer 

and Holzapfel 2003; Horný et al. 2013]. Longitudinal prestrain of the abdominal aorta may reach values 

up to 40% in young human subjects and decreases with age. The limitation of cyclic length change by 

axial prestrain was understood as energetical optimization of the arterial function of carrying the pres-

sure wave and blood flow wave [Schulze-Bauer et al. 2003], because – in most parts of the arterial tree 

– this function is not supported by axial length change of the vessel. Evidently, this hypothesis does not 

apply to the ascending aorta, where large cyclic amplitudes of axial strain are observed, which might 

coincide with reduced prestrain. This is suggested by findings by Han and Fung [1995], who have shown 
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in dogs and pigs that the degree of axial prestrain depends on the position in the aortic tree: in both 

species, axial strain of about 20% was observed in the ascending aorta, which then gradually increased 

along the aortic tree and reached about 60% in the infrarenal abdominal aorta. 

Lengthening of the ascending aorta is driven by the cyclic motion of the aortic root - being located 

in the atrioventricular plane of the left ventricle (LV) - due to LV contraction [cf. chapter 1.3, Mercer 

1969; Kozerke et al. 1999; Beller et al. 2004; Bell et al. 2014]. Following Maksuti et al. [2015] it was 

emphasized in chapter 1.2 that the main pumping mechanism of the heart is the cyclic long-axis motion 

of the atrioventricular plane, which causes reciprocal redistribution of blood volume between right and 

left atria and ventricles, respectively, while the total heart volume remains almost constant. One “ener-

getically optimal” effect of this principle is that a portion of blood is transported from the atria to the 

ventricles without the need to accelerate its mass. Since the aortic annulus and aortic valve are located 

in the atrioventricular plane, too, a similar displacement pump mechanism might apply to the ejection 

of blood from the LV into the ascending aorta. The maximum displacement of the aortic annulus towards 

the LV apex of 10 mm [cf. Figure 5-10 a], that was observed in this study, combined with the systolic 

diameter of 27.2 mm [Figure 5-2] results in an increase of the volume of the ascending aorta by 5.8 ml. 

This additional aortic volume is “immersed” into the LV volume due to movement of the aortic root, so 

that a corresponding volume of blood is transported from the LV into the aorta without the need to 

accelerate its mass, which means less work for the LV during systole [cf. Maksuti et al. 2015]. In turn, 

the LV has to work against the elastic force of the stretched ascending aorta. This work is stored in the 

stretched aorta as potential energy [Bell et al. 2015]. When released during diastole, where longitudinal 

elastic recoil acts in direction of the vessel, it might help to accelerate the stored blood in systemic flow 

direction and contribute to the maintenance of flow during diastole more effectively than circumferential 

elastic recoil of the proximal aorta alone would do. Understood in this way, large cyclic longitudinal 

strain of the proximal aorta means an energetical optimization of the aortic function, as does the limita-

tion of cyclic length change due to increased axial prestretch in the abdominal aorta. 

The proximal aorta moves in direction of the LV apex in the first third of the cardiac cycle [cf. 

Figure 5-10 b], i.e. during the first part of the LV ejection phase. For this phase, blood flow velocities 

of about 150 cm/s are reported in literature [Nichols et al. 2011] that were measured by ultrasound 

Doppler, i.e. with reference to the unmoved ultrasound probe. In this study, an aortic wall velocity in 

the opposite direction was measured with a size of about 0.35 mm per % of cardiac cycle, i.e. 3.5 to 5.25 

cm/s for a heart rate of 60 to 90 bpm. This means that the relative velocity between wall and blood and 

consequently wall shear stress might be slightly higher than estimated by US Doppler measurements. 

State of the art fluid-structure interaction models of the aortic root and the proximal aorta [Griffith 2012; 

Flamini et al. 2015] do not take into account longitudinal motion and strain of the aortic wall. Flamini 

et al. report maximum wall displacements (without specified direction) of 0.55 mm predicted by their 

model, only. 
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To the author’s knowledge, the phase shift between maximum longitudinal and circumferential 

strain in the ascending aorta has not been described before. Circumferential strain is thought to closely 

follow the pressure course and maximum circumferential strain occurs at maximum pressure in the LV 

and the proximal aorta (mid-systole at one third of the cardiac cycle) [cf. chapter 1.3, Figure 1-3 and 

Figure 5-9]. Longitudinal strain is related to the contraction of the LV and maximum contraction of the 

LV, which is marked by minimum LV volume, is reached in end-systole/early diastole at about 50% of 

the cardiac cycle [cf. chapter 1.3 and e.g. Humphrey 2002]. Indeed, the maximum difference between 

the axial displacement of the aortic annulus and the mid-ascending aorta (longitudinal strain) was ob-

served in the current study in end-systole/early diastole at 50.0 ± 3.6% of the cardiac cycle, i.e. at the 

same stage where maximum LV contraction is reported in literature. However, maximum displacement 

of the aortic annulus towards the LV apex was observed significantly earlier at 39.0 ± 1.6% of the cardiac 

cycle (paired t test, p = 0.017), almost simultaneously with maximum circumferential strain at 

36.5 ± 5.9% (paired t test, p = 0.71) that might indicate maximum pressure. This means that maximum 

annulus displacement – as an indicator of maximum axial LV contraction – cannot explain the phase 

shift between longitudinal and circumferential strain. In the velocity diagram [Figure 5-10 b], the dif-

ference between maximum annulus displacement and maximum longitudinal strain is illustrated by the 

difference between the zero crossing of the annulus velocity and the crossing of the annulus and the 

distal velocity curves. The diagram qualitatively shows that – after maximum annulus displacement is 

reached, the motion of the aortic annulus, i.e. the part of the ascending aorta closest to the LV, away 

from the LV apex is slower than the motion of the distal cross-section in the same direction, resulting in 

still increasing longitudinal strain. It is known that the pressure gradient between LV and proximal aorta, 

which accelerates the blood in systemic flow direction at the beginning of the ejection phase, is reversed 

during end-systole/early diastole after the peak of LV pressure has been reached and when the myocar-

dium starts to relax [cf. chapter 1.3 and e.g. Nichols et al. 2011]. This reversal of the pressure gradient 

first creates a force that closes the aortic valve [Bellhouse and Bellhouse 1968], acts on the atrioventric-

ular plane and is oriented towards the LV apex, i.e. in opposite direction to the movement of the aortic 

annulus in this phase of the cardiac cycle. With the further decline of LV pressure after the closure of 

the aortic valve, the transvalvular pressure gradient increases until the opening of the mitral valve [Da-

gum et al. 1999] at about 50% of the cardiac cycle, i.e. until the time point when maximum longitudinal 

strain was observed in the current study. One might hypothesize that the transvalvular pressure gradient 

decelerates the motion of the atrioventricular plane away from the LV apex after maximum LV pressure 

was reached and thus accounts, at least in part, for the phase shift between longitudinal and circumfer-

ential strain. 

The relative volume change 𝑉𝐶 is an illustrative parameter for the biaxial deformation of the aorta. 

Moreover, 𝑉𝐶 is the parameter that is physically relevant for the physiological Windkessel function of 

the ascending aorta, i.e. its ability to store a fraction of the volume of blood ejected by the left ventricle 

during systolic contraction, in order to preserve arterial blood pressure and to augment arterial blood 
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flow during diastole by elastic recoil of the aortic wall [Humphrey 2002; Beller et al. 2004; Nichols et 

al. 2011]. The phase shift of peak longitudinal and circumferential strain in the ascending aorta results 

in a “plateau” phase of the maximum 𝑉𝐶 of about 10% of the cardiac cycle, that cannot be observed in 

the curves of longitudinal and circumferential strain alone [Figure 5-9 a]. I.e. the storage of a maximum 

portion of blood volume in the ascending aorta is extended by this effect and its forwarding to the arterial 

system is delayed to a later phase of the pulse cycle, thus contributing to a more continuous blood flow 

throughout the cardiac cycle. 

Because of the helical arrangement of the LV myofibers, axial contraction of the LV is coupled to 

opposite rotations of LV apex and base [cf. chapter 1.3 and e.g. Sengupta et al. 2008]. The LV base 

rotation might be the main reason of the average rotation amplitude of 6.6° that was observed in the 

current study in the proximal aorta [Figure 5-4]. In literature, LV base rotation with a comparable am-

plitude of about 6° to 7° was reported [Sengupta et al. 2008; Buckberg et al. 2015]. In many cases a 

counter clockwise rotation of the LV base was observed during early systole (isovolumetric contraction), 

which then is followed by a clockwise rotation during the ejection phase. This might explain the alter-

nating clockwise (early systole) and counter clockwise twist (end systole) of the proximal aorta that was 

measured in the study reported in this thesis [Figure 5-5, Figure 5-6]. In contrast, no external rotational 

moment comparable to LV base rotation is known that acts on the abdominal aorta, in particular since 

any motion in the abdomen due to breathing was excluded during the ultrasound measurement [cf. chap-

ter 3.2.1]. Accordingly, by far smaller rotational motion and twist were observed in the abdominal aorta. 

Moreover, predominantly unidirectional, either clockwise or counter clockwise twist was found. Twist 

increased with circumferential strain during the first half of systole and then remained at a more or less 

constant level almost until end diastole [Figure 5-6]. This twist under pressure change might result from 

asymmetry in the arrangement of the aortic wall’s preferred fiber directions with regard to physiological 

biaxial loading by blood pressure and axial prestress: in chapter 2.3.4.3 it was shown that the principal 

directions of the strain tensor and the stress tensor are not identical if the preferred fiber directions gov-

erning the anisotropic behavior are not symmetric with regard to the principal loading directions. I.e. 

though loading of a – open or closed ended – hollow cylinder by hydrostatic pressure and axial prestress 

will result in a shear-stress-free stress state, in-plane shear deformation may be observed. 

Systolic-diastolic longitudinal strain and twist were found to be significantly smaller than the cor-

responding cyclic amplitudes in the ascending as well as in the abdominal aorta. Due to the phase shift 

between maximum longitudinal and circumferential strain, the true size of cyclic aortic deformation 

could only be recognized because a three-dimensional imaging technique with appropriate temporal 

resolution was applied. If measurements would have been performed at only two time points throughout 

the cardiac cycle, e.g. end-systole and end-diastole, significantly smaller systolic-diastolic longitudinal 

strain and twist would have been measured, only [Figure 5-7a, c; Fig. Figure 5-8a, c]. These findings 

motivated and justify the choice of different reference configurations for the description of cyclic lon-

gitudinal and circumferential strain and relative volume change [cf. chapter 3.3.3.3] and for the different 
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components of the in-plane strain tensor [cf. 3.3.4.3] in order to capture the full range of cyclic defor-

mation. 

5.5.3 Conclusions and limitations 

Usually, the cyclic deformation of aortic segments is described by means of parameters that depend on 

the diameter change of the vessel alone, such as circumferential strain or the systolic-diastolic ratio of 

the cross-sectional area of the vessel lumen. The findings reported in this chapter show that this approach 

is well suited for the abdominal aorta where longitudinal strain and torsion were small and the cyclic 

deformation was almost uniaxial in circumferential direction. In contrast to this, the ascending aorta 

underwent a more complex multiaxial deformation with length and diameter changes of the same order 

of magnitude, a phase shift between both cyclic deformations and alternating twist during the cardiac 

cycle. These observations promote a deepened understanding of the proximal aorta’s Windkessel func-

tion. 

It is known, though not completely understood, that the mechanical environment of and load on 

endothelial cells and cells embedded in the aortic wall, plays a crucial role for its remodeling. In addi-

tion, such a complex cyclic deformation as was observed in the proximal aorta in the current study is 

known to be highly fatiguing to technical materials. This may account for increased degradation of non-

living components of the aortic wall and thereby promote aortic stiffening with age as well as patholog-

ical processes such as dissection or aneurysm formation [cf. chapter 1.7 and Nichols et al. 2011]. 

The measurement of such a complex multiaxial deformation requires three-dimensional imaging 

using a LAGRANGIAN reference frame that is fixed to the imaged object. For the detection of the phase 

shift between longitudinal and circumferential strain, sufficient temporal resolution is required. Time 

resolved 3D ultrasound strain imaging provides these features and allows for better understanding of the 

physiology and pathophysiology of the cardiovascular system.  

Using a transthoracic probe, only short segments of the proximal thoracic aorta were accessible by 

4D ultrasound through the long-axis-parasternal view. In 10 patients, the image quality was not suffi-

cient to perform 3D speckle tracking. Neither the aortic arch, nor the descending thoracic aorta could be 

imaged through the long-axis-parasternal view. These limitations could be overcome by using a 3D 

transesophageal probe, which was not available at the time when the measurements for this study were 

taken. 
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6 Locally varying elastic behavior of 

human aortae in vivo 

6.1 In vivo measures of aortic elasticity in the  

physiological range 

The elastic response of the aortic and of arterial walls to loading by pulse pressure has an important 

physiological function for maintaining and regulating circulation. Arterial stiffening has been identified 

as an independent risk factor and predictor of severe cardiovascular events and of diseases such as renal 

failure and dementia. [Cf. chapters 1.2, 1.6.1.] 

The measurement of pulse wave velocity (PWV)  is regarded as gold standard for clinical assessment 

of arterial elasticity or stiffness [van Bortel et al. 2012; Teixeira et al. 2015]. It is determined from 

measurements of the time delay between ventricular systole and the occurrence of peak pressure at de-

fined sites of the arterial tree, e.g. the common carotid artery ሺ∆𝑡௖ሻ and at the femoral artery ൫∆𝑡௙൯ 

[cf. Figure 1-6]. Additionally, the distances between the left chamber of the heart and both sites of meas-

urement along the arterial tree have to be known ൫𝑠௖ , 𝑠௙൯. Then, carotid-femoral pulse wave velocity is 

obtained as 

𝑃𝑊𝑉 ൌ
∆𝑡௙ െ ∆𝑡௖
 𝑠௙ െ 𝑠௖

 . eq. 6-1 

According to eq. 1-1, a ‘YOUNG’s modulus’ 𝐸 can be determined from measured 𝑃𝑊𝑉. The determined 

modulus describes the functional elastic response of the whole aortic tree between its origin at the left 

ventricle, the common carotid artery and the femoral artery neglecting all differences between aortic 

segments. However, it is not a proper constitutive model describing the material properties of an isolated 

piece of tissue. 
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Other measures of the elastic behavior of the aortic and arterial wall relate the diastolic-systolic 

diameter change ∆𝑑 or derived values to the pulse pressure ∆𝑝. Because of its high frame rate, ultra-

sound measurements are suitable to capture minimium and maximum cyclic diameter with negligible 

error. Common measures of arterial elasticity that can be determined based on ultrasound measurements 

are listed subsequently [cf. e.g. O'Rourke 1990; Fung 1997; O'Rourke et al. 2002; Nichols et al. 2011; 

Caro 2012; Teixeira et al. 2015].  

 

𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 ൌ
∆𝑑
 ∆𝑝

 . eq. 6-2 

Two variations of distensibility are commonly used: one is determined based on diameter change ∆𝑑 

and diastolic (i.e. minimum cyclic) diameter 𝑑ௗ௜௔, the other based on the corresponding values of the 

corss-sectional area of aortic lumen (∆𝐴 and 𝐴ௗ௜௔ሻ, for which a circular shape is assumed, mostly: 

 

𝐷𝑖𝑠𝑡𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ሺdiameterሻ ൌ
∆𝑑

 𝑑ௗ௜௔ ∙ ∆𝑝
 ,  eq. 6-3 

𝐷𝑖𝑠𝑡𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ሺareaሻ ൌ
∆𝐴

  𝐴ௗ௜௔ ∙ ∆𝑝
 , eq. 6-4 

 

PEARSONᇱ𝑠 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 ൌ
∆𝑝 ∙ 𝑑ௗ௜௔

 ∆𝑑
 , eq. 6-5 

 

YOUNGᇱ𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 ൌ
∆𝑝 ∙ 𝑑ௗ௜௔

 ∆𝑑 ∙ ℎ
 , eq. 6-6 

where ℎ is the wall thickness that can only be measured for superficial blood vessels. Finally, the  

 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥 𝛽ଵ ൌ
ln
𝑝௦௬௦
𝑝ௗ௜௔

 ∆𝑑 𝑑ௗ௜௔

 . eq. 6-7 

In contrast to PWV, these measures do not characterize the elastic response of the whole aortic tree, 

but describe the elastic behavior of a specific site along the aortic tree. I.e. the effects of the known 

changes of axial prestretch [Han and Fung 1995] and microstructural composition [Fung 1993] of the 

aortic wall in dependency of the distance from the heart on its cyclic elastic properties can be captured 

[Nichols et al. 2011]. However, none of these measures provides a characterization of the variation of 

the local elastic properties along the circumference of the vessel.  

All these indices are not proper constitutive models of the aortic or arterial wall: Not the elastic 

properties of the isolated aortic wall tissue are identified, but the elastic response of the aortic wall 
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embedded in perivascular tissue and surrounded by various organs, which might contribute to the elastic 

response. Secondly, not the nonlinear and orthotropic constitutive behavior of the wall is modeled, but 

its circumferential secant modulus (or its inverse) in the physiological loading range. Despite these “de-

ficiencies”, these indices allow for the identification the physiologically relevant elastic response of the 

aorta to the ejection of a blood volume and to the pressure wave travelling along the aortic tree. It is this 

elastic response that contributes to regulation and smoothing of pulse pressure and maintenance of con-

tinuous blood flow through the Windkessel effect [cf. chapter 1.3]. Compared to – from the continuum 

mechanical point of view – more ‘adequate’ constitutive equations, the most decisive advantage of the 

above-listed indices for aortic elasticity is the fact that they can be determined from non-invasive in vivo 

data, only, without the need for any assumption regarding the modeling of the circulation or the aortic 

wall [Teixeira et al. 2015].  

Ribbers et al. [2007] first have applied 2D ultrasound with speckle tracking (2D-STE) for clinical 

measurement of aortic wall strain. Oishi et al. [2008] computed global circumferential strain as the mean 

of six segmental strain values in order to determine the stiffness index 𝛽ଵ according to eq. 6-7. Since 

then, various groups have used 2D-STE is order two measure global and local circumferential strain of 

different segments along the aortic tree in different patient groups and were able to successfully identify 

correlations between aortic stiffness and various cardiovascular diseases [cf. Teixeira et al. 2015].  

In abdominal aortic aneurysm (AAA) management ultrasound to date has two main clinical appli-

cations: Firstly, detection of the disease and rupture risk estimation by means of the two-point measure-

ment of the maximum aortic diameter [cf. chapter 1.1]. Secondly, surveillance of the increase of diam-

eter of small AAAs until the criterion for repair is reached [Iwakoshi et al. 2019]. In part, 3D ultrasound 

is used to reduce the uncertainty of maximum diameter measurement, the result of which depends on 

the angle between the imaging plane and the AAA centerline when 2D ultrasound is used. Ultrasound 

Doppler imaging can be used to detect blood flow between endografts, i.e. prostheses that should take 

the blood pressure instead of the diseased wall, and the wall. These so-called ‘endo-leaks’ are a common 

complication after endovascular repair of AAAs [cf. chapter 1.1]. 

Kok et al. [2015], Disseldorp et al. [2016b], Disseldorp et al. [2016a] and Disseldorp et al. [2019a] 

have reconstructed static configurations of the AAA wall from 3D ultrasound measurements and have 

used these in Finite Element wall stress analyses. Disseldorp et al. [2016a] and Disseldorp et al. [2019b] 

have used temporally resolved 3D ultrasound measurements of the AAA shape combined with pressure 

measurements in order to identify in vivo linear elastic moduli describing the homogeneous elastic be-

havior of the AAA wall. 

The non-invasive in vivo method for full field measurement of the individual in-plane wall strains 

with high spatial and temporal resolution that was developed within this thesis (cf. chapter 3) allows for 

the investigation of the dynamic and locally varying pulsatile deformation of arterial walls. In this chap-

ter, firstly, a new measure for the characterization of the individual aortic wall’s local elastic behavior 

in the physiological loading range is introduced (chapter 6.2): The highly resolved local deformation 
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measurements (cf. chapter 3.3.4) were normalized with regard to pulse pressure ∆𝑝 to make sure that 

the observed differences between subjects are not only effects of varying loading by pulse pressure. 

Arterial deformation normalized by pulse pressure is known as distensibility coefficient [𝐷𝐶, cf. eq. 

6-3]. As mentioned above, it is commonly regarded as linear approximation of the aortic wall’s elastic 

behavior in the physiological loading regime and to be proportional to the inverse of the YOUNG’s mod-

ulus. Despite its implicit dependency on geometrical information [see chapter 6.5 for detailed discussion 

of this aspect], it is a favorable in vivo measure for the aortic wall’s elastic behavior because it is deter-

mined strictly non-invasively from dynamic in vivo imaging like ultrasound or magnetic resonance im-

aging and blood pressure measurement. No population-averaged assumptions have to be made concern-

ing mechanically relevant information that cannot be measured in vivo like wall thickness, intra-ab-

dominal pressure, or the impact of surrounding tissue and neighboring organs.  

Aortic distensibility has been suggested as a predictor for aortic aneurysm rupture risk [Wilson et 

al. 2003; Hoegh and Lindholt 2009] and has been shown to correlate with an in vitro stretch based failure 

criterion in ascending thoracic aortic aneurysms [Trabelsi et al. 2017]. Based on highly resolved full 

field strain imaging, a novel definition of the local distensibility of a surface area of the aortic wall was 

developed in this thesis [Wittek et al. 2018] and is presented in this chapter.  

Secondly, new biomarkers for pathophysiological changes of the aortic wall are presented in this 

chapter [cf. section6.3] that can be derived from statistical analysis of the distributions of local wall 

strain [Karatolios, Wittek et al. 2013; Derwich et al. 2016; Wittek et al. 2017a; Wittek et al. 2018] and 

of local distensibility [Wittek et al. 2018]. These biomarkers aim at quantifying changes of the global 

and local stiffness and of the variability or heterogeneity of the wall’s local elastic properties. It has been 

described in detail in chapter 1.7.2 that the development of an AAA is accompanied by degenerative 

changes in the microstructural composition of the wall and that these changes are closely related with, 

and eventually lead to mechanical failure of the wall under cyclic loading by pulse pressure. These 

degenerative processes are highly localized and result in local variations of wall thickness, elastic prop-

erties and wall strength [Thubrikar et al. 2001; Raghavan et al. 2006]. It is hypothesized in this thesis 

that “lumped” macroscopic effects of microstructural changes in the aortic and aneurysmal wall can be 

assessed and quantified by the suggested biomarkers and that these macroscopic effects are indicative 

for relevant pathophysiological changes in the wall. In order to evaluate the suitability of the developed 

methods to assess pathological changes of the individual aortic and aneurysmal wall, in a clinical study 

the proposed biomarkers were determined for and compared between groups of healthy subjects, AAA 

patients and age-matched patients without an AAA. The relation of the distensibility distribution indices 

(DDI) to parameters which are known (age) or supposed (maximum AAA diameter) to be related with 

(patho-) physiological changes of the aortic wall was evaluated within each group [cf. chapter 6.4].
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6.2 The local distensibility coefficient 

Approximating the artery as a thin walled cylinder, the distensibility coefficient according to eq. 6-4 

commonly is formulated in terms of aortic diameter: 

 

𝐷𝐶 ൌ
∆𝐴
𝐴௢∆𝑝

ൌ
𝑑ଶ െ 𝑑଴

ଶ

𝑑଴
ଶ∆𝑝

, eq. 6-8 

where 

𝐴଴, 𝑑଴ are the diastolic or minimum reference cross-sectional area and diameter of the 

arterial lumen, respectively, 

∆𝐴 is the cyclic change of the cross-sectional area, 

𝑑  is the current luminal diameter and 

∆𝑝 is the pulse pressure. 

Using the relation  

 

𝜆ଶ ൌ
𝑑
𝑑଴

ൌ 𝜀ଶଶ ൅ 1, eq. 6-9 

where 𝜆ଶ is the circumferential component of the left stretch tensor 𝑽, the distensibility coefficient can 

be expressed in terms of the circumferential component 𝜀ଶଶ of the BIOT’s in-plane strain tensor [cf. 

chapter 2.1, eq. 2-23]: 

 

𝐷𝐶 ൌ
ሺ𝜀ଶଶ ൅ 1ሻଶ െ 1

∆𝑝
 . eq. 6-10 

This expression of the 𝐷𝐶 is bound to the underlying assumptions in the following points: 

(i) Thin walled structure: 𝜀ଶଶ is assumed to be constant over the wall thickness. 

(ii) Geometrically regular cylindrical shape: If just one cross-sectional diameter and its change is as-

sumed to perfectly describe the geometry of an aortic cross-section or axial section and its cyclic 

change, the same circumferential strain is obtained for each material point X on the aortic wall and: 

𝜀ଶଶሺ𝑑,𝑑଴ሻ ൌ  𝑐𝑜𝑛𝑠𝑡.  

