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a b s t r a c t

Although applications of additive manufacturing (AM) have been significantly increased in

recent years, its broad application in several industries is still under progress. AM also

known as three-dimensional (3D) printing is layer by layer manufacturing process which

can be used for fabrication of geometrically complex customized functional end-use

products. Since AM processing parameters have significant effects on the performance of

the printed parts, it is necessary to tune these parameters which is a difficult task. Today,

different artificial intelligence techniques have been utilized to optimize AM parameters

and predict mechanical behavior of 3D-printed components. In the present study, appli-

cations of machine learning (ML) in prediction of structural performance and fracture of

additively manufactured components has been presented. This study first outlines an

overview of ML and then summarizes its applications in AM. The main part of this review,

focuses on applications of ML in prediction of mechanical behavior and fracture of 3D-

printed parts. To this aim, previous research works which investigated application of ML in

characterization of polymeric and metallic 3D-printed parts have been reviewed and dis-

cussed. Moreover, the review and analysis indicate limitations, challenges, and perspec-

tives for industrial applications of ML in the field of AM. Considering advantages of ML

increase in applications of ML in optimization of 3D printing parameters, prediction of

mechanical performance, and evaluation of 3D-printed products is expected.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Replacementandupgradingproductshavebecomeincreasingly

rapid in recent years and competitions in manufacturing leads

to development of new technologies. Additive Manufacturing

(AM) or three-dimensional (3D) printing is a rapid prototyping
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process based on adding successive layers of material to create

3D objects under computer control. Working with a wide range

ofmaterials, alongwith the few limitations in the fabrication of

complex geometries, have proven to be advantages of the AM

compared with conventional processes. This manufacturing

process has been used in a wide variety of applications such as
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aerospace [1], automotive [2], electronics [3], medicine [4], con-

struction [5], and healthcare monitoring [6]. According to the

American Society for Testing Materials (ASTM), AM has been

classified into sevenprocesses: binder jetting, sheet lamination,

direct energydeposition,material extrusion,powderbed fusion,

material jetting, and vat photopolymerization [7]. Based on ap-

plications of AM, different engineering aspects have been

studied in this field. For instance, sustainability [8], mechanical

strength [9], environmental impacts [10], and different welding

applications [11] have been investigated in recent research

works. Since AM processing parameters (e.g., powder size,

printing speed, layer thickness, laser power, and raster orien-

tation) have crucial effects on the structural integrity and me-

chanical performance of 3D-printed parts, different methods

have been used to optimize these parameters and predict me-

chanical behavior of printed components [12e17]. For example,

recently in [16] strength and stiffness of 3D-printed polymer

composites were determined based on a series of tensile tests.

Moreover, influence of fiber orientation on the mechanical

properties of the examined components was documented. In

[17], effects of process conditions on fabrication of 3D-printed

composite was investigated in micro and macro levels. In this

context, short carbon-fiber-reinforced polymer composites

were printed based on the material extrusion technique. An

image-based statistical analysis was used for microstructural

characterization (e.g., fiber volume fraction). Moreover, aMonte

Carlo sampling method was used to enrich the datasets. The

obtained results showed that processing parameters play

crucial roles in void generation and distribution of void volume

fraction.

Literature investigation reveals that parallel to the experi-

mental practices, numerical models and different Artificial

Intelligence (AI) approaches have been used to investigate

performance characteristics of 3D-printed components

[18e21]. For instance, in [22] a 3D finite element model was

adopted to determine influence of process parameters on the

melt pool profiles and bead shapes in 3D printing of ceramic

material. At the same time, a physical-based analytical model

was presented to evaluate residual stress in additively man-

ufactured metallic parts [23]. To this aim, prediction of tem-

perature profile was used for assessment of thermal signature

of the process. It was reported that thermal stress used as

input to calculate residual stresses. These previous studies

indicated that performed simulations concentrated on only

one or two aspects of the AM process. As it is impractical to

predict all mechanical properties and the whole process of

some manufacturing methods quickly and accurately, data-

driven models have been used which have unified name of

Machine Learning (ML) [24e28]. ML is an interdisciplinary

subject which is a sub-field of AI and promotes a low-cost

computing through algorithmic learning [29]. In ML

methods, a long list of physical-based equation is not

required, and previous data are used. Based on advantages of

MLmethods, they have been used for different purposes in the

field of AM [30e39]. For example, in [30] a hybrid ML algorithm

was presented to recommend design feature for 3D-printed

parts. The proposed method was examined through design of

3D-printed car components. The described method can be

used during the design phase by inexperienced designers.

Based on the suggested AM design features, capabilities of the
presentedmethodwas proved. In a study [33], ML was utilized

for process monitoring of 3D printing. The proposed method

was able to evaluate quality of the 3D-printed polymer parts

with integration of a camera, image processing and ML. Two

polymeric materials were used to demonstrate the proposed

framework. The documented results confirmed benefits of the

automated process monitoring in quality assessment. Later,

in [36], applications of neural-network-based ML in AM was

presented. These applications includes model design, in situ

monitoring, and quality control. For in situ monitoring,

different types of source data can be used, (e.g., spectra, im-

ages, and tomography). Based on the documented applica-

tions of neural-network-based ML in AM, it was concluded

that there is a great potential in this field from design to post-

processing phase. In a subsequent study, ML was used to

characterize powder spreading in laser powder bed fusion

process [40]. In detail, researchers used a high speed camera to

study morphology of melt pools and ML was employed to

differentiate between observed melt pools. As inappropriate

powder spreading can leads to different defects, the proposed

method paves the way for detection of various defects during

the printing process.