If, in contrast, circumferential strain is computed from the motion 𝒙௜,௝ of a field of discrete material 

points X௜,௝, that was gathered by customized 4D ultrasound measurement [cf. section 3.3.2, eq. 3-6], a 

field of local strain values 𝜀ଶଶ൫𝑒௜,௝ ,∆𝑡൯ ്  𝑐𝑜𝑛𝑠𝑡. is obtained that describe the local cyclic deformation 
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of aortic wall surface areas 𝑒௜,௝ with sizes between 1 and 13 mm2 (cf. chapter 3.3.4, Figure 3-7 c). Using 

these local strain values, we define a local distensibility coefficient 

 

𝐷𝐶௟ ൌ 𝐷𝐶൫𝑒௜,௝൯ ∶ൌ
൫𝜀ଶଶ൫𝑒௜,௝ ,∆𝑡൯ ൅ 1൯

ଶ
െ 1

∆𝑝
 . eq. 6-11 

This local distensibility coefficient is no longer bound to the assumption of a regular cylindrical shape 

of the vessel. In contrast, the geometrically irregular shape of the aortic and, in particular, the aneurysmal 

wall, is approximated by discretization into planar 1st order membrane elements 𝑒௜,௝ and the exact cyclic 

strain and distensibility distributions are approximated by fields of segment wise constant local values. 

The assumption of a thin walled structure remains, since 4D ultrasound measurement currently does not 

allow to resolve radial differences of aortic wall motion. Therefore, the measured deformation of the 

wall was assumed to be constant over its thickness in the presented study. 

It is noteworthy that the reasonable degree of discretization and the accuracy of the approximation 

was limited by the spatial resolution of the measured discrete motion function 𝒙௜,௝ ൌ χ൫𝑿௜,௝ , 𝑡൯. The wall 

motion tracking algorithm generated a fixed number of discrete volumes in the ultrasound data to com-

pute displacements (1296 discrete sub volumes). Depending on the size of the segmented structure, the 

distance between the center points of these sub volumes, i.e. the discrete material points, varied and 

accordingly the density (or “resolution”) at which displacement information was available. Since the 

discrete material points were the basis for the mesh generation, the resulting element size depended on 

the size of the overall structure: the elements were largest in the case of AAAs [cf. chapter 6.4.1,  

Table 6-2].

6.3 Indices for the characterization of the spatial distribu-

tion of the local elastic behavior 

To characterize the spatial strain and distensibility distribution of the aortic or aneurysmal wall quanti-

tatively, statistical parameters were calculated for each in-plane component of the BIOT’s strain tensor 

and for local distensibility [Karatolios, Wittek et al. 2013; Derwich et al. 2016; Wittek et al. 2017a; 

Wittek et al. 2018]: 

(i) Mean (“Mean”) and local maximum (“Peak”)  strain/distensibility: The arithmetical mean and the 

local maximum of the strain/distensibility distribution. 

(ii) Local strain/distensibility ratio (“LSR”/”LDR”): The ratio of local maximum and mean strain/dis-

tensibility. 
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(iii) Heterogeneity index (“HI”) : The coefficient of variation, i.e. the ratio of the standard deviation and 

the mean of the strain/distensibility distribution. 

Local strain/distensibility ratio and the heterogeneity index are similar measures that are indicative 

for the degree of local variation of the elastic behavior within the examined aortic segment. The two 

indices differ in the weighting of the influence of a single peak value on the characterization of the 

heterogeneity of the overall elastic properties. 

6.4 Distributions of local elasticity in young, aged  

and aneurysmal aortic walls 

6.4.1 Study group and data acquisition 

For this study, 4D ultrasound and blood pressure data of 61 patients and volunteers presented at the 

Clinics for Vascular and Endovascular Surgery of the University Hospital Frankfurt am Main were eval-

uated. The study was approved by the local ethics committee. Patient data were divided into three 

groups: “young” volunteers < 40 y.o. without known cardiovascular risk factors (n = 19), “elderly” 

patients > 60 y.o. without AAA (n = 20) and AAA patients > 56 y.o. (n = 22). An abdominal aortic 

segment was defined as aneurysm when its maximum diameter exceeded 30 mm. Patient data are given 

in Table 6-1. In case of the young volunteers and the elderly patients, a mean diameter of the aortic 

segment was determined according to chapter 3.3.3. In case of aneurysms, the determination of an av-

erage diameter was not reasonable. Therefore, and because of its clinical relevance, the maximum local 

diameter that had been taken for diagnostic purposes based on 2D ultrasound imaging data, is given for 

the aneurysm group. 

The elderly and the AAA groups were age matched. Elderly and AAA patients showed multimor-

bidity. Patients of both groups suffered from arterial hypertonia (> 60 y.o.: n = 14, AAA: n = 18), hy-

perlipidemia (> 60 y.o.: n = 9, AAA: n = 8), peripheral occlusive disease (> 60 y.o.: n = 9, AAA: n = 4), 

stroke (> 60 y.o.: n = 3, AAA: n = 2) and coronary heart disease (> 60 y.o.: n = 7, AAA: n = 8). Preva-

lence of none of the aforementioned diseases was significantly different between both groups (Chi-

square test for Independence, p > 0.05). All AAA except for two contained considerable intraluminal 

thrombus (ILT). In most cases, the complete wall was covered by ILT. 
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Table 6-1 Patient data are given as median ሾmin. , Qଵ, Qଷ, max. ሿ, where Qଵ and Qଷ are the first and third quartile, 
respectively. Mean of diastolic and systolic pressure is given. Pulse pressure was obtained as difference of the 
maximum and minimum blood pressure observed throughout the cardiac cycle. For the groups of volunteers 
< 40 y. of age and > 60 y. of age the average diameter along the length of the imaged aortic segment is given, 
whereas for the group of AAA patients, the maximum diameter is given as was measured clinically. [Reprinted 
from Wittek et al. 2018 with permission from John Wiley and Sons] 
 

< 40 y.o. > 60 y.o. AAA 

n 19 20 22 

Age in y. 27.4 [18.0, 26.6, 29.2, 37.7] 70.4 [60.8, 64.3, 74.0, 85.8] 71.4 [56.4, 64.8, 75.8, 82.6] 

Mean pressure 
in mmHg 

100 [83, 97, 100, 123] 105 [80, 100, 110, 125] 110 [80, 101, 130, 140] 

Pulse pressure 
in mmHg 

45 [40, 40, 60, 65] 60 [35, 52, 70, 90] 60 [30, 50, 70, 97] 

Diameter in mm 13.5 [10.6, 12.5, 14.1, 18.6] 17.2 [13.9, 19.3] 49.2 [36.4, 43.7, 54.3, 69.5] 

4D ultrasound examination of volunteers and patients and blood pressure measurement were carried 

out according to chapter 3.2.1. The length of the imaged aortic and aneurysmal segments and temporal 

resolution of ultrasound measurements are given in Table 6-2. Clinical post-processing of the data sets 

was done offline using the Toshiba Advanced Cardiac Package (ACP, Toshiba Medical Systems, Ota-

wara, Japan) as described in detail in section 3.2.2. The discrete motion function [cf. chapter 3.3.2] of 

the aortic and aneurysmal wall was exported using the customized interface [cf. chapter 3.3.1] and highly 

resolved in-plane strain tensor fields were computed applying the methods described in chapter 3.3.4. 

Table 6-2 4D ultrasound imaging parameters. [Reprinted from Wittek et al. 2018 with permission from John Wiley 
and Sons] 

 < 40 y.o. > 60 y.o. AAA 

Segment length in mm 26.2 [25.5, 30.4] 40.0 [32.8, 44.9] 65.5 [57.1, 73.3] 

frame rate in Hz 23.1 [20.1, 32.2] 20.0 [20.0, 23.6] 24.1 [23.5, 31.5] 

Av. element size in mm2 1.4 [1.2, 1.6] 2.9 [1.8, 3.2] 9.5 [8.5, 13.2] 

6.4.2 Statistics 

Statistical analysis of group differences was performed with WOLFRAM Mathematica 10.3 (Wolfram 

Research, Champaign, IL, USA). All strain and distensibility distribution indices are continuous param-

eters. Using the function ‘LocationTest’, parameter sets of the different patient groups were tested for 

normality first. If both groups of parameters were normally distributed, an unpaired two-tailed t test (t) 

was performed. Else, a MANN-WHITNEY U test (U) was performed. Hypothesis tests on two data sets 

were performed with null hypothesis that the means or medians of the two data sets are equal. Since 
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three patient groups were compared, significance levels were determined observing the Bonferroni cor-

rection for multiple testing. Therefore, significance at the 0.05 and 0.01 levels corresponds to p-values 

smaller than 0.0167 and 0.0033, respectively. As not all parameters were distributed normally, parame-

ter values are given as median ሾQଵ, Qଷሿ, where Qଵ and Qଷ are the first and third quartile, respectively. 

An observation 𝑥 was considered to be an outlier of a distribution, if its distance from the interval 

ሾQଵ, Qଷሿ was larger than 1.5 ൈ IQR, where IQR is the interquartile range. For the determination of the 

dependency of the distensibility distribution indices on age and pulse pressure, a PEARSON correlation 

was applied if both groups were normally distributed, else a SPEARMAN’s rank correlation coefficient 

(SPEARMAN’s 𝜌) was used. 

 

Figure 6-1 Strain amplitude maps of a young volunteer of 23 years (a. b, c), an elderly patient, 74 years of age (d, 
e, f) and a 74 y.o. AAA patient (g, h, i). NE11 means longitudinal strain, NE22 circumferential strain and NE12 
in-plane shear. The horizontal axis (“10 Degree”) of the diagrams correspond to the circumference of the vessel 
and the vertical axis (“Height”) to the vessel’s longitudinal axis. A “Height” on average corresponds to a distance 
of 1.1 mm, 1.5 mm and 2.9 mm in the young volunteer, the elderly patient and the AAA patient, respectively. 
[Reprinted from Wittek et al. 2017a with permission from SPIE]
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6.4.3 Comparison of strain distribution indices 

Figure 6-1 exemplarily shows the fields of longitudinal, circumferential and in-plane shear peak-to-peak 

strain amplitudes that were obtained from single measurements of the aortic wall motion of a young 

volunteer of 23 years, an elderly patient, 74 years of age and a 74 y.o. AAA patient. For all included 

patients and volunteers, the strain distribution indices for all components of the in-plane strain tensor 

(longitudinal, circumferential, in-plane shear) and for area strain [cf. chapter 3.3.4, eq. 3-21] are given 

in Table 6-3, Table 6-4, Table 6-5 and Table 6-6. 

Table 6-3 Mean strain in %. Results are given as medianሾQଵ, Qଷሿ, where Qଵ and Qଷ are the first and third quartile, 
respectively. t refers to an unpaired two-tailed t test, U indicates that a MANN-WHITHNEY U test was performed. * 
and ** indicate that differences were significant at the 0.05 and 0.01 level, respectively, observing the Bonferroni 
correction for multiple testing. 

 < 40 y.o. > 60 y.o. AAA 
< 40 y.o. vs. 

> 60 y.o. 

< 40 y.o. vs. 

AAA 

> 60 y.o. vs. 

AAA 

Longitudinal 1.5 [0.7, 2.1] 1.4 [1.0, 1.8] 0.7 [0.6, 1.1] t, − t, * t, ** 

Circumferential 10.2 [6.5, 12.8] 1.9 [1.2, 2.7] 0.9 [0.5, 1.2] t, ** U, ** U, ** 

In-plane shear 0.6 [0.4, 1.0] 0.7 [0.4, 1.1] 0.5 [0.4, 0.8] U, − U, - t, - 

Area 9.5 [6.5, 13.8] 2.5 [1.6, 3.2] 1.5 [1.0, 1.7]  t, ** U, ** U, * 

6.4.3.1 Mean strains 

A comparison of the mean strains that were observed in the three patient groups is given in Table 6-3. 

In the young group, mean aortic deformation was characterized by an almost uniaxial deformation state, 

mean circumferential strain (10.2%) being almost seven times larger than mean longitudinal strain 

(1.5%) and more than ten times larger than in-plane shear (0.6%). In contrast, in the elderly and the 

AAA group the in-plane strain state was characterized by mean longitudinal and circumferential strain 

of the same order of magnitude, circumferential strain being slightly larger and in-plane shear of ap-

proximately half the size of normal strain components. This levelling of in-plane strain components in 

the elderly and the AAA groups was due to significant reduction of mean circumferential strain to one 

fifth in the elderly (t test, p < 0.0033) and even to less than one tenth in the AAA group (Mann-Whitney 

U test, p < 0.0033), compared to the young group.  In contrast, mean longitudinal strain was not signif-

icantly reduced in the elderly compared to the young group and in the AAA group a reduction to 50% 

was observed, only. Consequently, the differences in the multiaxial deformation metrics area strain was 

governed by the changes in circumferential strain. 

In the young group, the local circumferential strain values showed a strong correlation with the local 

maximum principal in-plane strain values (Spearman’s ρ = 0.77 [0.66, 0.85]) and local longitudinal 

strain correlated strongly with the local minimum principal in-plane strain (Spearman’s 
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ρ  = 0.64 [0.61, 0.70]. Neither the elderly, nor the AAA group exhibited this strong correlation between 

longitudinal/circumferential and in-plane principal strains [Figure 6-2]. 

Figure 6-2 SPEARMAN’s ρ between longitudinal strain distributions and minimum in-plane principal strain distri-
butions (a) and between circumferential strain distributions and maximum in-plane principal strain distribution (b) 
shown for the young (< 40 y.o.), the elderly (> 60 y.o.) and the AAA group. 

Table 6-4 Local maximum strain in %. Results are given as medianሾ𝑄ଵ,𝑄ଷሿ, where 𝑄ଵ and 𝑄ଷ are the first and 
third quartile, respectively. t refers to an unpaired two-tailed t test (t), U indicates that a MANN-WHITHNEY U test 
was performed. * and ** indicate that differences are significant at the 0.05 and 0.01 level, respectively, observing 
the Bonferroni correction for multiple testing. ‘o’ indicates a tendency towards significance, i.e. 0.5 ൒ 𝑝 ൒
0.0167. 

< 40 y.o. > 60 y.o. AAA 
< 40 y.o. vs. 

> 60 y.o.

< 40 y.o. vs. 

AAA 

> 60 y.o. vs.

AAA

Longitudinal 10.9 [8.1, 13.8] 9.4 [7.7, 13.8] 5.6 [4.4, 9.9] t, − U, ** U, ** 

Circumferential 19.3 [15.8, 25.2] 9.9 [7.6, 11.7] 7.9 [6.2, 10.0] t, ** U, ** U, − 

In-plane shear 10.3 [6.6, 13.9] 10.6 [8.5, 13.1] 7.8 [5.7, 11.2] t, − t, − t, o

Area 27.4 [22.0, 36.1] 14.4 [11.2, 18.0] 10.9 [8.6, 18.4]  t, ** U, ** U, - 

6.4.3.2 Local maximum strain 

The differences in local peak strains were less pronounced than the ones observed for mean strains 

[Table 6-4]. This applies to differences between strain components within each group as well as to dif-

ferences between groups. In the young group, the largest local peak values were observed for circum-

ferential strain, as well. But circumferential strain exceeded peak longitudinal strain or in-plane shear 

by factor two, only. The levelling of the size of in-plane strain components in the elderly and the AAA 

group as result of the significant reduction of circumferential strain was observed for local peak strain, 

too. However, none of the strain components, not even the multiaxial area strain, exhibited significant 

differences between all patient groups.  
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6.4.3.3 Local strain ratio 

Table 6-5 shows the comparison of the local strain ratio between the three patient groups. A significant 

increase in circumferential local strain ratio was observed from the young (2.0 [1.8, 2.5]) through the 

elderly (4.3 [3.1, 6.1]) to the AAA group (6.8 [5.7, 14.5]). With regard to local longitudinal strain ratio 

and local in-plane shear ratio, no significant differences were found between patient groups. Area strain 

ratio showed a highly significant increase in the elderly and the AAA group, compared to the young 

group, but was not able to significantly differentiate between the elderly and the AAA group. In the 

young group, local strain ratio was smallest for circumferential strain, compared to longitudinal strain 

and in-plane shear. As already observed for mean and local maximum strain, the differences in the size 

of values obtained for the different in-plane strain components were levelled in the elderly and the AAA 

group. Local strain ratio assumed the by far largest values for in-plane shear in all groups. 

Table 6-5 Local strain ratio. Results are given as median ሾQଵ, Qଷሿ, where Qଵ and Qଷare the first and third quartile, 
respectively. t refers to an unpaired two-tailed t test (t), U indicates that a MANN-WHITHNEY U test was performed. 
* and ** indicate that differences are significant at the 0.05 and 0.01 level, respectively, observing the Bonferroni
correction for multiple testing. ‘o’ indicates a tendency towards significance, i.e. 0.5 ൒ 𝑝 ൒ 0.0167.

< 40 y.o. > 60 y.o. AAA 
< 40 y.o. vs. 

> 60 y.o.

< 40 y.o. vs. 

AAA 

> 60 y.o. vs.

AAA

Longitudinal 7.0 [6.2, 9.2] 7.5 [5.5, 10.6] 7.33 [6.0, 11.7] U, − U, − U, − 

Circumferential 2.0 [1.9, 2.6] 5.17 [3.4, 6.8] 9.8 [5.9, 14.9] U, ** t, ** U, ** 

In-plane shear 13.3 [8.2, 23.4] 15.6 [10.3, 19.6] 14.95 [11.8, 20.6] t, − t, − t, − 

Area 3.0 [2.5, 3.8] 5.1 [4.3, 8.7] 8.1 [5.9, 11.2] U, ** t, ** U, - 

6.4.3.4 Heterogeneity index 

Qualitatively, the results obtained for the heterogeneity index show a similar picture as the local strain 

ratio [Table 6-6]: For the distributions of circumferential strains, highly significant differences at the 

0.001 level were found between the young and the elderly and the young and the AAA groups and 

significant differences at the 0.05 level were observed between the elderly and the AAA group. Values 

of the circumferential heterogeneity index increased from the young through the elderly to the AAA 

group. In contrast, no significant differences in the heterogeneity of longitudinal strain and in-plane 

shear distributions were observed between different groups and the heterogeneity of area strain distri-

butions characteristically separated the young group from both age matched patient groups but was not 

significantly different between the elderly and the AAA group. In the young and the elderly group, 

circumferential strain exhibited lower heterogeneity indices compared to longitudinal strain and in-plane 
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shear whereas the distribution of the longitudinal strain component was least heterogeneous in the AAA 

group. In all groups, the largest heterogeneity was observed for in-plane shear.  

Table 6-6 Heterogeneity index. Results are given as medianሾ𝑄ଵ,𝑄ଷሿ, where 𝑄ଵ and 𝑄ଷ are the first and third quar-
tile, respectively. t refers to an unpaired two-tailed t test (t), U indicates that a MANN-WHITHNEY U test was per-
formed. * and ** indicate that differences are significant at the 0.05 and 0.01 level, respectively, observing the 
Bonferroni correction for multiple testing. ‘o’ indicates a tendency towards significance, i.e. 0.5 ൒ 𝑝 ൒ 0.0167. 

  < 40 y.o. > 60 y.o. AAA < 40 y.o. vs. 
> 60 y.o. 

< 40 y.o. vs. 
AAA 

> 60 y.o. vs. 
AAA 

longitudinal 2.3 [1.2, 2.7] 2.1 [1.5, 3.1] 2.2 [1.5, 3.3] U, − U, − t, − 

circumferential 0.4 [0.3, 0.5] 1.6 [0.9, 2.1] 2.6 [1.5, 3.6] U, ** U, ** t, * 

in-plane shear 4.2 [2.9, 6.3] 5.3 [3.3, 6.5] 4.7 [3.3, 6.3] U, − U, − t, − 
area 0.6 [0.5, 0.9] 1.5 [1.2, 2.6] 2.0 [1.7, 3.2] U, ** U, ** U, - 

Significant and highly significant differences between all different patient groups were found for all 

circumferential strain distribution indices, except for the differences in local maximum strain between 

the elderly and the AAA group. Decreasing mean circumferential deformation and increasing heteroge-

neity of the spatial distribution of local circumterential deformations were observed from the young 

through the elderly to the AAA group. In contrast, only few indices that describe the spatial distribution 

of other in-plane strain components showed significant differences between groups and were not able 

to distinguish the wall motion of all groups. 

6.4.4 Comparison of distensibility distribution indices between patient 
groups 

The results for the comparison of the distensibility distribution indices between the three patient groups 

are shown in Figure 6-3. Mean distensibility was significantly different in all patient groups, with values 

decreasing from the young (3.83 [2.83, 5.87]  10ିଷmmHgିଵ ) to the elderly 

(0.67 [0.39, 0.87] 10ିଷmmHgିଵ) and AAA group (0.27 [0.20, 0.54] 10ିଷmmHgିଵ). In contrast, sig-

nificant differences in the maximum local distensibility values were observed between the young 

(9.08 [7.79, 12.03] 10ିଷmmHgିଵ) and both aged groups (elderly: 3.41 [2.29, 4.78] 10ିଷmmHgିଵ, 

AAA: 2.59 [2.20, 3.68] 10ିଷmmHgିଵ), only, but not between the elderly patients without AAA and 

the AAA group. It is of note that in one of the AAA patients the maximum local distensibility 

(12.93 10ିଷmmHgିଵ) was in the range of the fourth quartile of values observed in the young group 

[Figure 6-3 b]. Local distensibility ratio was significantly increasing from the young (2.14 [1.99, 2.67]) 

through the elderly (5.27 [3.35, 6.86]) to the AAA group (9.83 [5.96, 14.80]). The second index pro-
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posed for the characterization of heterogeneous elastic behavior (heterogeneity index) showed a com-

parably significant increase from the young (0.42 [0.34, 0.48]) through the elderly (1.57 [0.92, 2.00]) to 

the AAA group (2.53 [1.53, 3.53]). 

 

Figure 6-3 Comparison of local distensibility indices between groups. a) Mean of the local distensibility distribu-
tion, b) maximum of the distensibility distribution, c) ratio of maximum and mean distensibility, d) coefficient of 
variation of the distensibility distribution. Boxes show the median and range of 𝑄ଵ to 𝑄ଷ, whiskers extend to min-
imum and maximum values, respectively (outliers are indicated by filled circles). */** denote statistically signifi-
cant differences (* p<0.0167, ** p<0.0033). [Reprinted from Wittek et al. 2018 with permission from John Wiley 
and Sons] 

 

Figure 6-4: Mean distensibility vs. age for all volunteers and patients that were included in the study. [Reprinted 
from Wittek et al. 2018 with permission from John Wiley and Sons] 
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6.4.5 Correlation of distensibility distribution indices with age and 
diameter 

The mean distensibility and the local distensibility ratio values of all volunteers and patients versus age 

are given in Figure 6-4 and Figure 6-5, respectively. Figure 6-4 suggests a non-linear relation between 

the mean distensibility and age. Figure 6-5 might suggest an almost linear increase of local distensibility 

ratio in the young and old group if three outliers were excluded from the latter, whereas the AAA group 

is distinctive in its wide dispersion. However, differences between subjects in different groups were not 

only due to age, but also due to pathology (cf. section 6.4.1). The data available for the non-aneurysmal 

patients was not sufficient to reliably fit a model for the age dependency of mean distensibility or local 

distensibility ratio. 

 

Figure 6-5: Local distensibility ratio vs. age for all volunteers and patients that were included in the study. [Re-
printed from Wittek et al. 2018 with permission from John Wiley and Sons] 

Within each group, the dependency of the distensibility indices on age and on the diameter was 

tested by correlation analysis, assuming a linear model. The results are given for age and diameter in 

Table 6-7 and Table 6-8, respectively. In the young group, mean distensibility showed a negative cor-

relation with age, whereas local distensibility ratio increased significantly with age. In the elderly and 

AAA group, the dependency of mean distensibility on age was lost, while the correlation of local ratio 

and heterogeneity index with age was present in the elderly group as well, but not in the AAA group.  

In the young group, the mean and maximum local distensibility showed a significant negative cor-

relation with increasing average diameter, whereas both indices for the heterogeneity of the aortic wall’s 

elastic behavior, local distensibility ratio and the heterogeneity index, showed highly significant positive 

correlations with the diameter. In contrast, in the elderly group and the AAA group, no statistically 

significant relation between distensibility distribution indices and diameter was observed at all [Table 

6-8]. 
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Table 6-7: Dependency of the distensibility distributions on age in the young, the elderly and the AAA group, 
respectively. -, * and ** indicate the absence of a statistically significant correlation, a statistically significant and 
a highly significant correlation, respectively. [Reprinted from Wittek et al. 2018 with permission from John Wiley 
and Sons] 

 Test Test statistic p  

< 40 y.o.     

Mean Spearman Rank −0.52 < 0.05 * 

Maximum Spearman Rank −0.13 > 0.05 - 

Local ratio Spearman Rank 0.62 < 0.01 ** 

Heterogeneity Spearman Rank 0.37 > 0.05 - 

> 60 y.o.     