In the current study, applications of ML methods in me-

chanical characterization of 3D-printed parts are reviewed. To

this aim, three sub-domains are considered which have direct

effects on the mechanical behavior of 3D-printed parts: (a)

process parameters, (b) porosity, and (d) defect in printed parts.

The goal of this survey is to summarize the developed ML-

based systems which are applied in different AM methods.

The current study shows the progress that has been made, the

challenges, and opportunities that exist for advancing research

in this promising field. We hope that this review would be

valuable for scientistswhoare interested in exploring the use of

ML in enhancing their models. In this paper, we have sum-

marized, explained and compared applications of ML in the

aforementioned sub-domains. The remainder of this paper is

organized as follows: Section 2 provides a brief overview onML.

In Section 3 applications of ML in predicting mechanical

behavior of 3D-printed parts have been presented. Advantages,

challenges and perspectives have been outlined in Section 4.

Further, a conclusion has been furnished in Section 5.
2. An overview of machine learning

As today's real problems are challenging, different AI ap-

proaches proved their capabilities in several domains. During

the past decades, several attempts were made to acquire

knowledge by machine and different methods based on

connection principles [41]. Subsequently, various methods

based on statistical learning theory such as Decision Tress

(DTs) and Support Vector Machines (SVMs) were introduced

[42]. ML is an AI technique which allows a system or machine

to learn automatically in order to predict without being

explicitly programmed [43]. Indeed, ML aims to perform a task

by analyzing and learning within a given data-set. Consid-

ering different operations depends on the data, ML is divided

into three categories: (a) supervised, (b) unsupervised, and (c)

reinforcement learning. Fig. 1 shows some of the commonML

approaches. In supervised learning, the algorithm learns from

https://doi.org/10.1016/j.jmrt.2021.07.004
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labeled training data to help prediction of outcomes, while in

unsupervised learning, the algorithm discovers relationships

amongst features of interest using unlabelled data. In rein-

forcement learning, the model can interact with the envi-

ronment to learn and take the best actions which leads to

greatest rewards.

ML presents good applicability in regression, classification,

and other requests related to high-dimensional data. The

training is based on learning from previous computations and

the datasets can be in different forms such as audio signals

[44], text [45] or images [46]. It should be noted that Convolu-

tional Neural Networks (CNN), Adaptive Network-Fuzzy

Interference system (ANFIS), Recurrent Neural Networks

(RNN), Self-OrganizingMap (SOM), Deep Belief Network (DBN),

and Multi-Layer Perceptron (MLP) are categorized as the neu-

ral networks-based ML techniques. The other algorithms

belong to the traditional ML technique. ML algorithms with

more than two hidden layers in the neural networks are

known as deep learning.

In construction of a ML system, selection of an appropriate

ML algorithm is a crucial issue, because each algorithm has

significant effect on the accuracy of the result. As each algo-

rithm has its own advantages for a specific application, there

is no algorithm which is suitable for all problems. Commonly

used ML algorithms in mechanical engineering can be divided

into following categories: regression, estimation, classifica-

tion and clustering. In detail, regression, clustering and clas-

sification algorithms are mainly utilized for material property

prediction. Fig. 2 shows commonly utilized ML algorithms for

solving different problems of mechanical engineering.

Themain processes ofML are divided into data preparation

of data, descriptor selection, choosing algorithm, model pre-

diction, and application [47]. A full cycle of the prediction

mechanical properties and behavior of a structural compo-

nent contains experimental data collection, prediction of

favourable properties, and experimental validation. In pre-

diction of material behavior and mechanical properties, the

main idea relies on the use of a probabilistic model.

Numerical simulation and ML are related as they both

deals with the models. Although in simulation, the random

variable inputs are not known exactly, the model is known

exactly. In ML, themodel is unknown prior to training, but the

inputs are known. The previous studies showed that ML and

simulation have interacting area which should be considered

in their applications. Here, we summarize these interactions:

- The ML methods can act as a substitute for traditional

numerical simulation techniques. ML and simulation have

a similar goal which is prediction of behavior of a system

with data analysis and mathematical modeling [48]. ML-
Fig. 1 e Classification of ML algorithms.
based models are becoming a realistic choice, because

they canmodel high-dimensional phenomenamuch faster

than most physical simulations.

- The integration of simulation intoML can beperformedwith

applications on natural science and engineering. In detail,

simulation results can be integrated into different compo-

nents of ML (e.g., training data, algorithm, and final hypoth-

esis). The literature reveals that the integrationof simulation

results into ML is most often happens via improving the

trainingdata. For instance, in [49,50], simulation resultswere

used for training data in prediction of mechanical strength

and urban routing problem, respectively. ML algorithm can

learn from previous numerical results. Indeed, similar to the

experimental data, thenumerical simulationscanbeusedas

data source for the MLmethods.

- The ML can be integrated into simulation. More in deep, ML

techniques can be utilized in different simulation compo-

nents. Particularly, ML techniques can be integrated into the

model in order to reducemodel order and develop surrogate

models which offer approximate bur simpler solutions. In

addition, integration of ML techniques into simulation can

be considered for study in the parameter dependence of

simulation results. For example, as presented in [51] a ML

model can be used for detecting different behavioralmodels

in simulation results which reduce the analysis efforts

during the engineering process. The integration of ML into

the numerical simulation is beneficial in obtaining the nu-

merical solution. In this context, parts of the model which

are resource-consuming can be solved by learned models

which can be computed faster.