Mean Pearson −0.38 > 0.05 - 

Maximum Pearson −0.12 > 0.05 - 

Local ratio Spearman Rank 0.45 < 0.05 * 

Heterogeneity Spearman Rank 0.47 < 0.05 * 

AAA     

Mean Spearman Rank −0.21 > 0.05 - 

Maximum Spearman Rank −0.16 > 0.05 - 

Local ratio Pearson −0.01 > 0.05 - 

Heterogeneity Pearson 0.09 > 0.05 - 
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Table 6-8: Dependency of the distensibility distributions on the diameter in the young, the elderly and the AAA 
group, respectively. In the young and the elderly group, the average vessel diameter was used. In contrast, in the 
AAA group the maximum diameter was used that was measured clinically. -, * and ** indicate the absence of a 
statistically significant correlation, a statistically significant and a highly significant correlation, respectively. [Re-
printed from Wittek et al. 2018 with permission from John Wiley and Sons] 

 Test Test statistic p  

< 40 y.o.     

Mean Spearman Rank −0.68 < 0.01 ** 

Maximum Spearman Rank −0.54 < 0.05 * 

Local ratio Spearman Rank 0.65 < 0.01 ** 

Heterogeneity Spearman Rank 0.64 < 0.01 ** 

> 60 y.o.     

Mean Pearson −0.28 > 0.05 - 

Maximum Pearson −0.10 > 0.05 - 

Local ratio Spearman Rank 0.29 > 0.05 - 

Heterogeneity Spearman Rank 0.28 > 0.05 - 

AAA     

Mean Spearman Rank −0.25 > 0.05 - 

Maximum Spearman Rank −0.32 > 0.05 - 

Local ratio Pearson 0.15 > 0.05 - 

Heterogeneity Pearson 0.03 > 0.05 - 

6.4.6 Correlation of strain and distensibility distribution indices  

All circumferential strain and corresponding distensibility distribution indices showed highly significant 

correlation within each group as well as in the total patient collective (SPEARMAN’s rank correlation, 

p < 0.01). However, if the relative deviation of the actual mean and local maximum distensibility from 

the estimate of the linear regression model is considered [Figure 6-6], large deviations are not observed 

in the young group, but in aged patients and, in particular, in AAA patients. Eight patients were identi-

fied as outliers of the distribution of relative deviations from mean distensibility predictions. Two of 
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these were from the elderly group and six were AAA patients. Six outliers were observed in the distri-

bution of deviations from estimated local maximum (peak) distensibility, among them two elderly and 

four AAA patients. 

 

Figure 6-6 : Distribution of relative deviations of mean and peak distensibility from linear model predictions that 
are based on mean and peak circ. strain, respectively. Distributions are given for all volunteers and patients that 
were included in the study. Number of outliers shown seems to be lower than mentioned in the text because some 
values are so similar that they appear to be identical in the chart. [Reprinted from Wittek et al. 2018 with permission 
from John Wiley and Sons]

6.5 Discussion and limitations 

In this chapter, a local formulation of the distensibility coefficient 𝐷𝐶௟ was introduced [eq. 6-11]. This 

new formulation of a local 𝐷𝐶௟ in combination with full field strain measurements by 4D ultrasound 

allows to estimate and analyze the individual, locally varying and heterogeneous cyclic elastic behavior 

of the geometrically irregular aortic and aneurysmal wall, strictly based on data that are available non-

invasively in vivo and without the need for any modeling assumptions. In addition, the temporally and 

spatially resolved deformation of aortic segments and aneurysms was evaluated. In contrast to the anal-

ysis of strain distributions obtained by 4D ultrasound, as presented in chapter 6.4.3, the inclusion of  

information on the acting loads, to calculate the spatially resolved distensibility, allowed to rule out that 

observed differences might be caused by different pulse pressures, only. The comparison of the com-

puted distensibility distributions to corresponding strain distributions showed that the correlation be-

tween distensibility and strain-based indices was highly significant, but large deviations between these 

indices were observed, in particular, in AAA patients [cf. 6.4.6, Figure 6-6]. 

Though all components of the in-plane strain tensor were available from 4D ultrasound imaging, 

only circumferential distensibility was calculated in this study, for two reasons: The analysis of the mean 

and local maximum values of all components of the BIOT’s in-plane strain tensor showed that circum-

ferential deformation governed abdominal aortic deformation, in particular, in the young group. This 
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effect was weakened in the elderly and the AAA group. Even more important was the finding that cir-

cumferential strain distribution indices provided the most powerful distinction between the three patient 

groups [Table 6-3, Table 6-4, Table 6-5 and Table 6-6]. 

The comparative study of young and two groups of age-matched elderly and diseased cardiovascular 

patients with and without aneurysms, that is presented here, proofed that the heterogeneous distributions 

of local distensibility can be used to classify the pathophysiological state of the aortic wall from non-

invasive measurements. The rationale behind this approach are the known changes in microstructural 

composition of the aortic wall with age [cf. chapter 1.7.1] and with progression of AAA development 

[cf. chapter 1.7.2]: degradation of elastic components results in reduced distensibility of the wall [Nich-

ols et al. 2011]. Though atherosclerotic plaque is not an effect of aging itself, it is ubiquitous in adults 

in western societies starting from early adulthood [Nichols et al. 2011] and will result in increasing 

heterogeneity of cyclic elastic behavior of the wall. As to the progression of AAA development, in 

particular, Lindeman et al. [2010] have investigated the reorganization of the collagen: Despite the fact 

that collagen concentration and cross-linking are even increased in AAA, collagen does not behave as a 

network any more. The tissue loses its ability to evenly distribute mechanical forces that are loaded on 

individual fibers resulting in local stress concentration and, potentially, overload. High variability in 

wall thickness was observed [Thubrikar et al. 2001; Raghavan et al. 2006]. Further factors that contrib-

ute to the local variability or heterogeneity of the AAA wall’s elastic behavior are local vulnerabilities 

due to cystic degeneration of the media and calcifications at different length scales [Niestrawska et al. 

2016; Niestrawska et al. 2019]. These changes at microscopic length scales are known to result in weak-

ening of wall strength and increasing rupture risk but cannot be measured non-invasively in vivo. On 

the macroscopic level, they will result in a decrease of the mean distensibility and a local variation of 

wall distensibility, resulting in an increased heterogeneity of the distensibility field. We hypothesize that 

“lumped” macroscopic effects of microstructural changes in the aneurysmal wall can be assessed and 

quantified by the proposed distensibility distribution indices. 

The mean of the distribution of local 𝐷𝐶௟ values as defined in eq. 6-11 corresponds to the common 

definition of arterial distensibility by relative change in cross-sectional area related to pulse pressure 

[see as well Oishi et al. 2008]. In the present study, mean distensibility was reduced with age and in 

AAA patients [Figure 6-3]. Age-related arterial stiffening has been reported in elastic arteries [O'Rourke 

1990; O'Rourke 2007] and Nichols et al. [2011] emphasized that aging ‘changes do not simply develop 

in the elderly but are progressive throughout life and are well developed by early adulthood’. This was 

confirmed in this study by the negative correlation of mean distensibility with age in the young group. 

According to Redheuil et al. [2010], the effect is decreasing with age, which was supported in the current 

study by the loss of correlation in the elderly group [Table 6-7]. The heterogeneity of the distensibility 

distribution increased with age and AAA development [Figure 6-3 c and d, Figure 6-5]. A positive 

correlation between the indices characterizing the heterogeneity of the elastic behavior (local ratio and 

heterogeneity index) and age was found in the young and elderly group but was not present in the AAA 
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group. These findings might suggest that the further reduction of mean distensibility and increase of 

local ratio and heterogeneity index from the age-matched elderly to the AAA group (Figure 6-3) was 

connected to the specific pathological changes of aneurysms. 

Since the maximum diameter criterion is the current gold standard for clinical AAA rupture risk 

assessment [Debus et al. 2018; Wanhainen et al. 2019], the relation between the distensibility distribu-

tion indices and the aortic or aneurysmal diameter in each patient group was evaluated. Negative corre-

lations of mean and local maximum distensibility and diameter in the young group between 20 and 40 

years of age indicated aortic stiffening with increase of diameter. These findings are in accordance with 

Nichols et al. [2011] and citations therein, who state that ‘elastic arteries progressively stiffen as well as 

dilate’ with age. The observed highly significant positive correlation of the indices for heterogeneity of 

mechanical properties with increasing diameter in this group is in accordance with known adverse struc-

tural changes such as age-related arteriosclerosis and developing atherosclerosis, which is not age-re-

lated in itself but ubiquitous in adults in western societies [cf. chapter 1.7]. In contrast, no correlation 

between any of the distensibility distribution indices and diameter was observed in the elderly and, in 

particular noteworthy, in the AAA group. The author concludes, that the distensibility distribution indi-

ces provide independent in vivo information on the pathophysiological state of the AAA wall in addition 

to the maximum diameter criterion. The DDIs – and SDIs – are promising candidates as additional 

biomarkers for non-invasive in vivo evaluation of the mechanical state and stability of AAA walls. 

Niestrawska et al. [2019] suggested the use of the local strain ratio as presented in Wittek et al. [2018], 

one of the publications underlying this chapter, as in vivo equivalent of the ‘inflection point’ [cf. chapter 

1.7.2] for the classification of AAAs according to the stage of disease progression. 

This working hypothesis is encouraged by previous results of other groups that indicate that indi-

vidual wall strain and distensibility might be the more powerful predictor of AAA rupture risk, not only 

compared to the diameter criterion, but also compared to peak wall stress that was proposed as biome-

chanical predictor for increased AAA rupture risk [Fillinger et al. 2002; Fillinger et al. 2003; Vorp 2007; 

Humphrey and Holzapfel 2012; Martufi and Christian Gasser 2013; Disseldorp et al. 2019b]: Wilson et 

al. [2003] showed that changes in distensibility are indicative for immediate rupture risk, Romo et al. 

[2014] have shown in in vitro experiments that local maximum strain (and distensibility) is an early and 

more reliable predictor of rupture compared to wall stress. In this context, locally confined areas of 

exceptionally large strain and distensibility in a stiffened AAA wall might indicate sites of the AAA 

wall that are prone to rupture. Duprey et al. [2016] have demonstrated that the physiological modulus, 

i.e. the inverse of the distensibility, correlates with an in vitro stretch based failure criterion in ascending 

thoracic aortic aneurysms.  

Seen in the context of the aforementioned results by other groups, the results presented in this chap-

ter indicate that the in vivo assessment and analysis of individual heterogeneous strain and distensibility 

distributions is a promising approach to better monitoring and understanding of structural changes in 

the AAA wall with the progression of the disease and, eventually, might contribute to better evaluation 
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of individual wall strength or rupture risk. In order to test this hypothesis, however, further studies are 

necessary. The relation between strain and distensibility distribution (indices) and the individual wall 

strength or rupture risk of an AAA has to be determined. This is a challenging task since no independent 

and reliable in vivo rupture risk or wall strength criterion is available for validation of a new one. Re-

cently, Duprey et al. [2016] and, from the same group, Farzaneh et al. [2019] have proposed to determine 

individual strain- and stress-based rupture risk indices from mechanical failure tests on aortic aneurysm 

tissue samples that were excised intraoperatively. Combined with in vivo information on aneurysm ge-

ometry and blood pressure, these in vitro rupture risk indices can be used for validation of in vivo rupture 

risk predictors.  

Between 20 and 37 deformed configurations of the aortic wall during one pulse cycle were obtained 

for each patient in this study. In contrast, only minimum and maximum blood pressure could be meas-

ured non-invasively in vivo. If the locally varying elastic behavior is to be assessed, two load cases were 

available, only, that were defined by pairs of minimum and maximum local deformation and homoge-

neous blood pressure, respectively. These data allowed for the determination of a linear model, only. In 

relevant literature, distensibility is widely accepted as linear approximation of the elastic behavior of 

arteries in the physiological range [e.g. Fung 1997; Nichols et al. 2011; Caro 2012]. However, the aortic 

and aneurysmal wall is an anisotropic and non-linear elastic composite [cf. chapter 1.5 and citations 

therein] consisting of three concentric layers with characteristically distinct constitutive behavior [cf. 

chapter 1.4.2, Holzapfel 2009; Weisbecker et al. 2012]. In vivo, it cannot be observed in a load-free 

configuration, but is exposed to cyclically varying blood pressure (that can be measured) and axial pre-

stretch and -stress that cannot be measured. The load-free configuration of the excised aorta is not stress-

free, its stress-free state consists of open-sector segments [cf. chapter 1.6 and citations therein] and it 

has been shown in vitro that the opening angle that is used to quantify the residual bending load varies 

between the distinct layers of the aortic wall [Holzapfel et al. 2007; Holzapfel 2009]. Layer-specific 

[Holzapfel 2009] and locally varying non-linear and anisotropic constitutive properties of the aortic wall 

[Lu and Zhao 2009; Zhao et al. 2009; Bersi et al. 2016] have been identified based on in vitro experi-

ments on excised tissue samples. The author of this thesis has used heterogeneous strain fields obtained 

from 4D ultrasound imaging for in vivo parameterization of an adequate constitutive model [Gasser et 

al. 2006] based on the observation of two load cases, diastolic and systolic blood pressure, only [see 

chapter 7 and Wittek et al. 2013, Wittek et al. 2016a]. In turn, homogeneous material properties had to 

be assumed for the whole imaged structure. This assumption holds well for aortae of young volunteers. 

It is less appropriate for aged aortic walls and aneurysms, though it is still a state of the art assumption 

in AAA wall stress analyses [Farotto et al. 2018]. In this study, assessment of the local variation of 

elastic behavior and of the heterogeneity of its distribution was intended and therefore the approach was 

restricted to a linear model.  

Evidently, an isotropic and linear model like the 𝐷𝐶 is not adequate for modeling the constitutive 

behaviour of a complex composite material. It is a linear approximation of the cyclic elastic behavior in 
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the physiological range, only. The physiological range itself depends on the individual loading condi-

tions so that distensibility may change, even if the non-linear constitutive behavior remains the same: 

for a given material, an increase of mean and pulse pressure as observed in this study in both aged groups 

compared to the young group will result in an increased secant modulus of a stress-strain curve, the 

slope of which progressively increases with larger deformations [cf. Figure 1-10], i.e. in reduced disten-

sibility in the loading range. It has been shown that larger axial prestretch increases circumferential 

distensibility of the aortic wall [Horný et al. 2014]. Axial prestretch of the human aorta is characteristi-

cally decreasing with age [Horny et al. 2012; Horny et al. 2013] so that the decrease of mean distensi-

bility with age that was observed in this study [Figure 6-4] in accordance with e.g. Nichols et al. [2011], 

O'Rourke [1990], O'Rourke [2007] and O'Rourke and Hashimoto [2007] may not only result from a 

change in the constitutive behavior, but from the decrease in axial prestretch, too. Nevertheless, the 

cyclic elastic behavior in the physiological range proved to be a relevant and non-invasively detectable 

indicator for adverse systemic effects of changes in the aortic wall’s constitutive behavior in various 

studies [O'Rourke et al. 2002; Todd J. Anderson 2006; O'Rourke and Hashimoto 2007; Gary F. Mitchell 

2009; Mitchell et al. 2010].  

In addition to this, the 𝐷𝐶 depends on geometrical parameters implicitly and, therefore, may not be 

regarded as a proper material parameter. For simplicity, this dependency is demonstrated here for uni-

axial circumferential CAUCHY stress 𝜎 and BIOT’s strain 𝜀 of a pressurized thin-walled cylinder: We 

assume the one-dimensional form of HOOKE’s law as linear estimate of material properties: 

 
∆𝜎 ൌ 𝐸∆𝜀, eq. 6-12 

where 𝐸 is the YOUNG’s modulus. The dependency of the cyclic CAUCHY stress on the pulse pressure 

is given by the law of LAPLACE (or YOUNG-LAPLACE equation) 

 

∆𝜎 ൌ ∆𝑝
𝑟
ℎ

 , eq. 6-13 

where 𝑝 is the transmural pressure and 𝑟 and ℎ are the current radius and wall thickness, respectively. 

From eq. 6-12 and eq. 6-13  

 

∆𝜀 ൌ ∆𝑝
𝑟
𝐸ℎ

 eq. 6-14 

is obtained. Neglecting quadratic terms for ∆𝜀 ≪ 1, eq. 6-10 simplifies to 

 

𝐷𝐶 ൎ 2
∆𝜀
∆𝑝

 . eq. 6-15 

With eq. 6-14, the following relation between the distensibility coefficient and the YOUNG’s modulus is 

obtained: 
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𝐷𝐶 ൌ 2
𝑟
ℎ
∙ 𝐸ିଵ. eq. 6-16 

Equation eq. 6-16 shows that the 𝐷𝐶 does not only depend on the (linearized) material properties, but 

on a geometrical parameter, the radius-to-thickness ratio 𝑟 ℎ⁄ . In contrast, the YOUNG’s modulus 

𝐸 ൌ  ∆𝜎 ∆𝜀⁄  is a “pure” elastic material parameter relating current stress to current strain. However, it 

cannot be determined from in vivo data, as long as the thickness ℎ of the individual aortic wall cannot 

be measured non-invasively in vivo. For the time being, none of the available imaging techniques pro-

vides this information for a structure hidden so deep in the body as the human aorta with sufficient 

accuracy. Membrane stiffness 𝑘 ൌ  ∆𝜏 ∆𝜀⁄ , where ∆𝜏 ൌ ∆𝜎 ∙ ℎ ൌ ∆𝑝 ∙ 𝑟  and thus 𝑘 ൌ  𝐸ℎ,  could be 

considered as an alternative to the 𝐷𝐶 for thin-walled structures [e.g. Farzaneh et al. 2018; Disseldorp 

et al. 2019b]. The current radius (or for more complicated geometries the local principal radii) can be 

determined from various in vivo imaging data with sufficient accuracy. Nevertheless, like the 𝐷𝐶, the 

membrane stiffness 𝑘 still depends on an unknown geometrical parameter in the wall thickness ℎ. Com-

pared to the membrane stiffness that depends on ℎ alone, the dependency of the 𝐷𝐶 on the ratio of radius 

and wall thickness, 𝑟 ℎ⁄ , has the advantage that the geometrical dependency vanishes if the changes of 

𝑟 and ℎ scale with the same factor. It was shown by Wolinsky and Glagov [1967a] that this is the case, 

approximately, for a wide range of adult mammalian species. Cyron and Humphrey [2017] have under-

stood this as a mechanism serving to maintain an optimal homeostatic stress for which continuous re-

modeling of collagenous soft tissues reaches a mechanobiologically static state. Evidently, this assump-

tion of a constant 𝑟 ℎ⁄ -ratio will hold for healthy adults, only, not for AAAs where the remodeling of 

the aortic wall is impaired by pathology. Thubrikar et al. [2001], DiMartino et al. [2006], Raghavan et 

al. [2006], Raghavan et al. [2011] and Reeps et al. [2012] report values of (mean) diameter and wall 

thickness for a total of 201 unruptured and 17 ruptured AAAs. From these data the author computed 

𝑟 ℎ ൌ 17.1 േ 5.2 ⁄  and 𝑟 ℎ ൌ 12.6 േ 3.4 ⁄  for unruptured and ruptured AAAs, respectively. In compar-

ison to the value of 7.9 that was reported for the aged abdominal aorta by Learoyd and Taylor [1966], 

these values are considerably increased. It is particularly noteworthy that an increased 𝑟 ℎ⁄  in AAAs 

will result in an increase of the 𝐷𝐶 [cf. eq. 6-16]. In contrast, in the results presented in this chapter the 

mean 𝐷𝐶 of the AAA group was decreased significantly compared to the non-aneurysmal aged group 

[Figure 6-3]. This shows that the implicit dependency of the DC on the geometrical parameter 𝑟 ℎ⁄  does 

not dominate or eliminate the effects of pathologic changes that are to be assessed in this work. In con-

trast the deviation of the geometric parameter 𝑟/ℎ might be understood as an indicator of pathological 

remodeling, which however according to Niestrawska et al. [2019] may result in stable or vulnerable 

remodeled AAA walls. Commonly, saccular AAA, that show a larger spread of local radii, are consid-

ered to be more prone to rupture than fusiform AAA [Pappu et al. 2008]. Raghavan et al. [2006] report 

minimum and maximum wall thicknesses of 0.23 mm and 4.26 mm in four AAAs with a median wall 

thickness of 1.48 mm and a median diameter of 60 mm, resulting in a median 𝑟/ℎ of 20 and in radius to 
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thickness ratios of 130.4 for the minimum and 7.04 for the maximum wall thickness. For the site of 

minimum wall thickness, the factor 𝑟/ℎ would result in a locally confined area of large distensibility in 

a generally stiff wall, which would be well captured by two of the proposed distensibility distribution 

indices, the local maximum distensibility and the local distensibility ratio. In this context, it is notewor-

thy that the lowest wall thickness was observed within a 1 cm radius of a rupture site. 

Summing up, distensibility is not an “optimal” material parameter because of its dependency on a 

geometrical parameter. However, for the time being, it is not possible to determine the individual and 

geometry-independent material properties non-invasively in vivo without non-individual assumptions, 

because wall thickness cannot be measured. Therefore, and because of its relevance for understanding 

systemic cardiovascular effects, in the study that is presented here, the local formulation of the 𝐷𝐶 was 

considered as a reasonable in vivo approach to assess cyclic elasticity of the individual human aorta and 

its spatial heterogeneity. Because of the discussed deficiencies of the 𝐷𝐶 and 𝐷𝐶௟ as constitutive model, 

the author prefers to talk about the cyclic elastic behavior of the aortic and aneurysmal wall rather than 

its constitutive or material properties. 

For the common calculation of distensibility from the diameter of the vessel, the assumption of a 

thin walled cylinder is made implicitly [cf. section 6.2]. We have already shown above that the intro-

duced local formulation of the 𝐷𝐶 (eq. 6-11) is not restricted to cylindrical geometries. In contrast, the 

assumption of a thin wall is maintained in the current approach. Neither wall thickness, nor presence 

and local distribution of intra-luminal thrombus (ILT) [cf. chapter 1.7.2] could be determined reliably 

in each 4D ultrasound data set of an AAA that was included in this study. Strain variations in radial 

direction of the wall cannot be resolved by the measurement technique that is available, currently. The 

assumption of a thin walled structure is usually considered to be appropriate for the abdominal aorta 

(wall thickness to diameter ratio of 0.04 [Caro 2012]). In the case of AAA, the wall is thin compared to 

the diameter, too. However, the presence of ILT might add to the effective wall thickness. The role of 

ILT in the mechanics of AAA is under debate [Wilson et al. 2013]. Meyer et al. [2010] showed in a 

numerical study that the mechanical loading and resulting deformation of the AAA wall is scarcely 

influenced by the presence of ILT if it can be regarded as a porous solid and is not (completely) attached 

to the wall. Schurink et al. [2000] and Hinnen et al. [2005] have investigated the effect of ILT on con-

duction of blood pressure to the covered aneurysmal wall experimentally and found that mean and pulse 

pressure within the ILT and on the wall correlate well with luminal pressure and are only slightly re-

duced. This is consistent with the observation that a network of small channels (“canniculi”) is charac-

teristic of ILT pseudo-tissue [Adolph et al. 1997; Wilson et al. 2013] so that it may be regarded as a 

porous solid. Swedenborg and Eriksson [2006] and Whittaker and Przyklenk [2009] report a liquid phase 

between ILT and aneurysm wall suggesting that thrombus may not be attached to the wall. Following 

the results of these studies that are reported by Wilson et al. [2013], the ILT is not part of the wall and 

the thin-wall assumption that was made in the study underlying this chapter holds. However, these prop-

erties may vary considerably in different ILT and cannot be determined non-invasively in vivo. Most 
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computational numerical analyses of AAA wall stresses that include ILT assume its perfect attachment 

to the wall (as reported in Wilson et al. 2013). In these cases, it is modelled to be able to bear tensile 

loads and reduces the load on the wall considerably [Metaxa et al. 2015]. If thrombus needs to be con-

sidered as a solid that is perfectly attached to the wall, distensibility of the wall itself would be underes-

timated by the approach that is presented here, where the possible stress shielding role of ILT was dis-

regarded. Neither the assumption of constant strain and stress over wall thickness that is implied by the 

thin wall assumption, would hold, nor the assumption of homogeneous material properties in radial 

direction. Having in mind that the aortic wall is a three-layered composite, the latter assumption is a 

simplification even without considering ILT, though Niestrawska et al. [2016; 2019] have shown re-

cently that this multi-layered structure is lost in most AAA.  
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7 Identification of the orthotropic and 

hyperelastic constitutive behavior 

of aortic walls in vivo    

7.1 Introduction 

In this chapter, an in vivo approach to the solution of two coupled inverse problems is described that 

has been developed in the course of this thesis: the in vivo identification of, firstly, the individual ortho-

tropic and non-linear elastic constitutive behavior and, secondly, the load-free configuration of the hu-

man aortic or aneurysmal wall [Wittek et al. 2013; Wittek et al. 2016a; Wittek et al. 2019]. 

7.1.1 State of research 

The inverse identification of the constitutive behavior of the human aortic and aneurysmal wall tends to 

be an ill-posed problem: on the one hand, a whole set of constitutive functions and parameters has to be 

identified [cf. chapter 2.3], on the other hand, the material response to only a few load cases can be 

observed non-invasively in vivo [cf. chapter 3.2.1]. Under such circumstances it may be difficult to 

either identify any solution or to identify a unique solution. It has been shown that the use of full-field 

measurements of heterogeneous displacement or strain fields is an appropriate means to improve the 

reliability of parameter identification based on a reduced number of observed load cases [Grediac et al. 

2006; Pottier et al. 2011; Stéphane Roux and François Hild 2018]. The information on displacement or 

deformation at internal degrees of freedom in addition to the boundary conditions may compensate for 

the lack of knowledge of the constitutive behavior [Avril et al. 2008]. Kroon and Holzapfel [2008, 2009] 

and Kroon [2010] have published approaches to the inverse identification of the locally varying, heter-

ogeneous, nonlinear elastic and anisotropic constitutive behavior of irregularly shaped membranes based 

on numerically generated heterogeneous full-field strain and on pressure data. Since the heterogeneity 
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of the deformation data was used to identify the local constitutive behavior, temporally resolved defor-

mation and pressure data were necessary to assess the nonlinearity of the constitutive behavior. Kroon 

and Holzapfel have used a Finite Element Model Updating (FEMU) method. Based on information on 

the reference configuration and its loading, the deformed configuration was estimated using a numerical 

model that depended on the choice of constitutive parameters. Estimated and measured deformation 

were compared by means of an error function. In an iterative process, the constitutive parameters on 

which the finite element (FE) model depended were varied systematically, i.e. the FE model was ‘up-

dated’ in every iteration and the error function was minimized with regard to the constitutive parameters. 

However, groundbreaking these works were, no experimental data were provided to which the method 

could be applied. Lu and Zhao [2009] and Zhao et al. [2009] from the same group first presented and 

experimentally validated an approach to in vitro identification of the locally varying isotropic, nonlinear 

elastic behavior of pressurized membranes that was based on time-resolved pressure and optical full-

field deformation measurements. Since then several inverse approaches to the identification of the ho-

mogeneous or locally varying nonlinear and anisotropic constitutive behavior of arterial walls have been 

presented that are based on measurements of pressure and axial prestress and optical full-field measure-

ments of displacement and strain in vitro [Avril et al. 2010; Badel et al. 2012; Pierron and Grédiac 2012; 

Genovese et al. 2013; Avril et al. 2015; Bersi et al. 2016; Stéphane Roux and François Hild 2018]. 

However, in an in vivo setting, it is still a challenge to gather sufficient experimental data. Many 

clinically available medical imaging techniques are either too slow (standard MRI) to capture the dy-

namics of the cyclic deformation of the human aorta and/or do not provide the complete irregular 3D 

configuration (2D ultrasound). Other clinically established imaging techniques are not suited for re-

search because they are invasive (intravascular ultrasound) or not radiation-free (CT and, in particular, 

gated CT scans) and expose the patients and volunteers to risks that are ethically not acceptable. More-

over, in contrast to in vitro approaches, neither the load-free (natural) configuration of the aortic wall, 

nor all loading conditions corresponding to the imaged deformed configurations are known. Only min-

imum (diastolic) and maximum (systolic) blood pressure can be measured non-invasively in vivo with-

out additional model assumptions. Therefore, several approaches to in vivo material identification have 

restricted themselves to linear elastic tangent moduli of the nonlinear elastic behavior in the physiolog-

ical range. Such an approach was presented in the previous chapter 6, which however differed from 

previous ones in that it captured the locally varying response of the wall to physiological loading. 

Schulze-Bauer and Holzapfel [2003], Masson et al. [2008], Stålhand et al. [2004], Stålhand and Klar-

bring [2005], Stålhand [2009], Smoljkic et al. [2015] and Gade et al. [2019] have assumed the blood 

vessel as a thin-walled cylinder with closed ends in order to identify the non-linear and anisotropic 

elastic constitutive behavior of the arterial wall. The assumption of a cylindrical vessel geometry with 

closed ends allowed for the computation of axial and circumferential stress from blood pressure and 

diameter data using the well-known engineering formulas for wall stress in pipes [cf. the Young-Laplace 

equation eq. 6-13 for the ‘hoop’ stress]. Since only homogeneous stress and strain values were obtained 
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by this approach for each observed load case, temporally resolved diameter and pressure data throughout 

the cardiac cycle were necessary in order to identify the nonlinear elastic behavior of the wall. Tempo-

rally resolved pressure data cannot be measured non-invasively in vivo, but only estimated based on 

further assumptions for modeling the cardiovascular system. The main restriction of these approaches, 

however, is that the assumption of a perfect cylindrical shape of the vessel prevents their application to 

irregularly shaped aneurysms. 

Using temporally resolved phase-contrast MR imaging Liu et al. [2012] have taken into account 

geometrically irregular configurations of human carotid arteries for the in vivo identification of the pa-

rameters of the isotropic nonlinear elastic MOONEY-RIVLIN model and of the load-free configuration of 

the arterial segment that cannot be imaged. They imaged several cross-sectional slices of the aortic wall 

with a temporal resolution of 30 frames per second and extracted the luminal (inner) and the outer con-

tour of the wall from the 2D image data of each slice. In addition, diastolic and systolic blood pressure 

was measured. They applied a FEMU approach as well: The diastolic and systolic configurations of the 

arterial wall contours were estimated by means of an FE model that depended on assumed constitutive 

parameters. Measured and numerically estimated contours were compared and the deviation was mini-

mized by means of systematically varying the constitutive parameters in an iterative process. Trabelsi 

et al. [2015] have suggested and successfully applied to in vivo data an approach that used the compar-

ison of the measured and numerically estimated volume of geometrically irregular ascending aortic an-

eurysms to identify the parameters of an isotropic nonlinear constitutive model. 

The works underlying this chapter [Wittek et al. 2013; Wittek et al. 2016a] were the first to present 

and verify an approach to the identification of the load-free configuration and the anisotropic nonlinear 

elastic constitutive behavior of irregularly shaped aortae and abdominal aneurysms that works based on 

clinically available in vivo data, which was proven by exemplary application to clinical data. The ap-

proach utilizes the non-invasive in vivo full-field displacement and strain measurement that is described 

in chapter 3: it provided the motion functions of discrete material points on the aortic wall [eq. 3-6.] as 

basis for continuum mechanical modeling. In addition, diastolic and systolic blood pressure measured 

at the brachial artery were available as in vivo information on the loading of the wall [cf. chapter 3.2.1]. 

I.e., despite 10 to 20 imaged current configurations of the aortic wall, for only two load cases information 

on the load acting on the structure and on its resulting locally varying and heterogeneous deformation 

was available as basis for the identification of the nonlinear elastic and anisotropic constitutive behavior. 

An iterative FEMU approach [cf. Avril et al. 2008] was chosen in order not to be restricted to vessel 

wall configurations that can be described analytically, e.g. cylindrical or spherical configurations, but to 

be able to capture real irregular configurations of aortae and aneurysms. 

Since then, Liu et al. [2017, 2018, 2019c] have presented different approaches to the identification 

of the non-linear and anisotropic constitutive behavior of geometrically irregular aneurysms of the as-

cending aorta that are based on virtual, numerically generated full-field data, only, which might impair 

their claim to present approaches to in vivo constitutive parameter identification. One of their main 
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objectives was to significantly reduce computational cost of constitutive parameter identification com-

pared to iterative FEMU approaches like the one that is presented in this thesis. In order to achieve this, 

they applied a multi-resolution direct search approach as well as a machine learning approach. Only 

recently, they have applied the proposed multi-resolution direct search approach to in vivo CT and blood 

pressure data of ascending thoracic aortic aneurysm patients [Liu et al. 2019b]. They compared the 

constitutive parameters that were identified based on in vivo data to those that were obtained from bi-

axial tensile test on excised tissue from the same patients in vitro. However, deviations between the 

constitutive parameters that were identified based on in vivo and on in vitro data were large. 

7.1.2 Overview of the main steps of the inverse approach 

To provide an overview of the FEMU approach that was developed within this thesis, the main steps of 

the method are briefly described here: 

In vivo data acquisition: The discrete motion function [eq. 3-6] of an aortic wall segment was rec-

orded by 4D ultrasound throughout the cardiac cycle and fields of heterogeneous in-plane BIOT’s strains 

𝜺௎ௌ with respect to the end-diastolic configuration were derived [cf. chapter 3.2 and 3.3 for the general 

approach and chapter 6.5 for the particular in vivo data that were used for this chapter]. In addition, 

diastolic and systolic blood pressure were measured. 

Definition of a finite element model for the estimation of the deformation of the wall under physio-

logical loading as a function of a chosen set of constitutive parameters: The diastolic configuration of 

the aortic segment was reconstructed from the positions of the material points in the end-diastolic state. 

A nonlinear anisotropic hyperelastic constitutive equation and a set of constitutive parameters were cho-

sen for the characterization of the material [cf.  chapter 7.4]. Physiological loading by transmural pres-

sure and axial pretension force [cf. chapters 1.3 and 1.6] was applied and the diastolic and systolic in-

plane strain distributions were computed [cf. chapter 7.6]. 

Identification of prestretches of the deformed reference configuration: Only deformed and pre-

stressed configurations of the wall under physiological loading could be imaged in vivo. Therefore, an 

estimate of the load-free configuration was identified using an inverse optimal design approach. The 

solution of this inverse problem depended on the chosen constitutive parameters and had to be performed 

for each guess of constitutive parameters [cf. chapter 7.6.3]. Then, the direct boundary value problem 

was solved: the deformation of the estimated load-free configuration under physiological loading was 

computed in an FE analysis using the chosen constitutive behavior. As a result, an estimate of the pre-

stretched and prestressed diastolic configuration was obtained.  

Parameter identification: Because the arterial wall shows anisotropic behavior, constitutive param-

eter identification is a multiobjective optimization problem. The constitutive behavior was determined 

iteratively using a FEMU approach. In each iteration, the measured systolic in-plane strain distribution 

of the aortic wall with respect to the deformed diastolic reference configuration ሺ𝜺௎ௌሻ was checked with 
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the numerically estimated systolic in-plane strain distribution with respect to the deformed diastolic 

reference configuration (𝜺௠௢ௗ௘௟). The latter resulted from a FE analysis (FEA) of the aortic segment 

under physiological loads, i.e. transmural pressure and axial prestretch, and depended on a guess of the 

constitutive parameter set that was used in the analysis. The goodness of fit of the numerical model was 

quantified by means of an error function 𝑓௘ that consisted of the weighted sums of squared residuals of 

the measured and the numerically estimated strain distributions. The construction of this error function 

reflected the multiobjectivity of the problem: 𝑓௘ depended on the residuals of all in-plane strain compo-

nents. A nonlinear optimization algorithm was used to vary the constitutive parameters and update the 

FE model systematically with new parameters in every iteration and to minimize the error function with 

regard to the unknown constitutive parameters. A mixed stochastic-deterministic approach was devel-

oped that includes a local search approach with multiple starting points for the deterministic algorithm. 

Verification of the approach: The developed approach was verified by numerical experiments with 

regard to its ability to reproducibly identify a unique  constitutive behavior of the aortic wall based on 

clinically available data, only [sections 7.8 and 7.9]. Firstly, it was tested whether the developed ap-

proach was capable to identify the numerical values of the parameters of the chosen constitutive model. 

Secondly, it was examined whether the stress-stretch curves along characteristic load-paths in the phys-

iological domain could be determined, which represented the constitutive behavior independent of the 

choice of a specific constitutive model. Thirdly, it was checked in how far the developed approach was 

able to recover the load-free configuration of the wall segment sufficiently, that cannot be imaged in 

vivo. Finally, it was investigated how the measurement uncertainty that was determined in the validation 

of 4D ultrasound measurement [cf. chapter 4] affected the identification of the constitutive behavior.  

Exemplary application to in vivo patient data sets: Eventually, the approach was applied to three in 

vivo 4D ultrasound data sets from male subjects of different age, health condition and showing varying 

peak-to-peak strain amplitudes in order to test the capability of the approach to identify age related and 

pathological changes of the elastic properties of the aortic wall: a 22 y.o. volunteer without known car-

diovascular risk factors and diseases (HV), an 80 y.o. patient with peripheral arterial occlusive disease 

(PAOD) and a 58 y.o. patient with abdominal aortic aneurysm (AAA) [cf. sections 7.5.1, Table 7-2]. 

7.1.3 Organization of the chapter 

The chapter is organized as follows: First, an overview of the assumptions that were made in this work 

for modeling the aortic wall in accordance with the state of research is given is section 7.2. Section 7.3 

provides a theoretical basis for constitutive parameter identification of an orthotropic hyperelastic ma-

terial based on the available in vivo data. In section 7.4, the constitutive equation is described that was 

chosen for modeling the orthotropic and nonlinear elastic behavior of aortic and aneurysmal walls. An 

overview of the in vivo full-field strain data and its acquisition is given in section 7.5. In section 7.6, the 
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computational FE model is explained in detail that estimates the cyclic strain field as function of a cho-

sen set of constitutive parameters. The strategy of fitting the computational model optimally to the meas-

ured strain field data and, thus, identifying the individual constitutive parameters is developed in section 

7.7. Section 7.8 provides information on the performed numerical verification experiments. In section 

7.9, the results of the verification experiments are given. The results of the in vivo parameter identifica-

tion  are presented in chapter 7.10. The chapter concludes with a discussion of the developed methods 

and the obtained results [chapter 7.11] and final conclusions.

7.2 Assumptions for the patient-specific modeling 

The deformation of the aortic wall and its passive elastic properties are described in this chapter based 

on the theory of finite non-linear elastic deformations [cf. chapter 2]. The approach of neglecting the 

viscoelastic properties of arterial walls is widely accepted since Fung et al. [1979] have introduced the 

concept of pseudoelasticity [cf. chapter 1.5], i.e. the approximation of the aortic wall’s constitutive be-

havior in the reversible domain by time-independent hyperelastic models . Following Lawton [1954] 

and Carew et al. [1968], the aortic wall is modeled as an incompressible solid, which is a widely accepted 

state of the art assumption [cf. chapter 1.5 and e.g. Humphrey 2002; Nichols et al. 2011; Farotto et al. 

2018], though this assumption has been questioned recently by Nolan and McGarry [2016]. 

In the current approach, the aortic wall is regarded as a single layered thin shell, often called the 

‘thin shell assumption’, i.e. it is assumed to be a limp structure. Its in-plane loading and deformation are 

represented by the membrane stress and strain, which means that it is regarded to be constant across the 

thickness of the wall [cf. e.g. Kassab 2006, Fung 1993]. In in vitro studies, uniaxial or biaxial tensile 

tests can be performed separately for the three layers of the aortic wall, intima, media, adventitia [Hol-

zapfel et al. 2007; Holzapfel 2008; Sommer et al. 2010; Weisbecker et al. 2012]. These data allow for 

layer-specific identification of the constitutive behavior. Moreover, the mean orientation of layer-spe-

cific fiber families and the dispersion of the fibers about these mean orientations can be measured from 

histological data [Holzapfel 2006] or Second Harmonic Imaging [Niestrawska et al. 2016; Niestrawska 

et al. 2019] in an in vitro setting. In this case, the measured mean orientations and dispersion can be 

understood as the preferred directions and the degree of anisotropy of the material, respectively. In the 

approach presented here however, 4D ultrasound imaging was used for acquiring in vivo measurements 

of locally resolved abdominal aortic wall motion of human subjects [cf. 3.2]. Given the available reso-

lution, these in vivo measurements did neither provide image data on mean fiber orientation and disper-

sion of the fibers about this mean orientation, nor did they allow to differentiate between the motions of 

the three distinct layers of the aortic wall. Therefore, the aortic wall was modeled as a single layer with 

two preferred directions of anisotropy that are assumed to be symmetric to the local longitudinal and 
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circumferential in-plane axes and have the same mechanical properties [cf. Gasser et al. 2006]. In the 

presented approach, the preferred directions and the degree of anisotropy were identified in an inverse 

procedure together with the other parameters of the constitutive model [cf. 7.4] as suggested by Ogden 

[2009]. In in vitro experiments, Avril et al. [2010] and Marra et al. [2006] have successfully validated 

constitutive parameter identification using a one-layered aortic wall model. All approaches to in vivo 

identification of nonlinear elastic constitutive properties that were reported in section 7.1 have used one-

layered wall models well. Consequently, in the current work, the preferred directions and the degree of 

anisotropy were treated as purely phenomenological parameters, which did not have a microstructural 

physical meaning. In accordance with most state of the art modeling approaches based on clinical data 

[cf. Farotto et al. 2018, Humphrey and Holzapfel 2012, Leemans et al. 2018], homogenous material 

properties were assumed for each imaged aortic segment, i.e. only one set of constitutive parameters 

was identified for each aortic segment.  

The load-free configuration of the aortic segment was considered to be a stress-free natural config-

uration ℬ଴. Residual internal stresses due to heterogeneity of the different layers of the wall that result 

in the opening angle of cut aortic rings [cf. chapter 1.6] were not taken into account. Recently, Maes et 

al. [2019] have presented and verified an approach to in vitro constitutive parameter identification of 

arterial tissue from planar biaxial tests that takes into account the residual stresses in the planar specimen 

due to the opening angle. The numerical verification experiment as well as the exemplary application of 

the approach to experimental data showed that taking into account the residual stresses or not, results in 

negligible deviations of the identified constitutive behavior. 

As most other non-invasive imaging methods when applied to anatomical structures that are situated 

far from the surface of the body, 4D ultrasound imaging does not allow to measure the (varying) thick-

ness of the aortic wall. Therefore, a constant wall thickness was assumed in the load-free configuration 

[cf. e.g. Joldes et al. 2018], resulting in varying wall thickness in deformed configurations due to heter-

ogeneous in-plane deformation in combination with the incompressibility assumption [cf. chapter 1.5, 

chapter 2.3.2., eq. 2-65 and chapter 4.2.3.2, eq. 4-1]. Axial pretension force 𝐹௥௘ௗ and transmural pressure 

were considered as the dominant physiological loading of the aorta. This implies that the wall was re-

garded to be stress-free in radial direction in accordance with e.g. Joldes et al. [2015a], Joldes et al. 

[2017] and literature cited in Vorp [2007], Humphrey and Holzapfel [2012; Gasser] and Farotto et al. 

[2018]. The mechanical influence of wall shear stress due to blood flow was neglected since it is four to 

five orders of magnitude smaller than hydrostatic transmural pressure: Caro [2012] reports a shear stress 

of 0.53 Pa for the abdominal aorta, compared to 10.666 Pa of hydrostatic pressure on the wall that 

correspond to 80 mmHg and result in about seven times larger ‘hoop’ stress according to the law of 

Laplace for a vessel radius of 10 mm and a wall thickness of 1.5 mm. The axial pretension force 𝐹௥௘ௗ 

[cf. chapter 1.6] is assumed to be constant throughout the cardiac cycle in accordance with Schulze-

Bauer and Holzapfel [2003], Smoljkic et al. [2015], Horny et al. [2013] and Weizsäcker et al. [1983].  
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In order to obtain transmural pressure from measured diastolic and systolic blood pressure values, 

intra-abdominal pressure was subtracted. In this way, the influence of perivascular tissue was considered 

in the current approach since the abdomen behaves like a hydraulic system [Keulenaer et al. 2009]. 

Moreover, for a set of dorsal nodes where the minimum measured radial displacement 𝒖ௗ௜௔ି௦௬௦
௎ௌ  was 

observed throughout the cardiac cycle all degrees of freedom (DOF) were fixed in the load-free and 

diastolic configurations and constrained by measured displacements 𝒖ௗ௜௔ି௦௬௦
௎ௌ  in the systolic configura-

tion. Minimum cyclic displacement in the dorsal region was understood as indicating external support 

and restriction of wall motion through the spine. Preliminary results of Gallego et al. [2015] indicate 

that other influences of perivascular tissue are negligible. Petterson et al. [2019] emphasize the im-

portance of regarding influence of perivascular tissue and spine support. Since wall thickness, reduced 

axial force and intra-abdominal pressure cannot be measured non-invasively in vivo, population-aver-

aged data were used that are shown in Table 7-1. 

Table 7-1: Non-individual modeling assumptions [Reprinted from Wittek et al. 2016a with permission from Else-
vier] 

Data set Axial prestrain [%] Constant wall thickness [mm] Intra-abdominal pressuree [mmHg] 

 HV 31.0a 1.5b 7 

 PAOD 2.7a 2.0b 7 

 AAA 0.0c 1.6d 7 

a Calculated depending on the age of the patient according to Horny et al. [2011] 
b According to L. Horny, Faculty of Mechanical Engineering, Czech Technical University in Prague, personal 
communication, 13.04.2014 
c According to W. Derwich, Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, 
personal communication 
d According to Gasser et al. [2010], Reeps et al. [2012] and Shum et al. [2010] 
e According to Keulenaer et al. [2009] 

7.3 Theoretical basis for constitutive parameter  

identification in vivo 

Holzapfel and Ogden [2009] and Ogden [2009] present a theoretical foundation of constitutive param-

eter identification of anisotropic materials based on planar biaxial in vitro tests. In this section, these 

considerations are adopted in order to theoretically investigate the feasibility of in vivo constitutive 

parameter identification based on 4D ultrasound measurements. 

In eq. 2-111 the CAUCHY stress tensor for an orthotropic hyperelastic material with two preferred 

directions and without internal constraints is given. According to the previous section, it is assumed that 

arterial walls are incompressible and have two preferred directions in the wall plane that show identical 

material properties. Therefore,  
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𝑪

ൌ 0 , eq. 7-1 
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  eq. 7-2 

 

and 

 𝜕𝑤
𝜕𝐼ହఈ

ൌ
𝜕𝑤
𝜕𝐼ହఉ

ൌ
𝜕𝑤
𝜕𝐼ହ

 eq. 7-3 

Thus the constitutive equation depends on the invariants 𝐼ଵ, 𝐼ଶ, 𝐼ସ, 𝐼ହ and 𝐼஑ஒ of the left CAUCHY-GREEN 

strain tensor 𝑩, only. Consequently, the CAUCHY stress tensor for such a material reads as 
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eq. 7-4 

By means of 4D ultrasound, the deformation components in the wall (axial direction: 1; circumfer-

ential direction: 2) plane can be measured. Using the incompressibility condition [eq. 2-65], the radial 

deformation component (3-direction) can be expressed in terms of the in-plane components. Therefore, 

from 4D ultrasound measurements three-dimensional deformation of the aortic wall is obtained, neglect-

ing shear in the 1-3 and the 2-3 planes. The deformation gradient and the left CAUCHY strain tensor 

assumes the following form: 

 

𝑭 ൌ ൭
𝐹ଵଵ 𝐹ଵଶ 0
𝐹ଶଵ 𝐹ଶଶ 0
0 0 𝐹ଷଷ

൱ 〈𝒆௜⨂𝒆௝〉, where     𝐹ଷଷ ൌ
1

𝐹ଵଵ𝐹ଶଶ െ 𝐹ଵଶ𝐹ଶଵ
  eq. 7-5 

and 

 

𝑩 ൌ ൭
𝐵ଵଵ 𝐵ଵଶ 0
𝐵ଵଶ 𝐵ଶଶ 0

0 0 𝐵ଷଷ
൱ 〈𝒆௜⨂𝒆௝〉, where    𝐵ଷଷ ൌ

1
𝐵ଵଵ𝐵ଶଶ െ 𝐵ଵଶ

ଶ   . eq. 7-6 

The two preferred directions that are assumed to be symmetric with regard to the 1- and the 2-axis 

of a local coordinate system are described in the reference configuration by 
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 𝒂଴ఈ/ఉሺ𝜑ሻ ൌ  sin𝜑𝒆ଵ ൅/െcos𝜑𝒆ଶ . eq. 7-7 

Consequently, the deformed direction vectors 𝒂஑/ஒ ൌ 𝑭 ∙  𝒂଴஑/ஒ take the form 

 𝒂ఈ/ఉ ൌ  ሺ𝐹ଵଵsin𝜑 ൅ 𝐹ଵଶcos𝜑ሻ𝒆ଵ ൅/െሺ𝐹ଶଵsin𝜑 ൅ 𝐹ଶଶcos𝜑ሻcos𝜑𝒆ଶ . eq. 7-8 

Consider the three structure tensors for this case: 
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eq. 7-9 

 
𝒂ఉ⨂𝒂ఉ ൌ ሺ𝐹ଵଵsin𝜑 ൅ 𝐹ଵଶcos𝜑ሻଶ𝒆ଵ⨂𝒆ଵ ൅ ሺ𝐹ଶଵsin𝜑 ൅ 𝐹ଶଶcos𝜑ሻଶ𝒆ଶ⨂𝒆ଶ

െ ሺ𝐹ଵଵsin𝜑 ൅ 𝐹ଵଶcos𝜑ሻሺ𝐹ଶଵsin𝜑 ൅ 𝐹ଶଶcos𝜑ሻሺ𝒆ଵ⨂𝒆ଶ ൅ 𝒆ଶ⨂𝒆ଵሻ 
eq. 7-10 
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eq. 7-11 

and regard 𝒂ஒ⨂𝒂஑ ൌ ൫𝒂஑⨂𝒂ஒ൯
୘

[eq. 2-118]. 