Although integration of ML and simulation is at the

beginning, different aspects must be taken into account. The

merging of planning and production phase as a technical goal

of the fourth industrial revolution, a new generation of

computer-aided engineering software systems is required to

provide very fast process optimization cycles. An advanced

integration of ML and simulation would be beneficial in real-

izing such systems.

A review of the literature reveals that ML has attracted the

attention of researchers in different fields such as medicine

https://doi.org/10.1016/j.jmrt.2021.07.004
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[52], material science [53], construction industry [54], and

mechanical engineering [55]. In the following section, appli-

cations of ML in prediction of mechanical behavior and per-

formance of additively manufactured parts are presented.
3. Applications of ML techniques in AM

3.1. An overview of using ML in AM

Production based on AM includes four main phases: design,

printing process, post-processing, and part evaluation. The

major details of these phases are shown in Fig. 3, where

different ML techniques can be used. Design of 3D printing

contains preparing a CAD model of the part which is the first

step of the whole process. The processing chain is finished by

evaluation of the 3D-printed part.

Among seven categories of AM techniques, binder jetting,

material extrusion,andpowderbedfusionare threewidelyused

technologies. Fused Deposition Modeling (FDM) or Fused Fila-

ment Fabrication (FFF) is a common printing process based on

material extrusion. Powder bed fusion can be divided to Selec-

tive LaserMelting (SLM), Electron BeamMelting (EBM), Selective

Laser Sintering (SLS), and so on. Table 1 presents applications of

ML techniques for different purposes in the field of AM.

3.2. ML for prediction of mechanical behavior

Although there are methods, e.g., finite element analysis to

predict mechanical behavior of parts, they may suffer from

differences with experimental findings because of simpli-

fying assumptions. Therefore, feasibility of ML approaches in

predicting mechanical behavior of structural components

have been explored in previous research works. Here, the
Table 1 e Applied ML techniques in different domains of AM.

Ref. AM process Material

[56] SLM AlSi10Mg

[57] FDM PLA

[58] SLS ABS

[59] SLM Steel

[60] SLA Polymer

[61] DED Steel

[62] DED Copper

[63] EBM CoCr alloy
focus of this review is on applied ML techniques in three

domains which have effects on the mechanical behavior and

performance of 3D-printed components. These domains are

as follows: (a) optimization of process parameters, (b) pre-

diction of porosity, and (c) defect detection in 3D-printed

parts. Since printing parameters, porosity, and defects can

significantly change mechanical performance of additively

manufactured parts, optimization and prediction of these

parameters are beneficial to enhance the mechanical

behavior of the parts. In the current study, AM techniques

involving ML approaches are classified under three methods.

In Fig. 4 these techniques and the relevant methods are

presented.

Different solid materials such as metals and ceramic are

considered as structural or functional materials and their

properties depend on the type of bonding between the con-

stituent atoms and geometrical atomic arrangement. The

chemical bonds with individual groups, and traditional mate-

rials science tetrahedron are illustrated in Fig. 5. Metals and

their alloys possess primarily metallic bonding, whereas many

ceramics exhibit a mixture of covalent and ionic bonding.

Control of atomic arrangement and microstructure is possible

through different processes. Since the microstructure has a

major effect on the properties of materials, a rough guideline is

required to evaluate a specificmicrostructural feature. In [64], a

comprehensive review on microstructure modelling of 3D-

printed metal parts is presented. The optimization of the me-

chanical behavior of metallic parts is related to the under-

standing of the relationships microstructureemechanical

properties. The microstructure of engineering materials is

described by types of phases present, the grain size, description

of their structure, shape, and size distributions. Zero-

dimensioanl defects (e.g., point defects), one-dimensional de-

fects (e.g., dislocations) and two-dimensional defects (e.g., grain
ML method Purpose

SVM Characterization of AM powder

MLP Minimizing support waste

ANN Density prediction

MLP Classification of melting state

CNN Design optimization

SVM Prediction of building precision

MLP Prediction of bead geometry

SVM Construction of process maps
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Fig. 4 e Additive manufacturing processes involving machine learning.
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boundaries) are important microstructural features that often

control the resulting properties.

In metallic structural elements, microstructure and integ-

rity of the metal are dependent upon mechanical stresses.

Microstructural changes are important for the consolidation

behavior of the parts. Depending on the loading conditions,

different microstructures of metal materials (e.g., pores at

grain boundaries) can lead to macrostructural damage and

consequently reduce the lifetime. Therefore, study of micro-

structures is an important issue. Over the years, different

characterization techniques have been used to study part

microstructures [65e68]. Recently, in [69] influence of post-

processing on microstructure and thermal properties of 3D-

printed parts are investigated.

There are several microstructural features which are

related to the mechanical properties. For example, grain size,

preferred grain orientation (texture), phase transitions, size,

shape, and volume fraction of particles. In Table 2, effect of

microstructure and atomic defects upon the properties of

metallic materials are summarized.

Although ML techniques have been used to predict certain

behavior, properties, and fatigue life of 3D-printed parts

[70e73], these research works are not very relevant to the

focus of the current study.

3.2.1. ML for optimizing process parameters of 3D printing
In fabrication of components using 3D printing methods,

different processing parameters play crucial roles in quality

and performance of the printed parts. Therefore, effects of

these parameters have been investigated in several research
Covalent
Semiconductors

Mettalic

Metals

Ionic

Ceramics

Polymers

van-der-Waals

Fig. 5 e Bonding behavior in different engineering materials (
works [74e77], but experimental practices are time- and cost-

intensive. Among various alternatives, ML techniques proved

their capabilities in optimization of process parameters in 3D

printing. In [78] Gaussian process-based model was used to

predict melt pool depth in the laser powder-bed fusion pro-

cess. In this context, scan speed and laser power were

considered as inputs and experimental data from printing of

316L stainless steel were utilized. The model was validated

and showed a good performance with a low mean absolute

predictive error.

In Direct Energy Deposition (DED) process, the melt pool

morphology (e.g., geometry, continuity, and uniformity) has a

significant influence on the quality of the 3D-printed parts. In

this respect, MLP was used to predict width, depth, and height

of the melt pool in different DED processes [79e83]. In [84] a

high speed camera was used to made a vision system for

detecting the information of themelt pool, plume, and spatter

in a Powder Bed Fusion (PBF) process, see Fig. 6. The features

were extracted based on process understanding to feed them

into the traditional ML algorithm. In detail, a CNN model was

applied to identify quality anomalies, and system showed

92.7% accuracy in identification of quality.

At the same time, in [85] MLwas used in the DED process to

find correlation between the input laser metal deposition

process parameters and the output geometrical parameters of

the printed part. The experimental findings were used to train

the ANN according to a two-phase procedure. The obtained

results indicated that NN-based ML can accurately estimate

the processing parameters required to print a metallic part

with a specific geometry. A previous research has indicated
Structure

Performance

Processing

Properties

Characterization

left), and traditional materials science tetrahedron (right).

https://doi.org/10.1016/j.jmrt.2021.07.004
https://doi.org/10.1016/j.jmrt.2021.07.004


Table 2 e Effect of microstructure and atomic defect on
the properties of metallic materials.

Properties Effect of
microstructure

Effect of
atomic defect

Mechanical (e.g., strength) Strong Strong

Electrical (e.g., resistivity) Slight Moderate

Thermal (e.g., conductivity) Slight Moderate

Chemical (e.g., corrosion) Slight Slight
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that MLP is beneficial to optimize process parameters in the

FDM technique [86]. In this context, layer thickness, air gap,

build orientation, raster angle, and number of contours are

optimized to improve viscoelastic responses. In other

research works [87,88], ML was used to optimize printing pa-

rameters and improve wear resistance and compressive

strength of 3D-printed polymer parts.

Since applications of 3D printing in construction industry

have been significantly increased in recent years, optimization

of this process has become of significant importance. In this

context, recently in [89] ML was used for parameter optimiza-

tion in the 3D printing of a cement-based material. Indeed,

researchers developed a numerical model to investigate the

material flow mechanism during the extrusion, and employed

SVM based on ML approach to determine effects of different

factors on the flow mechanism. The system was trained via

experimental data, and the SVM model results indicated that

deformation of the printed filament is not depend on plastic

viscosity, while printign speed and material yield stress have

important effects on the deformation of the printed filament.

More recently, in [90] ML was utilized to develop a data-

driven model in order to predict melt pool temperature in

DED process. In detail, researchers used two ML algorithms

including Extreme Gradient Boosting (XGBoost) and Long

Short-Term Memory (LSTM) which are highly scalable and

very effective in analyzing time-series data. In addition, a

nickel-based supper alloy was used for fabrication of thin-
Fig. 6 e Details of the SLM process monitoring configura
walled test coupons and measure melt pool temperature

within each layer. The obtained results confirmed that both

ML algorithms predicted the melt pool temperature with a

high accuracy. At the same time, 3D extrusion bioprintingwas

optimized by ML [91]. To this end, Bayesian optimization al-

gorithm was utilized to achieve a reproducible 3D scaffold.

More in deep, different bioink concentrations and printing

parameters (e.g., extrusion pressure, bioink reservoir tem-

perature, platform temperature, and printing speed) used as

input into optimizer search space. The output of a probabi-

listic model of the system (Bayesian optimizer, see Fig. 7) was

utilized to recommend the printer setting for next experi-

ment. Researchers defined a scoring system for filament

morphology and layer stacking to evaluate printability. The

print score was introduced as the sum of the absolute value of

the layer stacking score and filament morphology score, see

Fig. 7. The documented results demonstrated Bayesian opti-

mization technique is a quantitative approach for extrusion-

based 3D printing. The introduced Bayesian technique can

be applied to optimize printability of other bioink systems

based on extrusion printing.

Literature review confirmed that ANN is the most

commonly utilized ML technique for process optimization in

different 3D printing techniques. Table 3 summarize ML al-

gorithms utilized for AM process optimization with highest

accuracy which are conducted in the last five years. Com-

parison of supervised and unsupervised learning algorithms

utilized for AM process optimization indicated that the lowest

accuracy belongs to unsupervised learning algorithms. For

instance, in [92], K means clustering was used for pore clas-

sification which showed accuracy in range of 40e44%.

A review of the literature reveals that applied ML algo-

rithms in various 3D printing processes, can be classified in

different levels; macro scale level (e.g., mechanical proper-

ties), and mesoscale level (e.g., melt pool geometries). As

different parameters in aforementioned levels have signifi-

cant influences on the quality of final product, utilizing ML is

beneficial. Considering advantages of ML algorithms, more
tion (ROI: Region of Interest), reproduced from [84].

https://doi.org/10.1016/j.jmrt.2021.07.004
https://doi.org/10.1016/j.jmrt.2021.07.004


Fig. 7 e ML in fast track optimization 3D bioprinting [91].