Specifying eq. 7-4 for 𝑭, 𝑩, 𝒂஑⨂𝒂஑, 𝒂ஒ⨂𝒂ஒ, 𝒂஑⨂𝒂ஒ and 𝒂ஒ⨂𝒂஑ according to equations eq. 7-5 

to eq. 7-11 provides the following components of the Cauchy stress tensor for this type of deformation: 
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eq. 7-12 
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𝜎ଵଷ ൌ 𝜎ଷଵ ൌ 𝜎ଷଶ ൌ 𝜎ଶଷ ൌ 0 . eq. 7-16 

As already stated in chapter 7.2 it is assumed that 

 𝜎ଷଷ ൌ 0  , eq. 7-17 

which is in accordance with the thin sheet assumption. From eq. 7-17 together with eq. 7-14, 𝑝 can be 

determined: 
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and the non-zero stress components take the form 
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eq. 7-19 
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eq. 7-20 
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eq. 7-21 
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Here, the in-plane components of the CAUCHY stress tensor are given in general for an incompressible 

hyperelastic material with two preferred directions that are arranged symmetrically within the regarded 

plane and own the same mechanical properties. Note that eq. 7-19, eq. 7-20 and eq. 7-21 are two-dimen-

sional specializations within a three-dimensional theoretical framework, i.e. their application is not re-

stricted to purely two-dimensional problems. Three independent components of the stress tensor 

ሺ𝜎ଵଵ,𝜎ଶଶ,𝜎ଵଶሻ are related to three independent components of the strain tensor ሺ𝐵ଵଵ,𝐵ଶଶ,𝐵ଵଶሻ. How-

ever, these equations involve five independent constituive functions: 𝜕𝑤 𝜕𝐼ଵ⁄ , 𝜕𝑤 𝜕𝐼ଶ⁄ , 𝜕𝑤 𝜕𝐼ସ⁄ , 

𝜕𝑤 𝜕𝐼ହ⁄  and 𝜕𝑤 𝜕𝐼஑ஒ⁄ . Thus, it is theoretically impossible to determine these five constitutive functions 

based on any experimental data that can be described by eq. 7-19, eq. 7-20 and eq. 7-21. 

Therefore, Ogden [2009] proposes the use of reduced constitutive equations for the modeling of 

arterial walls that depend on two independent constitutive functions, 𝜕𝑤 𝜕𝐼ଵ⁄ and 𝜕𝑤 𝜕𝐼ସ⁄ , only. In this 

case, eq. 7-19, eq. 7-20 and eq. 7-21 simplify to 

 
𝜎ଵଵ ൌ   2

𝜕𝑤
𝜕𝐼ଵ

ቆ𝐵ଵଵ െ
1

𝐵ଵଵ𝐵ଶଶ െ 𝐵ଵଶ
ଶ ቇ ൅ 4

𝜕𝑤
𝜕𝐼ସ

ሺ𝐹ଵଵsin𝜑 ൅ 𝐹ଵଶcos𝜑ሻଶ  , eq. 7-22 

𝜎ଶଶ ൌ 2
𝜕𝑤
𝜕𝐼ଵ

ቆ𝐵ଶଶ െ
1

𝐵ଵଵ𝐵ଶଶ െ 𝐵ଵଶ
ଶ ቇ ൅ 4

𝜕𝑤
𝜕𝐼ସ

ሺ𝐹ଶଵsin𝜑 ൅ 𝐹ଶଶcos𝜑ሻଶ  , eq. 7-23 

𝜎ଵଶ ൌ 𝜎ଶଵ ൌ 2
𝜕𝑤
𝜕𝐼ଵ

ቆ𝐵ଵଶ െ
1

𝐵ଵଵ𝐵ଶଶ െ 𝐵ଵଶ
ଶ ቇ  . eq. 7-24 

The constitutive behavior of a such material can be determined from data corresponding to eq. 7-22 and 

eq. 7-23 alone, i.e. from biaxial test data, as well as biaxial test data combined with in-plane shear. 

Moreover, experimental data on in-plane stress and strain components are required in a range that is 

sufficient to reflect the non-linearity of the material. 

As already explained in detail in chapter 3, 4D ultrasound provides the complete in-plane strain 

tensor at finite cyclic physiological deformations for wall surface areas with a size of about 10 mm2 

resulting in a discrete heterogeneous strain field. Figure 7-1 b-c shows the measured fields of longitudi-

nal and circumferential wall strains that were used as basis of parameter identification in the current 

work: ranges ≥ 15% of longitudinal and circumferential strain are covered in all cases. In contrast, in-

formation on the two independent variables that characterize physiological loading, transmural pressure 

and axial pretension force, was sparse: only two values of blood pressure could be measured non-inva-

sively in vivo throughout the cardiac cycle, intra-luminal pressure was assumed to be constant and had 

to be estimated according to population averaged data. The resulting transmural pressure was assumed 

to act on the whole segment homogeneously. The axial pretension force 𝐹௥௘ௗ also was assumed to be 

constant throughout the cardiac cycle and had to be estimated based on literature data [cf. 7.2]. However, 

due to the information on the individual geometrically irregular configuration of the wall, this reduced 
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information on the loading of the wall translated into heterogeneous multiaxial in-plane stress fields that 

could be related to the measured strain fields. It was hypothesized that these data determine eq. 7-22, 

eq. 7-23 and eq. 7-24 in a sufficient range to identify unique estimates of the constitutive functions 

𝜕𝑤 𝜕𝐼ଵ⁄ and 𝜕𝑤 𝜕𝐼ସ⁄ . This hypothesis was tested in the performed verification experiment [cf. section 

7.8 and 7.9]. 

 

Figure 7-1: Fields of systolic strain states of aortic wall segments: a) numerically generated data by the master FE 
model of the verification experiment [cf. section 7.8], b) – d) in vivo data of the healthy volunteer, the PAOD 
patient and the AAA patient, respectively. Each point in the scatter plots describes the strain state of an aortic wall 
segment of 2 to 10 mm2. The strain state is characterized by the combination of longitudinal (𝜀ଵଵ) and circumfer-
ential (𝜀ଶଶ) strain. Shear strain (𝜀ଵଶ) is not shown in this representation. [Reprinted from Wittek et al. 2016a with 
permission from Elsevier]
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7.4 Constitutive equation 

An invariant-based strain energy function proposed by Gasser et al. [2006] was chosen as constitutive 

equation describing the anisotropic hyperelastic behavior of the aortic wall. It is conform with eq. 7-22 

to eq. 7-24. It is available as built-in feature of Abaqus® 6.12 and subsequent releases (Dassault Systems, 

Paris, France) and represented here without the distinction of a deviatoric and a volumetric term that is 

relevant for compressible materials only: 

 

𝑤ሺ𝑪,𝒂଴௜⨂𝒂଴௜ሻ ൌ 𝜇ሺ𝐼ଵ െ 3ሻ ൅
𝑘ଵ

2𝑘ଶ
෍൫𝑒௞మ〈ா೔〉

మ
െ 1൯

ఉ

௜ୀఈ

, 𝑖 ൌ 𝛼,𝛽 eq. 7-25 

where 

 𝐸௜ ൌ 𝜅ሺ𝐼ଵ െ 3ሻ ൅ ሺ1 െ 3𝜅ሻሺ𝐼ସ௜ െ 1ሻ eq. 7-26 

𝐼ଵ is the first invariant of the right CAUCHY strain tensor 𝑪. 𝐼ସ௜ , 𝑖 ൌ 𝛼,𝛽 denotes a mixed tensor in-

variant of 𝑪 and the structural tensor 𝒂଴௜⨂𝒂଴௜ that governs the anisotropic response of the constitutive 

equation. 𝒂଴ఈ and 𝒂଴ఉ are spatial vectors within the wall plane that denote the preferred directions of 

the material in the reference configuration. Their radial components are zero. They are assumed to be 

symmetric to the local in-plane orthonormal unity vectors 𝒆ଵ and 𝒆ଶ. Because of the symmetry, both 

direction vectors can be determined by the angle 𝜑 that is measured between 𝒂଴஑ and the positive di-

rection of the circumferential axis 𝒆ଶ: 𝒂଴ఈ/ఉሺ𝜑ሻ ൌ  sin𝜑𝒆ଵ ൅/െ cos𝜑𝒆ଶ. Moreover, it is assumed that 

both preferred directions own the same mechanical properties, which is ensured by the fact that the 

identical parameters – 𝑘ଵ, 𝑘ଶ and 𝜅 – are used in both terms that are related to the preferred directions. 

This renders the constitutive behavior locally orthotropic. Thus, eq. 7-25 is of the form described by 

equations eq. 7-22 to eq. 7-24 and can be determined from experimental in-plane stress and strain data 

covering a sufficient range. 

The constitutive equation is composed of a tensor linear NEO-HOOKEAN part and an exponential 

FUNG-type part for each direction vector. The NEO-HOOKEAN part depends on 𝐼ଵ alone and therefore is 

purely isotropic. The exponent [eq. 7-26] of the FUNG-type part again is split into an isotropic NEO-

HOOKEAN part and anisotropic parts for each preferred direction that depend on the pseudo-invariants 

𝐼ସ஑ and 𝐼ସஒ. The influence of the tensor linear and the exponential parts on the strain energy is weighted 

by the relation between the parameter 𝜇 (tensor-linear part) and the parametes 𝑘ଵ and 𝑘ଶ (exponential 

parts). Within the exponent 𝐸௜ [eq. 7-26], the isotropic and the anisotropic contribution are weighted by 

the parameter 𝜅 ሺ0 ൑  𝜅 ൑  1/3ሻ, which therefore determines the degree of anisotropy of the constitu-

tive behavior: it is strongly anisotropic for 𝜅 ൌ  0, whereas it is purely isotropic for 𝜅 ൌ  1/3. The non-
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linear and anisotropic contribution of 𝐸௜ to the mechanical response of the material is only accounted 

for at positive strains, which is enforced by the term 〈Ei〉 ≝ 1/2 ሺ |Ei| ൅  Ei ሻ  that equals zero for 

𝐸௜ ൏  0 , i.e. for compressive deformation states. In these cases, the material behaves like a NEO-

HOOKEAN solid. 

In addition to the above mentioned restriction for κ , restrictions of the parameter space of 𝜇, 𝑘ଵ and 

𝑘ଶ can be derived from the requirement of strict convexity of the strain energy function [cf. chapter 

2.3.2]: 𝜇 ൐  0, 𝑘1 ൐  0 and 𝑘2 ൐  0 [cf. Gasser et al. 2006]. Finally, the parameter space of the angle 

𝜑 can be constrained between 0° and 90° due to the local orthotropy of the material [cf. chapter 2.3.4.3.]. 

𝜇 and 𝑘ଵ are stress-like parameters, 𝑘ଶ and 𝜅 are dimensionless. For 𝜅 close to 1/3 the structural tensor 

and therefore the parameter 𝜑 describing the preferred directions of the structural tensor has only little 

effect on the mechanical response of the material. In turn, 𝜑 is not determined sufficiently in inverse 

parameter identification. In this approach, the parameters that determine the preferred directions and the 

degree of anisotropy, 𝜑 and 𝜅, respectively, were treated as purely phenomenological parameters, which 

do not have a microstructural physical meaning. 

In order to compare the identified materials, stress-stretch curves for biaxial stretches were calcu-

lated: The CAUCHY stress tensor [cf. eq. 2-67] was specified for plane stress (𝜎ଷଷ ൌ 0), homogenous 

deformation according to principal axes (𝑪 ൌ 𝜆ଵ
ଶ𝑵ଵ𝑵ଵ ൅ 𝜆ଶ

ଶ𝑵ଶ𝑵ଶ ൅ 𝜆ଷ
ଶ𝑵ଷ𝑵ଷሻ and the incompressibil-

ity condition 𝐽 ൌ  1 ⇔𝜆ଷൌ 1/𝜆ଵ𝜆ଶ, where 𝐽 ൌ 𝜆ଵ𝜆ଶ𝜆ଷ is the volume change, and deformations where 

E ≥ 0 and therefore 〈𝐸〉 ൌ 𝐸: 
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eq. 7-27 

where 

 
𝐸 ൌ 𝜅ሺ𝜆ଵ

ଶ ൅ 𝜆ଶ
ଶ ൅ 1/𝜆ଵ

ଶ𝜆ଶ
ଶ െ 3ሻ ൅ ሺ1 െ 3𝜅ሻሺ𝜆ଵ

ଶsinଶ𝜑 ൅ 𝜆ଶ
ଶcosଶ𝜑 െ 1ሻ  . eq. 7-28 
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7.5 Non-invasive in vivo data 

In chapter 3, all field variables were given with indices in order to emphasize that discrete fields were 

obtained from 4D ultrasound measurements, only, not proper continuous fields. In the current chapter, 

however, this index notation for discrete fields is not used in order to avoid an excess of indices. 

7.5.1  Patient data 

Systolic and diastolic brachial blood pressure measurements and 4D-US volume data sets of three male 

volunteers of different age and health states were selected from previously acquired data in accordance 

with the approvals of the local Ethics Committees of the University Clinics Marburg, Germany and the 

Goethe University Hospital, Frankfurt am Main, Germany: one volunteer without cardiovascular risk 

factors (HV) and two patients with different vascular diseases, one peripheral aortic occlusive disease 

patient (PAOD) and a patient with a small, saccular abdominal aortic aneurysm without intraluminal 

thrombus (AAA) [Table 7-2]. In vivo data had been acquired according to chapter 3.2.1.  

Voxel edge length of the image data was 0.59, 0.56 and 0.39 mm, temporal resolution was 13.5, 

17.7 and 20.1 volumes/s resulting in 11, 17 and 19 imaged configurations of the aortic wall segments 

throughout the cardiac cycle for the HV, PAOD and AAA data, respectively. 

Table 7-2: Patient data. [Reprinted from Wittek et al. 2016a with permission from Elsevier] 

Data 

set 

Age 

in y. 
Sex 

BMI in 

kg/m2 

Blood pressure 

in mmHg 
Pathology 

Length 

in mm 

max./min.  

diameter in mm 

HV 22 m 22.4 130/80 -- 24.7 16.9/15.2 

PAOD 80 m 28.4 135/80 
arterial hypertension, 

PAOD 
27.0 15.9/15.5 

AAA 58 m 26.3 120/80 
arterial hypertension, 
AAA (dmax*=32 mm) 

53.5 28.3/28.1 

* In contrast to the maximum and minimum diameter (averaged along the length of the imaged segment) that were 
computed from the 4D ultrasound data, the local maximum diameter of the AAA is given here additionally as the 
clinically relevant measure. 
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7.5.2 Diastolic-systolic in-plane strain fields from 4D ultrasound 
measurements 

Post-processing of the data sets was done offline as described in chapter 3.2.2. The motion function of 

discrete material points [eq. 3-6] was exported as ASCII file. The average diameter of the aortic segment 

was determined for each aortic segment and each time step throughout the cardiac cycle according to 

chapter 3.3.3. In case of the AAA the clinically measured maximum diameter was determined for the 

mid bulge region, additionally. The configurations showing the maximum and minimum (average) di-

ameter [Table 7-2] were identified as systolic and diastolic configurations, respectively.  

Based on the exported motion function of the aortic wall, FE preprocessing was performed accord-

ing to chapter 3.3.3: The diastolic configuration 𝑿ௗ௜௔ of each aortic segment was used as deformed ref-

erence configuration ℬ௥ ൌ ℬௗ௜௔. The AAA wall configuration was reconstructed, discretized into 4-

node structural elements and local nodal and element coordinate systems were defined in ℬௗ௜௔ according 

to chapter 3.3.3. The displacement vector field 𝒖ௗ௜௔ି௦௬௦ 	was calculated as 𝒖ௗ௜௔ି௦௬௦ ൌ 𝒙௦௬௦ െ 𝑿ௗ௜௔ , 

where 𝒙௦௬௦ and 𝑿ௗ௜௔ are the measured position vectors of a material point X in its systolic and diastolic 

configuration, respectively. The discrete motion function 𝝌: ℬௗ௜௔ → ℬ௦௬௦: 

 𝒙௦௬௦ ൌ 𝝌ሺ𝑿ௗ௜௔ሻ ൌ 𝑿ௗ௜௔ ൅ 𝒖ௗ௜௔ି௦௬௦ eq. 7-29 

that describes the deformation from the (measured) diastolic to the (measured) systolic configuration 

was implemented numerically by applying the displacement vectors 𝒖ௗ௜௔ି௦௬௦ as boundary conditions 

(BCs) to each node of the FE model in its diastolic configuration. The systolic in-plane strain field 𝜺௎ௌ 

with respect to the diastolic configuration was computed using Abaqus 6.12. For this purpose, it was 

necessary to attribute a thickness and material properties to the shell elements of the numerical model: 

a constant thickness of 1 mm and a hyperelastic NEO-HOOKEAN material suited for finite deformation 

with 𝐶ଵ଴ ൌ 0.01 MPa were chosen [cf. chapter 3.3.3]. 

The heterogeneous strain distributions shown in Figure 7-1 b – d were obtained for the three sub-

jects. Compared to the HV data set, the average systolic strains were much smaller in the two patient 

data sets (e.g. 10%, 2.6% and 0.5% circumferential strain for HV, PAOD and AAA, respectively; cf. 

Figure 7-12). However, the distribution of strain states in the patient data sets was quite heterogeneous, 

covering a range of 15% to 20% of longitudinal and circumferential strain. 

Annotations: 

(i) The results of this analysis did not depend on modeling assumptions about elastic properties, wall 

thickness or residual loads, but on the imaged diastolic reference configuration ℬௗ௜௔ and the meas-

ured displacement field  𝒖ௗ௜௔ି௦௬௦ alone, because every degree of freedom in the model was con-

strained [cf. chapter 3.3.3.3].  
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(ii) For the current purpose, the last step of the post-processing procedure described in chapter 3.3.3.3 

was omitted: The cyclic peak-to-peak amplitude was not determined for each component of the in-

plane strain tensor, separately, but for all in-plane strain components the systolic strains with respect 

to the diastolic configuration were computed. This different approach was chosen here, because 

numerical estimation of the motion function 𝝌௠௢ௗ௘௟: ℬ௥ →  ℬ௧
௠௢ௗ௘௟ and of the corresponding in-

plane strain distribution by a FE model [see section 7.6] was possible for those current configura-

tions ℬ௧, only, for which non-invasively measured loads, i.e. blood pressure, were known.

7.6 Model-based estimation of systolic in-plane strains 

7.6.1 Displacement and strain field as a function of the chosen 
constitutive model 

In contrast to the computation of BIOT’s in-plane strain fields as described in sections 3.3.3 and 7.5.2, 

where measured displacements 𝒖ௗ௜௔ି௦௬௦ were used as boundary conditions, physiological loads were 

used as boundary consditions in this type of FEA: the measured individual diastolic and systolic blood 

pressure, the population averaged intra-abdominal pressure and population averaged, but personalized, 

axial prestrain [c.f. section 7.2, Table 7-1]. The diastolic-systolic motion function  

 
𝝌ௗ௜௔ି௦௬௦
௠௢ௗ௘௟ : ℬௗ௜௔ →  ℬ௦௬௦௠௢ௗ௘௟ ,          𝒙௦௬௦௠௢ௗ௘௟ ൌ 𝑿ௗ௜௔ ൅ 𝒖ௗ௜௔ି௦௬௦

௠௢ௗ௘௟  eq. 7-30 

and the corresponding in-plane BIOT’s strains 𝜺௠௢ௗ௘௟ were estimated numerically by a direct nonlinear 

FEA. The obtained numerical estimate of the in-plane strain tensor field depended on the chosen con-

stitutive model [cf. section 7.4] and the constitutive parameter vector that was attributed to the model: 

 
𝜺௠௢ௗ௘௟ ൌ 𝜺௠௢ௗ௘௟ሺ𝜇, 𝑘ଵ, 𝑘ଶ, 𝜅,𝜑ሻ. eq. 7-31 

7.6.2 Reference configuration, FE discretization 
and boundary conditions 

In this second type of FE models, only the position vectors 𝑿ௗ௜௔ were used from the data provided by 

the 4D ultrasound measurement, but not the measured motion function 𝝌ሺ𝑿ሻ. Based on these data, re-

construction and discretization of the diastolic configuration ℬௗ௜௔ and definition of local nodal and ele-

ment coordinate systems was preformed as described in sections 3.3.4.1 and 3.3.4.2. Simulia Abaqus® 

6.12 was used as FE-solver and nonlinear, quasistatic Abaqus/Standard FE analyses were performed. In 
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contrast to the method described in section 3.3.4.3, first order finite-strain shell elements of type S4R 

with reduced integration and hourglass control were used. S4R shell elements account for the change of 

shell thickness in geometrically nonlinear analysis. Cross-sectional behavior was calculated by numer-

ical integration through the shell thickness during analysis. Non-linear bending stiffness resulted from 

varying tensile stresses through shell thickness due to bending, only, and was small for the assumed thin 

shells. [Abaqus 6.12 2012a] 

The discretization obtained by the described FE preprocessing based on 4D ultrasound data was 

determined by the spatial resolution of the measured discrete diastolic configuration 𝐵ௗ௜௔, which pro-

vided a “native” mesh since the discrete material points 𝑿ௗ௜௔ were used as nodes of first order shell 

elements. In order to deterimine the appropriate degree of mesh refinement, a convergence study was 

performed using 4D ultrasound data of a healthy aortic segment with only slightly irregular geometry 

and an AAA segment with strongly irregular geometry [cf. appendix B for detailed information]. The 

results showed that the “native” degree of discretization was appropriate for the non-aneurysmal aortae: 

only negligible differences in minimum and maximum values and spatial distribution of local stress and 

strain values were observed. In contrast, for the aneurysmal geometry convergence was achieved for a 

refinement of the “native” mesh by factor 4, i.e. one “native” element was split into 4 elements using 

Altair Hypermesh 12.0 (Altair Engineering GmbH, Böblingen, Germany). The material points obtained 

from 4D ultrasound were preserved in this mesh and a node set containing these material points was 

defined in the model. 

A reduced axial force and hydrostatic pressure were applied as physiological BCs. The influence of 

surrounding tissue was taken into account by subtracting intra-abdominal pressure from the measured 

blood pressure values and applying the resulting transmural pressure as BC. External support of the 

aortic wall by the spine was considered in the model by fixing all degrees of freedom of some dorsal 

(i.e. located towards the back of the body, close to the spine) nodes in the diastolic configuration and 

applying the measured displacements 𝒖ௗ௜௔ି௦௬௦
௎ௌ  to these nodes as BCs when estimating the systolic strain 

distribution. These additional BCs were applied to those dorsal nodes where the minimum measured 

cyclic radial displacement was observed, which was understood as an indication of fixation of the wall 

to the spine. 

7.6.3 In-plane strains as a function of the chosen  
constitutive behavior 

For the computation of the in-plane strain fields depending on a chosen set of constitutive parameters, 

four direct boundary value problems and one inverse problem were solved using nonlinear finite element 

method (FEM): 
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7.6.3.1 Estimation of the reduced axial force Fred 

Age-dependent axial prestrain was estimated according to Horny et al. [2011] and corresponding axial 

displacement was applied as BC to the free end of the diastolic configuration. The reduced axial force 

𝐹௥௘ௗ [cf. chapter 1.6] was obtained in a direct FEA as resulting reaction force. 𝐹௥௘ௗ then was held con-

stant during subsequent finite element analyses of the mechanical response of the aortic segments to 

physiological transmural pressure. Since the axial prestrain of the AAA was assumed to be zero [cf. 

Table 7-1], the step of determining the reduced axial force was omitted in this case. 

7.6.3.2 Inverse identification of the load free configuration ℬ଴ of the aortic seg-

ment and of diastolic prestresses and prestretches 

The FE mesh of the diastolic configuration ℬௗ௜௔ , that was generated from 4D ultrasound data as de-

scribed above, is stress and strain free. However, it was reconstructed from image data of the aortic 

segment under diastolic physiological loading, i.e. axial pretension force 𝐹௥௘ௗ and diastolic transmural 

pressure. Applying these physiological loads as BCs to the FE model of the stress and strain free dias-

tolic configuration would lead to artificial deformations and eventually to the identification of wrong 

constitutive parameters [Gee et al. 2010]. Several solutions to the inverse problem of determining phys-

iological prestrains/-stretches and -stresses have been proposed in recent years [Lu et al. 2007b, 2007a; 

Rajagopal et al. 2007; Lu et al. 2008; Gee et al. 2009; Gee et al. 2010; Sellier 2011; Zhao et al. 2011; 

Riveros et al. 2013; Joldes et al. 2015b]. In the present study, the iterative optimal design algorithm 

proposed by Sellier [2011] was coded in WOLFRAM Mathematica 9 and used to solve this problem 

[Wittek et al. 2013]: in a first, step the load-free configuration ℬ଴ of the aortic segment that cannot be 

imaged in vivo was determined. I.e. the inverse motion function 𝝌ିଵ: ℬௗ௜௔ → ℬ଴ was estimated. Here, 

a brief outline of the main steps of the used algorithm is given: 

(i) The imaged diastolic configuration 𝑿ௗ௜௔ of the aortic segment was taken as an initial guess 𝑿଴,ଵ of 

its load-free configuration 𝑿଴. 

(ii) Physiological BCs were applied to the guessed load-free configuration 𝑿଴,௝, where index j denotes 

the number of the iteration. The solution of this direct elastostatic problem by use of the FEM re-

sulted in a guess of the diastolic displacement field 𝒖଴ିௗ௜௔,௝ and a diastolic current configuration 

𝒙௖௨௥௥,௝ ൌ  𝑿଴,௝ ൅ 𝒖଴ିௗ௜௔,௝ . 