Table 3 e The utilized ML techniques for process
optimization in AM with highest accuracy in the last five
years.

Ref. AM process Method Accuracy

[93] FFF ANN 91.7%

[94] FFF ANN 96%

[95] Binder jetting ANN 96.5%

[96] FFF ANN 96%

[97] EBM ANN 97.5%

[98] FFF ANN 93%
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applications of this technique in optimizing process parame-

ters of 3D printing methods is expected.

3.2.2. ML in porosity prediction in 3D-printed parts
Since achieving full density is one of the primary objectives in

metal 3D printing, porosity in 3D-printed parts play a crucial

role. In this regard, ML techniques have been used to predict

porosity which has direct effect on the mechanical behavior of

the components. In [99] Back-Propagation Neural Network

(BPNN) was utilized to determine relative density and predict

porosity in 3D printing of bronze. The systemwas trained with

different training algorithms and an optimization based on

Genetic Algorithm (GA) was used increase prediction accuracy.

In the same vein, random forest network ML was employed to

link the part position and orientation to the part porosity [100].

Each build consists of parts orientations with respect to the

build direction (polar angle), see Fig. 8a. The outcome of the

study indicated that orientation of the part has greatest influ-

ence on the pore population. In [101] a Gaussian process-based

predictive model was developed in order to predict porosity in

metal-based 3D printing. In detail, Bayesian framework was

utilized to estimate themodel parameters, and these estimates

were used to male predictions of the porosity at any desired

location. Fig. 8b shows summary of the predictive methodol-

ogy. The porosity of the part was expressed as a function of

scanning speed and laser power. These parameters are the

most influential parameters on the component porosity. Re-

searchers used real-world data from SLM of stainless steel. The

fabricated specimens are shown in Fig. 8c. The experimental
observation and predicted porosity are shown in Fig. 8d and e,

respectively. The obtained results confirmed that porosity

prediction was accurate under any parameter setting.

In [102,103], layer thickness and laser power were consid-

ered as inputs of a ML-based system in order to predict

porosity and achieve desired porosity by changing the process

parameters in SLS printing technique. Specifically, in [102]

multi-gene genetic programming approach was used to

formulate the model. Since applicability of multi-gene genetic

programming is limited by the issue of generalization,

computational intelligencemethods have been applied. At the

first step, the initial population was formed by combining the

genes based on least-square method. Then, structural mini-

mization principle was used to estimate the initial population.

The next step deals with generic operations for producing a

new generation. The obtained results showed benefits of the

system for optimizing the performance of the SLS technique.
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Fig. 8 e (a) Schematic of part orientation nomenclature used in [100], (b) visual summary of prediction methodology, (c) as-

built specimens, (d) observed porosity, (e) predicted porosity [101].
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Later, in [104], MLP, SVM, and the K-Nearest Neighbors

(KNN) algorithm were employed for monitoring of build con-

ditions in PBF process. To this aim, the printer was integrated

with a high-speed camera, a photodetector, and a short wave

infrared thermal camera. Thermal profile of melt pools and

bulk build states were considered as an input feature and

output target, respectively. The obtained results indicated that

combining data from multiple sensor can be achieved by

integration of in-process sensing and ML approach. At the

same time, in [105], a real-time porosity prediction method

was developed based on the morphological characteristics of

the melt pool boundary. Researchers used KNN, SVM, and

Decision Tree (DT) as supervised ML algorithms, see Fig. 9a.

The melt pool database was labeled utilizing information ob-

tained from X-ray tomography. Later, accuracy measuring was

applied in order to evaute the performance of supervised ML

methods. The reported results showed that KNN provides the

highest rate of accurately. Subsequently, porosity prediction

was performed based on in-situ monitoring of melt pool im-

ages [106]. In this context, SOM model was utilized to detect

location of pores in a metallic 3D-printed part. In detail, the

SOM was used as linking step between image data pre-

processing and porosity prediction. The flowchart of using

SOM for porosity detection is illustrated in Fig. 9b. The accu-

racy of the porosity prediction system was validated by

printing a Tie6Ale4V thin wall. The predicted distribution of

porosity obtained based on melt pool characteristics was

compared to the results of X-ray tomography characterization.

At the same time, in [107] a cost-driven decision-making

framework was proposed to formulate costs of microstructural

defects such as porosity in laser-based 3D printing. Fig. 9c

shows ANN based Decision Making (DM) flowchart. The re-

sults confirmed capability of ML in improving the quality of

the decisions.
In [108], researchers described application of CNN in

porosity monitoring during a laser-based 3D printing process.

To this end, a high speed camera was used for in-process

sensing of melt-pool data. Moreover, CNN models learned

the melt pool features in order to predict porosity. Fig. 10

shows instrumentation setup, steps of data preparation, and

porosity measurement. In order to extract porosity informa-

tion (from microscopic images), a set of processing tools were

developed. Since CNN is powerful in learning intricate from

high-dimensional visual data it was utilized to learn from

melt-pool images (input data) to predict the porosity (output

data). The obtained results indicated that the proposed model

has a high accuracy in detection of porosity occurrence for

both high porosity and low porosity specimens.

In a recent work, porosity segmentation in a metallic 3D-

printed partwas performed based on combination of CNN into

a ML tool [109]. In this context, different CNNs were trained

and tested and network training was halted there was no

improvement in the validation loss value after six epochs. The

documented results confirmed capability of the proposed ML

tool in automated porosity segmentation.