(iii) Case A: The HAUSDORFF distance exceeds the chosen convergence criterion 𝛿 , i.e. 

𝑚𝑎𝑥൛ห𝒙௖௨௥௥,௝,௜ െ  𝒙ௗ௜௔,௜ห, 𝑖 ൌ 1, …𝑛ൟ ൐ 𝛿, where n is the number of nodes in the model, 𝒙௖௨௥௥,௝,௜ 

and 𝒙ௗ௜௔,௜ are the position vectors of the 𝑖௧௛ node of the estimated and the measured diastolic current 

configuration, respectively. An updated guess of the load-free configuration 𝑿଴,௝ାଵ was obtained by 

subtracting the difference vectors 𝒙௖௨௥௥,௝ െ 𝒙ௗ௜௔ between the guessed and the measured diastolic 
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configuration from the position vectors that defined the preceding guess of the load free configura-

tion 𝑿଴,௝: 𝑿଴,௝ାଵ ൌ 𝑿଴,௝ െ ൫𝒙௖௨௥௥,௝ െ 𝒙ௗ௜௔൯. The algorithm continues with the next iteration starting 

from (ii). 

(iv) Case B: 𝑚𝑎𝑥൛ห𝒙௖௨௥௥,௝,௜ െ 𝒙ௗ௜௔,௜ห, 𝑖 ൌ 1, …𝑛ൟ ൑ 𝛿. 𝑿଴,௝ was taken as the true load-free configuration 

𝑿଴ and step (ii) gave the diastolic distributions of prestrains/-stretches and prestresses. 

 

Figure 7-2 Steps of the prestressing procedure of an exemplary data set: a) discretized diastolic configuration 
without prestrains, b) load free configuration that was identified by inverse FE and the recovered diastolic config-
uration with c) axial (𝜀ଵଵ) and d) circumferential prestrains as obtained by direct FE. [Reprinted from Wittek et al. 
2013 with permission from Elsevier] 

In this study a local convergence criterion was chosen, permitting a Hausdorff distance, i.e. a maximum 

local deviation of 𝛿 ൑  0.01 mm between imaged and prestrained diastolic configuration. The algorithm 

converged on average in about 40 iterations. Figure 7-2 shows the diastolic configuration of an exem-

plary data set without prestrains as reconstructed from 4D-US data (a), the calculated load-free (b) and 

the prestrained and prestressed diastolic configuration (circumferential (c) and longitudinal strain (d)). 

The solution of this inverse problem depended on the chosen constitutive parameter vector.  
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7.6.3.3 Systolic strain field with respect to the diastolic configuration 

In a two-step direct FEA the reduced axial force 𝐹௥௘ௗ  and diastolic and systolic transmural pressure were 

applied as BCs to the estimated load free geometry and the deformed diastolic and systolic configura-

tions 𝒙ௗ௜௔
௠௢ௗ௘௟ and 𝒙௦௬௦௠௢ௗ௘௟were computed. The displacement vector field 𝒖ௗ௜௔ି௦௬௦

௠௢ௗ௘௟  which describes the 

motion from the diastolic to the systolic configuration was calculated as 𝒖ௗ௜௔ି௦௬௦
௠௢ௗ௘௟ ൌ  𝒙௦௬௦௠௢ௗ௘௟ െ  𝒙ௗ௜௔

௠௢ௗ௘௟. 

Eventually, the systolic in-plane strains 𝜺௠௢ௗ௘௟ with respect to the diastolic configuration were com-

puted: Only those diastolic-systolic displacement vectors 𝒖ௗ௜௔ି௦௬௦
௠௢ௗ௘௟  that were related to the discrete ma-

terial points 𝑋 as obtained from 4D ultrasound were applied as BC to the “native” stress and strain free 

mesh of the diastolic configuration that was used as well for strain computation from measured 4D 

ultrasound data. The thin shell assumption (uniform stress and strain across the thickness of the wall, cf. 

section 7.2) was accounted for by reading out membrane strains from the mid-layer of the shell elements, 

only. The numerically estimated systolic in-plane strains 𝜺௠௢ௗ௘௟ with respect to the diastolic configura-

tion were directly comparable to the measured strain field 𝜺௎ௌ [cf. 7.5.2]. In contrast to 𝜺௎ௌ, 𝜺௠௢ௗ௘௟ was 

a function of the chosen constitutive parameter vector ሺ𝜇, 𝑘ଵ, 𝑘ଶ, 𝜅,𝜑ሻ.

7.7 Constitutive parameter identification strategy 

7.7.1  Finite Element Model Updating workflow 
An iterative Finite Element Model Updating workflow was developed to identify the five parameters of 

the constitutive equation [eq. 7-25] characterizing the non-linear and locally orthotropic elastic proper-

ties of the imaged wall segments. An overview of the workflow is given in Figure 7-3. In each iteration, 

the systolic in-plane strain distribution 𝜺௎ௌ with respect to the diastolic configuration ℬௗ௜௔ was com-

pared to the numerically estimated in-plane systolic strain distribution 𝜺௠௢ௗ௘௟ with respect to the dias-

tolic configuration ℬௗ௜௔ that depended on a guess of the constitutive parameter set. The deviation of 

𝜺௠௢ௗ௘௟ሺ𝜇, 𝑘ଵ, 𝑘ଶ, 𝜅,𝜑ሻ from 𝜺௎ௌ was quantified by means of an error function 𝑓௘௥௥ that was minimized 

during the iterative optimization process with respect to the unknown constitutive parameter vector 

ሺ𝜇, 𝑘ଵ, 𝑘ଶ, 𝜅,𝜑ሻ. The minimization of 𝑓௘௥௥ with regard to the unknown constitutive parameters was a 

nonlinear, multivariate and multi-objective optimization problem [Ehrgott 2005; Kaliszewski et al. 

2016]:  

(i) nonlinear: The chosen constitutive equation [eq. 7-25] and, therefore, the error function depends on 

the parameters k2, κ and φ  nonlinearly. Moreover, the FEAs by which the strain distributions are 

calculated contain geometric nonlinearities due to large-displacement effects; 

(ii) multivariate: ferr is a function of the five constitutive parameters to be identified; 
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Figure 7-3 Flow chart of the Finite Element Model Updating method (FEMU). [Reprinted from Wittek et al. 2016a 
with permission from Elsevier] 

(iii) multiobjective: Since aortic walls are anisotropic, the three independent in-plane components of the 

BIOT's strain tensor depend in different ways on the constitutive parameters, they are different ob-

jectives of the optimization process that have to be met by the same set of constitutive parameters. 
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Such problems usually exhibit a so-called ‘trade-off’ situation [Collette and Siarry 2004; Ehrgott 

2005]: the minimization of the deviation of one estimated strain component from measured data 

goes along with increasing deviation of another component. This problem has to be reflected by the 

construction of the error function 𝑓௘௥௥. 

7.7.2 Error function 

In order to quantify the deviation of the computationally estimated strains 𝜺௠௢ௗ௘௟ from the measured 

distribution 𝜺௎ௌ, an error function 𝑓௘௥௥ was defined that consisted of the squared residuals of measured 

and estimated in-plane strains. The following error function was used for the HV and the PAOD data: 

 

𝑓௘௥௥ ൌ
1
𝑛
෍෍𝑤௜൫𝜀௜,௝

௠௢ௗ௘௟ሺ𝜇, 𝑘ଵ, 𝑘ଶ, 𝜅,𝜑ሻ െ 𝜀 ௜,௝
௎ௌ൯

ଶ
௡

௝ୀଵ௜

 , eq. 7-32 

where i marks the in-plane components of the BIOT's strain tensor with regard to local element coordi-

nates (11 - axial, 22 - circumferential, 12 - shear) and 𝑛 is the number of tissue segments for which local 

strain values were measured [see section 7.5.2] and estimated by the FEA [see section 7.6]. The multi-

objectivity of the problem is reflected by the fact that all in plane strain components contribute to the 

error function, separately. The influence of each strain component on 𝑓௘௥௥ is weigthed by factors 𝑤௜ with  

 

෍𝑤௜ ൌ 1
௜

 . eq. 7-33 

Because of the trade-off between the different objectives of the optimization, the weighting factors 𝑤௜ 

had to be chosen in such a way that the contributions of the three in-plane strain components to the error 

function were well balanced. In this study, 𝑤ଵଵ ൌ 2 5⁄ , 𝑤ଶଶ ൌ 2 5⁄  and 𝑤ଵଶ ൌ 1 5⁄  were chosen for the 

axial, circumferential and in plane shear components of the HV and the PAOD data, respectively. 

Since the use of this error function resulted in far too stiff elastic properties in the case of the AAA data, 

a different error function was used in this case: 

 

𝑓௘௥௥஺஺஺ ൌ෍𝑤௜ ∙ median

ଶ

௜ୀଵ

൜൫𝜀௜௜,௝
௠௢ௗ௘௟ሺ𝜇, 𝑘ଵ, 𝑘ଶ, 𝜅,𝜑ሻ െ 𝜀 ௜௜,௝

௎ௌ ൯
ଶ

, 𝑗ϵሼ1, . . . ,𝑛ሽൠ eq. 7-34 

where 𝑤ଵ ൌ 1 5⁄  and 𝑤ଶ ൌ 4 5⁄  were chosen for weighting the axial and circumferential strain, respec-

tively. In-plane shear, that was small compared to the other in-plane strain components in all data sets 

[cf. Figure 7-12], was omitted in this case.
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7.7.3 Optimization algorithm 

Nonlinear, multivariate and multiobjective optimization problems usually exhibit several local optima. 

Deterministic gradient based or hill climbing algorithms alone are not suited for such problems since 

their results depend strongly on the initial guess of the parameters and they are likely to get stuck in a 

local optimum, missing the global minimum. To overcome these limitations, a combined stochastic/de-

terministic approach was developed in this work: First, a MONTE CARLO algorithm was used to deter-

mine 300 constitutive parameter vectors that were physically and numerically possible, i.e. for which 

the direct boundary value problems (deformation of the aortic segment under diastolic and systolic phys-

iological loading) and the inverse problem of determining the load free geometry could be solved. The 

six constitutive parameter vectors with the minimum error function values were then used as start pa-

rameter sets for a deterministic non-linear NELDER-MEAD simplex algorithm (Nelder and Mead 1965). 

The NELDER-MEAD algorithm was run three times for each start parameter set. A stochastic element 

was introduced at this stage by randomizing the determination of the corners of the initial simplex. 

MONTE CARLO and NELDER-MEAD algorithms were programmed in house using WOLFRAM Mathemat-

ica 9 (Wolfram Research, Champaign, IL, USA) and were modified to regard the limits of the parameter 

space [cf. section 7.4]. The values of the error function being in the order of 10ିଷ, a maximum difference 

of the error values of 10-9 between the best and the worst corner of the simplex was chosen as conver-

gence criterion of the NELDER-MEAD simplex algorithm, which converged on average in about 120 

iterations.  

Since the identification of the load-free configuration 𝑿଴ and of the prestrains in the deformed reference 

configuration constituted the inner loop of the nested constitutive parameter identification procedure [f. 

Figure 7-3]: The solution of this inverse problem depended on the guess of the constitutive parameter 

vector and thus, it had to be solved in every iteration of the optimization procedure. Each iteration of 

the NELDER-MEAD simplex algorithm as well as the MONTE CARLO algorithm included about 20 to 40 

iterations of the optimal design algorithm determining the load-free geometry. Thus, parameter optimi-

zation for each data set required between 49,200 and 98,400 iterations. Convergence of the whole FEMU 

method for one data set was achieved in a time period of about two weeks running two optimizations in 

parallel on a quad core CPU with 32 GByte of RAM. Time to convergence could be reduced to 1 - 2 

days by simple parallelization of the processes. In principle, all 300 MONTE CARLO runs could be per-

formed in parallel as well as the subsequent 18 runs of the NELDER-MEAD algorithm.
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7.8 Numerical verification experiment 

A numerical experiment was performed to verify the parameter estimation procedure: A reasonable but 

arbitrarily chosen parameter set (master material, see Table 7-3) was assigned to a likewise chosen ge-

ometry. This constituted the load-free reference configuration (master model). Using Simulia Abaqus® 

6.12 the direct elastostatic problem was solved for two load steps: 

(i) 55 mmHg transmural pressure and a reduced axial force 𝐹௥௘ௗ  inducing axial prestrain of 

𝜀௔௫ ൌ  12% and  

(ii) 110 mmHg, 𝐹௥௘ௗ was held constant. 

Resulting in-plane deformation fields were computed for these load steps [Figure 7-4]. Out of these 

assumed and numerically generated data, only those that were available by measurements in the in vivo 

situation were used as input data for constitutive parameter identification with the FEMU approach de-

scribed in the previous section: transmural pressures of 55 and 110 mmHg, the diastolic configuration 

𝒙ௗ௜௔ that corresponded to load case (i) and the displacement field 𝒖ௗ௜௔ି௦௬௦ that mapped this configura-

tion onto the systolic configuration 𝒙௦௬௦ that corresponded to load case (ii). These three vector fields 

describe the motion of the aortic wall with regard to the deformed reference configuration 𝒙ௗ௜௔, not with 

regard to the load-free geometry. The distribution of in-plane longitudinal and circumferential strains 

that corresponded to this motion is shown in Figure 7-1 a.  

 

Figure 7-4: Numerically generated distribution of biaxial strain states with regard to the load free geometry. I – 
uniaxial longitudinal strain, II equi-biaxial strain, III uniaxial circumferential strain. [Reprinted from Wittek et al. 
2016a with permission from Elsevier] 
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Figure 7-5 Numerically generated in-plane strain fields without superimposed error (a, b, c), with superimposed 
random error (d, e, f) and with superimposed systematic error (g, h, i). NE11, NE22 and NE12 indicate the longi-
tudinal, circumferential and shear strain in the wall plane, respectively, according to the local coordinates systems 
that were defined using in-house software [cf. 3.3.4.2.]. ‘Height’ and ‘10°’ indicate the position of the tissue seg-
ment in longitudinal and circumferential direction of the imaged wall segment, respectively. 0° and 18° correspond 
to the anterior and posterior face of the vessel wall. Height 1 and 11 indicate the cranial and caudal endings of the 
imaged wall segment, respectively. 

This numerical experiment was repeated for five times in order to assess the repeatability and uniqueness 

of the inverse constitutive parameter identification. In a second experiment, the numerically generated 

systolic strain field data were corrupted by a random error of ± 2.1% that was identified as 95% confi-

dence interval of local strain measurement by 4D ultrasound in the validation study that was performed 

within this thesis [cf. chapter 4.3.1, Fig. 4-15]. In a third numerical experiment, a systematic error was 

superimposed on the strain field data that were assumed to represent the basic truth: the corrupted data 

were obtained from the basic truth strain field by multiplication with a constant factor 𝑐. In this way a 

systematic error could be induced that was not constant in all elements but varied smoothly depending 



7 In vivo constitutive parameter identification 192 

 

on the spatial location. 𝑐 was chosen so that the mean circumferential strain deviated from the true mean 

by ൅1.6%, which was the upper limit of the possible systematic error of circumferential strain in a single 

measurement [cf. chapter 4.3.1]: 

 
1
𝑚
෍𝑐 ∙ 𝜀ଶଶ,௜

௠

௜ୀଵ

ൌ ൭
1
𝑚
෍𝜀ଶଶ,௜

௠

௜ୀଵ

൱ ൅ 0.016 

⇔ 𝑐𝜀ଶ̅ଶ ൌ 𝜀ଶ̅ଶ ൅ 0.016 

 

 
⇔ 𝑐 ൌ 1 ൅

0.016
𝜀ଶ̅ଶ

  , eq. 7-35 

where 𝑚 is the number of elements for which separate local strain values were available and 𝜀ଶ̅ଶ is the 

arithmetical mean of local circumferential strain values. The same systematic error was applied to all 

in-plane strain components which describes a worst case scenario. Numerically generated in-plane strain 

fields with and without superimposed noise are shown in Figure 7-5. 

In order to compare the resulting material properties to the known master material the axial and 

circumferential components of the CAUCHY stress tensor (σ11 and σ22 respectively, cf. eq. 7-27) were 

plotted for both parameter sets along three paths in the λ1, λ2-plane: uniaxial longitudinal and circumfer-

ential stretch and equi-biaxial stretch. The coefficient of determination Rଶ  ൌ  1 െ  𝑆𝑆௘௥௥/𝑆𝑆௧௢௧  was 

calculated to judge the quality of fit of the stretch-stress curves of the identified material along each of 

the stretch paths to the respective curves of the given material. The residual sum of squares 𝑆𝑆௘௥௥ and 

the total sum of squares 𝑆𝑆௧௢௧ were defined as follows: 

 

𝑆𝑆௘௥௥ ൌ෍൫𝜎௝,௜
௠௢ௗ௘௟ െ 𝜎௝,௜

௠௔௦௧௘௥൯
ଶ

௠

௜ୀଵ

 eq. 7-36 

 

𝑆𝑆௧௢௧ ൌ෍൫𝜎௝,௜
௠௔௦௧௘௥ െ  𝜎ത௝

௠௔௦௧௘௥  ൯
ଶ

௠

௜ୀଵ

 eq. 7-37 

where 𝑗 ൌ  1,2 indicates the longitudinal and circumferential component of the CAUCHY stress tensor, 

respectively. 𝜎௝,௜
௠௔௦௧௘௥ are the CAUCHY stress values calculated by use of the master parameter set for 

one of the stretch paths, m is the number of stress values calculated along each stretch path, 𝜎ത௝
௠௔௦௧௘௥ is 

the mean of these stress values and 𝜎௝,௜
௠௢ௗ௘௟  are the stress values calculated by use of the identified best 

fit parameter set for the same path. 

As already stated above, the inverse identification of the motion function 𝝌ିଵ: ℬௗ௜௔ → ℬ଴ [cf. 7.6.3] 

depended on the chosen constitutive parameter vector. The HAUSDORFF distance 𝑑ு was calculated for 
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each identified constitutive parameter set as a measure for the accuracy of the recovery of the load free 

master configuration 𝑿଴: 

 
𝑑ு ൌ 𝑚𝑎𝑥൛ห𝑿଴,௜

௠௢ௗ௘௟ െ 𝑿଴,௜
௠௔௦௧௘௥ห, 𝑖 ൌ 1, … ,𝑛ൟ , eq. 7-38 

where n is the number of discrete material points describing the load free configuration.

Table 7-3 Comparison of the constitutive parameters of the master material and the parameter values that were 
identified by the FEMU approach based on numerically generated data. The last column gives the Hausdorff dis-
tance between the load free configuration that was recovered using the identified constitutive parameter set and 
the master configuration. 

 
µ1 in MPa k1 in MPa k2 κ	 φ in ° Hausdorff  

distance in mm 

Master 0.071 0.567 353.64 0.261 68.8  

Estimates	based	on	input	data	without	noise	 	

Parameter vector 1 0.072 0.593 331.92 0.260 68.5 0.02 

Parameter vector 2 0.071 0.576 352.12 0.261 68.7 0.06 

Parameter vector 3 0.074 0.500 353.00 0.260 68.3 0.08 

Parameter vector 4 0.071 0.649 323.10 0.261 68.7 0.06 

Parameter vector 5 0.073 0.482 367.10 0.262 68.8 0.10 

Max. deviation in % 3.2 –15.0 –8.6 ±0.4 –0.5  

Estimate	based	on	data	with	superimposed	error	 	

Random Error 0.068 0.883 277.87 0.258 70.2 0.30 

Deviation in % –4.2 55.7 –21.4 –0.8 2.0  

Systematic Error 0.066 0.307 157.97 0.252 66.2 1.35 

Deviation in % –7.2 –45.9 –55.3 –3.4 –3.9  

7.9 Results of the verification experiment 

A comparison of the constitutive parameters characterizing the master material and the five estimates 

that were identified based on strain field data without superimposed error is given in Table 7-3. Maxi-

mum deviations of parameter values between െ15% and ൅3.2% were observed for the three parame-

ters that govern the stiffness of the material, 𝜇, 𝑘ଵ and 𝑘ଶ. In contrast, very small deviations ൏ 1% were 

observed for 𝜅 and 𝜑, the two parameters that characterize the degree and the preferred directions of the 

anisotropy. 
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Despite the observed deviation of the parameter values, the equi-biaxial longitudinal (index 1) and 

circumferential (index 2) CAUCHY stress-stretch curves of the five estimates are almost identical to the 

stress-stretch curves characterizing the master material, which is indicated by values of the non-linear 

coefficient of determination Rଶ ൒ 0.978 [Figure 7-6]. In all five cases, the load-free configuration was 

recovered with a Hausdorff distance ൑ 0.10 mm [Figure 7-7 a]. Figure 7-7 b shows the worst estimate 

of the load free configuration that was obtained in the numerical verification experiment. 

 

Figure 7-6: Comparison of the CAUCHY stress functions for the master parameter set (solid line) and the five 
estimates (dashed lines) of the constitutive parameter vector along the selected stretch paths I-III indicated in 
Figure 7-4. a and b: uniaxial longitudinal stretch (I), c and d: equi-biaxial stretch (II), e and f: uniaxial circumfer-
ential stretch (III). 𝜎ଵ and 𝜎ଶ are the principal in-plane CAUCHY stresses. The coefficient of correlation for the 
master stress-stretch curve and the worst estimate is given for each stretch path. 

The quantitative distribution of in-plane strains of the numerical master model was matched almost 

exactly by the model using the inversely identified constitutive parameter vector 1 [Figure 7-12 a]. The 
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deviation of longitudinal strain and in-plane shear per element was 0.02% and the deviation of circum-

ferential strain per element was 0.01% [Figure 7-13]. 

 

Figure 7-7 Deviation between the load-free configuration of the master model and the five configurations that 
wereinversely identified based on strain distibutions without superimposed error. a) Box-Whisker plots of the 
distributions of the nodal deviations of the five estimates from the initially given configuration. Upper and lower 
boundaries of the boxes indicate the 1st and 3rd quartile, respectively, the solid line at the center of the boxes 
indicates the median, upper and lower endings of the whiskers indicate the maximum and minimum values, re-
spectively. Outliers are indicated by dots. The maximum value of each distribution marks the Hausdorff distance 
between given and estimated configuration. b) Nodal deviations of the worst estimate [cf. Table 7-3, parameter 
vector 5] plotted on the initially given configuration. 

Based on strain-field data with superimposed random error [cf. section 7.8, Figure 7-5 d-f], the 

constitutive parameters 𝜇 ൌ 0.068 MPa , 𝑘ଵ ൌ 0.883 MPa , 𝑘ଶ ൌ 277.87 , 𝜅 ൌ 0.258  and 𝜑 ൌ 70.2° 

were identified. This corresponds to deviations of –4.2%, 55.7%, –21.4%, –0.8% and 2.0%, respec-

tively. Despite this considerably increased deviation, the longitudinal and circumferential stretch-CAU-

CHY stress curves of the identified material show coefficients of determination Rଶ ൐ 0.9 along all stretch 

pathes [Figure 7-8, dashed lines]. This still indicates a good agreement with the master material. The 

load-free configuration was recovered with a median deviation of 0.18 mm per material point and a 

Hausdorff distance of 0.3 mm [Figure 7-9]. 

In contrast, the use of strain field data with superimposed systematic error according to eq. 7-35 

resulted in a larger deviation of all constitutive parameters, but 𝑘ଵ. Moreover, the parameters µ1, k1 and 

k2 that govern the stiffness of the material, consistently showed smaller values compared to the master 

material. This indicates that the identified constitutive behavior is too distensible in all spatial directions. 

This is confirmed by the comparison of the stress-stretch plots that are given in Figure 7-8 (dashed-

dotted lines). Also the accuracy of the identification of the load-free configuration decreased signifi-

cantly: it was recovered with a median deviation of 0.81 mm and a Hausdorff distance of 1.5 mm, only. 
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Figure 7-8 Comparison of the CAUCHY-stress response of the master material (solid line) and the materials that 
were identified using the inverse FEMU approach based on numerically generated data with overlaid random 
(dashed line) and systematic (dashed-dotted line) measurement error [cf. section 7.8]. σ1 and σ2 indicate the longi-
tudinal and circumferential stresses, respectively, along the stretch paths I-III which are shown in Figure 7-4. 
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Figure 7-9 Deviation between given load free geometry that was used for numerical generation of deformation 
data in the verification experiment and the load free geometry that was inversely identified based on full-field 
strain data with overlaid random error. a) Nodal deviation plotted on the load-free configuration, b) Box-Whisker 
plots of the distribution of the nodal deviations between the estimated and the initially given load-free configura-
tion. Upper and lower boundaries of the box indicate the 1st and 3rd quartile, respectively, the solid line at the center 
of the box indicates the median, upper and lower endings of the whiskers indicate the maximum and minimum 
values, respectively. The maximum value of the distribution marks the Hausdorff distance between given and 
estimated configuration. 