Previous research works indicated that the supervised ML

generates a black-boxmodel for probability distribution of the

porosity. As this model does not depend on material proper-

ties and design of specimen, it can be counted as advantage of

this technique. By and large, based on the increasingly appli-

cations of 3D-printed parts as functional end-products, there

is a strong need for developing systems which can predict

porosity of 3D-printed parts as it has important influence on

the mechanical behavior of the parts.

3.2.3. ML for defect detection in 3D-printed components
Although there are significant advances in 3D printing tech-

niques, different processing-related defects (e.g.,

https://doi.org/10.1016/j.jmrt.2021.07.004
https://doi.org/10.1016/j.jmrt.2021.07.004


Fig. 9 e (a) Porosity prediction procedure based on supervised ML [105], (b) utilizing unsupervised SOM technique for

porosity detection in DED process [106], (c) flowchart of ANN based DM utilized in laser-based 3D printing [107].
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delamination, cracks, and rough surface) might be occurred in

these processes. Some of the defects can be initiated from one

layer and propagates to the next layer. In this context, ML can

be considered as a promising technique which provides key

solutions. In [110] K-mean clustering was employed to recog-

nize normal and abnormal printing process. Researchers used

acoustic emission as the sensing technique and change in

printing process from normal to unusual conditions would be
Fig. 10 e A schematic of printing, pairing of inputeoutput data, a
recognized by the change in acoustic feature patterns. A series

of experimental practice was conducted on the FDM process

and documented results proved that this method can reduce

the waste of fabrication. In the same vein, K-means clustering

was utilized to detect and locate the defects [111]. Specifically,

since the intensity profiles of melt pool images pixels in

overheated regions are very different from normal melting

conditions, K-means clustering was used to detect the defect
ndmonitoring of porosity in a laser-based 3D printing [108].

https://doi.org/10.1016/j.jmrt.2021.07.004
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Fig. 11 e (a) Flowchart of the implementation of multi-scale CNNML technique for defect detection in SLM process: (i) a layer

of powder bed with different anomalies, (ii) the architecture of the multi-scale CNN, (iii) classified different anomalies in a

layer [113], (b) bi-stream DCNN for defect detection in SLM process [117].
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due to the overheating. Moreover, researchers applied a sta-

tistical descriptor (based on principal component analysis) to

image data in order to identify defective areas of the printed

layer. In experimental tests, stainless steel was used to print

lattice structures and hollow cylinders based on the SLM

process. Results of the tests demonstrated performance of the

proposed method in simple and complicated geometries. At

the same time, in [112] ML was used to develop a vision-based

system for detection of intentional attacks in 3D printing.

Indeed, simulated 3D printing process images were compared

to actual gray-scale images using ML algorithms and unusual

infills were detected. In detail, three ML algorithms were used

(KNN, random forest, and anomaly detection) and the pro-

posed approach was used to evaluate honeycomb parts prin-

ted based on the FDM technique. Outcome of the study

indicated that anomaly detection showed better results than

KNN or random forest. In addition, the reported results

confirmed that there is an unwanted motion when camera is

mounted on the 3D printer frame which reduced detection

accuracy.
In the subsequent year, with the aid of contemporary

computer vision technique, researchers applied a multi-scale

CNN in order to train the system and detect the defects in PBF

process [113]. To this aim, a human expert selected square

image patches from images captured during multiple builds.

The input layer of the CNN was modified to enable the algo-

rithm to learn key contextual information and the appearance

of the powder bed anomalies. Fig. 11a shows the flowchart of

the multi-scale CNN for fault detection. As researchers dis-

cussed in their previous study [114], the anomaly classification

can be viewed in different formats. Based on the experimental

test, a superior performance of the system was documented.

At the same time, defect detection in the SLM process was

carried out based on acoustic signal and ML [115]. To this end,

Deep Belief Network (DBN) was employed and proposed

method used a simplified classification structure without

signal processing and feature extraction. The DBN is a prob-

abilistic graphical model, composed of multiple layers of

latent variables (hidden units). Researchers performed a series

of tests on a steel 3D-printed part and collected acoustic

https://doi.org/10.1016/j.jmrt.2021.07.004
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Fig. 12 e (a) The schematic architecture of proposed ML model, (b) the flowchart diagram of the semantic segmentation

model [122].
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signals from five different patterns. The reported results

indicated a high performance of DBN in detection of various

defects. In the same vein, supervised ML was used to develop

an in situ defect detection strategy in a metallic 3D printing

[116]. Specifically, layer-wise images and ex-situ CT scan data

were used as input features, and defects were detected based

on SVM algorithm. Researchers used 3D CT scan data for

training the binary classifiers and discontinuities such as

incomplete fusion and cracks were identified by manual in-

spection or an automated analysis. After training, validation

experiments proved capability of the proposed method.

In the subsequent year, Deep Convolutional Neural

Network (DCNN) was used in an on-line fault recognition in

SLM process [117]. The bi-stream structure is illustrated in

Fig. 11b. The experimental evaluation confirmed efficacy of

the proposed system in identification of defects induced by

process non-conformities.