7.10 Individual constitutive behavior identified  

based on in vivo data 

7.10.1 Constitutive parameters and stress-stretch curves 

The constitutive parameters of the three best fits obtained for each data set are given in Table 7-4. The 

corresponding plots of the longitudinal and circumferential CAUCHY stress curves along an equi-biaxial 

stretch path ሺ𝜆ଵ  ൌ  𝜆ଶሻ are shown in Figure 7-10. First, the material properties that were defined by the 

best fit parameters obtained for each data set are presented. Then, the best fit parameters were compared 

to other results of the optimization with a worse error function value. 

The most distensible material properties were identified for the HV data set. Longitudinal and cir-

cumferential CAUCHY stress curves were characterized by an almost linear region with a small increase 

of stress up to 𝜆 ൎ 1.2 corresponding to 20% of BIOT’s strain, which then was followed by a transition 

to a steep exponential increase for larger stretches. 𝜅 ൌ 0.28 indicates a moderate anisotropy of the aor-

tic wall. The preferred directions governing the anisotropic behavior [cf. section 7.4] were oriented more 

towards the circumferential than the longitudinal direction of the vessel ሺ𝜑 ൌ 19.5°ሻ. 
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Table 7-4 Parameter values for the three best fits obtained for each data set. The last column gives the relative 
deviation of the error value with regard to the best fit obtained. [Reprinted from Wittek et al. 2016a with permission 
from Elsevier] 

 µ in MPa k1 in MPa k2 κ φ in ° relative deviation of ferr in % 

HV       

Best Fit 0.0782 0.00082 169.01 0.28 19.5  

2nd 0.0799 0.00209 189.973 0.30 8.1 0.83 

3rd 0.0767 0.00681 131.784 0.29 18.6 0.93 

PAOD      

Best Fit 0.1554 0.6093 874.89 0.002 85.6  

2nd 0.1581 0.7678 719.65 0.0001 87.3 0.06 

3rd 0.1636 0.7555 745.13 0.001 88.8 0.15 

AAA      relative deviation of 𝑓௘௥௥஺஺஺ in% 

Best Fit 0.2280 4.7362 1960.65 0.21 4.6  

2nd 0.2214 3.9424 867.10 0.18 11.7 0.09 

3rd 0.2278 3.2544 335.20 0.20 8.0 0.98 

For the aortic walls of the PAOD as well as the AAA patient, much stiffer elastic properties were 

identified, indicated by strongly increased values for the parameters 𝜇 , 𝑘ଵ  and 𝑘ଶ  [Table 7-4]. The 

stretch-stress curves [Figure 7-10] show that, in comparison to the HV material, the linear stress re-

sponse in the small stretch region has vanished almost completely. Both materials show exponentially 

increasing stresses already for deformations smaller than 𝜆 ൌ 1.05 ሺ𝜀 ൌ 5%ሻ. 

The PAOD aortic wall exhibits a strongly anisotropic behavior. 𝜅 ൌ 0.002 means that the influence 

of the direction vectors 𝒂଴ఈ and 𝒂଴ఉ on the stress response of the material is weighted nearly with the 

factor 1 ≡  100% [cf. section 7.4]. 𝜑 ൌ  85.6° means that both direction vectors are almost perfectly 

aligned with the longitudinal vessel axis and consequently with each other. This characterizes a trans-

versely isotropic rather than an orthotropic behavior [cf. chapter 2.3.4 and e.g. Ogden 2009]. I.e. the 

much stiffer contribution of the exponential part of the constitutive equation [eq. 7-25] to the stress 

response, governed by 𝑘ଵ ൌ 0.6093 MPa and 𝑘ଶ  ൌ 874.89, acts only in axial direction of the aorta, 

whereas the circumferential stress response depends more on the much more compliant 

(𝜇 ൌ  0.1554 MPa) isotropic NEO-HOOKEAN term. 
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Figure 7-10 Equi-biaxial stretch plots of longitudinal and circumferential CAUCHY stresses for the three best con-
stitutive parameter fits obtained for HV (a, b), PAOD (c, d) and AAA (e, f) data. Solid line – best fit, dashed line 
– 2nd best fit, dotted line – 3rd best fit. [Reprinted from Wittek et al. 2016a with permission from Elsevier] 

The AAA exhibited a nearly transversely isotropic rather than an orthotropic behavior, too: in this 

case both direction vectors are almost aligned with the circumferential, not the longitudinal direction of 

the AAA ሺ𝜑 ൌ 4.6°ሻ.  𝜅 ൌ 0.21 indicates moderately anisotropic elastic properties of the AAA, i.e. the 

isotropic part of the exponential FUNG-type term notably contributes to the stress-response of the wall 

as well [cf. section 7.4]. Consequently, the stiffness transverse to the preferred direction(s) does not only 

depend on the more distensible tensor linear NEO-HOOKEAN part and its parameter 𝜇 ൌ 0.2280 MPa, 

but also on the much stiffer exponential FUNG-type part and its stiffness determining parameters 

𝑘ଵ ൌ  4.7362 MPa and 𝑘ଶ ൌ 1960.65. 

In addition to the best fit constitutive parameters and equi-biaxial stretch-stress plots, the results for 

the fits with the 2nd and 3rd best values of the penalty functions are displayed in Table 7-4 and Figure 

7-10. In case of the HV aortic segment, the three resulting Cauchy-stress curves are almost identical 
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[Figure 7-10 a, b] despite deviations in the numerical values of 𝑘ଵ and 𝑘ଶ which together govern the 

stiffness of the exponential contribution to the stress response of the material. Therefore, a decrease of 

the 𝑘ଶ value can be compensated in part by increasing 𝑘ଵ. In case of the PAOD patient, the stiffness of 

the circumferential stress response decreases slightly [Figure 7-10 d] with increasing error function val-

ues, whereas the AAA wall shows decreasing stiffness of both stress components along the equi-biaxial 

stretch path [Figure 7-10 e, f] with increasing 𝑓௘௥௥஺஺஺. Despite these deviations, the three different fits that 

were obtained for the same aortic wall identified consistent basal material characteristics in each case, 

such as overall stiffness, degree and preferred directions of anisotropy. This corresponds to the small 

relative deviations of the error values obtained for the three best fits. In particular, the values of the 

parameters 𝜇 and 𝜅 proofed to be highly reproducible. In case of the angle 𝜑 that determines the pre-

ferred directions of the material, the reproducibility was highest for the PAOD patient. This constitutive 

behavior exhibits the strongest degree of anisotropy ሺ𝜅 ൏ 0.002 for all three fits) and therefore the angle 

𝜑 was determined best in the inverse identification procedure [cf. section 7.4]. 

 

Figure 7-11 Estimated load free (solid black lines) and imaged diastolic configurations (light gray lines) of the 
HV (a), PAOD (b) and AAA (c) aortic wall samples. [Reprinted from Wittek et al. 2016a with permission from 
Elsevier] 

7.10.2 Estimated load-free configurations and recovery of in vivo in-
plane strain states 

Figure 7-11 gives a comparison of the estimated load-free and the imaged diastolic configurations. It 

can clearly be seen that the differences between the estimated load-free and the measured diastolic con-

figuration are largest in case of the most compliant HV aortic segment, for which the largest diastolic-

systolic deformations were measured. In contrast, the estimated load-free configurations were much 

closer to the imaged diastolic configurations in case of the much stiffer PAOD and AAA segments. 

Figure 7-12 b – d gives a comparison of the median and IQR of systolic in-plane strain distributions 

with respect to the diastolic configuration as measured by 4D ultrasound in vivo and estimated by FEA 

depending on the identified constitutive parameters. The median absolute deviation per element between 
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estimated and measured strains was between 1.3% and 3.8%. Figure 7-13 gives a detailed review of the 

deviation for all in-plane strain components and aortic segments. 

 

Figure 7-12: Comparison of given and estimated in-plane strain distributions (median [Q1, Q3]) of a) numerical 
verification experiment, b) HV, c) PAOD and d) AAA. 𝜀ଵଵ – axial strain, 𝜀ଶଶ – circumferential strain, 𝜀ଵଶ – in-
plane shear. [Reprinted from Wittek et al. 2016a with permission from Elsevier] 

 

Figure 7-13: Median deviation of absolute values of in-plane strain components per element. [Reprinted from 
Wittek et al. 2016a with permission from Elsevier] 

-10

-5

0

5

10

15

ε1 ε2 ε3

st
ra

in
 [

%
]

US

model

-10

-5

0

5

10

15

ε1 ε2 ε3

st
ra

in
 [

%
]

US

model

-10

-5

0

5

10

15

ε1 ε2 ε3

st
ra

in
 [

%
]

US

model

-10

-5

0

5

10

15

ε1 ε2 ε3

st
ra

in
 [

%
]

master

best fit

a b

c d

𝜀ଵଵ  𝜀ଶଶ 𝜀ଵଶ 𝜀ଵଵ  𝜀ଶଶ 𝜀ଵଶ

𝜀ଵଵ  𝜀ଶଶ 𝜀ଵଶ 𝜀ଵଵ  𝜀ଶଶ 𝜀ଵଶ

-1.7

-1.7

6.3

6.3

-0.06

-0.05

2.5

-0.02

2.6

2.9 0.4

0.01

1.9

0.4
0.5

0.3

-0.2

-0.03

-5.0

-5.3

10.3

10.4

0.4

-0.02

0

1

2

3

4

Verification HV PAOD AAA

st
ra

in
[%

]

NE11

NE22

NE12

3.7

3.2

3.8

2.9

1.3 1.3

2.6

1.5

2.2

.02 .01 .02

ε11

ε22

ε12



7 In vivo constitutive parameter identification 202 

 

 

Figure 7-14: Comparison of the distributions of circumferential Biot’s strains as measured by 4D ultrasound (a, c, 
e) and estimated by FEA depending on the identified constitutive parameters (b, d, f). a and b, c and d and e and f 
give results for data sets HV, PAOD and AAA, respectively. [Reprinted from Wittek et al. 2016a with permission 
from Elsevier] 
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The deviation between median values of estimated and measured circumferential strain and in-plane 

shear distributions was ൑  0.43% for all aortic segments. This applies as well for the median of the 

longitudinal strain distribution of the HV sample, where the measured strain distribution showed a neg-

ative median, i.e. a systolic shortening of the aortic segment compared to the diastolic configuration. In 

contrast, the deviation of the median longitudinal strain was much higher in the PAOD and the AAA 

segment (2.53% and 1.53%, respectively). In both cases, the measured strain distributions showed pos-

itive values, i.e. a systolic lengthening of the aortic segments. 

In all samples and for all strain components, the IQR of the estimated strain distribution – indicated 

by the error bars in  

Figure 7-12 – was much smaller than the one of the measured distribution. This indicates that the 

FE models, compared to the strain fields that were observed in vivo, predicted much more homogeneous 

strain states, which is illustrated in Figure 7-14. It shows the more pronounced minimum and maximum 

circumferential strains, steeper gradients and greater heterogeneity of the measured strain distributions. 

This applies in particular to the distal neck region of the AAA Figure 7-14 e (bottom), where dis-

tinctive minimum and maximum strain regions were found in a relatively small area. Consequently, the 

median strain deviation per element of 1.5% that is given in Figure 7-13 is considerably higher than the 

deviation of the median value of the circumferential strain distribution [cf. Figure 7-12 d: 0.2%]. In case 

of the HV sample the deviation per element is 3.2 … 3.8% for all in-plane strain components indicating 

that the weighting factors wi of the error function were chosen adequately [c.f. section 7.7.2]. This ap-

plies as well to the AAA sample where the deviation per element ranges from 1.5% to 2.6%. In contrast, 

the estimated strain state of the PAOD sample showed a much greater deviation per element of the 

longitudinal strain ሺ2.6%ሻ compared to circumferential strain and in-plane shear (1.3%, each). 

7.11 Discussion and conclusions 

The presented FEMU approach for the inverse identification of the five parameters of a non-linear and 

anisotropic constitutive equation was verified in a numerical experiment and influences of random and 

systematic error in the measured strain data on the identification results were examined. Constitutive 

parameters of the infrarenal aortic walls of a healthy volunteer (HV), a patient suffering from peripheral 

arterial occlusive disease (PAOD) and of an abdominal aortic aneurysm (AAA) were identified based 

on non-invasive in vivo measurements of brachial diastolic and systolic blood pressure and of hetero-

geneous strain distributions of the aortic wall by 4D ultrasound. In addition to the numerical parameter 

values, the equi-biaxial CAUCHY stress-stretch curves were given as representation of the identified ma-

terial properties that is independent of the chosen constitutive equation. The proposed method includes 

the determination of the unknown load-free geometry of the aortic segment as well as the prestretches 
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and -stresses in the imaged diastolic reference configuration. The systolic strain states with respect to 

the diastolic configuration that were estimated by the computational models depending on the identified 

constitutive parameters were compared to the strain states that were measured in vivo. 

The approach to constitutive parameter identification that is presented in this chapter based on Wit-

tek et al. [2016a] is an advanced version of the FEMU method that was previously developed within the 

work on this thesis and first published in Wittek et al. [2013]. Compared to this first approach, the 

advanced FEMU approach is characterized by two major changes: 

(i) The computational model was fitted to the measured systolic strains with respect to the diastolic 

configuration, not to systolic strains with respect to the – computationally estimated – load free 

configuration. In Wittek et al. [2013], the load free geometries and the diastolic strain distributions 

were identical for the ‘benchmark’ and the ‘estimation’ model. Both models differed in systolic 

strain increments compared to the diastolic strain distribution. These strain increments resulted from 

measured diastolic-systolic displacements 𝒖ௗ௜௔ି௦௬௦ in the ‘benchmark’ model (independent of the 

assumed constitutive parameters) and from the deformation response of the finite element model to 

loading by systolic transmural pressure in the ‘estimation’ model. The latter depended on the as-

sumed constitutive parameters. The diastolic strain distribution that depended on modeling assump-

tions was common to both models and may have had a tendency to dampen the differences of meas-

ured and estimated strain distributions. 

(ii) With a Hausdorff distance of 𝛿 ൑ 0.01 a more strict local convergence criterion was chosen for the 

identification of the load free configuration. In contrast, the sum of nodal deviations that was used 

in the 2013 approach is a global convergence criterion that allowed larger deviations at single nodes. 

(iii) The optimization algorithm was modified in order to avoid getting stuck in local minima of the error 

function: a. Compared to Wittek et al. [2013], the number of valid constitutive parameter vectors 

obtained by the stochastic Monte Carlo algorithm was increased from 250 to 300. b. The six best 

results of the Monte Carlo algorithm were used in the current approach as start parameter sets for 

the deterministic second part of the optimization procedure, not only the best fit. c. An additional 

stochastic element has been introduced into the deterministic NELDER-MEAD algorithm:  

(iv) In order to identify five constitutive parameters, the Nelder-Mead algorithm needs six estimates of 

the parameter vector that constitute the vertices of the simplex. One of these vertices is constituted 

by the start parameter vector that was obtained from the Monte Carlo algorithm in the stochastic/de-

terministic approach used in this thesis. The other five vertices of the initial simplex have to be 

constructed. Like the start parameter vector, the choice of the initial simplex may determine the 

optimization result in nonlinear, multivariate and multiobjective optimization problems where the 

objective functions [cf. eq. 7-32 and eq. 7-34] may have several local minima. Usually, this con-

struction of the vertices of the initial simplex from the start parameter vector is done in a determin-

istic way so that repeated runs of the Nelder-Mead simplex algorithm that use the identical start 
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(v) parameter vector will always give the same results. In the approach that was developed in this thesis, 

this process of constructing the initial simplex from the start parameter vector was randomized and 

(vi) the NELDER-MEAD algorithm was run thrice for each start parameter set so that repeated optimiza-

tion runs starting from the identical estimate of the constitutive parameter vector, nonetheless used 

different start simplices, i.e. in different search areas for the optimum. 

 

 

Figure 7-15 Results of the numerical verification experiment that was conducted in Wittek et al. [2013]. Solid lines 
represent the master material that was used for the numerical generation of data. Dashed lines show the material 
behavior that was identified using the 2013 inverse FEMU approach based on the numerically generated data [cf. 
section 7.8]. 𝜎ଵ and 𝜎ଶ indicate the longitudinal and circumferential stresses, respectively, along the stretch paths 
I (a, b), II (c, d) and III (e, f) which are shown in Figure 7-4. [Reprinted after Wittek et al. 2013 with permission 
from Elsevier] 
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These changes resulted in a substantial improvement of the results of the verification experiment 

without superimposed error [cf. section 7.9], for which the same numerically generated input data as in 

Wittek et al. [2013] have been used. The 2013 version of the FEMU approach was able to recover the 

systolic strain distribution and to identify a stress-stretch relation that coincided well with the master 

material along load paths I and II [cf. Figure 7-4 and Figure 7-15 a – d], i.e. in the range of multi-axial 

deformations that were well represented in the input deformation field. However, the deviation of the 

estimated material’s stress response to the master material increased with the distance of the deformation 

state from this well represented range of input deformations. This means that the predictive value of the 

identified model for load cases other than the observed ones was very limited. The numerical values of 

the estimated constitutive parameters showed deviations up to 86% compared to the values of the master 

parameter vector. The results of the numerical verification experiment that was performed in Wittek et 

al. [2013] are given in Table 7-5. 

Table 7-5 Constitutive parameter values that were identified in the verification experiment using the FEMU ap-
proach presented in Wittek et al. [2013]. [Reprinted after Wittek et al. 2013 with permission from Elsevier] 

Data set Parameters 

 µ in MPa k1 in MPa k2 κ φ in ° 

Master 0.071 0.567 353.64 0.261 68.8 

Estimation 0.105 0.078 193.36 0.194 73.8 

Rel. difference 47% -86% -45% -26% 7% 

In contrast, the enhanced method that is presented in detail in this thesis is able to identify the master 

parameter values with a maximum deviation of only 15% [cf. Table 7-3] resulting in identical constitu-

tive behavior in a large range of finite deformations even for deformation states that are sparsely repre-

sented in the numerically generated input data (e.g. path III, uniaxial circumferential strain in Figure 7-4 

and Figure 7-6). The recovery of the load free configuration was improved considerably as well, reduc-

ing the Hausdorff distance between identified and originally given configuration from 0.2 mm to 0.1 mm 

in the numerical verification experiment without superimposed error. Thus, the identified constitutive 

parameters can be used for simulations of load cases other than the experimentally observed ones.  

The repeated identification of the constitutive behavior based on numerically generated strain data 

that were not corrupted by measurement uncertainty indicates that the solution of the inverse problem 

is unique with regard to the identified CAUCHY stress-stretch curves, i.e. the elastic behavior at finite 

deformations, and the load-free configuration. In contrast, the solution is non-unique with respect to the 

parameters of the chosen constitutive equation. This applies in particular to the parameters 𝜇, 𝑘ଵ and 𝑘ଶ 

which jointly determine the nonlinear “stiffness” of the material so that changes in the value of one 

parameter can be compensated by adaption of the others, thus resulting in similar constitutive behavior 

in the physiological range of finite deformation [Wittek et al. 2013]. In contrast, unique parametrization 
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was observed in case of the parameters that determine the degree and preferred directions of the or-

thotropy, 𝜅 and 𝜑.  

These results confirm the feasibility of the proposed FEMU approach based on full-field defor-

mation data to recover the parameters of a complex constitutive equation as well as the load-free geom-

etry from just two observed deformation states (deformed geometries under diastolic and systolic hy-

drostatic pressure, but unknown load-free geometry). In case of homogeneous strain and stress states – 

as would result from a pressurized cylindrical tube with constant wall thickness and consisting of ho-

mogeneous material – this would result in a two-point strain-stress curve and allow for the determination 

of a linear elastic modulus, only. In contrast, the use of heterogeneous strain distributions allows for the 

inverse identification of a complex anisotropic and non-linear elastic constitutive behavior and of the 

irregular load-free geometry. The strain distributions calculated from the measured in vivo data were 

more heterogeneous than the numerically generated data used in the verification experiment and, thus, 

are likely to provide an even better basis for constitutive parameter identification [cf. Figure 7-1 a and 

b-d]. This applies to the two pathological data sets as well, even though the average strain amplitude is 

much smaller than in the HV data set. On the other hand, the use of simplifying modeling assumptions 

and incomplete knowledge of BCs can affect the reliability of in vivo constitutive parameter estimation 

[Reeps et al. 2010]: Values for wall thickness and longitudinal prestrain were assumed based on popu-

lation averaged data that may deviate from individual values. The FE models contained homogenizing 

assumptions such as constant wall thickness and homogeneous material properties. The impact of these 

factors have to be the subject of further studies. 

These results were confirmed by the parameter identification based on strain field data with super-

imposed random error in the scale of the measurement uncertainty of 4D ultrasound that was determined 

in the validation study [cf. chapter 4]: the deviation of the identified parameters 𝜇ଵ, 𝑘ଵ and 𝑘ଶ from the 

master parameters was considerably increased, whereas the agreement of the estimated values of 𝜅 and 

𝜑 as well as the agreement of the CAUCHY stress-stretch curves were only slightly affected. This shows 

that the approach is robust with regard to random measurement uncertainty. In contrast, a deviation of 

the mean of the strain distribution by +1.6% marks a systematic overestimation of the cyclic deformation 

and results in the identification of a too distensible elastic behavior and large deviations of the recovered 

load free configuration. The systematic error in the numerically generated strain data [cf. section 7.8] 

was chosen in the size of the 95% confidence interval characterizing random error of the mean strain 

that was observed in the validation study [cf. chapter 4] in 20 repeated observations/evaluations of the 

same experiment. This means that a single observation/evaluation may show a systematic error of this 

size. Therefore, the identification of the constitutive behavior and the load free configuration based on 

a single in vivo measurement as presented in section 7.10, may result in considerable deviations of both 

and has exemplary character, only, in this study. In the validation study of 4D ultrasound measurement 

uncertainty and reliability, no systematic error of mean or local strain was observed in repeated meas-

urements and evaluations. This result points the way to the improvement of the method in order to obtain 
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reliable individual results for a patient: future work has to address the computation of spatially resolved 

strain fields that represent the mean of repeated ultrasound measurements and evaluations as basis for 

reliable identification of individual constitutive parameters. 

In the approach presented here, the estimated load-free configuration was assumed to be stress-free. 

Residual internal stresses due to heterogeneity of the different layers of the wall that result in the opening 

angle of cut aortic rings [Fung 1991] were not taken into account. In an in vitro study, Labrosse and 

coworkers [Labrosse et al. 2009] have observed that taking into account internal residual stresses or not 

did neither have an effect on the identified parameters of an anisotropic Fung-type constitutive model, 

nor on the simulated deformation of the aortic segment. Only the radial distribution of wall stresses was 

affected. A recent study by Maes et al. [2019] confirms these findings with respect to parameter identi-

fication. The effect of internal residual stresses appears to be negligible for the purpose of constitutive 

parameter identification. The hypothesis of uniform stress and strain across the wall thickness is associ-

ated with the thin shell assumption. It was implemented in the current approach by regarding the stress 

and strain state observed in the midlayer of the shell as representation of the in-plane wall stress through-

out the thickness of the shell. Recently, Joldes et al. [2018] and Liu et al. [2019a] have proposed similar 

approaches to easily implement the uniform stress hypothesis in FE models of the aortic wall. 

Exemplary application of the developed FEMU to 4D ultrasound data sets of three aortic wall seg-

ments from volunteers of different age and pathology resulted in the reproducible identification of three 

distinct and (patho-) physiologically reasonable constitutive behaviors [cf. chapter 1]. Based on the HV 

data set, the most compliant material was identified. This moderately anisotropic material was charac-

terized by a slow, almost linear increase of stress for strains up to 20% that was followed by a transition 

to steep exponential increase for larger strains. The slow linear stress increase for small strains usually 

is attributed to the high content of elastin in young and healthy arteries, whereas the exponential stress 

gradient for higher strains indicates the increasing recruitment of embedded collagen fibers at the bor-

ders of the physiological deformation range [Wuyts et al. 1995; Marsh et al. 2004]. This linear and 

compliant region of the material has vanished almost completely in the constitutive behavior that was 

identified for the PAOD and the AAA data sets. In contrast, these materials were characterized by a 

steep exponential stress response to small deformations. These findings are consistent with the known 

degradation of the elastic components of aortic walls with age, which is enforced by pathologies such 

as atherosclerosis and aortic aneurysms, and the resulting high collagen content of the atherosclerotic 

and aneurysmal wall [Schlatmann and Becker 1977]. Accordingly, the AAA wall shows the stiffest 

behavior of the three aortic walls that were investigated in this study. The obtained equi-biaxial stress-

stretch relations [Figure 7-10] are comparable to those presented in Gasser et al. [2012] that were ob-

tained from biaxial tensile testing of aneurysm wall material harvested during open surgical repair. One 

of the distinctive structural changes that that were observed by Niestrawska et al. [2019] in AAAs com-

pared to the healthy aortic wall, is the change of the wall’s anisotropic behavior: Healthy aortic walls 
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showed orthotropic behavior, characterized by two symmetrically arranged mean collagen fiber direc-

tions with a mean angle 𝜑 ൎ 25° to the circumferential axis [cf. chapter 1.4.3]. In contrast, a transver-

sally isotropic material was found in stage 1- and stage 2-AAAs with a single preferred direction ori-

ented in circumferential direction [cf. chapter 1.7]. The results of the in vivo parameter identification fit 

very well to these findings: an orthotropic material with two preferred directions and 𝜑 ൎ 20° was iden-

tified for the HV, whereas for the AAA an transversally isotropic material was identified. Both preferred 

directions were almost perfectly aligned with the circumferential axis [cf. Table 7-4]. According to the 

findings by Niestrawska et al. [2019] this transversally isotropic behavior of stage 1 and stage 2 AAAs 

was not only distinctive with regard to healthy aortae, but also with regard to stage 3 AAAs that showed 

isotropic behavior. In addition to the significant changes in material symmetry, Niestrawska et al. [2019] 

identified a characteristic increase of the mechanical ‘stiffness’ parameters 𝜇 and 𝑘ଵ with disease pro-

gression. A comparable increase was observed in the current study from the HV, through the 

PAOD to the AAA. Even though these promising agreements ares based on exemplary evaluations 

of single data sets, only, they open up the prospect to use individual constitutive parameters that 

were identified in vivo as additional biomarkers for the evaluation of AAA disease progression. 

The deviation between the median values of the estimated and measured circumferential strain and 

in-plane shear distributions was < 0.43%. Larger deviations of 2.53% and 1.53% were observed only in 

the median longitudinal strains of the PAOD and the AAA FE model. The negative median longitudinal 

strain of the HV sample is matched very well by the FE model depending on the identified constitutive 

parameters (deviation of െ0.2%). This behavior is consistent with the modeling assumptions: Inflation 

of a tube without closed ends that is loaded axially with a constant force 𝐹௥௘ௗ will lead to circumferential 

expansion and the material will respond with transverse contraction, i.e. negative longitudinal strain. In 

contrast, the PAOD and AAA measurements showed positive longitudinal strains, i.e. circumferential 

extension and axial lengthening at the same time. With the used BCs and hyperelastic constitutive equa-

tion [eq. 7-25], such a behavior cannot be modeled without additional time-dependent axial forces. In 

case of the PAOD patient aorta, no additional axial force results from increasing hydrostatic pressure. 

In consequence, the identified constitutive behavior limits the shortening of the sample to െ0.02% by 

identifying a transversely isotropic material with a longitudinally oriented preferred direction that shows 

only minimum transverse contraction. In contrast, due to the strongly saccular geometry of the AAA 

[Figure 7-14 e, f], the systolic increase in hydrostatic pressure exerts an axial force component on the 

wall, as well. Here the circumferential orientation of the mean material direction that is associated with 

the stiffer exponential part of the constitutive equation renders the structure less stiff in longitudinal 

direction to allow for some systolic lengthening as response to the slight increase in the axial forces 

acting on the structure. The difference of systolic shortening and lengthening is not a characteristic dif-

ference between young/healthy and elderly/diseased aortae. In a cohort of 37 healthy volunteers, 14 
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aortae showed systolic lengthening and 23 systolic shortening. In 23 elderly subjects and 34 AAA pa-

tients, systolic lengthening was found in 10 and 15 subjects, respectively. The others exhibited systolic 

shortening. 

The size of the deviation per element that ranges from 1.3% to 3.8% for all in-plane strain compo-

nents seems to be acceptable, considering the uncertainties that affect a FE model that is based on in 

vivo data. For the most part, the observed deviation per element can be attributed to the fact that the FE 

models are not capable to recover the degree of heterogeneity of the measured strain distributions. This 

is most probably due to the homogenizing modeling assumptions such as constant wall thickness and 

homogeneous material parameters. Only the imaged irregular geometries introduce some degree of het-

erogeneity into the simulated strain distributions, which is amplified by the nonlinearity of the material. 

This approach holds very well for the HV data, but is less appropriate for the PAOD and the AAA data, 

where additional sources of heterogeneity such as local variations of wall thickness and elastic properties 

(calcifications, plaque, agglomerations of adipocytes) can be expected that are not included in the model 

at present. These, however, are common simplifications in state of the art FEA of thrombus free AAA 

[cf. the reviews by Humphrey and Holzapfel 2012; Avanzini et al. 2014; Martufi et al. 2014; Gasser 

2016; Farotto et al. 2018 and original work e.g. by Joldes et al. 2015a; Kok et al. 2015; Gade et al. 2019]. 

Different approaches have been proposed to identify spatially varying material properties based on 

full-field data. Usually these approaches are applied to in vitro data [Zhao et al. 2009; Avril et al. 2010], 

where samples with constant known wall thickness are used or local wall thickness can be measured, or 

to numerically generated data [Kroon and Holzapfel 2009; Smoljkic et al. 2015; Liu et al. 2017; Liang 

et al. 2018], where all relevant parameters other than the constitutive behavior are known. In contrast, 

when applying an inverse approach to in vivo data, heterogeneous strain distributions that cannot be 

explained by irregular geometry may have two sources: variation of wall thickness or variation of con-

stitutive behavior. To date, the data that are available in vivo do not allow to identify the source of 

heterogeneity. Thus, inverse identification of varying wall thickness and constitutive behavior on a data 

basis as was available in the present work is an ill-posed problem [Kabanikhin 2008] and the author 

considers it a reasonable decision to restrict the approach to the identification of an averaged constitutive 

behavior.
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8 Summary and outlook 

Using a modified 3D echocardiography device that was equipped with a speckle tracking algorithm, a 

method for the non-invasive full field displacement and strain measurement of aortic wall motion was 

developed and clinically established in cooperation with clinical partners. In an in vitro study, the meas-

urement method was validated with respect to agreement with optical reference measurements and its 

reproducibility. The validation study showed that 95% confidence interval of the mean as well as the 

local strain values is about േ2.1% if these values are obtained from a single evaluation of a single meas-

urement. In contrast, the measurement uncertainty is almost zero if mean and local strain values are 

determined as the arithmetical mean of repeated measurements and evaluations. 2.1% means a relative 

error of between 100% and 200% when the average size of the most relevant circumferential strain 

values in aged and AAA patients (1.9% and 0.9%, respectively; cf. Table 6-3) is considered. Thus, data 

sets of single patients are reliable only if they are determined as means of repeated measurements or 

evaluations. A clinical workflow for data acquisition and evaluation, which takes into account these 

results of the validation study, has to be established in future if diagnostic use is intended. In contrast, 

the results of the clinical studies that are presented in chapters 3, 5 and 6 are not compromised by the 

identified random error of a single measurement: group mean or median values were compared, only. 

Only in chapter 7 single data sets were used as basis for constitutive parameter identification. Therefore, 

the effect of the measurement uncertainty on the identified constitutive behavior was investigated. 

The modified 4D ultrasound measurement made accessible in vivo information on the locally varying 

elastic deformation of human aortic and aneurysmal walls under cyclic loading by pulse pressure with 

high temporal and spatial resolution. Previous to this work, comparable full field data were available 

from optical laboratory measurements, i.e. from excised tissue samples, only. 

Two methods for the in vivo identification of the individual elastic properties were developed that 

take into account the geometrically irregular configurations of real blood vessels and, therefore, are 

applicable to aortic aneurysms:  

Firstly, a local distensibility coefficient was defined. Distensibility is a common simplifying, uniax-

ial (in circumferential direction) and linear approximation of the orthotropic and nonlinear elastic prop-

erties of aortic walls. However, it is determined based on in vivo data, only, without further modeling 

assumptions and captures the physiologically relevant elastic response of the aortic wall to cyclic load-

ing by blood pressure. Given the fact that only two load cases – minimum and maximum blood pressure 
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– were available non-invasively in vivo, the restriction to a linear model allowed to access, for the first 

time, the locally varying elastic behavior of the wall and its heterogeneous distribution.  

Secondly, based on these full field strain data, a method for the identification of the parameters of a 

constitutive equation that adequately models the orthotropic and nonlinear elastic properties of aortic 

walls was developed. This was possible because full field measurements of the heterogeneous strain 

distributions were available and the geometrically irregular configuration of the wall was taken into 

account: Depending on the local curvature of the wall, the loading by the identical blood pressure trans-

lates into a range of stress-strain relations that proved to be a sufficient basis for the reproducible iden-

tification of the orthotropic and nonlinear elastic constitutive behavior in a numerical verification ex-

periment. Despite the newly available full field data, a series of non-individual modeling assumptions 

was necessary for this approach. Using the heterogeneity of the strain field for the identification of the 

nonlinear behavior, on the other hand necessitated the assumption of homogeneous material properties 

throughout the imaged aortic segment, which is a simplifying assumption if biological structures are 

considered. 

The discussion of the limitations of both developed approaches to the identification of the individual 

elastic properties – uniaxial and linear, but locally varying distensibility and homogeneous orthotropic 

hyperelasticity – shows that biomechanical modeling and underlying assumptions are shaped strongly 

by available data. This applies in particular to work that is based on human in vivo data. 

Both approaches were applied to exemplary patient data in clinical studies. The results demonstrated 

the potential use of the identified constitutive parameters as well as the statistical analysis of the obtained 

strain and distensibility distributions as additional biomarkers for aortic health and for disease progres-

sion of AAAs. The correlation of these new in vivo indices with AAA disease progression, wall strength 

or rupture risk is a promising hypothesis. However, this hypothesis has to be validated and tested in 

further clinical studies. This is a challenging task, because to date no independent and reliable in vivo 

or in vitro criterion for AAA disease progression and rupture risk is available against which the predic-

tive value of the new biomarkers could be validated. In fact, the deficiencies of the established clinical 

criteria, maximum diameter and growth rate, gave rise to the research presented in this thesis. 
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Appendix 

A. Derivatives of the pseudoinvariants 

 

The pseudoinvariants of the right CAUCHY strain tensor 𝑪 and one or more preferred directions of ani-

sotropy and their derivatives with regard to 𝑪 are given e.g. in Holzapfel [2010], Ogden [2003] and 

Ogden [2009], however without detailed description of the derivation. Therefore, the derivation is de-

scribed in detail, here. 

The derivative of a scalar valued tensor function with regard to the argument tensor was obtained 

using the GATEAUX variation 𝛿𝑓 [cf. Silber and Steinwender 2005]: 

 
𝛿𝑓ሺ𝑨,𝑨ഥሻ ൌ

𝑑
𝑑𝜆

ሾ𝑓ሺ𝑨 ൅ 𝜆𝑨ഥሻሿ|ఒୀ଴ ൌ ൬
𝜕𝑓
𝜕𝑨
൰ :𝑨ഥ  . eq. 8-1 

a. 4th pseudoinvariant 

 𝐼ସఈ ൌ 𝑪:𝒂଴ఈ⨂𝒂଴ఈ ൌ 𝒂଴ఈ ∙ 𝑪 ∙ 𝒂଴ఈ  , eq. 8-2 

where the vector 𝒂଴ఈ ∈ 𝐑ଷ indicates the 𝛼௧௛ preferred direction of anisotropy as determined in the ref-

erence configuration and the dyadic product 𝒂଴ఈ⨂𝒂଴ఈ is called structure tensor. 
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eq. 8-3 

b. 5th Pseudoinvariant 

 𝐼ହఈ ൌ 𝑪ଶ:𝒂଴ఈ⨂𝒂଴ఈ ൌ 𝒂଴ఈ ∙ 𝑪ଶ ∙ 𝒂଴ఈ  , eq. 8-4 
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c. Pseudoinvariant for the coupling of two preferred directions 

In literature this pseudoinvariant is often referred to as 8th invariant 𝐼  since for two preferred directions 

ሺ𝛼,𝛽ሻ  often the following nomenclature is used: 𝐼ସఈ ≡ 𝐼ସ , 𝐼ସఉ ≡ 𝐼଺ , 𝐼ହఈ ≡ 𝐼ହ , 𝐼ହఉ ≡ 𝐼଻  and conse-

quently 𝐼஑ஒ ≡ 𝐼 . 

 𝐼ఈఉ ൌ 𝑪:𝒂଴ఈ⨂𝒂଴ఉ ൌ 𝒂଴ఈ ∙ 𝑪 ∙ 𝒂଴ఉ , eq. 8-6 
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eq. 8-7 
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B. Convergence study for the FE discretization of  

pressurized aortic segments 

A “native” FE discretization was determined by using the measured position vectors 𝑿௜,௝ of discrete 

material points of the aortic or aneurysmal wall in a chosen, deformed reference configuration as nodes 

of a mesh of 4-node membrane or shell elements [cf. chapters 3.3.4.1 and 7.6.2]. For the direct compu-

tation of local wall strains from reference geometry and measured displacements [cf. chapters 3 and 6], 

Abaqus 6.12/Standard membrane elements of type M3D4R were used. For this type of strain computa-

tion, the mesh was not refined: the obtained strain fields can be regarded as measured data and further 

refinement would neither provide any additional information, nor increase the accuracy of computation. 

If, in contrast, strain fields were estimated by a nonlinear FEA as a discrete nonlinear function of refer-

ence geometry, boundary conditions and loading and a guess of the unknown constitutive parameters – 

as was necessary for the constitutive parameter identification that is described in chapter 7 – the degree 

of discretization affected the accuracy of the analysis results. Therefore, a convergence study was per-

formed in order to determine the appropriate degree of refinement of the “native” mesh providing suf-

ficient accuracy at lowest possible computational costs. 

 

Figure 8-1 Native mesh of the almost cylindrical aortic segment and the geometrically strongly irregular aortic 
segment as obtained by using the discrete material points 𝑿ௗ௜௔ 
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For the convergence study, 4D ultrasound data of a healthy aortic segment with almost regular cy-

lindrical geometry [Figure 8-1 a] and of a strongly irregular AAA [Figure 8-1 b] were chosen. FE pre-

processing was done according to chapter 7.6.2. Dimensions of the imaged segments, characteristic edge 

length of the “native” mesh and applied pressure load are given in Table 8-1. Since the only purpose of 

the performed FEAs was to determine the dependency of the analysis results on the degree of discreti-

zation, the imaged diastolic configuration was taken as load- and stress-free natural configuration, in 

this case. 

Table 8-1 Reference diameter, length, edge length of shell elements and size of pressure load for the two data sets 
for which a convergence test was performed. 

Geometry Diameter in mm Length in mm Edge length in mm Pressure in mmHg 

Slightly irregular 16.9 32.0 ≈ 1.5 120 

Strongly irregular 31.8* 53.5 ≤ 3.0 120 

*In contrast to the geometrically slightly irregular segment, the local maximum diameter of the strongly irregular 
geometry is given here as the measure that is clinically relevant for AAA. 

The same strain energy function for which constitutive parameter identification was performed [cf. 

chapter 7.4] was used in this convergence study. Reasonable, but arbitrary constitutive parameters were 

employed. As can be seen immediately, the constitutive parameters that were used with the strongly 

irregular geometry are the ones that were inversely identified for the AAA sample in chapter 7 [Table 

7-4]. For irregular geometries, the convergence study was performed after the in vivo parameter identi-

fication had been conducted on trial. The results of the convergence study have confirmed that the degree 

of discretization that had been chosen on the basis of experience was appropriate and then the results of 

the parameter identification were accepted. 

Table 8-2 Constitutive parameters of the Holzapfel-Gasser-Ogden model that were used in the convergence study. 

Geometry µ1 in MPa k1 in MPa k2 κ φ in ° 

Slightly irregular 0.151 0.186 336.27 0.25 21.5 

Strongly irregular 0.228 4.736 1960.65 0.21 4.6 

Figure 8-2, Figure 8-3 and Figure 8-4 show the results that were obtained for the almost regular 

cylindrical geometry. Figure 8-2 gives a quantitative comparison of the distributions of local maximum 

principal in-plane strains that were obtained using the “native” mesh and a 4-fold and 9-fold refinement, 

i.e. splitting one element of the native mesh into 4 and 9 elements, respectively. The differences between 

the median as well as the maximum of the distributions that were obtained for the “native” mesh and 

the 4-fold refinement were ൏ 0.001. Therefore, the “native” mesh was accepted as sufficient for non-

aneurysmal aortae. Figure 8-3 and Figure 8-4 illustrate the good agreement of the spatial in-plane prin-

cipal strain and stress distributions, respectively. 
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Figure 8-2 Comparison of the distributions of maximum principle in-plane strains obtained for the native mesh 
and different degrees of mesh refinement of an almost regularly cylindrical tube [cf. Figure 8-1] 

 

 

Figure 8-3 Comparison of the spatial distributions of maximum principle in-plane strains obtained for the native 
mesh and different degrees of mesh refinement of an almost regularly cylindrical tube. 



235 Appendix B 

 

 

Figure 8-4 Comparison of the spatial distributions of maximum principle in-plane stresses obtained for the native 
mesh and different degrees of mesh refinement of an almost regularly cylindrical tube. 

The results for the strongly irregular aneurysmal geometry are given in Figure 8-5, Figure 8-6 and 

Figure 8-7. Figure 8-5 gives a quantitative comparison of the distributions of local maximum principal 

in-plane strains obtained for the “native” mesh and 4-fold, 9-fold, 16-fold, 25-fold and 36-fold refine-

ment. A considerable difference was found between the native mesh and the 4-fold refinement. In con-

trast, only negligible differences were observed between the median value obtained using the 4-fold 

refined mesh and the median values obtained for all further refinements. Though a steady increase of 

the local maximum value was observed, this difference was ൏ 0.01 and affected far outliers of the dis-

tribution of local strains, only. Figure 8-6 and Figure 8-7 illustrate the good qualitative agreement of the 

spatial in-plane principal strain and stress distributions, respectively. Note, in particular, that the loca-

tions and areas of local peak strains and local peak stresses agree very well. Based on these results, a 4-

fold refinement of the “native” mesh was accepted for aneurysmal geometries. 
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Figure 8-5 Comparison of the distributions of maximum principle in-plane strains obtained for the native mesh 
and different degrees of mesh refinement of a strongly irregular geometry (cf. Figure 8-1) 

 

Figure 8-6 Comparison of the spatial distributions of maximum principle in-plane strains obtained for the native 
mesh and different degrees of mesh refinement of a strongly irregular AAA geometry. 
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Figure 8-7 Comparison of the spatial distributions of maximum principle in-plane stresses obtained for the native 
mesh and different degrees of mesh refinement of a strongly irregular AAA geometry. 
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C. First approach to a Finite Element Model Updating  

workflow 

 

Figure 8-8 Flow chart of the 2013 version of the Finite Element Model Updating method (FEMU) to determine 
individual elastic properties of the aortic wall based on non-invasively in vivo acquired 4D-US data. [Reprinted 
from Wittek et al. 2013 with permission from Elsevier] 
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Figure 8-9 Recovery of the load-free configuration that was achieved in the numerical verification experiment 
using the 2013 FEMU workflow according to Figure 8-8: Comparison of the load-free geometry given by the 
master model and the geometry of the estimation model (EM) determined by the iterative optimal design algorithm 
depending on the identified constitutive parameter set. a) Load-free configuration of the master model. The geo-
metrical differences to the load-free configuration of the EM are indicated (scale in mm). b) Quantitative distribu-
tion of the geometrical differences indicating a median difference of 0.09 mm and a Hausdorff distance of 0.20 
mm. [Reprinted from Wittek et al. 2013 with permission from Elsevier]



Appendix 240 

 

D. List of first author publications that were used  

in this thesis 

a. Peer reviewed journal articles 

KARATOLIOS, K. *, WITTEK, A. *, NWE, T.H., BIHARI, P., SHELKE, A., JOSEF, D., SCHMITZ-RIXEN, T., GEKS, J., MAISCH, B., 

BLASE, C., MOOSDORF, R. AND VOGT, S. 2013. Method for Aortic Wall Strain Measurement with Three-Dimensional Ul-

trasound Speckle Tracking and Fitted Finite Element Analysis. Ann Thorac Surg 96, 5, 1664–1671, *equal contribution. 

WITTEK, A., KARATOLIOS, K., BIHARI, P., SCHMITZ-RIXEN, T., MOOSDORF, R., VOGT, S. AND BLASE, C. 2013. In vivo determi-

nation of elastic properties of the human aorta based on 4D ultrasound data. J Mech Behav Biomed Mater, 27, 167–183. 

WITTEK, A., DERWICH, W., KARATOLIOS, K., FRITZEN, C.P., VOGT, S., SCHMITZ-RIXEN, T. AND BLASE, C. 2016a. A finite ele-

ment updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls 

from 4D ultrasound strain imaging. J Mech Behav Biomed Mater, 58, 122–138. 

WITTEK, A. *, KARATOLIOS, K. *, FRITZEN, C.-P., BEREITER-HAHN, J., SCHIEFFER, B., MOOSDORF, R., VOGT, S. AND BLASE, C. 

2016b. Cyclic three-dimensional wall motion of the human ascending and abdominal aorta characterized by time resolved 

three-dimensional ultrasound speckle tracking. Biomech Model Mechanobiol 15, 5, 1375–1388, *equal contribution. 

WITTEK, A., DERWICH, W., FRITZEN, C.‐P., SCHMITZ‐RIXEN, T. AND BLASE, C. 2018. Towards non‐invasive in vivo characteri-

zation of the pathophysiological state and mechanical wall strength of the individual human AAA wall based on 4D ultra-

sound measurements. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik 

und Mechanik 98, 12 (Special Issue: Mathematical and Computational Modeling in Biomechanics), 2275–2294. 

b. Peer reviewed contributions to conference proceedings 

WITTEK, A., BLASE, C., DERWICH, W., SCHMITZ-RIXEN, T. AND FRITZEN, C.-P. 2017a. Characterization of the mechanical be-

havior and pathophysiological state of abdominal aortic aneurysms based on 4D ultrasound strain imaging. In Proc. SPIE 

10333, Optical Methods for Inspection, Characterization, and Imaging of Biomaterials III, P. FERRARO, S. GRILLI, M. 

RITSCH-MARTE AND C. K. HITZENBERGER, Eds. SPIE, 1033303. 

WITTEK, A., DERWICH, W., FRITZEN, C.-P., SCHMITZ-RIXEN, T. AND BLASE, C. 2017b. Validation of full field measurement of 

aortic wall motion by 4D-ultrasound. In CBME17. 5th International Conference on Computational & Mathematical Bio-

medical Engineering, P. NITHIARASU AND A. M. ROBERTSON, Eds. Zeta Computational Resources Ltd., Swansea, United 

Kingdom, 656–659. 

WITTEK, A., FRITZEN, C.-P., HUß, A. AND BLASE, C. 2019. Inverse Identification of the individual, non-linear and orthotropic 

material properties of human internal anatomical structures based on non-invasive real-time 3D ultrasound full-field meas-

urements. In Material Properties in Structure Analysis. Modeling, Calibration, Simulation & Optimization, NAFEMS, 

Ed., 129–138 

 


	Front page
	Title page
	Preface
	Summary
	Zusammenfassung
	Contents
	Nomenclature
	1 Introduction
	1.1 Motivation by the abdominal aortic aneurysmrupture risk estimation
	1.2 Organization of the thesis
	1.3 The heart and the physiological function of thearteries’ elastic properties
	1.4 Microstructural elements and compositionof the aortic wall
	1.5 Mechanical properties of the aortic wall
	1.6 Axial prestretch and residual stresses
	1.7 Degenerative changes of the aorta‘s elastic properties with age and pathology

	2 Continuum mechanical framework
	2.1 Kinematics of finite deformations
	2.2 Stress tensors
	2.3 Elastic material properties

	3 A method for non-invasive fullfield strain measurement
	3.1 Ultrasound measurement of aortic wall deformation
	3.2 Clinical data acquisition and post-processing
	3.3 Deformation metrics based on customized 4D ultrasound wall motion data
	3.4 Effects of increased spatial resolution on in vivo strain measurement
	3.5 Characteristic size of aortic wall motion in vivoThe

	4 In vitro validation of full-field wall motion measurement
	4.1 Introduction
	4.2 Methods of the in vitro validation study
	4.3 Results of the validation study
	4.4 Discussion of the validation results
	4.5 Limitations of the validation study

	5 Comparative Analysis of ascending and abdominal aortic wall motion
	5.1 Introduction
	5.2 Study collective and in vivo data acquisition
	5.3 Statistics
	5.4 Multiaxial deformation of the ascending and the abdominal aorta
	5.5 Relations between deformation patterns and physiological function

	6 Locally varying elastic behavior of human aortae in vivo
	6.1 In vivo measures of aortic elasticity in thephysiological range
	6.2 The local distensibility coefficient
	6.3 Indices for the characterization of the spatial distribution of the local elastic behavior
	6.4 Distributions of local elasticity in young, aged and aneurysmal aortic walls
	6.5 Discussion and limitations

	7 Identification of the orthotropic and hyperelastic constitutive behaviorof aortic walls in vivo
	7.1 Introduction
	7.2 Assumptions for the patient-specific modeling
	7.3 Theoretical basis for constitutive parameter identification in vivo
	7.4 Constitutive equation
	7.5 Non-invasive in vivo data
	7.6 Model-based estimation of systolic in-plane strains
	7.7 Constitutive parameter identification strategy
	7.8 Numerical verification experiment
	7.9 Results of the verification experiment
	7.10 Individual constitutive behavior identified based on in vivo data
	7.11 Discussion and conclusions

	8 Summary and outlook
	9 References
	Appendix
	A. Derivatives of the pseudoinvariants
	B. Convergence study for the FE discretization of pressurized aortic segments
	C. First approach to a Finite Element Model Updating workflow
	D. List of first author publications that were used in this thesis