In [118], tensile test bars were printed using SLM technique

and a semi-supervised ML was utilized to detect the faults. In

detail, a nickel-based alloywas used to print specimens. Based

on ultimate tensile strength tests and GaussianMixtureModel

(GMM), the specimens were classified as acceptable and faulty

3D-printed parts. The semi-supervised learning used the full

data sets includes labelled and unlabelled data. The semi-
supervised learning was applied to the feature extracted

from each of the bars. When the probability of the fault is

greater than 0.5, the specimens were labelled as faulty. The

semi-supervised GMM was trained via randomly selected

unlabelled points. The obtained results showed that the faulty

specimens were identified with a high success rate. In the

same vein, deep learning was employed to predict distortion

in laser-based 3D printing [119]. To this aim, CNN and ANN

were used for analyzing thermal images and relevant process

parameters, respectively. The output of the CNN and ANN

were joined and further trained to give the final distortion

prediction. There are two pooling layers in CNN in order to

reduce the spatial dimension which reduces computational

complexity. As a case study, a disk was printed and experi-

mental findings confirmed capability of the proposed method

in a highly accurate prediction of distortion. At the same time,

ML was used to detect malicious infill structures printed via

FDM process [120]. Indeed, integration of cyber security and

physical data ML were integrated to enhance accuracy of

detection. In this context, KNN and random forest were uti-

lized and 3D printing of polymeric part was considered to

evaluate the proposed approach. Researchers used real im-

ages from a camera during printing process and simulated

images from 3D printing software. Moreover, the image

https://doi.org/10.1016/j.jmrt.2021.07.004
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Table 4 e Applied ML techniques in different domains of AM.

Ref. AM process Material ML method Purpose

[123] SLA Polymer Bayesian network Shape deviation modeling

[124] FDM PLA Random forest Geometric accuracy prediction

[125] SLA Polymer Gaussian process Shape deviation generator

[126] FDM Polymer Gaussian process In-plane shape deviation

[127] SLA Polymer Bayesian network Local deviation

[128] FDM PLA Random forest Geometric accuracy prediction
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classification method was verified by a camera-based vision

detection system. A prototype system was used in a real-time

detection to inform administrator about malicious defects.

The obtained results showed high accuracy of the system in

detection of defects during the printing process. Later, in [121]

ML was employed for defects detection in the FDM process

and reduce human involvement in quality check. The pro-

posed method was based on CNN and feature extraction of

geometrical anomalies occurred during printing process. The

anomalies can be result of weak infills, inconsistent extrusion,

and lack of supports. Experimental practice showed that the

developed algorithm was able to detect the defects and pause

the printing process in mid-process.

In a recent research work, defects of the extrusion-based

3D printing were detected based on ML algorithms [122]. In

this context, a camera was attached to the extruder to capture

real-time images, and researchers used two modified ML al-

gorithms including semantic segmentation model and locali-

zation model. The semantic segmentation method was

utilized to recognize conditions (e.g., good quality or anoma-

lies), the location, and number of defects. Moreover, an algo-

rithm was used to detect the defects in previous layer and

current layer. As illustrated in Fig. 12a, the model has input

image and detections were performed under three resolutions

(82, 94, and 106). By setting a threshold, high sensitivity areas

would be displayed on the input images. Model layer with

different functionalities are depicted in different colors. The

flowchart diagram of the semantic segmentation is shown in

Fig. 12b, where the input image is fed into CNN with atrous

convolution structures, which includes different kinds of

processing layers. The proposed approaches were used in 3D

printing of a polymeric part and the results proved ability of

this technique in evaluation of 3D printing systems.

A literature review reveals that ML algorithms have been

used for geometric accuracy prediction in 3D printing pro-

cesses. In Table 4 these applications are summarized. Although

there are some documented research works in geometry ac-

curacy control in 3Dprinting,more attempts and investigations

are required on learning 3D shape data to improve 3D printing

accuracy. In this context, new predictive model should be

developed with ability of learning from the examined shapes.

Literature reviews showed that the most utilized data in

ML algorithms for prediction behavior of 3D printing, are laser

scan speed, laser height, laser energy, elastic modulus,

extrusion process, and printing speed. Moreover, grain size of

3D printing material has been used in previous research

works. In addition, material scientists have interaction with

series data such as temperature measurement and X-ray

diffraction histograms. Different types of images are also data
source which can be obtained from a wide range of tech-

niques. Therefore, advances in measurements of the afore-

mentioned values and techniques would be increased

accuracy of the results.

Since different ML techniques have been used in AM pro-

cesses, comparison of ML methods is beneficial for further

developments. In defect detection based on the images from

cameras, capability of computer vision play a crucial role. As

mentioned earlier, previous research works show that ANN is

the most commonly used ML technique for process optimi-

zation in different 3D printing techniques, but CNN is the

most used ML technique in computer vision for defect detec-

tion. The documented results indicated that ML algorithms

based on CNN can predict the defects and anomalies with a

very high accuracy. Moreover, previous experiments reported

that a combination of ANN and SOM leads to an accurate

system for classification of porosity defects compared to MLP

and KNN. Comparison of presented results in [129,130] indi-

cated that spectral convolutional neural networks (SCNN)

have higher classification accuracy compared to reinforced

learning for defect detection and quality control.
4. Advantages, challenges, and perspectives

Although experimental practices provide reliable data,

sometimes they are not cost-efficient due to the required

equipment. In contrast to experiments, numerical simula-

tions are cost effective, butmay not be reliable. In this context,

ML overcomes the limits for research in the domain of AM.

Previous research works investigated the power of the ML-

assisted experimental approach. The investigations

confirmed that using ML can lead to a faster computations

compared to pure physic-based simulation in the field of 3D

printing.

Understanding effects of microstructural parameters is a

necessity for improving properties of a material. It is note-

worthy that ML algorithms can be used in the systems to

generate required microstructure which matches required

specifications. It can be considered as one of the main ad-

vantages of ML approach compared with other common

techniques. This paves the way to design microstructures

with extraordinary properties.

Since AM can be used for fabrication of Functionally

Graded Materials (FGM), significant developments on appli-

cations of ML in this field are expected. Although the FGM as

an engineered material has been widely used in modern en-

gineering applications, there are some issues which required

further developments. For example, presence of uncertainties
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within themanufacturing process leads to difference between

designed and actual FGM. In this respect, ML can be used to

develop an appropriate robust analysis system. Moreover, ML

can play an important role in understanding the mechanical

behavior of FGM structures under different conditions.

Although ML algorithms have been used in predicting me-

chanical behavior of 3D-printed components and the prom-

ising results have been obtained, there are challengingpoints in

this field. Here, we summarize some of the current challenges:

- Performances of someML algorithms are directly related to

the amount of accessible data. In some areas, there are big

datasets for training andML algorithms proved their power

in these areas, but in some fields of 3D printing there is no

huge dataset. Therefore, accuracy of the obtained results

can be reduced. In this case, with limited data further at-

tempts in data augmentation are required. To this aim,

different generative models such as generative adversarial

nets can be used.

- Modeling and processing of thermal images of 3D printing

processes is a challenging issue. In this context, further

research works are necessary to answer the demands. As

massive amount of data are generated in thermal imaging

of 3D printing, applications should be developed to save

this big data and make them valuable. Moreover, since the

size and center of the melt pools are vary during the

printing process, new efforts are required in order to align

the melt pools and account for various melt pool size.

- Experimental investigations showed that some printing

parameters have significant influence on the mechanical

performance of the 3D-printed parts. In contrast, several

printing parameters have a small effect. Therefore, oper-

ation of algorithms on a good set of features is a chal-

lenging issues which has become of significant

importance. In this respect, preprocessing on input data

should be considered. Specifically, feature selection with

the aim of selecting most useful features, and feature

combination can bring considerable benefits.

- Due to the complexity of the physical transformations,

metal-based 3D printing is characterized by lack of

repeatability. Since improving in repeatability of fabrica-

tion of 3D-printed parts would increase accuracy of the

predicted anomalies, this issue is worth being considered

for further research. In this context, access to both x-ray

and thermal data of several additively manufactured items

is a necessity.

- Although the emergence of 3D printing processes has led to

new prospects in fabrication of geometrically complex

parts, there is not metric and international standards for

evaluation of process and components. Applied ML algo-

rithms confirmed that ML can be used as an accurate

method to evaluate 3D-printed parts and which can leads

to printing higher geometrically accurate parts. Indeed,

ML-based systems are applicable for a wide range of part

geometries and they can be used for quality prediction in

variety measurements.

- Data preprocessing is a crucial prerequisite in some ML-

based systems. In fact, erasing dirty data and utilizing

correct data in the model is an essential step, but there are

difficult tasks that need to be accomplished. For instance,
images obtained from scanning electron microscope

contain grain and porosity information. Accurate extrac-

tion of the crack distribution in these images is a chal-

lenging issue which depends on the profound knowledge

of the user on fracture mechanics and image processing.

- Based on the concept of 3D printing which is a layer-by-

layer fabrication technology, quality of every layer has a

significant effect on the mechanical performance of the

functional end-use products. Therefore, quality control of

every layer increase quality of the final products. In this

context, measurements in 3D printing processes have been

performed by utilizing multiple types of sensors (e.g.,

electrical and thermal). Applying ML for analyzing the in-

formation obtained from aforementioned sensors remains

to be an important research direction which can answer

the demands in the quality control of the printed layer.

Considering the above-mentioned challenges, further

research is required to focus on applications of ML in 3D

printing technology. Review of the previous research works

indicated that several database have been developed by

employing tools, techniques, and theories from different fields.

Indeed, exerts from various domains such as mechanical en-

gineering, computer science, manufacturing, and data science

have cooperated to accelerate manufacturing innovations and

increase quality of the final products. Although beneficial re-

sults have been obtained, the data sharing culture among the

materials community is sparse. Therefore, providing a unified

database platform to keep data generated by different research

groups in academia and industry is necessary to share the

knowledge and improve manufacturing processes.
5. Conclusions

Although 3D printing techniques have been widely employed

in different industries in the past few years, they are still

developing and faces various problems in production. In this

context, different experimental investigations have been per-

formed in order to determine effects of printing process pa-

rameters on the mechanical behavior of final products. Since

experimental practices are time-consuming and costly

methods, other techniqueshas been applied in this fieldwhich

are accurate and cost effective. In recent years, ML has

attracted a lot of research interest in 3D printing due to its su-

perior properties. In different 3D printing processes, ML algo-

rithms are beneficial in several domains. Although ML can be

used for different purposes such as process planning, design

optimization, microstructural characterization, and quality

assessment in 3D printing, the current study focuses on ap-

plications of ML in three domains which have effects on the

mechanical behavior of final 3D-printed parts. These domains

are as follows: optimizing process parameters, porosity pre-

diction, and defect detection. Since the aforementioned do-

mains have significant influence in mechanical performance

of the final products, applications of ML-based system can in-

crease productivity and accelerate manufacturing in-

novations. In the present study, an overview of ML has been

presentedandprevious researchworks inapplicationsofML in

predicting mechanical behavior of 3D-printed parts have been
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discussed. In addition, we have presented our thoughts about

future trends in applications of ML in 3D printing. The sum-

marized data, reviewed research works, and presented chal-

lenges can be used for development of future ML-based

systems. In answering the demands, there are several issues

which should be learned, and techniques must be adopted to

improve applications of ML in 3D printing technology.
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